Sample records for amino functional groups

  1. Versatile Synthesis of Amino Acid Functional Polymers without Protection Group Chemistry.

    PubMed

    Brisson, Emma R L; Xiao, Zeyun; Franks, George V; Connal, Luke A

    2017-01-09

    The copolymerization of N-isopropylacrylamide (NiPAm) with aldehyde functional monomers facilitates postpolymerization functionalization with amino acids via reductive amination, negating the need for protecting groups. In reductive amination, the imine formed from the condensation reaction between an amine and an aldehyde is reduced to an amine. In this work, we categorize amino acids into four classes based on the functionality of their side chains (acidic, polar neutral, neutral, and basic) and use their amine groups in condensation reactions with aldehyde functional polymers. The dynamic nature of the imine as well as the versatility of reductive amination to functionalize a polymer with a range of amino acids is highlighted. In this manner, amino acid functional polymers are synthesized without the use of protecting groups with high yields, demonstrating the high functional group tolerance of carbonyl condensation chemistry and the subsequent reduction of the imine. Prior to the reduction of the imine bond, transimination reactions are used to demonstrate dynamic polymers that shuffle from a glycine- to a histidine-functional polymer.

  2. Amino and Acetamide Functional Group Effects on the Ionization and Fragmentation of Sugar Chains in Positive-Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yamagaki, Tohru; Sugahara, Kohtaro; Watanabe, Takehiro

    2014-01-01

    To elucidate the influence of amino (-NH2) and acetamide (-NHCOCH3, -NAc) groups in sugar chains on their ionization and fragmentation, cycloamyloses (cyclodextrins, CyDs) and lacto-oligosaccharide are analyzed by MALDI TOF/TOF and ESI Q-TOF mass spectrometry. CyD derivatives substituted by amino or acetamide groups are ideal analytes to extract the function group effects, which are amino-CyD with one hexosamine (HexNH2) and acetamide-CyD with one N-acetyl hexosamine (HexNAc). Interestingly, the relative ion intensities and isotope-like patterns in their product ion spectra depend on the functional groups and ion forms of sugar chains. Consequently, the results indicate that a proton (H+) localizes on the amino group of the amino sugar, and that the proton (H+) induces their fragmentation. Sodium cation (Na+) attachment is independent from amino group and exerts no influence on their fragmentation patterns in amino group except for mono- and disaccharide fragment ions because there is the possibility of the reducing end effect. In contrast, a sodium cation localizes much more frequently on the acetamide group in acetamide-CyDs because the chemical species with HexNAc are stable. Thus, their ions with HexNAc are abundant. These results are consistent with the fragmentation of lacto-neo- N-tetraose and maltotetraose, suggesting that a sodium cation generally localizes much more frequently on the acetamide group in sugar chains.

  3. A novel amino acid analysis method using derivatization of multiple functional groups followed by liquid chromatography/tandem mass spectrometry.

    PubMed

    Sakaguchi, Yohei; Kinumi, Tomoya; Yamazaki, Taichi; Takatsu, Akiko

    2015-03-21

    We have developed a novel amino acid analysis method using derivatization of multiple functional groups (amino, carboxyl, and phenolic hydroxyl groups). The amino, carboxyl, and phenolic hydroxyl groups of the amino acids were derivatized with 1-bromobutane so that the hydrophobicities and basicities of the amino acids were improved. The derivatized amino acids, including amino group-modified amino acids, could be detected with high sensitivity using liquid chromatography/tandem mass spectrometry (LC-MS/MS). In this study, 17 amino acids obtained by hydrolyzing proteins and 4 amino group-modified amino acids found in the human body (N,N-dimethylglycine, N-formyl-L-methionine, L-pyroglutamic acid, and sarcosine) were selected as target compounds. The 21 derivatized amino acids could be separated using an octadecyl-silylated silica column within 20 min and simultaneously detected. The detection limits for the 21 amino acids were 5.4-91 fmol, and the calibration curves were linear over the range of 10-100 nmol L(-1) (r(2) > 0.9984) with good repeatability. A confirmatory experiment showed that our proposed method could be applied to the determination of a protein certified reference material using the analysis of 12 amino acids combined with isotope dilution mass spectrometry. Furthermore, the proposed method was successfully applied to a stable isotope-coded derivatization method using 1-bromobutane and 1-bromobutane-4,4,4-d3 for comparative analysis of amino acids in human serum.

  4. Amino-Functionalized Ceramic Capillary Membranes for Controlled Virus Retention.

    PubMed

    Bartels, Julia; Souza, Marina N; Schaper, Amelie; Árki, Pál; Kroll, Stephen; Rezwan, Kurosch

    2016-02-16

    A straightforward chemical functionalization strategy using aminosilanes for high-flux yttria-stabilized zirconia capillary membranes is presented (macroporous, d50 = 144 nm, open porosity =49%, membrane flux ∼150 L/(m(2)hbar)). Three different aminosilanes with one, two or three amino groups per silane molecule, namely 3-aminopropyltriethoxysilane (APTES), N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AE-APTES) and N-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA), are used to generate the amino-functionalized membranes. With a higher number of amino groups per silane molecule increased loading capacities between 0.44 and 1.01 accessible amino groups/nm(2) membrane are achieved. Streaming potential measurements confirm that the zeta-potential of the membrane surface is converted from negative (non-functionalized) to positive (amino-functionalized). By operation in dead-end filtration mode using the model virus MS2 (diameter = 25 nm, IEP = 3.9) the virus retention capacity of the amino-functionalized membranes is significantly increased and log reduction values (LRVs) of up to 9.6 ± 0.3 (TPDA) are obtained whereas a LRV < 0.3 is provided by the non-functionalized membranes. Long-term dead-end filtration experiments for 1 week reveal a high stability of immobilized aminosilanes (TPDA), being robust against leaching. By iterative backflushing with desorption buffer MS2-loaded membranes are successfully regenerated being reusable for a new filtration cycle. The presented functionalization platform is highly promising for controlled virus retention.

  5. Quantitative analysis by UV-Vis absorption spectroscopy of amino groups attached to the surface of carbon-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Saraswati, T. E.; Astuti, A. R.; Rismana, N.

    2018-03-01

    Carbon-based nanoparticles must be modified due to their wide array of applications, especially when they are used as biomaterials. After modifying, quantitative analysis of the functional group is essential to evaluate a number of the available functional groups applied for further functionalization. In this study, we modified the carbon-based nanoparticles by amino group using submerged arc discharge in different liquids. The attached amino groups were then characterised and quantified by UV-Vis spectroscopy. This amino group functionalization was also confirmed by Fourier transform infrared (FTIR) spectra. The FTIR spectra of amine-modified nanoparticles show the definitive absorption peaks of N—H amine, C—H, C=O, C—N and Fe—O at 3418.97; 3000–2850 1700–1600 1400–1100 and 480-550 cm-1, respectively. The amine groups have different performance signals between the amine-modified and unmodified nanoparticles. The FTIR spectra results were correlated with the UV-Vis absorption spectroscopy method using acidic methyl orange. The UV-Vis absorption spectroscopy shows that the absorbance of methyl orange represented to amino groups number was 1.3 times higher when the pH of the solution was increased. The absorbance intensity was then used to estimate the quantity of amine groups attached.

  6. Interaction of silicene with amino acid analogues—from physical to chemical adsorption in gas and solvated phases

    NASA Astrophysics Data System (ADS)

    Jagvaral, Yesukhei; He, Haiying; Pandey, Ravindra

    2018-01-01

    Silicene is an emerging 2D material, and an understanding of its interaction with amino acids, the basic building blocks of protein, is of fundamental importance. In this paper, we investigate the nature of adsorption of amino-acid analogues on silicene employing density functional theory and an implicit solvation model. Amino acid analogues are defined as CH3-R molecules, where R is the functional group of the amino acid side chain. The calculated results find three distinct groups within the amino-acid analogues considered: (i) group I, which includes MeCH3 and MeSH, interacts with silicene via the van der Waals dispersive terms leading to physisorbed configurations; (ii) group II strongly interacts with silicene forming Si-O/N chemical bonds in the chemisorbed configurations; and (iii) group III, which consists of the phenyl group, interacts with silicene via π-π interactions leading to physisorbed configurations. The results show that the lateral chains of the amino acids intrinsically determine the interactions between protein and silicene at the interface under the given physiological conditions.

  7. Facile synthesis of functionalized ionic surfactant templated mesoporous silica for incorporation of poorly water-soluble drug.

    PubMed

    Li, Jing; Xu, Lu; Yang, Baixue; Wang, Hongyu; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-08-15

    The present paper reported amino group functionalized anionic surfactant templated mesoporous silica (Amino-AMS) for loading and release of poorly water-soluble drug indomethacin (IMC) and carboxyl group functionalized cationic surfactant templated mesoporous silica (Carboxyl-CMS) for loading and release of poorly water-soluble drug famotidine (FMT). Herein, Amino-AMS and Carboxyl-CMS were facilely synthesized using co-condensation method through two types of silane coupling agent. Amino-AMS was spherical nanoparticles, and Carboxyl-CMS was well-formed spherical nanosphere with a thin layer presented at the edge. Drug loading capacity was obviously enhanced when using Amino-AMS and Carboxyl-CMS as drug carriers due to the stronger hydrogen bonding force formed between surface modified carrier and drug. Amino-AMS and Carboxyl-CMS had the ability to transform crystalline state of loaded drug from crystalline phase to amorphous phase. Therefore, IMC loaded Amino-AMS presented obviously faster release than IMC because amorphous phase of IMC favored its dissolution. The application of asymmetric membrane capsule delayed FMT release significantly, and Carboxyl-CMS favored sustained release of FMT due to its long mesoporous channels and strong interaction formed between its carboxyl group and amino group of FMT. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Two Dimensional Polymer That Generates Nitric Oxide.

    DOEpatents

    McDonald, William F.; Koren, Amy B.

    2005-10-04

    A polymeric composition that generates nitric oxide and a process for rendering the surface of a substrate nonthrombogenic by applying a coating of the polymeric composition to the substrate are disclosed. The composition comprises: (1) a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, and (ii) a crosslinking agent containing functional groups capable of reacting with the amino groups; and (2) a plurality of nitric oxide generating functional groups associated with the crosslinked chemical combination. Once exposed to a physiological environment, the coating generates nitric oxide thereby inhibiting platelet aggregation. In one embodiment, the nitric oxide generating functional groups are provided by a nitrated compound (e.g., nitrocellulose) imbedded in the polymeric composition. In another embodiment, the nitric oxide generating functional groups comprise N2O2- groups covalently bonded to amino groups on the polymer.

  9. Insight into the adsorption of tetracycline onto amino and amino-Fe3+ gunctionalized mesoporous silica: Effect of functionalized groups.

    PubMed

    Zhang, Ziyang; Li, Haiyan; Liu, Huijuan

    2018-03-01

    In order to study the influences of functionalized groups onto the adsorption of tetracycline, we prepared a series of amino and amino-Fe 3+ complex mesoporous silica adsorbents with diverse content of amino and Fe 3+ groups (named N,N-SBA15 and Fe-N,N-SBA15). The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and N 2 adsorption/desorption isotherms. Furthermore, the effects of functionalized groups on the removal of TC were investigated. The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe 3+ groups. The functionalized amino groups decreased the adsorption capacity while the coordinated Fe 3+ increased the adsorption capacity. The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly. The adsorption isotherms fitted the Langmuir model well and with the Fe 3+ content increased from 3.93% to 8.26%, the Q max of the adsorbents increased from 102 to 188mmol/kg. The solution pH affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly. The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes, while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes. This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications. Copyright © 2017. Published by Elsevier B.V.

  10. Amino acid ionic liquids.

    PubMed

    Ohno, Hiroyuki; Fukumoto, Kenta

    2007-11-01

    The preparation of ionic liquids derived from amino acids, and their properties, are outlined. Since amino acids have both a carboxylic acid residue and an amino group in a single molecule, they can be used as either anions or cations. These groups are also useful in their ability to introduce functional group(s). Twenty different natural amino acids were used as anions, to couple with the 1-ethyl-3-methylimidazolium cation. The salts obtained were all liquid at room temperature. The properties of the resulting ionic liquids (AAILs) depend on the side groups of the amino acids involved. These AAILs, composed of an amino acid with some functional groups such as a hydrogen bonding group, a charged group, or an aromatic ring, had an increased glass transition (or melting) temperature and/or higher viscosity as a result of additional interactions among the ions. Viscosity is reduced and the decomposition temperature of imidazolium-type salts is improved by using the tetrabutylphosphonium cation. The chirality of AAILs was maintained even upon heating to 150 degrees C after acetylation of the free amino group. The amino group was also modified to introduce a strong acid group so as to form hydrophobic and chiral ionic liquids. Unique phase behavior of the resulting hydrophobic ionic liquids and water mixture is found; the mixture is clearly phase separated at room temperature, but the solubility of water in this IL increases upon cooling, to give a homogeneous solution. This phase change is reversible, and separation occurs again by raising the temperature a few degrees. It is extraordinary for an IL/water mixture to display such behavior with a lower critical solution temperature. Some likely applications are proposed for these amino acid derived ionic liquids.

  11. Optimized synthesis of phosphorothioate oligodeoxyribonucleotides substituted with a 5′-protected thiol function and a 3′-amino group

    PubMed Central

    Aubert, Yves; Bourgerie, Sylvain; Meunier, Laurent; Mayer, Roger; Roche, Annie-Claude; Monsigny, Michel; Thuong, Nguyen T.; Asseline, Ulysse

    2000-01-01

    A new deprotection procedure enables a medium scale preparation of phosphodiester and phosphorothioate oligonucleotides substituted with a protected thiol function at their 5′-ends and an amino group at their 3′-ends in good yield (up to 72 OD units/µmol for a 19mer phosphorothioate). Syntheses of 3′-amino-substituted oligonucleotides were carried out on a modified support. A linker containing the thioacetyl moiety was manually coupled in two steps by first adding its phosphoramidite derivative in the presence of tetrazole followed by either oxidation or sulfurization to afford the bis-derivatized oligonucleotide bound to the support. Deprotection was achieved by treating the fully protected oligonucleotide with a mixture of 2,2′-dithiodipyridine and concentrated aqueous ammonia in the presence of phenol and methanol. This procedure enables (i) cleavage of the oligonucleotide from the support, releasing the oligonucleotide with a free amino group at its 3′-end, (ii) deprotection of the phosphate groups and the amino functions of the nucleic bases, as well as (iii) transformation of the 5′-terminal S-acetyl function into a dithiopyridyl group. The bis-derivatized phosphorothioate oligomer was further substituted through a two-step procedure: first, the 3′-amino group was reacted with fluorescein isothiocyanate to yield a fluoresceinylated oligonucleotide; the 5′-dithiopyridyl group was then quantitatively reduced to give a free thiol group which was then substituted by reaction with an Nα-bromoacetyl derivative of a signal peptide containing a KDEL sequence to afford a fluoresceinylated peptide–oligonucleotide conjugate. PMID:10637335

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoncheva, K., E-mail: krassi.yoncheva@gmail.com; Popova, M.; Szegedi, A.

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of themore » nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide. -- Graphical abstract: Silica mesoporous MCM-41 particles were amino-functionalized, loaded with budesonide and post-coated with bioadhesive polymer (carbopol) in order to achieve prolonged residence of anti-inflammatory drug in GIT. Highlights: • Higher drug loading in amino-functionalized mesoporous silica. • Amino-functionalization and post-coating of the nanoparticles sustained drug release. • Achievement of higher cytoprotective effect with drug loaded into the nanoparticles.« less

  13. Physicist's simple access to protein structures: the computer program WHAT IF

    NASA Astrophysics Data System (ADS)

    Altenberg-Greulich, Brigitte; Zech, Stephan G.; Stehlik, Dietmar; Vriend, Gert

    2001-06-01

    We describe the computer program WHAT IF and its application to two physical examples. For the DNA binding protein, OCT-1 (pou domain) the location of amino acids with a sidechain amino group is shown. Such knowledge is required when staining this molecule with a fluorescence dye, which binds chemically to the amino terminus as well as amino groups in sidechains. The program shows that most sidechain amino groups are protected when DNA is bound to OCT-1, allowing selective staining of the amino terminal NH2 group. A protein stained this way can be used in fluorescence spectroscopic studies on function aspects of OCT-1.

  14. Sudoku Puzzles for First-Year Organic Chemistry Students

    ERIC Educational Resources Information Center

    Perez, Alice L.; Lamoureux, G.

    2007-01-01

    Sudoku puzzle was designed to teach about amino acids and functional groups to the students of undergraduate organic chemistry students. The puzzles focus on helping the student learn the name, 3-letter code and 1-letter code of common amino acids and functional groups.

  15. Structure-Activity Relationship of the Antimalarial Ozonide Artefenomel (OZ439).

    PubMed

    Dong, Yuxiang; Wang, Xiaofang; Kamaraj, Sriraghavan; Bulbule, Vivek J; Chiu, Francis C K; Chollet, Jacques; Dhanasekaran, Manickam; Hein, Christopher D; Papastogiannidis, Petros; Morizzi, Julia; Shackleford, David M; Barker, Helena; Ryan, Eileen; Scheurer, Christian; Tang, Yuanqing; Zhao, Qingjie; Zhou, Lin; White, Karen L; Urwyler, Heinrich; Charman, William N; Matile, Hugues; Wittlin, Sergio; Charman, Susan A; Vennerstrom, Jonathan L

    2017-04-13

    Building on insights gained from the discovery of the antimalarial ozonide arterolane (OZ277), we now describe the structure-activity relationship (SAR) of the antimalarial ozonide artefenomel (OZ439). Primary and secondary amino ozonides had higher metabolic stabilities than tertiary amino ozonides, consistent with their higher pK a and lower log D 7.4 values. For primary amino ozonides, addition of polar functional groups decreased in vivo antimalarial efficacy. For secondary amino ozonides, additional functional groups had variable effects on metabolic stability and efficacy, but the most effective members of this series also had the highest log D 7.4 values. For tertiary amino ozonides, addition of polar functional groups with H-bond donors increased metabolic stability but decreased in vivo antimalarial efficacy. Primary and tertiary amino ozonides with cycloalkyl and heterocycle substructures were superior to their acyclic counterparts. The high curative efficacy of these ozonides was most often associated with high and prolonged plasma exposure, but exposure on its own did not explain the presence or absence of either curative efficacy or in vivo toxicity.

  16. Antithrombogenic Polymer Coating.

    DOEpatents

    Huang, Zhi Heng; McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2003-01-21

    An article having a non-thrombogenic surface and a process for making the article are disclosed. The article is formed by (i) coating a polymeric substrate with a crosslinked chemical combination of a polymer having at least two amino substituted side chains, a crosslinking agent containing at least two crosslinking functional groups which react with amino groups on the polymer, and a linking agent containing a first functional group which reacts with a third functional group of the crosslinking agent, and (ii) contacting the coating on the substrate with an antithrombogenic agent which covalently bonds to a second functional group of the linking agent. In one example embodiment, the polymer is a polyamide having amino substituted alkyl chains on one side of the polyamide backbone, the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl, the linking agent is a polyhydrazide and the antithrombogenic agent is heparin.

  17. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    NASA Astrophysics Data System (ADS)

    Yoncheva, K.; Popova, M.; Szegedi, A.; Mihaly, J.; Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V.; Pessina, F.; Valoti, M.

    2014-03-01

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide.

  18. [Study on mechanism of inactivated cider yeast adsorbing patulin by Fourier transform infrared spectroscopy].

    PubMed

    Guo, Cai-Xia; Yue, Tian-Li; Yuan, Ya-Hong; Wang, Zhou-Li; Wang, Ling; Cai, Rui

    2013-03-01

    The mechanism of patulin adsorption by inactivated cider yeast was studied by chemical modification and FTIR The results of patulin removal by various modified yeast biomass showed that the ability of patulin biosorption by acetone-treated yeast and NaOH-treated yeast increased siginificantly, while the methylation of amino group and esterification of carboxylate functionalities of yeast cell surface caused a decrease in patulin binding, which indicated that amino group and carboxyl group presented in the cell walls of yeast might be involved in the binding of patulin to the yeast. The FTIR analysis indicated that the main functional groups were amino group, carboxyl group and hydroxy group which are associated with protein and polysaccharides.

  19. SPPS of protected peptidyl aminoalkyl amides.

    PubMed

    Karavoltsos, Manolis; Mourtas, Spyros; Gatos, Dimitrios; Barlos, Kleomenis

    2002-11-01

    Monophthaloyl diamines derived from naturally occurring amino acids were attached through their free amino functions to resins of the trityl type. The phthaloyl groups were removed by hydrazinolysis, and peptide chains were assembled using Fmoc/tBu-amino acids on the liberated amino functions. The peptidyl aminoalkyl amides obtained were cleaved from the resins by mild acidolysis, with the tBu-side chain protection remaining intact.

  20. Magneto-Sensitive Adsorbents Modified by Functional Nitrogen-Containing Groups

    NASA Astrophysics Data System (ADS)

    Melnyk, Inna V.; Gdula, Karolina; Dąbrowski, Andrzej; Zub, Yuriy L.

    2016-02-01

    In order to obtain amino-functionalized silica materials with magnetic core, one-step synthesis was carried out. Several materials, differ in number and structure of amino groups, were synthesized on the basis of sol-gel method. The synthesized materials were examined by several analytical techniques. The presence and content of amino groups were measured by using Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy and acid-base titration, respectively. Specific surface areas were measured by nitrogen/adsorption desorption isotherms. It was proved that sol-gel approach leads to obtain materials with high content of amino groups built into their surfaces (in the range 1.6-2.7 mmol/g). As-obtained materials were tested as potential adsorbents for copper(II) ions. The received maximum adsorption capacities were in the range 0.4-0.7 mmol/g.

  1. Cadmium(II) and lead(II) adsorption onto hetero-atom functional mesoporous silica and activated carbon

    NASA Astrophysics Data System (ADS)

    Machida, Motoi; Fotoohi, Babak; Amamo, Yoshimasa; Mercier, Louis

    2012-07-01

    Adsorption of cadmium(II) and lead(II) on amino-, mercapto-functionalized mesoporous silica (HMS) and carboxylic-functionalized activated carbon (AC) were examined. The resultant isotherms fitted the Langmuir model and amino-functionalized HMS exhibited the highest adsorption capacity for both cadmium(II) and lead(II). Adsorption affinities for cadmium(II) were always greater than those for lead(II) in all three adsorbent types, while the difference between the two values was the largest for mercapto-functionalized HMS indicating a selective adsorption of cadmium(II). Influence of equilibrium solution pH on adsorption of cadmium(II), lead(II) and their binary mixtures was also studied. Carboxylic-functionalized AC adsorbed cadmium(II) and lead(II) in a wide pH range than conditions for the mercapto-functionalized HMS. It was concluded that each functional group had its own characteristics and advantages for adsorption of heavy metal ions; amino-groups showed high adsorption capacity, while mercapto-groups had good selectivity toward cadmium(II) adsorption and a wide solution pH in adsorption by carboxylic-groups were established in this study.

  2. Asymmetric synthesis of propargylamines as amino acid surrogates in peptidomimetics

    PubMed Central

    Wünsch, Matthias; Schröder, David; Fröhr, Tanja; Teichmann, Lisa; Hedwig, Sebastian; Janson, Nils; Belu, Clara; Simon, Jasmin; Heidemeyer, Shari; Holtkamp, Philipp; Rudlof, Jens; Klemme, Lennard; Hinzmann, Alessa; Neumann, Beate; Stammler, Hans-Georg

    2017-01-01

    The amide moiety of peptides can be replaced for example by a triazole moiety, which is considered to be bioisosteric. Therefore, the carbonyl moiety of an amino acid has to be replaced by an alkyne in order to provide a precursor of such peptidomimetics. As most amino acids have a chiral center at Cα, such amide bond surrogates need a chiral moiety. Here the asymmetric synthesis of a set of 24 N-sulfinyl propargylamines is presented. The condensation of various aldehydes with Ellman’s chiral sulfinamide provides chiral N-sulfinylimines, which were reacted with (trimethylsilyl)ethynyllithium to afford diastereomerically pure N-sulfinyl propargylamines. Diverse functional groups present in the propargylic position resemble the side chain present at the Cα of amino acids. Whereas propargylamines with (cyclo)alkyl substituents can be prepared in a direct manner, residues with polar functional groups require suitable protective groups. The presence of particular functional groups in the side chain in some cases leads to remarkable side reactions of the alkyne moiety. Thus, electron-withdrawing substituents in the Cα-position facilitate a base induced rearrangement to α,β-unsaturated imines, while azide-substituted propargylamines form triazoles under surprisingly mild conditions. A panel of propargylamines bearing fluoro or chloro substituents, polar functional groups, or basic and acidic functional groups is accessible for the use as precursors of peptidomimetics. PMID:29234470

  3. Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion.

    PubMed

    Fundeanu, Irina; Klee, Doris; Schouten, Arend J; Busscher, Henk J; van der Mei, Henny C

    2010-11-01

    Silicone rubber is a frequently employed biomaterial that is prone to bacterial adhesion and biofilm formation. In this study, the surface of silicone rubber was solvent-free functionalized by chemical vapor deposition (CVD) of poly(o-amino-p-xylylene-co-p-xylylene (amino-PPX). Subsequently, the amino groups of the amino-PPX layer were used to introduce the initiator from a vapor phase for atom transfer radical polymerization of acrylamide to form polyacrylamide (PAAm) brushes. The modification steps were verified by means of X-ray photoelectron spectroscopy and attenuated total reflection-Fourier transform infrared spectroscopy. Adhesion of Staphylococcus aureus ATCC 12600 and Escherichia coli 3.14 to an amino-PPX-PAAm brush coating in a parallel plate flow chamber was strongly reduced with respect to non-coated silicone rubber - by 93% and 99%, respectively. For E. coli 3.14, this reduction is larger than that obtained for solvent functionalization of γ-aminopropyltriethoxysilane-PAAm brushes due to the higher density of amino groups introduced by the CVD of amino-PPX. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Enzymatic Synthesis of Amino Acids Endcapped Polycaprolactone: A Green Route Towards Functional Polyesters.

    PubMed

    Duchiron, Stéphane W; Pollet, Eric; Givry, Sébastien; Avérous, Luc

    2018-01-30

    ε-caprolactone (CL) has been enzymatically polymerized using α-amino acids based on sulfur (methionine and cysteine) as (co-)initiators and immobilized lipase B of Candida antarctica (CALB) as biocatalyst. In-depth characterizations allowed determining the corresponding involved mechanisms and the polymers thermal properties. Two synthetic strategies were tested, a first one with direct polymerization of CL with the native amino acids and a second one involving the use of an amino acid with protected functional groups. The first route showed that mainly polycaprolactone (PCL) homopolymer could be obtained and highlighted the lack of reactivity of the unmodified amino acids due to poor solubility and affinity with the lipase active site. The second strategy based on protected cysteine showed higher monomer conversion, with the amino acids acting as (co-)initiators, but their insertion along the PCL chains remained limited to chain endcapping. These results thus showed the possibility to synthesize enzymatically polycaprolactone-based chains bearing amino acids units. Such cysteine endcapped PCL materials could then find application in the biomedical field. Indeed, subsequent functionalization of these polyesters with drugs or bioactive molecules can be obtained, by derivatization of the amino acids, after removal of the protecting group.

  5. Synthesis of photolabile transcription initiators and preparation of photocleavable functional RNA by transcription.

    PubMed

    Huang, Faqing; Shi, Yongliang

    2012-07-01

    Two new photolabile adenosine-containing transcription initiators with terminal thiol and amino functionalities are chemically synthesized. Transcription in the presence of the transcription initiators under the T7 phi2.5 promoter produces 5' thiol- and amino-functionalized RNA conjugated by a photocleavable (PC) linker. Further RNA functionalization with biotin may be achieved through acyl transfer reactions from either biotinyl AMP to the RNA thiol group or biotin NHS to the RNA amino group. Photocleavage of the PC linker displays relatively fast kinetics with a half-life of 4-5 min. The availability of these transcription initiators makes new photolabile RNA accessible for affinity purification of RNA, in vitro selection of functional RNAs, and functional RNA caging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The construction of a panel of serum amino acids for the identification of early chronic kidney disease patients.

    PubMed

    Li, Rui; Dai, Jinna; Kang, Hui

    2018-03-01

    Serum creatinine, urea, and cystatin-c are standardly used for the evaluation of renal function in the clinic. However, some patients have chronic kidney disease but still retain kidney function; a conventional serum index in these patients can be completely normal. Serum amino acid levels can reflect subtle changes in metabolism and are closely related to renal function. Here, we investigated how amino acids change as renal impairment increases. Subjects were divided into three groups by renal function glomerular filtration rate: healthy controls, patients with chronic kidney disease with normal kidney function, and patients with chronic kidney disease with decreased kidney function group. We identified 11 amino acids of interest using LC-MS/MS on MRM (+) mode. Statistical analysis indicated that alanine (ALA), valine (VAL), and tyrosine (TYR) decrease with renal function impairment, whereas phenylalanine (PHE) and citrulline (CIT) increase. We tried to construct a diagnostic model utilizing a combination of amino acids capable of identifying early chronic kidney disease patients. The accuracy, specificity, and sensitivity of the combining predictors were 86.9%, 84.6%, and 90.9%, respectively, which is superior to the reported values for serum creatinine, urea, and cystatin-c. Our data suggest that serum amino acid levels may supply important information for the early detection of chronic kidney disease. We are the first to establish a diagnostic model utilizing serum levels of multiple amino acids for the diagnosis of patients with early-stage chronic kidney disease. © 2017 Wiley Periodicals, Inc.

  7. Development of fluorescent probes based on protection-deprotection of the key functional groups for biological imaging.

    PubMed

    Tang, Yonghe; Lee, Dayoung; Wang, Jiaoliang; Li, Guanhan; Yu, Jinghua; Lin, Weiying; Yoon, Juyoung

    2015-08-07

    Recently, the strategy of protection-deprotection of functional groups has been widely employed to design fluorescent probes, as the protection-deprotection of functional groups often induces a marked change in electronic properties. Significant advances have been made in the development of analyte-responsive fluorescent probes based on the protection-deprotection strategy. In this tutorial review, we highlight the representative examples of small-molecule based fluorescent probes for bioimaging, which are operated via the protection-deprotection of key functional groups such as aldehyde, hydroxyl, and amino functional groups reported from 2010 to 2014. The discussion includes the general protection-deprotection methods for aldehyde, hydroxyl, or amino groups, as well as the design strategies, sensing mechanisms, and deprotection modes of the representative fluorescent imaging probes applied to bio-imaging.

  8. Intramolecular interactions of L-phenylalanine revealed by inner shell chemical shift

    NASA Astrophysics Data System (ADS)

    Ganesan, Aravindhan; Wang, Feng

    2009-07-01

    Intramolecular interactions of the functional groups, carboxylic acid, amino, and phenyl in L-phenylalanine have been revealed through inner shell chemical shift. The chemical shift and electronic structures are studied using its derivatives, 2-phenethylamine (PEA) and 3-phenylpropionic acid (PPA), through substitutions of the functional groups on the chiral carbon Cα, i.e., carboxylic acid (-COOH) and amino (-NH2) groups. Inner shell ionization spectra of L-phenylalanine are simulated using density functional theory based B3LYP/TZVP and LB94/et-pVQZ models, which achieve excellent agreement with the most recently available synchrotron sourced x-ray photoemission spectroscopy of L-phenylalanine (Elettra, Italy). The present study reveals insight into behavior of the peptide bond (CO-NH) through chemical shift of the C1-Cα-Cβ(-Cγ) chain and intramolecular interactions with phenyl. It is found that the chemical shift of the carbonyl C1(=O) site exhibits an apparently redshift (smaller energy) when interacting with the phenyl aromatic group. Removal of the amino group (-NH2) from L-phenylalanine (which forms PPA) brings this energy on C1 close to that in L-alanine (δ <0.01 eV). Chemical environment of Cα and Cβ exhibits more significant differences in L-alanine than in the aromatic species, indicating that the phenyl group indeed affects the peptide bond in the amino acid fragment. No direct evidences are found that the carbonyl acid and amino group interact with the phenyl ring through conventional hydrogen bonds.

  9. Raman and surface enhanced Raman spectroscopy of amino acids and peptide

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaojuan; Gu, Huaimin; Wu, Jiwei; Kang, Jian; Dong, Xiao

    2009-08-01

    Surface enhanced Raman scattering (SERS) is potentially tool in the characterization of biomolecules such as amino acids, complicated peptides and proteins, and even tissues or living cells. Amino acids and short peptides contain different functional groups. Therefore, they are suitable for the investigations of the competitive-interactions of these functional groups with colloidal silver surfaces. In this paper, Normal Raman and SERS of amino acids Leucine and Isoleucine and short peptide Leu-Leu were measured on the silver colloidal substrate. Raman shifts that stem from different vibrational mode in the molecular inner structure, and the variations of SERS of the samples were analyzed in this study. The results show that different connection of one methyl to the main chains of the isomer amino acids resulted in different vibration modes in the Normal Raman spectra of Leucine and Isoleucine. In the SERS spectra of the isomer amino acids, all frequency shifts are expressed more differently than those in Normal Raman spectra of solid state. Orientation of this isomer amino acids, as well as specific-competitive interactions of their functional groups with the colloidal silver surface, were speculated by detailed spectral analysis of the obtained SERS spectra. In addition, the dipeptide Leu-Leu, as the corresponding homodipeptide of Leucine, was also measured adsorbed on the colloidal silver surface. The SERS spectrum of Leu-Leu is different from its corresponding amino acid Leucine but both of them are adsorbed on the silver surface through the carboxylate moiety.

  10. Nano-Infrared Imaging of Amino Acids in Murchison: Sensitivity, Detection Limits, and First Results

    NASA Astrophysics Data System (ADS)

    Salem, M.; Dillon, E.; Dominguez, G.

    2017-07-01

    We apply AFM-tip assisted IR imaging of laboratory standards and Murchison meteorite to identify and map distribution of amino acids and determine sensitivity of AFM-IR to amino-acid functional groups.

  11. Introducing multiple bio-functional groups on the poly(ether sulfone) membrane substrate to fabricate an effective antithrombotic bio-interface.

    PubMed

    Wang, Lingren; He, Min; Gong, Tao; Zhang, Xiang; Zhang, Lincai; Liu, Tao; Ye, Wei; Pan, Changjiang; Zhao, Changsheng

    2017-11-21

    It has been widely recognized that functional groups on biomaterial surfaces play important roles in blood compatibility. To construct an effective antithrombotic bio-interface onto the poly(ether sulfone) (PES) membrane surface, bio-functional groups of sodium carboxylic (-COONa), sodium sulfonic (-SO 3 Na) and amino (-NH 2 ) groups were introduced onto the PES membrane surface in three steps: the synthesis of PES with carboxylic (-COOH) groups (CPES) and water-soluble PES with sodium sulfonic (-SO 3 Na) groups and amino (-NH 2 ) groups (SNPES); the introduction of carboxylic groups onto the PES membrane by blending CPES with PES; and the grafting of SNPES onto CPES/PES membranes via the coupling of amino groups and carboxyl groups. The physical/chemical properties and bioactivities were dependent on the proportions of the additives. After introducing bio-functional groups, the excellent hemocompatibility of the modified membranes was confirmed by the inhibited platelet adhesion and activation, prolonged clotting times, suppressed blood-related complement and leukocyte-related complement receptor activations. Furthermore, cell tests indicated that the modified membranes showed better cytocompatibility in endothelial cell proliferation than the pristine PES membrane due to the synergistic promotion of the functional groups. To sum up, these results suggested that modified membranes present great potential in fields using blood-contacting materials, such as hemodialysis and surface endothelialization.

  12. Surface modification of graphite-encapsulated iron nanoparticles by RF excited Ar/NH3 gas mixture plasma and their application to Escherichia coli capture

    NASA Astrophysics Data System (ADS)

    Viswan, Anchu; Chou, Han; Sugiura, Kuniaki; Nagatsu, Masaaki

    2016-09-01

    Graphite-encapsulated iron nanoparticles with an average diameter of 20 nm were synthesized using the DC arc discharge method. For biomedical application, the nanoparticles were functionalized with amino groups using an inductively coupled radio-frequency (RF) plasma. The Ar, NH3, and Ar/NH3 plasmas that were used for functionalization were diagnosed using optical emission spectroscopy, confirming the presence of the required elements. The best conditions for functionalization were optimized by changing various parameters. The pretreatment time with Ar plasma was varied from 0 to 12.5 min, the post-treatment time from 30 s to 3 min. The dependence of the RF power and the gas mixture ratio of Ar/NH3 on the amino group population was also analyzed. From Raman spectroscopy, x-ray photoelectron spectroscopy, and determination of absolute number of amino groups through chemical derivatization, it was found that 5 min of Ar pretreatment and 6%NH3/94%Ar plasma post-treatment for 3 min with an RF power of 80 W gives the best result of about 5  ×  104 amino groups per particle. The nanoparticles that were amino functionalized under optimized conditions and immobilized with an Escherichia coli (E.coli) antibody on their surface were incubated with E.coli bacteria to determine the efficiency of collection by direct culture assay.

  13. Amino-functionalized (meth)acryl polymers by use of a solvent-polarity sensitive protecting group (Br-t-BOC).

    PubMed

    Ritter, Helmut; Tabatabai, Monir; Herrmann, Markus

    2016-01-01

    We describe the synthesis of bromo-tert-butyloxycarbonyl (Br-t-BOC)-amino-protected monomers 2-((1-bromo-2-methylpropan-2-yl)oxycarbonylamino)ethyl (meth)acrylate 3a,b. For this purpose, 2-isocyanatoethyl (meth)acrylate 1a,b was reacted with 1-bromo-2-methylpropan-2-ol (2a). The free radical polymerization of (Br-t-BOC)-aminoethyl (meth)acrylates 3a,b yielded poly((Br-t-BOC)-aminoethyl (meth)acrylate) 6a,b bearing protected amino side groups. The subsequent solvolysis of the Br-t-BOC function led to the new polymers poly(2-aminoethyl (meth)acrylate) 8a,b with protonated free amino groups. The monomers and the resulting polymers were thoroughly characterized by (1)H NMR, IR, GPC and DSC methods. The kinetics of the deprotection step was followed by (1)H NMR spectroscopy. The solvent polarity and neighboring group effects on the kinetics of deprotection are discussed.

  14. Modification of agonist binding moiety in hybrid derivative 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-1-ol/-2-amino versions: Impact on functional activity and selectivity for dopamine D2/D3 receptors

    PubMed Central

    Gopishetty, Bhaskar; Zhang, Suhong; Kharkar, Prashant S.; Antonio, Tamara; Reith, Maarten; Dutta, Aloke K.

    2013-01-01

    The goal of the present study was to explore, in our previously developed hybrid template, the effect of introduction of additional heterocyclic rings (mimicking catechol hydroxyl groups as bioisosteric replacement) on selectivity and affinity for the D3 versus D2 receptor. In addition, we wanted to explore the effect of derivatization of functional groups of the agonist binding moiety in compounds developed by us earlier from the hybrid template. Binding affinity (Ki) of the new compounds was measured with tritiated spiperone as the radioligand and HEK-293 cells expressing either D2 or D3 receptors. Functional activity of selected compounds was assessed in the GTPγS binding assay. In the imidazole series, compound 10a exhibited the highest D3 affinity whereas the indole derivative 13 exhibited similar high D3 affinity. Functionalization of the amino group in agonist (+)-9d with different sulfonamides derivatives improved the D3 affinity significantly with (+)-14f exhibiting the highest affinity. However, functionalization of the hydroxyl and amino groups of 15 and (+)-9d, known agonist and partial agonist, to sulfonate ester and amide in general modulated the affinity. In both cases loss of agonist potency resulted from such derivatization. PMID:23623679

  15. Tuning surface properties of amino-functionalized silica for metal nanoparticle loading: The vital role of an annealing process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Yuchen; Xiao, Chaoxian; Goh, Tian -Wei

    2015-10-20

    Metal nanoparticles (NPs) loaded on oxides have been widely used as multifunctional nanomaterials in various fields such as optical imaging, sensors, and heterogeneous catalysis. However, the deposition of metal NPs on oxide supports with high efficiency and homogeneous dispersion still remains elusive, especially when silica is used as the support. Amino-functionalization of silica can improve loading efficiency, but metal NPs often aggregate on the surface. Herein, we report that a facial annealing of amino-functionalized silica can significantly improve the dispersion and enhance the loading efficiency of various metal NPs, such as Pt, Rh, and Ru, on the silica surface. Amore » series of characterization techniques, such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Zeta potential analysis, UV–Vis spectroscopy, thermogravimetric analysis coupled with infrared analysis (TGA–IR), and nitrogen physisorption, were employed to study the changes of surface properties of the amino-functionalized silica before and after annealing. We found that the annealed amino-functionalized silica surface has more cross-linked silanol groups and relatively lesser amount of amino groups, and less positively charges, which could be the key to the uniform deposition of metal NPs during the loading process. Lastly, these results could contribute to the preparation of metal/oxide hybrid NPs for the applications that require uniform dispersion.« less

  16. Rotation of Guanine Amino Groups in G-Quadruplexes: A Probe for Local Structure and Ligand Binding.

    PubMed

    Adrian, Michael; Winnerdy, Fernaldo Richtia; Heddi, Brahim; Phan, Anh Tuân

    2017-08-22

    Nucleic acids are dynamic molecules whose functions may depend on their conformational fluctuations and local motions. In particular, amino groups are dynamic components of nucleic acids that participate in the formation of various secondary structures such as G-quadruplexes. Here, we present a cost-efficient NMR method to quantify the rotational dynamics of guanine amino groups in G-quadruplex nucleic acids. An isolated spectrum of amino protons from a specific tetrad-bound guanine can be extracted from the nuclear Overhauser effect spectroscopy spectrum based on the close proximity between the intra-residue imino and amino protons. We apply the method in different structural contexts of G-quadruplexes and their complexes. Our results highlight the role of stacking and hydrogen-bond interactions in restraining amino-group rotation. The measurement of the rotation rate of individual amino groups could give insight into the dynamic processes occurring at specific locations within G-quadruplex nucleic acids, providing valuable probes for local structure, dynamics, and ligand binding. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization.

    PubMed

    Sándor, Mónika; Nistor, Cristina Lavinia; Szalontai, Gábor; Stoica, Rusandica; Nicolae, Cristian Andi; Alexandrescu, Elvira; Fazakas, József; Oancea, Florin; Donescu, Dan

    2016-01-08

    A series of aminopropyl-functionalized silica nanoparticles were prepared through a basic two step sol-gel process in water. Prior to being aminopropyl-functionalized, silica particles with an average diameter of 549 nm were prepared from tetraethyl orthosilicate (TEOS), using a Stöber method. In a second step, aminopropyl-silica particles were prepared by silanization with 3-aminopropyltriethoxysilane (APTES), added drop by drop to the sol-gel mixture. The synthesized amino-functionalized silica particles are intended to be used as supports for immobilization of humic acids (HA), through electrostatic bonds. Furthermore, by inserting beside APTES, unhydrolysable mono-, di- or trifunctional alkylsilanes (methyltriethoxy silane (MeTES), trimethylethoxysilane (Me₃ES), diethoxydimethylsilane (Me₂DES) and 1,2-bis(triethoxysilyl)ethane (BETES)) onto silica particles surface, the spacing of the free amino groups was intended in order to facilitate their interaction with HA large molecules. Two sorts of HA were used for evaluating the immobilization capacity of the novel aminosilane supports. The results proved the efficient functionalization of silica nanoparticles with amino groups and showed that the immobilization of the two tested types of humic acid substances was well achieved for all the TEOS/APTES = 20/1 (molar ratio) silica hybrids having or not having the amino functions spaced by alkyl groups. It was shown that the density of aminopropyl functions is low enough at this low APTES fraction and do not require a further spacing by alkyl groups. Moreover, all the hybrids having negative zeta potential values exhibited low interaction with HA molecules.

  18. Three Cd(II) MOFs with Different Functional Groups: Selective CO2 Capture and Metal Ions Detection.

    PubMed

    Wang, Zhong-Jie; Han, Li-Juan; Gao, Xiang-Jing; Zheng, He-Gen

    2018-05-07

    Three Cd(II) iso-frameworks {[Cd(BIPA)(IPA)]·DMF} n (1), {[Cd(BIPA)(HIPA)]·DMF} n (2), and {[Cd(BIPA)(NIPA)]·2H 2 O} n (3) were synthesized from the self-assembly of the BIPA ligand (BIPA = bis(4-(1 H-imidazol-1-yl)phenyl)amine) and different carboxylic ligands (H 2 IPA = isophthalic acid, H 2 HIPA = 5-hydroxyisophthalic acid, H 2 NIPA = 5-nitroisophthalic acid) with Cd(II), which have amino groups, amino and phenolic hydroxyl groups, and amino and nitro groups, respectively. Both 1 and 2 exhibit CO 2 uptakes of more than 20 wt %, indicating that amino and phenolic hydroxyl functionalized groups are beneficial to CO 2 adsorption. Their applications and mechanisms in detecting metal ions were researched. The results exhibit that 1 and 2 are dual-responsive photoluminescent sensors for Hg 2+ and Pb 2+ ions with low detection concentration and high quenching constant. Besides, like most MOFs, 3 can detect a trace quantity of Fe 3+ and Cu 2+ .

  19. Chemical Modifications that Affect Nutritional and Functional Properties of Proteins.

    ERIC Educational Resources Information Center

    Richardson, T.; Kester, J. J.

    1984-01-01

    Discusses chemical alterations of selected amino acids resulting from environmental effects (photooxidations, pH extremes, thermally induced effects). Also dicusses use of intentional chemical derivatizations of various functional groups in amino acid residue side chains and how recombinant DNA techniques might be useful in structure/function…

  20. Hyperbranched polymer functional cotton fabric for its in situ deposition of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Desuo; Jiao, Chenlu; Xiong, Jiaqing; Lin, Hong; Chen, Yuyue

    2015-06-01

    This paper describes a strategy of fabricating silver nanoparticles (Ag NPs) finished cotton fabric through in situ synthesis method. In order to endow the cotton fabric with the capability of in situ synthesis of Ag NPs without any other reagents, an amino-terminated hyperbranched polymer (HBP-NH2) was employed to functionalize the cotton fabric. To this end, cotton fabric was oxidized to generate aldehyde groups and then HBP-NH2 was grafted on the oxidized cotton fabric based on the reaction between amino groups and aldehyde groups. Due to numerous imino and amino groups in the polymer and its special three-dimensional structure, the functional cotton fabric could take initiative to capture and reduce silver ions, control the formation of Ag NPs and fix them on the cotton fabric. The sizes of Ag NPs in situ synthesized on cotton fibers range from 4 to 10 nm. The prepared Ag NPs finished cotton fabric has excellent laundering durability.

  1. Site-Specific Attachment of gold Nanoparticles to DNA Templates

    DTIC Science & Technology

    2001-01-01

    1 -ethyl- 3 -( 3 - dimethylaminopropyl ) carbodiimide hydrochloride (Pierce) and -2.0rmg N...functionalized gold nanoparticles. The gold particles were covalently bound to the amino groups on the DNA using standard 1 -ethyl- 3 - ( 3 - dimethylaminopropyl ...nm). The reaction between the amino group on the DNA and the carboxyl group on the gold particle was facilitated by 1 -ethyl- 3 -( 3 - dimethylaminopropyl

  2. Synthesis of Water-Soluble Amino Functionalized Multithiacalix[4]arene via Quaternization of Tertiary Amino Groups.

    PubMed

    Nosov, Roman; Padnya, Pavel; Shurpik, Dmitriy; Stoikov, Ivan

    2018-05-08

    A convenient approach to the synthesis of multithiacalix[4]arene derivatives containing amino groups and phthalimide fragments by the formation of quaternary ammonium salts is presented. As the initial macrocycle for the synthesis of multithiacalix[4]arenes, a differently substituted p-tert- butylthiacalix[4]arene containing bromoacetamide and three phthalimide fragments was used in a 1,3-alternate conformation. The macrocycle in cone conformation containing the tertiary amino groups was found to be a convenient core for the multithiacalix[4]arene systems. Interaction of the core multithiacalix[4]arene with monobromoacetamide derivatives of p-tert- butylthiacalix[4]arene resulted in formation in high yields of pentakisthiacalix[4]arene containing quaternary ammonium and phthalimide fragments. The removal of phthalimide groups led to the formation of amino multithiacalix[4]arene in a good yield. Based on dynamic light scattering, it was shown that the synthesized amino multithiacalix[4]arene, with pronounced hydrophobic and hydrophilic fragments, formed dendrimer-like nanoparticles in water via direct supramolecular self-assembly.

  3. Amino acid adsorption on anatase (101) surface at vacuum and aqueous solution: a density functional study.

    PubMed

    Liu, Liuxie; Li, Kai; Chen, Xiao; Liang, Xiaoqin; Zheng, Yan; Li, Laicai

    2018-03-29

    The adsorption of 20 amino acids (AAs) on the (101) surface of anatase titanium dioxide (TiO 2 ) has been investigated under the scheme of density functional theory. Through the analysis of adsorption geometries, amino group and side chains of AAs have been identified as the major side to adsorb on TiO 2 , while the carboxyl group prefers to stay outside to avoid the repulsion between negatively charged oxygen from TiO 2 and AAs. On the surface, two-coordinated oxygen is the major site to stabilize AAs through O-H interactions. The above conclusion does not change when it is in the aqueous solution based on the calculations with AAs surrounded by explicit water molecules. The above knowledge is helpful in predicting how AAs and even peptides adsorb on inorganic materials. Graphical abstract The adsorption of 20 amino acids (AAs) on the (101) surface of anatase titanium dioxide (TiO 2 ) has been investigated under the scheme of density functional theory.

  4. Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization

    PubMed Central

    Sándor, Mónika; Nistor, Cristina Lavinia; Szalontai, Gábor; Stoica, Rusandica; Nicolae, Cristian Andi; Alexandrescu, Elvira; Fazakas, József; Oancea, Florin; Donescu, Dan

    2016-01-01

    A series of aminopropyl-functionalized silica nanoparticles were prepared through a basic two step sol-gel process in water. Prior to being aminopropyl-functionalized, silica particles with an average diameter of 549 nm were prepared from tetraethyl orthosilicate (TEOS), using a Stöber method. In a second step, aminopropyl-silica particles were prepared by silanization with 3-aminopropyltriethoxysilane (APTES), added drop by drop to the sol-gel mixture. The synthesized amino-functionalized silica particles are intended to be used as supports for immobilization of humic acids (HA), through electrostatic bonds. Furthermore, by inserting beside APTES, unhydrolysable mono-, di- or trifunctional alkylsilanes (methyltriethoxy silane (MeTES), trimethylethoxysilane (Me3ES), diethoxydimethylsilane (Me2DES) and 1,2-bis(triethoxysilyl)ethane (BETES)) onto silica particles surface, the spacing of the free amino groups was intended in order to facilitate their interaction with HA large molecules. Two sorts of HA were used for evaluating the immobilization capacity of the novel aminosilane supports. The results proved the efficient functionalization of silica nanoparticles with amino groups and showed that the immobilization of the two tested types of humic acid substances was well achieved for all the TEOS/APTES = 20/1 (molar ratio) silica hybrids having or not having the amino functions spaced by alkyl groups. It was shown that the density of aminopropyl functions is low enough at this low APTES fraction and do not require a further spacing by alkyl groups. Moreover, all the hybrids having negative zeta potential values exhibited low interaction with HA molecules. PMID:28787834

  5. Charge transfer through amino groups-small molecules interface improving the performance of electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Havare, Ali Kemal; Can, Mustafa; Tozlu, Cem; Kus, Mahmut; Okur, Salih; Demic, Şerafettin; Demirak, Kadir; Kurt, Mustafa; Icli, Sıddık

    2016-05-01

    A carboxylic group functioned charge transporting was synthesized and self-assembled on an indium tin oxide (ITO) anode. A typical electroluminescent device [modified ITO/TPD (50 nm)/Alq3 (60 nm)/LiF (2 nm)/(120 nm)] was fabricated to investigate the effect of the amino groups-small molecules interface on the characteristics of the device. The increase in the surface work function of ITO is expected to facilitate the hole injection from the ITO anode to the Hole Transport Layer (HTL) in electroluminescence. The modified electroluminescent device could endure a higher current and showed a much higher luminance than the nonmodified one. For the produced electroluminescent devices, the I-V characteristics, optical characterization and quantum yields were performed. The external quantum efficiency of the modified electroluminescent device is improved as the result of the presence of the amino groups-small molecules interface.

  6. Uncovering the Design Principle of Amino Acid-Derived Photoluminescent Biodots with Tailor-Made Structure-Properties and Applications for Cellular Bioimaging.

    PubMed

    Xu, Hesheng Victor; Zheng, Xin Ting; Zhao, Yanli; Tan, Yen Nee

    2018-06-13

    Natural amino acids possess side chains with different functional groups (R groups), which make them excellent precursors for programmable synthesis of biomolecule-derived nanodots (biodots) with desired properties. Herein, we report the first systematic study to uncover the material design rules of biodot synthesis from 20 natural α-amino acids via a green hydrothermal approach. The as-synthesized amino acid biodots (AA dots) are comprehensively characterized to establish a structure-property relationship between the amino acid precursors and the corresponding photoluminescent properties of AA dots. It was found that the amino acids with reactive R groups, including amine, hydroxyl, and carboxyl functional groups form unique C-O-C/C-OH and N-H bonds in the AA dots which stabilize the surface defects, giving rise to brightly luminescent AA dots. Furthermore, the AA dots were found to be amorphous and the length of the R group was observed to affect the final morphology (e.g., disclike nanostructure, nanowire, or nanomesh) of the AA dots, which in turn influence their photoluminescent properties. It is noteworthy to highlight that the hydroxyl-containing amino acids, that is, Ser and Thr, form the brightest AA dots with a quantum yield of 30.44% and 23.07%, respectively, and possess high photostability with negligible photobleaching upon continuous UV exposure for 3 h. Intriguingly, by selective mixing of Ser or Thr with another amino acid precursor, the resulting mixed AA dots could inherit unique properties such as improved photostability and significant red shift in their emission wavelength, producing enhanced green and red fluorescent intensity. Moreover, our cellular studies demonstrate that the as-synthesized AA dots display outstanding biocompatibility and excellent intracellular uptake, which are highly desirable for imaging applications. We envision that the material design rules discovered in this study will be broadly applicable for the rational selection of amino acid precursors in the tailored synthesis of biodots.

  7. Optical Sensing of Aromatic Amino Acids and Dipeptides by a Crown-Ether-Functionalized Perylene Bisimide Fluorophore.

    PubMed

    Weißenstein, Annike; Saha-Möller, Chantu R; Würthner, Frank

    2018-06-04

    The host-guest binding properties of a fluorescent perylene bisimide (PBI) receptor equipped with crown ether were studied in detail with a series of aromatic amino acids and dipeptides by UV/Vis, fluorescence and NMR spectroscopy. Fluorescence titration experiments showed that electron-rich aromatic amino acids and dipeptides strongly quench the fluorescence of the electron-poor PBI host molecule. Benesi-Hildebrand plots of fluorescence titration data confirmed the formation of host-guest complexes with 1:2 stoichiometry. Binding constants determined by global analysis of UV/Vis and fluorescence titration experiments revealed values between 10 3  m -1 and 10 5  m -1 in acetonitrile/methanol (9:1) at 23 °C. These data showed that amino acid l-Trp having an indole group and dipeptides containing this amino acid bind to the PBI receptor more strongly than other amino acids and dipeptides investigated here. For dipeptides containing l-Trp or l-Tyr, the binding strength is dependent on the distance between the ammonium group and the aromatic unit of the amino acids and dipeptides leading to a strong sensitivity for Ala-Trp dipeptide. 1D and 2D NMR experiments also corroborated 1:2 host-guest complexation and indicated formation of two diastereomeric species of host-guest complexes. The studies have shown that a properly functionalized PBI fluorophore functions as a molecular probe for the optical sensing of aromatic amino acids and dipeptides. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Viability preserved capture of microorganism by plasma functionalized carbon-encapsulated iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Viswan, Anchu; Sugiura, Kuniaki; Nagatsu, Masaaki

    2015-09-01

    Carbon-encapsulated iron nanoparticles (Fe@C NPs) were synthesized by DC arc discharge method. Carbon encapsulation makes the particles hydrophobic, however for most of the biomedical applications they need to be hydrophilic. To attain this, the particles were amino functionalized by RF plasma. Effect of gas mixture ratio (Ar/NH3), pretreatment, post-treatment times and RF power were optimized. By varying the RF plasma conditions, the amino group population on the surface of Fe@C NPs were increased. With conventional chemical method the amino group population on particles, synthesized in different conditions was found to be ranging from 3-7 × 104 per particle. Bioconjugation efficiency of the nanoparticles was examined by biotin-avidin system, which can be simulated for antigen-antibody reactions. Results from the UV absorption and fluorescence spectroscopy shows increment in bioconjugation efficiency, with the increase of amino group population on the nanoparticles. After confirming the bioconjugation efficiency, the amino functionalized Fe@C NPs were modified with antibodies for targeting specific microorganisms. Our aim is to capture the microbes in viable and concentrated form even from less populated samples, with lesser time compared to the presently available methods. This work has been supported in part by Grant-in-Aid for Scientific Research (Nos. 21110010 and 25246029) from the Japan Society for the Promotion of Science (JSPS).

  9. Determination of L-AP4-bound human mGlu8 receptor amino terminal domain structure and the molecular basis for L-AP4’s group III mGlu receptor functional potency and selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schkeryantz, Jeffery M.; Chen, Qi; Ho, Joseph D.

    Here, L-2-Amino-4-phosphonobutyric acid (L-AP4) is a known potent and selective agonist for the Group III mGlu receptors. However, it does not show any selectivity among the individual group III mGlu subtypes. In order to understand the molecular basis for this group selectivity, we solved the first human mGlu8 amino terminal domain (ATD) crystal structures in complex with L-glu and L-AP4. In comparison with other published L-glu-bound mGlu ATD structures, we have observed L-glu binds in a significantly different manner in mGlu1. Furthermore, these new structures provided evidence that both the electronic and steric nature of the distal phosphate of L-AP4more » contribute to its exquisite Group III functional agonist potency and selectivity.« less

  10. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter.

    PubMed

    Bauer, Susanne N; Nowak, Heike; Keller, Frank; Kallarackal, Jose; Hajirezaei, Mohamad-Reza; Komor, Ewald

    2014-09-01

    Sieve tube sap was obtained from Tanacetum by aphid stylectomy and from Ricinus after apical bud decapitation. The amino acids in sieve tube sap were analyzed and compared with those from leaves. Arginine and lysine accumulated in the sieve tube sap of Tanacetum more than 10-fold compared to the leaf extracts and they were, together with asparagine and serine, preferably selected into the sieve tube sap, whereas glycine, methionine/tryptophan and γ-amino butyric acid were partially or completely excluded. The two basic amino acids also showed a close covariation in sieve tube sap. The acidic amino acids also grouped together, but antagonistic to the other amino acids. The accumulation ratios between sieve tube sap and leaf extracts were smaller in Ricinus than in Tanacetum. Arginine, histidine, lysine and glutamine were enriched and preferentially loaded into the phloem, together with isoleucine and valine. In contrast, glycine and methionine/tryptophan were partially and γ-amino butyric acid almost completely excluded from sieve tube sap. The covariation analysis grouped arginine together with several neutral amino acids. The acidic amino acids were loaded under competition with neutral amino acids. It is concluded from comparison with the substrate specificities of already characterized plant amino acid transporters, that an AtCAT1-like transporter functions in phloem loading of basic amino acids, whereas a transporter like AtGAT1 is absent in phloem. Although Tanacetum and Ricinus have different minor vein architecture, their phloem loading specificities for amino acids are relatively similar. © 2014 Scandinavian Plant Physiology Society.

  11. Probing function and structure of trehalose-6-phosphate phosphatases from pathogenic organisms suggests distinct molecular groupings.

    PubMed

    Cross, Megan; Lepage, Romain; Rajan, Siji; Biberacher, Sonja; Young, Neil D; Kim, Bo-Na; Coster, Mark J; Gasser, Robin B; Kim, Jeong-Sun; Hofmann, Andreas

    2017-03-01

    The trehalose biosynthetic pathway is of great interest for the development of novel therapeutics because trehalose is an essential disaccharide in many pathogens but is neither required nor synthesized in mammalian hosts. As such, trehalose-6-phosphate phosphatase (TPP), a key enzyme in trehalose biosynthesis, is likely an attractive target for novel chemotherapeutics. Based on a survey of genomes from a panel of parasitic nematodes and bacterial organisms and by way of a structure-based amino acid sequence alignment, we derive the topological structure of monoenzyme TPPs and classify them into 3 groups. Comparison of the functional roles of amino acid residues located in the active site for TPPs belonging to different groups reveal nuanced variations. Because current literature on this enzyme family shows a tendency to infer functional roles for individual amino acid residues, we investigated the roles of the strictly conserved aspartate tetrad in TPPs of the nematode Brugia malayi by using a conservative mutation approach. In contrast to aspartate-213, the residue inferred to carry out the nucleophilic attack on the substrate, we found that aspartate-215 and aspartate-428 of Bm TPP are involved in the chemistry steps of enzymatic hydrolysis of the substrate. Therefore, we suggest that homology-based inference of functionally important amino acids by sequence comparison for monoenzyme TPPs should only be carried out for each of the 3 groups.-Cross, M., Lepage, R., Rajan, S., Biberacher, S., Young, N. D., Kim, B.-N., Coster, M. J., Gasser, R. B., Kim, J.-S., Hofmann, A. Probing function and structure of trehalose-6-phosphate phosphatases from pathogenic organisms suggests distinct molecular groupings. © FASEB.

