NASA Astrophysics Data System (ADS)
Stockton, A. M.; Kim, J.; Willis, P. A.; Lillis, R.; Amundson, R.; Beegle, L.; Butterworth, A.; Curtis, D.; Ehrenfreund, P.; Grunthaner, F.; Hazen, R.; Kaiser, R.; Ludlam, M.; Mora, M. F.; Scherer, J.; Turin, P.; Welten, K.; Williford, K.; Mathies, R. A.
2014-07-01
Mars Organic Analyzer was designed to give the Mars 2020 Mission capability to look for organic molecules, including amines, aldehydes, ketones, organic acids, thiols and polycyclic aromatic hydrocarbons, in martian samples with sub-ppb sensitivity.
Natural Mediators in the Oxidation of Polycyclic Aromatic Hydrocarbons by Laccase Mediator Systems
Johannes, Christian; Majcherczyk, Andrzej
2000-01-01
The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter with redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds. PMID:10653713
Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johannes, C.; Majcherczyk, A.
2000-02-01
The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2{prime}-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter withmore » redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds.« less
Biologically important compounds in synfuels processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, B R; Ho, C; Griest, W H
1980-01-01
Crude products, by-products and wastes from synfuel processes contain a broad spectrum of chemical compounds - many of which are active in biological systems. Discerning which compound classes are most important is necessary in order to establish effective control over release or exposure. Polycyclic aromatic hydrocarbons (PAH), multialkylated PAH, primary aromatic amines and N-heterocyclic PAH are significant contributors to the overall mutagenic activities of a large number of materials examined. Ames test data show that the basic, primary aromatic amine fraction is the most active. PAHs, multialkylated PAHs and N-heterocyclic PAHs are all components of the neutral fraction. In nearlymore » all cases, the neutral fractions contribute the largest portion of the mutagenic activity, while the basic primary aromatic amine fractions have the highest specific activity. Neutral fractions are usually the largest (wt %) whereas the total basic fractions are small by comparison; thus, the overall greater contribution of the neutral fraction to the mutagenic activity of most samples. Biologically active constituents are isolated in preparative scale amounts from complex mixtures utilizing combinations of liquid-liquid extraction and various liquid chromatographic column-eluant combinations. Fractions are characterized using a combination of spectroscopic techniques and gas chromatography/mass spectrometry.« less
Electrochemical methods for monitoring of environmental carcinogens.
Barek, J; Cvacka, J; Muck, A; Quaiserová, V; Zima, J
2001-04-01
The use of modern electroanalytical techniques, namely differential pulse polarography, differential pulse voltammetry on hanging mercury drop electrode or carbon paste electrode, adsorptive stripping voltammetry and high performance liquid chromatography with electrochemical detection for the determination of trace amounts of carcinogenic N-nitroso compounds, azo compounds, heterocyclic compounds, nitrated polycyclic aromatic hydrocarbons and aromatic and heterocyclic amines is discussed. Scope and limitations of these methods are described and some practical applications based on their combination with liquid-liquid or solid phase extraction are given.
Seidel, Albrecht; Dahmann, Dirk; Krekeler, Horst; Jacob, Juergen
2002-02-01
Diesel exhaust is considered a probable human carcinogen by the IARC. Biomonitoring of workers occupationally exposed to diesel exhaust was performed to determine their internal burden of diesel associated aromatic compounds. Personal air sampling also allowed to determine the exposure of the miners at their work place towards several polycyclic aromatic hydrocarbons (PAH) and nitro-arenes, the latter of which are thought to be specific constituents of diesel exhaust. For biomonitoring the urine of 18 underground salt miners was collected during and after their shift for 24-hours. half of the 18 miners were smokers. The urinary levels of 1-hydroxypyrene and hydroxylated phenanthrene metabolites were determined as biomarkers of PAH exposure, whereas urinary levels of some aromatic amines were chosen to monitor exposure towards specific nitro-arenes from diesel exhaust like 1-nitropyrene and 3-nitrobenzanthrone and to monitor the human burden by these compounds from inhaled cigarette smoke. Non-smoking workers exposed to diesel exhaust excrete an average level of about 4 micrograms phenanthrene metabolites, whereas the urinary levels in smokers were up to 3-fold higher. In summary the results indicate that (i) diesel exposure led to an increase of PAH metabolism in the workers examined, most probably by an induction of cytochrome P450 (ii) smokers could be identified in accordance with earlier studies by their increased ratio of phenanthrene metabolites derived from 1,2- and 3,4-oxidation and their higher amounts of excreted 1-naphthylamine, and (iii) the excreted amounts of aromatic amines found as metabolites of the nitro-arenes were about 5- to 10-fold higher as one might expect from the levels determined by personal air sampling at the workplace of the individuals.
Zhu, Gangbing; Yi, Yinhui; Han, Zhixiang; Wang, Kun; Wu, Xiangyang
2014-10-03
Being awfully harmful to the environment and human health, the qualitative and quantitative determinations of polycyclic aromatic amines (PAAs) are of great significance. In this paper, a novel core-shell heterostructure of multiwalled carbon nanotubes (MWCNTs) as the core and graphene oxide nanoribbons (GONRs) as the shell (MWCNTs@GONRs) was produced from longitudinal partially unzipping of MWCNTs side walls using a simple wet chemical strategy and applied for electrochemical determination of three kinds of PAAs (1-aminopyrene (1-AP), 1-aminonaphthalene and 3,3'-diaminobiphenyl). Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis and electrochemical methods were used to characterize the as-prepared MWCNTs@GONRs. Due to the synergistic effects from MWCNTs and GONRs, the oxidation currents of PAAs at the MWCNTs@GONRs modified glassy carbon (GC) electrode are much higher than that at the MWCNTs/GC, graphene/GC and bare GC electrodes. 1-AP was used as the representative analyte to demonstrate the sensing performance of the MWCNTs@GONRs/GC electrode, and the proposed modified electrode has a linear response range of 8.0-500.0 nM with a detection limit of 1.5 nM towards 1-AP. Copyright © 2014 Elsevier B.V. All rights reserved.
1997-01-01
frequently reported in premenopausal rather than postmenopausal women. It is currently unknown what might be the carcinogenic agents in alcoholic... agents in human main-that they could affect heterogeneity of Breast cancer and cigarette smoking. N Engl J mary epithelial cells. CancerRes. 1992;52:5617...trosamines, polycyclic aromatic hydrocarbons, aryl aro- Abbreviations: NMU, N-methyl-N- nitrosourea ; CYP2E1, cytochrome matic amines, and heterocyclic
NASA Astrophysics Data System (ADS)
Wang, Jincui; Zhao, Yongsheng; Sun, Jichao; Zhang, Ying; Liu, Chunyan
2018-06-01
This paper has investigated the concentration and distribution of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China. Results show that the concentration levels of 16 priority polycyclic aromatic hydrocarbons range from 0 to 92.06 ng/L, do not conform to drinking water quality standards in China (GB 5749- 2006). However, the concentration figures of priority polycyclic aromatic hydrocarbons are much lower than that of other studies conducted elsewhere in China. In addition, highly-concentrated polycyclic aromatic hydrocarbons (50-92 ng/L) are fragmentarily distributed. The composition of polycyclic aromatic hydrocarbons from this study indicates that low molecular polycyclic aromatic hydrocarbons are predominant in groundwater samples, medium molecular compounds occur at low concentrations, and high molecular hydrocarbons are not detected. The polycyclic aromatic hydrocarbon composition in groundwater samples is basically the same as that of gaseous samples in the atmosphere in this study. Therefore, the atmospheric input is assumed to be an important source of polycyclic aromatic hydrocarbons, no less than wastewater discharge, adhesion on suspended solids, and surface water leakage. Ratios of specific polycyclic aromatic hydrocarbons demonstrate that they mainly originate from wood or coal combustion as well as natural gas and partially from petroleum according to the result of principal component analysis. On the whole, conclusions are drawn that the contamination sources of these polycyclic aromatic hydrocarbons are likely petrogenic and pyrolytic inputs. Future investigations by sampling topsoil, vadose soil, and the atmosphere can further verify aforementioned conclusions.
Lv, Jungang; Shi, Rongguang; Cai, Yanming; Liu, Yong
2010-07-01
Soil contamination with polycyclic aromatic hydrocarbons is an increasing problem and has aroused more and more concern in many countries, including China. In this study, representative soil samples (n = 87) of suburban areas in Tianjin (Xiqing, Dongli, Jinnan, Beichen) were evaluated for 16 polycyclic aromatic hydrocarbons. Surface soil samples were air-dried and sieved. Microwave assisted extraction was used for polycyclic aromatic hydrocarbons preparation prior to analysis with gas chromatography-mass spectrometry. The total concentrations of tested polycyclic aromatic hydrocarbons in Xiqing, Dongli, Jinnan, Beichen ranged in 58.5-2,748.3, 36.1-6,734.7, 58.5-4,502.5, 29.7-852.5 ng/g and the averages of total concentration of polycyclic aromatic hydrocarbons were 600.5, 933.6, 640.8, 257.3 ng/g, respectively. Spatial variation of polycyclic aromatic hydrocarbons in soil was illustrated; Pollution status and comparison to other cities were also investigated. Serious polycyclic aromatic hydrocarbons soil pollution was found in Dongli district, on the contrary, Bap in most sites in Beichen did not exceed relative standards and most sites in Beichen should be classified as non-contaminated soil. Principal component analysis was used to identify the possible sources of different districts. It turned out that coal combustion still was the most important sources in three districts except Beichen. Coking, traffic, cooking, biomass combustion also accounted for polycyclic aromatic hydrocarbons pollution to certain extent in different districts. These data can be further used to assess the health risk associated with soils polluted with polycyclic aromatic hydrocarbons and help local government find proper way to reduce polycyclic aromatic hydrocarbons pollution in soils.
Mutagenicity of aerosols from the oxidative thermal decomposition of rigid polyurethane foam.
Zitting, A; Falck, K; Skyttä, E
1980-01-01
The aerosol fraction of the oxidative thermal decomposition products (700 degrees C) of rigid polyurethane foam was collected on glass fiber filters and fractionated into either-soluble neutral, acidic, and basic fractions and water-soluble compounds. The fractions showed mutagenic activity in a bacterial fluctuation test with Salmonella typhimurium TA98 or Escherichia coli CM891 as the tester strains. All the fractions induced mutations in both strains after metabolic activation with rat liver S-9 mix. The basic and the water-soluble fractions were mutagenic for S. typhimurium TA 98 even without activation. Thin-layer chromatography showed the presence of several primary aromatic amines in the aerosol. Polycyclic aromatic hydrocarbons were not detected by glass capillary gas chromatogaphy.
Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review.
Castillo-Carvajal, Laura C; Sanz-Martín, José Luis; Barragán-Huerta, Blanca E
2014-01-01
Agro-food, petroleum, textile, and leather industries generate saline wastewater with a high content of organic pollutants such as aromatic hydrocarbons, phenols, nitroaromatics, and azo dyes. Halophilic microorganisms are of increasing interest in industrial waste treatment, due to their ability to degrade hazardous substances efficiently under high salt conditions. However, their full potential remains unexplored. The isolation and identification of halophilic and halotolerant microorganisms from geographically unrelated and geologically diverse hypersaline sites supports their application in bioremediation processes. Past investigations in this field have mainly focused on the elimination of polycyclic aromatic hydrocarbons and phenols, whereas few studies have investigated N-aromatic compounds, such as nitro-substituted compounds, amines, and azo dyes, in saline wastewater. Information regarding the growth conditions and degradation mechanisms of halophilic microorganisms is also limited. In this review, we discuss recent research on the removal of organic pollutants such as organic matter, in terms of chemical oxygen demand (COD), dyes, hydrocarbons, N-aliphatic and N-aromatic compounds, and phenols, in conditions of high salinity. In addition, some proposal pathways for the degradation of aromatic compounds are presented.
Gong, Miao; Wang, Yulan; Fan, Yujie; Zhu, Wei; Zhang, Huiwen; Su, Ying
2018-02-01
The formation of polycyclic aromatic hydrocarbon is a widespread issue during the supercritical water gasification of sewage sludge, which directly reduces the gasification efficiency and restricts the technology practical application. The changes of the concentrations and forms as well as the synthesis rate of polycyclic aromatic hydrocarbons in the residues from supercritical water gasification of dewatered sewage sludge were investigated to understand influence factors and the reaction pathways. Results showed that the increase of reaction temperature during the heating period favours directly concentration of polycyclic aromatic hydrocarbon (especially higher-molecular-weight), especially when it raise above 300 °C. Lower heating and cooling rate essentially extend the total reaction time. Higher polycyclic aromatic hydrocarbon concentration and higher number of rings were generally promoted by lower heating and cooling rate, longer reaction time and higher reaction temperature. The lower-molecular-weight polycyclic aromatic hydrocarbons can be directly generated through the decomposition of aromatic-containing compounds in sewage sludge, as well as 3-ring and 4-ring polycyclic aromatic hydrocarbons can be formed by aromatization of steroids. Possible mechanisms of reaction pathways of supercritical water gasification of sewage sludge were also proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
THE PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS
The U.S. Environmental Protection Agency (EPA) continues to be interested in developing methods for the detection of polycyclic aromatic hydrocarbons (PAHS) in the environment. Polycyclic aromatic hydrocarbons (PAHS) are common contaminants in our environment. Being major product...
Min, Chang; Sanchawala, Abbas; Seidel, Daniel
2014-05-16
Iminium ions generated in situ via copper(I) bromide catalyzed oxidation of N-aryl amines readily undergo [4 + 2] cycloadditions with a range of dienophiles. This method involves the functionalization of both a C(sp(3))-H and a C(sp(2))-H bond and enables the rapid construction of polycyclic amines under relatively mild conditions.
Wang, Xianli; Kang, Haiyan; Wu, Junfeng
2016-05-01
Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid-phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid-phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0-1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015-0.591 and 0.045-1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1-monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m(-3) . 9,10-Dichloroanthracene and 1-monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In vivo metabolism and genotoxic effects of nitrated polycyclic aromatic hydrocarbons.
Möller, L
1994-10-01
During incomplete combustion of organic matter, nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), are formed in a reaction that is catalyzed by a low pH. 2-Nitrofluorene (NF), a marker for nitro-PAHs, is metabolized in vivo by two different routes. After inhalation, potent mutagenic metabolites, hydroxylated nitrofluorenes (OH-NFs), are formed. The metabolites are distributed by systemic circulation. After oral administration, NF is reduced to the corresponding amine, a reaction mediated by the intestinal microflora. This metabolite is acetylated to 2-acetylaminofluorene (AAF), a potent carcinogen. Further ring-hydroxylation of AAF leads to detoxification and excretion. Induction of cytochrome P450s affects the metabolism, and more OH-NFs are formed. As a consequence, more mutagenic metabolites are found in the circulation. OH-NFs are excreted in the bile as, in terms of mutagenicity, totally harmless glucuronide conjugates. When these conjugates are excreted via the bile, intestinal beta-glucuronidase can liberate direct-acting mutagens in the intestine. Thus, inhalation of NF can lead to formation of potent mutagens in the intestine. NF is a direct-acting mutagen in bacterial assays and an initiator and promoter of the carcinogenic process, and gives rise to DNA adduct formation in laboratory animals.
Brüschweiler, Beat J; Küng, Simon; Bürgi, Daniel; Muralt, Lorenz; Nyfeler, Erich
2014-07-01
Azo dyes in textiles may release aromatic amines after enzymatic cleavage by skin bacteria or after dermal absorption and metabolism in the human body. From the 896 azo dyes with known chemical structure in the available textile dyes database, 426 azo dyes (48%) can generate one or more of the 22 regulated aromatic amines in the European Union in Annex XVII of REACH. Another 470 azo dyes (52%) can be cleaved into exclusively non-regulated aromatic amines. In this study, a search for publicly available toxicity data on non-regulated aromatic amines was performed. For a considerable percentage of non-regulated aromatic amines, the toxicity database was found to be insufficient or non-existent. 62 non-regulated aromatic amines with available toxicity data were prioritized by expert judgment with objective criteria according to their potential for carcinogenicity, genotoxicity, and/or skin sensitization. To investigate the occurrence of azo dye cleavage products, 153 random samples of clothing textiles were taken from Swiss retail outlets and analyzed for 22 high priority non-regulated aromatic amines of toxicological concern. Eight of these 22 non-regulated aromatic amines of concern could be detected in 17% of the textile samples. In 9% of the samples, one or more of the aromatic amines of concern could be detected in concentrations >30 mg/kg, in 8% of the samples between 5 and 30 mg/kg. The highest measured concentration was 622 mg/kg textile. There is an obvious need to assess consumer health risks for these non-regulated aromatic amines and to fill this gap in the regulation of clothing textiles. Copyright © 2014 Elsevier Inc. All rights reserved.
Segro, Scott S; Malik, Abdul
2008-09-26
A sol-gel polydimethyldiphenylsiloxane (PDMDPS) coating was developed for capillary microextraction on-line hyphenated with high-performance liquid chromatography (HPLC). This coating was created using methyltrimethoxysilane (MTMS) as the sol-gel precursor and di-hydroxy-terminated PDMDPS as the sol-gel active polymer. The methyl and phenyl groups on the sol-gel active polymer and the methyl groups on the sol-gel precursor ultimately turned into pendant groups providing the ability to extract non-polar analytes. A 40-cm segment of 0.25 mm I.D. fused silica capillary containing the sol-gel PDMDPS coating was installed as an external sampling loop in an HPLC injection port. Aqueous samples containing polycyclic aromatic hydrocarbons (PAHs), aromatic compounds, ketones, and aldehydes were passed through this capillary wherein the analytes were extracted by the sol-gel coating. The extracted analytes were then transferred to the HPLC column using isocratic or gradient elution with an acetonitrile/water mobile phase. This capillary demonstrated excellent extraction capability for non-polar (e.g., polycyclic aromatic hydrocarbons and aromatic compounds) as well as moderately polar compounds, such as aromatic amines, ketones, and aldehydes. The test results indicate that PDMDPS can be successfully immobilized into a sol-gel network and that the resulting solvent-resistant sol-gel organic-inorganic hybrid coating can be effectively used for on-line hyphenation of capillary microextraction with high-performance liquid chromatography. The test results also indicate that the sol-gel PDMDPS coated capillary is resistant to high-temperature solvents, making it suitable for applications in high-temperature HPLC. To the best of our knowledge, this is the first report on the creation of a silica-based sol-gel PDMDPS coating used in capillary microextraction on-line hyphenated to HPLC.
Zhang, Xiaotao; Hou, Hongwei; Chen, Huan; Liu, Yong; Wang, An; Hu, Qingyuan
2015-09-17
A stable isotope dilution liquid chromatography with tandem mass spectrometry method for the analysis of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate was developed and validated. Compared with previously reported methods, this method has lower limits of detection (0.04-1.35 ng/cig). Additionally, the proposed method saves time, reduces the number of separation steps, and reduces the quantity of solvent needed. The new method was applied to evaluate polycyclic aromatic hydrocarbon content in 213 commercially available cigarettes in China, under the International Standardization Organization smoking regime and the Health Canadian intense smoking regime. The results showed that the total polycyclic aromatic hydrocarbon content was more than two times higher in samples from the Health Canadian intense smoking regime than in samples from the International Standardization Organization smoking regime (1189.23 vs. 2859.50 ng/cig, p<0.05). Meanwhile, the concentration of individual polycyclic aromatic hydrocarbons (and total polycyclic aromatic hydrocarbons) increased with labeled tar content in both of the tested smoking regimes. There was a positive correlation between total polycyclic aromatic hydrocarbons under the International Standardization Organization smoking regime with that under the Health Canadian intense smoking regime. The proposed liquid chromatography with tandem mass spectrometry method is satisfactory for the rapid, sensitive, and accurately quantitative evaluation of polycyclic aromatic hydrocarbon content in cigarette smoke condensate, and it can be applied to assess potential health risks from smoking. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Nitrogen Heterocycles (PANHs)
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W.; Allamandola, L. J.; Biemesderfer, C. D.; Rosi, M.
2002-01-01
The mid-infrared spectra of the nitrogen-containing heterocyclic polycyclic aromatic compounds 1-azabenz[a]-anthracene; 2-azabenz[a]anthracene; 1-azachrysene; 2-azachrysene; 4-azachrysene; 2-azapyrene, and 7,8 benzoquinoline in their neutral and cation forms were investigated. The spectra of these species isolated in an argon matrix have been measured. Band frequencies and intensities were tabulated and these data compared with spectra computed using density functional theory at the B3LYP level. The overall agreement between experiment and theory is quite good, in keeping with earlier results on homonuclear polycyclic aromatic hydrocarbons. The differences between the spectral properties of nitrogen bearing aromatics and non-substituted, neutral polycyclic aromatic hydrocarbons will be discussed.
He, Yun-feng; Zhang, Wang-zhen; Kuang, Dan; Deng, Hua-xin; Li, Xiao-hai; Lin, Da-feng; Deng, Qi-fei; Huang, Kun; Wu, Tang-chun
2012-12-01
To explore the effects of smoking on urinary 10 metabolites of polycyclic aromatic hydrocarbons (PAHs) in the coke oven workers. Occupational health examination was performed on 1401 coke oven workers in one coking plant, their urine were collected respectively. The concentrations of the ten monohydroxy polycyclic aromatic hydrocarbons in urine were detected by gas chromatography/mass spectrometry. The 1401 workers were divided into four groups, namely control, adjunct workplaces, bottom and side, top group according to their workplaces and the different concentrations of PAHs in the environment. The concentrations of the ten monohydroxy polycyclic aromatic hydrocarbons between smokers and nonsmokers in each workplace group were compared using analysis of covariance, respectively. The levels of concentrations of the sixteen polycyclic aromatic hydrocarbons we detected at control were significantly higher than those at other areas (P < 0.05). Comparing the ten monohydroxy polycyclic aromatic hydrocarbons levels between smokers and nonsmokers, the levels of 1-hydroxynaphthalene and 2-hydroxynaphthalene among smokers were higher than nonsmokers with statistically significance in control, adjunct workplaces, bottom and side and top groups (P < 0.05). However, the levels of 1-hydroxypyrene had no statistically significant differences between the four areas. Urinary 1-hydroxynaphthalene and 2-hydroxynaphthalene may be used as biomarkers for the impact of smoking on monohydroxy polycyclic aromatic hydrocarbons in the coke oven workers.
Zhu, Linli; Xu, Hui
2014-09-01
Detection of monohydroxy polycyclic aromatic hydrocarbons metabolites in urine is an advisable and valid method to assess human environmental exposure to polycyclic aromatic hydrocarbons. In this work, novel Fe3O4/graphene oxide composites were prepared and their application in the magnetic solid-phase extraction of monohydroxy polycyclic aromatic hydrocarbons in urine was investigated by coupling with liquid chromatography and mass spectrometry. In the hybrid material, superparamagnetic Fe3O4 nanoparticles provide fast separation to simplify the analytical process and graphene oxide provides a large functional surface for the adsorption. The prepared magnetic nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The experimental conditions were optimized systematically. Under the optimal conditions, the recoveries of these compounds were in the range of 98.3-125.2%, the relative standard deviations ranged between 6.8 and 15.5%, and the limits of detection were in the range of 0.01-0.15 ng/mL. The simple, quick, and affordable method was successfully used in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities. The results indicated that the monohydroxy polycyclic aromatic hydrocarbons level in human urine can provide useful information for environmental exposure to polycyclic aromatic hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pesch, B; Haerting, J; Ranft, U; Klimpel, A; Oelschlägel, B; Schill, W
2000-04-01
This multicentre population-based case-control study was conducted to estimate the urothelial cancer risk for occupational exposure to aromatic amines, polycyclic aromatic hydrocarbons (PAH), and chlorinated hydrocarbons besides other suspected risk factors. In a population-based multicentre study, 1035 incident urothelial cancer cases and 4298 controls matched for region, sex, and age were interviewed between 1991 and 1995 for their occupational history and lifestyle habits. Exposure to the agents under study was self-assessed as well as expert-rated with two job-exposure matrices and a job task-exposure matrix. Conditional logistic regression was used to calculate smoking adjusted odds ratios (OR) and to control for study centre and age. Urothelial cancer risk following exposure to aromatic amines was only slightly elevated. Among males, substantial exposures to PAH as well as to chlorinated solvents and their corresponding occupational settings were associated with significantly elevated risks after adjustment for smoking (PAH exposure, assessed with a job-exposure matrix: OR = 1.6, 95% CI: 1.1-2.3, exposure to chlorinated solvents, assessed with a job task-exposure matrix: OR = 1.8, 95% CI: 1.2-2.6). Metal degreasing showed an elevated urothelial cancer risk among males (OR = 2.3, 95% CI: 1.4-3.8). In females also, exposure to chlorinated solvents indicated a urothelial cancer risk. Because of small numbers the risk evaluation for females should be treated with caution. Occupational exposure to aromatic amines could not be shown to be as strong a risk factor for urothelial carcinomas as in the past. A possible explanation for this finding is the reduction in exposure over the last 50 years. Our results strengthen the evidence that PAH may have a carcinogenic potential for the urothelium. Furthermore, our results indicate a urothelial cancer risk for the use of chlorinated solvents.
Synthesis of condensed phases containing polycyclic aromatic hydrocarbons fullerenes and nanotubes
Reilly, Peter T. A.
2004-10-19
The invention relates to methods for producing polycyclic aromatic hydrocarbons, fullerenes, and nanotubes, comprising: a. heating at least one carbon-containing material to form a condensed phase comprising at least one polycyclic aromatic hydrocarbon; b. collecting at least some of the condensed phase; c. reacting the condensed phase to form fullerenes and/or nanotubes.
Aromatic amines comprise an important class of environmental contaminants. Concern over their environmental fate arises from the toxic effects that certain aromatic amines exhibit toward microbial populations and reports that they can be toxic or carcinogenic to animals. Aromatic...
Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I
2014-09-01
Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil. Copyright © 2014 Elsevier Ltd. All rights reserved.
SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES: QSAR DEVELOPMENT
Despite the common occurrence of the aromatic amine functional group in environmental contaminants, few quantitative structure-activity relationships (QSARs) have been developed to predict sorption kinetics for aromatic amines in natural soils and sediments. Towards the goal of d...
Karaca, Gizem; Tasdemir, Yucel
2013-01-01
Removal of polycyclic aromatic hydrocarbons (PAHs) existed in automotive industry treatment sludge was examined by considering the effects of temperature, UV, titanium dioxide (TiO2) and diethyl amine (DEA) in different dosages (i.e., 5% and 20%) in this study. Application of TiO2 and DEA to the sludge samples in ambient environment was studied. Ten PAH (Σ10 PAH) compounds were targeted and their average value in the sludge was found to be 4480 ± 1450 ng/g dry matter (DM). Total PAH content of the sludge was reduced by 25% in the ambient air environment. Meteorological conditions, atmospheric deposition, evaporation and sunlight irradiation played an effective role in the variations in PAH levels during the tests carried out in ambient air environment. Moreover, it was observed that when the ring numbers of PAHs increased, their removal rates also increased. Total PAH level did not change with the addition of 5% DEA and only 10% decreased with 5% TiO2 addition. PAH removal ratios were 8% and 32% when DEA (20%) and TiO2 (20%) were added, respectively. It was concluded that DEA was a weak photo-sensitizer yet TiO2 was effective only at 20% dosage.
Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium
NASA Astrophysics Data System (ADS)
McGuire, Brett A.; Burkhardt, Andrew M.; Kalenskii, Sergei; Shingledecker, Christopher N.; Remijan, Anthony J.; Herbst, Eric; McCarthy, Michael C.
2018-01-01
Polycyclic aromatic hydrocarbons and polycyclic aromatic nitrogen heterocycles are thought to be widespread throughout the universe, because these classes of molecules are probably responsible for the unidentified infrared bands, a set of emission features seen in numerous Galactic and extragalactic sources. Despite their expected ubiquity, astronomical identification of specific aromatic molecules has proven elusive. We present the discovery of benzonitrile (c-C6H5CN), one of the simplest nitrogen-bearing aromatic molecules, in the interstellar medium. We observed hyperfine-resolved transitions of benzonitrile in emission from the molecular cloud TMC-1. Simple aromatic molecules such as benzonitrile may be precursors for polycyclic aromatic hydrocarbon formation, providing a chemical link to the carriers of the unidentified infrared bands.
Veljković, Dušan Ž
2018-03-01
Energies of CH/O interactions between water molecule and polycyclic aromatic hydrocarbons with a different number of aromatic rings were calculated using ab initio calculations at MP2/cc-PVTZ level. Results show that an additional aromatic ring in structure of polycyclic aromatic hydrocarbons significantly strengthens CH/O interactions. Calculated interaction energies in optimized structures of the most stable tetracene/water complex is -2.27 kcal/mol, anthracene/water is -2.13 kcal/mol and naphthalene/water is -1.97 kcal/mol. These interactions are stronger than CH/O contacts in benzene/water complex (-1.44 kcal/mol) while CH/O contacts in tetracene/water complex are even stronger than CH/O contacts in pyridine/water complexes (-2.21 kcal/mol). Electrostatic potential maps for different polycyclic aromatic hydrocarbons were calculated and used to explain trends in the energies of interactions. Copyright © 2017 Elsevier Inc. All rights reserved.
SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES. 2. QSAR DEVELOPMENT
The fate of aromatic amines in soils and sediments is dominated by irreversible binding through nucleophilic addition and oxidative radical coupling. Despite the common occurrence of the aromatic amine functional group in organic chemicals, the molecular properties useful for pr...
Li, Xiujuan; Gao, Jie; Zeng, Zhaorui
2007-05-02
A novel titania-hydroxy-terminated silicone oil (titania-OH-TSO) sol-gel coating was developed for solid-phase microextraction of polar compounds. In general, titania-based sol-gel reaction is very fast and need to be decelerated by the use of suitable chelating agents. But in the present work, a judiciously designed sol solution ingredients was used to create the titania-OH-TSO coating without the addition of any chelating agent, which simplified the sol-gel procedure. Thanks to the variety of titania's adsorption sites and their acid-base characteristics, aromatic amines, phenols and polycyclic aromatic hydrocarbons were efficiently extracted and preconcentrated from aqueous samples followed by thermal desorption and GC analysis. The newly developed sol-gel hybrid titania coating demonstrated excellent pH stability, and retained its extraction characteristics intact even after continuous rinsing with a 3 M HCl or NaOH solution for 12 h. Furthermore, it could withstand temperatures as high as 320 degrees C. Practical application was demonstrated through the analysis of six aromatic amines in dye process wastewater. A linearity of four orders of magnitude was obtained with correlation coefficient better than 0.9982. The detection limits ranged from 0.22 to 0.84 microg L(-1) and the repeatability of the measurements was <7.0%. The recoveries of these compounds studied in the wastewater were in the ranges 83.6-101.4%, indicating the method accuracy.
Detection of azo dyes and aromatic amines in women under garment
NGUYEN, THAO; SALEH, MAHMOUD A.
2016-01-01
Women are exposed to several chemical additives including azo dyes that exist in textile materials that are a potential health hazard for consumers. Our objective was to analyze suspected carcinogenic azo dyes and their degradation aromatic amines in women's panties underwear using a fast and simple method for quantification. Here, we evaluated 120 different samples of women underwear for their potential release of aromatic amines to the skin. Seventy four samples yielded low level mixtures of aromatic amines; however eighteen samples were found to produce greater than 200 mg/kg (ppm) of aromatic amines. Azo dyes in these 18 samples were extracted from the fabrics and analyzed by reverse phase thin layer chromatography in tandem with atmospheric pressure chemical ionization mass spectrometry. Eleven azo dyes were identified based on their mass spectral data and the chemical structure of the aromatic amine produced from these samples. We demonstrate that planar chromatography and mass spectrometry can be really helpful in confirming the identity of the azo dyes, offering highly relevant molecular information of the responsible compounds in the fabrics. With the growing concern about the consumer goods, analysis of aromatic amines in garments has become a highly important issue. PMID:27149414
Mutagenicity of an aged gasworks soil during bioslurry treatment
Lemieux, Christine L; Lynes, Krista D; White, Paul A; Lundstedt, Staffan; Öberg, Lars; Lambert, Iain B
2009-01-01
This study investigated changes in the mutagenic activity of organic fractions from soil contaminated with polycyclic aromatic hydrocarbons (PAHs) during pilot-scale bioslurry remediation. Slurry samples were previously analyzed for changes in PAH and polycyclic aromatic compound content, and this study examined the correspondence between the chemical and toxicological metrics. Nonpolar neutral and semipolar aromatic fractions of samples obtained on days 0, 3, 7, 24, and 29 of treatment were assayed for mutagenicity using the Salmonella mutation assay. Most samples elicited a significant positive response on Salmonella strains TA98, YG1041, and YG1042 with and without S9 metabolic activation; however, TA100 failed to detect mutagenicity in any sample. Changes in the mutagenic activity of the fractions across treatment time and metabolic activation conditions suggests a pattern of formation and transformation of mutagenic compounds that may include a wide range of PAH derivatives such as aromatic amines, oxygenated PAHs, and S-heterocyclic compounds. The prior chemical analyses documented the formation of oxygenated PAHs during the treatment (e.g., 4-oxapyrene-5-one), and the mutagenicity analyses showed high corresponding activity in the semipolar fraction with and without metabolic activation. However, it could not be verified that these specific compounds were the underlying cause of the observed changes in mutagenic activity. The results highlight the need for concurrent chemical and toxicological profiling of contaminated sites undergoing remediation to ensure elimination of priority contaminants as well as a reduction in toxicological hazard. Moreover, the results imply that remediation efficacy and utility be evaluated using both chemical and toxicological metrics. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. PMID:19274766
Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation.
Alegbeleye, Oluwadara Oluwaseun; Opeolu, Beatrice Oluwatoyin; Jackson, Vanessa Angela
2017-10-01
The degree of polycyclic aromatic hydrocarbon contamination of environmental matrices has increased over the last several years due to increase in industrial activities. Interest has surrounded the occurrence and distribution of polycyclic aromatic hydrocarbons for many decades because they pose a serious threat to the health of humans and ecosystems. The importance of the need for sustainable abatement strategies to alleviate contamination therefore cannot be overemphasised, as daily human activities continue to create pollution from polycyclic aromatic hydrocarbons and impact the natural environment. Globally, attempts have been made to design treatment schemes for the remediation and restoration of contaminated sites. Several techniques and technologies have been proposed and tested over time, the majority of which have significant limitations. This has necessitated research into environmentally friendly and cost-effective clean-up techniques. Bioremediation is an appealing option that has been extensively researched and adopted as it has been proven to be relatively cost-effective, environmentally friendly and is publicly accepted. In this review, the physicochemical properties of some priority polycyclic aromatic hydrocarbons, as well as the pathways and mechanisms through which they enter the soil, river systems, drinking water, groundwater and food are succinctly examined. Their effects on human health, other living organisms, the aquatic ecosystem, as well as soil microbiota are also elucidated. The persistence and bioavailability of polycyclic aromatic hydrocarbons are discussed as well, as they are important factors that influence the rate, efficiency and overall success of remediation. Bioremediation (aerobic and anaerobic), use of biosurfactants and bioreactors, as well as the roles of biofilms in the biological treatment of polycyclic aromatic hydrocarbons are also explored.
Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation
NASA Astrophysics Data System (ADS)
Alegbeleye, Oluwadara Oluwaseun; Opeolu, Beatrice Oluwatoyin; Jackson, Vanessa Angela
2017-10-01
The degree of polycyclic aromatic hydrocarbon contamination of environmental matrices has increased over the last several years due to increase in industrial activities. Interest has surrounded the occurrence and distribution of polycyclic aromatic hydrocarbons for many decades because they pose a serious threat to the health of humans and ecosystems. The importance of the need for sustainable abatement strategies to alleviate contamination therefore cannot be overemphasised, as daily human activities continue to create pollution from polycyclic aromatic hydrocarbons and impact the natural environment. Globally, attempts have been made to design treatment schemes for the remediation and restoration of contaminated sites. Several techniques and technologies have been proposed and tested over time, the majority of which have significant limitations. This has necessitated research into environmentally friendly and cost-effective clean-up techniques. Bioremediation is an appealing option that has been extensively researched and adopted as it has been proven to be relatively cost-effective, environmentally friendly and is publicly accepted. In this review, the physicochemical properties of some priority polycyclic aromatic hydrocarbons, as well as the pathways and mechanisms through which they enter the soil, river systems, drinking water, groundwater and food are succinctly examined. Their effects on human health, other living organisms, the aquatic ecosystem, as well as soil microbiota are also elucidated. The persistence and bioavailability of polycyclic aromatic hydrocarbons are discussed as well, as they are important factors that influence the rate, efficiency and overall success of remediation. Bioremediation (aerobic and anaerobic), use of biosurfactants and bioreactors, as well as the roles of biofilms in the biological treatment of polycyclic aromatic hydrocarbons are also explored.
Experimental and detailed chemical kinetic modeling work has been performed to investigate aromatic and polycyclic aromatic hydrocarbon (PAH) formation pathways in a premixed, rich, sooting, n-butane¯oxygen¯argon burner s...
Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E
2015-01-01
We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very small part of the overall worker exposure to asphalt fume, on average less than 0.07% of the benzene-soluble fraction. Measurements of benzene-soluble fraction were uniformly below the American Conference of Governmental Industrial Hygienists' Threshold Limit Value for asphalt fume.
Catalyst-free reductive amination of aromatic aldehydes with ammonium formate and Hantzsch ester.
Zhao, Pan-Pan; Zhou, Xin-Feng; Dai, Jian-Jun; Xu, Hua-Jian
2014-12-07
The protocol of the reductive amination of aromatic aldehydes using ammonium formate and Hantzsch ester is described. It is a mild, convenient, acid- and catalyst-free system applied for the synthesis of both symmetric and asymmetric aromatic secondary amines.
Thompson, Mark E.; Diev, Viacheslav; Hanson, Kenneth; Forrest, Stephen R.
2015-08-18
A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: ##STR00001## By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,.beta. fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.
Liu, Qiying; Guo, Yuanming; Sun, Xiumei; Hao, Qing; Cheng, Xin; Zhang, Lu
2018-02-22
We propose a method for the simultaneous determination of 15 kinds of polycyclic aromatic hydrocarbons in marine samples (muscle) employing gas chromatography with mass spectrometry after saponification with ultrasound-assisted extraction and solid-phase extraction. The experimental conditions were optimized by the response surface method. In addition, the effects of different lyes and extractants on polycyclic aromatic hydrocarbons extraction were discussed, and saturated sodium carbonate was first used as the primary saponification reaction and extracted with 10 mL of ethyl acetate and secondly 1 mol/L of sodium hydroxide and 10 mL of n-hexane were used to achieve better results. The average recovery was 67-112%. Satisfactory data showed that the method has good reproducibility with a relative standard deviation of <13%. The detection limits of polycyclic aromatic hydrocarbons were 0.02-0.13 ng/g. Compared with other methods, this method has the advantages of simple pretreatment, low solvent consumption, maximum polycyclic aromatic hydrocarbons extraction, the fast separation speed, and the high extraction efficiency. It is concluded that this method meets the batch processing requirements of the sample and can also be used to determine polycyclic aromatic hydrocarbons in other high-fat (fish, shrimp, crab, shellfish) biological samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimization and determination of polycyclic aromatic hydrocarbons in biochar-based fertilizers.
Chen, Ping; Zhou, Hui; Gan, Jay; Sun, Mingxing; Shang, Guofeng; Liu, Liang; Shen, Guoqing
2015-03-01
The agronomic benefit of biochar has attracted widespread attention to biochar-based fertilizers. However, the inevitable presence of polycyclic aromatic hydrocarbons in biochar is a matter of concern because of the health and ecological risks of these compounds. The strong adsorption of polycyclic aromatic hydrocarbons to biochar complicates their analysis and extraction from biochar-based fertilizers. In this study, we optimized and validated a method for determining the 16 priority polycyclic aromatic hydrocarbons in biochar-based fertilizers. Results showed that accelerated solvent extraction exhibited high extraction efficiency. Based on a Box-Behnken design with a triplicate central point, accelerated solvent extraction was used under the following optimal operational conditions: extraction temperature of 78°C, extraction time of 17 min, and two static cycles. The optimized method was validated by assessing the linearity of analysis, limit of detection, limit of quantification, recovery, and application to real samples. The results showed that the 16 polycyclic aromatic hydrocarbons exhibited good linearity, with a correlation coefficient of 0.996. The limits of detection varied between 0.001 (phenanthrene) and 0.021 mg/g (benzo[ghi]perylene), and the limits of quantification varied between 0.004 (phenanthrene) and 0.069 mg/g (benzo[ghi]perylene). The relative recoveries of the 16 polycyclic aromatic hydrocarbons were 70.26-102.99%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Δg: The new aromaticity index based on g-factor calculation applied for polycyclic benzene rings
NASA Astrophysics Data System (ADS)
Ucun, Fatih; Tokatlı, Ahmet
2015-02-01
In this work, the aromaticity of polycyclic benzene rings was evaluated by the calculation of g-factor for a hydrogen placed perpendicularly at geometrical center of related ring plane at a distance of 1.2 Å. The results have compared with the other commonly used aromatic indices, such as HOMA, NICSs, PDI, FLU, MCI, CTED and, generally been found to be in agreement with them. So, it was proposed that the calculation of the average g-factor as Δg could be applied to study the aromaticity of polycyclic benzene rings without any restriction in the number of benzene rings as a new magnetic-based aromaticity index.
Synthesis and bioelectrochemical behavior of aromatic amines.
Shabbir, Muhammad; Akhter, Zareen; Ahmad, Iqbal; Ahmed, Safeer; Bolte, Michael; McKee, Vickie
2017-12-01
Four aromatic amines 1-amino-4-phenoxybenzene (A 1 ), 4-(4-aminophenyloxy) biphenyl (A 2 ), 1-(4-aminophenoxy) naphthalene (A 3 ) and 2-(4-aminophenoxy) naphthalene (A 4 ) were synthesized and characterized by elemental, spectroscopic (FTIR, NMR), mass spectrometric and single crystal X-ray diffraction methods. The compounds crystallized in monoclinic crystal system with space group P2 1 . Intermolecular hydrogen bonds were observed between the amine group and amine/ether acceptors of neighboring molecules. Electrochemical investigations were done using cyclic voltammetry (CV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV). CV studies showed that oxidation of aromatic amines takes place at about 0.9 V (vs. Ag/AgCl) and the electron transfer (ET) process has irreversible nature. After first scan reactive intermediate were generated electrochemically and some other cathodic and anodic peaks also appeared in the succeeding scans. DPV study revealed that ET process is accompanied by one electron. DNA binding study of aromatic amines was performed by CV and UV-visible spectroscopy. These investigations revealed groove binding mode of interaction of aromatic amines with DNA. Copyright © 2017 Elsevier Inc. All rights reserved.
High-pressure liquid chromatography of aromatic amines
NASA Technical Reports Server (NTRS)
Young, P. R.
1979-01-01
Analysis made on commercially available liquid chromatograph demonstrates high-pressure liquid chromatographic conditions for separation of approximately 50 aromatic amines ranging from simple aniline derivatives to complex multiring di- and tri-amines.
Thermometric titrations of amines with nitrosyl perchlorate in acetonitrile solvent.
Gündüz, T; Kiliç, E; Cakirer, O
1996-05-01
Thirteen aliphatic and four aromatic amines, namely diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n-butylamine, isopropylamine, di-isopropylamine, n-butylamine, di-n-butylamine, tri-n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, aniline, N,N-dimethylaniline, 2-nitroaniline and 4-nitroaniline were titrated thermometrically with nitrosyl perchlorate in acetonitrile solvent. All the aliphatic amines gave very well-shaped thermometric titration curves. The calculated recovery values of the amines were very good. In comparison, the aromatic amines, aniline and N,N-dimethylaniline gave rather well-shaped titration curves, but the recovery values were fairly low. 2-Nitro- and 4-nitro anilines gave no thermometric response at all. The heats of reaction of the amines with nitrosyl perchlorate are rather high. However, the average heat of reaction of the aromatic amines is approximately two-thirds that of the average heat of the aliphatic amines. To support this method all the amines were also titrated potentiometrically and very similar results to those obtained with the thermometric method are seen. The nitrosyl ion is a Lewis acid, strong enough to titrate quantitatively aliphatic amines in acetonitrile solvent, but not strong enough to titrate aromatic amines at the required level in the same solvent.
Zeegers, M P; Swaen, G M; Kant, I; Goldbohm, R A; van den Brandt, P A
2001-09-01
This study was conducted to estimate risk of bladder cancer associated with occupational exposures to paint components, polycyclic aromatic hydrocarbons (PAHs), diesel exhausts, and aromatic amines among the general population in The Netherlands. A prospective cohort study was conducted among 58,279 men. In September 1986, the cohort members (55-69 years) completed a self administered questionnaire on risk factors for cancer including job history. Follow up for incident bladder cancer was established by linkage to cancer registries until December 1992. A case-cohort approach was used based on 532 cases and 1630 subcohort members. A case by case expert assessment was carried out to assign to the cases and subcohort members a cumulative probability of occupational exposure for each carcinogenic exposure. Men in the highest tertiles of occupational exposure to paint components, PAHs, aromatic amines, and diesel exhaust had non-significantly higher age and smoking adjusted incident rate ratios (RRs) of bladder cancer than men with no exposure: 1.29 (95% confidence interval (95% CI) 0.71 to 2.33), 1.24 (95% CI 0.68 to 2.27), 1.32 (95% CI 0.41 to 4.23) and 1.21 (95% CI 0.78 to 1.88), respectively. The associations between paint components and PAHs and risk of bladder cancer were most pronounced for current smokers. Among former smokers it seemed that for cumulative probability of exposure to paint components and PAHs, men who had smoked more than 15 cigarettes a day had RRs below unity compared with men who had smoked less than 15 cigarettes a day, whereas among current smokers the opposite was found. Exposure to diesel exhaust was positively associated with risk of bladder cancer among current and former smokers who had smoked more than 15 cigarettes a day. This study provided only marginal evidence for an association between occupational exposure to paint components, PAHs, aromatic amines, and bladder cancer. Despite the small proportion of exposed subjects, an interaction with cigarette smoking was found, specifically for paint components, suggesting that the carcinogenic effect on the bladder might decrease after stopping smoking.
Castelli, Francesco; Micieli, Dorotea; Ottimo, Sara; Minniti, Zelica; Sarpietro, Maria Grazia; Librando, Vito
2008-10-01
To demonstrate the relationship between the structure of nitro-polycyclic aromatic hydrocarbons and their effect on biomembranes, we have investigated the influence of three structurally different nitro-polycyclic aromatic hydrocarbons, 2-nitrofluorene, 2,7-dinitrofluorene and 3-nitrofluoranthene, on the thermotropic behavior of dimyristoylphosphatidylcholine multilamellar vesicles, used as biomembrane models, by means of differential scanning calorimetry. The obtained results indicate that the studied nitro-polycyclic aromatic hydrocarbons affected the thermotropic behavior of multilamellar vesicles to various extents, modifying the pretransition and the main phase transition peaks and shifting them to lower temperatures. The effect of the aqueous and lipophilic medium on the absorption process of these compounds by the biomembrane models has been also investigated revealing that the process is hindered by the aqueous medium but strongly allowed by the lipophilic medium.
Zhang, Xiaotao; Zhang, Li; Ruan, Yibin; Wang, Weiwei; Ji, Houwei; Wan, Qiang; Lin, Fucheng; Liu, Jian
2017-10-08
A method for the simultaneous determination of 15 polycyclic aromatic hydrocarbons in cigarette filter was developed by isotope internal standard combined with gas chromatography-tandem mass spectrometry. The cigarette filters were extracted with dichloromethane, and the extract was filtered with 0.22 μm organic phase membrane. The samples were isolated by DB-5MS column (30 m×0.25 mm, 0.25 μm) and detected using multiple reaction monitoring mode of electron impact source under positive ion mode. The linearities of the 15 polycyclic aromatic hydrocarbons (acenapthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, ben[ a ]anthracene, chrysene, benzo[ b ]fluoranthene, benzo[ k ]fluoranthene, benzo[ a ]pyrene, dibenzo[ a,h ]anthracene, benzo[ g,h,i ]perylene and indeno[1,2,3- c,d ]pyrene) were good, and the correlation coefficients ( R 2 ) ranged from 0.9914 to 0.9999. The average recoveries of the 15 polycyclic aromatic hydrocarbons were 81.6%-109.6% at low, middle and high spiked levels, and the relative standard deviations were less than 16%, except that the relative standard deviation of fluorene at the low spiked level was 19.2%. The limits of detection of the 15 polycyclic aromatic hydrocarbons were 0.02 to 0.24 ng/filter, and the limits of quantification were 0.04 to 0.80 ng/filter. The method is simple, rapid, accurate, sensitive and reproducible. It is suitable for the quantitative analysis of the 15 polycyclic aromatic hydrocarbons in cigarette filters.
Deng, Huimin; Yang, Fei; Li, Zhonghao; Bian, Zhaoyang; Fan, Ziyan; Wang, Ying; Liu, Shanshan; Tang, Gangling
2017-07-21
Aromatic amines in mainstream cigarette smoke have long been monitored due to their carcinogenic toxicity. In this work, a reliable and rapid method was developed for the simultaneous determination of 9 aromatic amines in mainstream cigarette smoke by modified dispersive liquid liquid microextraction (DLLME) and ultraperformance convergence chromatography tandem mass spectrometry (UPC 2 -MS/MS). Briefly, the particulate phase of the cigarette smoke was captured by a Cambridge filter pad, and diluted hydrogen chloride aqueous solution is employed to extract the aromatic amines under mechanical shaking. After alkalization with sodium hydroxide solution, small amount of toluene was introduced to further extract and enrich aromatic amines by modified DLLME under vortexing. After centrifugation, toluene phase was purified by a universal QuEChERS cleanup kit and was finally analyzed by UPC 2 -MS/MS. Attributing to the superior performance of UPC 2 -MS/MS, this novel approach allowed the separation and determination of 9 aromatic amines within 5.0min with satisfactory resolution and sensitivity. The proposed method was finally validated using Kentucky reference cigarette 3R4F, and emission levels of targeted aromatic amines determined were comparable to previously reported methods At three different spiked levels, the recoveries of most analytes were ranged from 74.01% to 120.50% with relative standard deviation (RSD) less than 12%, except that the recovery of p-toluidine at low spiked level and 3-aminobiphenyl at medium spiked level was 62.77% and 69.37% respectively. Thus, this work provides a novel alternative method for the simultaneous analysis of 9 aromatic amines in mainstream cigarette smoke. Copyright © 2017 Elsevier B.V. All rights reserved.
The formation of polycyclic aromatic hydrocarbons (PAH) and soot has been investigated in atmospheric-pressure, laminar, ethane/oxygen/argon premixed flames as a function of mixture equivalence ratio. Mole fraction profiles of major products, trace aromatics, ...
Polymorphisms in carcinogen metabolism enzymes, fish intake, and risk of prostate cancer
Stern, Mariana C.
2012-01-01
Cooking fish at high temperature can produce potent carcinogens such as heterocyclic amines and polycyclic aromatic hydrocarbons. The effects of these carcinogens may undergo modification by the enzymes responsible for their detoxification and/or activation. In this study, we investigated genetic polymorphisms in nine carcinogen metabolism enzymes and their modifying effects on the association between white or dark fish consumption and prostate cancer (PCA) risk. We genotyped 497 localized and 936 advanced PCA cases and 760 controls from the California Collaborative Case–Control Study of Prostate Cancer. Three polymorphisms, EPHX1 Tyr113His, CYP1B1 Leu432Val and GSTT1 null/present, were associated with localized PCA risk. The PTGS2 765 G/C polymorphism modified the association between white fish consumption and advanced PCA risk (interaction P 5 0.002), with high white fish consumption being positively associated with risk only among carriers of the C allele. This effect modification by PTGS2 genotype was stronger when restricted to consumption of well-done white fish (interaction P 5 0.021). These findings support the hypotheses that changes in white fish brought upon by high-temperature cooking methods, such as carcinogen accumulation and/or fatty acid composition changes, may contribute to prostate carcinogenesis. However, the gene–diet interactions should be interpreted with caution given the limited sample size. Thus, our findings require further validation with additional studies. Abbreviations: AA African American; BMI body mass index; CI confidence interval; CNV copy number variant; EPIC European Prospective Investigation into Cancer and Nutrition; HCA heterocyclic amine; HCFA Health Care Financing Administration; LAC Los Angeles county; MAF minor allele frequency; NHW non-Hispanic White; OR odds ratio; PAH polycyclic aromatic hydrocarbon; PCA prostate cancer; PTGS2 prostaglandin- endoperoxide synthase 2; PUFA polyunsaturated fatty acids; RDD random-digit dialing; SEER Surveillance, Epidemiology, and End Result; SES socio-economic status; SFBA San Francisco Bay Area; SNP single-nucleotide polymorphism PMID:22610071
Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene and fluoranthene. Discrepancies between the ...
Keşkekoğlu, Hasan; Uren, Ali
2014-04-01
Beef and chicken meatballs with a 0.5% (w/w) pomegranate seed extract were cooked using four different cooking methods (oven roasting, pan cooking, charcoal-barbecue, and deep-fat frying) and six heterocyclic aromatic amines; IQ, MeIQx, 4,8-DiMeIQx, PhIP, norharman, and harman were observed. In the beef meatballs, the highest inhibitory effects of pomegranate seed extract on heterocyclic aromatic amines formation were 68% for PhIP, 24% for norharman, 18% for harman, 45% for IQ, and 57% for MeIQx. Total heterocyclic aromatic amine formation was reduced by 39% and 46% in beef meatballs cooked by charcoal-barbecue and deep-fat frying, respectively. In the chicken meatballs, the highest inhibitory effects were 75% for PhIP, 57% for norharman, 28% for harman, 46% for IQ, and 49% for MeIQx. When the pomegranate seed extract was added to the chicken meatballs cooked by deep-fat frying, the total heterocyclic aromatic amine formation was inhibited by 49%, in contrast the total heterocyclic aromatic amine contents after oven roasting increased by 70%. Copyright © 2013 Elsevier Ltd. All rights reserved.
