Science.gov

Sample records for amino acid requirements

  1. Parenteral sulfur amino acid requirements in septic infants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate parenteral methionine requirements of critically ill, septic infants, we conducted an investigation involving 12 infants (age 2+/-1 years; weight 13+/-2kg) using the intravenous indicator amino acid oxidation and balance technique. They received a balanced parenteral amino acid formul...

  2. Protein and sulfur amino acid requirements of broiler breeder hens.

    PubMed

    Harms, R H; Wilson, H R

    1980-02-01

    Two experiments were conducted with Cobb color-sexed broiler breeder hens to determine their protein and sulfur amino acid requirement. A daily intake between 400 and 478 mg of methionine and between 722 and 839 mg of total sulfur amino acids was necessary for maximum egg production, the latter in a diet of 13.07% protein. Slightly lower levels supported maximum body weights. Hens laying at the highest rate consumed 23.4 g of protein per day.

  3. Macronutrient requirement for growth: Protein/amino acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current recommendations by the Institute of Medicine on amino acid requirements in healthy children older than 6 months and for children and adolescents have been established using the factorial approach, which takes into account: i) maintenance for obligatory losses, which is estimated by regressio...

  4. Amino acids

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  5. Carbobenzoxy amino acids: Structural requirements for cholecystokinin receptor antagonist activity

    SciTech Connect

    Maton, P.N.; Sutliff, V.E.; Jensen, R.T.; Gardner, J.D.

    1985-04-01

    The authors used dispersed acini prepared from guinea pig pancreas to examine 28 carbobenzoxy (CBZ) amino acids for their abilities to function as cholecystokinin receptor antagonists. All amino acid derivatives tested, except for CBZ-alanine, CBZ-glycine, and N alpha-CBZ- lysine, were able to inhibit the stimulation of amylase secretion caused by the C-terminal octapeptide of cholecystokinin. In general, there was a good correlation between the ability of a carbobenzoxy amino acid to inhibit stimulated amylase secretion and the ability of the amino acid derivative to inhibit binding of /sup 125/I-cholecystokinin. The inhibition of cholecystokinin-stimulated amylase secretion was competitive, fully reversible, and specific for those secretagogues that interact with the cholecystokinin receptor. The potencies with which the various carbobenzoxy amino acids inhibited the action of cholecystokinin varied 100-fold and CBZ-cystine was the most potent cholecystokinin receptor antagonist. This variation in potency was primarily but not exclusively a function of the hydrophobicity of the amino acid side chain.

  6. 77 FR 65537 - Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... Amino Acid Sequence Disclosures ACTION: Proposed collection; comment request. SUMMARY: The United States....'' SUPPLEMENTARY INFORMATION: I. Abstract Patent applications that contain nucleotide and/or amino acid...

  7. Estimated quantitative amino acid requirements for Florida pompano reared in low-salinity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As with most marine carnivores, Florida pompano require relatively high crude protein diets to obtain optimal growth. Precision formulations to match the dietary indispensable amino acid (IAA) pattern to a species’ requirements can be used to lower the overall dietary protein. However IAA requirem...

  8. Current issues in determining dietary protein and amino-acid requirements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pregnancy and the first two years of life are periods of rapid growth and yet the knowledge of requirements for protein and dietary indispensable amino acids is very limited. The development of carbon oxidation methods opens the way to studies that should fill these important gaps in knowledge. ...

  9. Surgical Stress Resistance Induced by Single Amino Acid Deprivation Requires Gcn2 in Mice

    PubMed Central

    Peng, Wei; Robertson, Lauren; Gallinetti, Jordan; Mejia, Pedro; Vose, Sarah; Charlip, Allison; Chu, Timothy; Mitchell, James R.

    2012-01-01

    Dietary restriction, or reduced food intake without malnutrition, increases life span, health span, and acute stress resistance in model organisms from yeast to nonhuman primates. Although dietary restriction is beneficial for human health, this treatment is not widely used in the clinic. Here, we show that short-term, ad libitum feeding of diets lacking essential nutrients increased resistance to surgical stress in a mouse model of ischemia reperfusion injury. Dietary preconditioning by 6 to 14 days of total protein deprivation, or removal of the single essential amino acid tryptophan, protected against renal and hepatic ischemic injury, resulting in reduced inflammation and preserved organ function. Pharmacological treatment with halofuginone, which activated the amino acid starvation response within 3 days by mimicking proline deprivation, was also beneficial. Both dietary and pharmacological interventions required the amino acid sensor and eIF2α (eukaryotic translation initiation factor 2α) kinase Gcn2 (general control nonderepressible 2), implicating the amino acid starvation response and translational control in stress protection. Thus, short-term dietary or pharmacological interventions that modulate amino acid sensing can confer stress resistance in models of surgical ischemia reperfusion injury. PMID:22277968

  10. Plasma amino acids

    MedlinePlus

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  11. Defining meal requirements for protein to optimize metabolic roles of amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signal...

  12. Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals

    PubMed Central

    Kimura, Tetsuya; Nada, Shigeyuki; Takegahara, Noriko; Okuno, Tatsusada; Nojima, Satoshi; Kang, Sujin; Ito, Daisuke; Morimoto, Keiko; Hosokawa, Takashi; Hayama, Yoshitomo; Mitsui, Yuichi; Sakurai, Natsuki; Sarashina-Kida, Hana; Nishide, Masayuki; Maeda, Yohei; Takamatsu, Hyota; Okuzaki, Daisuke; Yamada, Masaki; Okada, Masato; Kumanogoh, Atsushi

    2016-01-01

    Macrophages play crucial roles in host defence and tissue homoeostasis, processes in which both environmental stimuli and intracellularly generated metabolites influence activation of macrophages. Activated macrophages are classified into M1 and M2 macrophages. It remains unclear how intracellular nutrition sufficiency, especially for amino acid, influences on macrophage activation. Here we show that a lysosomal adaptor protein Lamtor1, which forms an amino-acid sensing complex with lysosomal vacuolar-type H+-ATPase (v-ATPase), and is the scaffold for amino acid-activated mTORC1 (mechanistic target of rapamycin complex 1), is critically required for M2 polarization. Lamtor1 deficiency, amino-acid starvation, or inhibition of v-ATPase and mTOR result in defective M2 polarization and enhanced M1 polarization. Furthermore, we identified liver X receptor (LXR) as the downstream target of Lamtor1 and mTORC1. Production of 25-hydroxycholesterol is dependent on Lamtor1 and mTORC1. Our findings demonstrate that Lamtor1 plays an essential role in M2 polarization, coupling immunity and metabolism. PMID:27731330

  13. Lysine requirements of pre-lay broiler breeder pullets: determination by indicator amino acid oxidation.

    PubMed

    Coleman, Russell A; Bertolo, Robert F; Moehn, Soenke; Leslie, Michael A; Ball, Ronald O; Korver, Doug R

    2003-09-01

    The indicator amino acid oxidation (IAAO) method allows the determination of amino acid requirements under conditions of low growth rate as found in pre-laying broiler breeder pullets. Cobb 500 breeder pullets (20 wk old; 2290 +/- 280 g, n = 4) were adapted (6 d) to a pelleted, purified control diet containing all nutrients at >or=110% of NRC recommendations. After recovery from surgery for implantation of a jugular catheter, each bird was fed, in random order, test diets containing one of nine levels of lysine (0.48, 0.96, 1.92, 2.88, 3.84, 4.80, 7.68, 9.60 and 14.40 g/kg of diet). Indicator oxidation was determined during 4-h primed (74 kBq/kg body), constant infusions (44 kBq x h(-1). kg body(-1)) of L-[1-(14)C]phenylalanine. Using the breakpoint of a one-slope broken-line model, the lysine requirement was determined to be 4.88 +/- 0.96 g/kg of diet or 366 +/- 72 mg x hen(-1) x d(-1) with an upper 95% CI of 6.40 g/kg of diet or 480 mg x hen(-1) x d(-1). IAAO allows determination of individual bird amino acid requirements for specific ages and types of birds over short periods of time and enables more accurate broiler breeder pullet diet formulation.

  14. Amino acid requirements of broiler breeders at peak production for egg mass, body weight, and fertility.

    PubMed

    Ekmay, R D; De Beer, M; Mei, S J; Manangi, M; Coon, C N

    2013-04-01

    Two trials were conducted to determine the amino acid and protein requirements of broiler breeders at peak production. In trial 1, 32-wk-old Cobb 500 broiler breeders with similar BW were selected to determine the digestible amino acid requirement for daily product output (g of egg mass + g of BW gain/b/d) and feed conversion (g of feed/g of product) for Met, Phe, Arg, Ile, Lys, and CP in a 42-d production study. In trial 2, 30-wk-old Cobb 500 broiler breeders were selected to determine the digestible requirement for Met, Lys, Ile, Arg, Cys, Val, Trp, and Thr in a 70-d production study. Breeders were given a corn-soy basal diet plus crystalline amino acids with 8 graded levels of amino acids (10 birds per level), representing 40 to 130% of the highest suggested requirements reported in the literature. All other amino acids were maintained at 100% of their suggested requirement level. All breeders were inseminated weekly and fertility was determined. A third trial consisted of 41-wk-old colostomized hens randomly assigned to 1 of 2 diets differing only in the amount of Ile. Urine was collected after a 6-wk feeding period. The average digestible requirements per breeder per day for both product and feed/product ratio from trials 1 and 2 for Met, Cys, TSAA, Phe, Phe + Tyr, Trp, Arg, Ile, Lys, Val, Thr, and CP were 424, 477, 901, 689, 997, 252, 1,026, 830, 916, 799, 613 mg/d, and 20.0 g/d, respectively. The ideal profile for digestible Met, Cys, TSAA, Phe, Phe + Tyr, Trp, Arg, Ile, Lys, Val, and Thr was 46, 52, 98, 76, 108, 28, 112.0, 91, 100.0, 87, and 67%, respectively. A significant decrease in fertility was noted with increasing levels of Ile and Lys. Urine pH was significantly more alkaline in hens fed the higher level of Ile. It is suggested that adequate dietary Lys and Ile should be provided for maximum hatching egg production but an excess may affect fertility.

  15. Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis

    PubMed Central

    Prokesch, Andreas; Graef, Franziska A.; Madl, Tobias; Kahlhofer, Jennifer; Heidenreich, Steffi; Schumann, Anne; Moyschewitz, Elisabeth; Pristoynik, Petra; Blaschitz, Astrid; Knauer, Miriam; Muenzner, Matthias; Bogner-Strauss, Juliane G.; Dohr, Gottfried; Schulz, Tim J.; Schupp, Michael

    2017-01-01

    The ability to adapt cellular metabolism to nutrient availability is critical for survival. The liver plays a central role in the adaptation to starvation by switching from glucose-consuming processes and lipid synthesis to providing energy substrates like glucose to the organism. Here we report a previously unrecognized role of the tumor suppressor p53 in the physiologic adaptation to food withdrawal. We found that starvation robustly increases p53 protein in mouse liver. This induction was posttranscriptional and mediated by a hepatocyte-autonomous and AMP-activated protein kinase-dependent mechanism. p53 stabilization was required for the adaptive expression of genes involved in amino acid catabolism. Indeed, acute deletion of p53 in livers of adult mice impaired hepatic glycogen storage and induced steatosis. Upon food withdrawal, p53-deleted mice became hypoglycemic and showed defects in the starvation-associated utilization of hepatic amino acids. In summary, we provide novel evidence for a p53-dependent integration of acute changes of cellular energy status and the metabolic adaptation to starvation. Because of its tumor suppressor function, p53 stabilization by starvation could have implications for both metabolic and oncological diseases of the liver.—Prokesch, A., Graef, F. A., Madl, T., Kahlhofer, J., Heidenreich, S., Schumann, A., Moyschewitz, E., Pristoynik, P., Blaschitz, A., Knauer, M., Muenzner, M., Bogner-Strauss, J. G., Dohr, G., Schulz, T. J., Schupp, M. Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis. PMID:27811061

  16. Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis.

    PubMed

    Prokesch, Andreas; Graef, Franziska A; Madl, Tobias; Kahlhofer, Jennifer; Heidenreich, Steffi; Schumann, Anne; Moyschewitz, Elisabeth; Pristoynik, Petra; Blaschitz, Astrid; Knauer, Miriam; Muenzner, Matthias; Bogner-Strauss, Juliane G; Dohr, Gottfried; Schulz, Tim J; Schupp, Michael

    2017-02-01

    The ability to adapt cellular metabolism to nutrient availability is critical for survival. The liver plays a central role in the adaptation to starvation by switching from glucose-consuming processes and lipid synthesis to providing energy substrates like glucose to the organism. Here we report a previously unrecognized role of the tumor suppressor p53 in the physiologic adaptation to food withdrawal. We found that starvation robustly increases p53 protein in mouse liver. This induction was posttranscriptional and mediated by a hepatocyte-autonomous and AMP-activated protein kinase-dependent mechanism. p53 stabilization was required for the adaptive expression of genes involved in amino acid catabolism. Indeed, acute deletion of p53 in livers of adult mice impaired hepatic glycogen storage and induced steatosis. Upon food withdrawal, p53-deleted mice became hypoglycemic and showed defects in the starvation-associated utilization of hepatic amino acids. In summary, we provide novel evidence for a p53-dependent integration of acute changes of cellular energy status and the metabolic adaptation to starvation. Because of its tumor suppressor function, p53 stabilization by starvation could have implications for both metabolic and oncological diseases of the liver.-Prokesch, A., Graef, F. A., Madl, T., Kahlhofer, J., Heidenreich, S., Schumann, A., Moyschewitz, E., Pristoynik, P., Blaschitz, A., Knauer, M., Muenzner, M., Bogner-Strauss, J. G., Dohr, G., Schulz, T. J., Schupp, M. Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis.

  17. The dietary branched chain amino acid requirements of hybrid striped bass(Morone chrysops x M. saxatilis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The requirements for branched chain amino acids (BCAAs) are unknown in hybrid striped bass and necessary for formulating efficient and nutritious diets. Moreover, the dietary balance among these three amino acids can substantially influence the performance of meat animals fed those diets. The diet...

  18. Increasing dietary crude protein does not increase the essential amino acid requirements of kittens.

    PubMed

    Strieker, M J; Morris, J G; Rogers, Q R

    2006-08-01

    Essential amino acid (EAA) requirements of omnivores and herbivores (e.g. chicks, lambs, pigs and rats) are directly related to the concentration of dietary crude protein (CP). When an EAA is limiting in the diet, addition of a mixture of EAA lacking the limiting one (which increases dietary CP) results in a decrease in food intake and weight gain. This interaction has been referred to as an AA imbalance and has not been studied in depth in strict carnivores. The objectives of these experiments were to examine the effects on growing kittens (2-week periods) of the addition to diets of a mixture of AA lacking the limiting one. The control diets were at the requirement of the respective limiting EAA (or about 85% of the 1986 National Research Council requirement). In experiment 1, with the dietary EAAs at the minimally determined requirements, the concentration of the essential or dispensable amino acids was increased to determine if CP or an EAA was limiting. Results of growth rates (n = 12) and plasma AA concentrations indicated that tryptophan was limiting, but increased body weight gain also occurred when the concentration of CP was increased as dispensable amino acids without additional tryptophan. Experiment 1 was repeated in experiment 2 using a crossover design. Again, when tryptophan was limiting additional concentrations of dispensable AAs increased body weight gain. This response is the opposite of that in herbivores and omnivores. Experiment 3 consisted of 10 separate crossover trials, one for each of the 10 EAA and examined the effect of two concentrations of dietary CP (200 and 300 g CP/kg diet) on body weight gain of kittens (n = 8) offered diets limiting in each respective EAA. Body weight gain was numerically greater when diets contained 300 g CP/kg than 200 g CP/kg for eight of 10 EAAs (p < 0.05 for only isoleucine and threonine) when each amino acid was limiting. This response is the reverse of that which occurs in chicks, lambs, pigs and rats when

  19. Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition

    PubMed Central

    2014-01-01

    Amino acids are building blocks for proteins in all animals. Based on growth or nitrogen balance, amino acids were traditionally classified as nutritionally essential or nonessential for mammals, birds and fish. It was assumed that all the “nutritionally nonessential amino acids (NEAA)” were synthesized sufficiently in the body to meet the needs for maximal growth and optimal health. However, careful analysis of the scientific literature reveals that over the past century there has not been compelling experimental evidence to support this assumption. NEAA (e.g., glutamine, glutamate, proline, glycine and arginine) play important roles in regulating gene expression, cell signaling, antioxidative responses, fertility, neurotransmission, and immunity. Additionally, glutamate, glutamine and aspartate are major metabolic fuels for the small intestine to maintain its digestive function and to protect the integrity of the intestinal mucosa. Thus, diets for animals must contain all NEAA to optimize their survival, growth, development, reproduction, and health. Furthermore, NEAA should be taken into consideration in revising the “ideal protein” concept that is currently used to formulate swine and poultry diets. Adequate provision of all amino acids (including NEAA) in diets enhances the efficiency of animal production. In this regard, amino acids should not be classified as nutritionally essential or nonessential in animal or human nutrition. The new Texas A&M University’s optimal ratios of dietary amino acids for swine and chickens are expected to beneficially reduce dietary protein content and improve the efficiency of their nutrient utilization, growth, and production performance. PMID:24999386

  20. Lactobacillus gasseri requires peptides, not proteins or free amino acids, for growth in milk.

    PubMed

    Arakawa, K; Matsunaga, K; Takihiro, S; Moritoki, A; Ryuto, S; Kawai, Y; Masuda, T; Miyamoto, T

    2015-03-01

    Lactobacillus gasseri is a widespread commensal lactic acid bacterium inhabiting human mucosal niches and has many beneficial effects as a probiotic. However, L. gasseri is difficult to grow in milk, which hurts usability for the food industry. It had been previously reported that supplementation with yeast extract or proteose peptone, including peptides, enables L. gasseri to grow well in milk. In this study, our objective was to confirm peptide requirement of L. gasseri and evaluate efficacy of peptide release by enzymatic proteolysis on growth of L. gassei in milk. Three strains of L. gasseri did not grow well in modified DeMan, Rogosa, Sharpe broth without any nitrogen sources (MRS-N), but addition of a casein-derived peptide mixture, tryptone, promoted growth. In contrast, little effect was observed after adding casein or a casein-derived amino acid mixture, casamino acids. These results indicate that L. gasseri requires peptides, not proteins or free amino acids, among milk-derived nitrogen sources for growth. Lactobacillus gasseri JCM 1131T hardly had growth capacity in 6 kinds of milk-based media: bovine milk, human milk, skim milk, cheese whey, modified MRS-N (MRSL-N) supplemented with acid whey, and MRSL-N supplemented with casein. Moreover, treatment with digestive proteases, particularly pepsin, to release peptides made it grow well in each milk-based medium. The pepsin treatment was the most effective for growth of strain JCM 1131T in skim milk among the tested food-grade proteases such as trypsin, α-chymotrypsin, calf rennet, ficin, bromelain, and papain. As well as strain JCM 1131T, pepsinolysis of milk improved growth of other L. gasseri strains and some strains of enteric lactobacilli such as Lactobacillus crispatus, Lactobacillus gallinarum, Lactobacillus johnsonii, and Lactobacillus reuteri. These results suggest that some relatives of L. gasseri also use peptides as desirable nitrogen sources, and that milk may be a good supplier of nutritious

  1. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  2. Parenteral Nutrition: Amino Acids.

    PubMed

    Hoffer, Leonard John

    2017-03-10

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness.

  3. Parenteral Nutrition: Amino Acids

    PubMed Central

    Hoffer, Leonard John

    2017-01-01

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness. PMID:28287411

  4. Amino acid sequence of bacterial microbe-associated molecular pattern flg22 is required for virulence.

    PubMed

    Naito, Kana; Taguchi, Fumiko; Suzuki, Tomoko; Inagaki, Yoshishige; Toyoda, Kazuhiro; Shiraishi, Tomonori; Ichinose, Yuki

    2008-09-01

    Flagellin proteins derived from Pseudomonas syringae pv. tabaci 6605 and flg22Pa (QRLSTGSRINSAKDDAAGLQIA), one of the microbe-associated molecular patterns (MAMP) in bacterial flagellin, induce cell death and growth inhibition in Arabidopsis thaliana. To examine the importance of aspartic acid (D) at position 43 from the N-terminus of a flagellin in its elicitor activity, D43 was replaced with valine (V) and alanine (A) in P. syringae pv. tabaci flagellin and flg22Pta. The abilities of flagellins from P. syringae pv. tabaci D43V and D43A to induce cell death and growth inhibition were reduced, whereas the abilities of flg22PtaD43V and flg22PtaD43A were abolished. These results indicate that D43 is important for elicitor activity in P. syringae pv. tabaci. When tobacco plants were inoculated with each bacterium by the spray method, both P. syringae pv. tabaci D43V and D43A mutants had remarkably reduced ability to cause disease symptoms. Both mutants had reduced or no swimming and swarming motilities and adhesion ability. In P. syringae pv. tabaci D43V, little flagellin protein was detected and few flagella were observed by electron microscopy. These results indicate that mutant flagella are unstable and that flagellar motility is impaired. Thus, the amino acid residue required for MAMP activity is important for the intrinsic flagellar function.

  5. Amino Acid Metabolism Disorders

    MedlinePlus

    ... breaks the food parts down into sugars and acids, your body's fuel. Your body can use this ... process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple ...

  6. Amino Acid Crossword Puzzle

    ERIC Educational Resources Information Center

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  7. Pyrolysis products from amino acids and protein: highest mutagenicity requires cytochrome P1-450.

    PubMed

    Nebert, D W; Bigelow, S W; Okey, A B; Yahagi, T; Mori, Y; Nagao, M; Sugimura, T

    1979-11-01

    Pyrolysis products of proteins and amino acids are highly mutagenic, but metabolism of these chemicals by rat liver subcellular fractions is known to be required for production of the mutagenic intermediates. We examined the mutagenesis of seven purified pyrolysis products from tryptophan, lysine, glutamic acid, and soybean globulin with Salmonella typhimurium strain TA98 in the presence of liver fractions from genetically "responsive" C57BL/6N and Ah(b)/Ah(d) or "nonresponsive" DBA/2N and Ah(d)/Ah(d) mice that had been pretreated in vivo with benzo[a]pyrene. For all pyrolysis products tested, mutagenesis is 2-fold to more than 1000-fold greater with C57BL/6N and Ah(b)/Ah(d) than with DBA/2N or Ah(d)/Ah(d) liver fractions. A sucrose density gradient assay for detecting the Ah regulatory gene product, the receptor, was studied with C57BL/6N hepatic cytosol. At levels 100 times in excess of [1,6-(3)H]2,3,7,8-tetrachlorodibenzo-p-dioxin, nonlabeled 2,3,7,8-tetrachlorodibenzo-p-dioxin, 3-methylcholanthrene, and beta-naphthoflavone (inducers of cytochrome P(1)-450) are able to displace the radioligand from its hepatic cytosolic receptor; four pyrolysates from tryptophan, glutamic acid, and soybean globulin did not have this capacity. These data indicate that the pyrolysis products tested, although not effective as inducers of cytochrome P(1)-450, are most mutagenic when metabolized by P(1)-450. Potent P(1)-450 inducers-present in pyrolysates during the combustion process-might be present in quantities insufficient to initiate mutagenesis or carcinogenesis but might have a synergistic action, or act as "comutagens" or "cocarcinogens," with the N-containing heterocyclic pyrolysis products. A quantitative relationship between mutagenic and carcinogenic potency of these pyrolysis products remains, however, to be demonstrated.

  8. Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids.

    PubMed

    Averous, Julien; Lambert-Langlais, Sarah; Carraro, Valérie; Gourbeyre, Ophélie; Parry, Laurent; B'Chir, Wafa; Muranishi, Yuki; Jousse, Céline; Bruhat, Alain; Maurin, Anne-Catherine; Proud, Christopher G; Fafournoux, Pierre

    2014-09-01

    The mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and metabolism. It controls many cell functions by integrating nutrient availability and growth factor signals. Amino acids, and in particular leucine, are among the main positive regulators of mTORC1 signaling. The current model for the regulation of mTORC1 by amino acids involves the movement of mTOR to the lysosome mediated by the Rag-GTPases. Here, we have examined the control of mTORC1 signaling and mTOR localization by amino acids and leucine in serum-fed cells, because both serum growth factors (or, e.g., insulin) and amino acids are required for full activation of mTORC1 signaling. We demonstrate that mTORC1 activity does not closely correlate with the lysosomal localization of mTOR. In particular, leucine controls mTORC1 activity without any detectable modification of the lysosomal localization of mTOR, indicating that the signal(s) exerted by leucine is likely distinct from those exerted by other amino acids. In addition, knock-down of the Rag-GTPases attenuated the inhibitory effect of amino acid- or leucine-starvation on the phosphorylation of mTORC1 targets. Furthermore, data from cells where Rag expression has been knocked down revealed that leucine can promote mTORC1 signaling independently of the lysosomal localization of mTOR. Our data complement existing models for the regulation of mTORC1 by amino acids and provide new insights into this important topic.

  9. Identification of hydrophobic amino acids required for lipid activation of C. elegans CTP:phosphocholine cytidylyltransferase

    PubMed Central

    Braker, Jay D; Hodel, Kevin J.; Mullins, David R.; Friesen, Jon A.

    2009-01-01

    CTP:phosphocholine cytidylyltransferase (CCT), critical for phosphatidylcholine biosynthesis, is activated by translocation to the membrane surface. The lipid activation region of Caenorhabditis elegans CCT is between residues 246 and 266 of the 347 amino acid polypeptide, a region proposed to form an amphipathic alpha helix. When leucine 246, tryptophan 249, isoleucine 256, isoleucine 257, or phenylalanine 260, on the hydrophobic face of the helix, were changed individually to serine low activity was observed in the absence of lipid vesicles, similar to wild-type CCT, while lipid stimulated activity was reduced compared to wild-type CCT. Mutational analysis of phenylalanine 260 implicated this residue as a contributor to auto-inhibition of CCT while mutation of L246, W249, I256, and I257 simultaneously to serine resulted in significantly higher activity in the absence of lipid vesicles and an enzyme that was not lipid activated. These results support a concerted mechanism of lipid activation that requires multiple residues on the hydrophobic face of the putative amphipathic alpha helix. PMID:19836342

  10. The in vivo sparing of methionine by cysteine in sulfur amino acid requirements in animal models and adult humans.

    PubMed

    Ball, Ronald O; Courtney-Martin, Glenda; Pencharz, Paul B

    2006-06-01

    Sulfur amino acid metabolism has been receiving increased attention because of the link to chronic diseases such as cardiovascular disease, Alzheimer's disease, and diabetes. In addition, the role of cysteine and optimal intakes for physiological substrates such as glutathione are currently of considerable interest in human health. Although the dietary indispensability of methionine is not in question, the ability of cysteine to substitute for a portion of its requirement has been the topic of much debate. Methionine is often the most limiting amino acid in the diets of the developing world's population because of its low concentration in cereal grains. Therefore, the ability of cysteine to substitute for methionine requirement is not just biologically interesting; it is also of considerable economic and social importance. The primary goal of this review is to discuss the available evidence on the effect of cysteine substitution for methionine to meet the total sulfur amino acid requirement in adult humans, including an assessment of the methodological features of experiments with conflicting results. Assessment of the requirement experiments for amino acids with complex metabolism such as methionine and cysteine must begin with a careful definition of requirements and what substitution means. As a result of these definitions, a set of criteria for the intakes of methionine that will allow demonstration of the substitution effect have been developed. Some recent publications are assessed using these definitions and criteria, and a possible reason for the conflicting results in the literature is proposed. An approach to estimating tolerable upper intakes is also proposed. Research on in vivo sulfur amino acid metabolism in humans is tremendously difficult, and therefore, we do not wish to be overly critical of the high-quality work of the ambitious and highly intelligent men and women who have conducted various studies. Our goal is to objectively review the data for

  11. Identification of amino acids in the Dr adhesin required for binding to decay-accelerating factor.

    PubMed

    Van Loy, Cristina P; Sokurenko, Evgeni V; Samudrala, Ram; Moseley, Steve L

    2002-07-01

    Members of the Dr family of adhesins of Escherichia coli recognize as a receptor the Dr(a) blood-group antigen present on the complement regulatory and signalling molecule, decay-accelerating factor (DAF). One member of this family, the Dr haemagglutinin, also binds to a second receptor, type IV collagen. Structure/function information regarding these adhesins has been limited and domains directly involved in the interaction with DAF have not been determined. We devised a strategy to identify amino acids in the Dr haemagglutinin that are specifically involved in the interaction with DAF. The gene encoding the adhesive subunit, draE, was subjected to random mutagenesis and used to complement a strain defective for its expression. The resulting mutants were enriched and screened to obtain those that do not bind to DAF, but retain binding to type IV collagen. Individual amino acid changes at positions 10, 63, 65, 75, 77, 79 and 131 of the mature DraE sequence significantly reduced the ability of the DraE adhesin to bind DAF, but not collagen. Over half of the mutants obtained had substitutions within amino acids 63-81. Analysis of predicted structures of DraE suggest that these proximal residues may cluster to form a binding domain for DAF.

  12. Amino Acids and Chirality

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  13. An aspartic acid at amino acid 108 is required to rescue infectious virus after transfection of a poliovirus cDNA containing a CGDD but not SGDD amino acid motif in 3Dpol.

    PubMed Central

    Walker, D E; McPherson, D; Jablonski, S A; McPherson, S; Morrow, C D

    1995-01-01

    Dpol did not result in the production of virus. Surprisingly, transfection of the poliovirus cDNAs containing the 3D-D-108/C-326 double mutation, but not the 3D-D-108/S-326 mutation, resulted in the production of virus. The virus obtained from transfection of polio-virus cDNAs containing 3D-D-108/C-326 mutation replicated with kinetics similar to that of the wild-type virus. RNA sequence analysis of the region of the 3Dpol containing the 3D-C-326 mutation revealed that the codon for cysteine (UGC) reverted to the codon for tyrosine (UAC). The results of these studies establish that under the appropriate conditions, poliovirus has the capacity to revert mutations within the YGDD amino acid motif of the poliovirus 3Dpol gene and further strengthen the idea that interaction between amino acid 108 and the YGDD region of 3Dpol is required for viral replication. PMID:7494345

  14. Full amino acid sequence of centrally administered NPY required for maximal food intake response.

    PubMed

    McLaughlin, C L; Tou, J S; Rogan, G J; Baile, C A

    1991-03-01

    Central administration of NPY (1-36) potently increases food intake and it has been hypothesized that biological activities of NPY are related to its ability to form an alpha-helix, represented by the fragment NPY (14-31). In this experiment the necessity of N-terminal fragments for increasing food intake was evaluated. Two-h fasted male rats were administered 0, 0.2, 1.0 or 5.0 nmol NPY (1-36) or NPY fragments in 5 microliters saline ICV and intake of lab chow pellets was measured for 22 h. Fragments containing all or part of the polyproline-like helix [NPY (1-8)] antiparallel to the alpha-helix dose-relatedly increased food intake for 4 hours after injection. Five nmol NPY (1-36) and NPY (2-36) increased 4-hour food intake 486 and 219%, respectively (p less than 0.05). Fragments excluding the first 8 amino acids but including all of the alpha-helix also increased food intake, but the response was much reduced. Five nmol NPY (9-36) and NPY (14-36) increased 4-hour food intake 128% (p = 0.02) and 62% (NS), respectively. When all or part of the alpha-helix was excluded, no activity was detected, i.e., NPY (21-36) and NPY (32-36). Substitution of dPro for lPro in position 2 increased potency but not efficacy of NPY since food intake was increased at the 0.2 and 1.0 but not 5.0 nmol doses and the percent increase was not more than to 5 nmol NPY (1-36). Thus the maximum food intake response to NPY requires both C-terminal and N-terminal fragments as well as the alpha-helix.

  15. A study of the protein and amino acid requirements of the growing New Zealand White rabbit with emphasis on lysine and the sulphur-containing amino acids.

    PubMed

    Spreadbury, D

    1978-05-01

    1. New Zealand White (NZW) rabbits were given, between 4 and 8 weeks of age, a range of diets, based on oats and fish meal, containing from 104 to 255 g crude protein (nitrogen x 6.25; CP)/kg to establish the level of CP below which growth was retarded. 2. In three experiments each diet was fed to four animals and food intake, growth and N balance were measured over 4 weeks. Body analysis was also carried out after two of the experiments. 3. The rates of food intake and growth of animals increased with dietary CP concentration until a CP concentration of approximately 150 g/kg diet had been reached. Beyond this there was little further improvement. N balance studies showed that once this dietary concentration of CP had been reached, there was a reduced rate of N retention. 4. Good agreement was found between N retention measured by balance methods and by body analysis: body composition showed a tendency towards an increase 5. Microbial protein produced in the caecum and eaten during coprophagy, was found to supplement the dietary protein by approximately 2 g CP/d, or by only 0.1 of a normal dietary intake of CP. 6. In the second part of the study NZW rabbits were offered, between 5 and 8 weeks of age, diets based on oats containing 150 g CP/kg. The protein supplied by oats was supplemented with maize gluten, gelatin, groundnut meal, casein, soya-bean meal or fish meal. 7. Rabbits offered diets containing casein, soya-bean meal and fish meal gained 40-50 g/d similar, to animals given a well-balanced control diet, while those given diets containing maize gluten, gelatin or groundnut meal gained approximately 30 g/d. This indicated that amino acid balance in dietary protein was important to the growing rabbit. 8. In later experiments, diets based on cereals and groundnut meal supplemented with varying amounts of lysine and methionine were offered during a 3-week-post-weaning period in order to assess requirements for those limiting amino acids. 9. The addition of both

  16. Defining meal requirements for protein to optimize metabolic roles of amino acids12345

    PubMed Central

    Anthony, Tracy G; Rasmussen, Blake B; Adams, Sean H; Lynch, Christopher J; Brinkworth, Grant D; Davis, Teresa A

    2015-01-01

    Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signals that influence the rate of protein synthesis, inflammation responses, mitochondrial activity, and satiety, exerting their influence through signaling systems including mammalian/mechanistic target of rapamycin complex 1 (mTORC1), general control nonrepressed 2 (GCN2), glucagon-like peptide 1 (GLP-1), peptide YY (PYY), serotonin, and insulin. These signals represent meal-based responses to dietary protein. The best characterized of these signals is the leucine-induced activation of mTORC1, which leads to the stimulation of skeletal muscle protein synthesis after ingestion of a meal that contains protein. The response of this metabolic pathway to dietary protein (i.e., meal threshold) declines with advancing age or reduced physical activity. Current dietary recommendations for protein are focused on total daily intake of 0.8 g/kg body weight, but new research suggests daily needs for older adults of ≥1.0 g/kg and identifies anabolic and metabolic benefits to consuming at least 20–30 g protein at a given meal. Resistance exercise appears to increase the efficiency of EAA use for muscle anabolism and to lower the meal threshold for stimulation of protein synthesis. Applying this information to a typical 3-meal-a-day dietary plan results in protein intakes that are well within the guidelines of the Dietary Reference Intakes for acceptable macronutrient intakes. The meal threshold concept for dietary protein emphasizes a need for redistribution of dietary protein for optimum metabolic health. PMID:25926513

  17. Defining meal requirements for protein to optimize metabolic roles of amino acids.

    PubMed

    Layman, Donald K; Anthony, Tracy G; Rasmussen, Blake B; Adams, Sean H; Lynch, Christopher J; Brinkworth, Grant D; Davis, Teresa A

    2015-04-29

    Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signals that influence the rate of protein synthesis, inflammation responses, mitochondrial activity, and satiety, exerting their influence through signaling systems including mammalian/mechanistic target of rapamycin complex 1 (mTORC1), general control nonrepressed 2 (GCN2), glucagon-like peptide 1 (GLP-1), peptide YY (PYY), serotonin, and insulin. These signals represent meal-based responses to dietary protein. The best characterized of these signals is the leucine-induced activation of mTORC1, which leads to the stimulation of skeletal muscle protein synthesis after ingestion of a meal that contains protein. The response of this metabolic pathway to dietary protein (i.e., meal threshold) declines with advancing age or reduced physical activity. Current dietary recommendations for protein are focused on total daily intake of 0.8 g/kg body weight, but new research suggests daily needs for older adults of ≥1.0 g/kg and identifies anabolic and metabolic benefits to consuming at least 20-30 g protein at a given meal. Resistance exercise appears to increase the efficiency of EAA use for muscle anabolism and to lower the meal threshold for stimulation of protein synthesis. Applying this information to a typical 3-meal-a-day dietary plan results in protein intakes that are well within the guidelines of the Dietary Reference Intakes for acceptable macronutrient intakes. The meal threshold concept for dietary protein emphasizes a need for redistribution of dietary protein for optimum metabolic health.

  18. The amino acid sequence of the zinc-requiring beta-lactamase II from the bacterium Bacillus cereus 569.

    PubMed

    Ambler, R P; Daniel, M; Fleming, J; Hermoso, J M; Pang, C; Waley, S G

    1985-09-23

    The amino acid sequence of the zinc-requiring beta-lactamase II from Bacillus cereus strain 569 has been determined. It consists of a single polypeptide chain of 227 residues. It is the only example so far fully characterized of a class B beta-lactamase, and is structurally and mechanistically distinct from both the widely distributed class A beta-lactamases (such as the Escherichia coli RTEM enzyme) and from the chromosomally encoded class C enzymes from Gram-negative bacteria.

  19. Maintenance nitrogen requirement of the turkey breeder hen with an estimate of associated essential amino acid needs.

    PubMed

    Moran, E T; Ferket, P R; Blackman, J R

    1983-09-01

    Nonproducing, small-type breeder hens in excess of 65 weeks of age were used to represent the maintenance state. All birds had been in laying cages since 30 weeks and accustomed to 16 hr of 70 lx lighting at 16 C. Nitrogen (N) balance was performed in metabolism cages under the same conditions. Ad libitum intake of a common breeder ration led to an intake of ca. 47 kcal metabolizable energy (ME)/kg body weight (BW)/day, which was considered to represent the maintenace energy requirement. Nitrogen retained while consuming this feed averaged 172 mg/kg BW/day. Force-feeding a N-free diet to satisfy the maintenance energy requirement resulted in an 85 mg N/kg BW/day endogenous loss. Total maintenance nitrogen requirement was considered to approximate 257 mg/kg BW/day. Nitrogen retention after force-feeding corn-soybean meal rations having a progressive protein content indicated that the associated amino acids were more efficient in satisfying the endogenous than the total N requirement. A model that estimated maintenance amino acid requirements was assembled by combining the relative concentrations found in muscle and feathers to represent endogenous and retained N, respectively. For the most part, model values agreed with published results for the rooster; however, verification in balance studies was less than successful and believed to be attributable to hen variation in feather cover and protein reserves.

  20. Amino acid transporter LAT3 is required for podocyte development and function.

    PubMed

    Sekine, Yuji; Nishibori, Yukino; Akimoto, Yoshihiro; Kudo, Akihiko; Ito, Noriko; Fukuhara, Daisuke; Kurayama, Ryota; Higashihara, Eiji; Babu, Ellappan; Kanai, Yoshikatsu; Asanuma, Katsuhiko; Nagata, Michio; Majumdar, Arindam; Tryggvason, Karl; Yan, Kunimasa

    2009-07-01

    LAT3 is a Na+-independent neutral l-amino acid transporter recently isolated from a human hepatocellular carcinoma cell line. Although liver, skeletal muscle, and pancreas are known to express LAT3, the tissue distribution and physiologic function of this transporter are not completely understood. Here, we observed that glomeruli express LAT3. Immunofluorescence, confocal microscopy, and immunoelectron microscopy revealed that LAT3 localizes to the apical plasma membrane of podocyte foot processes. In mice, starvation upregulated glomerular LAT3, phosphorylated AKT1, reconstituted the actin network, and elongated foot processes. In the fetal kidney, we observed intense LAT3 expression at the capillary loops stage of renal development. Finally, zebrafish morphants lacking lat3 function showed collapsed glomeruli with thickened glomerular basement membranes. Permeability studies of the glomerular filtration barrier in these zebrafish morphants demonstrated a disruption of selective glomerular permeability. Our data suggest that LAT3 may play a crucial role in the development and maintenance of podocyte structure and function by regulating protein synthesis and the actin cytoskeleton.

  1. Requirement of N-terminal amino acid residues of gp41 for human immunodeficiency virus type 1-mediated cell fusion.

    PubMed Central

    Schaal, H; Klein, M; Gehrmann, P; Adams, O; Scheid, A

    1995-01-01

    An expression vector was designed to test the structural requirements of the gp41 N terminus for human immunodeficiency virus type 1-induced membrane fusion. Mutations in the region coding for the N terminus of gp41 were found to disrupt glycoprotein expression because of deleterious effects on the Rev-responsive element (RRE). Insertion of an additional RRE in the 3'-noncoding sequence of env made possible efficient glycoprotein expression, irrespective of the mutations introduced into the RRE in the natural location. This permitted the insertion of the unique restriction site SpeI within the N-terminal sequences of gp41, allowing convenient and efficient mutation of the gp41 N terminus by using double-stranded synthetic oligonucleotides. Mutants with deletions of 1 to 7 amino acids of the N terminus were constructed. Expression and cleavage of all mutants were confirmed by Western immunoblot analysis with anti-gp41 antibodies. The capability of mutants to induce membrane fusion was monitored following transfection of HeLa-T4+ cell lines with wild-type and mutant expression vectors by electroporation and microinjection. The efficiency of cell-fusing activity decreased drastically with deletion of 3 and 4 amino acids and was completely lost with deletion of 5 amino acids. Cotransfection of the parent and mutant expression vectors resulted in reduced cell-fusing activity. The extent of this dominant interference by mutant glycoprotein paralleled the decrease in cell-fusing activity of the mutants alone. This suggests the existence of a specific N-terminal structure required for fusing activity. However, there does not appear to be a stringent requirement for the precise length of the N terminus. This finding is supported by the length variation of this region among natural human immunodeficiency virus type 1 isolates and is in contrast to the apparent stringency in the length of analogous N-terminal structures of influenza A virus and paramyxovirus fusion

  2. Protein turnover, amino acid requirements and recommendations for athletes and active populations

    PubMed Central

    Poortmans, J.R.; Carpentier, A.; Pereira-Lancha, L.O.; Lancha, A.

    2012-01-01

    Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers (13C-lysine, 15N-glycine, 2H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g·kg−1·day−1 compared to 0.8 g·kg−1·day−1 in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h. PMID:22666780

  3. Characterization of the Candida albicans Amino Acid Permease Family: Gap2 Is the Only General Amino Acid Permease and Gap4 Is an S-Adenosylmethionine (SAM) Transporter Required for SAM-Induced Morphogenesis

    PubMed Central

    Kraidlova, Lucie; Schrevens, Sanne; Tournu, Hélène; Van Zeebroeck, Griet; Sychrova, Hana

    2016-01-01

    ABSTRACT Amino acids are key sources of nitrogen for growth of Candida albicans. In order to detect and take up these amino acids from a broad range of different and changing nitrogen sources inside the host, this fungus must be able to adapt via its expression of genes for amino acid uptake and further metabolism. We analyzed six C. albicans putative general amino acid permeases based on their homology to the Saccharomyces cerevisiae Gap1 general amino acid permease. We generated single- and multiple-deletion strains and found that, based on growth assays and transcriptional or posttranscriptional regulation, Gap2 is the functional orthologue to ScGap1, with broad substrate specificity. Expression analysis showed that expression of all GAP genes is under control of the Csy1 amino acid sensor, which is different from the situation in S. cerevisiae, where the expression of ScGAP1 is not regulated by Ssy1. We show that Gap4 is the functional orthologue of ScSam3, the only S-adenosylmethionine (SAM) transporter in S. cerevisiae, and we report that Gap4 is required for SAM-induced morphogenesis. IMPORTANCE Candida albicans is a commensal organism that can thrive in many niches in its human host. The environmental conditions at these different niches differ quite a bit, and this fungus must be able to sense these changes and adapt its metabolism to them. Apart from glucose and other sugars, the uptake of amino acids is very important. This is underscored by the fact that the C. albicans genome encodes 6 orthologues of the Saccharomyces. cerevisiae general amino acid permease Gap1 and many other amino acid transporters. In this work, we characterize these six permeases and we show that C. albicans Gap2 is the functional orthologue of ScGap1 and that C. albicans Gap4 is an orthologue of ScSam3, an S-adenosylmethionine (SAM) transporter. Furthermore, we show that Gap4 is required for SAM-induced morphogenesis, an important virulence factor of C. albicans. PMID

  4. Amino acids in Arctic aerosols

    NASA Astrophysics Data System (ADS)

    Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N. M.; Gabrieli, J.; Barbante, C.; Gambaro, A.

    2012-11-01

    Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids and quantify compounds at fmol m-3 levels. Mean total FAA concentration was 1070 fmol m-3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45-60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m-3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (< 0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanic emissions.

  5. Amino acids in Arctic aerosols

    NASA Astrophysics Data System (ADS)

    Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N. M.; Gabrieli, J.; Barbante, C.; Gambaro, A.

    2012-07-01

    Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids to quantify compounds at fmol m-3 levels. Mean total FAA concentration was 1070 fmol m-3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45-60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m-3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (<0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanics.

  6. Synthesis of amino acids

    DOEpatents

    Davis, J.W. Jr.

    1979-09-21

    A method is described for synthesizing amino acids preceding through novel intermediates of the formulas: R/sub 1/R/sub 2/C(OSOC1)CN, R/sub 1/R/sub 2/C(C1)CN and (R/sub 1/R/sub 2/C(CN)O)/sub 2/SO wherein R/sub 1/ and R/sub 2/ are each selected from hydrogen and monovalent hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  7. Amino acids in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Peterson, E.

    1975-01-01

    Studies with the combined gas chromatograph-mass spectrometer were conducted to characterize further the amino acids found in extracts of the Murchison meteorite. With the exception of beta-aminoisobutyric acid, all of the amino acids which were found in previous studies of the Murchison meteorite and the Murray meteorite have been identified. The results obtained lend further support to the hypothesis that amino acids are present in the Murchison meteorite as the result of an extraterrestrial abiotic synthesis.

  8. Determination of protein and amino acid requirements of lactating sows using a population-based factorial approach.

    PubMed

    Strathe, A V; Strathe, A B; Theil, P K; Hansen, C F; Kebreab, E

    2015-08-01

    Determination of appropriate nutritional requirements is essential to optimize the productivity and longevity of lactating sows. The current recommendations for requirements do not consider the large variation between animals. Therefore, the aim of this study was to determine the amino acid recommendations for lactating sows using a stochastic modeling approach that integrates population variation and uncertainty of key parameters into establishing nutritional recommendations for lactating sows. The requirement for individual sows was calculated using a factorial approach by adding the requirement for maintenance and milk. The energy balance of the sows was either negative or zero depending on feed intake being a limiting factor. Some parameters in the model were sow-specific and others were population-specific, depending on state of knowledge. Each simulation was for 1000 sows repeated 100 times using Monte Carlo simulation techniques. BW, back fat thickness of the sow, litter size (LS), average litter gain (LG), dietary energy density and feed intake were inputs to the model. The model was tested using results from the literature, and the values were all within ±1 s.d. of the estimated requirements. Simulations were made for a group of low- (LS=10 (s.d.=1), LG=2 kg/day (s.d.=0.6)), medium- (LS=12 (s.d.=1), LG=2.5 kg/day (s.d.=0.6)) and high-producing (LS=14 (s.d.=1), LG=3.5 kg/day (s.d.=0.6)) sows, where the average requirement was the result. In another simulation, the requirements were estimated for each week of lactation. The results were given as the median and s.d. The average daily standardized ileal digestible (SID) protein and lysine requirements for low-, medium- and high-producing sows were 623 (CV=2.5%) and 45.1 (CV=4.8%); 765 (CV=4.9%) and 54.7 (CV=7.0%); and 996 (CV=8.5%) and 70.8 g/day (CV=9.6%), respectively. The SID protein and lysine requirements were lowest at week 1, intermediate at week 2 and 4 and the highest at week 3 of lactation. The

  9. Branched-Chain Amino Acids Are Required for the Survival and Virulence of Actinobacillus pleuropneumoniae in Swine▿

    PubMed Central

    Subashchandrabose, Sargurunathan; LeVeque, Rhiannon M.; Wagner, Trevor K.; Kirkwood, Roy N.; Kiupel, Matti; Mulks, Martha H.

    2009-01-01

    In Actinobacillus pleuropneumoniae, which causes porcine pleuropneumonia, ilvI was identified as an in vivo-induced (ivi) gene and encodes the enzyme acetohydroxyacid synthase (AHAS) required for branched-chain amino acid (BCAA) biosynthesis. ilvI and 7 of 32 additional ivi promoters were upregulated in vitro when grown in chemically defined medium (CDM) lacking BCAA. Based on these observations, we hypothesized that BCAA would be found at limiting concentrations in pulmonary secretions and that A. pleuropneumoniae mutants unable to synthesize BCAA would be attenuated in a porcine infection model. Quantitation of free amino acids in porcine pulmonary epithelial lining fluid showed concentrations of BCAA ranging from 8 to 30 μmol/liter, which is 10 to 17% of the concentration in plasma. The expression of both ilvI and lrp, a global regulator that is required for ilvI expression, was strongly upregulated in CDM containing concentrations of BCAA similar to those found in pulmonary secretions. Deletion-disruption mutants of ilvI and lrp were both auxotrophic for BCAA in CDM and attenuated compared to wild-type A. pleuropneumoniae in competitive index experiments in a pig infection model. Wild-type A. pleuropneumoniae grew in CDM+BCAA but not in CDM−BCAA in the presence of sulfonylurea AHAS inhibitors. These results clearly demonstrate that BCAA availability is limited in the lungs and support the hypothesis that A. pleuropneumoniae, and potentially other pulmonary pathogens, uses limitation of BCAA as a cue to regulate the expression of genes required for survival and virulence. These results further suggest a potential role for AHAS inhibitors as antimicrobial agents against pulmonary pathogens. PMID:19703979

  10. Assessment of protein requirement in octogenarian women with use of the indicator amino acid oxidation technique123

    PubMed Central

    Tang, Minghua; McCabe, George P; Elango, Rajavel; Pencharz, Paul B; Ball, Ronald O; Campbell, Wayne W

    2014-01-01

    Background: Data on the protein requirements of elderly adults are limited, because it is impractical to conduct repeated nitrogen balance protocols in these vulnerable humans. Objective: This study was designed to determine the dietary protein requirement of elderly women by using the recently developed minimally invasive indicator amino acid oxidation (IAAO) technique. Design: Six white women aged 80–87 y [mean ± SEM: 82 ± 1 y and body mass index (in kg/m2) 26 ± 2] completed a 3-d protocol 7 times. Each woman consumed an adaptation diet for 2 d and on day 3 consumed a complete test diet with a crystalline amino acid mixture containing 1 of 7 protein intakes (0.1, 0.3, 0.6, 0.9, 1.2, 1.5, or 1.8 g · kg−1 · d−1) tested randomly. A group-based protein requirement was assessed by using a nonlinear mixed model of protein intake and l-[1-13C]phenylalanine oxidation. The breakpoint, at which there was no further decline in the rate of appearance of 13C in the breath, was used as an index of the mean protein requirement. Results: The mean protein requirement (95% CI) was 0.85 (0.60, 1.09) g · kg−1 · d−1. This requirement is 29% higher than the current Estimated Average Requirement (EAR) for adults of 0.66 g · kg−1 · d−1 based on the nitrogen balance technique, although the 95% CI includes the current EAR. The corresponding adequate protein allowance of 1.15 (0.77, 1.54) g · kg−1 · d−1 is 44% higher, although the 95% CI includes the Recommended Dietary Allowance (RDA) of 0.80 g · kg−1 · d−1. Conclusions: Notwithstanding uncertainty about the validity of the use of the IAAO technique to assess protein requirements, the results of this study with octogenarian women suggest that the current EAR and RDA for elderly women may be underestimated. The limitations of this short-term, noninvasive method underscore the need for new research that uses alternative experimental designs and measuring physiologic, morphologic, and health

  11. A single-amino-acid substitution eliminates the stringent carbohydrate requirement for intracellular transport of a viral glycoprotein.

    PubMed

    Pitta, A M; Rose, J K; Machamer, C E

    1989-09-01

    In this report, we have investigated the contribution of primary sequence to the carbohydrate requirement for intracellular transport of two closely related glycoproteins, the G proteins of the San Juan and Orsay strains of vesicular stomatitis virus. We used site-directed mutagenesis of the coding sequence to eliminate the two consensus sites for glycosylation in the Orsay G protein. Whereas the nonglycosylated San Juan G protein required at least one of its two asparagine-linked oligosaccharides for transport to the plasma membrane at 37 degrees C, a fraction of the Orsay G protein was transported without carbohydrate. Of the 10 amino acid differences between these two proteins, residue 172 (tyrosine in San Juan, aspartic acid in Orsay) played the major role in determining the stringency for the carbohydrate requirement. The rates at which the glycosylated and nonglycosylated Orsay G proteins were transported to the cell surface were the same, although a smaller fraction of the nonglycosylated protein was transported. These results suggest that the carbohydrate does not promote intracellular transport directly but influences a polypeptide folding or oligomerization step which is critical for transport.

  12. Aromatic Amino Acids Required for Pili Conductivity and Long-Range Extracellular Electron Transport in Geobacter sulfurreducens

    PubMed Central

    Vargas, Madeline; Malvankar, Nikhil S.; Tremblay, Pier-Luc; Leang, Ching; Smith, Jessica A.; Patel, Pranav; Synoeyenbos-West, Oona; Nevin, Kelly P.; Lovley, Derek R.

    2013-01-01

    ABSTRACT It has been proposed that Geobacter sulfurreducens requires conductive pili for long-range electron transport to Fe(III) oxides and for high-density current production in microbial fuel cells. In order to investigate this further, we constructed a strain of G. sulfurreducens, designated Aro-5, which produced pili with diminished conductivity. This was accomplished by modifying the amino acid sequence of PilA, the structural pilin protein. An alanine was substituted for each of the five aromatic amino acids in the carboxyl terminus of PilA, the region in which G. sulfurreducens PilA differs most significantly from the PilAs of microorganisms incapable of long-range extracellular electron transport. Strain Aro-5 produced pili that were properly decorated with the multiheme c-type cytochrome OmcS, which is essential for Fe(III) oxide reduction. However, pili preparations of the Aro-5 strain had greatly diminished conductivity and Aro-5 cultures were severely limited in their capacity to reduce Fe(III) compared to the control strain. Current production of the Aro-5 strain, with a graphite anode serving as the electron acceptor, was less than 10% of that of the control strain. The conductivity of the Aro-5 biofilms was 10-fold lower than the control strain’s. These results demonstrate that the pili of G. sulfurreducens must be conductive in order for the cells to be effective in extracellular long-range electron transport. PMID:23481602

  13. Growth requirements of hyperthermophilic sulfur-dependent heterotrophic archaea isolated from a shallow submarine geothermal system with reference to their essential amino acids.