  12. Fluorometric estimation of amino acids interaction with colloidal suspension of FITC functionalized graphene oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Dave, Kashyap; Dhayal, Marshal

    2017-02-01

    A hydrosol approach developed to synthesize fluorescence quenched fluorescein isothiocyanate (FITC) functionalized colloidal suspension of graphene oxide nanoparticles (GONP). UV-vis spectroscopic measurements showed characteristic peak at 236 nm and 300 nm due to pi-pi* interaction in Cdbnd C and n-pi* transition in Cdbnd O bond of GONP, respectively. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra showed reduced intensity of 1429 cm-1 IR band of GONP due to the electrostatic and pi-pi interactions of FITC with GONP in FITC-GONP. ATR-FTIR spectra of different amino acid co-functionalised FITC-GONP showed an increase in the FTIR band intensity at 1429 cm-1 which was significantly reduced due to electrostatic/pi-pi interactions of FITC with GONP in the absence of the amino acids. A peak at 1084 cm-1 in ATR-FTIR spectra appears which confirms the interaction between amine group of amino acids and sbnd COO- groups at GONP surface. The FITC interaction with GONP lead to fluorescence resonance energy transfers (FRET) and resulted in a liner decrease in the FITC fluorescence with an increase of GONP concentration. An increase in the reappearance of FITC fluorescence observed while the amino acid concentration was increased in co-functionalised FITC-GONP. The quantified amount of reappeared fluorescence of FITC in amino acid co-functionalised FITC-GONP depends on the concentration, polar and non-polar nature of amino acids. The reappearance of FITC from the surface of FITC-GONP with the addition of amino acid was found to be consistent with the organic substitute, size of amino acids and their functionalities. Therefore, FRET based method using FITC-GONP colloidal suspension may have potential application in determining the binding nature of biomolecules with GONP for biomedical applications.

  13. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1984-01-01

    Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…

  14. Characterization of the modified nickel-zinc ferrite nanoparticles coated with APTES by salinization reaction

    NASA Astrophysics Data System (ADS)

    Zainal, Israa G.; Al-Shammari, Ahmed Majeed; Kachi, Wjeah

    2018-05-01

    Surface functionalization of magnetic iron oxide nanoparticles (NPs) is a kind of functional materials, which have been widely used in the biotechnology and catalysis. In this study, Nickel-Zinc ferrite nanoparticles was functionalized with amino propyl triethoxy silane (APTES) by silanization reaction and both non coated and organosilane-coated magnetite characterized by energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometry, Fourier transformed infrared spectroscopy (FTIR) and atomic force microscopy. Basic groups of amino anchored on the external surface of the coated magnetite were observed. Our study procedure nanoparticles which have surface with free - NH2 groups which can carry out ionic interaction with carboxylic groups and act as a carrier of biological molecules, drugs and metals.

  15. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene

    NASA Astrophysics Data System (ADS)

    Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos

    2017-07-01

    Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.

  16. Antioxidant activity of amino acids in soybean oil at frying temperature: Structural effects and synergism with tocopherols.

    PubMed

    Hwang, Hong-Sik; Winkler-Moser, Jill K

    2017-04-15

    The purpose of this study was to evaluate amino acids as natural antioxidants for frying. Twenty amino acids were added to soybean oil heated to 180°C, and the effects of amino acid structure on the antioxidant activity were investigated. Amino acids containing a thiol, a thioether, or an extra amine group such as arginine, cysteine, lysine, methionine, and tryptophan had the strongest antioxidant activities. At 5.5mM, these amino acids had stronger antioxidant activities than 0.02% (1.1mM) tert-butylhydroquinone (TBHQ). A functional group such as an amide, carboxylic acid, imidazole, or phenol appeared to negatively affect amino acid antioxidant activity. Synergism between amino acids and tocopherols was demonstrated, and we found that this synergistic interaction may be mostly responsible for the antioxidant activity that was observed. In a frying study with potato cubes, 5.5mM l-methionine had significantly stronger antioxidant activity than 0.02% TBHQ. Published by Elsevier Ltd.

  17. Enantioselective separation of chiral aromatic amino acids with surface functionalized magnetic nanoparticles.

    PubMed

    Ghosh, Sudipa; Fang, Tan Hui; Uddin, M S; Hidajat, K

    2013-05-01

    Chiral resolution aromatic amino acids, DL-tryptophan (DL-Trp), DL-phenylalanine (DL-Phe), DL-tyrosine (DL-Tyr) from phosphate buffer solution was achieved in present study employing the concept of selective adsorption by surface functionalized magnetic nanoparticles (MNPs). Surfaces of magnetic nanoparticles were functionalized with silica and carboxymethyl-β-cyclodextrin (CMCD) to investigate their adsorption resolution characteristics. Resolution of enantiomers from racemic mixture was quantified in terms of enantiomeric excess using chromatographic method. The MNPs selectively adsorbed L-enantiomers of DL-Trp, DL-Phe, and DL-Tyr from racemic mixture and enantiomeric excesses (e.e.) were determined as 94%, 73% and 58%, respectively. FTIR studies demonstrated that hydrophobic portion of enantiomer penetrated into hydrophobic cavity of cyclodextrin molecules to form inclusion complex. Furthermore, adsorption site was explored using XPS and it was revealed that amino group at chiral center of the amino acid molecule formed hydrogen bond with secondary hydroxyl group of CMCD molecule and favorability of hydrogen bond formation resulted in selective adsorption of L-enantiomer. Finally, stability constant (K) and Gibbs free energy change (-ΔG°) for inclusion complexation of CMCD with L-/D-enantiomers of amino acids were determined using spectroflurometry in aqueous buffer solution. Higher binding constants were obtained for inclusion complexation of CMCD with L-enantiomers compared to D-enantiomers which stimulated enantioselective properties of CMCD functionalized magnetite silica nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The initial step in the archaeal aspartate biosynthetic pathway catalyzed by a monofunctional aspartokinase

    PubMed Central

    Faehnle, Christopher R.; Liu, Xuying; Pavlovsky, Alexander; Viola, Ronald E.

    2006-01-01

    The activation of the β-carboxyl group of aspartate catalyzed by aspartokinase is the commitment step to amino-acid biosynthesis in the aspartate pathway. The first structure of a microbial aspartokinase, that from Methanococcus jannaschii, has been determined in the presence of the amino-acid substrate l-­aspartic acid and the nucleotide product MgADP. The enzyme assembles into a dimer of dimers, with the interfaces mediated by both the N- and C-terminal domains. The active-site functional groups responsible for substrate binding and specificity have been identified and roles have been proposed for putative catalytic functional groups. PMID:17012784

  19. The magic triangle goes MAD: experimental phasing with a bromine derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, Tobias, E-mail: tbeck@shelx.uni-ac.gwdg.de; Gruene, Tim; Sheldrick, George M.

    2010-04-01

    5-Amino-2, 4, 6-tribromoisophthalic acid is used as a phasing tool for protein structure determination by MAD phasing. It is the second representative of a novel class of compounds for heavy-atom derivatization that combine heavy atoms with amino and carboxyl groups for binding to proteins. Experimental phasing is an essential technique for the solution of macromolecular structures. Since many heavy-atom ion soaks suffer from nonspecific binding, a novel class of compounds has been developed that combines heavy atoms with functional groups for binding to proteins. The phasing tool 5-amino-2, 4, 6-tribromoisophthalic acid (B3C) contains three functional groups (two carboxylate groups andmore » one amino group) that interact with proteins via hydrogen bonds. Three Br atoms suitable for anomalous dispersion phasing are arranged in an equilateral triangle and are thus readily identified in the heavy-atom substructure. B3C was incorporated into proteinase K and a multiwavelength anomalous dispersion (MAD) experiment at the Br K edge was successfully carried out. Radiation damage to the bromine–carbon bond was investigated. A comparison with the phasing tool I3C that contains three I atoms for single-wavelength anomalous dispersion (SAD) phasing was also carried out.« less

  20. Amino Acid Concentrations in HIV-Infected Youth Compared to Healthy Controls and Associations with CD4 Counts and Inflammation.

    PubMed

    Ziegler, Thomas R; Judd, Suzanne E; Ruff, Joshua H; McComsey, Grace A; Eckard, Allison Ross

    2017-07-01

    Amino acids play critical roles in metabolism, cell function, body composition and immunity, but little data on plasma amino acid concentrations in HIV are available. We evaluated plasma amino acid concentrations and associations with CD4 counts and inflammatory biomarkers in HIV-infected youth. HIV-infected subjects with a high (≥500 cells/mm 3 ) and low (<500 cells/mm 3 ) current CD4 + T cell counts were compared to one another and to a matched healthy control group. Plasma concentrations of 19 amino acids were determined with an amino acid analyzer. Plasma levels of interleukin-6, tumor necrosis factor receptor-I, and soluble vascular cellular adhesion molecule-I were also measured. Seventy-nine HIV-infected subjects (40 and 39 with high and low CD4 + T cell counts, respectively) and 40 controls were included. There were no differences in amino acid concentrations between HIV-infected subjects with high or low CD4 + T cell counts. When combined, the HIV-infected group exhibited significantly lower median plasma concentrations compared to controls for total, essential, branched-chain and sulfur amino acids, as well as for 12 individual amino acids. Glutamate was the only amino acid that was higher in the HIV-infected group. There were no significant correlations between amino acid endpoints and inflammatory biomarkers for either HIV-infected group or controls. Plasma amino acid concentrations were lower in HIV-infected youth compared to healthy controls, regardless of immune status, while glutamate concentrations were elevated. These findings can inform future interventional studies designed to improve metabolic and clinical parameters influenced by amino acid nutriture.

  1. Synthesis of an N-aminopyrazinonium analogue of cytidine.

    PubMed

    Lee, T C; Chello, P L; Chou, T C; Templeton, M A; Parham, J C

    1983-02-01

    An N-aminated pyrazine analogue of cytidine, in which the pyrimidine N(3) ring nitrogen and C(4) amino group were replaced by a C-amino and an N-amino function, respectively, was prepared as a potential deaminase-resistant cytidine antimetabolite. The nucleoside 1,2-diamino-4-beta-D-ribofuranosylpyrazin-2-onium chloride (6) was a mild cytostatic agent but was neither a substrate for nor an inhibitor of mouse kidney cytidine deaminase. It ionized with a lower pKa than expected. The anion did not undergo the dimerization usually observed with N-imino heterocyclic ylides but unerwent hydrolysis of the 2-amino group to yield a 1-aminopyrazine-2,3-dione nucleoside.

  2. Unusual glycosylation of proteins: Beyond the universal sequon and other amino acids.

    PubMed

    Dutta, Devawati; Mandal, Chhabinath; Mandal, Chitra

    2017-12-01

    Glycosylation of proteins is the most common, multifaceted co- and post-translational modification responsible for many biological processes and cellular functions. Significant alterations and aberrations of these processes are related to various pathological conditions, and often turn out to be disease biomarkers. Conventional N-glycosylation occurs through the recognition of the consensus sequon, asparagine (Asn)-X-serine (Ser)/threonine (Thr), where X is any amino acid except for proline, with N-acetylglucosamine (GlcNAc) as the first glycosidic linkage. Usually, O-glycosylation adds a glycan to the hydroxyl group of Ser or Thr beginning with N-acetylgalactosamine (GalNAc). Protein glycosylation is further governed by additional diversifications in sequon and structure, which are yet to be fully explored. This review mainly focuses on the occurrence of N-glycosylation in non-consensus motifs, where Ser/Thr at the +2 position is substituted by other amino acids. Additionally, N-glycosylation is also observed in other amide/amine group-containing amino acids. Similarly, O-glycosylation occurs at hydroxyl group-containing amino acids other than serine/threonine. The neighbouring amino acids and local structural features around the potential glycosylation site also play a significant role in determining the extent of glycosylation. All of these phenomena that yield glycosylation at the atypical sites are reported in a variety of biological systems, including different pathological conditions. Therefore, the discovery of more novel sequence patterns for N- and O-glycosylation may help in understanding the functions of complex biological processes and cellular functions. Taken together, all these information provided in this review would be helpful for the biological readers. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Aminopropyl-modified magnesium-phyllosilicates: layered solids with tailored interlayer access and reactivity.

    PubMed

    Ferreira, Ricardo B; da Silva, César R; Pastore, Heloise O

    2008-12-16

    Despite its wide application, the synthesis of aminopropyl-modified magnesium-phyllosilicates was known only in the case where every silicon atom bore an organic pending group. This paper shows the preparation of aminopropyl-modified talc where tailored amounts of silicon atoms are bound to an aminopropyl group. The decrease in the concentration of the organoamino group leaves a proportional concentration of interlayer SiOH groups that can be used to react with other silylation agents. The amino group reacts with CO2, forming a carbamate functionality; it seems that the presence of this group avoids delamination in water as performed for the parent compound. Bearing in mind that the aminopropyl group can be changed by other groups, the present synthesis strategy demonstrates ways to produce solids with controlled surface properties with interlayer amino and SiOH groups in variable concentrations, allowing formation of several other interlayer functionalities.

  4. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    PubMed Central

    2015-01-01

    Summary Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA), many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of catalytically active macromolecular networks in the form of soluble polymers, crosslinked polymer beads or nanoparticulate systems. The objective of the present review is to increase awareness of the existence and convenience of this methodology, assess its competitiveness compared to newer and more elaborate procedures for chemoselective O-acylation reactions, spur its further development, and finally to chronicle the informative, but poorly documented history of its development. PMID:25977719

  5. Nuclear localization and transactivation by Vitis CBF transcription factors are regulated by combinations of conserved amino acid domains.

    PubMed

    Carlow, Chevonne E; Faultless, J Trent; Lee, Christine; Siddiqua, Mahbuba; Edge, Alison; Nassuth, Annette

    2017-09-01

    The highly conserved CBF pathway is crucial in the regulation of plant responses to low temperatures. Extensive analysis of Arabidopsis CBF proteins revealed that their functions rely on several conserved amino acid domains although the exact function of each domain is disputed. The question was what functions similar domains have in CBFs from other, overwintering woody plants such as Vitis, which likely have a more involved regulation than the model plant Arabidopsis. A total of seven CBF genes were cloned and sequenced from V. riparia and the less frost tolerant V. vinifera. The deduced species-specific amino acid sequences differ in only a few amino acids, mostly in non-conserved regions. Amino acid sequence comparison and phylogenetic analysis showed two distinct groups of Vitis CBFs. One group contains CBF1, CBF2, CBF3 and CBF8 and the other group contains CBF4, CBF5 and CBF6. Transient transactivation assays showed that all Vitis CBFs except CBF5 activate via a CRT or DRE promoter element, whereby Vitis CBF3 and 4 prefer a CRT element. The hydrophobic domains in the C-terminal end of VrCBF6 were shown to be important for how well it activates. The putative nuclear localization domain of Vitis CBF1 was shown to be sufficient for nuclear localization, in contrast to previous reports for AtCBF1, and also important for transactivation. The latter highlights the value of careful analysis of domain functions instead of reliance on computer predictions and published data for other related proteins. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Epitaxial Nucleation on Rationally Designed Peptide Functionalized Interface

    DTIC Science & Technology

    2011-07-19

    of 17 amino acid peptides. In this report, we focus on the findings from several variants of these sequences, including the role of charge...separation and histidine-gold coordination. We find that these 17 amino acid peptide sequences behave robustly, where periodicity appears to dominate the...26,27 Secondary structure propensity refers to the intrinsic inclination of individual amino acids to a given secondary structure, where side-group

  7. Interactions of zinc octacarboxyphthalocyanine with selected amino acids and with albumin

    NASA Astrophysics Data System (ADS)

    Kliber, Marta; Broda, Małgorzata A.; Nackiewicz, Joanna

    2016-02-01

    Effect of selected amino acids (glycine, L-histidine, L-cysteine, L-serine, L-tryptophan) and albumin on the spectroscopic properties and photostability of zinc octacarboxyphthalocyanine (ZnPcOC) was explored in the phosphate buffer at a pH of 7.0. The photodegradation of ZnPcOC alone and in the presence of amino acids or albumin has been investigated in aqueous phase using UV-366 nm and daylight irradiation. Kinetic analysis showed that the interaction with amino acids or albumin enhances the photostability of ZnPcOC. To answer the question of how zinc phthalocyanine interacts with amino acids extensive DFT calculations were performed. Analysis of the optimized geometry features of ZnPcOC: amino acids complexes in the gas phase and in water environment as well as the BSSE corrected interaction energies indicates that the more likely is the formation of equatorial complexes in which H-bonds are formed between the COOH groups of the phthalocyanine and carboxyl or amino groups of amino acids. UV-Vis spectra calculated by employing time dependent density functional theory (TD-DFT) are also consistent with this conclusion.

  8. Halogen, Hydroxy, Mercapto and Amino-Compounds: A Mechanistic Study--2

    ERIC Educational Resources Information Center

    Hanson, R. W.

    1976-01-01

    Compare reactions in which the functional groups of title compounds are displaced. The overall order of activity observed for alkyl halides, alcohols, thiels, and aliphatic amines acting as bases or nucleophiles is reversed when reactions involve displacement of the functional group. (MLH)

  9. Development of dialyzer with immobilized glycoconjugate polymers for removal of Shiga-toxin.

    PubMed

    Miyagawa, Atsushi; Watanabe, Miho; Igai, Katsura; Kasuya, Maria Carmelita Z; Natori, Yasuhiro; Nishikawa, Kiyotaka; Hatanaka, Kenichi

    2006-06-01

    The dialyzer for Shiga-toxin elimination was developed and its performance was established. The dialyzer was prepared by immobilization of multivalent ligands. Glycoconjugate polymers having oligosaccharides and amino groups were synthesized to function as Shiga-toxin adsorbents. The amino group was utilized to immobilize the polymer inside the cellulose hollow fiber of the dialyzer. Cellulose hollow fibers packed in the dialyzer were carboxymethylated under moderate conditions. The glycoconjugate polymers were bound covalently to the hollow fibers of the dialyzer by condensation reaction between the amino group of the polymer and the carboxyl group of the cellulose hollow fiber. Shiga-toxin eliminabilities of the prepared dialyzers were evaluated at various conditions. Even at high concentration of protein such as FCS, the dialyzer showed an excellent performance for Shiga-toxin adsorption.

  10. Controlling the directionality of charge transfer in phthalocyaninato zinc sensitizer for a dye-sensitized solar cell: density functional theory studies.

    PubMed

    Wan, Liang; Qi, Dongdong; Zhang, Yuexing; Jiang, Jianzhuang

    2011-01-28

    Density functional theory (DFT) calculation on the molecular structures, charge distribution, molecular orbitals, electronic absorption spectra of a series of eight unsymmetrical phthalocyaninato zinc complexes with one peripheral (E)-2-cyano-3-(5-vinylthiophen-2-yl) acrylic acid substituent at 2 or 3 position as an electron-withdrawing group and a different number of electron-donating amino groups at the remaining peripheral positions (9, 10, 16, 17, 23, 24) of the phthalocyanine ring, namely ZnPc-β-A, ZnPc-β-A-I-NH(2), ZnPc-β-A-II-NH(2), ZnPc-β-A-III-NH(2), ZnPc-β-A-I,II-NH(2), ZnPc-β-A-I,III-NH(2), ZnPc-β-A-II,III-NH(2), and ZnPc-β-A-I,II,III-NH(2), reveals the effects of amino groups on the charge transfer properties of these phthalocyanine derivatives with a typical D-π-A electronic structure. The introduction of amino groups was revealed altering of the atomic charge distribution, lifting the frontier molecular orbital level, red-shift of the near-IR bands in the electronic absorption spectra, and finally resulting in enhanced charge transfer directionality for the phthalocyanine compounds. Along with the increase of the peripheral amino groups at the phthalocyanine ring from 0, 2, 4, to 6, the dihedral angle between the phthalocyanine ring and the average plane of the (E)-2-cyano-3-(5-vinylthiophen-2-yl) acrylic acid substituent increases from 0 to 3.3° in an irregular manner. This is in good contrast to the regular and significant change in the charge distribution, destabilization of frontier orbital energies, and red shift of near-IR bands of phthalocyanine compounds along the same order. In addition, comparative studies indicate the smaller effect of incorporating two amino groups onto the 16 and 17 than on 9 and 10 or 23 and 24 peripheral positions of the phthalocyanine ring onto the aforementioned electronic properties, suggesting the least effect on tuning the charge transfer property of the phthalocyanine compound via introducing two electron-donating amino groups onto the 16 and 17 peripheral positions. As expected, compound ZnPc-β-A-I,III-NH(2) with four amino groups at 9, 10, 23, and 24 positions of the phthalocyanine ring shows the best charge transfer directionality among the three phthalocyaninato zinc complexes with four peripheral amino groups.

  11. A spectroscopic study on stability of curcumin as a function of pH in silica nanoformulations, liposome and serum protein

    NASA Astrophysics Data System (ADS)

    Jain, Beena

    2017-02-01

    The effect of pH on the stability of curcumin formulated with different carriers has been studied spectroscopically. This was investigated by monitoring the absorption and emission kinetics and fluorescence decay time of four different curcumin formulations suspended in buffer with pH varying from 5 to 8.5. The carriers were organically modified silica NP (SiNP) having 3-amino propyl and/or vinyl groups, liposome and serum protein. The results reveal that stability of curcumin formulated with SiNP functionalized with 3-amino propyl group (SiNP-VA) is significantly higher as compared to SiNP with only vinyl group (SiNP-V) and buffer but lower as compared to serum protein and liposome. However, fluorescence quantum yield (QY) is highest in SiNP-VA among all the nano formulations at pH 7.4 and below, which is attributed to the excited state interaction of curcumin with the amino groups of SiNP-VA. Results suggest that SiNP-VA could be an effective carrier for curcumin, which may have applications for imaging and drug delivery.

  12. Controlled drug release on amine functionalized spherical MCM-41

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szegedi, Agnes, E-mail: szegedi@chemres.hu; Popova, Margarita; Goshev, Ivan

    2012-10-15

    MCM-41 silica with spherical morphology and small particle sizes (100 nm) was synthesized and modified by post-synthesis method with different amounts of 3-aminopropyltriethoxysilane (APTES). A comparative study of the adsorption and release of a model drug, ibuprofen, was carried out. The modified and drug loaded mesoporous materials were characterized by XRD, TEM, N{sub 2} physisorption, elemental analysis, thermal analysis and FT-IR spectroscopy. A new method was developed for the quantitative determination of amino groups in surface modified mesoporous materials by the ninhydrin reaction. Good correlation was found between the amino content of the MCM-41 materials determined by the ninhydrin methodmore » and their ibuprofen adsorption capacity. Amino modification resulted in high degree of ibuprofen loading and slow release rate in comparison to the parent non-modified MCM-41. - Graphical abstract: Determination of surface amino groups by ninhidrin method. Highlights: Black-Right-Pointing-Pointer Spherical MCM-41 modified by different amounts of APTES was studied. Black-Right-Pointing-Pointer Ibuprofen (IBU) adsorption and release characteristics was tested. Black-Right-Pointing-Pointer The ninhydrin reaction was used for the quantitative determination of amino groups. Black-Right-Pointing-Pointer Stoichiometric amount of APTES is enough for totally covering the surface with amino groups. Black-Right-Pointing-Pointer Good correlation was found between the amino content and IBU adsorption capacity.« less

  13. Spectroscopic and first principles investigation on 4-[(4-pyridinylmethylene)amino]-benzoic acid bearing pyridyl and carboxyl anchoring groups

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Qiaoyi

    2018-03-01

    We report a combined experimental and computational investigation on the structure and photophysics of 4-[(4-pyridinylmethylene)amino]-benzoic acid, a functional molecule bearing two anchoring groups for attachment onto a TiO2 surface and perovskite surface, for potential solar cell application. This molecule possesses interesting adsorption properties in perovskite solar cell because the pyridyl group serves as the Lewis base and targets Lewis acidic sites in the perovskite surface, while the carboxyl group targets TiO2 surface, improving the coupling between the perovskite surface and the TiO2 surface. The electronic structures of the molecule and its photochemistry are revealed by the UV-vis absorption spectra and the fluorescence spectra under visible light irradiation, which are combined with density functional theory (DFT) and time-dependent density functional theory (TDDFT) analysis. Considering the bi-anchoring groups and the conjugated π system embedded in the molecule, we anticipate it can molecular engineer the TiO2/perovskite interface in perovskite solar cell.

  14. The linker region of AraC protein.

    PubMed Central

    Eustance, R J; Schleif, R F

    1996-01-01

    AraC protein, a transcriptional regulator of the L-arabinose operon in Escherichia coli, is dimeric. Each monomer consists of a domain for DNA binding plus transcription activation and a domain for dimerization plus arabinose binding. These are connected to one another by a linker region of at least 5 amino acids. Here we have addressed the question of whether any of the amino acids in the linker region play active, specific, and crucial structural roles or whether these amino acids merely serve as passive spacers between the functional domains. We found that all but one of the linker amino acids can be changed to other amino acids individually and in small groups without substantially affecting the ability of AraC protein to activate transcription when arabinose is present. When, however, the entire linker region is replaced with linker sequences from other proteins, the functioning of AraC is impaired. PMID:8955380

  15. Universal Effectiveness of Inducing Magnetic Moments in Graphene by Amino-Type sp3-Defects

    PubMed Central

    Wu, Liting; Gao, Shengqing; Li, Ming; Wen, Jianfeng; Li, Xinyu; Liu, Fuchi

    2018-01-01

    Inducing magnetic moments in graphene is very important for its potential application in spintronics. Introducing sp3-defects on the graphene basal plane is deemed as the most promising approach to produce magnetic graphene. However, its universal validity has not been very well verified experimentally. By functionalization of approximately pure amino groups on graphene basal plane, a spin-generalization efficiency of ~1 μB/100 NH2 was obtained for the first time, thus providing substantial evidence for the validity of inducing magnetic moments by sp3-defects. As well, amino groups provide another potential sp3-type candidate to prepare magnetic graphene. PMID:29673185

  16. Hydrophilic Solvation Dominates the Terahertz Fingerprint of Amino Acids in Water.

    PubMed

    Esser, Alexander; Forbert, Harald; Sebastiani, Federico; Schwaab, Gerhard; Havenith, Martina; Marx, Dominik

    2018-02-01

    Spectroscopy in the terahertz frequency regime is a sensitive tool to probe solvation-induced effects in aqueous solutions. Yet, a systematic understanding of spectral lineshapes as a result of distinct solvation contributions remains terra incognita. We demonstrate that modularization of amino acids in terms of functional groups allows us to compute their distinct contributions to the total terahertz response. Introducing the molecular cross-correlation analysis method provides unique access to these site-specific contributions. Equivalent groups in different amino acids lead to look-alike spectral contributions, whereas side chains cause characteristic but additive complexities. Specifically, hydrophilic solvation of the zwitterionic groups in valine and glycine leads to similar terahertz responses which are fully decoupled from the side chain. The terahertz response due to H-bonding within the large hydrophobic solvation shell of valine turns out to be nearly indistinguishable from that in bulk water in direct comparison to the changes imposed by the charged functional groups that form strong H-bonds with their hydration shells. Thus, the hydrophilic groups and their solvation shells dominate the terahertz absorption difference, while on the same intensity scale, the influence of hydrophobic water can be neglected.

  17. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, B.F.; Robison, T.W.; Gohdes, J.W.

    1999-04-06

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  18. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    2002-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  19. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    1999-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  20. Vibrational Spectra and Density functional calculation of Organic Nonlinear Optic Crystal p-Amino Acetanilide

    NASA Astrophysics Data System (ADS)

    Saja, D.; Joe, I. Hubert; Jayakumar, V. S.

    2006-01-01

    The NIR-FT Raman, FT-IR spectral analysis of potential NLO material P-Amino Acetanilide is carried out by density functional computations. The optimized geometry shows that NH2 and NHCOCH3 groups substituted in para position of phenyl ring are non-planar which predicts maximum conjugation of molecule with donor and acceptor groups. Vibrational analysis reveals that simultaneous IR and Raman activation of the phenyl ring modes also provide evidence for the charge transfer interaction between the donors and the acceptor can make the molecule highly polarized and the intra molecular charge transfer interaction must be responsible for the NLO properties of PAA.

  1. A new reactivity mode for the diazo group: diastereoselective 1,3-aminoalkylation reaction of β-amino-α-diazoesters to give triazolines.

    PubMed

    Kuznetsov, Alexey; Gulevich, Anton V; Wink, Donald J; Gevorgyan, Vladimir

    2014-08-18

    A novel mode of reactivity for the diazo group, the 1,3-addition of a nucleophile and an electrophile to the diazo group, has been realized in the intramolecular aminoalkylation of β-amino-α-diazoesters to form tetrasubstituted 1,2,3-triazolines. The reaction exhibited a broad scope, good functional group tolerance, and excellent diastereoselectivity. In addition, a new Au-catalyzed intramolecular transannulation reaction of the obtained propargyl triazolines to give pyrroles has been discovered. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Functional Modification of Thioether Groups in Peptides, Polypeptides, and Proteins.

    PubMed

    Deming, Timothy J

    2017-03-15

    Recent developments in the modification of methionine and other thioether-containing residues in peptides, polypeptides, and proteins are reviewed. Properties and potential applications of the resulting functionalized products are also discussed. While much of this work is focused on natural Met residues, modifications at other side-chain residues have also emerged as new thioether-containing amino acids have been incorporated into peptidic materials. Functional modification of thioether-containing amino acids has many advantages and is a complementary methodology to the widely utilized methods for modification at cysteine residues.

  3. Quantum Computational Calculations of the Ionization Energies of Acidic and Basic Amino Acids: Aspartate, Glutamate, Arginine, Lysine, and Histidine

    NASA Astrophysics Data System (ADS)

    de Guzman, C. P.; Andrianarijaona, M.; Lee, Y. S.; Andrianarijaona, V.

    An extensive knowledge of the ionization energies of amino acids can provide vital information on protein sequencing, structure, and function. Acidic and basic amino acids are unique because they have three ionizable groups: the C-terminus, the N-terminus, and the side chain. The effects of multiple ionizable groups can be seen in how Aspartate's ionizable side chain heavily influences its preferred conformation (J Phys Chem A. 2011 April 7; 115(13): 2900-2912). Theoretical and experimental data on the ionization energies of many of these molecules is sparse. Considering each atom of the amino acid as a potential departing site for the electron gives insight on how the three ionizable groups affect the ionization process of the molecule and the dynamic coupling between the vibrational modes. In the following study, we optimized the structure of each acidic and basic amino acid then exported the three dimensional coordinates of the amino acids. We used ORCA to calculate single point energies for a region near the optimized coordinates and systematically went through the x, y, and z coordinates of each atom in the neutral and ionized forms of the amino acid. With the calculations, we were able to graph energy potential curves to better understand the quantum dynamic properties of the amino acids. The authors thank Pacific Union College Student Association for providing funds.

  4. Density functional theory fragment descriptors to quantify the reactivity of a molecular family: application to amino acids.

    PubMed

    Senet, P; Aparicio, F

    2007-04-14

    By using the exact density functional theory, one demonstrates that the value of the local electronic softness of a molecular fragment is directly related to the polarization charge (Coulomb hole) induced by a test electron removed (or added) from (at) the fragment. Our finding generalizes to a chemical group a formal relation between these molecular descriptors recently obtained for an atom in a molecule using an approximate atomistic model [P. Senet and M. Yang, J. Chem. Sci. 117, 411 (2005)]. In addition, a practical ab initio computational scheme of the Coulomb hole and related local descriptors of reactivity of a molecular family having in common a similar fragment is presented. As a blind test, the method is applied to the lateral chains of the 20 isolated amino acids. One demonstrates that the local softness of the lateral chain is a quantitative measure of the similarity of the amino acids. It predicts the separation of amino acids in different biochemical groups (aliphatic, basic, acidic, sulfur contained, and aromatic). The present approach may find applications in quantitative structure activity relationship methodology.

  5. Using Evolution to Guide Protein Engineering: The Devil IS in the Details.

    PubMed

    Swint-Kruse, Liskin

    2016-07-12

    For decades, protein engineers have endeavored to reengineer existing proteins for novel applications. Overall, protein folds and gross functions can be readily transferred from one protein to another by transplanting large blocks of sequence (i.e., domain recombination). However, predictably fine-tuning function (e.g., by adjusting ligand affinity, specificity, catalysis, and/or allosteric regulation) remains a challenge. One approach has been to use the sequences of protein families to identify amino acid positions that change during the evolution of functional variation. The rationale is that these nonconserved positions could be mutated to predictably fine-tune function. Evolutionary approaches to protein design have had some success, but the engineered proteins seldom replicate the functional performances of natural proteins. This Biophysical Perspective reviews several complexities that have been revealed by evolutionary and experimental studies of protein function. These include 1) challenges in defining computational and biological thresholds that define important amino acids; 2) the co-occurrence of many different patterns of amino acid changes in evolutionary data; 3) difficulties in mapping the patterns of amino acid changes to discrete functional parameters; 4) the nonconventional mutational outcomes that occur for a particular group of functionally important, nonconserved positions; 5) epistasis (nonadditivity) among multiple mutations; and 6) the fact that a large fraction of a protein's amino acids contribute to its overall function. To overcome these challenges, new goals are identified for future studies. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Comparison of different amino acid derivatives and analysis of rat brain microdialysates by liquid chromatography tandem mass spectrometry.

    PubMed

    Uutela, Päivi; Ketola, Raimo A; Piepponen, Petteri; Kostiainen, Risto

    2009-02-09

    The efficiencies of three derivatisation reagents that react with either the amine (9-fluorenylmethyl chloroformate (FMOC)) or the carboxylic acid group (butanol) of amino acid or with both types of functional groups (propyl chloroformate) were compared in the analysis of amino acids by liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS). Separation of 20 amino acids derivatised with these three reagents was studied on reversed-phase chromatography. Linearity, repeatability and limits of detection of the LC-ESI-MS/MS method were determined by analysing FMOC-, butanol- and propyl chloroformate-derivatised lysine, beta-aminobutyric acid, threonine and glutamic acid. The limits of detection for the derivatised amino acids (7.5-75fmol) were as much as 2-60 times lower than those of the corresponding underivatised molecules. The best linearity was observed for amino acids derivatised with propyl chloroformate or butanol (r(2)=0.996-0.999, range=100-8500nmolL(-1)). Propyl chloroformate was the best suited of the reagents tested for the analysis of amino acids with LC-MS/MS and was used for the analysis of amino acids in rat brain microdialysis samples.

  7. Minimalism in radiation synthesis of biomedical functional nanogels.

    PubMed

    Dispenza, Clelia; Sabatino, Maria Antonietta; Grimaldi, Natascia; Bulone, Donatella; Bondì, Maria Luisa; Casaletto, Maria Pia; Rigogliuso, Salvatrice; Adamo, Giorgia; Ghersi, Giulio

    2012-06-11

    A scalable, single-step, synthetic approach for the manufacture of biocompatible, functionalized micro- and nanogels is presented. In particular, poly(N-vinyl pyrrolidone)-grafted-(aminopropyl)methacrylamide microgels and nanogels were generated through e-beam irradiation of PVP aqueous solutions in the presence of a primary amino-group-carrying monomer. Particles with different hydrodynamic diameters and surface charge densities were obtained at the variance of the irradiation conditions. Chemical structure was investigated by different spectroscopic techniques. Fluorescent variants were generated through fluorescein isothiocyanate attachment to the primary amino groups grafted to PVP, to both quantify the available functional groups for bioconjugation and follow nanogels localization in cell cultures. Finally, a model protein, bovine serum albumin, was conjugated to the nanogels to demonstrate the attachment of biologically relevant molecules for targeting purposes in drug delivery. The described approach provides a novel strategy to fabricate biohybrid nanogels with a very promising potential in nanomedicine.

  8. Computer analysis of protein functional sites projection on exon structure of genes in Metazoa.

    PubMed

    Medvedeva, Irina V; Demenkov, Pavel S; Ivanisenko, Vladimir A

    2015-01-01

    Study of the relationship between the structural and functional organization of proteins and their coding genes is necessary for an understanding of the evolution of molecular systems and can provide new knowledge for many applications for designing proteins with improved medical and biological properties. It is well known that the functional properties of proteins are determined by their functional sites. Functional sites are usually represented by a small number of amino acid residues that are distantly located from each other in the amino acid sequence. They are highly conserved within their functional group and vary significantly in structure between such groups. According to this facts analysis of the general properties of the structural organization of the functional sites at the protein level and, at the level of exon-intron structure of the coding gene is still an actual problem. One approach to this analysis is the projection of amino acid residue positions of the functional sites along with the exon boundaries to the gene structure. In this paper, we examined the discontinuity of the functional sites in the exon-intron structure of genes and the distribution of lengths and phases of the functional site encoding exons in vertebrate genes. We have shown that the DNA fragments coding the functional sites were in the same exons, or in close exons. The observed tendency to cluster the exons that code functional sites which could be considered as the unit of protein evolution. We studied the characteristics of the structure of the exon boundaries that code, and do not code, functional sites in 11 Metazoa species. This is accompanied by a reduced frequency of intercodon gaps (phase 0) in exons encoding the amino acid residue functional site, which may be evidence of the existence of evolutionary limitations to the exon shuffling. These results characterize the features of the coding exon-intron structure that affect the functionality of the encoded protein and allow a better understanding of the emergence of biological diversity.

  9. Gustatory sensation of (L)- and (D)-amino acids in humans.

    PubMed

    Kawai, Misako; Sekine-Hayakawa, Yuki; Okiyama, Atsushi; Ninomiya, Yuzo

    2012-12-01

    Amino acids are known to elicit complex taste, but most human psychophysical studies on the taste of amino acids have focused on a single basic taste, such as umami (savory) taste, sweetness, or bitterness. In this study, we addressed the potential relationship between the structure and the taste properties of amino acids by measuring the human gustatory intensity and quality in response to aqueous solutions of proteogenic amino acids in comparison to D-enantiomers. Trained subjects tasted aqueous solution of each amino acid and evaluated the intensities of total taste and each basic taste using a category-ratio scale. Each basic taste of amino acids showed the dependency on its hydrophobicity, size, charge, functional groups on the side chain, and chirality of the alpha carbon. In addition, the overall taste of amino acid was found to be the combination of basic tastes according to the partial structure. For example, hydrophilic non-charged middle-sized amino acids elicited sweetness, and L-enantiomeric hydrophilic middle-sized structure was necessary for umami taste. For example, L-serine had mainly sweet and minor umami taste, and D-serine was sweet. We further applied Stevens' psychophysical function to relate the total-taste intensity and the concentration, and found that the slope values depended on the major quality of taste (e.g., bitter large, sour small).

  10. Synthesis of asymmetric zinc(II) phthalocyanines with two different functional groups & spectroscopic properties and photodynamic activity for photodynamic therapy.

    PubMed

    Göksel, Meltem

    2016-09-15

    Zinc(II) phthalocyanine containing [2-(tert-butoxycarbonyl)amino]ethoxy and iodine groups (A and B), as well as their deprotected mono-amino and tri-iodine zinc(II) phthalocyanine (2) were obtained. This structure surrounds by substituents with functional groups. From this perspective it can be used a starting material for many reactions and applications, such as sonogashira coupling, carbodiimide coupling. An example of a first diversification reaction of this compound was obtained with conjugation of a biotin. Asymmetrically biotin conjugated and heavy atom bearing zinc(II) phthalocyanine (3) were synthesized characterized for the first time and photophysical, photochemical and photobiological properties of these phthalocyanines were compared in this study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides.

    PubMed

    Das, Shoubhik; Li, Yuehui; Bornschein, Christoph; Pisiewicz, Sabine; Kiersch, Konstanze; Michalik, Dirk; Gallou, Fabrice; Junge, Kathrin; Beller, Matthias

    2015-10-12

    Efficient reduction of the tertiary amide bond in amino acid derivatives and peptides is described. Functional group selectivity has been achieved by applying a commercially available rhodium precursor and bis(diphenylphosphino)propane (dppp) ligand together with phenyl silane as a reductant. This methodology allows for specific reductive derivatization of biologically interesting peptides and offers straightforward access to a variety of novel peptide derivatives for chemical biology studies and potential pharmaceutical applications. The catalytic system tolerates a variety of functional groups including secondary amides, ester, nitrile, thiomethyl, and hydroxy groups. This convenient hydrosilylation reaction proceeds at ambient conditions and is operationally safe because no air-sensitive reagents or highly reactive metal hydrides are needed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. In Vitro Degradation of Pure Magnesium―The Effects of Glucose and/or Amino Acid

    PubMed Central

    Wang, Yu; Cui, Lan-Yue; Li, Shuo-Qi; Zou, Yu-Hong; Han, En-Hou

    2017-01-01

    The influences of glucose and amino acid (L-cysteine) on the degradation of pure magnesium have been investigated using SEM, XRD, Fourier transformed infrared (FTIR), X-ray photoelectron spectroscopy (XPS), polarization and electrochemical impedance spectroscopy and immersion tests. The results demonstrate that both amino acid and glucose inhibit the corrosion of pure magnesium in saline solution, whereas the presence of both amino acid and glucose accelerates the corrosion rate of pure magnesium. This may be due to the formation of -C=N- bonding (a functional group of Schiff bases) between amino acid and glucose, which restricts the formation of the protective Mg(OH)2 precipitates. PMID:28773085

  13. Organic chemistry. Functionalization of C(sp3)-H bonds using a transient directing group.

    PubMed

    Zhang, Fang-Lin; Hong, Kai; Li, Tuan-Jie; Park, Hojoon; Yu, Jin-Quan

    2016-01-15

    Proximity-driven metalation has been extensively exploited to achieve reactivity and selectivity in carbon-hydrogen (C-H) bond activation. Despite the substantial improvement in developing more efficient and practical directing groups, their stoichiometric installation and removal limit efficiency and, often, applicability as well. Here we report the development of an amino acid reagent that reversibly reacts with aldehydes and ketones in situ via imine formation to serve as a transient directing group for activation of inert C-H bonds. Arylation of a wide range of aldehydes and ketones at the β or γ positions proceeds in the presence of a palladium catalyst and a catalytic amount of amino acid. The feasibility of achieving enantioselective C-H activation reactions using a chiral amino acid as the transient directing group is also demonstrated. Copyright © 2016, American Association for the Advancement of Science.

  14. Directed evolution of a model primordial enzyme provides insights into the development of the genetic code.

    PubMed

    Müller, Manuel M; Allison, Jane R; Hongdilokkul, Narupat; Gaillon, Laurent; Kast, Peter; van Gunsteren, Wilfred F; Marlière, Philippe; Hilvert, Donald

    2013-01-01

    The contemporary proteinogenic repertoire contains 20 amino acids with diverse functional groups and side chain geometries. Primordial proteins, in contrast, were presumably constructed from a subset of these building blocks. Subsequent expansion of the proteinogenic alphabet would have enhanced their capabilities, fostering the metabolic prowess and organismal fitness of early living systems. While the addition of amino acids bearing innovative functional groups directly enhances the chemical repertoire of proteomes, the inclusion of chemically redundant monomers is difficult to rationalize. Here, we studied how a simplified chorismate mutase evolves upon expanding its amino acid alphabet from nine to potentially 20 letters. Continuous evolution provided an enhanced enzyme variant that has only two point mutations, both of which extend the alphabet and jointly improve protein stability by >4 kcal/mol and catalytic activity tenfold. The same, seemingly innocuous substitutions (Ile→Thr, Leu→Val) occurred in several independent evolutionary trajectories. The increase in fitness they confer indicates that building blocks with very similar side chain structures are highly beneficial for fine-tuning protein structure and function.

  15. Engineering surfaces for bioconjugation: developing strategies and quantifying the extent of the reactions.

    PubMed

    Gauvreau, Virginie; Chevallier, Pascale; Vallières, Karine; Petitclerc, Eric; Gaudreault, René C; Laroche, Gaétan

    2004-01-01

    This study presents two-step and multistep reactions for modifying the surface of plasma-functionalized poly(tetrafluoroethylene) (PTFE) surfaces for subsequent conjugation of biologically relevant molecules. First, PTFE films were treated by a radiofrequency glow discharge (RFGD) ammonia plasma to introduce amino groups on the fluoropolymer surface. This plasma treatment is well optimized and allows the incorporation of a relative surface concentration of approximately 2-3.5% of amino groups, as assessed by chemical derivatization followed by X-ray photoelectron spectroscopy (XPS). In a second step, these amino groups were further reacted with various chemical reagents to provide the surface with chemical functionalities such as maleimides, carboxylic acids, acetals, aldehydes, and thiols, that could be used later on to conjugate a wide variety of biologically relevant molecules such as proteins, DNA, drugs, etc. In the present study, glutaric and cis-aconitic anhydrides were evaluated for their capability to provide carboxylic functions to the PTFE plasma-treated surface. Bromoacetaldehyde diethylacetal was reacted with the aminated PTFE surface, providing a diethylacetal function, which is a latent form of aldehyde functionality. Reactions with cross-linkers such as sulfo-succinimidyl derivatives (sulfo-SMCC, sulfo-SMPB) were evaluated to provide a highly reactive maleimide function suitable for further chemical reactions with thiolated molecules. Traut reagent (2-iminothiolane) was also conjugated to introduce a thiol group onto the fluoropolymer surface. PTFE-modified surfaces were analyzed by XPS with a particular attention to quantify the extent of the reactions that occurred on the polymer. Finally, surface immobilization of fibronectin performed using either glutaric anhydride or sulfo-SMPB activators demonstrated the importance of selecting the appropriate conjugation strategy to retain the protein biological activity.

  16. Molecular dynamics simulations of the amino acid-ZnO (10-10) interface: a comparison between density functional theory and density functional tight binding results.

    PubMed

    grosse Holthaus, Svea; Köppen, Susan; Frauenheim, Thomas; Ciacchi, Lucio Colombi

    2014-06-21

    We investigate the adsorption behavior of four different amino acids (glutamine, glutamate, serine, cysteine) on the zinc oxide (101̄0) surface, comparing the geometry and energy associated with a number of different adsorption configurations. In doing this, we highlight the benefits and limits of using density-functional tight-binding (DFTB) with respect to standard density functional theory (DFT). The DFTB method is found to reliably reproduce the DFT adsorption geometries. Analysis of the adsorption configurations emphasizes the fundamental role of the first hydration layer in mediating the interactions between the amino acids and the surface. Direct surface-molecule bonds are found to form predominantly via the carboxylate groups of the studied amino acids. No surface-mediated chemical reactions are observed, with the notable exception of a proton transfer from the thiol group of cysteine to a hydroxyl group of the surface hydration layer. The adsorption energies are found to be dominated both by the formation of direct or indirect surface-molecule hydrogen bonds, but also by the rearrangement of the hydrogen-bond network in surface proximity in a non-intuitive way. Energetic comparisons between DFTB and DFT are made difficult on one side by the long time necessary to achieve convergence of potential energy values in MD simulations and on the other side by the necessity of including higher-order corrections to DFTB to obtain a good description of the hydrogen bond energetics. Overall, our results suggest that DFTB is a good reference method to set the correct chemical states and the initial geometries of hybrid biomolecule/ZnO systems to be simulated with non-reactive force fields.

  17. Molecular dynamics simulations of the amino acid-ZnO (10-10) interface: A comparison between density functional theory and density functional tight binding results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holthaus, Svea große; Köppen, Susan, E-mail: koeppen@hmi.uni-bremen.de; Frauenheim, Thomas

    2014-06-21

    We investigate the adsorption behavior of four different amino acids (glutamine, glutamate, serine, cysteine) on the zinc oxide (101{sup ¯}0) surface, comparing the geometry and energy associated with a number of different adsorption configurations. In doing this, we highlight the benefits and limits of using density-functional tight-binding (DFTB) with respect to standard density functional theory (DFT). The DFTB method is found to reliably reproduce the DFT adsorption geometries. Analysis of the adsorption configurations emphasizes the fundamental role of the first hydration layer in mediating the interactions between the amino acids and the surface. Direct surface-molecule bonds are found to formmore » predominantly via the carboxylate groups of the studied amino acids. No surface-mediated chemical reactions are observed, with the notable exception of a proton transfer from the thiol group of cysteine to a hydroxyl group of the surface hydration layer. The adsorption energies are found to be dominated both by the formation of direct or indirect surface-molecule hydrogen bonds, but also by the rearrangement of the hydrogen-bond network in surface proximity in a non-intuitive way. Energetic comparisons between DFTB and DFT are made difficult on one side by the long time necessary to achieve convergence of potential energy values in MD simulations and on the other side by the necessity of including higher-order corrections to DFTB to obtain a good description of the hydrogen bond energetics. Overall, our results suggest that DFTB is a good reference method to set the correct chemical states and the initial geometries of hybrid biomolecule/ZnO systems to be simulated with non-reactive force fields.« less

  18. Covalent enzyme immobilization onto carbon nanotubes using a membrane reactor

    NASA Astrophysics Data System (ADS)

    Voicu, Stefan Ioan; Nechifor, Aurelia Cristina; Gales, Ovidiu; Nechifor, Gheorghe

    2011-05-01

    Composite porous polysulfone-carbon nanotubes membranes were prepared by dispersing carbon nanotubes into a polysulfone solution followed by the membrane formation by phase inversion-immersion precipitation technique. The carbon nanotubes with amino groups on surface were functionalized with different enzymes (carbonic anhydrase, invertase, diastase) using cyanuric chloride as linker between enzyme and carbon nanotube. The composite membrane was used as a membrane reactor for a better dispersion of carbon nanotubes and access to reaction centers. The membrane also facilitates the transport of enzymes to active carbon nanotubes centers for functionalization (amino groups). The functionalized carbon nanotubes are isolated by dissolving the membranes after the end of reaction. Carbon nanotubes with covalent immobilized enzymes are used for biosensors fabrications. The obtained membranes were characterized by Scanning Electron Microscopy, Thermal analysis, FT-IR Spectroscopy, Nuclear Magnetic Resonance, and functionalized carbon nanotubes were characterized by FT-IR spectroscopy.

  19. Cobra venom factor immunoconjugates: effects of carbohydrate-directed versus amino group-directed conjugation.

    PubMed

    Zara, J; Pomato, N; McCabe, R P; Bredehorst, R; Vogel, C W

    1995-01-01

    Human IgM monoclonal antibody 16-88, derived from patients immunized with autologous colon carcinoma cells, was derivatized with two different cross-linkers, S-(2-thiopyridyl)-L-cysteine hydrazide (TPCH), which is carbohydrate-directed, and N-succinimidyl-3-(2- pyridyldithio)propionate (SPDP), which is amino group-directed. Two antibody functions, antigen binding and complement activation, were assayed upon derivatization with TPCH and SPDP. TPCH allowed for extensive modification (up to 17 TPCH molecules per antibody) without impairment of antigen binding activity, while this function was significantly compromised upon derivatization with SPDP. Antibody molecules derivatized with 16 SPDP residues showed almost complete loss of their antigen binding function. The complement activating ability of antibody 16-88 was significantly decreased after derivatization with TPCH or SPDP. In the case of SPDP derivatization, this decrease of the complement activating ability is predominantly a consequence of the impaired binding function. Upon conjugation of cobra venom factor (CVF), a nontoxic 137-kDa glycoprotein which is capable of activating the alternative pathway of complement, the antigen binding activity of SPDP-derivatized antibody was further compromised, whereas that of TPCH-derivatized antibody remained unaffected even after attachment of three or four CVF molecules per antibody. In both conjugates CVF retained good functional activity. CVF was slightly more active when attached to SPDP-derivatized antibody, suggesting a better accessibility of amino group-coupled CVF for its interaction with other complement proteins. These results indicate that carbohydrate-directed conjugation compromises the antibody function of complement activation, but allows for the generation of immunoconjugates with unimpaired antigen binding capability.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Practical syntheses of pyridinolines, important amino acidic biomarkers of collagen health.

    PubMed

    Allevi, Pietro; Cribiù, Riccardo; Giannini, Elios; Anastasia, Mario

    2007-04-27

    The paper reports some successful results on the first fully stereoselective total synthesis of the collagen cross-link pyridinolines. All stereogenic centers are stereoselectively introduced using Williams glycine template methodology, and oxazinones are used as a source of chirality and as easily removable protecting groups of the amino acidic functionalities during the assembly of the pyridinoline nucleus.

  1. Interactions of aromatic amino acids with heterocyclic ligand: An IR spectroscopic study

    NASA Astrophysics Data System (ADS)

    Tyunina, E. Yu.; Badelin, V. G.; Tarasova, G. N.

    2015-09-01

    The interactions of L-phenylalanine and L-tryptophan with nicotinic acid and uracyl in an aqueous buffer solution at pH 7.35 were studied by IR spectroscopy. The contributions of various functional groups to the complexation of aromatic amino acids with heterocyclic ligands were determined from the IR spectra of the starting substances and their mixtures.

  2. Theoretical study of interactions between cysteine and perfluoropropanoic acid in gas and aqueous phase

    NASA Astrophysics Data System (ADS)

    Holmes, Tiffani M.; Doskocz, Jacek; Wright, Terrance; Hill, Glake A.

    The interaction of perfluoropropanoic acid (PFPA) with the amino acid cysteine was investigated using density functional theory. Previous studies suggest that the peroxisome proliferator chemical, perfluorooctanoic acid, is circulated throughout the body by way of sulfur-containing amino acids. We present conformational analysis of the interactions of PFPA, a small model of perfluorooctanoic acid, with the sulfur-containing amino acid which occur by the process of hydrogen bonding, in which the hydrogen of the sulfhydryl group interacts with the carboxyl oxygen, and the amino nitrogen forms a hydrogen bond with the hydrogen of the bond OH group of the fluorinated alkyl. We also show in our structures a recently characterized weak nonbonded interaction between divalent sulfur and a main chain carboxyl oxygen in proteins. B3LYP calculated free energies and interaction energies predict low-energy, high-interaction conformations for complex systems of perfluorinated fatty acid interactions with cysteine.

  3. Introduction of unnatural amino acids into chalcone isomerase.

    PubMed

    Bednar, R A; McCaffrey, C; Shan, K

    1991-01-01

    The active site cysteine residue of chalcone isomerase was rapidly and selectively modified under denaturing conditions with a variety of electrophilic reagents. These denatured and modified enzyme were renatured to produce enzyme derivatives containing a series of unnatural amino acids in the active site. Addition of methyl, ethyl, butyl, heptyl, and benzyl groups to the cysteine sulfur does not abolish catalytic activity, although the activity decreases as the steric bulk of the amino acid side-chain increases. Modification of the cysteine to introduce a charged homoglutamate or a neutral homoglutamine analogue results in retention of 22% of the catalytic activity. Addition of a methylthio group (SMe) to the cysteine residue of native chalcone isomerase preserves 85% of the catalytic activity measured with 2',4',4-trihydroxychalcone, 2',4',6',4-tetrahydroxychalcone, or 2'-hydroxy-4-methoxychalcone as substrates. The competitive inhibition constant for 4',4-dihydroxychalcone, the substrate inhibition constant for 2',4',4-trihydroxychalcone, and other steady-state kinetic parameters for the methanethiolated enzyme are very similar to those of the native enzyme. The strong binding of 4',4-dihydroxychalcone to the methanethiolated enzyme shows that there is no steric repulsion between this modified amino acid residue and the substrate analogue. This structure-activity study clearly demonstrates that the active site cysteine residue does not function as an acid-base or nucleophilic group in producing the catalysis or substrate inhibition observed with chalcone isomerase. The method presented in this paper allows for the rapid introduction of a series of unnatural amino acids into the active site as a means of probing the structure-function relationship.

  4. A Novel method for the preparation of fluorescent C60 poly(amino acid) composites and their biological imaging.

    PubMed

    Xu, Dazhuang; Liu, Meiying; Huang, Qiang; Chen, Junyu; Huang, Hongye; Deng, Fengjie; Tian, Jianwen; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-04-15

    Recently, fullerene (C 60 ) and its derivatives have been widely explored for many applications owing to their enriched physical and chemical properties. Specifically, the synthesis and biomedical applications of fluorescent C 60 have been extensively investigated previously. However, the preparation of polymer-functionalized fluorescent C 60 has not been reported thus far. In this study, water-dispersible fluorescent C 60 polymer composites were successfully synthesized through the combination of the thiol-ene click reaction and subsequent ring-opening polymerization. First, 2-aminoethanethiol was introduced on the surface of C 60 by the thiol-ene click reaction. The surface of amino group-functionalized C 60 (C 60 -NH 2 ) was further modified with poly(amino acid)s via ring-open polymerization of GluEG N-carboxyanhydrides (NCAs). The morphology, functional groups, optical properties and biocompatibility were examined by a number of characterization equipment and assays in detail. We demonstrated that the resultant fluorescent C 60 poly(amino acid) (C 60 -GluEG) composites have a small size (about 5 nm), high water dispersibility, intense fluorescence and high photostability. Cell viability results implied that the C 60 -GluEG composites possess low cytotoxicity. Moreover, these C 60 -GluEG composites can easily penetrate into live cells, indicating their great potential for biological imaging applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Endowing hexaphenylsilole with chemical sensory and biological probing properties by attaching amino pendants to the silolyl core

    NASA Astrophysics Data System (ADS)

    Dong, Yongqiang; Lam, Jacky W. Y.; Qin, Anjun; Li, Zhen; Liu, Jianzhao; Sun, Jingzhi; Dong, Yuping; Tang, Ben Zhong

    2007-09-01

    Hexaphenylsilole (HPS) was functionalized by two amino (A 2) groups, giving a new silole derivative of 1,1-bis[4-(diethylaminomethyl)phenyl]-2,3,4,5-tetraphenylsilole (A 2HPS) that is capable of detecting explosives, biomacromolecules and pH changes. A 2HPS is nonemissive when molecularly dissolved but becomes highly luminescent when aggregated. The emission of its nanoaggregates is quenched by picric acid with a high Ksv value (˜1.7 × 10 5 M -1). A 2HPS can dissolve in acidic aqueous media, due to the transformation of its amino groups to ammonium-salts. The resultant nonemissive aqueous solution is turned on by increasing its pH value or adding protein or DNA.

  6. ANCAC: amino acid, nucleotide, and codon analysis of COGs--a tool for sequence bias analysis in microbial orthologs.

    PubMed

    Meiler, Arno; Klinger, Claudia; Kaufmann, Michael

    2012-09-08

    The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC's NUCOCOG dataset as the largest one available for that purpose thus far. Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills.

  7. ANCAC: amino acid, nucleotide, and codon analysis of COGs – a tool for sequence bias analysis in microbial orthologs

    PubMed Central

    2012-01-01

    Background The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Results Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC’s NUCOCOG dataset as the largest one available for that purpose thus far. Conclusions Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills. PMID:22958836

  8. [Comparison of the effects of alpha-keto/ amino acid supplemented low protein diet and diabetes diet in patients with diabetic nephropathy].

    PubMed

    Qiu, Hong-yu; Liu, Fang; Zhao, Li-jun; Huang, Song-min; Zuo, Chuan; Zhong, Hui; Chen, Feng

    2012-05-01

    To investigate if a-keto/amino acid supplemented low protein diet can slow down the progression of diabetic nephrophathy in comparison with non-supplemented diabetes diet. A prospective, randomized, controlled clinical study was conducted. Twenty three cases of type 2 diabetic nephropathy in IV stage were randomly divided into alpha-keto/amino acid supplemented diet group (trial group) and conventional diabetes diet group (control group), The treatment duration was 52 weeks. 24 h urine protein was measured at 0, 12, 20, 36 and 52 weeks. Before and after the 52 weeks treatment, all the patients received the measurement of glomerular filtration rate (GFR), blood glucose, blood lipids, inflammatory markers, as well as nutritional status. After the treatment for 20, 36, 52 weeks, mean 24 h urine protein decreased significantly in trial groups (P < 0.05), and 24 h urine protein in trial group were significantly decreased (P < 0.05) compared with control group in 20 weeks after treatment. Either in trial group or in control group, GFR remained relatively stable during the observation period. Nutrition status, inflammatory markers, and serum calcium, phosphorus levels between the two groups were no significantly difference. The adverse events experienced by the patients in trial group were similar and consistent with the patients underlying renal diseases. Alpha-keto/amino acid can reduce proteinuria more effectively, while improve renal function and nutritional status in diabetic nephropathy patients with well-toleration.

  9. Diazonium salt-mediated synthesis of new amino, hydroxy, propargyl, and maleinimido-containing superparamagnetic Fe@C nanoparticles as platforms for linking bio-entities or organocatalytic moieties

    NASA Astrophysics Data System (ADS)

    Bunge, Alexander; Magerusan, Lidia; Morjan, Ion; Turcu, Rodica; Borodi, Gheorghe; Liebscher, Jürgen

    2015-09-01

    New magnetic Fe@C nanoparticles in the size range of about 20-50 nm functionalized with amino, hydroxy, propargyl, or maleinimido groups were synthesized by reaction with aryl diazonium salts. Aryl diazonium salts wherein the functional groups are linked via a sulfonamide moiety turned out to be advantageous over those with direct linkage. The obtained Fe@C nanoparticles represent magnetic nanoplatforms for linking bio-entities and organocatalysts using amide formation, CuAAC, or thiol-ene click chemistry as exemplified by selected examples. The Fe@C nanoparticles obtained exhibit supramolecular behavior with high value of saturation magnetization rendering them attractive for practical applications in biomedicine and organocatalysis.