2011-01-01
Aromatic amines and heterocyclic aromatic amines (HAAs) are structurally related classes of carcinogens that are formed during the combustion of tobacco or during the high-temperature cooking of meats. Both classes of procarcinogens undergo metabolic activation by N-hydroxylation of the exocyclic amine group, to produce a common proposed intermediate, the arylnitrenium ion, which is the critical metabolite implicated in toxicity and DNA damage. However, the biochemistry and chemical properties of these compounds are distinct and different biomarkers of aromatic amines and HAAs have been developed for human biomonitoring studies. Hemoglobin adducts have been extensively used as biomarkers to monitor occupational and environmental exposures to a number of aromatic amines; however, HAAs do not form hemoglobin adducts at appreciable levels and other biomarkers have been sought. A number of epidemiologic studies that have investigated dietary consumption of well-done meat in relation to various tumor sites reported a positive association between cancer risk and well-done meat consumption, although some studies have shown no associations between well-done meat and cancer risk. A major limiting factor in most epidemiological studies is the uncertainty in quantitative estimates of chronic exposure to HAAs and, thus, the association of HAAs formed in cooked meat and cancer risk has been difficult to establish. There is a critical need to establish long-term biomarkers of HAAs that can be implemented in molecular epidemioIogy studies. In this review article, we highlight and contrast the biochemistry of several prototypical carcinogenic aromatic amines and HAAs to which humans are chronically exposed. The biochemical properties and the impact of polymorphisms of the major xenobiotic-metabolizing enzymes on the biological effects of these chemicals are examined. Lastly, the analytical approaches that have been successfully employed to biomonitor aromatic amines and HAAs, and emerging biomarkers of HAAs that may be implemented in molecular epidemiology studies are discussed. PMID:21688801
Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1
Chun, Young-Jin; Kim, Donghak
2016-01-01
Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of 17β-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health. PMID:27123158
García-Lomillo, Javier; Viegas, Olga; Gonzalez-SanJose, Maria L; Ferreira, Isabel M P L V O
2017-03-01
Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HAs) are carcinogenic compounds formed in barbecued meat. Conditions that reduce their formation are of major interest. This study aims to evaluate the influence of red wine pomace seasoning (RWPS) and high-oxygen atmosphere storage on the formation of PAHs and HAs in barbecued beef patties. In general, the levels of PAHs and HAs quantified were low. The storage (9days) promoted higher formation of PAHs in control patties without increase of HAs. RWPS patties cooked at preparation day presented higher levels of PAHs and HAs than control. Nevertheless, RWPS patties cooked after storage presented lower levels of PAHs and HAs than control. ABTS assay pointed out that higher radical scavenging activity may be related to with lower PAHs or HAs formation. In conclusion, RWPS can be an interesting ingredient to inhibit the formation of cooking carcinogens in barbecued patties stored at high-oxygen atmosphere. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Zinxin; Mwadini, Mwadini Ahmada; Chen, Zilin
2016-10-01
Steel stirrers jacketed with polytetrafluoroethylene can be regarded as an ideal substrate for stirrer bar sorptive extraction. However, it is still a great challenge to immobilize graphene onto a polytetrafluoroethylene stirrer due to the high chemical resistance of the surface of a polytetrafluoroethylene stirrer. We describe here a method to modify the surface of polytetrafluoroethylene stirrers with graphene. In this work, graphene was used as the sorbent due to its excellent adsorption capability for aromatic compounds, such as polycyclic aromatic compounds. Graphene was successfully immobilized onto polytetrafluoroethylene-stirrer by a bio-inspired polydopamine functionalization method. The graphene-modified polytetrafluoroethylene-stirrer shows good stability and tolerance to stirring, ultrasonication, strong acidic and basic solutions, and to organic solvents. The multilayer coating was characterized by scanning electronic microscopy and Fourier transform infrared spectroscopy. After the optimization of some experimental conditions, the graphene-modified polytetrafluoroethylene stirrer was used for the stirrer bar sorptive extraction of polycyclic aromatic hydrocarbons, in which the binding between the polycyclic aromatic hydrocarbons and the graphene layer was mainly based on π-π stacking and hydrophobic interactions. The graphene-modified polytetrafluoroethylene-stirrer-based stirrer bar sorptive extraction and high-performance liquid chromatography method was developed for the determination of polycyclic aromatic hydrocarbons with great extraction efficiency, with enrichment factors from 18 to 62. The method has low limits of detection of 1-5 pg/mL, wide linear range (5-100 and 10-200 pg/mL), good linearity (R ≥ 0.9957) and good reproducibility (RSD ≤ 6.45%). The proposed method has been applied to determine polycyclic aromatic hydrocarbons in real dust samples. Good recoveries were obtained, ranging from 88.53 to 109.43%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lian, Yajing; Hummel, Joshua R; Bergman, Robert G; Ellman, Jonathan A
2013-08-28
We report formal [3 + 3] annulations of aromatic azides with aromatic imines and azobenzenes to give acridines and phenazines, respectively. These transformations proceed through a cascade process of Rh(III)-catalyzed amination followed by intramolecular electrophilic aromatic substitution and aromatization. Acridines can be directly prepared from aromatic aldehydes by in situ imine formation using catalytic benzylamine.
Doped polycyclic aromatic hydrocarbons as building blocks for nanoelectronics: a theoretical study.
Dral, Pavlo O; Kivala, Milan; Clark, Timothy
2013-03-01
Density functional theory (DFT) and semiempirical UHF natural orbital configuration interaction (UNO-CI) calculations are used to investigate the effect of heteroatom substitution at the central position of a model polycyclic aromatic hydrocarbon. The effects of the substitution on structure, strain, electronic and spectral properties, and aromaticity of the compounds are discussed.
Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons
Polycyclic Aromatic Hydrocarbons (PAHs) are products of incomplete combustion of organic materials; sources are, thus, widespread,including cigarette smoke, municipal waste incineration, wood stove emissions, coal conversion, energy production form fossil fuels, and automobile an...
Infrared Spectra of Polycyclic Aromatic Hydrocarbons (PAHs)
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Bakes, E. L. O.
2000-01-01
We have computed the synthetic infrared spectra of some polycyclic aromatic hydrocarbons containing up to 54 carbon atoms. The species studied include ovalene, circumcoronene, dicoronylene, and hexabenzocoronene. We report spectra for anions, neutrals, cations, and multiply charged cations.
Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes
Smith, R.E.; Dolbeare, F.A.
1980-10-21
Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings
Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes
Smith, Robert E. [557 Escondido Cir., Livermore, CA 94550; Dolbeare, Frank A. [5178 Diane La., Livermore, CA 94550
1980-10-21
Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.
Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes
Smith, Robert E.; Dolbeare, Frank A.
1979-01-01
Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 5-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.
Sodium Perborate Oxidation of an Aromatic Amine
ERIC Educational Resources Information Center
Juestis, Laurence
1977-01-01
Describes an experiment involving the oxidation of aromatic primary amines to the corresponding azo compound; suggests procedures for studying factors that influence the yield of such a reaction, including the choice of solvent and the oxidant-amine ratio. (MLH)
Human DNA adduct measurements: State of the art
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.C.; Weston, A.
1996-10-01
Human DNA adduct formation (covalent modification of DNA with chemical carcinogens) is a promising biomarker for elucidating the molecular epidemiology of cancer. Classes of compounds for which human DNA adducts have been observed include polycyclic aromatic hydrocarbons (PAHs), nitrosamines, mycotoxins, aromatic amines, heterocyclic amines, ultraviolet light, and alkylating cancer chemotherapeutic agents. Most human DNA adduct exposure monitoring has been performed with either {sup 32}P-postlabeling or immunoassays, neither of which is able to chemically characterize specific DNA adducts. Recently developed combinations of methods with chemical and physical end points have allowed identification of specific adducts in human tissues. Studies are presentedmore » that demonstrate that high ambient levels of benzo[a]pyrene are associated with high levels of DNA adducts in human blood cell DNA and that the same DNA adduct levels drop when the ambient PAH levels decrease significantly. DNA adduct dosimetry, which has been achieved with some dietary carcinogens and cancer chemotherapeutic agents, is described, as well as studies correlating DNA adducts with other biomarkers. It is likely that some toxic, noncarcinogenic compounds may have genotoxic effects, including oxidative damage, and that adverse health outcomes other than cancer may be correlated with DNA adduct formation. The studies presented here may serve as useful prototypes for exploration of other toxicological end points. 156 refs., 1 fig., 3 tabs.« less
Ncube, Somandla; Kunene, Phumlile; Tavengwa, Nikita T; Tutu, Hlanganani; Richards, Heidi; Cukrowska, Ewa; Chimuka, Luke
2017-09-01
A smart sorbent consisting of benzo[k]fluoranthene-imprinted and indeno[1 2 3-cd]pyrene-imprinted polymers mixed at 1:1 (w/w) was successfully screened from several cavity-tuning experiments and used in the isolation of polycyclic aromatic hydrocarbons from spiked solution. The polymer mixture showed high cross selectivity and affinity towards all the 16 US-EPA priority polycyclic aromatic hydrocarbons. The average extraction efficiency from a cyclohexane solution was 65 ± 13.3% (n = 16, SD). Batch adsorption and kinetic studies confirmed that the binding of polycyclic aromatic hydrocarbons onto the polymer particles resulted in formation of a monolayer and that the binding process was the rate limiting step. The imprinted polymer performance studies confirmed that the synthesized polymer had an imprinting efficiency of 103.9 ± 3.91% (n = 3, SD). A comparison of the theoretical number of cavities and the experimental binding capacity showed that the overall extent of occupation of the imprinted cavities in the presence of excess polycyclic aromatic hydrocarbons was 128 ± 6.45% (n = 3, SD). The loss of selectivity was estimated at 2.9% with every elution cycle indicating that the polymer can be re-used several times with limited loss of selectivity and sensitivity. The polymer combination has shown to be an effective adsorbent that can be used to isolate all the 16 US-EPA priority polycyclic aromatic hydrocarbons in solution. Copyright © 2017 Elsevier Ltd. All rights reserved.
OuYang, Xiao-Kun; Luo, Yu-Yang; Wang, Yang-Guang; Yang, Li-Ye
2014-01-01
The simultaneous determination of five aromatic amines and their potential migration from packaging bags into seafood simulants were investigated. A validated HPLC method was developed for the separation and qualification of five aromatic amines in seafood simulants. By combining solid-phase extraction (SPE), these amines were efficiently separated on a Halo C18 column (150 × 4.6 mm i.d., 2.7 μm, particle size) using a mobile phase of methanol/phosphate buffer solution (5 mmol l(-1), pH 6.9) with gradient elution. The linear range was 0.1-10.0 mg l(-1); the absolute recoveries ranged from 85.3% to 98.4%; and the limits of detection of the five aromatic amines were between 0.015 and 0.08 mg l(-1). In this work the migration profile of aromatic amines from black plastic bags was investigated at temperatures of 4°C with water, 3% acetic acid solution, 10% ethanol solution and 50% ethanol solution as seafood simulants, respectively. The migration of the five aromatic amines under different conditions showed that residual o-methoxyaniline, p-chloroaniline, aniline and 2,6-dimethylaniline leaching from black plastic bags increased with incubation time. No detectable 3,3´-dimethylbenzidine was found to leach from the bags.
Lian, Yajing; Hummel, Joshua R.; Bergman, Robert G.; Ellman, Jonathan A.
2013-01-01
New formal [3 + 3] annulations have been developed to obtain acridines and phenazines from aromatic azides and aromatic imines and azobenzenes, respectively. These transformations proceed through a cascade process of Rh(III)-catalyzed amination followed by intramolecular electrophilic aromatic substitution and aromatization. Acridines can be directly prepared from aromatic aldehydes by in situ imine formation using catalytic benzylamine. PMID:23957711
This presentation, Prenatal Exposures to Polycyclic Aromatic Hydrocarbons (PAH) and Childhood Body Mass Index Trajectories, was given at the NIEHS/EPA Children's Centers 2015 Webinar Series held on Feb. 11, 2015.
PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS IN COASTAL GREAT LAKES WATERS
Photoinduced toxicity is the exacerbated toxicity of environmental contaminants by UV radiation. Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) has been well established in the laboratory for numerous aquatic species including larval fish. The contaminants sub-p...
Ahlberg, Ernst; Amberg, Alexander; Beilke, Lisa D; Bower, David; Cross, Kevin P; Custer, Laura; Ford, Kevin A; Van Gompel, Jacky; Harvey, James; Honma, Masamitsu; Jolly, Robert; Joossens, Elisabeth; Kemper, Raymond A; Kenyon, Michelle; Kruhlak, Naomi; Kuhnke, Lara; Leavitt, Penny; Naven, Russell; Neilan, Claire; Quigley, Donald P; Shuey, Dana; Spirkl, Hans-Peter; Stavitskaya, Lidiya; Teasdale, Andrew; White, Angela; Wichard, Joerg; Zwickl, Craig; Myatt, Glenn J
2016-06-01
Statistical-based and expert rule-based models built using public domain mutagenicity knowledge and data are routinely used for computational (Q)SAR assessments of pharmaceutical impurities in line with the approach recommended in the ICH M7 guideline. Knowledge from proprietary corporate mutagenicity databases could be used to increase the predictive performance for selected chemical classes as well as expand the applicability domain of these (Q)SAR models. This paper outlines a mechanism for sharing knowledge without the release of proprietary data. Primary aromatic amine mutagenicity was selected as a case study because this chemical class is often encountered in pharmaceutical impurity analysis and mutagenicity of aromatic amines is currently difficult to predict. As part of this analysis, a series of aromatic amine substructures were defined and the number of mutagenic and non-mutagenic examples for each chemical substructure calculated across a series of public and proprietary mutagenicity databases. This information was pooled across all sources to identify structural classes that activate or deactivate aromatic amine mutagenicity. This structure activity knowledge, in combination with newly released primary aromatic amine data, was incorporated into Leadscope's expert rule-based and statistical-based (Q)SAR models where increased predictive performance was demonstrated. Copyright © 2016 Elsevier Inc. All rights reserved.
Shoyama, Kazutaka; Mahl, Magnus; Seifert, Sabine; Würthner, Frank
2018-03-20
Here we report a general method for the synthesis of polycyclic aromatic dicarboximides (PADIs) by palladium-catalyzed annulation of naphthalene dicarboximide to different types of aromatic substrates. Reaction conditions were optimized by systematic variation of ligand, solvent, and additive. It was shown that solvent has a decisive effect on the yield of the reaction products, and thus 1-chloronaphthalene as solvent afforded the highest yield. By applying the optimized reaction conditions, a broad series of planar carbo- and heterocycle containing PADIs were synthesized in up to 97% yield. Moreover, this approach could be applied to curved aromatic scaffold to achieve the respective bowl-shaped PADI. Two-fold annulation was accomplished by employing arene diboronic esters, affording polycyclic aromatic bis(dicarboximides). The optical and electrochemical properties of this broad series of PADIs were explored as well.
ADSORPTION OF POLYCYCLIC AROMATIC HYDROCARBONS IN AGED HARBOR SEDIMENTS
Polycyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic organic contaminants which have low aqueous solubilities and are common pollutants in harbor sediments. Adsorption and desorption isotherms for PAHs are conducted to study the abiotic sorption of PAHs in uncontami...
AGRONOMIC OPTIMIZATION FOR PHYTOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBONS
Phytoremediation is a low-cost method of using plants to degrade, volatilize or sequester organic and metal pollutants that has been used in efforts to remediate sites contaminated with polycyclic aromatic hydrocarbon (PAH) refinery wastes. Non-native plant species aggressivel...
ASSAYING PARTICLE-BOUND POLYCYCLIC AROMATIC HYDROCARBONS (PAH) FROM ARCHIVED PM2.5 FILTERS
Airborne particulate matter contains numerous organic species, including several polycyclic aromatic hydrocarbons (PAHs) that are known or suspected carcinogens. Existing methods for measuring airborne PAHs are complex and costly, primarily because they are designed to collect...
POLYCYCLIC AROMATIC HYDROCARBON (PAH) EXPOSURE OF 257 PRESCHOOL CHILDREN
We investigated the polycyclic aromatic hydrocarbon (PAH) exposure of 257 preschool children and their adult caregivers in their everyday environments. Participants were recruited randomly from eligible homes and daycare centers within six North Carolina (NC) and six Ohio (OH) c...
The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...
Polycyclic aromatic sulfur heterocycles (PASH) are common constituents of cigarette smoke, fossil fuel-derived materials, and their combustion byproducts. Many PASH are known mutagens and carcinogens. However, unlike their nonsulfur-containing counterparts, relatively little is k...
NASA Astrophysics Data System (ADS)
Estrada-Izquierdo, Irma; Sánchez-Espindola, Esther; Uribe-Hernández, Raúl; Ramón-Gallegos, Eva
2012-10-01
Each cigarette can generate 1149 ng of a mixture of 14 polycyclic aromatic hydrocarbons, of which there are a lot of information about its harmful effects on the environment and human health, they are considered mutagenic, teratogenic and carcinogenic. In this paper we tested ZnO:Mn2+ nanoparticles, attached to the filters of cigarettes. The first results showed that the filtration system was able to catch the Benzo(a)pyrene contained in cigarette smoke; but more tests are needed to quantify the efficiency with greater accuracy over other polycyclic aromatic hydrocarbons.
A series of laboratory and field test studies were conducted to evaluate the effectiveness of Ambersorb, a carbonaceous resin, in reducing bioavailability of polycyclic aromatic hydrocarbons (PAHs) in contaminated sediments collected from the field. Amending contaminated sediment...
Marine sediments around urban areas serve as catch basins for anthropogenic particles containing polycyclic aromatic hydrocarbons (PAHs). Using incubations with gut fluids extracted from a deposit-feeding polychaete (Arenicola marina), we determined the digestive bioavailability ...
ANALYSIS OF POLYCYCLIC AROMATIC HYDROCARBONS BY ION TRAP TANDEM MASS SPECTROMETRY
An ion-trap mass spectrometer with a wave board and tandem mass spectrometry software was used to analyze gas chromatographically separated polycyclic aromatic hydrocarbons (PAHs) by using collision-induced dissociation (CID). The nonresonant (multiple collision) mode was used to...
DOT National Transportation Integrated Search
2012-06-01
Polycyclic aromatic hydrocarbons (PAHs) are a class of chemical compounds that are mostly : anthropogenic in nature, and they can become persistent organic contaminants in aquatic : ecosystems. Runoff from impervious surfaces is one of the many ways ...
The extent of PAH transformation, the formation and transformation of reaction byproducts during persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) in coking plant soil was investigated. Pre-oxidation analyses indicated that oxygen-containing PAHs (oxy-PAHs) existed ...
Computational Methods for Studying the Interaction between Polycyclic Aromatic Hydrocarbons and Biological Macromolecules .
The mechanisms for the processes that result in significant biological activity of PAHs depend on the interaction of these molecules or their metabol...
Profiling Jet Fuel on Neurotoxic Components With Comprehensive Two-Dimensional GC
2007-11-01
nitrogen gas to remove possible contaminants that might interfere in the GCxGC-ToF-MS analysis. The generated JP-8 vapor was lead through the...dimension (min) S ec on d di m en si on (s ) Mono Aromatics Polycyclic Aromatic Hydrocarbons Naphthens Sulfur components Alkanes Figure 14...10.0 20.0 30.0 40.0 50.0 60.0 70.0 First dimension (min) S ec on d di m en si on (s ) Mono Aromatics Polycyclic Aromatic Hydrocarbons Naphthens
Tarafdar, Abhrajyoti; Sinha, Alok
2017-10-01
A carcinogenic risk assessment of polycyclic aromatic hydrocarbons in soils and sediments was conducted using the probabilistic approach from a national perspective. Published monitoring data of polycyclic aromatic hydrocarbons present in soils and sediments at different study points across India were collected and converted to their corresponding BaP equivalent concentrations. These BaP equivalent concentrations were used to evaluate comprehensive cancer risk for two different age groups. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk estimation. The analysis denotes 90% cancer risk value of 1.770E-5 for children and 3.156E-5 for adults at heavily polluted site soils. Overall carcinogenic risks of polycyclic aromatic hydrocarbons in soils of India were mostly in acceptance limits. However, the food ingestion exposure route for sediments leads them to a highly risked zone. The 90% risk values from sediments are 7.863E-05 for children and 3.999E-04 for adults. Sensitivity analysis reveals exposure duration and relative skin adherence factor for soil as the most influential parameter of the assessment, followed by BaP equivalent concentration of polycyclic aromatic hydrocarbons. For sediments, biota to sediment accumulation factor of fish in terms of BaP is most sensitive on the total outcome, followed by BaP equivalent and exposure duration. Individual exposure route analysis showed dermal contact for soils and food ingestion for sediments as the main exposure pathway. Some specific locations such as surrounding areas of Bhavnagar, Raniganj, Sunderban, Raipur, and Delhi demand potential strategies of carcinogenic risk management and reduction. The current study is probably the first attempt to provide information on the carcinogenic risk of polycyclic aromatic hydrocarbons in soil and sediments across India.
Avagyan, Rozanna; Nyström, Robin; Boman, Christoffer; Westerholm, Roger
2015-06-01
A simple and fast method for analysis of hydroxylated polycyclic aromatic hydrocarbons using pressurized liquid extraction and high performance liquid chromatography utilizing photoionization tandem mass spectrometry was developed. Simultaneous separation and determination of nine hydroxylated polycyclic aromatic hydrocarbons and two hydroxy biphenyls could be performed in negative mode with a run time of 12 min, including equilibration in 5 min. The calibration curves were in two concentration ranges; 1-50 ng/mL and 0.01-50 μg/mL, with coefficients of correlation R (2) > 0.997. The limits of detection and method quantification limits were in the range of 9-56 pg and 5-38 ng/g, respectively. A two-level full factorial experimental design was used for screening of conditions with the highest impact on the extraction. The extraction procedure was automated and suitable for a large number of samples. The extraction recoveries ranged from 70 to 102 % and the matrix effects were between 92 and 104 %. The overall method was demonstrated on wood smoke particles and soil samples with good analytical performance, and five OH-PAHs were determined in the concentration range of 0.19-210 μg/g. As far as we know, hydroxylated polycyclic aromatic hydrocarbons were determined in wood smoke and soil samples using photoionization mass spectrometry for the first time in this present study. Accordingly, this study shows that high performance liquid chromatography photoionization tandem mass spectrometry can be a good option for the determination of hydroxylated polycyclic aromatic hydrocarbons in complex environmental samples. Graphical Abstract The method developed in this study was used to determine hydroxylated polycyclic aromatic hydrocarbons in wood smoke and soil.
NASA Astrophysics Data System (ADS)
Tarafdar, Abhrajyoti; Sinha, Alok
2017-10-01
A carcinogenic risk assessment of polycyclic aromatic hydrocarbons in soils and sediments was conducted using the probabilistic approach from a national perspective. Published monitoring data of polycyclic aromatic hydrocarbons present in soils and sediments at different study points across India were collected and converted to their corresponding BaP equivalent concentrations. These BaP equivalent concentrations were used to evaluate comprehensive cancer risk for two different age groups. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk estimation. The analysis denotes 90% cancer risk value of 1.770E-5 for children and 3.156E-5 for adults at heavily polluted site soils. Overall carcinogenic risks of polycyclic aromatic hydrocarbons in soils of India were mostly in acceptance limits. However, the food ingestion exposure route for sediments leads them to a highly risked zone. The 90% risk values from sediments are 7.863E-05 for children and 3.999E-04 for adults. Sensitivity analysis reveals exposure duration and relative skin adherence factor for soil as the most influential parameter of the assessment, followed by BaP equivalent concentration of polycyclic aromatic hydrocarbons. For sediments, biota to sediment accumulation factor of fish in terms of BaP is most sensitive on the total outcome, followed by BaP equivalent and exposure duration. Individual exposure route analysis showed dermal contact for soils and food ingestion for sediments as the main exposure pathway. Some specific locations such as surrounding areas of Bhavnagar, Raniganj, Sunderban, Raipur, and Delhi demand potential strategies of carcinogenic risk management and reduction. The current study is probably the first attempt to provide information on the carcinogenic risk of polycyclic aromatic hydrocarbons in soil and sediments across India.
Fuel quality combustion analysis
NASA Technical Reports Server (NTRS)
Naegeli, D. W.; Moses, C. A.
1979-01-01
A high pressure research combustor operating over a wide range of burner inlet conditions was used to determine the effects of fuel molecular structure on soot formation. Six test fuels with equal hydrogen content (12.8%) were blended to stress different molecular components and final boiling points. The fuels containing high concentrations (20%) of polycyclic aromatics and partially saturated polycyclic structures such as tetralin, produced more soot than would be expected from a hydrogen content correlation for typical petroleum based fuels. Fuels containing naphthenes such as decalin agreed with the hydrogen content correlation. The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased.
Carcinogens formed when Meat is Cooked
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felton, J S; Salmon, C P; Knize, M G
2003-05-30
Diet has been associated with varying cancer rates in human populations for many years, yet the causes of the observed variation in cancer patterns have not been adequately explained (Wynder et al. 1977). Along with the effect of diet on human cancer incidence is the strong evidence that mutations are the initiating events in the cancer process (Vogelstein et al. 1992). Foods, when heated, are a good source of genotoxic carcinogens that very likely are a cause for some of these events(Doll et al. 1981). These carcinogens fall into two chemical classes: heterocyclic aromatic amines (HAA) and polycyclic aromatic hydrocarbonsmore » (PAH). There is ample evidence that many of these compounds are complete carcinogens in rodents(El-Bayoumy et al. 1995; Ohgaki et al. 1991). Heterocyclic aromatic amines are among the most potent mutagenic substances ever tested in the Ames/Salmonella mutagenicity test (Wakabayashi et al. 1992). Both classes of carcinogen cause tumors in rodents at multiple sites, (El-Bayoumy et al. 1995; Ohgaki et al. 1991) many of which are common tumor sites in people on a Western diet. An HAA, PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine), and a PAH, B[a]P (benzo[a]pyrene), of comparable carcinogenic potency caused mammary gland tumors in a feeding study in female rats (El-Bayoumy et al. 1995). In addition, PhIP has recently been shown to cause carcinomas in the prostate of the male rat (Shirai et al. 1997). Complementing the rodent cancer studies are numerous human case-control and prospective studies suggesting a relationship between overheated beef, chicken, and lamb, and cancer of the colon, breast, prostate, and stomach (Sinha et al. 1999; Ward et al. 1997; Zheng et al. 1998).« less
PERSONAL EXPOSURES TO POLYCYCLIC AROMATIC HYDROCARBONS ASSOCIATED WITH THE NHEXAS PILOT
Personal exposure monitoring for select polycyclic aromatic hydrocarbons (PAHs) was performed as part of the National Human Exposure Assessment Survey (NHEXAS) Pilot Study in Baltimore, MD. Twenty-four hour PM10 sample collections (~5.7 m3) were performed using personal envi...
The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...
This presentation, Exposures to Polycyclic Aromatic Hydrocarbons and Childhood Growth Trajectories and Body Composition: Linkages to Disrupted Self-Regulatory Processes, was given at the NIEHS/EPA Children's Centers 2016 Webinar Series: Childhood Obesity
Sources and deposition of polycyclic aromatic hydrocarbons to western US national parks
Seasonal snowpack, lichens, and lake sediment cores were collected from fourteen lake catchments in eight western U.S. National Parks and analyzed for sixteen polycyclic aromatic hydrocarbons (PAHs) to determine their current and historical deposition, as well as to identify thei...
Energy sources of polycyclic aromatic hydrocarbons. [Carcinogenicity of PAHs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerin, M. R.
1977-01-01
Combustion is the predominant end-process by which fossil fuels are converted to energy. Combustion, particularly when inefficient, is also the primary technological source of polycyclic aromatic hydrocarbons (PAHs) released into the environment. The need for liquid fuels to supply the transportation industry and for nonpolluting fuels for heat and power generation provide the incentive to commercialize processes to convert coal to substitute natural gas and oil. These processes represent a potentially massive new source of environmental PAHs. Insuring an adequate supply of energy with minimum impact on the environment and on health is one of the most important, urgent, andmore » challenging goals currently facing science and technology. Polycyclic aromatic hydrocarbon related carcinogenesis is among the most important of possible occupational- and environmental-health impacts of much of the current and projected national energy base. An understanding of the relationship of polycyclic aromatic hydrocarbons (PAHs) to human cancer and a continued surveillance of energy sources for PAH content are necessary to minimize this impact.« less
Burgos-Núñez, Saudith; Navarro-Frómeta, Amado; Marrugo-Negrete, José; Enamorado-Montes, Germán; Urango-Cárdenas, Iván
2017-07-15
The concentrations of polycyclic aromatic hydrocarbons and heavy metals were evaluated in shallow sediments, water, fish and seabird samples from the Cispata Bay, Colombia. The heavy metals concentrations in the sediment was in the following order: Cu>Pb>Hg>Cd. The heavy metal concentration was different (p<0.05) in juvenile and adult birds. High concentrations of mercury were registered in the seabird (10.19±4.99mgkg -1 ) and fish (0.67μgg -1 ) samples. The total concentration of polycyclic aromatic hydrocarbons ranged from 7.0-41ngg -1 in sediment, 0.03-0.34ngmL -1 in water samples, 53.24ngg -1 in fish, and 66ngg -1 in seabirds. The high concentrations of heavy metals in seabirds may be explained by their feeding habits. The presence of polycyclic aromatic hydrocarbons in the Cispata Bay may be due to hydrocarbon spills during oil transport at the nearby oil port. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reduction of aromatic and heterocyclic aromatic N-hydroxylamines by human cytochrome P450 2S1.
Wang, Kai; Guengerich, F Peter
2013-06-17
Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals, and there is also strong evidence of some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anticancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions [Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740-1751]. In the study presented here, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs.
Reduction of Aromatic and Heterocyclic Aromatic N-Hydroxylamines by Human Cytochrome P450 2S1
Wang, Kai; Guengerich, F. Peter
2013-01-01
Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals and there is also strong evidence for some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anti-cancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions (Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740–1751). In the present study, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs. PMID:23682735
Fixed wavelength fluorescence (FF) was compared to high-performance liquid chromatography with fluorescence detection (HPLC-F) as an estimation of polycyclic aromatic hydrocarbon (PAH) exposure to fish. Two excitation/emission wavelength pairs were used to measure naphthalene- an...
A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...
Polycyclic aromatic hydrocarbons (PAHs) are frequently encountered in the environment and may pose health concerns due to their carcinogenicity. A commercial enzyme-linked immunosorbent assay (ELISA), was evaluated as a screening method for monitoring PAHs at contaminated site...
EFFECT OF IRRADIANCE SPECTRA ON THE PHOTOINDUCED TOXICITY OF THREE POLYCYCLIC AROMATIC HYDROCARBONS
Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light received. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...
Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light recieved. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...
USDA-ARS?s Scientific Manuscript database
Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon(aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass, and remain on the solid co-product called biochar. Such pollutants could have adverse effects on ...
A polycyclic aromatic hydrocarbon (PAH)-degrading culture enriched from contaminated river sediments and a Mycobacterium sp. isolated from the enrichment were tested to investigate the possible synergistic and antagonistic interactions affecting the degradation of pyrene in the p...
Humans experience chronic cumulative trace-level exposure to mixtures of volatile, semi-volatile, and non-volatile polycyclic aromatic hydrocarbons (PAHs) present in the environment as by-products of combustion processes. Certain PAHs are known or suspected human carcinogens and ...
Yang, Ruifang; Zhao, Nanjing; Xiao, Xue; Yu, Shaohui; Liu, Jianguo; Liu, Wenqing
2016-01-05
There is not effective method to solve the quenching effect of quencher in fluorescence spectra measurement and recognition of polycyclic aromatic hydrocarbons in aquatic environment. In this work, a four-way dataset combined with four-way parallel factor analysis is used to identify and quantify polycyclic aromatic hydrocarbons in the presence of humic acid, a fluorescent quencher and an ubiquitous substance in aquatic system, through modeling the quenching effect of humic acid by decomposing the four-way dataset into four loading matrices corresponding to relative concentration, excitation spectra, emission spectra and fluorescence quantum yield, respectively. It is found that Phenanthrene, pyrene, anthracene and fluorene can be recognized simultaneously with the similarities all above 0.980 between resolved spectra and reference spectra. Moreover, the concentrations of them ranging from 0 to 8μgL(-1) in the test samples prepared with river water could also be predicted successfully with recovery rate of each polycyclic aromatic hydrocarbon between 100% and 120%, which were higher than those of three-way PARAFAC. These results demonstrate that the combination of four-way dataset with four-way parallel factor analysis could be a promising method to recognize the fluorescence spectra of polycyclic aromatic hydrocarbons in the presence of fluorescent quencher from both qualitative and quantitative perspective. Copyright © 2015 Elsevier B.V. All rights reserved.
Marzi Khosrowshahi, Elnaz; Razmi, Habib
2018-02-08
A green biocomposite of sunflower stalks and graphitic carbon nitride nanosheets has been applied as a solid-phase extraction adsorbent for sample preparation of five polycyclic aromatic hydrocarbons in different solutions using high-performance liquid chromatography with ultraviolet detection. Before the modification, sunflower stalks exhibited relatively low adsorption to the polycyclic aromatic hydrocarbons extraction. The modified sunflower stalks showed increased adsorption to the analytes extraction due to the increase in surface and existence of a π-π interaction between the analytes and graphitic carbon nitride nanosheets on the surface. Under the optimal conditions, the limits of detection and quantification for five polycyclic aromatic hydrocarbons compounds could reach 0.4-32 and 1.2-95 ng/L, respectively. The method accuracy was evaluated using recovery measurements in spiked real samples and good recoveries from 71 to 115% with relative standard deviations of <10% have been achieved. The developed method was successfully applied for polycyclic aromatic hydrocarbons determination in various samples-well water, tap water, soil, vegetable, and barbequed meat (kebab)-with analytes contents ranging from 0.065 to 13.3 μg/L. The prepared green composite as a new sorbent has some advantages including ease of preparation, low cost, and good reusability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kamiński, M; Gilgenast, E; Przyjazny, A; Romanik, G
2006-07-28
The content of aromatic hydrocarbons in diesel fuels is regulated by appropriate standards, and a further reduction in the allowed concentration of these hazardous substances in these fuels is expected. The content of aromatic hydrocarbons in diesel fuels is most often determined using standard methods EN-12916 or ASTM D-6591. The content of polycyclic aromatic hydrocarbons (PAHs) is determined from a single peak obtained using normal phase high-performance liquid chromatography (NP-HPLC), a column of the NH2 type, n-heptane as the eluent, refractive index detector (RID) and backflushing of the eluent. However, the methods mentioned above cannot be applied when the fuel contains fatty acid methyl esters (FAME), which lately has become more common. The content of FAME in diesel oils is determined using mid-IR spectrophotometry based on the absorption of carbonyl group. However, no standard procedure for the determination of classes of aromatic hydrocarbons in diesel fuels containing FAME is yet available. The present work describes such a modification of methods EN-12916/ASTM D-6591 that provides a simultaneous determination of individual groups of aromatic hydrocarbons, total content of polycyclic aromatic hydrocarbons and the FAME content in diesel fuels. The refractive index detector (RID) and n-heptane as the mobile phase are still used, but backflushing of the eluent is applied after the elution of all polycyclic aromatic hydrocarbons. Additionally, ultraviolet diode array detection is used for the exact determination of low contents of polycyclic aromatic hydrocarbons and to confirm the presence of FAME in the analyzed fuel.
Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide.
Salter-Blanc, Alexandra J; Bylaska, Eric J; Lyon, Molly A; Ness, Stuart C; Tratnyek, Paul G
2016-05-17
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ(-)), pKas of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eox)]. The selection of calculated descriptors (pKa, EHOMO, and Eox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory).
Photocatalytic oxidation of aromatic amines using MnO2@g ...
An efficient and direct oxidation of aromatic amines to aromatic azo-compounds has been achieved using a MnO2@g-C3N4 catalyst under visible light as a source of energy at room temperature Prepared for submission to the journal, Advanced Materials Letters.
The hazard for photoactivated toxicity of polycyclic aromatic hydrocarbons (PAHs) has been clearly demonstrated; however, to our knowledge, the risk in contaminated systems has not been characterized. To address this question, a median lethal dose (LD50) for fluoranthene photoa...
Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.
We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...
In evaluating the risk posed by chemicals introduced into the environment, information
about their molecular mechanism of action provides a basis for extrapolating from the
laboratory to the environment. Polycyclic aromatic hydrocarbons (PAH) are a large class
of...
POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN OPPOSED FLOW DIFFUSION FLAMES OF ETHANE. (R825412)
The effect of fuel-side carbon density on the levels of polycyclic aromatic hydrocarbon (PAH) formation in atmospheric pressure, opposed flow, ethane diffusion flames has been studied using heated micro-probe sampling and gas chromatography/mass spectrometry (...
The roles and relative importance of nonpyrogenic organic carbon (NPOC) and black carbon (BC) as binding phases of polycyclic aromatic hydrocarbons (PAHs) were assessed by their ability to estimate pore water concentrations and biological uptake in various marine sediments. Sedim...
Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHS) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calcu...
EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of polycyclic aromatic hydrocarbon (PAH) mixtures that when finalized will appear on the Integrated Risk Information System (IRIS) database. ...
ERIC Educational Resources Information Center
Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.
2014-01-01
This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…
SOLAR RADIATION DOSE AND PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A CASE STUDY
The toxicity of polycyclic aromatic hydrocarbons increases by as much as three orders of magnitude in the presence of solar radiation. The risk of this photoactive toxicity is thus based on both tissue concentrations of potentially photo activated compounds and the levels of subs...
Abstract
Trends of polycyclic aromatic hydrocarbons (PAHs) for 1992-1996 (cold season) and their mutagenic activity were investigated in organic extracts from the Santiago. Chile. inhalable particles (PM10). The highest PAH concentrations were observed in 1992 and decline...
PERSONAL EXPOSURE TO FINE PARTICLE POLYCYCLIC AROMATIC HYDROCARBONS: OUTDOOR SOURCE TRACERS
The most carcinogenic and toxic polycyclic aromatic hydrocarbons (PAH) are the 4-5 ring PAH found preferentially adsorbed to the fine particles (<2.54u in urban ambient air and personal air. Personal exposure to the carcinogenic particle bound PAH is also highly correlated ...
POLYCYCLIC AROMATIC HYDROCARBON BIODEGRADATION AS A FUNCTION OF OXYGEN TENSION IN CONTAMINATED SOIL
Laboratory tests were conducted to determine the effect of soil gas oxygen concentration on the degradation and mineralization of spiked 14C-pyrene and nonspiked 16 priority pollutant polycyclic aromatic hydrocarbons (PAH) present in the soil. The soil used for the evaluation was...
THE RATES OF POLYCYCLIC AROMATIC HYDROCARBON EMISSIONS FROM INCENSE BURNING
The paper presents the results of experiments performed to determine the amounts of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHS) in incense smoke. Ten brands of incense, 3 of stick, 2 of joss stick, and one each of cone, smudge bundle, rope, powder, and rock, w...
The generation by combustion processes of airborne species of current health concern such as polycyclic aromatic hydrocarbons (PAH) and soot particles necessitates a detailed understanding of chemical reaction pathways responsible for their formation. The present review discus...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... a Public Teleconference of the Science Advisory Board; Polycyclic Aromatic Hydrocarbon (PAH... Hydrocarbon (PAH) Mixtures Review Panel to discuss its draft report on EPA's Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures. DATES: The SAB PAH Mixtures...
ERIC Educational Resources Information Center
Rivera-Figueroa, A. M.; Ramazan, K. A.; Finlayson-Pitts, B. J.
2004-01-01
A quantitative and qualitative study of the interplay between absorption, fluorescence, and excitation spectra of pollutants called polycyclic aromatic hydrocarbons (PAHs) is conducted. The study of five PAH displays the correlation of the above-mentioned properties along with the associated molecular changes.
The sorption of polycyclic aromatic hydrocarbons (PAHs) to soot carbon in marine sediments has been hypothesized to reduce PAH bioavailability. This hypothesis was tested for eight species of marine benthic invertebrates (four polychaete worms, Clymenella torquata, Nereis virens,...
The bioavailability of polycyclic aromatic hydrocarbons (PAHs) to benthic organisms is complicated by the variety of ways that they are introduced to coastal waters (dissolved, as nonaqueous phase liquids, and tightly bound to soot, coal, tire rubber, and eroded shale). In order ...
This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10%...
METHODOLOGY OF AMBIENT AIR MONITORING FOR POLYCYCLIC AROMATIC HYDROCARBONS
In the last decade, several studies of polycyclic aromatic hydrocarbons (PAH) in ambient air in the U.S. specifically investigated (1) the sampling efficiency of two sorbents for PAH in air: XAD-2 and polyurethane foam (PUP); (2) the storage stability of PAH on quartz fiber fil...
Subcritical water (hot water under enough pressure to maintain the liquid
state) was used to remove polycyclic aromatic hydrocarbons (PAHs) and pesticides
from highly contaminated soils. Laboratory-scale (8 g of soil) experiments were
used to determine conditions f...
Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes
2012-09-15
The occurrence of 24 amines within a full scale drinking water treatment plant that used chlorinated agents as disinfectants was evaluated for the first time in this research. Prior to any treatment (raw water), aniline, 3-chloroaniline, 3,4-dichloroaniline and N-nitrosodimethylamine were detected at low levels (up to 18 ng/L) but their concentration increased ∼10 times after chloramination while 9 new amines were produced (4 aromatic amines and 5 N-nitrosamines). Within subsequent treatments, there were no significant changes in the amine levels, although the concentrations of 2-nitroaniline, N-nitrosodimethylamine and N-nitrosodiethylamine increased slightly within the distribution system. Eleven of the 24 amines studied were undetected either in the raw and in the treatment plant samples analysed. There is an important difference in the behaviour of the aromatic amines and N-nitrosamines with respect to water temperature and rainfall events. Amine concentrations were higher in winter due to low water temperatures, this effect being more noticeable for N-nitrosamines. Aromatic amines were detected at their highest concentrations (especially 3,4-dichloroaniline and 2-nitroaniline) in treated water after rainfall events. These results may be explained by the increase in the levels of amine precursors (pesticides and their degradation products) in raw water since the rainfall facilitated the transport of these compounds from soil which was previously contaminated as a result of intensive agricultural practices. Copyright © 2012 Elsevier Ltd. All rights reserved.
Iwegbue, Chukwujindu M A
2011-10-01
The concentrations and profiles of polycyclic aromatic hydrocarbons were determined in spent drilling fluid deposited at Emu-Uno, Delta State of Nigeria. The total concentrations of polycyclic aromatic hydrocarbons in the spent drilling fluid deposits ranged between 40 and 770 μg kg(-1). The PAHs profile were predominantly 2- and 3-rings with acenaphthalene, phenanthrene, fluorene being the predominant PAHs. The prevalence of 2- and 3-rings PAHs in the spent drilling fluid deposits indicate contamination of the drilling fluids with crude oil during drilling. Incorporation of spent drilling fluids into the soil has serious implication for soil, surface water and groundwater quality. © Springer Science+Business Media, LLC 2011
Niu, Zengyuan; Luo, Xin; Ye, Xiwen; Wang, Huihui; Li, Jingying
2014-01-01
A study for the simultaneous determination of 21 primary aromatic amines derived from the reduction of the azo colorants in plastic components of electrical and electronic products was conducted. Organic solvents were used to dissolve or swell the plastics to release the azo dyes existing in the plastic components. The azo colorants were reduced to aromatic amines under strong reducing condition of dithionite. Aromatic amines were extracted with methyl tert-butyl ether. Methanol-water (1: 1, v/v) was used to concentrate the extract to constant-volume for HPLC-MS analysis. The analytes were separated on a ZORBAX Eclipse XDB C18 column using the gradient elution with acetonitrile and 0.1% (v/v) formic acid aqueous solution at a flow rate of 0.6 mL/min. The analyte confirmation was performed using retention time and characteristic ions in selected ion monitoring (SIM) mode. The correlation coefficients (r) of all the standard curves were more than 0.998, and the limits of quantification of the analytes were 0.5 mg/kg. The recoveries were 60.1% - 129.5% for the 21 aromatic amines with the RSDs not more than 14.0% except for a few compounds. The results showed that the banned azo colorants in the plastic products can be analyzed qualitatively and quantitatively through reductive conversion into aromatic amines. In addition, this method has high accuracy and good precision.
The bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) by the filter-feeding soft-shell clam Mya arenaria was evaluated at three sites near Boston (MA, USA) by assessing the chemical activities of those hydrophobic organic compounds (H...
Real-time monitors and low-volume air samplers were used to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. Three...
Role of sooty mold fungi in degradation of polycycllic aromatic hydrocarbons (PAHS) in soil
Venera A. Jouraeva; David L. Johnson; John P. Hassett; David J. Nowak; Natalia A. Shipunova; Dana Barbarossa
2006-01-01
The focus of this research was on elucidation of the role of deciduous tree ecosystems in accumulation of fine-particle-associated polycyclic aromatic hydrocarbons (PAHs) and heavy metals on leaves of deciduous trees. The studied species were Tilia x euchlora (frequently infested by sooty mold fungi) and Pyrus calleryana (...
USDA-ARS?s Scientific Manuscript database
Carbon nanotubes (CNTs) may affect bioavailability and toxicity of organic contaminants due to their adsorption properties. Recent studies have observed the influence of multiwalled carbon nanotubes (MWNTs) on the fate of polycyclic aromatic hydrocarbons (PAHs) and other organic contaminants. Greenh...
On February 26, 2010, the draft Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures document and the charge to external peer reviewers were released for external peer review and public comment. The draft document and t...
Estuaries of the southeastern United States not only serve an important nursery function but also are common repositories of polycyclic aromatic hydrocarbons (PAHs) derived from upland activities. Thus, these habitats may be at risk for PAHphototoxicity. To better characterize ...
As part of the Southern California Particle Center and Supersite (SCPCS) activities, we measured, during all seasons, particle size distributions of 12 priority pollutant polycyclic aromatic hydrocarbons (PAHs), concurrently with elemental carbon (EC), organic carbon (OC), sul...
USDA-ARS?s Scientific Manuscript database
A multi-class, multi-residue method for the analysis of 13 novel flame retardants, 18 representative pesticides, 14 polychlorinated biphenyl (PCB) congeners, 16 polycyclic aromatic hydrocarbons (PAHs), and 7 polybrominated diphenyl ether (PBDE) congeners in catfish muscle was developed and evaluated...
Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous, anthropogenic chemicals found in the environment. In the present study, computational methods are used to evaluate their potential estrogenicity and the contribution chemicals in this class make to environmental e...
Polycyclic aromatic hydrocarbons are a large class of anthropogenic chemicals found in the environment. Some class members are potent animal carcinogens while other similar class members show little carcinogenic activity. When considering a series of in vitro studies of the int...
Photo-induced toxicity (PIT) of polycyclic aromatic hydrocarbons (PAH) has been documented in laboratory studies for both invertebrate and vertebrate aquatic organisms. PIT has not been verified in field studies for larval fish to date. Filtered water samples and larval fish were...
Comparative studies of the effect of polycyclic aromatic hydrocarbon geometry on the hydrolysis of diol epoxides
The interaction of the diol epoxides (DEs) of both planar and non-planar PAHs with water have been examined using quantum mechanical and molecular dynamics. Th...
Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil
USDA-ARS?s Scientific Manuscript database
A method for the determination of the 16 USEPA polycyclic aromatic hydrocarbons (PAHs) in biochar and soil amended with biochar was developed. Samples were Soxhlet extracted with acetone:cyclohexane 1:1, and PAHs were analysed by GC-MS after silica gel clean-up. In a comparative study based on reflu...
Polycyclic aromatic hydrocarbons (PAHs) comprise a class of potentially hazardous compounds of concern to the U.S.EPA. The application of particle-beam (PB) liquid chromatography-mass spectrometry (LC-MS) to the measurement of high-molecular-weight PAHs was investigated. Instrume...
Ingestion of contaminated soil is an exposure pathway at approximately one-half of the Superfund sites in the United States. This study was designed to evaluate the impacts of aging in soil on the availability of polycyclic aromatic hydrocarbons (PAHs). Two coal tar (CT)-amended ...
Partitioning studies of coal-tar constituents in a two-phase contaminated ground-water system
Rostad, C.E.; Pereira, W.E.; Hult, M.F.
1985-01-01
Organic compounds derived from coal-tar wastes in a contaminated aquifer in St. Louis Park, Minnesota, were identified, and their partition coefficients between the tar phase and aqueous phase were determined and compared with the corresponding n-octanol/water partition coefficients. Coal tar contains numerous polycyclic aromatic compounds, many of which are suspected carcinogens or mutagens. Groundwater contamination by these toxic compounds may pose an environmental health hazard in nearby public water-supply wells. Fluid samples from this aquifer developed two phases upon settling: an upper aqueous phase, and a lower oily-tar phase. After separating the phases, polycyclic aromatic compounds in each phase were isolated using complexation with N-methyl-2-pyrrolidone and identified by fused-silica capillary gas chromatography/mass spectrometry. Thirty-one of the polycyclic aromatic compounds were chosen for further study from four different classes: 12 polycyclic aromatic hydrocarbons, 10 nitrogen heterocycles, 5 sulfur heterocycles, and 4 oxygen heterocycles. Within each compound class, the tar/water partition coefficients of these compounds were reasonably comparable with the respective n-octanol/water partition coefficient.
Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide
Salter-Blanc, Alexandra J.; Bylaska, Eric J.; Lyon, Molly A.; ...
2016-04-13
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO 2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. Here in this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammettmore » $$\\sigma$$ constants ($$\\sigma^-$$), pK as of the amines, and energies of the highest occupied molecular orbital (E HOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox)]. The selection of calculated descriptors (pK a), E HOMO, and E ox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO 2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory).« less
Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salter-Blanc, Alexandra J.; Bylaska, Eric J.; Lyon, Molly A.
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO 2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. Here in this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammettmore » $$\\sigma$$ constants ($$\\sigma^-$$), pK as of the amines, and energies of the highest occupied molecular orbital (E HOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox)]. The selection of calculated descriptors (pK a), E HOMO, and E ox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO 2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory).« less
Preliminary Investigation into Pyrotechnic Chemical Products via Mass Spectrometry Techniques
2015-03-11
i m u m ) Py/GC/MS: PVC 11 • Pyrolysis of PVC exclusively yield cyclic hydrocarbons – 24.3% benzyl derivatives and 75.6% polycyclic aromatic ...Determination of EPA’s priority pollutant polycyclic aromatic hydrocarbons in drinking waters by solid phase extraction-HPLC” Bruzzoniti et al., Anal... aromatic hydrocarbons (PAH) – 42.3% hydrocarbons , 53.5% phenols, 4.7% nitrogen-containing O NH OH OH N DISTRIBUTION STATEMENT A. Approved for public
Zimmerman, S C; Saionz, K W; Zeng, Z
1993-01-01
The synthesis of hosts with improved binding affinities for nitroaromatic guests is described. Association constants for several host-guest complexes were measured in chloroform solution and ranged over three orders of magnitude. Two hosts were covalently linked to silica gel to produce chemically bonded stationary phases for HPLC. The use of these phases for HPLC analysis of nitro-substituted polycyclic aromatic hydrocarbons is discussed. PMID:8433981
Wang, ShuLing; Xu, Hui
2016-12-01
An inorganic-organic hybrid nanocomposite (zinc oxide/polypyrrole) that represents a novel kind of coating for in-tube solid-phase microextraction is reported. The composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless-steel tube. Based on the coated tube, a novel online in-tube solid-phase microextraction with liquid chromatography and mass spectrometry method was developed and applied for the extraction of three monohydroxy polycyclic aromatic hydrocarbons in human urine. The coating displayed good extraction ability toward monohydroxy polycyclic aromatic hydrocarbons. In addition, long lifespan, excellent stability, and good compression resistance were also obtained for the coating. The experimental conditions affecting the extraction were optimized systematically. Under the optimal conditions, the limits of detection and quantification were in the range of 0.039-0.050 and 0.130-0.167 ng/mL, respectively. Good linearity (0.2-100 ng/mL) was obtained with correlation coefficients larger than 0.9967. The repeatability, expressed as relative standard deviation, ranged between 2.5% and 9.4%. The method offered the advantage of process simplicity, rapidity, automation, and sensitivity in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities of Hubei province. An acceptable recovery of monohydroxy polycyclic aromatic hydrocarbons (64-122%) represented the additional attractive features of the method in real urine analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Removal of crude oil polycyclic aromatic hydrocarbons via organoclay-microbe-oil interactions.