    PubMed Central

    Hoaki, T; Nishijima, M; Kato, M; Adachi, K; Mizobuchi, S; Hanzawa, N; Maruyama, T

    1994-01-01

    Three hyperthermophilic sulfur-dependent heterotrophs were isolated from a shallow submarine hydrothermal system at an inlet of Kodakara-jima island, Kagoshima, Japan. The isolates grew at 60 to 97 degrees C, with the optimum temperatures at 85 to 90 degrees C. Sensitivity to rifampin and the existence of ether lipids indicated that the isolates are hyperthermophilic archaea. Partial sequencing of the genes coding for 16S rRNA showed that the three isolates are closely related to the genus Thermococcus. They grew on proteinaceous mixtures, such as yeast extract, Casamino Acids, and purified proteins (e.g., casein and gelatin), but not on carbohydrates or organic acids as sole carbon and energy sources. Nine amino acids were essential for growth of isolate KS-1 (Thr, Leu, Ile, Val, Met, Phe, His, Tyr, and Arg). Isolate KS-2 required Lys in addition to the nine amino acids, and KS-8 required Lys instead of Tyr. In comparative studies, it was shown that Thermococcus celer DSM 2476 required 10 amino acids (Thr, Leu, Ile, Val, Met, Phe, Tyr, Trp, Lys, and Arg) while Pyrococcus furiosus DSM 3638 required only Ile and Val. The hyperthermophilic fermentative eubacterium Thermotoga neapolitana DSM 4359 did not require any amino acids for growth. Images PMID:8085828

  14. The vacuolar compartment is required for sulfur amino acid homeostasis in Saccharomyces cerevisiae.

    PubMed

    Jacquemin-Faure, I; Thomas, D; Laporte, J; Cibert, C; Surdin-Kerjan, Y

    1994-09-01

    In order to isolate new mutations impairing transcriptional regulation of sulfur metabolism in Saccharomyces cerevisiae, we used a potent genetic screen based on a gene fusion expressing XylE (from Pseudomonas putida) under the control of the promoter region of MET25. This selection yielded strains mutated in various different genes. We describe in this paper the properties of one of them, MET27. Mutation or disruption of MET27 leads to a methionine requirement and affects S-adenosylmethionine (AdoMet)-mediated transcriptional control of genes involved in sulfur metabolism. The cloning and sequencing of MET27 showed that it is identical to VPS33. Disruptions or mutations of gene VPS33 are well known to impair the biogenesis and inheritance of the vacuolar compartment. However, the methionine requirement of vps33 mutants has not been reported previously. We show here, moreover, that other vps mutants of class C (no apparent vacuoles) also require methionine for growth. Northern blotting experiments revealed that the met27-1 mutation delayed derepression of the transcription of genes involved in sulfur metabolism. By contrast, this delay was not observed in a met27 disrupted strain. Physiological and morphological analyses of met27-1 and met27 disrupted strains showed that these results could be explained by alterations in the ability of the vacuole to transport or store AdoMet, the physiological effector of the transcriptional regulation of sulfur metabolism.

  15. Protein and amino acid nutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy cow protein and amino acid nutrition have a significant role in sustainable dairying. Protein, amino acids, and nitrogen are inextricably linked through effects in the rumen, metabolism of the cow, and environmental nutrient management. Feeding systems have been making progress toward emphasiz...

  16. Protein Requirements Are Elevated in Endurance Athletes after Exercise as Determined by the Indicator Amino Acid Oxidation Method

    PubMed Central

    Kato, Hiroyuki; Suzuki, Katsuya; Bannai, Makoto; Moore, Daniel R.

    2016-01-01

    A higher protein intake has been recommended for endurance athletes compared with healthy non-exercising individuals based primarily on nitrogen balance methodology. The aim of this study was to determine the estimated average protein requirement and recommended protein intake in endurance athletes during an acute 3-d controlled training period using the indicator amino acid oxidation method. After 2-d of controlled diet (1.4 g protein/kg/d) and training (10 and 5km/d, respectively), six male endurance-trained adults (28±4 y of age; Body weight, 64.5±10.0 kg; VO2peak, 60.3±6.7 ml·kg-1·min-1; means±SD) performed an acute bout of endurance exercise (20 km treadmill run) prior to consuming test diets providing variable amounts of protein (0.2–2.8 g·kg-1·d-1) and sufficient energy. Protein was provided as a crystalline amino acid mixture based on the composition of egg protein with [1-13C]phenylalanine provided to determine whole body phenylalanine flux, 13CO2 excretion, and phenylalanine oxidation. The estimated average protein requirement was determined as the breakpoint after biphasic linear regression analysis with a recommended protein intake defined as the upper 95% confidence interval. Phenylalanine flux (68.8±8.5 μmol·kg-1·h-1) was not affected by protein intake. 13CO2 excretion displayed a robust bi-phase linear relationship (R2 = 0.86) that resulted in an estimated average requirement and a recommended protein intake of 1.65 and 1.83 g protein·kg-1·d-1, respectively, which was similar to values based on phenylalanine oxidation (1.53 and 1.70 g·kg-1·d-1, respectively). We report a recommended protein intake that is greater than the RDA (0.8 g·kg-1·d-1) and current recommendations for endurance athletes (1.2–1.4 g·kg-1·d-1). Our results suggest that the metabolic demand for protein in endurance-trained adults on a higher volume training day is greater than their sedentary peers and current recommendations for athletes based primarily on

  17. Regulation of the plasma amino acid profile by leucine via the system L amino acid transporter.

    PubMed

    Zhen, Hongmin; Nakamura, Koichi; Kitaura, Yasuyuki; Kadota, Yoshihiro; Ishikawa, Takuya; Kondo, Yusuke; Xu, Minjun; Shimomura, Yoshiharu

    2015-01-01

    Plasma concentrations of amino acids reflect the intracellular amino acid pool in mammals. However, the regulatory mechanism requires clarification. In this study, we examined the effect of leucine administration on plasma amino acid profiles in mice with and without the treatment of 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) or rapamycin as an inhibitor of system L or mammalian target of rapamycin complex 1, respectively. The elevation of plasma leucine concentration after leucine administration was associated with a significant decrease in the plasma concentrations of isoleucine, valine, methionine, phenylalanine, and tyrosine; BCH treatment almost completely blocked the leucine-induced decrease in plasma amino acid concentrations. Rapamycin treatment had much less effects on the actions of leucine than BCH treatment. These results suggest that leucine regulates the plasma concentrations of branched-chain amino acids, methionine, phenylalanine, and tyrosine, and that system L amino acid transporters are involved in the leucine action.

  18. Sulfur amino acid requirement of broiler chickens from 3 to 6 weeks of age.

    PubMed

    Jensen, L S; Wyatt, C L; Fancher, B I

    1989-01-01

    Two experiments were conducted to determine if the TSAA level suggested by the National Research Council (NRC) in 1984 was adequate for optimum performance of 3 to 6-wk-old broilers, and to assess the effect of added copper on the TSAA requirement. A 2 x 3 x 2 factorial arrangement involving two copper (0 and 240 ppm) and three TSAA levels (.72, .78 and .84%) and two sexes was used in each experiment. Copper sulfate (CuSO4.5H2O) and DL-methionine were the dietary supplements to pelleted diets. There were four groups of 20 males or 20 females in each experiment, housed in floor pens. Methionine supplementation significantly improved body weight gain and feed efficiency in males but not in females. A significant copper x methionine interaction was observed, with methionine supplementation improving feed efficiency more in the presence of copper than in its absence. Abdominal fat per unit of body weight was significantly reduced by both methionine and copper in females but not in males. In a second experiment, methionine significantly improved body weight gain in males fed no added copper and significantly reduced abdominal fat per unit of body weight. Methionine supplementation improved body weight gain in males more in the absence than in the presence of copper (significant TSAA x copper interaction). Methionine supplementation had no significant effects on performance of females in the second experiment, but copper supplementation significantly improved feed efficiency.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC

    PubMed Central

    McKnight, Nicole C; Jefferies, Harold B J; Alemu, Endalkachew A; Saunders, Rebecca E; Howell, Michael; Johansen, Terje; Tooze, Sharon A

    2012-01-01

    Autophagy is a catabolic process by which cytoplasmic components are sequestered and transported by autophagosomes to lysosomes for degradation, enabling recycling of these components and providing cells with amino acids during starvation. It is a highly regulated process and its deregulation contributes to multiple diseases. Despite its importance in cell homeostasis, autophagy is not fully understood. To find new proteins that modulate starvation-induced autophagy, we performed a genome-wide siRNA screen in a stable human cell line expressing GFP–LC3, the marker-protein for autophagosomes. Using stringent validation criteria, our screen identified nine novel autophagy regulators. Among the hits required for autophagosome formation are SCOC (short coiled-coil protein), a Golgi protein, which interacts with fasciculation and elongation protein zeta 1 (FEZ1), an ULK1-binding protein. SCOC forms a starvation-sensitive trimeric complex with UVRAG (UV radiation resistance associated gene) and FEZ1 and may regulate ULK1 and Beclin 1 complex activities. A second candidate WAC is required for starvation-induced autophagy but also acts as a potential negative regulator of the ubiquitin-proteasome system. The identification of these novel regulatory proteins with diverse functions in autophagy contributes towards a fuller understanding of autophagosome formation. PMID:22354037

  20. Robust GLP-1 secretion by basic L-amino acids does not require the GPRC6A receptor.

    PubMed

    Clemmensen, Christoffer; Jørgensen, Christinna V; Smajilovic, Sanela; Bräuner-Osborne, Hans

    2017-04-01

    The G protein-coupled receptor GPRC6A (GPCR, Class C, group 6, subtype A) has been proposed to be a sensor for basic L-amino acids that are hypothesized to translate ingestive behaviour to endocrine information. However, the contribution of the GPRC6A receptor to L-amino acid-induced glucagon-like peptide 1 (GLP-1) secretion is unclear. Therefore, to discover whether the GPRC6A receptor is indispensible for amino acid-induced secretion of GLP-1, we treated, with oral gavage, GPRC6A knock-out (KO) and wild-type (WT) littermate mice with GPRC6A ligands (L-arginine and L-ornithine) and assessed GLP-1 levels in circulation. We found that oral administration of both L-arginine and L-ornithine significantly increased total plasma GLP-1 levels to a similar level in GPRC6A KO and WT mice 15 minutes after gavage (both amino acids) and accumulated up to 60 minutes after gavage (L-arginine). Conversely, GLP-1 secretion at the 30- and 60-minute time points in the KO mice was attenuated and did not reach statistical significance. In summary, these data confirm that L-arginine is a potent GLP-1 secretagogue and show that the main effect occurs independently of GPRC6A. In addition, this is the first study to show that also L-ornithine powerfully elicits GLP-1 release in vivo.

  1. Amino acid analysis for pharmacopoeial purposes.

    PubMed

    Wahl, Oliver; Holzgrabe, Ulrike

    2016-07-01

    The impurity profile of amino acids depends strongly on the production process. Since there are many different production methods (e.g. fermentation, protein hydrolysis or chemical synthesis) universal, state of the art methods are required to determine the impurity profile of amino acids produced by all relevant competitors. At the moment TLC tests provided by the Ph. Eur. are being replaced by a very specific amino acid analysis procedure possibly missing out on currently unknown process related impurities. Production methods and possible impurities as well as separation and detection methods suitable for said impurities are subject to this review.

  2. Amino Acids from a Comet

    NASA Technical Reports Server (NTRS)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  3. Development of a semipurified test diet for determining amino acid requirements of Florida pompano Trachinotus carolinus reared under low-salinity conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two trials were conducted to develop a semipurified test diet for determining indispensable amino acid (IAA) requirements for Florida pompano Trachinotus carolinus. The objective of the first trial was to evaluate casein and corn gluten meal as principal intact protein sources, and the ability of F...

  4. Amino Acid Detection in Cometary Matter?

    NASA Astrophysics Data System (ADS)

    Meierhenrich, U. J.; Munoz Caro, G. M.; Thiemann, W.; Goesmann, F.; Rosenbauer, H.

    2003-04-01

    The recent identification of amino acid structures in interstellar ice analogues [1, 2] strongly supports the assumption that amino acids are abundant in cometary matter too. Cometary matter is assumed to be built up of aggregates of interstellar dust particles. Amino acids are the molecular building blocks of proteins in living organisms. These results amplified the scientific interest in the ESA cometary mission Rosetta. The Rosetta Lander includes the Cosac experiment dedicated to the identification of chiral organic molecules in cometary matter itshape in situ \\upshape by multi column gas chromatography coupled with a reflectron time-of-flight mass spectrometer. However, the envisaged itshape in situ \\upshape amino acid analysis on the cometary surface requires special technical emphasis of the COSAC instrumentation. The context in which the amino acid identification in cometary matter is of interest will be outlined and the analytical solutions that make amino acids accessible to the COSAC instrument will be presented. A succesful identification of amino acid structures in cometary matter would help to understand the beginnings of the biomolecular evolution and the origin of the biomolecular asymmetry. [1] G.M. Muñoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Sergovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack, J.M. Greenberg: itshape Nature \\upshape 416 (2002), 403-406. [2] M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper, L.J. Allamandola: itshape Nature \\upshape 416 (2002), 401-403.

  5. Treatment of Amino Acid Metabolism Disorders

    MedlinePlus

    ... amino acid metabolism disorders Treatment of amino acid metabolism disorders E-mail to a friend Please fill ... This is an amino acid that helps remove ammonia from the blood. Babies with HCY may need ...

  6. Minimal Amino Acid Requirements of the Hyperthermophilic Archaeon Pyrococcus abyssi, Isolated from Deep-Sea Hydrothermal Vents

    PubMed Central

    Watrin, L.; Martin-Jezequel, V.; Prieur, D.

    1995-01-01

    A minimal growth medium containing only nine amino acids and vitamins as the sole carbon and energy sources allowed the growth of Pyrococcus abyssi GE 5, a novel hyperthermophilic sulfur-metabolizing archaeon isolated from deep-sea hydrothermal vents. The generation time in this medium was about 40 min, and cell densities up to 5 x 10(sup8) cells ml(sup-1) were attained. These results are similar to those obtained previously with complex proteinaceous media. PMID:16534963

  7. Requirement of extracellular Ca(2+) binding to specific amino acids for heat-evoked activation of TRPA1.

    PubMed

    Kurganov, Erkin; Saito, Shigeru; Saito, Claire T; Tominaga, Makoto

    2017-02-14

    Transient receptor potential ankyrin 1 (TRPA1) is a homotetrameric nonselective cation-permeable channel that has six transmembrane domains and cytoplasmic N- and C-termini. The N-terminus is characterized by an unusually large number of ankyrin repeats. Although the 3-dimensional structure of human TRPA1 has been determined, and TRPA1 channels from insects to birds are known to be activated by heat stimulus, the mechanism for temperature-dependent TRPA1 activation is unclear. We previously reported that extracellular Ca(2+) , but not intracellular Ca(2+) , plays an important role in heat-evoked TRPA1 activation in green anole lizards (gaTRPA1). Here we focus on extracellular Ca(2+) -dependent heat sensitivity of gaTRPA1 by comparing gaTRPA1 with heat-activated TRPA1 channels from rat snake (rsTRPA1) and chicken (chTRPA1). In the absence of extracellular Ca(2+) , rsTRPA1 and chTRPA1 are activated by heat and generate small inward currents. A comparison of extracellular amino acids in TRPA1 identified three negatively charged amino acid residues (glutamate and aspartate) near the outer pore vestibule that are involved in heat-evoked TRPA1 activation in the presence of extracellular Ca(2+) . These results suggest that neutralization of acidic amino acids by extracellular Ca(2+) is important for heat-evoked activation of gaTRPA1, chTRPA1, and rsTRPA1, which could clarify mechanisms of heat-evoked channel activation. This article is protected by copyright. All rights reserved.

  8. Amino Acid Metabolism Disorders

    MedlinePlus

    ... acidemia? In ASA, the body can’t remove ammonia or a substance called argininosuccinic acid from the ... and children include: Breathing problems High levels of ammonia in the bloodIntense headache, especially after a high- ...

  9. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Amino acids. 172.320 Section 172.320 Food and....320 Amino acids. The food additive amino acids may be safely used as nutrients added to foods in... individual amino acids in the free, hydrated, or anhydrous form, or as the hydrochloride, sodium,...

  10. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Amino acids. 172.320 Section 172.320 Food and... Dietary and Nutritional Additives § 172.320 Amino acids. The food additive amino acids may be safely used... consists of one or more of the following individual amino acids in the free, hydrated or anhydrous form...

  11. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Amino acids. 172.320 Section 172.320 Food and Drugs... Dietary and Nutritional Additives § 172.320 Amino acids. The food additive amino acids may be safely used... consists of one or more of the following individual amino acids in the free, hydrated or anhydrous form...

  12. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Amino acids. 172.320 Section 172.320 Food and... Dietary and Nutritional Additives § 172.320 Amino acids. The food additive amino acids may be safely used... consists of one or more of the following individual amino acids in the free, hydrated or anhydrous form...

  13. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Amino acids. 172.320 Section 172.320 Food and... Dietary and Nutritional Additives § 172.320 Amino acids. The food additive amino acids may be safely used... consists of one or more of the following individual amino acids in the free, hydrated or anhydrous form...

  14. Interaction of Adjacent Amino Acids

    NASA Astrophysics Data System (ADS)

    Sheu, Sheh-Yi; Yang, Dah-Yen

    2008-02-01

    Ramachandran plots display the dihedral angles of a single protein residue. We here propose a crossed torsion angle plot called SSY-plot between two neighboring amino acids and demonstrate that a special coherence motion can exist between some very special amino acid pairs leading to spontaneous unusual structures. We also suggest that the existence of two domains corresponds to a bifurcation between two different protein structures and that the special pair is the key to producing these two structures. These are two different structures and are produced spontaneously without an external agent.

  15. Toward Sustainable Amino Acid Production.

    PubMed

    Usuda, Yoshihiro; Hara, Yoshihiko; Kojima, Hiroyuki

    2016-11-22

    Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.

  16. The metabolism of "surplus" amino acids.

    PubMed

    Bender, David A

    2012-08-01

    For an adult in N balance, apart from small amounts of amino acids required for the synthesis of neurotransmitters, hormones, etc, an amount of amino acids almost equal to that absorbed from the diet can be considered to be "surplus" in that it will be catabolized. The higher diet-induced thermogenesis from protein than from carbohydrate or fat has generally been assumed to be due to increased protein synthesis, which is ATP expensive. To this must be added the ATP cost of protein catabolism through the ubiquitin-proteasome pathway. Amino acid catabolism will add to thermogenesis. Deamination results in net ATP formation except when serine and threonine deaminases are used, but there is the energy cost of synthesizing glutamine in extra-hepatic tissues. The synthesis of urea has a net cost of only 1·5 × ATP when the ATP yield from fumarate metabolism is offset against the ATP cost of the urea cycle, but this offset is thermogenic. In fasting and on a low carbohydrate diet as much of the amino acid carbon as possible will be used for gluconeogenesis - an ATP-expensive, and hence thermogenic, process. Complete oxidation of most amino acid carbon skeletons also involves a number of thermogenic steps in which ATP (or GTP) or reduced coenzymes are utilized. There are no such thermogenic steps in the metabolism of pyruvate, acetyl CoA or acetoacetate, but for amino acids that are metabolized by way of the citric acid cycle intermediates there is thermogenesis ranging from 1 up to 7 × ATP equivalent per mol.

  17. Food safety and amino acid balance in processed cassava "Cossettes".

    PubMed

    Diasolua Ngudi, Delphin; Kuo, Yu Haey; Lambein, Fernand

    2002-05-08

    Processed cassava (Manihot esculenta Crantz) roots provide more than 60% of the daily energy intake for the population of the Democratic Republic of Congo. Insufficiently processed cassava roots in a diet deficient in sulfur amino acid have been reported to cause the irreversible paralytic disease konzo, afflicting thousands of women and children in the remote rural areas of Bandundu Province. "Cossettes" (processed cassava roots) purchased in several markets of Kinshasa were analyzed for their content of cyanogens, free amino acids, and total protein amino acids. Residual cyanogen levels were below the safe limit recommended by the codex FAO/WHO for cassava flour (10 mg kg(-1)). The amino acid score was evaluated. Lysine and leucine were the limiting amino acids. Methionine content was very low and contributed about 13% of the total sulfur amino acids. Dietary requirements for sulfur amino acids need to be adjusted for the loss caused by cyanogen detoxification.

  18. Nonprotein Amino Acids in the Murchison Meteorite

    PubMed Central

    Kvenvolden, Keith A.; Lawless, James G.; Ponnamperuma, Cyril

    1971-01-01

    Twelve nonprotein amino acids appear to be present in the Murchison meteorite. The identity of eight of them has been conclusively established as N-methylglycine, β-alanine, 2-methylalanine, α-amino-n-butyric acid, β-amino-n-butyric acid, γ-amino-n-butyric acid, isovaline, and pipecolic acid. Tentative evidence is presented for the presence of N-methylalanine, N-ethylglycine, β-aminoisobutyric acid, and norvaline. These amino acids appear to be extraterrestrial in origin and may provide new evidence for the hypothesis of chemical evolution. PMID:16591908

  19. Amino acid residues Leu135 and Tyr236 are required for RNA binding activity of CFIm25 in Entamoeba histolytica.

    PubMed

    Ospina-Villa, Juan David; Zamorano-Carrillo, Absalom; Lopez-Camarillo, Cesar; Castañon-Sanchez, Carlos A; Soto-Sanchez, Jacqueline; Ramirez-Moreno, Esther; Marchat, Laurence A

    2015-08-01

    Pre-mRNA 3' end processing in the nucleus is essential for mRNA stability, efficient nuclear transport, and translation in eukaryotic cells. In Human, the cleavage/polyadenylation machinery contains the 25 kDa subunit of the Cleavage Factor Im (CFIm25), which specifically recognizes two UGUA elements and regulates the assembly of polyadenylation factors, poly(A) site selection and polyadenylation. In Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, EhCFIm25 has been reported as a RNA binding protein that interacts with the Poly(A) Polymerase. Here, we follow-up with the study of EhCFIm25 to characterize its interaction with RNA. Using in silico strategy, we identified Leu135 and Tyr236 in EhCFIm25 as conserved amino acids among CFIm25 homologues. We therefore generated mutant EhCFIm25 proteins to investigate the role of these residues for RNA interaction. Results showed that RNA binding activity was totally abrogated when Leu135 and Tyr236 were replaced with Ala residue, and Tyr236 was changed for Phe. In contrast, RNA binding activity was less affected when Leu135 was substituted by Thr. Our data revealed for the first time -until we know-the functional relevance of the conserved Leu135 and Tyr236 in EhCFIm25 for RNA binding activity. They also gave some insights about the possible chemical groups that could be interacting with the RNA molecule.

  20. Amino acid analyses of Apollo 14 samples.

    NASA Technical Reports Server (NTRS)

    Gehrke, C. W.; Zumwalt, R. W.; Kuo, K.; Aue, W. A.; Stalling, D. L.; Kvenvolden, K. A.; Ponnamperuma, C.

    1972-01-01

    Detection limits were between 300 pg and 1 ng for different amino acids, in an analysis by gas-liquid chromatography of water extracts from Apollo 14 lunar fines in which amino acids were converted to their N-trifluoro-acetyl-n-butyl esters. Initial analyses of water and HCl extracts of sample 14240 and 14298 samples showed no amino acids above background levels.

  1. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T Ashton; Chin, Jason W; Anderson, J Christopher; Schultz, Peter G

    2011-02-15

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  2. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  3. Amino acids as antioxidants for frying oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino acids, proteins and hydrolysates of proteins have been known to protect edible oils from oxidation. While amino acids and related materials have high potential as antioxidants for frying oil, effectiveness of each amino acid and mechanisms of their activities are not well understood yet. Propo...

  4. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2011-08-09

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNAsyn-thetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  5. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  6. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    PubMed

    Barton, Michael D; Delneri, Daniela; Oliver, Stephen G; Rattray, Magnus; Bergman, Casey M

    2010-08-17

    Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental conditions, we conclude that

  7. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides.

    PubMed

    Mitsuhashi, Satoshi

    2014-04-01

    Amino acids play important roles in both human and animal nutrition and in the maintenance of health. Here, amino acids are classified into three groups: first, essential amino acids, which are essential to nutrition; second, functional amino acids, recently found to be important in the promotion of physiological functions; and third, dipeptides, which are used to resolve problematic features of specific free amino acids, such as their instability or insolubility. This review focusses on recent researches concerning the microbial production of essential amino acids (lysine and methionine), functional amino acids (histidine and ornithine), and a dipeptide (L-alanyl-L-glutamine).

  8. Amino acid contents of infant foods.

    PubMed

    Bosch, Lourdes; Alegría, Amparo; Farré, Rosaura

    2006-01-01

    The protein quality of three milk-cereal-based infant foods (paps) was evaluated by determining their amino acid contents and calculating the amino acid score. Proteins were subjected to acid hydrolysis, prior to which cysteine and methionine were oxidized with performic acid. Amino acids were determined by reverse-phase high-performance liquid chromatography with fluorescence detection with a prior derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Tryptophan was determined by reverse-phase high-performance liquid chromatography with ultraviolet detection after basic hydrolysis. Glutamic acid, proline and leucine were the most abundant amino acids, whereas tryptophan and cysteine had the lowest contents. Tryptophan was the limiting amino acid in the analyzed infant foods. A pap serving (250 ml) contributes significantly to fulfillment of the recommended dietary allowances of essential and semi-essential amino acids for infants (7-12 months old) and young children (1-3 years old).

  9. Variations in the digestible sulfur amino acid requirement of broiler chickens due to sex, growth criteria, rearing environment, and processing yield characteristics.

    PubMed

    Lumpkins, B S; Batal, A B; Baker, D H

    2007-02-01

    Four experiments (Exp.) were conducted with Cobb 500 chicks to evaluate variations in the estimated digestible sulfur amino acid (DSAA) requirement of broilers due to rearing environment, sex, or growth performance during the starter period (7 to 19 d), and live performance response and carcass yield characteristics during the grower period (21 to 42 d). In the first 3 experiments conducted during the starter period, chicks were allocated to battery or floor pens, and in the fourth experiment birds were reared in floor pens. For Exp. 1, 2, and 3 a sulfur amino acid deficient corn-soybean meal-corn gluten meal basal diet and for the grower experiment a corn-soybean meal-peanut meal basal diet was formulated to be isocaloric and isonitrogenous within experiment. Graded levels of DSAA ranged from 0.54 to 0.94% in Exp. 1, 0.53 to 1.03% in Exp. 2, 0.49 to 0.89% in Exp. 3, and 0.43 to 0.83% in Exp. 4. True digestibility of the diets was determined using the precision-fed rooster assay. The DSAA requirements were estimated using 1-slope broken-line methodology. During the starter period, the average DSAA requirement of males and females was similar when based on the gain to feed ratio (G:F; 0.71 and 0.71%, respectively) and BW gain (BWG; 0.67 and 0.67%, respectively). In Exp. 3 involving battery and floor pens, males and females had similar DSAA requirement estimates, but the DSAA requirement based on maximal G:F (0.68%) was higher than the maximal BWG requirement (0.61%). In the grower period, the estimated DSAA requirement for males based on G:F was higher than that based on BWG, but the BWG and G:F requirements were similar for females. The DSAA requirement estimates were similar for males and females based on BWG (0.55%), but the DSAA requirement based on G:F was higher for males than females. The DSAA requirement for maximum breast meat yield was similar for males (0.55%) and females (0.56%), and the requirement for maximal breast meat yield was similar to that for

  10. Stereoselective synthesis of stable-isotope-labeled amino acids

    SciTech Connect

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III; Lodwig, S.N.

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  11. Microbial production of amino acids in Japan.

    PubMed

    Kumagai, H

    2000-01-01

    The microbial biotechnology of amino acids production which was developed and industrialized in Japan have been summarized. The amino acids include L-glutamic acid, L-lysine, L-threonine, L-aspartic acid, L-alanine, L-cysteine, L-dihydroxyphenylalanine, D-p-hydroxyphenyl-glycine, and hydroxy-L-proline.

  12. Insulin is required for amino acid stimulation of dual pathways for translational control in skeletal muscle in the late-gestation ovine fetus.

    PubMed

    Brown, Laura D; Rozance, Paul J; Barry, James S; Friedman, Jacob E; Hay, William W

    2009-01-01

    During late gestation, amino acids and insulin promote skeletal muscle protein synthesis. However, the independent effects of amino acids and insulin on the regulation of mRNA translation initiation in the fetus are relatively unknown. The purpose of this study was to determine whether acute amino acid infusion in the late-gestation ovine fetus, with and without a simultaneous increase in fetal insulin concentration, activates translation initiation pathway(s) in skeletal muscle. Fetuses received saline (C), mixed amino acid infusion plus somatostatin infusion to suppress amino acid-stimulated fetal insulin secretion (AA+S), mixed amino acid infusion with concomitant physiological increase in fetal insulin (AA), or high-dose insulin infusion with euglycemia and euaminoacidemia (HI). After a 2-h infusion period, fetal skeletal muscle was harvested under in vivo steady-state conditions and frozen for quantification of proteins both upstream and downstream of mammalian target of rapamycin (mTOR). In the AA group, we found a threefold increase in ribosomal protein S6 kinase (p70(S6k)) and Erk1/2 phosphorylation; however, blocking the physiological rise in insulin with somatostatin in the AA+S group prevented this increase. In the HI group, Akt, Erk1/2, p70(S6k), and ribosomal protein S6 were highly phosphorylated and 4E-binding protein 1 (4E-BP1) associated with eukaryotic initiation factor (eIF)4E decreased by 30%. These data show that insulin is a significant regulator of intermediates involved in translation initiation in ovine fetal skeletal muscle. Furthermore, the effect of amino acids is dependent on a concomitant increase in fetal insulin concentrations, because amino acid infusion upregulates p70(S6k) and Erk only when amino acid-stimulated increase in insulin occurs.

  13. The ubiquitin E3 ligase LOSS OF GDU2 is required for GLUTAMINE DUMPER1-induced amino acid secretion in Arabidopsis.

    PubMed

    Pratelli, Réjane; Guerra, Damian D; Yu, Shi; Wogulis, Mark; Kraft, Edward; Frommer, Wolf B; Callis, Judy; Pilot, Guillaume

    2012-04-01

    Amino acids serve as transport forms for organic nitrogen in the plant, and multiple transport steps are involved in cellular import and export. While the nature of the export mechanism is unknown, overexpression of GLUTAMINE DUMPER1 (GDU1) in Arabidopsis (Arabidopsis thaliana) led to increased amino acid export. To gain insight into GDU1's role, we searched for ethyl-methanesulfonate suppressor mutants and performed yeast-two-hybrid screens. Both methods uncovered the same gene, LOSS OF GDU2 (LOG2), which encodes a RING-type E3 ubiquitin ligase. The interaction between LOG2 and GDU1 was confirmed by glutathione S-transferase pull-down, in vitro ubiquitination, and in planta coimmunoprecipitation experiments. Confocal microscopy and subcellular fractionation indicated that LOG2 and GDU1 both localized to membranes and were enriched at the plasma membrane. LOG2 expression overlapped with GDU1 in the xylem and phloem tissues of Arabidopsis. The GDU1 protein encoded by the previously characterized intragenic suppressor mutant log1-1, with an arginine in place of a conserved glycine, failed to interact in the multiple assays, suggesting that the Gdu1D phenotype requires the interaction of GDU1 with LOG2. This hypothesis was supported by suppression of the Gdu1D phenotype after reduction of LOG2 expression using either artificial microRNAs or a LOG2 T-DNA insertion. Altogether, in accordance with the emerging bulk of data showing membrane protein regulation via ubiquitination, these data suggest that the interaction of GDU1 and the ubiquitin ligase LOG2 plays a significant role in the regulation of amino acid export from plant cells.

  14. Amino and fatty acids in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1974-01-01

    Analyses of two carbonaceous meteorites have provided much of the latest evidence which seems to support Oparin's theory on the origin of life. The meteorites involved are the Murray meteorite, which fell in 1950, and the Murchison meteorite, which fell in 1969. The amino acids in the two meteorites are similar in composition. Eight of the twenty amino acids found belong to amino acids present in proteins. A number of monocarboxylic and dicarboxylic fatty acids were also found in the meteorites.

  15. Development of sustainable precision farming systems for swine: estimating real-time individual amino acid requirements in growing-finishing pigs.

    PubMed

    Hauschild, L; Lovatto, P A; Pomar, J; Pomar, C

    2012-07-01

    The objective of this study was to develop and evaluate a mathematical model used to estimate the daily amino acid requirements of individual growing-finishing pigs. The model includes empirical and mechanistic model components. The empirical component estimates daily feed intake (DFI), BW, and daily gain (DG) based on individual pig information collected in real time. Based on DFI, BW, and DG estimates, the mechanistic component uses classic factorial equations to estimate the optimal concentration of amino acids that must be offered to each pig to meet its requirements. The model was evaluated with data from a study that investigated the effect of feeding pigs with a 3-phase or daily multiphase system. The DFI and BW values measured in this study were compared with those estimated by the empirical component of the model. The coherence of the values estimated by the mechanistic component was evaluated by analyzing if it followed a normal pattern of requirements. Lastly, the proposed model was evaluated by comparing its estimates with those generated by the existing growth model (InraPorc). The precision of the proposed model and InraPorc in estimating DFI and BW was evaluated through the mean absolute error. The empirical component results indicated that the DFI and BW trajectories of individual pigs fed ad libitum could be predicted 1 d (DFI) or 7 d (BW) ahead with the average mean absolute error of 12.45 and 1.85%, respectively. The average mean absolute error obtained with the InraPorc for the average individual of the population was 14.72% for DFI and 5.38% for BW. Major differences were observed when estimates from InraPorc were compared with individual observations. The proposed model, however, was effective in tracking the change in DFI and BW for each individual pig. The mechanistic model component estimated the optimal standardized ileal digestible Lys to NE ratio with reasonable between animal (average CV = 7%) and overtime (average CV = 14%) variation

  16. Amino acid determination in some edible Mexican insects.

    PubMed

    Ladrón de Guevara, O; Padilla, P; García, L; Pino, J M; Ramos-Elorduy, J

    1995-06-01

    The amino acid contents of edible insects from different provinces of Mexico and reference proteins were analysed by reversed-phase high-performance liquid chromatography and ion exchange chromatography. The insect amino acid contents were higher than the adult requirements indicated by the WHO/FAO pattern.

  17. Production of amino acids using auxotrophic mutants of methylotrophic bacillus

    DOEpatents

    Hanson, Richard S.; Flickinger, Michael C.; Schendel, Frederick J.; Guettler, Michael V.

    2001-07-17

    A method of producing amino acids by culturing an amino acid auxotroph of a biologically pure strain of a type I methylotrophic bacterium of the genus Bacillus which exhibits sustained growth at 50.degree. C. using methanol as a carbon and energy source and requiring vitamin B.sub.12 and biotin is provided.

  18. Amino-acid contamination of aqueous hydrochloric acid.

    NASA Technical Reports Server (NTRS)

    Wolman, Y.; Miller, S. L.

    1971-01-01

    Considerable amino-acid contamination in commercially available analytical grade hydrochloric acid (37% HCl) was found. One bottle contained 8,300 nmol of amino-acids per liter. A bottle from another supplier contained 6,700 nmol per liter. The contaminants were mostly protein amino-acids and several unknowns. Data on the volatility of the amino-acids during HCl distillation were also obtained.

  19. Preference for and learning of amino acids in larval Drosophila

    PubMed Central

    Kudow, Nana; Miura, Daisuke; Schleyer, Michael; Toshima, Naoko; Gerber, Bertram

    2017-01-01

    ABSTRACT Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis − and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila. We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila. PMID:28193602

  20. Preference for and learning of amino acids in larval Drosophila.

    PubMed

    Kudow, Nana; Miura, Daisuke; Schleyer, Michael; Toshima, Naoko; Gerber, Bertram; Tanimura, Teiichi

    2017-03-15

    Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis - and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila.

  1. Amino Acid Auxotrophy as Immunological Control Nodes

    PubMed Central

    Murray, Peter J.

    2016-01-01

    Summary Cells of the immune system are auxotrophs for most amino acids, including non-essential ones. Arginine and tryptophan are used within the regulatory immune networks to control proliferation and function through pathways that deplete the amino acid, or create regulatory molecules such as nitric oxide or kynurenines. Strategies to harness amino acid auxotrophy to block cancerous lymphocyte growth have been attempted for decades, with limited success. How immune cells integrate information about external essential amino acids supplies and transfer signals to growth and activation pathways remains unclear, but has potential for pathway discovery. Emerging insights may lead to strategies to both degrade amino acids and to block the immunoregulatory pathways controlled by amino acids. PMID:26784254

  2. Indigenous amino acids in primitive CR meteorites

    NASA Astrophysics Data System (ADS)

    Martins, Z.; Alexander, C. M. O. D.; Orzechowska, G. E.; Fogel, M. L.; Ehrenfreund, P.

    CR chondrites are among the most primitive meteorites. In this paper, we report the first measurements of amino acids in Antarctic CR meteorites. Three CRs, Elephant Moraine (EET) 92042, Graves Nunataks (GRA) 95229, and Grosvenor Mountains (GRO) 95577, were analyzed for their amino acid content using high-performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatography-mass spectrometry (GC-MS). Our data show that EET 92042 and GRA 95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations ranging from 180 ppm to 249 ppm. The most abundant amino acids present in the EET 92042 and GRA 95229 meteorites are the α-amino acids glycine, isovaline, α-aminoisobutyric acid (α-AIB), and alanine, with δ13C values ranging from +31.6‰ to +50.5‰. The carbon isotope results together with racemic enantiomeric ratios determined for most amino acids strongly indicate an extraterrestrial origin for these compounds. Compared to Elephant Moraine (EET) 92042 and GRA 95229, the more aqueously altered GRO 95577 is depleted in amino acids. In both CRs and CMs, the absolute amino acid abundances appear to be related to the degree of aqueous alteration in their parent bodies. In addition, the relative abundances of α-AIB and β-alanine in the Antarctic CRs also appear to depend on the degree of aqueous alteration.

  3. Amino acids in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Kminek, G.; Botta, O.; Glavin, D. P.; Bada, J. L.

    2002-01-01

    High-performance liquid chromatography (HPLC) based amino acid analysis of a Tagish Lake meteorite sample recovered 3 months after the meteorite fell to Earth have revealed that the amino acid composition of Tagish Lake is strikingly different from that of the CM and CI carbonaceous chondrites. We found that the Tagish Lake meteorite contains only trace levels of amino acids (total abundance = 880 ppb), which is much lower than the total abundance of amino acids in the CI Orgueil (4100 ppb) and the CM Murchison (16 900 ppb). Because most of the same amino acids found in the Tagish Lake meteorite are also present in the Tagish Lake ice melt water, we conclude that the amino acids detected in the meteorite are terrestrial contamination. We found that the exposure of a sample of Murchison to cold water lead to a substantial reduction over a period of several weeks in the amount of amino acids that are not strongly bound to the meteorite matrix. However, strongly bound amino acids that are extracted by direct HCl hydrolysis are not affected by the leaching process. Thus even if there had been leaching of amino acids from our Tagish Lake meteorite sample during its 3 month residence in Tagish Lake ice and melt water, a Murchison type abundance of endogenous amino acids in the meteorite would have still been readily detectable. The low amino acid content of Tagish Lake indicates that this meteorite originated fiom a different type of parent body than the CM and CI chondrites. The parent body was apparently devoid of the reagents such as aldehyldes/ketones, HCN and ammonia needed for the effective abiotic synthesis of amino acids. Based on reflectance spectral measurements, Tagish Lake has been associated with P- or D-type asteroids. If the Tagish Lake meteorite was indeed derived fiom these types of parent bodies, our understanding of these primitive asteroids needs to be reevaluated with respect to their potential inventory of biologically important organic compounds.

  4. Amino acids precursors in lunar finds

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Harada, K.; Hare, P. E.; Hinsch, G.; Mueller, G.

    1975-01-01

    The consistent pattern is discussed of amino acids found in lunar dust from Apollo missions. The evidence indicates that compounds yielding amino acids were implanted into the surface of the moon by the solar wind, and the kind and amounts of amino acids found on the moon are closely similar to those found in meteorites. It is concluded that there is a common cosmochemical pattern for the moom and meteorites, and this offers evidence of a common course of cosmochemical reactions for carbon.

  5. Amino acid composition of some Mexican foods.

    PubMed

    Morales de León, Josefina; Camacho, M Elena; Bourges, Héctor

    2005-06-01

    Knowledge of the amino acid composition of foods is essential to calculate their chemical score, which is used to predict protein quality of foods and diets. Though amino acid composition of many foods is reasonably well established, better knowledge is needed on native foods consumed in different regions and countries. This paper presents the amino acid composition of different presentations of raw and processed foods produced and consumed in Mexico. The amino acid composition was determined using Beckman amino acid analyzers (models 116 and 6300). Tryptophan was determined using the Spies and Chambers method. Of the different foods analyzed, some comments are made on native or basic foods in Mexico: Spirulin, where lysine is the limiting amino acid, with a chemical score of 67%, is a good source of tryptophan (1.16g/16 gN); amaranth contains high levels of sulphur amino acids (4.09 to 5.34 g/16gN), with a protein content of 15 g/100g; and pulque, a Pre-Hispanic beverage that contains high levels of tryptophan (2.58 g/16 gN) and sulphur amino acids (2.72 g/16 gN). Finally, insects are good sources of sulphur amino acids and lysine.

  6. The complete amino acid sequence of prochymosin.

    PubMed Central

    Foltmann, B; Pedersen, V B; Jacobsen, H; Kauffman, D; Wybrandt, G

    1977-01-01

    The total sequence of 365 amino acid residues in bovine prochymosin is presented. Alignment with the amino acid sequence of porcine pepsinogen shows that 204 amino acid residues are common to the two zymogens. Further comparison and alignment with the amino acid sequence of penicillopepsin shows that 66 residues are located at identical positions in all three proteases. The three enzymes belong to a large group of proteases with two aspartate residues in the active center. This group forms a family derived from one common ancestor. PMID:329280

  7. Effect of domoic acid on brain amino acid levels.

    PubMed

    Durán, R; Arufe, M C; Arias, B; Alfonso, M

    1995-03-01

    The administration of Domoic Acid (Dom) in a 0.2 mg/kg i.p. dose induces changes in the levels of amino acids of neurochemical interest (Asp, Glu, Gly, Tau, Ala, GABA) in different rat brain regions (hypothalamus, hippocampus, amygdala, striatum, cortex and midbrain). The most affected amino acid is the GABA, the main inhibitory amino acid neurotransmitter, whereas glutamate, the main excitatory amino acid, is not affected. The rat brain regions that seem to be the main target of the Dom action belong to the limbic system (hippocampus, amygdala). The possible implication of the amino acids in the actions of Dom is also discussed.

  8. Research for amino acids in lunar samples.

    NASA Technical Reports Server (NTRS)

    Gehrke, C. W.; Zumwalt, R. W.; Kuo, K.; Rash, J. J.; Aue , W. A.; Stalling, D. L.; Kvenvolden, K. A.; Ponnamperuma, C.

    1972-01-01

    The study was primarily directed toward the examination of Apollo 14 lunar fines for indigenous amino acids or materials which could be converted to amino acids on hydrolysis with 6 N hydrochloric acid. Initial experiments were conducted to confirm the integrity of the derivatization reactions and reagents, and to optimize the gas-liquid chromatographic (GLC) instrumental and chromatographic system for the separation and flame ionization detection of the amino acid derivatives. In studies on the recovery of amino acids added to lunar fines, low recoveries were obtained when 10 ng of each amino acid were added to 50 mg of virgin fines, but the subsequent addition of 50 ng of each to the previously extracted sample resulted in much higher recoveries.

  9. Amino Acid Uptake in Arbuscular Mycorrhizal Plants

    PubMed Central

    Whiteside, Matthew D.; Garcia, Maria O.; Treseder, Kathleen K.

    2012-01-01

    We examined the extent to which arbuscular mycorrhizal (AM) fungi root improved the acquisition of simple organic nitrogen (ON) compounds by their host plants. In a greenhouse-based study, we used quantum dots (fluorescent nanoparticles) to assess uptake of each of the 20 proteinaceous amino acids by AM-colonized versus uncolonized plants. We found that AM colonization increased uptake of phenylalanine, lysine, asparagine, arginine, histidine, methionine, tryptophan, and cysteine; and reduced uptake of aspartic acid. Arbuscular mycorrhizal colonization had the greatest effect on uptake of amino acids that are relatively rare in proteins. In addition, AM fungi facilitated uptake of neutral and positively-charged amino acids more than negatively-charged amino acids. Overall, the AM fungi used in this study appeared to improve access by plants to a number of amino acids, but not necessarily those that are common or negatively-charged. PMID:23094070

  10. Fmoc/Trt-amino acids: comparison to Fmoc/tBu-amino acids in peptide synthesis.

    PubMed

    Barlos, K; Gatos, D; Koutsogianni, S

    1998-03-01

    Model peptides containing the nucleophilic amino acids Trp and Met have been synthesized with the application of Fmoc/Trt- and Fmoc/tBu-amino acids, for comparison. The deprotection of the peptides synthesized using Fmoc/Trt-amino acids in all cases leads to crude peptides of higher purity than that of the same peptides synthesized using Fmoc/tBu-amino acids.

  11. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  12. Supernovae, Neutrinos and the Chirality of Amino Acids

    PubMed Central

    Boyd, Richard N.; Kajino, Toshitaka; Onaka, Takashi

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids. PMID:21747686

  13. Supernovae, neutrinos and the chirality of amino acids.

    PubMed

    Boyd, Richard N; Kajino, Toshitaka; Onaka, Takashi

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the (14)N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's proteinaceous amino acids.

  14. Transport of Amino Acids to the Maize Root 1

    PubMed Central

    Oaks, Ann

    1966-01-01

    When 5-mm maize root tips were excised and placed in an inorganic salts solution for 6 hours, there was a loss of alcohol-insoluble nitrogen. The levels of threonine, proline, valine, isoleucine, leucine, tyrosine, phenylalanine, and lysine in the alcohol soluble fraction were severely reduced, whereas those of glutamate, aspartate, ornithine, and alanine were scarcely affected. There was a 4-fold increase in the level of γ-aminobutyrate. Those amino acids whose synthesis appeared to be deficient in excised root tips also showed poor incorporation of acetate carbon. In addition, the results show that asparagine and the amino acids of the neutral and basic fraction were preferentially transported to the root tip region. The results therefore suggest that the synthesis of certain amino acids in the root tip region is restricted, and that this requirement for amino acids in the growing region could regulate the flow of amino acids to the root tip. PMID:16656225

  15. 6th Amino Acid Assessment Workshop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The focus of the 6th workshop is on lysine, arginine, and related amino acids. Functions, metabolic pathways, clinical uses, and upper tolerance intakes are emphasized in the articles that follow. Lysine is arguably the most deficient amino acid in the food supply of countries where poverty exists, ...

  16. The Apollo Program and Amino Acids

    ERIC Educational Resources Information Center

    Fox, Sidney W.

    1973-01-01

    Discusses the determination of hydrolyzable amino acid precursors and a group of six amino acids in the returned lunar samples of the Apollo programs. Indicates that molecular evolution is arrested at the precursor stage on the Moon because of lack of water. (CC)

  17. Identification of an amino acid residue required for differential recognition of a viral movement protein by the Tomato mosaic virus resistance gene Tm-2(2).

    PubMed

    Kobayashi, Michie; Yamamoto-Katou, Ayako; Katou, Shinpei; Hirai, Katsuyuki; Meshi, Tetsuo; Ohashi, Yuko; Mitsuhara, Ichiro

    2011-07-01

    The Tm-2 gene of tomato and its allelic gene, Tm-2(2), confer resistance to Tomato mosaic virus (ToMV) and encode a member of the coiled-coil/nucleotide binding-ARC/leucine-rich repeat (LRR) protein class of plant resistance (R) genes. Despite exhibiting only four amino acid differences between the products of Tm-2 and Tm-2(2), Tm-2(2) confers resistance to ToMV mutant B7, whereas Tm-2 is broken by ToMV-B7. An Agrobacterium-mediated transient expression system was used to study the mechanism of differential recognition of the movement proteins (MPs), an avirulence factor for ToMV resistance, of ToMV-B7 by Tm-2 and Tm-2(2). Although resistance induced by Tm-2 and Tm-2(2) is not usually accompanied by hypersensitive response (HR), Tm-2 and Tm-2(2) induced HR-like cell death by co-expression with MP of a wild-type ToMV, a strain that causes resistance for these R genes, and Tm-2(2) but not Tm-2 induced cell death with B7-MP in this system. Site-directed amino acid mutagenesis revealed that Tyr-767 in the LRR of Tm-2(2) is required for the specific recognition of the B7-MP. These results suggest that the Tyr residue in LRR contributes to the recognition of B7-MP, and that Tm-2 and Tm-2(2) are involved in HR cell death.

  18. Plant-Specific Preprotein and Amino Acid Transporter Proteins Are Required for tRNA Import into Mitochondria1[OPEN

    PubMed Central

    Kubiszewski-Jakubiak, Szymon; Teixeira, Pedro F.; Narsai, Reena; Ivanova, Aneta; Megel, Cyrille; Schock, Annette; Kraus, Sabrina; Glaser, Elzbieta; Philippar, Katrin; Maréchal-Drouard, Laurence; Soll, Jürgen

    2016-01-01

    A variety of eukaryotes, in particular plants, do not contain the required number of tRNAs to support the translation of mitochondria-encoded genes and thus need to import tRNAs from the cytosol. This study identified two Arabidopsis (Arabidopsis thaliana) proteins, Tric1 and Tric2 (for tRNA import component), which on simultaneous inactivation by T-DNA insertion lines displayed a severely delayed and chlorotic growth phenotype and significantly reduced tRNA import capacity into isolated mitochondria. The predicted tRNA-binding domain of Tric1 and Tric2, a sterile-α-motif at the C-terminal end of the protein, was required to restore tRNA uptake ability in mitochondria of complemented plants. The purified predicted tRNA-binding domain binds the T-arm of the tRNA for alanine with conserved lysine residues required for binding. T-DNA inactivation of both Tric proteins further resulted in an increase in the in vitro rate of in organello protein synthesis, which was mediated by a reorganization of the nuclear transcriptome, in particular of genes encoding a variety of proteins required for mitochondrial gene expression at both the transcriptional and translational levels. The characterization of Tric1/2 provides mechanistic insight into the process of tRNA import into mitochondria and supports the theory that the tRNA import pathway resulted from the repurposing of a preexisting protein import apparatus. PMID:27789739

  19. Differential distribution of amino acids in plants.

    PubMed

    Kumar, Vinod; Sharma, Anket; Kaur, Ravdeep; Thukral, Ashwani Kumar; Bhardwaj, Renu; Ahmad, Parvaiz

    2017-05-01

    Plants are a rich source of amino acids and their individual abundance in plants is of great significance especially in terms of food. Therefore, it is of utmost necessity to create a database of the relative amino acid contents in plants as reported in literature. Since in most of the cases complete analysis of profiles of amino acids in plants was not reported, the units used and the methods applied and the plant parts used were different, amino acid contents were converted into relative units with respect to lysine for statistical analysis. The most abundant amino acids in plants are glutamic acid and aspartic acid. Pearson's correlation analysis among different amino acids showed that there were no negative correlations between the amino acids. Cluster analysis (CA) applied to relative amino acid contents of different families. Alismataceae, Cyperaceae, Capparaceae and Cactaceae families had close proximity with each other on the basis of their relative amino acid contents. First three components of principal component analysis (PCA) explained 79.5% of the total variance. Factor analysis (FA) explained four main underlying factors for amino acid analysis. Factor-1 accounted for 29.4% of the total variance and had maximum loadings on glycine, isoleucine, leucine, threonine and valine. Factor-2 explained 25.8% of the total variance and had maximum loadings on alanine, aspartic acid, serine and tyrosine. 14.2% of the total variance was explained by factor-3 and had maximum loadings on arginine and histidine. Factor-4 accounted 8.3% of the total variance and had maximum loading on the proline amino acid. The relative content of different amino acids presented in this paper is alanine (1.4), arginine (1.8), asparagine (0.7), aspartic acid (2.4), cysteine (0.5), glutamic acid (2.8), glutamine (0.6), glycine (1.0), histidine (0.5), isoleucine (0.9), leucine (1.7), lysine (1.0), methionine (0.4), phenylalanine (0.9), proline (1.1), serine (1.0), threonine (1

  20. Amino acids in the Martian meteorite Nakhla.

    PubMed

    Glavin, D P; Bada, J L; Brinton, K L; McDonald, G D

    1999-08-03

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  1. Amino acids in the Martian meteorite Nakhla

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. L.; Brinton, K. L.; McDonald, G. D.

    1999-01-01

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  2. Amino Acids in the Martian Meteorite Nakhla

    NASA Astrophysics Data System (ADS)

    Glavin, Daniel P.; Bada, Jeffrey L.; Brinton, Karen L. F.; McDonald, Gene D.

    1999-08-01

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, β -alanine, and γ -amino-n-butyric acid (γ -ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  3. Exogenous amino acids as fuel in shock.

    PubMed

    Daniel, A M; Kapadia, B; MacLean, L D

    1982-01-01

    It has been suggested that in shock branched-chain amino acids are preferentially oxidized resulting in continued proteolysis and stimulated gluconeogenesis. To determine if exogenous amino acids could be used as fuel in shock, dogs rendered hypotensive by controlled cardiac tamponade and normotensive controls were infused with amino acid mixtures and individual amino acids. When Nephramine, a mixture rich in branched-chain amino acids, was infused, plasma alpha-amino nitrogen levels rose but urea output did not increase in either the control state or in shock, suggesting that these amino acids were not rapidly deaminated to serve as fuels. Travasol, which in addition contained large amounts of alanine and glycine, tripled urea output in the controls and doubled it in shock. The limit of urea production was reached in both groups at 35 mumoles urea/minute/kg. In the Travasol-infused animals plasma alpha-amino nitrogen levels were maintained in normotension but rose sharply in shock. When glycine alone was infused into five dogs in shock urea production rate was 30.6 + 2.1 mumoles/minute/kg; with alanine the same value was 22.5 + 2.2 mumoles/minute/kg. In both cases plasma alpha-amino nitrogen levels were high, suggesting that transport of these amino acids into the cell was slow in shock. In four dogs in shock glycine-14C was added to the glycine infusate as a tracer. At radioactive equilibrium 28% of the label infused appeared in CO2; another 22% appeared in glucose. It is concluded that of all the amino acids tested only glycine and alanine are deaminated rapidly enough to serve as exogenous fuels in shock.