  10. Computer analysis of protein functional sites projection on exon structure of genes in Metazoa

    PubMed Central

    2015-01-01

    Background Study of the relationship between the structural and functional organization of proteins and their coding genes is necessary for an understanding of the evolution of molecular systems and can provide new knowledge for many applications for designing proteins with improved medical and biological properties. It is well known that the functional properties of proteins are determined by their functional sites. Functional sites are usually represented by a small number of amino acid residues that are distantly located from each other in the amino acid sequence. They are highly conserved within their functional group and vary significantly in structure between such groups. According to this facts analysis of the general properties of the structural organization of the functional sites at the protein level and, at the level of exon-intron structure of the coding gene is still an actual problem. Results One approach to this analysis is the projection of amino acid residue positions of the functional sites along with the exon boundaries to the gene structure. In this paper, we examined the discontinuity of the functional sites in the exon-intron structure of genes and the distribution of lengths and phases of the functional site encoding exons in vertebrate genes. We have shown that the DNA fragments coding the functional sites were in the same exons, or in close exons. The observed tendency to cluster the exons that code functional sites which could be considered as the unit of protein evolution. We studied the characteristics of the structure of the exon boundaries that code, and do not code, functional sites in 11 Metazoa species. This is accompanied by a reduced frequency of intercodon gaps (phase 0) in exons encoding the amino acid residue functional site, which may be evidence of the existence of evolutionary limitations to the exon shuffling. Conclusions These results characterize the features of the coding exon-intron structure that affect the functionality of the encoded protein and allow a better understanding of the emergence of biological diversity. PMID:26693737

  11. A Supramolecular Hydrogel Based on Polyglycerol Dendrimer-Specific Amino Group Recognition.

    PubMed

    Cho, Ik Sung; Ooya, Tooru

    2018-05-24

    Dendrimer-based supramolecular hydrogels have gained attention in biomedical fields. While biocompatible dendrimers were used to prepare hydrogels via physical and/or chemical crosslinking, smart functions such as pH and molecular control remain undeveloped. Here, we present polyglycerol dendrimer-based supramolecular hydrogel formation induced by a specific interaction between the polyglycerol dendrimer and an amino group of glycol chitosan. Gelation was achieved by mixing the two aqueous solutions. Hydrogel formation was controlled by varying the polyglycerol dendrimer generation. The hydrogel showed pH-dependent swelling; strongly acidic conditions induced degradation via dissociation of the specific interaction. It also showed unique L-arginine-responsive degradation capability due to competitive exchange of the amino groups of glycol chitosan and L-arginine. These polyglycerol dendrimer-based supramolecular characteristics allow multimodal application in smart biomaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Antimocrobial Polymer

    DOEpatents

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  13. Antimicrobial Polymer

    DOEpatents

    McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  14. Direct protein-protein conjugation by genetically introducing bioorthogonal functional groups into proteins.

    PubMed

    Kim, Sanggil; Ko, Wooseok; Sung, Bong Hyun; Kim, Sun Chang; Lee, Hyun Soo

    2016-11-15

    Proteins often function as complex structures in conjunction with other proteins. Because these complex structures are essential for sophisticated functions, developing protein-protein conjugates has gained research interest. In this study, site-specific protein-protein conjugation was performed by genetically incorporating an azide-containing amino acid into one protein and a bicyclononyne (BCN)-containing amino acid into the other. Three to four sites in each of the proteins were tested for conjugation efficiency, and three combinations showed excellent conjugation efficiency. The genetic incorporation of unnatural amino acids (UAAs) is technically simple and produces the mutant protein in high yield. In addition, the conjugation reaction can be conducted by simple mixing, and does not require additional reagents or linker molecules. Therefore, this method may prove very useful for generating protein-protein conjugates and protein complexes of biochemical significance. Copyright © 2016. Published by Elsevier Ltd.

  15. Influence of biopolymers on the solubility of branched-chain amino acids and stability of their solutions.

    PubMed

    Hong, Chi Rac; Lee, Gyu Whan; Paik, Hyun-Dong; Chang, Pahn-Shick; Choi, Seung Jun

    2018-01-15

    This study confirmed the possibility of biopolymer-type stabilizers to increase the saturation concentration of branched-chain amino acids by preventing their crystallization/precipitation. Although microfluidization increased the initial solubility, it failed to increase the saturation concentration of the branched-chain amino acids. The saturation concentration of the branched-chain amino acids increased from 3.81% to 4.42% and 4.85% after the incorporation of food hydrocolloids and proteins, respectively. However, the branched-chain amino acids:stabilizer ratio did not affect the solubility. In the case of food hydrocolloid-based solutions, crystal formation and growth of branched-chain amino acids occurred during storage, resulting in the precipitation of branched-chain amino acid crystals. However, food proteins effectively increased the stability of the solubilized branched-chain amino acids. The improved solubility and stability of the solubilized branched-chain amino acids could be attributed to interactions between the functional groups (carboxyl, amine, sulfate, aliphatic, aromatic, etc.) of the stabilizer and the branched-chain amino acid molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications.

    PubMed

    Sun, Huanli; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2011-06-13

    Currently, biomedical engineering is rapidly expanding, especially in the areas of drug delivery, gene transfer, tissue engineering, and regenerative medicine. A prerequisite for further development is the design and synthesis of novel multifunctional biomaterials that are biocompatible and biologically active, are biodegradable with a controlled degradation rate, and have tunable mechanical properties. In the past decades, different types of α-amino acid-containing degradable polymers have been actively developed with the aim to obtain biomimicking functional biomaterials. The use of α-amino acids as building units for degradable polymers may offer several advantages: (i) imparting chemical functionality, such as hydroxyl, amine, carboxyl, and thiol groups, which not only results in improved hydrophilicity and possible interactions with proteins and genes, but also facilitates further modification with bioactive molecules (e.g., drugs or biological cues); (ii) possibly improving materials biological properties, including cell-materials interactions (e.g., cell adhesion, migration) and degradability; (iii) enhancing thermal and mechanical properties; and (iv) providing metabolizable building units/blocks. In this paper, recent developments in the field of α-amino acid-containing degradable polymers are reviewed. First, synthetic approaches to prepare α-amino acid-containing degradable polymers will be discussed. Subsequently, the biomedical applications of these polymers in areas such as drug delivery, gene delivery and tissue engineering will be reviewed. Finally, the future perspectives of α-amino acid-containing degradable polymers will be evaluated.

  17. Improving a natural enzyme activity through incorporation of unnatural amino acids.

    PubMed

    Ugwumba, Isaac N; Ozawa, Kiyoshi; Xu, Zhi-Qiang; Ely, Fernanda; Foo, Jee-Loon; Herlt, Anthony J; Coppin, Chris; Brown, Sue; Taylor, Matthew C; Ollis, David L; Mander, Lewis N; Schenk, Gerhard; Dixon, Nicholas E; Otting, Gottfried; Oakeshott, John G; Jackson, Colin J

    2011-01-19

    The bacterial phosphotriesterases catalyze hydrolysis of the pesticide paraoxon with very fast turnover rates and are thought to be near to their evolutionary limit for this activity. To test whether the naturally evolved turnover rate could be improved through the incorporation of unnatural amino acids and to probe the role of peripheral active site residues in nonchemical steps of the catalytic cycle (substrate binding and product release), we replaced the naturally occurring tyrosine amino acid at position 309 with unnatural L-(7-hydroxycoumarin-4-yl)ethylglycine (Hco) and L-(7-methylcoumarin-4-yl)ethylglycine amino acids, as well as leucine, phenylalanine, and tryptophan. Kinetic analysis suggests that the 7-hydroxyl group of Hco, particularly in its deprotonated state, contributes to an increase in the rate-limiting product release step of substrate turnover as a result of its electrostatic repulsion of the negatively charged 4-nitrophenolate product of paraoxon hydrolysis. The 8-11-fold improvement of this already highly efficient catalyst through a single rationally designed mutation using an unnatural amino acid stands in contrast to the difficulty in improving this native activity through screening hundreds of thousands of mutants with natural amino acids. These results demonstrate that designer amino acids provide easy access to new and valuable sequence and functional space for the engineering and evolution of existing enzyme functions.

  18. Amino acid composition reveals functional diversity of zooplankton in tropical lakes related to geography, taxonomy and productivity.

    PubMed

    Aranguren-Riaño, Nelson J; Guisande, Cástor; Shurin, Jonathan B; Jones, Natalie T; Barreiro, Aldo; Duque, Santiago R

    2018-07-01

    Variation in resource use among species determines their potential for competition and co-existence, as well as their impact on ecosystem processes. Planktonic crustaceans consume a range of micro-organisms that vary among habitats and species, but these differences in resource consumption are difficult to characterize due to the small size of the organisms. Consumers acquire amino acids from their diet, and the composition of tissues reflects both the use of different resources and their assimilation in proteins. We examined the amino acid composition of common crustacean zooplankton from 14 tropical lakes in Colombia in three regions (the Amazon floodplain, the eastern range of the Andes, and the Caribbean coast). Amino acid composition varied significantly among taxonomic groups and the three regions. Functional richness in amino acid space was greatest in the Amazon, the most productive region, and tended to be positively related to lake trophic status, suggesting the niche breadth of the community could increase with ecosystem productivity. Functional evenness increased with lake trophic status, indicating that species were more regularly distributed within community-wide niche space in more productive lakes. These results show that zooplankton resource use in tropical lakes varies with both habitat and taxonomy, and that lake productivity may affect community functional diversity and the distribution of species within niche space.

  19. Evaluating Fmoc-amino acids as selective inhibitors of butyrylcholinesterase

    PubMed Central

    Gonzalez, Jeannette; Ramirez, Jennifer

    2018-01-01

    Cholinesterases are involved in neuronal signal transduction, and perturbation of function has been implicated in diseases, such as Alzheimer’s and Huntington’s disease. For the two major classes of cholinesterases, such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), previous studies reported BChE activity is elevated in patients with Alzheimer’s disease, while AChE levels remain the same or decrease. Thus, the development of potent and specific inhibitors of BChE have received much attention as a potential therapeutic in the alleviation of neurodegenerative diseases. In this study, we evaluated amino acid analogs as selective inhibitors of BChE. Amino acid analogs bearing a 9-fluorenylmethyloxycarbonyl (Fmoc) group were tested, as the Fmoc group has structural resemblance to previously described inhibitors. We identified leucine, lysine, and tryptophan analogs bearing the Fmoc group as selective inhibitors of BChE. The Fmoc group contributed to inhibition, as analogs bearing a carboxybenzyl group showed ~tenfold higher values for the inhibition constant (KI value). Inclusion of a t-butoxycarbonyl on the side chain of Fmoc tryptophan led to an eightfold lower KI value compared to Fmoc tryptophan alone suggesting that modifications of the amino acid side chains may be designed to create inhibitors with higher affinity. Our results identify Fmoc-amino acids as a scaffold upon which to design BChE-specific inhibitors and provide the foundation for further experimental and computational studies to dissect the interactions that contribute to inhibitor binding. PMID:27522651

  20. Evaluating Fmoc-amino acids as selective inhibitors of butyrylcholinesterase.

    PubMed

    Gonzalez, Jeannette; Ramirez, Jennifer; Schwans, Jason P

    2016-12-01

    Cholinesterases are involved in neuronal signal transduction, and perturbation of function has been implicated in diseases, such as Alzheimer's and Huntington's disease. For the two major classes of cholinesterases, such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), previous studies reported BChE activity is elevated in patients with Alzheimer's disease, while AChE levels remain the same or decrease. Thus, the development of potent and specific inhibitors of BChE have received much attention as a potential therapeutic in the alleviation of neurodegenerative diseases. In this study, we evaluated amino acid analogs as selective inhibitors of BChE. Amino acid analogs bearing a 9-fluorenylmethyloxycarbonyl (Fmoc) group were tested, as the Fmoc group has structural resemblance to previously described inhibitors. We identified leucine, lysine, and tryptophan analogs bearing the Fmoc group as selective inhibitors of BChE. The Fmoc group contributed to inhibition, as analogs bearing a carboxybenzyl group showed ~tenfold higher values for the inhibition constant (K I value). Inclusion of a t-butoxycarbonyl on the side chain of Fmoc tryptophan led to an eightfold lower K I value compared to Fmoc tryptophan alone suggesting that modifications of the amino acid side chains may be designed to create inhibitors with higher affinity. Our results identify Fmoc-amino acids as a scaffold upon which to design BChE-specific inhibitors and provide the foundation for further experimental and computational studies to dissect the interactions that contribute to inhibitor binding.

  1. Synthesis of α-amino-1,3-dicarbonyl compounds via Ugi flow chemistry reaction: access to functionalized 1,2,3-triazoles.

    PubMed

    Vasconcelos, Stanley N S; Fornari, Evelin; Caracelli, Ignez; Stefani, Hélio A

    2017-11-01

    The Ugi multicomponent reaction has been used as an important synthetic route to obtain compounds with potential biological activity. We present the rapid and efficient synthesis of [Formula: see text]-amino-1,3-dicarbonyl compounds in moderate to good yields via Ugi flow chemistry reactions performed with a continuous flow reactor. Such [Formula: see text]-amino-1,3-dicarbonyl compounds can act as precursors for the production of [Formula: see text]-amino acids via hydrolysis of the ethyl ester group as well as building blocks for the synthesis of novel compounds with the 1,2,3-triazole ring. The [Formula: see text]-amino acid derivatives of the Ugi flow chemistry reaction products were then used for dipeptide synthesis.

  2. Separation of polyethylene glycols and amino-terminated polyethylene glycols by high-performance liquid chromatography under near critical conditions.

    PubMed

    Wei, Y-Z; Zhuo, R-X; Jiang, X-L

    2016-05-20

    The separation and characterization of polyethylene glycols (PEGs) and amino-substituted derivatives on common silica-based reversed-phase packing columns using isocratic elution is described. This separation is achieved by liquid chromatography under the near critical conditions (LCCC), based on the number of amino functional end groups without obvious effect of molar mass for PEGs. The mobile phase is acetonitrile in water with an optimal ammonium acetate buffer. The separation mechanism of PEG and amino-substituted PEG under the near LCCC on silica-based packing columns is confirmed to be ion-exchange interaction. Under the LCCC of PEG backbone, with fine tune of buffer concentration, the retention factor ratios for benzylamine and phenol in buffered mobile phases, α(benzylamine/phenol)-values, were used to assess the ion-exchange capacity on silica-based reversed-phase packing columns. To the best of our knowledge, this is the first report on separation of amino-functional PEGs independent of the molar mass by isocratic elution using common C18 or phenyl reversed-phase packing columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles

    NASA Astrophysics Data System (ADS)

    Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi

    2014-01-01

    Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.

  4. Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles.

    PubMed

    Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi

    2014-01-01

    Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.

  5. Effects of ligand functionalization on the photocatalytic properties of titanium-based MOF: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Li, Yi; Fu, Yuqing; Ni, Bilian; Ding, Kaining; Chen, Wenkai; Wu, Kechen; Huang, Xin; Zhang, Yongfan

    2018-03-01

    The first principle calculations have been performed to investigate the geometries, band structures and optical absorptions of a series of MIL-125 MOFs, in which the 1,4-benzenedicarboxylate (BDC) linkers are modified by different types and amounts of chemical groups, including NH2, OH, and NO2. Our results indicate that new energy bands will appear in the band gap of pristine MIL-125 after introducing new group into BDC linker, but the components of these band gap states and the valence band edge position are sensitive to the type of functional group as well as the corresponding amount. Especially, only the incorporation of amino group can obviously decrease the band gap of MIL-125, and the further reduction of the band gap can be observed if the amount of NH2 is increased. Although MIL-125 functionalized by NH2 group exhibits relatively weak or no activity for the photocatalytic O2 evolution by splitting water, such ligand modification can effectively improve the efficiency in H2 production because now the optical absorption in the visible light region is significantly enhanced. Furthermore, the adsorption of water molecule becomes more favorable after introducing of amino group, which is also beneficial for the water-splitting reaction. The present study can provide theoretical insights to design new photocatalysts based on MIL-125.

  6. Study of the Inorganic Substitution in a Functionalized UiO-66 Metal-Organic Framework

    NASA Astrophysics Data System (ADS)

    Yasin, Alhassan Salman

    Metal-Organic Frameworks (MOFs) have received considerable attention and fast development in the past few years. These materials have demonstrated a wide range of applications due to their porosity, tailorability of optical properties, and chemical selectivity. This report catalogs common MOF designs based on application and diversity in various fields, as well as conduct an in-depth study of inorganic substitution in a functionalized MOF. This study investigates the band gap modulation in response to inorganic ion substitution within a thermally stable UiO-66 Metal-Organic Framework (MOF). A combination of density functional theory (DFT) predictions in conjunction with experimental predictions were used to map out the complete composition space for three inorganic ions (Zr, Hf, Ti) and three functional groups. The three functional groups include an amino group (NH2), a nitro group (NO2), and a hydrogenated case (H). The smallest determined band gap was for a partially substituted UiO-66(Ti5Zr1)-NH2 resulting in 2.60eV. Theoretical findings sup-port that Ti can be fully substituted within the lattice resulting in a predicted band gap as low as 1.62(2.77)eV. Band gap modulation was reasoned to be a result of a mid gap state introduced through the amino functionalization and HOMO shifting as a result of increased binding of the Ti-O-C bonds.

  7. A Protocol for Functional Assessment of Whole-Protein Saturation Mutagenesis Libraries Utilizing High-Throughput Sequencing.

    PubMed

    Stiffler, Michael A; Subramanian, Subu K; Salinas, Victor H; Ranganathan, Rama

    2016-07-03

    Site-directed mutagenesis has long been used as a method to interrogate protein structure, function and evolution. Recent advances in massively-parallel sequencing technology have opened up the possibility of assessing the functional or fitness effects of large numbers of mutations simultaneously. Here, we present a protocol for experimentally determining the effects of all possible single amino acid mutations in a protein of interest utilizing high-throughput sequencing technology, using the 263 amino acid antibiotic resistance enzyme TEM-1 β-lactamase as an example. In this approach, a whole-protein saturation mutagenesis library is constructed by site-directed mutagenic PCR, randomizing each position individually to all possible amino acids. The library is then transformed into bacteria, and selected for the ability to confer resistance to β-lactam antibiotics. The fitness effect of each mutation is then determined by deep sequencing of the library before and after selection. Importantly, this protocol introduces methods which maximize sequencing read depth and permit the simultaneous selection of the entire mutation library, by mixing adjacent positions into groups of length accommodated by high-throughput sequencing read length and utilizing orthogonal primers to barcode each group. Representative results using this protocol are provided by assessing the fitness effects of all single amino acid mutations in TEM-1 at a clinically relevant dosage of ampicillin. The method should be easily extendable to other proteins for which a high-throughput selection assay is in place.

  8. Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet.

    PubMed

    Ren, M; Zhang, S H; Zeng, X F; Liu, H; Qiao, S Y

    2015-12-01

    As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets (7.96±0.26 kg) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (p<0.05) and average daily feed intake (ADFI) (p<0.05) of weaned pigs in PR group were lower, while gain:feed ratio was lower than the CON group (p<0.05). Compared with PR group, BCAA group improved ADG (p<0.05), ADFI (p<0.05) and feed:gain ratio (p<0.05) of piglets. The growth performance data between CON and BCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (p<0.05) plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc.) in plasma of the PR group was lower (p<0.05) than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01) and decreased urea concentration (p<0.01) in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs) number (p<0.05) and declining of the immunoglobulin concentration, including jejunal immunoglobulin A (IgA) (p = 0.04), secreted IgA (sIgA) (p = 0.03) and immunoglobulin M (p = 0.08), and ileal IgA (p = 0.01) and immunoglobulin G (p = 0.08). The BCAA supplementation increased villous height in the duodenum (p<0.01), reversed the trend of an increasing IELs number. Notably, BCAA supplementation increased levels of jejunal and ileal immunoglobulin mentioned above. In conclusion, BCAA supplementation to protein restricted diet improved intestinal immune defense function by protecting villous morphology and by increasing levels of intestinal immunoglobulins in weaned piglets. Our finding has the important implication that BCAA may be used to reduce the negative effects of a protein restricted diet on growth performance and intestinal immunity in weaned piglets.

  9. Facile synthesis of amine-functional reduced graphene oxides as modified quick, easy, cheap, effective, rugged and safe adsorbent for multi-pesticide residues analysis of tea.

    PubMed

    Ma, Guicen; Zhang, Minglu; Zhu, Li; Chen, Hongping; Liu, Xin; Lu, Chengyin

    2018-01-05

    Amine-functional reduced graphene oxide (amine-rGO) with different carbon chain length amino groups were successfully synthesized. The graphene oxides (GO) reduction as well as amino grafting were achieved simultaneously in one step via a facile solvothermal synthetic strategy. The obtained materials were characterized by X-ray diffraction, Raman spectroscopy, Fourier-transform infrared spectrometry and X-ray photoelectron spectroscopy to confirm the modification of GO with different amino groups. The adsorption performance of catechins and caffeine from tea acetonitrile extracts on different amine functional rGO samples were evaluated. It was found that tributylamine-functional rGO (tri-BuA-rGO) exhibited the highest adsorption ability for catechins and caffeine compared to GO and other amino group functional rGO samples. It was worth to note that the adsorption capacity of catechins on tri-BuA-rGO was 11 times higher than that of GO (203.7mgg -1 vs 18.7mgg -1 ). Electrostatic interaction, π-π interaction and surface hydrophilic-hydrophobic properties of tri-BuA-rGO played important roles in the adsorption of catechins as well as caffeine. The gravimetric analysis confirmed that the tri-BuA-rGO achieved the highest efficient cleanup preformance compared with traditional dispersive solid phase extraction (dSPE) adsorbents like primary-secondary amine (PSA), graphitized carbon black (GCB) or C18. A multi-pesticides analysis method based on tri-BuA-rGO is validated on 33 representative pesticides in tea using gas chromatography coupled to tandem mass spectrometry or high-performance liquid chromatography coupled with tandem mass spectrometry. The analysis method gave a high coefficient of determination (r 2 >0.99) for each pesticide and satisfactory recoveries in a range of 72.1-120.5%. Our study demonstrated that amine functional rGO as a new type of QuEChERS adsorbent is expected to be widely applied for analysis of pesticides at trace levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Proline Editing: A General and Practical Approach to the Synthesis of Functionally and Structurally Diverse Peptides. Analysis of Steric versus Stereoelectronic Effects of 4-Substituted Prolines on Conformation within Peptides

    PubMed Central

    Pandey, Anil K.; Naduthambi, Devan; Thomas, Krista M.; Zondlo, Neal J.

    2013-01-01

    Functionalized proline residues have diverse applications. Herein we describe a practical approach, proline editing, for the synthesis of peptides with stereospecifically modified proline residues. Peptides are synthesized by standard solid-phase-peptide-synthesis to incorporate Fmoc-Hydroxyproline (4R-Hyp). In an automated manner, the Hyp hydroxyl is protected and the remainder of the peptide synthesized. After peptide synthesis, the Hyp protecting group is orthogonally removed and Hyp selectively modified to generate substituted proline amino acids, with the peptide main chain functioning to “protect” the proline amino and carboxyl groups. In a model tetrapeptide (Ac-TYPN-NH2), 4R-Hyp was stereospecifically converted to 122 different 4-substituted prolyl amino acids, with 4R or 4S stereochemistry, via Mitsunobu, oxidation, reduction, acylation, and substitution reactions. 4-Substituted prolines synthesized via proline editing include incorporated structured amino acid mimetics (Cys, Asp/Glu, Phe, Lys, Arg, pSer/pThr), recognition motifs (biotin, RGD), electron-withdrawing groups to induce stereoelectronic effects (fluoro, nitrobenzoate), handles for heteronuclear NMR (19F:fluoro; pentafluorophenyl or perfluoro-tert-butyl ether; 4,4-difluoro; 77SePh) and other spectroscopies (fluorescence, IR: cyanophenyl ether), leaving groups (sulfonate, halide, NHS, bromoacetate), and other reactive handles (amine, thiol, thioester, ketone, hydroxylamine, maleimide, acrylate, azide, alkene, alkyne, aryl halide, tetrazine, 1,2-aminothiol). Proline editing provides access to these proline derivatives with no solution phase synthesis. All peptides were analyzed by NMR to identify stereoelectronic and steric effects on conformation. Proline derivatives were synthesized to permit bioorthogonal conjugation reactions, including azide-alkyne, tetrazinetrans-cyclooctene, oxime, reductive amination, native chemical ligation, Suzuki, Sonogashira, cross-metathesis, and Diels-Alder reactions. These proline derivatives allowed three parallel bioorthogonal reactions to be conducted in one solution. PMID:23402492

  11. Optical backbone-sidechain charge transfer transitions in proteins sensitive to secondary structure and modifications.

    PubMed

    Mandal, I; Paul, S; Venkatramani, R

    2018-04-17

    The absorption of light by proteins can induce charge transfer (CT) transitions in the UV-visible range of the electromagnetic spectrum. Metal-ligand complexes or active site prosthetic groups which absorb in the visible region exhibit prominent CT transitions. Furthermore, the protein backbone also exhibits CT transitions in the far UV range. In this manuscript, we present a detailed computational study of new near UV-visible CT transitions that involve amino acids with charged side chains. Specifically, using time dependent density functional theory calculations, we examine the absorption spectra of naturally charged amino acids (Lys, Glu, Arg, Asp and His), extracted from solution phase protein structures generated by classical molecular dynamics simulations, and phosphorylated amino acids (Tyr, Thr and Ser) from experimentally determined protein structures. We show that amino acids with charged sidechains present a directed electronic donor-bridge-acceptor paradigm, with the lowest energy optical excitations demonstrating peptide backbone-sidechain charge separations. The UV-visible spectral range of the backbone-sidechain CT transitions is determined by the chemical nature of the donor, bridge and acceptor groups within each amino acid, amino acid conformation and the protein secondary structure where the amino acids are located. Photoinduced CT occurs in opposite directions for the anionic and cationic amino acids along the ground state dipole moment vector for the chromophores. We find that photoinduced charge separation is more facile for the anionic amino acids (Asp, Glu, pSer, pThr and pTyr) relative to that for the cationic amino acids (Lys, Arg and Hsp). Our results provide a foundation for the development of spectroscopic markers based on the recently proposed Protein Charge Transfer Spectra (ProCharTS) which are relevant for the study of DNA-binding or intrinsically disordered proteins that are rich in charged amino acids.

  12. A randomized, placebo-controlled trial of an amino acid preparation on timing and quality of sleep.

    PubMed

    Shell, William; Bullias, Debbie; Charuvastra, Elizabeth; May, Lawrence A; Silver, David S

    2010-01-01

    This study was an outpatient, randomized, double-blind, placebo-controlled trial of a combination amino acid formula (Gabadone) in patients with sleep disorders. Eighteen patients with sleep disorders were randomized to either placebo or active treatment group. Sleep latency and duration of sleep were measured by daily questionnaires. Sleep quality was measured using a visual analog scale. Autonomic nervous system function was measured by heart rate variability analysis using 24-hour electrocardiographic recordings. In the active group, the baseline time to fall asleep was 32.3 minutes, which was reduced to 19.1 after Gabadone administration (P = 0.01, n = 9). In the placebo group, the baseline latency time was 34.8 minutes compared with 33.1 minutes after placebo (P = nonsignificant, n = 9). The difference was statistically significant (P = 0.02). In the active group, the baseline duration of sleep was 5.0 hours (mean), whereas after Gabadone, the duration of sleep increased to 6.83 (P = 0.01, n = 9). In the placebo group, the baseline sleep duration was 7.17 +/- 7.6 compared with 7.11 +/- 3.67 after placebo (P = nonsignificant, n = 9). The difference between the active and placebo groups was significant (P = 0.01). Ease of falling asleep, awakenings, and am grogginess improved. Objective measurement of parasympathetic function as measured by 24-hour heart rate variability improved in the active group compared with placebo. An amino acid preparation containing both GABA and 5-hydroxytryptophan reduced time to fall asleep, decreased sleep latency, increased the duration of sleep, and improved quality of sleep.

  13. DFT calculations, spectroscopic, thermal analysis and biological activity of Sm(III) and Tb(III) complexes with 2-aminobenzoic and 2-amino-5-chloro-benzoic acids.

    PubMed

    Essawy, Amr A; Afifi, Manal A; Moustafa, H; El-Medani, S M

    2014-10-15

    The complexes of Sm(III) and Tb(III) with 2-aminobenzoic acid (anthranilic acid, AA) and 2-amino-5-chlorobenzoic acid (5-chloroanthranilic acid, AACl) were synthesized and characterized based on elemental analysis, IR and mass spectroscopy. The data are in accordance with 1:3 [Metal]:[Ligand] ratio. On the basis of the IR analysis, it was found that the metals were coordinated to bidentate anthranilic acid via the ionised oxygen of the carboxylate group and to the nitrogen of amino group. While in 5-chloroanthranilic acid, the metals were coordinated oxidatively to the bidentate carboxylate group without bonding to amino group; accordingly, a chlorine-affected coordination and reactivity-diversity was emphasized. Thermal analyses (TGA) and biological activity of the complexes were also investigated. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using SDDALL basis set. Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, dipole moment and orientation have been performed and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. DFT calculations, spectroscopic, thermal analysis and biological activity of Sm(III) and Tb(III) complexes with 2-aminobenzoic and 2-amino-5-chloro-benzoic acids

    NASA Astrophysics Data System (ADS)

    Essawy, Amr A.; Afifi, Manal A.; Moustafa, H.; El-Medani, S. M.

    2014-10-01

    The complexes of Sm(III) and Tb(III) with 2-aminobenzoic acid (anthranilic acid, AA) and 2-amino-5-chlorobenzoic acid (5-chloroanthranilic acid, AACl) were synthesized and characterized based on elemental analysis, IR and mass spectroscopy. The data are in accordance with 1:3 [Metal]:[Ligand] ratio. On the basis of the IR analysis, it was found that the metals were coordinated to bidentate anthranilic acid via the ionised oxygen of the carboxylate group and to the nitrogen of amino group. While in 5-chloroanthranilic acid, the metals were coordinated oxidatively to the bidentate carboxylate group without bonding to amino group; accordingly, a chlorine-affected coordination and reactivity-diversity was emphasized. Thermal analyses (TGA) and biological activity of the complexes were also investigated. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using SDDALL basis set. Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, dipole moment and orientation have been performed and discussed.

  15. Rapid phenolic O-glycosylation of small molecules and complex unprotected peptides in aqueous solvent

    NASA Astrophysics Data System (ADS)

    Wadzinski, Tyler J.; Steinauer, Angela; Hie, Liana; Pelletier, Guillaume; Schepartz, Alanna; Miller, Scott J.

    2018-06-01

    Glycosylated natural products and synthetic glycopeptides represent a significant and growing source of biochemical probes and therapeutic agents. However, methods that enable the aqueous glycosylation of endogenous amino acid functionality in peptides without the use of protecting groups are scarce. Here, we report a transformation that facilitates the efficient aqueous O-glycosylation of phenolic functionality in a wide range of small molecules, unprotected tyrosine, and tyrosine residues embedded within a range of complex, fully unprotected peptides. The transformation, which uses glycosyl fluoride donors and is promoted by Ca(OH)2, proceeds rapidly at room temperature in water, with good yields and selective formation of unique anomeric products depending on the stereochemistry of the glycosyl donor. High functional group tolerance is observed, and the phenol glycosylation occurs selectively in the presence of virtually all side chains of the proteinogenic amino acids with the singular exception of Cys. This method offers a highly selective, efficient, and operationally simple approach for the protecting-group-free synthesis of O-aryl glycosides and Tyr-O-glycosylated peptides in water.

  16. Synthesis of chlorophyll-amino acid conjugates as models for modification of proteins with chromo/fluorophores.

    PubMed

    Tamiaki, Hitoshi; Isoda, Yasuaki; Tanaka, Takuya; Machida, Shinnosuke

    2014-02-15

    A chlorophyll-a derivative bonded directly with epoxide at the peripheral position of the chlorin π-system was reacted with N-urethane and C-ester protected amino acids bearing an alcoholic or phenolic hydroxy group as well as a carboxy group at the residue to give chlorophyll-amino acid conjugates. The carboxy residues of N,C-protected aspartic and glutamic acids were esterified with the epoxide in high yields. The synthetic conjugates in dichloromethane had absorption bands throughout the visible region including intense red-side Qy and blue-side Soret bands. By their excitation at the visible bands, strong and efficient fluorescence emission was observed up to the near-infrared region. The chromo/fluorophores are promising for preparation of functional peptides and modification of proteins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Immobilization of mesoporous silica particles on stainless steel plates

    NASA Astrophysics Data System (ADS)

    Pasqua, Luigi; Morra, Marco

    2017-03-01

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  18. Grafting of antibacterial polymers on stainless steel via surface-initiated atom transfer radical polymerization for inhibiting biocorrosion by Desulfovibrio desulfuricans.

    PubMed

    Yuan, S J; Xu, F J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2009-06-01

    To enhance the biocorrosion resistance of stainless steel (SS) and to impart its surface with bactericidal function for inhibiting bacterial adhesion and biofilm formation, well-defined functional polymer brushes were grafted via surface-initiated atom transfer radical polymerization (ATRP) from SS substrates. The trichlorosilane coupling agent, containing the alkyl halide ATRP initiator, was first immobilized on the hydroxylated SS (SS-OH) substrates for surface-initiated ATRP of (2-dimethylamino)ethyl methacrylate (DMAEMA). The tertiary amino groups of covalently immobilized DMAEMA polymer or P(DMAEMA), brushes on the SS substrates were quaternized with benzyl halide to produce the biocidal functionality. Alternatively, covalent coupling of viologen moieties to the tertiary amino groups of P(DMAEMA) brushes on the SS surface resulted in an increase in surface concentration of quaternary ammonium groups, accompanied by substantially enhanced antibacterial and anticorrosion capabilities against Desulfovibrio desulfuricans in anaerobic seawater, as revealed by antibacterial assay and electrochemical studies. With the inherent advantages of high corrosion resistance of SS, and the good antibacterial and anticorrosion capabilities of the viologen-quaternized P(DMAEMA) brushes, the functionalized SS is potentially useful in harsh seawater environments and for desalination plants. Copyright 2009 Wiley Periodicals, Inc.

  19. Synthesis of amino-rich silica-coated magnetic nanoparticles for the efficient capture of DNA for PCR.

    PubMed

    Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Zhou, Min; Zhang, Lida; Shi, Xianming

    2016-09-01

    Magnetic separation has great advantages over traditional bio-separation methods and has become popular in the development of methods for the detection of bacterial pathogens, viruses, and transgenic crops. Functionalization of magnetic nanoparticles is a key factor for efficient capture of the target analytes. In this paper, we report the synthesis of amino-rich silica-coated magnetic nanoparticles using a one-pot method. This type of magnetic nanoparticle has a rough surface and a higher density of amino groups than the nanoparticles prepared by a post-modification method. Furthermore, the results of hydrochloric acid treatment indicated that the magnetic nanoparticles were stably coated. The developed amino-rich silica-coated magnetic nanoparticles were used to directly adsorb DNA. After magnetic separation and blocking, the magnetic nanoparticles and DNA complexes were used directly for the polymerase chain reaction (PCR), without onerous and time-consuming purification and elution steps. The results of real-time quantitative PCR showed that the nanoparticles with higher amino group density resulted in improved DNA capture efficiency. The results suggest that amino-rich silica-coated magnetic nanoparticles are of great potential for efficient bio-separation of DNA prior to detection by PCR. Copyright © 2016. Published by Elsevier B.V.

  20. Design and synthesis of pH-sensitive polyamino-ester magneto-dendrimers: Surface functional groups effect on viability of human prostate carcinoma cell lines DU145.

    PubMed

    Dayyani, Nahid; Khoee, Sepideh; Ramazani, Ali

    2015-06-15

    Novel pH-sensitive, biocompatible and biodegradable magneto-dendrimers with OH and/or NH2 functional groups based on poly amino-ester were synthesized for delivery of anti-cancer drugs. Magnetite nanoparticles (MNPs) were synthesized by the co-precipitation method and their surfaces were modified by 3-aminopropyl triethoxysilane. The first and second generations of the magneto-dendrimer with hydroxyl end groups were produced by sequential acrylation and Michael addition reactions using the required amounts of acryloyl chloride and diethanolamine, respectively. The dendrimer containing amino functional surface groups up to second generation was synthesized by the same method using the necessary amounts of acryloyl chloride and ethylenediamine. These dendrimers were fully characterized by the Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), dynamic light scattering (DLS) and zeta potential analysis, vibrating-sample magnetometer (VSM), scanning electron microscope (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). In-vitro release profiles of the drug-loaded magnetic nanoparticles and their cytotoxicity assay were investigated at two pHs (7.4 and 5.8). The hydrolytic degradation behavior of magneto-dendrimers was evaluated in PBS buffer. Our research suggests that magneto-dendrimers having amine or hydroxyl functional groups could be considered as the suitable nanocarriers for therapy applications. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Fluorescent silica nanoparticles with chemically reactive surface: Controlling spatial distribution in one-step synthesis.

    PubMed

    Vera, María L; Cánneva, Antonela; Huck-Iriart, Cristián; Requejo, Felix G; Gonzalez, Mónica C; Dell'Arciprete, María L; Calvo, Alejandra

    2017-06-15

    The encapsulation of fluorescent dyes inside silica nanoparticles is advantageous to improve their quality as probes. Inside the particle, the fluorophore is protected from the external conditions and its main emission parameters remains unchanged even in the presence of quenchers. On the other hand, the amine-functionalized nanoparticle surface enables a wide range of applications, as amino groups could be easily linked with different biomolecules for targeting purposes. This kind of nanoparticle is regularly synthesized by methods that employ templates, additional nanoparticle formation or multiple pathway process. However, a one-step synthesis will be an efficient approach in this sort of bifunctional hybrid nanoparticles. A co-condensation sol-gel synthesis of hybrid fluorescent silica nanoparticle where developed. The chemical and morphological characterization of the particles where investigated by DRIFTS, XPS, SEM and SAXS. The nanoparticle fluorescent properties were also assessed by excitation-emission matrices and time resolved experiments. We have developed a one-pot synthesis method that enables the simultaneous incorporation of functionalities, the fluorescent molecule and the amino group, by controlling co-condensation process. An exhaustive characterization allows the definition of the spatial distribution of the fluorescent probe, fluorescein isothiocyanate, inside the particle and reactive amino groups on the surface of the nanoparticle with diameter about 100nm. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Mass spectrometry of analytical derivatives. 2. "Ortho" and "Para" effects in electron ionization mass spectra of derivatives of hydroxy, mercapto and amino benzoic acids.

    PubMed

    Todua, Nino G; Mikaia, Anzor I

    2016-01-01

    Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS 1 spectra of unlabeled compounds to their 2 H and 13 C labeled analogs, and analysis of collision-induced dissociation data from MS 2 spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested.

  3. Mass spectrometry of analytical derivatives. 2. “Ortho” and “Para” effects in electron ionization mass spectra of derivatives of hydroxy, mercapto and amino benzoic acids1

    PubMed Central

    Todua, Nino G.; Mikaia, Anzor I.

    2016-01-01

    Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS1 spectra of unlabeled compounds to their 2H and 13C labeled analogs, and analysis of collision-induced dissociation data from MS2 spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested. PMID:27891187

  4. Structural similarity of ghrelin derivatives to peptidyl growth hormone secretagogues.

    PubMed

    Matsumoto, M; Kitajima, Y; Iwanami, T; Hayashi, Y; Tanaka, S; Minamitake, Y; Hosoda, H; Kojima, M; Matsuo, H; Kangawa, K

    2001-06-15

    Ghrelin is a 28-amino acid residue endogenous growth hormone secretagogue. Intensive investigations revealed that the N-terminus tetrapeptide, having octanoyl group at Ser(3), is the minimum active core. In this study, we further explored the structure-function relationships of the active N-terminus portion of ghrelin using a Ca(2+) mobilization assay. The smallest and most potent ghrelin derivative we have found so far is 5-aminopentanoyl-Ser(Octyl)-Phe-Leu-aminoethylamide, showing comparable activity to the natural molecule. In the process of modifying the active core, the ghrelin-derived short analogues emerged structurally close to peptidyl growth hormone secretagogues. The N-terminus modification suggested that Gly(1)-Ser(2) unit works as a spacer, forming adequate distance between N(alpha)-amino group and n-octanoyl group. Replacement of 3rd and 4th amino acid residues to D-isomer suggested that the N-terminal dipeptide contributes to shape the biologically active geometry by effecting conformation of residues in positions 3 and 4. Copyright 2001 Academic Press.

  5. Bifunctional silica nanospheres with 3-aminopropyl and phenyl groups. Synthesis approach and prospects of their applications

    NASA Astrophysics Data System (ADS)

    Kotsyuda, Sofiya S.; Tomina, Veronika V.; Zub, Yuriy L.; Furtat, Iryna M.; Lebed, Anastasia P.; Vaclavikova, Miroslava; Melnyk, Inna V.

    2017-10-01

    Spherical silica particles with bifunctional (tbnd Si(CH2)3NH2/tbnd SiC6H5) surface layers were synthesized by the Stöber method using ternary alkoxysilanes systems. The influence of the synthesis conditions, such as temperature and stirring time on the process of nanoparticles formation was studied. The presence of introduced functional groups was confirmed by FTIR. The composition of the surface layers examined by elemental analysis and acid-base titration was shown to be independent from the synthesis temperature. However, the size of the obtained particles depends on the synthesis temperature and, according to photon cross-correlation spectroscopy, can be varied from 50 to 846 nm. The variation of electric charges of N-functional groups was disclosed in obtained nanospheres and attributed to different surface location of these groups and their surrounding with other groups. The sorption of Cu(II) ions by functionalized silicas depends on the concentration of amino groups, which correlates with the isoelectric point values (determined to vary from 8.26 to 9.21). Bifunctional nanoparticles adsorb 99.0 mg/g of methylene blue, compared with 48.0 mg/g by silica sample with only amino groups. The nanospheres, both with and without adsorbed Cu2+, demonstrate reasonable antibacterial activity against S. aureus ATCC 25923, depending on particle concentration in water suspension.

  6. 1-(2-aminophenyl)-1H-1,2,3-triazole-4-carboxylic acid: activity against Gram-positive and Gram-negative pathogens including Vibrio cholerae

    NASA Astrophysics Data System (ADS)

    Maji, Krishnendu; Haldar, Debasish

    2017-10-01

    We report a new synthetic aromatic ε-amino acid containing a triazole moiety with antimicrobial potential against Gram-positive, Gram-negative and pathogenic bacteria including Vibrio cholerae. Structure-property relationship studies revealed that all the functional groups are essential to enhance the antimicrobial activity. The 1-(2-aminophenyl)-1H-1,2,3-triazole-4-carboxylic acid was synthesized by click chemistry. From X-ray crystallography, the amino acid adopts a kink-like structure where the phenyl and triazole rings are perpendicular to each other and the amine and acid groups maintain an angle of 60°. The agar diffusion test shows that the amino acid has significant antibacterial activity. The liquid culture test exhibits that the minimum inhibitory concentration (MIC) value for Bacillus subtilis and Vibrio cholerae is 59.5 µg ml-1. FE-SEM experiments were performed to study the morphological changes of bacterial shape after treatment with compound 1. The antimicrobial activity of the amino acid was further studied by DNA binding and degradation study, protein binding, dye-binding assay and morphological analysis. Moreover, the amino acid does not have any harmful effect on eukaryotes.

  7. General protocol for the synthesis of functionalized magnetic nanoparticles for magnetic resonance imaging from protected metal-organic precursors.

    PubMed

    Hu, He; Zhang, Chongkun; An, Lu; Yu, Yanrong; Yang, Hong; Sun, Jin; Wu, Huixia; Yang, Shiping

    2014-06-02

    The development of magnetic nanoparticles (MNPs) with functional groups has been intensively pursued in recent years. Herein, a simple, versatile, and cost-effective strategy to synthesize water-soluble and amino-functionalized MNPs, based on the thermal decomposition of phthalimide-protected metal-organic precursors followed by deprotection, was developed. The resulting amino-functionalized Fe3O4, MnFe2O4, and Mn3O4 MNPs with particle sizes of about 14.3, 7.5, and 6.6 nm, respectively, had narrow size distributions and good dispersibility in water. These MNPs also exhibited high magnetism and relaxivities of r2 = 107.25 mM(-1)  s(-1) for Fe3O4, r2 = 245.75 mM(-1)  s(-1) for MnFe2O4, and r1 = 2.74 mM(-1)  s(-1) for Mn3O4. The amino-functionalized MNPs were further conjugated with a fluorescent dye (rhodamine B) and a targeting ligand (folic acid: FA) and used as multifunctional probes. Magnetic resonance imaging and flow-cytometric studies showed that these probes could specifically target cancer cells overexpressing FA receptors. This new protocol opens a new way for the synthesis and design of water-soluble and amino-functionalized MNPs by an easy and versatile route. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Molecular Convergence of Infrared Vision in Snakes

    PubMed Central

    Yokoyama, Shozo; Altun, Ahmet; DeNardo, Dale F.

    2011-01-01

    It has been discovered that the transient receptor potential ankyrin 1 (TRPA1) proteins of Boidae (boas), Pythonidae (pythons), and Crotalinae (pit vipers) are used to detect infrared radiation, but the molecular mechanism for detecting the infrared radiation is unknown. Here, relating the amino acid substitutions in their TRPA1 proteins and the functional differentiations, we propose that three parallel amino acid changes (L330M, Q391H, and S434T) are responsible for the development of infrared vision in the three groups of snakes. Protein modeling shows that the three amino acid changes alter the structures of the central region of their ankyrin repeats. PMID:20937734

  9. Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiyuan; Yang, Zhanhong; Hu, Youwang; Li, Jianping; Fan, Xinming

    2013-07-01

    In this paper, carboxyl and amino groups have been introduced onto the surface of the multi-walled carbon nanotubes (MWCNTs) by the mixed acid treatment and the diazonium reaction, respectively. The presence of multifunctionality groups on the MWCNTs has been characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TGA) analysis, Raman spectra, scanning electron microscopy (SEM) and energy dispersive X-ray spectrum (EDS). The multifunctionalized carbon nanotubes were further utilized to react with acetyl chloride and ethylenediamine (EDA). The formation of the amide bond in the grafting reaction has been confirmed by FT-IR spectroscopy. The result indicates that the further grafting is successful. The multifunctionalized MWCNTs can be a new versatile platform for many interesting applications.

  10. Application of nitrogen metabolism in autotrophic bacteria to chemosynthetic bioregeneration in space missions, supplement

    NASA Technical Reports Server (NTRS)

    Wixom, R. L.

    1974-01-01

    The chemolithotroph, Hydrogenomonas eutropha, was considered as a life support, bioregenerative system. This project focuses on several metabolic functions that are related to the proposed nitrogen cycle between man and this microbe. Specifically this organism has the capability to utilize as the sole nitrogen source such urine components as urea and fifteen individual amino acids, but not nine other amino acids. The effectiveness of utilization was high for many amino acids. Several specific growth inhibitions were also observed. The enzyme that catalyzes the incorporation of ammonia in the medium into amino acids was identified as a NADP-specific, L-glutamate dehydrogenase. This enzyme has a constitutive nature. This organism can synthesize all of its amino acids from carbon dioxide and ammonia. Therefore with the background literature of multiple pathways of individual amino acid biosyntheses, our evidence to date is consistent with the Hydrogeneomonas group having the same pathway of valine-isoleucine formation as the classical E. coli.

  11. Arrangement of Proteinogenic α-Amino Acids on a Cyclic Peptide Comprising Alternate Biphenyl-Cored ζ-Amino Acids.

    PubMed

    Tashiro, Shohei; Chiba, Masayuki; Shionoya, Mitsuhiko

    2017-05-18

    Aiming at precisely arranging several proteinogenic α-amino acids on a folded scaffold, we have developed a cyclic hexapeptide comprising an alternate sequence of biphenyl-cored ζ-amino acids and proteinogenic α-amino acids such as l-leucine. The amino acids were connected by typical peptide synthesis, and the resultant linear hexapeptide was intramolecularly cyclized to form a target cyclic peptide. Theoretical analyses and NMR spectroscopy suggested that the cyclic peptide was folded into an unsymmetrical conformation, and the structure was likely to be flexible in CHCl 3 . The optical properties including UV/Vis absorption, fluorescence, and circular dichroism (CD) were also evaluated. Furthermore, the cyclic peptide became soluble in water by introducing three carboxylate groups at the periphery of the cyclic skeleton. This α/ζ-alternating cyclic peptide is therefore expected to serve as a unique scaffold for arranging several functionalities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Microbial degradation of poly(amino acid)s.

    PubMed

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  13. Energetic stabilities of thiolated pyrimidines on gold nanoparticles investigated by Raman spectroscopy and density functional theory calculations.

    PubMed

    Ganbold, Erdene-Ochir; Yoon, Jinha; Cho, Kwang-Hwi; Joo, Sang-Woo

    2015-01-01

    The adsorption structures of 2-thiocytosine (2TC) on gold surfaces were examined by means of vibrational Raman spectroscopy and quantum mechanical density functional theory calculations. The 1H-thione-amino form was calculated to be most stable among the six examined tautomers. The three plausible binding geometries of sulfur, pyrimidine nitrogen, and amino group binding modes were calculated to estimate the binding energies of the 1H-thione-amino form with six gold cluster atoms. Thiouracils including 2-thiouracil (2TU), 4-thiouracil (4TU), and 6-methyl-2-thiouracil (6M2TU) were also studied to compare their relative binding energies on gold atoms. The intracellular localization of a DNA base analog of 2TC on gold nanoparticles (AuNPs) in HeLa cells was identified by means of surface-enhanced Raman scattering. AuNPs were modified with 2TC by self-assembly. Our dark-field microscopy and z-depth-dependent confocal Raman spectroscopy indicated that 2TC-assembled AuNPs could be found inside cancer cells. On the other hand, we did not observe noticeably strong Raman peaks in the cases of thiouracils including 2TU, 4TU, and 6M2TU. This may be due to the additional amino group of 2TC, which can lead to a stronger binding of adsorbates on AuNPs. Copyright © 2015. Published by Elsevier B.V.

  14. Amino-functionalized surface modification of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes

    NASA Astrophysics Data System (ADS)

    Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2017-08-01

    This study aimed to improve surface polarity of polydimethylsiloxane (PDMS) membranes and provide surface active sites which were easy to react with other chemicals. 3-Aminopropyltriethoxysilane (APTES) containing an amino group was introduced into a PDMS membrane by crosslinking to prepare polyacrylonitrile hollow fiber-supported PDMS membranes with an amino-functionalized surface. Fourier transform infrared and X-ray photoelectron spectroscopic analyses proved the existence of APTES and its amino group in the PDMS membrane. The concentration of N atoms on the PDMS membrane surface reached ∼6% when the mass ratio of APTES/PDMS oligomer in the PDMS coating solution was increased to 4/3. The water contact angle decreased from ∼114° to ∼87.5°, indicating the improved surface polarization of the PDMS membrane. The density and swelling degree of the PDMS membrane decreased and increased, respectively, with increasing APTES content in PDMS. This phenomenon increased CO2 permeability and decreased CO2/H2 selectivity, CO2/CH4 selectivity, and CO2/N2 selectivity. When the mass ratio of APTES/PDMS oligomer was increased from 0 to 4/3, the CO2 permeation rate of the hollow fiber-supported PDMS membranes initially decreased from ∼2370 GPU to ∼860 GPU and then increased to ∼2000 GPU due to the change in coating solution viscosity.

  15. Modified polyether-sulfone membrane: a mini review

    PubMed Central

    Alenazi, Noof A.; Hussein, Mahmoud A.; Alamry, Khalid A.; Asiri, Abdullah M.

    2017-01-01

    Abstract Polyethersulfone has been widely used as a promising material in medical applications and waste-treatment membranes since it provides excellent mechanical and thermal properties. Hydrophobicity of polyethersulfone is considered one main disadvantage of using this material because hydrophobic surface causes biofouling effects to the membrane which is always thought to be a serious limitation to the use of polyethersulfone in membrane technology. Chemical modification to the material is a promising solution to this problem. More specifically surface modification is an excellent technique to introduce hydrophilic properties and functional groups to the polyethersulfone membrane surface. This review covers chemical modifications of the polyethersulfone and covers different methods used to enhance the hydrophilicity of polyethersulfone membrane. In particular, the addition of amino functional groups to polyethersulfone is used as a fundamental method either to introduce hydrophilic properties or introduce nanomaterials to the surface of polyethersulfone membrane. This work reviews also previous research reports explored the use of amino functionalized polyethersulfone with different nanomaterials to induce biological activity and reduce fouling effects of the fabricated membrane. PMID:29491825

  16. Modified polyether-sulfone membrane: a mini review.

    PubMed

    Alenazi, Noof A; Hussein, Mahmoud A; Alamry, Khalid A; Asiri, Abdullah M

    2017-01-01

    Polyethersulfone has been widely used as a promising material in medical applications and waste-treatment membranes since it provides excellent mechanical and thermal properties. Hydrophobicity of polyethersulfone is considered one main disadvantage of using this material because hydrophobic surface causes biofouling effects to the membrane which is always thought to be a serious limitation to the use of polyethersulfone in membrane technology. Chemical modification to the material is a promising solution to this problem. More specifically surface modification is an excellent technique to introduce hydrophilic properties and functional groups to the polyethersulfone membrane surface. This review covers chemical modifications of the polyethersulfone and covers different methods used to enhance the hydrophilicity of polyethersulfone membrane. In particular, the addition of amino functional groups to polyethersulfone is used as a fundamental method either to introduce hydrophilic properties or introduce nanomaterials to the surface of polyethersulfone membrane. This work reviews also previous research reports explored the use of amino functionalized polyethersulfone with different nanomaterials to induce biological activity and reduce fouling effects of the fabricated membrane.

  17. Are amino groups advantageous to insensitive high explosives (IHEs)?

    PubMed

    Cao, Xia; Wen, Yushi; Xiang, Bin; Long, Xinping; Zhang, Chaoyang

    2012-10-01

    There is usually a contradiction between increasing energy densities and reducing sensitivities of explosives. The explosives with both high energy densities and low sensitivities, or the so-called insensitive high explosives (IHEs), are desirable in most cases. It seems from applied explosives that amino groups are advantageous to IHE but the amount of amino groups contained IHEs is very limited. To make this clear, we present systemic examinations of the effects on the two properties stressed in IHEs after introducing amino groups to different molecular skeletons. As a result, the amino groups on resonant sites to nitro groups in conjugated systems can improve distinctly sensitivities and change energy densities in terms of oxygen balance; while the amino groups in unconjugated systems can hardly increase energy densities and usually cause increased sensitivities. It agrees well with a fact that almost all the molecules of applied amino group contained explosives possess conjugated skeletons. We therefore confirm that if amino groups are introduced resonantly to a nitro group in a conjugated system and the introduction improves OB, they are advantageous to IHEs.

  18. Surface modification of polyisobutylene via grafting amino acid-based poly (acryloyl-6-aminocaproic acid) as multifunctional material.

    PubMed

    Du, Yanqiu; Li, Chunming; Jin, Jing; Li, Chao; Jiang, Wei

    2018-01-01

    Amino acid-based P(acryloyl-6-aminocaproic acid) (PAACA) brushes were fabricated on polyisobutylene (PIB) surface combined with plasma pre-treatment and UV-induced grafting polymerization to construct an antifouling and functional material. The hydrophilicity and hemocompatibility of PIB were largely improved by surface modification of AACA, which were confirmed by water contact angle and platelet adhesion, respectively. PAACA brushes were precisely located onto the surface of PIB to create a patterned PIB-g-PAACA structure, and then the carboxyl groups on PAACA was activated to immobilize functional protein-Concanavalin A (Con A). The obtained Con A-coupled microdomains could further capture erythrocytes. This method developed a platform on commercial PIB surface via amino acid-based polymer brushes which had a promising application in drug delivery and disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Density functional theory (DFT) study of a new novel bionanosensor hybrid; tryptophan/Pd doped single walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Yoosefian, Mehdi; Etminan, Nazanin

    2016-07-01

    In order to explore a new novel L-amino acid/transition metal doped single walled carbon nanotube based biosensor, density functional theory calculations were studied. These hybrid structures of organic-inorganic nanobiosensors are able to detect the smallest amino acid building block of proteins. The configurations of amine and carbonyl group coordination of tryptophan aromatic amino acid adsorbed on Pd/doped single walled carbon nanotube were compared. The frontier molecular orbital theory, quantum theory atom in molecule and natural bond orbital analysis were performed. The molecular electrostatic potential and the electron density surfaces were constructed. The calculations indicated that the Pd/SWCNT was sensitive to tryptophan suggesting the importance of interaction with biological molecule and potential detecting application. The proposed nanobiosensor represents a highly sensitive detection of protein at ultra-low concentration in diagnosis applications.

  20. Lattice dynamical and dielectric properties of L-amino acids

    NASA Astrophysics Data System (ADS)

    Tulip, P. R.; Clark, S. J.

    2006-08-01

    We present the results of ab initio calculations of the lattice dynamical and dielectric properties of the L-amino acids L-alanine, L-leucine, and L-isoleucine. Normal-mode frequencies and dielectric permittivity tensors are obtained using density-functional perturbation theory implemented within the plane-wave pseudopotential approximation. IR spectra are calculated and are used to analyze the effects of intermolecular interactions and zwitterionization upon the lattice dynamics. It is found that vibronic modes associated with the carboxy and amino functional groups undergo modification from their free-molecule values due to the presence of hydrogen bonds. The role of macroscopic electric fields set up by zone-center normal modes in the lattice dynamics is investigated by analysis of the Born effective charge. Calculated permittivity tensors are found to be greater than would be obtained by a naive use of the isolated molecular values, indicating the role of intermolecular interactions in increasing molecular polarizability.

  1. Function of specific 2'-hydroxyl groups of guanosines in a hammerhead ribozyme probed by 2' modifications.

    PubMed Central

    Williams, D M; Pieken, W A; Eckstein, F

    1992-01-01

    The importance of the 2'-hydroxyl group of several guanosine residues for the catalytic efficiency of a hammerhead ribozyme has been investigated. Five ribozymes in which single guanosine residues were substituted with 2'-amino-, 2'-fluoro-, or 2'-deoxyguanosine were chemically synthesized. The comparison of the catalytic activity of the three 2' modifications at a specific position allows conclusions about the functional role of the parent 2'-hydroxyl group. Substitutions of nonconserved nucleotides within the ribozyme caused little alteration in the catalytic activity relative to that obtained with the unmodified ribozyme. In contrast, when either of the guanosines within the single-stranded loop between stem I and stem II of the ribozyme was replaced by 2'-deoxyguanosine or 2'-fluoro-2'-deoxyguanosine, the catalytic activities of the resulting ribozymes were reduced by factors of at least 150. The catalytic activities of the corresponding ribozymes containing 2'-amino-2'-deoxyguanosine substitutions at these positions, however, were both reduced by factors of 15. These effects resulted from decreases in the respective kcat values, whereas variations in the Km values were comparatively small. A different pattern of reactivity of the three 2' modifications was observed at the guanosine immediately 3' to stem II of the ribozyme. Whereas both 2'-deoxyguanosine and 2'-amino-2'-deoxyguanosine at this position showed catalytic activity similar to that of the unmodified ribozyme, the activity of the corresponding 2'-fluoro-2'-deoxyguanosine-containing ribozyme was reduced by a factor of 15. The implications of these substitution-specific reactivities on the functional role of the native 2'-hydroxyl groups are discussed. Images PMID:1736306

  2. Design, synthesis, and biological evaluation of α-hydroxyacyl-AMS inhibitors of amino acid adenylation enzymes.

    PubMed

    Davis, Tony D; Mohandas, Poornima; Chiriac, Maria I; Bythrow, Glennon V; Quadri, Luis E N; Tan, Derek S

    2016-11-01

    Biosynthesis of bacterial natural-product virulence factors is emerging as a promising antibiotic target. Many such natural products are produced by nonribosomal peptide synthetases (NRPS) from amino acid precursors. To develop selective inhibitors of these pathways, we have previously described aminoacyl-AMS (sulfamoyladenosine) macrocycles that inhibit NRPS amino acid adenylation domains but not mechanistically-related aminoacyl-tRNA synthetases. To improve the cell permeability of these inhibitors, we explore herein replacement of the α-amino group with an α-hydroxy group. In both macrocycles and corresponding linear congeners, this leads to decreased biochemical inhibition of the cysteine adenylation domain of the Yersina pestis siderophore synthetase HMWP2, which we attribute to loss of an electrostatic interaction with a conserved active-site aspartate. However, inhibitory activity can be regained by installing a cognate β-thiol moiety in the linear series. This provides a path forward to develop selective, cell-penetrant inhibitors of the biosynthesis of virulence factors to probe their biological functions and potential as therapeutic targets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Roles of the amino group of purine bases in the thermodynamic stability of DNA base pairing.

    PubMed

    Nakano, Shu-ichi; Sugimoto, Naoki

    2014-08-05

    The energetic aspects of hydrogen-bonded base-pair interactions are important for the design of functional nucleotide analogs and for practical applications of oligonucleotides. The present study investigated the contribution of the 2-amino group of DNA purine bases to the thermodynamic stability of oligonucleotide duplexes under different salt and solvent conditions, using 2'-deoxyriboinosine (I) and 2'-deoxyribo-2,6-diaminopurine (D) as non-canonical nucleotides. The stability of DNA duplexes was changed by substitution of a single base pair in the following order: G • C > D • T ≈ I • C > A • T > G • T > I • T. The apparent stabilization energy due to the presence of the 2-amino group of G and D varied depending on the salt concentration, and decreased in the water-ethanol mixed solvent. The effects of salt concentration on the thermodynamics of DNA duplexes were found to be partially sequence-dependent, and the 2-amino group of the purine bases might have an influence on the binding of ions to DNA through the formation of a stable base-paired structure. Our results also showed that physiological salt conditions were energetically favorable for complementary base recognition, and conversely, low salt concentration media and ethanol-containing solvents were effective for low stringency oligonucleotide hybridization, in the context of conditions employed in this study.

  4. Highly selective covalent organic functionalization of epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Bueno, Rebeca A.; Martínez, José I.; Luccas, Roberto F.; Del Árbol, Nerea Ruiz; Munuera, Carmen; Palacio, Irene; Palomares, Francisco J.; Lauwaet, Koen; Thakur, Sangeeta; Baranowski, Jacek M.; Strupinski, Wlodek; López, María F.; Mompean, Federico; García-Hernández, Mar; Martín-Gago, José A.