Ugochukwu, Uzochukwu C; Fialips, Claire I
2017-05-01
Clay minerals are quite vital in biogeochemical processes but the effect of organo-clays in the microbial degradation of crude oil polycyclic aromatic hydrocarbons is not well understood. The role of organo-saponite and organo-montmorillonite in comparison with the unmodified clays in crude oil polycyclic aromatic hydrocarbons (PAHs) removal via adsorption and biodegradation was studied by carrying out microcosm experiments in aqueous clay/oil systems with a hydrocarbon degrading microbial community that is predominantly alcanivorax spp. Montmorillonite and saponite samples were treated with didecyldimethylammonium bromide to produce organo-montmorillonite and organo-saponite used in this study. Obtained results indicate that clays with high cation exchange capacity (CEC) such as montmorillonite produced organo-clay (organomontmorillonite) that was not stimulatory to biodegradation of crude oil polycyclic aromatic compounds, especially the low molecular weight (LMW) ones, such as dimethylnaphthalenes. It is suggested that interaction between the organic phase of the organo-clay and the crude oil PAHs which is hydrophobic in nature must have reduced the availability of the polycyclic aromatic hydrocarbons for biodegradation. Organo-saponite did not enhance the microbial degradation of dimethylnaphthalenes but enhanced the biodegradation of some other PAHs such as phenanthrene. The unmodified montmorillonite enhanced the microbial degradation of the PAHs and is most likely to have done so as a result of its high surface area that allows the accumulation of microbes and nutrients enhancing their contact. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gromiec, Jan P; Wesołowski, Wiktor; Brzeźnicki, Sławomir; Wróblewska-Jakubowska, Krystyna; Kucharska, Małgorzata
2002-12-01
Several hundred chemical compounds were found in workroom environments in the rubber industry, but most of the published exposure data relate to the production of tyres; information from the "non-tyre" sections are very limited, if any. This study was carried out to identify chemical substances and measure their air concentrations in the repair shop of a brown coal mine in which damaged rubber conveyor belts were repaired. GC-MS and HPLC analysis of stationary air samples resulted in identification of aliphatic and aromatic hydrocarbons to C12, PAHs, alcohols, phenols, ketones, heterocyclic nitrogen and sulfur compounds. Quantitative evaluation of occupational exposure included determination of organic compound vapours collected on charcoal (GC-MSD), polycyclic aromatic hydrocarbons (HPLC), N-nitrosoamines and other amines (GC-NPD) and DNPH derivatives of aldehydes (HPLC) in the breathing zone of workers representing all job titles. The concentrations of investigated compounds were very low. Carcinogenic substances: N-nitrosoamines, benzene, PAHs were not present in workroom air in concentrations exceeding limits of detection of the analytical methods being applied; concentrations of methylisobutylketone, tetrachloroethylene, naphtha, aromatic hydrocarbons, phthalates and aldehydes were much lower than the respective occupational exposure limit values. The results indicate much lower exposure than that reported in the production of tyres and other fabricated rubber products.
Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias
2015-12-01
Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Site-selective arene C-H amination via photoredox catalysis.
Romero, Nathan A; Margrey, Kaila A; Tay, Nicholas E; Nicewicz, David A
2015-09-18
Over the past several decades, organometallic cross-coupling chemistry has developed into one of the most reliable approaches to assemble complex aromatic compounds from preoxidized starting materials. More recently, transition metal-catalyzed carbon-hydrogen activation has circumvented the need for preoxidized starting materials, but this approach is limited by a lack of practical amination protocols. Here, we present a blueprint for aromatic carbon-hydrogen functionalization via photoredox catalysis and describe the utility of this strategy for arene amination. An organic photoredox-based catalyst system, consisting of an acridinium photooxidant and a nitroxyl radical, promotes site-selective amination of a variety of simple and complex aromatics with heteroaromatic azoles of interest in pharmaceutical research. We also describe the atom-economical use of ammonia to form anilines, without the need for prefunctionalization of the aromatic component. Copyright © 2015, American Association for the Advancement of Science.
Sabbioni, G
1993-01-01
Aromatic amines are important intermediates in industrial manufacturing. N-Oxidation to N-hydroxyarylamines is a key step in determining the genotoxic properties of aromatic amines. N-Hydroxyarylamines can form adducts with DNA, with tissue proteins, and with the blood proteins albumin and hemoglobin in a dose-dependent manner. The determination of hemoglobin adducts is a useful tool for biomonitoring exposed populations. We have established the hemoglobin binding index (HBI) [(mmole compound/mole hemoglobin)/(mmole compound/kg body weight)] of several aromatic amines in female Wistar rats. Including the values from other researchers obtained in the same rat strain, the logarithm of hemoglobin binding (logHBI) was plotted against the following parameters: the sum of the Hammett constants(sigma sigma = sigma p + sigma m), pKa, logP (octanol/water), the half-wave oxidation potential (E1/2), and the electronic descriptors of the amines and their corresponding nitrenium ions obtained by semi-empirical calculations (MNDO, AMI, and PM3), such as atomic charge densities, energies of the highest occupied molecular orbit and lowest occupied molecular orbit and their coefficients, the bond order of C-N, the dipole moments, and the reaction enthalpy [MNDOHF, AM1HF or PM3HF = Hf(nitrenium) - Hf(amine)]. The correlation coefficients were determined from the plots of all parameters against log HBI for all amines by means of linear regression analysis. The amines were classified in three groups: group 1, all parasubstituted amines (maximum, n = 9); group 2, all amines with halogens (maximun, n = 11); and group 3, all amines with alkyl groups (maximum, n = 13).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8319626
Kenneth M. Brooks
2004-01-01
Occasionally, creosote-treated railroad ties need to be replaced, sometimes in sensitive environments such as wetlands. To help determine if this is detrimental to the surrounding environment, more information is needed on the extent and pattern of creosote, or more specifically polycyclic aromatic hydrocarbon (PAH), migration from railroad ties and what effects this...
The method for extracting and preparing urine samples for analysis of hydroxy-polycyclic aromatic hydrocarbons, pentachlorophenol and 2,4-D is summarized in this SOP. It covers the extraction, concentration and methylation of samples that are to be analyzed by gas chromatography/...
Dissolved and gas-phase concentrations of nine polycyclic aromatic hydrocarbons and 46 polychlorinated biphenyl congeners were measured at eight sites on the Chesapeake Bay at four different times of the year to estimate net diffusive air-water gas exchange rates. Gaseous PAHs ar...
Sediment-Associated Reactions of Aromatic Amines
Sorption of aromatic amines to sediments and soils can occur by both reversible physical processes and irreversible chemical processes. To elucidate the significance of these sorption pathways, the sorption kinetics of aniline and pyridine were studied in resaturated pond sedimen...
Automated analysis of oxidative metabolites
NASA Technical Reports Server (NTRS)
Furner, R. L. (Inventor)
1974-01-01
An automated system for the study of drug metabolism is described. The system monitors the oxidative metabolites of aromatic amines and of compounds which produce formaldehyde on oxidative dealkylation. It includes color developing compositions suitable for detecting hyroxylated aromatic amines and formaldehyde.
Diazotisation of Weakly Basic Aromatic and Heterocyclic Amines in Strongly Acid Media
NASA Astrophysics Data System (ADS)
Godovikova, Tamara I.; Rakitin, Oleg A.; Khmel'nitskii, Lenor I.
1983-05-01
The review is devoted to the diazotisation of weakly basic aromatic amines. The methods of synthesis of diazonium salts based on these amines by non-traditional methods are examined. Data on the mechanism of the diazotisation reaction in strongly acid media are surveyed. Reactions of diazonium salts leading to the synthesis of new compounds are presented. The bibliography includes 75 references.
Li, Ruina; Wang, Lili; Gao, Xiaotong; Du, Gangfeng; Zhai, Honglin; Wang, Xiayan; Guo, Guangsheng; Pu, Qiaosheng
2013-03-15
Rapid analysis of trace amount of aromatic amines in environmental samples and daily necessities has attracted considerable attentions because some of them are strongly toxic and carcinogenic. In this study, fast and efficient electrophoretic separation and sensitive determination of 5 banned aromatic amines were explored for practical analysis using disposable plastic microchips combined with a low-cost laser-induced fluorescence detector. The effect of running buffer and its additive was systematically investigated. Under the selected condition, 5 fluorescein isothiocyanate labeled aromatic amines could be baseline separated within 90s by using a 10mmol/L borate buffer containing 2% (w/v) hydroxypropyl cellulose. Calibration curves of peak areas vs. concentrations were linear up to 40 or 120μmol/L for different analytes and limits of detection were in a range of 1-3nmol/L. Theoretical plate numbers of 6.8-8.5×10(5)/m were readily achieved. The method exhibited good repeatability, relative standard deviations (n=5) of peak areas and migration times were no more than 4.6% and 0.9%, respectively. The established method was successfully applied in the quantitative analysis of these banned aromatic amines in real samples of waste water and textile, recoveries of added standards were 85-110%. Copyright © 2013 Elsevier B.V. All rights reserved.
Hamedi, Raheleh; Hadjmohammadi, Mohammad Reza
2017-09-01
A novel design of hollow-fiber liquid-phase microextraction containing multiwalled carbon nanotubes as a solid sorbent, which is immobilized in the pore and lumen of hollow fiber by the sol-gel technique, was developed for the pre-concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. The proposed method utilized both solid- and liquid-phase microextraction media. Parameters that affect the extraction of polycyclic aromatic hydrocarbons were optimized in two successive steps as follows. Firstly, a methodology based on a quarter factorial design was used to choose the significant variables. Then, these significant factors were optimized utilizing central composite design. Under the optimized condition (extraction time = 25 min, amount of multiwalled carbon nanotubes = 78 mg, sample volume = 8 mL, and desorption time = 5 min), the calibration curves showed high linearity (R 2 = 0.99) in the range of 0.01-500 ng/mL and the limits of detection were in the range of 0.007-1.47 ng/mL. The obtained extraction recoveries for 10 ng/mL of polycyclic aromatic hydrocarbons standard solution were in the range of 85-92%. Replicating the experiment under these conditions five times gave relative standard deviations lower than 6%. Finally, the method was successfully applied for pre-concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brasholz, Malte
2017-08-21
Donation welcome: Recent developments in visible-light photocatalysis allow the utilization of increasingly negative reduction potentials. Successive energy and electron transfer with polycyclic aromatic hydrocarbons enables the catalytic formation of strongly reducing arene radical anions, classical stoichiometric reagents for one-electron reduction in organic synthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moss as bio-indicators of human exposure to polycyclic aromatic hydrocarbons in Portland, OR
Geoffrey H. Donovan; Sarah E. Jovan; Demetrios Gatziolis; Vicente J. Monleon
2015-01-01
Polycyclic aromatic hydrocarbons (PAHs) are a class of air pollutants linked to a wide range of adverse health outcomes, including asthma, cancers, cardiovascular disease, and fetal growth impairment. PAHs are emitted by combustion of organic matter (e.g. fossil fuels, plant biomass) and can accumulate in plant and animal tissues over time. Compared to criteria...
Polycyclic aromatic hydrocarbons (PAHs) were analyzed as adsorbates on borosilicate glass at levels from 40 pg (5.5 pg mm-2) to 7
g (1
Coal-tar-based pavement sealcoat, polycyclic aromatic Hydrocarbons (PAHs), and environmental health
Mahler, B.J.; Van Metre, P.C.
2011-01-01
Studies by the U.S. Geological Survey (USGS) have identified coal-tar-based sealcoat-the black, viscous liquid sprayed or painted on asphalt pavement such as parking lots-as a major source of polycyclic aromatic hydrocarbon (PAH) contamination in urban areas for large parts of the Nation. Several PAHs are suspected human carcinogens and are toxic to aquatic life.
Ariyasena, Thiloka C; Poole, Colin F
2014-09-26
Retention factors on several columns and at various temperatures using gas chromatography and from reversed-phase liquid chromatography on a SunFire C18 column with various mobile phase compositions containing acetonitrile, methanol and tetrahydrofuran as strength adjusting solvents are combined with liquid-liquid partition coefficients in totally organic biphasic systems to calculate descriptors for 23 polycyclic aromatic hydrocarbons and eighteen related compounds of environmental interest. The use of a consistent protocol for the above measurements provides descriptors that are more self consistent for the estimation of physicochemical properties (octanol-water, air-octanol, air-water, aqueous solubility, and subcooled liquid vapor pressure). The descriptor in this report tend to have smaller values for the L and E descriptors and random differences in the B and S descriptors compared with literature sources. A simple atom fragment constant model is proposed for the estimation of descriptors from structure for polycyclic aromatic hydrocarbons. The new descriptors show no bias in the prediction of the air-water partition coefficient for polycyclic aromatic hydrocarbons unlike the literature values. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Kun; Jin, Rongrong; Luo, Chen; Song, Guoxin; Hu, Yaoming; Cheng, Hefa
2018-04-01
A novel adsorbent made of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposite was synthesized and applied to determine 16 priority polycyclic aromatic hydrocarbons by magnetic solid phase extraction in water samples. FTIR spectroscopy, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy consistently indicate that the synthesized adsorbents are made of core-shell nanoparticles well dispersed on the surface of graphene and carbon nanotubes. The major factors affecting the extraction efficiency, including the pH value of samples, the amount of adsorbent, adsorption time and desorption time, type and volume of desorption solvent, were systematically optimized. Under the optimum extraction conditions, a linear response was obtained for polycyclic aromatic hydrocarbons between concentrations of 10 and 500 ng/L with the correlation coefficients ranging from 0.9958 to 0.9989, and the limits of detection (S/N = 3) were between 0.1 and 3.0 ng/L. Satisfactory results were also obtained when applying these magnetic graphene/carbon nanotubes/polydopamine hybrid nanocomposites to detect polycyclic aromatic hydrocarbons in several environmental aqueous samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.; Gillette, J. S.; Clemett, S. J.; Zare, R. N.
1999-01-01
Polycyclic aromatic hydrocarbons (PAHs) in water ice were exposed to ultraviolet (UV) radiation under astrophysical conditions, and the products were analyzed by infrared spectroscopy and mass spectrometry. Peripheral carbon atoms were oxidized, producing aromatic alcohols, ketones, and ethers, and reduced, producing partially hydrogenated aromatic hydrocarbons, molecules that account for the interstellar 3.4-micrometer emission feature. These classes of compounds are all present in carbonaceous meteorites. Hydrogen and deuterium atoms exchange readily between the PAHs and the ice, which may explain the deuterium enrichments found in certain meteoritic molecules. This work has important implications for extraterrestrial organics in biogenesis.
DETERMINATION OF AROMATIC AMINES IN SOILS
A rapid liquid chromatographic(LC)method with ultraviolet(UV)or fluorescence detection was developed for parts-per-billion levels of aromatic amines in soils. 2,4-Diaminotoluene, pyridine,aniline,2-picoline,2-toluidine,5-nitro-2-toluidine,2-methyl-6-ethylaniline,4-aminobiphenyl,4...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Dorian S. N.; Yang, Tao; Dangi, Beni B.
Meteorites contain bio-relevant molecules such as vitamins and nucleobases, which consist of aromatic structures with embedded nitrogen atoms. Questions remain over the chemical mechanisms responsible for the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) in extraterrestrial environments. By exploiting single collision conditions, we show that a radical mediated bimolecular collision between pyridyl radicals and 1,3-butadiene in the gas phase forms nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) 1,4-dihydroquinoline and to a minor amount 1,4-dihydroisoquinoline. The reaction proceeds through the formation of a van der Waals complex, which circumnavigates the entrance barrier implying it can operate at very low kinetic energy and thereforemore » at low temperatures of 10 K as present in cold molecular clouds such as TMC-1. The discovery of facile de facto barrierless exoergic reaction mechanisms leading to PANH formation could play an important role in providing a population of aromatic structures upon which further photo-processing of ice condensates could occur to form nucleobases.« less
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Allamandola, Louis J.
2003-01-01
Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role aromatic materials play in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbon molecules (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry - are recognized throughout the Universe. In this paper, we will examine the current state of the interstellar PAH model and its utility as a diagnostic tool to derive insight into the nature of the interstellar PAH population. As an example of this application, we will examine the results of our recent spectroscopic studies of polycyclic aromatic nitrogen heterocycles (PANHs)-PAHs with an atom of nitrogen substituted into the aromatic skeleton-and discuss a possible tracer of such species amongst the interstellar PAH emission bands in the latest observational data.
Itouyama, Noboru; Matsui, Taiki; Yamamoto, Shigekazu; Imasaka, Tomoko; Imasaka, Totaro
2016-02-01
Particulate matter 2.5 (PM2.5), collected from ambient air in Fukuoka City, was analyzed by gas chromatography combined with multiphoton ionization mass spectrometry using an ultraviolet femtosecond laser (267 nm) as the ionization source. Numerous parent polycyclic aromatic hydrocarbons (PPAHs) were observed in a sample extracted from PM2.5, and their concentrations were determined to be in the range from 30 to 190 pg/m(3) for heavy PPAHs. Standard samples of nitrated polycyclic aromatic hydrocarbons (NPAHs) were examined, and the limits of detection were determined to be in the picogram range. The concentration of NPAH adsorbed on PM2.5 in the air was less than 900-1300 pg/m(3). Graphical Abstract ᅟ.
Sakai, Norio; Sasaki, Minoru; Ogiwara, Yohei
2015-07-25
The combination of a catalytic amount of Cu(OTf)2 and less than a stoichiometric amount of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) under an O2 atmosphere effectively promoted the N-nitrosation of both secondary aromatic/aliphatic amines and tertiary aromatic amines with nitromethane (CH3NO2) leading to the preparation of N-nitrosamine derivatives.
Anyanwu, Ihuoma N; Ikpikpini, Ojerime C; Semple, Kirk T
2018-01-01
When aromatic hydrocarbons are present in contaminated soils, they often occur in mixtures. The impact of four different (3-ring) nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) on 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene (B[a]P) mineralisation in soil was investigated over a 90 d incubation period. The results revealed that both 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene showed no significant mineralisation in soils amended with 10mgkg -1 and 100mgkg -1 N-PAHs (p>0.05). However, increases in lag-phases and decreases in the rates and extents of mineralisation were observed, over time. Among the N-PAHs, benzo[h]quinoline impacted 14 C-phenanthrene mineralisation with extended and diauxic lag phases. Furthermore, 12/14 C-B[a]P and 14 C-benzo[a]pyrene-nitrogen-containing polycyclic aromatic hydrocarbons ( 14 C-B[a]P-N-PAHs) amended soils showed extensive lag phases (> 21 d); with some 14 C-B[a]P-N-PAH mineralisation recording <1% in both concentrations (10mgkg -1 and 100mgkg -1 ), over time. This study suggests that the presence of N-PAHs in contaminated soil may impact the microbial degradation of polycyclic aromatic hydrocarbons (PAHs) and the impact was most likely the result of limited success in achieving absolute biodegradation of some PAHs in soil. Copyright © 2017 Elsevier Inc. All rights reserved.
Amakura, Yoshiaki; Tsutsumi, Tomoaki; Yoshimura, Morio; Nakamura, Masafumi; Handa, Hiroshi; Matsuda, Rieko; Teshima, Reiko; Watanabe, Takahiro
2016-01-01
The purpose of this study was to examine whether a simple bioassay used for the detection of dioxins (DXNs) could be applied to detect trace amounts of harmful DXN-like substances in food products. To identify substances with possible DXN-like activity, we assessed the ability of various compounds in the environment to bind the aryl hydrocarbon receptor (AhR) that binds specifically to DXNs. The compounds tested included 19 polycyclic aromatic hydrocarbons (PAHs), 20 PAH derivatives (nitrated, halogenated, and aminated derivatives), 23 pesticides, six amino acids, and eight amino acid metabolites. The AhR binding activities (AhR activity) of these compounds were measured using the chemical activated luciferase gene expression (CALUX) reporter gene assay system. The majority of the PAHs exhibited marked AhR activity that increased in a concentration-dependent manner. Furthermore, there was a positive link between AhR activity and the number of aromatic rings in the PAH derivatives. Conversely, there appeared to be a negative correlation between AhR activity and the number of chlorine residues present on halogenated PAH derivatives. However, there was no correlation between AhR activity and the number and position of substituents among nitrated and aminated derivatives. Among the pesticides tested, the indole-type compounds carbendazim and thiabendazole showed high levels of activity. Similarly, the indole compound tryptamine was the only amino acid metabolite to induce AhR activity. The results are useful in understanding the identification and characterization of AhR ligands in the CALUX assay. PMID:28231110
AROMATIC AMINES IN AND NEAR THE BUFFALO RIVER
Three sediment samples taken from the Buffalo River and two soil samples taken near its bank have been analyzed for 2-propanol-extractable, basic organic compounds by using GC/MS. Eleven aromatic amines related to the commercial production of malachite green and crystal violet we...
QSAR Study for Carcinogenic Potency of Aromatic Amines Based on GEP and MLPs
Song, Fucheng; Zhang, Anling; Liang, Hui; Cui, Lianhua; Li, Wenlian; Si, Hongzong; Duan, Yunbo; Zhai, Honglin
2016-01-01
A new analysis strategy was used to classify the carcinogenicity of aromatic amines. The physical-chemical parameters are closely related to the carcinogenicity of compounds. Quantitative structure activity relationship (QSAR) is a method of predicting the carcinogenicity of aromatic amine, which can reveal the relationship between carcinogenicity and physical-chemical parameters. This study accessed gene expression programming by APS software, the multilayer perceptrons by Weka software to predict the carcinogenicity of aromatic amines, respectively. All these methods relied on molecular descriptors calculated by CODESSA software and eight molecular descriptors were selected to build function equations. As a remarkable result, the accuracy of gene expression programming in training and test sets are 0.92 and 0.82, the accuracy of multilayer perceptrons in training and test sets are 0.84 and 0.74 respectively. The precision of the gene expression programming is obviously superior to multilayer perceptrons both in training set and test set. The QSAR application in the identification of carcinogenic compounds is a high efficiency method. PMID:27854309
Bacterial fermentation platform for producing artificial aromatic amines
Masuo, Shunsuke; Zhou, Shengmin; Kaneko, Tatsuo; Takaya, Naoki
2016-01-01
Aromatic amines containing an aminobenzene or an aniline moiety comprise versatile natural and artificial compounds including bioactive molecules and resources for advanced materials. However, a bio-production platform has not been implemented. Here we constructed a bacterial platform for para-substituted aminobenzene relatives of aromatic amines via enzymes in an alternate shikimate pathway predicted in a Pseudomonad bacterium. Optimization of the metabolic pathway in Escherichia coli cells converted biomass glucose to 4-aminophenylalanine with high efficiency (4.4 g L−1 in fed-batch cultivation). We designed and produced artificial pathways that mimicked the fungal Ehrlich pathway in E. coli and converted 4-aminophenylalanine into 4-aminophenylethanol and 4-aminophenylacetate at 90% molar yields. Combining these conversion systems or fungal phenylalanine decarboxylases, the 4-aminophenylalanine-producing platform fermented glucose to 4-aminophenylethanol, 4-aminophenylacetate, and 4-phenylethylamine. This original bacterial platform for producing artificial aromatic amines highlights their potential as heteroatoms containing bio-based materials that can replace those derived from petroleum. PMID:27167511
Generalised Multiplicative Indices of Polycyclic Aromatic Hydrocarbons and Benzenoid Systems
NASA Astrophysics Data System (ADS)
Kulli, V. R.; Stone, Branden; Wang, Shaohui; Wei, Bing
2017-05-01
Many types of topological indices such as degree-based topological indices, distance-based topological indices, and counting-related topological indices are explored during past recent years. Among degree-based topological indices, Zagreb indices are the oldest one and studied well. In the paper, we define a generalised multiplicative version of these indices and compute exact formulas for Polycyclic Aromatic Hydrocarbons and jagged-rectangle Benzenoid systems.
Electron energy loss spectra of polycyclic aromatic hydrocarbons
NASA Technical Reports Server (NTRS)
Keller, John W.; Coplan, M. A.; Goruganthu, R.
1992-01-01
A survey of the electron energy-loss spectroscopy is reported of gas-phase polycyclic aromatic hydrocarbon (PAH) molecules consisting of up to seven rings where the study is limited to the more thermodynamically stable pericondensed systems. The aim of this work is to obtain absorption profiles (proportional to the oscillator strengths) from the visible to the soft X-ray region near 30 eV.
A thermodynamic analysis of the environmental indicators of natural gas combustion processes
NASA Astrophysics Data System (ADS)
Elsukov, V. K.
2010-07-01
Environmental indicators of the natural gas combustion process are studied using the model of extreme intermediate states developed at the Melent’ev Institute of Power Engineering Systems. Technological factors responsible for generation of polycyclic aromatic hydrocarbons and hydrogen cyanide are revealed. Measures for reducing the amounts of polycyclic aromatic hydrocarbons, hydrogen cyanide, nitrogen oxide, and other pollutants emitted from boilers are developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peron, O.; Laboratoire de Nanotechnologie et d'instrumentation Optique, Institut Charles Delaunay, FRE 2848, Universite de technologie de Troyes, 12 rue Marie Curie, 10010 Troyes; Rinnert, E.
2010-08-06
In the investigation of chemical pollutions, such as PAHs (Polycyclic Aromatic Hydrocarbons) at low concentration in aqueous medium, surface-enhanced Raman scattering (SERS) stands for an alternative to the inherent low cross-section of normal Raman scattering. Indeed, SERS is a very sensitive spectroscopic technique due to the excitation of the surface plasmon modes of the nanostructured metallic film.
Polycyclic aromatic hydrocarbons (PAHs) and particulate matter (PM) are co-pollutants emitted as by-products of combustion processes. Convincing evidence exists for PAHs as a primary toxic component of fine PM (PM2.5). Because PM2.5 is listed by the US EPA a...
Benzo[ a ]pyrene (BP) is a well-studied polycyclic aromatic hydrocarbon (P AH) .Many
mechanisms have been suggested to explain its carcinogenic activity, yet many questions still
remain. K-region dihydrodiols (diols) ofPAHs are common metabolites and some are genotoxic. W...
Combined effects of prenatal polycyclic aromatic hydrocarbons and material hardship on child IQ.
Vishnevetsky, Julia; Tang, Deliang; Chang, Hsin-Wen; Roen, Emily L; Wang, Ya; Rauh, Virginia; Wang, Shuang; Miller, Rachel L; Herbstman, Julie; Perera, Frederica P
2015-01-01
Polycyclic aromatic hydrocarbons are common carcinogenic and neurotoxic urban air pollutants. Toxic exposures, including air pollution, are disproportionately high in communities of color and frequently co-occur with chronic economic deprivation. We examined whether the association between child IQ and prenatal exposure to polycyclic aromatic hydrocarbons differed between groups of children whose mothers reported high vs. low material hardship during their pregnancy and through child age 5. We tested statistical interactions between hardships and polycyclic aromatic hydrocarbons, as measured by DNA adducts in cord blood, to determine whether material hardship exacerbated the association between adducts and IQ scores. Prospective cohort. Participants were recruited from 1998 to 2006 and followed from gestation through age 7 years. Urban community (New York City) A community-based sample of 276 minority urban youth EXPOSURE MEASURE: Polycyclic aromatic hydrocarbon-DNA adducts in cord blood as an individual biomarker of prenatal polycyclic aromatic hydrocarbon exposure. Maternal material hardship self-reported prenatally and at multiple timepoints through early childhood. Child IQ at 7 years assessed using the Wechsler Intelligence Scale for Children. Significant inverse effects of high cord PAH-DNA adducts on full scale IQ, perceptual reasoning and working memory scores were observed in the groups whose mothers reported a high level of material hardship during pregnancy or recurring high hardship into the child's early years, and not in those without reported high hardship. Significant interactions were observed between high cord adducts and prenatal hardship on working memory scores (β = -8.07, 95% CI (-14.48, -1.66)) and between high cord adducts and recurrent material hardship (β = -9.82, 95% CI (-16.22, -3.42)). The findings add to other evidence that socioeconomic disadvantage can increase the adverse effects of toxic physical "stressors" like air pollutants. Observed associations between high cord adducts and reduced IQ were significant only among the group of children whose mothers reported high material hardship. These results indicate the need for a multifaceted approach to prevention. Copyright © 2015 Elsevier Inc. All rights reserved.
40 CFR 721.10705 - Aromatic amine with cyclo amino carbonyls (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10705 Aromatic amine with cyclo amino carbonyls (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...
Besser, John M.; Schmitt, Christopher J.; Harshbarger, John C.; Peterman, Paul H.; Lebo, Jon A.
1991-01-01
Sediments from four inshore industrial sites and a reference site in the Great Lakes were extracted with organic solvents to produce a crude extract, which was separated on alumina into two fractions: predominantly polycyclic aromatic hydrocarbons; and predominantly nitrogencontaining polycyclic aromatic compounds. Crude extracts were redissolved in acetone and analyzed by gas chromatography and gas chromatography-mass spectrometry. The acetone-redissolved crude extracts from the four industrialized sites contained 5.6–313.3 μg total polycyclic aromatic compounds/g sediment and 3.0–36.4 μg other compounds/g sediment. In addition to the typical EPA priority pollutants, a substantial amount (228.7 μg/g sediment) of alkyl-polycyclic-aromatic compounds was detected in sediments from one of the industrialized sites. Extracts from the reference site contained 1.55 μg total polycyclic aromatic compounds/ g sediment. Medaka (Oryzias latipes) were exposed to multiple pulse doses of acetone-redissolved extracts and fractions. Medaka were also exposed to a known carcinogen, methylazoxymethanol acetate, to verify that chemicals produced tumors in the test fish. Acetone-redissolved extracts and fractions from contaminated sediments were toxic to medaka. Fin erosion and non-neoplastic liver abnormalities were more prevalent in medaka after exposure to acetoneredissolved extracts and fractions from contaminated sediments. Neoplasms previously associated with chemical exposure in wild fishes were induced in medaka exposed to acetone-redissolved extracts and fractions from two of the contaminated sites, but not from the reference site or controls. These findings further support the hypothesis that chemical contaminants in sediments are involved in epizootics of neoplasms in wild fishes at contaminated sites.
Dominikowska, Justyna; Palusiak, Marcin
2011-07-07
The concept of Clar's π-electron aromatic sextet was tested against a set of polycyclic aromatic hydrocarbons in neutral and doubly charged forms. Systems containing different types of rings (in the context of Clar's concept) were chosen, including benzene, naphthalene, anthracene, phenanthrene and triphenylene. In the case of dicationic structures both singlet and triplet states were considered. It was found that for singlet state dicationic structures the concept of aromatic sextet could be applied and the local aromaticity could be discussed in the context of that model, whereas in the case of triplet state dicationic structures Clar's model rather failed. Different aromaticity indices based on various properties of molecular systems were applied for the purpose of the studies. The discussion about the interdependence between the values of different aromaticity indices applied to neutral and charged systems in singlet and triplet states is also included. This journal is © the Owner Societies 2011
SEDIMENT-MEDIATED REDUCTION OF 2,4,6-TRINITROTOLUENE AND FATE OF THE RESULTING AROMATIC (POLY)AMINES
2,4,6-Trinitrotoluene is a major surface and subsurface contaminant found at numerous munitions production and storage facilities. The reductive transformation of 2,4,6-trinitrotoluene (TNT) to aromatic (poly)amines and the consequent fate of these products were studied in anaer...
Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions
Coates, J.D.; Anderson, R.T.; Lovley, D.R.
1996-01-01
[14C]naphthalene and phenanthrene were oxidized to 14CO2 without a detectable lag under strict anaerobic conditions in sediments from San Diego Bay, San Diego, Calif., that were heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) but not in less contaminated sediments. Sulfate reduction was necessary for PAH oxidation. These results suggest that the self-purification capacity of PAH-contaminated sulfate-reducing environments may be greater than previously recognized.
Wang, Man; Cui, Shihai; Yang, Xiaodi; Bi, Wentao
2015-01-01
An easy preparation of g-C3N4/Fe3O4 nanocomposites by chemical co-precipitation has been demonstrated. The as-prepared materials were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. The high affinity of g-C3N4 toward polycyclic aromatic hydrocarbons and the magnetic behavior of Fe3O4 were combined to provide an efficient and simple magnetic solid phase extraction (MSPE). The adsorption and desorption of polycyclic aromatic hydrocarbons on g-C3N4/Fe3O4 were examined. Different factors affecting the magnetic solid phase extraction of polycyclic aromatic hydrocarbons were assessed in terms of adsorption, desorption, and recovery. Under the optimized conditions, the proposed method showed good limits of detection (LOD, S/N=3) in the range of 0.05-0.1 ng mL(-1) and precision in the range of 1.8-5.3% (RSDs, n=3). This method was also successfully applied to the analysis of real water samples; good spiked recoveries over the range of 80.0-99.8% were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Bunkoed, Opas; Rueankaew, Thanaschaphorn; Nurerk, Piyaluk; Kanatharana, Proespichaya
2016-06-01
Polyaniline coated cigarette filters were successfully synthesized and used as a solid-phase extraction sorbent for the extraction and preconcentration of polycyclic aromatic hydrocarbons in water samples. The polyaniline helped to enhance the adsorption ability of polycyclic aromatic hydrocarbons on the sorbent through π-π interactions. The high porosity and large surface area of the cigarette filters helped to reduce backpressure and can be operated with high sample flow rate without loss of extraction efficiency. The developed sorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters that affected the extraction efficiencies, i.e. polymerization time, type of desorption solvent and its volume, sample flow rate, sample volume, sample pH, ionic strength, and organic modifier were investigated. Under the optimal conditions, the method was linear over the range of 0.5-10 μg/L and a detection limit of 0.5 ng/L. This simple, rapid, and cost-effective method was successfully applied to the preconcentration of polycyclic aromatic hydrocarbons from water samples. The developed method provided a high enrichment factor with good extraction efficiency (85-98%) and a relative standard deviation <10%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanisms Linking Colorectal Cancer to the Consumption of (Processed) Red Meat: A Review.
Demeyer, Daniel; Mertens, Birgit; De Smet, Stefaan; Ulens, Michèle
2016-12-09
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world. The vast majority of CRC cases have been linked to environmental causes rather than to heritable genetic changes. Over the last decades, epidemiological evidence linking the consumption of red and, more convincingly, of processed red meat to CRC has accumulated. In parallel, hypotheses on carcinogenic mechanisms underlying an association between CRC and the intake of red and processed red meat have been proposed and investigated in biological studies. The hypotheses that have received most attention until now include (1) the presence of polycyclic aromatic hydrocarbons and heterocyclic aromatic amines, two groups of compounds recognized as carcinogenic, (2) the enhancing effect of (nitrosyl)heme on the formation of carcinogenic N-nitroso compounds and lipid peroxidation. However, none of these hypotheses completely explains the link between red and processed red meat intake and the CRC risk. Consequently, scientists have proposed additional mechanisms or refined their hypotheses. This review first briefly summarizes the development of CRC followed by an in-depth overview and critical discussion of the different potential carcinogenic mechanisms underlying the increased CRC risk associated with the consumption of red and processed red meat.
Lloyd-Jones, G; Lau, P C
1997-01-01
Homologs of the glutathione S-transferase (GST)-encoding gene were identified in a collection of aromatic hydrocarbon-degrading Sphingomonas spp. isolated from New Zealand, Antarctica, and the United States by using PCR primers designed from the GST-encoding gene of Sphingomonas paucimobilis EPA505. Sequence analysis of PCR fragments generated from these isolates and of the GST gene amplified from DNA extracted from polycyclic aromatic hydrocarbon (PAH)-contaminated soil revealed a high degree of conservation, which may make the GST-encoding gene a potentially useful marker for PAH-degrading bacteria. PMID:9251217
Amination of electrophilic aromatic compounds by vicarious nucleophilic substitution
Mitchell, Alexander R.; Pagoria, Philip F.; Schmidt, Robert D.
2000-01-01
The present invention relates to a process to aminate electrophilic aromatic compounds by vicarious nucleophilic substitution of hydrogen using quaternary hydrazinium salts. The use of trialkylhydrazinium halide, e.g., trimethylhydrazinium iodide, as well as hydroxylamine, alkoxylamines, and 4-amino-1,2,4-triazole to produce aminated aromatic structures, such as 1,3-diamino-2,4,6-trinitrobenzene (DATB), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and 3,5-diamino-2,4,6-trinitrotoluene (DATNT), is described. DATB and TATB are useful insensitive high explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).
Ling, Ke-Qing; Li, Wen-Shan; Sayre, Lawrence M
2008-01-23
Although oxidations of aromatic amines by horseradish peroxidase (HRP) are well-known, typical aliphatic amines are not substrates of HRP. In this study, the reactions of N-benzyl and N-methyl cyclic amines with HRP were found to be slow, but reactions of N-(3-indoleethyl) cyclic amines were 2-3 orders of magnitude faster. Analyses of pH-rate profiles revealed a dominant contribution to reaction by the amine-free base forms, the only species found to bind to the enzyme. A metabolic study on a family of congeneric N-(3-indoleethyl) cyclic amines indicated competition between amine and indole oxidation pathways. Amine oxidation dominated for the seven- and eight-membered azacycles, where ring size supports the change in hybridization from sp3 to sp2 that occurs upon one-electron amine nitrogen oxidation, whereas only indole oxidation was observed for the six-membered ring congener. Optical difference spectroscopic binding data and computational docking simulations suggest that all the arylalkylamine substrates bind to the enzyme through their aromatic termini with similar binding modes and binding affinities. Kinetic saturation was observed for a particularly soluble substrate, consistent with an obligatory role of an enzyme-substrate complexation preceding electron transfer. The significant rate enhancements seen for the indoleethylamine substrates suggest the ability of the bound indole ring to mediate what amounts to medium long-range electron-transfer oxidation of the tertiary amine center by the HRP oxidants. This is the first systematic investigation to document aliphatic amine oxidation by HRP at rates consistent with normal metabolic turnover, and the demonstration that this is facilitated by an auxiliary electron-rich aromatic ring.
Urey onboard Exomars: Searching for life on Mars
NASA Astrophysics Data System (ADS)
Bada, J.; Ehrenfreund, P.; Grunthaner, F.; Sephton, M.; Urey Team
2009-04-01
Exomars is currently under development as the flagship mission of ESA's exploration program Aurora. A fundamental challenge ahead for the Exomars mission is to search for extinct and extant life. The Urey instrument (Mars Organic and Oxidant Detector) has been selected for the Pasteur payload and is considered a key instrument to achieve the mission's scientific objectives. Urey can detect organic compounds at unprecedented sensitivity of part-per-trillions in the Martian regolith. The instrument will target several key classes of organic molecules such as amino acids, nucleobases, amines and amino sugars and polycyclic aromatic hydrocrabon (PAHs) using state-of-the-art analytical methods. Chemoresistor oxidant sensors will provide complementary measurements by simultaneously evaluating the survival potential of organic compounds in the environment. The Urey instrument concept has tremendous future applications in Mars and Moon exploration in the framework of life detection and planetary protection.
Liang, Xiaojing; Wang, Shuai; Liu, Shujuan; Liu, Xia; Jiang, Shengxiang
2012-08-01
An octadecylsilane functionalized graphene oxide/silica stationary phase was fabricated by assembling graphene oxide onto the silica particles through an amide bond and subsequent immobilization of octadecylsilane. The chromatographic properties of the stationary phase were investigated by reversed-phase chromatography with alkylbenzenes, polycyclic aromatic hydrocarbons, amines, and phenolic compounds as the analytes. All the compounds achieved good separation on the column. The comparison between a C18 commercial column and the new stationary phase indicated that the existence of π-electron system of graphene oxide allows π-π interaction between analyte and octadecylsilane functionalized graphene oxide/silica stationary phase except for hydrophobic interaction, while only hydrophobic interaction presented between analyte and C18 commercial column. This suggests that some analytes can be better separated on the octadecylsilane functionalized graphene oxide/silica column. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Ming; Yang, Hongwei; Zhang, Yan; Zhu, Chengjian; Li, Wei; Cheng, Yixiang; Hu, Hongwen
2011-06-21
The direct reductive amination of aromatic aldehydes has been achieved with excellent isolated yields (89-96%) using readily accessible Ph(3)PAuCl/AgOTf catalyst along with ethyl Hantzsch ester as hydrogen source under mild reaction conditions. This journal is © The Royal Society of Chemistry 2011
Laminate comprising fibers embedded in cured amine terminated bis-imide
NASA Technical Reports Server (NTRS)
Kumar, D. (Inventor); Fohlen, G. M. (Inventor); Parker, J. A. (Inventor)
1986-01-01
Amine terminated bisaspartimides are prepared by a Michael type reaction of an aromatic bismaleimide and an aromatic diamine in an aprotic solvent. These bisaspartimides are thermally polymerized to yield tough, resinous polymers crosslinked through -NH- groups. Such polymers are useful in applications requiring materials with resistance to change at elevated temperatures.
2-Aminoquinazolin-4(3H)-one as an Organocatalyst for the Synthesis of Tertiary Amines.
Thakur, Maheshwar S; Nayal, Onkar S; Upadhyay, Rahul; Kumar, Neeraj; Maurya, Sushil K
2018-03-02
The potential of 2-aminoquinazolin-4(3H)-one as an organocatalyst for the activation of aldehydes via noncovalent interaction for the synthesis of tertiary amines using formic acid as a reducing agent is reported for the first time. The developed protocol demonstrated a dilated substrate scope for aromatic and aliphatic amines with aromatic and aliphatic aldehydes. Furthermore, the current method was also fruitful for the derivatization of ciprofloxacin and its derivative in good to excellent yields.
Al-Alam, Josephine; Fajloun, Ziad; Chbani, Asma; Millet, Maurice
2017-08-01
An optimized analytical method was developed for the simultaneous analysis of 90 pesticides, 16 polycyclic aromatic hydrocarbons, and 22 polychlorinated biphenyls. The method was based on quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction using acetonitrile followed by a dispersive solid-phase extraction cleanup using primary-secondary amine and octadecyl (C 18 ). The extract obtained was concentrated by evaporation and then reconstituted with acetonitrile to prepare it for chromatographic analysis by liquid chromatography-triple-quadrupole tandem mass spectrometry and gas chromatography-ion-trap tandem mass spectrometry, which was preceded by a preconcentration step using solid-phase microextraction with appropriate fibers. The combination of the two extraction steps ensured efficient extract cleanup. The use of the two analytical instruments allowed the analysis of a large number of pollutants with a high reliability rate. The method developed was validated for linearity, which was studied with use of matrix-matched calibration curves in the concentration range between 10 and 3000 ng g -1 . The correlation coefficient (R 2 ) obtained was higher than 0.98 for most of the target compounds, with a relative standard deviation lower than 20% for repeatability and reproducibility. The limits of detection and quantification were lower than 20 and 60 ng g -1 respectively for the compounds analyzed, and the recoveries were between 60% and 103% for most compounds. Finally, the method was tested for its efficiency on real samples by the analysis of three honey samples in which seven pesticides and nine polycyclic aromatic hydrocarbons were determined. Graphical Abstract ᅟ.
Polycyclic aromatic hydrocarbons in some grounded coffee brands.
Grover, Inderpreet Singh; Sharma, Rashmi; Singh, Satnam; Pal, Bonamali
2013-08-01
Potentially toxic 16 priority polycyclic aromatic hydrocarbons (PAHs) were determined in four brands of grounded coffee. Four to 13 PAHs were detected. Concentrations of total PAHs in different brands of coffee samples were in the range of 831.7-1,589.7 μg/kg. Benzo[a]pyrene (2A: probable human carcinogen) was found in Nescafe Premium whereas naphthalene (2B: possible human carcinogen) was found in all the samples of coffee.
Observational aspects of polycyclic aromatic hydrocarbon charging in the Interstellar Medium
NASA Technical Reports Server (NTRS)
Bakes, E. L. O.; Tielens, Alexander G. G. M.
1995-01-01
We have investigated the charging processes which affect small carbonaceous dust grains and polycyclic aromatic hydrocarbons (PAH's). Because of their high abundance, interstellar PAH molecules can dominate the charge balance of the interstellar medium (ISM), which controls the heating and cooling interstellar gas and interstellar chemistry. We present the results of our model, which compare well with observations and suggest further applications to both laboratory measurements and data obtainable from the KAO.
Water-Sediment Partition of Polycyclic Aromatic Hydrocarbons (PAHs) in Nansi Lake
NASA Astrophysics Data System (ADS)
Zhang, Guizhai; Diao, Youjiang
2018-06-01
Based on field data of polycyclic aromatic hydrocarbons (PAHs) in water and sediment in Nansi Lake. The concentrations and the partitioning characteristic of PAHs in the water and sediment were studied. The lgKd of high molecular weight PAHs were higher than the low molecular weight PAHs. The most of PAHs Kd values were negligible correlated with TOC, soluble salt, clay and pH of the sediment in Nansi Lake.
Chung, N J; Cho, J Y; Park, S W; Park, B J; Hwang, S A; Park, T I
2008-08-01
The effects of domestic wastewater application on the translocation and accumulation of polycyclic aromatic hydrocarbons (PAHs) in soil and crops (rice, lettuce, and barley) were investigated by Wagner's pot experiment. In the soils and crops after domestic wastewater irrigation, high-molecular weight PAHs (5 to 6 ring) were not detected, but low-molecular weight PAHs (3 to 4 ring) were only detected at trace levels.
Monitoring of vapor phase polycyclic aromatic hydrocarbons
Vo-Dinh, Tuan; Hajaligol, Mohammad R.
2004-06-01
An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.
Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources.
Sanches, S; Leitão, C; Penetra, A; Cardoso, V V; Ferreira, E; Benoliel, M J; Crespo, M T Barreto; Pereira, V J
2011-09-15
The widely used low pressure lamps were tested in terms of their efficiency to degrade polycyclic aromatic hydrocarbons listed as priority pollutants by the European Water Framework Directive and the U.S. Environmental Protection Agency, in water matrices with very different compositions (laboratory grade water, groundwater, and surface water). Using a UV fluence of 1500 mJ/cm(2), anthracene and benzo(a)pyrene were efficiently degraded, with much higher percent removals obtained when present in groundwater (83-93%) compared to surface water (36-48%). The removal percentages obtained for fluoranthene were lower and ranged from 13 to 54% in the different water matrices tested. Several parameters that influence the direct photolysis of polycyclic aromatic hydrocarbons were determined and their photolysis by-products were identified by mass spectrometry. The formation of photolysis by-products was found to be highly dependent on the source waters tested. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Babić, J.; Vidaković, S.; Škaljac, S.; Kartalović, B.; Ljubojević, D.; Ćirković, M.; Teodorović, V.
2017-09-01
Smoking techniques have been progressively improved and different procedures have been developed in different regions for treating fish. In these times, the technology is mainly used for enrichment of fish with specific taste and odour, to extend the shelf-life of these perishable products and appearance required widely on the market. A lot of chemical contaminants such as polycyclic aromatic hydrocarbons (PAHs) are formed during the combustion of fuel in the smoking process. PAHs are a group of compounds that have been the subject of great concern in the recent years due to their toxic, mutagenic and/or carcinogenic potentials to humans. These fact can have a significant impact on the acceptance of these products by consumers. In this review article, the objective is to describe factors affecting elimination of polycyclic aromatic hydrocarbons from traditional smoked common carp meat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, T.; Gatchell, M.; Stockett, M. H.
2014-06-14
We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH{sup +}) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH{sup +} + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C{sub 6}H{sub 5}). Thus nonstatistical fragmentation may be an effectivemore » initial step in the formation of, e.g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures.« less
Ingredients for Life (Artist's Concept)
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure 1: Artist's Conception Symbolically Represents Complex Organic Molecules This artist's conception symbolically represents complex organic molecules, known as polycyclic aromatic hydrocarbons, seen in the early universe. These large molecules, comprised of carbon and hydrogen, are considered among the building blocks of life. NASA's Spitzer Space Telescope is the first telescope to see polycyclic aromatic hydrocarbons so early -- 10 billion years further back in time than seen previously. Spitzer detected these molecules in galaxies when our universe was one-fourth of its current age of about 14 billion years. These complex molecules are very common on Earth. They form any time carbon-based materials are not burned completely. They can be found in sooty exhaust from cars and airplanes, and in charcoal broiled hamburgers and burnt toast. Polycyclic aromatic hydrocarbons are pervasive in galaxies like our own Milky Way, and play a significant role in star and planet formation.Renal cancer risk and occupational exposure to polycyclic aromatic hydrocarbons and plastics
Karami, Sara; Boffetta, Paolo; Brennan, Paul; Stewart, Patricia A.; Zaridze, David; Matveev, Vsevolod; Janout, Vladimir; Kollarova, Helena; Bencko, Vladimir; Navratilova, Marie; Szeszenia-Dabrowska, Neonila; Mates, Dana; Gromiec, Jan P.; Sobotka, Roman; Chow, Wong-Ho; Rothman, Nathaniel; Moore, Lee E.
2011-01-01
Objective To investigate whether occupational exposure to polycyclic aromatic hydrocarbons and certain plastic monomers increased renal cell carcinomas (RCC) risk. Methods Unconditional logistic regression was used to calculate RCC risk in relation to exposure. Results No association between RCC risk and having ever been occupationally exposed to any polycyclic aromatic hydrocarbons or plastics was observed. Duration of exposure and average exposure also showed no association with risk. Suggestive positive associations between RCC risk and cumulative exposure to styrene (P-trend = 0.02) and acrylonitrile (P-trend = 0.06) were found. Cumulative exposure to petroleum/gasoline engine emissions was inversely associated with risk (P-trend = 0.02). Conclusions Results indicate a possible association between occupational styrene and acrylonitrile exposure and RCC risk. Additional studies are needed to replicate findings, as this is the first time these associations have been reported and they may be due to chance. PMID:21270648
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Wren; Sephton, Mark A., E-mail: w.montgomery@imperial.ac.uk
2016-03-01
The influence of polycyclic aromatic nitrogen heterocycles (PANHs), which have been suggested as contributors to the interstellar IR emission bands, on interstellar emission features is difficult to constrain because their infrared characteristics are strongly similar to those for polycyclic aromatic hydrocarbons (PAHs). One possible solution is to seek a means of visualizing the presence of PANHs that provides information that is distinct from that for PAHs. Although PANHs and PAHs have similar infrared characteristics in many settings, this relationship may not be universally maintained. We have used in situ high-pressure synchrotron-source Fourier transform infrared spectroscopy to determine that the responsesmore » of two representative molecules, acridine and anthracene, differ at high pressures (>ca. 1 GPa). Because there are a number of high-pressure environments that can be remotely observed by infrared spectroscopy, they represent a potential to glimpse the distribution of PANHs across the cosmos.« less
Mastrangelo, Giuseppe; Carta, Angela; Arici, Cecilia; Pavanello, Sofia; Porru, Stefano
2017-01-01
No etiological prediction model incorporating biomarkers is available to predict bladder cancer risk associated with occupational exposure to aromatic amines. Cases were 199 bladder cancer patients. Clinical, laboratory and genetic data were predictors in logistic regression models (full and short) in which the dependent variable was 1 for 15 patients with aromatic amines related bladder cancer and 0 otherwise. The receiver operating characteristics approach was adopted; the area under the curve was used to evaluate discriminatory ability of models. Area under the curve was 0.93 for the full model (including age, smoking and coffee habits, DNA adducts, 12 genotypes) and 0.86 for the short model (including smoking, DNA adducts, 3 genotypes). Using the "best cut-off" of predicted probability of a positive outcome, percentage of cases correctly classified was 92% (full model) against 75% (short model). Cancers classified as "positive outcome" are those to be referred for evaluation by an occupational physician for etiological diagnosis; these patients were 28 (full model) or 60 (short model). Using 3 genotypes instead of 12 can double the number of patients with suspect of aromatic amine related cancer, thus increasing costs of etiologic appraisal. Integrating clinical, laboratory and genetic factors, we developed the first etiologic prediction model for aromatic amine related bladder cancer. Discriminatory ability was excellent, particularly for the full model, allowing individualized predictions. Validation of our model in external populations is essential for practical use in the clinical setting.
NASA Technical Reports Server (NTRS)
Pratt, J. R.
1981-01-01
Eight glycidyl amines were prepared by alkylating the parent amine with epichlorohydrin to form chlorohydrin, followed by cyclization with aqueous NaOH. Three of these compounds contained propargyl groups with postcuring studies. A procedure for quantitatively estimating the epoxy content of these glycidyl amines was employed for purity determination. Two diamond carbonates and several model propargly compounds were prepared. The synthesis of three new diamines, two which contain propargyloxy groups, and another with a sec-butyl group is in progress. These materials are at the dinitro stage ready for the final hydrogenation step. Four aromatic diamines were synthesized for mutagenic testing purposes. One of these compounds rapidly decomposes on exposure to air.
2015-01-01
Chloramination of drinking waters has been associated with N-nitrosodimethylamine (NDMA) formation as a disinfection byproduct. NDMA is classified as a probable carcinogen and thus its formation during chloramination has recently become the focus of considerable research interest. In this study, the formation mechanisms of NDMA from ranitidine and trimethylamine (TMA), as models of tertiary amines, during chloramination were investigated by using density functional theory (DFT). A new four-step formation pathway of NDMA was proposed involving nucleophilic substitution by chloramine, oxidation, and dehydration followed by nitrosation. The results suggested that nitrosation reaction is the rate-limiting step and determines the NDMA yield for tertiary amines. When 45 other tertiary amines were examined, the proposed mechanism was found to be more applicable to aromatic tertiary amines, and there may be still some additional factors or pathways that need to be considered for aliphatic tertiary amines. The heterolytic ONN(Me)2–R+ bond dissociation energy to release NDMA and carbocation R+ was found to be a criterion for evaluating the reactivity of aromatic tertiary amines. A structure–activity study indicates that tertiary amines with benzyl, aromatic heterocyclic ring, and diene-substituted methenyl adjacent to the DMA moiety are potentially significant NDMA precursors. The findings of this study are helpful for understanding NDMA formation mechanism and predicting NDMA yield of a precursor. PMID:24968236
Liu, Yong Dong; Selbes, Meric; Zeng, Chengchu; Zhong, Rugang; Karanfil, Tanju
2014-01-01
Chloramination of drinking waters has been associated with N-nitrosodimethylamine (NDMA) formation as a disinfection byproduct. NDMA is classified as a probable carcinogen and thus its formation during chloramination has recently become the focus of considerable research interest. In this study, the formation mechanisms of NDMA from ranitidine and trimethylamine (TMA), as models of tertiary amines, during chloramination were investigated by using density functional theory (DFT). A new four-step formation pathway of NDMA was proposed involving nucleophilic substitution by chloramine, oxidation, and dehydration followed by nitrosation. The results suggested that nitrosation reaction is the rate-limiting step and determines the NDMA yield for tertiary amines. When 45 other tertiary amines were examined, the proposed mechanism was found to be more applicable to aromatic tertiary amines, and there may be still some additional factors or pathways that need to be considered for aliphatic tertiary amines. The heterolytic ONN(Me)2-R(+) bond dissociation energy to release NDMA and carbocation R(+) was found to be a criterion for evaluating the reactivity of aromatic tertiary amines. A structure-activity study indicates that tertiary amines with benzyl, aromatic heterocyclic ring, and diene-substituted methenyl adjacent to the DMA moiety are potentially significant NDMA precursors. The findings of this study are helpful for understanding NDMA formation mechanism and predicting NDMA yield of a precursor.