  4. Differential D-glucose requirements of the general amino-acid permease and protein synthesis in Saccharomyces cerevisiae var. ellipsoideus.

    PubMed

    Iglesias, R; Ferreras, J M; Muñoz, R; Arias, F J; Rojo, M A; Girbés, T

    1990-01-01

    The dependence of the general aminoacid permease and protein synthesis on the availability of D-glucose as energy source was studied. Stimulation by the sugar was immediate once added to the cell suspensions and seems to be mediated by energy derived directly from glycolysis. The general aminoacid permease was saturated linearly with D-glucose whereas protein synthesis was saturated sigmoidealy requiring much higher concentration of the sugar than the general aminoacid permease.

  5. Gemini surfactants from natural amino acids.

    PubMed

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed.

  6. Soil Bacteria Take Up D-Amino Acids, Protect Plants

    NASA Astrophysics Data System (ADS)

    Sun, H. J.; Zhang, G.

    2011-12-01

    Recently, many groups reported D-amino acid uptake by plant roots, raising the question of whether soil D-amino acids represent a source of nitrogen or a source of toxicity. The discussion needs to be placed in the context of competition with rhizosphere bacteria. To provide this context, we followed the concentrations of D- and L-enantiomers of alanine, glutamic acid, aspartic acid, and leucine after they were added to soils in the laboratory. In all cases, the uptake of L-enantiomer began immediately and proceeded rapidly until exhausted. In contrast, the uptake of D-enantiomer required induction: an initial period of inactivity followed by rapid consumption comparable in rate to L-enantiomer. The induced nature of the D activity was confirmed by the addition of rifampicin, an mRNA synthesis inhibitor. Preventing the synthesis of new enzymes abolished soil flora's ability to consume D-amino acids, but not L-amino acids. These results suggest that inducible special racemase enzymes, which can convert D-amino acids back to their native L-forms, are widespread among soil microorganisms. This finding does not rule out the possibility that some plants may out-compete microorganisms and be able to access D-amino acids. It does suggest, however, that rhizosphere bacteria can shield plants from the toxic effect of D-amino acids.

  7. Serum amino acid concentrations in patients receiving total parenteral nutrition with an amino acid plus dextrose mixture.

    PubMed

    Philcox, J C; Hartley, T F; Worthley, L I; Thomas, D W

    1984-01-01

    The results of monitoring the serum amino acid concentrations during three infusion regimens using a 5:4 mixture of 70% glucose and the synthetic L-amino acid solution, Synthamin 17 (Travasol) are reported. Twelve stabilized patients received continuous total parenteral nutrition (TPN), eight of whom were subsequently placed on a second regimen of cyclical feeding. A separate group of five patients was infused with amino acids, both with and without simultaneous glucose. The serum amino acid concentrations indicated that the supply of valine, leucine, isoleucine, lysine, and histidine, and the synthesis of taurine from the infused methionine was suboptimal, particularly if the period of TPN was prolonged. The synthesis of tyrosine from phenylalanine appeared to be inversely proportional to the infusion rate of the TPN mixture, in particular the glucose component, resulting in depressed tyrosine and increased phenylalanine concentrations in serum during continuous iv nutrition. Cyclical infusions, on the other hand, permitted the tyrosine and phenylalanine concentrations to return to normal during the noninfusion stage of the cycle. Amino acid measurements enabled us to design an amino acids additive mixture which normalized the serum concentrations in three long-term home parenteral nutrition patients. As a result of these investigations serum amino acid measurements are used routinely to monitor the efficacy of TPN and accommodate any specific amino acid requirements of individual patients.

  8. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, Mark M.; Shoup, Timothy

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  9. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, Mark M.; Shoup, Timothy

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  10. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, M.M.; Shoup, T.

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  11. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, M.M.; Shoup, T.

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  12. Amino acid transporters: roles in amino acid sensing and signalling in animal cells.

    PubMed Central

    Hyde, Russell; Taylor, Peter M; Hundal, Harinder S

    2003-01-01

    Amino acid availability regulates cellular physiology by modulating gene expression and signal transduction pathways. However, although the signalling intermediates between nutrient availability and altered gene expression have become increasingly well documented, how eukaryotic cells sense the presence of either a nutritionally rich or deprived medium is still uncertain. From recent studies it appears that the intracellular amino acid pool size is particularly important in regulating translational effectors, thus, regulated transport of amino acids across the plasma membrane represents a means by which the cellular response to amino acids could be controlled. Furthermore, evidence from studies with transportable amino acid analogues has demonstrated that flux through amino acid transporters may act as an initiator of nutritional signalling. This evidence, coupled with the substrate selectivity and sensitivity to nutrient availability classically associated with amino acid transporters, plus the recent discovery of transporter-associated signalling proteins, demonstrates a potential role for nutrient transporters as initiators of cellular nutrient signalling. Here, we review the evidence supporting the idea that distinct amino acid "receptors" function to detect and transmit certain nutrient stimuli in higher eukaryotes. In particular, we focus on the role that amino acid transporters may play in the sensing of amino acid levels, both directly as initiators of nutrient signalling and indirectly as regulators of external amino acid access to intracellular receptor/signalling mechanisms. PMID:12879880

  13. Indicator Amino Acid-Derived Estimate of Dietary Protein Requirement for Male Bodybuilders on a Nontraining Day Is Several-Fold Greater than the Current Recommended Dietary Allowance.

    PubMed

    Bandegan, Arash; Courtney-Martin, Glenda; Rafii, Mahroukh; Pencharz, Paul B; Lemon, Peter Wr

    2017-02-08

    Background: Despite a number of studies indicating increased dietary protein needs in bodybuilders with the use of the nitrogen balance technique, the Institute of Medicine (2005) has concluded, based in part on methodologic concerns, that "no additional dietary protein is suggested for healthy adults undertaking resistance or endurance exercise."Objective: The aim of the study was to assess the dietary protein requirement of healthy young male bodybuilders ( with ≥3 y training experience) on a nontraining day by measuring the oxidation of ingested l-[1-(13)C]phenylalanine to (13)CO2 in response to graded intakes of protein [indicator amino acid oxidation (IAAO) technique].Methods: Eight men (means ± SDs: age, 22.5 ± 1.7 y; weight, 83.9 ± 11.6 kg; 13.0% ± 6.3% body fat) were studied at rest on a nontraining day, on several occasions (4-8 times) each with protein intakes ranging from 0.1 to 3.5 g ⋅ kg(-1) ⋅ d(-1), for a total of 42 experiments. The diets provided energy at 1.5 times each individual's measured resting energy expenditure and were isoenergetic across all treatments. Protein was fed as an amino acid mixture based on the protein pattern in egg, except for phenylalanine and tyrosine, which were maintained at constant amounts across all protein intakes. For 2 d before the study, all participants consumed 1.5 g protein ⋅ kg(-1) ⋅ d(-1) On the study day, the protein requirement was determined by identifying the breakpoint in the F(13)CO2 with graded amounts of dietary protein [mixed-effects change-point regression analysis of F(13)CO2 (labeled tracer oxidation in breath)].Results: The Estimated Average Requirement (EAR) of protein and the upper 95% CI RDA for these young male bodybuilders were 1.7 and 2.2 g ⋅ kg(-1) ⋅ d(-1), respectively.Conclusion: These IAAO data suggest that the protein EAR and recommended intake for male bodybuilders at rest on a nontraining day exceed the current recommendations of the Institute of Medicine by ∼2

  14. Amino acids in healthy aging skeletal muscle.

    PubMed

    Riddle, Emily S; Stipanuk, Martha H; Thalacker-Mercer, Anna E

    2016-01-01

    Life expectancy in the U.S. and globally continues to increase. Despite increased life expectancy quality of life is not enhanced, and older adults often experience chronic age-related disease and functional disability, including frailty. Additionally, changes in body composition such as the involuntary loss of skeletal muscle mass (i.e. sarcopenia) and subsequent increases in adipose tissue can augment disease and disability in this population. Furthermore, increased oxidative stress and decreased antioxidant concentrations may also lead to metabolic dysfunction in older adults. Specific amino acids, including leucine, cysteine and its derivative taurine, and arginine can play various roles in healthy aging, especially in regards to skeletal muscle health. Leucine and arginine play important roles in muscle protein synthesis and cell growth while cysteine and arginine play important roles in quenching oxidative stress. Evidence suggests that supplemental doses of each of these amino acids may improve the aging phenotype. However, additional research is required to establish the doses required to achieve positive outcomes in humans.

  15. Enantiomer-specific selection of amino acids

    PubMed Central

    Ren, Xueying; Tellez, Luis A; de Araujo, Ivan E

    2013-01-01

    Dietary intake of L-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: 1. During long-, but not short-, term preference tests, L-alanine and L-serine were preferred over their D-enantiomer counterparts, while no such effect was observed for L-threonine vs. D-threonine; 2. These behavioral patterns were closely associated with the ability of L-amino acids to promote increases in respiratory exchange ratios such that those, and only those, L-amino acids able to promote increases in respiratory exchange ratios were preferred over their D-isomers; 3. These behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids, and suggest a mechanistic link between substrate utilization and amino acid preferences. PMID:24072505

  16. Distribution of Amino Acids in Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  17. Amino Acid Stability in the Early Oceans

    NASA Technical Reports Server (NTRS)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  18. Amino acid sequence requirements at residues 69 and 238 for the SME-1 beta-lactamase to confer resistance to beta-lactam antibiotics.

    PubMed

    Majiduddin, Fahd K; Palzkill, Timothy

    2003-03-01

    Carbapenem antibiotics have been used to counteract resistant strains of bacteria harboring beta-lactamases and extended-spectrum beta-lactamases. Four enzymes from the class A group of beta-lactamases, NMC-A, IMI-1, SME-1, and KPC-1, efficiently hydrolyze carbapenem antibiotics. Sequence comparisons and structural information indicate that cysteines at amino acid residues 69 and 238, which are conserved in all four of these enzymes, form a disulfide bond that is unique to these beta-lactamases. To test whether this disulfide bond is required for catalytic activity, the codons for residues Cys69 and Cys238 were randomized individually and simultaneously by PCR-based mutagenesis to create random replacement libraries for these positions. Mutants that were able to confer resistance to ampicillin, imipenem, or cefotaxime were selected from these libraries. The results indicate that positions Cys69 and Cys238 are critical for hydrolysis of all of the antibiotics tested, suggesting that the disulfide bond is generally required for this enzyme to catalyze the hydrolysis of beta-lactam antibiotics.

  19. Amino Acid Degradation after Meteoritic Impact Simulation

    NASA Technical Reports Server (NTRS)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  20. The Mitochondrial Sulfur Dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 Is Required for Amino Acid Catabolism during Carbohydrate Starvation and Embryo Development in Arabidopsis1[C][W

    PubMed Central

    Krüßel, Lena; Junemann, Johannes; Wirtz, Markus; Birke, Hannah; Thornton, Jeremy D.; Browning, Luke W.; Poschet, Gernot; Hell, Rüdiger; Balk, Janneke; Braun, Hans-Peter; Hildebrandt, Tatjana M.

    2014-01-01

    The sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) catalyzes the oxidation of persulfides in the mitochondrial matrix and is essential for early embryo development in Arabidopsis (Arabidopsis thaliana). We investigated the biochemical and physiological functions of ETHE1 in plant metabolism using recombinant Arabidopsis ETHE1 and three transfer DNA insertion lines with 50% to 99% decreased sulfur dioxygenase activity. Our results identified a new mitochondrial pathway catalyzing the detoxification of reduced sulfur species derived from cysteine catabolism by oxidation to thiosulfate. Knockdown of the sulfur dioxygenase impaired embryo development and produced phenotypes of starvation-induced chlorosis during short-day growth conditions and extended darkness, indicating that ETHE1 has a key function in situations of high protein turnover, such as seed production and the use of amino acids as alternative respiratory substrates during carbohydrate starvation. The amino acid profile of mutant plants was similar to that caused by defects in the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex and associated dehydrogenases. Thus, in addition to sulfur amino acid catabolism, ETHE1 also affects the oxidation of branched-chain amino acids and lysine. PMID:24692429

  1. Conserved amino acid motifs from the novel Piv/MooV family of transposases and site-specific recombinases are required for catalysis of DNA inversion by Piv.

    PubMed

    Tobiason, D M; Buchner, J M; Thiel, W H; Gernert, K M; Karls, A C

    2001-02-01

    Piv, a site-specific invertase from Moraxella lacunata, exhibits amino acid homology with the transposases of the IS110/IS492 family of insertion elements. The functions of conserved amino acid motifs that define this novel family of both transposases and site-specific recombinases (Piv/MooV family) were examined by mutagenesis of fully conserved amino acids within each motif in Piv. All Piv mutants altered in conserved residues were defective for in vivo inversion of the M. lacunata invertible DNA segment, but competent for in vivo binding to Piv DNA recognition sequences. Although the primary amino acid sequences of the Piv/MooV recombinases do not contain a conserved DDE motif, which defines the retroviral integrase/transposase (IN/Tnps) family, the predicted secondary structural elements of Piv align well with those of the IN/Tnps for which crystal structures have been determined. Molecular modelling of Piv based on these alignments predicts that E59, conserved as either E or D in the Piv/MooV family, forms a catalytic pocket with the conserved D9 and D101 residues. Analysis of Piv E59G confirms a role for E59 in catalysis of inversion. These results suggest that Piv and the related IS110/IS492 transposases mediate DNA recombination by a common mechanism involving a catalytic DED or DDD motif.

  2. ANTIGENICITY OF POLYPEPTIDES (POLY ALPHA AMINO ACIDS)

    PubMed Central

    Pinchuck, Paul; Maurer, Paul H.

    1965-01-01

    The response of mice to synthetic linear polypeptides of known composition but random sequence has been studied. Neither Swiss mice nor a number of inbred strains could respond to copolymers of only 2 amino acids (G60L40, G60A40, G90T10). Upon introduction of as little as 4 mole per cent of a third amino acid, good immune responses were obtained, regardless of the nature of the third amino acid. The level of the immune response to a series of glu-lys-ala polymers increased with increasing alanine content of the polymer. PMID:5849232

  3. The indicator amino acid oxidation method identified limiting amino acids in two parenteral nutrition solutions in neonatal piglets.

    PubMed

    Brunton, Janet A; Shoveller, Anna K; Pencharz, Paul B; Ball, Ronald O

    2007-05-01

    Recent studies using the indicator amino acid oxidation (IAAO) technique in TPN-fed piglets and infants have been instrumental in defining parenteral amino acid requirements. None of the commercial products in use are ideal when assessed against these new data. Our objectives were to determine whether the oxidation of an indicator amino acid would decline with the addition of amino acids that were limiting in the diets of TPN-fed piglets, and to use this technique to identify limiting amino acids in a new amino acid profile. Piglets (n = 26) were randomized to receive TPN with amino acids provided by Vaminolact (VM) or by a new profile (NP). After 5 d of TPN administration, lysine oxidation was measured using a constant infusion of L- [1-(14)C]-lysine. Immediately following the first IAAO study, the piglets were further randomized within diet group to receive either 1) supplemental aromatic amino acids (AAA), 2) sulfur amino acids (SAA) or 3) both (AAA+SAA) (n = 4-5 per treatment group). A second IAAO study was carried out 18 h later. In the first IAAO study, lysine oxidation was high for both groups (18 vs. 21% for VM and NP, respectively, P = 0.055). The addition of AAA to VM induced a 30% decline in lysine oxidation compared with baseline (P < 0.01). Similarly, SAA added to NP lowered lysine oxidation by approximately 30% (P < 0.01). The application of the IAAO technique facilitates rapid evaluation of the amino acids that are limiting to protein synthesis in parenteral solutions.

  4. Amino Acid Homeostasis and Chronological Longevity in Saccharomyces cerevisiae

    PubMed Central

    Aris, John P.; Fishwick, Laura K.; Marraffini, Michelle L.; Seo, Arnold Y.; Leeuwenburgh, Christiaan; Dunn, William A.

    2015-01-01

    Understanding how non-dividing cells remain viable over long periods of time, which may be decades in humans, is of central importance in understanding mechanisms of aging and longevity. The long-term viability of non-dividing cells, known as chronological longevity, relies on cellular processes that degrade old components and replace them with new ones. Key among these processes is amino acid homeostasis. Amino acid homeostasis requires three principal functions: amino acid uptake, de novo synthesis, and recycling. Autophagy plays a key role in recycling amino acids and other metabolic building blocks, while at the same time removing damaged cellular components such as mitochondria and other organelles. Regulation of amino acid homeostasis and autophagy is accomplished by a complex web of pathways that interact because of the functional overlap at the level of recycling. It is becoming increasingly clear that amino acid homeostasis and autophagy play important roles in chronological longevity in yeast and higher organisms. Our goal in this chapter is to focus on mechanisms and pathways that link amino acid homeostasis, autophagy, and chronological longevity in yeast, and explore their relevance to aging and longevity in higher eukaryotes. PMID:22094422

  5. Genetics Home Reference: aromatic l-amino acid decarboxylase deficiency

    MedlinePlus

    ... l-amino acid decarboxylase deficiency aromatic l-amino acid decarboxylase deficiency Enable Javascript to view the expand/ ... Open All Close All Description Aromatic l-amino acid decarboxylase (AADC) deficiency is an inherited disorder that ...

  6. Discovery and History of Amino Acid Fermentation.

    PubMed

    Hashimoto, Shin-Ichi

    2016-12-02

    There has been a strong demand in Japan and East Asia for L-glutamic acid as a seasoning since monosodium glutamate was found to present umami taste in 1907. The discovery of glutamate fermentation by Corynebacterium glutamicum in 1956 enabled abundant and low-cost production of the amino acid, creating a large market. The discovery also prompted researchers to develop fermentative production processes for other L-amino acids, such as lysine. Currently, the amino acid fermentation industry is so huge that more than 5 million metric tons of amino acids are manufactured annually all over the world, and this number continues to grow. Research on amino acid fermentation fostered the notion and skills of metabolic engineering which has been applied for the production of other compounds from renewable resources. The discovery of glutamate fermentation has had revolutionary impacts on both the industry and science. In this chapter, the history and development of glutamate fermentation, including the very early stage of fermentation of other amino acids, are reviewed.

  7. Amino acid odorants stimulate microvillar sensory neurons.

    PubMed

    Lipschitz, David L; Michel, William C

    2002-03-01

    The olfactory epithelium (OE) of zebrafish is populated with ciliated and microvillar olfactory sensory neurons (OSNs). Whether distinct classes of odorants specifically activate either of these unique populations of OSNs is unknown. Previously we demonstrated that zebrafish OSNs could be labeled in an activity-dependent fashion by amino acid but not bile acid odorants. To determine which sensory neuron type was stimulated by amino acid odorants, we labeled OSNs using the ion channel permeant probe agmatine (AGB) and analyzed its distribution with conventional light- and electron-microscope immunocytochemical techniques. Approximately 7% of the sensory epithelium was labeled by AGB exposure alone. Following stimulation with one of the eight amino acids tested, the proportion of labeled epithelium increased from 9% for histidine to 19% for alanine; amino acid stimulated increases in labeling of 2-12% over control labeling. Only histidine failed to stimulate a significant increase in the proportion of labeled OSNs compared to control preparations. Most amino acid sensitive OSNs were located superficially in the epithelium and immuno-electron microscopy demonstrated that the labeled OSNs were predominantly microvillar. Large numbers of nanogold particles (20-60 per 1.5 microm(2)) were associated with microvillar olfactory sensory neurons (MSNs), while few such particles (<15 per 1.5 microm(2)) were observed over ciliated olfactory sensory neurons (CSNs), supporting cells (SCs) and areas without tissue, such as the lumen above the OE. Collectively, these findings indicate that microvillar sensory neurons are capable of detecting amino acid odorants.

  8. Polymers with complexing properties. Simple poly(amino acids)

    NASA Technical Reports Server (NTRS)

    Roque, J. M.

    1978-01-01

    The free amino (0.3 equiv/residue) and carboxyl (0.5 equiv/residue) groups of thermal polylysine increased dramatically on treatment with distilled water. The total hydrolysis of such a polymer was abnormal in that only about 50% of the expected amino acids were recovered. Poly (lysine-co-alanine-co-glycine) under usual conditions hydrolyzed completely in 8 hours; whereas, when it was pretreated with diazomethane, a normal period of 24 hours was required to give (nearly) the same amounts of each free amino acid as compared with those obtained from the untreated polymer. The amino groups of the basic thermal poly(amino acids) were sterically hindered. The existence of nitrogen atoms linking two or three chains and reactive groups (anhydride, imine) were proposed.

  9. Enantioenrichment in sublimed amino acid mixtures.

    PubMed

    Viedma, Cristóbal; Ortiz, José E; de Torres, Trinidad; Cintas, Pedro

    2012-04-14

    A real amplification of an initial enantiomeric excess can be detected when two amino acids are sublimed at high temperature, even if one of the components is a racemic compound that does not convert into a conglomerate by sublimation.

  10. Amino Acid Biosynthesis Pathways in Diatoms

    PubMed Central

    Bromke, Mariusz A.

    2013-01-01

    Amino acids are not only building blocks for proteins but serve as precursors for the synthesis of many metabolites with multiple functions in growth and other biological processes of a living organism. The biosynthesis of amino acids is tightly connected with central carbon, nitrogen and sulfur metabolism. Recent publication of genome sequences for two diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum created an opportunity for extensive studies on the structure of these metabolic pathways. Based on sequence homology found in the analyzed diatomal genes, the biosynthesis of amino acids in diatoms seems to be similar to higher plants. However, one of the most striking differences between the pathways in plants and in diatomas is that the latter possess and utilize the urea cycle. It serves as an important anaplerotic pathway for carbon fixation into amino acids and other N-containing compounds, which are essential for diatom growth and contribute to their high productivity. PMID:24957993

  11. Production of amino acids by yogurt bacteria.

    PubMed

    Beshkova, D M; Simova, E D; Frengova, G I; Simov, Z I; Adilov, E F

    1998-01-01

    The dynamics of free amino acid production by the selected strains Streptococcus thermophilus 13a and Lactobacillus bulgaricus 2-11 were studied in pure and mixed cultivations during yogurt starter culture manufacture. L. bulgaricus 2-11 showed the highest activity for producing free amino acids with high individual concentrations over the first hour of growth (50% of the total amount). By the end of milk's full coagulation (4.5 h), 70% of the total amount of amino acids was released. S. thermophilus 13a showed poor proteolytic properties and consumed up to 70% of the free amino acids produced by L. bulgaricus 2-11 in the process of coagulation of milk with the mixed culture.

  12. The protein digestibility-corrected amino acid score.

    PubMed

    Schaafsma, G

    2000-07-01

    The protein digestibility-corrected amino acid score (PDCAAS) has been adopted by FAO/WHO as the preferred method for the measurement of the protein value in human nutrition. The method is based on comparison of the concentration of the first limiting essential amino acid in the test protein with the concentration of that amino acid in a reference (scoring) pattern. This scoring pattern is derived from the essential amino acid requirements of the preschool-age child. The chemical score obtained in this way is corrected for true fecal digestibility of the test protein. PDCAAS values higher than 100% are not accepted as such but are truncated to 100%. Although the principle of the PDCAAS method has been widely accepted, critical questions have been raised in the scientific community about a number of issues. These questions relate to 1) the validity of the preschool-age child amino acid requirement values, 2) the validity of correction for fecal instead of ileal digestibility and 3) the truncation of PDCAAS values to 100%. At the time of the adoption of the PDCAAS method, only a few studies had been performed on the amino acid requirements of the preschool-age child, and there is still a need for validation of the scoring pattern. Also, the scoring pattern does not include conditionally indispensable amino acids. These amino acids also contribute to the nutrition value of a protein. There is strong evidence that ileal, and not fecal, digestibility is the right parameter for correction of the amino acid score. The use of fecal digestibility overestimates the nutritional value of a protein, because amino acid nitrogen entering the colon is lost for protein synthesis in the body and is, at least in part, excreted in urine as ammonia. The truncation of PDCAAS values to 100% can be defended only for the limited number of situations in which the protein is to be used as the sole source of protein in the diet. For evaluation of the nutritional significance of proteins as

  13. Genetically encoded fluorescent coumarin amino acids

    DOEpatents

    Wang, Jiangyun [San Diego, CA; Xie, Jianming [San Diego, CA; Schultz, Peter G [La Jolla, CA

    2012-06-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  14. Genetically encoded fluorescent coumarin amino acids

    DOEpatents

    Wang, Jiangyun; Xie, Jianming; Schultz, Peter G.

    2010-10-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl) ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  15. Nonprotein Amino Acids from Spark Discharges and Their Comparison with the Murchison Meteorite Amino Acids

    PubMed Central

    Wolman, Yecheskel; Haverland, William J.; Miller, Stanley L.

    1972-01-01

    All the nonprotein amino acids found in the Murchison meteorite are products of the action of electric discharge on a mixture of methane, nitrogen, and water with traces of ammonia. These amino acids include α-amino-n-butyric acid, α-aminoisobutyric acid, norvaline, isovaline, pipecolic acid, β-alanine, β-amino-n-butyric acid, β-aminoisobutyric acid, γ-aminobutyric acid, sarcosine, N-ethylglycine, and N-methylalanine. In addition, norleucine, alloisoleucine, N-propylglycine, N-isopropylglycine, N-methyl-β-alanine, N-ethyl-β-alanine α,β-diaminopropionic acid, isoserine, α,γ-diaminobutyric acid, and α-hydroxy-γ-aminobutyric acid are produced by the electric discharge, but have not been found in the meteorite. PMID:16591973

  16. Evaluation of amino acids as turfgrass nematicides.

    PubMed

    Zhang, Yun; Luc, John E; Crow, William T

    2010-12-01

    Laboratory experiments revealed that DL-methionine, sodium methionate, potassium methionate, and methionine hydroxyl analog at rates of 224 and 448 kg amino acid/ha reduced the number of Belonolaimus longicaudatus mixed life-stages and Meloidogyne incognita J2 in soil, whereas L-threonine and lysine were not effective in reducing the number of either nematode. Futhermore, greenhouse experiments demonstrated that DL-methionine, sodium methionate, potassium methionate, and methionine hydroxyl analog were equally effective against B. longicaudatus at rates of 112, 224, and 448 kg amino acid/ha, and the highest rate (448 kg amino acid/ha) of all amino acids was more effective in reducing the number of B. longicaudatus than the lower rate. However, phytotoxicity was observed on creeping bentgrass (Agrostis palustris) treated with 448 kg amino acid/ha of methionine hydroxyl analog and DL methionine. In addition, in one of two field experiments on bermudagrass (Cynodon dactylon × C. transvaalensis) turf percentage green cover was increased and the number of B. longicaudatus was reduced by 224 kg amino acid/ha of DL-methionine and potassium methionate compared to untreated controls in one of two trials.

  17. Amino acids substitutions in σ1 and μ1 outer capsid proteins of a Vero cell-adapted mammalian orthoreovirus are required for optimal virus binding and disassembly.

    PubMed

    Sandekian, Véronique; Lemay, Guy

    2015-01-22

    In a recent study, the serotype 3 Dearing strain of mammalian orthoreovirus was adapted to Vero cells; cells that exhibit a limited ability to support the early steps of reovirus uncoating and are unable to produce interferon as an antiviral response upon infection. The Vero cell-adapted virus (VeroAV) exhibits amino acids substitutions in both the σ1 and μ1 outer capsid proteins but no changes in the σ3 protein. Accordingly, the virus was shown not to behave as a classical uncoating mutant. In the present study, an increased ability of the virus to bind at the Vero cell surface was observed and is likely associated with an increased ability to bind onto cell-surface sialic acid residues. In addition, the kinetics of μ1 disassembly from the virions appears to be altered. The plasmid-based reverse genetics approach confirmed the importance of σ1 amino acids substitutions in VeroAV's ability to efficiently infect Vero cells, although μ1 co-adaptation appears necessary to optimize viral infection. This approach of combining in vitro selection of reoviruses with reverse genetics to identify pertinent amino acids substitutions appears promising in the context of eventual reovirus modification to increase its potential as an oncolytic virus.

  18. Amino acid profile of milk-based infant formulas.

    PubMed

    Viadel, B; Alegriá, A; Farré, R; Abellán, P; Romero, F

    2000-09-01

    The protein content and amino acid profile of three milk-based infant formulas, two of which were powdered (adapted and follow-on) and the third liquid, were determined to check their compliance with the EU directive and to evaluate whether or not they fulfil an infant's nutritional needs. To obtain the amino acid profile proteins were subjected to acid hydrolysis, prior to which the sulfur-containing amino acids were oxidized with performic acid. The amino acids were derivatized with phenylisothiocyanate (PITC) and then determined by ion-pair reverse phase high performance liquid chromatography (HPLC) In the case of tryptophan a basic hydrolysis was applied and there was no need of derivatization. The protein contents of the analysed formulas were in the ranges established by the EU directive for these products and the amino acid contents were in the ranges reported by other authors for these types of formulas. In all cases the tryptophan content determined the value of the chemical score, which was always lower than 80% of the reference protein but in the ranges reported by other authors. The analysed adapted infant formula provides amino acids in amounts higher than the established nutritional requirements.

  19. Amino acid composition and amino acid-metabolic network in supragingival plaque.

    PubMed

    Washio, Jumpei; Ogawa, Tamaki; Suzuki, Keisuke; Tsukiboshi, Yosuke; Watanabe, Motohiro; Takahashi, Nobuhiro

    2016-01-01

    Dental plaque metabolizes both carbohydrates and amino acids. The former can be degraded to acids mainly, while the latter can be degraded to various metabolites, including ammonia, acids and amines, and associated with acid-neutralization, oral malodor and tissue inflammation. However, amino acid metabolism in dental plaque is still unclear. This study aimed to elucidate what kinds of amino acids are available as metabolic substrates and how the amino acids are metabolized in supragingival plaque, by a metabolome analysis. Amino acids and the related metabolites in supragingival plaque were extracted and quantified comprehensively by CE-TOFMS. Plaque samples were also incubated with amino acids, and the amounts of ammonia and amino acid-related metabolites were measured. The concentration of glutamate was the highest in supragingival plaque, while the ammonia-production was the highest from glutamine. The obtained metabolome profile revealed that amino acids are degraded through various metabolic pathways, including deamination, decarboxylation and transamination and that these metabolic systems may link each other, as well as with carbohydrate metabolic pathways in dental plaque ecosystem. Moreover, glutamine and glutamate might be the main source of ammonia production, as well as arginine, and contribute to pH-homeostasis and counteraction to acid-induced demineralization in supragingival plaque.

  20. Evidence of Selection for Low Cognate Amino Acid Bias in Amino Acid Biosynthetic Enzymes

    PubMed Central

    Alves, Rui; Savageau, Michael A.

    2006-01-01

    Summary If the enzymes responsible for biosynthesis of a given amino acid are repressed and the cognate amino acid pool suddenly depleted, then derepression of these enzymes and replenishment of the pool would be problematic, if the enzymes were largely composed of the cognate amino acid. In the proverbial ‘Catch 22’, cells would lack the necessary enzymes to make the amino acid, and they would lack the necessary amino acid to make the needed enzymes. Based on this scenario, we hypothesize that evolution would lead to the selection of amino acid biosynthetic enzymes that have a relatively low content of their cognate amino acid. We call this the ‘cognate bias hypothesis’. Here we test several implications of this hypothesis directly using data from the proteome of Escherichia coli. Several lines of evidence show that low cognate bias is evident in 15 of the 20 amino acid biosynthetic pathways. Comparison with closely related Salmonella typhimurium shows similar results. Comparison with more distantly related Bacillus subtilis shows general similarities as well as significant differences in the detailed profiles of cognate bias. Thus, selection for low cognate bias plays a significant role in shaping the amino acid composition for a large class of cellular proteins. PMID:15853887

  1. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl amino substituted triazine...

  2. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl amino substituted triazine...

  3. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl amino substituted triazine...

  4. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl amino substituted triazine...

  5. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl amino substituted triazine...

  6. Gene sequence and predicted amino acid sequence of the motA protein, a membrane-associated protein required for flagellar rotation in Escherichia coli.

    PubMed Central

    Dean, G E; Macnab, R M; Stader, J; Matsumura, P; Burks, C

    1984-01-01

    The motA and motB gene products of Escherichia coli are integral membrane proteins necessary for flagellar rotation. We determined the DNA sequence of the region containing the motA gene and its promoter. Within this sequence, there is an open reading frame of 885 nucleotides, which with high probability (98% confidence level) meets criteria for a coding sequence. The 295-residue amino acid translation product had a molecular weight of 31,974, in good agreement with the value determined experimentally by gel electrophoresis. The amino acid sequence, which was quite hydrophobic, was subjected to a theoretical analysis designed to predict membrane-spanning alpha-helical segments of integral membrane proteins; four such hydrophobic helices were predicted by this treatment. Additional amphipathic helices may also be present. A remarkable feature of the sequence is the existence of two segments of high uncompensated charge density, one positive and the other negative. Possible organization of the protein in the membrane is discussed. Asymmetry in the amino acid composition of translated DNA sequences was used to distinguish between two possible initiation codons. The use of this method as a criterion for authentication of coding regions is described briefly in an Appendix. PMID:6090403

  7. Extending enzyme molecular recognition with an expanded amino acid alphabet

    PubMed Central

    Windle, Claire L.; Simmons, Katie J.; Ault, James R.; Trinh, Chi H.; Nelson, Adam

    2017-01-01

    Natural enzymes are constructed from the 20 proteogenic amino acids, which may then require posttranslational modification or the recruitment of coenzymes or metal ions to achieve catalytic function. Here, we demonstrate that expansion of the alphabet of amino acids can also enable the properties of enzymes to be extended. A chemical mutagenesis strategy allowed a wide range of noncanonical amino acids to be systematically incorporated throughout an active site to alter enzymic substrate specificity. Specifically, 13 different noncanonical side chains were incorporated at 12 different positions within the active site of N-acetylneuraminic acid lyase (NAL), and the resulting chemically modified enzymes were screened for activity with a range of aldehyde substrates. A modified enzyme containing a 2,3-dihydroxypropyl cysteine at position 190 was identified that had significantly increased activity for the aldol reaction of erythrose with pyruvate compared with the wild-type enzyme. Kinetic investigation of a saturation library of the canonical amino acids at the same position showed that this increased activity was not achievable with any of the 20 proteogenic amino acids. Structural and modeling studies revealed that the unique shape and functionality of the noncanonical side chain enabled the active site to be remodeled to enable more efficient stabilization of the transition state of the reaction. The ability to exploit an expanded amino acid alphabet can thus heighten the ambitions of protein engineers wishing to develop enzymes with new catalytic properties. PMID:28196894

  8. Monoclonal antibodies recognizing single amino acid substitutions in hemoglobin

    SciTech Connect

    Stanker, L.H.; Branscomb, E.; Vanderlaan, M.; Jensen, R.H.

    1986-06-01

    Four monoclonal antibodies (mAb) to non-human primate hemoglobin referred to as Cap-4, Cap-5, Rh-2, and Rh-4, and two mAb to human hemoglobin, referred to as H-1 and H-3 were isolated and were partially characterized. Binding studies with these mAb on a panel of hemoglobins and isolated ..cap alpha.. and ..beta.. globin chains revealed a unique reactivity pattern for each mAb. Amino acid sequence analysis of the antigens used to generate the binding data suggests that the specific recognition of certain hemoglobin antigens by each mAb is controlled by the presence of a particular amino acid at a specific position within the epitope. The use of synthetic peptides as antigens confirmed this observation for five of the mAb. No synthetic peptides were tested with the sixth mAb, Rh-2. The amino acids required for binding of mAb Cap-4, Cap-5, Rh-4, and Rh-2 to hemoglobin are alanine at ..beta..5, threonine at ..beta..13, glutamine at ..beta..125, and leucine at ..cap alpha..68. The non-human primate hemoglobin antibodies require a specific amino acid that is not present in human hemoglobin. The amino acid required for binding of Cap-4, Cap-5, and Rh-4 could arise by a single base change in the ..beta.. globin gene, whereas the amino acid required for Rh-2 binding could only occur if two base changes occurred. Thus these mAb are candidate probes for a somatic cell mutation assay on the basis of the detection of peripheral blood red cells that possess single amino acid substituted hemoglobin as a result of single base substitutions in the globin genes of precursor cells.

  9. Amino Acid Transport into Cultured Tobacco Cells

    PubMed Central

    Harrington, H. Michael; Henke, Randolph R.

    1981-01-01

    Lysine transport into suspension-cultured Wisconsin-38 tobacco cells was observed. Uptake was linear (up to 90 minutes) with respect to time and amount of tissue only after 4 to 6 hours preincubation in calcium-containing medium. The observed cellular accumulation of lysine was against a concentration gradient and not due to exchange diffusion. Transport was stimulated by low pH and characterized by a biphasic uptake isotherm with two Km values for lysine. System I (Km ≃ 5 × 10−6 molar; Vmax ≃ 180 nanomoles per gram fresh weight per hour) and system II (Km ≃ 10−4 molar; Vmax ≃ 1900 nanomoles per gram fresh weight per hour) were inhibited by N-ethylmaleimide and a variety of respiratory inhibitors. This inhibition was not due to increased efflux. In antagonism experiments, system I was inhibited most effectively by basic amino acids, followed by the sulfur amino acids. System I was only slightly inhibited by the neutral and aromatic amino acids and was not inhibited by the acidic amino acids aspartic and glutamic acids. Transport by system II was inhibited by all of the tested amino acids (including aspartic and glutamic acids) and analogs; however, this system was not inhibited by d-arginine. Neither system was strongly inhibited by d-lysine or the lysine analog S-2-aminoethyl-l-cysteine. Arginine was shown to be a competitive inhibitor of both systems with values for Ki similar to the respective Km values. These studies suggest the presence of at least two amino acid permeases in W-38 tobacco cells. PMID:16661678

  10. Amino acids derived from Titan tholins

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Ogino, H.; Nagy, B.; Er, C.; Schram, K. H.; Arakawa, E. T.

    1986-01-01

    An organic heteropolymer (Titan tholin) was produced by continuous dc discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mbar pressure, roughly simulating the cloudtop atmosphere of Titan. Treatment of this tholin with 6N HCl yielded 16 amino acids by gas chromatography after derivatization of N-trifluroacetyl isopropyl esters on two different capillary columns. Identifications were confirmed by GC/MS. Glycine, aspartic acid, and alpha- and beta-alanine were produced in greatest abundance; the total yield of amino acids was approximately 10(-2), approximately equal to the yield of urea. The presence of "nonbiological" amino acids, the absence of serine, and the fact that the amino acids are racemic within experimental error together indicate that these molecules are not due to microbial or other contamination, but are derived from the tholin. In addition to the HCN, HC2CN, and (CN)2 found by Voyager, nitriles and aminonitriles should be sought in the Titanian atmosphere and, eventually, amino acids on the surface. These results suggest that episodes of liquid water in the past or future of Titan might lead to major further steps in prebiological organic chemistry on that body.

  11. Amino acids in modern and fossil woods

    NASA Technical Reports Server (NTRS)

    Lee, C.; Bada, J. L.; Peterson, E.

    1976-01-01

    The amino acid composition and the extent of racemization in several modern and fossil woods are reported. The method of analysis is described, and data are presented on the total amino acid concentration, the amino acid ratios, and the enantiomeric ratios in each sample. It is found that the amino acid concentration per gram of dry wood decreases with age of the sample, that the extent of racemization increases with increasing age, and that the amounts of aspartic acid, threonine, and serine decrease relative to valine with increasing age. The relative racemization rates of amino acids in wood, bone, and aqueous solution are compared, and it is shown that racemization in wood is much slower than in bone or aqueous solution. Racemization results for woods from the Kalambo Falls area of Zambia are used to calculate a minimum age of 110,000 years for the transition between the Sangoan and Acheulian industries at that site. This result is shown to be consistent with numerous radiometric dates for older Acheulian sites in Africa and to compare well with geologically inferred dates for the beginning of the Eemian and the end of the Acheulian industry in southern Africa.

  12. Amino acid isotopic analysis in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A relatively new approach to stable isotopic analysis—referred to as compound-specific isotopic analysis (CSIA)—has emerged, centering on the measurement of 15N:14N ratios in amino acids (glutamic acid and phenylalanine). CSIA has recently been used to generate trophic position estimates among anima...

  13. [Dependence of metabolic fecal amino acids on the amino acid content of the feed. 1. Metabolic fecal amino acids of rats fed with maize].

    PubMed

    Krawielitzki, K; Schadereit, R; Völker, T; Reichel, K

    1981-07-01

    The amount of metabolic fecal amino acids (MFAA) in dependence on the amino acid intake was determined for graded maize rations with 15N-labelled rats and the quota of labelled endogenous amino acids in faeces was calculated according to the isotope dilution method. The excretion of amino acids and MFAA in faeces are described as functions of the amino acid intake for 17 amino acids and regressively calculated. For all 17 amino acids investigated, there was a more or less steep increase of MFAA according to an increasing amino acid intake. In contrast to MFAA in N-free feeding, MFAA in feeding with pure maize (16.5% crude protein) increase to the 2- to 4.5-fold value. The thesis of the constancy of the excretion of MFAA can consequently be no longer maintained. The true digestibility according to the conventional method is, on an average of all amino acids, 7.3 units below the one ascertained according to the 15N-isotope method. For the limiting amino acids lysine and threonine the difference is biggest (23 resp. 17 units). Tryptophane as first limiting amino acid could not be determined. The true digestibility of nearly all amino acids ascertained for maize according to the isotope method is above 90%. For the limiting amino acids the expenditure resp. the loss of endogenous amino acids is biggest.

  14. Modulation of Phagosomal pH by Candida albicans Promotes Hyphal Morphogenesis and Requires Stp2p, a Regulator of Amino Acid Transport

    PubMed Central

    Vylkova, Slavena; Lorenz, Michael C.

    2014-01-01

    Candida albicans, the most important fungal pathogen of humans, has a unique interaction with macrophages in which phagocytosis induces a switch from the yeast to hyphal form, allowing it to escape by rupturing the immune cell. While a variety of factors induce this switch in vitro, including neutral pH, it is not clear what triggers morphogenesis within the macrophage where the acidic environment should inhibit this transition. In vitro, C. albicans grown in similar conditions in which amino acids are the primary carbon source generate large quantities of ammonia to raise the extracellular pH and induce the hyphal switch. We show here that C. albicans cells neutralize the macrophage phagosome and that neutral pH is a key inducer of germination in phagocytosed cells by using a mutant lacking STP2, a transcription factor that regulates the expression of multiple amino acid permeases, that is completely deficient in alkalinization in vitro. Phagocytosed stp2Δ mutant cells showed significant reduction in hypha formation and escaped from macrophages less readily compared to wild type cells; as a result stp2Δ mutant cells were killed at a higher rate and caused less damage to RAW264.7 macrophages. Stp2p-regulated import leads to alkalinization of the phagosome, since the majority of the wild type cells fail to co-localize with acidophilic dyes, whereas the stp2Δ mutant cells were located in acidic phagosomes. Furthermore, stp2Δ mutant cells were able to form hyphae and escape from neutral phagosomes, indicating that the survival defect in these cells was pH dependent. Finally, these defects are reflected in an attenuation of virulence in a mouse model of disseminated candidiasis. Altogether our results suggest that C. albicans utilizes amino acids to promote neutralization of the phagosomal pH, hyphal morphogenesis, and escape from macrophages. PMID:24626429

  15. Analysis of amino acids by miniaturised isotachophoresis.

    PubMed

    Prest, Jeff E; Baldock, Sara J; Fielden, Peter R; Goddard, Nicholas J; Brown, Bernard J Treves

    2004-10-08

    A method allowing the miniaturised isotachophoretic analysis of amino acids has been developed. To overcome the problems of carbonate contamination which occur when performing separations at alkaline pH levels glycolate was used as the leading ion. Addition of magnesium to the leading electrolyte as a counter species was found to improve the separations. The method has been used on a poly(methyl methacrylate) microdevice with integrated on-column conductivity detectors. The behaviour of a range of common amino acids was investigated and successful separations of up to seven amino acids were made. Good linearity was observed with calibration curves for aspartic acid and phenylalanine over the range 0.063-1.0 mM. Limits of detection for these two species were calculated to be 0.060 and 0.018 mM, respectively.

  16. Amino acids in the Yamato carbonaceous chrondrite from Antarctica

    NASA Technical Reports Server (NTRS)

    Shimoyama, A.; Ponnamperuma, C.; Yanai, K.

    1979-01-01

    Evidence for the presence of amino acids of extraterrestrial origin in the Antarctic Yamato carbonaceous chrondrite is presented. Hydrolyzed and nonhydrolyzed water-extracted amino acid samples from exterior, middle and interior portions of the meteorite were analyzed by an amino acid analyzer and by gas chromatography of N-TFA-isopropyl amino acid derivatives. Nine protein and six nonprotein amino acids were detected in the meteorite at abundances between 34 and less than one nmole/g, with equal amounts in interior and exterior portions. Nearly equal abundances of the D and L enantiomers of alanine, aspartic acid and glutamic acid were found, indicating the abiotic, therefore extraterrestrial, origin of the amino acids. The Antarctic environment and the uniformity of protein amino acid abundances are discussed as evidence against the racemization of terrestrially acquired amino acids, and similarities between Yamato amino acid compositions and the amino acid compositions of the Murchison and Murray type II carbonaceous chrondrites are indicated.

  17. Detection of non-protein amino acids in the presence of protein amino acids. II.

    NASA Technical Reports Server (NTRS)

    Shapshak, P.; Okaji, M.

    1972-01-01

    Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.

  18. Distinguishing Proteins From Arbitrary Amino Acid Sequences

    PubMed Central

    Yau, Stephen S.-T.; Mao, Wei-Guang; Benson, Max; He, Rong Lucy

    2015-01-01

    What kinds of amino acid sequences could possibly be protein sequences? From all existing databases that we can find, known proteins are only a small fraction of all possible combinations of amino acids. Beginning with Sanger's first detailed determination of a protein sequence in 1952, previous studies have focused on describing the structure of existing protein sequences in order to construct the protein universe. No one, however, has developed a criteria for determining whether an arbitrary amino acid sequence can be a protein. Here we show that when the collection of arbitrary amino acid sequences is viewed in an appropriate geometric context, the protein sequences cluster together. This leads to a new computational test, described here, that has proved to be remarkably accurate at determining whether an arbitrary amino acid sequence can be a protein. Even more, if the results of this test indicate that the sequence can be a protein, and it is indeed a protein sequence, then its identity as a protein sequence is uniquely defined. We anticipate our computational test will be useful for those who are attempting to complete the job of discovering all proteins, or constructing the protein universe. PMID:25609314

  19. Amino acid uptake in rust fungi

    PubMed Central

    Struck, Christine

    2015-01-01

    The plant pathogenic rust fungi colonize leaf tissue and feed off their host plants without killing them. Certain economically important species of different genera such as Melampsora, Phakopsora, Puccinia, or Uromyces are extensively studied for resolving the mechanisms of the obligate biotrophy. As obligate parasites rust fungi only can complete their life cycle on living hosts where they grow through the leaf tissue by developing an extended network of intercellular hyphae from which intracellular haustoria are differentiated. Haustoria are involved in key functions of the obligate biotrophic lifestyle: suppressing host defense responses and acquiring nutrients. This review provides a survey of rust fungi nitrogen nutrition with special emphasis on amino acid uptake. A variety of sequences of amino acid transporter genes of rust fungi have been published; however, transport activity of only three in planta highly up-regulated amino acid permeases have been characterized. Functional and immunohistochemical investigations have shown the specificity and localization of these transporters. Sequence data of various genome projects allowed identification of numerous rust amino acid transporter genes. An in silico analysis reveals that these genes can be classified into different transporter families. In addition, genetic and molecular data of amino acid transporters have provided new insights in the corresponding metabolic pathways. PMID:25699068

  20. Amino acid pools in cultured muscle cells.

    PubMed

    Low, R B; Stirewalt, W S; Rittling, S R; Woodworth, R C

    1984-01-01

    Compartmentalization of cellular amino acid pools occurs in cultures of cardiac and skeletal muscle cells, but the factors involved in this are not clear. We have further defined this problem by analyzing the intracellular free leucine and the transfer-RNA-(tRNA)-bound leucine pool in cultures of skeletal and cardiac muscle incubated with 3H-leucine in the presence and absence of serum and amino acids. Withdrawal of nitrogen substrates caused substantial changes in leucine pool relationships--in particular, a change in the degree to which intracellular free leucine and tRNA-leucine were derived from the culture medium. In separate experiments, the validity of our tRNA measurements was confirmed by measurements of the specific activity of newly synthesized ferritin after iron induction. We discuss the implications of these findings with regard to factors involved in the control of amino acid flux through the cell, as well as with regard to design of experiments using isotopic amino acids to measure rates of amino acid utilization.

  1. Conformations of amino acids in proteins.

    PubMed

    Hovmöller, Sven; Zhou, Tuping; Ohlson, Tomas

    2002-05-01

    The main-chain conformations of 237 384 amino acids in 1042 protein subunits from the PDB were analyzed with Ramachandran plots. The populated areas of the empirical Ramachandran plot differed markedly from the classical plot in all regions. All amino acids in alpha-helices are found within a very narrow range of phi, psi angles. As many as 40% of all amino acids are found in this most populated region, covering only 2% of the Ramachandran plot. The beta-sheet region is clearly subdivided into two distinct regions. These do not arise from the parallel and antiparallel beta-strands, which have quite similar conformations. One beta region is mainly from amino acids in random coil. The third and smallest populated area of the Ramachandran plot, often denoted left-handed alpha-helix, has a different position than that originally suggested by Ramachandran. Each of the 20 amino acids has its own very characteristic Ramachandran plot. Most of the glycines have conformations that were considered to be less favoured. These results may be useful for checking secondary-structure assignments in the PDB and for predicting protein folding.

  2. Biodegradable polymers derived from amino acids.

    PubMed

    Khan, Wahid; Muthupandian, Saravanan; Farah, Shady; Kumar, Neeraj; Domb, Abraham J

    2011-12-08

    In the past three decades, the use of polymeric materials has increased dramatically for biomedical applications. Many α-amino acids derived biodegradable polymers have also been intensely developed with the main goal to obtain bio-mimicking functional biomaterials. Polymers derived from α-amino acids may offer many advantages, as these polymers: (a) can be modified further to introduce new functions such as imaging, molecular targeting and drugs can be conjugated chemically to these polymers, (b) can improve on better biological properties like cell migration, adhesion and biodegradability, (c) can improve on mechanical and thermal properties and (d) their degradation products are expected to be non-toxic and readily metabolized/excreted from the body. This manuscript focuses on biodegradable polymers derived from natural amino acids, their synthesis, biocompatibility and biomedical applications. It is observed that polymers derived from α-amino acids constitute a promising family of biodegradable materials. These provide innovative multifunctional polymers possessing amino acid side groups with biological activity and with innumerous potential applications.

  3. Amino Acids Profiles in Biological Media

    SciTech Connect

    Iordache, A.; Horj, E.; Morar, S.; Cozar, O.; Culea, M.; Ani, A. R.; Mesaros, C.

    2010-08-04

    An accurate analytical method was developed to determine amino acids in some biological specimens by GC/MS technique. Stable isotopes provide useful tools for a variety of studies, offering ideal internal standards in quantitative information. Isotopic dilution gas chromatography--mass spectrometry (ID-GC/MS) is the techniques used for quantitative analysis of compounds labeled with stable isotopes. A Trace DSQ Thermo Finnigan quadrupole mass spectrometer coupled with a Trace GC was used. Amino acids were separated on a Rtx-5 MS capillary column, 30 mx0.25 mm, 0.25 {mu}m film thickness, using a temperature program from 50 deg. C, 1 min, 6 deg. C/min at 100 deg. C, 4 deg. C/min at 200 deg. C, 20 deg. C/min at 300 deg. C, (3 min). The transfer line temperature was 250 deg. C, the injector temperature 200 deg. C and ion source temperature 250 deg. C; splitter: 10:1. Electron energy was 70 eV and emission current, 100 {mu}A. The amino acids were purified on a Dowex 50W-W8 exchange resin and were derivatized in a procedure following two steps to obtain trifluoroacetyl butyl esters. The identification of amino acids was obtained by using NIST library but also by using amino acid standards.

  4. A d-Amino Acid-Containing Neuropeptide Discovery Funnel

    PubMed Central

    2016-01-01

    A receptor binding class of d-amino acid-containing peptides (DAACPs) is formed in animals from an enzymatically mediated post-translational modification of ribosomally translated all-l-amino acid peptides. Although this modification can be required for biological actions, detecting it is challenging because DAACPs have the same mass as their all-l-amino acid counterparts. We developed a suite of mass spectrometry (MS) protocols for the nontargeted discovery of DAACPs and validated their effectiveness using neurons from Aplysia californica. The approach involves the following three steps, with each confirming and refining the hits found in the prior step. The first step is screening for peptides resistant to digestion by aminopeptidase M. The second verifies the presence of a chiral amino acid via acid hydrolysis in deuterium chloride, labeling with Marfey’s reagent, and liquid chromatography–mass spectrometry to determine the chirality of each amino acid. The third involves synthesizing the putative DAACPs and comparing them to the endogenous standards. Advantages of the method, the d-amino acid-containing neuropeptide discovery funnel, are that it is capable of detecting the d-form of any common chiral amino acid, and the first two steps do not require peptide standards. Using these protocols, we report that two peptides from the Aplysia achatin-like neuropeptide precursor exist as GdYFD and SdYADSKDEESNAALSDFA. Interestingly, GdYFD was bioactive in the Aplysia feeding and locomotor circuits but SdYADSKDEESNAALSDFA was not. The discovery funnel provides an effective means to characterize DAACPs in the nervous systems of animals in a nontargeted manner. PMID:27788334

  5. Amino acids of the Murchison meteorite. III - Seven carbon acyclic primary alpha-amino alkanoic acids

    NASA Technical Reports Server (NTRS)

    Cronin, John R.; Pizzarello, Sandra

    1986-01-01

    All of the eighteen possible seven-carbon acyclic primary alpha-amino alkanoic acids have been positively identified in a hot-water extract of the Murchison meteorite by the combined use of gas chromatography-mass spectrometry, ion exchange chromatography and reversed-phase chromatography. None of these amino acids has previously been found in meteorites or in any other natural material. They range in concentration from less than or equal to 0.5 to 5.3 nmol/g. Configuration assignments were made for 2-amino-3,4-dimethylpentanoic acid and allo-2-amino-3,4-dimethylpentanoic acid and the diasteromer ratio was determined. Fifty-five amino acids have now been positively identified in the Murchison meteorite, 36 of which are unknown in terrestrial materials. This unique suite of amino acids is characterized by the occurrence of all structural isomers within the two major classes of amino acids represented, by the predominance of branched chain isomers, and by an exponential decline in amount with increasing carbon chain length within homologous series. These characteristics of the Murchison amino acids are suggestive of synthesis before incorporation into a parent body.