    2017-05-01

    Graphene functionalization with organics is expected to be an important step for the development of graphene-based materials with tailored electronic properties. However, its high chemical inertness makes difficult a controlled and selective covalent functionalization, and most of the works performed up to the date report electrostatic molecular adsorption or unruly functionalization. We show hereafter a mechanism for promoting highly specific covalent bonding of any amino-terminated molecule and a description of the operating processes. We show, by different experimental techniques and theoretical methods, that the excess of charge at carbon dangling-bonds formed on single-atomic vacancies at the graphene surface induces enhanced reactivity towards a selective oxidation of the amino group and subsequent integration of the nitrogen within the graphene network. Remarkably, functionalized surfaces retain the electronic properties of pristine graphene. This study opens the door for development of graphene-based interfaces, as nano-bio-hybrid composites, fabrication of dielectrics, plasmonics or spintronics.

  5. Adsorption of arginine, glycine and aspartic acid on Mg and Mg-based alloy surfaces: A first-principles study

    NASA Astrophysics Data System (ADS)

    Fang, Zhe; Wang, Jianfeng; Yang, Xiaofan; Sun, Qiang; Jia, Yu; Liu, Hairong; Xi, Tingfei; Guan, Shaokang

    2017-07-01

    Studying the adsorption behaviors of biomolecules on the surface of Mg and Mg-based alloy has a fundamental and important role for related applications in biotechnology. In the present work, we systematically investigate and compare the adsorption properties of three typical amino acids, i.e., Arg (arginine), Gly (glycine) and Asp (aspartic acid), which form RGD tripeptide, on the Mg (0 0 0 1) surface with various doping (Zn, Y, and Nd), and aim to realize proper binding between biomolecules and Mg and Mg-based biomedical materials. Our results show that flat adsorption configurations of the functional groups binding to the surfaces are favored in energy for all the three selected amino acids. In specific, for the amino acids adsorped on clean Mg (0 0 0 1) surface, the adsorption energy (Eads) of Arg is found to be -1.67 eV for the most stable configuration, with amino and guanidyl groups binding with the surface. However, Gly (Asp) is found to binding with the surface through amino and carboxyl groups, with a -1.16 eV (-1.15 eV) binding energy. On the 2% Zn doped Mg (0 0 0 1) alloy surface (Mg-Zn (2%)), the Eads are significantly increased to be -1.91 eV, -1.32 eV and -1.35 eV for Arg, Gly and Asp, respectively. While the Mg-Y (1%) and Mg-Nd (1%) slightly weaken the adsorption of three amino acids. Moreover, we have performed detail discussions of the binding properties between amino acids and surfaces by projected density of states (PDOS) combined with charge transfer analyses. Our studies provide a comprehensive understanding on the interactions between amino acids and Mg and Mg-based alloy surfaces, with respect to facilitate the applications of Mg and Mg-based biomedical alloys in biosensing, drug delivery, biomolecule coating and other fields in biotechnology.

  6. Mechanisms of the Formation of Adenine, Guanine, and Their Analogues in UV-Irradiated Mixed NH3:H2O Molecular Ices Containing Purine

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Stein, Tamar; Head-Gordon, Martin; Lee, Timothy J.

    2017-08-01

    We investigated the formation mechanisms of the nucleobases adenine and guanine and the nucleobase analogues hypoxanthine, xanthine, isoguanine, and 2,6-diaminopurine in a UV-irradiated mixed 10:1 H2O:NH3 ice seeded with precursor purine by using ab initio and density functional theory computations. Our quantum chemical investigations suggest that a multistep reaction mechanism involving purine cation, hydroxyl and amino radicals, together with water and ammonia, explains the experimentally obtained products in an independent study. The relative abundances of these products appear to largely follow from relative thermodynamic stabilities. The key role of the purine cation is likely to be the reason why purine is not functionalized in pure ammonia ice, where cations are promptly neutralized by free electrons from NH3 ionization. Amine group addition to purine is slightly favored over hydroxyl group attachment based on energetics, but hydroxyl is much more abundant due to higher abundance of H2O. The amino group is preferentially attached to the 6 position, giving 6-aminopurine, that is, adenine, while the hydroxyl group is preferentially attached to the 2 position, leading to 2-hydroxypurine. A second substitution by hydroxyl or amino group occurs at either the 6 or the 2 position depending on the first substitution. Given that H2O is far more abundant than NH3 in the experimentally studied ices (as well as based on interstellar abundances), xanthine and isoguanine are expected to be the most abundant bi-substituted photoproducts.

  7. Salen- Zr(IV) complex grafted into amine-tagged MIL-101(Cr) as a robust multifunctional catalyst for biodiesel production and organic transformation reactions

    NASA Astrophysics Data System (ADS)

    Hassan, Hassan M. A.; Betiha, Mohamed A.; Mohamed, Shaimaa K.; El-Sharkawy, E. A.; Ahmed, Emad A.

    2017-08-01

    The synthesis of metal-organic frameworks (MOFs), porous coordination polymers with functional groups has received immense interest due to the functional groups can offer desirable properties and allow post-synthetic modification. Herein, for the first time, Zr(IV)-Sal Schiff base complex incorporated into amino-functionalized MIL-101(Cr) framework by salicylaldehyde condensing to amino group, and coordinating Zr(IV) ion have been successfully synthesized. The worthiness of the synthesized material as a catalyst has been examined for the esterification of oleic acid (free fatty acid) with methanol producing biodiesel (methyl oleate), Knoveonagel condensation reaction of aldehydes and Friedel-Crafts acylation of anisole. Our findings demonstrated that Salen-Zr(IV) grafted to framework of NH2-MIL-101(Cr) as a solid acid catalyst exhibited distinct catalytic performance for the production of biodiesel by esterification of oleic acid with methanol, Knoveonagel condensation and Friedel-Crafts acylation. These could be attributed to high surface area which allow high distribution of Zr(IV) species lead to a sufficient contact with the reactants species. Furthermore, the catalyst showed excellent recycling efficiency due to the strong interaction between the Zr(IV) ions and chelating groups in the NH2-MIL-101(Cr)-Sal.

  8. Remediation of lead-contaminated soil with non-toxic biodegradable natural ligands extracted from soybean.

    PubMed

    Lee, Yong-Woo; Kim, Chulsung

    2012-01-01

    Bench-scale soil washing studies were performed to evaluate the potential application of non-toxic, biodegradable extracted soybean-complexing ligands for the remediation of lead-contaminated soils. Results showed that, with extracted soybean-complexing ligands, lead solubility extensively increased when pH of the solution was higher than 6, and approximately 10% (500 mg/kg) of lead was removed from a rifle range soil. Two potential primary factors controlling the effectiveness of lead extraction from lead-contaminated soils with natural ligands are adsorption of extracted aqueous lead ions onto the ground soybean and the pH of the extraction solution. More complexing ligands were extracted from the ground soybean as the reaction pH increased. As a result, significantly higher lead extraction efficiency was observed under basic environments. In addition, less adsorption onto soybean was observed when the pH of the solution was higher than 7. Among two available Lewis base functional groups in the extracted soybean-complexing ligands such as carboxylate and the alpha-amino functional groups, the non-protonated alpha-amino functional groups may play an important role for the dissolution of lead from lead-contaminated soil through the formation of soluble lead--ligand complexes.

  9. Spectroscopic analysis and charge transfer interaction studies of 4-benzyloxy-2-nitroaniline insecticide: A density functional theoretical approach

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2015-01-01

    A widespread exploration on the intra-molecular charge transfer interaction through an efficient π-conjugated path from a strong electron-donor group (amino) to a strong electron-acceptor group (nitro) has been carried out using FTIR, FT-Raman, UV-Vis, fluorescence and NMR spectra on insecticide compound 4-benzyloxy-2-nitroaniline. Density functional theory method is used to determine optimized molecular geometry, harmonic vibrational wavenumbers and intensities using 6-311G(d,p) basis set by means of Gaussian 09W program suit. A comprehensive investigation on the sp2 to sp3 hybridization and non-planarity property has been performed. Natural bond orbital analysis is used to study the existence of C-H⋯O, N-H⋯O and C-H⋯π proper and improper hydrogen bonds. The HOMO and LUMO analysis reveals the possibility of charge transfer within the molecule. A complete assignment of the experimental absorption peaks in the ultraviolet region has also been performed. Isotropic chemical shifts of 13C, 1H, 15N and 18O NMR and nuclear spin-spin coupling constants have been computed using the gauge-invariant atomic orbital method. The biological activity of substituent amino and nitro groups are evident from the hydrogen bonds through which the target amino acids are linked to the drug as evidenced from molecular docking.

  10. Controlling the Growth and Catalytic Activity of Platinum Nanoparticles Using Peptide and Polymer Ligands

    NASA Astrophysics Data System (ADS)

    Forbes, Lauren Marie

    Heterogeneous catalysts have widespread industrial applications. Platinum nanomaterials in particular, due to their particularly high electrocatalytic activity and durability, are used to catalyze a wide variety of reactions, including oxygen reduction, which is frequently used as the cathode reaction in fuel cells. As platinum is a very expensive material, a high priority in fuel cell research is the exploration of less expensive, more efficient catalysts for the oxygen reduction reaction (ORR). We demonstrate here the use of phage display to identify peptides that bind to Pt (100) which were then used to synthesize platinum cubes in solution. However, while the peptides were able to control particle growth, the bio-synthesized Pt particles showed extremely poor activity when tested for ORR. This could be attributed to peptide coverage on the surface or strong interactions between particular amino acids and the metal that are detrimental for catalysis. To investigate this further, we decided to investigate the role of individual amino acids on Pt nanocrystal synthesis and catalysis. For this, we conjugated the R-groups of single amino acids to polyethylene glycol (PEG) chains. Through this work we have determined that the identity of the amino acid R-group is important in both the synthesis and the catalytic activity of the particles. For Pt nanoparticle synthesis, we found that the hydrophobicity of the functional groups affected their ability to interact well with the particles during nucleation and growth, and thus only the hydrophilic functional groups were capable of mediating the synthesis to produce well-defined faceted particles. With respect to ORR, we found distinct trends that showed that the inclusion of certain amino acids could significantly enhance catalysis---even at high polymer loadings. This work presents evidence that counters the common conception that organic capping ligands decrease catalytic activity; in fact activity may actually be improved over bare metal through judicious choice and design of ligands that inhibit Pt oxidation and control chain packing at the Pt surface. Therefore, it may be possible to have ligands on a nanoparticle surface that allow the particles to be well-dispersed on an electrode surface, while simultaneously enhancing catalysis.

  11. A new cofactor in prokaryotic enzyme: Tryptophan tryptophylquinone as the redox prosthetic group in methylamine dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntire, W.S.; Wemmer, D.E.; Chistoserdov, A.

    Methylamine dehydrogenase (MADH), an {alpha}{sub 2}{beta}{sub 2} enzyme from numerous methylotrophic soil bacteria, contains a novel quinonoid redox prosthetic group that is covalently bound to its small {beta} subunit through two amino acyl residues. A comparison of the amino acid sequence deduced from the gene sequence of the small subunit for the enzyme from Methylobacterium extorquens AM1 with the published amino acid sequence obtained by Edman degradation method, allowed the identification of the amino acyl constituents of the cofactor as two tryptophyl residues. This information was crucial for interpreting {sup 1}H and {sup 13}C nuclear magnetic resonance, and mass spectralmore » data collected for the semicarbazide- and carboxymethyl-derivatized bis(tripeptidyl)-cofactor of MADH from bacterium W3A1. The cofactor is composed of two cross-linked tryptophyl residues. Although there are many possible isomers, only one is consistent with all the data: The first tryptophyl residue in the peptide sequence exists as an indole-6,7-dione, and is attached at its 4 position to the 2 position of the second, otherwise unmodified, indole side group. Contrary to earlier reports, the cofactor of MADH is not 2,7,9-tricarboxypyrroloquinoline quinone (PQQ), a derivative thereof, of pro-PQQ. This appears to be the only example of two cross-linked, modified amino acyl residues having a functional role in the active site of an enzyme, in the absence of other cofactors or metal ions.« less

  12. In Situ Grafting of Hyperbranched Poly(Etherketone)s onto Multiwalled Carbon Nanotubes Via A3 + B2 Approach (Preprint)

    DTIC Science & Technology

    2007-04-01

    MWNTs.20 These defects would provide sites for the electrophilic substitution reaction. In our previous work, FT-IR had been used to characterize the...various surface functionalities.22 In this study, MWNTs containing polar surface groups such as amino-, hydroxyl-, and fluorine groups displayed similar

  13. Antimicrobial Amino-Functionalized Nitrogen-Doped Graphene Quantum Dots for Eliminating Multidrug-Resistant Species in Dual-Modality Photodynamic Therapy and Bioimaging under Two-Photon Excitation.

    PubMed

    Kuo, Wen-Shuo; Shao, Yu-Ting; Huang, Keng-Shiang; Chou, Ting-Mao; Yang, Chih-Hui

    2018-05-02

    Developing a nanomaterial, for use in highly efficient dual-modality two-photon photodynamic therapy (PDT) involving reactive oxygen species (ROS) generation and for use as a two-photon imaging contrast probe, is currently desirable. Here, graphene quantum dots (GQDs) doped with nitrogen and functionalized with an amino group (amino-N-GQDs) serving as a photosensitizer in PDT had the superior ability to generate ROS as compared to unmodified GQDs. Multidrug-resistant (MDR) species were completely eliminated at an ultralow energy (239.36 nJ pixel -1 ) through only 12 s two-photon excitation (TPE) in the near-infrared region (800 nm). Furthermore, the amino-N-GQDs had an absorption wavelength of approximately 800 nm, quantum yield of 0.33, strong luminescence, an absolute cross section of approximately 54 356 Göeppert-Mayer units, a lifetime of 1.09 ns, a ratio of the radiative to nonradiative decay rates of approximately 0.49, and high two-photon stability under TPE. These favorable properties enabled the amino-N-GQDs to act as a two-photon contrast probe for tracking and localizing analytes through in-depth two-photon imaging in a three-dimensional biological environment and concurrently easily eliminating MDR species through PDT.

  14. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method.

    PubMed

    Zardini, Hadi Zare; Amiri, Ahmad; Shanbedi, Mehdi; Maghrebi, Morteza; Baniadam, Majid

    2012-04-01

    Multi-walled carbon nanotubes (MWCNTs) were first functionalized by arginine and lysine under microwave radiation. Surface functionalization was confirmed by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and transmission electron microscopy (TEM). After the MWCNTs were functionalized by arginine and lysine, the antibacterial activity of all treated samples was increased significantly against all bacteria that were tested. Based on the observed minimum inhibitory concentration and radial diffusion assay, the sequence of antibacterial activity was MWCNTs-arginine>MWCNTs-lysine>pristine MWCNTs. The functionalized MWCNTs were especially effective against gram-negative bacteria (e.g., Escherichia coli and Salmonella typhimurium). Interestingly, the MWCNT samples were effective against the resistant strain Staphylococcos aureus. The enhanced antibacterial activity was attributed to electrostatic adsorption of bacteria membrane due to positive charges of the functional groups on MWCNTs surface. Since MWCNTs have lower cytotoxicity than single-walled carbon nanotubes, their functionalization with cationic amino acids could be a beneficial approach in the disinfection industry. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Fine tuning of the spectral properties of LH2 by single amino acid residues.

    PubMed

    Silber, Martina V; Gabriel, Günther; Strohmann, Brigitte; Garcia-Martin, Adela; Robert, Bruno; Braun, Paula

    2008-05-01

    The peripheral light-harvesting complex, LH2, of Rhodobacter sphaeroides consists of an assembly of membrane-spanning alpha and beta polypeptides which assemble the photoactive bacteriochlorophyll and carotenoid molecules. In this study we systematically investigated bacteriochlorophyll-protein interactions and their effect on functional bacteriochlorophyll assembly by site-directed mutations of the LH2 alpha-subunit. The amino acid residues, isoleucine at position -1 and serine at position -4 were replaced by 12 and 13 other residues, respectively. All residues replacing isoleucine at position -1 supported the functional assembly of LH2. The replacement of isoleucine by glycine, glutamine or asparagine, however, produced LH2 complex with significantly altered spectral properties in comparison to LH2 WT. As indicated by resonance Raman spectroscopy extensive rearrangement of the bacteriochlorophyll-B850 macrocycle(s) took place in LH2 in which isoleucine -1 was replaced by glycine. The replacement results in disruption of the H-bond between the C3 acetyl groups and the aromatic residues +13/+14 without affecting the H-bond involving the C13(1) keto group. In contrast, nearly all amino acid replacements of serine at position -4 resulted in shifting of the bacteriochlorophyll-B850 red most absorption maximum. Interestingly, the extent of shifting closely correlated with the volume of the residue at position -4. These results illustrate that fine tuning of the spectral properties of the bacteriochlorophyll-B850 molecules depend on their packing with single amino acid residues at distinct positions.

  16. Optimization of amino group density on surfaces of titanium dioxide nanoparticles covalently bonded to a silicone substrate for antibacterial and cell adhesion activities.

    PubMed

    Okada, Masahiro; Yasuda, Shoji; Kimura, Tsuyoshi; Iwasaki, Mitsunobu; Ito, Seishiro; Kishida, Akio; Furuzono, Tsutomu

    2006-01-01

    A composite consisting of titanium dioxide (TiO2) particle, the surface of which was modified with amino groups, and a silicone substrate through covalent bonding at their interface was developed, and antibacterial and cell adhesion activities of the composite were evaluated. The density of the amino groups on the TiO2 particle surface was controlled by the reaction time of the modification reaction. The degradation rate of CH3CHO in the presence of the TiO2 particles under UV irradiation decreased with an increase in the amino group density on the TiO2 surface. On the other hand, the number of L929 cells adhering on the TiO2/silicone composite increased with an increase in the amino group density. From the above two results, the optimum density of amino groups for both photoreactivity and cell adhesiveness was estimated to be 2.0-4.0 molecules/nm2. The optimum amino group-modified TiO2/silicone composite sheet (amino group density, 3.0 molecules/nm2) showed an effective antibacterial activity for Escherichia coli bacteria under UV irradiation. (c) 2005 Wiley Periodicals, Inc

  17. Amino acid-based surfactants – do they deserve more attention?

    PubMed

    Bordes, Romain; Holmberg, Krister

    2015-08-01

    The 20 standard amino acids (together with a few more that are not used in the biosynthesis of proteins) constitute a versatile tool box for synthesis of surfactants. Anionic, cationic and zwitterionic amphiphiles can be prepared and surfactants with several functional groups can be obtained by the proper choice of starting amino acid. This review gives examples of procedures used for preparation and discusses important physicochemical properties of the amphiphiles and how these can be taken advantage of for various applications. Micelles with a chiral surface can be obtained by self-assembly of enantiomerically pure surfactants and such supramolecular chirality can be utilized for asymmetric organic synthesis and for preparation of mesoporous materials with chiral pores. Surfactants based on amino acids with two carboxyl groups are effective chelating agents and can be used as collectors in mineral ore flotation. A surfactant based on cysteine readily oxidizes into the corresponding cystine compound, which can be regarded as a gemini surfactant. The facile and reversible cysteine-cystine transformation has been taken advantage of in the design of a switchable surfactant. A very attractive aspect of surfactants based on amino acids is that the polar head-group is entirely natural and that the linkage to the hydrophobic tail, which is often an ester or an amide bond, is easily cleaved. The rate of degradation can be tailored by the structure of the amphiphile. The ester linkage in betaine ester surfactants is particularly susceptible to alkaline hydrolysis and this surfactant type can be used as a biocide with short-lived action. This paper is not intended as a full review on the topic. Instead it highlights concepts that are unique to amino acid-based surfactants and that we believe can have practical implications. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The effect of amino acid infusion on anesthesia-induced hypothermia in muscle atrophy model rats.

    PubMed

    Kanazawa, Masahiro; Ando, Satoko; Tsuda, Michio; Suzuki, Toshiyasu

    2010-01-01

    An infusion of amino acids stimulates heat production in skeletal muscle and then attenuates the anesthesia-induced hypothermia. However, in a clinical setting, some patients have atrophic skeletal muscle caused by various factors. The present study was therefore conducted to investigate the effect of amino acids on the anesthesia-induced hypothermia in the state of muscle atrophy. As the muscle atrophy model, Sprague-Dawley rats were subjected to hindlimb immobilization for 2 wk. Normal rats and atrophy model rats were randomly assigned to one of the two treatment groups: saline or amino acids (n=8 for each group). Test solutions were administered intravenously to the rats under sevoflurane anesthesia for 180 min, and the rectal temperature was measured. Plasma samples were collected for measurement of insulin, blood glucose, and free amino acids. The rectal temperature was significantly higher in the normal-amino acid group than in the muscle atrophy-amino acid group from 75 to 180 min. The plasma insulin level was significantly higher in the rats given amino acids than in the rats given saline in both normal and model groups. In the rats given amino acids, plasma total free amino acid concentration was higher in the model group than in the normal group. These results indicate that skeletal muscle plays an important role in changes in body temperature during anesthesia and the effect of amino acids on anesthesia-induced hypothermia decreases in the muscle atrophy state. In addition, intravenous amino acids administration during anesthesia induces an increase in the plasma insulin level.

  19. Heterofunctional Glycopolypeptides by Combination of Thiol-Ene Chemistry and NCA Polymerization.

    PubMed

    Krannig, Kai-Steffen; Schlaad, Helmut

    2016-01-01

    Glycopolypeptides are prepared either by the polymerization of glycosylated amino acid N-carboxyanhydrides (NCAs) or by the post-polymerization functionalization of polypeptides with suitable functional groups. Here we present a method for the in-situ functionalization and (co-) polymerization of allylglycine N-carboxyanhydride in a facile one-pot procedure, combining radical thiol-ene photochemistry and nucleophilic ring-opening polymerization techniques, to yield well-defined heterofunctional glycopolypeptides.

  20. Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity

    PubMed Central

    Wu, Zhuo-Fu; Wang, Zhi; Zhang, Ye; Ma, Ya-Li; He, Cheng-Yan; Li, Heng; Chen, Lei; Huo, Qi-Sheng; Wang, Lei; Li, Zheng-Qiang

    2016-01-01

    Functional molecules synthesized by self-assembly between inorganic salts and amino acids have attracted much attention in recent years. A simple method is reported here for fabricating hybrid organic–inorganic nanoflowers using copper (II) ions as the inorganic component and natural amino acids as the organic component. The results indicate that the interactions between amino acid and copper ions cause the growth of the nanoflowers composed by C, N, Cu, P and O elements. The Cu ions and Cu(AA)n complexes containing Cu-O bond are present in the nanoflowers. The nanoflowers have flower-like porous structure dominated by the R groups of amino acids with high surface-to-volume ratios, which is beneficial for exerting its peroxidase-like activity depending on Fenton-like reaction mechanism with ABTS and Rhodamine B as the substrates. It is expected that the nanoflowers hold great promise as enzyme mimics for application in the field of biosensor, bioanalysis and biocatalysis. PMID:26926099

  1. Polydiacetylenyl β-cyclodextrin based smart vesicles for colorimetric assay of arginine and lysine

    NASA Astrophysics Data System (ADS)

    Cho, Eunae; Kim, Hwanhee; Choi, Youngjin; Paik, Seung R.; Jung, Seunho

    2016-08-01

    Selective visualization of arginine and lysine has been explored among 20 amino acids using the hybrid conjugate of β-cyclodextrin (β-CD) and polydiacetylene (PDA). The mono pentacosa-10,12-diynyl aminomethyl group was successfully coupled to either the primary or the secondary face of β-CD, where mono-6-amino-6-deoxy-β-CD or mono-3-amino-3-deoxy-β-CD reacted with the N-hydroxysuccinimide ester of 10,12-pentacosadiynoic acid. In this combinatorial system, the cylindrical β-cyclodextrin functions as a channel for the introduction of the cationic amino acids to the artificial membrane. The membrane perturbation and aggregation by the target amino acids could be exclusively visualized as a blue to red color change based on the responsive polydiacetylene domain. These interesting findings demonstrated that the developed β-CD conjugated PDA system may offer a new method of cell-penetrating mechanism, a promising vector system, as well as impact the production industry of arginine or lysine.

  2. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    PubMed

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  3. Synthesis and biomedical applications of functional poly(α-hydroxy acids) via ring-opening polymerization of O-carboxyanhydrides.

    PubMed

    Yin, Qian; Yin, Lichen; Wang, Hua; Cheng, Jianjun

    2015-07-21

    Poly(α-hydroxy acids) (PAHAs) are a class of biodegradable and biocompatible polymers that are widely used in numerous applications. One drawback of these conventional polymers, however, is their lack of side-chain functionalities, which makes it difficult to conjugate active moieties to PAHA or to fine-tune the physical and chemical properties of PAHA-derived materials through side-chain modifications. Thus, extensive efforts have been devoted to the development of methodology that allows facile preparation of PAHAs with controlled molecular weights and a variety of functionalities for widespread utilities. However, it is highly challenging to introduce functional groups into conventional PAHAs derived from ring-opening polymerization (ROP) of lactides and glycolides to yield functional PAHAs with favorable properties, such as tunable hydrophilicity/hydrophobicity, facile postpolymerization modification, and well-defined physicochemical properties. Amino acids are excellent resources for functional polymers because of their low cost, availability, and structural as well as stereochemical diversity. Nevertheless, the synthesis of functional PAHAs using amino acids as building blocks has been rarely reported because of the difficulty of preparing large-scale monomers and poor yields during the synthesis. The synthesis of functionalized PAHAs from O-carboxyanhydrides (OCAs), a class of five-membered cyclic anhydrides derived from amino acids, has proven to be one of the most promising strategies and has thus attracted tremendous interest recently. In this Account, we highlight the recent progress in our group on the synthesis of functional PAHAs via ROP of OCAs and their self-assembly and biomedical applications. New synthetic methodologies that allow the facile preparation of PAHAs with controlled molecular weights and various functionalities through ROP of OCAs are reviewed and evaluated. The in vivo stability, side-chain functionalities, and/or trigger responsiveness of several functional PAHAs are evaluated. Their biomedical applications in drug and gene delivery are also discussed. The ready availability of starting materials from renewable resources and the facile postmodification strategies such as azide-alkyne cycloaddition and the thiol-yne "click" reaction have enabled the production of a multitude of PAHAs with controlled molecular weights, narrow polydispersity, high terminal group fidelities, and structural diversities that are amenable for self-assembly and bioapplications. We anticipate that this new generation of PAHAs and their self-assembled nanosystems as biomaterials will open up exciting new opportunities and have widespread utilities for biological applications.

  4. Development of a complex amino acid supplement, Fatigue Reviva™, for oral ingestion: initial evaluations of product concept and impact on symptoms of sub-health in a group of males.

    PubMed

    Dunstan, R Hugh; Sparkes, Diane L; Roberts, Tim K; Crompton, Marcus J; Gottfries, Johan; Dascombe, Benjamin J

    2013-08-08

    A new dietary supplement, Fatigue Reviva™, has been recently developed to address issues related to amino acid depletion following illness or in conditions of sub-health where altered amino acid homeostasis has been associated with fatigue. Complex formulations of amino acids present significant challenges due to solubility and taste constraints. This initial study sets out to provide an initial appraisal of product palatability and to gather pilot evidence for efficacy. Males reporting symptoms of sub-health were recruited on the basis of being free from any significant medical or psychological condition. Each participant took an amino acid based dietary supplement (Fatigue Reviva™) daily for 30 days. Comparisons were then made between pre- and post-supplement general health symptoms and urinary amino acid profiles. Seventeen men took part in the study. Following amino acid supplementation the total Chalder fatigue score improved significantly (mean ± SEM, 12.5 ± 0.9 versus 10.0 ± 1.0, P<0.03). When asked whether they thought that the supplement had improved their health, 65% of participants responded positively. A subgroup of participants reported gastrointestinal symptoms which were attributed to the supplement and which were believed to result from the component fructooligosaccharide. Analysis of urinary amino acids revealed significant alterations in the relative abundances of a number of amino acids after supplementation including an increase in valine, isoleucine and glutamic acid and reduced levels of glutamine and ornithine. Discriminant function analysis of the urinary amino acid data revealed significant differences between the pre- and post-supplement urine excretion profiles. The results indicated that Fatigue Reviva™ was palatable and that 65% of the study group reported that they felt the product had improved their health. The product could provide an effective tool for the management of unexplained fatigue and symptoms of sub-health. Further product development may yield additional options for those patients susceptible to fructooligosaccharide.

  5. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation.

    PubMed

    Kitadai, Norio

    2017-03-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg 2+ ) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu 2+ ) are therefore not beneficial places for peptide bond formation on the primitive Earth.

  6. Dietary Deficiency of Essential Amino Acids Rapidly Induces Cessation of the Rat Estrous Cycle

    PubMed Central

    Bannai, Makoto; Ichimaru, Toru; Nakano, Sayako; Murata, Takuya; Higuchi, Takashi; Takahashi, Michio

    2011-01-01

    Reproductive functions are regulated by the sophisticated coordination between the neuronal and endocrine systems and are sustained by a proper nutritional environment. Female reproductive function is vulnerable to effects from dietary restrictions, suggesting a transient adaptation that prioritizes individual survival over reproduction until a possible future opportunity for satiation. This adaptation could also partially explain the existence of amenorrhea in women with anorexia nervosa. Because amino acid nutritional conditions other than caloric restriction uniquely alters amino acid metabolism and affect the hormonal levels of organisms, we hypothesized that the supply of essential amino acids in the diet plays a pivotal role in the maintenance of the female reproductive system. To test this hypothesis, we examined ovulatory cyclicity in female rats under diets that were deficient in threonine, lysine, tryptophan, methionine or valine. Ovulatory cyclicity was monitored by daily cytological evaluations of vaginal smears. After continuous feeding of the deficient diet, a persistent diestrus or anovulatory state was induced most quickly by the valine-deficient diet and most slowly by the lysine-deficient diet. A decline in the systemic insulin-like growth factor 1 level was associated with a dietary amino acid deficiency. Furthermore, a paired group of rats that were fed an isocaloric diet with balanced amino acids maintained normal estrous cyclicity. These disturbances of the estrous cycle by amino acid deficiency were quickly reversed by the consumption of a normal diet. The continuous anovulatory state in this study is not attributable to a decrease in caloric intake but to an imbalance in the dietary amino acid composition. With a shortage of well-balanced amino acid sources, reproduction becomes risky for both the mother and the fetus. It could be viewed as an adaptation to the diet, diverting resources away from reproduction and reallocating them to survival until well-balanced amino acid sources are found. PMID:22132231

  7. A palladium iodide-catalyzed carbonylative approach to functionalized pyrrole derivatives.

    PubMed

    Gabriele, Bartolo; Veltri, Lucia; Mancuso, Raffaella; Salerno, Giuseppe; Maggi, Sabino; Aresta, Brunella Maria

    2012-04-20

    A novel and convenient approach to functionalized pyrroles is presented, based on Pd-catalyzed oxidative heterocyclization-alkoxycarbonylation of readily available N-Boc-1-amino-3-yn-2-ols. Reactions were carried out in alcoholic solvents at 80-100 °C and under 20 atm (at 25 °C) of a 4:1 mixture of CO-air, in the presence of the PdI(2)-KI catalytic system (2-5 mol % of PdI(2), KI/PdI(2) molar ratio = 10). In the case of N-Boc-1-amino-3-yn-2-ols 3, bearing alkyl or aryl substituents, the carbonylation reaction led to a mixture of Boc-protected and N-unsubstituted pyrrole-3-carboxylic esters 4 and 5, respectively. This mixture could be conveniently and quantitatively converted into deprotected pyrrole-3-carboxylic esters 5 by a simple basic treatment. In the case of diastereomeric (3RS,4RS)- and (3RS,4SR)-N-Boc-3-amino-2-methyldec-5-yn-4-ol (syn-3f and anti-3f, respectively, whose relative configuration was determined by X-ray crystallographic analysis), no particular difference was observed in the reactivity of the two diastereomers between them and with respect to the diastereomeric mixture (3S,4S) + (3S,4R). Interestingly, N-Boc-2-alkynyl-1-amino-3-yn-2-ols 6, bearing an additional alkynyl substituent α to the hydroxyl group, spontaneously underwent N-deprotection under the reaction conditions and regioselective water addition to the alkynyl group at C-3 of the corresponding pyrrole-3-carboxylic ester derivative, thus directly affording highly functionalized pyrrole derivatives 7 in one step. In a similar manner, a novel functionalized dihydropyrrolizine derivative 9 was directly synthesized starting from (S)-7-(pyrrolidin-2-yl)trideca-5,8-diyn-7-ol 8. © 2012 American Chemical Society

  8. Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes.

    PubMed

    Bottini, Massimo; D'Annibale, Federica; Magrini, Andrea; Cerignoli, Fabio; Arimura, Yutaka; Dawson, Marcia I; Bergamaschi, Enrico; Rosato, Nicola; Bergamaschi, Antonio; Mustelin, Tomas

    2007-01-01

    To enhance diagnostic or therapeutic efficacy, novel nanomaterials must be engineered to function in biologically relevant environments, be visible by conventional fluorescent microscopy, and have multivalent loading capacity for easy detection or effective drug delivery. Here we report the fabrication of silica nanoparticles doped with quantum dots and superficially functionalized with amino and phosphonate groups. The amino groups were acylated with a water-soluble biotin-labeling reagent. The biotinylated nanoparticles were subsequently decorated with neutravidin by exploiting the strong affinity between neutravidin and biotin. The resultant neutravidin-decorated fluorescent silica nanoparticles stably dispersed under physiological conditions, were visible by conventional optical and confocal fluorescent microscopy, and could be further functionalized with macromolecules, nucleic acids, and polymers. We also coated the surface of the nanoparticles with biotinylated mouse anti-human CD3 (alphaCD3). The resultant fluorescent nanoassembly was taken up by Jurkat T cells through receptor-mediated endocytosis and was partially released to lysosomes. Thus, quantum dot-doped silica nanoparticles decorated with neutravidin represent a potentially excellent scaffold for constructing specific intracellular nanoprobes and transporters.

  9. Differential ammonia metabolism in Aedes aegypti fat body and midgut tissues

    PubMed Central

    Scaraffia, Patricia Y.; Zhang, Quigfen; Thorson, Kelsey; Wysocki, Vicki H.; Miesfeld, Roger L.

    2010-01-01

    In order to understand at the tissue level how Aedes aegypti copes with toxic ammonia concentrations that result from the rapid metabolism of blood meal proteins, we investigated the incorporation of 15N from 15NH4Cl into amino acids using an in vitro tissue culture system. Fat body or midgut tissues from female mosquitoes were incubated in an Aedes saline solution supplemented with glucose and 15NH4Cl for 10–40 minutes. The media was then mixed with deuterium-labeled amino acids, dried and derivatized. The 15N-labeled and unlabeled amino acids in each sample were quantified by mass spectrometry techniques. The results demonstrate that both tissues efficiently incorporate ammonia into amino acids, however, the specific metabolic pathways are distinct. In the fat body, the 15N from 15NH4Cl is first incorporated into the amide side chain of Gln and then into the amino group of Gln, Glu, Ala and Pro. This process mainly occurs via the glutamine synthetase (GS) and glutamate synthase (GltS) pathway. In contrast, 15N in midgut is first incorporated into the amino group of Glu and Ala, and then into the amide side chain of Gln. Interestingly, our data show that the GS/GltS pathway is not functional in the midgut. Instead, midgut cells detoxify ammonia by glutamate dehydrogenase, alanine aminotransferase and GS. These data provide new insights into ammonia metabolism in A. aegypti mosquitoes. PMID:20206632

  10. Chemoselective N-arylation of aminobenzamides via copper catalysed Chan-Evans-Lam reactions.

    PubMed

    Liu, Shuai; Zu, Weisai; Zhang, Jinli; Xu, Liang

    2017-11-15

    Chemoselective N-arylation of unprotected aminobenzamides was achieved via Cu-catalysed Chan-Evans-Lam cross-coupling with aryl boronic acids for the first time. Simple copper catalysts enable the selective arylation of amino groups in ortho/meta/para-aminobenzamides under open-flask conditions. The reactions were scalable and compatible with a wide range of functional groups.

  11. The acetylation of insulin

    PubMed Central

    Lindsay, D. G.; Shall, S.

    1971-01-01

    The acetylation of the free amino groups of insulin was studied by reaction of the hormone with N-hydroxysuccinimide acetate at pH6.9 and 8.5. The products formed were separated by chromatography on DEAE-Sephadex and were characterized by isoelectric focusing, by end-group analysis, by the incorporation of [3H]acetyl groups in the molecule, and by treatment with trypsin that had been treated with 1-chloro-4-phenyl-3-toluene-p-sulphonamidobutan-2-one (`tosylphenylalanyl chloromethyl ketone'). Three monosubstituted products, two disubstituted products and one trisubstituted derivative were prepared. The α-amino groups of the terminal residues and the ∈-amino group of the lysine-B29 were the sites of reaction. Acetylation of any of the free amino groups did not affect the biological activity of insulin. It was demonstrated, however, that substitution at the glycine-A1 amino group by the larger residues, acetoacetyl or thiazolidinecarbonyl, produced a decrease in biological activity. Modification of the lysine-B29 or phenylalanine-B1 amino groups with these larger reagents did not affect the biological activity. Modification of the phenylalanine-B1 amino group by any of the three substituents resulted in a large decrease in the affinity of insulin for anti-insulin antibodies raised in the guinea pig. Modification of the other two amino groups did not affect the reaction with antibody. These observations are correlated with the tertiary structure of insulin. ImagesFig. 4. PMID:5113488

  12. Positive selection results in frequent reversible amino acid replacements in the G protein gene of human respiratory syncytial virus.

    PubMed

    Botosso, Viviane F; Zanotto, Paolo M de A; Ueda, Mirthes; Arruda, Eurico; Gilio, Alfredo E; Vieira, Sandra E; Stewien, Klaus E; Peret, Teresa C T; Jamal, Leda F; Pardini, Maria I de M C; Pinho, João R R; Massad, Eduardo; Sant'anna, Osvaldo A; Holmes, Eddie C; Durigon, Edison L

    2009-01-01

    Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a "flip-flop" phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites.

  13. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial.

    PubMed

    Villegas, María F; Garcia-Uriostegui, Lorena; Rodríguez, Ofelia; Izquierdo-Barba, Isabel; Salinas, Antonio J; Toriz, Guillermo; Vallet-Regí, María; Delgado, Ezequiel

    2017-09-26

    This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR) studies of lysine-grafted MCM-41 (MCM-LYS) simultaneously showed bands at 3080 and 1540 cm -1 and bands at 1625 and 1415 cm -1 corresponding to -NH 3+ /COO - pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%). This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion.

  14. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial

    PubMed Central

    Villegas, María F.; Garcia-Uriostegui, Lorena; Rodríguez, Ofelia; Izquierdo-Barba, Isabel; Salinas, Antonio J.; Toriz, Guillermo; Vallet-Regí, María; Delgado, Ezequiel

    2017-01-01

    This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR) studies of lysine-grafted MCM-41 (MCM-LYS) simultaneously showed bands at 3080 and 1540 cm−1 and bands at 1625 and 1415 cm−1 corresponding to -NH3+/COO− pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%). This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion. PMID:28952559

  15. Synthesis of Novel Cellulose Carbamates Possessing Terminal Amino Groups and Their Bioactivity.

    PubMed

    Ganske, Kristin; Wiegand, Cornelia; Hipler, Uta-Christina; Heinze, Thomas

    2016-03-01

    Cellulose phenyl carbonates are an excellent platform to synthesize a broad variety of soluble and functional cellulose carbamates. In this study, the synthesis of cellulose carbamates with terminal amino groups, namely ω-aminoethylcellulose- and ω-aminoethyl-p-aminobenzyl-cellulose carbamate, is discussed. The products are well soluble and their structures can be clearly described by NMR spectroscopy. The cellulose carbamates exhibit a bactericide and fungicide activity in vitro. The ω-aminoethylcellulose carbamate possesses a strong activity against Candida albicans and Staphylococcus aureus (IC50 of 0.02 mg mL(-1) and 0.05 mg mL(-1)). The antimicrobial activity and cytotoxicity can be improved by p-amino-benzylamine (ABA) as an additional substituent. The mixed cellulose carbamate exhibits a high biocompatibility (LC50 of 3.18 mg mL(-1)) and forms films on cotton and PES, which exhibit a strong activity against S. aureus and Klebsiella pneumoniae. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evolutionary Analysis of Functional Divergence among Chemokine Receptors, Decoy Receptors, and Viral Receptors

    PubMed Central

    Daiyasu, Hiromi; Nemoto, Wataru; Toh, Hiroyuki

    2012-01-01

    Chemokine receptors (CKRs) function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologs with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback–Leibler (KL) information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors. PMID:22855685

  17. Evolutionary Analysis of Functional Divergence among Chemokine Receptors, Decoy Receptors, and Viral Receptors.

    PubMed

    Daiyasu, Hiromi; Nemoto, Wataru; Toh, Hiroyuki

    2012-01-01

    Chemokine receptors (CKRs) function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologs with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback-Leibler (KL) information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors.

  18. Relative reactivity of amino acids with chlorine in mixtures.

    PubMed

    Na, Chongzheng; Olson, Terese M

    2007-05-01

    The relative reactivity of chlorine with amino acids is an important determinant of the resulting chlorination products in systems where chlorine is the limiting reagent, for example, in the human gastrointestinal tract after consumption of chlorine-containing water, or during food preparation with chlorinated water. Since few direct determinations of the initial reactivity of chlorine with amino acids have been made, 17 amino acids were compared in this study using competitive kinetic principles. The experimental results showed that (1) most amino acids have similar initial reactivities at neutral pH; (2) amino acids with thiol groups such as methionine and cysteine are exceptionally reactive and produce sulfoxides; (3) amino acids without thiol groups primarily undergo monochlorination of the amino nitrogen; and (4) glycine and proline are the least reactive. Dichlorination was estimated to occur with approximately 26% of the amino acid groups when the total amino acid: chlorine concentrations were equal.

  19. Growth, structural, spectral, optical, and thermal studies on amino acid based new NLO single crystal: L-phenylalanine-4-nitrophenol.

    PubMed

    Prakash, M; Lydia Caroline, M; Geetha, D

    2013-05-01

    A new organic nonlinear optical single crystal, L-phenylalanine-4-nitrophenol (LPAPN) belonging to the amino acid group has been successfully grown by slow evaporation technique. The lattice parameters of the grown crystal have been determined by X-ray diffraction studies. FT-IR spectrum was recorded to identify the presence of functional group and molecular structure was confirmed by NMR spectrum. Thermal strength of the grown crystal has been studied using TG-DTA analyses. The grown crystals were found to be transparent in the entire visible region. The existence of second harmonic generation signals was observed using Nd:YAG laser with fundamental wavelength of 1064 nm. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Influence of reagents reacting with metal, thiol and amino sites of catalytic activity and l-phenylalanine inhibition of rat intestinal alkaline phosphatase

    PubMed Central

    Fishman, William H.; Ghosh, Nimai K.

    1967-01-01

    1. Studies on the inactivation of rat intestinal alkaline phosphatase by several metal-binding agents, namely EDTA, 8-hydroxyquinoline, pyridine-2,6-dicarboxylic acid, αα′-bipyridyl, o-phenanthroline and sodium cyanide, indicated the functional role of a metal, probably zinc, in the catalysis. The metal ligands lowered stereospecific uncompetitive inhibition of the enzyme by l-phenylalanine by an extent that paralleled the decline in enzyme activity. 2. The thiol reagents p-hydroxymercuribenzoate, iodoacetamide and iodine inactivated rat intestinal phosphatase. The enzyme could be protected from inactivation by either cysteine or substrate. The l-phenylalanine inhibition remained unchanged only in the presence of moderately inactivating concentrations of the thiol reagents. 3. Inactivation of the enzyme by the amino-group-blocking reagent, O-methylisourea, provided ample evidence for the participation in the catalysis of the ∈-amino group of lysine. At the same time, l-phenylalanine inhibition remained unaltered even when the enzyme was strongly inactivated. This ∈-amino-group-blocked enzyme exhibited no change in migration in starch gel, in contrast with enzyme treated with acetic anhydride, formaldehyde or succinic anhydride. The Michaelis constant of the enzyme was enhanced by such modifications, but the optimum pH remained the same. 4. d-Phenylalanine acted as a competitive or `co-operative' activator for intestinal alkaline phosphatase after it had been modified by acetylation. PMID:16742542

  1. Glutamine Transporters in Mammalian Cells and Their Functions in Physiology and Cancer

    PubMed Central

    Bhutia, Yangzom D.; Ganapathy, Vadivel

    2016-01-01

    The SLC (solute carrier)-type transporters (∼400 in number) in mammalian cells consist of 52 distinct gene families, grouped solely based on the amino acid sequence (primary structure) of the transporter proteins and not on their transport function. Among them are the transporters for amino acids. Fourteen of them, capable of transporting glutamine across the plasma membrane, are found in four families: SLC1, SLC6, SLC7, and SLC38. However, it is generally thought that the members of the SLC38 family are the principal transporters for glutamine. Some of the glutamine transporters are obligatory exchangers whereas some function as active transporters in one direction. While most glutamine transporters mediate the influx of the amino acid into cells, some actually mediate the efflux of the amino acid out of the cells. Glutamine transporters play important roles in a variety of tissues, including the liver, brain, kidney, and placenta, as clearly evident from the biological and biochemical phenotypes resulting from the deletion of specific glutamine transporters in mice. Owing to the obligatory role of glutamine in growth and proliferation of tumor cells, there is increasing attention on glutamine transporters in cancer biology as potential drug targets for cancer treatment. Selective blockers of certain glutamine transporters might be effective in preventing the entry of glutamine and other important amino acids into tumor cells, thus essentially starving these cells to death. This could represent the beginning of a new era in the discovery of novel anticancer drugs with a previously unexplored mode of action. PMID:26724577

  2. An amino-functionalized magnetic framework composite of type Fe3O4-NH2@MIL-101(Cr) for extraction of pyrethroids coupled with GC-ECD.

    PubMed

    He, Xi; Yang, Wei; Li, Sijia; Liu, Yu; Hu, Baichun; Wang, Ting; Hou, Xiaohong

    2018-01-24

    An amino-functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized using a solvothermal method. The material was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption, and magnetometry. The composite combines the advantages of amino-modified Fe 3 O 4 and MIL-101(Cr). The presence of amino groups facilitates the fairly specific adsorption of pyrethroids. The composite was employed as a sorbent for magnetic solid phase extraction of five pyrethroids from environmental water samples. Following desorption with acidified acetone, the pyrethroids were quantified by gas chromatography with electron capture detection. The detection limits for bifenthrin, fenpropathrin, λ-cyhalothrin, permethrin, and deltamethrin range from 5 to 9 pg·mL -1 . The method is rapid, accurate, and highly sensitive. The molecular interactions and free binding energies between MIL-101(Cr) and the five pyrethroids were calculated by means of molecular docking. Graphical abstract A novel functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized. It was applied as a sorbent for magnetic solid phase extraction of pyrethroids prior to their quantitation by gas chromatography with electron capture detection. The molecular interactions of analytes and MIL-101(Cr) were studied.

  3. Simple, benign, aqueous-based amination of polycarbonate surfaces

    DOE PAGES

    VanDelinder, Virginia; Wheeler, David R.; Small, Leo J.; ...

    2015-03-18

    Here we report a simple, safe, environmentally-friendly aqueous method that uses diamines to functionalize a polycarbonate surface with amino groups. We demonstrate the ability of this facile method to serve as a foundation upon which other functionalities may be attached, including anti-fouling coatings and oriented membrane proteins. The use of water as the solvent for the functionalization ensures that solvent induced swelling does not affect the optical or mechanical properties of the polycarbonate.

  4. Characterization and prediction of residues determining protein functional specificity.

    PubMed

    Capra, John A; Singh, Mona

    2008-07-01

    Within a homologous protein family, proteins may be grouped into subtypes that share specific functions that are not common to the entire family. Often, the amino acids present in a small number of sequence positions determine each protein's particular functional specificity. Knowledge of these specificity determining positions (SDPs) aids in protein function prediction, drug design and experimental analysis. A number of sequence-based computational methods have been introduced for identifying SDPs; however, their further development and evaluation have been hindered by the limited number of known experimentally determined SDPs. We combine several bioinformatics resources to automate a process, typically undertaken manually, to build a dataset of SDPs. The resulting large dataset, which consists of SDPs in enzymes, enables us to characterize SDPs in terms of their physicochemical and evolutionary properties. It also facilitates the large-scale evaluation of sequence-based SDP prediction methods. We present a simple sequence-based SDP prediction method, GroupSim, and show that, surprisingly, it is competitive with a representative set of current methods. We also describe ConsWin, a heuristic that considers sequence conservation of neighboring amino acids, and demonstrate that it improves the performance of all methods tested on our large dataset of enzyme SDPs. Datasets and GroupSim code are available online at http://compbio.cs.princeton.edu/specificity/. Supplementary data are available at Bioinformatics online.

  5. The Effect of IV Amino Acid Supplementation on Mortality in ICU Patients May Be Dependent on Kidney Function: Post Hoc Subgroup Analyses of a Multicenter Randomized Trial.

    PubMed

    Zhu, Ran; Allingstrup, Matilde J; Perner, Anders; Doig, Gordon S

    2018-05-15

    We investigated whether preexisting kidney function determines if ICU patients may benefit from increased (2.0 g/kg/d) protein intake. Post hoc, hypothesis-generating, subgroup analysis of a multicenter, phase 2, randomized clinical trial. All analyses were conducted by intention to treat and maintained group allocation. Ninety-day mortality was the primary outcome. ICUs of 16 hospitals throughout Australia and New Zealand. Adult critically ill patients expected to remain in the study ICU for longer than 2 days. Random allocation to receive a daily supplement of up to 100 g of IV amino acids to achieve a total protein intake of 2.0 g/kg/d or standard nutrition care. A total of 474 patients were randomized: 235 to standard care and 239 to IV amino acid supplementation. There was a statistically significant interaction between baseline kidney function and supplementation with study amino acids (p value for interaction = 0.026). Within the subgroup of patients with normal kidney function at randomization, patients who were allocated to receive the study amino acid supplement were less likely to die before study day 90 (covariate-adjusted risk difference, -7.9%; 95% CI, -15.1 to -0.7; p = 0.034). Furthermore, amino acid supplementation significantly increased estimated glomerular filtration rate in these patients (repeated-measures treatment × time interaction p = 0.009). Within the subgroup of patients with baseline kidney dysfunction and/or risk of progression of acute kidney injury, a significant effect of the study intervention on mortality was not found (covariate-adjusted risk difference, -0.6%; 95% CI, -16.2 to 15.2; p = 0.95). In this post hoc, hypothesis-generating, subgroup analysis, we observed reduced mortality and improved estimated glomerular filtration rate in ICU patients with normal kidney function who were randomly allocated to receive increased protein intake (up to 2.0 g/kg/d). We strongly recommend confirmation of these results in trials with low risk of bias before this treatment is recommended for routine care.

  6. Effect of intraoperative amino acids with or without glucose infusion on body temperature, insulin, and blood glucose levels in patients undergoing laparoscopic colectomy: a preliminary report.

    PubMed

    Fujita, Yasuki; Tokunaga, Chiharu; Yamaguchi, Sayo; Nakamura, Kayo; Horiguchi, Yuu; Kaneko, Michiko; Iwakura, Takeo

    2014-09-01

    Amino acid administration helps to prevent intraoperative hypothermia but may enhance thermogenesis when combined with glucose infusion. The aim of this study was to examine the effect of intraoperative amino acid administration, with or without glucose infusion, on temperature regulation during laparoscopic colectomy. Twenty-one patients whose physical status was classified I or II by the American Society of Anesthesiologists, and who were undergoing elective laparoscopic colectomy were enrolled. The exclusion criteria were a history of diabetes and/or obesity, preoperative high levels of C-reactive protein, high blood glucose and/or body temperature after anesthesia induction, and surgical time >500 minutes. Each patient received an acetate ringer solution and was randomly assigned to one of three groups. Group A patients were given only amino acids. Group AG patients were given amino acids and glucose. Group C patients were given neither amino acids nor glucose. Tympanic membrane temperatures and blood glucose and insulin levels were measured intraoperatively. Intraoperative amino acid infusion significantly increased body temperature during surgery as compared with either Group AG or C. The blood glucose levels in Group AG were significantly higher than those in Groups A and C. However, there were no significant differences between Groups A and C. Two hours after anesthesia induction, serum insulin levels in Groups A and AG significantly increased compared with Group C. No significant differences in the postoperative complications or patient hospitalization lengths were detected between the groups. Intraoperative amino acid infusion without glucose administration maintains body temperature more effectively than combined amino acid and glucose infusion in patients undergoing laparoscopic colectomy, despite unaltered intraoperative insulin levels. Copyright © 2014. Published by Elsevier B.V.

  7. Incorporation of a Doubly Functionalized Synthetic Amino Acid into Proteins for Creating Chemical and Light-Induced Conjugates.

    PubMed

    Yamaguchi, Atsushi; Matsuda, Takayoshi; Ohtake, Kazumasa; Yanagisawa, Tatsuo; Yokoyama, Shigeyuki; Fujiwara, Yoshihisa; Watanabe, Takayoshi; Hohsaka, Takahiro; Sakamoto, Kensaku

    2016-01-20

    Z-Lysine (ZLys) is a lysine derivative with a benzyloxycarbonyl group linked to the ε-nitrogen. It has been genetically encoded with the UAG stop codon, using the pair of an engineered variant of pyrrolysyl-tRNA synthetase (PylRS) and tRNA(Pyl). In the present study, we designed a novel Z-lysine derivative (AmAzZLys), which is doubly functionalized with amino and azido substituents at the meta positions of the benzyl moiety, and demonstrated its applicability for creating protein conjugates. AmAzZLys was incorporated into proteins in Escherichia coli, by using the ZLys-specific PylRS variant. AmAzZLys was then site-specifically incorporated into a camelid single-domain antibody specific to the epidermal growth factor receptor (EGFR). A one-pot reaction demonstrated that the phenyl amine and azide were efficiently linked to the 5 kDa polyethylene glycol and a fluorescent probe, respectively, through specific bio-orthogonal chemistry. The antibody was then tested for the ability to form a photo-cross-link between its phenylazide moiety and the antigen, while the amino group on the same ring was used for chemical labeling. When incorporated at a selected position in the antibody and exposed to 365 nm light, AmAzZLys formed a covalent bond with the EGFR ectodomain, with the phenylamine moiety labeled fluorescently prior to the reaction. The present results illuminated the versatility of the ZLys scaffold, which can accommodate multiple reactive groups useful for protein conjugation.

  8. Charge-based characterization of nanometric cationic bifunctional maghemite/silica core/shell particles by capillary zone electrophoresis.

    PubMed

    d'Orlyé, Fanny; Varenne, Anne; Georgelin, Thomas; Siaugue, Jean-Michel; Teste, Bruno; Descroix, Stéphanie; Gareil, Pierre

    2009-07-01

    In view of employing functionalized nanoparticles (NPs) in the context of an immunodiagnostic, aminated maghemite/silica core/shell particles were synthesized so as to be further coated with an antibody or an antigen via the amino groups at their surface. Different functionalization rates were obtained by coating these maghemite/silica core/shell particles with 3-(aminopropyl)triethoxysilane and 2-[methoxy(polyethyleneoxy)propyl]-trimethoxysilane at different molar ratios. Adequate analytical performances with CE coupled with UV-visible detection were obtained through semi-permanent capillary coating with didodecyldimethyl-ammonium bromide, thus preventing particle adsorption. First, the influence of experimental conditions such as electric field strength, injected particle amount as well as electrolyte ionic strength and pH, was evaluated. A charge-dependent electrophoretic mobility was evidenced and the separation selectivity was tuned according to electrolyte ionic strength and pH. The best resolutions were obtained at pH 8.0, high ionic strength (ca. 100 mM), and low total particle volume fraction (ca. 0.055%), thus eliminating interference effects between different particle populations in mixtures. A protocol derived from Kaiser's original description was performed for quantitation of the primary amino groups attached onto the NP surface. Thereafter a correlation between particle electrophoretic mobility and the density of amino groups at their surface was established. Eventually, CE proved to be an easy, fast, and reliable method for the determination of NP effective surface charge density.

  9. Mutagenesis of the La Crosse Virus glycoprotein supports a role for Gc (1066-1087) as the fusion peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plassmeyer, Matthew L.; Graduate Group Molecular and Cell Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; Soldan, Samantha S.

    The La Crosse Virus (LACV) M segment encodes two glycoproteins (Gn and Gc), and plays a critical role in the neuropathogenesis of LACV infection as the primary determinant of neuroinvasion. A recent study from our group demonstrated that the region comprising the membrane proximal two-thirds of Gc, amino acids 860-1442, is critical in mediating LACV fusion and entry. Furthermore, computational analysis identified structural similarities between a portion of this region, amino acids 970-1350, and the E1 fusion protein of two alphaviruses: Sindbis virus and Semliki Forrest virus (SFV). Within the region 970-1350, a 22-amino-acid hydrophobic segment (1066-1087) is predicted tomore » correlate structurally with the fusion peptides of class II fusion proteins. We performed site-directed mutagenesis of key amino acids in this 22-amino acid segment and determined the functional consequences of these mutations on fusion and entry. Several mutations within this hydrophobic domain affected glycoprotein expression to some extent, but all mutations either shifted the pH threshold of fusion below that of the wild-type protein, reduced fusion efficiency, or abrogated cell-to-cell fusion and pseudotype entry altogether. These results, coupled with the aforementioned computational modeling, suggest that the LACV Gc functions as a class II fusion protein and support a role for the region Gc 1066-1087 as a fusion peptide.« less

  10. Substrate-binding specificity of chitinase and chitosanase as revealed by active-site architecture analysis.

    PubMed

    Liu, Shijia; Shao, Shangjin; Li, Linlin; Cheng, Zhi; Tian, Li; Gao, Peiji; Wang, Lushan

    2015-12-11

    Chitinases and chitosanases, referred to as chitinolytic enzymes, are two important categories of glycoside hydrolases (GH) that play a key role in degrading chitin and chitosan, two naturally abundant polysaccharides. Here, we investigate the active site architecture of the major chitosanase (GH8, GH46) and chitinase families (GH18, GH19). Both charged (Glu, His, Arg, Asp) and aromatic amino acids (Tyr, Trp, Phe) are observed with higher frequency within chitinolytic active sites as compared to elsewhere in the enzyme structure, indicating significant roles related to enzyme function. Hydrogen bonds between chitinolytic enzymes and the substrate C2 functional groups, i.e. amino groups and N-acetyl groups, drive substrate recognition, while non-specific CH-π interactions between aromatic residues and substrate mainly contribute to tighter binding and enhanced processivity evident in GH8 and GH18 enzymes. For different families of chitinolytic enzymes, the number, type, and position of substrate atoms bound in the active site vary, resulting in different substrate-binding specificities. The data presented here explain the synergistic action of multiple enzyme families at a molecular level and provide a more reasonable method for functional annotation, which can be further applied toward the practical engineering of chitinases and chitosanases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Shannon Entropy of the Canonical Genetic Code

    NASA Astrophysics Data System (ADS)

    Nemzer, Louis

    The probability that a non-synonymous point mutation in DNA will adversely affect the functionality of the resultant protein is greatly reduced if the substitution is conservative. In that case, the amino acid coded by the mutated codon has similar physico-chemical properties to the original. Many simplified alphabets, which group the 20 common amino acids into families, have been proposed. To evaluate these schema objectively, we introduce a novel, quantitative method based on the inherent redundancy in the canonical genetic code. By calculating the Shannon information entropy carried by 1- or 2-bit messages, groupings that best leverage the robustness of the code are identified. The relative importance of properties related to protein folding - like hydropathy and size - and function, including side-chain acidity, can also be estimated. In addition, this approach allows us to quantify the average information value of nucleotide codon positions, and explore the physiological basis for distinguishing between transition and transversion mutations. Supported by NSU PFRDG Grant #335347.

  12. High sensitive virus and bacteria detection using plasma-surface-functionalized and antibody-integrated carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Nagatsu, Masaaki

    2015-09-01

    In this study we will present our recent results on the virus and bacteria detection system using the surface-functionalized carbon-encapsulated magnetic nanoparticles (NPs) fabricated by dc arc discharge, and carbon nanotube(CNT) dot-array prepared with a combined thermal and plasma CVD system. Surface functionalization of their surfaces has been carried out by plasma chemical modification using a low-pressure RF plasma for carbon-encapsulated magnetic NPs, and an ultrafine atmospheric pressure plasma jet(APPJ) for CNT dot-array substrate. After immobilization of the relevant biomolecules onto the surface of nano-structured materials, we have carried out the experiments on virus or bacteria detection using these surface-functionalized nano-structured materials. From the preliminary experiments with carbon-encapsulated magnetic NPs, we confirmed that influenza A (H1N1) virus concentration of 17.3-fold was achieved by using anti-influenza A virus hemagglutinin (HA) antibody. We have also confirmed a rapid and sensitive detection of Salmonella using the proposed method. The feasibility of CNT dot-array as a microarray biosensor has been studied by maskless functionalization of amino (-NH2) and carboxyl (-COOH) groups onto CNTs by using a ultrafine APPJ with a micro-capillary. The experimental results of chemical derivatization with the fluorescent dye showed that the CNT dot-array was not only functionalized with amino group and carboxyl group, but was also functionalized without any interference between functional groups. The success of maskless functionalization in the line pattern provides a feasibility of a multi-functionalization CNT dot-array device for future application of a microarray biosensor. This work has been supported in part by Grant-in-Aid for Scientific Research (Nos. 21110010 and 25246029) from the JSPS and the International Research Collaboration and Scientific Publication Grant (DIPA-23.04.1.673453/2015) from DGHE Indonesia.

  13. Controlled synthesis of phosphorylcholine derivatives of poly(serine) and poly(homoserine).

    PubMed

    Yakovlev, Ilya; Deming, Timothy J

    2015-04-01

    We report methods for the synthesis of polypeptides that are fully functionalized with desirable phosphorylcholine, PC, groups. Because of the inherent challenges in the direct incorporation of the PC group into α-amino acid N-carboxyanhydride (NCA) monomers, we developed a synthetic approach that combined functional NCA polymerization with efficient postpolymerization modification. While poly(L-phosphorylcholine serine) was found to be unstable upon synthesis, we successfully prepared poly(L-phosphorylcholine homoserine) with controlled chain lengths and found these to be water-soluble with disordered chain conformations.