Galano, Annia
2007-03-08
Physisorption and chemisorption processes of thiophene on coronene and 2Si-coronene have been studied using density functional theory and MP2 methods. These systems have been chosen as the simplest models to describe the adsorption of thiophene-like compounds on polycyclic aromatic hydrocarbons (PAHs). The calculated data suggest that the presence of silicon atoms in PAHs could favor their interaction with thiophene and similar compounds. Small stabilization energies have been found for several physisorbed complexes. The thiophene chemisorption on coronene seems very unlikely to occur, while that on 2Si-coronene leads to addition products which are very stable, with respect to the isolated reactants. These chemisorption processes were found to be exoergic (DeltaG < 0) in the gas phase and in the nonpolar liquid phase. The results reported in this work suggest that silicon defects on extended polycyclic aromatic hydrocarbons, such as graphite, soot, and large-diameter carbon nanotubes, could make them useful in the removal processes of aromatic sulfur compounds from oil hydrocarbons.
NASA Technical Reports Server (NTRS)
Zare, Richard N.
1998-01-01
Perhaps the best way to summarize the past three-year grant period is to cite the publications and present a brief synopsis of each: 1. "Indigenous Polycyclic Aromatic Hydrocarbon Molecules in Circumstellar Graphite Grains." Bulk C-12/C-13 isotope ratios observed in some graphite grains extracted from primitive meteorites point strongly to a circumstellar origin. By applying our technique of microprobe two-step laser desorption laser ionization mass spectrometry ((mu)L(sup 2)MS) to individual circumstellar graphite grains we have measured the C-12/C-13 isotope ratio of various polycyclic aromatic hydrocarbons (PAHS) found in these grains. 2. "Deuterium Enrichments in Cluster IDPS," Large enrichments in the D/H isotope ratios in IDPs likely arise from the preservation of presolar molecules. 3. "Evidence for thermalization of surface-disorder molecules at heating rates of 10(exp 8) K/s". A careful study of the ((mu)L(sup 2)MS) of aniline-d(sub 7) from a single-crystal surface (0001) of sapphire (al2O3) shows that all measured properties are consistent with a thermal mechanism for desorption. 4. "Search for past life on Mars; possible relic biogenic activity in Martian meteorite ALH 84001. The authors examined the Martian meteorite ALH 84001 and found several lines of evidence compatible with existence of past primitive (single-cell) life on early Mars. 5. "Microprobe two-step laser mass spectrometry as an analytical tool for meteorite samples". THis paper presents a comprehensive review of (mu)L(sup 2)MS and how this technique can be applied to meteoritic samples. 6. "Indigenous polycyclic aromatic hydrocarbons in circumstellar graphite grains from primitive meteorites". The C-12/C-13 isotope ratios were measured for PAHs in a total of 89 spherical graphite grains. 7. "Observation of indigenous polycyclic aromatic hydrocarbons in "Giant" carbonaceous antarctic micrometeorites." The (mu)L(sup 2)MS method was used to establish the nature and distribution of PAHs in fragments of fifteen (approx. 200 microns) carbonaceous antarctic micrometeorites (AMMs). 8. "Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons in the Martian meteorite ALH 84001" We have undertaken additional contamination studies of ALH 84001.
Li, Liang; Zhao, Mi-Na; Ren, Zhi-Hui; Li, Jian-Li; Guan, Zheng-Hui
2012-07-06
New strategies for the oxidative cycloaddition of enones with enamines are developed. These cycloaddition reactions directly afford substituted aromatic amines, which are important in organic chemistry, in moderate to good yield. Cu(OAc)(2)/TFA is shown to be essential to achieve high reaction efficiency.
Yang, Xiu-Jie; Chen, Bin; Li, Xu-Bing; Zheng, Li-Qiang; Wu, Li-Zhu; Tung, Chen-Ho
2014-06-25
We report the first application of layered double hydroxide as a photocatalyst in the transformation of primary aromatic amines to their corresponding imines with high efficiency and selectivity by using oxygen in an air atmosphere as a terminal oxidant under light irradiation.
Shan, Gang; Sun, Xiuyun; Xia, Qian; Rao, Yu
2011-11-04
An efficient single-step approach toward the synthesis of 2-alkylquinolines is described. Through a Lewis acid mediated [3+3] annulation reaction between 3-ethoxycyclobutanones and aromatic amines, a variety of multisubstituted 2-alkylquinoline derivatives were prepared regioselectively at room temperature. © 2011 American Chemical Society
Liang, Xiaotong; Liu, Shengquan; Zhu, Rong; Xiao, Lixia; Yao, Shouzhuo
2016-07-01
In this work, novel cellulose/zeolitic imidazolate frameworks-8 composite microspheres have been successfully fabricated and utilized as sorbent for environmental polycyclic aromatic hydrocarbons efficient extraction and sensitive analysis. The composite microspheres were synthesized through the in situ hydrothermal growth of zeolitic imidazolate frameworks-8 on cellulose matrix, and exhibited favorable hierarchical structure with chemical composition as assumed through scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction patterns, and Brunauer-Emmett-Teller surface areas characterization. A robust and highly efficient method was then successfully developed with as-prepared composite microspheres as novel solid-phase extraction sorbent with optimum extraction conditions, such as sorbent amount, sample volume, extraction time, desorption conditions, volume of organic modifier, and ionic strength. The method exhibited high sensitivity with low limit of detection down to 0.1-1.0 ng/L and satisfactory linearity with correlation coefficients ranging from 0.9988 to 0.9999, as well as good recoveries of 66.7-121.2% with relative standard deviations less than 10% for environmental polycyclic aromatic hydrocarbons analysis. Thus, our method was convenient and efficient for polycyclic aromatic hydrocarbons extraction and detection, potential for future environmental water samples analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Choi, Jae Min; Jeong, Daham; Piao, Jinglan; Kim, Kyoungtea; Nguyen, Andrew Bao Loc; Kwon, Nak-Jung; Lee, Mi-Kyung; Lee, Im Soon; Yu, Jae-Hyuk; Jung, Seunho
2015-01-12
The removal of polycyclic aromatic hydrocarbons by soil washing using water is extremely difficult due to their intrinsic hydrophobic nature. In this study, the effective aqueous solubility enhancements of seven polycyclic aromatic hydrocarbons by chemically modified hydroxypropyl rhizobial cyclic β-(1 → 2)-D-glucans and epichlorohydrin β-cyclodextrin dimer have been investigated for the first time. In the presence of hydroxypropyl cyclic β-(1 → 2)-D-glucans, the solubility of benzo[a]pyrene is increased up to 38 fold of its native solubility. The solubility of pyrene and phenanthrene dramatically increased up to 160 and 359. Coronene, chrysene, perylene, and fluoranthene also show an increase of 11, 23, 23, and 97 fold, respectively, of enhanced solubility by complexation with synthetic epichlorohydrin β-cyclodextrin dimer. The physicochemical properties of the complex are characterized by Fourier-transform infrared spectra and differential scanning calorimetry. Utilizing a scanning electron microscopy, the morphological structures of native benzo[a]pyrene, pyrene, phenanthrene, coronene, chrysene, perylene, fluoranthene and their complex with novel carbohydrate-solubilizers are studied. These results elucidate that polycyclic aromatic hydrocarbons are able to form an efficient complex with hydroxypropyl cyclic β-(1 → 2)-D-glucans and β-cyclodextrin dimer, suggesting the potential usage of chemically modified novel carbohydrate-solubilizers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rončević, Srđan; Spasojević, Jelena; Maletić, Snežana; Jazić, Jelena Molnar; Isakovski, Marijana Kragulj; Agbaba, Jasmina; Grgić, Marko; Dalmacija, Božo
2016-02-01
Large amounts of sediment are dredged globally every year. This sediment is often contaminated with low concentrations of metals, polycyclic aromatic hydrocarbons, pesticides and other organic pollutants. Some of this sediment is disposed of on land, creating a need for risk assessment of the sediment disposal method, to minimize the degradation of environmental quality and prevent risks to human health. Evaluating the available fractions of certain polycyclic aromatic hydrocarbons is very important, as in the presence of various organisms, they are believed to be easily subject to the processes of bioaccumulation, biosorption and transformation. In order to determine the applicability of applying these methods for the evaluation of pollutant bioavailability in sediments, the desorption kinetics from the sediment of various polycyclic aromatic hydrocarbons in the presence of Tenax and XAD4 were examined over the course of 216 h. Changes in the PAH concentrations in dredged sediments using five different seed plants during a short time of period (10 days) were also followed. Using chemical extraction techniques with Tenax and XAD4, a time of around 24 h is enough to achieve equilibrium for all four PAHs. Results showed good agreement between the seed accumulation and PAH extraction methods with both agents. If we compare the two extraction techniques, XAD4 gave better results for phenanthrene, pyrene and benzo(a)pyrene, and Tenax gave better results for chrysene.
NASA Astrophysics Data System (ADS)
Cao, Xinyue; Hao, Xuewei; Shen, Xianbao; Jiang, Xi; Wu, Bobo; Yao, Zhiliang
2017-01-01
Polycyclic aromatic hydrocarbon (PAH) and nitro-polycyclic aromatic hydrocarbon (NPAH) emissions from 18 diesel trucks of different sizes and with different emission standards were tested in Beijing using a portable emission measurement system (PEMS). Both the gaseous- and particulate-phase PAHs and NPAHs were quantified by high-performance liquid chromatography (HPLC) in the laboratory. The emission factors (EFs) of the total PAHs from light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs) were 82229.11 ± 41906.06, 52867.43 ± 18946.47 and 93837.35 ± 32193.14 μg/km, respectively, much higher than the respective values of total NPAHs from their counterpart vehicles. The gaseous phase had an important contribution to the total PAHs and NPAHs, with a share rate of approximately 69% and 97% on average, respectively. The driving cycle had important impacts on the emissions of PAHs and NPAHs, especially for LDDTs and HDDTs. Higher emissions of PAHs and NPAHs were detected on non-highway roads compared to that on highways for these two types of vehicles. Compared to the results of different studies, the difference in the EFs of PAHs and NPAHs can reach several orders of magnitudes, which would introduce errors in the development of an emission inventory of PAHs and NPAHs.
Mauri-Aucejo, Adela; Amorós, Pedro; Moragues, Alaina; Guillem, Carmen; Belenguer-Sapiña, Carolina
2016-08-15
Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and concentration influence have been evaluated. The experimental results indicate that the material possesses adsorption ability to the tested polycyclic aromatic hydrocarbons. Under the optimum conditions, the quantification limits of the method were in the range of 0.09-2.4μgL(-1) and fine linear correlations between peak height and concentration were found around 1.3-70μgL(-1). The method has good repeatability and reproducibility, with coefficients of variation under 8%. Due to the concentration results, this material may represent an alternative for trace analysis of polycyclic aromatic hydrocarbons in water trough solid-phase extraction. Copyright © 2016 Elsevier B.V. All rights reserved.
Enhanced bioavailability of polyaromatic hydrocarbons in the form of mucin complexes.
Drug, Eyal; Landesman-Milo, Dalit; Belgorodsky, Bogdan; Ermakov, Natalia; Frenkel-Pinter, Moran; Fadeev, Ludmila; Peer, Dan; Gozin, Michael
2011-03-21
Increasing exposure of biological systems to large amounts of polycyclic aromatic hydrocarbons is of great public concern. Organisms have an array of biological defense mechanisms, and it is believed that mucosal gel (which covers the respiratory system, the gastrointestinal tract, etc.) provides an effective chemical shield against a range of toxic materials. However, in this work, we demonstrate, for the first time, that, upon complexation of polyaromatic hydrocarbons with mucins, enhanced bioavailability and, therefore, toxicity are obtained. This work was aimed to demonstrate how complexation of various highly hydrophobic polycyclic aromatic hydrocarbons with representative mucin glycoprotein could lead to the formation of previously undescribed materials, which exhibit increased toxicity versus pristine polycyclic aromatic hydrocarbons. In the present work, we show that a representative mucin glycoprotein, bovine submaxillary mucin, has impressive and unprecedented capabilities of binding and solubilizing water-insoluble materials in physiological solution. The complexes formed between the mucin and a series of polycyclic aromatic hydrocarbons were comprehensively characterized, and their toxicity was evaluated by both in vivo and in vitro assays. In addition, the bioavailability and membrane-penetration capabilities were tested using an internalization assay. Our results provide, for the first time, evidence of an unknown route by which hydrophobic materials may achieve higher bioavailability, penetrating some of the biological defense systems, in the form of water-soluble complexes with mucosal proteins.
Oña-Ruales, Jorge O; Ruiz-Morales, Yosadara; Wise, Stephen A
2016-04-15
A methodology for the characterization of groups of polycyclic aromatic hydrocarbons (PAHs) using a combination of normal phase liquid chromatography with ultraviolet-visible spectroscopy (NPLC/UV-vis) and gas chromatography with mass spectrometry (GC/MS) was used for the identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons, PAHs, in standard reference material (SRM) 1597a, complex mixture of PAHs from coal tar. The NPLC/UV-vis isolated the fractions based on the number of aromatic carbons and the GC/MS allowed the identification and quantification of five of the nine C26H14 PAH isomers; naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene using a retention time comparison with authentic reference standards. For the other four benzenoid isomers with no available reference standards the following two approaches were used. First, the annellation theory was used to achieve the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene, and second, the elution distribution in the GC fractions was used to support the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene and to reach the tentative identifications of dibenzo[a,ghi]perylene, naphtho[7,8,1,2,3-pqrst]pentaphene, and anthra[2,1,9,8-opqra]naphthacene. It is the first time that naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene are quantified, and the first time that benzo[qr]naphtho[3,2,1,8-defg]chrysene is potentially identified, in any sample, in any context. Copyright © 2016 Elsevier B.V. All rights reserved.
Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge
2017-07-01
In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from local wood species and wood stove performance would help to identify better biomass fuels and wood stove technologies in order to reduce air pollution from residential wood burning.
NASA Astrophysics Data System (ADS)
Nielsen, Ingeborg E.; Eriksson, Axel C.; Lindgren, Robert; Martinsson, Johan; Nyström, Robin; Nordin, Erik Z.; Sadiktsis, Ioannis; Boman, Christoffer; Nøjgaard, Jacob K.; Pagels, Joakim
2017-09-01
Time-resolved particle emissions from a conventional wood stove were investigated with aerosol mass spectrometry to provide links between combustion conditions, emission factors, mixing state of refractory black carbon and implications for organic tracer methods. The addition of a new batch of fuel results in low temperature pyrolysis as the fuel heats up, resulting in strong, short-lived, variable emission peaks of organic aerosol-containing markers of anhydrous sugars, such as levoglucosan (fragment at m/z 60). Flaming combustion results in emissions dominated by refractory black carbon co-emitted with minor fractions of organic aerosol and markers of anhydrous sugars. Full cycle emissions are an external mixture of larger organic aerosol-dominated and smaller thinly coated refractory black carbon particles. A very high burn rate results in increased full cycle mass emission factors of 66, 2.7, 2.8 and 1.3 for particulate polycyclic aromatic hydrocarbons, refractory black carbon, total organic aerosol and m/z 60, respectively, compared to nominal burn rate. Polycyclic aromatic hydrocarbons are primarily associated with refractory black carbon-containing particles. We hypothesize that at very high burn rates, the central parts of the combustion zone become air starved, leading to a locally reduced combustion temperature that reduces the conversion rates from polycyclic aromatic hydrocarbons to refractory black carbon. This facilitates a strong increase of polycyclic aromatic hydrocarbons emissions. At nominal burn rates, full cycle emissions based on m/z 60 correlate well with organic aerosol, refractory black carbon and particulate matter. However, at higher burn rates, m/z 60 does not correlate with increased emissions of polycyclic aromatic hydrocarbons, refractory black carbon and organic aerosol in the flaming phase. The new knowledge can be used to advance source apportionment studies, reduce emissions of genotoxic compounds and model the climate impacts of refractory black carbon, such as absorption enhancement by lensing.
MOD: An Organic Detector for the Future Exploration of Mars
NASA Technical Reports Server (NTRS)
Kminek, G.; Bada, J. L.; Botta, O.; Grunthaner, F.; Glavin, D. P.
1999-01-01
The Mars Organic Detector (MOD) is designed to assess whether organic compounds, possibly associated with life, are present in Martian rock and soil samples. MOD has a detection limit that is at least two orders of magnitude more sensitive than the Viking GCMS. MOD is focused on detecting amino acids, amines and PAH (polycyclic aromatic hydrocarbons). Amino acids play an essential role in biochemistry on Earth and PAH are widespread throughout the universe and can provide an indication of the delivery of meteoritic organic material to Mars. The advantage of MOD is the absence of wet chemistry and its simple and robust design. The sample will be extracted from the mineral matrix (0.1 - 1 g of rock-powder) using sublimation and analyzed with a fluorescence detector. The isolation method is based on the fact that amino acids and PAH are volatile at temperatures greater than 150C. The fluorescence detection scheme is based on UV excitation with LED's, optical filters, PrN diode photon detector and a sample calibration reservoir. Fluorescamine is used as a fluorescing reagent for amino acids and amines, while PAH are naturally fluorescent. There is no sample preparation required and the turnaround time for a single analysis is on the order of minutes.
Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi
2016-05-10
Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bhushan, Brij; Nayak, Arunima; Kamaluddin
2017-04-01
The role of manganese oxides in concentrating organic moieties and offering catalytic activity for prebiotic reactions is investigated by studying their interaction with different aromatic amines such as aniline, p-chloroaniline, p-toluidine and p-anisidine. For all amines, metal oxides showed highest adsorption at neutral pH. The order of their adsorption capacity and affinity as revealed by the Langmuir constants was found to be manganosite (MnO) > bixbyite (Mn2O3) > hausmannite (Mn3O4) > and pyrolusite (MnO2). At alkaline pH, these manganese oxides offered their surfaces for oxidation of amines to form coloured oligomers. Analysis of the oxidation products by gas chromatography-mass spectrometry showed the formation of a dimer from p-anisidine and p-chloroaniline, while a trimer and tetramer is formed from p-toluidine and aniline, respectively. A reaction mechanism is proposed for the formation of the oligomers. While field-emission scanning electron microscopic studies confirm the binding phenomenon, the Fourier transform infrared spectroscopy analysis suggests that the mechanism of binding of amines on the manganese oxides was primarily electrostatic. The adsorption behaviour of the studied aromatic amines followed the order: p-anisidine > p-toluidine > aniline > p-chloroaniline, which is related to the basicities and structure of the amines. Our studies confirmed the significance of the role of manganese oxides in prebiotic chemistry.
Mahl, Magnus; Shoyama, Kazutaka; Rühe, Jessica; Grande, Vincenzo; Würthner, Frank
2018-04-24
Herein we report a palladium-catalyzed annulation reaction consisting of a Suzuki-Miyaura cross-coupling and a C-H arylation cascade for the synthesis of tetrachlorinated polycyclic aromatic dicarboximides (PADIs). This convergent synthetic route afforded a broad series of hitherto unknown electron-deficient PADIs under optimized reaction conditions by coupling of a dibromo-tetrachloro-perylene dicarboximide with different polycyclic aromatic hydrocarbon (PAH) boronic acid pinacol esters in up to 89% yields. The new PADI compounds show broad absorption in the visible range and some of them emit in the near-infrared (NIR) region. Cyclic and square wave voltammetric studies revealed that these tetrachlorinated PADIs are more electron-deficient than a non-chlorinated reference compound and they possess lower lying frontier orbitals. Thus, the newly synthesized electron-poor PADIs are potential n-type semiconductors. Moreover, these chlorinated PADIs are interesting building blocks for the construction of large π-extended arrays by metal-mediated coupling reactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Miki, Shizuho; Uno, Seiichi; Ito, Kazuki; Koyama, Jiro; Tanaka, Hiroyuki
2014-08-30
Contaminations in sediments by polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs were investigated at 44 sites in Osaka Bay, Japan. Concentrations of total PAHs and alkylated PAHs were in the range 6.40-7800 ng/g dry weights and 13.7-1700 ng/g dry weights, respectively. The PAH concentrations tended to be higher along the shoreline in the vicinities of big ports, industrialized areas, and densely populated regions such as the cities of Osaka and Kobe. The major sources appeared to be pyrogenic or both pyrogenic and petrogenic at most of the sites. PAH concentrations were remarkably high at a site near Kobe, where the concentrations of dibenzo(a,h)anthracene and benzo(g,h,i)perylene exceeded the effects-range-medium concentration and eight PAHs were above the corresponding effects-range-low concentrations. Those PAHs may have been derived from the great fire associated with the large earthquake in 1995. Copyright © 2014 Elsevier Ltd. All rights reserved.
Petroleum hydrocarbons in the surface water of two estuaries in the Southeastern united states
NASA Astrophysics Data System (ADS)
Bidleman, T. F.; Castleberry, A. A.; Foreman, W. T.; Zaranski, M. T.; Wall, D. W.
1990-01-01
Surface water samples from Charleston Harbor, SC and Winyah Bay, SC were analysed for total hydrocarbons by gas chromatography (GC) and for petroleum residues (expressed as crude oil equivalents) by fluorescence spectrometry. Cleanup by column chromatography and saponification was necessary to reduce the background from extraneous fluorescing materials. Oil concentrations determined by FS ranged from 0·5-25 μg l -1 in Charleston Harbor and <0·23-9·6 μg l -1 in Winyah Bay. Hydrocarbons determined by GC were significantly correlated ( P < 0·01) with crude oil equivalents determined by FS, but the data showed considerable scatter as indicated by r2 = 0·45. Polycyclic aromatic hydrocarbons were determined by gas chromatography—mass spectrometry for one set of Winyah Bay samples. The sum of nonalkylated polycyclic aromatic hydrocarbons having ≥ 3 rings ranged from 7-64 ng l -1 at different stations. Perylene, possibly originating from sediment dredging, was one of the more abundant polycyclic aromatic hydrocarbons.
NASA Astrophysics Data System (ADS)
Pogorzelec, Marta; Piekarska, Katarzyna
2017-11-01
The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland). To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC). Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.
Xia, Wenjie; Du, Zhifeng; Cui, Qingfeng; Dong, Hao; Wang, Fuyi; He, Panqing; Tang, YongChun
2014-07-15
Alkanes and polycyclic aromatic hydrocarbons (PAHs) have threatened the environment due to toxicity and poor bioavailability. Interest in degradation of these hazardous materials by biosurfactant-producing bacteria has been steadily increasing in recent years. In this work, a novel biosurfactant-producing Pseudomonas sp. WJ6 was isolated to degrade a wide range of n-alkanes and polycyclic aromatic hydrocarbons. Production of lipopeptide biosurfactant was observed in all biodegradable studies. These lipopeptides were purified and identified by C18 RP-HPLC system and electrospray ionization-mass spectrometry. Results of structural analysis showed that these lipopeptides generated from different hydrocarbons were classified to be surfactin, fengycin and lichenysin. Heavy-oil sludge washing experiments demonstrated that lipopeptides produced by Pseudomonas sp. WJ6 have 92.46% of heavy-oil washing efficiency. The obtained results indicate that this novel bacterial strain and its lipopeptides have great potentials in the environmental remediation and petroleum recovery. Copyright © 2014 Elsevier B.V. All rights reserved.
Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A
2018-02-01
Retention indices for 67 polycyclic aromatic sulfur heterocycles (PASHs) and 80 alkyl-substituted PASHs were determined using normal-phase liquid chromatography (NPLC) on an aminopropyl (NH 2 ) stationary phase. The retention behavior of PASH on the NH 2 phase is correlated with the number of aromatic carbon atoms and two structural characteristics have a significant influence on their retention: non-planarity (thickness, T) and the position of the sulfur atom in the bay-region of the structure. Correlations between solute retention on the NH 2 phase and T of PASHs were investigated for three cata-condensed (cata-) PASH isomer groups: (a) 13 four-ring molecular mass (MM) 234 Da cata-PASHs, (b) 20 five-ring MM 284 Da cata-PASHs, and (c) 12 six-ring MM 334 Da cata-PASHs. Correlation coefficients ranged from r = -0.49 (MM 234 Da) to r = -0.65 (MM 334 Da), which were significantly lower than structurally similar PAH isomer groups (r = -0.70 to r = -0.99). The NPLC retention behavior of the PASHs are compared to similar results for PAHs.
Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias
2015-07-01
An analytical method using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization for the determination of polycyclic aromatic hydrocarbons in asphalt fractions has been developed. The 14 compounds determined, characterized by having two or more condensed aromatic rings, are expected to be present in asphalt and are considered carcinogenic and mutagenic. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all of the compounds. The limits of detection ranged from 0.5 to 346.5 μg/L and the limits of quantification ranged from 1.7 to 1550 μg/L. The method was validated against a diesel particulate extract standard reference material (NIST SRM 1975), and the obtained concentrations agreed with the certified values. The method was applied to asphalt samples after its fractionation according to ASTM D4124 and the method of Green. The concentrations of the seven polycyclic aromatic hydrocarbons quantified in the sample ranged from 0.86 mg/kg for benzo[ghi]perylene to 98.32 mg/kg for fluorene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photooxidation products of polycyclic aromatic compounds containing sulfur.
Bobinger, Stefan; Andersson, Jan T
2009-11-01
Photooxidation of crude oil components is an important process that removes pollutants from the environment. Polycyclic aromatic compounds (PACs) are known to be toxic to many life forms, but little is known about their photooxidation products in the aqueous phase. We here identify a large number of photoproducts from 11 benzothiophenes, a polycyclic aromatic sulfur heterocycle that is a major representative of PACs in crude oil. The investigated compounds contain two to four methyl groups and an ethyl or an n-octyl group. In water, the products arise through oxidation of alkyl side chains to aldehydes and carboxylic acids or through an opening in one of the aromatic rings. The product analysis was performed using gas chromatography with mass spectrometric or atomic emission detection. The main product is always a sulfobenzoic acid, which strongly lowers the pH of the solution. With long alkyl substituents, surfactants are formed, which may possess solubilizing properties in water. The larger the number of alkyl groups, the faster is the photooxidation. Several of the identified acidic compounds were also found when whole crude oil was photooxidized, showing that simulation with individual compounds reflects the situation in whole crude.
NASA Astrophysics Data System (ADS)
Canelo, Carla M.; Friaça, Amâncio C. S.; Sales, Dinalva A.; Pastoriza, Miriani G.; Ruschel-Dutra, Daniel
2018-04-01
Analyses of the polycyclic aromatic hydrocarbon (PAH) feature profiles, especially the 6.2 μm feature, could indicate the presence of nitrogen incorporated in their aromatic rings. In this work, 155 predominantly starburst-dominated galaxies (including H II regions and Seyferts, for example), extracted from the Spitzer/Infrared Spectrograph ATLAS project, have their 6.2 μm profiles fitted allowing their separation into the Peeters' A, B, and C classes. 67 per cent of these galaxies were classified as class A, 31 per cent were as class B, and 2 per cent as class C. Currently, class A sources, corresponding to a central wavelength near 6.22 μm, seem only to be explained by polycyclic aromatic nitrogen heterocycles (PANHs), whereas class B may represent a mix between PAHs and PANHs emissions or different PANH structures or ionization states. Therefore, these spectra suggest a significant presence of PANHs in the interstellar medium (ISM) of these galaxies that could be related to their starburst-dominated emission. These results also suggest that PANHs constitute another reservoir of nitrogen in the Universe, in addition to the nitrogen in the gas phase and ices of the ISM.
Makoś, Patrycja; Fernandes, André; Boczkaj, Grzegorz
2018-06-01
We present a new method for simultaneous determination of 22 monoaromatic and polycyclic aromatic hydrocarbons in postoxidative effluents from the production of petroleum bitumen using dispersive liquid-liquid microextraction coupled to gas chromatography and mass spectrometry. The eight extraction parameters including the type and volume of extraction and disperser solvent, pH, salting out effect, extraction, and centrifugation time were optimized. The low detection limit ranging from 0.36 to 28 μg/L, limit of quantitation (1.1-84 μg/L), good reproducibility, and wide linear ranges, as well as the recoveries ranging from 71.74 to 114.67% revealed that the new method allows the determination of aromatic hydrocarbons at low concentration levels in industrial effluents having a very complex composition. The developed method was applied to the determination of content of mono- and polycyclic aromatic hydrocarbons in samples of raw postoxidative effluents in which 15 compounds were identified at concentrations ranging from 1.21 to 1017.0 μg/L as well as in effluents after chemical treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium
The ability of the white rot fungus Phanerochaete chrysosporium to degrade polycyclic aromatic hydrocarbons (PAHs) that are present in anthracene oil (a distillation product obtained from coal tar) was demonstrated. Analysis by capillary gas chromatography and high-performance li...
Yeh, Chia-Nan; Chai, Jeng-Da
2016-01-01
We investigate the role of Kekulé and non-Kekulé structures in the radical character of alternant polycyclic aromatic hydrocarbons (PAHs) using thermally-assisted-occupation density functional theory (TAO-DFT), an efficient electronic structure method for the study of large ground-state systems with strong static correlation effects. Our results reveal that the studies of Kekulé and non-Kekulé structures qualitatively describe the radical character of alternant PAHs, which could be useful when electronic structure calculations are infeasible due to the expensive computational cost. In addition, our results support previous findings on the increase in radical character with increasing system size. For alternant PAHs with the same number of aromatic rings, the geometrical arrangements of aromatic rings are responsible for their radical character. PMID:27457289
Amine terminated bisaspartimide polymer
NASA Technical Reports Server (NTRS)
Kumar, D. (Inventor); Fohlen, G. M. (Inventor); Parker, J. A. (Inventor)
1986-01-01
Novel amine terminated bisaspartimides are prepared by a Michael-type reaction of an aromatic bismalteimide and an aromatic diamine in an aprotic solvent. These bisaspartimides are thermally polymerized to yield tough, resinous polymers cross-lined through -NH- groups. Such polymers are useful in applications requiring materials with resistance to change at elevated temperatures, e.g., as lightweight laminates with graphite cloth, molding material prepregs, adhesives and insulating material.
USDA-ARS?s Scientific Manuscript database
The aims of the current study were to investigate the presence of carcinogenic and mutagenic heterocyclic aromatic amines (HAAs) in chicken burgers (CBs) and chicken nuggets (CNs) purchased from fast food restaurants and the effects of green tea extract addition (GTE) to the covering material as wel...
MODELING GALACTIC EXTINCTION WITH DUST AND 'REAL' POLYCYCLIC AROMATIC HYDROCARBONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulas, Giacomo; Casu, Silvia; Cecchi-Pestellini, Cesare
We investigate the remarkable apparent variety of galactic extinction curves by modeling extinction profiles with core-mantle grains and a collection of single polycyclic aromatic hydrocarbons. Our aim is to translate a synthetic description of dust into physically well-grounded building blocks through the analysis of a statistically relevant sample of different extinction curves. All different flavors of observed extinction curves, ranging from the average galactic extinction curve to virtually 'bumpless' profiles, can be described by the present model. We prove that a mixture of a relatively small number (54 species in 4 charge states each) of polycyclic aromatic hydrocarbons can reproducemore » the features of the extinction curve in the ultraviolet, dismissing an old objection to the contribution of polycyclic aromatic hydrocarbons to the interstellar extinction curve. Despite the large number of free parameters (at most the 54 Multiplication-Sign 4 column densities of each species in each ionization state included in the molecular ensemble plus the 9 parameters defining the physical properties of classical particles), we can strongly constrain some physically relevant properties such as the total number of C atoms in all species and the mean charge of the mixture. Such properties are found to be largely independent of the adopted dust model whose variation provides effects that are orthogonal to those brought about by the molecular component. Finally, the fitting procedure, together with some physical sense, suggests (but does not require) the presence of an additional component of chemically different very small carbonaceous grains.« less
Cuervo Lumbaque, Elisabeth; Gomes, Monike Felipe; Da Silva Carvalho, Vanessa; de Freitas, Adriane Martins; Tiburtius, Elaine Regina Lopes
2017-03-01
This research paper describes the study of a reduction-oxidation system using commercial steel wool (Fe 0 ) and H 2 O 2 for degradation of the dye Reactive Black 5 and aromatic compounds in water. The reductive process alone allowed the almost complete removal of color (97 ± 1 %) after 60 min of reaction. The decrease in spectral area (λ = 599 nm) associated with the chromophore group indicates breakage of the azo bonds. Moreover, the significant change in UV spectra can be associated with the formation of aromatic amines. Regarding the transformation products, a spectrophotometric method based on the diazotization reaction was employed to identify aromatic amines after reductive process, using sulfanilic acid as a model of aromatic amines. In addition, association with Fenton reagents improved the efficiency in the system with 93 ± 1 % degradation of intermediates formed during the reductive process. Ecotoxicological analysis revealed that the dye solution, after the reductive and oxidative processes, was not toxic to Lactuca sativa seeds. For Daphnia magna, the EC 50 (%) values observed revealed that dye solution has an EC 50 (%) = 74.1 and after reductive process, the toxicity increased (EC 50 (%) = 63.5), which might be related to the formation of aromatic amines. However, after the Fenton process, the EC 50 (%) was >100. These results demonstrated that the Fenton reaction using steel wool as an iron source was very efficient to decrease color, aromatic transformation products, and the ecotoxicity of Reactive Black 5 in solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, T K; Epler, J L; Guerin, M R
1980-01-01
In order to determine the long range health effects such as carcinogenicity/mutagenicity/teratogenicity/toxicity, associated with the newly emerging energy technologies, we have utilized the Ames Salmonella assay to evaluate mutagenic properties of synthetic fuels. Coupling with class fractionation was necessary. Organic extraction and liquid/liquid partitioning was used to separate acidic and basic fraction. The neutral material was separated using Sephadex LH-20 gel filtration into saturated and aromatic fractions of various ring sizes. The alkaline fraction was subfractionated eluting with benzene and ethanol on a basic alumina column and then with isopropanol and acetone using a Sephadex LH-20 gel column. The frameshiftmore » strain TA-98 was utilized along with Aroclor-induced rat liver homogenate (S-9 mix) for the mutagenicity assay. The natural crude oils were slightly mutagenic, the polynucleararomatics constituting the activity, while the coal-derived fuels indicated mutagenicity associated with alkaline constituents as well as polyaromatics. Hydrotreated coal (H-coal, HDT) or Shale (Paraho-Shale oil, HDT) derived fuels were not mutagenic. Ninety percent of the mutagenic activity in alkaline fraction was recovered in the acetone subfraction. High resolution spectroscopy of this fraction indicates polycyclic aromatic primary amines along with azaarenes as organic constituents responsible for the mutagenic activity associated with shale- and coal-derived fuels.« less
Houk, V S; Claxton, L D
1986-03-01
10 complex hazardous wastes were tested for mutagenic activity using a modified version of the TLC/Salmonella assay developed by Bjørseth et al. (1982). This fractionation/bioassay scheme couples thin-layer chromatography (TLC) with the Salmonella/mammalian-microsome (Ames) assay for the detection of mutagenic constituents in complex mixtures. Crude (unadulterated) hazardous wastes and selected hazardous waste extracts were fractionated on commercially available cellulose TLC plates. Mutagenicity testing was performed in situ by applying a single overlay of minimal growth agar, tester strain TA98 or TA100, and the optional metabolic activation system directly onto the developed chromatogram. A mutagenic effect was indicated either by the appearance of localized clusters of revertant colonies or by an increase in total revertant growth vis-à-vis control plates. 7 of 10 hazardous wastes (including tars, emulsions, sludges, and spent acids and caustics) demonstrated mutagenic activity when tested by this method. To assess the sensitivity of the modified TLC/Salmonella assay, 14 Salmonella mutagens from a wide range of chemical classes and polarities were tested. Selected compounds included heterocyclics, aromatic amines, alkylating agents, antitumor agents, a nitrosamine and a nitroaromatic. 11 of the 14 mutagens were positive in this test system. The 3 compounds refractory to analysis included a polycyclic aromatic hydrocarbon and two volatiles.
Changes in mutagenicity of protein pyrolyzates by reaction with nitrite.
Yoshida, D; Matsumoto, T
1978-09-01
Pyrolyzates of protein and related materials were treated with nitrite under acidic conditions, and the mutagenic activity toward Salmonella tester strains was determined. After treatment with nitrite in acidic solution, casein pyrolyzate, an extract of roasted chicken meat, tobacco-smoke condensate and some aromatic amines showed appreciable decreases in their mutagenic activities toward Salmonella typhimurium TA 98. Aromatic amines in the pyrolyzates may be changed by nitrite treatment to other forms having no or lower mutagenic activity toward Salmonella typhimurium TA 98. The contribution by aromatic amines to the total mutagenic activity of the pyrolyzates was as high as 80% in both casein pyrolyzate and extract of roasted chicken meat and 50% in tobacco-smoke condensate. Pyrolyzates of protein and related materials did not show a decrease in the mutagenic activity toward Salmonella typhimurium TA 100 with the same treatment.
Bandara, H. M. D.; Jin, D.; Mantell, M. A.; Field, K. D.; Wang, A.; Narayanan, R. P.; Deskins, N. A.; Emmert, M. H.
2016-01-01
This manuscript describes the systematic development of pyridine-type ligands, which promote the Pd catalyzed, non-directed amination of benzene in combination with novel, hydroxylamine-based electrophilic amination reagents. DFT calculations and mechanistic experiments provide insights into the factors influencing the arene C–H amination protocol. PMID:28066540
Martinez-Ariza, Guillermo; McConnell, Nicholas; Hulme, Christopher
2016-04-15
A cesium carbonate promoted three-component reaction of N-H containing heterocycles, primary or secondary amines, arylglyoxaldehydes, and anilines is reported. The key step involves a tandem sequence of N-1 addition of a heterocycle or an amine to preformed α-iminoketones, followed by an air- or oxygen-mediated oxidation to form α-oxo-acetamidines. The scope of the reaction is enticingly broad, and this novel methodology is applied toward the synthesis of various polycyclic heterocycles.
NASA Astrophysics Data System (ADS)
Aleksandrova, Olga
2015-04-01
Among different classes of veterinary pharmaceuticals, Sulfadiazine (SDZ) is widely used in animal husbandry. Its residues were detected in different environmental compartments. However, soil is a hot spot for SDZ as it receives a large portion of excreted compounds through the application of manure during soil fertilization. Ample studies on the fate of SDZ in soils showed that a large portion forms nonextractable residues (NER) along with transformation products and a low mineralization (Mueller et al., 2013). A common observation was an initially fast formation of NER up to 10% of the applied amount promptly after the application of SDZ to soil, and this portion increased up to 50% within a few days (Mueller et al., 2013; Nowak et al., 2011). A common finding for SDZ, as for other sulfonamides, was biphasic kinetics of the formation of NER, which was attributed to the occurrence of two reaction processes: a rapid, often reversible process and a slower, irreversible process (Weber et al., 1996). A single-phase reaction process was also established under anaerobic treatment (Gulkowska et al., 2014). A major focus of this work is to elucidate a reaction mechanism of covalent binding of SDZ to soil that is currently required to estimate a risk of NER formed by SDZ in soils for human health. Taking into account a key role of the amine functional groups of SDZ on its reactivity in soil, nitroxide radicals with the sewed aromatic or aliphatic amines labeled soil samples and then, were investigated by means of ESR spectroscopy. 2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-yloxy and 4-amino-2,2,6,6-Tetramethylpiperidin-1-oxyl modeled decomposition products of SDZ with the aromatic and aliphatic amines, respectively. The application of the defined combination of both spin labels (SL) to different soils well simulated a change of a paramagnetic signal of soil organic radicals interacted with SDZ. After their application to soil, SL were found in soil sites characterized with different polarity. As shown by the spin labeling ESR experiment, molecules modeling SDZ were promptly bound to non-hydrolysable network of soil organic matter only via the aromatic amines that was accompanied by a prompt enlargement of humic particles binding aromatic amines, whereas binding of decomposition products of SDZ to humic acids of soil via the aliphatic amines was not observable. The ESR spectra obviously showed a single-phase process of covalent binding of the aromatic amines. Repeated washouts of labeled soil samples using distil water and ultrafiltration through the membrane of 5000 MWCO PES confirmed irreversible binding of the aromatic amines, and showed that via the aliphatic amines, binding of SDZ or decomposition products of SDZ to soil might also occur but reversibly and only to small soil molecules, which don't enter into the composition of non-hydrolysable part of soil organic matter. SL ESR experiments of different soils at the presence of Laccase highlighted that covalent binding of the aromatic amines to humic particles occurred in the specific hydrophobic areas of soil found as depleted in oxygen. All measured data evidenced that first, SDZ might be decomposed that allowed for measuring the same change of a paramagnetic signal of soil organic matter influenced by both aromatic and aliphatic amines as in the experiment of the interaction of soil with SDZ. Second, a decomposition product of SDZ with the aromatic amine might be bound to non-hydrolysable parts of soil organic matter under specific anaerobic conditions only via 1,4 - nucleophilic addition, Michael-type addition. Gulkowska, A., Thalmann, B., D., Hollender, J., & Krauss, M. (2014). Chemosphere, 107, 366 - 372. Müller, T., Rosendahl, I., Focks, A., Siemens, J., Klasmeier, J., & Matthies. (2013). Environmental Pollution, 172,180 - 185. Nowak, K.M., Miltner, A., Gehre, M., Schaeffer, A., & Kaestner, M. (2011). Environmental Science & Technology 45, 999 - 1006. Weber, E.J., Spidle, D.L., & Thron, K.A. (1996). Environmental Science & Technology, 30 (9), 2755-2763.
Laboratory rotational spectroscopy of cyano substituted polycyclic aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
McNaughton, Don; Jahn, Michaela K.; Travers, Michael J.; Wachsmuth, Dennis; Godfrey, Peter D.; Grabow, Jens-Uwe
2018-06-01
The rotational spectra of the four cyano substituted polycyclic aromatic hydrocarbon (PAH) molecules 1-cyanonaphthalene, 2-cyanonaphthalene, 9-cyanoanthracene, and 9-cyanophenanthrene have been recorded in molecular expansions using a Stark-modulated millimetre-wave spectrometer and a Fourier transform microwave spectrometer in the centimetre-wave region. The spectra have been assigned and fitted to provide molecular constants and quadrupole hyperfine constants of sufficient accuracy to enable complete hyperfine structure line predictions for interstellar searches. The data may provide a route into detection of small PAHs in the interstellar medium.
Microwave-assisted extraction of polycyclic aromatic compounds from coal.
Kerst, M; Andersson, J T
2001-08-01
Microwave-assisted extraction (MAE) of polycyclic aromatic compounds (PACs) from coal is shown to give the same pattern of compounds as Soxhlet extraction. MAE requires only 10 mL solvent and 10 min extraction time whereas Soxhlet uses 200 mL and takes 24 h. Although the yields were lower, dichloromethane (DCM) was preferred to pyridine, N-methyl-2-pyrrolidone (NMP), and NMP with CS2 because the pattern of the PACs is shown to be independent of solvent and DCM is a much more convenient solvent to work with.
Petroleum and individual polycyclic aromatic hydrocarbons
Albers, Peter H.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John
1995-01-01
Crude petroleum, refined-petroleum products, and individual polycyclic aromatic hydrocarbons (PAHs) contained within petroleum are found throughout the world. their presence has been detected in living and nonliving components of ecosystems. Petroleum can be an environmental hazard for wild animals and plants. Individual PAHs are also hazardous to wildlife, but they are most commonly associated with human illnesses. Because petroleum is a major environmental source of these PAHs, petroleum and PAHs are jointly presented in this chapter. Composition, sources, environmental fate, and toxic effects on all living components of aquatic and terrestrial environments are addessed.
New Molecular Detections in TMC-1 with the Green Bank Telescope: Carbon-Chain and Aromatic Molecules
NASA Astrophysics Data System (ADS)
Burkhardt, Andrew Michael
2018-01-01
Polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic nitrogen heterocycles PA(N)Hs are believed to be widespread throughout the Universe, and are likely responsible for the unidentified infrared bands. However, the individual detection of aromatic molecules has been limited to a single weak absorption feature of an infrared bending mode of benzene (c-C6H6). The cold core TMC-1 has long been a source of new molecular detections, particularly for unsaturated carbon-rich molecules that are appealing potential precursors of PA(N)Hs. Through deep observations with the Green Bank Telescope of TMC-1, we report the first rotational detection of an aromatic molecule, benzonitrile (c-C6H5CN), along with 8 new isotopologues of HC5N and HC7N and an entirely new molecular family (HC5O, HC7O). These new detections provide crucial insights to the formation of PAHs and the underlying carbon-chain chemistry of dark clouds.
Interaction of aromatic amines with iron oxides: implications for prebiotic chemistry.
Shanker, Uma; Singh, Gurinder; Kamaluddin
2013-06-01
The interaction of aromatic amines (aniline, p-chloroaniline, p-toludine and p-anisidine) with iron oxides (goethite, akaganeite and hematite) has been studied. Maximum uptake of amines was observed around pH 7. The adsorption data obtained at neutral pH were found to follow Langmuir adsorption. Anisidine was found to be a better adsorbate probably due to its higher basicity. In alkaline medium (pH > 8), amines reacted on goethite and akaganeite to give colored products. Analysis of the products by GC-MS showed benzoquinone and azobenzene as the reaction products of aniline while p-anisidine afforded a dimer. IR analysis of the amine-iron oxide hydroxide adduct suggests that the surface acidity of iron oxide hydroxides is responsible for the interaction. The present study suggests that iron oxide hydroxides might have played a role in the stabilization of organic molecules through their surface activity and in prebiotic condensation reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, G.; Colmsjoe, A.; Oestman, C.
1999-05-01
Quantitation of a variety of tetra-, penta-, and hexacyclic aromatic sulfur heterocycles (thiaarenes) in workplace air of an aluminum reduction plant has been made by help of gas chromatography with atomic emission detection (GC-AED). Personal exposure to those thiaarenes and to polycyclic aromatic hydrocarbons depending on work categories has been evaluated. Summarized concentrations of the thiaarenes investigated have been found to be 0.4--19.0 {micro}g/m{sup 3}. When using sulfur selective AED, samples could be analyzed without a prior separation of the thiaarenes from the PAH. The present data indicate a contribution of thiaarenes to the overall toxicity of coal tar pitchmore » volatiles in this work environment.« less
Alam, Rauful; Molander, Gary A
2018-05-04
The direct reductive amination of aromatic aldehydes has been realized using a photocatalyst under visible light irradiation. The single electron oxidation of an in situ formed aminal species generates the putative α-amino radical that eventually delivers the reductive amination product. This method is operationally simple, highly selective, and functional group tolerant, which allows the direct synthesis of benzylic amines by a unique mechanistic pathway.
Polycyclic Aromatic Hydrocarbons Adsorption onto Graphene: A DFT and AIMD Study.
Li, Bing; Ou, Pengfei; Wei, Yulan; Zhang, Xu; Song, Jun
2018-05-03
Density functional theory (DFT) calculations and ab-initio molecular dynamics (AIMD) simulations were performed to understand graphene and its interaction with polycyclic aromatic hydrocarbons (PAHs) molecules. The adsorption energy was predicted to increase with the number of aromatic rings in the adsorbates, and linearly correlate with the hydrophobicity of PAHs. Additionally, the analysis of the electronic properties showed that PAHs behave as mild n-dopants and introduce electrons into graphene; but do not remarkably modify the band gap of graphene, indicating that the interaction between PAHs and graphene is physisorption. We have also discovered highly sensitive strain dependence on the adsorption strength of PAHs onto graphene surface. The AIMD simulation indicated that a sensitive and fast adsorption process of PAHs can be achieved by choosing graphene as the adsorbent. These findings are anticipated to shed light on the future development of graphene-based materials with potential applications in the capture and removal of persistent aromatic pollutants.
Chemical quality of water, sediment, and fish in Mountain Creek Lake, Dallas, Texas, 1994-97
Van Metre, Peter C.; Jones, S.A.; Moring, J. Bruce; Mahler, B.J.; Wilson, Jennifer T.
2003-01-01
The occurrence, trends, and sources of numerous inorganic and organic contaminants were evaluated in Mountain Creek Lake, a reservoir in Dallas, Texas. The study, done in cooperation with the Southern Division Naval Facilities Engineering Command, was prompted by the Navy’s concern for potential off-site migration of contaminants from two facilities on the shore of Mountain Creek Lake, the Naval Air Station Dallas and the Naval Weapons Industrial Reserve Plant. Sampling of stormwater (including suspended sediment), lake water, bottom sediment (including streambed sediment), and fish was primarily in Mountain Creek Lake but also was in stormwater outfalls from the Navy facilities, nearby urban streams, and small streams draining the Air Station.Volatile organic compounds, predominantly solvents from the Reserve Plant and fuel-related compounds from the Air Station, were detected in stormwater from both Navy facilities. Fuel-related compounds also were detected in Mountain Creek Lake at two locations, one near the Air Station inlet where stormwater from a part of the Air Station enters the lake and one at the center of the lake. Concentrations of volatile organic compounds at the two lake sites were small, all less than 5 micrograms per liter.Elevated concentrations of cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc, from 2 to 4 times concentrations at background sites and urban reference sites, were detected in surficial bottom sediments in Cottonwood Bay, near stormwater outfalls from the Reserve Plant. Elevated concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls, compared to background and urban reference sites, were detected in surficial sediments in Cottonwood Bay. Elevated concentrations of polycyclic aromatic hydrocarbons, indicative of urban sources, also were detected in Cottonwood Creek, which drains an urbanized area apart from the Navy facilities. Elevated concentrations of polychlorinated biphenyls were detected in two inlets near the Air Station shoreline. Polycyclic aromatic hydrocarbon and heavy metal concentrations near the Air Station shoreline were not elevated compared to urban reference sites.Much larger concentrations of selected heavy metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls were detected in deeper, older sediments than in surficial sediments in Cottonwood Bay. The decreases in concentrations coincide with changes in wastewater discharge practices at the Reserve Plant. Elevated concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls also were detected in older sediments in the Air Station inlet.On the basis of dated sediment cores and contaminant discharge histories, contaminant accumulation rates in Cottonwood Bay were much greater historically than recently. Most heavy metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls that accumulated in the central and eastern parts of Cottonwood Bay appear to have come from the west lagoon on the Reserve Plant. Treated sewage and industrial-process wastewater were discharged to the west lagoon from about 1941 to 1974. Estimated annual contaminant accumulation rates in Cottonwood Bay decreased by from 1 to 2 orders of magnitude after 1974, when most point-source discharges to the west lagoon ceased.Polychlorinated biphenyls were detected in 61 of 62 individual fish-tissue samples. The largest average concentrations were in eviscerated channel catfish and the smallest were in largemouth bass fillets. Polychlorinated biphenyl and selenium concentrations from analyses of this study were large enough to prompt the Texas State Department of Health to issue a fish-possession ban for Mountain Creek Lake in 1996.Suspended sediments in stormwater at the lagoon outfalls and at sites on Cottonwood Creek were sampled and analyzed for major and trace elements, polycyclic aromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls. The suspended sediments from the outfalls contained about the same mixture of heavy metals and organic compounds, in elevated concentrations compared to reference sites, as bottom sediments from the lagoons and surficial bottom sediments in Cottonwood Bay.Diagnostic ratios of polycyclic aromatic hydrocarbons indicate that uncombusted fuel sources contribute to older sediments and that pyrogenic sources of polycyclic aromatic hydrocarbons dominate recently deposited sediments in Cottonwood Bay and along the Air Station shoreline.
A general method for N-methylation of amines and nitro compounds with dimethylsulfoxide.
Jiang, Xue; Wang, Chao; Wei, Yawen; Xue, Dong; Liu, Zhaotie; Xiao, Jianliang
2014-01-03
DMSO methylates a broad range of amines in the presence of formic acid, providing a novel, green and practical method for amine methylation. The protocol also allows the one-pot transformation of aromatic nitro compounds into dimethylated amines in the presence of a simple iron catalyst. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Hudgins, Douglas M.; Bauschlicher, C. W., Jr.; Rosi, M.; Allamandola, L. J.; DeVincenzi, D. (Technical Monitor)
2002-01-01
The matrix-isolation technique has been employed to measure the mid-infrared spectra of several polycyclic aromatic nitrogen heterocycles in both neutral and cationic forms. The species studied include: 7,8 benzoquinoline (C13H9N); 2-azapyrene (C15H9N); 1- and 2-azabenz(a)anthracene (C17H11N); and 1-, 2-, and 4-azachrysene (also C17H11N). The experimentally measured band frequencies and intensities for each molecule are tabulated and compared with their theoretically calculated values computed using density functional theory at the B3LYP/4-31G level. The overall agreement between experiment and theory is quite good, in keeping with previous investigations involving the parent aromatic hydrocarbons. Several interesting spectroscopic trends are found to accompany nitrogen substitution into the aromatic framework of these compounds. First, for the neutral species, the nitrogen atom produces a significant increase in the total integrated infrared intensity across the 1600 - 1100/cm region and plays an essential role in the molecular vibration that underlies an uncharacteristically intense, discrete feature that is observed near 1400/cm in the spectra of 7,8 benzoquinoline, 1-azabenz(a)anthracene, and 4-azachrysene. The origin of this enhanced infrared activity and the nature of the new 1400/cm vibrational mode are explored. Finally, in contrast to the parent hydrocarbon species, these aromatic nitrogen heterocycles possess a significant permanent dipole moment. Consequently, these dipole moments and the rotational constants are reported for these species in their neutral and ionized forms.