  6. Economic aspects of amino acids production.

    PubMed

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  7. Amino Acid Permeases and Virulence in Cryptococcus neoformans

    PubMed Central

    Takahashi, Juliana Possato Fernandes; Guerra, Juliana Mariotti; Santos, Dayane Cristina da Silva; Purisco, Sônia Ueda; Melhem, Márcia de Souza Carvalho; Fazioli, Raquel dos Anjos; Phanord, Clerlune; Sartorelli, Patrícia; Vallim, Marcelo A.

    2016-01-01

    Fungal opportunistic pathogens colonize various environments, from plants and wood to human and animal tissue. Regarding human pathogens, one great challenge during contrasting niche occupation is the adaptation to different conditions, such as temperature, osmolarity, salinity, pressure, oxidative stress and nutritional availability, which may constitute sources of stress that need to be tolerated and overcome. As an opportunistic pathogen, C. neoformans faces exactly these situations during the transition from the environment to the human host, encountering nutritional constraints. Our previous and current research on amino acid biosynthetic pathways indicates that amino acid permeases are regulated by the presence of the amino acids, nitrogen and temperature. Saccharomyces cerevisiae and Candida albicans have twenty-four and twenty-seven genes encoding amino acid permeases, respectively; conversely, they are scarce in number in Basidiomycetes (C. neoformans, Coprinopsis cinerea and Ustilago maydis), where nine to ten permease genes can be found depending on the species. In this study, we have demonstrated that two amino acid permeases are essential for virulence in C. neoformans. Our data showed that C. neoformans uses two global and redundant amino acid permeases, Aap4 and Aap5 to respond correctly to thermal and oxidative stress. Double deletion of these permeases causes growth arrest in C. neoformans at 37°C and in the presence of hydrogen peroxide. The inability to uptake amino acid at a higher temperature and under oxidative stress also led to virulence attenuation in vivo. Our data showed that thermosensitivity caused by the lack of permeases Aap4 and Aap5 can be remedied by alkaline conditions (higher pH) and salinity. Permeases Aap4 and Aap5 are also required during fluconazole stress and they are the target of the plant secondary metabolite eugenol, a potent antifungal inhibitor that targets amino acid permeases. In summary, our work unravels (i

  8. Amino Acid Permeases and Virulence in Cryptococcus neoformans.

    PubMed

    Martho, Kevin Felipe Cruz; de Melo, Amanda Teixeira; Takahashi, Juliana Possato Fernandes; Guerra, Juliana Mariotti; Santos, Dayane Cristina da Silva; Purisco, Sônia Ueda; Melhem, Márcia de Souza Carvalho; Fazioli, Raquel Dos Anjos; Phanord, Clerlune; Sartorelli, Patrícia; Vallim, Marcelo A; Pascon, Renata C

    2016-01-01

    Fungal opportunistic pathogens colonize various environments, from plants and wood to human and animal tissue. Regarding human pathogens, one great challenge during contrasting niche occupation is the adaptation to different conditions, such as temperature, osmolarity, salinity, pressure, oxidative stress and nutritional availability, which may constitute sources of stress that need to be tolerated and overcome. As an opportunistic pathogen, C. neoformans faces exactly these situations during the transition from the environment to the human host, encountering nutritional constraints. Our previous and current research on amino acid biosynthetic pathways indicates that amino acid permeases are regulated by the presence of the amino acids, nitrogen and temperature. Saccharomyces cerevisiae and Candida albicans have twenty-four and twenty-seven genes encoding amino acid permeases, respectively; conversely, they are scarce in number in Basidiomycetes (C. neoformans, Coprinopsis cinerea and Ustilago maydis), where nine to ten permease genes can be found depending on the species. In this study, we have demonstrated that two amino acid permeases are essential for virulence in C. neoformans. Our data showed that C. neoformans uses two global and redundant amino acid permeases, Aap4 and Aap5 to respond correctly to thermal and oxidative stress. Double deletion of these permeases causes growth arrest in C. neoformans at 37°C and in the presence of hydrogen peroxide. The inability to uptake amino acid at a higher temperature and under oxidative stress also led to virulence attenuation in vivo. Our data showed that thermosensitivity caused by the lack of permeases Aap4 and Aap5 can be remedied by alkaline conditions (higher pH) and salinity. Permeases Aap4 and Aap5 are also required during fluconazole stress and they are the target of the plant secondary metabolite eugenol, a potent antifungal inhibitor that targets amino acid permeases. In summary, our work unravels (i

  9. Amino acid composition of human milk is not unique.

    PubMed

    Davis, T A; Nguyen, H V; Garcia-Bravo, R; Fiorotto, M L; Jackson, E M; Lewis, D S; Lee, D R; Reeds, P J

    1994-07-01

    To determine whether the amino acid pattern of human milk is unique, we compared the amino acid pattern of human milk with the amino acid patterns of the milks of great apes (chimpanzee and gorilla), lower primates (baboon and rhesus monkey) and nonprimates (cow, goat, sheep, llama, pig, horse, elephant, cat and rat). Amino acid pattern was defined as the relative proportion of each amino acid (protein-bound plus free) (in mg) to the total amino acids (in g). Total amino acid concentration was lower in primate milk than in nonprimate milk. There were commonalities in the overall amino acid pattern of the milks of all species sampled; the most abundant amino acids were glutamate (plus glutamine, 20%), proline (10%) and leucine (10%). Essential amino acids were 40%, branched-chain amino acids 20%, and sulfur amino acids 4% of the total amino acids. The amino acid pattern of human milk was more similar to those of great apes than to those of lower primates. For example, cystine was higher and methionine was lower in primate milks than in nonprimate milks, and in great ape and human milks than in lower primate milks. Because the milk amino acid patterns of the human and elephant, both slow-growing species, were dissimilar, the amino acid pattern of human milk seems unrelated to growth rate.

  10. Cometary Amino Acids from the STARDUST Mission

    NASA Technical Reports Server (NTRS)

    Cook, Jamie Elsila

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81 P/WiId 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a cometary amino acid.

  11. Amino acid composition and chemical evaluation of protein quality of cereals as affected by insect infestation.

    PubMed

    Jood, S; Kapoor, A C; Singh, R

    1995-09-01

    A significant decrease in essential amino acids of wheat, maize and sorghum was observed due to grain infestation caused by mixed populations of Trogoderma granarium Everts and Rhizopertha dominica Fabricius (50:50). Non-essential amino acids were also adversely affected. Among the essential amino acids, maximum reduction was found in methionine, isoleucine and lysine in infested wheat, maize and sorghum grains, respectively. Lysine, with lowest chemical score in uninfested and infested grains of three cereals, is the first limiting amino acid. Insect infestation caused significant (p < 0.05) reduction in the chemical score of all the essential amino acids, yet did not change the position of first and second limiting amino acids in wheat and sorghum. However, in case of maize, isoleucine became the second limiting amino acid. Infested grains also showed substantial reduction in essential amino acid index, calculated biological value and requirement index.

  12. Inhibited muscle amino acid uptake in sepsis.

    PubMed Central

    Hasselgren, P O; James, J H; Fischer, J E

    1986-01-01

    Amino acid uptake in vivo was determined in soleus (SOL) muscle, diaphragm, heart, and liver following intravenous injection of [3H]-alpha-amino-isobutyric acid ([3H]-AIB) in rats made septic by cecal ligation and puncture (CLP) and in sham-operated controls. Muscle amino acid transport was also measured in vitro by determining uptake of [3H]-AIB in incubated extensor digitorum longus (EDL) and SOL muscles. Results were expressed as distribution ratio between [3H]-AIB in intracellular and extracellular fluid. AIB uptake in vivo was reduced by 90% in SOL and cardiac muscle and by 45% in diaphragm 16 hours after CLP. In contrast, AIB uptake by liver was almost four times higher in septic than in control animals. AIB uptake in vitro was reduced by 18% in EDL 8 hours after CLP but was not significantly altered in SOL at the same time point. Sixteen hours after CLP, AIB uptake was significantly reduced in both muscles, i.e., by 17% in EDL and by 65% in SOL. When muscles from untreated rats were incubated in the presence of plasma from septic animals (16 hours CLP) or from animals injected with endotoxin (2 mg/kg body weight), AIB uptake was reduced. Addition of endotoxin in vitro (2-200 micrograms/ml) to incubated muscles did not affect AIB uptake. The results suggest that sepsis leads to marked impairment of amino acid transport system A in muscle and that this impairment is mediated by a circulating factor that is not endotoxin. Reduced uptake of amino acids by skeletal muscle during sepsis may divert amino acids to the liver for increased gluconeogenesis and protein synthesis. PMID:3963895

  13. Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids.

    PubMed

    Dickinson, Jared M; Fry, Christopher S; Drummond, Micah J; Gundermann, David M; Walker, Dillon K; Glynn, Erin L; Timmerman, Kyle L; Dhanani, Shaheen; Volpi, Elena; Rasmussen, Blake B

    2011-05-01

    The relationship between mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis during instances of amino acid surplus in humans is based solely on correlational data. Therefore, the goal of this study was to use a mechanistic approach specifically designed to determine whether increased mTORC1 activation is requisite for the stimulation of muscle protein synthesis following L-essential amino acid (EAA) ingestion in humans. Examination of muscle protein synthesis and signaling were performed on vastus lateralis muscle biopsies obtained from 8 young (25 ± 2 y) individuals who were studied prior to and following ingestion of 10 g of EAA during 2 separate trials in a randomized, counterbalanced design. The trials were identical except during 1 trial, participants were administered a single oral dose of a potent mTORC1 inhibitor (rapamycin) prior to EAA ingestion. In response to EAA ingestion, an ~60% increase in muscle protein synthesis was observed during the control trial, concomitant with increased phosphorylation of mTOR (Ser(2448)), ribosomal S6 kinase 1 (Thr(389)), and eukaryotic initiation factor 4E binding protein 1 (Thr(37/46)). In contrast, prior administration of rapamycin completely blocked the increase in muscle protein synthesis and blocked or attenuated activation of mTORC1-signaling proteins. The inhibition of muscle protein synthesis and signaling was not due to differences in either extracellular or intracellular amino acid availability, because these variables were similar between trials. These data support a fundamental role for mTORC1 activation as a key regulator of human muscle protein synthesis in response to increased EAA availability. This information will be useful in the development of evidence-based nutritional therapies targeting mTORC1 to counteract muscle wasting associated with numerous clinical conditions.

  14. Microbial degradation of poly(amino acid)s.

    PubMed

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  15. Hereditary folate malabsorption: A positively charged amino acid at position 113 of the proton-coupled folate transporter (PCFT/SLC46A1) is required for folic acid binding

    SciTech Connect

    Lasry, Inbal; Berman, Bluma; Glaser, Fabian; Jansen, Gerrit; Assaraf, Yehuda G.

    2009-08-28

    The proton-coupled folate transporter (PCFT/SLC46A1) mediates intestinal folate uptake at acidic pH. Some loss of folic acid (FA) transport mutations in PCFT from hereditary folate malabsorption (HFM) patients cluster in R113, thereby suggesting a functional role for this residue. Herein, unlike non-conservative substitutions, an R113H mutant displayed 80-fold increase in the FA transport Km while retaining parental Vmax, hence indicating a major fall in folate substrate affinity. Furthermore, consistent with the preservation of 9% of parental transport activity, R113H transfectants displayed a substantial decrease in the FA growth requirement relative to mock transfectants. Homology modeling based on the crystal structures of the Escherichia coli transporter homologues EmrD and glycerol-3-phosphate transporter revealed that the R113H rotamer properly protrudes into the cytoplasmic face of the minor cleft normally occupied by R113. These findings constitute the first demonstration that a basic amino acid at position 113 is required for folate substrate binding.

  16. Interactive Hangman teaches amino acid structures and abbreviations.

    PubMed

    Pennington, Britney O; Sears, Duane; Clegg, Dennis O

    2014-01-01

    We developed an interactive exercise to teach students how to draw the structures of the 20 standard amino acids and to identify the one-letter abbreviations by modifying the familiar game of "Hangman." Amino acid structures were used to represent single letters throughout the game. To provide additional practice in identifying structures, hints to the answers were written in "amino acid sentences" for the students to translate. Students were required to draw the structure of the corresponding letter they wished to guess on a whiteboard. Each student received a reference sheet of the structures and abbreviations, but was required to draw from memory when guessing a letter. Preassessments and postassessments revealed a drastic improvement in the students' ability to recognize and draw structures from memory. This activity provides a fun, educational game to play in biochemistry discussion sections or during long incubations in biochemistry laboratories.

  17. Identification of conserved amino acids in the herpes simplex virus type 1 UL8 protein required for DNA synthesis and UL52 primase interaction in the virus replisome.

    PubMed

    Muylaert, Isabella; Zhao, Zhiyuan; Andersson, Torbjörn; Elias, Per

    2012-09-28

    We have used oriS-dependent transient replication assays to search for species-specific interactions within the herpes simplex virus replisome. Hybrid replisomes derived from herpes simplex virus type 1 (HSV-1) and equine herpesvirus type 1 (EHV-1) failed to support DNA replication in cells. Moreover, the replisomes showed a preference for their cognate origin of replication. The results demonstrate that the herpesvirus replisome behaves as a molecular machine relying on functionally important interactions. We then searched for functional interactions in the replisome context by subjecting HSV-1 UL8 protein to extensive mutagenesis. 52 mutants were made by replacing single or clustered charged amino acids with alanines. Four mutants showed severe replication defects. Mutant A23 exhibited a lethal phenotype, and mutants A49, A52 and A53 had temperature-sensitive phenotypes. Mutants A49 and A53 did not interact with UL52 primase as determined by co-immunoprecipitation experiments. Using GFP-tagged UL8, we demonstrate that all mutants were unable to support formation of ICP8-containing nuclear replication foci. Extended mutagenesis suggested that a highly conserved motif corresponding to mutant A49 serves an important role for establishing a physical contact between UL8 and UL52. The replication-defective mutations affected conserved amino acids, and similar phenotypes were observed when the corresponding mutations were introduced into EHV-1 UL8.

  18. Polymerization of amino acids containing nucleotide bases

    NASA Technical Reports Server (NTRS)

    Ben Cheikh, Azzouz; Orgel, Leslie E.

    1990-01-01

    The nucleoamino acids 1-(3'-amino,3'-carboxypropyl)uracil (3) and 9-(3'-amino,3'-carboxypropyl)adenine (4) have been prepared as (L)-en-antiomers and as racemic mixtures. When 3 or 4 is suspended in water and treated with N,N'-carbon-yldiimidazole, peptides are formed in good yield. The products formed from the (L)-enantiomers are hydrolyzed to the monomeric amino acids by pronase. Attempts to improve the efficiency of these oligomerizations by including a polyuridylate template in the reaction mixture were not successful. Similarly, oligomers derived from the (L)-enantiomer of 3 did not act as templates to facilitate the oligomerization of 4.

  19. Identification of Amino Acid Residues in Fibroblast Growth Factor 14 (FGF14) Required for Structure-Function Interactions with Voltage-gated Sodium Channel Nav1.6.

    PubMed

    Ali, Syed R; Singh, Aditya K; Laezza, Fernanda

    2016-05-20

    The voltage-gated Na(+) (Nav) channel provides the basis for electrical excitability in the brain. This channel is regulated by a number of accessory proteins including fibroblast growth factor 14 (FGF14), a member of the intracellular FGF family. In addition to forming homodimers, FGF14 binds directly to the Nav1.6 channel C-tail, regulating channel gating and expression, properties that are required for intrinsic excitability in neurons. Seeking amino acid residues with unique roles at the protein-protein interaction interface (PPI) of FGF14·Nav1.6, we engineered model-guided mutations of FGF14 and validated their impact on the FGF14·Nav1.6 complex and the FGF14:FGF14 dimer formation using a luciferase assay. Divergence was found in the β-9 sheet of FGF14 where an alanine (Ala) mutation of Val-160 impaired binding to Nav1.6 but had no effect on FGF14:FGF14 dimer formation. Additional analysis revealed also a key role of residues Lys-74/Ile-76 at the N-terminal of FGF14 in the FGF14·Nav1.6 complex and FGF14:FGF14 dimer formation. Using whole-cell patch clamp electrophysiology, we demonstrated that either the FGF14(V160A) or the FGF14(K74A/I76A) mutation was sufficient to abolish the FGF14-dependent regulation of peak transient Na(+) currents and the voltage-dependent activation and steady-state inactivation of Nav1.6; but only V160A with a concomitant alanine mutation at Tyr-158 could impede FGF14-dependent modulation of the channel fast inactivation. Intrinsic fluorescence spectroscopy of purified proteins confirmed a stronger binding reduction of FGF14(V160A) to the Nav1.6 C-tail compared with FGF14(K74A/I76A) Altogether these studies indicate that the β-9 sheet and the N terminus of FGF14 are well positioned targets for drug development of PPI-based allosteric modulators of Nav channels.

  20. Homology-based modeling of the Erwinia amylovora type III secretion chaperone DspF used to identify amino acids required for virulence and interaction with the effector DspE.

    PubMed

    Triplett, Lindsay R; Wedemeyer, William J; Sundin, George W

    2010-09-01

    The structure of DspF, a type III secretion system (T3SS) chaperone required for virulence of the fruit tree pathogen Erwinia amylovora, was modeled based on predicted structural homology to characterized T3SS chaperones. This model guided the selection of 11 amino acid residues that were individually mutated to alanine via site-directed mutagenesis. Each mutant was assessed for its effect on virulence complementation, dimerization and interaction with the N-terminal chaperone-binding site of DspE. Four amino acid residues were identified that did not complement the virulence defect of a dspF knockout mutant, and three of these residues were required for interaction with the N-terminus of DspE. This study supports the significance of the predicted beta-sheet helix-binding groove in DspF chaperone function.

  1. Intestinal metabolism of sulfur amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acid (SAA) metabolism in the body and metabolizes approx. 20% of the dietary methionine intake that is mainly transmethylated to homocysteine and transsulfurated to cysteine. The GIT accounts for approx. 25% of the ...

  2. Amino Acid Formation on Interstellar Dust Particles

    NASA Astrophysics Data System (ADS)

    Meierhenrich, U. J.; Munoz Caro, G. M.; Barbier, B.; Brack, A.; Thiemann, W.; Goesmann, F.; Rosenbauer, H.

    2003-04-01

    In the dense interstellar medium dust particles accrete ice layers of known molecular composition. In the diffuse interstellar medium these ice layers are subjected to energetic UV-irradiation. Here, photoreactions form complex organic molecules. The interstellar processes were recently successfully simulated in two laboratories. At NASA Ames Research Center three amino acids were detected in interstellar ice analogues [1], contemporaneously, our European team reported on the identification of 16 amino acids therein [2]. Amino acids are the molecular building blocks of proteins in living organisms. The identification of amino acids on the simulated icy surface of interstellar dust particles strongly supports the assumption that the precursor molecules of life were delivered from interstellar and interplanetary space via (micro-) meteorites and/or comets to the earyl Earth. The results shall be verified by the COSAC experiment onboard the ESA cometary mission Rosetta [3]. [1] M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper, L.J. Allamandola: itshape Nature \\upshape 416 (2002), 401-403. [2] G.M. Muñoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Sergovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack, J.M. Greenberg: itshape Nature \\upshape 416 (2002), 403-406. [3] U. Meierhenrich, W.H.-P. Thiemann, H. Rosenbauer: itshape Chirality \\upshape 11 (1999), 575-582.

  3. Specific lysosomal transport of small neutral amino acids

    SciTech Connect

    Pisoni, R.L.; Flickinger, K.S.; Thoene, J.G.; Christensen, H.N.

    1986-05-01

    Studies of amino acid exodus from lysosomes have allowed us previously to describe transport systems specific for cystine and another for cationic amino acids in fibroblast lysosomes. They are now able to study amino acid uptake into highly purified fibroblast lysosomes obtained by separating crude granular fraction on gradients formed by centrifugation in 35% isoosmotic Percoll solutions. Analog inhibition and saturation studies indicate that L-(/sup 14/C)proline (50 ..mu..M) uptake by fibroblast lysosomes at 37/sup 0/C in 50 mM citrate/tris pH 7.0 buffer containing 0.25 M sucrose is mediated by two transport systems, one largely specific for L-proline and the other for which transport is shared with small neutral amino acids such as alanine, serine and threonine. At 7 mM, L-proline inhibits L-(/sup 14/C)proline uptake almost completely, whereas ala, ser, val, thr, gly, N-methylalanine and sarcosine inhibit proline uptake by 50-65%. The system shared by alanine, serine and threonine is further characterized by these amino acids strongly inhibiting the uptakes of each other. Lysosomal proline transport is selective for the L-isomer of the amino acid, and is scarcely inhibited by 7 mM arg, glu, asp, leu, phe, his, met, (methylamino) isobutyrate, betaine or N,N-dimethylglycine. Cis or trans-4-hydroxy-L-proline inhibit proline uptake only slightly. In sharp contrast to the fibroblast plasma membrane in which Na/sup +/ is required for most proline and alanine transport, lysosomal uptake of these amino acids occurs independently of Na/sup +/.

  4. Symmetrical and Thermodynamic Properties of Phenotypic Graphs of Amino Acids Encoded by the Primeval RNY Code

    NASA Astrophysics Data System (ADS)

    José, Marco V.; Zamudio, Gabriel S.; Palacios-Pérez, Miryam; Bobadilla, Juan R.; de Farías, Sávio Torres

    2015-06-01

    The 12 different types of graphs of the 8 amino acids encoded by the presumably primeval RNY code are derived. The symmetry groups of these graphs are analyzed and coincide with the corresponding values of polar requirement for each amino acid. The symmetry groups at the codon level are partially carried over as a group or subgroup at the amino acid level. Measures of centrality of the 12 graphs indicate that all amino acids were equally relevant irrespective of its chronological order of its appearance. The elimination of any amino acid would be strongly selected against and therefore the genetic code at this stage was already frozen.

  5. Sensitive Amino Acid Composition and Chirality Analysis with the Mars Organic Analyzer (MOA)

    NASA Technical Reports Server (NTRS)

    Skelley, Alison M.; Scherer, James R.; Aubrey, Andrew D.; Grover, William H.; Ivester, Robin H. C.; Ehrenfreund, Pascale; Grunthaner, Frank J.; Bada, Jeffrey L.; Mathies, Richard A.

    2005-01-01

    Detection of life on Mars requires definition of a suitable biomarker and development of sensitive yet compact instrumentation capable of performing in situ analyses. Our studies are focused on amino acid analysis because amino acids are more resistant to decomposition than other biomolecules, and because amino acid chirality is a well-defined biomarker. Amino acid composition and chirality analysis has been previously demonstrated in the lab using microfabricated capillary electrophoresis (CE) chips. To analyze amino acids in the field, we have developed the Mars Organic Analyzer (MOA), a portable analysis system that consists of a compact instrument and a novel multi-layer CE microchip.

  6. Brain amino acid metabolism and ketosis.

    PubMed

    Yudkoff, M; Daikhin, Y; Nissim, I; Lazarow, A; Nissim, I

    2001-10-15

    The relationship between ketosis and brain amino acid metabolism was studied in mice that consumed a ketogenic diet (>90% of calories as lipid). After 3 days on the diet the blood concentration of 3-OH-butyrate was approximately 5 mmol/l (control = 0.06-0.1 mmol/l). In forebrain and cerebellum the concentration of 3-OH-butyrate was approximately 10-fold higher than control. Brain [citrate] and [lactate] were greater in the ketotic animals. The concentration of whole brain free coenzyme A was lower in ketotic mice. Brain [aspartate] was reduced in forebrain and cerebellum, but [glutamate] and [glutamine] were unchanged. When [(15)N]leucine was administered to follow N metabolism, this labeled amino acid accumulated to a greater extent in the blood and brain of ketotic mice. Total brain aspartate ((14)N + (15)N) was reduced in the ketotic group. The [(15)N]aspartate/[(15)N]glutamate ratio was lower in ketotic animals, consistent with a shift in the equilibrium of the aspartate aminotransferase reaction away from aspartate. Label in [(15)N]GABA and total [(15)N]GABA was increased in ketotic animals. When the ketotic animals were injected with glucose, there was a partial blunting of ketoacidemia within 40 min as well as an increase of brain [aspartate], which was similar to control. When [U-(13)C(6)]glucose was injected, the (13)C label appeared rapidly in brain lactate and in amino acids. Label in brain [U-(13)C(3)]lactate was greater in the ketotic group. The ratio of brain (13)C-amino acid/(13)C-lactate, which reflects the fraction of amino acid carbon that is derived from glucose, was much lower in ketosis, indicating that another carbon source, i.e., ketone bodies, were precursor to aspartate, glutamate, glutamine and GABA.

  7. Present Global Situation of Amino Acids in Industry.

    PubMed

    Tonouchi, Naoto; Ito, Hisao

    2016-11-11

    At present, amino acids are widely produced and utilized industrially. Initially, monosodium glutamate (MSG) was produced by extraction from a gluten hydrolysate. The amino acid industry started using the residual of the lysate. The discovery of the functions of amino acids has led to the expansion of their field of use. In addition to seasoning and other food use, amino acids are used in many fields such as animal nutrients, pharmaceuticals, and cosmetics. On the other hand, the invention of the glutamate fermentation process, followed by the development of fermentation methods for many other amino acids, is no less important. The supply of these amino acids at a low price is very essential for their industrial use. Most amino acids are now produced by fermentation. The consumption of many amino acids such as MSG or feed-use amino acids is still rapidly increasing.

  8. D-Amino Acids in Living Higher Organisms

    NASA Astrophysics Data System (ADS)

    Fujii, Noriko

    2002-04-01

    The homochirality of biological amino acids (L-amino acids) and of the RNA/DNA backbone (D-ribose) might have become established before the origin of life. It has been considered that D-amino acids and L-sugars were eliminated on the primitive Earth. Therefore, the presence and function of D-amino acids in living organisms have not been studied except for D-amino acids in the cell walls of microorganisms. However, D-amino acids were recently found in various living higher organisms in the form of free amino acids, peptides, and proteins. Free D-aspartate and D-serine are present and may have important physiological functions in mammals. D-amino acids in peptides are well known as opioid peptides and neuropeptides. In protein, D-aspartate residues increase during aging. This review deals with recent advances in the study of D-amino acids in higher organisms.

  9. Amino Acids in the Antarctic Martian Meteorite MIL03346

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Aubrey, A.; Dworkin, J. P.; Botta, O.; Bada, J. L.

    2005-01-01

    The report by McKay et al. that the Martian meteorite ALH84001 contains evidence for life on Mars remains controversial. Of central importance is whether ALH84001 and other Antarctic Martian meteorites contain endogenous organic compounds. In any investigation of organic compounds possibly derived from Mars it is important to focus on compounds that play an essential role in biochemistry as we know it and that have properties such as chirality which can be used to distinguish between biotic versus abiotic origins. Amino acids are one of the few compounds that fulfill these requirements. Previous analyses of the Antarctic Martian meteorites ALH84001 and EETA79001 have shown that these meteorites contain low levels of terrestrial amino acid contamination derived from Antarctic ice meltwater. Here we report preliminary amino acid investigations of a third Antarctic Martian meteorite MIL03346 which was discovered in Antarctica during the 2003-04 ANSMET season. Additional information is included in the original extended abstract

  10. How Do Haloarchaea Synthesize Aromatic Amino Acids?

    PubMed Central

    Gulko, Miriam Kolog; Dyall-Smith, Mike; Gonzalez, Orland; Oesterhelt, Dieter

    2014-01-01

    Genomic analysis of H. salinarum indicated that the de novo pathway for aromatic amino acid (AroAA) biosynthesis does not follow the classical pathway but begins from non-classical precursors, as is the case for M. jannaschii. The first two steps in the pathway were predicted to be carried out by genes OE1472F and OE1475F, while the 3rd step follows the canonical pathway involving gene OE1477R. The functions of these genes and their products were tested by biochemical and genetic methods. In this study, we provide evidence that supports the role of proteins OE1472F and OE1475F catalyzing consecutive enzymatic reactions leading to the production of 3-dehydroquinate (DHQ), after which AroAA production proceeds via the canonical pathway starting with the formation of DHS (dehydroshikimate), catalyzed by the product of ORF OE1477R. Nutritional requirements and AroAA uptake studies of the mutants gave results that were consistent with the proposed roles of these ORFs in AroAA biosynthesis. DNA microarray data indicated that the 13 genes of the canonical pathway appear to be utilised for AroAA biosynthesis in H. salinarum, as they are differentially expressed when cells are grown in medium lacking AroAA. PMID:25216252

  11. Amino acids: metabolism, functions, and nutrition.

    PubMed

    Wu, Guoyao

    2009-05-01

    Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.

  12. Criteria for distinguishing biogenic and abiogenic amino acids - Preliminary considerations.

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1973-01-01

    Criteria to determine the mode of origin of amino acids can be established by consideration of their structure, enantiometric distribution, composition, and relative abundance. A population of dominantly protein amino acids with one enantiomeric configuration most likely had a biological origin. Biological amino acids do racemize, however, so the absence of optical activity would not rule out the possibility that the amino acids in a racemic mixture were originally synthesized biologically. For racemic amino acids, therefore, structure, composition and relative abundance become important in ascertaining the origin of these compounds. Abiotically synthesized amino acids have a population composed of both protein and nonprotein structures present as racemic mixtures.

  13. Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W. (Principal Investigator); Miller, S. L. (Principal Investigator)

    1994-01-01

    The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10(-12)-10(-13) cm s-1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 10(2) more permeable than the hydrophilic forms, reflecting their increased partition coefficient values. External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10(-2) cm s-1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.

  14. Microbial Production of Amino Acid-Related Compounds.

    PubMed

    Wendisch, Volker F

    2016-11-22

    Corynebacterium glutamicum is the workhorse of the production of proteinogenic amino acids used in food and feed biotechnology. After more than 50 years of safe amino acid production, C. glutamicum has recently also been engineered for the production of amino acid-derived compounds, which find various applications, e.g., as synthons for the chemical industry in several markets including the polymer market. The amino acid-derived compounds such as non-proteinogenic ω-amino acids, α,ω-diamines, and cyclic or hydroxylated amino acids have similar carbon backbones and functional groups as their amino acid precursors. Decarboxylation of amino acids may yield ω-amino acids such as β-alanine, γ-aminobutyrate, and δ-aminovalerate as well as α,ω-diamines such as putrescine and cadaverine. Since transamination is the final step in several amino acid biosynthesis pathways, 2-keto acids as immediate amino acid precursors are also amenable to production using recombinant C. glutamicum strains. Approaches for metabolic engineering of C. glutamicum for production of amino acid-derived compounds will be described, and where applicable, production from alternative carbon sources or use of genome streamline will be referred to. The excellent large-scale fermentation experience with C. glutamicum offers the possibility that these amino acid-derived speciality products may enter large-volume markets.

  15. Amino acids of the Murchison meteorite. I - Six carbon acyclic primary alpha-amino alkanoic acids

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Gandy, W. E.; Pizzarello, S.

    1981-01-01

    Six of the seven chain isomers of six-carbon acyclic primary alpha-amino alkanoic acids (leucine isomers) have been either identified or confirmed in hot-water extracts of the Murchison meteorite using combined gas chromatography-mass spectrometry (GC-MS) and ion exchange chromatography. 2-Amino-2-ethylbutyric acid, 2-amino-2,3-dimethylbutyric acid, pseudoleucine, and 2-methylnorvaline were positively identified by GC-MS. These amino acids have not been previously reported to occur in natural materials and may be uniquely meteoritic in origin. The presence of leucine and isoleucine (including the diastereoisomer, alloisoleucine) was confirmed. Peaks corresponding to norleucine were seen by ion-exchange and gas chromatography but characteristic mass spectra were not obtained. The alpha-branched chain isomers in this series are quantitatively the most significant. These results are compared with literature data on amino acid synthesis by electrical discharge and Fischer-Tropsch-type catalysis. Neither model system produces an amino acid suite that is completely comparable to that found in the Murchison meteorite.

  16. Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae.

    PubMed

    Chen, Esther J; Kaiser, Chris A

    2002-11-12

    The delivery to the plasma membrane of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae is regulated by the quality of the nitrogen source in the growth medium. In an effort to define how different nitrogen sources control Gap1p sorting, we find that mutations in GDH1 and GLN1 that decrease the flux through the glutamate and glutamine synthesis pathways result in increased Gap1p sorting to the plasma membrane. Conversely, deletion of MKS1, which increases glutamate and glutamine synthesis, decreases Gap1p sorting to the plasma membrane. Glutamate and glutamine are not unusual in their ability to regulate Gap1p sorting, because the addition of all natural amino acids and many amino acid analogs to the growth medium results in increased Gap1p sorting to the vacuole. Importantly, amino acids have the capacity to signal Gap1p sorting to the vacuole regardless of whether they can be used as a source of nitrogen. Finally, we show that rapamycin does not affect Gap1p sorting, indicating that Gap1p sorting is not directly influenced by the TOR pathway. Together, these data show that amino acids are a signal for sorting Gap1p to the vacuole and imply that the nitrogen-regulated Gap1p sorting machinery responds to amino acid-like compounds rather than to the overall nutritional status associated with growth on a particular nitrogen source.

  17. Roles of phytochemicals in amino acid nutrition.

    PubMed

    Kong, Xiangfeng; Wu, Guoyao; Yin, Yinlong

    2011-01-01

    Chinese herbal medicine (CHM) is often used as dietary supplements to maintain good health in animals and humans. Here, we review the current knowledge about effects of CHM (including ultra-fine Chinese herbal powder, Acanthopanax senticosus extracts, Astragalus polysaccharide, and glycyrrhetinic acid) as dietary additives on physiological and biochemical parameters in pigs, chickens and rodents. Additionally, we propose possible mechanisms for the beneficial effects of CHM on the animals. These mechanisms include (a) increased digestion and absorption of dietary amino acids; (b) altered catabolism of amino acids in the small intestine and other tissues; (c) enhanced synthesis of functional amino acids (e.g., arginine, glutamine and proline) and polyamines; and (d) improved metabolic control of nutrient utilization through cell signaling. Notably, some phytochemicals and glucocorticoids share similarities in structure and physiological actions. New research findings provide a scientific and clinical basis for the use of CHM to improve well-being in livestock species and poultry, while enhancing the efficiency of protein accretion. Results obtained from animal studies also have important implications for human nutrition and health.

  18. Recent advances in amino acid production by microbial cells.

    PubMed

    Hirasawa, Takashi; Shimizu, Hiroshi

    2016-12-01

    Amino acids have been utilized for the production of foods, animal feeds and pharmaceuticals. After the discovery of the glutamic acid-producing bacterium Corynebacterium glutamicum by Japanese researchers, the production of amino acids, which are primary metabolites, has been achieved using various microbial cells as hosts. Recently, metabolic engineering studies on the rational design of amino acid-producing microbial cells have been successfully conducted. Moreover, the technology of systems biology has been applied to metabolic engineering for the creation of amino acid-producing microbial cells. Currently, new technologies including synthetic biology, single-cell analysis, and evolutionary engineering have been utilized to create amino acid-producing microbial cells. In addition, useful compounds from amino acids have been produced by microbial cells. Here, current researches into the metabolic engineering of microbial cells toward production of amino acids and amino acid-related compounds are reviewed.

  19. Nonconventional techniques for separation of biosynthetic amino acids.

    PubMed

    Kloetzer, Lenuţa; Poştaru, Mădălina; Cheptea, Corina; Caşcaval, D; Galaction, Anca-Irina

    2014-01-01

    Amino acids can be obtained by biosynthesis, by protein hydrolysis or by extraction from natural sources. The most efficient methods are the first two, but the separation of amino acids from fermentation broths or protein hydrolysates is rather difficult. Amino acids dissociate in aqueous solutions, forming characteristic ionic species depending on the solution pH-value. These properties make amino acids to be hydrophilic at any pH-value. This paper presents a review of the separation studies of some amino acids by nonconventional methods, namely individual or selective reactive extraction. Separation of some amino acids from their mixture obtained either by fermentation or protein hydrolysis by reactive extraction with different extractants indicated the possibility of the amino acids selective separation as a function of the pH-value of aqueous solution correlated with the acidic or basic character of each amino acid.

  20. Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid amino acid conjugates (FACs) have been found in Noctuid as well as Sphingid caterpillar oral secretions and especially volicitin [N-(17-hydroxylinolenoyl)-L-Glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants...

  1. Plant amino acid-derived vitamins: biosynthesis and function.

    PubMed

    Miret, Javier A; Munné-Bosch, Sergi

    2014-04-01

    Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.

  2. Ionic liquid crystals derived from amino acids.

    PubMed

    Mansueto, Markus; Frey, Wolfgang; Laschat, Sabine

    2013-11-18

    Novel chiral amino acid derived ionic liquid crystals with amine and amide moieties as spacers between the imidazolium head group and the alkyl chain were synthesised. The key step in the synthesis utilised the relatively uncommon SO3 leaving group in a microwave-assisted reaction. The mesomorphic properties of the mesogens were determined by differential scanning calorimetry (DSC), polarising optical microscopy (POM) and X-ray diffraction. All liquid crystalline salts exhibit a smectic A mesophase geometry with strongly interdigitated bilayer structures. An increase of the steric bulk of the stereogenic centre hindered the formation of mesophases. In case of phenylalanine-derived derivatives a mesomorphic behaviour was observed for shorter alkyl chains as compared to other amino acid derivatives indicating an additional stabilising effect by the phenyl moiety.

  3. AMINO ACID CROSS RESISTANCE IN AGROBACTERIUM TUMEFACIENS

    PubMed Central

    Beardsley, Robert E.

    1962-01-01

    Beardsley, Robert E. (Manhattan College, New York, N. Y.). Amino acid cross resistance in Agrobacterium tumefaciens. J. Bacteriol. 84:1237–1240. 1962.—Resistant clones selected on medium supplemented with glycine were also resistant to d-methionine, d-valine, dl-norleucine, and dl-serine. Cross resistance was similarly exhibited by clones selected on d-methionine, d-valine, or dl-norleucine. Two types of resistant organisms were observed. One produced colonies containing normal rods on selection medium. The other produced translucent colonies containing L forms. Both grew as typical rods in unsupplemented medium. Some resistant clones did not produce a temperate phage carried by the parental strain, but these retained immunity to homologous phage. The toxicity of d-methionine and d-valine for nonresistant bacteria is not reversed by the l isomers. The lethal effects of toxic amino acids are additive. PMID:13969951

  4. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  5. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  6. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  7. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  8. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  9. Alterations of amino Acid level in depressed rat brain.

    PubMed

    Yang, Pei; Li, Xuechun; Ni, Jian; Tian, Jingchen; Jing, Fu; Qu, Changhai; Lin, Longfei; Zhang, Hui

    2014-10-01

    Amino-acid neurotransmitter system dysfunction plays a major role in the pathophysiology of depression. Several studies have demonstrated the potential of amino acids as a source of neuro-specific biomarkers could be used in future diagnosis of depression. Only partial amino acids such as glycine and asparagine were determined from certain parts of rats' brain included hippocampi and cerebral cortex in previous studies. However, according to systematic biology, amino acids in different area of brain are interacted and interrelated. Hence, the determination of 34 amino acids through entire rats' brain was conducted in this study in order to demonstrate more possibilities for biomarkers of depression by discovering other potential amino acids in more areas of rats' brain. As a result, 4 amino acids (L-aspartic acid, L-glutamine, taurine and γ-amino-n-butyric acid) among 34 were typically identified as potentially primary biomarkers of depression by data statistics. Meanwhile, an antidepressant called Fluoxetine was employed to verify other potential amino acids which were not identified by data statistics. Eventually, we found L-α-amino-adipic acid could also become a new potentially secondary biomarker of depression after drug validation. In conclusion, we suggested that L-aspartic acid, L-glutamine, taurine, γ-amino-n-butyric acid and L-α-amino-adipic acid might become potential biomarkers for future diagnosis of depression and development of antidepressant.

  10. Rotational Study of Natural Amino Acid Glutamine

    NASA Astrophysics Data System (ADS)

    Varela, Marcelino; Cabezas, Carlos; Alonso, José L.

    2014-06-01

    Recent improvements in laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) have allowed the investigation of glutamine (COOH-CH(NH2)-CH2-CH2-CONH2), a natural amino acid with a long polar side chain. One dominant structure has been detected in the rotational spectrum. The nuclear quadrupole hyperfine structure of two 14N nuclei has been totally resolved allowing the conclusive identification of the observed species.

  11. Amino acid analyses of R and CK chondrites

    NASA Astrophysics Data System (ADS)

    Burton, Aaron S.; McLain, Hannah; Glavin, Daniel P.; Elsila, Jamie E.; Davidson, Jemma; Miller, Kelly E.; Andronikov, Alexander V.; Lauretta, Dante; Dworkin, Jason P.

    2015-03-01

    Exogenous delivery of amino acids and other organic molecules to planetary surfaces may have played an important role in the origins of life on Earth and other solar system bodies. Previous studies have revealed the presence of indigenous amino acids in a wide range of carbon-rich meteorites, with the abundances and structural distributions differing significantly depending on parent body mineralogy and alteration conditions. Here we report on the amino acid abundances of seven type 3-6 CK chondrites and two Rumuruti (R) chondrites. Amino acid measurements were made on hot water extracts from these meteorites by ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Of the nine meteorites analyzed, four were depleted in amino acids, and one had experienced significant amino acid contamination by terrestrial biology. The remaining four, comprised of two R and two CK chondrites, contained low levels of amino acids that were predominantly the straight chain, amino-terminal (n-ω-amino) acids β-alanine, and γ-amino-n-butyric acid. This amino acid distribution is similar to what we reported previously for thermally altered ureilites and CV and CO chondrites, and these n-ω-amino acids appear to be indigenous to the meteorites and not the result of terrestrial contamination. The amino acids may have been formed by Fischer-Tropsch-type reactions, although this hypothesis needs further testing.

  12. Alimentary proteins, amino acids and cholesterolemia.

    PubMed

    Blachier, François; Lancha, Antonio H; Boutry, Claire; Tomé, Daniel

    2010-01-01

    Numerous data from both epidemiological and experimental origins indicate that some alimentary proteins and amino acids in supplements can modify the blood LDL cholesterol, HDL cholesterol and total cholesterol. After an initial approval of the health claim for soy protein consumption for the prevention of coronary heart disease, more recently it has been concluded from an overall analysis of literature that isolated soy protein with isoflavones only slightly decrease LDL and total cholesterol. Other plant extracts and also some proteins from animal origin have been reported to exert a lowering effect on blood cholesterol when compared with a reference protein (often casein). The underlying mechanisms are still little understood. Individual amino acids and mixture of amino acids have also been tested (mostly in animal studies) for their effects on cholesterol parameters and on cholesterol metabolism. Methionine, lysine, cystine, leucine, aspartate and glutamate have been tested individually and in combination in different models of either normo or hypercholesterolemic animals and found to be able to modify blood cholesterol and/or LDL cholesterol and/or HDL cholesterol. It is however not known if these results are relevant to human nutrition.

  13. Allied Health Chemistry Laboratory: Amino Acids, Insulin, Proteins, and Skin

    ERIC Educational Resources Information Center

    Dever, David F.

    1975-01-01

    Presents a laboratory experiment specifically designed for allied health students. The students construct molecular models of amino acids, extract amino acids from their skin with hot water, and chromatographically analyze the skin extract and hydrolyzed insulin. (MLH)

  14. A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites.

    PubMed

    Brinton, K L; Engrand, C; Glavin, D P; Bada, J L; Maurette, M

    1998-10-01

    Antarctic micrometeorites (AMMs) in the 100-400 microns size range are the dominant mass fraction of extraterrestrial material accreted by the Earth today. A high performance liquid chromatography (HPLC) based technique exploited at the limits of sensitivity has been used to search for the extraterrestrial amino acids alpha-aminoisobutyric acid (AIB) and isovaline in AMMs. Five samples, each containing about 30 to 35 grains, were analyzed. All the samples possess a terrestrial amino acid component, indicated by the excess of the L-enantiomers of common protein amino acids. In only one sample (A91) was AIB found to be present at a level significantly above the background blanks. The concentration of AIB (approximately 280 ppm), and the AIB/isovaline ratio (> or = 10), in this sample are both much higher than in CM chondrites. The apparently large variation in the AIB concentrations of the samples suggests that AIB may be concentrated in rare subset of micrometeorites. Because the AIB/isovaline ratio in sample A91 is much larger than in CM chondrites, the synthesis of amino acids in the micrometeorite parent bodies might have involved a different process requiring an HCN-rich environment, such as that found in comets. If the present day characteristics of the meteorite and micrometeorite fluxes can be extrapolated back in time, then the flux of large carbonaceous micrometeorites could have contributed to the inventory of prebiotic molecules on the early Earth.

  15. A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites

    NASA Technical Reports Server (NTRS)

    Brinton, K. L.; Engrand, C.; Glavin, D. P.; Bada, J. L.; Maurette, M.

    1998-01-01

    Antarctic micrometeorites (AMMs) in the 100-400 microns size range are the dominant mass fraction of extraterrestrial material accreted by the Earth today. A high performance liquid chromatography (HPLC) based technique exploited at the limits of sensitivity has been used to search for the extraterrestrial amino acids alpha-aminoisobutyric acid (AIB) and isovaline in AMMs. Five samples, each containing about 30 to 35 grains, were analyzed. All the samples possess a terrestrial amino acid component, indicated by the excess of the L-enantiomers of common protein amino acids. In only one sample (A91) was AIB found to be present at a level significantly above the background blanks. The concentration of AIB (approximately 280 ppm), and the AIB/isovaline ratio (> or = 10), in this sample are both much higher than in CM chondrites. The apparently large variation in the AIB concentrations of the samples suggests that AIB may be concentrated in rare subset of micrometeorites. Because the AIB/isovaline ratio in sample A91 is much larger than in CM chondrites, the synthesis of amino acids in the micrometeorite parent bodies might have involved a different process requiring an HCN-rich environment, such as that found in comets. If the present day characteristics of the meteorite and micrometeorite fluxes can be extrapolated back in time, then the flux of large carbonaceous micrometeorites could have contributed to the inventory of prebiotic molecules on the early Earth.

  16. Nutritional and medicinal aspects of D-amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nu...

  17. Origin, Microbiology, Nutrition, and Pharmacology of D-Amino Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure of food proteins to certain processing conditions induces two major chemical changes: racemization of all L-amino acids (LAA) to D-amino acids (DAA) and concurrent formation of crosslinked amino acids such as lysinoalanine (LAL). The diet contains both processing-induced and naturally-form...

  18. 40 CFR 721.2584 - Dodecanoic acid, 12-amino-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Dodecanoic acid, 12-amino-. 721.2584... Substances § 721.2584 Dodecanoic acid, 12-amino-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as dodecanoic acid, 12-amino- (PMN P-98-0823; CAS No....

  19. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting...

  20. 40 CFR 721.2584 - Dodecanoic acid, 12-amino-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dodecanoic acid, 12-amino-. 721.2584... Substances § 721.2584 Dodecanoic acid, 12-amino-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as dodecanoic acid, 12-amino- (PMN P-98-0823; CAS No....

  1. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting...

  2. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting...

  3. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting...

  4. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting...

  5. GCN2 whets the appetite for amino acids.

    PubMed

    Dever, Thomas E; Hinnebusch, Alan G

    2005-04-15

    In response to amino acid starvation, the kinase GCN2 in yeast activates amino acid biosynthesis. Two recent studies (Maurin et al., 2005; Hao et al., 2005) reveal that GCN2 in the brain of mice restricts intake of diets lacking essential amino acids.

  6. 40 CFR 721.2584 - Dodecanoic acid, 12-amino-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Dodecanoic acid, 12-amino-. 721.2584... Substances § 721.2584 Dodecanoic acid, 12-amino-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as dodecanoic acid, 12-amino- (PMN P-98-0823; CAS No....

  7. 40 CFR 721.2584 - Dodecanoic acid, 12-amino-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dodecanoic acid, 12-amino-. 721.2584... Substances § 721.2584 Dodecanoic acid, 12-amino-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as dodecanoic acid, 12-amino- (PMN P-98-0823; CAS No....

  8. 40 CFR 721.2584 - Dodecanoic acid, 12-amino-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Dodecanoic acid, 12-amino-. 721.2584... Substances § 721.2584 Dodecanoic acid, 12-amino-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as dodecanoic acid, 12-amino- (PMN P-98-0823; CAS No....

  9. Amino acid auxotrophy as a system of immunological control nodes.

    PubMed

    Murray, Peter J

    2016-02-01

    Cells of the immune system are auxotrophs for most amino acids, including several nonessential ones. Arginine and tryptophan are used within the regulatory immune networks to control proliferation and function through pathways that actively deplete the amino acid from the microenvironment or that create regulatory molecules such as nitric oxide or kynurenines. How immune cells integrate information about essential amino acid supplies and then transfer these signals to growth and activation pathways remains unclear but has potential for pathway discovery about amino sensing. In applied research, strategies to harness amino acid auxotrophy so as to block cancerous lymphocyte growth have been attempted for decades with limited success. Emerging insights about amino acid metabolism may lead to new strategies in clinical medicine whereby both amino acid auxotrophy and the immunoregulatory pathways controlled by amino acids can be manipulated.

  10. Computational model of abiogenic amino acid condensation to obtain a polar amino acid profile.

    PubMed

    Polanco, Carlos; Buhse, Thomas; Samaniego, José Lino; Castañón González, Jorge Alberto; Arias Estrada, Miguel

    2014-01-01

    In accordance with the second law of thermodynamics, the Universe as a whole tends to higher entropy. However, the sequence of far-from-equilibrium events that led to the emergence of life on Earth could have imposed order and complexity during the course of chemical reactions in the so-called primordial soup of life. Hence, we may expect to find characteristic profiles or biases in the prebiotic product mixtures, as for instance among the first amino acids. Seeking to shed light on this hypothesis, we have designed a high performance computer program that simulates the spontaneous formation of the amino acid monomers in closed environments. The program was designed in reference to a prebiotic scenario proposed by Sydney W. Fox. The amino acid abundances and their polarities as the two principal biases were also taken into consideration. We regarded the computational model as exhaustive since 200,000 amino acid dimers were formed by simulation, subsequently expressed in a vector and compared with the corresponding amino acid dimers that were experimentally obtained by Fox. We found a very high similarity between the experimental results and our simulations.

  11. Effect of amino acid intake on brush-border membrane uptake of sulfur amino acids.

    PubMed

    Chesney, R W; Gusowski, N; Padilla, M; Lippincott, S

    1986-07-01

    Alterations in the intake of sulfur amino acids (SAA) changes the rat renal brush-border membrane uptake of the beta-amino acid, taurine. A low-SAA diet enhances and a high-taurine diet reduces uptake (Chesney et al., Kidney Int. 24: 588-594, 1983). Neither the low-SAA diet nor the high-taurine diet alters the time course or concentration-dependent accumulation of the sulfur amino acids methionine and cystine or of inorganic sulfate. By contrast the uptake of beta-alanine, another beta-amino acid that competes with taurine, is greater in animals on the low-SAA diet. The high-taurine diet does not change beta-alanine uptake. The plasma levels of taurine are altered by dietary change, but not the values for methionine and cystine. This study indicates that renal adaptation is expressed for beta-alanine, a nonsulfur-containing beta-amino acid. By contrast, methionine, cystine, and sulfate, which participate in a variety of synthetic and conjugative processes, are not conserved by the renal brush-border surface following ingestion of either a low-methionine and -cystine diet or high-taurine diet.

  12. Subtilisin-like proprotein convertase paired basic amino acid-cleaving enzyme 4 is required for chondrogenic differentiation in ATDC5 cells.

    PubMed

    Yuasa, Keizo; Futamatsu, Go; Kawano, Tsuyoshi; Muroshita, Masaki; Kageyama, Yoko; Taichi, Hiromi; Ishikawa, Hiroshi; Nagahama, Masami; Matsuda, Yoshiko; Tsuji, Akihiko

    2012-11-01

    Bone morphogenetic proteins (BMPs) have been implicated in the regulation of multiple stages of endochondral bone development. BMPs are synthesized as inactive precursors, and activated by removal of the propeptide. The subtilisin-like proprotein convertase (SPC) family comprises seven members [furin/SPC1, PC2/SPC2, PC1/PC3/SPC3, paired basic amino acid-cleaving enzyme 4 (PACE4)/SPC4, PC4/SPC5, PC6/PC5/SPC6, and PC8/PC7/LPC/SPC7], and activates various signaling molecules, including BMPs. In this study, we analyzed the role of this family in chondrogenic differentiation by using the mouse embryonal carcinoma-derived clonal cell line ATDC5. Both SPC-specific inhibitors, decanoyl-Arg-Val-Lys-Arg-chloromethylketone and α1-antitrypsin Portland variant, suppressed chondrogenic differentiation. RT-PCR analysis revealed that PACE4 mRNA levels increased markedly during chondrogenic differentiation, whereas furin expression remained unchanged. Knockdown of PACE4 expression significantly reduced chondrogenic differentiation. Furthermore, proBMP6, which shows an expression pattern similar to that of PACE4, was efficiently processed into its mature form by PACE4, whereas furin could not process proBMP6. These results suggest that PACE4 may regulate the rate of hypertrophic conversion of ATDC5 cells through activation of proBMP6.

  13. Identification of amino acids of the beet necrotic yellow vein virus p25 protein required for induction of the resistance response in leaves of Beta vulgaris plants.