  14. New Chemistry with Old Functional Groups: On the Reaction of Isonitriles with Carboxylic Acids - A Route to Various Amide Types

    PubMed Central

    Li, Xuechen; Danishefsky, Samuel J.

    2008-01-01

    Thermolysis of isonitriles with carboxylic acids provides, in one step, N-formyl imides (see, for example 8 + 19 → 21). The resultant N-formyl group can be converted to N-H, NCH2OH or NCH3. This chemistry allows for a new route for synthesizing β-N (asparagine) linked glycosyl amino acids. PMID:18370392

  15. Biochemical characterization and structural insight into aliphatic β-amino acid adenylation enzymes IdnL1 and CmiS6.

    PubMed

    Cieślak, Jolanta; Miyanaga, Akimasa; Takaku, Ryoma; Takaishi, Makoto; Amagai, Keita; Kudo, Fumitaka; Eguchi, Tadashi

    2017-07-01

    Macrolactam antibiotics such as incednine and cremimycin possess an aliphatic β-amino acid as a starter unit of their polyketide chain. In the biosynthesis of incednine and cremimycin, unique stand-alone adenylation enzymes IdnL1 and CmiS6 select and activate the proper aliphatic β-amino acid as a starter unit. In this study, we describe the enzymatic characterization and the structural basis of substrate specificity of IdnL1 and CmiS6. Functional analysis revealed that IdnL1 and CmiS6 recognize 3-aminobutanoic acid and 3-aminononanoic acid, respectively. We solved the X-ray crystal structures of IdnL1 and CmiS6 to understand the recognition mechanism of these aliphatic β-amino acids. These structures revealed that IdnL1 and CmiS6 share a common recognition motif that interacts with the β-amino group of the substrates. However, the hydrophobic side-chains of the substrates are accommodated differently in the two enzymes. IdnL1 has a bulky Leu220 located close to the terminal methyl group of 3-aminobutanoate of the trapped acyl-adenylate intermediate to construct a shallow substrate-binding pocket. In contrast, CmiS6 possesses Gly220 at the corresponding position to accommodate 3-aminononanoic acid. This structural observation was supported by a mutational study. Thus, the size of amino acid residue at the 220 position is critical for the selection of an aliphatic β-amino acid substrate in these adenylation enzymes. Proteins 2017; 85:1238-1247. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. High-throughput sequencing technology to reveal the composition and function of cecal microbiota in Dagu chicken.

    PubMed

    Xu, Yunhe; Yang, Huixin; Zhang, Lili; Su, Yuhong; Shi, Donghui; Xiao, Haidi; Tian, Yumin

    2016-11-04

    The chicken gut microbiota is an important and complicated ecosystem for the host. They play an important role in converting food into nutrient and energy. The coding capacity of microbiome vastly surpasses that of the host's genome, encoding biochemical pathways that the host has not developed. An optimal gut microbiota can increase agricultural productivity. This study aims to explore the composition and function of cecal microbiota in Dagu chicken under two feeding modes, free-range (outdoor, OD) and cage (indoor, ID) raising. Cecal samples were collected from 24 chickens across 4 groups (12-w OD, 12-w ID, 18-w OD, and 18-w ID). We performed high-throughput sequencing of the 16S rRNA genes V4 hypervariable regions to characterize the cecal microbiota of Dagu chicken and compare the difference of cecal microbiota between free-range and cage raising chickens. It was found that 34 special operational taxonomic units (OTUs) in OD groups and 4 special OTUs in ID groups. 24 phyla were shared by the 24 samples. Bacteroidetes was the most abundant phylum with the largest proportion, followed by Firmicutes and Proteobacteria. The OD groups showed a higher proportion of Bacteroidetes (>50 %) in cecum, but a lower Firmicutes/Bacteroidetes ratio in both 12-w old (0.42, 0.62) and 18-w old groups (0.37, 0.49) compared with the ID groups. Cecal microbiota in the OD groups have higher abundance of functions involved in amino acids and glycan metabolic pathway. The composition and function of cecal microbiota in Dagu chicken under two feeding modes, free-range and cage raising are different. The cage raising mode showed a lower proportion of Bacteroidetes in cecum, but a higher Firmicutes/Bacteroidetes ratio compared with free-range mode. Cecal microbiota in free-range mode have higher abundance of functions involved in amino acids and glycan metabolic pathway.

  17. Crystal structure of bacillus subtilis YdaF protein : a putative ribosomal N-acetyltransferase.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunzelle, J. S.; Wu, R.; Korolev, S. V.

    2004-12-01

    Comparative sequence analysis suggests that the ydaF gene encodes a protein (YdaF) that functions as an N-acetyltransferase, more specifically, a ribosomal N-acetyltransferase. Sequence analysis using basic local alignment search tool (BLAST) suggests that YdaF belongs to a large family of proteins (199 proteins found in 88 unique species of bacteria, archaea, and eukaryotes). YdaF also belongs to the COG1670, which includes the Escherichia coli RimL protein that is known to acetylate ribosomal protein L12. N-acetylation (NAT) has been found in all kingdoms. NAT enzymes catalyze the transfer of an acetyl group from acetyl-CoA (AcCoA) to a primary amino group. Formore » example, NATs can acetylate the N-terminal {alpha}-amino group, the {epsilon}-amino group of lysine residues, aminoglycoside antibiotics, spermine/speridine, or arylalkylamines such as serotonin. The crystal structure of the alleged ribosomal NAT protein, YdaF, from Bacillus subtilis presented here was determined as a part of the Midwest Center for Structural Genomics. The structure maintains the conserved tertiary structure of other known NATs and a high sequence similarity in the presumed AcCoA binding pocket in spite of a very low overall level of sequence identity to other NATs of known structure.« less

  18. Unexpected Hydrolytic Instability of N-Acylated Amino Acid Amides and Peptides

    PubMed Central

    2015-01-01

    Remote amide bonds in simple N-acyl amino acid amide or peptide derivatives 1 can be surprisingly unstable hydrolytically, affording, in solution, variable amounts of 3 under mild acidic conditions, such as trifluoroacetic acid/water mixtures at room temperature. This observation has important implications for the synthesis of this class of compounds, which includes N-terminal-acylated peptides. We describe the factors contributing to this instability and how to predict and control it. The instability is a function of the remote acyl group, R2CO, four bonds away from the site of hydrolysis. Electron-rich acyl R2 groups accelerate this reaction. In the case of acyl groups derived from substituted aromatic carboxylic acids, the acceleration is predictable from the substituent’s Hammett σ value. N-Acyl dipeptides are also hydrolyzed under typical cleavage conditions. This suggests that unwanted peptide truncation may occur during synthesis or prolonged standing in solution when dipeptides or longer peptides are acylated on the N-terminus with electron-rich aromatic groups. When amide hydrolysis is an undesired secondary reaction, as can be the case in the trifluoroacetic acid-catalyzed cleavage of amino acid amide or peptide derivatives 1 from solid-phase resins, conditions are provided to minimize that hydrolysis. PMID:24617596

  19. Study of electron transport in the functionalized nanotubes and their impact on the electron transfer in the active site of horseradish peroxidase

    NASA Astrophysics Data System (ADS)

    Feizabadi, Mina; Ajloo, Davood; Soleymanpour, Ahmad; Faridnouri, Hassan

    2018-05-01

    Electrochemical characterization of functionalized carbon nanotubes (f-CNT) including carboxyl (CNT-COOH), amine (CNT-NH2) and hydroxyl (CNT-OH) functional groups were studied using differential pulse voltammetry (DPV). The current-voltage (I-V) curves were obtained from each system and the effect of f-CNT on redox interaction of horseradish peroxidase (HRP) immobilized on the electrode surface was investigated. The non-equilibrium Green's function (NEGF) combined with density functional theory (DFT) were used to study the transport properties of f-CNT. Additionally, the effect of the number of functional groups on transport properties of CNT, I-V characteristics, electronic transmission coefficients and spatial distribution of f-CNTs have been calculated and analyzed. The results showed that the carboxyl derivative has larger transmission coefficients and current value than other f-CNTs. Then, the effect of functional groups on the electron transport in heme group of HRP is discussed. Finally, the effect of a covalent bond between active site amino acids and amine functional group of CNT was investigated and discussed.

  20. Oxidative versus Non-oxidative Decarboxylation of Amino Acids: Conditions for the Preferential Formation of Either Strecker Aldehydes or Amines in Amino Acid/Lipid-Derived Reactive Carbonyl Model Systems.

    PubMed

    Zamora, Rosario; León, M Mercedes; Hidalgo, Francisco J

    2015-09-16

    Comparative formation of both 2-phenylethylamine and phenylacetaldehyde as a consequence of phenylalanine degradation by carbonyl compounds was studied in an attempt to understand if the amine/aldehyde ratio can be changed as a function of reaction conditions. The assayed carbonyl compounds were selected because of the presence in the chain of both electron-donating and electron-withdrawing groups and included alkenals, alkadienals, epoxyalkenals, oxoalkenals, and hydroxyalkenals as well as lipid hydroperoxides. The obtained results showed that the 2-phenylethylamine/phenylacetaldehyde ratio depended upon both the carbonyls and the reaction conditions. Thus, it can be increased using electron-donating groups in the chain of the carbonyl compound, small amounts of carbonyl compound, low oxygen content, increasing the pH, or increasing the temperature at pH 6. Opposed conditions (use of electron-withdrawing groups in the chain of the carbonyl compound, large amounts of carbonyl compound, high oxygen contents, low pH values, and increasing temperatures at low pH values) would decrease the 2-phenylethylamine/phenylacetaldehyde ratio, and the formation of aldehydes over amines in amino acid degradations would be favored.

  1. Hydrophilic interaction ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry for highly rapid and sensitive analysis of underivatized amino acids in functional foods.

    PubMed

    Zhou, Guisheng; Pang, Hanqing; Tang, Yuping; Yao, Xin; Mo, Xuan; Zhu, Shaoqing; Guo, Sheng; Qian, Dawei; Qian, Yefei; Su, Shulan; Zhang, Li; Jin, Chun; Qin, Yong; Duan, Jin-ao

    2013-05-01

    This work presented a new analytical methodology based on hydrophilic interaction ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry in multiple-reaction monitoring mode for analysis of 24 underivatized free amino acids (FAAs) in functional foods. The proposed method was first reported and validated by assessing the matrix effects, linearity, limit of detections and limit of quantifications, precision, repeatability, stability and recovery of all target compounds, and it was used to determine the nutritional substances of FAAs in ginkgo seeds and further elucidate the nutritional value of this functional food. The result showed that ginkgo seed turned out to be a good source of FAAs with high levels of several essential FAAs and to have a good nutritional value. Furthermore, the principal component analysis was performed to classify the ginkgo seed samples on the basis of 24 FAAs. As a result, the samples could be mainly clustered into three groups, which were similar to areas classification. Overall, the presented method would be useful for the investigation of amino acids in edible plants and agricultural products.

  2. ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae.

    PubMed

    Albornos, Lucía; Martín, Ignacio; Iglesias, Rebeca; Jiménez, Teresa; Labrador, Emilia; Dopico, Berta

    2012-11-07

    Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine. In a phylogenetic tree, the sequences clade according to taxonomic group. A possible involvement in symbiosis and abiotic stress as well as in plant cell elongation is suggested, although different STs could play different roles in plant development. We describe a new family of proteins called ST whose presence is limited to the plant kingdom, specifically to a few families of dicotyledonous plants. They present 20 to 40 amino acid tandem repeat sequences with different characteristics (signal peptide, DUF2775 domain, conservative repeat regions) from the described group of 20 to 40 amino acid tandem repeat proteins and also from known cell wall proteins with repeat sequences. Several putative roles in plant physiology can be inferred from the characteristics found.

  3. ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae

    PubMed Central

    2012-01-01

    Background Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. Results ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine. In a phylogenetic tree, the sequences clade according to taxonomic group. A possible involvement in symbiosis and abiotic stress as well as in plant cell elongation is suggested, although different STs could play different roles in plant development. Conclusions We describe a new family of proteins called ST whose presence is limited to the plant kingdom, specifically to a few families of dicotyledonous plants. They present 20 to 40 amino acid tandem repeat sequences with different characteristics (signal peptide, DUF2775 domain, conservative repeat regions) from the described group of 20 to 40 amino acid tandem repeat proteins and also from known cell wall proteins with repeat sequences. Several putative roles in plant physiology can be inferred from the characteristics found. PMID:23134664

  4. Development and evaluation of a high-performance liquid chromatography/isotope ratio mass spectrometry methodology for delta13C analyses of amino sugars in soil.

    PubMed

    Bodé, Samuel; Denef, Karolien; Boeckx, Pascal

    2009-08-30

    Amino sugars have been used as biomarkers to assess the relative contribution of dead microbial biomass of different functional groups of microorganisms to soil carbon pools. However, little is known about the dynamics of these compounds in soil. The isotopic composition of individual amino sugars can be used as a tool to determine the turnover of these compounds. Methods to determine the delta(13)C of amino sugars using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) have been proposed in literature. However, due to derivatization, the uncertainty on the obtained delta(13)C is too high to be used for natural abundance studies. Therefore, a new high-performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS) methodology, with increased accuracy and precision, has been developed. The repeatability on the obtained delta(13)C values when pure amino sugars were analyzed were not significantly concentration-dependent as long as the injected amount was higher than 1.5 nmol. The delta(13)C value of the same amino sugar spiked to a soil deviated by only 0.3 per thousand from the theoretical value. 2009 John Wiley & Sons, Ltd.

  5. α-Amino Acid-Isosteric α-Amino Tetrazoles

    PubMed Central

    Zhao, Ting; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; Herdtweck, Eberhardt

    2016-01-01

    The synthesis of all 20 common natural proteinogenic and 4 otherα-amino acid-isosteric α-amino tetrazoles has been accomplished, whereby the carboxyl group is replaced by the isosteric 5-tetrazolyl group. The short process involves the use of the key Ugi tetrazole reaction followed by deprotection chemistries. The tetrazole group is bioisosteric to the carboxylic acid and is widely used in medicinal chemistry and drug design. Surprisingly, several of the common α-amino acid-isosteric α-amino tetrazoles are unknown up to now. Therefore a rapid synthetic access to this compound class and non-natural derivatives is of high interest to advance the field. PMID:26817531

  6. Functionally charged nanosize particles differentially activate BV2 microglia.

    EPA Science Inventory

    The effect of particle surface charge on the biological activation of immortalized mouse microglia (BV2) was examined. Nanosize (860-950 nm) spherical polystyrene microparticles (SPM) were coated with carboxyl (COOH-) or dimethyl amino (CH3)2-N- groups to give a net negative or p...

  7. Genetic Variation at the N-acetyltransferase (NAT) Genes in Global Populations

    EPA Science Inventory

    Functional variability at the N-acetyltransferase (NAT) genes is associated with adverse drug reactions and cancer susceptibility in humans. Previous studies of small sets of ethnic groups have indicated that the NAT genes have high levels of amino acid variation that differ in f...

  8. Global profiling of lysine reactivity and ligandability in the human proteome

    NASA Astrophysics Data System (ADS)

    Hacker, Stephan M.; Backus, Keriann M.; Lazear, Michael R.; Forli, Stefano; Correia, Bruno E.; Cravatt, Benjamin F.

    2017-12-01

    Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

  9. Interfacial activity of acid functionalized single-walled carbon nanotubes (SWCNTs) at the fluid-fluid interface

    NASA Astrophysics Data System (ADS)

    Feng, Tao; Russell, Thomas; Hoagland, David

    2013-03-01

    Interfacial assembly of acid-functionalized single-walled carbon nanotubes at the oil/water interface is achieved by the addition of low molecular weight (MW) amino-terminated polystyrene in the oil phase. The surface activity of carboxylated SWCNTs is strongly influenced by the end-group chemistry and molecular weight of the polystyrene component, the concentrations of this component and the SWCNTs, along with the degree of functionalization of the SWCNTs. The prerequisites for interfacial trapping are amino termini on chains with MW less than 5K and 6 hours or longer incubation of pristine SWCNTs to achieve their carboxylation. Plummets in interfacial tension resembling those for surfactants were observed at critical bulk concentrations of both SWCNTs and PS-NH2. In dried droplets, SWCNTs densely packed with associated PS-NH2 form a bird nest-like interfacial structure, with the SWCNTs preferentially oriented perpendicular to the original interface. Advisor

  10. Global profiling of lysine reactivity and ligandability in the human proteome.

    PubMed

    Hacker, Stephan M; Backus, Keriann M; Lazear, Michael R; Forli, Stefano; Correia, Bruno E; Cravatt, Benjamin F

    2017-12-01

    Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

  11. Structure of Escherichia coli Arginyl-tRNA Synthetase in Complex with tRNAArg: Pivotal Role of the D-loop.

    PubMed

    Stephen, Preyesh; Ye, Sheng; Zhou, Ming; Song, Jian; Zhang, Rongguang; Wang, En-Duo; Giegé, Richard; Lin, Sheng-Xiang

    2018-05-25

    Aminoacyl-tRNA synthetases are essential components in protein biosynthesis. Arginyl-tRNA synthetase (ArgRS) belongs to the small group of aminoacyl-tRNA synthetases requiring cognate tRNA for amino acid activation. The crystal structure of Escherichia coli (Eco) ArgRS has been solved in complex with tRNA Arg at 3.0-Å resolution. With this first bacterial tRNA complex, we are attempting to bridge the gap existing in structure-function understanding in prokaryotic tRNA Arg recognition. The structure shows a tight binding of tRNA on the synthetase through the identity determinant A20 from the D-loop, a tRNA recognition snapshot never elucidated structurally. This interaction of A20 involves 5 amino acids from the synthetase. Additional contacts via U20a and U16 from the D-loop reinforce the interaction. The importance of D-loop recognition in EcoArgRS functioning is supported by a mutagenesis analysis of critical amino acids that anchor tRNA Arg on the synthetase; in particular, mutations at amino acids interacting with A20 affect binding affinity to the tRNA and specificity of arginylation. Altogether the structural and functional data indicate that the unprecedented ArgRS crystal structure represents a snapshot during functioning and suggest that the recognition of the D-loop by ArgRS is an important trigger that anchors tRNA Arg on the synthetase. In this process, A20 plays a major role, together with prominent conformational changes in several ArgRS domains that may eventually lead to the mature ArgRS:tRNA complex and the arginine activation. Functional implications that could be idiosyncratic to the arginine identity of bacterial ArgRSs are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.

    2008-02-05

    Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresismore » measurements reveal an increase of coercive field due to the formation of single domain pattern.« less

  13. Fast and Facile Synthesis of 4-Nitrophenyl 2-Azidoethylcarbamate Derivatives from N-Fmoc-Protected α-Amino Acids as Activated Building Blocks for Urea Moiety-Containing Compound Library.

    PubMed

    Chen, Ying-Ying; Chang, Li-Te; Chen, Hung-Wei; Yang, Chia-Ying; Hsin, Ling-Wei

    2017-03-13

    A fast and facile synthesis of a series of 4-nitrophenyl 2-azidoethylcarbamate derivatives as activated urea building blocks was developed. The N-Fmoc-protected 2-aminoethyl mesylates derived from various commercially available N-Fmoc-protected α-amino acids, including those having functionalized side chains with acid-labile protective groups, were directly transformed into 4-nitrophenyl 2-azidoethylcarbamate derivatives in 1 h via a one-pot two-step reaction. These urea building blocks were utilized for the preparation of a series of urea moiety-containing mitoxantrone-amino acid conjugates in 75-92% yields and parallel solution-phase synthesis of a urea compound library consisted of 30 members in 38-70% total yields.

  14. Comparing Amino Acid Abundances and Distributions Across Carbonaceous Chondrite Groups

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Callahan, Michael P.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.

    2012-01-01

    Meteorites are grouped according to bulk properties such as chemical composition and mineralogy. These parameters can vary significantly among the different carbonaceous chondrite groups (CI, CM, CO, CR, CH, CB, CV and CK). We have determined the amino acid abundances of more than 30 primary amino acids in meteorites from each of the eight groups, revealing several interesting trends. There are noticeable differences in the structural diversity and overall abundances of amino acids between meteorites from the different chondrite groups. Because meteorites may have been an important source of amino acids to the prebiotic Earth and these organic compounds are essential for life as we know it, the observed variations of these molecules may have been important for the origins of life.

  15. A novel fluorescence sensor based on covalent immobilization of 3-amino-9-ethylcarbazole by using silver nanoparticles as bridges and carriers.

    PubMed

    Tan, Shu-Zhen; Hu, Yan-Jun; Gong, Fu-Chun; Cao, Zhong; Xia, Jiao-Yun; Zhang, Ling

    2009-03-23

    A novel technique of covalent immobilization of indicator dyes in the preparation of fluorescence sensors is developed. Silver nanoparticles are used as bridges and carriers for anchoring indicator dyes. 3-amino-9-ethylcarbazole (AEC) was employed as an example of indicator dyes with terminal amino groups and covalently immobilized onto the outmost surface of a quartz glass slide. First, the glass slide was functionalized by (3-mercaptopropyl) trimethoxysilane (MPS) to form a thiol-terminated self-assembled monolayer, where silver nanoparticles were strongly bound to the surface through covalent bonding. Then, 16-mercaptohexadecanoic acid (MHDA) was self-assembled to bring carboxylic groups onto the surface of silver nanoparticles. A further activation by using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) converted the carboxylic groups into succinimide esters. Finally, the active succinimide esters on the surface of silver nanoparticles were reacted with AEC. Thus, AEC was covalently bound to the glass slide and an AEC-immobilized sensor was obtained. The sensor exhibited very satisfactory reproducibility and reversibility, rapid response and no dye-leaching. Rutin can quench the fluorescence intensity of the sensor and be measured by using the sensor. The linear response of the sensor to rutin covers the range from 2.0 x 10(-6) to 1.5 x 10(-4) molL(-1) with a detection limit of 8.0 x 10(-7) molL(-1). The proposed technique may be feasible to the covalent immobilization of other dyes with primary amino groups.

  16. Synthesis and Characterization of Tetrakis(2-amino-3-methylpyridine)copper(II) Sulfate Tetrahydrate

    NASA Astrophysics Data System (ADS)

    Rahardjo, S. B.; Saraswati, T. E.; Masykur, A.; Finantrena, N. N. F.; Syaima, H.

    2018-04-01

    The complex of Tetrakis(2-amino-3-methylpyridine)copper(II) sulfate tetrahydrate has been synthesized in a ratio of 1: 6 metal to ligand in methanol. The percentage of copper in the complex measured by Atomic Absorption Spectrometer (AAS) showed the complex formula was Cu(2-amino-3-metilpyridine)4SO4(H2O)n (n = 3, 4, or 5). The analysis of TG/DTA showed that 1 mole of complex contains 4 moles of H2O. The conductivity measurement indicated that the complex is in 1 to 1 electrolyte. The formula of the complex was estimated as [Cu(2-amino-3-metilpyridine)4]SO4·4H2O. The complex was paramagnetic with µeff of 1.85 BM. The UV-Vis spectra showed a band peak at 730 nm with an electronic transition Eg→T2g. IR spectral data indicated that the functional groups of N-pyridine 2-amino-3-metilpyridine coordinated to ion Cu(II). The geometry of the complex was probably square planar.

  17. Effects of surface chemical properties of activated carbon modified by amino-fluorination for electric double-layer capacitor.

    PubMed

    Jung, Min-Jung; Jeong, Euigyung; Cho, Seho; Yeo, Sang Young; Lee, Young-Seak

    2012-09-01

    The surface of phenol-based activated carbon (AC) was seriatim amino-fluorinated with solution of ammonium hydroxide and hydrofluoric acid in varying ratio to fabricate electrode materials for use in an electric double-layer capacitor (EDLC). The specific capacitance of the amino-fluorinated AC-based EDLC was measured in a 1 M H(2)SO(4) electrolyte, in which it was observed that the specific capacitances increased from 215 to 389 Fg(-1) and 119 and 250 Fg(-1) with the current densities of 0.1 and 1.0 Ag(-1), respectively, in comparison with those of an untreated AC-based EDLC when the amino-fluorination was optimized via seriatim mixed solution of 7.43 mol L(-1) ammonium hydroxide and 2.06 mol L(-1) hydrofluoric acid. This enhancement of capacitance was attributed to the synergistic effects of an increased electrochemical activity due to the formation of surface N- and F-functional groups and increased, specific surface area, and mesopore volumes, all of which resulted from the amino-fluorination of the electrode material. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Biologically active LIL proteins built with minimal chemical diversity

    PubMed Central

    Heim, Erin N.; Marston, Jez L.; Federman, Ross S.; Edwards, Anne P. B.; Karabadzhak, Alexander G.; Petti, Lisa M.; Engelman, Donald M.; DiMaio, Daniel

    2015-01-01

    We have constructed 26-amino acid transmembrane proteins that specifically transform cells but consist of only two different amino acids. Most proteins are long polymers of amino acids with 20 or more chemically distinct side-chains. The artificial transmembrane proteins reported here are the simplest known proteins with specific biological activity, consisting solely of an initiating methionine followed by specific sequences of leucines and isoleucines, two hydrophobic amino acids that differ only by the position of a methyl group. We designate these proteins containing leucine (L) and isoleucine (I) as LIL proteins. These proteins functionally interact with the transmembrane domain of the platelet-derived growth factor β-receptor and specifically activate the receptor to transform cells. Complete mutagenesis of these proteins identified individual amino acids required for activity, and a protein consisting solely of leucines, except for a single isoleucine at a particular position, transformed cells. These surprisingly simple proteins define the minimal chemical diversity sufficient to construct proteins with specific biological activity and change our view of what can constitute an active protein in a cellular context. PMID:26261320

  19. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    NASA Astrophysics Data System (ADS)

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun'ichi

    2015-12-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C60) and fullerene nanowhiskers (FNWs). C60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C60. The theoretical simulations showed the bonding distance between C60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val < Phe < Pro < Asp < Ala < Trp < Tyr < Arg < Leu. However, the simulation was not consistent with our experimental results. The adsorption of albumin (a protein) by C60 showed the effect on the side chains of Try and Trp. The structure of albumin was changed a little by C60. In our study Try and Tyr were hardly adsorbed by C60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides.

  20. The effects of the formula of amino acids enriched BCAA on nutritional support in traumatic patients.

    PubMed

    Wang, Xin-Ying; Li, Ning; Gu, Jun; Li, Wei-Qin; Li, Jie-Shou

    2003-03-01

    To investigate the formula of amino acid enriched BCAA on nutritional support in traumatic patients after operation. 40 adult patients after moderate or large abdominal operations were enrolled in a prospective, randomly and single-blind-controlled study, and received total parenteral nutrition (TPN) with either formula of amino acid (AA group, 20 cases) or formula of amino acid enriched BCAA (BCAA group, 20 cases). From the second day after operation, total parenteral nutrition was infused to the patients in both groups with equal calorie and equal nitrogen by central or peripheral vein during more than 12 hours per day for 6 days. Meanwhile, nitrogen balance was assayed by collecting 24 hours urine for 6 days. The markers of protein metabolism were investigated such as amino acid patterns, levels of total protein, albumin, prealbumin, transferrin and fibronectin in serum. The positive nitrogen balance in BCAA group occurred two days earlier than that in AA group. The serum levels of total protein and albumin in BCAA group were increased more obviously than that in AA group. The concentration of valine was notably increased and the concentration of arginine was markedly decreased in BCAA group after the formula of amino acids enriched BCAA transfusion. The formula of amino acid enriched BCAA may normalize the levels of serum amino acids, reduce the proteolysis, increase the synthesis of protein, improve the nutritional status of traumatic patients after operation.

  1. Direct Acylation of C(sp(3))-H Bonds Enabled by Nickel and Photoredox Catalysis.

    PubMed

    Joe, Candice L; Doyle, Abigail G

    2016-03-14

    Using nickel and photoredox catalysis, the direct functionalization of C(sp(3))-H bonds of N-aryl amines by acyl electrophiles is described. The method affords a diverse range of α-amino ketones at room temperature and is amenable to late-stage coupling of complex and biologically relevant groups. C(sp(3))-H activation occurs by photoredox-mediated oxidation to generate α-amino radicals which are intercepted by nickel in catalytic C(sp(3))-C coupling. The merger of these two modes of catalysis leverages nickel's unique properties in alkyl cross-coupling while avoiding limitations commonly associated with transition-metal-mediated C(sp(3))-H activation, including requirements for chelating directing groups and high reaction temperatures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A theoretical study on 2-amino-5-nitroprydinium trifluoroaceta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arioğlu, Çağla, E-mail: caglaarioglu@gmail.com; Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Başoğlu, Adil, E-mail: abasoglu@sakarya.edu.tr

    The geometry optimization of 2-amino-5-nitroprydinium trifluoroacetate molecule was carried out by using Becke’s three-parameter exchange functional in conjunction with the Lee-Yang-Parr correlation functional (B3LYP) level of density functional theory (DFT) and 6-311++G(d,p) basis set at GAUSSIAN 09 program. The vibration spectrum of the title compound was simulated to predict the presence of functional groups and their vibrational modes. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were calculated at the same level, and the obtained small energy gap shows that charge transfer occurs in the title compound. The molecular dipole moment, polarizability and hyperpolarizability parametersmore » were determined to evaluate nonlinear optical efficiency of the title compound. Finally, the {sup 13}C and {sup 1}H Nuclear Magnetic Resonance (NMR) chemical shift values were calculated by the application of the gauge independent atomic orbital (GIAO) method. All of the calculations were carried out by using GAUSSIAN 09 program.« less

  3. Crosslinking of Chitosan with Dialdehyde Derivatives of Nucleosides and Nucleotides. Mechanism and Comparison with Glutaraldehyde.

    PubMed

    Mikhailov, Sergey N; Zakharova, Alexandra N; Drenichev, Mikhail S; Ershov, Andrey V; Kasatkina, Mariya A; Vladimirov, Leonid V; Novikov, Valentin V; Kildeeva, Natalia R

    2016-01-01

    In medical and pharmaceutical applications, chitosan is used as a component of hydrogels-macromolecular networks swollen in water. Chemical hydrogels are formed by covalent links between the crosslinking reagents and amino functionalities of chitosan. To date, the most commonly used chitosan crosslinkers are dialdehydes, such as glutaraldehyde (GA). We have developed novel GA like crosslinkers with additional functional groups-dialdehyde derivatives of uridine (oUrd) and nucleotides (oUMP and oAMP)-leading to chitosan-based biomaterials with new properties. The process of chitosan crosslinking was investigated in details and compared to crosslinking with GA. The rates of crosslinking with oUMP, oAMP, and GA were essentially the same, though much higher than in the case of oUrd. The remarkable difference in the crosslinking properties of nucleoside and nucleotide dialdehydes can be clearly attributed to the presence of the phosphate group in nucleotides that participates in the gelation process through ionic interactions with the amino groups of chitosan. Using NMR spectroscopy, we have not observed the formation of aldimine bonds. It can be concluded that the real number of crosslinks needed to cause gelation of chitosan chains may be less than 1%.

  4. Positive Selection Results in Frequent Reversible Amino Acid Replacements in the G Protein Gene of Human Respiratory Syncytial Virus

    PubMed Central

    Botosso, Viviane F.; Zanotto, Paolo M. de A.; Ueda, Mirthes; Arruda, Eurico; Gilio, Alfredo E.; Vieira, Sandra E.; Stewien, Klaus E.; Peret, Teresa C. T.; Jamal, Leda F.; Pardini, Maria I. de M. C.; Pinho, João R. R.; Massad, Eduardo; Sant'Anna, Osvaldo A.; Holmes, Eddie C.; Durigon, Edison L.

    2009-01-01

    Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a “flip-flop” phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites. PMID:19119418

  5. A compendium of cyclic sugar amino acids and their carbocyclic and heterocyclic nitrogen analogues.

    PubMed

    Risseeuw, Martijn; Overhand, Mark; Fleet, George W J; Simone, Michela I

    2013-10-01

    This compendium focuses on functionalised sugar amino acids (SAAs) and their 3- to 6-membered nitrogen heterocyclic and carbocyclic analogues. The main benefit of using SAAs and their related nitrogen and carbon congeners in the production of peptidomimetics and glycomimetics is that their properties can be readily altered via modification of their ring size, chemical manipulation of their numerous functional groups and fine-tuning of the stereochemical arrangement of their ring substituents. These building blocks provide access to hydrophilic and hydrophobic peptide isosteres whose physical properties allow entry to a region of chemotherapeutic space which is still under-explored by medicinal chemists. These building blocks are also important in providing amino acids whose inherent conformational bias leads to predisposition to secondary structure upon oligomerisation in relatively short sequences. These foldamers, particularly those containing ω-amino acids, provide an additional opportunity to expand access to the control of structures by artificial peptides. The synthesis and biological evaluation of these building blocks in glycomimetics and peptidomimetics systems keep expanding the reach of the glycosciences to the medical sciences, provide a greater outlook onto the wide range of cellular functions of saccharides and their derivatives involved and greater insight into the nature of oligosaccharide and protein folding.

  6. Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, Added to Clozapine for the Treatment of Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Trial.

    PubMed

    Lin, Chieh-Hsin; Lin, Ching-Hua; Chang, Yue-Cune; Huang, Yu-Jhen; Chen, Po-Wei; Yang, Hui-Ting; Lane, Hsien-Yuan

    2017-12-26

    Clozapine is the last-line antipsychotic agent for refractory schizophrenia. To date, there is no convincing evidence for augmentation on clozapine. Activation of N-methyl-D-aspartate receptors, including inhibition of D-amino acid oxidase that may metabolize D-amino acids, has been reported to be beneficial for patients receiving antipsychotics other than clozapine. This study aimed to examine the efficacy and safety of a D-amino acid oxidase inhibitor, sodium benzoate, for schizophrenia patients who had poor response to clozapine. We conducted a randomized, double-blind, placebo-controlled trial. Sixty schizophrenia inpatients that had been stabilized with clozapine were allocated into three groups for 6 weeks' add-on treatment of 1 g/day sodium benzoate, 2 g/day sodium benzoate, or placebo. The primary outcome measures were Positive and Negative Syndrome Scale (PANSS) total score, Scale for the Assessment of Negative Symptoms, Quality of Life Scale, and Global Assessment of Functioning. Side effects and cognitive functions were also measured. Both doses of sodium benzoate produced better improvement than placebo in the Scale for the Assessment of Negative Symptoms. The 2 g/day sodium benzoate also produced better improvement than placebo in PANSS-total score, PANSS-positive score, and Quality of Life Scale. Sodium benzoate was well tolerated without evident side effects. The changes of catalase, an antioxidant, were different among the three groups and correlated with the improvement of PANSS-total score and PANSS-positive score in the sodium benzoate group. Sodium benzoate adjuvant therapy improved symptomatology of patients with clozapine-resistant schizophrenia. Further studies are warranted to elucidate the optimal dose and treatment duration as well as the mechanisms of sodium benzoate for clozapine-resistant schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Doping Level of Boron-Doped Diamond Electrodes Controls the Grafting Density of Functional Groups for DNA Assays.

    PubMed

    Švorc, Ĺubomír; Jambrec, Daliborka; Vojs, Marian; Barwe, Stefan; Clausmeyer, Jan; Michniak, Pavol; Marton, Marián; Schuhmann, Wolfgang

    2015-09-02

    The impact of different doping levels of boron-doped diamond on the surface functionalization was investigated by means of electrochemical reduction of aryldiazonium salts. The grafting efficiency of 4-nitrophenyl groups increased with the boron levels (B/C ratio from 0 to 20,000 ppm). Controlled grafting of nitrophenyldiazonium was used to adjust the amount of immobilized single-stranded DNA strands at the surface and further on the hybridization yield in dependence on the boron doping level. The grafted nitro functions were electrochemically reduced to the amine moieties. Subsequent functionalization with a succinic acid introduced carboxyl groups for subsequent binding of an amino-terminated DNA probe. DNA hybridization significantly depends on the probe density which is in turn dependent on the boron doping level. The proposed approach opens new insights for the design and control of doped diamond surface functionalization for the construction of DNA hybridization assays.

  8. Studies of the structure-activity relationships of peptides and proteins involved in growth and development based on their three-dimensional structures.

    PubMed

    Nagata, Koji

    2010-01-01

    Peptides and proteins with similar amino acid sequences can have different biological functions. Knowledge of their three-dimensional molecular structures is critically important in identifying their functional determinants. In this review, I describe the results of our and other groups' structure-based functional characterization of insect insulin-like peptides, a crustacean hyperglycemic hormone-family peptide, a mammalian epidermal growth factor-family protein, and an intracellular signaling domain that recognizes proline-rich sequence.

  9. Mechanisms of volatile production from non-sulfur amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.

  10. Contrasting plasma free amino acid patterns in elite athletes: association with fatigue and infection

    PubMed Central

    Kingsbury, K. J.; Kay, L.; Hjelm, M.

    1998-01-01

    AIM: There is little information on the plasma free amino acid patterns of elite athletes against which fatigue and nutrition can be considered. Therefore the aim was to include analysis of this pattern in the medical screening of elite athletes during both especially intense and light training periods. METHODS: Plasma amino acid analysis was undertaken in three situations. (1) A medical screening service was offered to elite athletes during an intense training period before the 1992 Olympics. Screening included a blood haematological/biochemical profile and a microbial screen in athletes who presented with infection. The athletes were divided into three groups who differed in training fatigue and were considered separately. Group A (21 track and field athletes) had no lasting fatigue; group B (12 judo competitors) reported heavy fatigue at night but recovered overnight to continue training; group C (18 track and field athletes, one rower) had chronic fatigue and had been unable to train normally for at least several weeks. (2) Athletes from each group were further screened during a post- Olympic light training period. (3) Athletes who still had low amino acid levels during the light training period were reanalysed after three weeks of additional protein intake. RESULTS: (1) The pre-Olympics amino acid patterns were as follows. Group A had a normal amino acid pattern (glutamine 554 (25.2) micromol/l, histidine 79 (6.1) micromol/l, total amino acids 2839 (92.1) micromol/l); all results are means (SEM). By comparison, both groups B and C had decreased plasma glutamine (average 33%; p<0.001) with, especially in group B, decreased histidine, glucogenic, ketogenic, and branched chain amino acids (p<0.05 to p<0.001). None in group A, one in group B, but ten athletes in group C presented with infection: all 11 athletes had plasma glutamine levels of less than 450 micromol/l. No intergroup differences in haematological or other blood biochemical parameters, apart from a lower plasma creatine kinase activity in group C than in group B (p<0.05) and a low neutrophil to lymphocyte ratio in the athletes with viral infections (1.2 (0.17)), were found. (2) During post-Olympic light training, group A showed no significant amino acid changes. In contrast, group B recovered normal amino acid levels (glutamine 528 (41.4) micromol/l, histidine 76 (5.3) micromol/l, and total amino acids 2772 (165) micromol/l) (p<0.05 to p<0.001) to give a pattern comparable with that of group A, whereas, in group C, valine and threonine had increased (p<0.05), but glutamine (441 (24.5) micromol/l) and histidine (58 (5.3) micromol/l) remained low. Thus none in group A, two in group B, but ten (53%) in group C still had plasma glutamine levels below 450 micromol/l, including eight of the 11 athletes who had presented with infection. (3) With the additional protein intake, virtually all persisting low glutamine levels increased to above 500 micromol/l. Plasma glutamine rose to 592 (35.1) micromol/l and histidine to 86 (6.0) micromol/l. Total amino acids increased to 2761 (128) micromol/l (p<0.05 to p<0.001) and the amino acid pattern normalised. Six of the ten athletes on this protein intake returned to increased training within the three weeks. CONCLUSION: Analysis of these results provided contrasting plasma amino acid patterns: (a) a normal pattern in those without lasting fatigue; (b) marked but temporary changes in those with acute fatigue; (c) a persistent decrease in plasma amino acids, mainly glutamine, in those with chronic fatigue and infection, for which an inadequate protein intake appeared to be a factor. 


 PMID:9562160

  11. Molecular basis of essential amino acid transport from studies of insect nutrient amino acid transporters of the SLC6 family (NAT-SLC6)

    PubMed Central

    Boudko, Dmitri Y.

    2012-01-01

    Two protein families that represent major components of essential amino acid transport in insects have been identified. They are annotated as the SLC6 and SLC7 families of transporters according to phylogenetic proximity to characterized amino acid transporters (HUGO nomenclature). Members of these families have been identified as important apical and basolateral parts of transepithelial essential amino acid absorption in the metazoan alimentary canal. Synergistically, they play critical physiological roles as essential substrate providers to diverse metabolic processes, including generic protein synthesis. This review briefly clarifies the requirements for amino acid transport and a variety of amino acid transport mechanisms, including the aforementioned families. Further it focuses on the large group of Nutrient Amino acid Transporters (NATs), which comprise a recently identified subfamily of the Neurotransmitter Sodium Symporter family (NSS or SLC6). The first insect NAT, cloned from the caterpillar gut, has a broad substrate spectrum similar to mammalian B0 transporters. Several new NAT-SLC6 members have been characterized in an effort to explore mechanisms for the essential amino acid absorption in model dipteran insects. The identification and functional characterization of new B0-like and narrow specificity transporters of essential amino acids in fruit fly and mosquitoes leads to a fundamentally important insight: that NATs evolved and act together as the integrated active core of a transport network that mediates active alimentary absorption and systemic distribution of essential amino acids. This role of NATs is projected from the most primitive prokaryotes to the most complex metazoan organisms, and represents an interesting platform for unraveling the molecular evolution of amino acid transport and modeling amino acid transport disorders. The comparative study of NATs elucidates important adaptive differences between essential amino acid transportomes of invertebrate and vertebrate organisms, outlining a new possibility for selective targeting of essential amino acid absorption mechanisms to control medically and economically important arthropods and other invertebrate organisms. PMID:22230793

  12. Study of the controlled assembly of DNA gated PEI/Chitosan/SiO2 fluorescent sensor.

    PubMed

    Chang, Zheng; Mi, Yinghao; Zheng, Xingwang

    2018-03-01

    In this paper, polyethylenimine (PEI) and Chitosan were simultaneously one-step doped into silicon dioxide (SiO 2 ) nanoparticles to synthesize PEI/Chitosan/SiO 2 composite nanoparticles. The polymer PEI contained a large amount of amino groups, which can realize the amino functionalized SiO 2 nanoparticles. And, the good pore forming effect of Chitosan was introduced into SiO 2 nanoparticles, and the resulting composite nanoparticles also had a porous structure. In pH 7.4 phosphate buffer solution (PBS), the amino groups of PEI had positive charges, and therefore the fluorescein sodium dye molecule can be loaded into the channels of PEI/Chitosan/SiO 2 composite nanoparticles by electrostatic adsorption. Furthermore, utilizing the diversity of DNA molecular conformation, we designed a high sensitive controllable assembly of DNA gated fluorescent sensor based on PEI/Chitosan/SiO 2 composite nanoparticles as loading materials. The factors affecting the sensing performance of the sensor were investigated, and the sensing mechanism was also further studied. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Adsorption of Amino Acids and Glutamic Acid-Based Surfactants on Imogolite Clays.

    PubMed

    Bonini, Massimo; Gabbani, Alessio; Del Buffa, Stefano; Ridi, Francesca; Baglioni, Piero; Bordes, Romain; Holmberg, Krister

    2017-03-07

    Aluminum oxide surfaces are of utmost interest in different biotech applications, in particular for their use as adjuvants (i.e., booster of the immune response against infectious agents in vaccines production). In this framework, imogolite clays combine the chemical flexibility of an exposed alumina surface with 1D nanostructure. This work reports on the interaction between amino acids and imogolite, using turbidimetry, ζ-potential measurements, and Fourier transform infrared spectroscopy as main characterization tools. Amino acids with different side chain functional groups were investigated, showing that glutamic acid (Glu) has the strongest affinity for the imogolite surface. This was exploited to prepare a composite material made of a synthetic surfactant bearing a Glu polar head and a hydrophobic C 12 alkyl tail, adsorbed onto the surface of imogolite. The adsorption of a model drug (rhodamine B isothiocyanate) by the hybrid was evaluated both in water and in physiological saline conditions. The findings of this paper suggest that the combination between the glutamate headgroup and imogolite represents a promising platform for the fabrication of hybrid nanostructures with tailored functionalities.

  14. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15.

    PubMed

    Bautista, Luis Fernando; Morales, Gabriel; Sanz, Raquel

    2015-10-01

    A covalent immobilization method based on glutaraldehyde and amino-functionalized SBA-15 supports has been successfully applied to covalently and stably immobilize laccase from Trametes versicolor. The resultant biocatalysts displayed high incorporation yields of enzyme and led to excellent biodegradation rates of selected HPAs models, i.e. naphthalene, phenanthrene and anthracene, in water. The nature of the hydrocarbon chain accompanying the amino group has been shown as determinant for the immobilization as well as for the activity and reusability of the materials. Thus, alkyl moieties displayed higher enzyme loadings than phenyl moieties, being more adequate the larger n-butyl tethering residue likely due to its higher mobility. Using the aminobutyl-based laccase-SBA-15, 82%, 73%, and 55% conversion of naphthalene, phenanthrene and anthracene, respectively, were achieved after 48 h, very close to the values obtained with free laccase under the same reaction conditions. On the other hand, aminopropyl-based laccase-SBA-15 biocatalysts displayed the best reusability properties, retaining higher activity after four repeated uses than the corresponding aminobutyl-based materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family.

    PubMed

    Garcia Costas, Amaya M; Poudel, Saroj; Miller, Anne-Frances; Schut, Gerrit J; Ledbetter, Rhesa N; Fixen, Kathryn R; Seefeldt, Lance C; Adams, Michael W W; Harwood, Caroline S; Boyd, Eric S; Peters, John W

    2017-11-01

    Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes. IMPORTANCE Electron bifurcation has recently been recognized as an electron transfer mechanism used by microorganisms to maximize energy conservation. Bifurcating enzymes couple thermodynamically unfavorable reactions with thermodynamically favorable reactions in an overall spontaneous process. Here we show that the electron-transferring flavoprotein (Etf) enzyme family exhibits far greater diversity than previously recognized, and we provide a phylogenetic analysis that clearly delineates bifurcating versus nonbifurcating members of this family. Structural modeling of proteins within these groups reveals key differences between the bifurcating and nonbifurcating Etfs. Copyright © 2017 American Society for Microbiology.

  16. Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family

    PubMed Central

    Garcia Costas, Amaya M.; Poudel, Saroj; Miller, Anne-Frances; Schut, Gerrit J.; Ledbetter, Rhesa N.; Seefeldt, Lance C.; Adams, Michael W. W.

    2017-01-01

    ABSTRACT Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes. IMPORTANCE Electron bifurcation has recently been recognized as an electron transfer mechanism used by microorganisms to maximize energy conservation. Bifurcating enzymes couple thermodynamically unfavorable reactions with thermodynamically favorable reactions in an overall spontaneous process. Here we show that the electron-transferring flavoprotein (Etf) enzyme family exhibits far greater diversity than previously recognized, and we provide a phylogenetic analysis that clearly delineates bifurcating versus nonbifurcating members of this family. Structural modeling of proteins within these groups reveals key differences between the bifurcating and nonbifurcating Etfs. PMID:28808132

  17. Influence of functional groups on the C α-C β chain of L-phenylalanine and its derivatives

    NASA Astrophysics Data System (ADS)

    Ganesan, Aravindhan; Brunger, Michael; Wang, Feng

    2010-07-01

    L-phenylalanine ( L-phe) consists of three different functional groups, i.e., phenyl, carboxyl (-COOH) and amino (-NH 2), joining through the C α-C β bridge. Substitution of these groups produces 2-phenethylamine (PEA) and 3-phenylpropionic acid (PPA). Electronic structures of L-phe, PEA and PPA together with smaller "fragments" L-alanine and benzene were determined using density functional theory (DFT), from which core and valence shell ionization spectra were simulated. Comparison of the spectra reveals that core shell ionization energies clearly indicate that the carbon bridge is significantly affected by their functional group substitutions particularly at the C α site. In the valence space, quite unexpectedly, the frontier orbitals are concentrated on the benzene group although some energy splitting is observed. The orbitals which significantly affect the C α-C β carbon backbone are from the inner valence shell in the ionization energy region of 20-26 eV of the molecules.

  18. Polymers with complexing properties. Simple poly(amino acids)

    NASA Technical Reports Server (NTRS)

    Roque, J. M.

    1978-01-01

    The free amino (0.3 equiv/residue) and carboxyl (0.5 equiv/residue) groups of thermal polylysine increased dramatically on treatment with distilled water. The total hydrolysis of such a polymer was abnormal in that only about 50% of the expected amino acids were recovered. Poly (lysine-co-alanine-co-glycine) under usual conditions hydrolyzed completely in 8 hours; whereas, when it was pretreated with diazomethane, a normal period of 24 hours was required to give (nearly) the same amounts of each free amino acid as compared with those obtained from the untreated polymer. The amino groups of the basic thermal poly(amino acids) were sterically hindered. The existence of nitrogen atoms linking two or three chains and reactive groups (anhydride, imine) were proposed.

  19. Regulation of Intestinal Epithelial Cells Properties and Functions by Amino Acids.

    PubMed

    Kong, Shanshan; Zhang, Yanhui H; Zhang, Weiqiang

    2018-01-01

    Intestinal epithelial cells (IECs) line the surface of intestinal epithelium, where they play important roles in the digestion of food, absorption of nutrients, and protection of the human body from microbial infections, and others. Dysfunction of IECs can cause diseases. The development, maintenance, and functions of IECs are strongly influenced by external nutrition, such as amino acids. Amino acids play important roles in regulating the properties and functions of IECs. In this article, we briefly reviewed the current understanding of the roles of amino acids in the regulation of IECs' properties and functions in physiological state, including in IECs homeostasis (differentiation, proliferation, and renewal), in intestinal epithelial barrier structure and functions, and in immune responses. We also summarized some important findings on the effects of amino acids supplementation (e.g., glutamine and arginine) in restoring IECs' and intestine functions in some diseased states. These findings will further our understanding of the important roles of amino acids in the homeostasis of IECs and could potentially help identify novel targets and reagents for the therapeutic interventions of diseases associated with dysfunctional IECs.

  20. A colorimetric chiral sensor based on chiral crown ether for the recognition of the two enantiomers of primary amino alcohols and amines.

    PubMed

    Cho, Eun Na Rae; Li, Yinan; Kim, Hee Jin; Hyun, Myung Ho

    2011-04-01

    A new colorimetric chiral sensor material consisting of three different functional sites such as chromophore (2,4-dinitrophenylazophenol dye), binding site (crown ether), and chiral barrier (3,3'-diphenyl-1,1'-binaphthyl group) was prepared and applied to the recognition of the two enantiomers of primary amino alcohols and amines. Among five primary amino alcohols and two primary amines tested, the two enantiomers of phenylalaninol show the highest difference in the absorption maximum wavelength (Δλ(max)=43.5 nm) and in the association constants (K(S)/K(R)=2.51) upon complexation with the colorimetric chiral sensor material and, consequently, the two enantiomers of phenylalaninol were clearly distinguished from each other by the color difference. Copyright © 2010 Wiley-Liss, Inc.

  1. Cysteine-containing peptide tag for site-specific conjugation of proteins

    DOEpatents

    Backer, Marina V.; Backer, Joseph M.

    2008-04-08

    The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety bound to the targeting moiety; the biological conjugate having a covalent bond between the thiol group of SEQ ID NO:2 and a functional group in the binding moiety. The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety that comprises an adapter protein, the adapter protein having a thiol group; the biological conjugate having a disulfide bond between the thiol group of SEQ ID NO:2 and the thiol group of the adapter protein. The present invention is also directed to biological sequences employed in the above biological conjugates, as well as pharmaceutical preparations and methods using the above biological conjugates.

  2. Cysteine-containing peptide tag for site-specific conjugation of proteins

    DOEpatents

    Backer, Marina V.; Backer, Joseph M.

    2010-10-05

    The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety bound to the targeting moiety; the biological conjugate having a covalent bond between the thiol group of SEQ ID NO:2 and a functional group in the binding moiety. The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety that comprises an adapter protein, the adapter protein having a thiol group; the biological conjugate having a disulfide bond between the thiol group of SEQ ID NO:2 and the thiol group of the adapter protein. The present invention is also directed to biological sequences employed in the above biological conjugates, as well as pharmaceutical preparations and methods using the above biological conjugates.

  3. The Structure of the Human Centrin 2-Xeroderma Pigmentosum Group C Protein Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson,J.; Ryan, Z.; Salisbury, J.

    2006-01-01

    Human centrin-2 plays a key role in centrosome function and stimulates nucleotide excision repair by binding to the xeroderma pigmentosum group C protein. To determine the structure of human centrin-2 and to develop an understanding of molecular interactions between centrin and xeroderma pigmentosum group C protein, we characterized the crystal structure of calcium-loaded full-length centrin-2 complexed with a xeroderma pigmentosum group C peptide. Our structure shows that the carboxyl-terminal domain of centrin-2 binds this peptide and two calcium atoms, whereas the amino-terminal lobe is in a closed conformation positioned distantly by an ordered {alpha}-helical linker. A stretch of the amino-terminalmore » domain unique to centrins appears disordered. Two xeroderma pigmentosum group C peptides both bound to centrin-2 also interact to form an {alpha}-helical coiled-coil. The interface between centrin-2 and each peptide is predominantly nonpolar, and key hydrophobic residues of XPC have been identified that lead us to propose a novel binding motif for centrin.« less

  4. Recent modifications of chitosan for adsorption applications: a critical and systematic review.

    PubMed

    Kyzas, George Z; Bikiaris, Dimitrios N

    2015-01-09

    Chitosan is considered to be one of the most promising and applicable materials in adsorption applications. The existence of amino and hydroxyl groups in its molecules contributes to many possible adsorption interactions between chitosan and pollutants (dyes, metals, ions, phenols, pharmaceuticals/drugs, pesticides, herbicides, etc.). These functional groups can help in establishing positions for modification. Based on the learning from previously published works in literature, researchers have achieved a modification of chitosan with a number of different functional groups. This work summarizes the published works of the last three years (2012-2014) regarding the modification reactions of chitosans (grafting, cross-linking, etc.) and their application to adsorption of different environmental pollutants (in liquid-phase).

  5. Keto analogue and amino acid supplementation and its effects on ammonemia and performance under thermoneutral conditions.

    PubMed

    Camerino, Saulo Rodrigo Alves e Silva; Lima, Rafaela Carvalho Pereira; França, Thássia Casado Lima; Herculano, Edla de Azevedo; Rodrigues, Daniela Souza Araújo; Gouveia, Marcos Guilherme de Sousa; Cameron, L C; Prado, Eduardo Seixas

    2016-02-01

    Alterations of cerebral function, fatigue and disturbance in cognitive-motor performance can be caused by hyperammonemia and/or hot environmental conditions during exercise. Exercise-induced hyperammonemia can be reduced through supplementation with either amino acids or combined keto analogues and amino acids (KAAA) to improve exercise tolerance. In the present study, we evaluated KAAA supplementation on ammonia metabolism and cognitive-motor performance after high-intensity exercise under a low heat stress environment. Sixteen male cyclists received a ketogenic diet for 2 d and were divided into two groups, KAAA (KEx) or placebo (CEx) supplementation. The athletes performed a 2 h cycling session followed by a maximum test (MAX), and blood samples were obtained at rest and during exercise. Cognitive-motor tasks were performed before and after the protocol, and the exhaustion time was used to evaluate physical performance. The hydration status was also evaluated. The CEx group showed a significant increase (∼ 70%) in ammonia concentration at MAX, which did not change in the KEx group. The non-supplemented group showed a significant increase in uremia. Both the groups had a significant increase in blood urate concentrations at 120 min, and an early significant increase from 120 min was observed in the CEx group. There was no change in the glucose concentrations of the two groups. A significant increase in lactate was observed at the MAX moment in both groups. There was no significant difference in the exhaustion times between the groups. No changes were observed in the cognitive-motor tasks after the protocol. We suggest that KAAA supplementation decreases ammonia concentration during high-intensity exercise but does not affect physical or cognitive-motor performances under a low heat stress environment.

  6. Comparative characterization of random-sequence proteins consisting of 5, 12, and 20 kinds of amino acids

    PubMed Central

    Tanaka, Junko; Doi, Nobuhide; Takashima, Hideaki; Yanagawa, Hiroshi

    2010-01-01

    Screening of functional proteins from a random-sequence library has been used to evolve novel proteins in the field of evolutionary protein engineering. However, random-sequence proteins consisting of the 20 natural amino acids tend to aggregate, and the occurrence rate of functional proteins in a random-sequence library is low. From the viewpoint of the origin of life, it has been proposed that primordial proteins consisted of a limited set of amino acids that could have been abundantly formed early during chemical evolution. We have previously found that members of a random-sequence protein library constructed with five primitive amino acids show high solubility (Doi et al., Protein Eng Des Sel 2005;18:279–284). Although such a library is expected to be appropriate for finding functional proteins, the functionality may be limited, because they have no positively charged amino acid. Here, we constructed three libraries of 120-amino acid, random-sequence proteins using alphabets of 5, 12, and 20 amino acids by preselection using mRNA display (to eliminate sequences containing stop codons and frameshifts) and characterized and compared the structural properties of random-sequence proteins arbitrarily chosen from these libraries. We found that random-sequence proteins constructed with the 12-member alphabet (including five primitive amino acids and positively charged amino acids) have higher solubility than those constructed with the 20-member alphabet, though other biophysical properties are very similar in the two libraries. Thus, a library of moderate complexity constructed from 12 amino acids may be a more appropriate resource for functional screening than one constructed from 20 amino acids. PMID:20162614

  7. How Amino Acids and Peptides Shaped the RNA World

    PubMed Central

    van der Gulik, Peter T.S.; Speijer, Dave

    2015-01-01

    The “RNA world” hypothesis is seen as one of the main contenders for a viable theory on the origin of life. Relatively small RNAs have catalytic power, RNA is everywhere in present-day life, the ribosome is seen as a ribozyme, and rRNA and tRNA are crucial for modern protein synthesis. However, this view is incomplete at best. The modern protein-RNA ribosome most probably is not a distorted form of a “pure RNA ribosome” evolution started out with. Though the oldest center of the ribosome seems “RNA only”, we cannot conclude from this that it ever functioned in an environment without amino acids and/or peptides. Very small RNAs (versatile and stable due to basepairing) and amino acids, as well as dipeptides, coevolved. Remember, it is the amino group of aminoacylated tRNA that attacks peptidyl-tRNA, destroying the bond between peptide and tRNA. This activity of the amino acid part of aminoacyl-tRNA illustrates the centrality of amino acids in life. With the rise of the “RNA world” view of early life, the pendulum seems to have swung too much towards the ribozymatic part of early biochemistry. The necessary presence and activity of amino acids and peptides is in need of highlighting. In this article, we try to bring the role of the peptide component of early life back into focus. We argue that an RNA world completely independent of amino acids never existed. PMID:25607813

  8. Theoretical studies on a new furazan compound bis[4-nitramino-furazanyl-3-azoxy]azofurazan (ADNAAF).

    PubMed

    Zheng, Chunmei; Chu, Yuting; Xu, Liwen; Wang, Fengyun; Lei, Wu; Xia, Mingzhu; Gong, Xuedong

    2016-06-01

    Bis[4-nitraminofurazanyl-3-azoxy]azofurazan (ADNAAF), synthesized in our previous work [1], contains four furazan units connected to the linkage of the azo-group and azoxy-group. For further research, some theoretical characters were studied by the density functional theoretical (DFT) method. The optimized structures and the energy gaps between the HOMO and LUMO were studied at the B3LYP/6-311++G** level. The isodesmic reaction method was used for estimating the enthalpy of formation. The detonation performances were estimated with Kamlet-Jacobs equations based on the predicted density and enthalpy of formation in the solid state. ADAAF was also calculated by the same method for comparison. It was found that the nitramino group of ADNAAF can elongate the length of adjacent C-N bonds than the amino group of ADAAF. The gas-phase and solid-phase enthalpies of formation of ADNAAF are larger than those of ADAAF. The detonation performances of ADNAAF are better than ADAAF and RDX, and similar to HMX. The trigger bond of ADNAAF is the N-N bonds in the nitramino groups, and the nitramino group is more active than the amino group (-NH2).