A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index.
Płotka-Wasylka, J
2018-05-01
A new means for assessing analytical protocols relating to green analytical chemistry attributes has been developed. The new tool, called GAPI (Green Analytical Procedure Index), evaluates the green character of an entire analytical methodology, from sample collection to final determination, and was created using such tools as the National Environmental Methods Index (NEMI) or Analytical Eco-Scale to provide not only general but also qualitative information. In GAPI, a specific symbol with five pentagrams can be used to evaluate and quantify the environmental impact involved in each step of an analytical methodology, mainly from green through yellow to red depicting low, medium to high impact, respectively. The proposed tool was used to evaluate analytical procedures applied in the determination of biogenic amines in wine samples, and polycyclic aromatic hydrocarbon determination by EPA methods. GAPI tool not only provides an immediately perceptible perspective to the user/reader but also offers exhaustive information on evaluated procedures. Copyright © 2018 Elsevier B.V. All rights reserved.
Carrizo, Daniel; Domeño, Celia; Nerín, Isabel; Alfaro, Pilar; Nerín, Cristina
2015-01-01
A new screening and semi-quantitative approach has been developed for direct analysis of polycyclic aromatic hydrocarbons (PAHs) and their nitro and oxo derivatives in environmental and biological matrices using atmospheric pressure solid analysis probe (ASAP) quadrupole-time of flight mass spectrometry (Q-TOF-MS). The instrumental parameters were optimized for the analysis of all these compounds, without previous sample treatment, in soil, motor oil, atmospheric particles (ashes) and biological samples such as urine and saliva of smokers and non-smokers. Ion source parameters in the MS were found to be the key parameters, with little variation within PAHs families. The optimized corona current was 4 µA, sample cone voltage 80 V for PAHs, nitro-PAHs and oxo-PAHs, while the desolvation temperatures varied from 300°C to 500°C. The analytical method performance was checked using a certified reference material. Two deuterated compounds were used as internal standards for semi-quantitative purposes together with the pure individual standard for each compound and the corresponding calibration plot. The compounds nitro PAH 9-nitroanthracene and oxo-PAH 1,4-naphthalenedione, were found in saliva and urine in a range below 1 µg/g while the range of PAHs in these samples was below 2 µg/g. Environmental samples provided higher concentration of all pollutants than urine and saliva. Copyright © 2014 Elsevier B.V. All rights reserved.
Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate.
Forsey, Steven P; Thomson, Neil R; Barker, James F
2010-04-01
The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalene
Ugochukwu, Uzochukwu Cornelius; Ochonogor, Alfred
2018-03-26
Diesel pollution of groundwater poses great threat to public health, mainly as a result of the constituent polycyclic aromatic hydrocarbons (PAHs). In this study, the human health risk exposure to polycyclic aromatic hydrocarbons (PAHs) in diesel contaminated groundwater used by several families at Ring Road, Jos, Nigeria (as caused by diesel spill from a telecom base station) was assessed. Prior to the groundwater being treated, the residents were using the water after scooping off the visible diesel sheen for purposes of cooking, washing, and bathing. Until this study, it is not clear whether the groundwater contamination had resulted in sub-chronic exposure of the residents using the water to polycyclic aromatic hydrocarbons (PAHs) to the extent of the PAHs posing a health risk. The diesel contaminated groundwater and uncontaminated nearby groundwater (control) were collected and analyzed for PAHs using gas chromatography-mass spectrometry (GC-MS). The dosage of the dermal and oral ingestion entry routes of PAHs was determined. The estimation of the non-carcinogenic health risk was via hazard quotients (HQ) and the associated hazard index (HI), while the estimation of the carcinogenic health risk was via lifetime cancer risks (LCR) and the associated risk index (RI). Obtained results indicate that the exposure of the residents to the PAHs may have made them susceptible to the risk of non-carcinogenic health effects of benzo(a)pyrene and the carcinogenic health effects of benzo(a)anthracene and benzo(a)pyrene.
Saya, Jordy M; Oppelaar, Barry; Cioc, Răzvan C; van der Heijden, Gydo; Vande Velde, Christophe M L; Orru, Romano V A; Ruijter, Eelco
2016-10-13
We report a highly diastereoselective interrupted Ugi reaction to construct a broad range of structurally congested and stereochemically complex spiroindolines from tryptamine-derived isocyanides. The reaction is facilitated by using fluorinated alcohols (TFE or HFIP) as solvents and tolerates a broad range of amines, aldehydes and 2-isocyanoethylindoles to give polycyclic products in moderate to excellent yields.
Baldrian, Petr; in der Wiesche, Carsten; Gabriel, Jiří; Nerud, František; Zadražil, František
2000-01-01
The white-rot fungus Pleurotus ostreatus was able to degrade the polycyclic aromatic hydrocarbons (PAHs) benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, and benzo[ghi]perylene in nonsterile soil both in the presence and in the absence of cadmium and mercury. During 15 weeks of incubation, recovery of individual compounds was 16 to 69% in soil without additional metal. While soil microflora contributed mostly to degradation of pyrene (82%) and benzo[a]anthracene (41%), the fungus enhanced the disappearance of less-soluble polycyclic aromatic compounds containing five or six aromatic rings. Although the heavy metals in the soil affected the activity of ligninolytic enzymes produced by the fungus (laccase and Mn-dependent peroxidase), no decrease in PAH degradation was found in soil containing Cd or Hg at 10 to 100 ppm. In the presence of cadmium at 500 ppm in soil, degradation of PAHs by soil microflora was not affected whereas the contribution of fungus was negligible, probably due to the absence of Mn-dependent peroxidase activity. In the presence of Hg at 50 to 100 ppm or Cd at 100 to 500 ppm, the extent of soil colonization by the fungus was limited. PMID:10831426
Ding, Lei; Chen, Jing; Hu, Yifan; Xu, Juan; Gong, Xing; Xu, Dongfang; Zhao, Baoguo; Li, Hexing
2014-02-07
An attractive strategy for generation of α-amino anions from aldehydes with applications in synthesis of homoallylic amines is described. Aromatic aldehydes can be converted to α-amino anion equivalents via amination with 2,2-diphenylglycine and subsequent decarboxylation. The in situ generated α-imino anions are highly reactive for Pd-catalyzed allylation, forming the corresponding homoallylic amines in high yields with excellent regioselectivity.
Muñoz, Jose; Navarro-Senent, Cristina; Crivillers, Nuria; Mas-Torrent, Marta
2018-04-14
Carbon nanotubes (CNTs) have been studied as an electrochemical recognition element for the impedimetric determination of priority polycyclic aromatic hydrocarbons (PAHs) in water, using hexocyanoferrate as a redox probe. For this goal, an indium tin oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying CNTs has been engineered. The electroanalytical method, which is similar to an antibody-antigen assay, is straightforward and exploits the high CNT-PAH affinity obtained via π-interactions. After optimizing the experimental conditions, the resulting CNT-based impedimetric recognition platform exhibits ultra-low detection limits (1.75 ± 0.04 ng·L -1 ) for the sum of PAHs tested, which was also validated by using a certified reference PAH mixture. Graphical abstract Schematic of an indium-tin-oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying carbon nanotubes (CNTs) as a recognition platform for the ultra-low determination of total polycyclic aromatic hydrocarbons (PAHs) in water via π-interactions using Electrochemical Impedance Spectroscopy (EIS).
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W., Jr.; Allamandola, L. J.
2004-01-01
The matrix-isolation technique has been employed to measure the mid-infrared spectra of phenazine (C12H8N2), a dual substituted Polycyclic Aromatic Nitrogen Heterocycle (PANH), in the neutral, cationic and anionic forms. The experimentally measured band frequencies and intensities are tabulated and compared with their calculated values as well as those of the non-substituted parent molecule, anthracene. The theoretical band positions and intensities were calculated using both the 3-31 G as well as the larger 6-3lG* Basis Sets. A comparison of the results can be found in the tables. The spectroscopic properties of phenazine and its cation are similar to those observed in mono-substituted PANHs, with one exception. The presence of a second nitrogen atom results in an additional enhancement of the cation's total integrated intensity, for the 1500-1000 cm(sup -1) (6.7 to 10 micron) region, over that observed for a mono-substituted PANH cation. The significance of this enhancement and the astrobiological implications of these results are discussed.
Lv, Longyun; Zheng, Sichao; Cai, Xiaotie; Chen, Zhipeng; Zhu, Qiuhua; Liu, Shuwen
2013-04-08
We previously reported the novel efficient proton/heat-promoted four-component reactions (4CRs) of but-2-ynedioates, two same/different primary amines, and aldehydes for the synthesis of tetra- and pentasubstituted polyfunctional dihydropyrroles. If aromatic and aliphatic amines were used as reagents, four different series of products should be obtained via the permutation and combination of aromatic and aliphatic primary amines. However, only three/two rather four different series of tetra-/pentasubstisuted dihydropyrroles could be prepared via the proton/heat-promoted 4CRs. Herein, Cu(OAc)2·H2O, a Lewis acid being stable in air and water, was found to be an efficient catalyst for the 4CR synthesis of all the four different series of tetra-/pentasubstisuted dihydropyrroles. The copper-catalyzed 4CR could produce target products at room temperature in good to excellent yields. Interestingly, benzaldehyde, in addition to being used as a useful reactant for the synthesis of pentasubstituted dihydropyrroles, was found to be an excellent additive for preventing the oxidation of aromatic amines with copper(II) and ensuring the sooth conduct of the 4CRs for the synthesis of tetrasubstituted dihydropyrroles with aryl R(3). In addition, salicylic acid was found to be needed to increase the activities and yields of the copper-catalyzed 4CRs for the synthesis of petasubstituted diyhydropyrroles. On the basis of experimental results, the enamination/amidation/intramolecular cyclization mechanism was proposed and amidation is expected to be the rate-limited step in the copper-catalyzed 4CRs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, L.C.; Gallagher, J.E.; Lewtas, J.
The {sup 32}P-postlabeling assay, thin-layer chromatography, and reverse-phase high-pressure liquid chromatography (HPLC) were used to separate DNA adducts formed from 10 polycyclic aromatic hydrocarbons (PAHs) and 6 nitrated polycyclic aromatic hydrocarbons (NO{sub 2}-PAHs). The PAHs included benzo[j]fluoranthene, benzo[k]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[a]pyrene, chrysene, 6-methylchrysene, 5-methylchrysene, and benz[a]anthracene. The NO{sub 2}-PAHs included 1-nitropyrene, 2-nitrofluoranthene, 3-nitrofluoranthene, 1,6-dinitropyrene, 1,3-dinitropyrene, and 1,8-dinitropyrene. Separation of seven of the major PAH-DNA adducts was achieved by an initial PAH HPLC gradient system. The major NO{sub 2}-PAH-DNA adducts were not all separated from each other using the initial PAH HPLC gradient but were clearly separated from the PAH-DNA adducts. Amore » second NO{sub 2}-PAH HPLC gradient system was developed to separate NO{sub 2}-PAH-DNA adducts following one-dimensional TLC and HPLC analysis. HPLC profiles of NO{sub 2}-PAH-DNA adducts were compared using both adduct enhancement versions of the {sup 32}P-postlabeling assay to evaluate the use of this technique on HPLC to screen for the presence of NO{sub 2}-PAH-DNA adducts. To demonstrate the application of these separation methods to a complex mixture of DNA adducts, the chromatographic mobilities of the {sup 32}P-postlabeled DNA adduct standards (PAHs and NO{sub 2}-PAHs) were compared with those produced by a complex mixture of polycyclic organic matter (POM) extracted from diesel emission particles. The diesel-derived adducts did not elute with the identical retention time of any of the PAH or NO{sub 2}-PAH standards used in this study. HPLC analyses of the NO{sub 2}-PAH-derived adducts (butanol extracted) revealed the presence of multiple DNA adducts.« less
Gonzalez, J; Marchand-Geneste, N; Giraudel, J L; Shimada, T
2012-01-01
To obtain chemical clues on the process of bioactivation by cytochromes P450 1A1 and 1B1, some QSAR studies were carried out based on cellular experiments of the metabolic activation of polycyclic aromatic hydrocarbons and heterocyclic aromatic compounds by those enzymes. Firstly, the 3D structures of cytochromes 1A1 and 1B1 were built using homology modelling with a cytochrome 1A2 template. Using these structures, 32 ligands including heterocyclic aromatic compounds, polycyclic aromatic hydrocarbons and corresponding diols, were docked with LigandFit and CDOCKER algorithms. Binding mode analysis highlighted the importance of hydrophobic interactions and the hydrogen bonding network between cytochrome amino acids and docked molecules. Finally, for each enzyme, multilinear regression and artificial neural network QSAR models were developed and compared. These statistical models highlighted the importance of electronic, structural and energetic descriptors in metabolic activation process, and could be used for virtual screening of ligand databases. In the case of P450 1A1, the best model was obtained with artificial neural network analysis and gave an r (2) of 0.66 and an external prediction [Formula: see text] of 0.73. Concerning P450 1B1, artificial neural network analysis gave a much more robust model, associated with an r (2) value of 0.73 and an external prediction [Formula: see text] of 0.59.
Theoretical and experimental study of polycyclic aromatic compounds as β-tubulin inhibitors.
Olazarán, Fabian E; García-Pérez, Carlos A; Bandyopadhyay, Debasish; Balderas-Rentería, Isaias; Reyes-Figueroa, Angel D; Henschke, Lars; Rivera, Gildardo
2017-03-01
In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors. Graphical abstract Bennett's acceptance ratio (BAR) method.
Polycyclic aromatic hydrocarbons residues in sandstorm depositions in Beijing, China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, S.; Li, K.; Xia, X.J.
2009-02-15
This study was conducted to determine the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in sandstorm depositions in Beijing, China. The PAH concentrations in 13 samples collected in Beijing ranged from 0.18 to 3.52 {mu} g g{sup -1}. Analysis of the sources of contamination revealed that the PAHs were derived from a coal combustion source, although various effects of traffic emissions were also observed. Furthermore, the PAH levels in Beijing tended to be higher in the southeast. Finally, the Nemerow composite index revealed that the degree of pollution in the sandstorm depositions varied widely among sampling sites.
Glushkov, Andrey N; Kostyanko, Mikhail V; Cherno, Sergey V; Vasilchenko, Ilya L
2002-04-01
The method is described dealing with the synthesis of conjugates protein-polycyclic aromatic hydrocarbons (PAHs), highly soluble in water, stable without special stabilizers and containing the minimum quantity of cross-linked products. The reaction of protein with PAH containing an aldehyde group, has been carried out in an alkaline solution, and stabilization of the conjugate has been achieved by reduction with sodium borohydride in the presence of a compound blocking the formation of an insoluble polymeric fraction. The efficiency of synthesized conjugates for the induction and immunoassay of Abs to PAH for benzo[a]pyrene is shown.
NASA Technical Reports Server (NTRS)
Plows, F. L.; Elsila, J. E.; Zare, R. N.; Buseck, P. R.
2003-01-01
Organic material in meteorites provides insight into the cosmochemistry of the early solar system. The distribution of polycyclic aromatic hydrocarbons (PAHs) in the Allende and Murchison carbonaceous chondrites was investigated using spatially resolved microprobe laser-desorption laser-ionization mass spectrometry. Sharp chemical gradients of PAHs are associated with specific meteorite features. The ratios of various PAH intensities relative to the smallest PAH, naphthalene, are nearly constant across the sample. These findings suggest a common origin for PAHs dating prior to or contemporary with the formation of the parent body, consistent with proposed interstellar formation mechanisms.
Sloan, G C; Hayward, T L; Allamandola, L J; Bregman, J D; DeVito, B; Hudgins, D M
1999-03-01
Long-slit 8-13 micrometers spectroscopy of the nebula around NGC 1333 SVS 3 reveals spatial variations in the strength and shape of emission features that are probably produced by polycyclic aromatic hydrocarbons (PAHs). Close to SVS 3, the 11.2 micrometers feature develops an excess at approximately 10.8-11.0 micrometers and a feature appears at approximately 10 micrometers. These features disappear with increasing distance from the central source, and they show striking similarities to recent laboratory data of PAH cations, providing the first identification of emission features arising specifically from ionized PAHs in the interstellar medium.
NASA Technical Reports Server (NTRS)
Frenklach, Michael
1990-01-01
A variety of seemingly different carbon formation processes -- polycyclic aromatic hydrocarbons and diamond in the interstellar medium, soot in hydrocarbon flames, graphite and diamond in plasma-assisted-chemical vapor deposition reactors -- may all have closely related underlying chemical reaction mechanisms. Two distinct mechanisms for gas-phase carbon growth are discussed. At high temperatures it proceeds via the formation of carbon clusters. At lower temperatures it follows a polymerization-type kinetic sequence of chemical reactions of acetylene addition to a radical, and reactivation of the resultant species through H-abstraction by a hydrogen atom.
Polycyclic aromatic hydrocarbons in stellar medium
NASA Astrophysics Data System (ADS)
Rastogi, Shantanu
2005-06-01
Polycyclic Aromatic Hydrocarbons (PAHs) are an important com- ponent of the Interstellar Medium (ISM). They are being used as probes for understanding of process and conditions of different astrophysical environments. The understanding of their IR spectra and its variations with PAH size and ionization state is useful in characterizing the ISM. Spectral features of model graphene sheets and also that of smaller PAH molecules are reported. The variation of intensity with charge state of the molecule shows that cations give a better correlation with observations. The relationship between changes in charge distribution with intensity changes upon ionization has been probed.
Lipińska, Aneta; Wyszkowska, Jadwiga; Kucharski, Jan
2015-12-01
Polycyclic aromatic hydrocarbons are organic compounds with highly toxic, carcinogenic, and mutagenic properties, which adversely affect the basic biological parameters of the soil, including the count of microorganisms, and the enzymatic activity. In addition to disturbances to the biological activity of the soil, PAHs may also exhibit toxic effects on plants. In view of the above, the study involved testing aimed at the determination of the effects of polycyclic aromatic hydrocarbons in a form of naphthalene, phenanthrene, anthracene and pyrene on the count, colony development (CD) index, ecophysiological (EP) diversity index of organotrophic bacteria, and the activity of soil dehydrogenases and soil urease. Moreover, an attempt was made to determine the soil's resistance based on the activity of the above-listed enzymes, and the effect of polycyclic aromatic hydrocarbons on seed germination and root growth was assessed by Lepidium sativum, Sorghum saccharatum, and Sinapis alba. In addition, the species of bacteria found in a soil subjected to strong pressure of polycyclic aromatic hydrocarbons were isolated. The experiment was performed in a laboratory on samples of loamy sand. Polycyclic aromatic hydrocarbons were introduced into the soil in an amount of 0, 1000, 2000, and 4000 mg kg(-1) of soil dry matter. Germination and growth of cress (L. sativum), white mustard (S. alba), and sweet sorghum (S. saccharatum) were determined using Phytotoxkit tests. It was found that the tested PAHs increased the average colony counts of organotrophic soil bacteria; pyrene did so to the greatest extent (2.2-fold relative to non-contaminated soil), phenanthrene to the smallest extent (1.4-fold relative to non-contaminated soil). None of the PAHs changed the value of the bacterial colony development (CD) index, while anthracene and pyrene increased the value of the eco-physiological (EP) diversity indicator. PAHs lowered the activity of the tested enzymes. The activity of dehydrogenases was dependent on a greater extent by the type of hydrocarbon (54.56%) rather than by the dose (10.64%), while for the activity of urease, it was the opposite. The greater extent was dependent on dose (95.42%) rather than by type (0.21%). Dehydrogenases are characterised by greater resistance to the action of PAHs than urease. Based on seed germination and root growth, it has shown that S. alba is best suited, being the most vulnerable plant, while S. saccharatum is the least suited. Subjecting a soil to strong pressure of PAHs leads to disturbances to the biological parameters of the soil, seed germination, and root growth L. sativum, S. saccharatum, and S. alba.
Fustero, Santos; Lázaro, Rubén; Aiguabella, Nuria; Riera, Antoni; Simón-Fuentes, Antonio; Barrio, Pablo
2014-02-21
Asymmetric allylation of o-iodoarylsulfinylimines has been achieved in high diastereoselectivities. The thus-obtained o-iodoarylhomoallylic sulfinamides participate in a subsequent Sonogashira coupling followed by a diastereoselective intramolecular Pauson-Khand reaction. In this way, tricyclic amines showing a unique benzo-fused indenyl backbone were obtained. The methodology has been applied to the synthesis of amino steroid analogues.
Li, Ying; Li, Chengfa; Xiao, Daoqing; Liang, Feng; Chen, Zhinan; Schen, Xuhui; Sun, Xiaoying; Li, Yongtao
2013-01-01
A solid phase extraction (SPE) combination with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of the migration of 25 primary aromatic amines (PAAs) from food contact plastic materials and articles. The samples were extracted by deionized water and 30 g/L acetic acid, and the pH value of the solution was adjusted to 8 - 10 with ammonia. The extracts were cleaned up and concentrated on an SPE column, then eluted by equal volume of methyl-tert-butyl ether and ethanol. The analysis of the target compounds was performed by GC-MS. The results indicated that the limits of detection were in the range of 0.4 -2.0 microg/kg for different PAAs. The recoveries and relative standard deviations (n = 7) of 10 microg/kg PAAs ranged from 51.6% -118.4% and 0.5% -9.8%, respectively, except the 2,4-diaminoanisole in the acid simulant. The effects of different experimental conditions such as the pH value and volume ratio of methyl-tert-butyl ether and ethanol were studied. The results showed that the method is accurate and stable, and could meet the requirement of the European Commission Regulation (EU) No 10/2011 for the determination of primary aromatic amines. It can be applied in the analysis of the primary aromatic amines in real food contact plastic material and article samples.
Singh, Dharmendra Kumar; Kawamura, Kimitaka; Yanase, Ayako; Barrie, Leonard A
2017-08-15
The distributions, correlations, and source apportionment of aromatic acids, aromatic ketones, polycyclic aromatic hydrocarbons (PAHs), and trace metals were studied in Canadian high Arctic aerosols. Nineteen PAHs including minor sulfur-containing heterocyclic PAH (dibenzothiophene) and major 6 carcinogenic PAHs were detected with a high proportion of fluoranthene followed by benzo[k]fluoranthene, pyrene, and chrysene. However, in the sunlit period of spring, their concentrations significantly declined likely due to photochemical decomposition. During the polar sunrise from mid-March to mid-April, benzo[a]pyrene to benzo[e]pyrene ratios significantly dropped, and the ratios diminished further from late April to May onward. These results suggest that PAHs transported over the Arctic are subjected to strong photochemical degradation at polar sunrise. Although aromatic ketones decreased in spring, concentrations of some aromatic acids such as benzoic and phthalic acids increased during the course of polar sunrise, suggesting that aromatic hydrocarbons are oxidized to result in aromatic acids. However, PAHs do not act as the major source for low molecular weight (LMW) diacids such as oxalic acid that are largely formed at polar sunrise in the arctic atmosphere because PAHs are 1 to 2 orders of magnitude less abundant than LMW diacids. Correlations of trace metals with organics, their sources, and the possible role of trace transition metals are explained.
Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...
Limited data exist on exposures of young children to polycyclic aromatic hydrocarbons (PAHs) in the United States (US). The urinary metabolite of pyrene, 1-hydroxypyrene (1-OHPyr), is widely used as a biomarker of total PAH exposure. Our objectives were to quantify urinary 1-OHPy...
Aromatic (AA) and heterocyclic amines (HAA) are ubiquitous environmental mutagens present in combustions emissions, fried meats, tobacco smoke, etc., and are suspect human mammary carcinogens. To determine the presence of aryl amines in breast tissue and fluid, we examined exfol...
NASA Astrophysics Data System (ADS)
Chakraborty, Brotati; Basu, Samita
2010-02-01
Photoinduced electron transfer (PET) between proflavin (PF +) and two aromatic amines viz., dimethylaniline (DMA) and 4,4'-bis(dimethylamino)diphenylmethane (DMDPM) is studied in homogeneous and heterogeneous media using steady-state as well as time-resolved fluorescence spectroscopy and laser flash photolysis with an associated magnetic field. Ionic micelles have been used to study the effect of charge of proflavin on PET with amines. Magnetic field effect on PET reactions reveals that the parent spin-state of precursors of PET for DMA-PF + system is singlet while for DMDPM-PF + system is triplet, implying that the dynamics of PET is influenced by the structure of the donor.
Nzila, Alexis
2018-05-07
The biodegradation of low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) (LWM-PAHs and HMW-PAHs, respectively) has been studied extensively under aerobic conditions. Molecular O 2 plays 2 critical roles in this biodegradation process. O 2 activates the aromatic rings through hydroxylation prior to ring opening and serves as a terminal electron acceptor (TEA). However, several microorganisms have devised ways of activating aromatic rings, leading to ring opening (and thus biodegradation) when TEAs other than O 2 are used (under anoxic conditions). These microorganisms belong to the sulfate-, nitrate-, and metal-ion-reducing bacteria and the methanogens. Although the anaerobic biodegradation of monocyclic aromatic hydrocarbons and LWM-PAH naphthalene have been studied, little information is available about the biodegradation of HMW-PAHs. This manuscript reviews studies of the anaerobic biodegradation of HMW-PAHs and identifies gaps that limit both our understanding and the efficiency of this biodegradation process. Strategies that can be employed to overcome these limitations are also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Selective concentration of aromatic bases from water with a resin adsorbent
Stuber, H.A.; Leenheer, J.A.
1983-01-01
Aromatic bases are concentrated from water on columns of a resin adsorbent and recovered by aqueous-acid elution. The degree of concentration attainable depends on the ratio of the capacity factor (k) of the neutral form of the amine to that of the ionized form. Capacity factors of ionic forms of amines on XAD-8 resin (a methylacrylic ester polymer) are greater than zero, ranging from 20 to 250 times lower than those of their neutral forms; they increase with increasing hydrophobicity of the amine. Thus, desorption by acid is an edition (k during desorption >0) rather than a displacement (k during desorption = 0) process. The degree of concentration attainable on XAD-8 resin varies with the hydrophobicity of the amine, being limited for hydrophilic solutes (for example, pyridine) by small neutral-form k's, reaching a maximum for amines of intermediate hydrophobicity (for example, quinoline), and decreasing for more hydrophobc solutes (for example, acridine) because of their large ionic-form k's.
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.
2013-01-01
A population of polycyclic aromatic hydrocarbons (PAHs) and related materials are thought to be responsible for the family of infrared emission features that are seen towards a wide variety of astrophysical environments. A potentially important subclass of these materials are polycyclic aromatic hydrocarbons whose edges contain excess H atoms (H(sub n)-PAHs). While it has been suggested that this type of compound may be present in the interstellar population, it has been difficult to properly assess this possibility because of a lack of suitable infrared laboratory spectra to assist with analysis of the astronomical data. We present the 4000-500 cm(exp -1) (2.5-20 micrometers) infrared spectra of 23 H(sub n)-PAHs and related molecules isolated in argon matrices, under conditions suitable for use in the interpretation of astronomical data. The spectra of molecules with mixed aromatic and aliphatic domains show unique characteristics that distinguish them from their fully aromatic PAH equivalents. We discuss the changes to the spectra of these types of molecules as they transition from fully aromatic to fully aliphatic forms. The implications for the interpretation of astronomical spectra are discussed with specific emphasis on the 3.4 and 6.9 micrometer features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, in addition to IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 micrometer features. We show that 'normal' PAH emission objects contain relatively few H(sub n)-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.
Avagyan, Rozanna; Åberg, Magnus; Westerholm, Roger
2016-11-01
Wood combustion has been shown to contribute significantly to emissions of polycyclic aromatic hydrocarbons and hydroxylated polycyclic aromatic hydrocarbons, compounds with toxic and carcinogenic properties. However, only a small number of hydroxylated polycyclic aromatic hydrocarbons have been determined in particles from wood combustion, usually compounds with available reference standards. In this present study, suspect and non-target screening strategies were applied to characterize the wood smoke particles from four different wood types and two combustion conditions with respect to hydroxylated polycyclic aromatic hydrocarbons and other organic compounds. In the suspect screening, 32 peaks corresponding to 12 monohydroxylated masses were tentatively identified by elemental composition assignments and matching of isotopic pattern and fragments. More than one structure was suggested for most of the measured masses. Statistical analysis was performed on the non-target screening data in order to single out significant peaks having intensities that depend on the wood type and/or combustion condition. Significant peaks were found in both negative and positive ionization modes, with unique peaks for each wood type and combustion condition, as well as a combination of both factors. Furthermore, structural elucidation of some peaks was done by comparing the spectra in the samples with spectra found in the spectral databases. Six compounds were tentatively identified in positive ionization mode, and 19 in negative ionization mode. The results in this present study demonstrate that there are significant overall differences in the chemistry of wood smoke particles that depends on both the wood type and the combustion condition used. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yu, Chunhe; Yao, Zhimin; Hu, Bin
2009-05-08
A "dumbbell-shaped" stir bar was proposed to prevent the friction loss of coating during the stirring process, and thus prolonged the lifetime of stir bars. The effects of the coating components, including polydimethylsiloxane (PDMS), beta-cyclodextrin (beta-CD) and divinylbenzene (DVB) were investigated according to an orthogonal experimental design, using three polycyclic aromatic hydrocarbons (PAHs) and four polycyclic aromatic sulfur heterocycles (PASHs) as model analytes. Four kinds of stir bars coated with PDMS, PDMS/beta-CD, PDMS/DVB and PDMS/beta-CD/DVB were prepared and their extraction efficiencies for the target compounds were compared. It was demonstrated that PDMS/beta-CD/DVB-coated stir bar showed the best affinity to the studied compounds. The preparation reproducibility of PDMS/beta-CD/DVB-coated stir bar ranged from 3.2% to 15.2% (n = 6) in one batch, and 5.2% to 13.4% (n = 6) among batches. The "dumbbell-shaped" stir bar could be used for about 40 times, which were 10 extractions more than a normal stir bar. The prepared PDMS/beta-CD/DVB-coated "dumbbell-shaped" stir bar was used for stir bar sorptive extraction (SBSE) of PAHs and PASHs and the desorbed solution was introduced into HPLC-UV for subsequent analysis. The limits of detection of the proposed method for seven target analytes ranged from 0.007 to 0.103 microg L(-1), the relative standard deviations were in the range of 6.3-12.9% (n = 6, c = 40 microg L(-1)), and the enrichment factors were 19-86. The proposed method was successfully applied to the analysis of seven target analytes in lake water and soil samples.
NASA Astrophysics Data System (ADS)
Teixeira, Elba Calesso; Agudelo-Castañeda, Dayana M.; Fachel, Jandyra Maria Guimarães; Leal, Karen Alam; Garcia, Karine de Oliveira; Wiegand, Flavio
2012-11-01
The purpose of the present study was to evaluate the polycyclic aromatic hydrocarbons (PAHs) in fine (PM2.5) and coarse particles (PM2.5-10) in an urban and industrial area in the Metropolitan Area of Porto Alegre (MAPA), Brazil. Sixteen U.S. Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) were measured. Filters containing ambient air particulate were extracted with dichloromethane using Soxhlet. Extracts were later analyzed, for determining PAH concentrations, using a gaseous chromatograph coupled with a mass spectrometer (GC-MS). The polycyclic aromatic hydrocarbons (PAHs) were more concentrated in PM2.5 with an average of 70% of total PAHs in the MAPA. The target PAH apportionment among the main emission sources was carried out by diagnostic PAH concentration ratios, and principal component analysis (PCA). PAHs with higher molecular weight showed higher percentages in the fine particles in the MAPA. Based on the diagnostic ratios and PCA analysis, it may be concluded that the major contribution of PAHs was from vehicular sources (diesel and gasoline), especially in the PM2.5 fraction, as well as coal and wood burning. The winter/summer ratio in the PM2.5 and PM2.5-10 fractions in the MAPA was 3.1 and 1.8, respectively, revealing the seasonal variation of PAHs in the two fractions. The estimated toxicity equivalent factor (TEF), used to assess the contribution of the carcinogenic potency, confirms a significant presence of the moderately active carcinogenic PAHs BaP and DahA in the samples collected in the MAPA.
Trujillo-Rodríguez, María J; Nacham, Omprakash; Clark, Kevin D; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M
2016-08-31
This work describes the applicability of magnetic ionic liquids (MILs) in the analytical determination of a group of heavy polycyclic aromatic hydrocarbons. Three different MILs, namely, benzyltrioctylammonium bromotrichloroferrate (III) (MIL A), methoxybenzyltrioctylammonium bromotrichloroferrate (III) (MIL B), and 1,12-di(3-benzylbenzimidazolium) dodecane bis[(trifluoromethyl)sulfonyl)]imide bromotrichloroferrate (III) (MIL C), were designed to exhibit hydrophobic properties, and their performance examined in a microextraction method for hydrophobic analytes. The magnet-assisted approach with these MILs was performed in combination with high performance liquid chromatography and fluorescence detection. The study of the extraction performance showed that MIL A was the most suitable solvent for the extraction of polycyclic aromatic hydrocarbons and under optimum conditions the fast extraction step required ∼20 μL of MIL A for 10 mL of aqueous sample, 24 mmol L(-1) NaOH, high ionic strength content of NaCl (25% (w/v)), 500 μL of acetone as dispersive solvent, and 5 min of vortex. The desorption step required the aid of an external magnetic field with a strong NdFeB magnet (the separation requires few seconds), two back-extraction steps for polycyclic aromatic hydrocarbons retained in the MIL droplet with n-hexane, evaporation and reconstitution with acetonitrile. The overall method presented limits of detection down to 5 ng L(-1), relative recoveries ranging from 91.5 to 119%, and inter-day reproducibility values (expressed as relative standard derivation) lower than 16.4% for a spiked level of 0.4 μg L(-1) (n = 9). The method was also applied for the analysis of real samples, including tap water, wastewater, and tea infusion. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Fei; Hu, Wei; Zhong, Qin
2013-04-01
Real-world vehicle emission factors for PM10 (particulate matter with aerodynamic diameter smaller than 10 μm) and particle-phase polycyclic aromatic hydrocarbons (PAHs) from mixed vehicles were quantified in the Fu Gui-shan Tunnel of Nanjing during summer and winter of 2010. Concentrations of PM10 and sixteen particle phase polycyclic aromatic hydrocarbons (PAHs) in the entrance and exit of the tunnel were studied. The results showed that the four most abundant particular phase polycyclic aromatic hydrocarbons (PAHs) of motor vehicle were benzo[ghi]perylene, benzo[k]fluoranthene, benz[a]anthracene and benzo[a]pyrene. The emission factors for PM10 and particle-phase PAHs were 687 mg veh- 1 km- 1 and 18.853 mg veh- 1 km- 1 in summer, 714 mg veh- 1 km- 1 and 20.374 mg veh- 1 km- 1 in winter. Higher particle-phase PAH emission factors were found to be associated with a high proportion of diesel-fueled vehicles (DV). The estimated PM10 emission factor of gasoline-fueled vehicles (GV) was 513 mg veh- 1 km- 1 and the value for DV was 914 mg veh- 1 km- 1, while EFDV of particulate PAH (31.290 mg veh- 1 km- 1) was nearly 4 times higher than EFGV (9.310 mg veh- 1 km- 1). The five highest emission factors of diesel-fueled vehicles (DV) were benzo[ghi]perylene, benzo[k]fluoranthene, Indeno[1,2,3-cd]pyrene, benz[a]anthracene and benzo[a]pyrene, which was similarly found in the gasoline-fueled vehicles (GV). The sum of these five emission factors accounted for ~ 69% of the total particle-phase PAH of DV and ~ 67% of GV.
Prenatal exposure to polycyclic aromatic hydrocarbons/aromatics, BDNF and child development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perera, Frederica, E-mail: fpp1@columbia.edu; Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032; Phillips, David H.
Objectives: Within a New York City (NYC) birth cohort, we assessed the associations between polycyclic aromatic hydrocarbon (PAH) and other aromatic DNA adducts and brain derived neurotrophic factor (BDNF) concentrations in umbilical cord blood, and neurodevelopment at age 2 years and whether BDNF is a mediator of the associations between PAH/aromatic-DNA adducts and neurodevelopment. Methods: PAH/aromatic-DNA adduct concentrations in cord blood were measured in 505 children born to nonsmoking African-American and Dominican women residing in NYC, and a subset was assessed for neurodevelopment at 2 years using the Bayley Scales of Infant Development Mental Development Index (MDI). A spectrum ofmore » PAH/aromatic-DNA adducts was measured using the {sup 32}P-postlabeling assay; DNA adducts formed by benzo[a]pyrene (B[a]P), a representative PAH, were measured by High Performance Liquid Chromatography (HPLC)/fluorescence. BDNF mature protein in cord blood plasma was quantified by an ELISA. Multivariate regression analysis, adjusting for potential confounders, was conducted. Results: PAH/aromatic-DNA adduct concentration measured by postlabeling was inversely associated with BDNF concentration (p=0.02) and with MDI scores at 2 years (p=0.04). BDNF level was positively associated with MDI scores (p=0.003). Restricting to subjects having all three measures (PAH/aromatic-DNA adducts by postlabeling, MDI, and BDNF), results were similar but attenuated (p=0.13, p=0.05, p=0.01, respectively). Associations between B[a]P-DNA adducts and BDNF and B[a]P-DNA adducts and MDI at age 2 years were not significant. At age 3 years, the positive association of BDNF with MDI was not observed. Conclusions: The results at age 2 suggest that prenatal exposure to a spectrum of PAH/aromatic pollutants may adversely affect early neurodevelopment, in part by reducing BDNF levels during the fetal period. However, the same relationship was not seen at age 3. - Highlights: • Cord blood Polycyclic Aromatic Hydrocarbon (PAH)/aromatic-DNA adducts were assayed. • Brain Derived Neurotrophic Factor (BDNF) concentration was measured concurrently. • Associations between biomarkers and neurodevelopment at age 2 years were assessed. • Adduct level was inversely associated with BDNF concentration and neurodevelopment. • BDNF level was positively associated with neurodevelopment scores at age 2 years.« less
NASA Technical Reports Server (NTRS)
Sandford, S. A.; Bernstein, M. P.; Allamandola, L. J.; Gillette, J. S.; Zare, R. N.
2000-01-01
The polycyclic aromatic hydrocarbon (PAH) coronene (C24H12) frozen in D2O ice in a ratio of less than 1 part in 500 rapidly exchanges its hydrogen atoms with the deuterium in the ice at interstellar temperatures and pressures when exposed to ultraviolet radiation. Exchange occurs via three different chemical processes: D atom addition, D atom exchange at oxidized edge sites, and D atom exchange at aromatic edge sites. Observed exchange rates for coronene (C24H12)-D2O and d12-coronene (C24D12)-H2O isotopic substitution experiments show that PAHs in interstellar ices could easily attain the D/H levels observed in meteorites. These results may have important consequences for the abundance of deuterium observed in aromatic materials in the interstellar medium and in meteorites. These exchange mechanisms produce deuteration in characteristic molecular locations on the PAHs that may distinguish them from previously postulated processes for D enrichment of PAHs.
One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization.
Ozaki, Kyohei; Kawasumi, Katsuaki; Shibata, Mari; Ito, Hideto; Itami, Kenichiro
2015-02-16
The optoelectronic nature of two-dimensional sheets of sp(2)-hydridized carbons (for example, graphenes and nanographenes) can be dramatically altered and tuned by altering the degree of π-extension, shape, width and edge topology. Among various approaches to synthesize nanographenes with atom-by-atom precision, one-shot annulative π-extension (APEX) reactions of polycyclic aromatic hydrocarbons hold significant potential not only to achieve a 'growth from template' synthesis of nanographenes, but also to fine-tune the properties of nanographenes. Here we describe one-shot APEX reactions that occur at the K-region (convex armchair edge) of polycyclic aromatic hydrocarbons by the Pd(CH3CN)4(SbF6)2/o-chloranil catalytic system with silicon-bridged aromatics as π-extending agents. Density functional theory calculations suggest that the complete K-region selectivity stems from the olefinic (decreased aromatic) character of the K-region. The protocol is applicable to multiple APEX and sequential APEX reactions, to construct various nanographene structures in a rapid and programmable manner.
One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization
NASA Astrophysics Data System (ADS)
Ozaki, Kyohei; Kawasumi, Katsuaki; Shibata, Mari; Ito, Hideto; Itami, Kenichiro
2015-02-01
The optoelectronic nature of two-dimensional sheets of sp2-hydridized carbons (for example, graphenes and nanographenes) can be dramatically altered and tuned by altering the degree of π-extension, shape, width and edge topology. Among various approaches to synthesize nanographenes with atom-by-atom precision, one-shot annulative π-extension (APEX) reactions of polycyclic aromatic hydrocarbons hold significant potential not only to achieve a ‘growth from template’ synthesis of nanographenes, but also to fine-tune the properties of nanographenes. Here we describe one-shot APEX reactions that occur at the K-region (convex armchair edge) of polycyclic aromatic hydrocarbons by the Pd(CH3CN)4(SbF6)2/o-chloranil catalytic system with silicon-bridged aromatics as π-extending agents. Density functional theory calculations suggest that the complete K-region selectivity stems from the olefinic (decreased aromatic) character of the K-region. The protocol is applicable to multiple APEX and sequential APEX reactions, to construct various nanographene structures in a rapid and programmable manner.
Michail, Karim; Aljuhani, Naif; Siraki, Arno G
2013-03-01
Synthetic and biological amines such as ethylenediamine (EDA), spermine, and spermidine have not been previously investigated in free-radical biochemical systems involving aniline-based drugs or xenobiotics. We aimed to study the influence of polyamines in the modulation of aromatic amine radical metabolites in peroxidase-mediated free radical reactions. The aniline compounds tested caused a relatively low oxidation rate of glutathione in the presence of horseradish peroxidase (HRP), and H2O2; however, they demonstrated marked oxygen consumption when a polyamine molecule was present. Next, we characterized the free-radical products generated by these reactions using spin-trapping and electron paramagnetic resonance (EPR) spectrometry. Primary and secondary but not tertiary polyamines dose-dependently enhanced the N-centered radicals of different aniline compounds catalyzed by either HRP or myeloperoxidase, which we believe occurred via charge transfer intermediates and subsequent stabilization of aniline-derived radical species as suggested by isotopically labeled aniline. Aniline/peroxidase reaction product(s) were monitored at 435 nm by kinetic spectrophotometry in the presence and absence of a polyamine additive. Using gas chromatography-mass spectrometry, the dimerziation product of aniline, azobenzene, was significantly amplified when EDA was present. In conclusion, di- and poly-amines are capable of enhancing the formation of aromatic-amine-derived free radicals, a fact that is expected to have toxicological consequences.
Device for aqueous detection of nitro-aromatic compounds
Reagen, W.K.; Schulz, A.L.; Ingram, J.C.; Lancaster, G.D.; Grey, A.E.
1994-04-26
This invention relates to a compact and portable detection apparatus for nitro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound. 4 figures.
Device for aqueous detection of nitro-aromatic compounds
Reagen, William K.; Schulz, Amber L.; Ingram, Jani C.; Lancaster, Gregory D.; Grey, Alan E.
1994-01-01
This invention relates to a compact and portable detection apparatus for ro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound.
Pavanello, Sofia; Carta, Angela; Mastrangelo, Giuseppe; Campisi, Manuela; Arici, Cecilia; Porru, Stefano
2017-12-21
Background : Telomere length (TL) maintenance plays an important role in bladder cancer (BC) and prognosis. However the manifold influence of everyday life exposures and genetic traits on leucocyte TL (LTL), is not fully elucidated. Methods : Within the framework of a hospital-based case ( n = 96)/control ( n = 94) study (all Caucasian males), we investigated the extent to which LTL and BC risk were modulated by genetic polymorphisms and environmental and occupational exposures. Data on lifetime smoking, alcohol and coffee drinking, dietary habits and occupational exposures, pointing to aromatic amines (AAs) and polycyclic aromatic hydrocarbons (PAHs) were collected. Structural equation modelling (SEM) analysis appraised this complex relationships. Results : The SEM analysis indicates negative direct links ( p < 0.05) between LTL with age, DNA adducts, alcohol and NAT2, and positive ones with coffee, MPO and XRCC3; and between BC risk ( p < 0.01) with cigarettes, cumulative exposure to AAs and coffee, while are negative with LTL and age. There was evidence of indirect effects ( p < 0.05) on BC risk, probably via LTL reduction, by age and NAT2 (positive link), MPO and XRCC3 (negative link). Our study supports evidence that LTL attrition is a critical event in BC. The new finding that LTL erosion depends on some preventable everyday life exposures genetically modulated, opens new perspectives in BC prevention.
Pavanello, Sofia; Carta, Angela; Mastrangelo, Giuseppe; Campisi, Manuela; Porru, Stefano
2017-01-01
Background: Telomere length (TL) maintenance plays an important role in bladder cancer (BC) and prognosis. However the manifold influence of everyday life exposures and genetic traits on leucocyte TL (LTL), is not fully elucidated. Methods: Within the framework of a hospital-based case (n = 96)/control (n = 94) study (all Caucasian males), we investigated the extent to which LTL and BC risk were modulated by genetic polymorphisms and environmental and occupational exposures. Data on lifetime smoking, alcohol and coffee drinking, dietary habits and occupational exposures, pointing to aromatic amines (AAs) and polycyclic aromatic hydrocarbons (PAHs) were collected. Structural equation modelling (SEM) analysis appraised this complex relationships. Results: The SEM analysis indicates negative direct links (p < 0.05) between LTL with age, DNA adducts, alcohol and NAT2, and positive ones with coffee, MPO and XRCC3; and between BC risk (p < 0.01) with cigarettes, cumulative exposure to AAs and coffee, while are negative with LTL and age. There was evidence of indirect effects (p < 0.05) on BC risk, probably via LTL reduction, by age and NAT2 (positive link), MPO and XRCC3 (negative link). Conclusions: Our study supports evidence that LTL attrition is a critical event in BC. The new finding that LTL erosion depends on some preventable everyday life exposures genetically modulated, opens new perspectives in BC prevention. PMID:29267235
Exposure to Cooking Oil Fumes and Oxidative Damages: A Longitudinal Study in Chinese Military Cooks
Lai, Ching-Huang; Jaakkola, Jouni J.K.; Chuang, Chien-Yi; Liou, Saou-Hsing; Lung, Shih-Chun; Loh, Ching-Hui; Yu, Dah-Shyong; Strickland, Paul T.
2014-01-01
Cooking oil fumes contain polycyclic aromatic hydrocarbons (PAHs), heterocyclic aromatic amines, benzene, and formaldehyde which may cause oxidative damages to DNA and lipids. We assessed the relations between exposure to cooking oil fumes (COF) and subsequent oxidative DNA damage and lipid peroxidation among military cooks and office-based soldiers. The study population, including 61 Taiwanese male military cooks and a reference group of 37 office soldiers, collected urine samples pre-shift of the first weekday and post-shift of the fifth workday. We measured airborne particulate PAHs in military kitchens and offices and concentrations of urinary 1-OHP, a biomarker of PAH exposure, urinary 8-hydroxydeoxyguanosine (8-OHdG), a biomarkers of oxidative DNA damage, and urinary isoprostane (Isop). Airborne particulate PAHs levels in kitchens significantly exceeded those in office areas. The concentrations of urinary 1-OHP among military cooks increased significantly after 5 days of exposure to COF. Using generalized estimating equation (GEE) analysis adjusting for confounding, a change in log(8-OHdG) and log(Isop) were statistically significantly related to a unit change in log(1-OHP) (regression coefficient [β], β= 0.06, 95% CI 0.001 to 0.12) and (β= 0.07, 95% CI 0.001 to 0.13), respectively. Exposure to PAHs, or other compounds in cooking-oil fumes, may cause both oxidative DNA damage and lipid peroxidation. PMID:22968348
Wierzchowski, Marcin; Dutkiewicz, Zbigniew; Gielara-Korzańska, Agnieszka; Korzański, Artur; Teubert, Anna; Teżyk, Artur; Stefański, Tomasz; Baer-Dubowska, Wanda; Mikstacka, Renata
2017-12-01
Cytochromes P450 family 1 (CYP1) are responsible for the metabolism of procarcinogens, for example polycyclic aromatic hydrocarbons and aromatic and heterocyclic amines. The inhibition of CYP1 activity is examined in terms of chemoprevention and cancer chemotherapy. We designed and synthesized a series of trans-stilbene derivatives possessing a combination of methoxy and methylthio functional groups attached in different positions to the trans-stilbene skeleton. We determined the effects of synthesized compounds on the activities of human recombinant CYP1A1, CYP1A2 and CYP1B1 and, to explain the variation of inhibitory potency of methoxystilbene derivatives and their methylthio analogues, we employed computational analysis. The compounds were docked to CYP1A1, CYP1A2 and CYP1B1 binding sites with the use of Accelrys Discovery Studio 4.0 by the CDOCKER procedure. For CYP1A2 and CYP1B1, values of scoring functions correlated well with inhibitory potency of stilbene derivatives. All compounds were relatively poor inhibitors of CYP1A2 that possess the most narrow and flat enzyme cavity among CYP1s. For the most active CYP1A1 inhibitor, 2-methoxy-4'-methylthio-trans-stilbene, a high number of molecular interactions was observed, although the interaction energies were not distinctive. © 2017 John Wiley & Sons A/S.
Hu, Kai; Zhao, Wenjie; Wen, Fuyong; Liu, Junwei; Zhao, Xiaolan; Xu, Zhanhui; Niu, Bailin; Ye, Baoxian; Wu, Yangjie; Zhang, Shusheng
2011-07-15
In the present work, a new para-tert-butylcalix[4]arene-1,2-crown-4 bonded silica stationary phase (CBS4-4) was synthesized, structurally characterized, and employed to separate polycyclic aromatic hydrocarbons (PAHs), phenols, aromatic amines, benzoic acid and its derivatives. The chromatographic behaviors of the prepared stationary phase were investigated and compared with ODS. The effects of methanol concentrations on the retention index show that CBS4-4 exhibits high selectivity for the above analytes. The separation mechanisms based on the different interactions between calixarene and the analytes were discussed. With the assistance of quantum chemistry calculation, the interaction Gibbs free energy change ΔG(solv) (in the mobile phase) of p, m and o-phenylenediamine positional isomers and para-tert-butylcalix[4]arene-1,2-crown-4 were obtained. The ΔG(solv) values were consistent with the retention behavior of p, m and o-phenylenediamine on the CBS4-4. According to the chromatographic data, it can be concluded that the selectivity of CBS4-4 for analytes is mainly ascribed to hydrophobic interaction, accompanied by other effects such as hydrogen bonding interaction, π-π and inclusion interaction. The CBS4-4 column has been successfully employed for the analysis of benzoic acid in Sprite drink. Copyright © 2011 Elsevier B.V. All rights reserved.
Exposure to cooking oil fumes and oxidative damages: a longitudinal study in Chinese military cooks.
Lai, Ching-Huang; Jaakkola, Jouni J K; Chuang, Chien-Yi; Liou, Saou-Hsing; Lung, Shih-Chun; Loh, Ching-Hui; Yu, Dah-Shyong; Strickland, Paul T
2013-01-01
Cooking oil fumes (COF) contain polycyclic aromatic hydrocarbons (PAHs), heterocyclic aromatic amines, benzene, and formaldehyde, which may cause oxidative damages to DNA and lipids. We assessed the relations between exposure to COF and subsequent oxidative DNA damage and lipid peroxidation among military cooks and office-based soldiers. The study population, including 61 Taiwanese male military cooks and a reference group of 37 office soldiers, collected urine samples pre-shift of the first weekday and post-shift of the fifth workday. We measured airborne particulate PAHs in military kitchens and offices and concentrations of urinary 1-OHP, a biomarker of PAH exposure, urinary 8-hydroxydeoxyguanosine (8-OHdG), a biomarkers of oxidative DNA damage, and urinary isoprostane (Isop). Airborne particulate PAHs levels in kitchens significantly exceeded those in office areas. The concentrations of urinary 1-OHP among military cooks increased significantly after 5 days of exposure to COF. Using generalized estimating equation analysis adjusting for confounding, a change in log(8-OHdG) and log(Isop) were statistically significantly related to a unit change in log(1-OHP) (regression coefficient (β), β=0.06, 95% CI 0.001-0.12) and (β=0.07, 95% CI 0.001-0.13), respectively. Exposure to PAHs, or other compounds in cooking oil fumes, may cause both oxidative DNA damage and lipid peroxidation.
NASA Astrophysics Data System (ADS)
Sengupta, Chaitrali; Sarangi, Manas Kumar; Sau, Abhishek; Basu, Samita
2017-03-01
Lumichrome (Lc), a molecule consisting of a trinuclear alloxazine moiety is our present subject of interest. This molecule is subjected to tautomerization in the presence of pyridine, acetic acid, etc, through the formation of an eight-membered ring. In our present contribution, we have attempted to analyze the influence of the presence of an aliphatic amine, triethylamine (TEA) and an aromatic amine, N,N-dimethylaniline (DMA) in the double proton transfer step of the tautomerization as well as the photo-induced electron transfer (PET) from those amines to Lc. We have studied these phenomena within micelles, anionic and neutral, to observe the effect of confinement. Through our experiments, it could be stated that along with tautomerization and proton transfer, there is also evidence of PET in triplet excited state.