    PubMed

    Chiba, Soutaro; Miyanishi, Masaki; Andika, Ida Bagus; Kondo, Hideki; Tamada, Tetsuo

    2008-05-01

    The RNA3-encoded p25 protein of beet necrotic yellow vein virus (BNYVV) is responsible for the production of rhizomania symptoms of sugar beet roots (Beta vulgaris subsp. vulgaris). Here, it was found that the presence of the p25 protein is also associated with the resistance response in rub-inoculated leaves of sugar beet and wild beet (Beta vulgaris subsp. maritima) plants. The resistance phenotype displayed a range of symptoms from no visible lesions to necrotic or greyish lesions at the inoculation site, and only very low levels of virus and viral RNA accumulated. The susceptible phenotype showed large, bright yellow lesions and developed high levels of virus accumulation. In roots after Polymyxa betae vector inoculation, however, no drastic differences in virus and viral RNA accumulation levels were found between plants with susceptible and resistant phenotypes, except at an early stage of infection. There was a genotype-specific interaction between BNYVV strains and two selected wild beet lines (MR1 and MR2) and sugar beet cultivars. Sequence analysis of natural BNYVV isolates and site-directed mutagenesis of the p25 protein revealed that 3 aa residues at positions 68, 70 and 179 are important in determining the resistance phenotype, and that host-genotype specificity is controlled by single amino acid changes at position 68. The mechanism of the occurrence of resistance-breaking BNYVV strains is discussed.

  14. Retention and utilization of amino acids in piglets fed ad libitum or restrictively diets supplemented with organic acids.

    PubMed

    Walz, O P; Pallauf, J

    1997-01-01

    In a metabolic trial 4 groups of 8 piglets of 5 kg weight each were kept individually for 45 days (final weight 23 kg) and fed a practical diet. At the beginning of the experiment the body amino acid contents of an additional group of 8 piglets were determined by carcass analysis, and at the end of the experiment the body amino acid contents of the 4 test group piglets (A = control fed ad libitum, B and C = supplement of 1.5% fumaric acid fed ad libitum or restrictively, D = supplement of 1.5% citric acid fed ad libitum) were also analysed. The amino acid retention during the experimental period was determined by difference. The supplements of fumaric or citric acid did not influence the amount of the amino acid retention. The quotient of amino acid retention to amino acid consumed or the "productive amino acid value" was calculated and the maintenance requirements of essential amino acids for piglets were used to estimate the productive amino acid value for both retention and maintenance. The mean amino acid retention amounted to about 56 g/d, i.e. 3.49 g/kg W0.75.d of essential amino acids. The essential amino acid requirements for maintenance was 2.0 g, i.e. 0.29 g/kg W0.75.d, showing a variation of 4% (Leu) to 20% (Met+Cys) when related to the amount of the corresponding amino acid retention. With regard to the amino acid pattern for retention of the nutritionally most important amino acids, the following ratios were found: Lys, 100 (6.27 g/16 g N): Met+Cys, 48 (3.03 g): Thr, 56 (3.49 g): Trp, 13 (0.80 g). The productive amino acid values ranged from 40% (Trp), 55% (Thr), 66% (Met) to 80% (Lys). Under the conditions investigated, neither the supplements of organic acids nor the feed restriction influenced the amino acid utilization.

  15. Sublimation of natural amino acids and induction of asymmetry by meteoritic amino acids

    NASA Astrophysics Data System (ADS)

    Tarasevych, Arkadii V.; Guillemin, Jean-Claude

    It is believed that the homochirality of building blocks of life like amino acids (AAs) and sugars is a prerequisite requirement for the origin and evolution of life. Among different mechanisms that might have triggered the initial disparity in the enantiomeric ratio on the primitive Earth, the key roles were assigned to: (i) local chiral symmetry breaking and (ii) the inflow of extraterrestrial matter (eg the carbonaceous meteorites containing non-racemic AAs). Recently it has been revealed that sublimation, a subject almost completely neglected for a long time, gives a pathway to enantioenrichment of natural AAs (1,2 and references herein). Sublimation is however one of the key physical processes that occur on comets. Starting from a mixture with a low content of an enantiopure AA, a partial sublimation gives an important enrichment of the sublimate (1,2). The resulted disparity in the ratio between enantiomers of a partial sublimate is determined by the crystalline nature of the starting mixture: we observed a drastic difference in the behavior of (i) mixtures based on true racemic compounds and (ii) mechanical mixtures of two enantiopure solid phases. On the other hand, combination of crystallization and sublimation can lead to segregation of enantioenriched fractions starting from racemic composition of sublimable aliphatic AAs (Ala, Leu, Pro, Val) in mixtures with non-volatile enantiopure ones (Asn, Asp, Glu, Ser, Thr) (3). The resulted sense of chirality correlates with the handedness of the non-volatile AAs: the observed changes in enantiomeric ratios clearly demonstrate the preferential homochiral interactions and a tendency of natural amino acids to homochiral self-organization. It is noteworthy that just these 5 (Asn, Asp, Glu, Ser, Thr) out of 22 proteinogenic amino acids are able to local symmetry breaking. On the other hand, recent data on the enantiomeric composition of the Tagish Lake, a C2-type carbonaceous meteorite, revealed a large L

  16. Metabolic engineering for microbial production of aromatic amino acids and derived compounds.

    PubMed

    Bongaerts, J; Krämer, M; Müller, U; Raeven, L; Wubbolts, M

    2001-10-01

    Metabolic engineering to design and construct microorganisms suitable for the production of aromatic amino acids and derivatives thereof requires control of a complicated network of metabolic reactions that partly act in parallel and frequently are in rapid equilibrium. Engineering the regulatory circuits, the uptake of carbon, the glycolytic pathway, the pentose phosphate pathway, and the common aromatic amino acid pathway as well as amino acid importers and exporters that have all been targeted to effect higher productivities of these compounds are discussed.

  17. Synthesis of new kojic acid based unnatural α-amino acid derivatives.

    PubMed

    Balakrishna, C; Payili, Nagaraju; Yennam, Satyanarayana; Devi, P Uma; Behera, Manoranjan

    2015-11-01

    An efficient method for the preparation of kojic acid based α-amino acid derivatives by alkylation of glycinate schiff base with bromokojic acids have been described. Using this method, mono as well as di alkylated kojic acid-amino acid conjugates have been prepared. This is the first synthesis of C-linked kojic acid-amino acid conjugate where kojic acid is directly linked to amino acid through a C-C bond.

  18. [Bound amino acids in local strains of Trichomonas vaginalis].

    PubMed

    Tsvetkova, A; Osinovski, E; Vasilevska, M

    1990-01-01

    Amino acid composition of water-soluble and water-insoluble proteins of 8 strains of Tr. vaginalis is studied. 17 amino acids are found in both protein hydrolyzates. Despite the complete coincidence of their qualitative compositions there are reliable differences in the quantitative contents of some amino acids. Differences in the contents of main amino acids of water-soluble proteins of different strains reflect the belonging of the latter to different sero-groups. No reliable differences in the quantitative contents of amino acids of both water-soluble and water-insoluble proteins in strains belonging to one sero-group are recognised.

  19. Free Amino-acid Concentrations in Fetal Fluids

    PubMed Central

    Cockburn, F.; Robins, S. P.; Forfar, J. O.

    1970-01-01

    The pattern of free amino-acid concentrations in maternal venous plasma, fetal umbilical arterial plasma, fetal urine, and amniotic fluid at 15 to 20 weeks' gestation has been determined. Free amino-acid concentrations were greater in fetal plasma than in maternal plasma, amniotic fluid, or fetal urine. The ratios of amino-acid concentrations in fetal umbilical arterial plasma and urine indicate that the fetal kidney can effectively conserve amino-acids, possibly reaching an adult level of competence in this respect. There was little correlation between amino-acid concentrations in the fluids analysed with the exception of that between amniotic fluid and fetal urine. PMID:5472758

  20. Amino acids from the late Precambrian Thule group, Greenland.

    PubMed

    Akiyama, M; Shimoyama, A; Ponnamperuma, C

    1982-06-01

    Amino acids were recovered at concentration level of 10-9 M/g from the interior of chert and dolomite of the Late Precambrian Thule Group. Examination of the stability of amino acids in chert under dry-heating conditions suggests that these amino acids have been preserved with a predominance of L-enantiomers in the precambrian chert. Enantiomer analysis of amino acids in dolomite showed a thermal effect resulting from a late precambrian igneous intrusion. This evidence indicates that the amino acids isolated from the Thule samples were chemical fossils and not recent contaminants.

  1. Tuning hardness in calcite by incorporation of amino acids

    NASA Astrophysics Data System (ADS)

    Kim, Yi-Yeoun; Carloni, Joseph D.; Demarchi, Beatrice; Sparks, David; Reid, David G.; Kunitake, Miki E.; Tang, Chiu C.; Duer, Melinda J.; Freeman, Colin L.; Pokroy, Boaz; Penkman, Kirsty; Harding, John H.; Estroff, Lara A.; Baker, Shefford P.; Meldrum, Fiona C.

    2016-08-01

    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit--mineral single crystals containing embedded macromolecules--remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

  2. Stimulation of nonselective amino acid export by glutamine dumper proteins.

    PubMed

    Pratelli, Réjane; Voll, Lars M; Horst, Robin J; Frommer, Wolf B; Pilot, Guillaume

    2010-02-01

    Phloem and xylem transport of amino acids involves two steps: export from one cell type to the apoplasm, and subsequent import into adjacent cells. High-affinity import is mediated by proton/amino acid cotransporters, while the mechanism of export remains unclear. Enhanced expression of the plant-specific type I membrane protein Glutamine Dumper1 (GDU1) has previously been shown to induce the secretion of glutamine from hydathodes and increased amino acid content in leaf apoplasm and xylem sap. In this work, tolerance to low concentrations of amino acids and transport analyses using radiolabeled amino acids demonstrate that net amino acid uptake is reduced in the glutamine-secreting GDU1 overexpressor gdu1-1D. The net uptake rate of phenylalanine decreased over time, and amino acid net efflux was increased in gdu1-1D compared with the wild type, indicating increased amino acid export from cells. Independence of the export from proton gradients and ATP suggests that overexpression of GDU1 affects a passive export system. Each of the seven Arabidopsis (Arabidopsis thaliana) GDU genes led to similar phenotypes, including increased efflux of a wide spectrum of amino acids. Differences in expression profiles and functional properties suggested that the GDU genes fulfill different roles in roots, vasculature, and reproductive organs. Taken together, the GDUs appear to stimulate amino acid export by activating nonselective amino acid facilitators.

  3. Organic geochemistry of amino acids: Precambrian to recent

    SciTech Connect

    Engel, M.H.; Macko, S.A.

    1985-01-01

    Since the discovery of amino acids in fossils (Abelson, 1954), considerable effort has been made to elucidate the origin and distribution of amino acids in geologic materials. Racemization and decomposition reactions of amino acids and peptides derived via the natural hydrolysis of protein constituents of organisms have been extensively studied. While the ubiquity of amino acids presents a challenge for discerning their indigeneity in geologic samples, careful analyses have resulted in successful applications of amino acid racemization and decomposition reactions for investigations of geochronologic, paleoclimatic, stratigraphic, diagenetic and chemotaxonomic problems for Quaternary age samples. An investigation of amino acids in sediments from Baffin Island fjords indicates that their distribution may also provide data with respect to the relative contributions of marine and terrigenous organic matter to recent sediments. While the absence of unstable amino acids and the presence of racemic amino acids in a sample may preclude very recent contamination, the possibility of retardation of amino acid racemization rates subsequent to geopolymer formation must also be considered. Studies of amino acids in Paleozoic, Mesozoic and early Cenozoic age samples are limited. Precambrian samples, however, have received much attention, given the potential (however slight) for isolating compounds representative of the earliest living systems. A future approach for elucidating the origin(s) of amino acids in ancient samples may be analyses of their individual stable isotopic compositions.

  4. Dissolved amino acids in oceanic basaltic basement fluids

    NASA Astrophysics Data System (ADS)

    Lin, Huei-Ting; Amend, Jan P.; LaRowe, Douglas E.; Bingham, Jon-Paul; Cowen, James P.

    2015-09-01

    The oceanic basaltic basement contains the largest aquifer on Earth and potentially plays an important role in the global carbon cycle as a net sink for dissolved organic carbon (DOC). However, few details of the organic matter cycling in the subsurface are known because great water depths and thick sediments typically hinder direct access to this environment. In an effort to examine the role of water-rock-microorganism interaction on organic matter cycling in the oceanic basaltic crust, basement fluid samples collected from three borehole observatories installed on the eastern flank of the Juan de Fuca Ridge were analyzed for dissolved amino acids. Our data show that dissolved free amino acids (1-13 nM) and dissolved hydrolyzable amino acids (43-89 nM) are present in the basement. The amino acid concentrations in the ridge-flank basement fluids are at the low end of all submarine hydrothermal fluids reported in the literature and are similar to those in deep seawater. Amino acids in recharging deep seawater, in situ amino acid production, and diffusional input from overlying sediments are potential sources of amino acids in the basement fluids. Thermodynamic modeling shows that amino acid synthesis in the basement can be sustained by energy supplied from inorganic substrates via chemolithotrophic metabolisms. Furthermore, an analysis of amino acid concentrations and compositions in basement fluids support the notion that heterotrophic activity is ongoing. Similarly, the enrichment of acidic amino acids and depletion of hydrophobic ones relative to sedimentary particulate organic matter suggests that surface sorption and desorption also alters amino acids in the basaltic basement. In summary, although the oceanic basement aquifer is a net sink for deep seawater DOC, similar amino acid concentrations in basement aquifer and deep seawater suggest that DOC is preferentially removed in the basement over dissolved amino acids. Our data also suggest that organic carbon

  5. Characterization of amino acids using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Jenkins, Amanda L.; Larsen, Richard A.; Williams, Timothy B.

    2005-05-01

    A key process in the development of new drugs is elucidation of the interaction between the drug molecule and the target protein. Such knowledge then makes it possible to make systematic structural modifications of the drug molecule to optimize the interaction. Many analytical techniques can be applied to proteins in solution such as circular dichroism, ultraviolet, and fluorescence spectroscopy but these all have limitations. In this paper, we investigate the feasibility of using relatively simple, visible light Raman spectroscopic methods to investigate amino acids and related biopolymers.

  6. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 12 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  7. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the snythesis methods of the prior art.

  8. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceeding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 12 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  9. Amino acid export in plants: a missing link in nitrogen cycling.

    PubMed

    Okumoto, Sakiko; Pilot, Guillaume

    2011-05-01

    The export of nutrients from source organs to parts of the body where they are required (e.g. sink organs) is a fundamental biological process. Export of amino acids, one of the most abundant nitrogen species in plant long-distance transport tissues (i.e. xylem and phloem), is an essential process for the proper distribution of nitrogen in the plant. Physiological studies have detected the presence of multiple amino acid export systems in plant cell membranes. Yet, surprisingly little is known about the molecular identity of amino acid exporters, partially due to the technical difficulties hampering the identification of exporter proteins. In this short review, we will summarize our current knowledge about amino acid export systems in plants. Several studies have described plant amino acid transporters capable of bi-directional, facilitative transport, reminiscent of activities identified by earlier physiological studies. Moreover, recent expansion in the number of available amino acid transporter sequences have revealed evolutionary relationships between amino acid exporters from other organisms with a number of uncharacterized plant proteins, some of which might also function as amino acid exporters. In addition, genes that may regulate export of amino acids have been discovered. Studies of these putative transporter and regulator proteins may help in understanding the elusive molecular mechanisms of amino acid export in plants.

  10. Identification of Amino Acid Residues of ERH Required for Its Recruitment to Nuclear Speckles and Replication Foci in HeLa Cells

    PubMed Central

    Banko, Monika I.; Krzyzanowski, Marek K.; Turcza, Paulina; Maniecka, Zuzanna; Kulis, Marta; Kozlowski, Piotr

    2013-01-01

    ERH is a small, highly evolutionarily conserved nuclear protein of unknown function. Its three-dimensional structure is absolutely unique and it can form a homodimer through a β sheet surface. ERH has been shown to interact, among others, with PDIP46/SKAR and Ciz1. When coexpressed with the latter protein, ERH accumulates in replication foci in the nucleus of HeLa cells. Here, we report that when ERH is coexpressed with PDIP46/SKAR in HeLa cells, it is recruited to nuclear speckles, and identify amino acid residues critical for targeting ERH to both these subnuclear structures. ERH H3A Q9A shows a diminished recruitment to nuclear speckles but it is recruited to replication foci. ERH E37A T51A is very poorly recruited to replication foci while still accumulating in nuclear speckles. Consequently, ERH H3A Q9A E37A T51A is recruited neither to nuclear speckles nor to replication foci. The lack of interactions of these three ERH forms with PDIP46/SKAR and/or Ciz1 was further confirmed in vitro by GST pull-down assay. The residues whose substitutions interfere with the accumulation in nuclear speckles are situated on the β sheet surface of ERH, indicating that only the monomer of ERH can interact with PDIP46/SKAR. Substitutions affecting the recruitment to replication foci map to the other side of ERH, near a long loop between the α1 and α2 helices, thus both the monomer and the dimer of ERH could interact with Ciz1. The construction of the ERH mutants not recruited to nuclear speckles or replication foci will facilitate further studies on ERH actions in these subnuclear structures. PMID:24015320

  11. Expression of Cationic Amino Acid Transporter 2 Is Required for Myeloid-Derived Suppressor Cell-Mediated Control of T Cell Immunity.

    PubMed

    Cimen Bozkus, Cansu; Elzey, Bennett D; Crist, Scott A; Ellies, Lesley G; Ratliff, Timothy L

    2015-12-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature cells that expand during benign and cancer-associated inflammation and are characterized by their ability to inhibit T cell immunity. Increased metabolism of l-Arginine (l-Arg), through the enzymes arginase 1 and NO synthase 2 (NOS2), is well documented as a major MDSC suppressive mechanism. Therefore, we hypothesized that restricting MDSC uptake of l-Arg is a critical control point to modulate their suppressor activity. Using murine models of prostate-specific inflammation and cancer, we have identified the mechanisms by which extracellular l-Arg is transported into MDSCs. We have shown that MDSCs recruited to localized inflammation and tumor sites upregulate cationic amino acid transporter 2 (Cat2), coordinately with Arg1 and Nos2. Cat2 expression is not induced in MDSCs in peripheral organs. CAT2 contributes to the transport of l-Arg in MDSCs and is an important regulator of MDSC suppressive function. MDSCs that lack CAT2 have significantly reduced suppressive ability ex vivo and display impaired capacity for regulating T cell responses in vivo as evidenced by increased T cell expansion and decreased tumor growth in Cat2(-/-) mice. The abrogation of suppressive function is due to low intracellular l-Arg levels, which leads to the impaired ability of NOS2 to catalyze l-Arg-dependent metabolic processes. Together, these findings demonstrate that CAT2 modulates MDSC function. In the absence of CAT2, MDSCs display diminished capacity for controlling T cell immunity in prostate inflammation and cancer models, where the loss of CAT2 results in enhanced antitumor activity.

  12. Paralogous chemoreceptors mediate chemotaxis towards protein amino acids and the non-protein amino acid gamma-aminobutyrate (GABA).

    PubMed

    Rico-Jiménez, Miriam; Muñoz-Martínez, Francisco; García-Fontana, Cristina; Fernandez, Matilde; Morel, Bertrand; Ortega, Alvaro; Ramos, Juan Luis; Krell, Tino

    2013-06-01

    The paralogous receptors PctA, PctB and PctC of Pseudomonas aeruginosa were reported to mediate chemotaxis to amino acids, intermediates of amino acid metabolism and chlorinated hydrocarbons. We show that the recombinant ligand binding regions (LBRs) of PctA, PctB and PctC bind 17, 5 and 2 l-amino acids respectively. In addition, PctC-LBR recognized GABA but not any other structurally related compound. l-Gln, one of the three amino acids that is not recognized by PctA-LBR, was the most tightly binding ligand to PctB suggesting that PctB has evolved to mediate chemotaxis primarily towards l-Gln. Bacteria were efficiently attracted to l-Gln and GABA, but mutation of pctB and pctC, respectively, abolished chemoattraction. The physiological relevance of taxis towards GABA is proposed to reside in an interaction with plants. LBRs were predicted to adopt double PDC (PhoQ/DcuS/CitA) like structures and site-directed mutagenesis studies showed that ligands bind to the membrane-distal module. Analytical ultracentrifugation studies have shown that PctA-LBR and PctB-LBR are monomeric in the absence and presence of ligands, which is in contrast to the enterobacterial receptors that require sensor domain dimers for ligand recognition.

  13. Extraterrestrial amino acids in the Almahata Sitta meteorite

    NASA Astrophysics Data System (ADS)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.; Jenniskens, Peter; Shaddad, Muawia H.

    2010-10-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, β-amino-n-butyric acid, 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L ˜ 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other nonprotein amino acids were also identified in the meteorite above background levels including α-aminoisobutyric acid (α-AIB), 4-amino-2-methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and α-AIB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five-carbon amino acids in Almahata Sitta compared to CI, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures, or introduced as a contaminant from unrelated meteorite clasts and chemically altered by α-decarboxylation.

  14. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2010-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.

  15. Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.

  16. Quantitative measurement of endogenous amino acid absorption in unanaesthetized pigs.

    PubMed

    Rerat, A; Vaissade, P; Vaugelade, P

    1988-06-01

    The present experiment was carried out with 11 pigs (mean body weight: 53.9 +/- 1.3 kg) fitted with permanent catheters in the portal vein and carotid artery and with an electromagnetic flow probe around the portal vein. They were each subjected to 2 or 3 trials at 3 to 4-day intervals. During each trial the animals received after a previous fasting of 20 h a given amount of a protein-free diet (200 to 1200 g). The blood was collected either continuously for a quantitative determination of amino nitrogen, reducing sugars, urea and ammonia (number of meals 12, mean intake: 727 +/- 60 g) or discontinuously every 30 min between 0 and 8 h after the meal for amino acid analysis (number of meals 8; mean intake 709 +/- 105 g). A rather constant appearance (2 g/h) of amino acids in the portal blood was observed throughout the postprandial period. The intestinal absorption of each amino acid was however variable and represented between 10 and 50% of the daily requirements of the animal during the measuring period (8 h). Glutamine and to a less extent glutamic acid were exceptions as they were taken up by the gut wall from the arterial blood. There was also a marked synthesis of ornithine and citrulline by the latter. Because of the low blood level of urea, there were no apparent exchanges of urea between the blood and the intestine; in contrast, the ammonia absorption represented about 70% of that observed after ingestion of normal protein diets. Most amino acids are largely taken up by the liver and peripheral tissues, but in the case of alanine the syntheses exceed the uptake.

  17. Extraction of amino acids from soils and sediments with superheated water

    NASA Technical Reports Server (NTRS)

    Cheng, C. N.; Ponnamperuma, C.

    1974-01-01

    A method of extraction for amino acids from soils and sediments involving superheated water has been investigated. About 75-97 per cent of the amino acids contained in four soils of a soil profile from Illinois were extracted by this method. Deep penetration of water into soil aggregates and partial hydrolysis of peptide bonds during this extraction by water at high temperature are likely mechanisms responsible for the release of amino acids from samples. This extraction method does not require subsequent desalting treatments when analyses are carried out with an ion-exchange amino acid analyzer.

  18. Effects of alkali or acid treatment on the isomerization of amino acids.

    PubMed

    Ohmori, Taketo; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2012-10-01

    The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue.

  19. Accumulated analyses of amino acid precursors in returned lunar samples

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Harada, K.; Hare, P. E.

    1973-01-01

    Six amino acids (glycine, alanine, aspartic acid, glutamic acid, serine, and threonine) obtained by hydrolysis of extracts have been quantitatively determined in ten collections of fines from five Apollo missions. Although the amounts found, 7-45 ng/g, are small, the lunar amino acid/carbon ratios are comparable to those of the carbonaceous chondrites, Murchison and Murray, as analyzed by the same procedures. Since both the ratios of amino acid to carbon, and the four or five most common types of proteinous amino acid found, are comparable for the two extraterrestrial sources despite different cosmophysical histories of the moon and meteorites, common cosmochemical processes are suggested.

  20. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.

    PubMed

    Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui

    2016-06-01

    Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.

  1. Beneficial Effects of the Amino Acid Glycine.

    PubMed

    Pérez-Torres, Israel; Zuniga-Munoz, Alejandra María; Guarner-Lans, Veronica

    2017-01-01

    Glycine is the smallest non-essential, neutral and metabolically inert amino acid, with a carbon atom bound to two hydrogen atoms, and to an amino and a carboxyl group. This amino acid is an essential substrate for the synthesis of several biologically important biomolecules and compounds. It participates in the synthesis of proteins, of the tripeptide glutathione and in detoxification reactions. It has a broad spectrum of anti-inflammatory, cytoprotective and immunomodulatory properties. To exert its actions, glycine binds to different receptors. The GlyR anion channel is the most studied receptor for glycine. However, there are GlyR-independent mechanisms for glycine cytoprotection and other possible binding molecules of glycine are the NMDA receptor and receptors GlyT1 and GlyT2. Although, in humans, the normal serum level of glycine is approximately 300 μM, increasing glycine intake can lead to blood levels of more than 900 μM that increase its benefic actions without having harmful side effects. The herbal pesticide glyphosate might disrupt glycine homeostasis. Many in vitro studies involving different cell types have demonstrated beneficial effects of the addition of glycine. Glycine also improved conditions of isolated perfused or stored organs. In vivo studies in experimental animals have also tested glycine as a protector molecule and some studies on the beneficial effects of glycine after its clinical application have been done. Although at high-doses, glycine may cause toxic effects, further studies are needed to investigate the safe range of usage of this aminoacid and to test the diverse routes of administration.

  2. Conformational properties of oxazoline-amino acids

    NASA Astrophysics Data System (ADS)

    Staś, Monika; Broda, Małgorzata A.; Siodłak, Dawid

    2016-04-01

    Oxazoline-amino acids (Xaa-Ozn) occur in natural peptides of potentially important bioactivity. The conformations of the model compounds: Ac-(S)-Ala-Ozn(4R-Me), Ac-(S)-Ala-Ozn(4S-Me), and (gauche+, gauche-, anti) Ac-(S)-Val-Ozn(4R-Me) were studied at meta-hybrid M06-2X/6-311++G(d,p) method including solvent effect. Boc-L-Ala-L-Ozn-4-COOMe and Boc-L-Val-L-Ozn-4-COOMe were synthesized and studied by FT-IR and NMR-NOE methods. The conformations in crystal state were gathered from the Cambridge Structural Data Base. The main conformational feature of the oxazoline amino acids is the conformation β2 (ϕ,ψ ∼ -161°, -6°), which predominates in weakly polar environment and still is accessible in polar surrounding. The changes of the conformational preferences towards the conformations αR (ϕ,ψ ∼ -70°, -15°) and then β (ϕ,ψ ∼ -57°, -155°) are observed with increase of the environment polarity.

  3. Intermolecular Vibrations of Hydrophobic Amino Acids

    NASA Astrophysics Data System (ADS)

    Williams, Michael Roy Casselman

    Hydrophobic amino acids interact with their chemical environment through a combination of electrostatic, hydrogen bonding, dipole, induced dipole, and dispersion forces. These interactions all have their own characteristic energy scale and distance dependence. The low-frequency (0.1-5 THz, 5-150 cm-1) vibrational modes of amino acids in the solid state are a direct indicator of the interactions between the molecules, which include interactions between an amino acid functional group and its surroundings. This information is central to understanding the dynamics and morphology of proteins. The alpha-carbon is a chiral center for all of the hydrophobic amino acids, meaning that they exist in two forms, traditionally referred to as L- and D-enantiomers. This nomenclature indicates which direction the molecule rotates plane-polarized visible light (levorotory and dextrorotory). Chiral a-amino acids in proteins are exclusively the L-variety In the solid state, the crystal lattice of the pure L-enantiomer is the mirror image of the D-enantiomer crystal lattice. These solids are energetically identical. Enantiomers also have identical spectroscopic properties except when the measurement is polarization sensitive. A mixture of equal amounts D- and L-amino acid enantiomers can crystallize into a racemic (DL-) structure that is different from that of the pure enantiomers. Whether a solution of both enantiomers will crystallize into a racemic form or spontaneously resolve into a mixture of separate D- and L-crystals largely depends on the interactions between molecules available in the various possible configurations. This is an active area of research. Low-frequency vibrations with intermolecular character are very sensitive to changes in lattice geometry, and consequently the vibrational spectra of racemic crystals are usually quite distinct from the spectra of the crystals of the corresponding pure enantiomers in the far-infrared (far-IR). THz time-domain spectroscopy (THz

  4. Formation and transformation of amino acids and amino acid precursors by high-velocity impacts

    NASA Astrophysics Data System (ADS)

    Kaneko, T.; Kobayashi, K.; Yamori, A.

    A wide variety of organic compounds have been found in extraterrestrial bodies such as comets and carbonaceous chondrites. It is plausible that these extraterrestrial bodies carried organic compounds such as amino acids or their precursors to the early Earth. It is claimed, however, that these extraterrestrial organics were destroyed during impacts to the Earth. We therefore examined possible transformation of amino acids and their precursors during high-velocity impacts by using a rail gun "HYPAC" in ISAS. Starting materials used in the impact experiments were (i) aqueous solution of glycine (10 mM or 1.0 M), and (ii) a mixture of ammonia, methanol and water. The target materials were sealed in stainless steel capsules, and shocked by impact with a polycarbonate projectile accelerated with "HYPAC" to the velocities of 2.5 - 7.0 km/s. A part of the products was acid-hydrolyzed. Both hydrolyzed an unhydrolyzed products were analyzed by mass spectrometry, high performance liquid chromatography and capillary electrophoresis and chromatography. When an aqueous solution containing ammonia, methanol and water was shocked by impact at the velocity of 6.4 km/s, a number of amino acids (e.g., serine and glycine) were detected after hydrolysis. The present results suggest that amino acid precursors could be formed during cometary impacts. When glycine solution was used as a starting material, about 40 % of glycine was recovered even after 6 km/s impact. Methylamine and ammonia, which are known as pyrolytic products of glycine, were detected, besides them, diketopiperazine and an unidentified product whose molecular weight was 134, were detected, while no glycine peptides were identified in them. It was shown that the impact processes resulted in the formation of amino acid condensates. Thermal stability of glycine precursor is comparable with glycine. The present results suggest that organic material could survive and/or formed during an impact process. Most of organic

  5. Induction of amino acid transporters expression by endurance exercise in rat skeletal muscle

    SciTech Connect

    Murakami, Taro Yoshinaga, Mariko

    2013-10-04

    Highlights: •Regulation of amino acid transporter expression in working muscle remains unclear. •Expression of amino acid transporters for leucine were induced by a bout of exercise. •Requirement of leucine in muscle cells might regulate expression of its transporters. •This information is beneficial for understanding the muscle remodeling by exercise. -- Abstract: We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after the exercise, we observed that expression of mRNAs encoding L-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles.

  6. The Next Generation MOD: A Microchip Amino Acid Analyzer for Detecting Extraterrestrial Life

    NASA Technical Reports Server (NTRS)

    Mathies, R. A.; Hutt, L. D.; Bada, J. L.; Glavin, D.; Grunthaner, F. J.; Grunthaner, P. J.

    2000-01-01

    The MOD (Mars Organic Detector) instrument which has selected for the definition phase of the BEDS package on the 2005 Mars Explorer Program spacecraft is designed to simply detect the presence of amino acids in Martian surface samples at a sensitivity of a few parts per billion (ppb). An additional important aspect of amino acid analyses of Martian samples is identifying and quantifying which compounds are present, and also distinguishing those produced abiotically from those synthesized by either extinct or extant life. Amino acid homochirality provides an unambiguous way of distinguishing between abiotic vs. biotic origins. Proteins made up of mixed D- and L-amino acids would not likely have been efficient catalysts in early organisms because they could not fold into bioactive configurations such as the a-helix. However, enzymes made up of all D-amino acids function just as well as those made up of only L-amino acids, but the two enzymes use the opposite stereoisomeric substrates. There are no biochemical reasons why L-amino acids would be favored over Damino acids. On Earth, the use of only L-amino acids in proteins by life is probably simply a matter of chance. We assume that if proteins and enzymes were a component of extinct or extant life on Mars, then amino acid homochirality would have been a requirement. However, the possibility that Martian life was (or is) based on D-amino acids would be equal to that based on L-amino acids. The detection of a nonracemic mixture of amino acids in a Martian sample would be strong evidence for the presence of an extinct or extant biota on Mars. The finding of an excess of D-amino acids would provide irrefutable evidence of unique Martian life that could not have been derived from seeding the planet with terrestrial life (or the seeding of the Earth with Martian life). In contrast, the presence of racemic amino acids, along with non-protein amino acids such as alpha-aminoisobutyric acid and isovaline, would be indicative

  7. Inadequacy of prebiotic synthesis as origin of proteinous amino acids.

    PubMed

    Wong, J T; Bronskill, P M

    1979-07-18

    The production of some nonproteinous, and lack of production of other proteinous, amino acids in model prebiotic synthesis, along with the instability of glutamine and asparagine, suggest that not all of the 20 present day proteinous amino acids gained entry into proteins directly from the primordial soup. Instead, a process of active co-evolution of the genetic code and its constituent amino acids would have to precede the final selection of these proteinous amono acids.

  8. Prebiotic Synthesis of Hydrophobic and Protein Amino Acids

    PubMed Central

    Ring, David; Wolman, Yecheskel; Friedmann, Nadav; Miller, Stanley L.

    1972-01-01

    The formation of amino acids by the action of electric discharges on a mixture of methane, nitrogen, and water with traces of ammonia was studied in detail. The presence of glycine, alanine, α-amino-n-butyric acid, α-aminoisobutyric acid, valine, norvaline, isovaline, leucine, isoleucine, alloisoleucine, norleucine, proline, aspartic acid, glutamic acid, serine, threonine, allothreonine, α-hydroxy-γ-aminobutyric acid, and α,γ-diaminobutyric acid was confirmed by ion-exchange chromatography and gas chromatography-mass spectrometry. All of the primary α-amino acids found in the Murchison Meteorite have been synthesized by this electric discharge experiment. PMID:4501592

  9. Relative Amino Acid Composition Signatures of Organisms and Environments

    PubMed Central

    Moura, Alexandra; Savageau, Michael A.; Alves, Rui

    2013-01-01

    Background Identifying organism-environment interactions at the molecular level is crucial to understanding how organisms adapt to and change the chemical and molecular landscape of their habitats. In this work we investigated whether relative amino acid compositions could be used as a molecular signature of an environment and whether such a signature could also be observed at the level of the cellular amino acid composition of the microorganisms that inhabit that environment. Methodologies/Principal Findings To address these questions we collected and analyzed environmental amino acid determinations from the literature, and estimated from complete genomic sequences the global relative amino acid abundances of organisms that are cognate to the different types of environment. Environmental relative amino acid abundances clustered into broad groups (ocean waters, host-associated environments, grass land environments, sandy soils and sediments, and forest soils), indicating the presence of amino acid signatures specific for each environment. These signatures correlate to those found in organisms. Nevertheless, relative amino acid abundance of organisms was more influenced by GC content than habitat or phylogeny. Conclusions Our results suggest that relative amino acid composition can be used as a signature of an environment. In addition, we observed that the relative amino acid composition of organisms is not highly determined by environment, reinforcing previous studies that find GC content to be the major factor correlating to amino acid composition in living organisms. PMID:24204807

  10. A reexamination of amino acids in lunar soil

    NASA Astrophysics Data System (ADS)

    Brinton, K. L. F.; Bada, J. L.; Arnold, J. R.

    1993-03-01

    Amino acids in lunar soils provide an important indicator of the level of prebiotic organic compounds on the moon. The results provide insight into the chemistry of amino acid precursors, and furthermore, given the flux of carbonaceous material to the moon, we can evaluate the survival of organics upon impact. The amino acid contents of both hydrolyzed and unhydrolyzed hot-water extracts of Apollo 17 lunar soil were determined using ophthaldialdehyde/N-acetyl cysteine (OPA/NAC) derivatization followed by HPLC analysis. Previous studies of lunar amino acids were inconclusive, as the technique used (derivatization with ninhydrin followed by HPLC analysis) was unable to discriminate between cosmogenic amino acids and terrestrial contaminants. Cosmogenic amino acids are racemic, and many of the amino acids found in carbonaceous meteorites such as Murchison, i.e., alpha-amino-i-butyric acid (aib), are extremely rare on Earth. The ninhydrin method does not distinguish amino acid enantiomers, nor does it detect alpha-alkyl amino acids such as aib, whereas the OPA/NAC technique does both.

  11. A reexamination of amino acids in lunar soil

    NASA Technical Reports Server (NTRS)

    Brinton, K. L. F.; Bada, J. L.; Arnold, J. R.

    1993-01-01

    Amino acids in lunar soils provide an important indicator of the level of prebiotic organic compounds on the moon. The results provide insight into the chemistry of amino acid precursors, and furthermore, given the flux of carbonaceous material to the moon, we can evaluate the survival of organics upon impact. The amino acid contents of both hydrolyzed and unhydrolyzed hot-water extracts of Apollo 17 lunar soil were determined using ophthaldialdehyde/N-acetyl cysteine (OPA/NAC) derivatization followed by HPLC analysis. Previous studies of lunar amino acids were inconclusive, as the technique used (derivatization with ninhydrin followed by HPLC analysis) was unable to discriminate between cosmogenic amino acids and terrestrial contaminants. Cosmogenic amino acids are racemic, and many of the amino acids found in carbonaceous meteorites such as Murchison, i.e., alpha-amino-i-butyric acid (aib), are extremely rare on Earth. The ninhydrin method does not distinguish amino acid enantiomers, nor does it detect alpha-alkyl amino acids such as aib, whereas the OPA/NAC technique does both.

  12. Amino Acid Transport in Mycobacterium smegmatis

    PubMed Central

    Yabu, Kunihiko

    1970-01-01

    The transport of d-alanine, d-glutamic acid, and d-valine in Mycobacterium smegmatis was compared quantitatively with that of their l-isomers. It appeared that the uptake of d-alanine was mediated by an active process displaying saturation kinetics characteristic of enzyme function, whereas the uptake of d-glutamic acid was accomplished by a passive process showing diffusion kinetics. Both processes were involved in the uptake of l-alanine, l-glutamic acid, d-valine, and l-valine. d-Valine competed with l-valine for entry into the cell through a single active process. d-Alanine and l-alanine also utilized the same active process, but the d-isomer could not enter the cell through the passive process. The passive process exhibited characteristics of diffusion, but was sensitive to sulfhydryl-blocking reagents and showed competition among structurally related amino acids. These last findings suggested that the passive process is a facilitated diffusion. PMID:5437732

  13. ANTIGENICITY OF POLYPEPTIDES (POLY ALPHA AMINO ACIDS)

    PubMed Central

    Maurer, Paul H.; Gerulat, Bernard F.; Pinchuck, Paul

    1964-01-01

    A new group of synthetic random polymers of α-L-amino acids has been studied for immunogenicity. With the glutamic acid and alanine copolymers, those consisting of almost equimolar amounts of the two (G60A40 and G40A60) were effective antigens in rabbits whereas those with higher glutamic acid contents (G75A25, G90A10) were poor antigens. The substitution of alanine by valine or leucine (G75V25 and G80Leu20) produced copolymers which were poor antigens in rabbits but effective in guinea pigs. L70A30, although capable of "non-specifically" precipitating serum proteins, was shown not to be antigenic in either rabbits or guinea pigs. The introduction of alanine into glutamic acid and lysine polymers (GLA series) enhanced the immunogenicity of the terpolymers, i.e., GLA30 > GLA20 > GLA10 > GL. The mechanism by which this may be accomplished is discussed as possibly being related to the reduction of the interactions between glutamyl and lysyl residues which allows the carboxyl groups to act as strong immunogenic determinants. PMID:14176288

  14. Limiting amino acids in bengal gram (Cicer arietinum) as determined from blood amino acid levels and amino acid supplementation studies in the rat.

    PubMed

    Khader, V; Rao, S V

    1982-01-01

    The limiting amino acids of Bengal gram (Cicer arietinum) were determined from plasma amino acid score and ratio and growth response of weanling rats to supplements of amino acids. The results indicated that methionine, threonine and tryptophan are the most limiting amino acids. Protein efficiency ratio of raw and cooked Bengal gram fed at a dietary level of 10% protein increased from 2.7 to 3.7 and 2.4 to 3.4, respectively, on supplementing the diets with methionine, threonine and tryptophan. Plasma levels of lysine, methionine, threonine and tryptophan were similar in rats fed raw or cooked Bengal gram, indicating that the trypsin or other inhibitors that may be present in the raw gram do not affect the biological availability of these amino acids.

  15. Fatty acid production from amino acids and alpha-keto acids by Brevibacterium linens BL2.

    PubMed

    Ganesan, Balasubramanian; Seefeldt, Kimberly; Weimer, Bart C

    2004-11-01

    Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and alpha-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of alpha-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and alpha-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from alpha-keto acids only. BL2 also converted alpha-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and alpha-keto acids and that carbon metabolism is important in regulating this event.

  16. Transfer of Asymmetry between Proteinogenic Amino Acids under Harsh Conditions

    NASA Astrophysics Data System (ADS)

    Tarasevych, Arkadii V.; Vives, Thomas; Snytnikov, Valeriy N.; Guillemin, Jean-Claude

    2017-03-01

    The heating above 400 °C of serine, cysteine, selenocysteine and threonine leads to a complete decomposition of the amino acids and to the formation in low yields of alanine for the three formers and of 2-aminobutyric acid for the latter. At higher temperature, this amino acid is observed only when sublimable α-alkyl-α-amino acids are present, and with an enantiomeric excess dependent on several parameters. Enantiopure or enantioenriched Ser, Cys, Sel or Thr is not able to transmit its enantiomeric excess to the amino acid formed during its decomposition. The presence during the sublimation-decomposition of enantioenriched valine or isoleucine leads to the enantioenrichment of all sublimable amino acids independently of the presence of many decomposition products coming from the unstable derivative. All these studies give information on a potentially prebiotic key-reaction of abiotic transformations between α-amino acids and their evolution to homochirality.

  17. Transfer of Asymmetry between Proteinogenic Amino Acids under Harsh Conditions.

    PubMed

    Tarasevych, Arkadii V; Vives, Thomas; Snytnikov, Valeriy N; Guillemin, Jean-Claude

    2017-03-31

    The heating above 400 °C of serine, cysteine, selenocysteine and threonine leads to a complete decomposition of the amino acids and to the formation in low yields of alanine for the three formers and of 2-aminobutyric acid for the latter. At higher temperature, this amino acid is observed only when sublimable α-alkyl-α-amino acids are present, and with an enantiomeric excess dependent on several parameters. Enantiopure or enantioenriched Ser, Cys, Sel or Thr is not able to transmit its enantiomeric excess to the amino acid formed during its decomposition. The presence during the sublimation-decomposition of enantioenriched valine or isoleucine leads to the enantioenrichment of all sublimable amino acids independently of the presence of many decomposition products coming from the unstable derivative. All these studies give information on a potentially prebiotic key-reaction of abiotic transformations between α-amino acids and their evolution to homochirality.

  18. Computational Design of Multinuclear Metalloproteins Using Unnatural Amino Acids.

    PubMed

    Hansen, William A; Mills, Jeremy H; Khare, Sagar D

    2016-01-01

    Multinuclear metal ion clusters, coordinated by proteins, catalyze various critical biological redox reactions, including water oxidation in photosynthesis, and nitrogen fixation. Designed metalloproteins featuring synthetic metal clusters would aid in the design of bio-inspired catalysts for various applications in synthetic biology. The design of metal ion-binding sites in a protein chain requires geometrically constrained and accurate placement of several (between three and six) polar and/or charged amino acid side chains for every metal ion, making the design problem very challenging to address. Here, we describe a general computational method to redesign oligomeric interfaces of symmetric proteins for the purpose of creating novel multinuclear metalloproteins with tunable geometries, electrochemical environments, and metal cofactor stability via first and second-shell interactions. The method requires a target symmetric organometallic cofactor whose coordinating ligands resemble the side chains of a natural or unnatural amino acid and a library of oligomeric protein structures featuring the same symmetry as the target cofactor. Geometric interface matches between target cofactor and scaffold are determined using a program that we call symmetric protein recursive ion-cofactor sampler (SyPRIS). First, the amino acid-bound organometallic cofactor model is built and symmetrically aligned to the axes of symmetry of each scaffold. Depending on the symmetry, rigid body and inverse rotameric degrees of freedom of the cofactor model are then simultaneously sampled to locate scaffold backbone constellations that are geometrically poised to incorporate the cofactor. Optionally, backbone remodeling of loops can be performed if no perfect matches are identified. Finally, the identities of spatially proximal neighbor residues of the cofactor are optimized using Rosetta Design. Selected designs can then be produced in the laboratory using genetically incorporated unnatural

  19. Catalytic hydrogenation of amino acids to amino alcohols with complete retention of configuration.

    PubMed

    Tamura, Masazumi; Tamura, Riku; Takeda, Yasuyuki; Nakagawa, Yoshinao; Tomishige, Keiichi

    2014-06-25

    Rh-MoOx/SiO2 is an effective heterogeneous catalyst for selective hydrogenation of amino acids to amino alcohols in a water solvent. MoOx modification of Rh drastically enhanced the activity and improved the selectivity and ee. Various amino alcohols were obtained in high yields (90-94%) with complete retention of configuration.

  20. Unprecedented concentrations of indigenous amino acids in primitive CR meteorites

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; Martins, Zita; Alexander, Conel; Orzechowska, Grazyna; Fogel, Marylin

    CR meteorites are among the most primitive meteorites. We have performed pioneering work determining the compositional characteristics of amino acids in this type of carbonaceous chondrites. We report the first measurements of amino acids in Antarctic CR meteorites, two of which show the highest amino acid concentrations ever found in a chondrite. We have analyzed the amino acid content of the Antarctic CRs EET92042, GRA95229 and GRO95577 using high performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatography-mass spectrometry (GC-MS). Additionally, compound-specific carbon isotopic measurements for most of the individual amino acids from the EET92042 and GRA95229 meteorites were achieved by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our data show that EET92042 and GRA95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations of 180 and 249 parts-per-million (ppm), respectively. GRO95577, however, is depleted in amino acids (<1 ppm). The most abundant amino acids present in the EET92042 and GRA95229 meteorites are the α-amino acids glycine, isovaline, α-aminoisobutyric acid (α-AIB), and alanine, with δ 13 C values ranging from +31.6% to +50.5%. The highly enriched carbon isotope results together with racemic enantiomeric ratios determined for most amino acids indicate that primitive organic matter was preserved in these meteorites. In addition, the relative abundances of α-AIB and β-alanine amongst Antarctic CR meteorites appear to correspond to the degree of aqueous alteration on their respective parent body. Investigating the abundances and isotopic composition of amino acids in primitive chondrites helps to understand the role of meteorites as a source of extraterrestrial prebiotic organic compounds to the early Earth.

  1. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2009-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC(sub 3) called Almahata Sitta was carried out using reverse-phase high-perfo rmance liquid chromatography coupled with UV fluorescence detection a nd time-of-flight mass spectrometry (HPLC-FD/ToF-MS) as part of a sam ple analysis consortium. HPLC analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to six-carbon aliph atic amino acids and one- to three carbon amines with abundances rang ing from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, Beta-amino-n-butyric acid (Beta-ABA), 2-amino-2- methylbutanoic acid (isovaline), and 2-aminopentanoic acid (no rvaline) in the meteorite were racemic (D/L approximately 1), indicat ing that these amino acids are indigenous to the meteorite and not te rrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha -aminoisobutyric acid (alpha-AIB), 4-amino-2- methybutanoic acid, 4-a mino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. Th e total abundances of isovaline and AlB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous meteorite Murchison. The extremely love abund ances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous meteorites and may be due to extensive thermal alteration of amino acids on the parent aster oid by partial melting during formation or impact shock heating.

  2. Twenty natural amino acids identification by a photochromic sensor chip.

    PubMed

    Qin, Meng; Li, Fengyu; Huang, Yu; Ran, Wei; Han, Dong; Song, Yanlin

    2015-01-20

    All 20 natural amino acids identification shows crucial importance in biochemistry and clinical application while it is still a challenge due to highly similarity in molecular configuration of the amino acids. Low efficiency, complicated sensing molecules and environment hindered the successful identification. Here, we developed a facile sensor chip composed of one photochromic molecule with metal ions spotted to form spirooxazine-metallic complexes, and successfully recognized all the 20 natural amino acids as well as their mixtures. The sensor chip gives distinct fluorescent fingerprint pattern of each amino acid, based on multistate of spirooxazine under different light stimulations and discriminated interaction between various metal ions and amino acids. The sensor chip demonstrates powerful capability of amino acids identification, which promotes sensing of biomolecules.

  3. Transport of Aromatic Amino Acids by Pseudomonas aeruginosa

    PubMed Central

    Kay, W. W.; Gronlund, Audrey F.

    1971-01-01

    Kinetic studies of the transport of aromatic amino acids by Pseudomonas aeruginosa revealed the existence of two high-affinity transport systems which recognized the three aromatic amino acids. From competition data and studies on the exchange of preformed aromatic amino acid pools, the first transport system was found to be functional with phenylalanine, tyrosine, and tryptophan (in order of decreasing activity), whereas the second system was active with tryptophan, phenylalanine, and tyrosine. The two systems also transported a number of aromatic amino acid analogues but not other amino acids. Mutants defective in each of the two and in both transport systems were isolated and described. When the amino acids were added at low external concentrations to cells growing logarithmically in glucose minimal medium, the tryptophan pool very quickly became saturated. Under identical conditions, phenylalanine and tyrosine each accumulated in the intracellular pool of P. aeruginosa at a concentration which was 10 times greater than that of tryptophan. PMID:4994029

  4. Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases.

    PubMed

    Rajagopal, Senthilkumar; Sangam, Supraj Raja; Singh, Shubham; Joginapally, Venkateswara Rao

    2016-01-01

    Proteins are playing a vital role in maintaining the cellular integrity and function, as well as for brain cells. Protein intake and supplementation of individual amino acids can affect the brain functioning and mental health, and many of the neurotransmitters in the brain are made from amino acids. The amino acid supplementation has been found to reduce symptoms, as they are converted into neurotransmitters which in turn extenuate the mental disorders. The biosynthesis of amino acids in the brain is regulated by the concentration of amino acids in plasma. The brain diseases such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD) are the most common mental disorders that are currently widespread in numerous countries. The intricate biochemical and molecular machinery contributing to the neurological disorders is still unknown, and in this chapter, we revealed the involvement of dietary amino acids on neurological diseases.

  5. Surface Propensity of Atmospherically Relevant Amino Acids Studied by XPS.

    PubMed

    Mocellin, Alexandra; Gomes, Anderson Herbert de Abreu; Araújo, Oscar Cardoso; de Brito, Arnaldo Naves; Bjorneholm, Olle

    2017-03-30

    Amino acids constitute an important fraction of the water-soluble organic nitrogen (WSON) compounds in aerosols and are involved in many processes in the atmosphere. In this work, we applied XPS to study aqueous solutions of four amino acids: glycine, alanine, valine and methionine, in their zwitterionic forms. We found that amino acids with hydrophilic side chains and smaller size, GLY and ALA, tend to stay in the bulk of the liquid, while the hydrophobic and bigger amino acids, VAL and MET, are found to concentrate more on the surface. We found experimental evidences that the amino acids have preferential orientation relative to the surface, with the hydrophobic side chain being closer to the surface than the hydrophilic carboxylate group. The observed amino acid surface propensity has implications in atmospheric science as the surface interaction play a central role in cloud droplet formation, and they should be considered in climate models.

  6. Nectar amino acids enhance reproduction in male butterflies.

    PubMed

    Cahenzli, Fabian; Erhardt, Andreas

    2013-01-01

    After over 30 years of research, it was recently shown that nectar amino acids increase female butterfly fecundity. However, little attention has been paid to the effect of nectar amino acids on male butterfly reproduction. Here, we show that larval food conditions (nitrogen-rich vs. nitrogen-poor host plants) and adult diet quality (nectar with or without amino acids) affected the amount of consumed nectar in Coenonympha pamphilus males. Furthermore, amino acids in the nectar diet of males increased progeny's larval hatching mass, irrespective of paternal larval reserves. Our study takes the whole reproductive cycle of male butterflies into account, and also considers the role of females in passing male nutrients to offspring, as males' realized reproduction was examined indirectly via nuptial gifts, by female performance. With this comprehensive approach, we demonstrate for the first time that nectar amino acids can improve male butterfly reproduction, supporting the old postulate that nectar amino acids generally enhance butterfly fitness.

  7. Geochemistry of amino acids in shells of the clam Saxidomus

    USGS Publications Warehouse

    Kvenvolden, K.A.; Blunt, D.J.; McMenamin, M.A.; Straham, S.E.

    1980-01-01

    Concentrations of amino acids and their corresponding d l enantiomeric ratios have been measured in shells of the bivalve mollusk Saxidomus from eleven localities, ranging in age from modern to probably more than 500,000 yr, along the Pacific coast of North America. Natural logarithms of amino acid concentrations correlate well with d l ratios, and the relationship provides a possible guide to the selection of fossils for use in amino acid dating. The relative order of the extents of racemization of amino acids at any given time appears to change with increasing sample age. Application of the amino acid dating method to shells from Whidbey Island, Washington, yields an age of about 80,000 yr, in contrast to the previously determined radiocarbon age of 36,000 yr which was measured on some shell carbonate and considered a minimum age. The amino acid age is compatible with the geologic record in the area. ?? 1980.

  8. Amino acids as chiral selectors in enantioresolution by liquid chromatography.

    PubMed

    Bhushan, Ravi; Dixit, Shuchi

    2012-08-01

    Amino acids are unique in terms of their structural features and multidimensional uses. With their simple structures and the ready availability of both enantiomers, amino acids not only serve as a chiral pool for synthesis but also provide an inexpensive pool for resolution studies. There has been no attempt to review the application of amino acids as chiral selectors for chromatographic enantioresolution of pharmaceuticals and other compounds. The present paper deals with application of l-amino acids and complexes of l-amino acids with a metal ion, particularly Cu(II), as an impregnating reagent in thin-layer chromatography or as a chiral ligand exchange reagent or a chiral mobile phase additive in both thin-layer chromatography and high-performance liquid chromatography. Enantiomeric resolution of β-blockers, nonsteroidal anti-inflammatories, amino acids (and their derivatives) and certain other compounds is discussed.

  9. Distribution and Origin of Amino Acids in Lunar Regolith Samples

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; McLain, H. L.; Noble, S. K.; Gibson, E. K., Jr.