  9. Three-Dimensional Polypeptide Architectures Through Tandem Catalysis and Click Chemistry

    NASA Astrophysics Data System (ADS)

    Rhodes, Allison Jane

    Rapid renal clearance, liver accumulation, proteolytic degradation and non-specificity are challenges small molecule drugs, peptides, proteins and nucleic acid therapeutics encounter en route to their intended destination within the body. Nanocarriers (i.e. dendritric polymers, vesicles, and micelles) of approximately 100 nm in diameter, shuttle small molecule drugs to their desired location through passive (EPR effect) and active (ligand-mediated) targeting, maximizing therapeutic efficiency. Polypeptide-based polymers are water-soluble, biocompatible, non-toxic and are therefore excellent candidates for nanocarriers. Dendritic polymers, including dendrimers, cylindrical brushes, and star polymers, are the newest class of nanomedicine drug delivery vehicles. The synthesis and characterization of dendritic polymers is challenging, with tedious and costly procedures. Dendritic polymers possess peripheral pendent functional groups that can potentially be used in ligand-mediated drug delivery vehicles and bioimaging applications. More specifically, cylindrical brushes are dendritic polymers where a single linear polymer (primary chain) has polymer chains (secondary chains) grafted to it. Recently, research groups have shown that cylindrical brush polymers are capable of nanoparticle and supramolecular structure self-assembly. The facile preparation of high-density brush copolypeptides by the "grafting from" approach will be discussed. This approach utilizes a novel, tandem catalytic methodology where alloc-alpha-aminoamide groups are installed within the side-chains of the alpha-amino-N-carboxyanhydride (NCA) monomer serving as masked initiators. These groups are inert during cobalt initiated NCA polymerization, and give alloc-alpha-aminoamide substituted polypeptide main-chains. The alloc-alpha-aminoamide groups are activated in situ using nickel to generate initiators for growth of side-chain brush segments. This method proves to be efficient, yielding well-defined, high-density brushes for applications in drug delivery and imaging. Here, we also report a method for the synthesis of soluble, well-defined, azido functionalized polypeptides in a straightforward, 3-step synthesis. Homo and diblock azidopolypeptides were prepared with controlled segment lengths via living polymerization using Co(PMe3)4 initiator. Through copper azide alkyne click chemistry (CuAAC) in organic solvent, azidopolypeptides were regioselectively and quantitatively modified with carboxylic acid (pH-responsive), amino acid and sugar functional groups. Finally, the advances towards well-defined hyperbranched polypeptides through alpha-amino-acid-N-thiocarboxyanhydrides (NTAs) will be discussed. Within the past 10 years, controlled NCA (alpha-amino acid-N-carboxyanhydride) ring-opening polymerization (ROP) has emerged, expanding the application of copolypeptide polymers in various drug delivery and tissue engineering motifs. Modification of NCA monomers to the corresponding alpha-amino-acid-N-thiocarboxyanhydride (NTA) will diversify ROP reactions, leading to more complex polypeptides (such as hyperbranched polymers), in addition to the possibility of performing these polymerizations under ambient conditions, which would greatly expand their potential utility. The project focuses on the preparation of hyperbranched polypeptides with well-defined architectures and controlled branching density in a one-pot reaction. This will be accomplished by taking advantage of the different selectivities of Co(PMe3)4 and depeNi(COD) polymerization initiators, and by exploiting the reactivity difference between NCA and the more stable NTA monomers.

  10. Dietary selenium supplementation and whole blood gene expression in healthy North American men

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is a trace nutrient required in microgram amounts by all animals, with a recommended dietary allowance of 55 µg/d in humans. The biological functions of Se are performed by a group of 25 selenoproteins containing the unusual amino acid selenocysteine at their active sites. The selenopr...

  11. Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation

    USDA-ARS?s Scientific Manuscript database

    Sirtuin deacetylases and FOXO (Forkhead box, class O) transcription factors have important roles in many biological pathways, including cancer development. SIRT1 and SIRT2 deacetylate FOXO factors to regulate FOXO function. Because acetylation and ubiquitination both modify the '-amino group of lysi...

  12. Computational identification of epitopes in the glycoproteins of novel bunyavirus (SFTS virus) recognized by a human monoclonal antibody (MAb 4-5)

    NASA Astrophysics Data System (ADS)

    Zhang, Wenshuai; Zeng, Xiaoyan; Zhang, Li; Peng, Haiyan; Jiao, Yongjun; Zeng, Jun; Treutlein, Herbert R.

    2013-06-01

    In this work, we have developed a new approach to predict the epitopes of antigens that are recognized by a specific antibody. Our method is based on the "multiple copy simultaneous search" (MCSS) approach which identifies optimal locations of small chemical functional groups on the surfaces of the antibody, and identifying sequence patterns of peptides that can bind to the surface of the antibody. The identified sequence patterns are then used to search the amino-acid sequence of the antigen protein. The approach was validated by reproducing the binding epitope of HIV gp120 envelop glycoprotein for the human neutralizing antibody as revealed in the available crystal structure. Our method was then applied to predict the epitopes of two glycoproteins of a newly discovered bunyavirus recognized by an antibody named MAb 4-5. These predicted epitopes can be verified by experimental methods. We also discuss the involvement of different amino acids in the antigen-antibody recognition based on the distributions of MCSS minima of different functional groups.

  13. Mimicking of Arginine by Functionalized N(ω)-Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples.

    PubMed

    Keller, Max; Kuhn, Kilian K; Einsiedel, Jürgen; Hübner, Harald; Biselli, Sabrina; Mollereau, Catherine; Wifling, David; Svobodová, Jaroslava; Bernhardt, Günther; Cabrele, Chiara; Vanderheyden, Patrick M L; Gmeiner, Peter; Buschauer, Armin

    2016-03-10

    Derivatization of biologically active peptides by conjugation with fluorophores or radionuclide-bearing moieties is an effective and commonly used approach to prepare molecular tools and diagnostic agents. Whereas lysine, cysteine, and N-terminal amino acids have been mostly used for peptide conjugation, we describe a new, widely applicable approach to peptide conjugation based on the nonclassical bioisosteric replacement of the guanidine group in arginine by a functionalized carbamoylguanidine moiety. Four arginine-containing peptide receptor ligands (angiotensin II, neurotensin(8-13), an analogue of the C-terminal pentapeptide of neuropeptide Y, and a neuropeptide FF analogue) were subject of this proof-of-concept study. The N(ω)-carbamoylated arginines, bearing spacers with a terminal amino group, were incorporated into the peptides by standard Fmoc solid phase peptide synthesis. The synthesized chemically stable peptide derivatives showed high receptor affinities with Ki values in the low nanomolar range, even when bulky fluorophores had been attached. Two new tritiated tracers for angiotensin and neurotensin receptors are described.

  14. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Aponte, Jose C.; Blackmond, Donna G.; Burton, Aaron S.; Dworkin, Jason P.; Glavin, Daniel P.

    2016-01-01

    The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplied by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large -enantiomeric excesses of some extraterrestrial protein amino acids (up to 60) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work.

  15. Protein sectors: evolutionary units of three-dimensional structure

    PubMed Central

    Halabi, Najeeb; Rivoire, Olivier; Leibler, Stanislas; Ranganathan, Rama

    2011-01-01

    Proteins display a hierarchy of structural features at primary, secondary, tertiary, and higher-order levels, an organization that guides our current understanding of their biological properties and evolutionary origins. Here, we reveal a structural organization distinct from this traditional hierarchy by statistical analysis of correlated evolution between amino acids. Applied to the S1A serine proteases, the analysis indicates a decomposition of the protein into three quasi-independent groups of correlated amino acids that we term “protein sectors”. Each sector is physically connected in the tertiary structure, has a distinct functional role, and constitutes an independent mode of sequence divergence in the protein family. Functionally relevant sectors are evident in other protein families as well, suggesting that they may be general features of proteins. We propose that sectors represent a structural organization of proteins that reflects their evolutionary histories. PMID:19703402

  16. Water-soluble N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan chloride as a nucleic acids vector for cell transfection.

    PubMed

    Faizuloev, Evgeny; Marova, Anna; Nikonova, Alexandra; Volkova, Irina; Gorshkova, Marina; Izumrudov, Vladimir

    2012-08-01

    To endow the cationic polysaccharides with solubility in the whole pH-range without loss of functionality of the amino groups, different chitosan samples were treated with glycidyltrimethylammonium chloride. Each modified unit of the exhaustively alkylated quaternized chitosan (QCht) contained both quaternary and secondary amino groups. The intercalated dye displacement assay and ζ-potential measurements implied stability of QCht polyplexes at physiological conditions and protonation of the secondary amino groups in slightly acidic media which is favorable for transfection according to proton sponge mechanism. The cytotoxicity and transfection efficacy increased with the chain lengthening. Nevertheless, the longest chains of QCht, 250 kDa were less toxic than PEI for COS-1 cells and revealed comparable and even significantly higher transfection activity of siRNA and plasmid DNA, respectively. Thus, highly polymerized QCht (250 kDa) provided the highest level of the plasmid DNA transfection being 5 and 80 times more active than QCht (100 kDa) and QCht (50 kDa), respectively, and 4-fold more effective than PEI, 25 kDa. The established influence of QCht molecular weight on toxicity and transfection efficacy allows elaborating polysaccharide vectors that possess rational balance of these characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Branched-chain amino acids alter neurobehavioral function in rats

    PubMed Central

    Coppola, Anna; Wenner, Brett R.; Ilkayeva, Olga; Stevens, Robert D.; Maggioni, Mauro; Slotkin, Theodore A.; Levin, Edward D.

    2013-01-01

    Recently, we have described a strong association of branched-chain amino acids (BCAA) and aromatic amino acids (AAA) with obesity and insulin resistance. In the current study, we have investigated the potential impact of BCAA on behavioral functions. We demonstrate that supplementation of either a high-sucrose or a high-fat diet with BCAA induces anxiety-like behavior in rats compared with control groups fed on unsupplemented diets. These behavioral changes are associated with a significant decrease in the concentration of tryptophan (Trp) in brain tissues and a consequent decrease in serotonin but no difference in indices of serotonin synaptic function. The anxiety-like behaviors and decreased levels of Trp in the brain of BCAA-fed rats were reversed by supplementation of Trp in the drinking water but not by administration of fluoxetine, a selective serotonin reuptake inhibitor, suggesting that the behavioral changes are independent of the serotonergic pathway of Trp metabolism. Instead, BCAA supplementation lowers the brain levels of another Trp-derived metabolite, kynurenic acid, and these levels are normalized by Trp supplementation. We conclude that supplementation of high-energy diets with BCAA causes neurobehavioral impairment. Since BCAA are elevated spontaneously in human obesity, our studies suggest a potential mechanism for explaining the strong association of obesity and mood disorders. PMID:23249694

  18. Genetic Incorporation of Twelve meta-Substituted Phenylalanine Derivatives Using A Single Pyrrolysyl-tRNA Synthetase

    PubMed Central

    Wang, Yane-Shih; Fang, Xinqiang; Chen, Hsueh-Ying; Wu, Bo; Wang, Zhiyong U.; Hilty, Christian; Liu, Wenshe R.

    2012-01-01

    When coexpressed with its cognate amber suppressing tRNACUAPyl, a pyrrolysyl-tRNA synthetase mutant N346A/C348A is able to genetically incorporate twelve meta-substituted phenylalanine derivatives into proteins site-specifically at amber mutation sites in Escherichia coli. These genetically encoded noncanonical amino acids resemble phenylalanine in size and contain diverse bioorthogonal functional groups such as halide, trifluoromethyl, nitrile, nitro, ketone, alkyne, and azide moieties. The genetic installation of these functional groups in proteins provides multiple ways to site-selectively label proteins with biophysical and biochemical probes for their functional investigations. We demonstrate that a genetically incorporated trifluoromethyl group can be used as a sensitive 19F NMR probe to study protein folding/unfolding, and that genetically incorporated reactive functional groups such as ketone, alkyne, and azide moieties can be applied to site-specifically label proteins with florescent probes. This critical discovery allows the synthesis of proteins with diverse bioorthogonal functional groups for a variety of basic studies and biotechnology development using a single recombinant expression system. PMID:23138887

  19. Interactions of the EcoRV restriction endonuclease with fluorescent oligodeoxynucleotides.

    PubMed

    Erskine, S G; Halford, S E

    1995-05-19

    A self-complementary dodecadeoxyribonucleotide that contains the recognition sequence for the R.EcoRV ENase was synthesised with a primary amino group at its 5' terminus. The 5' amino function was labeled with the fluorescent dye 5-[dimethylamino] napthalene-1-sulfonyl chloride. The labeled oligodeoxyribonucleotide in its duplex form was shown to be a suitable substrate for kinetic studies on the ENase and that no significant dye-DNA or dye-protein interactions occurred. Finally, the binding of R.EcoRV to the labeled DNA was followed by detecting the fluorescence resonance energy transfer between the tryptophans of the protein and the fluorescent labels of the DNA.

  20. Exploring Cooperative Effects in Oxidative NHC Catalysis: Regioselective Acylation of Carbohydrates.

    PubMed

    Cramer, David L; Bera, Srikrishna; Studer, Armido

    2016-05-23

    The utility of oxidative NHC catalysis for both the regioselective and chemoselective functionalization of carbohydrates is explored. Chiral NHCs allow for the highly regioselective oxidative esterification of various carbohydrates using aldehydes as acylation precursors. The transformation was also shown to be amenable to both cis/trans diol isomers, free amino groups, and selective for specific sugar epimers in competition experiments. Efficiency and regioselectivity of the acylation can be improved upon using two different NHC catalysts that act cooperatively. The potential of the method is documented by the regioselective acylation of an amino-linked neodisaccharide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Lipoic acid functionalized amino acids cationic lipids as gene vectors.

    PubMed

    Su, Rong-Chuan; Liu, Qiang; Yi, Wen-Jing; Zheng, Li-Ting; Zhao, Zhi-Gang

    2016-10-01

    A series of reducible cationic lipids 4a-4f with different amino acid polar-head groups were prepared. The novel lipid contains a hydrophobic lipoic acid (LA) moiety, which can be reduced under reductive conditions to release of the encapsulated plasmid DNA. The particle size, zeta potential and cellular uptake of lipoplexes formed with DNA, as well as the transfection efficacy (TE) were characterized. The TE of the cationic lipid based on arginine was especially high, and was 2.5times higher than that of a branched polyethylenimine in the presence of 10% serum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Readily Accessible and Highly Efficient Ferrocene-Based Amino-Phosphine-Alcohol (f-Amphol) Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Simple Ketones.

    PubMed

    Yu, Jianfei; Duan, Meng; Wu, Weilong; Qi, Xiaotian; Xue, Peng; Lan, Yu; Dong, Xiu-Qin; Zhang, Xumu

    2017-01-18

    We have successfully developed a series of novel and modular ferrorence-based amino-phosphine-alcohol (f-Amphol) ligands, and applied them to iridium-catalyzed asymmetric hydrogenation of various simple ketones to afford the corresponding chiral alcohols with excellent enantioselectivities and conversions (98-99.9 % ee, >99 % conversion, turnover number up to 200 000). Control experiments and density functional theory (DFT) calculations have shown that the hydroxyl group of our f-Amphol ligands played a key role in this asymmetric hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Computational studies on non-succinimide-mediated stereoinversion mechanism of aspartic acid residues assisted by phosphate

    NASA Astrophysics Data System (ADS)

    Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Takahashi, Ohgi; Oda, Akifumi

    2018-03-01

    Although nearly all of the amino acids that constitute proteins are l-amino acids, d-amino acid residues in human proteins have been recently reported. d-amino acid residues cause a change in the three-dimensional structure of proteins, and d-aspartic acid (Asp) residues are considered to be one of the causes of age-related diseases. The stereoinversion of Asp residues in peptides and proteins is thought to proceed via a succinimide intermediate; however, it has been reported that stereoinversion can occur even under conditions where a succinimide intermediate cannot be formed. In order to elucidate the non-succinimide-mediated stereoinversion pathway, we investigated the stereoinversion of l-Asp to d-Asp catalysed by phosphate and estimated the activation barrier using B3LYP/6-31+G(d,p) density functional theory (DFT) calculations. For the DFT calculations, a model compound in which the Asp residue is capped with acetyl and methyl-amino groups on the N- and C-termini, respectively, was used. The calculated activation barrier was not excessively high for the stereoinversion to occur in vivo. Therefore, this stereoinversion mechanism may compete with the succinimide-mediated mechanism.

  4. Serum Amino Acid Profiling in Citrin-Deficient Children Exhibiting Normal Liver Function During the Apparently Healthy Period.

    PubMed

    Miyazaki, Teruo; Nagasaka, Hironori; Komatsu, Haruki; Inui, Ayano; Morioka, Ichiro; Tsukahara, Hirokazu; Kaji, Shunsaku; Hirayama, Satoshi; Miida, Takashi; Kondou, Hiroki; Ihara, Kenji; Yagi, Mariko; Kizaki, Zenro; Bessho, Kazuhiko; Kodama, Takahiro; Iijima, Kazumoto; Yorifuji, Tohru; Matsuzaki, Yasushi; Honda, Akira

    2018-04-14

    Citrin (mitochondrial aspartate-glutamate transporter) deficiency causes the failures in both carbohydrate-energy metabolism and the urea cycle, and the alterations in the serum levels of several amino acids in the stages of newborn (NICCD) and adult (CTLN2). However, the clinical manifestations are resolved between the NICCD and CTLN2, but the reasons are still unclear. This study evaluated the serum amino acid profile in citrin-deficient children during the healthy stage. Using HPLC-MS/MS analysis, serum amino acids were evaluated among 20 citrin-deficient children aged 5-13 years exhibiting normal liver function and 35 age-matched healthy controls. The alterations in serum amino acids characterized in the NICCD and CTLN2 stages were not observed in the citrin-deficient children. Amino acids involved in the urea cycle, including arginine, ornithine, citrulline, and aspartate, were comparable in the citrin-deficient children to the respective control levels, but serum urea was twofold higher, suggestive of a functional urea cycle. The blood sugar level was normal, but glucogenic amino acids and glutamine were significantly decreased in the citrin-deficient children compared to those in the controls. In addition, significant increases of ketogenic amino acids, branched-chain amino acids (BCAAs), a valine intermediate 3-hydroxyisobutyrate, and β-alanine were also found in the citrin-deficient children. The profile of serum amino acids in the citrin-deficient children during the healthy stage showed different characteristics from the NICCD and CTLN2 stages, suggesting that the failures in both urea cycle function and energy metabolism might be compensated by amino acid metabolism. In the citrin-deficient children during the healthy stage, the characteristics of serum amino acids, including decrease of glucogenic amino acids, and increase of ketogenic amino acids, BCAAs, valine intermediate, and β-alanine, were found by comparison to the age-matched healthy control children, and it suggested that the characteristic alteration of serum amino acids may be resulted from compensation for energy metabolism and ammonia detoxification.

  5. D-Amino Acids in Living Higher Organisms

    NASA Astrophysics Data System (ADS)

    Fujii, Noriko

    2002-04-01

    The homochirality of biological amino acids (L-amino acids) and of the RNA/DNA backbone (D-ribose) might have become established before the origin of life. It has been considered that D-amino acids and L-sugars were eliminated on the primitive Earth. Therefore, the presence and function of D-amino acids in living organisms have not been studied except for D-amino acids in the cell walls of microorganisms. However, D-amino acids were recently found in various living higher organisms in the form of free amino acids, peptides, and proteins. Free D-aspartate and D-serine are present and may have important physiological functions in mammals. D-amino acids in peptides are well known as opioid peptides and neuropeptides. In protein, D-aspartate residues increase during aging. This review deals with recent advances in the study of D-amino acids in higher organisms.

  6. Metal cation dependence of interactions with amino acids: bond dissociation energies of Rb(+) and Cs(+) to the acidic amino acids and their amide derivatives.

    PubMed

    Armentrout, P B; Yang, Bo; Rodgers, M T

    2014-04-24

    Metal cation-amino acid interactions are key components controlling the secondary structure and biological function of proteins, enzymes, and macromolecular complexes comprising these species. Determination of pairwise interactions of alkali metal cations with amino acids provides a thermodynamic vocabulary that begins to quantify these fundamental processes. In the present work, we expand a systematic study of such interactions by examining rubidium and cesium cations binding with the acidic amino acids (AA), aspartic acid (Asp) and glutamic acid (Glu), and their amide derivatives, asparagine (Asn) and glutamine (Gln). These eight complexes are formed using electrospray ionization and their bond dissociation energies (BDEs) are determined experimentally using threshold collision-induced dissociation with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy-dependent cross sections include consideration of unimolecular decay rates, internal energy of the reactant ions, and multiple ion-neutral collisions. Quantum chemical calculations are conducted at the B3LYP, MP2(full), and M06 levels of theory using def2-TZVPPD basis sets, with results showing reasonable agreement with experiment. At 0 and 298 K, most levels of theory predict that the ground-state conformers for M(+)(Asp) and M(+)(Asn) involve tridentate binding of the metal cation to the backbone carbonyl, amino, and side-chain carbonyl groups, although tridentate binding to the carboxylic acid group and side-chain carbonyl is competitive for M(+)(Asn). For the two longer side-chain amino acids, Glu and Gln, multiple structures are competitive. A comparison of these results to those for the smaller alkali cations, Na(+) and K(+), provides insight into the trends in binding energies associated with the molecular polarizability and dipole moment of the side chain. For all four metal cations, the BDEs are inversely correlated with the size of the metal cation and follow the order Asp < Glu < Asn < Gln.

  7. Ion Chromatography Based Urine Amino Acid Profiling Applied for Diagnosis of Gastric Cancer

    PubMed Central

    Fan, Jing; Hong, Jing; Hu, Jun-Duo; Chen, Jin-Lian

    2012-01-01

    Aim. Amino acid metabolism in cancer patients differs from that in healthy people. In the study, we performed urine-free amino acid profile of gastric cancer at different stages and health subjects to explore potential biomarkers for diagnosing or screening gastric cancer. Methods. Forty three urine samples were collected from inpatients and healthy adults who were divided into 4 groups. Healthy adults were in group A (n = 15), early gastric cancer inpatients in group B (n = 7), and advanced gastric cancer inpatients in group C (n = 16); in addition, two healthy adults and three advanced gastric cancer inpatients were in group D (n = 5) to test models. We performed urine amino acids profile of each group by applying ion chromatography (IC) technique and analyzed urine amino acids according to chromatogram of amino acids standard solution. The data we obtained were processed with statistical analysis. A diagnostic model was constructed to discriminate gastric cancer from healthy individuals and another diagnostic model for clinical staging by principal component analysis. Differentiation performance was validated by the area under the curve (AUC) of receiver-operating characteristic (ROC) curves. Results. The urine-free amino acid profile of gastric cancer patients changed to a certain degree compared with that of healthy adults. Compared with healthy adult group, the levels of valine, isoleucine, and leucine increased (P < 0.05), but the levels of histidine and methionine decreased (P < 0.05), and aspartate decreased significantly (P < 0.01). The urine amino acid profile was also different between early and advanced gastric cancer groups. Compared with early gastric cancer, the levels of isoleucine and valine decreased in advanced gastric cancer (P < 0.05). A diagnosis model constructed for gastric cancer with AUC value of 0.936 tested by group D showed that 4 samples could coincide with it. Another diagnosis model for clinical staging with an AUC value of 0.902 tested by 3 advanced gastric cancer inpatients of group D showed that all could coincide with the model. Conclusions. The noticeable differences of urine-free amino acid profiles between gastric cancer patients and healthy adults indicate that such amino acids as valine, isoleucine, leucine, methionine, histidine and aspartate are important metabolites in cell multiplication and gene expression during tumor growth and metastatic process. The study suggests that urine-free amino acid profiling is of potential value for screening or diagnosing gastric cancer. PMID:22888338

  8. Effect of p-amino-diphenyl ethers on hepatic microsomal cytochrome P450.

    PubMed

    Jiang, Huidi; Xuan, Guida

    2003-09-01

    The present paper aims to investigate whether p-amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether are inhibitors as well as inducers of P450. Mice were given daily intraperitoneal (ip) injections of p-amino-2',4'-dichlorodiphenyl ether (0.25 mmol/kg) or p-amino-4'-methyldiphenyl ether (0.25 mmol/kg) for 4 days and tested at 24 h and 48 h after the last dose injection. The results showed the mice pentobarbital sleeping time was shorter and the P450 content of hepatic microsome increased significantly in the group pretreated with p-amino-4'-methyldiphenyl ether when compared with the control group, while in mice pretreated with p-amino-2',4'-dichlorodiphenyl ether the hepatic microsome P450 content increased but the pentobarbital sleeping time was extended in clear contrast to the control group. The sleeping time of the phenobarbital group (80 mg/kg daily ip injection for 4 days) was shortened at 24 h after the last injection with increased P450 content of hepatic microsome, but it showed no difference at 48 h. The zoxazolamine-paralysis times of mice treated with p-amino-2',4'-dichlorodiphenyl ether were longer than those of the control mice, while the same dose of zoxazolamine did not lead to paralysis in mice pretreated with BNF. p-Amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether inhibited the activity of 7-ethoxyresorufin O-deethylase from rat hepatic microsome induced by BNF in vitro by 70.0% and 50.1% respectively. These results suggest that p-amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether are inhibitors as well as inducers of P450.

  9. Adsorption of Pb(II) ions onto biomass from Trifolium resupinatum: equilibrium and kinetic studies

    NASA Astrophysics Data System (ADS)

    Athar, Makshoof; Farooq, Umar; Aslam, Muhammad; Salman, M.

    2013-09-01

    The present study provides information about the binding of Pb(II) ions on an eco-friendly and easily available biodegradable biomass Trifolium resupinatum. The powdered biomass was characterized by FTIR, potentiometric titration and surface area analyses. The FTIR spectrum showed the presence of hydroxyl, carbonyl and amino functional groups and Pb(II) ions bound with the oxygen- and nitrogen-containing sites (hydroxyl and amino groups). The acidic groups were also confirmed by titrations. Effects of various environmental parameters (time, pH and concentration) have been studied. The biosorption process achieved equilibrium in a very short period of time (25 min). Non-linear approach for Langmuir and Freundlich models was used to study equilibrium process and root mean-square error was used as an indicator to decide the fitness of the mathematical model. The biosorption process was found to follow pseudo-second-order kinetics and was very fast. Thus, the biomass can be cost-effectively used for the binding of Pb(II) ions from aqueous solutions.

  10. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity.

    PubMed

    Zhang, Ziran; Zhou, Feibai; Liu, Xiaoling; Zhao, Mouming

    2018-08-30

    An oyster protein hydrolysates-zinc complex (OPH-Zn) was prepared and investigated to improve zinc bioaccessibility. Zinc ions chelating with oyster protein hydrolysates (OPH) cause intramolecular and intermolecular folding and aggregation, homogeneously forming the OPH-Zn complex as nanoclusters with a Z-average at 89.28 nm (PDI: 0.16 ± 0.02). The primary sites of zinc-binding in OPH were carboxyl groups, carbonyl groups, and amino groups, and they were related to the high number of charged amino acid residues. Furthermore, formation of the OPH-Zn complex could significantly enhance zinc solubility both under specific pH conditions as well as during simulated gastrointestinal digestion, compared to the commonly used ZnSO 4 . Additionally, after digestion, either preserved or enhanced antioxidant activity of OPH was found when chelated with zinc. These results indicated that the OPH-Zn complex could be a potential functional ingredient with improved antioxidant bioactivity and zinc bioaccessibility. Copyright © 2018. Published by Elsevier Ltd.

  11. Relationship between global structural parameters and Enzyme Commission hierarchy: implications for function prediction.

    PubMed

    Boareto, Marcelo; Yamagishi, Michel E B; Caticha, Nestor; Leite, Vitor B P

    2012-10-01

    In protein databases there is a substantial number of proteins structurally determined but without function annotation. Understanding the relationship between function and structure can be useful to predict function on a large scale. We have analyzed the similarities in global physicochemical parameters for a set of enzymes which were classified according to the four Enzyme Commission (EC) hierarchical levels. Using relevance theory we introduced a distance between proteins in the space of physicochemical characteristics. This was done by minimizing a cost function of the metric tensor built to reflect the EC classification system. Using an unsupervised clustering method on a set of 1025 enzymes, we obtained no relevant clustering formation compatible with EC classification. The distance distributions between enzymes from the same EC group and from different EC groups were compared by histograms. Such analysis was also performed using sequence alignment similarity as a distance. Our results suggest that global structure parameters are not sufficient to segregate enzymes according to EC hierarchy. This indicates that features essential for function are rather local than global. Consequently, methods for predicting function based on global attributes should not obtain high accuracy in main EC classes prediction without relying on similarities between enzymes from training and validation datasets. Furthermore, these results are consistent with a substantial number of studies suggesting that function evolves fundamentally by recruitment, i.e., a same protein motif or fold can be used to perform different enzymatic functions and a few specific amino acids (AAs) are actually responsible for enzyme activity. These essential amino acids should belong to active sites and an effective method for predicting function should be able to recognize them. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Peptide-Based Molecular Hydrogels as Supramolecular Protein Mimics.

    PubMed

    Singh, Nishant; Kumar, Mohit; Miravet, Juan F; Ulijn, Rein V; Escuder, Beatriu

    2017-01-23

    This Minireview concerns recent advances in the design, synthesis, and application of low molecular-weight peptidic hydrogelators. The sequence-specific combinations of amino acid side chain functionalities combined with hydrogen bonding of amide backbones and hydrophobic (aromatic) capping groups give these peptidic molecules the intrinsic tendency to self-assemble. The most prevalent designs include N-capped amino acid residues, bolamphiphilic peptides, and amphipathic peptides. Factors such as hydrophobic effects, the Hofmeister effect, and tunable ionization influence their aggregation properties. The self-assembly of simple bio-inspired building blocks into higher organized structures allows comparisons to be drawn with proteins and their complex functionalities, providing preliminary insights into complex biological functions and also enabling their application in a wide range of fields including catalysis, biomedical applications, and mimicry of natural dissipative systems. The Minireview is concluded by a short summary and outlook, highlighting the advances and steps required to bridge the gaps in the understanding of such systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Determination of Selected Amino Acids in Serum of Patients with Liver Disease.

    PubMed

    Kanďár, Roman; Drábková, Petra; Toiflová, Tereza; Čegan, Alexander

    2016-01-01

    The determination of amino acids can be a reliable approach for extended diagnosis of liver diseases. This is because liver disease can be a cause of impaired amino acid metabolism. Therefore, a method for the determination of serum amino acids, applicable for clinical purposes, is necessary. The aim of this study was to find differences in the levels of selected amino acids between patients with liver disease and a control group. Samples of peripheral venous blood were obtained from a group of patients with liver disease (n = 131, 59 women at an average age of 60 years and 72 men at an average age of 52 years) and a control group (n = 105, 47 women at an average age of 62 years and 58 men at an average age of 58 years). Before the separation, the amino acids were derivatized with naphthalene-2,3-dicarboxaldehyde. For the separation, reverse phase column was used. The effluent was monitored with a fluorescence detector. There were significant differences in the concentrations of some amino acids between the patients and the control group, but also between women and men. Correlations between some amino acids and markers of liver blood tests and lipid metabolism were observed. A simple, relatively rapid and selective HPLC method with fluorescence detection for the determination of selected amino acids in serum has been developed.

  14. In vitro incorporation of nonnatural amino acids into protein using tRNACys-derived opal, ochre, and amber suppressor tRNAs

    PubMed Central

    Gubbens, Jacob; Kim, Soo Jung; Yang, Zhongying; Johnson, Arthur E.; Skach, William R.

    2010-01-01

    Amber suppressor tRNAs are widely used to incorporate nonnatural amino acids into proteins to serve as probes of structure, environment, and function. The utility of this approach would be greatly enhanced if multiple probes could be simultaneously incorporated at different locations in the same protein without other modifications. Toward this end, we have developed amber, opal, and ochre suppressor tRNAs derived from Escherichia coli, and yeast tRNACys that incorporate a chemically modified cysteine residue with high selectivity at the cognate UAG, UGA, and UAA stop codons in an in vitro translation system. These synthetic tRNAs were aminoacylated in vitro, and the labile aminoacyl bond was stabilized by covalently attaching a fluorescent dye to the cysteine sulfhydryl group. Readthrough efficiency (amber > opal > ochre) was substantially improved by eRF1/eRF3 inhibition with an RNA aptamer, thus overcoming an intrinsic hierarchy in stop codon selection that limits UGA and UAA termination suppression in higher eukaryotic translation systems. This approach now allows concurrent incorporation of two different modified amino acids at amber and opal codons with a combined apparent readthrough efficiency of up to 25% when compared with the parent protein lacking a stop codon. As such, it significantly expands the possibilities for incorporating nonnative amino acids for protein structure/function studies. PMID:20581130

  15. Molecular architecture of an N-formyltransferase from Salmonella enterica O60.

    PubMed

    Woodford, Colin R; Thoden, James B; Holden, Hazel M

    2017-12-01

    N-formylated sugars are found on the lipopolysaccharides of various pathogenic Gram negative bacteria including Campylobacter jejuni 81116, Francisella tularensis, Providencia alcalifaciens O30, and Providencia alcalifaciens O40. The last step in the biosynthetic pathways for these unusual sugars is catalyzed by N-formyltransferases that utilize N 10 -formyltetrahydrofolate as the carbon source. The substrates are dTDP-linked amino sugars with the functional groups installed at either the C-3' or C-4' positions of the pyranosyl rings. Here we describe a structural and enzymological investigation of the putative N-formyltransferase, FdtF, from Salmonella enterica O60. In keeping with its proposed role in the organism, the kinetic data reveal that the enzyme is more active with dTDP-3-amino-3,6-dideoxy-d-galactose than with dTDP-3-amino-3,6-dideoxy-d-glucose. The structural data demonstrate that the enzyme contains, in addition to the canonical N-formyltransferase fold, an ankyrin repeat moiety that houses a second dTDP-sugar binding pocket. This is only the second time an ankyrin repeat has been shown to be involved in small molecule binding. The research described herein represents the first structural analysis of a sugar N-formyltransferase that specifically functions on dTDP-3-amino-3,6-dideoxy-d-galactose in vivo and thus adds to our understanding of these intriguing enzymes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effect of amino on spin-dependent transport through a junction of fused oligothiophenes between graphene electrodes

    NASA Astrophysics Data System (ADS)

    Cao, Liemao; Li, Xiaobo; Liu, Guang; Liu, Ziran; Zhou, Guanghui

    2017-05-01

    The influence of chemical side groups is significant in physical or chemical understanding the transport through the single molecular junction. Motivated by the recent successful fabrication and measurement of a single organic molecule sandwiched between graphene electrodes (Prins et al., 2011), here we study the spin-dependent transport properties through a junction of a fused oligothiophenes molecule embedded between two zigzag-edged graphene nanoribbon (ZGNR) electrodes. The molecule with and without an attached amino NH2 side group is considered, respectively, and external magnetic fields or FM stripes are applied onto the ZGNRs to initially orient the magnetic alignment of the electrodes for the spin-dependent consideration. By the ab initio calculations based on the density functional theory combined with nonequilibrium Green's function formalism, we have demonstrated the remarkable difference in the spin-charge transport property between the junctions of the molecule with and without NH2 side group. In particular, the junction with side group shows more obvious NDR. In addition, it exhibits an interesting dual spin-filtering effect when the magnetic alignment in electrodes is initially antiparallel-oriented. The mechanisms of the results are revealed and discussed in terms of the spin-resolved transmission spectrum associated with the frontier molecular orbitals evolution, the molecular projected self-consistent Hamiltonian eigenvalues, and the local density of states.

  17. An Examination of the Carbon Isotope Effects Associated with Amino Acid Biosynthesis

    NASA Astrophysics Data System (ADS)

    Scott, James H.; O'Brien, Diane M.; Emerson, David; Sun, Henry; McDonald, Gene D.; Salgado, Antonio; Fogel, Marilyn L.

    2006-12-01

    Stable carbon isotope ratios (δ13C) were determined for alanine, proline, phenylalanine, valine, leucine, isoleucine, aspartate (aspartic acid and asparagine), glutamate (glutamic acid and glutamine), lysine, serine, glycine, and threonine from metabolically diverse microorganisms. The microorganisms examined included fermenting bacteria, organotrophic, chemolithotrophic, phototrophic, methylotrophic, methanogenic, acetogenic, acetotrophic, and naturally occurring cryptoendolithic communities from the Dry Valleys of Antarctica. Here we demonstrated that reactions involved in amino acid biosynthesis can be used to distinguish amino acids formed by life from those formed by nonbiological processes. The unique patterns of δ13C imprinted by life on amino acids produced a biological bias. We also showed that, by applying discriminant function analysis to the δ13C value of a pool of amino acids formed by biological activity, it was possible to identify key aspects of intermediary carbon metabolism in the microbial world. In fact, microorganisms examined in this study could be placed within one of three metabolic groups: (1) heterotrophs that grow by oxidizing compounds containing three or more carbon-to-carbon bonds (fermenters and organotrophs), (2) autotrophs that grow by taking up carbon dioxide (chemolitotrophs and phototrophs), and (3) acetoclastic microbes that grow by assimilation of formaldehyde or acetate (methylotrophs, methanogens, acetogens, and acetotrophs). Furthermore, we demonstrated that cryptoendolithic communities from Antarctica grouped most closely with the autotrophs, which indicates that the dominant metabolic pathways in these communities are likely those utilized for CO2 fixation. We propose that this technique can be used to determine the dominant metabolic types in a community and reveal the overall flow of carbon in a complex ecosystem.

  18. One-shot preparation of an inherently chiral trifunctional calix[4]arene from an easily available cone-triformylcalix[4]arene.

    PubMed

    Ciaccia, Maria; Tosi, Irene; Cacciapaglia, Roberta; Casnati, Alessandro; Baldini, Laura; Di Stefano, Stefano

    2013-06-14

    Via selective 1,3-distal intramolecular Cannizzaro disproportionation of an easily available cone-triformylcalix[4]arene, an inherently chiral trifunctional cone-calix[4]arene derivative has been prepared. The presence of three different functional groups (-CH2OH, -CHO and -COOH) at the upper rim of the calixarene scaffold makes this compound a versatile intermediate for the development of multifunctional devices. Interesting chiral discrimination of serine derivatives has been observed, presumably thanks to a multipoint-interaction involving the reversible imine bond formation and the hydrogen bonding of the hydroxyl group of the amino acid side-chain with the upper rim functional groups. Consistently, chiral discrimination was not observed with alanine and valine derivatives, lacking hydrogen bonding groups on the side-chain.

  19. Complete Amino Acid Sequence of a Copper/Zinc-Superoxide Dismutase from Ginger Rhizome.

    PubMed

    Nishiyama, Yuki; Fukamizo, Tamo; Yoneda, Kazunari; Araki, Tomohiro

    2017-04-01

    Superoxide dismutase (SOD) is an antioxidant enzyme protecting cells from oxidative stress. Ginger (Zingiber officinale) is known for its antioxidant properties, however, there are no data on SODs from ginger rhizomes. In this study, we purified SOD from the rhizome of Z. officinale (Zo-SOD) and determined its complete amino acid sequence using N terminal sequencing, amino acid analysis, and de novo sequencing by tandem mass spectrometry. Zo-SOD consists of 151 amino acids with two signature Cu/Zn-SOD motifs and has high similarity to other plant Cu/Zn-SODs. Multiple sequence alignment showed that Cu/Zn-binding residues and cysteines forming a disulfide bond, which are highly conserved in Cu/Zn-SODs, are also present in Zo-SOD. Phylogenetic analysis revealed that plant Cu/Zn-SODs clustered into distinct chloroplastic, cytoplasmic, and intermediate groups. Among them, only chloroplastic enzymes carried amino acid substitutions in the region functionally important for enzymatic activity, suggesting that chloroplastic SODs may have a function distinct from those of SODs localized in other subcellular compartments. The nucleotide sequence of the Zo-SOD coding region was obtained by reverse-translation, and the gene was synthesized, cloned, and expressed. The recombinant Zo-SOD demonstrated pH stability in the range of 5-10, which is similar to other reported Cu/Zn-SODs, and thermal stability in the range of 10-60 °C, which is higher than that for most plant Cu/Zn-SODs but lower compared to the enzyme from a Z. officinale relative Curcuma aromatica.

  20. Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Palla, Mirkó; Sun, Andrew; Liao, Jung-Chi

    2013-09-01

    DEAD-box RNA helicases are ATP-dependent proteins implicated in nearly all aspects of RNA metabolism. The yeast DEAD-box helicase Mss116 is unique in its functions of splicing group I and group II introns and activating mRNA translation, but the structural understanding of why it performs these unique functions remains unclear. Here we used sequence analysis and molecular dynamics simulation to identify residues in the flexible linker specific for yeast Mss116, potentially associated with its unique functions. We first identified residues that are 100% conserved in Mss116 of different species of the Saccharomycetaceae family. The amino acids of these conserved residues were then compared with the amino acids of the corresponding residue positions of other RNA helicases to identify residues that have distinct amino acids from other DEAD-box proteins. Four residues in the flexible linker, i.e. N334, E335, P336 and H339, are conserved and Mss116-specific. Molecular dynamics simulation was conducted for the wild-type Mss116 structure and mutant models to examine mutational effects of the linker on the conformational equilibrium. Relatively short MD simulation runs (within 20 ns) were enough for us to observe mutational effects, suggesting serious structural perturbations by these mutations. The mutation of E335 depletes the interactions between E335 and K95 in domain 1. The interactions between N334/P336 and N496/I497 of domain 2 are also abolished by mutation. Our results suggest that tight interactions between the Mss116-specific flexible linker and the two RecA-like domains may be mechanically required to crimp RNA for the unique RNA processes of yeast Mss116.

  1. Cloning and nucleotide sequence of the Pseudomonas aeruginosa glucose-selective OprB porin gene and distribution of OprB within the family Pseudomonadaceae.

    PubMed

    Wylie, J L; Worobec, E A

    1994-03-01

    OprB is a glucose-selective porin known to be produced by Pseudomonas aeruginosa and Pseudomonas putida. We have cloned and sequenced the oprB gene of P. aeruginosa and obtained expression of OprB in Escherichia coli. The mature protein consists of 423 amino acid residues with a deduced molecular mass of 47597 Da. Several clusters of amino acid residues, potentially involved in the structure or function of the protein, were identified. An area of regional homology with E. coli LamB was also identified. Carbohydrate-inducible proteins, potentially homologous to OprB, were identified in several rRNA homology-group-I pseudomonads by sodium dodecyl sulfate/polyacrylamide gel electrophoresis analysis, Western immunoblotting and N-terminal amino acid sequencing. These species also contained DNA that hybridized to a P. aeruginosa oprB gene probe.

  2. Enhanced Adsorption of Trivalent Arsenic from Water by Functionalized Diatom Silica Shells

    PubMed Central

    Zhang, Zhijian; Xu, Liping; Zhang, Chunlong

    2015-01-01

    The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino) groups to effectively remove arsenic in its toxic As(III) form (arsenite) predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III) concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III) at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III) adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film) and internal (intraparticle) diffusion can be rate-determining for As(III) adsorption. Fourier transform infrared spectroscopy (FTIR) indicated that the thiol and amino groups potentially responsible for As(III) adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS) further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III) and thiol groups, and through the surface complexation between As(III) and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III) adsorption capacity holds promise for the treatment of As(III) containing wastewater. PMID:25837498

  3. Role of functional groups on Aspergillus niger biomass in the detoxification of hexavalent chromium.

    PubMed

    Narvekar, Sneha; Vaidya, Varsha K

    2009-10-01

    Chromium (VI) contamination is not uncommon, especially near industries involved in leather tanning, chrome painting, metal cleaning and processing, wood preservation and alloy preparation. The mutagenic and carcinogenic properties of Chromium (VI) necessitate effective remedial processes. Difficulties associated with chemical and physical techniques to remediate a Chromium (VI) contaminated site to EPA recommended level (50 ppm), in addition to higher costs involved, assert the need for bioremedial measures. Biosorption can be one such solution to clean up heavy metal contamination. The objective of this study was to examine the main aspects of a possible strategy for the removal of Chromium (VI), employing Aspergillus niger biomass. The roles played by amines, carboxylic acids, phosphates, in Chromium (VI) biosorption were studied. Amino and the carboxy groups on the fungal cell wall play an important role in sorption. However, the role of carboxy group was far less than amino group. Surface adsorption of Chromium (VI) was also seen by scanning electron microscopy (SEM) thus indicating involvement of ion-exchange and surface adsorption mechanism in removal of Chromium (VI) ions.

  4. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories

    PubMed Central

    2016-01-01

    The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplified by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large l-enantiomeric excesses of some extraterrestrial protein amino acids (up to ∼60%) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work. PMID:27413780

  5. Cyanobacteria as efficient producers of mycosporine-like amino acids.

    PubMed

    Jain, Shikha; Prajapat, Ganshyam; Abrar, Mustari; Ledwani, Lalita; Singh, Anoop; Agrawal, Akhil

    2017-09-01

    Mycosporine-like amino acids are the most common group of transparent ultraviolet radiation absorbing intracellular secondary metabolites. These molecules absorb light in the range of ultraviolet-A and -B with a maximum absorbance between 310 and 362 nm. Cyanobacteria might have faced the most deleterious ultraviolet radiation, which leads to an evolution of ultraviolet protecting mycosporine-like amino acids for efficient selection in the environment. In the last 30 years, scientists have investigated various cyanobacteria for novel mycosporine-like amino acids, applying different induction techniques. This review organizes all the cyanobacterial groups that produce various mycosporine-like amino acids. We found out that cyanobacteria belonging to orders Synechococcales, Chroococcales, Oscillatoriales, and Nostocales are frequently studied for the presence of mycosporine-like amino acids, while orders Gloeobacterales, Spirulinales, Pleurocapsales, and Chroococcidiopsidales are still need to be investigated. Nostoc and Anabaena strains are major studied genus for the mycosporine-like amino acids production. Hence, this review will give further insight to the readers about potential mycosporine-like amino acid producing cyanobacterial groups in future investigations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis.

    PubMed

    Habibi, Neda

    2015-02-05

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the NCH3 functional group about 2850cm(-1) is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Diverse characteristics of the urinary excretion of amino acids in humans and the use of amino acid supplementation to reduce fatigue and sub-health in adults.

    PubMed

    Dunstan, R H; Sparkes, D L; Macdonald, M M; De Jonge, X Janse; Dascombe, B J; Gottfries, J; Gottfries, C-G; Roberts, T K

    2017-03-23

    The excretion of amino acids in urine represents an important avenue for the loss of key nutrients. Some amino acids such as glycine and histidine are lost in higher abundance than others. These two amino acids perform important physiological functions and are required for the synthesis of key proteins such as haemoglobin and collagen. Stage 1 of this study involved healthy subjects (n = 151) who provided first of the morning urine samples and completed symptom questionnaires. Urine was analysed for amino acid composition by gas chromatography. Stage 2 involved a subset of the initial cohort (n = 37) who completed a 30 day trial of an amino acid supplement and subsequent symptom profile evaluation. Analyses of urinary amino acid profiles revealed that three groups could be objectively defined from the 151 participants using k-means clustering. The amino acid profiles were significantly different between each of the clusters (Wilks' Lambda = 0.13, p < 0.0001). Cluster 1 had the highest loss of amino acids with histidine being the most abundant component. Cluster 2 had glycine present as the most abundant urinary amino acid and cluster 3 had equivalent abundances of glycine and histidine. Strong associations were observed between urinary proline concentrations and fatigue/pain scores (r = .56 to .83) for females in cluster 1, with several other differential sets of associations observed for the other clusters. Different phenotypic subsets exist in the population based on amino acid excretion characteristics found in urine. Provision of the supplement resulted in significant improvements in reported fatigue and sleep for 81% of the trial cohort with all females reporting improvements in fatigue. The study was registered on the 18th April 2011 with the Australian New Zealand Clinical Trials Registry ( ACTRN12611000403932 ).

  8. The amino-terminal hydrophilic region of the vacuolar transporter Avt3p is dispensable for the vacuolar amino acid compartmentalization of Schizosaccharomyces pombe.

    PubMed

    Kawano-Kawada, Miyuki; Chardwiriyapreecha, Soracom; Manabe, Kunio; Sekito, Takayuki; Akiyama, Koichi; Takegawa, Kaoru; Kakinuma, Yoshimi

    2016-12-01

    Avt3p, a vacuolar amino acid exporter (656 amino acid residues) that is important for vacuolar amino acid compartmentalization as well as spore formation in Schizosaccharomyces pombe, has an extremely long hydrophilic region (approximately 290 amino acid residues) at its N-terminus. Because known functional domains have not been found in this region, its functional role was examined with a deletion mutant avt3 (∆1-270) expressed in S. pombe avt3∆ cells. The deletion of this region did not affect its intracellular localization or vacuolar contents of basic amino acids as well as neutral ones. The defect of avt3Δ cells in spore formation was rescued by the expression of avt3 + but was not completely rescued by the expression of avt3 (∆1-270) . The N-terminal region is thus dispensable for the function of Avt3p as an amino acid exporter, but it is likely to be involved in the role of Avt3p under nutritional starvation conditions.

  9. Iron(II)-catalyzed intermolecular amino-oxygenation of olefins through the N-O bond cleavage of functionalized hydroxylamines.

    PubMed

    Lu, Deng-Fu; Zhu, Cheng-Liang; Jia, Zhen-Xin; Xu, Hao

    2014-09-24

    An iron-catalyzed diastereoselective intermolecular olefin amino-oxygenation reaction is reported, which proceeds via an iron-nitrenoid generated by the N-O bond cleavage of a functionalized hydroxylamine. In this reaction, a bench-stable hydroxylamine derivative is used as the amination reagent and oxidant. This method tolerates a range of synthetically valuable substrates that have been all incompatible with existing amino-oxygenation methods. It can also provide amino alcohol derivatives with regio- and stereochemical arrays complementary to known amino-oxygenation methods.

  10. Medium-Chain Triglycerides in Combination with Leucine and Vitamin D Benefit Cognition in Frail Elderly Adults: A Randomized Controlled Trial.

    PubMed

    Abe, Sakiko; Ezaki, Osamu; Suzuki, Motohisa

    2017-01-01

    The combined supplementation of medium-chain triglycerides (MCTs), L-leucine-rich amino acids, and cholecalciferol (vitamin D 3 ) increase muscle strength and function in frail elderly individuals. However, their effects on cognition are unknown. We enrolled 38 elderly nursing home residents (mean age±SD, 86.6±4.8 y) in a 3-mo randomized, controlled, parallel group trial. The participants were randomly allocated to 3 groups: the first group received a L-leucine (1.2 g)- and cholecalciferol (20 μg)-enriched supplement with 6 g of MCT (LD+MCT); the second group received the same supplement with 6 g of long-chain triglycerides (LD+LCT); and the third group did not receive any supplements (control). Cognition was assessed at baseline and after the 3-mo intervention. The difference in changes among the groups was assessed with ANCOVA, adjusting for age and the baseline value as covariates. After 3 mo, the Mini-Mental State Examination (MMSE) score in the LD+MCT group increased by 10.6% (from 16.6 to 18.4 points, p<0.05). After 3 mo, the Nishimura geriatric rating scale for mental status (NM scale) score in the LD+MCT group increased by 30.6% (from 24.6 to 32.2 points, p<0.001), whereas that in the LD+LCT and control groups decreased by 11.2% (from 31.2 to 27.7 points, p<0.05) and 26.1% (from 27.2 to 20.1 points, p<0.001), respectively. The combined supplementation of MCTs (6 g), L-leucine-rich amino acids, and cholecalciferol may improve cognitive function in frail elderly individuals.

  11. Effects of branched-chain amino acid supplementation after radiofrequency ablation for hepatocellular carcinoma: A randomized trial.

    PubMed

    Nojiri, Shunsuke; Fujiwara, Kei; Shinkai, Noboru; Iio, Etsuko; Joh, Takashi

    2017-01-01

    Maintenance of liver function is important for better outcomes after radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC). The aim of this study was to examine the effects of oral branched-chain amino acid (BCAA) supplementation on liver function, intrahepatic recurrence rate, and incidence of complications after RFA for HCC. Patients with cirrhosis who underwent RFA were enrolled between August 2009 and April 2012, randomized to oral supplementation with Aminoleban EN (BCAA group) or diet alone (control group), and followed to determine changes in serum parameters and health status. Patients in the BCAA group were instructed to ingest a packet of Aminoleban EN twice daily. Levels of physical and mental stress were assessed using the Short Form-8 health survey. Oral BCAA and dietary interventions were initiated 2 wk before local therapy, and contrast-enhanced computed tomography was performed every 3 mo to assess recurrence. We evaluated 25 patients in the BCAA group and 26 in the control group. The median follow-up period was 3.9 y (736-1818 d). There were no significant differences between the two groups in basal characteristics. Complications were less frequent in the BCAA group (P = 0.03). Event-free survival was significantly higher in the BCAA group, whereas the intrahepatic recurrence rate was significantly lower (P = 0.04 and 0.036, respectively). A significant improvement in the Short Form-8 mental component score was observed in the BCAA group only (P < 0.01). Aminoleban EN may be beneficial for cirrhotic patients after RFA to relieve mental stress and reduce the risks for intrahepatic recurrence and complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Recent Modifications of Chitosan for Adsorption Applications: A Critical and Systematic Review

    PubMed Central

    Kyzas, George Z.; Bikiaris, Dimitrios N.

    2015-01-01

    Chitosan is considered to be one of the most promising and applicable materials in adsorption applications. The existence of amino and hydroxyl groups in its molecules contributes to many possible adsorption interactions between chitosan and pollutants (dyes, metals, ions, phenols, pharmaceuticals/drugs, pesticides, herbicides, etc.). These functional groups can help in establishing positions for modification. Based on the learning from previously published works in literature, researchers have achieved a modification of chitosan with a number of different functional groups. This work summarizes the published works of the last three years (2012–2014) regarding the modification reactions of chitosans (grafting, cross-linking, etc.) and their application to adsorption of different environmental pollutants (in liquid-phase). PMID:25584681

  13. Elongated and substituted triazine-based tricarboxylic acid linkers for MOFs.

    PubMed

    Klinkebiel, Arne; Beyer, Ole; Malawko, Barbara; Lüning, Ulrich

    2016-01-01

    New triazine-based tricarboxylic acid linkers were prepared as elongated relatives of triazinetribenzoic acid (TATB). Additionally, functional groups (NO 2 , NH 2 , OMe, OH) were introduced for potential post-synthetic modification (PSM) of MOFs. Functionalized tris(4-bromoaryl)triazine "cores" ( 3a , 3b ) were obtained by unsymmetric trimerization mixing one equivalent of an acid chloride (OMe or NO 2 substituted) with two equivalents of an unsubstituted nitrile. Triple Suzuki coupling of the cores 3 with suitable phenyl- and biphenylboronic acid derivatives provided elongated tricarboxylic acid linkers as carboxylic acids 17 and 20 or their esters 16 and 19 . Reduction of the nitro group and cleavage of the methoxy group gave the respective amino and hydroxy-substituted triazine linkers.

  14. Elongated and substituted triazine-based tricarboxylic acid linkers for MOFs

    PubMed Central

    Klinkebiel, Arne; Beyer, Ole; Malawko, Barbara

    2016-01-01

    New triazine-based tricarboxylic acid linkers were prepared as elongated relatives of triazinetribenzoic acid (TATB). Additionally, functional groups (NO2, NH2, OMe, OH) were introduced for potential post-synthetic modification (PSM) of MOFs. Functionalized tris(4-bromoaryl)triazine “cores” (3a,3b) were obtained by unsymmetric trimerization mixing one equivalent of an acid chloride (OMe or NO2 substituted) with two equivalents of an unsubstituted nitrile. Triple Suzuki coupling of the cores 3 with suitable phenyl- and biphenylboronic acid derivatives provided elongated tricarboxylic acid linkers as carboxylic acids 17 and 20 or their esters 16 and 19. Reduction of the nitro group and cleavage of the methoxy group gave the respective amino and hydroxy-substituted triazine linkers. PMID:28144293

  15. Reactive carriers of immobilized compounds.

    PubMed

    Coupek, J; Labský, J; Kálal, J; Turková, J; Valentová, O

    1977-04-12

    Sphericanl macroporous reactive carriers capable of forming covalent bonds with amino acids and proteins were prepared by the suspension copolymerization of 2-hydroxyethyl methacrylate, ethylene dimethacrylate and p-nitrophenyl esters of methacrylic acid and methacryloyl derivatives of glycine, beta-alanine and epsilon-aminocaproic acid. The effect of the spacer length, pH and the type of the buffer used, concentration of reactive groups in the copolymer, concentration of the ligand and the participation of the hydrolytic and aminolytic reaction of p-nitrophenyl functional groups in the attachment of glycine, D,L-phenylalanine and serumalbumin was studied. Macroporous copolymers containing reactive functional groups can be used as active enzyme carriers, if their activity is not blocked by the presence of p-nitrophenol split off in the attachment reaction.

  16. Aqueous Exfoliation of Graphite into Graphene Assisted by Sulfonyl Graphene Quantum Dots for Photonic Crystal Applications.

    PubMed

    Zeng, Minxiang; Shah, Smit A; Huang, Dali; Parviz, Dorsa; Yu, Yi-Hsien; Wang, Xuezhen; Green, Micah J; Cheng, Zhengdong

    2017-09-13

    We investigate the π-π stacking of polyaromatic hydrocarbons (PAHs) with graphene surfaces, showing that such interactions are general across a wide range of PAH sizes and species, including graphene quantum dots. We synthesized a series of graphene quantum dots with sulfonyl, amino, and carboxylic functional groups and employed them to exfoliate and disperse pristine graphene in water. We observed that sulfonyl-functionalized graphene quantum dots were able to stabilize the highest concentration of graphene in comparison to other functional groups; this is consistent with prior findings by pyrene. The graphene nanosheets prepared showed excellent colloidal stability, indicating great potential for applications in electronics, solar cells, and photonic displays which was demonstrated in this work.

  17. Effects of Oral Glucosamine Hydrochloride Administration on Plasma Free Amino Acid Concentrations in Dogs

    PubMed Central

    Azuma, Kazuo; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Okamoto, Yoshiharu; Takamori, Yoshimori; Minami, Saburo

    2011-01-01

    We examined the effects of oral glucosamine hydrochloride (GlcN), N-acetyl-d-glucosamine (GlcNAc) and d-glucose (Glc) administration on plasma total free amino acid (PFAA) concentrations in dogs. The PFAA concentrations increased in the control group and the GlcNAc group at one hour after feeding, and each amino acid concentration increased. On the other hand, in the GlcN group and the Glc group PFAA concentrations decreased at one hour after feeding. A significant decrease in amino acid concentration was observed for glutamate, glycine and alanine. Our results suggest the existence of differences in PFAA dynamics after oral administration of GlcN and GlcNAc in dogs. PMID:21673884

  18. A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Yuan, Liu; Sheng, Nai-an; Gu, Zi-qi; Feng, Wen-hao; Yin, Hai-yue; Morsi, Yosry; Mo, Xiu-mei

    2017-09-01

    Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate (ASA). Carboxymethyl chitosan was modified with ethylenediamine (ED) in the presence of water-soluble N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) to introduce additional amino groups to get amino-carboxymethyl chitosan (A-CS). Upon mixing the A-SA and A-CS aqueous solutions together, a gel rapidly formed based on the Schiff's base reaction between aldehyde groups in A-SA and amino groups in A-CS. FTIR analysis confirmed the characteristic peak of Schiff's base group in the hydrogel. It was confirmed that the gelation time be dependent on the aldehyde group content in A-SA and amino group content in A-CS. The fasted hydrogel formation takes place within 10 min. The data of bonding strength and cytotoxicity measurement also showed that the hydrogel had good adhesion and biocompatibility. All these results support that this gel has the potential as soft tissue adhesive.

  19. On the Maillard reaction of meteoritic amino acids

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Bajagic, Milica; Liesch, Patrick J.; Philip, Ajish; Cody, George D.

    2006-08-01

    We have performed the Maillard reaction of a series of meteoritic amino acids with sugar ribose under simulated prebiotic conditions, in the solid state at 65°C and at the room temperature. Many meteoritic amino acids are highly reactive with ribose, even at the room temperature. We have isolated high molecular weight products that are insoluble in water, and have studied their structure by the IR (infrared) and solid-state C-13 NMR (nuclear magnetic resonance) spectroscopic methods. The functional groups and their distribution were similar among these products, and were comparable to the previously isolated insoluble organic materials from the Maillard reaction of the common amino acids with ribose. In addition, there were some similarities with the insoluble organic material that is found on Murchison. Our results suggest that the Maillard products may contribute to the composition of the part of the insoluble organic material that is found on Murchison. We have also studied the reaction of sodium silicate solution with the Maillard mixtures, to elucidate the process by which the organic compounds are preserved under prebiotic conditions.

  20. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy,more » transmission electron microscopy (TEM) and magnetic measurements.« less

  1. Saponification of esters of chiral alpha-amino acids anchored through their amine function on solid support.

    PubMed

    Cantel, Sonia; Desgranges, Stéphane; Martinez, Jean; Fehrentz, Jean-Alain

    2004-06-01

    Anchoring an alpha-amino acid residue by its amine function onto a solid support is an alternative to develop chemistry on its carboxylic function. This strategy can involve the use of amino-acid esters as precursors of the carboxylic function. A complete study on the Wang-resin was performed to determine the non racemizing saponification conditions of anchored alpha-amino esters. The use of LiOH, NaOH, NaOSi(Me)3, various solvents and temperatures were tested for this reaction. After saponification and cleavage from the support, samples were examined through their Marfey's derivatives by reversed phase HPLC to evaluate the percentage of racemization.

  2. New insights into sulfur amino acids function in gut health and disease

    USDA-ARS?s Scientific Manuscript database

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acids (SAAs) metabolism in the body. Aside from their role in protein synthesis, methionine and cysteine are involved in many biological functions and diseases. Methionine (MET) is an indispensable amino acid and is...

  3. Comparative Physiological Studies of the Yeast and Mycelial Forms of Histoplasma capsulatum: Uptake and Incorporation of l-Leucine

    PubMed Central

    Gupta, Rishab K.; Howard, Dexter H.