Liao, Weisheng; Liu, Hsin-Wang; Chen, Hsing-Jung; Chang, Wen-Yen; Chiu, Kong-Hwa; Wai, Chien M
2011-01-01
Catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) with up to four fused benzene rings over high-density-polyethylene-stabilized palladium nanoparticles in supercritical carbon dioxide via in situ UV/Vis spectroscopy is presented. PAHs can be efficiently converted to saturated polycyclic hydrocarbons using this green technique under mild conditions at 20 MPa of CO₂ containing 1 MPa of H₂ at 40-50°C. Kinetic studies based on in situ UV/Vis spectra of the CO₂ phase reveal that the initial hydrogenation of a given PAH and the subsequent hydrogenations of its intermediates are pseudo-first-order. The hydrogenation rate of the latter is always much smaller than that of the former probably due to increasing steric hindrance introduced by the hydrogenated benzene rings of PAHs which impedes the adsorption process and hydrogen access to PAHs on catalyst surfaces. Copyright © 2010 Elsevier Ltd. All rights reserved.
Willumstad, Thomas P.; Haze, Olesya; Mak, Xiao Yin; Lam, Tin Yiu; Wang, Yu-Pu; Danheiser*, Rick L.
2013-01-01
Highly substituted polycyclic aromatic and heteroaromatic compounds are produced via a two-stage tandem benzannulation/cyclization strategy. The initial benzannulation step proceeds via a pericyclic cascade mechanism triggered by thermal or photochemical Wolff rearrangement of a diazo ketone. The photochemical process can be performed using a continuous flow reactor which facilitates carrying out reactions on a large scale and minimizes the time required for photolysis. Carbomethoxy ynamides as well as more ketenophilic bissilyl ynamines and N-sulfonyl and N-phosphoryl ynamides serve as the reaction partner in the benzannulation step. In the second stage of the strategy, RCM generates benzofused nitrogen heterocycles, and various heterocyclization processes furnish highly substituted and polycyclic indoles of types that were not available by using the previous cyclobutenone-based version of the tandem strategy. PMID:24116731
Yan, Lawrence K Q; Fung, Ka Y; Ng, Ka M
2018-06-01
In this study, the capability of using aerobic granules to undergo simultaneous anaerobic decolorization and aerobic aromatic amines degradation was demonstrated for azo dye wastewater treatment. An integrated acclimation-granulation process was devised, with Mordant Orange 1 as the model pollutant. Performance tests were carried out in a batch column reactor to evaluate the effect of various operating parameters. The optimal condition was to use 1.0-1.7 mm (1.51 ± 0.33 mm) granules, 5 g/L biomass, and 4000 mg/L organics as nutrient; and supplement the wastewater with 1 mg/L dissolved oxygen. This led to a dye mineralization of 61 ± 2%, an anaerobic dye removal of 88 ± 1%, and an aerobic aromatic amines removal of 70 ± 3% within 48 h. This study showed that simultaneous anaerobic/aerobic process by aerobic granules could be a possible alternative to the conventional activated sludge process.
Polycyclic aromatic hydrocarbons in Cambodian smoked fish.
Slámová, Tereza; Fraňková, Adéla; Hubáčková, Anna; Banout, Jan
2017-12-01
More than 85% of the population in Cambodia is strongly dependent on agriculture, of which freshwater aquaculture is one of the most important sources of food production. The smoked fish represents an important source of nutrients for Cambodian population; however, it can also lead to excessive intake of polycyclic aromatic hydrocarbons (PAHs). A field survey was conducted among selected smoked fish producers near to Tonle Sap river in Kampong Chhnang province, Cambodia. The study revealed that maximal limits for benzo[a]pyrene and the sum of four PAHs given by EC 1881/2006 were exceeded 2-50 times. Such burden can lead to increased risk of development of carcinogenic diseases.
A further study of air pollution in diesel bus garages.
Waller, R E; Hampton, L; Lawther, P J
1985-01-01
The concentrations of smoke, polycyclic aromatic hydrocarbons (PAHs), and some gaseous air pollutants have been measured in two London Transport diesel bus garages and compared with observations made in the same garages over 20 years earlier. The main feature of the results was a large reduction in the background concentrations of smoke and polycyclic aromatic hydrocarbons from sources such as coal fires, attributable to the implementation of the Clean Air Act. Contributions from the buses to the benzo(a) pyrene content of the air inside the garages were of the same magnitude as before, being small in relation to former coal smoke contributions. PMID:4074654
Gjeltema, Jenessa; Stoskopf, Michael; Shea, Damian; De Voe, Ryan
2012-01-01
Habitat preservation and management may play an important role in the conservation of the Puerto Rican crested toad, Peltophryne lemur, due to this species' small geographic range and declining native wild population. Bioavailable water concentrations of Polycyclic Aromatic Hydrocarbon (PAH) contaminants within breeding pools at 3 sites were established using Passive Sampling Devices (PSDs) and gas chromatography-mass spectrometry (GC/MS). A more diverse population of PAH analytes were found in higher concentrations at the breeding site that allowed direct vehicular access, but calculated risk quotients indicated low risk to toad reproduction associated with the current PAH analyte levels. PMID:23762634
Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils
Lau, E. V.; Gan, S.; Ng, H. K.
2010-01-01
This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction. PMID:20396670
Ho, Kin-Fai; Chang, Chih-Cheng; Tian, Linwei; Chan, Chi-Sing; Musa Bandowe, Benjamin A; Lui, Ka-Hei; Lee, Kang-Yun; Chuang, Kai-Jen; Liu, Chien-Ying; Ning, Zhi; Chuang, Hsiao-Chi
2016-11-01
Induction of PM 2.5 -associated lung cancer in response to EGFR-tyrosine kinase inhibitors (EGFR-TKI) remains unclear. Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs: OPAHs and azaarenes: AZAs) were characterized in fine particulates (PM 2.5 ) emitted from indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. Human lung adenocarcinoma cells A549 (with wild-type EGFR) and HCC827 (with EGFR mutation) were exposed to the PM 2.5 , followed by treatment with EGFR-TKI. Two samples showed significant and dose-dependent reduction in the cell viability in A549. EGFR-TKI further demonstrated significantly decreased in cell viability in A549 after exposure to the coal emissions. Chrysene and triphenylene, dibenzo[a,h]anthracene, benzo[ghi]perylene, azaarenes and oxygenated polycyclic aromatic hydrocarbons (carbonyl-OPAHs) were all associated with EGFR-TKI-dependent reduced cell viability after 72-h exposure to the PM 2.5 . The findings suggest the coal emissions could influence the response of EGFR-TKI in lung cancer cells in Xuanwei. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pogorzelec, Marta; Piekarska, Katarzyna
2018-08-01
The primary goal of the presented study was the investigation of occurrence and concentration of sixteen selected polycyclic aromatic hydrocarbons in samples from various stages of water treatment and verification of the applicability of semi-permeable membrane devices in the monitoring of drinking water. Another objective was to verify if weather seasons affect the concentration and complexity of PAHs. For these purposes, semipermeable membrane devices were installed in a surface water treatment plant located in Lower Silesia (Poland). Samples were collected monthly over a period of one year. To determine the effect of water treatment on PAH concentrations, four sampling sites were selected: raw water input, a stream of water in the pipe just before ozonation, treated water output and water after passing through the distribution system. After each month of sampling, SPMDs were exchanged for fresh ones and prepared for instrumental analysis. Concentrations of polycyclic aromatic hydrocarbons were determined by high-performance liquid chromatography (HPLC). The presented study indicates that semipermeable membrane devices can be an effective tool for the analysis of drinking water, in which organic micropollutants occur at very low concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.
Xu, Lili; Feng, Juanjuan; Li, Jubai; Liu, Xia; Jiang, Shengxiang
2012-01-01
A novel chemically bonded graphene oxide/fused-silica fiber was prepared and applied in solid-phase microextraction of six polycyclic aromatic hydrocarbons from water samples coupled with gas chromatography. It exhibited high extraction efficiency and excellent stability. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized in our work. Detection limits to the six polycyclic aromatic hydrocarbons were less than 0.08 μg/L, and their calibration curves were all linear (R(2)≥0.9954) in the range from 0.05 to 200 μg/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.13 and 15.87%, respectively. This novel fiber was then utilized to analyze two real water samples from the Yellow River and local waterworks, and the recoveries of samples spiked at 1 and 10 μg/L ranged from 84.48 to 118.24%. Compared with other coating materials, this graphene oxide-coated fiber showed many advantages: wide linear range, low detection limit, and good stability in acid, alkali, organic solutions and at high temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartz, R.C.
1999-04-01
Sediment quality guidelines (SQGs) for polycyclic aromatic hydrocarbons (PAHs) have been derived from a variety of laboratory, field, and theoretical foundations. They include the screening level concentration, effects ranges-low and -median, equilibrium partitioning concentrations, apparent effects threshold, {Sigma}PAH model, and threshold and probable effects levels. The resolution of controversial differences among the PAH SQGs lies in an understanding of the effects of mixtures. Polycyclic aromatic hydrocarbons virtually always occur in field-collected sediment as a complex mixture of covarying compounds. When expressed as a mixture concentration, that is, total PAH (TPAH), the guidelines form three clusters that were intended in theirmore » original derivations to represent threshold (TEC = 290 {micro}g/g organic carbon [OC]), median (MEC = 1,800 {micro}g/g OC), and extreme (EEC = 10,000 {micro}g/g OC) effects concentrations. The TEC/MEC/EEC consensus guidelines provide a unifying synthesis of other SQGs, reflect causal rather than correlative effects, account for mixtures, and predict sediment toxicity and benthic community perturbations at sites of PAH contamination. The TEC offers the most useful SQG because PAH mixtures are unlikely to cause adverse effects on benthic ecosystems below the TEC.« less
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Negative-ion chemical-ionization mass spectrometry (NICI MS) has the potential to be a very useful technique in identifying various polycyclic aromatic hydrocarbons (PAHs) in soil and sediment samples. Some PAHs give much stronger signals under NICI MS conditions than others. On ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dairou, Julien; Petit, Emile; Ragunathan, Nilusha
2009-05-01
Bronchial epithelial cells express xenobiotic-metabolizing enzymes (XMEs) that are involved in the biotransformation of inhaled toxic compounds. The activities of these XMEs in the lung may modulate respiratory toxicity and have been linked to several diseases of the airways. Arylamine N-acetyltransferases (NAT) are conjugating XMEs that play a key role in the biotransformation of aromatic amine pollutants such as the tobacco-smoke carcinogens 4-aminobiphenyl (4-ABP) and {beta}-naphthylamine ({beta}-NA). We show here that functional human NAT1 or its murine counterpart Nat2 are present in different lung epithelial cells i.e. Clara cells, type II alveolar cells and bronchial epithelial cells, thus indicating thatmore » inhaled aromatic amines may undergo NAT-dependent biotransformation in lung epithelium. Exposure of these cells to pathophysiologically relevant amounts of oxidants known to contribute to lung dysfunction, such as H{sub 2}O{sub 2} or peroxynitrite, was found to impair the NAT1/Nat2-dependent cellular biotransformation of aromatic amines. Genetic and non genetic impairment of intracellular NAT enzyme activities has been suggested to compromise the important detoxification pathway of aromatic amine N-acetylation and subsequently to contribute to an exacerbation of untoward effects of these pollutants on health. Our study suggests that oxidative/nitroxidative stress in lung epithelial cells, due to air pollution and/or inflammation, could contribute to local and/or systemic dysfunctions through the alteration of the functions of pulmonary NAT enzymes.« less
Electron affinities (EAs) and free energies for electron attachment have been calculated for 42 polynuclear aromatic hydrocarbons and related molecules by a variety of theoretical models, including Koopmans' theorem methods and the L1E method from differences in energy between th...
HIGH TEMPERATURE POLAMINE RESINS.
A literature search was conducted to investigate work done with aromatic amine-organic chloride reactions and organo- sodium amide preparations from...synthesized by the diamine/dichloride route. Extensive investigations of polyamine synthesis from sodium salts of amides and amines, and chlorides were...conducted. Apparently successful methods were found for preparing sodium derivatives of amides and amines from both solid sodium amide and sodium /ammonia
Hydrogen peroxide (H2O2) catalyzed by soluble iron or naturally occurring soil minerals, (i.e., modified Fenton's reagent) was investigated as a basis for mineralizing sorbed and NAPL-phase benzo[a]pyrene (BaP), a hydrophobic and toxic polycyclic a...
Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds
Kameda, Takayuki; Azumi, Eri; Fukushima, Aki; Tang, Ning; Matsuki, Atsushi; Kamiya, Yuta; Toriba, Akira; Hayakawa, Kazuichi
2016-01-01
Atmospheric nitrated polycyclic aromatic hydrocarbons (NPAHs), which have been shown to have adverse health effects such as carcinogenicity, are formed in part through nitration reactions of their parent polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. However, little is known about heterogeneous nitration rates of PAHs by gaseous NO2 on natural mineral substrates, such as desert dust aerosols. Herein by employing kinetic experiments using a flow reactor and surface analysis by Fourier transform infrared spectroscopy with pyridine adsorption, we demonstrate that the reaction is accelerated on acidic surfaces of mineral dust, particularly on those of clay minerals. In support of this finding, we show that levels of ambient particle-associated NPAHs in Beijing, China, significantly increased during heavy dust storms. These results suggest that mineral dust surface reactions are an unrecognized source of toxic organic chemicals in the atmosphere and that they enhance the toxicity of mineral dust aerosols in urban environments. PMID:27075250
NASA Astrophysics Data System (ADS)
Sharma, Homdutt; Jain, V. K.; Khan, Zahid H.
2013-05-01
We have developed a simple, rapid, inexpensive method for the identification of fluoranthene (Flan), benz(a)anthracene (BaA), benzo(a)pyrene (BaP), benzo(k)fluoranthene (BkF), pyrene (Pyr), benz(ghi)perylene (BghiP) in suspended particulate matter in an urban environment of Delhi. Suspended particulate matter samples of 24 h duration were collected on glass fiber filter papers. Polycyclic aromatic hydrocarbons (PAHs) were extracted from the filter papers using dichloromethane (DCM) and hexane with ultrasonication method. Comparison of the characteristic emission of spectra of PAHs with standard spectra indicated the degree of condensation of aromatic compounds present in investigated mixtures. It was also possible to identify some individual compounds. However, this identification could be more effective with the use of the respective values of Δλ parameter for each particular component of the mixture.
NASA Technical Reports Server (NTRS)
Wagner, D. R.; Kim, H. S.; Saykally, R. J.
2000-01-01
Infrared emission spectra of five gas-phase UV laser-excited polycyclic aromatic hydrocarbons (PAHs) containing aliphatic hydrogens are compared with the main 3.3 microns and associated interstellar unidentified infrared emission bands (UIRs). We show that neutral PAHs can account for the majority of the 3 microns emission complex while making little contribution to the other UIR bands; peripherally hydrogenated PAHs produce a better match to astrophysical data than do those containing methyl side groups; 3.4 microns plateau emission is shown to be a general spectral feature of vibrationally excited PAHs containing aliphatic hydrogens, especially those containing methyl groups; and finally, hot-band and overtone emissions arising from aromatic C-H vibrations are not observed in laboratory emission spectra, and therefore, in contrast to current assignments, are not expected to be observed in the UIRs.
Embryotoxic and teratogenic effects of petroleum hydrocarbons in mallards (Anas platyrhynchos)
Hoffman, D.J.
1979-01-01
Egg surface applications of microliter quantities of crude and refined oils of high aromatic content are embryotoxic to mallards (Anas platyrhynchos) and other avian species; applications of aliphatic hydrocarbons have virtually no effect. Mallard eggs at 72 h of development were exposed to a mixture of aromatic hydrocarbons or to aromatic compounds representative to those present in crude oil to assess their toxicity. The class composition of the mixture was similar to that of South Louisiana crude oil, an American Petroleum Institute reference oil. Application of 20 microliter of the mixture reduced embryonic survival by nearly 70%. The temporal pattern of embryonic death was similar to that after exposure to South Louisiana crude oil. Embryonic growth was stunted, as reflected by weight, crown-rump length, and bill length, and there was a significant increase in the incidence of abnormal survivors. When individual classes of aromatic hydrocarbons were tested, tetracyclics caused some embryonic death at the concentrations in the mixture. When classes were tested in all possible combinations of two, no combination appeared to be as toxic as the entire mixture. Addition of the tetracyclic compound chrysene to the aromatic mixture considerably enhanced embryotoxicity, but could not completely account for the toxicity of the crude oil. The presence of additional unidentified polycyclic aromatic hydrocarbons as well as methylated derivatives of polycyclic aromatic compounds such as chrysene may further account for the embryotoxicity of the crude oil.
Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring groups
NASA Astrophysics Data System (ADS)
Bilić, Ante; Sanvito, Stefano
2012-09-01
Two sets of aromatic nanoribbons, based around a common hexagonal scaffolding, with single and dual terminal amine groups have been considered as potential molecular wires in a junction formed by gold leads. Charge transport through the two-terminal device has been modeled using density functional theory (with and without self-interaction correction) and the nonequilibrium Green's function method. The effects of wire length, multiple terminal contacts, and pathways across the junction have been investigated. For nanoribbons with the oligopyrene motif and conventional single amine terminal groups, an increase in the wire length causes an exponential drop in the conductance. In contrast, for the nanoribbons with the oligoperylene motif and dual amine anchoring groups the predicted conductance rises with the wire length over the whole range of investigated lengths. Only when the effects of self-interaction correction are taken into account, the conductance of the oligoperylene ribbons exhibits saturation for longer members of the series. The oligoperylene nanoribbons, with dual amine groups at both terminals, show the potential to fully harness the highly conjugated system of π molecular orbitals across the junction.
Fluorescent aromatic sensors and their methods of use
NASA Technical Reports Server (NTRS)
Meador, Michael A. (Inventor); Tyson, Daniel S. (Inventor); Ilan, Ulvi F. (Inventor)
2012-01-01
Aromatic molecules that can be used as sensors are described. The aromatic sensors include a polycyclic aromatic hydrocarbon core with a five-membered imide rings fused to the core and at least two pendant aryl groups. The aromatic sensor molecules can detect target analytes or molecular strain as a result of changes in their fluorescence, in many cases with on-off behavior. Aromatic molecules that fluoresce at various frequencies can be prepared by altering the structure of the aromatic core or the substituents attached to it. The aromatic molecules can be used as sensors for various applications such as, for example, the detection of dangerous chemicals, biomedical diagnosis, and the detection of damage or strain in composite materials. Methods of preparing aromatic sensor molecules are also described.
Reflectance spectroscopy (350-2500 nm) of solid-state polycyclic aromatic hydrocarbons (PAHs)
NASA Astrophysics Data System (ADS)
Izawa, M. R. M.; Applin, D. M.; Norman, L.; Cloutis, E. A.
2014-07-01
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds based on fused aromatic rings, and are formed in a variety of astrophysical, solar nebula and planetary processes. Polycyclic aromatic hydrocarbons are known or suspected to occur in a wide variety of planetary settings including icy satellites, Titan’s hazes, carbonaceous meteorites, comet nuclei, ring particles; and terrestrial organic-rich lithologies such as coals, asphaltites, and bituminous sands. Relatively few measurements of the visible and near-infrared spectra of PAHs exist, yet this wavelength region (350-2500 nm) is widely used for remote sensing. This study presents detailed analyses of the 350-2500 nm reflectance spectra of 47 fine-grained powders of different high-purity solid-state PAHs. Spectral properties of PAHs change with variations in the number and connectivity of linked aromatic rings and the presence and type of side-groups and heterocycles. PAH spectra are characterized by three strong features near ∼880 nm, ∼1145 nm, and ∼1687 nm due to overtones of νCH fundamental stretching vibrations. Some PAHs are amenable to remote detection due to the presence of diagnostic spectral features, including: Nsbnd H stretching overtones at 1490-1515 nm in NH- and NH2-bearing PAHs, aliphatic or saturated bond Csbnd H overtone vibrations at ∼1180-1280 nm and ∼1700-1860 nm; a broad asymmetric feature between ∼1450 nm and ∼1900 nm due to Osbnd H stretching overtones in aromatic alcohols, Csbnd H and Cdbnd O combinations near ∼2000-2010 nm and ∼2060-2270 nm in acetyl and carboxyl-bearing PAHs. Other substituents such as sulphonyl, thioether ether and carboxyl heterocycles, or cyano, nitrate, and aromatic side groups, do not produce well-resolved diagnostic spectral features but do cause shifts in the positions of the aromatic Csbnd H vibrational overtone features. Fluorescence is commonly suppressed by the presence of heterocycles, side-groups and in many non-alternant PAHs. The spectral characteristics of PAHs offer the potential, under suitable circumstances, for remote characterization of the classes of PAH present and in some cases, identification of particular heterocyclic or side-group substituents.
Helmus, Drew S.; Thompson, Cheryl L.; Zelenskiy, Svetlana; Tucker, Thomas C.; Li, Li
2014-01-01
Formation of mutagenic heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) is one pathway believed to drive the association of colon cancer with meat consumption. Limited data exist on the associations of individual HCAs and PAHs in red or white meat with colon cancer. Analyzing data from a validated meat preparation questionnaire completed by 1,062 incident colon cancer cases and 1,645 population controls from an ongoing case-control study, risks of colon cancer were estimated using unconditional logistic regression models, comparing the fourth to the first quartile of mutagen estimates derived from a CHARRED based food frequency questionnaire. Total dietary intake of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (adjusted odds ratio (aOR) = 1.88, 95% CI = 1.45–2.43, Ptrend < 0.0001), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx) (aOR = 1.73, 95% CI = 1.34–2.23, Ptrend < 0.0001) and meat-derived mutagenic activity (aOR = 1.84, 95% CI = 1.42–2.39, Ptrend < 0.0001) were statistically significantly associated with colon cancer risk. Meat type specific analyses revealed statistically significant associations for red meat-derived MeIQx, DiMeIQx and mutagenic activity, but not for the same mutagens derived from white meat. Our study adds evidence supporting red meat-derived, but not white-meat derived HCAs and PAHs, as an important pathway for environmental colon cancer carcinogenesis. PMID:24168237
Yamamoto, Hiroshi; Nakamura, Yudai; Moriguchi, Shigemi; Nakamura, Yuki; Honda, Yuta; Tamura, Ikumi; Hirata, Yoshiko; Hayashi, Akihide; Sekizawa, Jun
2009-02-01
We selected eight pharmaceuticals with relatively high potential ecological risk and high consumption-namely, acetaminophen, atenolol, carbamazepine, ibuprofen, ifenprodil, indomethacin, mefenamic acid, and propranolol-and conducted laboratory experiments to examine the persistence and partitioning of these compounds in the aquatic environment. In the results of batch sunlight photolysis experiments, three out of eight pharmaceuticals-propranolol, indomethacin, and ifenprodil-were relatively easily photodegraded (i.e., half-life<24h), whereas the other five pharmaceuticals were relatively stable against sunlight. The results of batch biodegradation experiments using river water suggested relatively slow biodegradation (i.e., half-life>24h) for all eight pharmaceuticals, but the rate constant was dependent on sampling site and time. Batch sorption experiments were also conducted to determine the sorption coefficients to river sediments and a model soil sample. The determined coefficients (K(d) values) were much higher for three amines (atenolol, ifenprodil, and propranolol) than for neutral compounds or carboxylic acids; the K(d) values of the amines were comparable to those of a four-ring polycyclic aromatic hydrocarbon (PAH) pyrene. The coefficients were also higher for sediment/soil with higher organic content, and the organic carbon-based sorption coefficient (logK(oc)) showed a poor linear correlation with the octanol-water distribution coefficient (logD(ow)) at neutral pH. These results suggest other sorption mechanisms-such as electrochemical affinity, in addition to hydrophobic interaction-play an important role in sorption to sediment/soil at neutral pH.
Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.
2007-01-01
The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to <0.01 ??g/L. Temporal variability of organic compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.
Polycyclic aromatic hydrocarbons, tobacco smoke, and epigenetic remodeling in asthma
Klingbeil, E. C.; Hew, K. M.; Nygaard, U. C.; Nadeau, K. C.
2014-01-01
Environmental determinants including aerosolized pollutants such as polycyclic aromatic hydrocarbons (PAHs) and tobacco smoke have been associated with exacerbation and increased incidence of asthma. The influence of aerosolized pollutants on the development of immune dysfunction in asthmatics has been suggested to be mediated through epigenetic remodeling. Genome accessibility and transcription are regulated primarily through DNA methylation, histone modification, and microRNA transcript silencing. Epigenetic remodeling has been shown in studies to be associated with Th2 polarization and associated cytokine and chemokine regulation in the development of asthma. This review will present evidence for the contribution of the aerosolized pollutants PAH and environmental tobacco smoke to epigenetic remodeling in asthma. PMID:24760221
Failure of hydrogenation in protecting polycyclic aromatic hydrocarbons from fragmentation
NASA Astrophysics Data System (ADS)
Gatchell, M.; Stockett, M. H.; de Ruette, N.; Chen, T.; Giacomozzi, L.; Nascimento, R. F.; Wolf, M.; Anderson, E. K.; Delaunay, R.; Vizcaino, V.; Rousseau, P.; Adoui, L.; Huber, B. A.; Schmidt, H. T.; Zettergren, H.; Cederquist, H.
2015-11-01
A recent study of soft x-ray absorption in native and hydrogenated coronene cations, C24H12+m +m =0 -7 , led to the conclusion that additional hydrogen atoms protect (interstellar) polycyclic aromatic hydrocarbon (PAH) molecules from fragmentation [Reitsma et al., Phys. Rev. Lett. 113, 053002 (2014), 10.1103/PhysRevLett.113.053002]. The present experiment with collisions between fast (30-200 eV) He atoms and pyrene (C16H10+m + , m =0 , 6, and 16) and simulations without reference to the excitation method suggests the opposite. We find that the absolute carbon-backbone fragmentation cross section does not decrease but increases with the degree of hydrogenation for pyrene molecules.
Aromatic ring generation as a dust precursor in acetylene discharges
NASA Astrophysics Data System (ADS)
De Bleecker, Kathleen; Bogaerts, Annemie; Goedheer, Wim
2006-04-01
Production of aromatic hydrocarbon compounds as an intermediate step for particle formation in low-pressure acetylene discharges is investigated via a kinetic approach. The detailed chemical reaction mechanism contains 140 reactions among 55 species. The cyclic hydrocarbon chemistry is mainly based on studies of polycyclic aromatic hydrocarbon formation in cosmic environments. The model explicitly includes organic chain, cyclic molecules, radicals, and ions up to a size of 12 carbon atoms. The calculated density profiles show that the aromatic formation yields are quite significant, suggesting that aromatic compounds play a role in the underlying mechanisms of particle formation in hydrocarbon plasmas.
Chen, Edward S; Chen, Edward C M
2018-02-15
The anion mass spectral lifetimes for several aromatic hydrocarbons reported in the subject article were related to significantly different electron affinities. The different values are rationalized using negative ion mass spectral data. Electron affinities for polycyclic aromatic hydrocarbons are reported from the temperature dependence of unpublished electron capture detector data. These are compared with published values and the largest values are assigned to the ground state. The ground state adiabatic electron affinities: (eV) pentacene, 1.41 (3); tetracene, 1.058 (5); benz(a)pyrene, 0.82 (4); benz(a) anthracene, 0.69 (2) anthracene, 0.68 (2); and pyrene, 0.59 (1) are used to assign excited state adiabatic electron affinities: (eV) tetracene: 0.88 (4); anthracene 0.53 (1); pyrene, 0.41 (1); benz(a)anthracene, 0.39 (10); chrysene, 0.32 (1); and phenanthrene, 0.12 (2) and ground state adiabatic electron affinities: (eV) dibenz(a,j)anthracene, 0.69 (3); dibenz(a,h)anthracene, 0.68 (3); benz(e)pyrene, 0.60 (3); and picene, 0.59 (3) from experimental data. The lifetime of benz(a)pyrene is predicted to be larger than 150 μs and for benzo(c)phenanthrene and picene about 40 μs, from ground state adiabatic electron affinities. The assignments of adiabatic electron affinities of aromatic hydrocarbons determined from electron capture detector and mass spectrometric data to ground and excited states are supported by constant electronegativities. A set of consistent ground state adiabatic electron affinities for 15 polycyclic aromatic hydrocarbons is related to lifetimes from the subject article. Copyright © 2017 John Wiley & Sons, Ltd.
Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Ke; Li, Weiming
2014-11-01
Electrochemistry combined with (liquid chromatography) high resolution mass spectrometry was used to simulate the general reductive metabolism of three biologically important nitro aromatic molecules: 3-trifluoromethyl-4-nitrophenol (TFM), niclosamide, and nilutamide. TFM is a pesticide used in the Laurential Great Lakes while niclosamide and nilutamide are used in cancer therapy. At first, a flow-through electrochemical cell was directly connected to a high resolution mass spectrometer to evaluate the ability of electrochemistry to produce the main reduction metabolites of nitro aromatic, nitroso, hydroxylamine, and amine functional groups. Electrochemical experiments were then carried out at a constant potential of -2.5 V before analysis of the reduction products by LC-HRMS, which confirmed the presence of the nitroso, hydroxylamine, and amine species as well as dimers. Dimer identification illustrates the reactivity of the nitroso species with amine and hydroxylamine species. To investigate xenobiotic metabolism, the reactivity of nitroso species to biomolecules was also examined. Binding of the nitroso metabolite to glutathione was demonstrated by the observation of adducts by LC-ESI(+)-HRMS and the characteristics of their MSMS fragmentation. In conclusion, electrochemistry produces the main reductive metabolites of nitro aromatics and supports the observation of nitroso reactivity through dimer or glutathione adduct formation.
Man, Zhengyin; Wang, Quanlin; Li, Hesheng; Zhang, Aizhi
2014-12-01
A comprehensive analytical method based on ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS) has been developed for the simultaneous determination of 33 primary aromatic amines (PAAs) in fine pigments such as gouache paint, oil painting pigment and acrylic paint. The primary aromatic amines in samples were extracted with acetonitrile. Then the extract was concentrated by centrifugation and nitrogen blow, finally diluted to 2 mL with methanol-water (1:9, v/v) and filtered through 0. 22 im membrane before UPLC-MS/MS analysis. The analytes were separated on a BEH Phenyl column (100 mm x 2. 1 mm, 1. 7 1µm) with 0. 07% (v/v) formic acid in methanol-water as mobile phases in gradient elution. The PAAs were detected by UPLC-MS/MS under multiple reaction monitoring (MRM) mode and quantified by the internal standard method. The separation conditions, fragment voltages and collision energies were optimized. The impacts of extraction times, extraction solvents and concentration methods on recoveries were studied. The limits of detection and limits of quantitation for the 33 primary aromatic amines were 5-50 µg/kg and 15-150 µg/kg respectively. The mean recoveries of three different dye products at three spiked levels were 70. 1% - 115. 8%. The relative standard deviations were 2. 1% - 15%. The expenmental results indicated that the method is simple, rapid, sensitive, accurate and can meet the requirements for the determination.
Vidal, Lorena; Robin, Orlane; Parshintsev, Jevgeni; Mikkola, Jyri-Pekka; Riekkola, Marja-Liisa
2013-04-12
Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101-107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14-46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π-π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Abid, Zaynah; Cross, Amanda J; Sinha, Rashmi
2014-07-01
In 2007 the World Cancer Research Fund and American Institute for Cancer Research (WCRF/AICR) report judged that the evidence for an association between red and processed meat consumption and colorectal cancer was convincing. In addition, the effect of other animal products on cancer risk has been studied, and the WCRF/AICR report concluded that milk probably decreases the risk of colorectal cancer but diets high in calcium probably increase the risk of prostate cancer, whereas there was limited evidence for an association between milk and bladder cancer and insufficient evidence for other cancers. There are several potential mechanisms relating meat to cancer, including heterocyclic amines, polycyclic aromatic hydrocarbons, N-nitroso compounds, and heme iron. Although the evidence in favor of a link between red and processed meat and colorectal cancer is convincing, the relations with other cancers are unclear. In this review, we summarize cohort studies conducted by the National Cancer Institute on meat and dairy intake in relation to cancer since the 2007 WCRF/AICR report. We also report the findings of meta-analyses published since 2007. © 2014 American Society for Nutrition.
[Nutrition and health--toxic substances in food].
Rietjens, I M; Alink, G M
2003-11-29
With respect to food, the most important factors causing adverse health effects are: an unbalanced diet, resulting in obesity or vitamin deficiencies, overconsumption of alcohol or fat, the presence of microbial contamination and the presence of natural toxins. Two additional factors, the presence of environmental contaminants and products formed on heating food, may also be of importance. It is generally assumed that, when combined, food-related factors contribute to around 35% of overall cancer incidence. The most important groups of health-threatening compounds to be found in the food chain include natural toxins, such as those produced by plants (phytotoxins), fungi (mycotoxins), marine algae (phycotoxins) and by bacteria, and toxins present in animals for human consumption, especially fish. A second important group of toxic compounds in food consists of environmental contaminants, including heavy metals and persistent organic pollutants, such as dioxins and polychlorinated biphenyls, all of which may unintentionally end up in the food chain. A third group of toxins present in food are those substances produced when food is heated, and include polycyclic aromatic hydrocarbons, heterocyclic amines and acrylamide.
Abid, Zaynah; Cross, Amanda J; Sinha, Rashmi
2014-01-01
In 2007 the World Cancer Research Fund and American Institute for Cancer Research (WCRF/AICR) report judged that the evidence for an association between red and processed meat consumption and colorectal cancer was convincing. In addition, the effect of other animal products on cancer risk has been studied, and the WCRF/AICR report concluded that milk probably decreases the risk of colorectal cancer but diets high in calcium probably increase the risk of prostate cancer, whereas there was limited evidence for an association between milk and bladder cancer and insufficient evidence for other cancers. There are several potential mechanisms relating meat to cancer, including heterocyclic amines, polycyclic aromatic hydrocarbons, N-nitroso compounds, and heme iron. Although the evidence in favor of a link between red and processed meat and colorectal cancer is convincing, the relations with other cancers are unclear. In this review, we summarize cohort studies conducted by the National Cancer Institute on meat and dairy intake in relation to cancer since the 2007 WCRF/AICR report. We also report the findings of meta-analyses published since 2007. PMID:24847855
Integration of a Micro-Chip Amino Acid Chirality Detector into the MOD Instrument Concept
NASA Technical Reports Server (NTRS)
Bada, Jeffrey L.; Grunthaner, Frank; Mathies, Richard
2004-01-01
The MOD (Mars Organic Detector) instrument concept consists of a sublimation apparatus for organic compound isolation connected to a microfabricated microfluidic analyzer containing a sipper, pumps and a separation channel for organic compound characterization. The target organic compounds are amino acids and polycyclic aromatic hydrocarbons (PAHs). Solid samples are placed within the sublimation apparatus and heated to release organic compounds which sublime onto a cold finger. Half of the cold finger is coated with fluorescamine. which reacts with amino acids and other primary amines to generate an intense fluorescent derivative while the other half is uncoated and is used to directly detect PAH fluorescence, A capillary sipper is then used to dissolve and sample the labeled amino acids and integrated microfabricated pumps transport the labeled amino acids to the chip for analysis. The sample is separated using capillary zone electrophoresis (CZE) together with chiral dextrins to determine amino acid composition and chirality. During the grant period, the following steps have been completed toward the development of a robust instrument and chemistry.
Vivek, Balachandran; Kumar, Prashant; Prasad, Edamana
2016-06-16
Low molecular weight gels have relatively poor self-healing capacity compared to that of polymeric gels. Induction and tuning of the healing capacity of low molecular weight gels to achieve desired applications are thus challenging tasks. The present work describes the achievement of remarkable tunability of self-healing property for a low molecular weight hybrid gel, based on poly(aryl ether) dendron derivative (PAD). The hybrid gel has been synthesized using PAD and poly(amido amine) {PAMAM} dendrimer derivative (QPD), which are intercalated in the montmorillonite clay (MMT) layers. The self-healing of the hybrid gel (QPD-MMT-PAD) was demonstrated through experiments where the distorted gel regained the initial value of storage modulus (G') within a few minutes. Further, the propensity of self-healing of the gel has been tuned as a function of QPD concentration. The mechanically stable QPD-MMT-PAD hybrid gel has been utilized for the adsorption of ppm level concentration of polycyclic aromatic hydrocarbons (PAHs) such as β-naphthol, pyrene, and phenenathrene from water with excellent efficiency (80-98%).
2006-05-01
Polycyclic Aromatic Hydrocarbons and Petroleum to Marine Invertebrate Larvae and Juveniles,” Environ. Toxicol. Chem., vol. 16, pp. 2190–2199...aromatic hydrocarbons , polychlorinated biphenyls, and chlorinated pesticides. Seventeen plume mapping surveys, including an on-site floating bioassay...Non-point Source NS&T National Status and Trends PAH Polynuclear Aromatic Hydrocarbon PCB Polychlorinated Biphenyl PMSD Percent
The Synthesis of Methyl Salicylate: Amine Diazotization.
ERIC Educational Resources Information Center
Zanger, Murray; McKee, James R.
1988-01-01
Notes that this experiment takes safety and noncarcinogenic reactants into account. Demonstrates the use of diazonium salts for the replacement of an aromatic amine group by a phenolic hydroxyl. Involves two pleasant-smelling organic compounds, methyl anthranilate (grape) and methyl salicylate (oil of wintergreen). (MVL)
Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.
Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira
2014-09-01
This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wilson, Walter B; Costa, Andréia A; Wang, Huiyong; Dias, José A; Dias, Sílvia C L; Campiglia, Andres D
2012-07-06
The analytical performance of BEA - a commercial zeolite - is evaluated for the pre-concentration of fifteen Environmental Protection Agency - polycyclic aromatic hydrocarbons and their subsequent HPLC analysis in tap and lake water samples. The pre-concentration factors obtained with BEA have led to a method with excellent analytical figures of merit. One milliliter aliquots were sufficient to obtain excellent precision of measurements at the parts-per-trillion concentration level with relative standard deviations varying from 4.1% (dibenzo[a,h]anthracene) to 13.4% (pyrene). The limits of detection were excellent as well and varied between 1.1 (anthracene) and 49.9 ng L(-1) (indeno[1,2,3-cd]pyrene). The recovery values of all the studied compounds meet the criterion for regulated polycyclic aromatic hydrocarbons, which mandates relative standard deviations equal or lower than 25%. The small volume of organic solvents (100 μL per sample) and amount of BEA (2 mg per sample) makes sample pre-concentration environmentally friendly and cost effective. The extraction procedure is well suited for numerous samples as the small working volume (1 mL) facilitates the implementation of simultaneous sample extraction. These are attractive features when routine monitoring of numerous samples is contemplated. Copyright © 2012 Elsevier B.V. All rights reserved.
Vinci, Giuliana; Antonelli, Marta L; Preti, Raffaella
2013-02-01
Liquid-liquid microextraction coupled to LC with fluorescence detection for the determination of Environmental Protection Agency's 16 priority pollutant polycyclic aromatic hydrocarbons in rainwater has been developed. The optimization of the extraction method has involved several parameters, including the comparison between an ultrasonic bath and a magnetic stirrer as extractant apparatus, the choice of the extractant solvent, and the optimization of the extraction time. Liquid-liquid microextraction gave good results in terms of recoveries (from 73.6 to 102.8% in rainwater) and repeatability, with a very simple procedure and low solvent consumption. The reported chromatographic method uses a Core-Shell technology column, with particle size <3 μm instead of classical 5-μm particles column. The resulting backpressure was below 300 bar, allowing the use of a conventional HPLC system rather than the more expensive ultrahigh performance LC (UHPLC). An average decrease of 59% in run time and 75% in eluent consumption has been obtained, compared to classical HPLC methods, keeping good separation, sensitivity, and repeatability. The proposed conditions were successfully applied to the determinations of polycyclic aromatic hydrocarbons in genuine rainwater samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abuhelou, Fayez; Mansuy-Huault, Laurence; Lorgeoux, Catherine; Catteloin, Delphine; Collin, Valéry; Bauer, Allan; Kanbar, Hussein Jaafar; Gley, Renaud; Manceau, Luc; Thomas, Fabien; Montargès-Pelletier, Emmanuelle
2017-10-01
In this study, we compared the influence of two different collection methods, filtration (FT) and continuous flow field centrifugation (CFC), on the concentration and the distribution of polycyclic aromatic compounds (PACs) in suspended particulate matter (SPM) occurring in river waters. SPM samples were collected simultaneously with FT and CFC from a river during six sampling campaigns over 2 years, covering different hydrological contexts. SPM samples were analyzed to determine the concentration of PACs including 16 polycyclic aromatic hydrocarbons (PAHs), 11 oxygenated PACs (O-PACs), and 5 nitrogen PACs (N-PACs). Results showed significant differences between the two separation methods. In half of the sampling campaigns, PAC concentrations differed from a factor 2 to 30 comparing FT and CFC-collected SPMs. The PAC distributions were also affected by the separation method. FT-collected SPM were enriched in 2-3 ring PACs whereas CFC-collected SPM had PAC distributions dominated by medium to high molecular weight compounds typical of combustion processes. This could be explained by distinct cut-off threshold of the two separation methods and strongly suggested the retention of colloidal and/or fine matter on glass-fiber filters particularly enriched in low molecular PACs. These differences between FT and CFC were not systematic but rather enhanced by high water flow rates.
Sadeghi, Ramezan; Kobarfard, Farzad; Yazdanpanah, Hassan; Eslamizad, Samira; Bayate, Mitra
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are classified as persistent and carcinogenic organic pollutants. PAHs contamination has been reported in water. Many of relevant regulatory bodies such as EU and EPA have regulated the limit levels for PAHs in drinking water. In this study, 13 priority polycyclic aromatic hydrocarbons (PAHs) were determined in tap water samples of Tehran and water for injection. Dispersive liquid-liquid microextraction procedure combined with gas chromatography-mass spectrometry was used for the extraction and determination of PAHs in the samples. Under the optimized conditions, the range of extraction recoveries and relative standard deviations (RSDs) of PAHs in water using internal standard (anthracene-d10) were in the range of 71-90% and 4-16%, respectively. Limit of detection for different PAHs were between 0.03 and 0.1 ngmL-1. The concentration of PAHs in all tap water as well as water for injection samples were lower than the limit of quantification of PAHs. This is the first study addressing the occurrence of PAHs in water for injection samples in Iran using dispersive liquid-liquid micro extraction procedure combined with gas chromatography-mass spectrometry. PMID:27642318
Zhou, Qingxiang; Lei, Man; Wu, Yalin; Yuan, Yongyong
2017-03-03
Metal-organic framework material has been paid more attention because of its good physical and chemical properties. Nanoscale zero valent iron is also in the center of concern recently. Combination of their merits will give impressive results. Present study firstly synthesized a new magnetic nanomaterial nano-scale zero valent iron-functionalized metal-organic framworks MIL-101 (Fe@MIL-101) by co-precipitation method. The morphology and structure of the as-prepared Fe@MIL-101 were characterized by transmission electron microscopy and X-ray diffraction, etc. The experimental results showed that Fe@MIL-101 earned good adsorption ability to polycyclic aromatic hydrocarbons. The limits of detection of developed magnetic solid phase extraction were all below 0.064μgL -1 and precision can be expressed as relative standard deviation (RSD, %) and which was better than 4.4% (n=6). The real water analysis indicated that the spiked recoveries were satisfied, and Fe@MIL-101 earned excellent reusability. All these demonstrated that Fe@MIL-101 exhibited excellent adsorption capability to polycyclic aromatic hydrocarbons and would be a good adsorbent for development of new monitoring methods for environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.
'No Organics' Zone Circles Pinwheel
NASA Technical Reports Server (NTRS)
2008-01-01
The Pinwheel galaxy, otherwise known as Messier 101, sports bright reddish edges in this new infrared image from NASA's Spitzer Space Telescope. Research from Spitzer has revealed that this outer red zone lacks organic molecules present in the rest of the galaxy. The red and blue spots outside of the spiral galaxy are either foreground stars or more distant galaxies. The organics, called polycyclic aromatic hydrocarbons, are dusty, carbon-containing molecules that help in the formation of stars. On Earth, they are found anywhere combustion reactions take place, such as barbeque pits and exhaust pipes. Scientists also believe this space dust has the potential to be converted into the stuff of life. Spitzer found that the polycyclic aromatic hydrocarbons decrease in concentration toward the outer portion of the Pinwheel galaxy, then quickly drop off and are no longer detected at its very outer rim. According to astronomers, there's a threshold at the rim where the organic material is being destroyed by harsh radiation from stars. Radiation is more damaging at the far reaches of a galaxy because the stars there have less heavy metals, and metals dampen the radiation. The findings help researchers understand how stars can form in these harsh environments, where polycyclic aromatic hydrocarbons are lacking. Under normal circumstances, the polycyclic aromatic hydrocarbons help cool down star-forming clouds, allowing them to collapse into stars. In regions like the rim of the Pinwheel as well as the very early universe stars form without the organic dust. Astronomers don't know precisely how this works, so the rim of the Pinwheel provides them with a laboratory for examining the process relatively close up. In this image, infrared light with a wavelength of 3.6 microns is colored blue; 8-micron light is green; and 24-micron light is red. All three of Spitzer's instruments were used in the study: the infrared array camera, the multiband imaging photometer and the infrared spectrograph.Determination of total and polycyclic aromatic hydrocarbons in aviation jet fuel.
Bernabei, M; Reda, R; Galiero, R; Bocchinfuso, G
2003-01-24
The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.
Constitutional and occupational risk factors associated with bladder cancer
Ferrís, J.; Garcia, J.; Berbel, O.; Ortega, J.A.
2016-01-01
Objective Bladder carcinoma (BC) is the fourth most common type of cancer in males from Western countries, with primary prevention an important healthcare challenge. We review the associated constitutional and occupational risk factors (RF), with greater or lesser scientific evidence, in the etiology of BC. Material and methods Literature review of the last 25 years of the constitutional and occupational RF associated with BC, conducted on MedLine, CancerLit, Science Citation Index and Embase. The search profiles were Risk factors/Genetic factors/Genetic polymorphisms/Epidemiology/Occupational factors and Bladder cancer. Results The main RF were (a) age and gender (diagnosed at age 65 and over, with a 4:1 ratio of males to females); (b) race, ethnicity and geographic location (predominantly in Caucasians and in Southern European countries); (c) genetic (N-acetyltransferase-2 and glutathione s-transferase M1 gene mutations, which significantly increase the risk for BC); (d) occupational, which represent 5–10% of BC RF; and (f) occupations with high BC risk, such as aluminum production, the manufacture of dyes, paints and colourings, the rubber industry and the extraction and industrial use of fossil fuels. Conclusions BC is the end result of the variable combination of constitutional and environmental RF, the majority of which are unknown. The most significant constitutional RF are related to age, gender, race, ethnicity geographic location and genetic polymorphisms. The main occupational RF are those related to aromatic amines and polycyclic aromatic hydrocarbons. PMID:23664103
Constitutional and occupational risk factors associated with bladder cancer.
Ferrís, J; Garcia, J; Berbel, O; Ortega, J A
2013-09-01
Bladder carcinoma (BC) is the fourth most common type of cancer in males from Western countries, with primary prevention an important healthcare challenge. We review the associated constitutional and occupational risk factors (RF), with greater or lesser scientific evidence, in the aetiology of BC. Literature review of the last 25 years of the constitutional and occupational RF associated with BC, conducted on MedLine, CancerLit, Science Citation Index and Embase. The search profiles were Risk factors/Genetic factors/Genetic polymorphisms/Epidemiology/Occupational factors and Bladder cancer. The main RF were a) age and gender (diagnosed at age 65 and over, with a 4:1 ratio of males to females); b) race, ethnicity and geographic location (predominantly in Caucasians and in Southern European countries); c) genetic (N-acetyltransferase-2 and glutathione s-transferase M1 gene mutations, which significantly increase the risk for BC); d) occupational, which represent 5%-10% of BC RF; and f) occupations with high BC risk, such as aluminium production, the manufacture of dyes, paints and colourings, the rubber industry and the extraction and industrial use of fossil fuels. BC is the end result of the variable combination of constitutional and environmental RF, the majority of which are unknown. The most significant constitutional RF are related to age, gender, race, ethnicity geographic location and genetic polymorphisms. The main occupational RF are those related to aromatic amines and polycyclic aromatic hydrocarbons. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.
Wagner, Karl A; Flora, Jason W; Melvin, Matt S; Avery, Karen C; Ballentine, Regina M; Brown, Anthony P; McKinney, Willie J
2018-06-01
U.S. FDA draft guidance recommends reporting quantities of designated harmful and potentially harmful constituents (HPHCs) in e-cigarette e-liquids and aerosols. The HPHC list comprises potential matrix-related compounds, flavors, nicotine, tobacco-related impurities, leachables, thermal degradation products, and combustion-related compounds. E-cigarettes contain trace levels of many of these constituents due to tobacco-derived nicotine and thermal degradation. However, combustion-related HPHCs are not likely to be found due to the relatively low operating temperatures of most e-cigarettes. The purpose of this work was to use highly sensitive, selective, and validated analytical methods to determine if these combustion-related HPHCs (three aromatic amines, five volatile organic compounds, and the polycyclic aromatic hydrocarbon benzo[a]pyrene) are detectable in commercial refill e-liquids, reference e-cigarette e-liquids, and aerosols generated from rechargeable e-cigarettes with disposable cartridges (often referred to as "cig-a-likes"). In addition, the transfer efficiency of these constituents from e-liquid to aerosol was evaluated when these HPHCs were added to the e-liquids prior to aerosol formation. This work demonstrates that combustion-related HPHCs are not present at measurable levels in the commercial and reference e-liquids or e-cigarette aerosols tested. Additionally, when combustion-related HPHCs are added to the e-liquids, they transfer to the aerosol with transfer efficiencies ranging from 49% to 99%. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA
NASA Astrophysics Data System (ADS)
Chakraborty, Jayeeta; Varonka, Matthew; Orem, William; Finkelman, Robert B.; Manton, William
2017-06-01
The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.
Monitoring the tobacco use epidemic II. The Agent: Current and Emerging Tobacco Products
Stellman, Steven D.; Djordjevic, Mirjana V.
2009-01-01
Objective This Agent paper summarizes the findings and recommendations of the Agent (product) Working Group of the November, 2002, National Tobacco Monitoring, Research and Evaluation Workshop. Methods The Agent Working Group evaluated the need to develop new surveillance systems for quantifying ingredients and emissions of tobacco and tobacco smoke and to improve methods to assess uptake and metabolism of these constituents taking into account variability in human smoking behavior. Results The toxic properties of numerous tobacco and tobacco smoke constituents are well known, yet systematic monitoring of tobacco products has historically been limited to tar, nicotine, and CO in mainstream cigarette smoke using a machine-smoking protocol that does not reflect human smoking behavior. Toxicity of smokeless tobacco products has not been regularly monitored. Tobacco products are constantly changing and untested products are introduced into the marketplace with great frequency, including potential reduced-exposure products (PREPs). The public health impact of new or modified tobacco products is unknown. Conclusions Systematic surveillance is recommended for mainstream smoke constituents such as polycyclic aromatic hydrocarbons (PAH), tobacco-specific nitrosamines (TSNA), total and free-base nicotine, volatile organic compounds, aromatic amines, and metals; and design attributes including tobacco blend, additives, and filter ventilation. Research on smoking topography is recommended to help define machine-smoking protocols for monitoring emissions reflective of human smoking behavior. Recommendations are made for marketplace product sampling and for population monitoring of smoking topography, emissions of toxic constituents, biomarkers of exposure and, eventually, risk of tobacco-related diseases. PMID:18848577
Catalytic oxidation of o-aminophenols and aromatic amines by mushroom tyrosinase.
Muñoz-Muñoz, Jose Luis; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon; Tudela, Jose; Rodriguez-Lopez, Jose N; Garcia-Canovas, Francisco
2011-12-01
The kinetics of tyrosinase acting on o-aminophenols and aromatic amines as substrates was studied. The catalytic constants of aromatic monoamines and o-diamines were both low, these results are consistent with our previous mechanism in which the slow step is the transfer of a proton by a hydroxyl to the peroxide in oxy-tyrosinase (Fenoll et al., Biochem. J. 380 (2004) 643-650). In the case of o-aminophenols, the hydroxyl group indirectly cooperates in the transfer of the proton and consequently the catalytic constants in the action of tyrosinase on these compounds are higher. In the case of aromatic monoamines, the Michaelis constants are of the same order of magnitude than for monophenols, which suggests that the monophenols bind better (higher binding constant) to the enzyme to facilitate the π-π interactions between the aromatic ring and a possible histidine of the active site. In the case of aromatic o-diamines, both the catalytic and Michaelis constants are low, the values of the catalytic constants being lower than those of the corresponding o-diphenols. The values of the Michaelis constants of the aromatic o-diamines are slightly lower than those of their corresponding o-diphenols, confirming that the aromatic o-diamines bind less well (lower binding constant) to the enzyme. Copyright © 2011 Elsevier B.V. All rights reserved.
Thiol/disulfide homeostasis in asphalt workers.