    2015-01-01

    The existence of organic compounds on the lunar surface has been a question of interest from the Apollo era to the present. Investigations of amino acids immediately after collection of lunar samples yielded inconclusive identifications, in part due to analytical limitations including insensitivity to certain compounds, an inability to separate enantiomers, and lack of compound-specific isotopic measurements. It was not possible to determine if the detected amino acids were indigenous to the lunar samples or the result of terrestrial contamination. Recently, we presented initial data from the analysis of amino acid abundances in 12 lunar regolith samples and discussed those results in the context of four potential amino acid sources [5]. Here, we expand on our previous work, focusing on amino acid abundances and distributions in seven regolith samples and presenting the first compound-specific carbon isotopic ratios measured for amino acids in a lunar sample.

  10. Amino Acid Sensing in Skeletal Muscle.

    PubMed

    Moro, Tatiana; Ebert, Scott M; Adams, Christopher M; Rasmussen, Blake B

    2016-11-01

    Aging impairs skeletal muscle protein synthesis, leading to muscle weakness and atrophy. However, the underlying molecular mechanisms remain poorly understood. Here, we review evidence that mammalian/mechanistic target of rapamycin complex 1 (mTORC1)-mediated and activating transcription factor 4 (ATF4)-mediated amino acid (AA) sensing pathways, triggered by impaired AA delivery to aged skeletal muscle, may play important roles in skeletal muscle aging. Interventions that alleviate age-related impairments in muscle protein synthesis, strength, and/or muscle mass appear to do so by reversing age-related changes in skeletal muscle AA delivery, mTORC1 activity, and/or ATF4 activity. An improved understanding of the mechanisms and roles of AA sensing pathways in skeletal muscle may lead to evidence-based strategies to attenuate sarcopenia.

  11. Recombinant thiopeptides containing noncanonical amino acids

    PubMed Central

    Luo, Xiaozhou; Zambaldo, Claudio; Liu, Tao; Zhang, Yuhan; Xuan, Weimin; Wang, Chen; Reed, Sean A.; Yang, Peng-Yu; Wang, Rongsheng E.; Javahishvili, Tsotne; Schultz, Peter G.; Young, Travis S.

    2016-01-01

    Thiopeptides are a subclass of ribosomally synthesized and posttranslationally modified peptides (RiPPs) with complex molecular architectures and an array of biological activities, including potent antimicrobial activity. Here we report the generation of thiopeptides containing noncanonical amino acids (ncAAs) by introducing orthogonal amber suppressor aminoacyl-tRNA synthetase/tRNA pairs into a thiocillin producer strain of Bacillus cereus. We demonstrate that thiopeptide variants containing ncAAs with bioorthogonal chemical reactivity can be further postbiosynthetically modified with biophysical probes, including fluorophores and photo-cross-linkers. This work allows the site-specific incorporation of ncAAs into thiopeptides to increase their structural diversity and probe their biological activity; similar approaches can likely be applied to other classes of RiPPs. PMID:26976568

  12. Synthesis of alpha-amino acids

    DOEpatents

    Davis, J.W. Jr.

    1983-01-25

    A method is described for synthesizing alpha amino acids proceeding through novel intermediates of the formulas: R[sub 1]R[sub 2]C(OSOCl)CN, R[sub 1]R[sub 2]C(Cl)CN and [R[sub 1]R[sub 2]C(CN)O][sub 2]SO wherein R[sub 1] and R[sub 2] are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art. No Drawings

  13. Diversity of amino acids in a typical chernozem of Moldova

    NASA Astrophysics Data System (ADS)

    Frunze, N. I.

    2014-12-01

    The content and composition of the amino acids in typical chernozems were studied. The objects of the study included a reference soil under an old fallow and three variants under fodder crop rotations: not fertilized, with mineral fertilizers, and with organic fertilizers. The contents of 18 amino acids were determined in these soils. The amino acids were extracted by the method of acid hydrolysis and identified by the method of ion-exchange chromatography. The total content of most of the amino acids was maximal in the reference soil; it was much lower in the cultivated soils and decreased in the following sequence: organic background > mineral background > no fertilization. The diversity of amino acids was evaluated quantitatively using different parameters applied in ecology for estimating various aspects of the species composition of communities (Simpson, Margalef, Menhinick, and Shannon's indices). The diversity and contribution of different amino acids to the total pool of amino acids also varied significantly in the studied variants. The maximum diversity of amino acids and maximum evenness of their relative abundance indices were typical of the reference chernozem; these parameters were lower in the cultivated soils. It was concluded that the changes in the structure of the amino acids under the impact of agricultural loads are similar to those that are usually observed under stress conditions.

  14. Survival of Amino Acids in Micrometeorites During Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Bada, Jeffrey L.

    2003-01-01

    The delivery of amino acids by micrometeorites to the early Earth during the period of heavy bombardment could have been a significant source of the Earth's prebiotic amino acid inventory provided that these organic compounds survived atmospheric entry heating. To investigate the sublimation of amino acids from a micrometeorite analog at elevated temperature, grains from the CM-type carbonaceous chondrite Murchison were heated to 550 C inside a glass sublimation apparatus (SA) under reduced pressure. The sublimed residue that had collected on the cold finger of the SA after heating was analyzed for amino acids by HPLC. We found that when the temperature of the meteorite reached approx. 150 C, a large fraction of the amino acid glycine had vaporized from the meteorite, recondensed onto the end of the SA cold finger, and survived as the rest of the grains heated to 550 C. alpha-Aminoisobutryic acid and isovaline, which are two of the most abundant non-protein amino acids in Murchison, did not sublime from the meteorite and were completely destroyed during the heating experiment. Our experimental results suggest that sublimation of glycine present in micrometeorite grains may provide a way for this amino acid to survive atmospheric entry heating at temperatures less than 550 C; all other amino acids apparently are destroyed. Key Words: Amino acids-Exogenous delivery-Micrometeorites-Sublimation.

  15. Chemoenzymatic synthesis of surfactants from carbohydrates, amino acids, and fatty acids.

    PubMed

    Bellahouel, S; Rolland, V; Roumestant, M L; Viallefont, P; Martinez, J

    2001-02-01

    The chemoenzymatic synthesis of new surfactants is reported; they were prepared from unprotected carbohydrates, amino acids, and fatty acids. This study pointed out the factors that govern the possibility to enzymatically bind the carbohydrate to the amino acid.

  16. Trophic spectra under the lens of amino acid isotopic analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent advances in compound specific isotopic ratio analysis (CSIRA) have allowed researchers to measure trophic fractionation of 15N in specific amino acids, namely glutamic acid and phenylalanine. These amino acids have proven useful in food web studies because of the wide and consistent disparity...

  17. The Origin of Amino Acids in Lunar Regolith Samples

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  18. Interactions between homopolymeric amino acids (HPAAs).

    PubMed

    Oma, Yoko; Kino, Yoshihiro; Toriumi, Kazuya; Sasagawa, Noboru; Ishiura, Shoichi

    2007-10-01

    Many human proteins contain consecutive amino acid repeats, known as homopolymeric amino acid (HPAA) tracts. Some inherited diseases are caused by proteins in which HPAAs are expanded to an excessive length. To this day, nine polyglutamine-related diseases and nine polyalanine-related diseases have been reported, including Huntington's disease and oculopharyngeal muscular dystrophy. In this study, potential HPAA-HPAA interactions were examined by yeast two-hybrid assays using HPAAs of approximately 30 residues in length. The results indicate that hydrophobic HPAAs interact with themselves and with other hydrophobic HPAAs. Previously, we reported that hydrophobic HPAAs formed large aggregates in COS-7 cells. Here, those HPAAs were shown to have significant interactions with each other, suggesting that hydrophobicity plays an important role in aggregation. Among the observed HPAA-HPAA interactions, the Ala28-Ala29 interaction was notable because polyalanine tracts of these lengths have been established to be pathogenic in several polyalanine-related diseases. By testing several constructs of different lengths, we clarified that polyalanine self-interacts at longer lengths (>23 residues) but not at shorter lengths (six to approximately 23 residues) in a yeast two-hybrid assay and a GST pulldown assay. This self-interaction was found to be SDS sensitive in SDS-PAGE and native-PAGE assays. Moreover, the intracellular localization of these long polyalanine tracts was also observed to be disturbed. Our results suggest that long tracts of polyalanine acquire SDS-sensitive self-association properties, which may be a prerequisite event for their abnormal folding. The misfolding of these tracts is thought to be a common molecular aspect underlying the pathogenesis of polyalanine-related diseases.

  19. A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis.

    PubMed

    Hamoen, L W; Eshuis, H; Jongbloed, J; Venema, G; van Sinderen, D

    1995-01-01

    The valine-activation domain-encoding portion of the srfA locus (srfA-d4) is not only involved in the non-ribosomal synthesis of surfactin, but is also required for the regulation of competence development. In this study we show that impairment of the adenylation activity of the valine-activating domain did not affect competence development. Deletion analysis and complementation studies delineated the competence-required portion of srfA-d4 to a 168 bp fragment, which contains a small open reading frame (ORF), designated comS, encoding a polypeptide of 46 amino acids, embedded within, but translated in, a frame different from that of srfA-d4. Introduction of an amber mutation in the comS-coding frame prevented competence development, demonstrating the involvement of comS in this prokaryotic specialization process.

  20. Amino acids of the Murchison meteorite. II - Five carbon acyclic primary beta-, gamma-, and delta-amino alkanoic acids

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Pizzarello, S.; Yuen, G. U.

    1985-01-01

    The five-carbon acyclic primary beta, gamma, and delta amino alkanoic acids of the Murchison meteorite are studied using gas chromatography-mass spectrometry and ion exchange chromatography. The chromatograms reveal that alpha is the most abundant monoamino alkanoic acid followed by gamma and beta, and an exponential increase in the amount of amino acid is observed as the carbon number increases in the homologous series. The influence of frictional heating, spontaneous thermal decomposition, and radiation of the synthesis of amino acids is examined. The data obtained support an amino acid synthesis process involving random combination of single-carbon precursors.

  1. A molecular biological approach to reducing dietary amino acid needs.

    PubMed

    Rees, W D; Flint, H J; Fuller, M F

    1990-07-01

    Rapid developments in transgenic animal technology make it possible to consider introducing new metabolic capabilities into animals, using genes from other species. Lysine and threonine are both essential amino acids in mammals, and are commonly the first and second limiting amino acids, respectively, for protein accretion in pigs and poultry fed cereal based diets. Here we consider the potential for transgenic animals with microbial biosynthetic pathways for these amino acids.

  2. Amino acids in the cultivation of mammalian cells.

    PubMed

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.

  3. [Detection of amino acids based on terahertz spectroscopy].

    PubMed

    Tang, Zhong-feng; Lin, Hai-tao; Chen, Xiao-wei; Zhang, Zeng-fang

    2009-09-01

    Terahertz (THz) is the frequency region ranging from 0.1 to 2.0 THz, which lies in the far-infrared region. Compared to Fourier transform infrared spectra (FTIR), terahertz time-domain spectra (THz-TDS) has low energy, high signal-to-noise ratio (SNR) and is non-ionizing radiation. Low-frequency vibrational modes of some amino acids, such as torsional and collective vibrational modes and hydrogen-bond modes, exist in the THz region. Amino acids are important organic compounds and are the fundamental components of proteins. Amino acids can exist with a highly ordered crystal structure linked by hydrogen intermolecular bonds in the solid phase. The absorption spectra of amino acids in the THz region show marked differences while mid-infrared absorption spectra usually show very little difference. Up to now, absorption spectra of twenty kinds of amino acids have been studied by many researchers using THz technique; the quantitative analysis of amino acids by THZ-TDS is also included. Investigation of THz spectra of amino acids are of fundamental interests, and will lead to further understanding of low-frequency vibrations of protein/DNA and relevant biological reactions and activities. In the present paper, the latest progress in absorption spectra of amino acids determined by THz spectroscopy is reviewed and a database is built. Some brief remarks on future developments in and prospects for THz application in amino acids are also provided.

  4. Prebiotic Amino Acid Thioester Synthesis: Thiol-Dependent Amino Acid Synthesis from Formose substrates (Formaldehyde and Glycolaldehyde) and Ammonia

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1998-01-01

    Formaldehyde and glycolaldehyde (substrates of the formose autocatalytic cycle) were shown to react with ammonia yielding alanine and homoserine under mild aqueous conditions in the presence of thiol catalysts. Since similar reactions carried out without ammonia yielded alpha-hydroxy acid thioesters, the thiol-dependent synthesis of alanine and homoserine is presumed to occur via amino acid thioesters-intermediates capable of forming peptides. A pH 5.2 solution of 20 mM formaldehyde, 20 mM glycolaldehyde, 20 mM ammonium chloride, 23 mM 3-mercaptopropionic acid, and 23 mM acetic acid that reacted for 35 days at 40 C yielded (based on initial formaldehyde) 1.8% alanine and 0.08% homoserine. In the absence of thiol catalyst, the synthesis of alanine and homoserine was negligible. Alanine synthesis required both formaldehyde and glycolaldehyde, but homoserine synthesis required only glycolaldehyde. At 25 days the efficiency of alanine synthesis calculated from the ratio of alanine synthesized to formaldehyde reacted was 2.1%, and the yield (based on initial formaldehyde) of triose and tetrose intermediates involved in alanine and homoserine synthesis was 0.3 and 2.1%, respectively. Alanine synthesis was also seen in similar reactions containing only 10 mM each of aldehyde substrates, ammonia, and thiol. The prebiotic significance of these reactions that use the formose reaction to generate sugar intermediates that are converted to reactive amino acid thioesters is discussed.

  5. Amino acid metabolism and protein synthesis in malarial parasites*

    PubMed Central

    Sherman, I. W.

    1977-01-01

    Malaria-infected red cells and free parasites have limited capabilities for the biosynthesis of amino acids. Therefore, the principal amino acid sources for parasite protein synthesis are the plasma free amino acids and host cell haemoglobin. Infected cells and plasmodia incorporate exogenously supplied amino acids into protein. However, the hypothesis that amino acid utilization (from an external source) is related to availability of that amino acid in haemoglobin is without universal support: it is true for isoleucine and for Plasmodium knowlesi and P. falciparum, but not for methionine, cysteine, and other amino acids, and it does not apply to P. lophurae. More by default than by direct evidence, haemoglobin is believed to be the main amino acid reservoir available to the intraerythrocytic plasmodium. Haemoglobin, ingested via the cytostome, is held in food vacuoles where auto-oxidation takes place. As a consequence, haem is released and accumulates in the vacuole as particulate haemozoin (= malaria pigment). Current evidence favours the view that haemozoin is mainly haematin. Acid and alkaline proteases (identified in crude extracts from mammalian and avian malarias) are presumably secreted directly into the food vacuole. They then digest the denatured globin and the resulting amino acids are incorporated into parasite protein. Cell-free protein synthesizing systems have been developed using P. knowlesi and P. lophurae ribosomes. In the main these systems are typically eukaryotic. Studies of amino acid metabolism are exceedingly limited. Arginine, lysine, methionine, and proline are incorporated into protein, whereas glutamic acid is metabolized via an NADP-specific glutamic dehydrogenase. Glutamate oxidation generates NADPH and auxiliary energy (in the form of α-ketoglutarate). The role of red cell glutathione in the economy of the parasite remains obscure. Important goals for future research should be: quantitative assessment of the relative importance of

  6. Amino Acids Regulate mTORC1 by an Obligate Two-step Mechanism.

    PubMed

    Dyachok, Julia; Earnest, Svetlana; Iturraran, Erica N; Cobb, Melanie H; Ross, Elliott M

    2016-10-21

    The mechanistic target of rapamycin complex 1 (mTORC1) coordinates cell growth with its nutritional, hormonal, energy, and stress status. Amino acids are critical regulators of mTORC1 that permit other inputs to mTORC1 activity. However, the roles of individual amino acids and their interactions in mTORC1 activation are not well understood. Here we demonstrate that activation of mTORC1 by amino acids includes two discrete and separable steps: priming and activation. Sensitizing mTORC1 activation by priming amino acids is a prerequisite for subsequent stimulation of mTORC1 by activating amino acids. Priming is achieved by a group of amino acids that includes l-asparagine, l-glutamine, l-threonine, l-arginine, l-glycine, l-proline, l-serine, l-alanine, and l-glutamic acid. The group of activating amino acids is dominated by l-leucine but also includes l-methionine, l-isoleucine, and l-valine. l-Cysteine predominantly inhibits priming but not the activating step. Priming and activating steps differ in their requirements for amino acid concentration and duration of treatment. Priming and activating amino acids use mechanisms that are distinct both from each other and from growth factor signaling. Neither step requires intact tuberous sclerosis complex of proteins to activate mTORC1. Concerted action of priming and activating amino acids is required to localize mTORC1 to lysosomes and achieve its activation.

  7. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  8. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-04-23

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  9. Amino acid fermentation at the origin of the genetic code

    PubMed Central

    2012-01-01

    There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments

  10. Receptor-level interrelationships of amino acids and the adequate amino acid type hormones in Tetrahymena: a receptor evolution model.

    PubMed

    Csaba, G; Darvas, Z

    1986-01-01

    Histidine stimulates the phagocytosis of Tetrahymena to the same extent as histamine, and also stimulates its division, which histamine does not. Tyrosine and diiodotyrosine equally stimulate the growth of the Tetrahymena. Both amino acids inhibit the characteristic influence of the adequate amino acid hormone when added to Tetrahymena culture 72 h in advance of it. Primary interaction with diiodotyrosine and tyrosine notably increases the cellular growth rate. Histamine has a similar, although less notable effect than histidine. In the light of these experimental observations there is reason to postulate that the receptors of the amino acid hormones have developed from amino acid receptors.

  11. Identification of a novel amino acid racemase from a hyperthermophilic archaeon Pyrococcus horikoshii OT-3 induced by D-amino acids.

    PubMed

    Kawakami, Ryushi; Ohmori, Taketo; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2015-08-01

    To date, there have been few reports analyzing the amino acid requirement for growth of hyperthermophilic archaea. We here found that the hyperthermophilic archaeon Pyrococcus horikoshii OT-3 requires Thr, Leu, Val, Phe, Tyr, Trp, His and Arg in the medium for growth, and shows slow growth in medium lacking Met or Ile. This largely corresponds to the presence, or absence, of genes related to amino acid biosynthesis in its genome, though there are exceptions. The amino acid requirements were dramatically lost by addition of D-isomers of Met, Leu, Val, allo-Ile, Phe, Tyr, Trp and Arg. Tracer analysis using (14)C-labeled D-Trp showed that D-Trp in the medium was used as a protein component in the cells, suggesting the presence of D-amino acid metabolic enzymes. Pyridoxal 5'-phosphate (PLP)-dependent racemase activity toward Met, Leu and Phe was detected in crude extract of P. horikoshii and was enhanced in cells grown in the medium supplemented with D-amino acids, especially D-allo-Ile. The gene encoding the racemase was narrowed down to one open reading frame on the basis of enzyme purification from P. horikoshii cells, and the recombinant enzyme exhibited PLP-dependent racemase activity toward several amino acids, including Met, Leu and Phe, but not Pro, Asp or Glu. This is the first report showing the presence in a hyperthermophilic archaeon of a PLP-dependent amino acid racemase with broad substrate specificity that is likely responsible for utilization of D-amino acids for growth.

  12. Preferential Treatment: Interaction Between Amino Acids and Minerals

    NASA Astrophysics Data System (ADS)

    Crapster-Pregont, E. J.; Cleaves, H. J.; Hazen, R. M.

    2008-12-01

    Amino acids are the building blocks of proteins and are important for some models of the origin of life. Polymerization of amino acids from dilute solution is unlikely without a scaffold or catalyst. The surfaces of early Earth minerals are the most likely candidates for this role. The surface adsorption behavior of 12 amino acids (L-alanine, L-serine, L-aspartic acid, L-proline, L- phenylalanine, L-valine, L-arginine, d-amino valeric acid, glycine, L-lysine, L-isoleucine, and B-alanine) on 21 minerals (quartz, calcite, enstatite, illite, olivine, pyrrhotite, pyrite, alkali basalt, albite, analcime, chlorite, barite, hydroxyl apatite, hematite, magnetite, aluminum hydroxide, kaolin, silica gel, corundum, rutile, and montmorillonite) was determined via batch adsorption experiments. Absorption was determined for concentrations between 10-4M and 10-6M in the presence of 0.1M NaCl, and between pH values of 3 and 9 at 25 degrees C. The equilibrated solutions were centrifuged, filtered, derivatized using a fluorescent amino group tag (dansyl-chloride) and analyzed by HPLC. Adsorption was standardized using BET surface area measurements for each mineral to give the number of mols of each amino acid adsorbed per square meter for each mineral. The results indicate an enormous difference in the adsorption of amino acids between minerals, along with major differences in the adsorption of individual amino acids on the same mineral surface. There is also a change in the absorbance of amino acids as the pH changes. Many previous studies of amino acid concentration and catalysis by minerals have used clay minerals because of their high surface areas, however, this data suggests that the surfaces of minerals such as calcite, quartz and pyrite have even higher affinities for amino acids. The results suggest mineral surfaces that could be optimal locations for the polymerization of molecules linked to the origin of life.

  13. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    PubMed

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  14. Synthesis of gold nanoparticles using various amino acids.

    PubMed

    Maruyama, Tatsuo; Fujimoto, Yuhei; Maekawa, Tetsuya

    2015-06-01

    Gold nanoparticles (4-7nm) were synthesized from tetraauric acid using various amino acids as reducing and capping agents. The gold nanoparticles were produced from the incubation of a AuCl4(-) solution with an amino acid at 80°C for 20min. Among the twenty amino acids tested, several amino acids produced gold nanoparticles. The color of the nanoparticle solutions varied with the amino acids used for the reduction. We adopted l-histidine as a reducing agent and investigated the effects of the synthesis conditions on the gold nanoparticles. The His and AuCl4(-) concentrations affected the size of the gold nanoparticles and their aggregates. The pH of the reaction solution also affected the reaction yields and the shape of the gold nanoparticles.

  15. Polysulfone affinity membranes for the treatment of amino acid mixtures.

    PubMed

    Rodemann, K; Staude, E

    1995-06-20

    Affinity membranes for the treatment of solutions containing amino acids were obtained via lithiating polysulfone that was subsequently converted with glycidylether. From this polymer asymmetric ultrafiltration membranes were cast. The membranes were reacted with iminodiacetic acid yielding membranes fitted out with bidentate chelates. The same reaction path was applied to commercially available symmetric microfiltration membranes. The chelate-bearing membranes were complexed with Cu, Ni, and Zn ions. For the experiments with amino acids only the Cu-complexed membranes were used. The complexation constants for histidine and tryptophan for six different membranes were determined. Because of the affinity of these two amino acids for the complexed Cu ions, they could easily be separated from solutions containing amino acids such as alanine, glycine, and valine. Also, concentrating very dilute amino acid solutions was carried out successfully.

  16. Free amino acids in botanicals and botanical preparations.

    PubMed

    Carratù, B; Boniglia, C; Giammarioli, S; Mosca, M; Sanzini, E

    2008-06-01

    Numerous studies were carried out about aminoacidic composition of vegetable proteins, but information about the free amino acid pool and the role of these substances is very incomplete. The aim of this paper was to contribute to the scarce knowledge concerning the composition of free amino acids in botanicals and botanical preparations widely used as food, in dietary supplements, and in pharmaceutical products. This work studied the composition of free amino acids, identified the major components of 19 species of plants, and evaluated the influence of different types of extraction on the amino acid profile. Amino acids were determined using an automatic precolumn derivatization with fluorenylmethyl-chloroformate and reversed-phase liquid chromatography with fluorescence and ultraviolet detection. The amounts of total free amino acids varied widely between plants, from approximately 12 g in 100 g of Echinacea pallida extract to less than 60 mg in the same amount of Coleus forskohlii, Garcinia cambogia, and Glycine max. In 13 plants arginine, asparagine, glutamine, proline, and gamma-aminobutyric acid were the free amino acids found in preponderant quantities. The levels of free amino acids above the quantification limit in 36 assayed samples of botanicals, extracts, and supplements are shown.

  17. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    NASA Astrophysics Data System (ADS)

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun'ichi

    2015-12-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C60) and fullerene nanowhiskers (FNWs). C60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C60. The theoretical simulations showed the bonding distance between C60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val < Phe < Pro < Asp < Ala < Trp < Tyr < Arg < Leu. However, the simulation was not consistent with our experimental results. The adsorption of albumin (a protein) by C60 showed the effect on the side chains of Try and Trp. The structure of albumin was changed a little by C60. In our study Try and Tyr were hardly adsorbed by C60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides.

  18. Gas-phase acidities of aspartic acid, glutamic acid, and their amino acid amides

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Matus, Myrna H.; Velazquez, Hector Adam; Dixon, David A.; Cassady, Carolyn J.

    2007-09-01

    Gas-phase acidities (GA or [Delta]Gacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage's importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3-4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  19. Polymerization of beta-amino acids in aqueous solution

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  20. Terrestrial evolution of polymerization of amino acids - Heat to ATP

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Nakashima, T.

    1981-01-01

    Sets of amino acids containing sufficient trifunctional monomer are thermally polymerized at temperatures such as 65 deg; the amino acids order themselves. Various polymers have diverse catalytic activities. The polymers aggregate, in aqueous solution, to cell-like structures having those activities plus emergent properties, e.g. proliferatability. Polyamino acids containing sufficient lysine catalyze conversion of free amino acids, by ATP, to small peptides and a high molecular weight fraction. The lysine-rich proteinoid is active in solution, within suspensions of cell-like particles, or in other particles composed of lysine-rich proteinoid and homopolyribonucleotide. Selectivities are observed. An archaic polyamino acid prelude to coded protein synthesis is indicated.

  1. The Path of Carbon in Photosynthesis II. Amino Acids

    DOE R&D Accomplishments Database

    Stepka, W.; Benson, A. A.; Calvin, M.

    1948-05-25

    The radioactive amino acid's synthesized from C{sup 14}O{sub 2} by green algae both in the light and in the dark after CO{sub 2}-free preillumination have been separated and identified using paper chromatography and radioautography. The radioactive amino acids identified were aspartic acid, alanine and smaller amounts of 3- and 4-carbon amino acids. This finding as well as the total absence of radioactive glutamic acid substantiates the mechanism for reduction of CO{sub 2} previously postulated by members of this laboratory.

  2. Selective amino acid substitutions convert the creatine transporter to a gamma-aminobutyric acid transporter.

    PubMed

    Dodd, Joanna R; Christie, David L

    2007-05-25

    The creatine transporter (CRT) is a member of a large family of sodium-dependent neurotransmitter and amino acid transporters. The CRT is closely related to the gamma-aminobutyric acid (GABA) transporter, GAT-1, yet GABA is not an effective substrate for the CRT. The high resolution structure of a prokaryotic homologue, LeuT has revealed precise details of the substrate binding site for leucine (Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., and Gouaux, E. (2005) Nature 437, 215-223). We have now designed mutations based on sequence comparisons of the CRT with GABA transporters and the LeuT structural template in an attempt to alter the substrate specificity of the CRT. Combinations of two or three amino acid substitutions at four selected positions resulted in the loss of creatine transport activity and gain of a specific GABA transport function. GABA transport by the "gain of function" mutants was sensitive to nipecotic acid, a competitive inhibitor of GABA transporters. Our results show LeuT to be a good structural model to identify amino acid residues involved in the substrate and inhibitor selectivity of eukaryotic sodium-dependent neurotransmitter and amino acid transporters. However, modification of the binding site alone appears to be insufficient for efficient substrate translocation. Additional residues must mediate the conformational changes required for the diffusion of substrate from the binding site to the cytoplasm.

  3. Amino Acid Racemization and the Preservation of Ancient DNA

    NASA Technical Reports Server (NTRS)

    Poinar, Hendrik N.; Hoss, Matthias

    1996-01-01

    The extent of racemization of aspartic acid, alanine, and leucine provides criteria for assessing whether ancient tissue samples contain endogenous DNA. In samples in which the D/L ratio of aspartic acid exceeds 0.08, ancient DNA sequences could not be retrieved. Paleontological finds from which DNA sequences purportedly millions of years old have been reported show extensive racemization, and the amino acids present are mainly contaminates. An exception is the amino acids in some insects preserved in amber.

  4. Amino Acids in Nectar Enhance Longevity of Female Culex quinquefasciatus

    DTIC Science & Technology

    2010-01-01

    and that some insects show a preference for carbohydrate sources containing amino acids (Alm et al., 1990; Mevi-Schutz and Erhardt, 2003b), has led...to an increased interest in the role that they play in insect life histories (Baker and Baker, 1973). Some insects rely on nectar as a primary source ...2003a; Hill and Pierce, 1989). Certain flowers contain high levels of amino acids, and have been studied as potentially important sources for amino

  5. Natural toxins that affect plant amino acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  6. Boron containing amino acid compounds and methods for their use

    DOEpatents

    Glass, John D.; Coderre, Jeffrey A.

    2000-01-01

    The present invention provides new boron containing amino acid compounds and methods for making these compounds by contacting melphalan or another nitrogen mustard derivative and sodium borocaptate. The present invention also provides a method of treating a mammal having a tumor by administering to the mammal a therapeutically effective amount of the new boron containing amino acid compounds.

  7. Boron containing amino acid compounds and methods for their use

    SciTech Connect

    Glass, J.D.; Coderre, J.A.

    2000-01-25

    The present invention provides new boron containing amino acid compounds and methods for making these compounds by contacting melphalan or another nitrogen mustard derivative and sodium borocaptate. The present invention also provides a method of treating a mammal having a tumor by administering to the mammal a therapeutically effective amount of the new boron containing amino acid compounds.

  8. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    PubMed Central

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves II, H. James

    2015-01-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or “chemistry space.” Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set. PMID:25802223

  9. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    NASA Astrophysics Data System (ADS)

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves, H. James, II

    2015-03-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or ``chemistry space.'' Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set.

  10. Deaminative and decarboxylative catalytic alkylation of amino acids with ketones.

    PubMed

    Kalutharage, Nishantha; Yi, Chae S

    2013-12-16

    It cuts two ways: The cationic [Ru-H] complex catalyzes selective coupling of α- and β-amino acids with ketones to form α-alkylated ketone products. The reaction involves CC and CN bond cleavage which result in regio- and stereoselective alkylation using amino acids. A broad substrate scope and high functional-group tolerance is demonstrated.

  11. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories

    PubMed Central

    2016-01-01

    The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplified by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large l-enantiomeric excesses of some extraterrestrial protein amino acids (up to ∼60%) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work. PMID:27413780

  12. Parenteral amino acid intakes in critically ill children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parenteral amino acid formulas used in parenteral nutrition have a variable composition. To determine the amino acid intake of parenterally fed, critically ill children, and compare it with recommended dietary allowances (RDA) established by the Institute of Medicine (IOM), we retrospectively review...

  13. Amino acids in a carbonaceous chondrite from Antarctica

    NASA Technical Reports Server (NTRS)

    Kotra, R. K.; Shimoyama, A.; Ponnamperuma, C.; Hare, P. E.

    1979-01-01

    A carbonaceous chondrite from the Antarctic, referred to as the Allan Hills meteorite 77306, appears to be free from terrestrial organic contamination. The presence of both protein and non-protein amino acids and an equal abundance of D- and L-enantiomers of amino acids, is testimony to the extraterrestrial nature of these compounds.

  14. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  15. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  16. Interactive Hangman Teaches Amino Acid Structures and Abbreviations

    ERIC Educational Resources Information Center

    Pennington, Britney O.; Sears, Duane; Clegg, Dennis O.

    2014-01-01

    We developed an interactive exercise to teach students how to draw the structures of the 20 standard amino acids and to identify the one-letter abbreviations by modifying the familiar game of "Hangman." Amino acid structures were used to represent single letters throughout the game. To provide additional practice in identifying…

  17. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  18. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  19. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2009-04-28

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  20. Amino acid composition predicts prion activity.

    PubMed

    Afsar Minhas, Fayyaz Ul Amir; Ross, Eric D; Ben-Hur, Asa

    2017-04-10

    Many prion-forming proteins contain glutamine/asparagine (Q/N) rich domains, and there are conflicting opinions as to the role of primary sequence in their conversion to the prion form: is this phenomenon driven primarily by amino acid composition, or, as a recent computational analysis suggested, dependent on the presence of short sequence elements with high amyloid-forming potential. The argument for the importance of short sequence elements hinged on the relatively-high accuracy obtained using a method that utilizes a collection of length-six sequence elements with known amyloid-forming potential. We weigh in on this question and demonstrate that when those sequence elements are permuted, even higher accuracy is obtained; we also propose a novel multiple-instance machine learning method that uses sequence composition alone, and achieves better accuracy than all existing prion prediction approaches. While we expect there to be elements of primary sequence that affect the process, our experiments suggest that sequence composition alone is sufficient for predicting protein sequences that are likely to form prions. A web-server for the proposed method is available at http://faculty.pieas.edu.pk/fayyaz/prank.html, and the code for reproducing our experiments is available at http://doi.org/10.5281/zenodo.167136.

  1. The tangled bank of amino acids

    PubMed Central

    Pollock, David D.

    2016-01-01

    Abstract The use of amino acid substitution matrices to model protein evolution has yielded important insights into both the evolutionary process and the properties of specific protein families. In order to make these models tractable, standard substitution matrices represent the average results of the evolutionary process rather than the underlying molecular biophysics and population genetics, treating proteins as a set of independently evolving sites rather than as an integrated biomolecular entity. With advances in computing and the increasing availability of sequence data, we now have an opportunity to move beyond current substitution matrices to more interpretable mechanistic models with greater fidelity to the evolutionary process of mutation and selection and the holistic nature of the selective constraints. As part of this endeavour, we consider how epistatic interactions induce spatial and temporal rate heterogeneity, and demonstrate how these generally ignored factors can reconcile standard substitution rate matrices and the underlying biology, allowing us to better understand the meaning of these substitution rates. Using computational simulations of protein evolution, we can demonstrate the importance of both spatial and temporal heterogeneity in modelling protein evolution. PMID:27028523

  2. Marine Planktonic Archaea Take Up Amino Acids

    PubMed Central

    Ouverney, Cleber C.; Fuhrman, Jed A.

    2000-01-01

    Archaea are traditionally thought of as “extremophiles,” but recent studies have shown that marine planktonic Archaea make up a surprisingly large percentage of ocean midwater microbial communities, up to 60% of the total prokaryotes. However, the basic physiology and contribution of Archaea to community microbial activity remain unknown. We have studied Archaea from 200-m depths of the northwest Mediterranean Sea and the Pacific Ocean near California, measuring the archaeal activity under simulated natural conditions (8 to 17°C, dark and anaerobic) by means of a method called substrate tracking autoradiography fluorescence in situ hybridization (STARFISH) that simultaneously detects specific cell types by 16S rRNA probe binding and activity by microautoradiography. In the 200-m-deep Mediterranean and Pacific samples, cells binding the archaeal probes made up about 43 and 14% of the total countable cells, respectively. Our results showed that the Archaea are active in the uptake of dissolved amino acids from natural concentrations (nanomolar) with about 60% of the individuals in the archaeal communities showing measurable uptake. Bacteria showed a similar proportion of active cells. We concluded that a portion of these Archaea is heterotrophic and also appears to coexist successfully with Bacteria in the same water. PMID:11055931

  3. Electronic coupling through natural amino acids

    SciTech Connect

    Berstis, Laura; Beckham, Gregg T. E-mail: gregg.beckham@nrel.gov; Crowley, Michael F. E-mail: gregg.beckham@nrel.gov

    2015-12-14

    Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green’s function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design.

  4. Amino Acid Carbamates As Prodrugs Of Resveratrol

    PubMed Central

    Mattarei, Andrea; Azzolini, Michele; La Spina, Martina; Zoratti, Mario; Paradisi, Cristina; Biasutto, Lucia

    2015-01-01

    Resveratrol (3, 5, 4′-trihydroxy-trans-stilbene), a plant polyphenol, has important drug-like properties, but its pharmacological exploitation in vivo is hindered by its rapid transformation via phase II conjugative metabolism. One approach to bypass this problem relies on prodrugs. We report here the synthesis, characterization, stability and in vivo pharmacokinetic behaviour of prodrugs of resveratrol in which the OH groups are engaged in an N-monosubstituted carbamate ester (-OC(O)NHR) linkage with a natural amino acid (Leu, Ile, Phe, Thr) to prevent conjugation and modulate the physicochemical properties of the molecule. We also report a convenient, high-yield protocol to obtain derivatives of this type. The new carbamate ester derivatives are stable at pH 1, while they undergo slow hydrolysis at physiological pH and hydrolyse with kinetics suitable for use in prodrugs in whole blood. After administration to rats by oral gavage the isoleucine-containing prodrug was significantly absorbed, and was present in the bloodstream as non-metabolized unaltered or partially deprotected species, demonstrating effective shielding from first-pass metabolism. We conclude that prodrugs based on the N-monosubstituted carbamate ester bond have the appropriate stability profile for the systemic delivery of phenolic compounds. PMID:26463125

  5. Delivery of extraterrestrial amino acids to the primitive Earth. Exposure experiments in Earth orbit.

    PubMed

    Barbier, B; Bertrand, M; Boillot, F; Chabin, A; Chaput, D; Henin, O; Brack, A

    1998-06-01

    A large collection of micrometeorites has been recently extracted from Antarctic old blue ice. In the 50 to 100 micrometers size range, the carbonaceous micrometeorites represent 80% of the samples and contain 2% of carbon. They might have brought more carbon to the surface of the primitive Earth than that involved in the present surficial biomass. Amino acids such as "-amino isobutyric acid have been identified in these Antarctic micrometeorites. Enantiomeric excesses of L-amino acids have been detected in the Murchison meteorite. A large fraction of homochiral amino acids might have been delivered to the primitive Earth via meteorites and micrometeorites. Space technology in Earth orbit offers a unique opportunity to study the behaviour of amino acids required for the development of primitive life when they are exposed to space conditions, either free or associated with tiny mineral grains mimicking the micrometeorites. Our objectives are to demonstrate that porous mineral material protects amino acids in space from photolysis and racemization (the conversion of L-amino acids into a mixture of L- and D-molecules) and to test whether photosensitive amino acids derivatives can polymerize in mineral grains under space conditions. The results obtained in BIOPAN-1 and BIOPAN-2 exposure experiments on board unmanned satellite FOTON are presented.

  6. Amino Acid Analyses of Acid Hydrolysates in Desert Varnish

    NASA Technical Reports Server (NTRS)

    Perry, Randall S.; Staley, James T.; Dworkin, Jason P.; Engel, Mike

    2001-01-01

    There has long been a debate as to whether rock varnish deposits are microbially mediated or are deposited by inorganic processes. Varnished rocks are found throughout the world primarily in arid and semi-arid regions. The varnish coats are typically up to 200 microns thick and are composed of clays and alternating layers enriched in manganese and iron oxides. The individual layers range in thickness from 1 micron to greater than 10 microns and may continue laterally for more than a 100 microns. Overlapping botryoidal structures are visible in thin section and scanning electron micrographs. The coatings also include small amounts of organic mater and detrital grains. Amino-acid hydrolysates offer a means of assessing the organic composition of rock varnish collected from the Sonoran Desert, near Phoenix, AZ. Chromatographic analyses of hydrolysates from powdered samples of rock varnish suggest that the interior of rock varnish is relatively enriched in amino acids and specifically in d-alanine and glutamic acid. Peptidoglycan (murein) is the main structural component of gram-positive bacterial cell walls. The d-enantiomer of alanine and glutamic acid are specific to peptidoglycan and are consequently an indicator for the presence of bacteria. D-alanine is also found in teichoic acid which is only found in gram-positive bacteria. Several researchers have cultured bacteria from the surface of rock varnish and most have been gram-positive, suggesting that gram-positive bacteria are intimately associated with varnish coatings and may play a role in the formation of varnish coatings.

  7. Molecular cloning and amino acid sequence of human 5-lipoxygenase

    SciTech Connect

    Matsumoto, T.; Funk, C.D.; Radmark, O.; Hoeoeg, J.O.; Joernvall, H.; Samuelsson, B.

    1988-01-01

    5-Lipoxygenase (EC 1.13.11.34), a Ca/sup 2 +/- and ATP-requiring enzyme, catalyzes the first two steps in the biosynthesis of the peptidoleukotrienes and the chemotactic factor leukotriene B/sub 4/. A cDNA clone corresponding to 5-lipoxygenase was isolated from a human lung lambda gt11 expression library by immunoscreening with a polyclonal antibody. Additional clones from a human placenta lambda gt11 cDNA library were obtained by plaque hybridization with the /sup 32/P-labeled lung cDNA clone. Sequence data obtained from several overlapping clones indicate that the composite DNAs contain the complete coding region for the enzyme. From the deduced primary structure, 5-lipoxygenase encodes a 673 amino acid protein with a calculated molecular weight of 77,839. Direct analysis of the native protein and its proteolytic fragments confirmed the deduced composition, the amino-terminal amino acid sequence, and the structure of many internal segments. 5-Lipoxygenase has no apparent sequence homology with leukotriene A/sub 4/ hydrolase or Ca/sup 2 +/-binding proteins. RNA blot analysis indicated substantial amounts of an mRNA species of approx. = 2700 nucleotides in leukocytes, lung, and placenta.

  8. Essential dietary amino acids for growth of larvae of the yellow mealworm, Tenebrio molitor L.

    PubMed

    Davis, G R

    1975-08-01

    Larvae of the yellow mealworm, Tenebrio molitor L., have been used to evaluate nutritional quality of proteins and protein isolates. However, such investigations have been complicated by lack of knowledge of dietary requirements of the larvae. To determine essential dietary amino acids for growth of Tenebrio molitor, single amino acids were deleted from the amino acid mixture of the diet. Diets were maintained isonitrogenous with supplementary glycine and, in the case of deleted glycine, with glutamic acid. Growth, as measured by gain in weight, and survival were observed over a 4-week period at 27 plus or minus 0.25 degrees and 65 plus or minus 5% relative humidity. The results indicate that larvae of Tenebrio molitor require a dietary source of the same 10 amino acids essential for growth in rats, other vertebrates, and some protozoa. They also showed that serine, tyrosine, glutamic acid, and possibly glycine were dispensable for growth in this insect. Alanine, cystine, proline, and aspartic acid appeared semidispensable. Survival over the 4-week experimental period was unaffected by deleting amino acids from the diet. The results are discussed in relation to amino acid requirements of other insects and to suggested improvement of the diet of the present investigation.

  9. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  10. Stardust, Supernovae and the Chirality of the Amino Acids

    SciTech Connect

    Boyd, R N; Kajino, T; Onaka, T

    2011-03-09

    A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.

  11. Crystallization of jarosite in the presence of amino acids

    NASA Astrophysics Data System (ADS)

    Crabbe, Harrison; Fernandez, Natalya; Jones, Franca

    2015-04-01

    Jarosite was formed in the presence of five amino acids at two pHs, namely 1.75 and 2.9, to determine what impact amino acids have on its formation. It was found that at the lower pH glycine was the most potent in terms of morphological and yield impacts. XRD analysis showed that incorporation of the amino acid occurs at this low pH for glycine and proline. Dynamic light scattering studies showed that glycine impacts significantly on the jarosite nucleation rate while proline and alanine do not. At the higher pH all of the amino acids had much less impact on morphology or yield. At pH 3 the solids were found to be a 3-phase system consisting of goethite, schwertmannite and jarosite. In this case, alanine appeared to stabilise the presence of schwertmannite more than the other amino acids.

  12. Peptide and amino acid separation with nanofiltration membranes

    SciTech Connect

    Tsuru, Toshinori; Shutou, Takatoshi; Nakao, Shin-Ichi; Kimura, Shoji )

    1994-05-01

    Several nanofiltration membranes [UTC-20, 60 (Toray Industries), NF-40 (Film-Tech Corporation), Desal-5, G-20 (Desalination Systems), and NTR-7450 (Nitto Electric Industrial Co.)] were applied to separate amino acids and peptides on the basis of charge interaction with the membranes since most of them contain charged functional groups. Nanofiltration membranes having a molecular weight cutoff (MWCO) below 300 (UTC-20, 60, NF-40 and Desal-5) were not suitable for separation of amino acids. On the other hand, separation of amino acids and peptides with nanofiltration membranes having a MWCO around 2000-3000 (NTR-7450 and G-20) was satisfactory based on a charge effect mechanism; charged amino acids and peptides were rejected while neutral amino acids and peptides permeated through the membranes. Separation of peptides having different isoelectric points with nanofiltration membranes was possible by adjusting the pH. 15 refs., 11 figs., 4 tabs.

  13. Wet, Carbonaceous Asteroids: Altering Minerals, Changing Amino Acids

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2011-04-01

    Many carbonaceous chondrites contain alteration products from water-rock interactions at low temperature and organic compounds. A fascinating fact known for decades is the presence in some of them of an assortment of organic compounds, including amino acids, sometimes called the building blocks of life. Murchison and other CM carbonaceous chondrites contain hundreds of amino acids. Early measurements indicated that the amino acids in carbonaceous chondrites had equal proportions of L- and D-structures, a situation called racemic. This was in sharp contrast to life on Earth, which heavily favors L- forms. However, beginning in 1997, John Cronin and Sandra Pizzarello (Arizona State University) found L- excesses in isovaline and several other amino acids in the Murchison carbonaceous chondrite. In 2009, Daniel Glavin and Jason Dworkin (Astrobiology Analytical Lab, Goddard Space Flight Center) reported the first independent confirmation of L-isovaline excesses in Murchison using a different analytical technique than employed by Cronin and Pizzarello. Inspired by this work, Daniel Glavin, Michael Callahan, Jason Dworkin, and Jamie Elsila (Astrobiology Analytical Lab, Goddard Space Flight Center), have done an extensive study of the abundance and symmetry of amino acids in carbonaceous chondrites that experienced a range of alteration by water in their parent asteroids. The results show that amino acids are more abundant in the less altered meteorites, implying that aqueous processing changes the mix of amino acids. They also confirmed the enrichment in L-structures of some amino acids, especially isovaline, confirming earlier work. The authors suggest that aqueously-altered planetesimals might have seeded the early Earth with nonracemic amino acids, perhaps explaining why life from microorganisms to people use only L- forms to make proteins. The initial imbalance caused by non-biologic processes in wet asteroids might have been amplified by life on Earth. Alternatively

  14. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    PubMed

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  15. Fatty acid-amino acid conjugates diversification in lepidopteran caterpillars.

    PubMed

    Yoshinaga, Naoko; Alborn, Hans T; Nakanishi, Tomoaki; Suckling, David M; Nishida, Ritsuo; Tumlinson, James H; Mori, Naoki

    2010-03-01

    Fatty acid amino acid conjugates (FACs) have been found in noctuid as well as sphingid caterpillar oral secretions; in particular, volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants. These induced volatiles, in turn, attract natural enemies of the caterpillars. In a previous study, we showed that N-linolenoyl-L-glutamine in larval Spodoptera litura plays an important role in nitrogen assimilation which might be an explanation for caterpillars synthesizing FACs despite an increased risk of attracting natural enemies. However, the presence of FACs in lepidopteran species outside these families of agricultural interest is not well known. We conducted FAC screening of 29 lepidopteran species, and found them in 19 of these species. Thus, FACs are commonly synthesized through a broad range of lepidopteran caterpillars. Since all FAC-containing species had N-linolenoyl-L-glutamine and/or N-linoleoyl-L-glutamine in common, and the evolutionarily earliest species among them had only these two FACs, these glutamine conjugates might be the evolutionarily older FACs. Furthermore, some species had glutamic acid conjugates, and some had hydroxylated FACs. Comparing the diversity of FACs with lepidopteran phylogeny indicates that glutamic acid conjugates can be synthesized by relatively primitive species, while hydroxylation of fatty acids is limited mostly to larger and more developed macrolepidopteran species.

  16. Quantitative analysis of 17 amino acids in tobacco leaves using an amino acid analyzer and chemometric resolution.

    PubMed

    Zeng, Yihang; Cai, Wensheng; Shao, Xueguang

    2015-06-01

    A method was developed for quantifying 17 amino acids in tobacco leaves by using an A300 amino acid analyzer and chemometric resolution. In the method, amino acids were eluted by the buffer solution on an ion-exchange column. After reacting with ninhydrin, the derivatives of amino acids were detected by ultraviolet detection. Most amino acids are separated by the elution program. However, five peaks of the derivatives are still overlapping. A non-negative immune algorithm was employed to extract the profiles of the derivatives from the overlapping signals, and then peak areas were adopted for quantitative analysis of the amino acids. The method was validated by the determination of amino acids in tobacco leaves. The relative standard deviations (n = 5) are all less than 2.54% and the recoveries of the spiked samples are in a range of 94.62-108.21%. The feasibility of the method was proved by analyzing the 17 amino acids in 30 tobacco leaf samples.

  17. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    NASA Technical Reports Server (NTRS)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  18. Screening of central functions of amino acids and their metabolites for sedative and hypnotic effects using chick models.

    PubMed

    Furuse, Mitsuhiro

    2015-09-05

    The chick has a practical advantage in the screening process in that chicks require only small quantities of drugs. The chick separation stress paradigm has traditionally been recognized as a valid form of anxiolytic screening. Further, chick behavior involving standing motionless with eyes closed or sitting motionless with head drooped is nearly always associated with electrophysiological sleep. When centrally administered, some DNA-encoded L-α-amino acids, as well as some DNA-non-encoded amino acids, such as metabolites of L-α-amino acids, D-amino acid and β-amino acid, have shown sedative and/or hypnotic effects in chicks. The effects of some of these amino acids have subsequently been confirmed in humans. In conclusion, the chick model is convenient and useful for screening central functions of amino acids and their metabolites for hypnosis and sedation.

  19. Graphdiyne as a promising material for detecting amino acids

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Gao, Pengfei; Guo, Lei; Zhang, Shengli

    2015-11-01

    The adsorption of glycine, glutamic acid, histidine and phenylalanine on single-layer graphdiyne/ graphene is investigated by ab initio calculations. The results show that for each amino acid molecule, the adsorption energy on graphdiyne is larger than the adsorption energy on graphene and dispersion interactions predominate in the adsorption. Molecular dynamics simulations reveal that at room temperature the amino acid molecules keep migrating and rotating on graphdiyne surface and induce fluctuation in graphdiyne bandgap. Additionally, the photon absorption spectra of graphdiyne-amino-acid systems are investigated. We uncover that the presence of amino acid molecules makes the photon absorption peaks of graphdiyne significantly depressed and shifted. Finally, quantum electronic transport properties of graphdiyne-amino-acid systems are compared with the transport properties of pure graphdiyne. We reveal that the amino acid molecules induce distinct changes in the electronic conductivity of graphdiyne. The results in this paper reveal that graphdiyne is a promising two-dimensional material for sensitively detecting amino acids and may potentially be used in biosensors.

  20. Regulation of myocardial amino acid balance in the conscious dog.

    PubMed Central

    Schwartz, R G; Barrett, E J; Francis, C K; Jacob, R; Zaret, B L

    1985-01-01

    The effects in vivo of physiologic increases in insulin and amino acids on myocardial amino acid balance were evaluated in conscious dogs. Arterial and coronary sinus concentrations of amino acids and coronary blood flow were measured during a 30-min basal and a 100-min experimental period employing three protocols: euglycemic insulin clamp (plasma insulin equaled 70 +/- 11 microU/ml, n = 6); euglycemic insulin clamp during amino acid infusion (plasma insulin equaled 89 +/- 12 microU/ml, n = 6); and suppression of insulin with somatostatin during amino acid infusion (plasma insulin equaled 15 +/- 4 microU/ml, n = 6). Basally, only leucine and isoleucine were removed significantly by myocardium (net branched chain amino acid [BCAA] uptake equaled 0.5 +/- 0.2 mumol/min), while glycine, alanine, and glutamine were released. Glutamine demonstrated the highest net myocardial production (1.6 +/- 0.2 mumol/min). No net exchange was seen for valine, phenylalanine, tyrosine, cysteine, methionine, glutamate, asparagine, serine, threonine, taurine, and aspartate. In group I, hyperinsulinemia caused a decline of all plasma amino acids except alanine; alanine balance switched from release to an uptake of 0.6 +/- 0.4 mumol/min (P less than 0.05), while the myocardial balance of other amino acids was unchanged. In group II, amino acid concentrations rose, and were accompanied by a marked rise in myocardial BCAA uptake (0.4 +/- 0.1-2.6 +/- 0.3 mumol/min, P less than 0.001). Uptake of alanine was again stimulated (0.9 +/- 0.3 mumol/min, P less than 0.01), while glutamine production was unchanged (1.3 +/- 0.4 vs. 1.6 +/- 0.3 mumol/min). In group III, there was a 4-5-fold increase in the plasma concentration of the infused amino acids, accompanied by marked stimulation in uptake of only BCAA (6.8 +/- 0.7 mumol/min). Myocardial glutamine production was unchanged (1.9 +/- 0.4-1.3 +/- 0.7 mumol/min). Within the three experimental groups there were highly significant linear correlations

  1. Amino acid synthesis in a supercritical carbon dioxide - water system.

    PubMed

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-06-15

    Mars is a CO(2)-abundant planet, whereas early Earth is thought to be also CO(2)-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO(2)/liquid H(2)O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life's origin.

  2. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    PubMed Central

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-01-01

    Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life’s origin. PMID:19582225

  3. Single amino acids in sucrose rewards modulate feeding and associative learning in the honeybee.

    PubMed

    Simcock, Nicola K; Gray, Helen E; Wright, Geraldine A

    2014-10-01

    Obtaining the correct balance of nutrients requires that the brain integrates information about the body's nutritional state with sensory information from food to guide feeding behaviour. Learning is a mechanism that allows animals to identify cues associated with nutrients so that they can be located quickly when required. Feedback about nutritional state is essential for nutrient balancing and could influence learning. How specific this feedback is to individual nutrients has not often been examined. Here, we tested how the honeybee's nutritional state influenced the likelihood it would feed on and learn sucrose solutions containing single amino acids. Nutritional state was manipulated by pre-feeding bees with either 1M sucrose or 1M sucrose containing 100mM of isoleucine, proline, phenylalanine, or methionine 24h prior to olfactory conditioning of the proboscis extension response. We found that bees pre-fed sucrose solution consumed less of solutions containing amino acids and were also less likely to learn to associate amino acid solutions with odours. Unexpectedly, bees pre-fed solutions containing an amino acid were also less likely to learn to associate odours with sucrose the next day. Furthermore, they consumed more of and were more likely to learn when rewarded with an amino acid solution if they were pre-fed isoleucine and proline. Our data indicate that single amino acids at relatively high concentrations inhibit feeding on sucrose solutions containing them, and they can act as appetitive reinforcers during learning. Our data also suggest that select amino acids interact with mechanisms that signal nutritional sufficiency to reduce hunger. Based on these experiments, we predict that nutrient balancing for essential amino acids during learning requires integration of information about several amino acids experienced simultaneously.