    1971-01-01

    l-Leucine entered the cells of both morphological forms of Histoplasma capsulatum by a permease-like system at low external concentrations of substrate. However, at levels greater than 5 × 10−5m l-leucine, the amino acid entered the cells both through a simple diffusion-like process and the permease-like system. The rate of the amino acid diffusion into yeast and mycelial forms appeared to be the same, whereas the initial rate of accumulation through the permease-like system was 5 to 10 times faster in the mycelial phase than it was in the yeast phase. The Michaelis constants were 2.2 × 10−5m in yeast phase and 2 × 10−5m in mycelial phase cells. Transport of l-leucine at an external concentration of 10−5m showed all of the characteristics of a system of active transport, which was dependent on temperature and pH. Displacement or removal of the α-amino group, or modification of the α-carboxyl group abolished amino acid uptake. The process was competitively inhibited by neutral aliphatic side-chain amino acids (inhibition constants ranged from 1.5 × 10−5 to 6.2 × 10−5m). Neutral aromatic side-chain amino acids and the d-isomers of leucine and valine did not inhibit l-leucine uptake. These data were interpreted to mean that the l-leucine transport system is stereospecific and is highly specific for neutral aliphatic side-chain amino acids. Incorporation of l-leucine into macromolecules occurred at almost the same rate in both morphological forms of the fungus. The mycelial phase but not the yeast phase showed a slight initial lag in incorporation. In both morphological forms the intracellular pool of l-leucine was of limited capacity, and the total uptake of the amino acid was a function of intracellular pool size. The initial rate of l-leucine uptake was independent of the level of intracellular pool. Both morphological forms deaminated and degraded only a minor fraction of the accumulated leucine. PMID:4323295

  4. An electrochemiluminescence sensor based on a Ru(bpy)3(2+)-silica-chitosan/nanogold composite film.

    PubMed

    Cai, Zhi-min; Wu, Yan-fang; Huang, Yun-he; Li, Qiu-ping; Chen, Xiao-mei; Chen, Xi

    2012-05-30

    Chitosan, a cationic polysaccharide containing amino and hydroxyl groups, was used to fabricate an electrochemiluminescence (ECL) sensor. In the sensor construction, a glassy carbon electrode (GCE) was first coated by a chitosan film which embedded gold nanoparticles, and then the film was modified by introducing carboxyl groups on the surface, which were used to immobilize tris(2,2'-bipyridyl)ruthenium(II) doped amino-functional silica nanoparticles (NH(2)-RuSiNPs) through amido links. The successful modification was confirmed by scanning electronic microscopy and cyclic voltammetry. A binding model between the chitosan/nanogold composite film and NH(2)-RuSiNPs was also proposed, in which the amido link was the dominant bonding, accompanied with hydrogen bond interaction. ECL studies revealed that the sensor had very good response to different concentrations of 2-(dibutylamino) ethanol. This sensor was also applied in methamphetamine determination. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Development and cytotoxicity of Schiff base derivative as a fluorescence probe for the detection of L-Arginine

    NASA Astrophysics Data System (ADS)

    Shang, Xuefang; Li, Jie; Guo, Kerong; Ti, Tongyu; Wang, Tianyun; Zhang, Jinlian

    2017-04-01

    Inspired from biological counter parts, chemical modification of Schiff base derivatives with function groups may provide a highly efficient method to detect amino acids. Therefore, a fluorescent probe involving Schiff base and hydroxyl group has been designed and prepared, which showed high response and specificity for Arginine (Arg) among normal eighteen standard kinds of amino acids (Alanine, Valine, Leucine, Isoleucine, Methionine, Asparticacid, Glutamicacid, Arginine, Glycine, Serine, Threonine, Asparagine, Phenylalanine, Histidine, Tryptophan, Proline, Lysine, Glutamine, Tyrosine and Cysteine). Furthermore, theoretical investigation further illustrated the possible binding mode in the host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. In addition, the synthesized fluorescent probe exhibited high binding ability for Arg and low cytotoxicity to MCF-7 cells over a concentration range of 0-200 μg mL-1 which can be also used as a biosensor for the Arg detection in vivo.

  6. Reconstruction of cysteine biosynthesis using engineered cysteine-free enzymes.

    PubMed

    Fujishima, Kosuke; Wang, Kendrick M; Palmer, Jesse A; Abe, Nozomi; Nakahigashi, Kenji; Endy, Drew; Rothschild, Lynn J

    2018-01-29

    Amino acid biosynthesis pathways observed in nature typically require enzymes that are made with the amino acids they produce. For example, Escherichia coli produces cysteine from serine via two enzymes that contain cysteine: serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase (CysK/CysM). To solve this chicken-and-egg problem, we substituted alternate amino acids in CysE, CysK and CysM for cysteine and methionine, which are the only two sulfur-containing proteinogenic amino acids. Using a cysteine-dependent auxotrophic E. coli strain, CysE function was rescued by cysteine-free and methionine-deficient enzymes, and CysM function was rescued by cysteine-free enzymes. CysK function, however, was not rescued in either case. Enzymatic assays showed that the enzymes responsible for rescuing the function in CysE and CysM also retained their activities in vitro. Additionally, substitution of the two highly conserved methionines in CysM decreased but did not eliminate overall activity. Engineering amino acid biosynthetic enzymes to lack the so-produced amino acids can provide insights into, and perhaps eventually fully recapitulate via a synthetic approach, the biogenesis of biotic amino acids.

  7. Rationalizing the structural variability of the exocyclic amino groups in nucleobases and their metal complexes: cytosine and adenine.

    PubMed

    Fonseca Guerra, Célia; Sanz Miguel, Pablo J; Cebollada, Andrea; Bickelhaupt, F Matthias; Lippert, Bernhard

    2014-07-28

    The exocyclic amino groups of cytosine and adenine nucleobases are normally almost flat, with the N atoms essentially sp(2) hybridized and the lone pair largely delocalized into the heterocyclic rings. However, a change to marked pyramidality of the amino group (N then sp(3) hybridized, lone pair essentially localized at N) occurs during i) involvement of an amino proton in strong hydrogen bonding donor conditions or ii) with monofunctional metal coordination following removal of one of the two protons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dielectric and vibrational properties of amino acids

    NASA Astrophysics Data System (ADS)

    Tulip, P. R.; Clark, S. J.

    2004-09-01

    We calculate polarizability tensors and normal mode frequencies for the amino acids alanine, leucine, isoleucine, and valine using density functional perturbation theory implemented within the plane wave pseudopotential framework. It is found that the behavior of the electron density under external fields depends to a large extent on the geometrical structure of the molecule in question, rather than simply on the constituent functional groups. The normal modes are able to help distinguish between the different types of intramolecular hydrogen bonding present, and help to explain why leucine is found in the zwitterionic form for the gaseous phase. Calculated IR spectra show a marked difference between those obtained for zwitterionic and nonzwitterionic molecules. These differences can be attributed to the different chemical and hydrogen bonds present. Effective dynamical charges are calculated, and compared to atomic charges obtained from Mulliken population analysis. It is found that disagreement exists, largely due to the differing origins of these quantities.

  9. Structural and electronic properties of L-amino acids

    NASA Astrophysics Data System (ADS)

    Tulip, P. R.; Clark, S. J.

    2005-05-01

    The structural and electronic properties of four L-amino acids alanine, leucine, isoleucine, and valine have been investigated using density functional theory (DFT) and the generalized gradient approximation. Within the crystals, it is found that the constituent molecules adopt zwitterionic configurations, in agreement with experimental work. Lattice constants are found to be in good agreement with experimentally determined values, although certain discrepancies do exist due to the description of van der Waals interactions. We find that these materials possess wide DFT band gaps in the region of 5 eV, with electrons highly localized to the constituent molecules. It is found that the main mechanisms behind crystal formation are dipolar interactions and hydrogen bonding of a primarily electrostatic character, in agreement with current biochemical understanding of these systems. The electronic structure suggests that the amine and carboxy functional groups are dominant in determining band structure.

  10. O-Methylisourea Can React with the α-Amino Group of Lysine: Implications for the Analysis of Reactive Lysine

    PubMed Central

    2017-01-01

    The specificity of O-methylisourea (OMIU) to bind to the ε-amino group of Lys, an important supposition for the OMIU-reactive Lys analysis of foods, feeds, ingredients, and digesta, was investigated. Crystalline l-Lys incubated under standard conditions with OMIU resulted in low homoarginine recoveries. The reaction of OMIU with the α-amino group of Lys was confirmed by MS analysis, with double derivatized Lys being identified. None of the changes in reaction conditions (OMIU pH, OMIU to Lys ratio, and reaction time) with crystalline l-Lys resulted in 100% recovery of homoarginine. The average free Lys content in ileal digesta of growing pigs and broilers was found to be 13% of total Lys, which could result in a significant underestimation of the reactive Lys content. The reaction of OMIU with α-amino groups may necessitate analysis of free Lys to accurately quantify reactive lysine in samples containing a large proportion of Lys with a free α-amino group. PMID:28059513

  11. O-Methylisourea Can React with the α-Amino Group of Lysine: Implications for the Analysis of Reactive Lysine.

    PubMed

    Hulshof, Tetske G; Rutherfurd, Shane M; Sforza, Stefano; Bikker, Paul; van der Poel, Antonius F B; Hendriks, Wouter H

    2017-02-01

    The specificity of O-methylisourea (OMIU) to bind to the ε-amino group of Lys, an important supposition for the OMIU-reactive Lys analysis of foods, feeds, ingredients, and digesta, was investigated. Crystalline l-Lys incubated under standard conditions with OMIU resulted in low homoarginine recoveries. The reaction of OMIU with the α-amino group of Lys was confirmed by MS analysis, with double derivatized Lys being identified. None of the changes in reaction conditions (OMIU pH, OMIU to Lys ratio, and reaction time) with crystalline l-Lys resulted in 100% recovery of homoarginine. The average free Lys content in ileal digesta of growing pigs and broilers was found to be 13% of total Lys, which could result in a significant underestimation of the reactive Lys content. The reaction of OMIU with α-amino groups may necessitate analysis of free Lys to accurately quantify reactive lysine in samples containing a large proportion of Lys with a free α-amino group.

  12. Development of a group contribution method for estimating free energy of peptides in a dodecane-water system via molecular dynamic simulations.

    PubMed

    Mora Osorio, Camilo Andrés; González Barrios, Andrés Fernando

    2016-12-07

    Calculation of the Gibbs free energy changes of biological molecules at the oil-water interface is commonly performed with Molecular Dynamics simulations (MD). It is a process that could be performed repeatedly in order to find some molecules of high stability in this medium. Here, an alternative method of calculation has been proposed: a group contribution method (GCM) for peptides based on MD of the twenty classic amino acids to obtain free energy change during the insertion of any peptide chain in water-dodecane interfaces. Multiple MD of the twenty classic amino acids located at the interface of rectangular simulation boxes with a dodecane-water medium were performed. A GCM to calculate the free energy of entire peptides is then proposed. The method uses the summation of the Gibbs free energy of each amino acid adjusted in function of its presence or absence in the chain as well as its hydrophobic characteristics. Validation of the equation was performed with twenty-one peptides all simulated using MD in dodecane-water rectangular boxes in previous work, obtaining an average relative error of 16%.

  13. Circular dichroism and optical absorption spectra of mononuclear and trinuclear chiral Cu(II) amino-alcohol coordinated compounds: A combined theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Valencia, Israel; Ávila-Torres, Yenny; Barba-Behrens, Norah; Garzón, Ignacio L.

    2015-04-01

    Studies on the physicochemical properties of biomimetic compounds of multicopper oxidases are fundamental to understand their reaction mechanisms and catalytic behavior. In this work, electronic, optical, and chiroptical properties of copper(II) complexes with amino-alcohol chiral ligands are theoretically studied by means of time-dependent density functional theory. The calculated absorption and circular dichroism spectra are compared with experimental measurements of these spectra for an uncoordinated pseudoephedrine derivative, as well as for the corresponding mononuclear and trinuclear copper(II)-coordinated complexes. This comparison is useful to gain insights into their electronic structure, optical absorption and optical activity. The optical absorption and circular dichroism bands of the pseudoephedrine derivative are located in the UV-region. They are mainly due to transitions originated from n to π anti-bonding orbitals of the alcohol and amino groups, as well as from π bonding to π anti-bonding orbitals of carboxyl and phenyl groups. In the case of the mononuclear and trinuclear compounds, additional signals in the visible spectral region are present. In both systems, the origin of these bands is due to charge transfer from ligand to metal and d-d transitions.

  14. Synthesis and characterization of ester and amide derivatives of titanium(IV) carboxymethylphosphonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melánová, Klára, E-mail: klara.melanova@upce.cz; Beneš, Ludvík; Trchová, Miroslava

    2013-06-15

    A set of layered ester and amide derivatives of titanium(IV) carboxymethylphosphonate was prepared by solvothermal treatment of amorphous titanium(IV) carboxymethylphosphonate with corresponding 1-alkanols, 1,ω-alkanediols, 1-aminoalkanes, 1,ω-diaminoalkanes and 1,ω-amino alcohols and characterized by powder X-ray diffraction, IR spectroscopy and thermogravimetric analysis. Whereas alkyl chains with one functional group form bilayers tilted to the layers, 1,ω-diaminoalkanes and most of 1,ω-alkanediols form bridges connecting the adjacent layers. In the case of amino alcohols, the alkyl chains form bilayer and either hydroxyl or amino group is used for bonding. This simple method for the synthesis of ester and amide derivatives does not require preparationmore » of acid chloride derivative as a precursor or pre-intercalation with alkylamines and can be used also for the preparation of ester and amide derivatives of titanium carboxyethylphosphonate and zirconium carboxymethylphosphonate. - Graphical abstract: Ester and amide derivatives of layered titanium carboxymethylphosphonate were prepared by solvothermal treatment of amorphous solid with alkanol or alkylamine. - Highlights: • Ester and amide derivatives of titanium carboxymethylphosphonate. • Solvothermal treatment of amorphous solid with alkanol or alkylamine. • Ester and amide formation confirmed by IR spectroscopy.« less

  15. Primary amino acid derivatives: substitution of the 4'-N'-benzylamide site in (R)-N'-benzyl 2-amino-3-methylbutanamide, (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide, and (R)-N'-benzyl 2-amino-3-methoxypropionamide provides potent anticonvulsants with pain-attenuating properties.

    PubMed

    King, Amber M; Salomé, Christophe; Salomé-Grosjean, Elise; De Ryck, Marc; Kaminski, Rafal; Valade, Anne; Stables, James P; Kohn, Harold

    2011-10-13

    Recently, we reported that select N'-benzyl 2-substituted 2-amino acetamides (primary amino acid derivatives (PAADs)) exhibited pronounced activities in established whole animal anticonvulsant (i.e., maximal electroshock seizure (MES)) and neuropathic pain (i.e., formalin) models. The anticonvulsant activities of C(2)-hydrocarbon N'-benzyl 2-amino acetamides (MES ED(50) = 13-21 mg/kg) exceeded those of phenobarbital (ED(50) = 22 mg/kg). Two additional studies defining the structure-activity relationship of PAADs are presented in this issue of the journal. In this study, we demonstrated that the anticonvulsant activities of (R)-N'-benzyl 2-amino-3-methylbutanamide and (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide were sensitive to substituents at the 4'-N'-benzylamide site; electron-withdrawing groups retained activity, electron-donating groups led to a loss of activity, and incorporating either a 3-fluorobenzyloxy or 3-fluorophenoxymethyl group using a rationally designed multiple ligand approach improved activity. Additionally, we showed that substituents at the 4'-N'-benzylamide site of (R)-N'-benzyl 2-amino-3-methoxypropionamide also improved anticonvulsant activity, with the 3-fluorophenoxymethyl group providing the largest (∼4-fold) increase in activity (ED(50) = 8.9 mg/kg), a value that surpassed phenytoin (ED(50) = 9.5 mg/kg). Collectively, the pharmacological findings provided new information that C(2)-hydrocarbon PAADs represent a novel class of anticonvulsants.

  16. N-nitrosations of basic amino acid residues in polypeptide.

    PubMed

    Kuo, Wu-Nan; Ivy, Dynisha; Guruvadoo, Luvina; White, Atavia; Graham, Latia

    2004-09-01

    Changes in the electrophoretic pattern were noted in the products of polypeptides of identical basic amino acids preincubated with reactive or degraded PN, suggesting the occurrence of N-nitrosation of the epsilon-amino group of lysine, the guanido group of arginine and the imidazole group of histidine. Additionally, increase in the N-nitroso immunoreactivity of preincubated histones H2A and H2B was detected by Western blot analysis.

  17. Determination of the pKa of the N-terminal amino group of ubiquitin by NMR

    PubMed Central

    Oregioni, Alain; Stieglitz, Benjamin; Kelly, Geoffrey; Rittinger, Katrin; Frenkiel, Tom

    2017-01-01

    Ubiquitination regulates nearly every aspect of cellular life. It is catalysed by a cascade of three enzymes and results in the attachment of the C-terminal carboxylate of ubiquitin to a lysine side chain in the protein substrate. Chain extension occurs via addition of subsequent ubiquitin molecules to either one of the seven lysine residues of ubiquitin, or via its N-terminal α-amino group to build linear ubiquitin chains. The pKa of lysine side chains is around 10.5 and hence E3 ligases require a mechanism to deprotonate the amino group at physiological pH to produce an effective nucleophile. In contrast, the pKa of N-terminal α-amino groups of proteins can vary significantly, with reported values between 6.8 and 9.1, raising the possibility that linear chain synthesis may not require a general base. In this study we use NMR spectroscopy to determine the pKa for the N-terminal α-amino group of methionine1 of ubiquitin for the first time. We show that it is 9.14, one of the highest pKa values ever reported for this amino group, providing a rational for the observed need for a general base in the E3 ligase HOIP, which synthesizes linear ubiquitin chains. PMID:28252051

  18. Sorption-reduction coupled gold recovery process boosted by Pycnoporus sanguineus biomass: Uptake pattern and performance enhancement via biomass surface modification.

    PubMed

    Shi, Chaohong; Zhu, Nengwu; Kang, Naixin; Wu, Pingxiao; Zhang, Xiaoping; Zhang, Yanhong

    2017-09-01

    Biorecovery is emerging as a promising process to retrieve gold from secondary resources. The present study aimed to explore the uptake pattern of Pycnoporus sanguineus biomass for gold, identify the effective functional groups in gold recovery process, and thus further intensify the process via microbial surface modification. Results showed that P. sanguineus biomass could effectively recover gold with the formation of highly crystal AuNPs without any exogeneous electron donor. Under the conditions of various initial gold concentrations (1.0, 2.0, and 3.0 mM), biomass dosage of 2.0 g/L, solution pH value of 4.0, and incubation temperature of 30°C, the uptake equilibrium established after 4, 8, and 12 h, respectively. The uptake process could be well described by pseudo-second order kinetics model (R 2  = 0.9988) and Langmuir isotherm model (R 2  = 0.9958). The maximum uptake capacity of P. sanguineus reached as high as 358.69 mg/g. Further analysis indicated that amino, carboxyl and hydroxyl groups positively contributed to the uptake process. Among them, amino group significantly favored the uptake of gold during recovery process. When P. sanguineus biomass was modified by introduction of amino group, the gold uptake process was successfully intensified by shortening the uptake period and enhancing the uptake capacity. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1314-1322, 2017. © 2017 American Institute of Chemical Engineers.

  19. Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato CNGCs

    PubMed Central

    Saand, Mumtaz Ali; Xu, You-Ping; Munyampundu, Jean-Pierre; Li, Wen; Zhang, Xuan-Rui; Cai, Xin-Zhong

    2015-01-01

    Cyclic nucleotide-gated ion channels (CNGCs) are calcium-permeable channels that are involved in various biological functions. Nevertheless, phylogeny and function of plant CNGCs are not well understood. In this study, 333 CNGC genes from 15 plant species were identified using comprehensive bioinformatics approaches. Extensive bioinformatics analyses demonstrated that CNGCs of Group IVa were distinct to those of other groups in gene structure and amino acid sequence of cyclic nucleotide-binding domain. A CNGC-specific motif that recognizes all identified plant CNGCs was generated. Phylogenetic analysis indicated that CNGC proteins of flowering plant species formed five groups. However, CNGCs of the non-vascular plant Physcomitrella patens clustered only in two groups (IVa and IVb), while those of the vascular non-flowering plant Selaginella moellendorffii gathered in four (IVa, IVb, I and II). These data suggest that Group IV CNGCs are most ancient and Group III CNGCs are most recently evolved in flowering plants. Furthermore, silencing analyses revealed that a set of CNGC genes might be involved in disease resistance and abiotic stress responses in tomato and function of SlCNGCs does not correlate with the group that they are belonging to. Our results indicate that Group IVa CNGCs are structurally but not functionally unique among plant CNGCs. PMID:26546226

  20. Integrating sampling techniques and inverse virtual screening: toward the discovery of artificial peptide-based receptors for ligands.

    PubMed

    Pérez, Germán M; Salomón, Luis A; Montero-Cabrera, Luis A; de la Vega, José M García; Mascini, Marcello

    2016-05-01

    A novel heuristic using an iterative select-and-purge strategy is proposed. It combines statistical techniques for sampling and classification by rigid molecular docking through an inverse virtual screening scheme. This approach aims to the de novo discovery of short peptides that may act as docking receptors for small target molecules when there are no data available about known association complexes between them. The algorithm performs an unbiased stochastic exploration of the sample space, acting as a binary classifier when analyzing the entire peptides population. It uses a novel and effective criterion for weighting the likelihood of a given peptide to form an association complex with a particular ligand molecule based on amino acid sequences. The exploratory analysis relies on chemical information of peptides composition, sequence patterns, and association free energies (docking scores) in order to converge to those peptides forming the association complexes with higher affinities. Statistical estimations support these results providing an association probability by improving predictions accuracy even in cases where only a fraction of all possible combinations are sampled. False positives/false negatives ratio was also improved with this method. A simple rigid-body docking approach together with the proper information about amino acid sequences was used. The methodology was applied in a retrospective docking study to all 8000 possible tripeptide combinations using the 20 natural amino acids, screened against a training set of 77 different ligands with diverse functional groups. Afterward, all tripeptides were screened against a test set of 82 ligands, also containing different functional groups. Results show that our integrated methodology is capable of finding a representative group of the top-scoring tripeptides. The associated probability of identifying the best receptor or a group of the top-ranked receptors is more than double and about 10 times higher, respectively, when compared to classical random sampling methods.

  1. Synthesis, structural, spectroscopic, anti-cancer and molecular docking studies on novel 2-[(Anthracene-9-ylmethylene)amino]-2-methylpropane-1,3-diol using XRD, FTIR, NMR, UV-Vis spectra and DFT

    NASA Astrophysics Data System (ADS)

    Pavitha, P.; Prashanth, J.; Ramu, G.; Ramesh, G.; Mamatha, K.; Venkatram Reddy, Byru

    2017-11-01

    The novel titled compound 2-[(Anthracene-9-ylmethylene)amino]-2-methylpropane-1,3-diol (AMD) has been synthesized by slow evaporation technique from mixed solvent system of methanol with anthracene-9-carbaldehyde and 2-amino-2-methylpropane-1,3-diol. The synthesized molecule AMD was characterized experimentally by single crystal XRD, FTIR, NMR and UV-Vis spectra and density functional theory (DFT) computations. The structure of the crystal has been determined as orthorhombic system with space group P 21 21 21 and the cell parameters are obtained using XRD data. The optimized ground state geometry of the molecule is determined by evaluating torsional potentials as a function of angle of free rotation around Csbnd C bonds of functional groups by DFT method employing B3LYP functional with 6-311++G(d,p) basis set. All the fundamental vibrations of the molecule are assigned unambiguously using potential energy distribution (PED) obtained in the DFT computations. The rms error between the observed and scaled frequencies is 6.20 cm-1. The values of dipole moment, polarizability and hyperpolarizability are evaluated to study the NLO behavior of the molecule. The HOMO-LUMO energies and thermodynamic parameters are also determined. The molecular electrostatic surface potential (MESP) is mapped to obtain the charge density distribution. The 1H and 13C NMR chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. UV-visible spectrum of the compound is also recorded in the region 200-800 nm to know the type of electronic transitions involved. The anti-cancer activity of AMD is determined against human breast cancer cell line MCF-7 and human prostate cancer cell line PC-3 and correlated the results with study of molecular docking against pharmacological protein IDO-1 receptor.

  2. Amino Acid Interaction with and Adsorption on Clays: FT-IR and Mössbauer Spectroscopy and X-ray Diffractometry Investigations

    NASA Astrophysics Data System (ADS)

    Benetoli, Luís O. B.; de Souza, Cláudio M. D.; da Silva, Klébson L.; de Souza, Ivan G.; de Santana, Henrique; Paesano, Andrea; da Costa, Antonio C. S.; Zaia, Cássia Thaïs B. V.; Zaia, Dimas A. M.

    2007-12-01

    In the present paper, the adsorption of amino acids (Ala, Met, Gln, Cys, Asp, Lys, His) on clays (bentonite, kaolinite) was studied at different pH (3.00, 6.00, 8.00). The amino acids were dissolved in seawater, which contains the major elements. There were two main findings in this study. First, amino acids with a charged R group (Asp, Lys, His) and Cys were adsorbed on clays more than Ala, Met and Gln (uncharged R groups). However, 74% of the amino acids in the proteins of modern organisms have uncharged R groups. These results raise some questions about the role of minerals in providing a prebiotic concentration mechanism for amino acids. Several mechanisms are also discussed that could produce peptide with a greater proportion of amino acids with uncharged R groups. Second, Cys could play an important role in prebiotic chemistry besides participating in the structure of peptides/proteins. The FT-IR spectra showed that the adsorption of amino acids on the clays occurs through the amine group. However, the Cys/clay interaction occurs through the sulfhydryl and amine groups. X-ray diffractometry showed that pH affects the bentonite interlayer, and at pH 3.00 the expansion of Cys/bentonite was greater than that of the samples of ethylene glycol/bentonite saturated with Mg. The Mössbauer spectrum for the sample with absorbed Cys showed a large increase (˜20%) in ferrous ions. This means that Cys was able to partially reduce iron present in bentonite. This result is similar to that which occurs with aconitase where the ferric ions are reduced to Fe 2.5.

  3. Electrochemical pretreatment of amino-carbon nanotubes on graphene support as a novel platform for bilirubin oxidase with improved bioelectrocatalytic activity towards oxygen reduction.

    PubMed

    Navaee, Aso; Salimi, Abdollah; Jafari, Fereydoon

    2015-03-23

    The electrochemical conditioning of amino-carbon nanotubes (CNTs) on a graphene support in an alkaline solution is used to produce -NHOH as hydrophilic functional groups for the efficient immobilization of bilirubin oxidase enzyme. The application of the immobilized enzyme for the direct electrocatalytic reduction of O2 is investigated. The onset potential of 0.81 V versus NHE and peak current density of 2.3 mA cm(-2) for rotating modified electrode at 1250 rpm, indicate improved biocatalytic activity of the proposed system for O2 reduction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cloning of cDNAs encoding new peptides of the dermaseptin-family.

    PubMed

    Wechselberger, C

    1998-10-14

    Dermaseptins are a group of basic (lysine-rich) peptides, 27-34 amino acids in length and involved in the defense of frog skin against microbial invasion. By using a degenerated oligonucleotide primer binding to the 5'-untranslated region of previously characterized cDNAs of these peptides, it was possible to identify new members of the dermaseptin family in the South American frogs Agalychnis annae and Pachymedusa dacnicolor. Amino acid alignment and secondary structure prediction reveals, that only five of the deduced peptides can be supposed to be also functional homologs to the known dermaseptins from Phyllomedusa bicolor and Phyllomedusa sauvagei. The remaining six peptides described in this paper have not been isolated and characterized yet.

  5. Synthesis of 6-amino-5-cyano-1,4-disubstituted-2(1H)-pyrimidinones via copper-(I)-catalyzed alkyne-azide 'click chemistry' and their reactivity.

    PubMed

    Najahi, Ennaji; Sudor, Jan; Chabchoub, Fakher; Nepveu, Françoise; Zribi, Fethi; Duval, Romain

    2010-12-03

    In this paper we present the room temperature synthesis of a novel serie of 1,4-disubstituted-1,2,3-triazoles 4a-l by employing the (3+2) cycloaddition reaction of pyrimidinones containing alkyne functions with different model azides in the presence of copper sulphate and sodium ascorbate. To obtain the final triazoles, we also synthesized the major precursors 6-amino-5-cyano-1,4-disubstituted-2(1H)-pyrimidinones 3a-r from ethyl 2,2-dicyanovinylcarbamate derivatives 2a-c and various primary aromatic amines containing an alkyne group. The triazoles were prepared in good to very good yields.

  6. One-Pot Synthesis of N-Substituted β-Amino Alcohols from Aldehydes and Isocyanides.

    PubMed

    Cioc, Răzvan C; van der Niet, Daan J H; Janssen, Elwin; Ruijter, Eelco; Orru, Romano V A

    2015-05-18

    A practical two-stage one-pot synthesis of N-substituted β-amino alcohols using aldehydes and isocyanides as starting materials has been developed. This method features mild reaction conditions, broad scope, and general tolerance of functional groups. Based on a less common central carbon-carbon bond disconnection, this protocol complements traditional approaches that involve amines and various carbon electrophiles (epoxides, α-halo ketones, β-halohydrins). Medicinally relevant products can be prepared in a concise and efficient way from simple building blocks, as demonstrated in the synthesis of the antiasthma drug salbutamol. Upgrading the synthesis to an enantioselective variant is also feasible. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Large differences in proportions of harmful and benign amino acid substitutions between proteins and diseases.

    PubMed

    Schaafsma, Gerard C P; Vihinen, Mauno

    2017-07-01

    Genes and proteins are known to have differences in their sensitivity to alterations. Despite numerous sequencing studies, proportions of harmful and harmless substitutions are not known for proteins and groups of proteins. To address this question, we predicted the outcome for all possible single amino acid substitutions (AASs) in nine representative protein groups by using the PON-P2 method. The effects on 996 proteins were studied and vast differences were noticed. Proteins in the cancer group harbor the largest proportion of harmful variants (42.1%), whereas the non-disease group of proteins not known to have a disease association and not involved in the housekeeping functions had the lowest number of harmful variants (4.2%). Differences in the proportions of the harmful and benign variants are wide within each group, but they still show clear differences between the groups. Frequently appearing protein domains show a wide spectrum of variant frequencies, whereas no major protein structural class-specific differences were noticed. AAS types in the original and variant residues showed distinctive patterns, which are shared by all the protein groups. The observations are relevant for understanding genetic bases of diseases, variation interpretation, and for the development of methods for that purpose. © 2017 Wiley Periodicals, Inc.

  8. Modulating protein adsorption onto hydroxyapatite particles using different amino acid treatments

    PubMed Central

    Lee, Wing-Hin; Loo, Ching-Yee; Van, Kim Linh; Zavgorodniy, Alexander V.; Rohanizadeh, Ramin

    2012-01-01

    Hydroxyapatite (HA) is a material of choice for bone grafts owing to its chemical and structural similarities to the mineral phase of hard tissues. The combination of osteogenic proteins with HA materials that carry and deliver the proteins to the bone-defective areas will accelerate bone regeneration. The study investigated the treatment of HA particles with different amino acids such as serine (Ser), asparagine (Asn), aspartic acid (Asp) and arginine (Arg) to enhance the adsorption ability of HA carrier for delivering therapeutic proteins to the body. The crystallinity of HA reduced when amino acids were added during HA preparation. Depending on the types of amino acid, the specific surface area of the amino acid-functionalized HA particles varied from 105 to 149 m2 g–1. Bovine serum albumin (BSA) and lysozyme were used as model proteins for adsorption study. The protein adsorption onto the surface of amino acid-functionalized HA depended on the polarities of HA particles, whereby, compared with lysozyme, BSA demonstrated higher affinity towards positively charged Arg-HA. Alternatively, the binding affinity of lysozyme onto the negatively charged Asp-HA was higher when compared with BSA. The BSA and lysozyme adsorptions onto the amino acid-functionalized HA fitted better into the Freundlich than Langmuir model. The amino acid-functionalized HA particles that had higher protein adsorption demonstrated a lower protein-release rate. PMID:21957116

  9. PCI-GC-MS-MS approach for identification of non-amino organic acid and amino acid profiles.

    PubMed

    Luan, Hemi; Yang, Lin; Ji, Fenfen; Cai, Zongwei

    2017-03-15

    Alkyl chloroformate have been wildly used for the fast derivatization of metabolites with amino and/or carboxyl groups, coupling of powerful separation and detection systems, such as GC-MS, which allows the comprehensive analysis of non-amino organic acids and amino acids. The reagents involving n-alkyl chloroformate and n-alcohol are generally employed for providing symmetric labeling terminal alkyl chain with the same length. Here, we developed an asymmetric labeling strategy and positive chemical ionization gas chromatography-tandem mass spectrometry (PCI-GC-MS-MS) approach for determination of non-amino organic acids and amino acids, as well as the short chain fatty acids. Carboxylic and amino groups could be selectively labelled by propyl and ethyl groups, respectively. The specific neutral loss of C 3 H 8 O (60Da), C 3 H 5 O 2 (74Da) and C 4 H 8 O 2 (88Da) were useful in the selective identification for qualitative analysis of organic acids and amino acid derivatives. PCI-GC-MS-MS using multiple reaction monitoring (MRM) was applied for semi-quantification of typical non-amino organic acids and amino acids. This method exhibited a wide range of linear range, good regression coefficient (R 2 ) and repeatability. The relative standard deviation (RSD) of targeted metabolites showed excellent intra- and inter-day precision (<5%). Our method provided a qualitative and semi-quantitative PCI-GC-MS-MS, coupled with alkyl chloroformate derivatization. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Hydrodehalogenation of alkyl iodides with base-mediated hydrogenation and catalytic transfer hydrogenation: application to the asymmetric synthesis of N-protected α-methylamines.

    PubMed

    Mandal, Pijus K; Birtwistle, J Sanderson; McMurray, John S

    2014-09-05

    We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine.

  11. Hydrodehalogenation of Alkyl Iodides with Base-Mediated Hydrogenation and Catalytic Transfer Hydrogenation: Application to the Asymmetric Synthesis of N-Protected α-Methylamines

    PubMed Central

    2015-01-01

    We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine. PMID:25116734

  12. Awake craniotomy induces fewer changes in the plasma amino acid profile than craniotomy under general anesthesia.

    PubMed

    Hol, Jaap W; Klimek, Markus; van der Heide-Mulder, Marieke; Stronks, Dirk; Vincent, Arnoud J; Klein, Jan; Zijlstra, Freek J; Fekkes, Durk

    2009-04-01

    In this prospective, observational, 2-armed study, we compared the plasma amino acid profiles of patients undergoing awake craniotomy to those undergoing craniotomy under general anesthesia. Both experimental groups were also compared with a healthy, age-matched and sex-matched reference group not undergoing surgery. It is our intention to investigate whether plasma amino acid levels provide information about physical and emotional stress, as well as pain during awake craniotomy versus craniotomy under general anesthesia. Both experimental groups received preoperative, perioperative, and postoperative dexamethasone. The plasma levels of 20 amino acids were determined preoperative, perioperative, and postoperatively in all groups and were correlated with subjective markers for pain, stress, and anxiety. In both craniotomy groups, preoperative levels of tryptophan and valine were significantly decreased whereas glutamate, alanine, and arginine were significantly increased relative to the reference group. Throughout time, tryptophan levels were significantly lower in the general anesthesia group versus the awake craniotomy group. The general anesthesia group had a significantly higher phenylalanine/tyrosine ratio, which may suggest higher oxidative stress, than the awake group throughout time. Between experimental groups, a significant increase in large neutral amino acids was found postoperatively in awake craniotomy patients, pain was also less and recovery was faster. A significant difference in mean hospitalization time was also found, with awake craniotomy patients leaving after 4.53+/-2.12 days and general anesthesia patients after 6.17+/-1.62 days; P=0.012. This study demonstrates that awake craniotomy is likely to be physically and emotionally less stressful than general anesthesia and that amino acid profiling holds promise for monitoring postoperative pain and recovery.

  13. Effect of glutamine supplementation on neutrophil function in male judoists.

    PubMed

    Sasaki, Eiji; Umeda, Takashi; Takahashi, Ippei; Arata, Kojima; Yamamoto, Yousuke; Tanabe, Masaru; Oyamada, Kazuyuki; Hashizume, Erika; Nakaji, Shigeyuki

    2013-01-01

    Glutamine is an important amino acid for immune function. Though high intensity and prolonged exercise decreases plasma glutamine concentration and causes immune suppression, the relationship between neutrophil functions and glutamine has not yet been found. The purpose of this study was to investigate the impacts of glutamine supplementation on neutrophil function. Twenty-six male university judoists were recruited. Subjects were classified into glutamine and control groups. The glutamine group ingested 3000 mg of glutamine per day and the control group ingested placebo for 2 weeks. Examinations were performed at the start of preunified loading exercise (pre-ULE), then 1 and 2 weeks after ULE (post-ULE). Reactive oxygen species (ROS) production, phagocytic activity, serum opsonic activity and serum myogenic enzymes were measured. Differences between the levels obtained in pre-ULE and post-ULE for the two groups were compared. In the glutamine group, ROS production activity increased 1 week after ULE, whereas it was not observed in the control group (P < 0.001). Though myogenic enzymes increased significantly after ULE (P < 0.001), the glutamine group remained unchanged by supplementation during ULE. Glutamine supplementation has prevented excessive muscle damage and suppression of neutrophil function, especially in ROS production activity, even during an intensive training period. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Decomposition of amino diazeniumdiolates (NONOates): molecular mechanisms.

    PubMed

    Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V

    2014-12-01

    Although diazeniumdiolates (X[N(O)NO](-)) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a quantitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R2N[N(O)NO](-), where R=N(C2H5)2 (1), N(C3H4NH2)2 (2), or N(C2H4NH2)2 (3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO](-) group with the apparent pKa and decomposition rate constants of 4.6 and 1 s(-1) for 1; 3.5 and 0.083 s(-1) for 2; and 3.8 and 0.0033 s(-1) for 3. Although protonation occurs mainly on the O atoms of the functional group, only the minor R2N(H)N(O)NO tautomer (population ~10(-7), for 1) undergoes the NN heterolytic bond cleavage (kd~10(7) s(-1) for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. The bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH<2, decompositions of all three NONOates that have been investigated are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO](-) group. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Decomposition of amino diazeniumdiolates (NONOates): Molecular mechanisms

    DOE PAGES

    Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V.

    2014-08-23

    Although diazeniumdiolates (X[N(O)NO] -) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a quantitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R 2N[N(O)NO] -, where R = —N(C 2H 5) 2(1), —N(C 3H 4NH 2) 2(2), or —N(C 2H 4NH 2) 2(3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO] - group with the apparent pKa and decomposition ratemore » constants of 4.6 and 1 s -1 for 1; 3.5 and 0.083 s -1 for 2; and 3.8 and 0.0033 s -1 for 3. Although protonation occurs mainly on the O atoms of the functional group, only the minor R 2N(H)N(O)NO tautomer (population ~ 10 -7, for 1) undergoes the N—N heterolytic bond cleavage (k d ~ 107 s -1 for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. Thus, the bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH < 2, decompositions of all three NONOates that have been investigated are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO] - group.« less

  16. Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles.

    PubMed

    Zhang, Qian; Zhang, Diming; Lu, Yanli; Xu, Gang; Yao, Yao; Li, Shuang; Liu, Qingjun

    2016-03-15

    Nanocomposites of graphene oxide and gold nanoparticles (GO/GNPs) were synthesized for label-free detections of amino acids. Interactions between the composites and amino acids were investigated by both naked-eye observation and optical absorption spectroscopy. The GO/GNPs composites displayed apparent color changes and absorption spectra changes in presences of amino acids including glutamate, aspartate, and cysteine. The interaction mechanisms of the composites and amino acids were discussed and explored with sulfhydryl groups and non-α-carboxylic groups on the amino acids. Sensing properties of the composites were tested, while pure gold particles were used as the control. The results suggested that the GO/GNPs composites had better linearity and stability in dose-dependent responses to the amino acids than those of the particles, especially in detections for acidic amino acids. Therefore, the nanocomposites platform can provide a convenient and efficient approach for label-free optical detections of important molecules such as amino acids. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Synthesis and Anti-microbial Activity of Novel Phosphatidylethanolamine-N-amino Acid Derivatives.

    PubMed

    Vijeetha, Tadla; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Surya Koppeswara Rao, Bhamidipati Venkata; Prasad, Rachapudi Badari Narayana; Kumar, Koochana Pranay; Surya Narayana Murthy, Upadyaula

    2015-01-01

    The study involved synthesis of five novel amino acid derivatives of phosphatidylethanolamine isolated from egg yolk lecithin employing a three step procedure i) N-protection of L-amino acids with BOC anhydride in alkaline medium ii) condensation of - CO2H group of N-protected amino acid with free -NH2 of PE by a peptide linkage and iii) deprotection of N-protected group of amino acids to obtain phosphatidylethanolamine-N-amino acid derivatives in 60-75% yield. The five L-amino acids used were L glycine, L-valine, L-leucine, L-isoleucine and L-phenylalanine. The amino acid derivatives were screened for anti-baterial activity against B. subtilis, S. aureus, P. aeroginosa and E. coli taking Streptomycin as reference compound and anti-fungal activity against C. albicans, S. cervisiae, A. niger taking AmphotericinB as reference compound. All the amino acid derivatives exhibited extraordinary anti-bacterial activities about 3 folds or comparable to Streptomycin and moderate or no anti-fungal activity against Amphotericin-B.

  18. DNA as a Binary Code: How the Physical Structure of Nucleotide Bases Carries Information

    ERIC Educational Resources Information Center

    McCallister, Gary

    2005-01-01

    The DNA triplet code also functions as a binary code. Because double-ring compounds cannot bind to double-ring compounds in the DNA code, the sequence of bases classified simply as purines or pyrimidines can encode for smaller groups of possible amino acids. This is an intuitive approach to teaching the DNA code. (Contains 6 figures.)

  19. Synthetic versatility of 2-substituted-6-methyl 2,3-dihydropyridinones in the synthesis of polyfunctional piperidine-based compounds and related β amino acid derivatives.

    PubMed

    Yang, Yang; Hardman, Clayton

    2017-10-18

    Chiral 2-substituted-6-methyl 2,3-dihydropyidinones 9, which can be facilely obtained from an asymmetric vinylogous Mannich reaction (VMR) with 1,3-bis-trimethysily enol ether, were used as versatile intermediates in constructing chiral polyfunctional piperidine-based compounds. The 6-methyl group of such compounds can be conveniently functionalized via alkylation and acylation reactions to provide efficient entries to the synthesis of a variety of chiral multi-substituted piperidine-based compounds. Further elaboration of the corresponding intermediates also provided access to polyfunctional indolizidine-based compounds. These methods were showcased in an asymmetric synthesis of 2,6-di-substituted piperidine compound 13, reported as the key intermediate in the synthesis of (+)-calvine and a natural alkaloid (-)-indolizidine 209D. Furthermore, selective C5 iodination of compound 9 enabled the installation of additional functional groups at this position. Finally, we demonstrated that the oxidative cleavage of 2-substituted-6-methyl-2,3-dihydropyidinones is a practical and efficient method for the enantioselective synthesis of β-amino acids, which can undergo further intra-molecular cyclization to give the corresponding chiral four-membered β-lactam derivatives.

  20. Switchable Synthesis of 4,5-Functionalized 1,2,3-Thiadiazoles and 1,2,3-Triazoles from 2-Cyanothioacetamides under Diazo Group Transfer Conditions.

    PubMed

    Filimonov, Valeriy O; Dianova, Lidia N; Galata, Kristina A; Beryozkina, Tetyana V; Novikov, Mikhail S; Berseneva, Vera S; Eltsov, Oleg S; Lebedev, Albert T; Slepukhin, Pavel A; Bakulev, Vasiliy A

    2017-04-21

    High yield solvent-base-controlled, transition metal-free synthesis of 4,5-functionalized 1,2,3-thiadiazoles and 1,2,3-triazoles from 2-cyanothioacetamides and sulfonyl azides is described. Under diazo transfer conditions in the presence of a base in an aprotic solvent 2-cyanothioacetamides operating as C-C-S building blocks produce 5-amino-4-cyano-1,2,3-thiadiazoles exclusively. The use of alkoxide/alcohol system completely switches the reaction course due to the change of one of the reaction centers in the 2-cyanothioacetamide (C-C-N building block) resulting in the formation of 5-sulfonamido-1,2,3-triazole-4-carbothioamide sodium salts as the only products. The latter serve as good precursors for 5-amino-1,2,3-thiadiazole-4-carboximidamides, the products of Cornforth-type rearrangement occurring in neutral protic medium or under acid conditions. According to DFT calculations (B3LYP/6-311+G(d,p)) the rearrangement proceeds via intermediate formation of a diazo compound, and can be catalyzed by acids via the protonation of oxygen atom of the sulfonamide group.

  1. Double-Layer Surface Modification of Polyamide Denture Base Material by Functionalized Sol-Gel Based Silica for Adhesion Improvement.

    PubMed

    Hafezeqoran, Ali; Koodaryan, Roodabeh

    2017-09-21

    Limited surface treatments have been proposed to improve the bond strength between autopolymerizing resin and polyamide denture base materials. Still, the bond strength of autopolymerizing resins to nylon polymer is not strong enough to repair the fractured denture effectively. This study aimed to introduce a novel method to improve the adhesion of autopolymerizing resin to polyamide polymer by a double layer deposition of sol-gel silica and N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (AE-APTMS). The silica sol was synthesized by acid-catalyzed hydrolysis of tetraethylorthosilicate (TEOS) as silica precursors. Polyamide specimens were dipped in TEOS-derived sol (TS group, n = 28), and exposed to ultraviolet (UV) light under O 2 flow for 30 minutes. UV-treated specimens were immersed in AE-APTMS solution and left for 24 hours at room temperature. The other specimens were either immersed in AE-APTMS solution (AP group, n = 28) or left untreated (NT group, n = 28). Surface characterization was investigated by fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Two autopolymerizing resins (subgroups G and T, n = 14) were bonded to the specimens, thermocycled, and then tested for shear bond strength with a universal testing machine. Data were analyzed with one-way ANOVA followed by Tukey's HSD (α = 0.05). FTIR spectra of treated surfaces confirmed the chemical modification and appearance of functional groups on the polymer. One-way ANOVA revealed significant differences in shear bond strength among the study groups. Tukey's HSD showed that TS T and TS G groups had significantly higher shear bond strength than control groups (p = 0.001 and p < 0.001, respectively). Moreover, bond strength values of AP T were statistically significant compared to controls (p = 0.017). Amino functionalized TEOS-derived silica coating is a simple and cost-effective method for improving the bond strength between the autopolymerizing resin and polyamide denture base. Amino-functionalized silica coating could represent a more applicable and convenient option for improving the repair strength of autopolymerizing resin to polyamide polymer. © 2017 by the American College of Prosthodontists.

  2. Removal of amino groups from anilines through diazonium salt-based reactions.

    PubMed

    He, Linman; Qiu, Guanyinsheng; Gao, Yueqiu; Wu, Jie

    2014-09-28

    This minireview describes the applications of in situ generated diazonium salts from anilines in organic synthesis. In situ generation of diazonium salts from anilines represents an efficient and practical pathway, leading to a series of useful structures. In these transformations, the amino group of aniline formally acts as a leaving group. Two distinctive kinds of mechanisms, including transition metal (especially palladium)-catalyzed oxidative addition-reductive elimination and a radical process, are involved in the removal of amino groups from anilines, and both catalytic processes are described in this minireview.

  3. Analysis of Endogenous D-Amino Acid-Containing Peptides in Metazoa

    PubMed Central

    Bai, Lu; Sheeley, Sarah; Sweedler, Jonathan V.

    2010-01-01

    Peptides are chiral molecules with their structure determined by the composition and configuration of their amino acid building blocks. The naturally occurring amino acids, except glycine, possess two chiral forms. This allows the formation of multiple peptide diastereomers that have the same sequence. Although living organisms use L-amino acids to make proteins, a group of D-amino acid-containing peptides (DAACPs) has been discovered in animals that have at least one of their residues isomerized to the D-form via an enzyme-catalyzed process. In many cases, the biological functions of these peptides are enhanced due to this structural conversion. These DAACPs are different from those known to occur in bacterial cell wall and antibiotic peptides, the latter of which are synthesized in a ribosome-independent manner. DAACPs have now also been identified in a number of distinct groups throughout the Metazoa. Their serendipitous discovery has often resulted from discrepancies observed in bioassays or in chromatographic behavior between natural peptide fractions and peptides synthesized according to a presumed all-L sequence. Because this L-to-D post-translational modification is subtle and not detectable by most sequence determination approaches, it is reasonable to suspect that many studies have overlooked this change; accordingly, DAACPs may be more prevalent than currently thought. Although diastereomer separation techniques developed with synthetic peptides in recent years have greatly aided in the discovery of natural DAACPs, there is a need for new, more robust methods for naturally complex samples. In this review, a brief history of DAACPs in animals is presented, followed by discussion of a variety of analytical methods that have been used for diastereomeric separation and detection of peptides. PMID:20490347

  4. Rate constants measured for hydrated electron reactions with peptides and proteins

    NASA Technical Reports Server (NTRS)

    Braams, R.

    1968-01-01

    Effects of ionizing radiation on the amino acids of proteins and the reactivity of the protonated amino group depends upon the pK subscript a of the group. Estimates of the rate constants for reactions involving the amino acid side chains are presented. These rate constants gave an approximate rate constant for three different protein molecules.

  5. Interactions and encapsulation of vitamins C, B3, and B6 with dendrimers in water.

    PubMed

    Boisselier, Elodie; Liang, Liyuan; Dalko-Csiba, Maria; Ruiz, Jaime; Astruc, Didier

    2010-05-25

    Titrations of commercial diaminobutane (DAB) and polyamidoamine (PAMAM) dendrimers by vitamins C (ascorbic acid, AA), B(3) (nicotinic acid), and B(6) (pyridoxine) were monitored by (1)H NMR spectroscopy using the chemical shifts of both dendrimer and vitamin protons and analyzed by comparison with the titration of propylamine. Quaternarizations of the terminal primary amino groups and intradendritic tertiary amino groups, which are nearly quantitative with vitamin C, were characterized by more or less sharp variations (Deltadelta) of the (1)H chemical shift (delta) at the equivalence points. The peripheral primary amino groups of the DAB dendrimers were quaternarized first, but not selectively, whereas a sharp chemical-shift variation was recorded for the inner methylene protons near the tertiary amines, thereby indicating encapsulation, when all the dendritic amines were quaternarized. With DAB-G5-64-NH(2), some excess acid is required to protonate the inner amino groups, presumably because of basicity decrease due to excess charge repulsion. On the other hand, this selectivity was not observed with PAMAM dendrimers. The special case of the titration of the dendrimers by vitamin B(6) indicates only dominant supramolecular hydrogen-bonding interactions and no quaternarization, with core amino groups being privileged, which indicates the strong tendency to encapsulate vitamins. With vitamin B(3), a carboxylic acid, titration of DAB-G3-16-NH(2) shows that only six peripheral amino groups are protonated on average, even with excess vitamin B(3), because protonation is all the more difficult due to increased charge repulsion, as positive charges accumulate around the dendrimer. Inner amino groups interact with this vitamin, however, thus indicating encapsulation presumably with supramolecular hydrogen bonding without much charge transfer.

  6. Time-resolved FT EPR and optical spectroscopy study on photooxidation of aliphatic alpha-amino acids in aqueous solutions; electron transfer from amino vs carboxylate functional group.

    PubMed

    Tarabek, Peter; Bonifacić, Marija; Beckert, Dieter

    2006-06-08

    Using time-resolved Fourier transform electron paramagnetic resonance, FT EPR, and optical spectroscopy, the photooxidation of glycine, alpha-alanine, alpha-aminoisobutyric acid, and model compounds beta-alanine, methylamine and sodium acetate, by excited triplets of anthraquinone-2,6-disulfonate dianion was studied in aqueous solutions in the pH range 5-13. Anthraquinone radical trianions showing strong emissive spin-polarization (CIDEP) were formed, indicating fast electron transfer from the quenchers to the spin-polarized quinone triplet as the primary reaction. None of the primary radicals formed upon one-electron oxidation of quenchers could be detected at the nanosecond time scale of FT EPR measurements because of their very fast transformation into secondary products. The latter were identified to be decarboxylated alpha-aminoalkyl radicals for alpha-amino acids anions and zwitterions, beta-aminoalkyl radicals for beta-alanine zwitterions, and methyl radicals for acetate anions; corresponding aminyl radicals were the first EPR detectable products from beta-alanine anions and methylamine. Thus, anthraquinone-2,6-disulfonate triplet can take an electron from both NH(2)- and -CO(2)(-) functional groups forming aminium ((+*)NH(2)-) and acyloxyl (-CO(2)(*)) radicals, respectively. Aminium radicals derived from beta-alanine anions and CH(3)-NH(2) stabilize by deprotonation into aminyl radicals, whereas these derived from alpha-amino acids anions are known to suffer ultrafast decarboxylation (tau approximately 10 ps). Analysis of the polarization patterns revealed that decarboxylation from acyloxyl radicals are considerably slower (ns < tau < 0.1 micros). Therefore, in the case of alpha-amino acids, the isoelectronic structures NH(2)-CR(2)-CO(2)(*) and (+*)NH(2)-CR(2)-CO(2)(-) probably do not constitute resonance mesomeric forms of one and the same species and the decarboxylation of aminium radicals is not preceded by the intramolecular carboxylate to amino group electron transfer. Absolute triplet quenching rate constants at zero ionic strength were in the range of 2 x 10(8) to 2 x 10(9) M(-1) s(-1) for R-NH(2) and 2 x 10(7) to 10(8) M(-1) s(-1) for R-CO(2)(-) type of electron donors, reflecting in principle their standard reduction potentials. The strengths of acids: (+)NH(3)-(*)CH(2), (+)NH(3)-(*)C(CH(3))H, and (+)NH(3)-(*)C(CH(3))(2), pK(a) <4, >6, and >7, respectively, were found to be remarkably strongly dependent on alpha-C substitution. The conjugate bases of these alpha-aminoalkyl radicals reduce anthraquinone-2,6-disulfonate dianion ground state with k(sec) = 3 x 10(9) M(-1) s(-1).

  7. Amino Acid Contents of Meteorite Mineral Separates

    NASA Technical Reports Server (NTRS)

    Berger, E. L.; Burton, A. S; Locke, D.

    2017-01-01

    Indigenous amino acids have been found indigenous all 8 carbonaceous chondrite groups. However, the abundances, structural, enantiomeric and isotopic compositions of amino acids differ significantly among meteorites of different groups and petrologic types. This suggests that parent-body conditions (thermal or aqueous alteration), mineralogy, and the preservation of amino acids are linked. Previously, elucidating specific relationships between amino acids and mineralogy was not possible because the samples analyzed for amino acids were much larger than the scale at which petrologic heterogeneity is observed (sub mm-scale differences corresponding to sub-mg samples). Recent advances in amino acid measurements and application of techniques such as high resolution X-ray diffraction (HR-XRD) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) for mineralogical characterizations allow us to perform coordinated analyses on the scale at which mineral heterogeneity is observed.

  8. Evaluation of the Flavor Contribution of Products of the Maillard Reaction

    DTIC Science & Technology

    the Maillard - type reaction between the products of autoxidized polyunsaturated fatty acids and free amino groups of phospholipids and within meat...intermolecular browning-type reaction with free amino groups, polymerization, etc., are liable to occur. Changes in these labile substances are known...proteins, and between the free amino groups of phospholipids and the monosaccharides present in meat. The reaction was elucidated and its products characterized and evaluated for its contribution to meat flavor.

  9. Prognostic Impact of Visceral Fat Amount and Branched-Chain Amino Acids (BCAA) in Hepatocellular Carcinoma.

    PubMed

    Higashi, Takaaki; Hayashi, Hiromitsu; Kaida, Takayoshi; Arima, Kota; Takeyama, Hideaki; Taki, Katsunobu; Izumi, Daisuke; Tokunaga, Ryuma; Kosumi, Keisuke; Nakagawa, Shigeki; Okabe, Hirohisa; Imai, Katsunobu; Nitta, Hidetoshi; Hashimoto, Daisuke; Chikamoto, Akira; Beppu, Toru; Baba, Hideo

    2015-12-01

    Dysregulation of lipid and amino acid metabolism in patients with liver diseases results in obesity-related carcinogenesis and decreased levels of branched-chain amino acids (BCAA), respectively. This study assessed the clinical and prognostic impact of visceral fat amount (VFA) and its association with amino acid metabolism in patients with hepatocellular carcinoma (HCC). In this study, 215 patients who underwent hepatic resection for HCC were divided into two groups based on VFA criteria for metabolic abnormalities in Japan. Computed tomography was used to measure VFA at the third lumbar vertebra in the inferior direction. Of the 215 patients, 132 had high and 83 had low VFA. High VFA was significantly associated with older age and higher body mass index (BMI), subcutaneous fat amount, and BCAA, but not with liver function, nutrient status, or tumoral factors. VFA was positively correlated with BMI (P < 0.0001; r = 0.63) and BCAA levels (P < 0.0001; r = 0.29). Overall survival was significantly greater in the high than in the low VFA group (P = 0.002). Multivariate analyses showed that high VFA [hazard ratio (HR) 7.06; P = 0.024] and neutrophil/lymphocyte ratio (HR 3.47; P = 0.049) were significantly prognostic of overall survival, whereas subcutaneous fat amount, BMI, BCAA, serum albumin, and prognostic nutritional index were not. High VFA was associated with a high BCAA level, with high VFA prognostic of improved overall survival in Japanese patients with HCC.

  10. A comprehensive study of the optoelectronic properties of donor-acceptor based derivatives of 1,3,4-oxadiazole

    NASA Astrophysics Data System (ADS)

    Joshi, Ankita; Ramachandran, C. N.

    2017-07-01

    A variety of 1,3,4-oxadiazole derivatives based on electron- donor pyrrole and -acceptor nitro groups are modelled. Various isomers of pyrole-oxadiazole-nitro unit and its dimer linked to substituted and unsubstituted phenyl group are studied using the dispersion corrected density functional theoretical method. The electron density distribution in frontier orbitals of the phenyl-spacer compounds bearing amino and phenylamino groups indicates the possibility of intramolecular charge transfer. The isomers of phenyl-spacer compounds absorb in visible region of electromagnetic spectrum. The compounds show high values of light harvesting efficiency, despite the weak anchoring nature of nitro groups.

  11. Effect of characteristics of compounds on maintenance of an amorphous state in solid dispersion with crospovidone.

    PubMed

    Shibata, Yusuke; Fujii, Makiko; Kokudai, Makiko; Noda, Shinobu; Okada, Hideko; Kondoh, Masuo; Watanabe, Yoshiteru

    2007-06-01

    Solid dispersion (SD) of indomethacin with crospovidone (CrosPVP) shows useful characteristics for preparation of dosage forms. This study aimed to determine the types of drugs that could adopt a stable amorphous form in SD. Twenty compounds with various melting points (70-218 degrees C), molecular weights (135-504) and functional groups (amide, amino, carbonyl, hydroxyl, ketone etc.) were prepared in SD with CrosPVP. The CrosPVP SDs were prepared using a mechanical mixing and heating method. Melting point and molecular weight were found to have no influence on the ability of a compound to maintain an amorphous state in SD. All compounds containing hydrogen-bond-donor functional groups existed in an amorphous state in SD for at least 6 months. Infrared spectra suggested an interaction between the functional groups of these compounds and amide carbonyl group of CrosPVP. Compounds without hydrogen-bond-donor groups could not maintain an amorphous state and underwent recrystallization within 1 month. It was suggested that the presence of a hydrogen-bond-donor functional group in a compound is an important factor affecting the stable formation of SD with CrosPVP, which contains a hydrogen-bond acceptor.

  12. Food Protein-polysaccharide Conjugates Obtained via the Maillard Reaction: A Review.

    PubMed

    de Oliveira, Fabíola Cristina; Coimbra, Jane Sélia Dos Reis; de Oliveira, Eduardo Basílio; Zuñiga, Abraham Damian Giraldo; Rojas, Edwin E Garcia

    2016-05-18

    The products formed by glycosylation of food proteins with carbohydrates via the Maillard reaction, also known as conjugates, are agents capable of changing and improving techno-functional characteristics of proteins. The Maillard reaction uses the covalent bond between a group of a reducing carbohydrates and an amino group of a protein. This reaction does not require additional chemicals as it occurs naturally under controlled conditions of temperature, time, pH, and moisture. Moreover, there is growing interest in modifying proteins for industrial food applications. This review analyses the current state of art of the Maillard reaction on food protein functionalities. It also discusses the influence of the Maillard reaction on the conditions and formulation of reagents that improve desirable techno-functional characteristics of food protein.

  13. Biodegradable Poly(ester urethane)urea Elastomers with Variable Amino Content for Subsequent Functionalization with Phosphorylcholine

    PubMed Central

    Fang, Jun; Ye, Sang-Ho; Shankarraman, Venkat; Huang, Yixian; Mo, Xiumei; Wagner, William R.

    2015-01-01

    While surface modification is well suited for imparting biomaterials with specific functionality for favorable cell interactions, the modification of degradable polymers would be expected to provide only temporary benefit. Bulk modification by incorporating pendant reactive groups for subsequent functionalization of biodegradable polymers would provide a more enduring approach. Towards this end, a series of biodegradable poly(ester urethane)urea elastomers with variable amino content (PEUU-NH2 polymers) were developed. Carboxylated phosphorycholine was synthesized and conjugated to the PEUU-NH2 polymers for subsequent bulk functionalization to generate PEUU-PC polymers. Synthesis was verified by 1H NMR, X-ray photoelectron spectroscopy and ATR-FTIR. The impact of amine incorporation and phosphorylcholine conjugation was shown on mechanical, thermal and degradation properties. Water absorption increased with increasing amine content, and further with PC conjugation. In wet conditions, tensile strength and initial modulus generally decreased with increasing hydrophilicity, but remained in the range of 5–30 MPa and 10–20 MPa respectively. PC conjugation was associated with significantly reduced platelet adhesion in blood contact testing and the inhibition of rat vascular smooth muscle cell proliferation. These biodegradable PEUU-PC elastomers offer attractive properties for applications as non-thrombogenic, biodegradable coatings and for blood-contacting scaffold applications. Further, the PEUU-NH2 base polymers offer the potential to have multiple types of biofunctional groups conjugated onto the backbone to address a variety of design objectives. PMID:25132273

  14. Impact of oral supplementation of Glutamate and GABA on memory performance and neurochemical profile in hippocampus of rats.