Yilmaz, Ömer Hınç; Bal, Ceylan; Neşelioglu, Salim; Büyükşekerci, Murat; Gündüzöz, Meşide; Eren, Funda; Tutkun, Lutfiye; Yilmaz, Fatma Meric
2016-09-02
The aim of this study was to investigate thiol/disulfide homeostasis in asphalt workers who are exposed to polycyclic aromatic hydrocarbons occupationally. The study was carried out in 34 nonsmoker asphalt workers. Additionally, 35 healthy nonsmoker volunteers were recruited as control group. Thiol and disulfide concentrations were determined using the novel automated measurement method. Levels of urinary 1-OH-pyrene were analyzed by liquid chromatography. Disulfide/thiol ratio was significantly higher in exposed group (p = .034). Also, a positive correlation was detected between disulfide/thiol ratio and 1-OH-pyrene values (r = .249, p = .036). Thiol/disulfide homeostasis was found to be disturbed in asphalt workers. The novel test used in this study may be useful for evaluating the oxidative status in polycyclic aromatic hydrocarbon (PAH) exposure.
Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Hudgins, D. M.; Sandford, S. A.
1999-01-01
The infrared emission band spectrum associated with many different interstellar objects can be modeled successfully by using combined laboratory spectra of neutral and positively charged polycyclic aromatic hydrocarbons (PAHs). These model spectra, shown here for the first time, alleviate the principal spectroscopic criticisms previously leveled at the PAH hypothesis and demonstrate that mixtures of free molecular PAHs can indeed account for the overall appearance of the widespread interstellar infrared emission spectrum. Furthermore, these models give us insight into the structures, stabilities, abundances, and ionization balance of the interstellar PAH population. These, in turn, reflect conditions in the emission zones and shed light on the microscopic processes involved in the carbon nucleation, growth, and evolution in circumstellar shells and the interstellar medium.
NASA Astrophysics Data System (ADS)
Zhu, Lin; Tang, Xuexi; Wang, Ying; Sui, Yadong; Xiao, Hui
2016-03-01
The typical organic pollutant polycyclic aromatic hydrocarbon (PAH) anthracene was selected as a contaminant to investigate its effects on the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the clam Ruditapes philippinarum. The results show that SOD, CAT and GSH-Px had diff erent induction and inhibition reactions to anthracene stress, and that three diff erent organs in R. philippinarum (visceral mass, muscle tissue and mantle) had diff erent sensitivities to anthracene stress. This study suggest that SOD activities of the visceral mass, CAT activitities of the mantle and the visceral mass, and GSH-Px activity of the muscle tissue could be used as sensitive indicators of anthracene stress in R. philippinarum.
Polycyclic aromatic hydrocarbon-DNA adducts in Beluga whales from the Arctic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathieu, A.; Payne, J.F.; Fancey, L.L.
1997-09-01
The Arctic is still relatively pristine in nature, but it is also vulnerable to pollution because contaminants originating from midlatitudes are transported to the Arctic by atmospheric processes, ocean currents, and river. Recognition of this fact of Arctic vulnerability has resulted in a Declaration on the Protection of the Arctic Environment by eight Arctic countries. A manifest aim of this declaration is to develop an Arctic Monitoring and Assessment Program. We report here on the presence of measurable levels of polycyclic aromatic hydrocarbon-DNA adducts, including relatively high levels in Arctic beluga (Delphinapterus leucas). These results lend support to the valuemore » of developing biological assessment programs for Arctic wildlife. 15 refs., 1 tab.« less
Kästner, Matthias; Breuer-Jammali, Maren; Mahro, Bernd
1998-01-01
Degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of bacteria in soil was investigated by applying different inoculation protocols. The soil was inoculated with Sphingomonas paucimobilis BA 2 and strain BP 9, which are able to degrade anthracene and pyrene, respectively. CFU of soil bacteria and of the introduced bacteria were monitored in native and sterilized soil at different pHs. Introduction with mineral medium inhibited PAH degradation by the autochthonous microflora and by the strains tested. After introduction with water (without increase of the pore water salinity), no inhibition of the autochthonous microflora was observed and both strains exhibited PAH degradation. PMID:9435090
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)
2001-01-01
Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects of the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(sub odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18 in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(sub odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(exp -1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.
Naous, Mohamed; García-Gómez, Diego; López-Jiménez, Francisco José; Bouanani, Farida; Lunar, María Loreto; Rubio, Soledad
2017-01-17
Oligomeric micelles from sodium undecylenate (oSUD) were chemisorbed to magnetic iron oxide nanoparticles (MNPs) through a single-step synthetic route involving the simultaneous nanoparticle formation and functionalization in an aqueous medium. The resulting spherical nanoparticles (MNPs-oSUD) consisted of a concatenation of iron oxide cores, with an average size of 7.7 nm, bound by oSUD micelles (particle average diameter of ca. 200 nm). Micellar coverage was ∼50% of the MNP-oSUD (by weight) and offered multiple retention mechanisms (e.g., dispersion, hydrogen bonding, polar, and ionic) for solute solubilization while keeping it intact during analyte elution. The high density of micelles and variety of interactions provided by this sorbent rendered it highly efficient for the extraction of aromatic amines in a wide polarity range (log K ow values from -0.80 to 4.05) from textiles, urine, and wastewater. Extraction took 5 min, no cleanup or evaporation of the extracts was needed and the method, based on LC-MS/MS quantitation, proved matrix-independent. Recoveries for 17 aromatic amines in samples were in the range of 93%-123% while those with negative log K ow values were in the range of 69%-87%. Detection limits for aromatic amines in textiles (0.007-2 mg kg -1 ) were well below the limits legislated by the European Union (EU) (30 mg kg -1 ) and those in urine and wastewater (0.004-1.5 μg L -1 ) were at the level usually found in real-world applications. All the analyzed samples were positive in aromatic amines. The easy synthesis and excellent extraction properties of MNPs-oSUD anticipate their high potential not only for multiresidue analysis but also in other fields such as water remediation.
Yoon, Jae-In; Kim, Sang-In; Tommasi, Stella; Besaratinia, Ahmad
2012-02-01
Aromatic amines are a widespread class of environmental contaminants present in various occupational settings and tobacco smoke. Exposure to aromatic amines is a major risk factor for bladder cancer development. The etiologic involvement of aromatic amines in the genesis of bladder cancer is attributable to their ability to form DNA adducts, which upon eluding repair and causing mispairing during replication, may initiate mutagenesis. We have investigated the induction of DNA adducts in relation to mutagenesis in bladder and various nontarget organs of transgenic Big Blue mice treated weekly (i.p.) with a representative aromatic amine compound, 4-aminobiphenyl (4-ABP), for six weeks, followed by a six-week recovery period. We show an organ-specificity of 4-ABP in inducing repair-resistant DNA adducts in bladder, kidney, and liver of carcinogen-treated animals, which accords with the bioactivation pathway of this chemical in the respective organs. In confirmation, we show a predominant and sustained mutagenic effect of 4-ABP in bladder, and much weaker but significant mutagenicity of 4-ABP in the kidney and liver of carcinogen-treated mice, as reflected by the elevation of background cII mutant frequency in the respective organs. The spectrum of mutations produced in bladder of 4-ABP-treated mice matches the known mutagenic properties of 4-ABP-DNA adducts, as verified by the preponderance of induced mutations occurring at G:C base pairs (82.9%), with the vast majority being G:C→T:A transversions (47.1%). Our data support a possible etiologic role of 4-ABP in bladder carcinogenesis and provide a mechanistic view on how DNA adduct-driven mutagenesis, specifically targeted to bladder urothelium, may account for organ-specific tumorigenicity of this chemical. ©2011 AACR.
Hernández-López, E Lorena; Perezgasga, Lucia; Huerta-Saquero, Alejandro; Mouriño-Pérez, Rosa; Vazquez-Duhalt, Rafael
2016-06-01
Neosartorya fischeri, an Aspergillaceae fungus, was evaluated in its capacity to transform high molecular weight polycyclic aromatics hydrocarbons (HMW-PAHs) and the recalcitrant fraction of petroleum, the asphaltenes. N. fischeri was able to grow in these compounds as sole carbon source. Coronene, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene, together with the asphaltenes, were assayed for fungal biotransformation. The transformation of the asphaltenes and HMW-PAHs was confirmed by reverse-phase high-performance liquid chromatography (HPLC), nano-LC mass spectrometry, and IR spectrometry. The formation of hydroxy and ketones groups on the PAH molecules suggest a biotransformation mediated by monooxygenases such as cytochrome P450 system (CYP). A comparative microarray with the complete genome from N. fischeri showed three CYP monooxygenases and one flavin monooxygenase genes upregulated. These findings, together with the internalization of aromatic substrates into fungal cells and the microsomal transformation of HMW-PAHs, strongly support the role of CYPs in the oxidation of these recalcitrant compounds.
[Polycyclic aromatic hydrocarbons (PAHs) in herbs and fruit teas].
Ciemniak, Artur
2005-01-01
Polycyclic aromatic hydrocarbons (PAHs) of which benzo[a]pyrene is the most commonly studied and measured, are fused - ring aromatic compounds formed in both natural and man made processes and are found widely distributed throughout the human environment. PAHs occur as contaminants in different food categories and beverages including water, vegetables, fruit, cereals, oils and fats, barbecued and smoked meat. The sources of PAHs in food are predominantly from environmental pollution and food processing. PAHs emissions from automobile traffic and industry activities were show to influence the PAHs levels in vegetables and fruits. The present study was carried out to determine levels of 16 basic PAHs in herbs and fruit teas. The method was based on the hexane extraction and cleaned up by florisil cartridge. The extracts were analysed by GC-MS. The levels of total PAHs varied from 48,27 microg/kg (hibiscus tea) to 1703 microg/kg (green tea). The highest level of BaP was found in lime tea (74,2 microg/kg).
Devi, Parmila; Saroha, Anil K
2015-09-01
The polycyclic aromatic hydrocarbons (PAHs) toxicity and sorption behaviour of biochars prepared from pyrolysis of paper mill effluent treatment plant (ETP) sludge in temperature range 200-700 °C was studied. The sorption behaviour was found to depend on the degree of carbonization where the fractions of carbonized and uncarbonized organic content in the biochar act as an adsorption media and partition media, respectively. The sorption and partition fractions were quantified by isotherm separation method and isotherm parameters were correlated with biochar properties (aromaticity, polarity, surface area, pore volume and ash content). The risk assessment for the 16 priority EPA PAHs present in the biochar matrix was performed and it was found that the concentrations of the PAHs in the biochar were within the permissible limits prescribed by US EPA (except BC400 and BC500 for high molecular weight PAHs). Copyright © 2015 Elsevier Ltd. All rights reserved.
Birds and polycyclic aromatic hydrocarbons
Albers, P.H.
2006-01-01
Polycyclic aromatic hydrocarbons (PAH) are present throughout the global environment and are produced naturally and by activities of humans. Effects of PAH on birds have been determined by studies employing egg injection, egg immersion, egg shell application, single and multiple oral doses, subcutaneous injection, and chemical analysis of field-collected eggs and tissue. The four-to six-ring aromatic compounds are the most toxic to embryos, young birds, and adult birds. For embryos, effects include death, developmental abnormalities, and a variety of cellular and biochemical responses. For adult and young birds, effects include reduced egg production and hatching, increased clutch or brood abandonment, reduced growth, increased organweights, and a variety of biochemical responses. Trophic level accumulation is unlikely. Environmental exposure to PAH in areas of high human population or habitats affected by recent petroleum spills might be sufficient to adversely affect reproduction. Evidence of long-term effects of elevated concentrations of environmental PAH on bird populations is very limited and the mechanisms of effect are unclear.
Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1.
Kumara, Manoj; Leon, Vladimir; De Sisto Materano, Angela; Ilzins, Olaf A; Galindo-Castro, Ivan; Fuenmayor, Sergio L
2006-01-01
We characterized a newly isolated bacterium, designated as IR1, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs) and to produce biosurfactants. Isolated IR1 was identified as Pseudomonas putida by analysis of 16S rRNA sequences (99.6% homology). It was capable of utilizing two-, three- and four-ring PAHs but not hexadecane and octadecane as a sole carbon and energy source. PCR and DNA hybridization studies showed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by IR1 during growth on both water miscible and immiscible substrates. The biosurfactants lowered the surface tension of medium from 54.9 dN cm(-1) to 35.4 dN cm(-1) and formed a stable and compact emulsion with an emulsifying activity of 74% with diesel oil, when grown on dextrose. These findings indicate that this isolate may be useful for bioremediation of sites contaminated with aromatic hydrocarbons.
Tholins: Can They Provide a Substrate, Carbon and Nitrogen for Plant Production?
NASA Technical Reports Server (NTRS)
Wignarajah, Kanapathipillai; Khare, Bishun; Cruikshank, Dale; McKay, Christopher; Arnold, James O. (Technical Monitor)
1999-01-01
Tholin is a word coined to describe the entire class of complex organic solids produced in laboratory experiments where pre-biotic gaseous chemicals are subject to bombardment by high energy. The atomic composition of Titan tholin produced from 10 percent CH4 and 90 percent N2 in a simulation of Titan atmosphere irradiated by charged particles trapped in the magnetosphere of Saturn gave 67 percent C and 33 percent N. Hydrolysis of Titan tholin with 6N HCl produced a racemic mixture of biological and non-biological amino acids that was confirmed by GC/MS. Other tholins, that revealed the presence of amino acids, were UV tholin produced under possible primitive Earth conditions by irradiation of a mixture of gases (CH4, C2H6, NH3, H2S and liquid H2O) with long-wavelength ultraviolet light, representing the most abundant useful energy source for prebiological organic synthesis; Spark tholin in a crude simulation of Jupiter atmosphere using electrical discharge through a mixture of CH4, NH3, and H2O vapor. Pyrolytic GC/MS of Titan tholin produced more than one hundred organic compounds including saturated and unsaturated aliphatic hydrocarbons, substituted polycyclic aromatics, nitriles, amines, pyrroles, pyrazines, pyridines, pyrimidines, and the purine, adenine. Similar rich pyrolytic products were obtained with UV as well as Spark tholins. A range of two to four ring PAHs (Polycyclic Aromatic Hydrocarbons) in Spark as well as Titan tholins, some with one to four alkylation sites, were identified by two-step laser desorption/multiphoton ionization mass spectrometry and also confirmed by the synchronous fluorescence technique. Previous studies have demonstrated the potential for use of tholins as a source of carbon and energy by microbes. This paper describes studies that evaluate the potential for using different types of tholins as (a) a substrate for growing plants and (b) a source of carbon and nitrogen for plants. The data are interpreted in terms of the potential for using such tholins to grow plants for food in extraterrestrial habitats and also to speculate on the possibilities of abiotic evolution of plants.
USDA-ARS?s Scientific Manuscript database
Furanocoumarins (FCs) are a class of aromatic compounds in grapefruit that inhibit human intestinal cytochrome P450 3A4 (CYP3A4). Since fungi metabolize polycyclic aromatic hydrocarbons, we hypothesized that certain fungi might also metabolize FCs into forms that may be inactive as CYP3A4 inhibitors...
Conversion of alcohols to enantiopure amines through dual enzyme hydrogen-borrowing cascades
Mutti, Francesco G.; Knaus, Tanja; Scrutton, Nigel S.; Breuer, Michael; Turner, Nicholas J.
2016-01-01
α-Chiral amines are key intermediates for the synthesis of a plethora of chemical compounds on industrial scale. Here we present a biocatalytic hydrogen-borrowing amination of primary and secondary alcohols that allows for the efficient and environmentally benign production of enantiopure amines. The method relies on the combination of an alcohol dehydrogenase (ADHs from Aromatoleum sp., Lactobacillus sp. and Bacillus sp.) enzyme operating in tandem with an amine dehydrogenase (AmDHs engineered from Bacillus sp.) to aminate a structurally diverse range of aromatic and aliphatic alcohols (up to 96% conversion and 99% enantiomeric excess). Furthermore, primary alcohols are aminated with high conversion (up to 99%). This redox self-sufficient network possesses high atom efficiency, sourcing nitrogen from ammonium and generating water as the sole by-product. PMID:26404833
Peña-Méndez, E M; Astorga-España, M S; García-Montelongo, F J
2001-01-01
Chemical fingerprinting approach to environmental assessment is illustrated in the evaluation of marine oil pollution in the coasts using two limpet species as bioindicator organisms, and based on profiles and concentrations of n-alkanes and aromatic hydrocarbons in their tissues. Accidental and chronic releases of hydrocarbons can contaminate the marine environment of the Canary Islands not only because of their geographical situation but also because of the very dense tanker traffic around. This situation affects coastal areas, fishing activities, tourism resort, etc. Concentrations of n-alkanes and aromatic hydrocarbons (polycyclic aromatic hydrocarbons and methyl-polycyclic aromatic hydrocarbons) in the soft tissues of the marine intertidal and subtidal limpets, Patella crenata and Patella ullysiponensis aspera, were evaluated. Limpet samples were collected at monthly intervals, at three locations on the southeast coast of Tenerife over a 3-year period (1991-93). Levels of hydrocarbons found in limpets are similar to concentrations found in unpolluted areas around the world. From application of principal component analysis, the interpretation of variable loading plots gives information on variable correlation and can be used to distinguish among potential sources of pollution and the ability of studied molluscs to be used as bioindicator organisms.
Yang, Xiaoyang; Liu, Shijie; Xu, Yisheng; Liu, Yu; Chen, Lijiang; Tang, Ning; Hayakawa, Kazuichi
2017-12-01
Polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) are toxic pollutants mainly produced during fossil fuel combustion. Domestic coal stoves, which emit large amounts of PAHs and NPAHs, are widely used in the Chinese countryside. In this study, emission factors (Efs) for 13 PAH species and 21 NPAH species for four raw coal (three bituminous and one anthracite), one honeycomb briquette, and one crop residue pellet (peanut hulls) samples burned in a typical Chinese rural cooking stove were determined experimentally. The PAH and NPAH Efs for the six fuels were 3.15-49 mg/kg and 0.32-100 μg/kg, respectively. Peanut hulls had very high Efs for both PAHs and NPAHs, and honeycomb briquettes had the lowest Efs. 2-Nitropyrene and 2-nitrofluoranthene, which are NPAHs typically found in secondary organic aerosol, were detected in the emissions from some fuels, suggesting that chemical reactions may have occurred in the dilution tunnel between the flue gas leaving the stove and entering the sampler. The 1-nitropyrene to pyrene diagnostic ratios for coal and peanut hulls were 0.0001 ± 0.0001 and 0.0005, respectively. These were in the same order of magnitude as reference ratios for emissions during coal combustion. The 6-nitrobenzo[a]pyrene to benzo[a]pyrene ratios for the fuels were determined, and the ratios for coal and peanut hulls were 0.0010 ± 0.0001 and 0.0014, respectively. The calculated potential toxic risks indicated that peanut hull emissions were very toxic, especially in terms of NPAHs, compared with emissions from the other fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gagni, Simona; Cam, Darinn
2007-05-01
In the last decade, a refinery plant located in Lido Adriano, East Ravenna (Italy) has been subject to mineral oil contamination. The mineral crude oil, extracted from the offshore in Adriatic sea, consisted of 78% aliphatics, cyclic alkanes and saturated polycyclic hydrocarbons, 9% aromatics, polycyclic aromatic hydrocarbons (PAHs) and alkylated derivatives, and 13% of tars/asphaltenes. Analysis of soil after 10 years of natural attenuation revealed a complete depletion of linear (n-C(9)-C(24)), light aromatics (C1-C3/benzenes) and PAHs (C2/naphthalene, C1/phenanthrene); besides a substantial degradation of isoprenoids prystane and phytane, branched and cyclic alkanes. The remaining contaminants which withstood to natural degradation was saturated polycyclic hydrocarbons (perhydro-PAH derivatives), unsaturated polycyclic hydrocarbons (tetrahydro, dihydro-PAH derivatives), terpanes, steranes and unidentified compounds. Such residues resulted in 80% reduction of its concentration after two months of laboratory treatment. Samples were extracted by organic solvents, separated by silica/alumina gel column chromatography and analyzed by gas chromatography-mass selective detector (GC-MSD). Identification and quantification of aliphatic, cyclic alkanes, typical PAHs, terpanes and steranes were carried out to chromatograms of M/Z=85, 83, individual M/Zs, M/Z=191 and 217, respectively. The present work shows that, among numerous biomarkers present in the source oil, stigmastane and two isomers of hopane showed invariable concentrations after laboratory experiments that mimic natural biodegradation in the field, so they can be used as conserved internal biomarkers. These are very useful tools to assess alterations in less stable classes of saturated compounds contained in petroleum. Marked degradation of perhydro, tetrahydro, dihydro-PAH derivatives in the laboratory treatment has been evidenced.
Bladder cancer mortality of workers exposed to aromatic amines: a 58-year follow-up.
Pira, Enrico; Piolatto, Giorgio; Negri, Eva; Romano, Canzio; Boffetta, Paolo; Lipworth, Loren; McLaughlin, Joseph K; La Vecchia, Carlo
2010-07-21
We previously investigated bladder cancer risk in a cohort of dyestuff workers who were heavily exposed to aromatic amines from 1922 through 1972. We updated the follow-up by 14 years (through 2003) for 590 exposed workers to include more than 30 years of follow-up since last exposure to aromatic amines. Expected numbers of deaths from bladder cancer and other causes were computed by use of national mortality rates from 1951 to 1980 and regional mortality rates subsequently. There were 394 deaths, compared with 262.7 expected (standardized mortality ratio = 1.50, 95% confidence interval = 1.36 to 1.66). Overall, 56 deaths from bladder cancer were observed, compared with 3.4 expected (standardized mortality ratio = 16.5, 95% confidence interval = 12.4 to 21.4). The standardized mortality ratio for bladder cancer increased with younger age at first exposure and increasing duration of exposure. Although the standardized mortality ratio for bladder cancer steadily decreased with time since exposure stopped, the absolute risk remained approximately constant at 3.5 deaths per 1000 man-years up to 29 years after exposure stopped. Excess risk was apparent 30 years or more after last exposure.
Sun, Zhi-Dan; Fu, Xiao-Long; Yu, Hong-Jian; Fan, Xue-Zhong; Ju, Xue-Hai
2017-10-05
The propellants of nitrate esters can be stabilized by some aromatic amines practically. To probe the mechanism of this phenomenon, we performed DFT calculations on: (1) The decompositions of nitrate esters (with and without the catalysis of NO 2 ) and (2) the reaction between the stabilizers and the nitro dioxide (NO 2 is released during the storage of nitrate esters). The structures on the reaction paths (reactants, intermediates and products) were optimized at the (U)B3LYP/6-31G** level. It was shown that NO 2 lowers the activation energy barrier in the decomposition of nitrate ester by 11.82-17.86kJ/mol and efficiently catalyzes the rupture of ONO 2 bond. However, the aromatic amines, typical stabilizers for nitrate esters, can easily eliminate NO 2 with activation barriers as low as 27-113kJ/mol (with one exception of 128kJ/mol). These values are, for most cases, lower or much lower than the activation energy barriers for reactions between nitrate esters and NO 2 (127-137kJ/mol). Consequently, the stabilizers can block the NO 2 catalysis for the decompositions of nitrate esters. Copyright © 2017 Elsevier B.V. All rights reserved.
Behfar, Mina; Ghiasvand, Ali Reza; Yazdankhah, Fatemeh
2017-07-01
The surface of a stainless-steel wire was platinized using electrophoretic deposition method to create a high-surface-area with porous and cohesive substrate. The platinized fiber was coated by the polypyrrole/graphene oxide nanocomposite by electropolymerization and accommodated into a stainless-steel needle to fabricate an in-needle coated fiber. The developed setup was coupled to gas chromatography with flame ionization detection and applied to extract and determine polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, fluoranthene, and pyrene) in complicated solid matrices, along with reinforcement of the extraction by cooling the sorbent, using liquid carbon dioxide. To obtain the best extraction efficiency, the important experimental variables including extraction temperature and time, temperature of cooled sorbent, sampling flow rate, and desorption condition were studied. Under the optimal condition, limits of detection for five studied analytes were in the range of 0.2-0.8 pg/g. Linear dynamic ranges for the calibration curves were found to be in the range of 0.001-1000 ng/g. Relative standard deviations obtained for six replicated analyses of 1 ng/g of analytes were 4.9-13.5%. The reinforced in-needle coated fiber method was successfully applied for the analysis of polycyclic aromatic hydrocarbons in contaminated soil samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Medina, Giselle S; Reta, Mario
2016-11-01
A dispersive liquid-liquid microextraction method using a lighter-than-water phosphonium-based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium-based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl-(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter-than-water phosphonium-based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rayne, Sierra; Forest, Kaya
2016-09-18
The air-water partition coefficients (Kaw) for 86 large polycyclic aromatic hydrocarbons and their unsaturated relatives were estimated using high-level G4(MP2) gas and aqueous phase calculations with the SMD, IEFPCM-UFF, and CPCM solvation models. An extensive method validation effort was undertaken which involved confirming that, via comparisons to experimental enthalpies of formation, gas-phase energies at the G4(MP2) level for the compounds of interest were at or near thermochemical accuracy. Investigations of the three solvation models using a range of neutral and ionic compounds suggested that while no clear preferential solvation model could be chosen in advance for accurate Kaw estimates of the target compounds, the employment of increasingly higher levels of theory would result in lower Kaw errors. Subsequent calculations on the polycyclic aromatic and unsaturated hydrocarbons at the G4(MP2) level revealed excellent agreement for the IEFPCM-UFF and CPCM models against limited available experimental data. The IEFPCM-UFF-G4(MP2) and CPCM-G4(MP2) solvation energy calculation approaches are anticipated to give Kaw estimates within typical experimental ranges, each having general Kaw errors of less than 0.5 log10 units. When applied to other large organic compounds, the method should allow development of a broad and reliable Kaw database for multimedia environmental modeling efforts on various contaminants.
Finch, Bryson E; Marzooghi, Solmaz; Di Toro, Dominic M; Stubblefield, William A
2017-08-01
Crude oils are composed of an assortment of hydrocarbons, some of which are polycyclic aromatic hydrocarbons (PAHs). Polycyclic aromatic hydrocarbons are of particular interest due to their narcotic and potential phototoxic effects. Several studies have examined the phototoxicity of individual PAHs and fresh and weathered crude oils, and several models have been developed to predict PAH toxicity. Fingerprint analyses of oils have shown that PAHs in crude oils are predominantly alkylated. However, current models for estimating PAH phototoxicity assume toxic equivalence between unsubstituted (i.e., parent) and alkyl-substituted compounds. This approach may be incorrect if substantial differences in toxic potency exist between unsubstituted and substituted PAHs. The objective of the present study was to examine the narcotic and photo-enhanced toxicity of commercially available unsubstituted and alkylated PAHs to mysid shrimp (Americamysis bahia). Data were used to validate predictive models of phototoxicity based on the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap approach and to develop relative effect potencies. Results demonstrated that photo-enhanced toxicity increased with increasing methylation and that phototoxic PAH potencies vary significantly among unsubstituted compounds. Overall, predictive models based on the HOMO-LUMO gap were relatively accurate in predicting phototoxicity for unsubstituted PAHs but are limited to qualitative assessments. Environ Toxicol Chem 2017;36:2043-2049. © 2017 SETAC. © 2017 SETAC.
Ivshina, Irina; Kostina, Ludmila; Krivoruchko, Anastasiya; Kuyukina, Maria; Peshkur, Tatyana; Anderson, Peter; Cunningham, Colin
2016-07-15
Removal of polycyclic aromatic hydrocarbons (PAHs) in soil using biosurfactants (BS) produced by Rhodococcus ruber IEGM 231 was studied in soil columns spiked with model mixtures of major petroleum constituents. A crystalline mixture of single PAHs (0.63g/kg), a crystalline mixture of PAHs (0.63g/kg) and polycyclic aromatic sulfur heterocycles (PASHs), and an artificially synthesized non-aqueous phase liquid (NAPL) containing PAHs (3.00g/kg) dissolved in alkanes C10-C19 were used for spiking. Percentage of PAH removal with BS varied from 16 to 69%. Washing activities of BS were 2.5 times greater than those of synthetic surfactant Tween 60 in NAPL-spiked soil and similar to Tween 60 in crystalline-spiked soil. At the same time, amounts of removed PAHs were equal and consisted of 0.3-0.5g/kg dry soil regardless the chemical pattern of a model mixture of petroleum hydrocarbons and heterocycles used for spiking. UV spectra for soil before and after BS treatment were obtained and their applicability for differentiated analysis of PAH and PASH concentration changes in remediated soil was shown. The ratios A254nm/A288nm revealed that BS increased biotreatability of PAH-contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.
[Characteristics of organic pollutants in the sediments from a typical electronics industrial zone].
Liu, Jin; Deng, Dai-Yong; Xu, Mei-Ying; Sun, Guo-Ping
2013-03-01
In order to investigate the contamination status of organic pollutants in a river of a typical electrical equipment industrial area, Ronggui, Foshan, the sediments were sampled for the composition, concentration and occurrence analysis of organic pollutants. The polar and non-polar fractionation methods were employed for the fingerprint establishment of organic pollutants. One hundred and seventy-one of organic chemicals including ten categories of alkanes, alkenes, polycyclic aromatic hydrocarbons, benzene, heterocyclic compounds, phthalate esters, aldehydes, ketones, polar compounds, silicon-containing material as well as alkyl esters were examined. The number of different categories of the detected organic pollutants in a descending order was: alkanes > polar compounds > polycyclic aromatic hydrocarbons > aldehydes and ketones > heterocyclic compounds > benzene homologues, phthalate ester > alkyl esters > silicon material > olefins. The abundance of detected organic pollutants in a descending order was: alkanes > polar compounds > alkyl esters > olefins > polycyclic aromatic hydrocarbons > phthalates > silicon material > aldehydes and ketones > heterocyclic compounds > benzene homologues. Among the 51 kinds of alkanes detected, nonadecane accounted for 14.83%, and the persistent organic pollutants accounted for 2.33% of the total organic matter. Compared to similar studies, there were 51 kinds of alkanes and they accounted for 55.5% of the total organic chemicals, showing high diversity and abundance. In addition, some electronics industry-related organic pollutants such as silicone materials were also detected in high frequency.
Mandalakis, Manolis; Polymenakou, Paraskevi N; Tselepides, Anastasios; Lampadariou, Nikolaos
2014-07-01
Deep sediments from the southern Cretan margin were analyzed to establish baseline levels for various types of organic pollutants before the anticipated intensification of anthropogenic activities. The total concentration of aliphatic hydrocarbons (ΣAH:326-3758ngg(-1), dry weight) was similar to those reported for deep sediments of the western Mediterranean Sea, while considerably lower levels were measured for polycyclic aromatic hydrocarbons (ΣPAH:9-60ngg(-1)). Source-diagnostic ratios suggested that the aliphatic hydrocarbons in sediments were mainly of terrestrial biogenic origin, while polycyclic aromatic hydrocarbons stemmed from the deposition of long-range transported combustion aerosols. Among the organochlorinated compounds analyzed, β-hexachlorocyclohexane (β-HCH:222-7052pgg(-1)), 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT:37-2236pgg(-1)) and polychlorinated biphenyls (ΣPCB:38-1182pgg(-1)) showed the highest abundance in sediments. The presence of HCHs and PCBs was attributed to historical inputs that have undergone extensive weathering, whereas an ongoing fresh input was suggested for p,p'-DDT. Multiple linear regression analysis revealed that the levels of the various pollutants in sediments were controlled by different factors, but with organic carbon content playing a prominent role in most cases. Copyright © 2014 Elsevier Ltd. All rights reserved.
Oña-Ruales, Jorge O.; Sharma, Arun K.; Wise, Stephen A.
2015-01-01
We applied a combination of normal-phase liquid chromatography (NPLC) with ultraviolet-visible spectroscopy and gas chromatography with mass spectrometry (GC/MS) for the fractionation, identification, and quantification of six ring C26H16 cata-condensed polycyclic aromatic hydrocarbons, PAHs, in the Standard Reference Material 1597a, Complex Mixture of PAHs from Coal Tar. For the characterization analysis, we calculated the GC retention indices of 17 C26H16 PAH authentic reference standards using the Rxi-PAH and DB-5 GC columns. Then, we used NPLC with ultraviolet-visible spectroscopy to isolate the fractions containing the C26H16 PAHs, and subsequently, we used GC/MS to establish the identity and quantity of the C26H16 PAHs using authentic reference standards. Following this procedure, 12 C26H16 cata-condensed PAHs benzo[c]pentaphene, dibenzo[f,k]tetraphene, benzo[h]pentaphene, dibenzo[a,l]tetracene, dibenzo[c,k]tetraphene, naphtho[2,3-c]tetraphene, dibenzo[a,c]tetracene, benzo[b]picene, dibenzo[a,j]tetracene, naphtho[2,1-a]tetracene, dibenzo[c,p]chrysene, and dibenzo[a,f]tetraphene were identified and quantified for the first time, and benzo[c]picene was quantified for the first time in an environmental combustion sample. PMID:26449848
Edokpayi, Joshua N.; Odiyo, John O.; Popoola, Oluwaseun E.; Msagati, Titus A. M.
2016-01-01
Polycyclic aromatic hydrocarbons are very toxic and persistent environmental contaminants. This study was undertaken to assess the concentrations and possible sources of 16 PAHs (Polycyclic aromatic hydrocarbons) classified by the United State Environmental Protection Agency as priority pollutants in water and sediments of the Mvudi and Nzhelele Rivers. Effluents from Thohoyandou wastewater treatment plant and Siloam waste stabilization ponds were also investigated. Diagnostic ratios were used to evaluate the possible sources of PAHs. PAHs in the water samples were extracted using 1:1 dichloromethane and n-hexane mixtures, while those in the sediment samples were extracted with 1:1 acetone and dichloromethane using an ultrasonication method. The extracts were purified using an SPE technique and reconstituted in n-hexane before analyses with a gas chromatograph time of flight—mass spectrometer. The results obtained indicate the prevalence of high molecular weight PAHs in all the samples. PAHs concentrations in water and sediment samples from all the sampling sites were in the range of 13.174–26.382 mg/L and 27.10–55.93 mg/kg, respectively. Combustion of biomass was identified as the major possible source of PAHs. Effluents from wastewater treatment facilities were also considered as major anthropogenic contributions to the levels of PAHs found in both river water and sediments. Mvudi and Nzhelele Rivers show moderate to high contamination level of PAHs. PMID:27043597
Suzuki, Nobuo; Ogiso, Shouzo; Yachiguchi, Koji; Kawabe, Kimi; Makino, Fumiya; Toriba, Akira; Kiyomoto, Masato; Sekiguchi, Toshio; Tabuchi, Yoshiaki; Kondo, Takashi; Kitamura, Kei-ichiro; Hong, Chun-Sang; Srivastav, Ajai K; Oshima, Yuji; Hattori, Atsuhiko; Hayakawa, Kazuichi
2015-05-01
We previously demonstrated that monohydroxylated polycyclic aromatic hydrocarbons (OHPAHs), which are metabolites of polycyclic aromatic hydrocarbons (PAHs), act on calcified tissue and suppress osteoblastic and osteoclastic activity in the scales of teleost fish. The compounds may possibly influence other calcified tissues. Thus, the present study noted the calcified spicules in sea urchins and examined the effect of both PAHs and OHPAHs on spicule formation during the embryogenesis of sea urchins. After fertilization, benz[a]anthracene (BaA) and 4-hydroxybenz[a]anthracene (4-OHBaA) were added to seawater at concentrations of 10(-8) and 10(-7) M and kept at 18 °C. The influence of the compound was given at the time of the pluteus larva. At this stage, the length of the spicule was significantly suppressed by 4-OHBaA (10(-8) and 10(-7) M). BaA (10(-7) M) decreased the length of the spicule significantly, while the length did not change with BaA (10(-8) M). The expression of mRNAs (spicule matrix protein and transcription factors) in the 4-OHBaA (10(-7) M)-treated embryos was more strongly inhibited than were those in the BaA (10(-7) M)-treated embryos. This is the first study to demonstrate that OHPAHs suppress spicule formation in sea urchins. Copyright © 2015 Elsevier Inc. All rights reserved.
THE INTERACTION OF PHENOL AND AROMATIC AMINE INHIBITORS IN HYDROCARBON OXIDATION REACTIONS,
and the structure of the phenols. This phenomenon is observed for o,o’-substituted alkylphenols and it is not observed for o,o’-nonsubstituted and...o-substituted alkylphenols . The rate of amine reduction by phenol is determined by the activity of the formed phenoxyl radical. The rate constants
Bacterial Degradation of Aromatic Compounds
Seo, Jong-Su; Keum, Young-Soo; Li, Qing X.
2009-01-01
Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms. PMID:19440284
Induction of micronuclei in V79 cells after combined treatments with heterocyclic aromatic amines.
Perez, C; Lopez de Cerain, A; Bello, J
2002-10-01
Heterocyclic aromatic amines (HAs) appear in foods rich in proteins when subjected to different cooking processes. These amines have been demonstrated to be mutagenic in bacteria; in eucaryotic cells, controversial results have been referred. The objective of this study is to evaluate the clastogenic and/or aneugenic capacity of three HAs--2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3-methylimidazo[4,5-f]quinoxaline (IQx), and 2-amino-3-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)--in isolated as well as in combined treatments. The micronucleus test in vitro was used on V79 cells in the presence and absence of metabolic activation. The duration of the treatment was 2 h, and cytochalasin B was added for 21 h to stop cytokinesis; then, micronuclei (MN) were counted in binucleated cells. In the presence of metabolic activation, the three amines showed a significant increase in the number of MN with respect to the negative control. The PhIP amine presented the highest values and it also resulted slightly active in the absence of metabolic activation, although these differences have not been considered to be significant. The combined treatments of these amines have shown that the effects attributed to them when administered together are those that are expected for a possible additive effect; the effect attributed to each HA separately is not potentiated nor inhibited.
Cross, Amanda J; Ferrucci, Leah M; Risch, Adam; Graubard, Barry I; Ward, Mary H; Park, Yikyung; Hollenbeck, Albert R; Schatzkin, Arthur; Sinha, Rashmi
2010-03-15
Although the relation between red and processed meat intake and colorectal cancer has been reported in several epidemiologic studies, very few investigated the potential mechanisms. This study examined multiple potential mechanisms in a large U.S. prospective cohort with a detailed questionnaire on meat type and meat cooking methods linked to databases for estimating intake of mutagens formed in meats cooked at high temperatures (heterocyclic amines, polycyclic aromatic hydrocarbons), heme iron, nitrate, and nitrite. During 7 years of follow-up, 2,719 colorectal cancer cases were ascertained from a cohort of 300,948 men and women. The hazard ratios (HR) and 95% confidence intervals (95% CI) comparing the fifth to the first quintile for both red (HR, 1.24; 95% CI, 1.09-1.42; P(trend) < 0.001) and processed meat (HR, 1.16; 95% CI, 1.01-1.32; P(trend) = 0.017) intakes indicated an elevated risk for colorectal cancer. The potential mechanisms for this relation include heme iron (HR, 1.13; 95% CI, 0.99-1.29; P(trend) = 0.022), nitrate from processed meats (HR, 1.16; 95% CI, 1.02-1.32; P(trend) = 0.001), and heterocyclic amine intake [HR, 1.19; 95% CI, 1.05-1.34; P(trend) < 0.001 for 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and HR, 1.17; 95% CI, 1.05-1.29; P(trend) <0.001 for 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx)]. In general, the elevated risks were higher for rectal cancer than for colon cancer, with the exception of MeIQx and DiMeIQx, which were only associated with colon cancer. In conclusion, we found a positive association for red and processed meat intake and colorectal cancer; heme iron, nitrate/nitrite, and heterocyclic amines from meat may explain these associations.
Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1.
Kweon, Ohgew; Kim, Seong-Jae; Holland, Ricky D; Chen, Hongyan; Kim, Dae-Wi; Gao, Yuan; Yu, Li-Rong; Baek, Songjoon; Baek, Dong-Heon; Ahn, Hongsik; Cerniglia, Carl E
2011-09-01
This study investigated a metabolic network (MN) from Mycobacterium vanbaalenii PYR-1 for polycyclic aromatic hydrocarbons (PAHs) from the perspective of structure, behavior, and evolution, in which multilayer omics data are integrated. Initially, we utilized a high-throughput proteomic analysis to assess the protein expression response of M. vanbaalenii PYR-1 to seven different aromatic compounds. A total of 3,431 proteins (57.38% of the genome-predicted proteins) were identified, which included 160 proteins that seemed to be involved in the degradation of aromatic hydrocarbons. Based on the proteomic data and the previous metabolic, biochemical, physiological, and genomic information, we reconstructed an experiment-based system-level PAH-MN. The structure of PAH-MN, with 183 metabolic compounds and 224 chemical reactions, has a typical scale-free nature. The behavior and evolution of the PAH-MN reveals a hierarchical modularity with funnel effects in structure/function and intimate association with evolutionary modules of the functional modules, which are the ring cleavage process (RCP), side chain process (SCP), and central aromatic process (CAP). The 189 commonly upregulated proteins in all aromatic hydrocarbon treatments provide insights into the global adaptation to facilitate the PAH metabolism. Taken together, the findings of our study provide the hierarchical viewpoint from genes/proteins/metabolites to the network via functional modules of the PAH-MN equipped with the engineering-driven approaches of modularization and rationalization, which may expand our understanding of the metabolic potential of M. vanbaalenii PYR-1 for bioremediation applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oanh, N.T.K.; Reutergardh, L.B.; Dung, N.T.
Total suspended particulate matter in ambient air was sampled by high volume samplers at four sites at the Asian Institute of Technology campus, west of the Phahonyothin Road, Phathumthani Province, 40 km North of Bangkok, Thailand. The concentrations of 18 polycyclic aromatic hydrocarbons (PAHs), were measured by gas liquid chromatography with flame ionization and/or liquid solid chromatography with fluorescence detection. The PAH profile with relatively high concentrations of benzo(ghi)perylene and coronene, decreasing with the distance from the road, suggested a substantial contribution from the traffic. The concentrations in the core of the campus were compatible to those reported for residentialmore » areas in Bangkok, but higher than some western metropolitan areas.« less
[Preliminary determination of organic pollutants in agricultural fertilizers].
Mo, Ce-hui; Li, Yun-hui; Cai, Quan-ying; Zeng, Qiao-yun; Wang, Bo-guang; Li, Hai-qin
2005-05-01
Organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) in agricultural fertilizers are new problem deserved more study. Eight kinds of organic pollutants including 43 compounds classified as US EPA priority pollutants in twenty one agricultural fertilizers which were universally used in China were determined by Gas chromatography-mass spectrum (GC-MS). Three kinds of organic pollutants including more than 5 compounds were detected in most fertilizers, composing mainly of phthalic acid esters (PAEs), nitrobenzenes (NBs) and polycyclic aromatic hydrocarbons (PAHs). There were 26 compounds detected in at least one fertilizer, five of them especially PAEs detected in most fertilizer and even in all fertilizers. Benzo(a)pyrene, a strongly carcinogenic compound was detected in two fertilizers. Higher concentrations of compounds were determined in those fertilizers such as multifunction compound fertilizers and coated fertilizers.
NASA Astrophysics Data System (ADS)
Mitra, Siddhartha; Kimmel, David G.; Snyder, Jessica; Scalise, Kimberly; McGlaughon, Benjamin D.; Roman, Michael R.; Jahn, Ginger L.; Pierson, James J.; Brandt, Stephen B.; Montoya, Joseph P.; Rosenbauer, Robert J.; Lorenson, Thomas D.; Wong, Florence L.; Campbell, Pamela L.
2012-01-01
Mesozooplankton (>200 μm) collected in August and September of 2010 from the northern Gulf of Mexico show evidence of exposure to polycyclic aromatic hydrocarbons (PAHs). Multivariate statistical analysis revealed that distributions of PAHs extracted from mesozooplankton were related to the oil released from the ruptured British Petroleum Macondo-1 (M-1) well associated with the R/V Deepwater Horizon blowout. Mesozooplankton contained 0.03-97.9 ng g-1 of total PAHs and ratios of fluoranthene to fluoranthene + pyrene less than 0.44, indicating a liquid fossil fuel source. The distribution of PAHs isolated from mesozooplankton extracted in this study shows that the 2010 Deepwater Horizon spill may have contributed to contamination in the northern Gulf of Mexico ecosystem.
Liu, Y; Zhu, L; Wang, J; Shen, X; Chen, X
2001-11-01
Twelve polycyclic aromatic hydrocarbons (PAHs) were measured in eight homes in Hangzhou during the summer and autumn in 1999. The sources of PAHs and the contributions of the sources to the total concentration of PAHs in the indoor air were identified by the combination of correlation analysis, factor analysis and multiple regression, and the equations between the concentrations of PAHs in indoor and outdoor air and factors were got. It was indicated that the factors of PAHs in the indoor air were domestic cuisine, the volatility of the mothball, cigarette smoke and heating, the waste gas from vehicles. In the smokers' home, cigarette smoke was the most important factor, and it contributed 25.8% of BaP to the indoor air of smokers' home.
NASA Technical Reports Server (NTRS)
Schutte, W. A.; Tielens, A. G. G. M.; Allamandola, L. J.; Wooden, D. H.; Cohen, M.
1990-01-01
The 5-8 micron spectra obtained toward the two protostellar sources, HD 97048 and Elias 1 exhibit strong anomalous emission features at 3.43 and 3.53 microns. Combining these results with earlier data established that the emission in the general IR features is extended on at least a 20-arcsec scale. In view of the high energy density in the emission zone, as well as the apparent correspondence of the anomalous 3.43 and 3.53 micron features with weak emission shoulders associated with the general family of IR emission bands, an explanation for these observations in terms of C-C overtones and combination tones of large or dehydrogenated polycyclic aromatic hydrocarbons is judged to be provisionally suitable.
Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Allamandola, L. J.
2004-01-01
Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role that carbon-rich plays in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbons (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry -are recognized throughout the Universe. In this presentation, we will examine the current state of the interstellar PAH model and explore how this data, in conjunction with the unparalleled observational data provided by the Spitzer Space Telescope, can be used to draw ever-deeper insights into the physical and chemical natures of a wide range of astrophysical environments.
Chien, Yi-Chi; Liang, Chenju; Liu, Shou-Heng; Yang, Shu-Hua
2010-07-01
This study investigates the combustion kinetics and emission factors of 16 U.S. Environmental Protection Agency priority polycyclic aromatic hydrocarbons (PAHs) in polylactic acid (PLA) combustion. Experimentally, two reactions are involved in the PLA combustion process that potentially result in the release of lactide, acetaldehyde, and n-hexaldehyde. The products may continuously be oxidized to form carbon dioxide (CO2) and some PAHs produced because of incomplete combustion. The analytical results indicate that the emission factors for PAHs are in the range of not detectable to 98.04 microg/g. The emission factors are much lower than those of poly(ethylene terephalate) (PET) and other combustion of plastics. Results from this work suggest that combustion is a good choice for waste PLA disposal.
NASA Technical Reports Server (NTRS)
Woon, D. E.; Park, J.-Y.
2004-01-01
We employed density functional theory (DFT) calculations to model the photoionization behavior of benzene and small polycyclic aromatic hydrocarbons when they are embedded in a matrix of water ice in order to investigate issues raised by recent experimental work by Gudipati and Allamandola. The ionization energies of benzene, naphthalene, anthracene, and pyrene were found to be lowered by 1.5-2.1 eV in water ice. Low-lying vertical electronic excitation energies were computed with time-dependent DFT for both neutral and ionized species and are found in both cases to be remarkably unaffected by the ice matrix. Chemical behavior in ultraviolet-photoprocessed ices is also discussed, with a focus on electron recombination and pathways leading to phenol and analogous products.
NASA Astrophysics Data System (ADS)
Xu, Shuang; Tao, Ping; Li, Yuxia; Guo, Qi; Zhang, Yan; Wang, Man; Jia, Hongliang; Shao, Mihua
2018-01-01
Sixteen polycyclic aromatic hydrocarbons (PAHs) were determined in surface sediments from Liaodong Bay, northeast China. The concentration levels of total PAHs (Σ16PAHs) in sediment were 11.0˜249.6 ng·g-1 dry weight (dw), with a mean value of 89.9 ng·g-1 dry weight (dw). From the point of the spatial distribution, high PAHs levels were found in the western areas of Liaodong Bay. In the paper, sources of PAHs were investigated by diagnostic ratios, which indicated that pyrogenic sources were the main sources of PAHs in the sediment of Liaodong Bay. Therefore, selected PAH levels in sediments were compared with Sediments Quality Guidelines (ERM-ERL indexes) for evaluation probable toxic effects on marine organism.
Mitra, Siddhartha; Kimmel, David G.; Snyder, Jessica; Scalise, Kimberly; McGlaughon, Benjamin D.; Roman, Michael R.; Jahn, Ginger L.; Pierson, James J.; Brandt, Stephen B.; Montoya, Joseph P.; Rosenbauer, Robert J.; Lorenson, T.D.; Wong, Florence L.; Campbell, Pamela L.
2012-01-01
Mesozooplankton (>200 μm) collected in August and September of 2010 from the northern Gulf of Mexico show evidence of exposure to polycyclic aromatic hydrocarbons (PAHs). Multivariate statistical analysis revealed that distributions of PAHs extracted from mesozooplankton were related to the oil released from the ruptured British Petroleum Macondo-1 (M-1) well associated with the R/VDeepwater Horizon blowout. Mesozooplankton contained 0.03–97.9 ng g−1 of total PAHs and ratios of fluoranthene to fluoranthene + pyrene less than 0.44, indicating a liquid fossil fuel source. The distribution of PAHs isolated from mesozooplankton extracted in this study shows that the 2010 Deepwater Horizon spill may have contributed to contamination in the northern Gulf of Mexico ecosystem.
Zhang, Guoying; Gao, Bao; Huang, Hanmin
2015-06-22
A novel and efficient palladium-catalyzed hydroaminocarbonylation of alkenes with aminals has been developed under mild reaction conditions, and allows the synthesis of a wide range of N-alkyl linear amides in good yields with high regioselectivity. On the basis of this method, a cooperative catalytic system operating by the synergistic combination of palladium, paraformaldehyde, and acid was established for promoting the hydroaminocarbonylation of alkenes with both aromatic and aliphatic amines, which do not react well under conventional palladium-catalyzed hydroaminocarbonylation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peng, Lijuan; Turesky, Robert J.
2013-01-01
Aromatic amines and heterocyclic aromatic amines (HAAs) are a class of structurally related carcinogens that are formed during the combustion of tobacco or during the high temperature cooking of meats. These procarcinogens undergo metabolic activation by N-oxidation of the exocyclic amine group to produce N-hydroxylated metabolites, which are critical intermediates implicated in toxicity and DNA damage. The arylhydroxylamines and their oxidized arylnitroso derivatives can also react with cysteine (Cys) residues of glutathione or proteins to form, respectively, sulfenamide and sulfinamide adducts. However, sulfur-nitrogen linked adducted proteins are often difficult to detect because they are unstable and undergo hydrolysis during proteolytic digestion. Synthetic N-oxidized intermediates of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic HAA produced in cooked meats, and 4-aminobiphenyl, a carcinogenic aromatic amine present in tobacco smoke were reacted with human serum albumin (SA) and formed labile sulfenamide or sulfinamide adducts at the Cys34 residue. Oxidation of the carcinogen-modified SA with m-chloroperoxybenzoic acid (m-CPBA) produced the arylsulfonamide adducts, which were stable to heat and the chemical reduction conditions employed to denature SA. The sulfonamide adducts of PhIP and 4-ABP were identified, by liquid chromatography/mass spectrometry, in proteolytic digests of denatured SA. Thus, selective oxidation of arylamine-modified SA produces stable arylsulfonamide-SA adducts, which may serve as biomarkers of these tobacco and dietary carcinogens. PMID:23240913
NASA Astrophysics Data System (ADS)
He, Huarui; Uray, Georg; Wolfbeis, Otto S.
1991-09-01
This paper presents a method for optically sensing enantiomers (optical isomers) of biological amines such as norephedrine, and drugs such as the (Beta) -blocker propranolol. It is based on the use of a new lipophilic aromatic ammonium ion carrier (DODD) and a highly fluorescent lipophilic proton carrier (DZ 49) dissolved in a pvc membrane. Recognition of one of the enantiomers is accomplished by specific interaction of the amine with the optically active lipophilic substrate in a pvc membrane. The amine, which is present as an ammonium ion at physiological pH, is carried into the pvc membranes. Simultaneously, a proton is released from the proton carrier (a lipophilic xanthene dye) that thereby undergoes a change in both color and fluorescence intensity. The sensors respond to three analytes in the concentration range from 0.01 to 10 mM for propranolol, 0.3 to 100 mM for norephedrine, and 1 to 100 mM for 1-phenylethylamine. The selectivity coefficients (Kopt) are 0.8, 0.7, and 0.8 for propranolol, norephedrine,a nd 1-phenylethylamine, respectively. It is of potential utility for specifically recognizing one out of several isomers, in particular bioactive amines, where one form usually is active only. The carrier showed stronger affinity for compounds which contain naphthyl rather than phenyl substituents.
Li, Chunsen; Wu, Wei; Cho, Kyung-Bin; Shaik, Sason
2009-08-24
Two types of tertiary amine oxidation processes, namely, N-dealkylation and N-oxygenation, by compound I (Cpd I) of cytochrome P450 are studied theoretically using hybrid DFT calculations. All the calculations show that both N-dealkylation and N-oxygenation of trimethylamine (TMA) proceed preferentially from the low-spin (LS) state of Cpd I. Indeed, the computed kinetic isotope effects (KIEs) for the rate-controlling hydrogen abstraction step of dealkylation show that only the KIE(LS) fits the experimental datum, whereas the corresponding value for the high-spin (HS) process is much higher. These results second those published before for N,N-dimethylaniline (DMA), and as such, they further confirm the conclusion drawn then that KIEs can be a sensitive probe of spin state reactivity. The ferric-carbinolamine of TMA decomposes most likely in a non-enzymatic reaction since the Fe-O bond dissociation energy (BDE) is negative. The computational results reveal that in the reverse reaction of N-oxygenation, the N-oxide of aromatic amine can serve as a better oxygen donor than that of aliphatic amine to generate Cpd I. This capability of the N-oxo derivatives of aromatic amines to transfer oxygen to the heme, and thereby generate Cpd I, is in good accord with experimental data previously reported.