  4. Single amino acids in sucrose rewards modulate feeding and associative learning in the honeybee

    PubMed Central

    Simcock, Nicola K.; Gray, Helen E.; Wright, Geraldine A.

    2014-01-01

    Obtaining the correct balance of nutrients requires that the brain integrates information about the body’s nutritional state with sensory information from food to guide feeding behaviour. Learning is a mechanism that allows animals to identify cues associated with nutrients so that they can be located quickly when required. Feedback about nutritional state is essential for nutrient balancing and could influence learning. How specific this feedback is to individual nutrients has not often been examined. Here, we tested how the honeybee’s nutritional state influenced the likelihood it would feed on and learn sucrose solutions containing single amino acids. Nutritional state was manipulated by pre-feeding bees with either 1 M sucrose or 1 M sucrose containing 100 mM of isoleucine, proline, phenylalanine, or methionine 24 h prior to olfactory conditioning of the proboscis extension response. We found that bees pre-fed sucrose solution consumed less of solutions containing amino acids and were also less likely to learn to associate amino acid solutions with odours. Unexpectedly, bees pre-fed solutions containing an amino acid were also less likely to learn to associate odours with sucrose the next day. Furthermore, they consumed more of and were more likely to learn when rewarded with an amino acid solution if they were pre-fed isoleucine and proline. Our data indicate that single amino acids at relatively high concentrations inhibit feeding on sucrose solutions containing them, and they can act as appetitive reinforcers during learning. Our data also suggest that select amino acids interact with mechanisms that signal nutritional sufficiency to reduce hunger. Based on these experiments, we predict that nutrient balancing for essential amino acids during learning requires integration of information about several amino acids experienced simultaneously. PMID:24819203

  5. Requirement for both H and L chain V regions, VH and VK joining amino acids, and the unique H chain D region for the high affinity binding of an anti-phosphotyrosine antibody.

    PubMed

    Ruff-Jamison, S; Glenney, J R

    1993-04-15

    Sequence analysis of a panel of antibodies to phosphotyrosine revealed predominant H and L chain V regions in the immune response and a unique D segment in the Py20 mAb, which exhibits a high affinity for phosphotyrosine. In order to determine the influence of somatic diversity on the high affinity binding of Py20, H and L chain V regions were expressed in Escherichia coli as an Fv dimer. Whereas the H or L chain V regions of Py20 alone were unable to bind phosphotyrosine, the Fv binds phosphotyrosine with an affinity comparable with the intact IgG as determined by fluorescence quenching experiments (1.55 x 10(-7) M vs 1.25 x 10(-7) M, respectively). Substitution of the Py20 V regions with other IgG V regions that differed greatly in sequence abolished binding. A high affinity Py20-combining site was dependent on the presence of the unique D-D segment. Replacement of the Py20 D-D region with a single homologous D region resulted in a decrease in affinity (5.9 x 10(-7) M). Substitution of this D-D region for the D region of another anti-phosphotyrosine antibody that is known to bind phosphotyrosine weakly (1 x 10(-3) M) conferred high affinity binding. Removal of three tyrosines from the first of the two D regions was accompanied by a fivefold reduction in affinity for phosphotyrosine. In addition, changing the VK and VH junctional amino acids resulted in a complete loss of binding. Therefore, the formation of the high affinity Py20 combining site requires both a H and L chain that are similar in sequence to those of Py20 including the unique D region and the junctional amino acids.

  6. Transaminases for the synthesis of enantiopure beta-amino acids

    PubMed Central

    2012-01-01

    Optically pure β-amino acids constitute interesting building blocks for peptidomimetics and a great variety of pharmaceutically important compounds. Their efficient synthesis still poses a major challenge. Transaminases (also known as aminotransferases) possess a great potential for the synthesis of optically pure β-amino acids. These pyridoxal 5'-dependent enzymes catalyze the transfer of an amino group from a donor substrate to an acceptor, thus enabling the synthesis of a wide variety of chiral amines and amino acids. Transaminases can be applied either for the kinetic resolution of racemic compounds or the asymmetric synthesis starting from a prochiral substrate. This review gives an overview over microbial transaminases with activity towards β-amino acids and their substrate spectra. It also outlines current strategies for the screening of new biocatalysts. Particular emphasis is placed on activity assays which are applicable to high-throughput screening. PMID:22293122

  7. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    PubMed Central

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques.

  8. Prolonged maternal amino acid infusion in late-gestation pregnant sheep increases fetal amino acid oxidation.

    PubMed

    Rozance, Paul J; Crispo, Michelle M; Barry, James S; O'Meara, Meghan C; Frost, Mackenzie S; Hansen, Kent C; Hay, William W; Brown, Laura D

    2009-09-01

    Protein supplementation during human pregnancy does not improve fetal growth and may increase small-for-gestational-age birth rates and mortality. To define possible mechanisms, sheep with twin pregnancies were infused with amino acids (AA group, n = 7) or saline (C group, n = 4) for 4 days during late gestation. In the AA group, fetal plasma leucine, isoleucine, valine, and lysine concentrations were increased (P < 0.05), and threonine was decreased (P < 0.05). In the AA group, fetal arterial pH (7.365 +/- 0.007 day 0 vs. 7.336 +/- 0.012 day 4, P < 0.005), hemoglobin-oxygen saturation (46.2 +/- 2.6 vs. 37.8 +/- 3.6%, P < 0.005), and total oxygen content (3.17 +/- 0.17 vs. 2.49 +/- 0.20 mmol/l, P < 0.0001) were decreased on day 4 compared with day 0. Fetal leucine disposal did not change (9.22 +/- 0.73 vs. 8.09 +/- 0.63 micromol x min(-1) x kg(-1), AA vs. C), but the rate of leucine oxidation increased 43% in the AA group (2.63 +/- 0.16 vs. 1.84 +/- 0.24 micromol x min(-1) x kg(-1), P < 0.05). Fetal oxygen utilization tended to be increased in the AA group (327 +/- 23 vs. 250 +/- 29 micromol x min(-1) x kg(-1), P = 0.06). Rates of leucine incorporation into fetal protein (5.19 +/- 0.97 vs. 5.47 +/- 0.89 micromol x min(-1) x kg(-1), AA vs. C), release from protein breakdown (4.20 +/- 0.95 vs. 4.62 +/- 0.74 micromol x min(-1) x kg(-1)), and protein accretion (1.00 +/- 0.30 vs. 0.85 +/- 0.25 micromol x min(-1) x kg(-1)) did not change. Consistent with these data, there was no change in the fetal skeletal muscle ubiquitin ligases MaFBx1 or MuRF1 or in the protein synthesis regulators 4E-BP1, eEF2, eIF2alpha, and p70(S6K). Decreased concentrations of certain essential amino acids, increased amino acid oxidation, fetal acidosis, and fetal hypoxia are possible mechanisms to explain fetal toxicity during maternal amino acid supplementation.

  9. [Plasma amino acids profile of healthy pregnant adolescents in Maracaibo, Venezuela].

    PubMed

    Ortega, Pablo; Castejón, Haydée V; Argotte, María G; Gómez, Gisela; Bohorquez, Lissette; Urrieta, Jesús R

    2003-06-01

    One hundred female adolescents (13-18 y) were clinical and anthropometrically studied to select only those with adequate nutrition. Most adolescents belonged to IV socio-economic stratum families (worker class). Height, weight, age, body mass index and medial arm circumference were used as anthropometric parameters. After screening, only 41 non pregnant girls (control) and 42 pregnant girls with adequate nutrition were selected to analyze plasma amino acids. Fasting peripheral venous blood was drawn, and plasma amino acids were analyzed by HPLC. Amino acid concentrations were expressed as umol/L +/- SE. SAS/STAT program was used for statistical analysis. Amino acid values of control adolescent group were found in ranges reported by other investigators, with slight variations, mostly in diminution, presumably due to nutritional, metabolic or genetic conditions of people living in tropical regions. In pregnant healthy adolescents, distributed according to gestational age: < 32 weeks (n = 30) and > 32 weeks (n = 12), a diminution of total molar plasma amino acids was found, by comparing with control values. Ten amino acids (Pro, Gly, Gln, Arg, Ser, Orn, Tau, Leu, Thr and Val) appeared significantively diminished throughout gestation, being Gly. Gln and Arg most affected since earlier weeks. During the 2nd period. Thr and Val increased their grade of affectation; whereas some amino acids values (Orn, Pro and Tau) tended to recuperate. Several of affected amino acids are gluconegoenic, thus, they could be utilized to supply the energy required by the pregnant adolescent against her double stress: the fetus development and her own development. The plasma amino acid values reported in both, healthy non pregnant and pregnant adolescents, could be taken as regional referential profile of plasma amino acids in this poblational group for further research on adolescent and fetal--maternal malnutrition.

  10. Extraterrestrial Amino Acids Identified in Metal-Rich CH and CB Carbonaceous Chondrites from Antarctica

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Elsila, Jamie E.; Hein, Jason E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-01-01

    Carbonaceous chondrites contain numerous indigenous organic compounds and could have been an important source of prebiotic compounds required for the origin of life on Earth or elsewhere. Extraterrestrial amino acids have been reported in five of the eight groups of carbonaceous chondrites and are most abundant in CI, CM, and CR chondritesbut are also present in the more thermally altered CV and CO chondrites. We report the abundance, distribution, and enantiomeric and isotopic compositions of simple primary amino acids in six metal-rich CH and CB carbonaceous chondrites that have not previously been investigated for amino acids: Allan Hills (ALH) 85085 (CH3), Pecora Escarpment(PCA) 91467 (CH3), Patuxent Range (PAT) 91546 (CH3), MacAlpine Hills (MAC) 02675(CBb), Miller Range (MIL) 05082 (CB), and Miller Range (MIL) 07411 (CB). Amino acid abundances and carbon isotopic values were obtained by using both liquid chromatography time-of-flight mass spectrometry and fluorescence, and gas chromatography isotope ratiomass spectrometry. The (delta D, delta C-13, delta N-15) ratios of multiple amino acids fall outside of the terrestrial range and support their extraterrestrial origin. Extracts of CH chondrites were found to be particularly rich in amino acids (1316 parts per million, ppm) while CB chondrite extracts had much lower abundances (0.22 ppm). The amino acid distributions of the CH and CB chondrites were distinct from the distributions observed in type 2 and 3 CM and CR chondrites and contained elevated levels of beta-, gamma-, and delta-amino acids compared to the corresponding alpha-amino acids, providing evidence that multiple amino acid formation mechanisms were important in CH and CB chondrites.

  11. Acquired Amino Acid Deficiencies: A Focus on Arginine and Glutamine.

    PubMed

    Morris, Claudia R; Hamilton-Reeves, Jill; Martindale, Robert G; Sarav, Menaka; Ochoa Gautier, Juan B

    2017-04-01

    Nonessential amino acids are synthesized de novo and therefore not diet dependent. In contrast, essential amino acids must be obtained through nutrition since they cannot be synthesized internally. Several nonessential amino acids may become essential under conditions of stress and catabolic states when the capacity of endogenous amino acid synthesis is exceeded. Arginine and glutamine are 2 such conditionally essential amino acids and are the focus of this review. Low arginine bioavailability plays a pivotal role in the pathogenesis of a growing number of varied diseases, including sickle cell disease, thalassemia, malaria, acute asthma, cystic fibrosis, pulmonary hypertension, cardiovascular disease, certain cancers, and trauma, among others. Catabolism of arginine by arginase enzymes is the most common cause of an acquired arginine deficiency syndrome, frequently contributing to endothelial dysfunction and/or T-cell dysfunction, depending on the clinical scenario and disease state. Glutamine, an arginine precursor, is one of the most abundant amino acids in the body and, like arginine, becomes deficient in several conditions of stress, including critical illness, trauma, infection, cancer, and gastrointestinal disorders. At-risk populations are discussed together with therapeutic options that target these specific acquired amino acid deficiencies.

  12. Metabolism of amino acids, dipeptides and tetrapeptides by Lactobacillus sakei.

    PubMed

    Sinz, Quirin; Schwab, Wilfried

    2012-04-01

    The microbial degradation of proteins, peptides and amino acids generates volatiles involved in the typical flavor of dry fermented sausage. The ability of three Lactobacillus sakei strains to form aroma compounds was investigated. Whole resting cells were fermented in phosphate buffer with equimolar amounts of substrates consisting of dipeptides, tetrapeptides and free amino acids, respectively. Dipeptides disappeared quickly from the solutions whereas tetrapeptides were only partially degraded. In both approaches the concentration of free amino acids increased in the reaction mixture but did not reach the equimolar amount of the initial substrates. When free amino acids were fed to the bacteria their levels decreased only slightly. Although peptides were more rapidly degraded and/or transported into the cells, free amino acids produced higher amounts of volatiles. It is suggested, that after transport into the cell peptides are only partially hydrolyzed to their amino acids, while the rest is metabolized via alternative metabolic pathways. The three L. sakei strains differed to some extend in their ability to metabolize the substrates to volatile compounds. In a few cases this was due to the position of the amino acids within the peptides. Compared to other starter cultures used for the production of dry fermented sausages, the metabolic impact of the L. sakei strains on the formation of volatiles was very low.

  13. Retinal amino acid neurochemistry in health and disease.

    PubMed

    Kalloniatis, Michael; Loh, Chee Seang; Acosta, Monica L; Tomisich, Guido; Zhu, Yuan; Nivison-Smith, Lisa; Fletcher, Erica L; Chua, Jacqueline; Sun, Daniel; Arunthavasothy, Niru

    2013-05-01

    Advances in basic retinal anatomy, genetics, biochemical pathways and neurochemistry have not only provided a better understanding of retinal function but have also allowed us to link basic science to retinal disease. The link with disease allowed measures to be developed that now provide an opportunity to intervene and slow down or even restore sight in previously 'untreatable' retinal diseases. One of the critical advances has been the understanding of the retinal amino acid neurotransmitters, related amino acids, their metabolites and functional receptors. This review provides an overview of amino acid localisation in the retina and examples of how retinal anatomy and amino acid neurochemistry directly links to understanding retinal disease. Also, the implications of retinal remodelling involving amino acid (glutamate) receptors are outlined in this review and insights are presented on how understanding of detrimental and beneficial retinal remodelling will provide better outcomes for patients using strategies for the preservation or restoration of vision. An internet-based database of retinal images of amino acid labelling patterns and other amino acid-related images in health and disease is located at http://www.aminoacidimmunoreactivity.com.

  14. New Functions and Potential Applications of Amino Acids.

    PubMed

    Uneyama, Hisayuki; Kobayashi, Hisamine; Tonouchi, Naoto

    2016-11-22

    Currently, several types of amino acids are being produced and used worldwide. Nevertheless, several new functions of amino acids have been recently discovered that could result in other applications. For example, oral stimulation by glutamate triggers the cephalic phase response to prepare for food digestion. Further, the stomach and intestines have specific glutamate-recognizing systems in their epithelial mucosa. Regarding clinical applications, addition of monosodium glutamate to the medicinal diet has been shown to markedly enhance gastric secretion in a vagus-dependent manner. Branched-chain amino acids (BCAAs) are the major components of muscles, and ingestion of BCAAs has been found to be effective for decreasing muscle pain. BCAAs are expected to be a solution for the serious issue of aging. Further, ingestion of specific amino acids could be beneficial. Glycine can be ingested for good night's sleep: glycine ingestion before bedtime significantly improved subjective sleep quality. Ingestion of alanine and glutamine effectively accelerates alcohol metabolism, and ingestion of cystine and theanine effectively prevents colds. Finally, amino acids could be used in a novel clinical diagnostic method: the balance of amino acids in the blood could be an indicator of the risk of diseases such as cancer. These newly discovered functions of amino acids are expected to contribute to the resolution of various issues.

  15. Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe?

    PubMed Central

    2017-01-01

    There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease. PMID:28261376

  16. Differential diagnosis of (inherited) amino acid metabolism or transport disorders.

    PubMed

    Blom, W; Huijmans, J G

    1992-02-01

    Disorders of amino acid metabolism or transport are most clearly expressed in urine. Nevertheless the interpretation of abnormalities in urinary amino acid excretion remains difficult. An increase or decrease of almost every amino acid in urine can be due to various etiology. To differentiate between primary and secondary aminoacido-pathies systematic laboratory investigation is necessary. Early diagnosis of disorders of amino acid metabolism or transport is very important, because most of them can be treated, leading to the prevention of (further) clinical abnormalities. In those disorders, which cannot be treated, early diagnosis in an index-patient may prevent the birth of other siblings by means of genetic counseling and prenatal diagnosis.Primary aminoacidopathies can be due to genetically determined transport disorders and enzyme deficiencies in amino acid metabolism or degradation. Secondary aminoacidopathies are the result of abnormal or deficient nutrition, intestinal dysfunction, organ pathology or other metabolic diseases like organic acidurias.A survey of amino acid metabolism and transport abnormalities will be given, illustrated with metabolic pathways and characteristic abnormal amino acid chromatograms.

  17. Microbial products trigger amino acid exudation from plant roots.

    PubMed

    Phillips, Donald A; Fox, Tama C; King, Maria D; Bhuvaneswari, T V; Teuber, Larry R

    2004-09-01

    Plants naturally cycle amino acids across root cell plasma membranes, and any net efflux is termed exudation. The dominant ecological view is that microorganisms and roots passively compete for amino acids in the soil solution, yet the innate capacity of roots to recover amino acids present in ecologically relevant concentrations is unknown. We find that, in the absence of culturable microorganisms, the influx rates of 16 amino acids (each supplied at 2.5 microm) exceed efflux rates by 5% to 545% in roots of alfalfa (Medicago sativa), Medicago truncatula, maize (Zea mays), and wheat (Triticum aestivum). Several microbial products, which are produced by common soil microorganisms such as Pseudomonas bacteria and Fusarium fungi, significantly enhanced the net efflux (i.e. exudation) of amino acids from roots of these four plant species. In alfalfa, treating roots with 200 microm phenazine, 2,4-diacetylphloroglucinol, or zearalenone increased total net efflux of 16 amino acids 200% to 2,600% in 3 h. Data from (15)N tests suggest that 2,4-diacetylphloroglucinol blocks amino acid uptake, whereas zearalenone enhances efflux. Thus, amino acid exudation under normal conditions is a phenomenon that probably reflects both active manipulation and passive uptake by microorganisms, as well as diffusion and adsorption to soil, all of which help overcome the innate capacity of plant roots to reabsorb amino acids. The importance of identifying potential enhancers of root exudation lies in understanding that such compounds may represent regulatory linkages between the larger soil food web and the internal carbon metabolism of the plant.

  18. Control of mammalian gene expression by amino acids, especially glutamine.

    PubMed

    Brasse-Lagnel, Carole; Lavoinne, Alain; Husson, Annie

    2009-04-01

    Molecular data rapidly accumulating on the regulation of gene expression by amino acids in mammalian cells highlight the large variety of mechanisms that are involved. Transcription factors, such as the basic-leucine zipper factors, activating transcription factors and CCAAT/enhancer-binding protein, as well as specific regulatory sequences, such as amino acid response element and nutrient-sensing response element, have been shown to mediate the inhibitory effect of some amino acids. Moreover, amino acids exert a wide range of effects via the activation of different signalling pathways and various transcription factors, and a number of cis elements distinct from amino acid response element/nutrient-sensing response element sequences were shown to respond to changes in amino acid concentration. Particular attention has been paid to the effects of glutamine, the most abundant amino acid, which at appropriate concentrations enhances a great number of cell functions via the activation of various transcription factors. The glutamine-responsive genes and the transcription factors involved correspond tightly to the specific effects of the amino acid in the inflammatory response, cell proliferation, differentiation and survival, and metabolic functions. Indeed, in addition to the major role played by nuclear factor-kappaB in the anti-inflammatory action of glutamine, the stimulatory role of activating protein-1 and the inhibitory role of C/EBP homology binding protein in growth-promotion, and the role of c-myc in cell survival, many other transcription factors are also involved in the action of glutamine to regulate apoptosis and intermediary metabolism in different cell types and tissues. The signalling pathways leading to the activation of transcription factors suggest that several kinases are involved, particularly mitogen-activated protein kinases. In most cases, however, the precise pathways from the entrance of the amino acid into the cell to the activation of gene

  19. A common periodic table of codons and amino acids.

    PubMed

    Biro, J C; Benyó, B; Sansom, C; Szlávecz, A; Fördös, G; Micsik, T; Benyó, Z

    2003-06-27

    A periodic table of codons has been designed where the codons are in regular locations. The table has four fields (16 places in each) one with each of the four nucleotides (A, U, G, C) in the central codon position. Thus, AAA (lysine), UUU (phenylalanine), GGG (glycine), and CCC (proline) were placed into the corners of the fields as the main codons (and amino acids) of the fields. They were connected to each other by six axes. The resulting nucleic acid periodic table showed perfect axial symmetry for codons. The corresponding amino acid table also displaced periodicity regarding the biochemical properties (charge and hydropathy) of the 20 amino acids and the position of the stop signals. The table emphasizes the importance of the central nucleotide in the codons and predicts that purines control the charge while pyrimidines determine the polarity of the amino acids. This prediction was experimentally tested.

  20. The origin of amino acids in lunar regolith samples

    NASA Astrophysics Data System (ADS)

    Elsila, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5-651.1 ppb in 6 M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: α-aminoisobutyric acid (AIB), D- and L-β-amino-n-butyric acid (β-ABA), DL-α-amino-n-butyric acid, γ-amino-n-butyric acid, β-alanine, and ε-amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic β-ABA were present in some samples. We also examined seven samples from Apollo 15, 16, and 17 that had been previously allocated to a non-curation laboratory, as well as two samples of terrestrial dunite from studies of lunar module engine exhaust that had been stored in the same laboratory. The amino acid content of these samples suggested that contamination had occurred during non-curatorial storage. We measured the compound-specific carbon isotopic ratios of glycine, β-alanine, and L-alanine in Apollo regolith sample 70011 and found values of -21‰ to -33‰. These values are consistent with those seen in terrestrial biology and, together with the enantiomeric compositions of the proteinogenic amino acids, suggest that terrestrial biological contamination is a primary source of the

  1. Exhaustive Database Searching for Amino Acid Mutations in Proteomes

    SciTech Connect

    Hyatt, Philip Douglas; Pan, Chongle

    2012-01-01

    Amino acid mutations in proteins can be found by searching tandem mass spectra acquired in shotgun proteomics experiments against protein sequences predicted from genomes. Traditionally, unconstrained searches for amino acid mutations have been accomplished by using a sequence tagging approach that combines de novo sequencing with database searching. However, this approach is limited by the performance of de novo sequencing. The Sipros algorithm v2.0 was developed to perform unconstrained database searching using high-resolution tandem mass spectra by exhaustively enumerating all single non-isobaric mutations for every residue in a protein database. The performance of Sipros for amino acid mutation identification exceeded that of an established sequence tagging algorithm, Inspect, based on benchmarking results from a Rhodopseudomonas palustris proteomics dataset. To demonstrate the viability of the algorithm for meta-proteomics, Sipros was used to identify amino acid mutations in a natural microbial community in acid mine drainage.

  2. Modulation of absence seizures by branched-chain amino acids: correlation with brain amino acid concentrations.

    PubMed

    Dufour, F; Nalecz, K A; Nalecz, M J; Nehlig, A

    2001-07-01

    The occurrence of absence seizures might be due to a disturbance of the balance between excitatory and inhibitory neurotransmissions in the thalamo-cortical loop. In this study, we explored the consequences of buffering the glutamate content of brain cells on the occurrence and duration of seizures in Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a genetic model of generalized non-convulsive epilepsy. Branched-chain amino acids (BCAAs) and alpha-ketoisocaproate (alpha-KIC), the ketoacid of leucine were repeatedly shown to have a critical role in brain glutamate metabolism. Thus, GAERS were injected by intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) route with these compounds, then the effects on seizures were evaluated on the electroencephalographic recording. We also measured the concentration of amino acids in thalamus and cortex after an i.p. injection of leucine or alpha-KIC. Intracerebroventricular injections of leucine or alpha-KIC did not influence the occurrence of seizures, possibly because the substances reached only the cortex. BCAAs and alpha-KIC, injected intraperitoneally, increased the number of seizures whereas they had only a slight effect on their duration. Leucine and alpha-KIC decreased the concentration of glutamate in thalamus and cortex without affecting GABA concentrations. Thus, BCAAs and alpha-KIC, by decreasing the effects of glutamatergic neurotransmission could facilitate those of GABAergic neurotransmission, which is known to increase the occurrence of seizures in GAERS.

  3. Equine endurance exercise alters serum branched-chain amino acid and alanine concentrations.

    PubMed

    Trottier, N L; Nielsen, B D; Lang, K J; Ku, P K; Schott, H C

    2002-09-01

    Six 2-year-old Arabian horses were used to determine whether 60 km prolonged endurance exercise (approximately 4 h) alters amino acid concentrations in serum and muscle, and the time required for serum amino acid concentrations to return to basal resting values. Blood and muscle samples were collected throughout exercise and during a 3 day recovery period. Isoleucine concentration in muscle tended to increase and leucine and valine did not change due to exercise. Serum alanine concentrations did not increase immediately after exercise, but increased at 24, 48 and 72 h postexercise. Serum isoleucine, leucine, and valine concentrations decreased after exercise and time required to reach pre-exercising concentrations was 48 h. In conclusion, endurance exercise in the horse decreases serum isoleucine, leucine, and valine concentrations, and increases serum alanine concentration. The decrease in serum branched-chain amino acid concentrations did not correspond to a measurable increase in total muscle branched-chain amino acid concentrations.

  4. CHLORINATION OF AMINO ACIDS: REACTION PATHWAYS AND REACTION RATES.

    PubMed

    How, Zuo Tong; Linge, Kathryn; Busetti, Francesco; Joll, Cynthia A

    2017-03-15

    Chlorination of amino acids can result in the formation of organic monochloramines or organic dichloramines, depending on the chlorine to amino acid ratio (Cl:AA). After formation, organic chloramines degrade into aldehydes, nitriles and N-chloraldimines. In this paper, the formation of organic chloramines from chlorination of lysine, tyrosine and valine were investigated. Chlorination of tyrosine and lysine demonstrated that the presence of a reactive secondary group can increase the Cl:AA ratio required for the formation of N,N-dichloramines, and potentially alter the reaction pathways between chlorine and amino acids, resulting in the formation of unexpected by-products. In a detailed investigation, we report rate constants for all reactions in the chlorination of valine, for the first time, using experimental results and modelling. At Cl:AA = 2.8, the chlorine was found to first react quickly with valine (5.4x104 M-1 s-1) to form N-monochlorovaline, with a slower subsequent reaction with N-monochlorovaline to form N,N-dichlorovaline (4.9x102 M-1 s-1), although some N-monochlorovaline degraded into isobutyraldehyde (1.0x10-4 s-1). The N,N-dichlorovaline then competitively degraded into isobutyronitrile (1.3x10-4 s-1) and N-chloroisobutyraldimine (1.2x10-4 s-1). In conventional drinking water disinfection, N-chloroisobutyraldimine can potentially be formed in concentrations higher than its odour threshold concentration, resulting in aesthetic challenges and an unknown health risk.

  5. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    NASA Astrophysics Data System (ADS)

    Nan, Alexandrina; Bunge, Alexander; Turcu, Rodica

    2015-12-01

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  6. Amino acids of the cell wall of Nocardia rubra.

    PubMed

    Beaman, B L; Kim, K S; Salton, M R; Barksdale, L

    1971-11-01

    Two classes of preparations of cell walls of Nocardia rubra strain 721-A, digested by trypsin and pepsin with or without subsequent extraction in alkaline ethanol, when examined by electron microscope and analyzed quantitatively for amino acid content differ in ultrastructure and constituent amino acids. Evidence suggests that the lipid-associated amino acids (as peptide or protein) occupy a location superficial to the basal peptido-glycan layer of this nocardia. Their removal is associated with the loss of a characteristic pattern of the outer envelope.

  7. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    SciTech Connect

    Nan, Alexandrina Bunge, Alexander; Turcu, Rodica

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  8. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    PubMed

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  9. Phenotypic and genetic relationships between growth and feed intake curves and feed efficiency and amino acid requirements in the growing pig.

    PubMed

    Saintilan, R; Brossard, L; Vautier, B; Sellier, P; Bidanel, J; van Milgen, J; Gilbert, H

    2015-01-01

    Improvement of feed efficiency in pigs has been achieved essentially by increasing lean growth rate, which resulted in lower feed intake (FI). The objective was to evaluate the impact of strategies for improving feed efficiency on the dynamics of FI and growth in growing pigs to revisit nutrient recommendations and strategies for feed efficiency improvement. In 2010, three BWs, at 35±2, 63±9 and 107±7 kg, and daily FI during this period were recorded in three French test stations on 379 Large White and 327 French Landrace from maternal pig populations and 215 Large White from a sire population. Individual growth and FI model parameters were obtained with the InraPorc® software and individual nutrient requirements were computed. The model parameters were explored according to feed efficiency as measured by residual feed intake (RFI) or feed conversion ratio (FCR). Animals were separated in groups of better feed efficiency (RFI- or FCR-), medium feed efficiency and poor feed efficiency. Second, genetic relationships between feed efficiency and model parameters were estimated. Despite similar average daily gains (ADG) during the test for all RFI groups, RFI- pigs had a lower initial growth rate and a higher final growth rate compared with other pigs. The same initial growth rate was found for all FCR groups, but FCR- pigs had significantly higher final growth rates than other pigs, resulting in significantly different ADG. Dynamic of FI also differed between RFI or FCR groups. The calculated digestible lysine requirements, expressed in g/MJ net energy (NE), showed the same trends for RFI or FCR groups: the average requirements for the 25% most efficient animals were 13% higher than that of the 25% least efficient animals during the whole test, reaching 0.90 to 0.95 g/MJ NE at the beginning of the test, which is slightly greater than usual feed recommendations for growing pigs. Model parameters were moderately heritable (0.30±0.13 to 0.56±0.13), except for the

  10. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    NASA Astrophysics Data System (ADS)

    Callahan, Michael; Aubrey, A.; Bada, J. L.; Dworkin, J. P.; Elsila, J. E.; Glavin, D. P.; Parker, E.; Jenniskens, P.

    2009-09-01

    The recovery of meteorite fragments from the 2008 TC3 asteroid impact, collectively named Almahata Sitta, revealed a rare, anomalous polymict ureilite containing large carbonaceous grains (Jenniskens et al. 2009). Here we report the first amino acid analysis of a meteorite from an F-type asteroid as part of the Almahata Sitta meteorite sample analysis consortium. A single fragment (piece #4, 1.2 grams) was crushed to a powder, and separate 0.1 g aliquots of the same meteorite were carried through identical hot-water extraction, acid hydrolysis and desalting procedures at NASA Goddard Space Flight Center and the Scripps Institution of Oceanography. The o-phthaldialdehyde/N-acetyl-L-cysteine amino acid derivatives in the extracts were analyzed by high performance liquid chromatography with UV fluorescence detection and time-of-flight mass spectrometry. Analyses of the meteorite extracts revealed a complex distribution of two- to six-carbon aliphatic amino acids with abundances ranging from 0.5 to 69 parts-per-billion (ppb). Glycine was the most abundant amino acid detected, however, since this protein amino acid is a common terrestrial contaminant, we are currently unable to rule out at least a partial terrestrial source. However, the D/L ratio of alanine in the meteorite was racemic, suggesting that very little terrestrial amino acid contamination. Several non-protein amino acids that are rare in the biosphere were also identified in the meteorite above background levels including D,L-4-amino-2-methybutyric acid (65 ± 8 ppb), D-isovaline (1.3 ± 0.1 ppb), L-isovaline (1.4 ± 0.1 ppb), and α-aminoisobutryic acid (7.1 ± 5.8 ppb). The abundance of isovaline and AIB are 1000 times lower than the abundances found in the CM2 meteorite Murchison while D,L-4-amino-2-methybutyric acid is similar. The very low amino acid abundances and the presence of several amino acid decomposition products including methylamine, ethylamine, and isopropylamine are consistent with

  11. Searching for Extraterrestrial Amino Acids in a Contaminated Meteorite: Amino Acid Analyses of the Canakkale L6 Chondrite

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Elsila, J. E.; Glavin, D. P.; Dworkin, J. P.; Ornek, C. Y.; Esenoglu, H. H.; Unsalan, O.; Ozturk, B.

    2016-01-01

    Amino acids can serve as important markers of cosmochemistry, as their abundances and isomeric and isotopic compositions have been found to vary predictably with changes in parent body chemistry and alteration processes. Amino acids are also of astrobiological interest because they are essential for life on Earth. Analyses of a range of meteorites, including all groups of carbonaceous chondrites, along with H, R, and LL chondrites, ureilites, and a martian shergottite, have revealed that amino acids of plausible extraterrestrial origin can be formed in and persist after a wide range of parent body conditions. However, amino acid analyses of L6 chondrites to date have not provided evidence for indigenous amino acids. In the present study, we performed amino acid analysis on larger samples of a different L6 chondite, Canakkale, to determine whether or not trace levels of indigenous amino acids could be found. The Canakkale meteor was an observed fall in late July, 1964, near Canakkale, Turkey. The meteorite samples (1.36 and 1.09 g) analyzed in this study were allocated by C. Y. Ornek, along with a soil sample (1.5 g) collected near the Canakkale recovery site.

  12. The 91-205 amino acid region of AcMNPV ORF34 (Ac34), which comprises a potential C3H zinc finger, is required for its nuclear localization and optimal virus multiplication.

    PubMed

    Qiu, Jianxiang; Tang, Zhimin; Yuan, Meijin; Wu, Wenbi; Yang, Kai

    2017-01-15

    During baculovirus infection, most viral proteins must be imported to the nucleus to support virus multiplication. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf34 (ac34) is an alphabaculovirus unique gene that is required for optimal virus production. Ac34 distributes in both the cytoplasm and the nuclei of virus-infected Sf9 cells, but contains no conventional nuclear localization signal (NLS). In this study, we investigated the nuclear targeting domains in Ac34. Transient expression assays showed that Ac34 localized in both the cytoplasm and the nuclei of Sf9 cells, indicating that no viral protein is required for Ac34 nuclear localization. Subcellular localization analysis of Ac34 truncations and internal deletions fused with green fluorescent protein in plasmid-transfected Sf9 cells identified that the 91-205 amino acid (aa) region is required for Ac34 nuclear localization. Mutations in a potential C3H zinc finger (aa 116-131) in Ac34 resulted in exclusive cytoplasmic distribution of GFP:Ac34, suggesting that the zinc finger is required for Ac34 nuclear localization. To assess the functional importance of Ac34 in the nucleus during virus replication, recombinant AcMNPV bacmids containing a series of Ac34 truncations, internal deletions, or site mutations fused with HA tags were constructed. Subcellular localization analysis showed that Ac34 with internal deletions in aa 91-205 or site mutations in the potential zinc finger was predominantly distributed in the cytoplasm. Viral plaque assays and virus growth curves indicated that disruption of Ac34 nuclear localization significantly impaired virus replication. Taken together, our findings demonstrated that the nuclear localization of Ac34 requires the 91-205 aa region and its nuclear localization is essential for optimal virus replication.

  13. Scaffolding along nucleic acid duplexes using 2'-amino-locked nucleic acids.

    PubMed

    Astakhova, I Kira; Wengel, Jesper

    2014-06-17

    self-assembly of chemically modified LNA/DNA nanomaterials can be followed by bright fluorescence signaling from the functionalized LNA units. Another appealing aspect of the amino-LNA scaffolds is specific targeting of nucleic acids and proteins for therapeutic applications. 2'-Amino-LNA/DNA conjugates containing peptide and polyaromatic hydrocarbon (PAH) groups are promising in this context as well as for advanced imaging and diagnostic purposes in vivo. For imaging applications, photostability of fluorescence dyes is of crucial importance. Chemically stable and photostable fluorescent PAH molecules attached to 2'-amino functionality of the 2'-amino-LNA are potent for in vitro and in vivo imaging of DNA and RNA targets. We believe that rational evolution of the biopolymers of Nature may solve the major challenges of the future material science and biomedicine. However, this requires strong scientific progress and efficient interdisciplinary research. Examples of this Account demonstrate that among other synthetic biopolymers, synthetic nucleic acids containing functionalized 2'-amino-LNA scaffolds offer great opportunities for material science, diagnostics, and medicine of the future.

  14. How does fish metamorphosis affect aromatic amino acid metabolism?

    PubMed

    Pinto, Wilson; Figueira, Luís; Dinis, Maria Teresa; Aragão, Cláudia

    2009-02-01

    Aromatic amino acids (AAs, phenylalanine and tyrosine) may be specifically required during fish metamorphosis, since they are the precursors of thyroid hormones which regulate this process. This project attempted to evaluate aromatic AA metabolism during the ontogenesis of fish species with a marked (Senegalese sole; Solea senegalensis) and a less accentuated metamorphosis (gilthead seabream; Sparus aurata). Fish were tube-fed with three L-[U-14C] AA solutions at pre-metamorphic, metamorphic and post-metamorphic stages of development: controlled AA mixture (Mix), phenylalanine (Phe) and tyrosine (Tyr). Results showed a preferential aromatic AA retention during the metamorphosis of Senegalese sole, rather than in gilthead seabream. Senegalese sole's highly accentuated metamorphosis seems to increase aromatic AA physiological requirements, possibly for thyroid hormone production. Thus, Senegalese sole seems to be especially susceptible to dietary aromatic AA deficiencies during the metamorphosis period, and these findings may be important for physiologists, fish nutritionists and the flatfish aquaculture industry.

  15. Extensive mutagenesis of a transcriptional activation domain identifies single hydrophobic and acidic amino acids important for activation in vivo.

    PubMed Central

    Sainz, M B; Goff, S A; Chandler, V L

    1997-01-01

    C1 is a transcriptional activator of genes encoding biosynthetic enzymes of the maize anthocyanin pigment pathway. C1 has an amino terminus homologous to Myb DNA-binding domains and an acidic carboxyl terminus that is a transcriptional activation domain in maize and yeast cells. To identify amino acids critical for transcriptional activation, an extensive random mutagenesis of the C1 carboxyl terminus was done. The C1 activation domain is remarkably tolerant of amino acid substitutions, as changes at 34 residues had little or no effect on transcriptional activity. These changes include introduction of helix-incompatible amino acids throughout the C1 activation domain and alteration of most single acidic amino acids, suggesting that a previously postulated amphipathic alpha-helix is not required for activation. Substitutions at two positions revealed amino acids important for transcriptional activation. Replacement of leucine 253 with a proline or glutamine resulted in approximately 10% of wild-type transcriptional activation. Leucine 253 is in a region of C1 in which several hydrophobic residues align with residues important for transcriptional activation by the herpes simplex virus VP16 protein. However, changes at all other hydrophobic residues in C1 indicate that none are critical for C1 transcriptional activation. The other important amino acid in C1 is aspartate 262, as a change to valine resulted in only 24% of wild-type transcriptional activation. Comparison of our C1 results with those from VP16 reveal substantial differences in which amino acids are required for transcriptional activation in vivo by these two acidic activation domains. PMID:8972191

  16. Nutritive value of globin-amino acid and complementary globin-cereal mixtures.

    PubMed

    Landmann, W A; Dill, C W; Young, C R

    1980-11-01

    Protein efficiency ratios (PER) were determined using male weanling rats fed diets containing bovine globin alone and with wheat and corn gluten. Simultaneous equations and graphical methods were devised for selecting combinations of globin and cereal proteins to provide optimal and suboptimal profiles of limiting amino acids. Supplementation of the globin with amino acids established isoleucine and methionine as limiting amino acids. Addition of globin, whose amino acid pattern is complementary to that of the cereal proteins, markedly improved the PER values of the proteins. However, growth rates of rats fed various combinations of proteins were not identical, even though PER values differed only slightly. The PER of combined proteins were not predictable from amino acid composition or from correlations between PER and chemical score based on National Research Council (NRC) requirements for essential amino acids. The inability of the optimal mixtures to meet expected nutritional performance clearly indicated that other factors affecting availability of amino acids are implicated. Nevertheless, mutual improvement of two incomplete proteins such as globin and wheat or corn gluten was demonstrated. Addition of globin to widely used diets consisting mainly of corn or wheat can be nutritionally beneficial.

  17. The Amino Acid Arginine 210 of the Response Regulator HrpG of Xanthomonas citri subsp. citri Is Required for HrpG Function in Virulence.

    PubMed

    Ficarra, Florencia A; Garofalo, Cecilia G; Gottig, Natalia; Ottado, Jorgelina

    2015-01-01

    Xanthomonas citri subsp. citri colonizes its hosts through the trafficking of effector proteins to the plant cell by the type III protein secretion system. In X. citri subsp. citri, as in other plant pathogens, the hrp cluster encodes the type III protein secretion system and is regulated by the transcription factors HrpG and HrpX. HrpG belongs to the OmpR family's response regulator of EnvZ/OmpR two-component signal transduction system. Here, we show that the arginine 210 residue is crucial for the transcriptional activity of HrpG revealed by the absence of disease in host plants and hypersensitive response in non-host plants when a strain carrying this point mutation is used in plant infiltration assays. Also, this strain showed decreased expression levels of hrp genes in bacteria grown in culture or when they were recovered from citrus leaves. Moreover, we show for the first time that HrpG binds to both hrpX and its own promoter, and the change of the arginine 210 by a cysteine does not prevent the binding to both promoters. Nevertheless, in vitro hrpX transcription was observed only with HrpG whereas no transcription was detected with the R210C mutant. HrpG was able to interact with itself as well as with the mutant R210C suggesting that it functions as a dimer. The mutant protein R210C showed altered protease sensitivity, suggesting that Arg210 is essential for protein active conformation and thus for transcriptional activity. Our results indicate that arginine 210 in HrpG, as it may occur with this conserved residue in other members of this family of response regulators, is not required for DNA binding whereas is essential for hrp genes transcription and therefore for pathogenicity and HR induction.

  18. Autistic children exhibit distinct plasma amino acid profile.

    PubMed

    Naushad, Shaik Mohammad; Jain, Jamal Md Nurul; Prasad, Chintakindi Krishna; Naik, Usha; Akella, Radha Rama Devi

    2013-10-01

    In order to ascertain whether autistic children display characteristic metabolic signatures that are of diagnostic value, plasma amino acid analyses were carried out on a cohort of 138 autistic children and 138 normal controls using reverse-phase HPLC. Pre-column derivatization of amino acids with phenyl isothiocyanate forms phenyl thio-carbamate derivates that have a lamba(max) of 254 nm, enabling their detection using photodiode array. Autistic children showed elevated levels of glutamic acid (120 +/- 89 vs. 83 +/- 35 micromol/L) and asparagine (85 +/- 37 vs. 47 +/- 19 micromol/L); lower levels of phenylalanine (45 +/- 20 vs. 59 +/- 18 micromol/L), tryptophan (24 +/- 11 vs. 41 +/- 16 micromol/L), methionine (22 +/- 9 vs. 28 +/- 9 micromol/L) and histidine (45 +/- 21 vs. 58 +/- 15 micromol/L). A low molar ratio of (tryptophan/large neutral amino acids) x 100 was observed in autism (5.4 vs 9.2), indicating lesser availability of tryptophan for neurotransmitter serotonin synthesis. To conclude, elevated levels of excitatory amino acids (glutamate and asparagine), decreased essential amino acids (phenylalanine, tryptophan and methionine) and decreased precursors of neurotransmitters (tyrosine and tryptophan) are the distinct characteristics of plasma amino acid profile of autistic children. Thus, such metabolic signatures might be useful tools for early diagnosis of autism.

  19. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    PubMed

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources.

  20. The Amino Acid Composition of the Sutter's Mill Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Burton, A. S.; Elsila, J. E.; Dworkin, J. P.; Yin, Q. Z.; Cooper, G.; Jenniskens, P.

    2012-01-01

    In contrast to the Murchison meteorite which had a complex distribution of amino acids with a total C2 to Cs amino acid abundance of approx.14,000 parts-per-billion (ppb) [2], the Sutters Mill meteorite was found to be highly depleted in amino acids. Much lower abundances (approx.30 to 180 ppb) of glycine, beta-alanine, L-alanine and L-serine were detected in SM2 above procedural blank levels indicating that this meteorite sample experienced only minimal terrestrial amino acid contamination after its fall to Earth. Carbon isotope measurements will be necessary to establish the origin of glycine and beta-alanine in SM2. Other non-protein amino acids that are rare on Earth, yet commonly found in other CM meteorites such as aaminoisobutyric acid (alpha-AIB) and isovaline, were not identified in SM2. However, traces of beta-AIB (approx.1 ppb) were detected in SM2 and could be" extraterrestrial in origin. The low abundances of amino acids in the Sutter's Mill meteorite is consistent with mineralogical evidence that at least some parts of the Sutter's Mill meteorite parent body experienced extensive aqueous and/or thermal alteration.

  1. Central Amino Acid Sensing in the Control of Feeding Behavior

    PubMed Central

    Heeley, Nicholas; Blouet, Clemence

    2016-01-01

    Dietary protein quantity and quality greatly impact metabolic health via evolutionary-conserved mechanisms that ensure avoidance of amino acid imbalanced food sources, promote hyperphagia when dietary protein density is low, and conversely produce satiety when dietary protein density is high. Growing evidence supports the emerging concept of protein homeostasis in mammals, where protein intake is maintained within a tight range independently of energy intake to reach a target protein intake. The behavioral and neuroendocrine mechanisms underlying these adaptations are unclear. While peripheral factors are able to signal amino acid deficiency and abundance to the brain, the brain itself is exposed to and can detect changes in amino acid concentrations, and subsequently engages acute and chronic responses modulating feeding behavior and food preferences. In this review, we will examine the literature describing the mechanisms by which the brain senses changes in amino acids concentrations, and how these changes modulate feeding behavior. PMID:27933033

  2. Guanine- Formation During the Thermal Polymerization of Amino Acids

    NASA Technical Reports Server (NTRS)

    Mc Caw, B. K.; Munoz, E. F.; Ponnamperuma, C.; Young, R. S.

    1964-01-01

    The action of heat on a mixture of amino acids was studied as a possible abiological pathway for the synthesis of purines and pyrimidines. Guanine was detected. This result is significant in the context of chemical evolution.

  3. How to build optically active alpha-amino acids.

    PubMed

    Calmes, M; Daunis, J

    1999-01-01

    Various methodologies published in the literature dealing with alpha-amino carboxylic acid asymmetric synthesis are presented in a digest form. In each case, only some recent or most typical works are mentioned.

  4. Free amino acids: an innovative treatment for ocular surface disease.

    PubMed

    Rusciano, Dario; Roszkowska, Anna Maria; Gagliano, Caterina; Pezzino, Salvatore

    2016-09-15

    Amino acids are the basic constituents of living organisms, and have both a structural and an active dynamic role in tissue and cell physiology. Human tears contain 23 amino acids, the relative proportion of which may change with the different physiological states of the eye surface. In this review, we present a collection of data from the published literature that indicate an active role of amino acids in the maintenance of eye surface homeostasis. Moreover, another series of published clinical data indicate that supplementation of amino acids, either as food supplements or as a topical treatment in enriched eye drops, is beneficial to the eye surface, and may improve its healing in cases of eye surface disease due to different causes.

  5. KINETICS OF AMINO ACID INCORPORATION INTO SERUM PROTEINS

    PubMed Central

    Green, H.; Anker, H. S.

    1955-01-01

    1. The effect of varying body temperature on the rate of amino acid incorporation into serum protein does not give support to the idea that the rate of this process is adjusted in vivo to restore those protein molecules destroyed by thermal denaturation. The experimentally observed Q10 was about 3.9. 2. When amino acids are injected into the blood of animals in a steady state of serum protein turnover, a period of time elapses before these amino acids can be found in the serum proteins. This has been called transit time. At a given temperature (31°) it is the same in rabbits, turtles, and Limulus (1 hour). In rabbits and turtles it has a Q10 of 3.2. It appears to be specifically related to the process of synthesis (or release) of serum proteins. 3. It was not possible to affect the transit time or the incorporation rate by the administration of amino acid analogues. PMID:13221773

  6. Astrobionibbler: In Situ Microfluidic Subcritical Water Extraction of Amino Acids

    NASA Astrophysics Data System (ADS)

    Noell, A. C.; Fisher, A. M.; Takano, N.; Fors-Francis, K.; Sherrit, S.; Grunthaner, F.

    2016-10-01

    A fluidic-chip based instrument for subcritical water extraction (SCWE) of amino acids and other organics from powder samples has been developed. A variety of soil analog extractions have been performed to better understand SCWE capabilities.

  7. Chemical Approaches to Studying Labile Amino Acid Phosphorylation.

    PubMed

    Marmelstein, Alan M; Moreno, Javier; Fiedler, Dorothea

    2017-04-01

    Phosphorylation of serine, threonine, and tyrosine residues is the archetypal posttranslational modification of proteins. While phosphorylation of these residues has become standard textbook knowledge, phosphorylation of other amino acid side chains is underappreciated and minimally characterized by comparison. This disparity is rooted in the relative instability of these chemically distinct amino acid side chain moieties, namely phosphoramidates, acyl phosphates, thiophosphates, and phosphoanhydrides. In the case of the O-phosphorylated amino acids, synthetic constructs were critical to assessing their stability and developing tools for their study. As the chemical biology community has become more aware of these alternative phosphorylation sites, methodology has been developed for the synthesis of well-characterized standards and close mimics of these phosphorylated amino acids as well. In this article, we review the synthetic chemistry that is a prerequisite to progress in this field.

  8. Isotopic analyses of amino acids from the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Pizzarello, S.; Cronin, J. R.; Krishnamurthy, R. V.; Epstein, S.

    1991-01-01

    An account is given of the results of H-2, C-13 isotopic analyses of the Murchison meteorite incorporating an ultrafiltration step to exclude the possibility of fine particulate contaminants. The meteorite's amino acids were chromatographically separated in order to preclude isotopic enrichment by basic compounds other than the amino acids. The results indicate that the Murchison amino acids are isotopically highly unusual; delta-C-13 is elevated by about 40 percent, and delta-D by fully 2500 percent. This high D content of the meteorite's alpha-amino acids may be due to the synthesis of their molecular precursors by low-temperature ion-molecule reactions in an interstellar cloud.

  9. Multicomponent cascade reactions of unprotected carbohydrates and amino acids.

    PubMed

    Voigt, Benjamin; Linke, Michael; Mahrwald, Rainer

    2015-06-05

    Herein an operationally simple multicomponent reaction of unprotected carbohydrates with amino acids and isonitriles is presented. By the extension of this Ugi-type reaction to an unprotected disaccharide a novel glycopeptide structure was accessible.

  10. Dipeptide Sequence Determination: Analyzing Phenylthiohydantoin Amino Acids by HPLC

    NASA Astrophysics Data System (ADS)

    Barton, Janice S.; Tang, Chung-Fei; Reed, Steven S.

    2000-02-01

    Amino acid composition and sequence determination, important techniques for characterizing peptides and proteins, are essential for predicting conformation and studying sequence alignment. This experiment presents improved, fundamental methods of sequence analysis for an upper-division biochemistry laboratory. Working in pairs, students use the Edman reagent to prepare phenylthiohydantoin derivatives of amino acids for determination of the sequence of an unknown dipeptide. With a single HPLC technique, students identify both the N-terminal amino acid and the composition of the dipeptide. This method yields good precision of retention times and allows use of a broad range of amino acids as components of the dipeptide. Students learn fundamental principles and techniques of sequence analysis and HPLC.

  11. Comparing Amino Acid Abundances and Distributions Across Carbonaceous Chondrite Groups

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Callahan, Michael P.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.

    2012-01-01

    Meteorites are grouped according to bulk properties such as chemical composition and mineralogy. These parameters can vary significantly among the different carbonaceous chondrite groups (CI, CM, CO, CR, CH, CB, CV and CK). We have determined the amino acid abundances of more than 30 primary amino acids in meteorites from each of the eight groups, revealing several interesting trends. There are noticeable differences in the structural diversity and overall abundances of amino acids between meteorites from the different chondrite groups. Because meteorites may have been an important source of amino acids to the prebiotic Earth and these organic compounds are essential for life as we know it, the observed variations of these molecules may have been important for the origins of life.

  12. UV-resonance Raman spectroscopy of amino acids

    NASA Astrophysics Data System (ADS)

    Höhl, Martin; Meinhardt-Wollweber, Merve; Schmitt, Heike; Lenarz, Thomas; Morgner, Uwe

    2016-03-01

    Resonant enhancement of Raman signals is a useful method to increase sensitivity in samples with low concentration such as biological tissue. The investigation of resonance profiles shows the optimal excitation wavelength and yields valuable information about the molecules themselves. However careful characterization and calibration of all experimental parameters affecting quantum yield is required in order to achieve comparability of the single spectra recorded. We present an experimental technique for measuring the resonance profiles of different amino acids. The absorption lines of these molecules are located in the ultraviolet (UV) wavelength range. One limitation for broadband measurement of resonance profiles is the limited availability of Raman filters in certain regions of the UV for blocking the Rayleigh scattered light. Here, a wavelength range from 244.8 nm to 266.0 nm was chosen. The profiles reveal the optimal wavelength for recording the Raman spectra of amino acids in aqueous solutions in this range. This study provides the basis for measurements on more complex molecules such as proteins in the human perilymph. The composition of this liquid in the inner ear is essential for hearing and cannot be analyzed non-invasively so far. The long term aim is to implement this technique as a fiber based endoscope for non-invasive measurements during surgeries (e. g. cochlear implants) making it available as a diagnostic tool for physicians. This project is embedded in the interdisciplinary cluster of excellence "Hearing for all" (H4A).

  13. Polypeptide having an amino acid replaced with N-benzylglycine

    DOEpatents

    Mitchell, Alexander R.; Young, Janis D.

    1996-01-01

    The present invention relates to one or more polypeptides having useful biological activity in a mammal, which comprise: a polypeptide related to bradykinin of four to ten amino acid residues wherein one or more specific amino acids in the polypeptide chain are replaced with achiral N-benzylglycine. These polypeptide analogues have useful potent agonist or antagonist pharmacological properties depending upon the structure. A preferred polypeptide is (N-benzylglycine.sup.7)-bradykinin.