NASA Technical Reports Server (NTRS)
McCollom, T. M.; Simoneit, B. R.; Shock, E. L.
1999-01-01
Polycyclic aromatic hydrocarbons (PAH) are found at high concentrations in thermally altered organic matter and hydrothermally generated petroleum from sediment-covered seafloor hydro-thermal systems. To better understand the factors controlling the occurrence of PAH in thermally altered environments, the reactivities of two PAH, phenanthrene and anthracene, were investigated in hydrothermal experiments. The compounds were heated with water at 330 degrees C in sealed reaction vessels for durations ranging from 1 to 17 days. Iron oxide and sulfide minerals, formic acid, or sodium for-mate were included in some experiments to vary conditions within the reaction vessel. Phenanthrene was unreactive both in water alone and in the presence of minerals for up to 17 days, while anthracene was partially hydrogenated (5-10%) to di- and tetrahydroanthracene. In the presence of 6-21 vol % formic acid, both phenanthrene and anthracene reacted extensively to form hydrogenated and minor methylated derivatives, with the degree of hydrogenation and methylation increasing with the amount of formic acid. Phenanthrene was slightly hydrogenated in sodium formate solutions. The hydrogenation reactions could be readily reversed; heating a mixture of polysaturated phenanthrenes resulted in extensive dehydrogenation (aromatization) after 3 days at 330 degrees C. While the experiments demonstrate that reaction pathways for the hydrogenation of PAH under hydrothermal conditions exist, the reactions apparently require higher concentrations of H2 than are typical of geologic settings. The experiments provide additional evidence that PAH may be generated in hydrothermal systems from progressive aromatization and dealkylation of biologically derived polycyclic precursors such as steroids and terpenoids. Furthermore, the results indicate that PAH initially present in sediments or formed within hydrothermal systems are resistant to further thermal degradation during hydrothermal alteration.
Pathiratne, Asoka; Hemachandra, Chamini K
2010-08-01
Despite ubiquity of polycyclic aromatic hydrocarbons (PAHs) in the tropical environments, little information is available concerning responses of tropical fish to PAHs and associated toxicity. In the present study, effects of five PAHs containing two to four aromatic rings on hepatic CYP1A dependent ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST) and serum sorbitol dehydrogenase (SDH) activities in Nile tilapia, a potential fish species for biomonitoring pollution in tropical waters, were evaluated. Results showed that EROD activities were induced by the PAHs containing four aromatic rings (pyrene and chrysene) in a dose dependent manner. However PAHs with two to three aromatic rings (naphthalene, phenanthrene and fluoranthene) caused no effect or inhibition of EROD activities depending on the dose and the duration. Fluoranthene was the most potent inhibitor. SDH results demonstrated that high doses of fluoranthene induced hepatic damage. GST activity was induced by the lowest dose of phenanthrene, fluoranthene and chrysene but high doses had no effect. The results indicate that induction of EROD enzyme in Nile tilapia is a useful biomarker of exposure to PAHs such as pyrene and chrysene. However EROD inhibiting PAHs such as fluoranthene in the natural environment may modulate the EROD inducing potential of other PAHs thereby influencing PAH exposure assessments.
Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.
Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J
1995-01-01
Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found. PMID:7487007
Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.
Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J
1995-10-01
Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found.
Sakai, Norio; Takahashi, Nobuaki; Inoda, Daiki; Ikeda, Reiko; Konakahara, Takeo
2013-10-10
We have demonstrated that a cooperative catalytic system comprised of CuCl and Cu(OTf)(2) could be used to effectively catalyse the three-, five- and seven-component coupling reactions of aliphatic or aromatic amines, formaldehyde, and trimethylsilyl cyanide (TMSCN), and selectively produce in good yields the corresponding cyanomethylamines, N,N-bis(cyanomethyl)amines and N,N'-bis(cyanomethyl)methylenediamines.
Sreedhar, B; Reddy, P Surendra; Devi, D Keerthi
2009-11-20
This note describes the direct reductive amination of carbonyl compounds with nitroarenes using gum acacia-palladium nanoparticles, employing molecular hydrogen as the reductant. This methodology is found to be applicable to both aliphatic and aromatic aldehydes and a wide range of nitroarenes. The operational simplicity and the mild reaction conditions add to the value of this method as a practical alternative to the reductive amination of carbonyl compounds.
Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades.
Mutti, Francesco G; Knaus, Tanja; Scrutton, Nigel S; Breuer, Michael; Turner, Nicholas J
2015-09-25
α-Chiral amines are key intermediates for the synthesis of a plethora of chemical compounds at industrial scale. We present a biocatalytic hydrogen-borrowing amination of primary and secondary alcohols that allows for the efficient and environmentally benign production of enantiopure amines. The method relies on a combination of two enzymes: an alcohol dehydrogenase (from Aromatoleum sp., Lactobacillus sp., or Bacillus sp.) operating in tandem with an amine dehydrogenase (engineered from Bacillus sp.) to aminate a structurally diverse range of aromatic and aliphatic alcohols, yielding up to 96% conversion and 99% enantiomeric excess. Primary alcohols were aminated with high conversion (up to 99%). This redox self-sufficient cascade possesses high atom efficiency, sourcing nitrogen from ammonium and generating water as the sole by-product. Copyright © 2015, American Association for the Advancement of Science.
Slavov, Svetoslav H; Stoyanova-Slavova, Iva; Mattes, William; Beger, Richard D; Brüschweiler, Beat J
2018-07-01
A grid-based, alignment-independent 3D-SDAR (three-dimensional spectral data-activity relationship) approach based on simulated 13 C and 15 N NMR chemical shifts augmented with through-space interatomic distances was used to model the mutagenicity of 554 primary and 419 secondary aromatic amines. A robust modeling strategy supported by extensive validation including randomized training/hold-out test set pairs, validation sets, "blind" external test sets as well as experimental validation was applied to avoid over-parameterization and build Organization for Economic Cooperation and Development (OECD 2004) compliant models. Based on an experimental validation set of 23 chemicals tested in a two-strain Salmonella typhimurium Ames assay, 3D-SDAR was able to achieve performance comparable to 5-strain (Ames) predictions by Lhasa Limited's Derek and Sarah Nexus for the same set. Furthermore, mapping of the most frequently occurring bins on the primary and secondary aromatic amine structures allowed the identification of molecular features that were associated either positively or negatively with mutagenicity. Prominent structural features found to enhance the mutagenic potential included: nitrobenzene moieties, conjugated π-systems, nitrothiophene groups, and aromatic hydroxylamine moieties. 3D-SDAR was also able to capture "true" negative contributions that are particularly difficult to detect through alternative methods. These include sulphonamide, acetamide, and other functional groups, which not only lack contributions to the overall mutagenic potential, but are known to actively lower it, if present in the chemical structures of what otherwise would be potential mutagens.
DNA adducts are the covalent addition products resulting from binding of reactive chemical species to DNA bases. The cancer initiating role of DNA adducts is well-established, and is clearly reflected in the high cancer incidence observed in individuals with deficiencies in any o...
NASA Technical Reports Server (NTRS)
Sugg, E.; Mason, J. G.
1983-01-01
Work has revealed that diamine derivatives of diphenylmethane (IV), diphenyl ether (V), benzophenone (IV), fluorene (VII), and fluorenone (VIII) polymerizations with pyromellitic dianhydride in DMA were dependent on the basicity of the amine compound. The correlation between the basicity of the amine and its reactivity with phthalic anhydride was determined. Basicity measurements were made by potentiometric titration of each amine in an acetonitrile-water solvent system, from which the pKa of the amine could be determined. Reactivity was defined in terms of the second order rate constant derived form spectrophotometric examination of the reaction between each amine and phthalic anhydride in DMA. This reaction was expected to proceed in either one (for a monoamine) or two (for a diamine) stages.
Job, D; Dunford, H B
1976-07-15
A stopped-flow kinetic study shows that the reduction rate of horseradish peroxidase compound I by phenols and aromatic amines is greatly dependent upon the substituent effect on the benzene ring. Morever it has been possible to relate the reduction rate constants of monosubstituted substrates by a linear free-energy relationship (Hammett equation). The correlation of log (rate constants) with sigma values (Hammett equation) and the absence of correlation with sigma+ values (Okamoto-Brown equation) can be explained by a mechanism of aromatic substrate oxidations, in which the substrate gives an electron to the enzyme compound I and simultaneously loses a proton. The analogy which has been made with oxidation potentials of phenols or anilines strengthens the view that the reaction is only dependent on the relative ease of oxidation of the substrate. The rate constant obtained for p-aminophenol indicates that a value of 2.3 X 10(8) M-1 S-1 probably approaches the diffusion-controlled limit for a bimolecular reaction involving compound I and an aromatic substrate.
Identification of Organics in Ice Grains from Enceladus
NASA Astrophysics Data System (ADS)
Khawaja, N.; Postberg, F.; Reviol, R.; Nölle, L.; Klenner, F.; Srama, R.
2015-12-01
The Cosmic Dust Analyzer (CDA) aboard the Cassini spacecraft performs in-situ measurements of the chemical composition of icy dust grains impinging onto the target surface. The instrument recorded cationic Time-of-Flight (ToF) mass spectra of organic-bearing ice grains emitted from Enceladus at different impact velocities causing different molecular fragmentation patterns [1,2]. Here we present a detailed analysis of these spectra (Type-2) to identify the composition of organic material embedded in Enceladus ice grains. The organic compounds display a great compositional diversity, which indicates varying contributions of several organic species. The spectra analysis is supported by a large-scale laboratory ground campaign yielding a library of analogue spectra for organic material embedded in a water ice matrix. To mimic the identified pattern of cationic fragments in organic enriched spectra we use a laboratory setup: Infrared Free Liquid MALDI ToF Mass Spectrometer (IR-FL-MALDI-ToF-MS). An infrared laser is used to disperse a liquid micro-beam of a water-solution to get cationic fragments. The laser energy is adjusted to simulate different impact velocities of ice particles on CDA [3]. So far we have identified characteristic fragment patterns of at least three classes of organic molecules: (i) aromatic species, (ii) amines, and (iii) carbonyl group species. (i) ice grains containing aromatic species are identified by a series of characteristic aromatic fragment cations (ii) ice grains containing amines are identified by a pronounced ammonium cation and (iii) ice grains containing carbonyl compounds are specified by a characteristic acylium cation in conjunction with certain others mass lines. Besides aromatic, amine and carbonyl species, Type-2 spectra also show contributions from other, yet un-specified, organic species. Typically, fragment cations of aromatic compounds are stable at impact velocities up-to 15km/s whereas cations of amines and carbonyl species are stable at velocities below 8km/s. Work is in progress to quantify concentrations of the identified species and to assign yet un-specified organic mass lines in Type 2 spectra. Ref: [1]Postberg et al., Icarus-193,2008. [2]Postberg et al., Nature-459,2009. [3]Beinsen, A., University of Göttingen, Dissertation (2011).
2010-07-28
Two extremely bright stars illuminate a greenish mist in this image from the new GLIMPSE360 survey from NASA Spitzer Space Telescope. The fog is comprised of hydrogen and carbon compounds called polycyclic aromatic hydrocarbons.
Ingredients for Life Artist Concept
2005-07-27
This artist conception symbolically represents complex organic molecules, known as polycyclic aromatic hydrocarbons, seen in the early universe. These large molecules, comprised of carbon and hydrogen, are considered among the building blocks of life.
ISO Mid-Infrared Spectra of Reflection Nebulae
NASA Technical Reports Server (NTRS)
Werner, M.; Uchida, K.; Sellgren, K.; Houdashelt, M.
1999-01-01
Our goal is to test predictions of models attributing the IEFs to polycyclic aromatic hydrocarbons (PAHs). Interstellar models predict PAHs change from singly ionized to neutral as the UV intensity, Go, decreases.
NASA Astrophysics Data System (ADS)
Huang, De-Yin; Zhou, Shun-Gui; Hong, Wei; Feng, Wei-Feng; Tao, Liang
2013-06-01
With the aim to investigate the main pollution characteristics of exhaust gases emitted from plastic waste recycling granulation plants, mainly volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) were analyzed in Xingtan Town, the largest distribution center of plastic waste recycling in China. Both inside and outside the plants, the total concentrations of volatile monocyclic aromatic hydrocarbons (MAHs), PAHs and PAEs ranged from 2000 to 3000 μg m-3, 450 to 1200 ng m-3, and 200 to 1200 ng m-3, respectively. Their concentration levels inside the plants were higher than those outside the plants, and PAHs and PAEs were mainly distributed in the gas-phase. Notably, highly toxic benzo[a]pyrene (BaP) could be detected inside the plants, and harmful PAEs could be detected not only inside but also outside the plants, although PAEs are non-volatile. The exhaust gas composition and concentration were related to the plastic feedstock and granulation temperature.
NASA Technical Reports Server (NTRS)
Du, Ping; Salama, Farid; Loew, Gilda H.
1993-01-01
In order to preselect possible candidates for the origin of diffuse interstellar bands observed, semiempirical quantum mechanical method INDO/S was applied to the optical spectra of neutral, cationic, and anionic states of naphthalene and its hydrogen abstraction and addition derivatives. Comparison with experiment shows that the spectra of naphthalene and its ions were reliably predicted. The configuration interaction calculations with single-electron excitations provided reasonable excited state wavefunctions compared to ab initio calculations that included higher excitations. The degree of similarity of the predicted spectra of the hydrogen abstraction and derivatives to those of naphthalene and ions depends largely on the similarity of the it electron configurations. For the hydrogen addition derivatives, very little resemblance of the predicted spectra to naphthalene was found because of the disruption of the aromatic conjugation system. The relevance of these calculations to astrophysical issues is discussed within the context of these polycyclic aromatic hydrocarbon models. Comparing the calculated electronic energies to the Diffuse Interstellar Bands (DIBs), a list of possible candidates of naphthalene derivatives is established which provides selected candidates for a definitive test through laboratory studies.
Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Zhao, Rusong; Zhi, Chunyi; Wu, Chiman Lawrence
2014-09-01
Boron nitride nanotube (BNNT) is a novel material that shows potential ability in capturing organic pollutants. In this study, BNNTs fixed on a stainless steel fiber by a sol-gel technique were used as sorbent for solid-phase microextraction. Five polycyclic aromatic hydrocarbons with different numbers of aromatic rings were selected as target analysts. Gas chromatography coupled with tandem mass spectrometry was used for detection and quantitative determination. Under optimized conditions, the experimental results show a wide range of linearity (1 to 1,000 ng L(-1)), less than 10.1 % repeatability of relative standard deviation, and low detection limits (0.08 to 0.39 ng L(-1)). In addition, the fabricated fiber offered good thermal and chemical stability. The proposed method was successfully applied for the analysis of real water samples, and satisfactory results were obtained with relative recoveries ranging from 80.2 to 116.8 %. The results demonstrated that BNNTs could be used as sorbent for the analysis of environmental pollutants at trace levels.
Interstellar Polycyclic Aromatic Compounds and Astrophysics
NASA Technical Reports Server (NTRS)
Hodgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)
1999-01-01
Polycyclic aromatic compounds (PACs), a class of organic molecules whose structures are characterized by the presence of two or more fused aromatic rings, have been the subject of astrophysical interest for nearly two decades. Large by interstellar standards (from as few as 20 to perhaps as many as several hundred atoms), it has been suggested that these species are among the most abundant interstellar molecules impacting a wide range of astrophysical phenomena including: the ubiquitous family of infrared emission bands observed in an ever-increasing assortment of astronomical objects; the subtle but rich array of discrete visible/near-infrared interstellar molecular absorption features known as the diffuse interstellar bands (DIBs); the broad near-infrared quasi-continuum observed in a number of nebulae known as excess red emission (ERE); the interstellar ultraviolet extinction curve and broad '2200 Angstrom bump'; the heating/cooling mechanisms of interstellar clouds. Nevertheless, until recently a lack of good-quality laboratory spectroscopic data on PACs under astrophysically relevant conditions (i.e. isolated, ionized molecules; ionized molecular clusters, etc.) has hindered critical evaluation and extension of this model
Zhou, Hui; Wu, Chunfei; Onwudili, Jude A; Meng, Aihong; Zhang, Yanguo; Williams, Paul T
2015-02-01
The formation of 2-4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock. Copyright © 2014 Elsevier Ltd. All rights reserved.
Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA
Chakraborty, Jayeeta; Varonka, Matthew S.; Orem, William H.; Finkelman, Robert B.; Manton, William
2017-01-01
The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.
Leonard, J D; Hellou, J
2001-03-01
Speckled trout, Salvelinus fontinalis, were orally exposed to individual polycyclic aromatic compounds (PACs) represented by benzo[a]pyrene, carbazole, chrysene, dibenzofuran, dibenzothiophene, fluorene, phenanthrene, and pyrene. Fish were sacrificed 7 d after exposure and the gall bladder removed for bile analysis. High pressure liquid chromatography (HPLC) with fluorescence (F) and ultraviolet (UV) detection was used to determine the presence of PAC derivatives in the bile without pretreatment. Glucuronide conjugates were predominant in all exposures with variable amounts (0-53%) of phenols and starting material. Identification of compounds was confirmed by selective extraction of less polar nonconjugated PACs and enzymatic hydrolysis of water-soluble material. This was followed by HPLC and/or gas chromatography-mass spectrometry (GCMS) characterization of the produced phenols. Total metabolite levels varied widely among compounds.
Determination of polycyclic aromatic hydrocarbons in roasted coffee
JIMENEZ, ANGELICA; ADISA, AFOLABI; WOODHAM, CARA; SALEH, MAHMOUD
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are suspected to be carcinogenic and mutagenic. This study describes the presence of PAHs in light, medium and dark roasted coffee including instant and decaffeinated brands. Total PAHs concentration was related to the degree of roasting with light roasted coffee showing the least and dark roasted coffee showing the highest level. Both instant and decaffeinated coffee brand showed lower levels of PAHs. Naphthalene, acenaphthylene, pyrene and chrysene were the most abundant individual isomers. The concentrations ranged from 0 to 561 ng g−1 for naphthalene, 0 to 512 ng g−1 for acenaphthylene, 60 to 459 ng g−1 for pyrene and 56 to 371 ng g−1 for chrysene. Thus, roasting conditions should be controlled to avoid the formation of PAHs due to their suspected carcinogenic and mutagenic properties. PMID:25190557
Nisticò, Roberto; Cesano, Federico; Franzoso, Flavia; Magnacca, Giuliana; Scarano, Domenica; Funes, Israel G; Carlos, Luciano; Parolo, Maria E
2018-07-01
Composted urban biowaste-derived substances (BBS-GC) are used as carbon sources for the preparation of carbon-coated magnet-sensitive nanoparticles obtained via co-precipitation method and the subsequent thermal treatment at 550 °C under nitrogen atmosphere. A multitechnique approach has been applied to investigate the morphology, magnetic properties, phase composition, thermal stability of the obtained magnet-sensitive materials. In particular, pyrolysis-induced modifications affecting the BBS-GC/carbon shell were highlighted. The adsorption capacity of such bio-derivative magnetic materials for the removal of hydrophobic contaminants such as polycyclic aromatic hydrocarbons was evaluated in order to verify their potential application in wastewater remediation process. The promising results suggest their use as a new generation of magnet-responsive easily-recoverable adsorbents for water purification treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei
2017-07-01
Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.
Teixeira, Elba Calesso; Pra, Daniel; Idalgo, Daniele; Henriques, João Antonio Pêgas; Wiegand, Flavio
2012-03-01
This study was designed to biomonitor the effect of PAH extracts from urban areas on the DNA of lung cell cultures. The analyses of the polycyclic aromatic hydrocarbons (PAHs) were performed in atmospheric PM(2.5) and PM(10) collected at three sampling sites with heavy traffic located in the Metropolitan Area of Porto Alegre (MAPA) (Brazil). The concentrations of 16 major PAHs were determined according to EPA. Comet assay on V79 hamster lung cells was chosen for genotoxicity evaluation. Temperature, humidity, and wind speed were recorded. With regard to the damage index, higher levels were reported in the extract of particulate matter samples from the MAPA during the summer. High molecular weight compounds showed correlation with DNA damage frequency and their respective carcinogenicity. Copyright © 2011. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schutte, W.A.; Tielens, A.G.G.M.; Allamandola, L.J.
1990-09-01
The 5-8 micron spectra obtained toward the two protostellar sources, HD 97048 and Elias 1 exhibit strong anomalous emission features at 3.43 and 3.53 microns. Combining these results with earlier data established that the emission in the general IR features is extended on at least a 20-arcsec scale. In view of the high energy density in the emission zone, as well as the apparent correspondence of the anomalous 3.43 and 3.53 micron features with weak emission shoulders associated with the general family of IR emission bands, an explanation for these observations in terms of C-C overtones and combination tones ofmore » large or dehydrogenated polycyclic aromatic hydrocarbons is judged to be provisionally suitable. 62 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipsky, S.R.; Alexander, G.; McMurray, W.
1977-02-01
Techniques were developed to produce excellent high performance glass capillary columns for gas chromatographic analyses of a wide range of complex mixtures of organic compounds, including those containing a wide array of polycyclic aromatic hydrocarbons (PAH) derived from a coal liquefaction process. Work was begun to assess the potential mutogenicity and/or carcinogenicity of the various isolated PAH fractions utilizing a unique host mediated bioassay system. Preliminary results indicate that further efforts will be required to determine dose response parameters of cultured mouse leukemia cells, as well as suitable vehicles for the satisfactory introduction of certain PAH fractions into this particularmore » bioassay system.« less
Polycyclic aromatic hydrocarbons in storm runoff from urban and coastal South Carolina.
Ngabe, B; Bidleman, T F; Scott, G I
2000-06-08
Stormwater runoff was collected in urbanized areas of South Carolina to investigate the levels and sources of polycyclic aromatic hydrocarbons (PAHs). Mean concentrations of total PAHs in runoff (sum(PAHs), 14 compounds), determined by gas chromatography-mass spectrometry, were 5590 ng/l in the city of Columbia and 282 ng/l in the coastal community of Murrells Inlet. Lower concentrations were found in estuarine water at Murrells Inlet (mean = 35 ng/l) and at undeveloped North Inlet estuary (13 ng/l). The PAH profiles in Columbia and Murrells Inlet runoff were similar to those of atmospheric particulate matter and unlike those in used crankcase oil. Examination of the aliphatic fraction of Columbia runoff samples by gas chromatography with flame ionization detection showed patterns that were more similar to used crankcase oil than to urban aerosols.
Amperometric Immunosensors for screening of Polycyclic Aromatic Hydrocarbons in water
NASA Astrophysics Data System (ADS)
Ahmad, A.; Paschero, A.; Moore, E.
2011-08-01
An amperometric immunosensor with low limit detection was developed for the screening of polycyclic aromatic hydrocarbons (PAHs) in water. The system was based on detecting the specific substance using an immunological reaction by measuring the chemical responses to specific antibodies. An integrated biochip with a three electrode system was fabricated. Gold was used as the working electrode with platinum was used as the counter electrode. A modified Ag/AgCl reference electrode was employed to enhance the stability of the immunosensors. Indirect competition enzyme-linked immunosorbent assay (ELISA) was carried out within the electrode using alkaline phosphatase (AP) as the labelled-enzyme. The system shows acceptable reproducibility and good stability. The immunosensor exhibited a wide linear response to PAHs. A limit of detection for this sensor was in the range of 1 to 10 ng ml-1 in aqueous sample.
THE NASA AMES POLYCYCLIC AROMATIC HYDROCARBON INFRARED SPECTROSCOPIC DATABASE: THE COMPUTED SPECTRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauschlicher, C. W.; Ricca, A.; Boersma, C.
The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant to test and refine the PAH hypothesis have been assembled into a spectroscopic database. This database now contains over 800 PAH spectra spanning 2-2000 {mu}m (5000-5 cm{sup -1}). These data are now available on the World Wide Web at www.astrochem.org/pahdb. This paper presents an overview of the computational spectra in the database and the tools developed to analyzemore » and interpret astronomical spectra using the database. A description of the online and offline user tools available on the Web site is also presented.« less
NMR shifts for polycyclic aromatic hydrocarbons from first-principles
NASA Astrophysics Data System (ADS)
Thonhauser, T.; Ceresoli, Davide; Marzari, Nicola
We present first-principles, density-functional theory calculations of the NMR chemical shifts for polycyclic aromatic hydrocarbons, starting with benzene and increasing sizes up to the one- and two-dimensional infinite limits of graphene ribbons and sheets. Our calculations are performed using a combination of the recently developed theory of orbital magnetization in solids, and a novel approach to NMR calculations where chemical shifts are obtained from the derivative of the orbital magnetization with respect to a microscopic, localized magnetic dipole. Using these methods we study on equal footing the 1H and 13 shifts in benzene, pyrene, coronene, in naphthalene, anthracene, naphthacene, and pentacene, and finally in graphene, graphite, and an infinite graphene ribbon. Our results show very good agreement with experiments and allow us to characterize the trends for the chemical shifts as a function of system size.
Kwak, Yunyoung; Li, Qing X; Shin, Jae-Ho
2016-01-01
Mycobacterium rufum JS14(T) (=ATCC BAA-1377(T), CIP 109273(T), JCM 16372(T), DSM 45406(T)), a type strain of the species Mycobacterium rufum sp. . belonging to the family Mycobacteriaceae, was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil in Hilo (HI, USA) because it harbors the capability of degrading PAH. Here, we describe the first genome sequence of strain JS14(T), with brief phenotypic characteristics. The genome is composed of 6,176,413 bp with 69.25 % G + C content and contains 5810 protein-coding genes with 54 RNA genes. The genome information on M. rufum JS14(T) will provide a better understanding of the complexity of bacterial catabolic pathways for degradation of specific chemicals.
Parking lot sealcoat: An unrecognized source of urban polycyclic aromatic hydrocarbons
Mahler, B.J.; Van Metre, P.C.; Bashara, T.J.; Wilson, J.T.; Johns, D.A.
2005-01-01
Polycyclic aromatic hydrocarbons (PAHs) are a ubiquitous contaminant in urban environments. Although numerous sources of PAHs to urban runoff have been identified, their relative importance remains uncertain. We show that a previously unidentified source of urban PAHs, parking lot sealcoat, may dominate loading of PAHs to urban water bodies in the United States. Particles in runoff from parking lots with coal-tar emulsion sealcoat had mean concentrations of PAHs of 3500 mg/kg, 65 times higher than the mean concentration from unsealed asphalt and cement lots. Diagnostic ratios of individual PAHs indicating sources are similar for particles from coal-tar emulsion sealed lots and suspended sediment from four urban streams. Contaminant yields projected to the watershed scale for the four associated watersheds indicate that runoff from sealed parking lots could account for the majority of stream PAH loads.
Emissions of polycyclic aromatic hydrocarbons (PAH) from open burning of biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, B.M.
Emissions of polycyclic aromatic hydrocarbons (PAH) were measured during wind tunnel simulations of open burning for various types of biomass. The wind tunnel (Jenkins, et al., 1993) was used to simulate open fires spreading in opposition to the wind for cereal crop residues, and pile fires in agricultural and sylvicultural wood residues. Emission factors expressing the mass of pollutant species emitted per unit mass of dry fuel consumed were derived from mass balances conducted on each fire. Emission factors for primary pollutants and volatile organic species were similarly derived. Partitioning of PAH in the combustion products was investigated by determiningmore » mass fractions on particulate matter and in a downstream resin trap and other sampling train components. Yields of PAH are given for the major types of fuels and burning conditions.« less
Shu, Y Y; Lao, R C; Chiu, C H; Turle, R
2000-12-01
The microwave-assisted extraction (MAE) of polycyclic aromatic hydrocarbons (PAHs) from harbor sediment reference material EC-1, marine sediment reference material HS-2 and PAH-spiked river bed soil was conducted. The extraction conditions for EC-1 were carried out at 70 degrees C and 100 degrees C under pressure in closed vessels with cyclohexane acetone (1:1), cyclohexane-water (3:1), hexane acetone (1:1), and hexane-water (3:1) for 10 min. A comparison between MAE and a 16-h Soxhlet extraction (SX) method showed that both techniques gave comparable results with certified values. MAE has advantages over the currently used Soxhlet technique due to a faster extraction time and lower quantity of solvent used. The consumption of organic solvent of the microwave method was less than one-tenth compared to Soxhlet.
Lebo, Jon A.; Zajicek, James L.; Orazio, Carl E.; Petty, Jimmie D.; Huckins, James; Douglas, Ernest H.
1996-01-01
Relative concentrations of aqueous polycyclic aromatic hydrocarbons (PAH) were investigated in an urban creek. Samples were obtained at five sites within a 600-m segment of the creek that is critical habitat for an endangered species of fish. the sampling technique entailed immersion of semipermeable membrane devices (SPMDs) in the water for intervals as long as 64 d. SPMDs are passive, in situ, mtegrative samplers of bioavailable (truly dissolved) PAH and other hydrophobic organic contaminants. Two point sources of PAH to the 600-m segment of the creek were differentiated. Aqueous concentrations were found to wane dramatically over the relatively short section of the creek between the point sources. All samples were almost devoid of alkyl-substituted PAH, indicating that the ultimate sources were probably of pyrogenic nature.
Messinger, Terrence
2004-01-01
Polycyclic aromatic hydrocarbons (PAHs), including some on the U.S. Environmental Protection Agency's priority pollutant list, were found in bottom sediment in streams in the coal-producing region of the Kanawha River Basin in 1996-1998, and in and near the New River Gorge National River in 2002, in concentrations exceeding those thought likely to cause adverse effects to wildlife. Very low concentrations of bioavailable PAHs were measured in streams in and near the New River Gorge National River by the use of semipermeable membrane devices. The apparent contradiction between the high concentrations of total PAHs and the low concentrations of bioavailable PAHs may result from the presence of a substantial amount of particulate coal in bottom sediment.
Watershed-based sources of polycyclic aromatic hydrocarbons in urban storm water.
Stein, Eric D; Tiefenthaler, Liesl L; Schiff, Kenneth
2006-02-01
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and mutagenic compounds, ubiquitous in the air and water of urban environments, and have been shown to accumulate in coastal estuarine and marine sediments. Although previous studies have documented concentrations and loads of PAHs in urban runoff, little is known about the sources and temporal patterns of PAH loading from storm water. This study characterized the sources and temporal patterns of PAHs in urban storm water by analyzing PAH concentrations and loads from a range of homogeneous land use sites and in-river mass emission sites throughout the greater Los Angeles, California, USA, region. Samples were collected at 30- to 60-min intervals over the course of a storm during multiple storm events over a four-year period in order to investigate PAH sources and inter- and intrastorm patterns in loading. Polycyclic aromatic hydrocarbon storm fluxes ranged from 1.3 g/km2 for the largely undeveloped Arroyo Sequit watershed to 223.7 g/km2 for the highly urbanized Verdugo Wash watershed, with average storm fluxes being 46 times higher in developed versus undeveloped watersheds. Early-season storms repeatedly produced substantially higher loads than comparably sized late-season storms. Within individual storms, PAHs exhibited a moderate first flush with between 30 and 60% of the total PAH load being discharged in the first 20% of the storm volume. The relative distribution of individual PAHs demonstrated a consistent predominance of high-molecular-weight compounds indicative of pyrogenic sources.
Tang, Caiming; Tan, Jianhua; Fan, Ruifang; Zhao, Bo; Tang, Caixing; Ou, Weihui; Jin, Jiabin; Peng, Xianzhi
2016-08-26
Metabolite identification is crucial for revealing metabolic pathways and comprehensive potential toxicities of polycyclic aromatic hydrocarbons (PAHs) in human body. In this work, a quasi-targeted analysis strategy was proposed for metabolite identification of monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in human urine using liquid chromatography triple quadruple mass spectrometry (LC-QqQ-MS/MS) combined with liquid chromatography high resolution mass spectrometry (LC-HRMS). Potential metabolites of OH-PAHs were preliminarily screened out by LC-QqQ-MS/MS in association with filtering in a self-constructed information list of possible metabolites, followed by further identification and confirmation with LC-HRMS. The developed method can provide more reliable and systematic results compared with traditional untargeted analysis using LC-HRMS. In addition, data processing for LC-HRMS analysis were greatly simplified. This quasi-targeted analysis method was successfully applied to identifying phase I and phase II metabolites of OH-PAHs in human urine. Five metabolites of hydroxynaphthalene, seven of hydroxyfluorene, four of hydroxyphenanthrene, and three of hydroxypyrene were tentatively identified. Metabolic pathways of PAHs in human body were putatively revealed based on the identified metabolites. The experimental results will be valuable for investigating the metabolic processes of PAHs in human body, and the quasi-targeted analysis strategy can be expanded to the metabolite identification and profiling of other compounds in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Pruneda-Alvarez, Lucía G; Ruíz-Vera, Tania; Ochoa-Martínez, Angeles C; Pérez-Vázquez, Francisco J; González Palomo, Ana K; Ilizaliturri-Hernández, Cesar A; Pérez-Maldonado, Iván N
2016-12-01
Recent studies indicate that exposure to environmental pollutants (as polycyclic aromatic hydrocarbons) is a very important risk factor for development of cardiovascular diseases (CVDs). Correspondingly, in recent times asymmetric dimethylarginine (ADMA) has been proposed as a new and meaningful biomarker predictor for the risk of CVDs. Therefore, the objective of this study was to evaluate plasma ADMA concentrations in Mexican women (n=155) exposed to polycyclic aromatic hydrocarbons (PAHs). Urinary 1-hydroxypyrene [(1-OHP), exposure biomarker for PAHs] levels were quantified using a high performance liquid chromatography (HPLC) technique and plasma ADMA concentrations were analyzed using a commercially available ELISA kit. Urinary 1-OHP levels in all women assessed ranged from
Zhang, Xiaoqiong; Wang, Peiyi; Han, Qiang; Li, Hengzhen; Wang, Tong; Ding, Mingyu
2018-04-01
In-syringe solid-phase extraction is a promising sample pretreatment method for the on-site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in-syringe solid-phase extraction device using metal-organic frameworks as the adsorbent was fabricated for the on-site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self-made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal-organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self-made device for on-site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal-organic frameworks in sample preparation and demonstrate the great potential of in-syringe solid-phase extraction for the on-site sampling of trace contaminants in environmental waters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lin, Yuan-Chung; Lee, Wen-Jhy; Li, Hsing-Wang; Chen, Chung-Ban; Fang, Guor-Cheng; Tsai, Perng-Jy
Because of the fishery subsidy policy, the fishing boat fuel oil (FBFO) exemption from commodity taxes, business taxes and air pollution control fees, resulted in the price of FBFO was ˜50% lower than premium diesel fuel (PDF) in Taiwan. It is estimated that ˜650,000 kL FBFO was illegally used by traveling diesel-vehicles (TDVs) with a heavy-duty diesel engine (HDDE), which accounted for ˜16.3% of the total diesel fuel consumed by TDVs. In this study, sulfur, poly aromatic and total-aromatic contents in both FBFO and PDF were measured and compared. Exhaust emissions of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies (BaP eq) from a HDDE under transient cycle testing for both FBFO and PDF were compared and discussed. Finally, the impact caused by the illegal use of FBFO on the air quality was examined. Results show that the mean sulfur-, poly aromatic and aromatic-contents in FBFO were 43.0, 3.89 and 1.04 times higher than that of PDF, respectively. Emission factors of total-PAHs and total-BaP eq obtained by utilizing FBFO were 51.5 and 0.235 mg L -1-Fuel, which were 3.41 and 5.82 times in magnitude higher than obtained by PDF, respectively. The estimated annual emissions of total-PAHs and total-BaP eq to the ambient environment due to the illegally used FBFO were 23.6 and 0.126 metric tons, respectively, which resulted in a 17.9% and a 25.0% increment of annual emissions from all mobile sources, respectively. These results indicated that the FBFO used illegally by TDVs had a significant impact on PAH emissions to the ambient environment.
Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors
Engtrakul, Chaiwat; Mukarakate, Calvin; Starace, Anne K.; ...
2015-11-14
The impact of catalyst acidity on the selectivity of upgraded biomass pyrolysis products was studied by passing pine pyrolysis vapors over five ZSM-5 catalysts of varying acidity at 500 degrees C. The SiO 2-to-Al 2O 3 ratio (SAR) of the ZSM-5 zeolite was varied from 23 to 280 to control the acidity of the catalyst and the composition of upgraded products. The upgraded product stream was analyzed by GCMS. Additionally, catalysts were characterized using temperature programmed desorption, diffuse-reflectance FTIR spectroscopy, N 2 physisorption, and X-ray diffraction. The results showed that the biomass pyrolysis vapors were highly deoxygenated to form amore » slate of aromatic hydrocarbons over all of the tested ZSM-5 catalysts. As the overall acidity of the ZSM-5 increased the selectivity toward alkylated (substituted) aromatics (e.g., xylene, dimethyl-naphthalene, and methyl-anthracene) decreased while the selectivity toward unsubstituted aromatics (e.g., benzene, naphthalene, and anthracene) increased. Additionally, the selectivity toward polycyclic aromatic compounds (2-ring and 3-ring) increased as catalyst acidity increased, corresponding to a decrease in acid site spacing. The increased selectivity toward less substituted polycyclic aromatic compounds with increasing acidity is related to the relative rates of cyclization and alkylation reactions within the zeolite structure. As the acid site concentration increases and sites become closer to each other, the formation of additional cyclization products occurs at a greater rate than alkylated products. The ability to adjust product selectivity within 1-, 2-, and 3-ring aromatic families, as well as the degree of substitution, by varying ZSM-5 acidity could have significant benefits in terms creating a slate of upgraded biomass pyrolysis products to meet specific target market demands.« less
Lucaire, Vincent; Schwartz, Jean-Jacques; Delhomme, Olivier; Ocampo-Torres, Ruben; Millet, Maurice
2018-03-01
Monitoring the levels of aliphatic and aromatic amines (AA) in indoor air is important to protect human health because of exposure to these compounds through diet and inhalation. A sampling and analytical method using XAD-2 cartridges and gas chromatography coupled to mass spectrometry used for assessing 25 AA in different smoking and non-smoking indoor environment was developed. After sampling and delivering 1 m 3 of air (6-8 h sampling), an adsorbent was ultrasonically extracted with acetonitrile, concentrated to 1 mL and diluted in 25 mL of water (pH = 9; 5% NaCl), and then extracted for 40 min at 80 °C using a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber and injected in a GC/MS system. With this method, 22 of the 25 AA can be analyzed with detection limits up to five times lower than that of classic liquid injection. Benzylamine, 3-aminophenol, and 4-aminophenol were not detected with the solid-phase micro-extraction (SPME) method. It can be assumed that aminophenols required a derivatization step for their analysis by GC as these molecules were not detected regardless of the injection mode used. Graphical abstract Analysis of aromatic amines in indoor air by SPME-GC/MS.
Zanoni, Thalita Boldrin; Lizier, Thiago M; Assis, Marilda das Dores; Zanoni, Maria Valnice B; de Oliveira, Danielle Palma
2013-07-01
This work describes the mutagenic response of Sudan III, an adulterant food dye, using Salmonella typhimurium assay and the generation of hazardous aromatic amines after different oxidation methods of this azo dye. For that, we used metabolic activation by S9, catalytic oxidation by ironporphyrin and electrochemistry oxidation in order to simulate endogenous oxidation conditions. The oxidation reactions promoted discoloration from 65% to 95% of Sudan III at 1 × 10(-4)molL(-1) and generation of 7.6 × 10(-7)molL(-1) to 0.31 × 10(-4)molL(-1) of aniline, o-anisidine, 2-methoxi-5-methylaniline, 4-aminobiphenyl, 4,4'-oxydianiline; 4,4'-diaminodiphenylmethane and 2,6-dimethylaniline. The results were confirmed by LC-MS-MS experiments. We also correlate the mutagenic effects of Sudan III using S. typhimurium with the strain TA1535 in the presence of exogenous metabolic activation (S9) with the metabolization products of this compound. Our findings clearly indicate that aromatic amines are formed due to oxidative reactions that can be promoted by hepatic cells, after the ingestion of Sudan III. Considering that, the use of azo compounds as food dyestuffs should be carefully controlled. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rodent repellent studies. IV. Preparation and properties of trinitrobenzene-aryl amine complexes
DeWitt, J.B.; Bellack, E.; Welch, J.F.
1953-01-01
Data are presented on methods of preparation, chemical arid physical characteristics, toxicity, and repellency to rodents of complexes of symmetrical trinitrohenzene with various aromatic amines: When applied in suitable carriers or incorporated in plastic .films, members of this series ofmaterials were shown to offer significant increases in time required by wild rodents to damage common packaging materials.
Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A
2017-09-01
Retention indices for 124 polycyclic aromatic hydrocarbons (PAHs) and 62 methyl-substituted (Me-) PAHs were determined using normal-phase liquid chromatography (NPLC) on a aminopropyl (NH 2 ) stationary phase. PAH retention behavior on the NH 2 phase is correlated to the total number of aromatic carbons in the PAH structure. Within an isomer group, non-planar isomers generally elute earlier than planar isomers. MePAHs generally elute slightly later but in the same region as the parent PAHs. Correlations between PAH retention behavior on the NH 2 phase and PAH thickness (T) values were investigated to determine the influence of non-planarity for isomeric PAHs with four to seven aromatic rings. Correlation coefficients ranged from r = 0.19 (five-ring peri-condensed molecular mass (MM) 252 Da) to r = -0.99 (five-ring cata-condensed MM 278 Da). In the case of the smaller PAHs (MM ≤ 252 Da), most of the PAHs had a planar structure and provided a low correlation. In the case of larger PAHs (MM ≥ 278 Da), nonplanarity had a significant influence on the retention behavior and good correlation between retention and T was obtained for the MM 278 Da, MM 302 Da, MM 328 Da, and MM 378 Da isomer sets. Graphical abstract NPLC separation of the three-, four-, five-, and six-ring PAH isomers with different number of aromatic carbon atoms and degrees of non-planarity (Thickness, T). The inserted figure plots the number of aromatic carbon atoms vs. the log I value for the 124 parent PAHs.
Metabolite screening of aromatic amine hair dyes using in vitro hepatic models.
Skare, J A; Hewitt, N J; Doyle, E; Powrie, R; Elcombe, C
2009-11-01
Aromatic amines and heterocyclic amines are widely used ingredients in permanent hair dyes. However, little has been published on their potential for oxidation via hepatic cytochrome P450s. Therefore, the authors screened nine such compounds for their potential to undergo oxidative metabolism in human liver microsomes. Toluene-2,5-diamine (TDA), p-aminophenol, m-aminophenol, p-methylaminophenol, N,N'-bis(2-hydroxyethyl)-p-phenylenediamine, and 1-hydroxyethyl-4,5-diaminopyrazole showed no evidence of oxidative metabolism. Oxidized metabolites of 4-amino-2-hydroxytoluene (AHT), 2-methyl-5- hydroxyethylaminophenol (MHEAP), and phenyl methyl pyrazolone (PMP) were detected, but there was no evidence of beta-nicotinamide adenine dinucleotide phosphate (NADPH)-dependent covalent binding to microsomal protein, suggesting that these are not reactive metabolites. Metabolism of AHT, MHEAP, PMP, and TDA was further studied in human hepatocytes. All these compounds underwent conjugation, but no oxidative metabolites were found. The results suggest that none of the hair dye ingredients tested showed evidence of hepatic metabolism to potentially biologically reactive oxidized metabolites.
Isleroglu, Hilal; Kemerli, Tansel; Özdestan, Özgül; Uren, Ali; Kaymak-Ertekin, Figen
2014-09-01
The aim of this study was to evaluate effect of steam-assisted hybrid oven cooking method in comparison with convection ovens (natural and forced) on quality characteristics (color, hardness, cooking loss, soluble protein content, fat retention, and formation of heterocyclic aromatic amines) of chicken patties. The cooking experiments of chicken patties (n = 648) were conducted at oven temperatures of 180, 210, and 240°C until 3 different end point temperatures (75, 90, and 100°C) were reached. Steam-assisted hybrid oven cooking enabled faster cooking than convection ovens and resulted in chicken patties having lower a* and higher L* value, lower hardness, lower fat, and soluble protein content (P < 0.05), and higher cooking loss than convection ovens. Steam-assisted hybrid oven could reduce the formation of heterocyclic aromatic amines that have mutagenic and carcinogenic effects on humans. © 2014 Poultry Science Association Inc.
Lab Analysis of Dust Wipe Samples
Dust wipe samples collected on residential properties near the fenceline of KCBX North and South Terminals in Chicago, which store and handle pet coke, were analyzed for polycyclic aromatic hydrocarbons (PAHs) and trace metals and minerals.
ENGINEERING BULLETIN: COMPOSTING
Composting is an emerging ex situ biological technology that is potentially applicable to nonvolatile and semivolatile organic compounds (SVOCs) in soils. It has been applied to polycyclic aromatic hydrocarbons (PAHs) and explosives. It has been found to be potentially effectiv...
CHEMISTRY OF OXIDATION OF POLYCYCLIC AROMATIC HYDROCARBONS BY SOIL PSEUDOMONADS
Rogoff, Martin H.
1962-01-01
Rogoff, Martin H. (U.S. Bureau of Mines, Pittsburgh, Pa.). Oxidation of polycyclic aromatic hydrocarbons by soil pseudomonads. J. Bacteriol. 83:998–1004. 1962.—Substitution of phenanthrene by a methyl group at the 9-carbon blocks oxidation of the compound by a resting-cell suspension of a phenanthrene-grown soil pseudomonad. When 2-methylphenanthrene is provided, the oxidation rate is considerably higher; 3-methylphenanthrene is oxidized at a rate intermediate between the other two, even though the methyl group is attached to a carbon directly involved in ring splitting. Cells grown on naphthalene or anthracene oxidize phenanthrene at a much lower rate than cells grown with phenanthrene or 2-methylnaphthalene as the source of carbon. Naphthalene-grown cells also absorb less phenanthrene from aqueous solution than do their phenanthrene-grown counterparts. The data are in keeping with the hypothesis that polynuclear aromatic hydrocarbons attach to the relevant bacterial enzymes at carbon-carbon bonds of high electron density (K regions; localized double bonds), and that the ring-splitting reactions then occur at other bonds on the substrate molecule. The actual bond that undergoes fission is determined by the electronic and steric configurations of the enzyme-substrate complex. When linearly arranged aromatic compounds such as naphthalene or anthracene are attacked, attachment to an enzyme and ring splitting may take place on the same ring; angular aromatic compounds such as phenanthrene afford attachment to an enzyme at a bond in a ring other than the one containing the ring-splitting site. PMID:14493381
Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds.
Knaus, Tanja; Böhmer, Wesley; Mutti, Francesco G
2017-01-21
Amines constitute the major targets for the production of a plethora of chemical compounds that have applications in the pharmaceutical, agrochemical and bulk chemical industries. However, the asymmetric synthesis of α-chiral amines with elevated catalytic efficiency and atom economy is still a very challenging synthetic problem. Here, we investigated the biocatalytic reductive amination of carbonyl compounds employing a rising class of enzymes for amine synthesis: amine dehydrogenases (AmDHs). The three AmDHs from this study - operating in tandem with a formate dehydrogenase from Candida boidinii (Cb-FDH) for the recycling of the nicotinamide coenzyme - performed the efficient amination of a range of diverse aromatic and aliphatic ketones and aldehydes with up to quantitative conversion and elevated turnover numbers (TONs). Moreover, the reductive amination of prochiral ketones proceeded with perfect stereoselectivity, always affording the ( R )-configured amines with more than 99% enantiomeric excess. The most suitable amine dehydrogenase, the optimised catalyst loading and the required reaction time were determined for each substrate. The biocatalytic reductive amination with this dual-enzyme system (AmDH-Cb-FDH) possesses elevated atom efficiency as it utilizes the ammonium formate buffer as the source of both nitrogen and reducing equivalents. Inorganic carbonate is the sole by-product.
Three-dimensional aromatic networks.
Toyota, Shinji; Iwanaga, Tetsuo
2014-01-01
Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.
Zeng, Huiying; Cao, Dawei; Qiu, Zihang; Li, Chao-Jun
2018-03-26
Lignin is the second most abundant organic matter on Earth, and is an underutilized renewable source for valuable aromatic chemicals. For future sustainable production of aromatic compounds, it is highly desirable to convert lignin into value-added platform chemicals instead of using fossil-based resources. Lignins are aromatic polymers linked by three types of ether bonds (α-O-4, β-O-4, and 4-O-5 linkages) and other C-C bonds. Among the ether bonds, the bond dissociation energy of the 4-O-5 linkage is the highest and the most challenging to cleave. To date, 4-O-5 ether linkage model compounds have been cleaved to obtain phenol, cyclohexane, cyclohexanone, and cyclohexanol. The first example of direct formal cross-coupling of diaryl ether 4-O-5 linkage models with amines is reported, in which dual C(Ar)-O bond cleavages form valuable nitrogen-containing derivatives. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Metal-free one-pot oxidative amination of aldehydes to amides.
Ekoue-Kovi, Kekeli; Wolf, Christian
2007-08-16
Metal-free oxidative amination of aromatic aldehydes in the presence of TBHP provides convenient access to amides in 85-99% under mild reaction conditions within 5 h. This method avoids free carboxylic acid intermediates and integrates aldehyde oxidation and amide bond formation, which are usually accomplished separately, into a single operation. Proline-derived amides can be prepared in excellent yields without noticeable racemization.
Treatment of contaminated roadway runoff using vegetated filter strips.
DOT National Transportation Integrated Search
2009-01-01
The overall goal of this field study was to evaluate the potential effectiveness of vegetated highway embankments as a stormwater runoff best management practice (BMP) for retention of metals, polycyclic aromatic hydrocarbons (PAHs), and particulates...
IMPORTANCE OF ENZYMATIC BIOTRANSFORMATION IN IMMUNOTOXICOLOGY
Many immunotoxic compounds, such as benzene and other organic solvents, pesticides, mycotoxins and polycyclic aromatic hydrocarbons, can alter immune function only after undergoing enzyme-mediated reactions within various tissues. In the review that follows, the role of enzymatic...
SITE EMERGING TECHNOLOGY REPORT: INNOVATIVE METHODS FOR BIOSLURRY TREATMENT
IT Corporation (IT), Knoxville, Tennessee, in collaboration with U.S. Environmental protection Agency (EPA), investigated the feasibility of combined biological and chemical oxidation of polycyclic aromatic hydrocarbons (PAH). Bioslurry treatment of PAH-contaminated soils was dem...
21 CFR 74.2053 - D&C Black No. 3.
Code of Federal Regulations, 2010 CFR
2010-04-01
... may be avoided by current good manufacturing practices: (1) Calcium hydroxyapatite (CaO and P2O5), not...) Total polycyclic aromatic hydrocarbons (PAHs), not more than 5 mg/kg (5 ppm). (c) Uses and restrictions...
SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH
Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....
ACTIVATION OF OYSTER DEFENSES BY ENVIRONMENTAL CONTAMINANTS
Four field studies performed on eastern oysters Crassostrea virginica support a hypothesis that Cu, Zn, and perhaps butyltins and polycyclic aromatic hydrocarbons (PAH) can stimulate hemopoiesis, hemocyte locomotion and hemocyte bactericidal capacity. The first study found circul...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xinbo; Wang, Danjun; College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an 716000
2014-09-15
Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H{sub 2}O{sub 2}, featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalystmore » is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH{sub 2}) are prepared and characterized by FT-IR, XRD, N{sub 2} adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H{sub 2}O{sub 2} as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H{sub 5}[PV{sub 2}W{sub 10}O{sub 40}] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H{sub 2}O{sub 2}.« less
Thomas, Aaron M; Lucas, Michael; Yang, Tao; Kaiser, Ralf I; Fuentes, Luis; Belisario-Lara, Daniel; Mebel, Alexander M
2017-08-05
The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bajt, Oliver
2014-09-01
The Gulf of Trieste (northern Adriatic) is one of the most urbanized and industrialized areas in the northern Adriatic, with intense maritime traffic experienced at multiple ports. The impact of maritime traffic on contamination by hydrocarbons in this area was assessed. Concentrations of hydrocarbons were higher near the expected contamination sources and still elevated in the adjacent offshore areas. Aliphatic hydrocarbons were mainly of petrogenic origin, with some contribution of biogenic origin. A continuous contamination by aliphatic hydrocarbons and degradation processes were hypothesized. Concentrations of total polycyclic aromatic hydrocarbons (PAH) were generally greater near the contamination sources. Compared to the prevailing pyrolytic origin, the petrogenic PAH origin seemed to be less important, but not negligible. Results revealed that intensive maritime traffic is a probable source of contamination by hydrocarbons in the investigated area, which is largely limited to areas near the contamination sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, H.M.
The Baltic Sea (Central Europe) is surrounded by coastal regions with long histories of industrialization. The heavy metal profiles in the sediments in the center of the Arkona Basin, one of the depressions of the southern Baltic Sea area, clearly reflect the historical anthropogenic influence. The Arkona Basin-is the final sink for materials derived from the Oder river which drains a highly polluted industrial area of Eastern Europe. Surficial muddy sediments from a close-meshed field of sampling-points were analyzed for distribution patterns of aliphatics and quantities and ratios of selected polycyclic aromatic hydrocarbons (PAH). These compounds are thought to reflectmore » anthropogenic pollution related to emissions from traffic, heating, etc. We use these marker substances to test if the basin sediments reflect riverine input, and if additional sources can be identified.« less