  14. The stability of amino acids at submarine hydrothermal vent temperatures

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.; Miller, Stanley L.; Zhao, Meixun

    1995-01-01

    It has been postulated that amino acid stability at hydrothermal vent temperatures is controlled by a metastable thermodynamic equilibrium rather than by kinetics. Experiments reported here demonstrate that the amino acids are irreversibly destroyed by heating at 240 C and that quasi-equilibrium calculations give misleading descriptions of the experimental observations. Equilibrium thermodynamic calculations are not applicable to organic compounds under high-temperature submarine vent conditions.

  15. Amino acid metabolism in tumour-bearing mice.

    PubMed Central

    Rivera, S; Azcón-Bieto, J; López-Soriano, F J; Miralpeix, M; Argilés, J M

    1988-01-01

    Mice bearing the Lewis lung carcinoma showed a high tumour glutaminase activity and significantly higher concentrations of most amino acids than in both the liver and the skeletal muscle of the host. Tumour tissue slices showed a marked preference for glutamine, especially for oxidation of its skeleton to CO2. It is proposed that the metabolism of this particular carcinoma is focused on amino acid degradation, glutamine being its preferred substrate. PMID:3342022

  16. Amino acid quantification in bulk soybeans by transmission Raman spectroscopy.

    PubMed

    Schulmerich, Matthew V; Gelber, Matthew K; Azam, Hossain M; Harrison, Sandra K; McKinney, John; Thompson, Dennis; Owen, Bridget; Kull, Linda S; Bhargava, Rohit

    2013-12-03

    Soybeans are a commodity crop of significant economic and nutritional interest. As an important source of protein, buyers of soybeans are interested in not only the total protein content but also in the specific amino acids that comprise the total protein content. Raman spectroscopy has the chemical specificity to measure the twenty common amino acids as pure substances. An unsolved challenge, however, is to quantify varying levels of amino acids mixed together and bound in soybeans at relatively low concentrations. Here we report the use of transmission Raman spectroscopy as a secondary analytical approach to nondestructively measure specific amino acids in intact soybeans. With the employment of a transmission-based Raman instrument, built specifically for nondestructive measurements from bulk soybeans, spectra were collected from twenty-four samples to develop a calibration model using a partial least-squares approach with a random-subset cross validation. The calibration model was validated on an independent set of twenty-five samples for oil, protein, and amino acid predictions. After Raman measurements, the samples were reduced to a fine powder and conventional wet chemistry methods were used for quantifying reference values of protein, oil, and 18 amino acids. We found that the greater the concentrations (% by weight component of interest), the better the calibration model and prediction capabilities. Of the 18 amino acids analyzed, 13 had R(2) values greater than 0.75 with a standard error of prediction c.a. 3-4% by weight. Serine, histidine, cystine, tryptophan, and methionine showed poor predictions (R(2) < 0.75), which were likely a result of the small sampling range and the low concentration of these components. It is clear from the correlation plots and root-mean-square error of prediction that Raman spectroscopy has sufficient chemical contrast to nondestructively quantify protein, oil, and specific amino acids in intact soybeans.

  17. [Sorption of amino acids from aqueous solutions on activated charcoal].

    PubMed

    Nekliudov, A D; Tsibanov, V V

    1985-03-01

    Various methods for quantitative description of amino acid sorption from solutions for parenteral nutrition on activated charcoal were studied under dynamic and static conditions. With the use of the well-known Freindlich and Langmuir absorption isotherms it was shown to be possible to describe in a simplified way the complex multicomponent process of sorption of the amino acids and to estimate their loss at the filtration stage.

  18. Genetic code correlations - Amino acids and their anticodon nucleotides

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Lacey, J. C., Jr.

    1978-01-01

    The data here show direct correlations between both the hydrophobicity and the hydrophilicity of the homocodonic amino acids and their anticodon nucleotides. While the differences between properties of uracil and cytosine derivatives are small, further data show that uracil has an affinity for charged species. Although these data suggest that molecular relationships between amino acids and anticodons were responsible for the origin of the code, it is not clear what the mechanism of the origin might have been.

  19. Principal transcriptional regulation and genome-wide system interactions of the Asp-family and aromatic amino acid networks of amino acid metabolism in plants.

    PubMed

    Less, Hadar; Angelovici, Ruthie; Tzin, Vered; Galili, Gad

    2010-10-01

    branched pathways requiring extensive regulation of fluxes between the different branches. Additional views on the biochemistry, regulation and functional significance of the Asp-family and aromatic amino acid networks and some of their associated metabolites that are discussed in the present report, as well as the nutritional importance of Lys and Trp to human and farm animals, and attempts to improve Lys level in crop plants, can be obtained from the following reviews as examples (Radwanski and Last in Plant Cell 7:921-934, 1995; Halkier and Gershenzon in Annu Rev Plant Biol 57:303-333, 2006; Ufaz and Galili in Plant Physiol 147:954-961, 2008; Jander and Joshi in Mol Plant 3:54-65, 2010).

  20. Amino acid modifiers in guayule rubber compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tire producers are increasingly interested in biobased materials, including rubber but also as compounding chemicals. An alternative natural rubber for tire use is produced by guayule, a woody desert shrub native to North America. Alternative compounding chemicals include naturally-occurring amino a...

  1. D-Amino Acids in the Nervous and Endocrine Systems

    PubMed Central

    Kiriyama, Yoshimitsu

    2016-01-01

    Amino acids are important components for peptides and proteins and act as signal transmitters. Only L-amino acids have been considered necessary in mammals, including humans. However, diverse D-amino acids, such as D-serine, D-aspartate, D-alanine, and D-cysteine, are found in mammals. Physiological roles of these D-amino acids not only in the nervous system but also in the endocrine system are being gradually revealed. N-Methyl-D-aspartate (NMDA) receptors are associated with learning and memory. D-Serine, D-aspartate, and D-alanine can all bind to NMDA receptors. H2S generated from D-cysteine reduces disulfide bonds in receptors and potentiates their activity. Aberrant receptor activity is related to diseases of the central nervous system (CNS), such as Alzheimer's disease, amyotrophic lateral sclerosis, and schizophrenia. Furthermore, D-amino acids are detected in parts of the endocrine system, such as the pineal gland, hypothalamus, pituitary gland, pancreas, adrenal gland, and testis. D-Aspartate is being investigated for the regulation of hormone release from various endocrine organs. Here we focused on recent findings regarding the synthesis and physiological functions of D-amino acids in the nervous and endocrine systems. PMID:28053803

  2. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots.

    PubMed

    Kudoyarova, Guzel R; Melentiev, Alexander I; Martynenko, Elena V; Timergalina, Leila N; Arkhipova, Tatiana N; Shendel, Galina V; Kuz'mina, Ludmila Yu; Dodd, Ian C; Veselov, Stanislav Yu

    2014-10-01

    Phytohormone production is one mechanism by which rhizobacteria can stimulate plant growth, but it is not clear whether the bacteria gain from this mechanism. The hypothesis that microbial-derived cytokinin phytohormones stimulate root exudation of amino acids was tested. The rhizosphere of wheat plants was drenched with the synthetic cytokinin trans-zeatin or inoculated with Bacillus subtilis IB-22 (which produces zeatin type cytokinins) or B. subtilis IB-21 (which failed to accumulate cytokinins). Growing plants in a split root system allowed spatial separation of zeatin application or rhizobacterial inoculation to one compartment and analyses of amino acid release from roots (rhizodeposition) into the other compartment (without either microbial inoculation or treatment with exogenous hormone). Supplying B. subtilis IB-22 or zeatin to either the whole root system or half of the roots increased concentrations of amino acids in the soil solution although the magnitude of the increase was greater when whole roots were treated. There was some similarity in amino acid concentrations induced by either bacterial or zeatin treatment. Thus B. subtilis IB-22 increased amino acid rhizodeposition, likely due to its ability to produce cytokinins. Furthermore, B. subtilis strain IB-21, which failed to accumulate cytokinins in culture media, did not significantly affect amino acid concentrations in the wheat rhizosphere. The ability of rhizobacteria to produce cytokinins and thereby stimulate rhizodeposition may be important in enhancing rhizobacterial colonization of the rhizoplane.

  3. Evaluation of Amino Acids as Turfgrass Nematicides1

    PubMed Central

    Zhang, Yun; Luc, John E.; Crow, William T.

    2010-01-01

    Laboratory experiments revealed that DL-methionine, sodium methionate, potassium methionate, and methionine hydroxyl analog at rates of 224 and 448 kg amino acid/ha reduced the number of Belonolaimus longicaudatus mixed life-stages and Meloidogyne incognita J2 in soil, whereas L-threonine and lysine were not effective in reducing the number of either nematode. Futhermore, greenhouse experiments demonstrated that DL-methionine, sodium methionate, potassium methionate, and methionine hydroxyl analog were equally effective against B. longicaudatus at rates of 112, 224, and 448 kg amino acid/ha, and the highest rate (448 kg amino acid/ha) of all amino acids was more effective in reducing the number of B. longicaudatus than the lower rate. However, phytotoxicity was observed on creeping bentgrass (Agrostis palustris) treated with 448 kg amino acid/ha of methionine hydroxyl analog and DL methionine. In addition, in one of two field experiments on bermudagrass (Cynodon dactylon × C. transvaalensis) turf percentage green cover was increased and the number of B. longicaudatus was reduced by 224 kg amino acid/ha of DL-methionine and potassium methionate compared to untreated controls in one of two trials. PMID:22736861

  4. Did Evolution Select a Nonrandom "Alphabet" of Amino Acids?

    NASA Astrophysics Data System (ADS)

    Philip, Gayle K.; Freeland, Stephen J.

    2011-04-01

    The last universal common ancestor of contemporary biology (LUCA) used a precise set of 20 amino acids as a standard alphabet with which to build genetically encoded protein polymers. Considerable evidence indicates that some of these amino acids were present through nonbiological syntheses prior to the origin of life, while the rest evolved as inventions of early metabolism. However, the same evidence indicates that many alternatives were also available, which highlights the question: what factors led biological evolution on our planet to define its standard alphabet? One possibility is that natural selection favored a set of amino acids that exhibits clear, nonrandom properties - a set of especially useful building blocks. However, previous analysis that tested whether the standard alphabet comprises amino acids with unusually high variance in size, charge, and hydrophobicity (properties that govern what protein structures and functions can be constructed) failed to clearly distinguish evolution's choice from a sample of randomly chosen alternatives. Here, we demonstrate unambiguous support for a refined hypothesis: that an optimal set of amino acids would spread evenly across a broad range of values for each fundamental property. Specifically, we show that the standard set of 20 amino acids represents the possible spectra of size, charge, and hydrophobicity more broadly and more evenly than can be explained by chance alone.

  5. The spark discharge synthesis of amino acids from various hydrocarbons

    NASA Technical Reports Server (NTRS)

    Ring, D.; Miller, S. L.

    1984-01-01

    The spark discharge synthesis of amino acids using an atmosphere of CH4+N2+H2O+NH3 has been investigated with variable pNH3. The amino acids produced using higher hydrocarbons (ethane, ethylene, acetylene, propane, butane, and isobutane) instead of CH4 were also investigated. There was considerable range in the absolute yields of amino acids, but the yields relative to glycine (or alpha-amino-n-butyric acid) were more uniform. The relative yields of the C3 to C6 aliphatic alpha-amino acids are nearly the same (with a few exceptions) with all the hydrocarbons. The glycine yields are more variable. The precursors to the C3-C6 aliphatic amino acids seem to be produced in the same process, which is separate from the synthesis of glycine precursors. It may be possible to use these relative yields as a signature for a spark discharge synthesis provided corrections can be made for subsequent decomposition events (e.g. in the Murchison meteorite).

  6. Child Stunting is Associated with Low Circulating Essential Amino Acids

    PubMed Central

    Semba, Richard D.; Shardell, Michelle; Sakr Ashour, Fayrouz A.; Moaddel, Ruin; Trehan, Indi; Maleta, Kenneth M.; Ordiz, M. Isabel; Kraemer, Klaus; Khadeer, Mohammed A.; Ferrucci, Luigi; Manary, Mark J.

    2016-01-01

    Background Stunting affects about one-quarter of children under five worldwide. The pathogenesis of stunting is poorly understood. Nutritional interventions have had only modest effects in reducing stunting. We hypothesized that insufficiency in essential amino acids may be limiting the linear growth of children. Methods We used a targeted metabolomics approach to measure serum amino acids, glycerophospholipids, sphingolipids, and other metabolites using liquid chromatography-tandem mass spectrometry in 313 children, aged 12–59 months, from rural Malawi. Children underwent anthropometry. Findings Sixty-two percent of the children were stunted. Children with stunting had lower serum concentrations of all nine essential amino acids (tryptophan, isoleucine, leucine, valine, methionine, threonine, histidine, phenylalanine, lysine) compared with nonstunted children (p < 0.01). In addition, stunted children had significantly lower serum concentrations of conditionally essential amino acids (arginine, glycine, glutamine), non-essential amino acids (asparagine, glutamate, serine), and six different sphingolipids compared with nonstunted children. Stunting was also associated with alterations in serum glycerophospholipid concentrations. Interpretation Our findings support the idea that children with a high risk of stunting may not be receiving an adequate dietary intake of essential amino acids and choline, an essential nutrient for the synthesis of sphingolipids and glycerophospholipids. PMID:27211567

  7. Extraterrestrial Amino Acids in Ureilites Including Almahata Sitta

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Glavin, D. P.; Callahan, M. P.; Dworkin, J. P.

    2011-01-01

    Ureilites are a class of meteorites that lack chondrules (achondrites) but have relatively high carbon abundances, averaging approx.3 wt %. Using highly sensitive liquid chromatography coupled with UV fluorescence and time-of-flight mass spectrometry (LC-FD/ToF-MS), it was recently determined that there are amino acids in. fragment 94 of the Almahata Sitta ureilite[l]. Based on the presence of amino acids that are rare in the Earth's biosphere, as well as the near-racemic enantiomeric ratios of marry of the more common amino acids, it was concluded that most of the detected amino acids were indigenous to the meteorite. Although the composition of the Almahata Sitta ureilite appears to be unlike other recovered ureilites, the discovery of amino acids in this meteorite raises the question of whether other ureilites rnav also contain amino acids. Herein we present the results of LC-FDlTo.F-MS analyses of: a sand sample from the Almahata Sitta strewn held, Almahata Sitta fragments 425 (an ordinary H5 chondrite) and 427 (ureilite), as well as an Antarctic ureilite (Allan lulls, ALHA 77257).

  8. Dependence of intestinal amino acid uptake on dietary protein or amino acid levels

    SciTech Connect

    Karasov, W.H.; Solberg, D.H.; Diamond, J.M.

    1987-05-01

    To understand how intestinal amino acid (AA) transport is regulated by dietary substrate levels, the authors measured uptake of seven radioactively-labelled AAs and glucose across the jejunal brush-border membrane of mice kept on one of three isocaloric rations differing in nitrogen content. In the high-protein ration, uptake increased by 77-81% for the nonessential, less toxic AAs, proline, and aspartate but only by 32-61% for the more toxic essential AAs tested. In the nitrogen-deficient ration, uptake decreased for the nonessential aspartate and proline but stayed constant or increased for essential AAs and for the nonessential alanine. These patterns imply independent regulation of the intestine's various AA transporters. With decreasing dietary AA (or protein), the imino acid and acidic AA private transporters are repressed, while activities of the basic AA transporter and the neutral AA public transporter decrease to an asymptote or else go through a minimum. These regulatory patterns can be understood as a compromise among conflicting constraints imposed by protein's multiple roles as a source of calories, nitrogen, and essential AAs and by the toxicity of essential AAs at high concentrations.

  9. Amino acid composition of Lagenaria siceraria seed flour and protein fractions.

    PubMed

    Ogunbusola, Moriyike Esther; Fagbemi, Tayo Nathaniel; Osundahunsi, Oluwatooyin Faramade

    2010-12-01

    Defatted seed flours of Lagenaria siceraria (calabash and bottle gourd) were fractionated into their major protein fractions. The amino acid composition of seed flours and their protein fractions were determined and the protein quality was evaluated. Glutamic acid (139-168 mg/g protein) was the most abundant amino acid followed by aspartic acid (89.0-116 mg/g protein) in both the seed flours and their protein fractions. The total essential amino acid ranged from 45.8 to 51.5%. The predicted protein efficiency ratio and the predicted biological value ranged from 2.4 to 2.9 and 8.7 to 44.0, respectively. Lysine and sulphur amino acids were mostly concentrated in the globulin fractions. The first and second limiting amino acids in seed flours and protein fractions were methionine and valine or threonine. The seed flours contained adequate essential amino acids required by growing school children and adults. The seed has potential as protein supplement in cereal based complementary diets or in the replacement of animal proteins in conventional foods.

  10. Metabolism of sulfur amino acids in Saccharomyces cerevisiae.

    PubMed Central

    Thomas, D; Surdin-Kerjan, Y

    1997-01-01

    Sulfur amino acid biosynthesis in Saccharomyces cerevisiae involves a large number of enzymes required for the de novo biosynthesis of methionine and cysteine and the recycling of organic sulfur metabolites. This review summarizes the details of these processes and analyzes the molecular data which have been acquired in this metabolic area. Sulfur biochemistry appears not to be unique through terrestrial life, and S. cerevisiae is one of the species of sulfate-assimilatory organisms possessing a larger set of enzymes for sulfur metabolism. The review also deals with several enzyme deficiencies that lead to a nutritional requirement for organic sulfur, although they do not correspond to defects within the biosynthetic pathway. In S. cerevisiae, the sulfur amino acid biosynthetic pathway is tightly controlled: in response to an increase in the amount of intracellular S-adenosylmethionine (AdoMet), transcription of the coregulated genes is turned off. The second part of the review is devoted to the molecular mechanisms underlying this regulation. The coordinated response to AdoMet requires two cis-acting promoter elements. One centers on the sequence TCACGTG, which also constitutes a component of all S. cerevisiae centromeres. Situated upstream of the sulfur genes, this element is the binding site of a transcription activation complex consisting of a basic helix-loop-helix factor, Cbf1p, and two basic leucine zipper factors, Met4p and Met28p. Molecular studies have unraveled the specific functions for each subunit of the Cbf1p-Met4p-Met28p complex as well as the modalities of its assembly on the DNA. The Cbf1p-Met4p-Met28p complex contains only one transcription activation module, the Met4p subunit. Detailed mutational analysis of Met4p has elucidated its functional organization. In addition to its activation and bZIP domains, Met4p contains two regulatory domains, called the inhibitory region and the auxiliary domain. When the level of intracellular AdoMet increases

  11. Branched-chain amino acid administration in surgical patients. Effects on amino acid and fuel substrate profiles.

    PubMed

    Desai, S P; Bistrian, B R; Palombo, J D; Moldawer, L L; Blackburn, G L

    1987-07-01

    During the first five days following gastric bypass surgery, 15 patients received near isotonic amino acid solutions that varied in their branched-chain amino acid (BCAA) content and amino acid profiles (15.6%, 50%, or 100% BCAA solutions). Plasma valine concentrations were elevated in patients receiving 50% and 100% BCAA solutions. Plasma alanine concentrations were highest in patients receiving 50% BCAA. Plasma free fatty acids and blood lactate concentrations were unchanged by either the operation or BCAA administration. Serum glucose concentration was unaffected by the different amino acid administrations and followed the pattern induced by stress initially and later by starvation. beta-Hydroxybutyrate concentrations increased as starvation proceeded and were highest in patients receiving the 15.6% BCAA solution. Branched-chain amino acid-enriched solutions without additional energy may be administered safely to patients recovering from operative trauma. Plasma amino acid concentrations and fuel substrate profiles appear to follow metabolic patterns determined by the physiologic response to stress and starvation and can be affected by large quantities of BCAAs.

  12. An efficient preparation of N-methyl-alpha-amino acids from N-nosyl-alpha-amino acid phenacyl esters.

    PubMed

    Leggio, Antonella; Belsito, Emilia Lucia; De Marco, Rosaria; Liguori, Angelo; Perri, Francesca; Viscomi, Maria Caterina

    2010-03-05

    In this paper we describe a simple and efficient solution-phase synthesis of N-methyl-N-nosyl-alpha-amino acids and N-Fmoc-N-methyl-alpha-amino acids. This represents a very important application in peptide synthesis to obtain N-methylated peptides in both solution and solid phase. The developed methodology involves the use of N-nosyl-alpha-amino acids with the carboxyl function protected as a phenacyl ester and the methylating reagent diazomethane. An important aspect of this synthetic strategy is the possibility to selectively deprotect the carboxyl function or alternatively both amino and carboxyl moieties by using the same reagent with a different molar excess and under mild conditions. Furthermore, the adopted procedure keeps unchanged the acid-sensitive side chain protecting groups used in Fmoc-based synthetic strategies.

  13. Aromatic amino acids are utilized and protein synthesis is stimulated during amino acid infusion in the ovine fetus.

    PubMed

    Liechty, E A; Boyle, D W; Moorehead, H; Auble, L; Denne, S C

    1999-06-01

    The purpose of this study was to determine whether the ovine fetus is capable of increased disposal of an amino acid load; if so, would it respond by increased protein synthesis, amino acid catabolism or both? A further purpose of the study was to determine whether the pathways of aromatic amino acid catabolism are functional in the fetus. Late gestation ovine fetuses of well-nourished ewes received an infusion of Aminosyn PF alone (APF), and Aminosyn PF + glycyl-L-tyrosine (APF+GT) at rates estimated to double the intake of these amino acids. The initial study, using APF, was performed at 126 +/- 1.4 d; the APF+GT study was performed at 132 +/- 1.7 d (term = 150 d). Phenylalanine and tyrosine kinetics were determined using both stable and radioactive isotopes. Plasma concentrations of most amino acids, but not tyrosine, increased during both studies; tyrosine concentration increased only during the APF+GT study. Phenylalanine rate of appearance and phenylalanine hydroxylation increased during both studies. Tyrosine rate of appearance increased only during the APF+GT study; tyrosine oxidation did not increase during either study. Fetal protein synthesis increased significantly during both studies, producing a significant increase in fetal protein accretion. Fetal proteolysis was unchanged in response to either amino acid infusion. These results indicate that the fetus responds to an acute increase in amino acid supply primarily by increasing protein synthesis and accretion, with a smaller but significant increase in amino acid catabolism also. Both phenylalanine hydroxylation and tyrosine oxidation are active in the fetus, and the fetus is able to increase phenylalanine hydroxylation rapidly in response to increased supply.

  14. Effects and feasibility of exercise therapy combined with branched-chain amino acid supplementation on muscle strengthening in frail and pre-frail elderly people requiring long-term care: a crossover trial.

    PubMed

    Ikeda, Takashi; Aizawa, Junya; Nagasawa, Hiroshi; Gomi, Ikuko; Kugota, Hiroyuki; Nanjo, Keigo; Jinno, Tetsuya; Masuda, Tadashi; Morita, Sadao

    2016-04-01

    This study examined the effects and feasibility of a twice-weekly combined therapy of branched-chain amino acids (BCAAs) and exercise on physical function improvement in frail and pre-frail elderly people requiring long-term care. We used a crossover design in which the combination of exercise and nutritional interventions was carried out twice a week during cycles A (3 months) and B (3 months) and the exercise intervention alone was performed during the washout period. The exercise intervention entailed the following 5 training sets: 3 sets of muscle training at 30% of maximum voluntary contraction, 1 set of aerobic exercise, and 1 set of balance training. For the nutritional intervention, 6 g of BCAAs or 6 g of maltodextrin was consumed 10 min before starting the exercise. We determined upper and lower limb isometric strength, performance on the Functional Reach Test (FRT) and the Timed Up and Go test, and activity level. In the comparison between the BCAA group and the control group after crossover, the improvement rates in gross lower limb muscle strength (leg press, knee extension) and FRT performance were significantly greater (by approximately 10%) in the BCAA group. In the comparison between different orders of BCAA administration, significant effects were shown for the leg press in both groups only when BCAAs were given. The combination of BCAA intake and exercise therapy yielded significant improvements in gross lower limb muscle strength and dynamic balance ability.

  15. Amino acid profiles of lactic acid bacteria, isolated from kefir grains and kefir starter made from them.

    PubMed

    Simova, Emilina; Simov, Zhelyasko; Beshkova, Dora; Frengova, Ginka; Dimitrov, Zhechko; Spasov, Zdravko

    2006-03-15

    The characteristics of cell growth, lactic acid production, amino acid release and consumption by single-strain cultures of lactic acid bacteria (isolated from kefir grains), and by a multiple-strain kefir starter prepared from them, were studied. The change in the levels of free amino acids was followed throughout the kefir process: single-strain kefir bacteria and the kefir starter (Lactococcus lactis C15-1%+Lactobacillus helveticus MP12-3%+(Streptococcus thermophilus T15+Lactobacillus bulgaricus HP1 = 1:1)-3%) were cultivated in pasteurized (92 degrees C for 20 min) cow's milk (3% fat content) at 28 degrees C for 5 h (the kefir starter reached pH 4.7) and subsequently grown at 20 degrees C for 16 h; storage was at 4 degrees C for 168 h. The strain L. helveticus MP12 was unrivaled with respect to free amino acid production (53.38 mg (100 g)(-1)) and cell growth (17.8 x 10(8) CFU ml(-1)); however, it manifested the lowest acidification activity. L. bulgaricus HP1 released approximately 3.7 times less amino acids, nearly 5 times lower cell growth, and produced about 1.2 times more lactic acid. S. thermophilus T15 demonstrated dramatically complex amino acid necessities for growth and metabolism. With L. lactis C15, the highest levels of growth and lactic acid synthesis were recorded (18.3 x 10(8) CFU ml(-1) and 7.8 g l(-1) lactic acid at the 21st hour), and as for free amino acid production, it approximated L. bulgaricus HP1 (17.03 mg (100 g)(-1) maximum concentration). In the L. lactis C15 culture, the amino acids were used more actively throughout the first exponential growth phase (by the 10th hour) than during the second growth phase. The unique properties of the L. helveticus MP12 strain to produce amino acids were employed to create a symbiotic bioconsortium kefir culture, which, under conditions of kefir formation, enhanced lactic acid production and shortened the time required to reach pH 4.7; intensified cell growth activity, resulting in a respective 90

  16. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.

    PubMed

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  17. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  18. The Safety and Regulatory Process for Amino Acids in Europe and the United States.

    PubMed

    Roberts, Ashley

    2016-12-01

    The safety of long-term, high-dose amino acid consumption marketed as dietary supplements or functional or medical foods requires regulatory clearance in the European Union through the novel food process or through the Dietary Supplement Health and Education Act or the GRAS (Generally Recognized As Safe) route in the United States. The safety assessment of high daily doses of amino acids for bodybuilding or other health benefits is expected to require human studies to support tolerability and safety. The need for human studies is based on the fact that there is little or no evidence of toxicity from the conduct of animal toxicity studies and because standard animal testing would be inappropriate because of the large dosages required to provide a suitable margin of safety when extrapolating from animals to humans. Furthermore, the large dosages in animals required to provide a substantial margin of safety could lead to nutritional and physiologic imbalances, potentially confounding an amino acid safety assessment.

  19. On the abiotic formation of amino acids. I - HCN as a precursor of amino acids detected in extracts of lunar samples. II - Formation of HCN and amino acids from simulated mixtures of gases released from lunar samples

    NASA Technical Reports Server (NTRS)

    Yuasa, S.; Flory, D.; Basile, B.; Oro, J.

    1984-01-01

    Two studies on the abiotic formation of amino acids are presented. The first study demonstrates the role of hydrogen cyanide as a precursor of amino acids detected in extracts of lunar samples. The formation of several amino acids, including glycine, alanine, aspartic acid, and glutamic acid, under conditions similar to those used for the analysis of lunar samples is demonstrated. The second study investigates the formation of hydrogen cyanide as well as amino acids from lunar-sample gas mixtures under electrical discharge conditions. These results extend the possibility of synthesis of amino acids to planetary bodies with primordial atmospheres less reducing than a mixture of methane, ammonia, hydrogen and water.

  20. Size does matter: 18 amino acids at the N-terminal tip of an amino acid transporter in Leishmania determine substrate specificity

    PubMed Central

    Schlisselberg, Doreen; Mazarib, Eldar; Inbar, Ehud; Rentsch, Doris; Myler, Peter J.; Zilberstein, Dan

    2015-01-01

    Long N-terminal tails of amino acid transporters are known to act as sensors of the internal pool of amino acids and as positive regulators of substrate flux rate. In this study we establish that N-termini of amino acid transporters can also determine substrate specificity. We show that due to alternative trans splicing, the human pathogen Leishmania naturally expresses two variants of the proline/alanine transporter, one 18 amino acid shorter than the other. We demonstrate that the longer variant (LdAAP24) translocates both proline and alanine, whereas the shorter variant (∆18LdAAP24) translocates just proline. Remarkably, co-expressing the hydrophilic N-terminal peptide of the long variant with ∆18LdAAP24 was found to recover alanine transport. This restoration of alanine transport could be mediated by a truncated N-terminal tail, though truncations exceeding half of the tail length were no longer functional. Taken together, the data indicate that the first 18 amino acids of the negatively charged N-terminal LdAAP24 tail are required for alanine transport and may facilitate the electrostatic interactions of the entire negatively charged N-terminal tail with the positively charged internal loops in the transmembrane domain, as this mechanism has been shown to underlie regulation of substrate flux rate for other transporters. PMID:26549185

  1. Synthesis and biological activity of novel amino acid-(N'-benzoyl) hydrazide and amino acid-(N'-nicotinoyl) hydrazide derivatives.

    PubMed

    Khattab, Sherine N

    2005-09-30

    The coupling reaction of benzoic acid and nicotinic acid hydrazides with N- protected L-amino acids including valine, leucine, phenylalanine, glutamic acid and tyrosine is reported. The target compounds, N-Boc-amino acid-(N;-benzoyl)- and N- Boc-amino acid-(N;-nicotinoyl) hydrazides 5a-5e and 6a-6e were prepared in very high yields and purity using N-[(dimethylamino)-1H-1,2,3-triazolo[4,5-b]pyridin-1-yl- methylene]-N-methyl-methanaminium hexafluorophosphate N-oxide (HATU) as coupling reagent. The antimicrobial activity of the Cu and Cd complexes of the designed compounds was tested. The products were deprotected affording the corresponding amino acid-(N;-benzoyl) hydrazide hydrochloride salts (7a-7e) and amino acid-(N;- nicotinoyl) hydrazide hydrochloride salts (8a-8e). These compounds and their Cu and Cd complexes were also tested for their antimicrobial activity. Several compounds showed comparable activity to that of ampicillin against S. aureus and E. coli.

  2. [Blood amino acids in astronauts before and after a 211-day space flight].

    PubMed

    Popov, I G; Latskevich, A A

    1984-01-01

    The plasma content of 17 free amino acids of the Commander and Flight-Engineer of Salyut-1-Soyuz-T was examined before flight and on postflight days 1 and 7. The amino acids were measured in an automatic amino acid analyzer Hitachi KLA-3B. Both cosmonauts showed a decrease of most amino acids, particularly essential amino acids. On postflight day 7 the content of most amino acids did not yet return to the preflight level. It can therefore be concluded that the preflight diet should be supplemented with methionine and aspartic acid, and the flight and postflight diets with 7 essential amino acids plus cystine, arginine, proline and aspartic acid.

  3. Expression pattern of peptide and amino acid genes in digestive tract of transporter juvenile turbot ( Scophthalmus maximus L.)

    NASA Astrophysics Data System (ADS)

    Xu, Dandan; He, Gen; Mai, Kangsen; Zhou, Huihui; Xu, Wei; Song, Fei

    2016-04-01

    Turbot ( Scophthalmus maximus L.), a carnivorous fish species with high dietary protein requirement, was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which was divided into six segments including stomach, pyloric caeca, rectum, and three equal parts of the remainder of the intestine. The results showed that the expression of two peptide and eleven amino acid transporters genes exhibited distinct patterns. Peptide transporter 1 (PepT1) was rich in proximal intestine while peptide transporter 2 (PepT2) was abundant in distal intestine. A number of neutral and cationic amino acid transporters expressed richly in whole intestine including B0-type amino acid transporter 1 (B0AT1), L-type amino acid transporter 2 (LAT2), T-type amino acid transporter 1 (TAT1), proton-coupled amino acid transporter 1 (PAT1), y+L-type amino acid transporter 1 (y+LAT1), and cationic amino acid transporter 2 (CAT2) while ASC amino acid transporter 2 (ASCT2), sodium-coupled neutral amino acid transporter 2 (SNAT2), and y+L-type amino acid transporter 2 (y+LAT2) abundantly expressed in stomach. In addition, system b0,+ transporters (rBAT and b0,+AT) existed richly in distal intestine. These findings comprehensively characterized the distribution of solute carrier family proteins, which revealed the relative importance of peptide and amino acid absorption through luminal membrane. Our findings are helpful to understand the mechanism of the utilization of dietary protein in fish with a short digestive tract.

  4. Variation in amino acid and lipid composition of latent fingerprints.

    PubMed

    Croxton, Ruth S; Baron, Mark G; Butler, David; Kent, Terry; Sears, Vaughn G

    2010-06-15

    The enhancement of latent fingerprints, both at the crime scene and in the laboratory using an array of chemical, physical and optical techniques, permits their use for identification. Despite the plethora of techniques available, there are occasions when latent fingerprints are not successfully enhanced. An understanding of latent fingerprint chemistry and behaviour will aid the improvement of current techniques and the development of novel ones. In this study the amino acid and fatty acid content of 'real' latent fingerprints collected on a non-porous surface was analysed by gas chromatography-mass spectrometry. Squalene was also quantified in addition. Hexadecanoic acid, octadecanoic acid and cis-9-octadecenoic acid were the most abundant fatty acids in all samples. There was, however, wide variation in the relative amounts of each fatty acid in each sample. It was clearly demonstrated that touching sebum-rich areas of the face immediately prior to fingerprint deposition resulted in a significant increase in the amount of fatty acids and squalene deposited in the resulting 'groomed' fingerprints. Serine was the most abundant amino acid identified followed by glycine, alanine and aspartic acid. The significant quantitative differences between the 'natural' and 'groomed' fingerprint samples seen for fatty acids were not observed in the case of the amino acids. This study demonstrates the variation in latent fingerprint composition between individuals and the impact of the sampling protocol on the quantitative analysis of fingerprints.

  5. Profiles of amino acids and biogenic amines in the plasma of Cri-du-Chat patients.

    PubMed

    Furtado, Danielle Zildeana Sousa; de Moura Leite, Fernando Brunale Vilela; Barreto, Cleber Nunes; Faria, Bernadete; Jedlicka, Leticia Dias Lima; de Jesus Silva, Elisângela; da Silva, Heron Dominguez Torres; Bechara, Etelvino Jose Henriques; Assunção, Nilson Antonio

    2017-03-21

    Cri-du-chat syndrome (CDCS) is a rare innate disease attributed to chromosome 5p deletion characterized by a cat-like cry, craniofacial malformation, and altered behavior of affected children. Metabolomic analysis and a chemometric approach allow description of the metabolic profile of CDCS as compared to normal subjects. In the present work, UHPLC/MS was employed to analyze blood samples withdrawn from CDCS carriers (n=18) and normal parental subjects (n=18), all aged 0-34 years, aiming to set up a representative CDCS profile constructed from 33 targeted amino acids and biogenic amines. Methionine sulfoxide (MetO) was of particular concern with respect to CDCS redox balance. Increased serotonin (3-fold), methionine sulfoxide (2-fold), and Asp levels, and a little lower Orn, citrulline, Leu, Val, Ile, Asn, Gln, Trp, Thr, His, Phe, Met, and creatinine levels were found in the plasma of CDCS patients. Nitrotyrosine and Trp did not differ in normal and CDCS individuals.The accumulated metabolites may reflect, respectively, disturbances in the redox balance, deficient purine biosynthesis, and altered behavior, whereas the amino acid abatement in the latter group may affect the homeostasis of the urea cycle, citric acid cycle, branched chain amino acid synthesis, Tyr and Trp metabolism and amino acid biosynthesis. The identification of enzymatic deficiencies leading to the amino acid burden in CDCS is further required for elucidating its molecular bases and eventually propose specific or mixed amino acid supplementation to newborn patients aiming to balance their metabolism.

  6. Distinct amino acid-sensing mTOR pathways regulate skeletal myogenesis.

    PubMed

    Yoon, Mee-Sup; Chen, Jie

    2013-12-01

    Signaling through the mammalian target of rapamycin (mTOR) in response to amino acid availability controls many cellular and developmental processes. mTOR is a master regulator of myogenic differentiation, but the pathways mediating amino acid signals in this process are not known. Here we examine the Rag GTPases and the class III phosphoinositide 3-kinase (PI3K) Vps34, two mediators of amino acid signals upstream of mTOR complex 1 (mTORC1) in cell growth regulation, for their potential involvement in myogenesis. We find that, although both Rag and Vps34 mediate amino acid activation of mTORC1 in C2C12 myoblasts, they have opposing functions in myogenic differentiation. Knockdown of RagA/B enhances, whereas overexpression of active RagB/C mutants impairs, differentiation, and this inhibitory function of Rag is mediated by mTORC1 suppression of the IRS1-PI3K-Akt pathway. On the other hand, Vps34 is required for myogenic differentiation. Amino acids activate a Vps34-phospholipase D1 (PLD1) pathway that controls the production of insulin-like growth factor II, an autocrine inducer of differentiation, through the Igf2 muscle enhancer. The product of PLD, phosphatidic acid, activates the enhancer in a rapamycin-sensitive but mTOR kinase-independent manner. Our results uncover amino acid-sensing mechanisms controlling the homeostasis of myogenesis and underline the versatility and context dependence of mTOR signaling.

  7. Induction of the d-Amino Acid Oxidase from Trigonopsis variabilis

    PubMed Central

    Horner, R.; Wagner, F.; Fischer, L.

    1996-01-01

    Induction of the d-amino acid oxidase (EC. 1.4.3.3) from the yeast Trigonopsis variabilis was investigated by using a minimal medium containing glucose as the carbon and energy source, (NH(inf4))(inf2)SO(inf4) as the nitrogen source, and various d- and dl-amino acid derivatives as inducers. The best new inducers found were N-carbamoyl-d-alanine, N-acetyl-d-tryptophan, and N-chloroacetyl-d-(alpha)-aminobutyric acid; when the induction effects of these compounds were compared with the effects of d-alanine as the nitrogen source and inducer, the resulting activities of d-amino acid oxidase per gram of dried yeast were 4.2, 2.1, and 1.5 times higher, respectively. The optimum concentration of the best inducer, N-carbamoyl-d-alanine, was 5 mM. This inducer could also be used in its racemic form. The induction was pH dependent. After cultivation of the yeast in a 50-liter bioreactor, d-amino acid oxidase activity of about 3,850 (mu)kat (231,000 U) was obtained. In addition, production of the d-amino acid oxidase was found to be significantly dependent on the metal salt composition of the medium. Addition of zinc ions was required to obtain high d-amino acid oxidase levels in the cells. The optimum concentration of ZnSO(inf4) was about 140 (mu)M. PMID:16535339

  8. Functional characterization of Caenorhabditis elegans heteromeric amino acid transporters.

    PubMed

    Veljkovic, Emilija; Stasiuk, Susan; Skelly, Patrick J; Shoemaker, Charles B; Verrey, François

    2004-02-27

    Mammalian heteromeric amino acid transporters (HATs) are composed of a multi-transmembrane spanning catalytic protein covalently associated with a type II glycoprotein (e.g. 4F2hc, rBAT) through a disulfide bond. Caenorhabditis elegans has nine genes encoding close homologues of the HAT catalytic proteins. Three of these genes (designated AAT-1 to AAT-3) have a much higher degree of similarity to the mammalian homologues than the other six, including the presence of a cysteine residue at the position known to form a disulfide bridge to the glycoprotein partner in mammalian HATs. C. elegans also has two genes encoding homologues of the heteromeric amino acid transporter type II glycoprotein subunits (designated ATG-1 and ATG-2). Both ATG, and/or AAT-1, -2, -3 proteins were expressed in Xenopus oocytes and tested for amino acid transport function. This screen revealed that AAT-1 and AAT-3 facilitate amino acid transport when expressed together with ATG-2 but not with ATG-1 or the mammalian type II glycoproteins 4F2hc and rBAT. AAT-1 and AAT-3 covalently bind to both C. elegans ATG glycoproteins, but only the pairs with ATG-2 traffic to the oocyte surface. Both of these functional, surface-expressed C. elegans HATs transport most neutral amino acids and display the highest transport rate for l-Ala and l-Ser (apparent K(m) 100 microm range). Similar to their mammalian counterparts, the C. elegans HATs function as (near) obligatory amino acid exchangers. Taken together, this study demonstrates that the heteromeric structure and the amino acid exchange function of HATs have been conserved throughout the evolution of nematodes to mammals.

  9. Alterations in amino acid status in cats with feline dysautonomia

    PubMed Central

    Symonds, Herb W.; Knottenbelt, Clare; Cave, Tom A.; MacDonald, Susan J.; Stratton, Joanna; Leon, Irene; Turner, Judith A.; Pirie, R. Scott

    2017-01-01

    Feline dysautonomia (FD) is a multiple system neuropathy of unknown aetiology. An apparently identical disease occurs in horses (equine grass sickness, EGS), dogs, rabbits, hares, sheep, alpacas and llamas. Horses with acute EGS have a marked reduction in plasma concentrations of the sulphur amino acids (SAA) cyst(e)ine and methionine, which may reflect exposure to a neurotoxic xenobiotic. The aim of this study was to determine whether FD cats have alterations in amino acid profiles similar to those of EGS horses. Amino acids were quantified in plasma/serum from 14 FD cats, 5 healthy in-contact cats which shared housing and diet with the FD cats, and 6 healthy control cats which were housed separately from FD cats and which received a different diet. The adequacy of amino acids in the cats’ diet was assessed by determining the amino acid content of tinned and dry pelleted foods collected immediately after occurrences of FD. Compared with controls, FD cats had increased concentrations of many essential amino acids, with the exception of methionine which was significantly reduced, and reductions in most non-essential amino acids. In-contact cats also had inadequate methionine status. Artefactual loss of cysteine during analysis precluded assessment of the cyst(e)ine status. Food analysis indicated that the low methionine status was unlikely to be attributable to dietary inadequacy of methionine or cystine. Multi-mycotoxin screening identified low concentrations of several mycotoxins in dry food from all 3 premises. While this indicates fungal contamination of the food, none of these mycotoxins appears to induce the specific clinico-pathologic features which characterise FD and equivalent multiple system neuropathies in other species. Instead, we hypothesise that ingestion of another, as yet unidentified, dietary neurotoxic mycotoxin or xenobiotic, may cause both the characteristic disease pathology and the plasma SAA depletion. PMID:28333983

  10. Thyroid peroxidase activity is inhibited by amino acids.

    PubMed

    Carvalho, D P; Ferreira, A C; Coelho, S M; Moraes, J M; Camacho, M A; Rosenthal, D

    2000-03-01

    Normal in vitro thyroid peroxidase (TPO) iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml) or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml). A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml) and some amino acids (cysteine, tryptophan and methionine, 50 microM each) also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml), and tyrosine, phenylalanine and histidine (50 microM each) inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml) or any other amino acid (50 microM) tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine) or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine). Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 microM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2) concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  11. Boron-containing amino carboxylic acid compounds and uses thereof

    DOEpatents

    Kabalka, George W.; Srivastava, Rajiv R.

    2000-03-14

    Novel compounds which are useful for boron neutron capture therapy (BNCT) are disclosed. The compounds comprise a stable boron-containing group and an aminocycloalkane carboxylic acid group or a boronated acyclic hydrocarbon-linked amino carboxylic acid. Methods for synthesis of the compounds and for use of the compounds in BNCT are disclosed.

  12. Effects of amino acid additives during hemodialysis of children.

    PubMed

    Abitbol, C L; Mrozinska, K; Mandel, S; McVicar, M; Wapnir, R A

    1984-01-01

    The intradialytic losses into the dialysate of free amino acids (AA) and alpha-amino nitrogen were determined during the dialysis of three children. Variations in plasma AA were determined pre- and postdialysis. The effect of these losses with the addition of an Abbott General Amino Acid Mixture to the dialysate in concentrations of 8.5, 17, and 34 mg/100 ml was studied. The major determinant of AA losses was the plasma concentration of the AA before beginning the dialysis treatment. Dialysance of individual AA varied inversely with their molecular weights. A zero flux of alpha-amino nitrogen occurred at a derived concentration of 22 mg/100 ml of the AA additive in the dialysate. Plasma concentrations of nonessential amino acids were little affected by the dialysate additive. In contrast, total essential amino acid nitrogen which fell during baseline dialyses showed significant improvement when the AA solution was added to the dialysate. This study suggests that the addition of AA to the dialysate bath may be effective in decreasing AA nitrogen losses during dialysis.

  13. Fungal Peptaibiotics: Assessing Potential Meteoritic Amino Acid Contamination

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Bruckner, H.

    2010-01-01

    The presence of non-protein alpha-dialkyl-amino acids such as alpha-aminoisobutyric acid (alpha-A1B) and isovaline (Iva), which are relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids, however, the discovery of alpha-AIB in peptides producers by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the alpha-AIB observed in some meteorites. The alpha-AIB-containing peptides produced by these fungi are dubbed peptaibiotics. We measured the molecular distribution and stable carbon and nitrogen isotopic ratios for amino acids found in the total hydrolysates of four biologically synthesized peptaibiotics. We compared these aneasurenetts with those from the CM2 carbonaceous chondrite Murchison and from three Antarctic CR2 carbonaceous chondrites in order to understand the peptaibiotics as a potential source of meteoritic contamination.

  14. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  15. How Amino Acids and Peptides Shaped the RNA World

    PubMed Central

    van der Gulik, Peter T.S.; Speijer, Dave

    2015-01-01

    The “RNA world” hypothesis is seen as one of the main contenders for a viable theory on the origin of life. Relatively small RNAs have catalytic power, RNA is everywhere in present-day life, the ribosome is seen as a ribozyme, and rRNA and tRNA are crucial for modern protein synthesis. However, this view is incomplete at best. The modern protein-RNA ribosome most probably is not a distorted form of a “pure RNA ribosome” evolution started out with. Though the oldest center of the ribosome seems “RNA only”, we cannot conclude from this that it ever functioned in an environment without amino acids and/or peptides. Very small RNAs (versatile and stable due to basepairing) and amino acids, as well as dipeptides, coevolved. Remember, it is the amino group of aminoacylated tRNA that attacks peptidyl-tRNA, destroying the bond between peptide and tRNA. This activity of the amino acid part of aminoacyl-tRNA illustrates the centrality of amino acids in life. With the rise of the “RNA world” view of early life, the pendulum seems to have swung too much towards the ribozymatic part of early biochemistry. The necessary presence and activity of amino acids and peptides is in need of highlighting. In this article, we try to bring the role of the peptide component of early life back into focus. We argue that an RNA world completely independent of amino acids never existed. PMID:25607813

  16. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids.

    PubMed

    Lager, Susanne; Jansson, Thomas; Powell, Theresa L

    2014-10-15

    Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus.

  17. Exporters for Production of Amino Acids and Other Small Molecules.

    PubMed

    Eggeling, Lothar

    2016-11-11

    Microbes are talented catalysts to synthesize valuable small molecules in their cytosol. However, to make full use of their skills - and that of metabolic engineers - the export of intracellularly synthesized molecules to the culture medium has to be considered. This step is as essential as is each step for the synthesis of the favorite molecule of the metabolic engineer, but is frequently not taken into account. To export small molecules via the microbial cell envelope, a range of different types of carrier proteins is recognized to be involved, which are primary active carriers, secondary active carriers, or proteins increasing diffusion. Relevant export may require just one carrier as is the case with L-lysine export by Corynebacterium glutamicum or involve up to four carriers as known for L-cysteine excretion by Escherichia coli. Meanwhile carriers for a number of small molecules of biotechnological interest are recognized, like for production of peptides, nucleosides, diamines, organic acids, or biofuels. In addition to carriers involved in amino acid excretion, such carriers and their impact on product formation are described, as well as the relatedness of export carriers which may serve as a hint to identify further carriers required to improve product formation by engineering export.

  18. Essential amino acids: master regulators of nutrition and environmental footprint?

    PubMed Central

    Tessari, Paolo; Lante, Anna; Mosca, Giuliano

    2016-01-01

    The environmental footprint of animal food production is considered several-fold greater than that of crops cultivation. Therefore, the choice between animal and vegetarian diets may have a relevant environmental impact. In such comparisons however, an often neglected issue is the nutritional value of foods. Previous estimates of nutrients’ environmental footprint had predominantly been based on either food raw weight or caloric content, not in respect to human requirements. Essential amino acids (EAAs) are key parameters in food quality assessment. We re-evaluated here the environmental footprint (expressed both as land use for production and as Green House Gas Emission (GHGE), of some animal and vegetal foods, titrated to provide EAAs amounts in respect to human requirements. Production of high-quality animal proteins, in amounts sufficient to match the Recommended Daily Allowances of all the EAAs, would require a land use and a GHGE approximately equal, greater o smaller (by only ±1-fold), than that necessary to produce vegetal proteins, except for soybeans, that exhibited the smallest footprint. This new analysis downsizes the common concept of a large advantage, in respect to environmental footprint, of crops vs. animal foods production, when human requirements of EAAs are used for reference. PMID:27221394

  19. The highly conserved amino acid sequence motif Tyr-Gly-Asp-Thr-Asp-Ser in alpha-like DNA polymerases is required by phage phi 29 DNA polymerase for protein-primed initiation and polymerization.

    PubMed Central

    Bernad, A; Lázaro, J M; Salas, M; Blanco, L

    1990-01-01

    The alpha-like DNA polymerases from bacteriophage phi 29 and other viruses, prokaryotes and eukaryotes contain an amino acid consensus sequence that has been proposed to form part of the dNTP binding site. We have used site-directed mutants to study five of the six highly conserved consecutive amino acids corresponding to the most conserved C-terminal segment (Tyr-Gly-Asp-Thr-Asp-Ser). Our results indicate that in phi 29 DNA polymerase this consensus sequence, although irrelevant for the 3'----5' exonuclease activity, is essential for initiation and elongation. Based on these results and on its homology with known or putative metal-binding amino acid sequences, we propose that in phi 29 DNA polymerase the Tyr-Gly-Asp-Thr-Asp-Ser consensus motif is part of the dNTP binding site, involved in the synthetic activities of the polymerase (i.e., initiation and polymerization), and that it is involved particularly in the metal binding associated with the dNTP site. Images PMID:2191296

  20. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran.

    PubMed

    Levin, Eran; McCue, Marshall D; Davidowitz, Goggy

    2017-02-08

    The ability to allocate resources, even when limited, is essential for survival and fitness. We examine how nutrients that occur in minute amounts are allocated among reproductive, somatic, and metabolic demands. In addition to sugar, flower nectars contain two macronutrients-amino acids and fatty acids. We created artificial nectars spiked with (13)C-labelled amino acids and fatty acids and fed these to adult moths (Manduca sexta: Sphingidae) to understand how they allocate these nutrients among competing sinks (reproduction, somatic tissue, and metabolic fuel). We found that both essential and non-essential amino acids were allocated to eggs and flight muscles and were still detectable in early-instar larvae. Parental-derived essential amino acids were more conserved in the early-instars than non-essential amino acids. All amino acids were used as metabolic fuel, but the non-essential amino acids were oxidized at higher rates than essential amino acids. Surprisingly, the nectar fatty acids were not vertically transferred to offspring, but were readily used as a metabolic fuel by the moth, minimizing losses of endogenous nutrient stores. We conclude that the non-carbohydrate components of nectar may play important roles in both reproductive success and survival of these nectar-feeding animals.

  1. Use of free amino acid composition of shell to estimate age since death of recent molluscs

    SciTech Connect

    Logan, A.M.; Powell, E.N.; Stanton, R.J. Jr.

    1985-01-01

    An understanding of death assemblage formation requires a measurement of time since death of constituent individuals. A new dating technique based on the measurement of the free amino acid content of mollusc shells has been developed which is inexpensive, rapid, and effective in dating time scales of a few decades to a few centuries. Since the breakdown of proteins of the matrix of mollusc shells begins soon after deposition, free amino acids gradually increase with shell age. The measurement of these can be used to determine the relative age among a group of shells. The future use of this technique depends on a clearer understanding of how free amino acid accumulation rate varies with age and species and developing effective calibration methods so that absolute rather than relative ages can be readily obtained. Three species were distributed widely enough for use - Rangia cuneata, Tagelus plebeius, and Phacoides pectinatus. A good relationship between free amino acids and relative age was present in all three species over the entire core; however some species and some amino acid were superior to others. Rangia cuneata produced the best correlation because it is epifaunal and thus died at the sediment surface rather than over an extended depth range and, also perhaps, because amino acid accumulation rates were more linear.

  2. A molecular and neuronal basis for amino acid sensing in the Drosophila larva

    PubMed Central

    Croset, Vincent; Schleyer, Michael; Arguello, J. Roman; Gerber, Bertram; Benton, Richard

    2016-01-01

    Amino acids are important nutrients for animals, reflected in conserved internal pathways in vertebrates and invertebrates for monitoring cellular levels of these compounds. In mammals, sensory cells and metabotropic glutamate receptor-related taste receptors that detect environmental sources of amino acids in food are also well-characterised. By contrast, it is unclear how insects perceive this class of molecules through peripheral chemosensory mechanisms. Here we investigate amino acid sensing in Drosophila melanogaster larvae, which feed ravenously to support their rapid growth. We show that larvae display diverse behaviours (attraction, aversion, neutral) towards different amino acids, which depend upon stimulus concentration. Some of these behaviours require IR76b, a member of the variant ionotropic glutamate receptor repertoire of invertebrate chemoreceptors. IR76b is broadly expressed in larval taste neurons, suggesting a role as a co-receptor. We identify a subpopulation of these neurons that displays physiological activation by some, but not all, amino acids, and which mediate suppression of feeding by high concentrations of at least a subset of these compounds. Our data reveal the first elements of a sophisticated neuronal and molecular substrate by which these animals detect and behave towards external sources of amino acids. PMID:27982028

  3. A molecular and neuronal basis for amino acid sensing in the Drosophila larva.

    PubMed

    Croset, Vincent; Schleyer, Michael; Arguello, J Roman; Gerber, Bertram; Benton, Richard

    2016-12-16

    Amino acids are important nutrients for animals, reflected in conserved internal pathways in vertebrates and invertebrates for monitoring cellular levels of these compounds. In mammals, sensory cells and metabotropic glutamate receptor-related taste receptors that detect environmental sources of amino acids in food