    PubMed

    Tabassum, Saiqa; Ahmad, Saara; Madiha, Syeda; Khaliq, Saima; Shahzad, Sidrah; Batool, Zehra; Haider, Saida

    2017-05-01

    Glutamate (GLU) and gamma-amino butyric acid (GABA) are essential amino acids (AA) for brain function serving as excitatory and inhibitory neurotransmitter respectively. Their tablets are available in market for improving gut function and muscle performance. Despite of having a major role during memory formation and processing, effects of these tablets on brain functioning like learning and memory have not been investigated. Therefore, present study is aimed to investigate the effects of orally supplemented GLU and GABA on learning and memory performance and further to monitor related effects of these orally supplemented GLU and GABA on brain levels of these AA. Three groups of rats were supplemented orally with drinking water (control group) or suspension of tablets of GABA and Glutamate, respectively for four weeks. Cognitive performance was determined using behavioral tests (Novel object recognition test, Morris water maze, Passive avoidance test) measuring recognition, spatial reference and aversive memory. Levels of GLU, GABA and acetylcholine (ACh) were estimated in rat hippocampus. Results showed that chronic oral administration of GLU and GABA tablets has a significant impact on brain function and can alter GLU and GABA content in rat hippocampus. Compared to GABA, GLU supplementation specifically enhances memory performance via increasing ACh. Thus, GLU can be suggested as a useful supplement for improving learning and memory performance and neurochemical status of brain and in future could be effective in the treatment of neurological disorders affecting learning and memory performance.

  15. Synthesis and characterization of covalently bound benzocaine graphite oxide derivative

    NASA Astrophysics Data System (ADS)

    Kabbani, Ahmad; Kabbani, Mohamad; Safadi, Khadija

    2015-09-01

    Graphite oxide (GO) derived materials include chemically functionalize or reduced graphene oxide (exfoliated from GO) sheets, assembled paper-like forms , and graphene-based composites GO consists of intact graphitic regions interspersed with sp3-hybridized carbons containing hydroxyl and epoxide functional groups on the top and bottom surfaces of each sheet and sp2-hybridized carbons containing carboxyl and carbonyl groups mostly at the sheet edges. Hence, GO is hydrophilic and readily disperses in water to form stable colloidal suspensions Due to the attached oxygen functional groups, GO was used to prepare different derivatives which result in some physical and chemical properties that are dramatically different from their bulk counterparts .The present work discusses the covalent cross linking of graphite oxide to benzocaine or ethyl ester of para-aminobenzoic acid,structure I,used in many over-the-counter ointment drug.Synthesis is done via diazotization of the amino group.The product is characterized via IR,Raman, X-ray photoelectron spectroscopy as well as electron microscopy.

  16. High-speed recovery of germanium in a convection-aided mode using functional porous hollow-fiber membranes.

    PubMed

    Ozawa, I; Saito, K; Sugita, K; Sato, K; Akiba, M; Sugo, T

    2000-08-04

    A porous hollow-fiber membrane capable of recovery of germanium from a liquid stream was prepared by radiation-induced graft polymerization of an epoxy-group-containing vinyl monomer, glycidyl methacrylate, and subsequent functionalization with 2,2'-iminodiethanol, di-2-propanolamine, N-methylglucamine, and 3-amino-1,2-propanediol. The functional group density was as high as 1.4 mol per kg of the resultant hollow fiber. The polymer chains containing functional groups surrounding the pores enabled a high-speed recovery of germanium during permeation of a germanium oxide (GeO2) solution through the pores of the hollow fiber. Because of a negligible diffusional mass-transfer resistance, germanium concentration changes with the effluent volume, i.e., breakthrough curves, overlapped irrespective of the residence time of the solution, which ranged from 0.37 to 3.7 s across the hollow fiber. After repeated use of adsorption and elution, the adsorption capacity did not deteriorate.

  17. A statistical view of FMRFamide neuropeptide diversity.

    PubMed

    Espinoza, E; Carrigan, M; Thomas, S G; Shaw, G; Edison, A S

    2000-01-01

    FMRFamide-like peptide (FLP) amino acid sequences have been collected and statistically analyzed. FLP amino acid composition as a function of position in the peptide is graphically presented for several major phyla. Results of total amino acid composition and frequencies of pairs of FLP amino acids have been computed and compared with corresponding values from the entire GenBank protein sequence database. The data for pairwise distributions of amino acids should help in future structure-function studies of FLPs. To aid in future peptide discovery, a computer program and search protocol was developed to identify FLPs from the GenBank protein database without the use of keywords.

  18. Linking Compositional and Functional Predictions to Decipher the Biogeochemical Significance in DFAA Turnover of Abundant Bacterioplankton Lineages in the North Sea.

    PubMed

    Wemheuer, Bernd; Wemheuer, Franziska; Meier, Dimitri; Billerbeck, Sara; Giebel, Helge-Ansgar; Simon, Meinhard; Scherber, Christoph; Daniel, Rolf

    2017-11-05

    Deciphering the ecological traits of abundant marine bacteria is a major challenge in marine microbial ecology. In the current study, we linked compositional and functional predictions to elucidate such traits for abundant bacterioplankton lineages in the North Sea. For this purpose, we investigated entire and active bacterioplankton composition along a transect ranging from the German Bight to the northern North Sea by pyrotag sequencing of bacterial 16S rRNA genes and transcripts. Functional profiles were inferred from 16S rRNA data using Tax4Fun. Bacterioplankton communities were dominated by well-known marine lineages including clusters/genera that are affiliated with the Roseobacter group and the Flavobacteria . Variations in community composition and function were significantly explained by measured environmental and microbial properties. Turnover of dissolved free amino acids (DFAA) showed the strongest correlation to community composition and function. We applied multinomial models, which enabled us to identify bacterial lineages involved in DFAA turnover. For instance, the genus Planktomarina was more abundant at higher DFAA turnover rates, suggesting its vital role in amino acid degradation. Functional predictions further indicated that Planktomarina is involved in leucine and isoleucine degradation. Overall, our results provide novel insights into the biogeochemical significance of abundant bacterioplankton lineages in the North Sea.

  19. Scaleable catalytic asymmetric Strecker syntheses of unnatural alpha-amino acids.

    PubMed

    Zuend, Stephan J; Coughlin, Matthew P; Lalonde, Mathieu P; Jacobsen, Eric N

    2009-10-15

    Alpha-amino acids are the building blocks of proteins and are widely used as components of medicinally active molecules and chiral catalysts. Efficient chemo-enzymatic methods for the synthesis of enantioenriched alpha-amino acids have been developed, but it is still a challenge to obtain non-natural amino acids. Alkene hydrogenation is broadly useful for the enantioselective catalytic synthesis of many classes of amino acids, but it is not possible to obtain alpha-amino acids bearing aryl or quaternary alkyl alpha-substituents using this method. The Strecker synthesis-the reaction of an imine or imine equivalent with hydrogen cyanide, followed by nitrile hydrolysis-is an especially versatile chemical method for the synthesis of racemic alpha-amino acids. Asymmetric Strecker syntheses using stoichiometric amounts of a chiral reagent have been applied successfully on gram-to-kilogram scales, yielding enantiomerically enriched alpha-amino acids. In principle, Strecker syntheses employing sub-stoichiometric quantities of a chiral reagent could provide a practical alternative to these approaches, but the reported catalytic asymmetric methods have seen limited use on preparative scales (more than a gram). The limited utility of existing catalytic methods may be due to several important factors, including the relatively complex and precious nature of the catalysts and the requisite use of hazardous cyanide sources. Here we report a new catalytic asymmetric method for the syntheses of highly enantiomerically enriched non-natural amino acids using a simple chiral amido-thiourea catalyst to control the key hydrocyanation step. This catalyst is robust, without sensitive functional groups, so it is compatible with aqueous cyanide salts, which are safer and easier to handle than other cyanide sources; this makes the method adaptable to large-scale synthesis. We have used this new method to obtain enantiopure amino acids that are not readily prepared by enzymatic methods or by chemical hydrogenation.

  20. Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids

    PubMed Central

    Zuend, Stephan J.; Coughlin, Matthew P.; Lalonde, Mathieu P.; Jacobsen, Eric N.

    2009-01-01

    α-Amino acids are essential building blocks for protein synthesis, and are also widely useful as components of medicinally active molecules and chiral catalysts.1,2,3,4,5 Efficient chemo-enzymatic methods for the synthesis of enantioenriched α-amino acids have been devised, but the scope of these methods for the synthesis of unnatural amino acids is limited.6,7 Alkene hydrogenation is broadly useful for enantioselective catalytic synthesis of many classes of amino acids,8,9 but this approach is not applicable to the synthesis of α-amino acids bearing aryl or quaternary alkyl α-substituents. The Strecker synthesis—the reaction of an imine or imine equivalent with hydrogen cyanide, followed by nitrile hydrolysis—is an especially versatile chemical method for the synthesis of racemic α-amino acids (Fig. 1).10,11 Asymmetric Strecker syntheses using stoichiometric chiral reagents have been applied successfully on gram-to-multi-kilogram scales to the preparation of enantiomerically enriched α-amino acids.12,13,14 In principle, Strecker syntheses employing sub-stoichiometric quantities of a chiral reagent provide a practical alternative to these approaches, but the reported catalytic asymmetric methods have seen only limited use on preparative scales (e.g., > 1 gram).15,16 The limited use of existing catalytic methodologies may be ascribed to several important practical drawbacks, including the relatively complex and precious nature of the catalysts, and the requisite use of hazardous cyanide sources. Herein we report a new catalytic asymmetric method for the syntheses of highly enantiomerically enriched non-proteinogenic amino acids using a simple chiral amido-thiourea catalyst to control the key hydrocyanation step. Because this catalyst is robust and lacks sensitive functional groups, it is compatible with safely handled aqueous cyanide salts, and is thus adaptable to large-scale synthesis. This new methodology can be applied to the efficient syntheses of amino acids that are not readily prepared by enzymatic methods or by chemical hydrogenation. PMID:19829379

  1. The enhanced spin-polarized transport behaviors through cobalt benzene-porphyrin-benzene molecular junctions: the effect of functional groups

    NASA Astrophysics Data System (ADS)

    Cheng, Jue-Fei; Zhou, Liping; Wen, Zhongqian; Yan, Qiang; Han, Qin; Gao, Lei

    2017-05-01

    The modification effects of the groups amino (NH2) and nitro (NO2) on the spin polarized transport properties of the cobalt benzene-porphyrin-benzene (Co-BPB) molecule coupled to gold (Au) nanowire electrodes are investigated by the nonequilibrium Green’s function method combined with the density functional theory. The calculation results show that functional groups can lead to the significant spin-filter effect, enhanced low-bias negative differential resistance (NDR) behavior and novel reverse rectifying effect in Co-BPB molecular junction. The locations and types of functional groups have distinct influences on spin-polarized transport performances. The configuration with NH2 group substituting H atom in central porphyrin ring has larger spin-down current compared to that with NO2 substitution. And Co-BPB molecule junction with NH2 group substituting H atom in side benzene ring shows reverse rectifying effect. Detailed analyses confirm that NH2 and NO2 group substitution change the spin-polarized transferred charge, which makes the highest occupied molecular orbitals (HOMO) of spin-down channel of Co-BPB closer to the Fermi level. And the shift of HOMO strengthens the spin-polarized coupling between the molecular orbitals and the electrodes, leading to the enhanced spin-polarized behavior. Our findings might be useful in the design of multi-functional molecular devices in the future.

  2. The Importance of Quality Specifications in Safety Assessments of Amino Acids: The Cases of l-Tryptophan and l-Citrulline.

    PubMed

    Oketch-Rabah, Hellen A; Roe, Amy L; Gurley, Bill J; Griffiths, James C; Giancaspro, Gabriel I

    2016-12-01

    The increasing consumption of amino acids from a wide variety of sources, including dietary supplements, natural health products, medical foods, infant formulas, athletic and work-out products, herbal medicines, and other national and international categories of nutritional and functional food products, increases the exposure to amino acids to amounts far beyond those normally obtained from the diet, thereby necessitating appropriate and robust safety assessments of these ingredients. Safety assessments of amino acids, similar to all food constituents, largely rely on the establishment of an upper limit [Tolerable Upper Intake Level (UL)] considered to be a guide for avoiding high intake, above which adverse or toxic effects might occur. However, reliable ULs have been difficult or impossible to define for amino acids because of inadequate toxicity studies in animals and scarce or missing clinical data, as well as a paucity or absence of adverse event reporting data. This review examines 2 amino acids that have been associated with in-market adverse events to show how quality specifications might have helped prevent the adverse clinical outcomes. We further highlight the importance of various factors that should be incorporated into an overall safety assessment of these and other amino acids. In addition to the traditional reliance on the established UL, well-defined quality specifications, review of synthesis and production strategies, potential interactions with drugs, contraindications with certain disease states, and cautionary use within certain age groups should all be taken into consideration. © 2016 American Society for Nutrition.

  3. Modulatory effects of arginine, glutamine and branched-chain amino acids on heat shock proteins, immunity and antioxidant response in exercised rats.

    PubMed

    Moura, Carolina Soares; Lollo, Pablo Christiano Barboza; Morato, Priscila Neder; Risso, Eder Muller; Amaya-Farfan, Jaime

    2017-09-20

    Heat shock proteins (HSPs) are endogenous proteins whose function is to maintain the cell's tolerance to insult, and glutamine supplementation is known to increase HSP expression during intense exercise. Since few studies have addressed the possibility that supplementation with other amino acids could have similar effects to that of glutamine, our objective was to evaluate the effects of leucine, valine, isoleucine and arginine as potential stimulators of HSPs 25, 60, 70 and 90 in rats subjected to acute exercise as a stressing factor. The immune markers, antioxidant system, blood parameters, glycogen and amino acid profile responses were also assessed. Male Wistar rats were divided into seven groups: control (rest, without gavage), vehicle (water), l-leucine, l-isoleucine, l-valine, l-arginine and l-glutamine. Except for the control, all animals were exercised and received every amino acid by oral gavage. Arginine supplementation up-regulated muscle HSP70 and HSP90 and serum HSP70, however, none of the amino acids affected the HSP25. All amino acids increased exercise-induced HSP60 expression, except for valine. Antioxidant enzymes were reduced by exercise, but both glutamine and arginine restored glutathione peroxidase, while isoleucine and valine restored superoxide dismutase. Exercise reduced monocyte, platelet, lymphocyte and erythrocyte levels, while leucine stimulated immune response, preserved the levels of the lymphocytes and increased leukocytes and maintained platelets at control levels. Plasma and muscle amino acid profiles showed specific metabolic features. The data suggest that the tissue-protecting effects of arginine could proceed by enhancing specific HSPs in the body.

  4. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity

    PubMed Central

    McGaha, Tracy L.; Huang, Lei; Lemos, Henrique; Metz, Richard; Mautino, Mario; Prendergast, George C.; Mellor, Andrew L.

    2014-01-01

    Summary Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen-presenting cell and lymphocyte functions and reveal critical roles for amino acid- and catabolite-sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field. PMID:22889220

  5. The role of microbial amino acid metabolism in host metabolism.

    PubMed

    Neis, Evelien P J G; Dejong, Cornelis H C; Rensen, Sander S

    2015-04-16

    Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous proteins. In turn, gut bacteria also provide amino acids to the host. This could have significant implications in the context of insulin resistance and type 2 diabetes mellitus, conditions associated with elevated systemic concentrations of certain amino acids, in particular the aromatic and branched-chain amino acids. Moreover, several amino acids released by gut bacteria can serve as precursors for the synthesis of short-chain fatty acids, which also play a role in the development of obesity. In this review, we aim to compile the available evidence on the contribution of microbial amino acids to host amino acid homeostasis, and to assess the role of the gut microbiota as a determinant of amino acid and short-chain fatty acid perturbations in human obesity and type 2 diabetes mellitus.

  6. Dictionary-driven protein annotation.

    PubMed

    Rigoutsos, Isidore; Huynh, Tien; Floratos, Aris; Parida, Laxmi; Platt, Daniel

    2002-09-01

    Computational methods seeking to automatically determine the properties (functional, structural, physicochemical, etc.) of a protein directly from the sequence have long been the focus of numerous research groups. With the advent of advanced sequencing methods and systems, the number of amino acid sequences that are being deposited in the public databases has been increasing steadily. This has in turn generated a renewed demand for automated approaches that can annotate individual sequences and complete genomes quickly, exhaustively and objectively. In this paper, we present one such approach that is centered around and exploits the Bio-Dictionary, a collection of amino acid patterns that completely covers the natural sequence space and can capture functional and structural signals that have been reused during evolution, within and across protein families. Our annotation approach also makes use of a weighted, position-specific scoring scheme that is unaffected by the over-representation of well-conserved proteins and protein fragments in the databases used. For a given query sequence, the method permits one to determine, in a single pass, the following: local and global similarities between the query and any protein already present in a public database; the likeness of the query to all available archaeal/ bacterial/eukaryotic/viral sequences in the database as a function of amino acid position within the query; the character of secondary structure of the query as a function of amino acid position within the query; the cytoplasmic, transmembrane or extracellular behavior of the query; the nature and position of binding domains, active sites, post-translationally modified sites, signal peptides, etc. In terms of performance, the proposed method is exhaustive, objective and allows for the rapid annotation of individual sequences and full genomes. Annotation examples are presented and discussed in Results, including individual queries and complete genomes that were released publicly after we built the Bio-Dictionary that is used in our experiments. Finally, we have computed the annotations of more than 70 complete genomes and made them available on the World Wide Web at http://cbcsrv.watson.ibm.com/Annotations/.

  7. Functional annotation from the genome sequence of the giant panda.

    PubMed

    Huo, Tong; Zhang, Yinjie; Lin, Jianping

    2012-08-01

    The giant panda is one of the most critically endangered species due to the fragmentation and loss of its habitat. Studying the functions of proteins in this animal, especially specific trait-related proteins, is therefore necessary to protect the species. In this work, the functions of these proteins were investigated using the genome sequence of the giant panda. Data on 21,001 proteins and their functions were stored in the Giant Panda Protein Database, in which the proteins were divided into two groups: 20,179 proteins whose functions can be predicted by GeneScan formed the known-function group, whereas 822 proteins whose functions cannot be predicted by GeneScan comprised the unknown-function group. For the known-function group, we further classified the proteins by molecular function, biological process, cellular component, and tissue specificity. For the unknown-function group, we developed a strategy in which the proteins were filtered by cross-Blast to identify panda-specific proteins under the assumption that proteins related to the panda-specific traits in the unknown-function group exist. After this filtering procedure, we identified 32 proteins (2 of which are membrane proteins) specific to the giant panda genome as compared against the dog and horse genomes. Based on their amino acid sequences, these 32 proteins were further analyzed by functional classification using SVM-Prot, motif prediction using MyHits, and interacting protein prediction using the Database of Interacting Proteins. Nineteen proteins were predicted to be zinc-binding proteins, thus affecting the activities of nucleic acids. The 32 panda-specific proteins will be further investigated by structural and functional analysis.

  8. Treatment of acute decompensation of maple syrup urine disease in adult patients with a new parenteral amino-acid mixture.

    PubMed

    Servais, A; Arnoux, J B; Lamy, C; Hummel, A; Vittoz, N; Katerinis, I; Bazzaoui, V; Dubois, S; Broissand, C; Husson, M C; Berleur, M P; Rabier, D; Ottolenghi, C; Valayannopoulos, V; de Lonlay, P

    2013-11-01

    Acute decompensation of maple syrup urine disease (MSUD) is usually treated by enteral feeding with an amino-acid mixture without leucine (Leu), valine or isoleucine. However, its administration is ineffective in cases of gastric intolerance and some adult patients refuse enteral feeding via a nasogastric tube. We developed a new parenteral amino-acid mixture for patients with MSUD. Seventeen decompensation episodes in four adult patients with MSUD treated with a parenteral amino-acid mixture (group P) were compared to 18 previous episodes in the same patients treated by enteral feeding (group E). The mean Leu concentration at presentation was similar in the groups P and E (1196.9 μmol/L and 1212.2 μmol/L, respectively). The mean decrease in the Leu concentration during the first 3 days of hospitalisation was significantly higher in group P than group E (p = 0.0026); there were no side effects. The mean duration of hospitalisation was similar (4 vs. 4.5 days, p = NS). No patient in group P deteriorated whereas one patient in group E required dialysis. This new parenteral amino-acid mixture is safe and allows efficient Leu concentration decrease during acute MSUD decompensation episodes in adults. Its use avoids the need for nasogastric tube insertion.

  9. Unfavorable regions in the ramachandran plot: Is it really steric hindrance? The interacting quantum atoms perspective

    PubMed Central

    Maxwell, Peter I.

    2017-01-01

    Accurate description of the intrinsic preferences of amino acids is important to consider when developing a biomolecular force field. In this study, we use a modern energy partitioning approach called Interacting Quantum Atoms to inspect the cause of the φ and ψ torsional preferences of three dipeptides (Gly, Val, and Ile). Repeating energy trends at each of the molecular, functional group, and atomic levels are observed across both (1) the three amino acids and (2) the φ/ψ scans in Ramachandran plots. At the molecular level, it is surprisingly electrostatic destabilization that causes the high‐energy regions in the Ramachandran plot, not molecular steric hindrance (related to the intra‐atomic energy). At the functional group and atomic levels, the importance of key peptide atoms (Oi –1, Ci, Ni, Ni +1) and some sidechain hydrogen atoms (Hγ) are identified as responsible for the destabilization seen in the energetically disfavored Ramachandran regions. Consistently, the Oi –1 atoms are particularly important for the explanation of dipeptide intrinsic behavior, where electrostatic and steric destabilization unusually complement one another. The findings suggest that, at least for these dipeptides, it is the peptide group atoms that dominate the intrinsic behavior, more so than the sidechain atoms. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:28841241

  10. Immobilization of α-amylase onto a calix[4]arene derivative: Evaluation of its enzymatic activity.

    PubMed

    Veesar, Irshad Ali; Solangi, Imam Bakhsh; Memon, Shahabuddin

    2015-06-01

    In order to enhance the cost-effectiveness practicability of enzymes in many industries such as pharmaceutical, food, medical and some other technological processes, there is great need to immobilize them onto a solid supports. In this study, a new and efficient immobilization of α-amylase from Saccharomyces cerevisiae has been developed by using the surface functionalization of calix[4]arene as support. A glutaraldehyde-containing amino group functionalized calix[4]arene was used to immobilize α-amylase covalently. In this procedure, imide bonds are formed between amino groups on the protein and aldehyde groups on the calix[4]arene surface. The surface modified support was characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM). The effect of various preparation conditions on the immobilized α-amylase process such as immobilization time, enzyme concentration, temperature and pH were investigated. The influence of pH and temperature on the activity of free and immobilized α-amylase was also studied using starch as substrate. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized α-amylase were 25°C and 7, respectively. Compared to the free enzyme, the immobilized α-amylase retained 85% of its original activity and exhibited significant thermal stability than the free one and excellent durability. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Surface-enhanced Raman spectrum of Gly-Gly adsorbed on the silver colloidal surface

    NASA Astrophysics Data System (ADS)

    Xiaojuan, Yuan; Huaimin, Gu; Jiwei, Wu

    2010-08-01

    Raman and SERS spectra of homodipeptide Gly-Gly and Gly were recorded and compared in this paper, and band assignment for the functional groups contained in these molecules was analyzed in detail. Time-dependent and pH-dependent SERS spectra of Gly-Gly molecule adsorbed on nano-colloidal silver surface were also studied. The time-dependent SERS spectra of Gly-Gly are characterized by the increase in intensity of bands primarily representing the vibrational signatures emanating from the amino and amide moiety of Gly-Gly molecule. It is found that the adsorption style of Gly-Gly on the silver colloid changes as time goes on; at 5 min after adding the sample to the silver colloid, Gly-Gly adsorbs on silver surface firstly through the carboxylate, amino and amide groups, and then the carboxylate group is far away from the silver surface at 10 min to 3 days. The SERS variation of Gly-Gly with the change of pH suggests that the adsorption style is pH-dependent, the different adsorption behavior of the Gly-Gly occurs on silver surface at different pH values.

  12. Analysis of acid-base interactions at Al2O3 (11-20) interfaces by means of single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Mosebach, Bastian; Ozkaya, Berkem; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido

    2017-10-01

    Single molecule force spectroscopy (SMFS) was employed to investigate the interaction forces between aliphatic amino, hydroxyl and ether groups and aluminum oxide single crystal surfaces in an aqueous electrolyte at pH = 6. The force studies were based on the variation of the terminal group of polyethylene glycol which was bound via a Ssbnd Au bond to the gold coated AFM tip. X-ray Photoelectron Spectroscopy (XPS) was performed to characterize the surface chemistry of the substrate. Force distance curves were measured between the PEG-NH2, sbnd OH and sbnd OCH3 functionalized atomic force microscope (AFM) tip and the non-polar single crystalline Al2O3(11-20) surface. The experimental results exhibit non-equilibrium desorption events which hint at acid-base interactions of the electron donating hydroxyl and amino groups with Al-ions in the surface of the oxide. The observed desorption forces for the sbnd NH2, sbnd OH/Al2O3(11-20) were in the range of 100-200 pN.

  13. Aspartic acid based nucleoside phosphoramidate prodrugs as potent inhibitors of hepatitis C virus replication.

    PubMed

    Maiti, Munmun; Maiti, Mohitosh; Rozenski, Jef; De Jonghe, Steven; Herdewijn, Piet

    2015-05-14

    In view of a persistent threat to mankind, the development of nucleotide-based prodrugs against hepatitis C virus (HCV) is considered as a constant effort in many medicinal chemistry groups. In an attempt to identify novel nucleoside phosphoramidate analogues for improving the anti-HCV activity, we have explored, for the first time, aspartic acid (Asp) and iminodiacetic acid (IDA) esters as amidate counterparts by considering three 2'-C-methyl containing nucleosides, 2'-C-Me-cytidine, 2'-C-Me-uridine and 2'-C-Me-2'-fluoro-uridine. Synthesis of these analogues required protection for the vicinal diol functionality of the sugar moiety and the amino group of the cytidine nucleoside to regioselectively perform phosphorylation reaction at the 5'-hydroxyl group. Anti-HCV data demonstrate that the Asp-based phosphoramidates are ∼550 fold more potent than the parent nucleosides. The inhibitory activity of the Asp-ProTides was higher than the Ala-ProTides, suggesting that Asp would be a potential amino acid candidate to be considered for developing novel antiviral prodrugs.

  14. The Conformational Landscape of Serinol

    NASA Astrophysics Data System (ADS)

    Sanz, M. Eugenia; Loru, Donatella; Peña, Isabel; Alonso, José L.

    2014-06-01

    The rotational spectrum of the amino alcohol serinol CH_2OH--CH(NH_2)--CH_2OH, which constitutes the hydrophilic head of the lipid sphingosine, has been investigated using chirped-pulsed Fourier transform microwave spectroscopy in combination with laser ablation Five different forms of serinol have been observed and conclusively identified by the comparison between the experimental values of their rotational and 14N quadrupole coupling constants and those predicted by ab initio calculations. In all observed conformers several hydrogen bonds are established between the two hydroxyl groups and the amino groups in a chain or circular arrangement. The most abundant conformer is stabilised by O--H···N and N--H···O hydrogen bonds forming a chain rather than a cycle. One of the detected conformers presents a tunnelling motion of the hydrogen atoms of the functional groups similar to that observed in glycerol. S. Mata, I. Peña, C. Cabezas, J. C. López, J. L. Alonso, J. Mol. Spectrosc. 2012, 280, 91 V. V. Ilyushin, R. A. Motiyenko, F. J. Lovas, D. F. Plusquellic, J. Mol. Spectrosc. 2008, 251, 129.

  15. Single Amino Acid Repeats in the Proteome World: Structural, Functional, and Evolutionary Insights

    PubMed Central

    Kumar, Amitha Sampath; Sowpati, Divya Tej; Mishra, Rakesh K.

    2016-01-01

    Microsatellites or simple sequence repeats (SSR) are abundant, highly diverse stretches of short DNA repeats present in all genomes. Tandem mono/tri/hexanucleotide repeats in the coding regions contribute to single amino acids repeats (SAARs) in the proteome. While SSRs in the coding region always result in amino acid repeats, a majority of SAARs arise due to a combination of various codons representing the same amino acid and not as a consequence of SSR events. Certain amino acids are abundant in repeat regions indicating a positive selection pressure behind the accumulation of SAARs. By analysing 22 proteomes including the human proteome, we explored the functional and structural relationship of amino acid repeats in an evolutionary context. Only ~15% of repeats are present in any known functional domain, while ~74% of repeats are present in the disordered regions, suggesting that SAARs add to the functionality of proteins by providing flexibility, stability and act as linker elements between domains. Comparison of SAAR containing proteins across species reveals that while shorter repeats are conserved among orthologs, proteins with longer repeats, >15 amino acids, are unique to the respective organism. Lysine repeats are well conserved among orthologs with respect to their length and number of occurrences in a protein. Other amino acids such as glutamic acid, proline, serine and alanine repeats are generally conserved among the orthologs with varying repeat lengths. These findings suggest that SAARs have accumulated in the proteome under positive selection pressure and that they provide flexibility for optimal folding of functional/structural domains of proteins. The insights gained from our observations can help in effective designing and engineering of proteins with novel features. PMID:27893794

  16. New Functions and Potential Applications of Amino Acids.

    PubMed

    Uneyama, Hisayuki; Kobayashi, Hisamine; Tonouchi, Naoto

    Currently, several types of amino acids are being produced and used worldwide. Nevertheless, several new functions of amino acids have been recently discovered that could result in other applications. For example, oral stimulation by glutamate triggers the cephalic phase response to prepare for food digestion. Further, the stomach and intestines have specific glutamate-recognizing systems in their epithelial mucosa. Regarding clinical applications, addition of monosodium glutamate to the medicinal diet has been shown to markedly enhance gastric secretion in a vagus-dependent manner. Branched-chain amino acids (BCAAs) are the major components of muscles, and ingestion of BCAAs has been found to be effective for decreasing muscle pain. BCAAs are expected to be a solution for the serious issue of aging. Further, ingestion of specific amino acids could be beneficial. Glycine can be ingested for good night's sleep: glycine ingestion before bedtime significantly improved subjective sleep quality. Ingestion of alanine and glutamine effectively accelerates alcohol metabolism, and ingestion of cystine and theanine effectively prevents colds. Finally, amino acids could be used in a novel clinical diagnostic method: the balance of amino acids in the blood could be an indicator of the risk of diseases such as cancer. These newly discovered functions of amino acids are expected to contribute to the resolution of various issues.

  17. Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases.

    PubMed

    Rajagopal, Senthilkumar; Sangam, Supraj Raja; Singh, Shubham; Joginapally, Venkateswara Rao

    2016-01-01

    Proteins are playing a vital role in maintaining the cellular integrity and function, as well as for brain cells. Protein intake and supplementation of individual amino acids can affect the brain functioning and mental health, and many of the neurotransmitters in the brain are made from amino acids. The amino acid supplementation has been found to reduce symptoms, as they are converted into neurotransmitters which in turn extenuate the mental disorders. The biosynthesis of amino acids in the brain is regulated by the concentration of amino acids in plasma. The brain diseases such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD) are the most common mental disorders that are currently widespread in numerous countries. The intricate biochemical and molecular machinery contributing to the neurological disorders is still unknown, and in this chapter, we revealed the involvement of dietary amino acids on neurological diseases.

  18. Mass spectrometry of analytical derivatives. 1. Cyanide cations in the spectra of N-alkyl-N-perfluoroacyl-α-amino acids and their methyl esters

    PubMed Central

    Todua, Nino G.; Tretyakov, Kirill V.; Mikaia, Anzor I.

    2016-01-01

    The central mission for the development of the National Institute of Standards and Technology/National Institutes of Health/Environmental Protection Agency Mass Spectral Library is the acquisition of reference gas chromatography–mass spectrometry data for important compounds and their chemical modification products. The addition of reliable reference data of various derivatives of amino acids to The Library, and the study of their behavior under electron ionization conditions may be useful for their identification, structure elucidation, and a better understanding of the data obtained when the same derivatives are subjected to other ionization methods. N-Alkyl-N-perfluoroacyl derivatives of amino acids readily produce previously unreported alkylnitrilium cations of composition [HC≡N-alkyl]+. Homologous [HC≡N-aryl]+ cations are typical for corresponding N-aryl analogs. The formation of other ions characteristic for these derivatives involves oxygen rearrangement giving rise to ions [CnF2n+1–C≡N+–CnH2n+1] and [CnF2n+1–C≡N+-aryl]. The introduction of an N-benzyl substituent in a molecule favors a process producing benzylidene iminium cations. l-Threonine and l-cysteine derivatives exhibit more fragmentation pathways not typical for other α-amino acids; additionally, the Nω-amino group in l-lysine directs the dissociation process and provides structural information on the substitution at the amino functions in the molecule. PMID:26307698

  19. Proteomic-based stable isotope probing reveals taxonomically Distinct Patterns in Amino Acid Assimilation by Coastal Marine Bacterioplankton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryson, Samuel; Li, Zhou; Pett-Ridge, Jennifer

    Heterotrophic marine bacterioplankton are a critical component of the carbon cycle, processing nearly a quarter of annual global primary production, yet defining how substrate utilization preferences and resource partitioning structure these microbial communities remains a challenge. In this study, we utilized proteomics-based stable isotope probing (proteomic SIP) to characterize the assimilation of amino acids by coastal marine bacterioplankton populations. We incubated microcosms of seawater collected from Newport, OR and Monterey Bay, CA with 1 M 13C-amino acids for 15 and 32 hours. Subsequent analysis of 13C incorporation into protein biomass quantified the frequency and extent of isotope enrichment for identifiedmore » proteins. Using these metrics we tested whether amino acid assimilation patterns were different for specific bacterioplankton populations. Proteins associated with Rhodobacterales and Alteromonadales tended to have a significantly high number of tandem mass spectra from 13C-enriched peptides, while Flavobacteriales and SAR11 proteins generally had significantly low numbers of 13C-enriched spectra. Rhodobacterales proteins associated with amino acid transport and metabolism had an increased frequency of 13C-enriched spectra at time-point 2, while Alteromonadales ribosomal proteins were 13C- enriched across time-points. Overall, proteomic SIP facilitated quantitative comparisons of dissolved free amino acids assimilation by specific taxa, both between sympatric populations and between protein functional groups within discrete populations, allowing an unprecedented examination of population-level metabolic responses to resource acquisition in complex microbial communities.« less

  20. Proteomic-based stable isotope probing reveals taxonomically Distinct Patterns in Amino Acid Assimilation by Coastal Marine Bacterioplankton

    DOE PAGES

    Bryson, Samuel; Li, Zhou; Pett-Ridge, Jennifer; ...

    2016-04-26

    Heterotrophic marine bacterioplankton are a critical component of the carbon cycle, processing nearly a quarter of annual global primary production, yet defining how substrate utilization preferences and resource partitioning structure these microbial communities remains a challenge. In this study, we utilized proteomics-based stable isotope probing (proteomic SIP) to characterize the assimilation of amino acids by coastal marine bacterioplankton populations. We incubated microcosms of seawater collected from Newport, OR and Monterey Bay, CA with 1 M 13C-amino acids for 15 and 32 hours. Subsequent analysis of 13C incorporation into protein biomass quantified the frequency and extent of isotope enrichment for identifiedmore » proteins. Using these metrics we tested whether amino acid assimilation patterns were different for specific bacterioplankton populations. Proteins associated with Rhodobacterales and Alteromonadales tended to have a significantly high number of tandem mass spectra from 13C-enriched peptides, while Flavobacteriales and SAR11 proteins generally had significantly low numbers of 13C-enriched spectra. Rhodobacterales proteins associated with amino acid transport and metabolism had an increased frequency of 13C-enriched spectra at time-point 2, while Alteromonadales ribosomal proteins were 13C- enriched across time-points. Overall, proteomic SIP facilitated quantitative comparisons of dissolved free amino acids assimilation by specific taxa, both between sympatric populations and between protein functional groups within discrete populations, allowing an unprecedented examination of population-level metabolic responses to resource acquisition in complex microbial communities.« less

  1. The application of reduced absorption cross section on the identification of the compounds with similar function-groups

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Zuo, Jian; Mu, Kai-jun; Zhang, Zhen-wei; Zhang, Liang-liang; Zhang, Lei-wei; Zhang, Cun-lin

    2013-08-01

    Terahertz spectroscopy is a powerful tool for materials investigation. The low frequency vibrations were usually investigated by means of absorption coefficient regardless of the refractive index. It leads to the disregard of some inherent low-frequency vibrational information of the chemical compounds. Moreover, due to the scattering inside the sample, there are some distortions of the absorption features, so that the absorption dependent material identification is not valid enough. Here, a statistical parameter named reduced absorption cross section (RACS) is introduced. This can not only help us investigate the molecular dynamics but also distinguish one chemical compound with another which has similar function-groups. Experiments are carried out on L-Tyrosine and L-Phenylalanine and the different mass ratios of their mixtures as an example of the application of RACS. The results come out that the RACS spectrum of L-Tyrosine and L-Phenylalanine reserve the spectral fingerprint information of absorption spectrum. The log plot of RACSs of the two amino acids show power-law behavior σR(~ν) ~ (ν~α), and there is a linear relation between the wavenumber and the RACS in the double logarithmic plot. The exponents α, at the same time, are the slopes of the RACS curves in the double logarithmic plot. The big differences of the exponents α between the two amino acids and their mixtures can be seen visually from the slopes of the RACS curves. So we can use RACS analytical method to distinguish some complex compounds with similar function-groups and mixtures from another which has similar absorption peaks in THz region.

  2. Biohydrogels with magnetic nanoparticles as crosslinker: characteristics and potential use for controlled antitumor drug-delivery.

    PubMed

    Barbucci, Rolando; Giani, Gabriele; Fedi, Serena; Bottari, Severino; Casolaro, Mario

    2012-12-01

    Hybrid magnetic hydrogels are of interest for applications in biomedical science as controlled drug-delivery systems. We have developed a strategy to obtain novel hybrid hydrogels with magnetic nanoparticles (NPs) of CoFe(2)O(3) and Fe(3)O(4) as crosslinker agents of carboxymethylcellulose (CMC) or hyaluronic acid (HYAL) polymers and we have tested these systems for controlled doxorubicin release. The magnetic NPs are functionalized with (3-aminopropyl)trimethoxysilane (APTMS) in order to introduce amino groups on the surface. The amino coating is determined and quantified by standard Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy methods, and by cyclic voltammetry, a novel approach that permits us to look at the solution properties of the functionalized NPs. The gel formation involves the creation of an amide bond between the carboxylic groups of CMC or HYAL and the amine groups of functionalized NPs, which work as crosslinking agents of the polymer chains. The hybrid hydrogels are chemically and morphologically characterized. The rheological and the water uptake properties of the hydrogels are also investigated. Under the application of an alternating magnetic field, the CMC-HYAL hybrid hydrogel previously loaded with doxorubicin shows a drug release greater than that showed by the CMC-HYAL hydrogel crosslinked with 1,3-diaminopropane. In conclusion, the presence of magnetic NPs makes the synthesized hybrid hydrogels suitable for application as a drug-delivery system by means of alternating magnetic fields. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Biologically active peptides of the vesicular stomatitis virus glycoprotein.

    PubMed Central

    Schlegel, R; Wade, M

    1985-01-01

    A peptide corresponding to the amino-terminal 25 amino acids of the mature vesicular stomatitis virus glycoprotein has recently been shown to be a pH-dependent hemolysin. In the present study, we analyzed smaller constituent peptides and found that the hemolytic domain resides within the six amino-terminal amino acids. Synthesis of variant peptides indicates that the amino-terminal lysine can be replaced by another positively charged amino acid (arginine) but that substitution with glutamic acid results in the total loss of the hemolytic function. Peptide-induced hemolysis was dependent upon buffer conditions and was inhibited when isotonicity was maintained with mannitol, sucrose, or raffinose. In sucrose, all hemolytic peptides were also observed to mediate hemagglutination. The large 25-amino acid peptide is also a pH-dependent cytotoxin for mammalian cells and appears to effect gross changes in cell permeability. Conservation of the amino terminus of vesicular stomatitis virus and rabies virus suggests that the membrane-destabilizing properties of this domain may be important for glycoprotein function. Images PMID:2981356

  4. Characterization of vacuolar amino acid transporter from Fusarium oxysporum in Saccharomyces cerevisiae.

    PubMed

    Lunprom, Siriporn; Pongcharoen, Pongsanat; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi; Akiyama, Koichi

    2015-01-01

    Fusarium oxysporum causes wilt disease in many plant families, and many genes are involved in its development or growth in host plants. A recent study revealed that vacuolar amino acid transporters play an important role in spore formation in Schizosaccharomyces pombe and Saccharomyces cerevisiae. To investigate the role of vacuolar amino acid transporters of this phytopathogenic fungus, the FOXG_11334 (FoAVT3) gene from F. oxysporum was isolated and its function was characterized. Transcription of FoAVT3 was upregulated after rapamycin treatment. A green fluorescent protein fusion of FoAvt3p was localized to vacuolar membranes in both S. cerevisiae and F. oxysporum. Analysis of the amino acid content of the vacuolar fraction and amino acid transport activities using vacuolar membrane vesicles from S. cerevisiae cells heterologously expressing FoAVT3 revealed that FoAvt3p functions as a vacuolar amino acid transporter, exporting neutral amino acids. We conclude that the FoAVT3 gene encodes a vacuolar neutral amino acid transporter.

  5. Isoelectric focusing of dansylated amino acids in immobilized pH gradients

    NASA Technical Reports Server (NTRS)

    Bianchi-Bosisio, Adriana; Righetti, Pier Giorgio; Egen, Ned B.; Bier, Milan

    1986-01-01

    The 21 free amino acids commonly encountered in proteins have been transformed into 'carrier ampholyte' species by reacting their primary amino groups with dansyl chloride. These derivatives can thus be focused in an immobilized pH gradient covering the pH interval 3.1 to 4.1, except for arginine, which still retains a pI of 8.8. Due to their inherent fluorescence, the dansyl derivatives are revealed in UV light, with a sensitivity of the order of 2-4 ng/sq mm. All nearest neighbors are separated except for the following couples: Asn-Gln, Gly-Thr, Val-Ile and Cys-Cys2, with a resolving power, in a Delta(pI) scale, of the order of 0.0018 pH units. Except for a few cases (notably the aromatic amino acids), the order of pI values is well correlated with the pK values of carboxyl groups, suggesting that the latter are not altered by dansylation. From the set of pK(COOH)-pI values of the different amino acids, the pK of the tertiary amino group in the dansyl label has been calculated to be 5.11 + or - 0.06. Knowing the pK of the amino-dansyl and the pI of the excess, free dansyl label (pI = 3.34), a pK of 1.57 is derived for its sulfonic acid group.

  6. Microscopic mechanism of amino silicone oil modification and modification effect with different amino group contents based on molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    He, Liping; Li, Wenjun; Chen, Dachuan; Yuan, Jianmin; Lu, Gang; Zhou, Dianwu

    2018-05-01

    The microscopic mechanism of amino silicone oil (ASO) modification of natural fiber was investigated for the first time using molecular dynamics (MD) simulation at the atomic and molecular levels. The MD simulation results indicated that the ASO molecular interacted with the cellulose molecular within the natural fiber, mainly by intermolecular forces of Nsbnd Hsbnd O and Osbnd Hsbnd N hydrogen bonds and the molecular chain of ASO absorbed onto the natural fiber in a selective orientation, i.e., the hydrophobic alkyl groups (sbnd CnH2n+1) project outward and the polar amino groups (sbnd NH2) point to the surface of natural fiber. Consequently, the ASO modification changed the surface characteristic of natural fiber from hydrophilic to hydrophobic. Furthermore, the modification effects of the ASO modification layer with different amino group contents (m:n ratio) were also evaluated in this study by calculating the binding energy between the ASO modifier and natural fiber, and the cohesive energy density and free volume of the ASO modification layer. The results showed that the binding energy reached a maximum when the m:n ratio of ASO was of 8:4, suggesting that a good bonding strength was achieved at this m:n ratio. It was also found that the cohesive energy density enhanced with the increase in the amino group content, and the higher the cohesive energy density, the easier the formation of the ASO modification layer. However, the fraction free volume decreased with the increase in the amino group content. This is good for improving the water-proof property of natural fiber. The present work can provide an effective method for predicting the modification effects and designing the optimized m:n ratio of ASO modification.

  7. Ultrasmall biomolecule-anchored hybrid GdVO4 nanophosphors as a metabolizable multimodal bioimaging contrast agent.

    PubMed

    Dong, Kai; Ju, Enguo; Liu, Jianhua; Han, Xueli; Ren, Jinsong; Qu, Xiaogang

    2014-10-21

    Multimodal molecular imaging has recently attracted much attention on disease diagnostics by taking advantage of individual imaging modalities. Herein, we have demonstrated a new paradigm for multimodal bioimaging based on amino acids-anchored ultrasmall lanthanide-doped GdVO4 nanoprobes. On the merit of special metal-cation complexation and abundant functional groups, these amino acids-anchored nanoprobes showed high colloidal stability and excellent dispersibility. Additionally, due to typical paramagnetic behaviour, high X-ray mass absorption coefficient and strong fluorescence, these nanoprobes would provide a unique opportunity to develop multifunctional probes for MRI, CT and luminescence imaging. More importantly, the small size and biomolecular coatings endow the nanoprobes with effective metabolisability and high biocompatibility. With the superior stability, high biocompatibility, effective metabolisability and excellent contrast performance, amino acids-capped GdVO4:Eu(3+) nanocastings are a promising candidate as multimodal contrast agents and would bring more opportunities for biological and medical applications with further modifications.

  8. Ultrasound promoted one-pot synthesis of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds in aqueous media: a complementary 'green chemistry' tool to organic synthesis.

    PubMed

    Banitaba, Sayed Hossein; Safari, Javad; Khalili, Shiva Dehghan

    2013-01-01

    A green and simple approach to assembling of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds via three-component reaction of kojic acid, malononitrile, and aromatic aldehydes in aqueous media under ultrasound irradiation is described. The combinatorial synthesis was achieved for this methodology with applying ultrasound irradiation while making use of water as green solvent. In comparison to conventional methods, experimental simplicity, good functional group tolerance, excellent yields, short routine, and selectivity without the need for a transition metal or base catalyst are prominent features of this green procedure. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Differential effect of the 5-HTT gene-linked polymorphic region on emotional eating during stress exposure following tryptophan challenge.

    PubMed

    Markus, C Rob; Verschoor, Ellen; Smeets, Tom

    2012-04-01

    Stress and negative moods, which are thought to be partly mediated by reduced brain serotonin function, often increase emotional eating in dieting women (restrainers). Because the short (S) allele polymorphism in the serotonin transporter gene (5-HTTLPR) is associated with serotonin dysfunction, S allele compared to long (L) allele 5-HTTLPR genotypes may be more susceptible to stress-induced emotional eating. Consequently, serotonin challenge via tryptophan (TRP)-rich protein hydrolysate (TPH) may alleviate stress-induced emotional eating particularly in S/S allele carriers. We tested whether acute stress affects emotional eating in women with high or low dietary restraints depending on their 5-HTTLPR genotype and TPH intake. Nineteen female subjects who were homozygous for the short-allele 5-HTTLPR genotype (S'/S'=S/L(G), L(G)/L(G): restrainers vs. nonrestrainers) and 23 female subjects who were homozygous for the long-allele 5-HTTLPR genotype (L'/L'=L(A)/L(A): restrainers vs. nonrestrainers) were tested in a double-blind, placebo-controlled crossover study of stress-induced emotional eating following intake of TPH or a placebo. TPH intake significantly increased the plasma TRP/large neutral amino acid ratio (P<.0001) in the L'/L' group (70%) compared to the S'/S' group (30%). TPH reduced food intake in both groups, but in the L'/L' group, it also reduced stress-induced negative mood (P=.037) and the desire for sweet, high-fat foods (P=.011) regardless of dietary restraint. Since TPH caused a greater increase in the plasma TRP/large neutral amino acid ratio in the L'/L' group compared to S'/S' group, the exclusive beneficial effects of L'/L' genotype may be due to enhanced brain 5-HT function. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. The evolutionary implications of knox-I gene duplications in conifers: correlated evidence from phylogeny, gene mapping, and analysis of functional divergence.

    PubMed

    Guillet-Claude, Carine; Isabel, Nathalie; Pelgas, Betty; Bousquet, Jean

    2004-12-01

    Class I knox genes code for transcription factors that play an essential role in plant growth and development as central regulators of meristem cell identity. Based on the analysis of new cDNA sequences from various tissues and genomic DNA sequences, we identified a highly diversified group of class I knox genes in conifers. Phylogenetic analyses of complete amino acid sequences from various seed plants indicated that all conifer sequences formed a monophyletic group. Within conifers, four subgroups here named genes KN1 to KN4 were well delineated, each regrouping pine and spruce sequences. KN4 was sister group to KN3, which was sister group to KN1 and KN2. Genetic mapping on the genomes of two divergent Picea species indicated that KN1 and KN2 are located close to each other on the same linkage group, whereas KN3 and KN4 mapped on different linkage groups, correlating the more ancient divergence of these two genes. The proportion of synonymous and nonsynonymous substitutions suggested intense purifying selection for the four genes. However, rates of substitution per year indicated an evolution in two steps: faster rates were noted after gene duplications, followed subsequently by lower rates. Positive directional selection was detected for most of the internal branches harboring an accelerated rate of evolution. In addition, many sites with highly significant amino acid rate shift were identified between these branches. However, the tightly linked KN1 and KN2 did not diverge as much from each other. The implications of the correlation between phylogenetic, structural, and functional information are discussed in relation to the diversification of the knox-I gene family in conifers.

  11. Effects of Long-Term Protein Restriction on Meat Quality, Muscle Amino Acids, and Amino Acid Transporters in Pigs.

    PubMed

    Yin, Jie; Li, Yuying; Zhu, Xiaotong; Han, Hui; Ren, Wenkai; Chen, Shuai; Bin, Peng; Liu, Gang; Huang, Xingguo; Fang, Rejun; Wang, Bin; Wang, Kai; Sun, Liping; Li, Tiejun; Yin, Yulong

    2017-10-25

    This study aimed to investigate the long-term effects of protein restriction from piglets to finishing pigs for 16 weeks on meat quality, muscle amino acids, and amino acid transporters. Thirty-nine piglets were randomly divided into three groups: a control (20-18-16% crude protein, CP) and two protein restricted groups (17-15-13% CP and 14-12-10% CP). The results showed that severe protein restriction (14-12-10% CP) inhibited feed intake and body weight, while moderate protein restriction (17-15-13% CP) had little effect on growth performance in pigs. Meat quality (i.e., pH, color traits, marbling, water-holding capacity, and shearing force) were tested, and the results exhibited that 14-12-10% CP treatment markedly improved muscle marbling score and increased yellowness (b*). pH value (45 min) was significantly higher in 17-15-13% CP group than that in other groups. In addition, protein restriction reduced muscle histone, arginine, valine, and isoleucine abundances and enhanced glycine and lysine concentrations compared with the control group, while the RT-PCR results showed that protein restriction downregulated amino acids transporters. Mechanistic target of rapamycin (mTOR) signaling pathway was inactivated in the moderate protein restricted group (17-15-13% CP), while severe protein restriction with dietary 14-12-10% CP markedly enhanced mTOR phosphorylation. In conclusion, long-term protein restriction affected meat quality and muscle amino acid metabolism in pigs, which might be associated with mTOR signaling pathway.

  12. Photocontrol of the mitotic kinesin Eg5 using a novel S-trityl-L-cysteine analogue as a photochromic inhibitor.

    PubMed

    Ishikawa, Kumiko; Tohyama, Kanako; Mitsuhashi, Shinya; Maruta, Shinsaku

    2014-04-01

    Because the mitotic kinesin Eg5 is essential for the formation of bipolar spindles during eukaryotic cell division, it has been considered as a potential target for cancer treatment. A number of specific and potent inhibitors of Eg5 are known. S-trityl-L-cysteine is one of the inhibitors of Eg5 whose molecular mechanism of inhibition was well studied. The trityl group of S-trityl-L-cysteine was shown to be a key moiety required for potent inhibition. In this study, we synthesized a novel photochromic S-trityl-L-cysteine analogue, 4-(N-(2-(N-acetylcysteine-S-yl) acetyl) amino)-4'- (N-(2-(N-(triphenylmethyl)amino)acetyl)amino)azobenzene (ACTAB), composed of a trityl group, azobenzene and N-acetyl-L-cysteine, which exhibits cis-trans photoisomerization in order to photocontrol the function of Eg5. ACTAB exhibited cis-trans photoisomerization upon alternating irradiation at two different wavelengths in the visible range, 400 and 480 nm. ACTAB induced reversible changes in the inhibitory activity of ATPase and motor activities correlating with the cis-trans photoisomerization. Compared with cis-ACTAB, trans-ACTAB reduced ATPase activity and microtubule gliding velocity more significantly. These results suggest that ACTAB could be used as photochromic inhibitor of Eg5 to achieve photocontrol of living cells.

  13. Characterization of three terpenoid glycosyltransferase genes in 'Valencia' sweet orange (Citrus sinensis L. Osbeck).

    PubMed

    Fan, Jing; Chen, Chunxian; Yu, Qibin; Li, Zheng-Guo; Gmitter, Frederick G

    2010-10-01

    Three putative terpenoid UDP-glycosyltransferase (UGT) genes, designated CsUGT1, CsUGT2, and CsUGT3, were isolated and characterized in 'Valencia' sweet orange (Citrus sinensis L. Osbeck). CsUGT1 consisted of 1493 nucleotides with an open reading frame encoding 492 amino acids, CsUGT2 consisted of 1727 nucleotides encoding 504 amino acids, and CsUGT3 consisted of 1705 nucleotides encoding 468 amino acids. CsUGT3 had a 145 bp intron at 730-874, whereas CsUGT1 and CsUGT2 had none. The three deduced glycosyltransferase proteins had a highly conserved plant secondary product glycosyltransferase motif in the C terminus. Phylogenetic analysis showed that CsUGT1 and CsUGT3 were classified into group L of glycosyltransferase family 1, and CsUGT2 was classified into group D. Through Southern blotting analysis, CsUGT1 was found to have two copies in the sweet orange genome, whereas CsUGT2 and CsUGT3 had at least seven and nine copies, respectively. CsUGT1, CsUGT2, and CsUGT3 were constitutively expressed in leaf, flower, and fruit tissues. The results facilitate further investigation of the function of terpenoid glycosyltransferases in citrus and the biosynthesis of terpenoid glycosides in vitro.

  14. Genetically-encoded Molecular Probes to Study G Protein-coupled Receptors

    PubMed Central

    Naganathan, Saranga; Grunbeck, Amy; Tian, He; Huber, Thomas; Sakmar, Thomas P.

    2013-01-01

    To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes. PMID:24056801

  15. Structure and vibrational analysis of methyl 3-amino-2-butenoate.

    PubMed

    Berenji, Ali Reza; Tayyari, Sayyed Faramarz; Rahimizadeh, Mohammad; Eshghi, Hossein; Vakili, Mohammad; Shiri, Ali

    2013-02-01

    The molecular structure and vibrational spectra of methyl 3-(amino)-2-butenoate (MAB) and its deuterated analogous, D(3)MAB, were investigated using density functional theory (DFT) calculations. The geometrical parameters and harmonic vibrational wavenumbers of MAB and D(3)MAB were obtained at the B3LYP/6-311++G(d,p) level. The calculated vibrational wavenumbers were compared with the corresponding experimental results. The assignment of the IR and Raman spectra of MAB and D(3)MAB was facilitated by calculating the anharmonic wavenumbers at the B3LYP/6-311G(d,p) level as well as recording and calculating the MAB spectra in CCl(4) solution. The assigned normal modes were compared with a similar molecule, 4-amino-3-penten-2-one (APO). The theoretical results were in good agreement with the experimental data. All theoretical and experimental results indicate that substitution of a methyl group with a methoxy group considerably weakens the intramolecular hydrogen bond and reduces the π-electron delocalization in the chelated ring system. The IR spectra also indicate that in the solid state, MAB is not only engaged in an intramolecular hydrogen bond, but also forms an intermolecular hydrogen bond. However, the intermolecular hydrogen bond will be removed in dilute CCl(4) solution. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Structural analysis of an HLA-B27 functional variant, B27d detected in American blacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojo, S.; Aparicio, P.; Hansen, J.A.

    1987-11-15

    The structure of a new functional variant B27d has been established by comparative peptide mapping and radiochemical sequencing. This analysis complete the structural characterization of the six know histocompatibility leukocyte antigen (HLA)-B27 subtypes. The only detected amino acid change between the main HLA-B27.1 subtype and B27d is that of Try/sub 59/ to His/sub 59/. Position 59 has not been previously found to vary among class I HLA or H-2 antigens. Such substitution accounts for the reported isoelectric focusing pattern of this variant. HLA-B27d is the only B27 variant found to differ from other subtypes by a single amino acid replacement.more » The nature of the change is compatible with its origin by a point mutation from HLB-B27.1. Because B27d was found only American blacks and in no other ethnic groups, it is suggested that this variant originated as a result of a mutation of the B27.1 gene that occurred within the black population. Structural analysis of B27d was done by comparative mapping. Radiochemical sequencing was carried out with /sup 14/C-labeled and /sup 3/H-labeled amino acids.« less

  17. A comparative study between para-aminophenyl and ortho-aminophenyl benzothiazoles using NMR and DFT calculations.

    PubMed

    Pierens, G K; Venkatachalam, T K; Reutens, D

    2014-08-01

    Ortho-substituted and para-substituted aminophenyl benzothiazoles were synthesised and characterised using NMR spectroscopy. A comparison of the proton chemical shift values reveals significant differences in the observed chemical shift values for the NH protons indicating the presence of a hydrogen bond in all ortho-substituted compounds as compared to the para compounds. The presence of intramolecular hydrogen bond in the ortho amino substituted aminophenyl benzothiazole forces the molecule to be planar which may be an additional advantage in developing these compounds as Alzheimer's imaging agent because the binding to amyloid fibrils prefers planar compounds. The splitting pattern of the methylene proton next to the amino group also showed significant coupling to the amino proton consistent with the notion of the existence of slow exchange and hydrogen bond in the ortho-substituted compounds. This is further verified by density functional theory calculations which yielded a near planar low energy conformer for all the o-aminophenyl benzothiazoles and displayed a hydrogen bond from the amine proton to the nitrogen of the thiazole ring. A detailed analysis of the (1)H, (13)C and (15)N NMR chemical shifts and density functional theory calculated structures of the compounds are described. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Synthesis of D-glucosamine quaternary ammonium derivatives and evaluation of their antifungal activity together with aminodeoxyglucose derivatives against two wood fungi Coriolus versicolor and Poria placenta: structure-activity relationships.

    PubMed

    Muhizi, Théoneste; Coma, Véronique; Grelier, Stéphane

    2011-03-01

    Structure-activity relationships are often reported in scientific studies. These may be employed in searching for new acceptable biocides to use against harmful microorganisms, because the biocides used hitherto encounter various problems, including lack of efficiency, high toxicity and persistence. Nowadays, scientists are trying to find new, environmentally acceptable biocides to replace these earlier biocides. Different compounds from renewable materials have been studied and have shown pronounced antifungal activity against wood fungi. These include aminopolysaccharide derivatives and different quaternary ammonium polymers. A biological study carried out with these products indicated a possible relationship between amino groups and differences in biological activity observed. In this study, an amino group was successively fixed to different carbon atoms of glucose, and glucosamine was also modified by both N-alkylation and quaternisation. The impact of the amino group position on antifungal activity against two wood decay fungi was investigated. The amino group at the anomeric position showed the highest antifungal activity against both Coriolus versicolor Quel. and Poria placenta (Fr.) Cooke. Furthermore, the positive impact of both N-alkylation and quaternisation on the growth of both strains was demonstrated. The anomeric position of the amino group and the N-alkylation and quaternisation of amino sugars considerably increase the antifungal activity of these compounds. Copyright © 2010 Society of Chemical Industry.

  19. Structural and functional properties of hemoglobins from unicellular organisms as revealed by resonance Raman spectroscopy.

    PubMed

    Egawa, Tsuyoshi; Yeh, Syun-Ru

    2005-01-01

    Hemoglobins have been discovered in organisms from virtually all kingdoms. Their presence in unicellular organisms suggests that the gene for hemoglobin is very ancient and that the hemoglobins must have functions other than oxygen transport, in view of the fact that O2 delivery is a diffusion-controlled process in these organisms. Based on sequence alignment, three groups of hemoglobins have been characterized in unicellular organisms. The group-one hemoglobins, termed truncated hemoglobins, consist of proteins with 110-140 amino acid residues and a novel two-over-two alpha-helical sandwich motif. The group-two hemoglobins, termed flavohemoglobins, consist of a hemoglobin domain, with a classical three-over-three alpha-helical sandwich motif, and a flavin-containing reductase domain that is covalently attached to it. The group-three hemoglobins consist of myoglobin-like proteins that have high sequence homology and structural similarity to the hemoglobin domain of flavohemoglobins. In this review, recent resonance Raman studies of each group of these proteins are presented. Their implications are discussed in the context of the structural and functional properties of these novel hemoglobins.

  20. Cardiac structure and function, and ventricular-arterial interaction 11 years following a pregnancy with preeclampsia.

    PubMed

    Al-Nashi, Maha; Eriksson, Maria J; Östlund, Eva; Bremme, Katarina; Kahan, Thomas

    2016-04-01

    Preeclampsia (PE) is associated with acute left ventricular dysfunction. Whether these changes eventually resolve remains unclear. This study assessed left and right ventricular structure and function, and ventricular-arterial interaction in 15 women 11 years after a pregnancy with PE and 16 matched control subjects with a normal pregnancy. We found normal left and right ventricular dimensions, systolic function, and global left ventricular strain, with no differences between the groups. In addition, indices of diastolic function, left and right atrial size, and amino-terminal pro-brain natriuretic peptide were normal and did not differ between the groups. Women with a previous PE had impaired night/day ratios for systolic and diastolic ambulatory blood pressure. However, indices of aortic stiffness or ventricular-arterial coupling did not differ between the groups. In conclusion, we could not demonstrate remaining alterations in systolic or diastolic left or right ventricular function, or in ventricular-arterial interaction in women 11 years after PE. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  1. Near UV-Visible electronic absorption originating from charged amino acids in a monomeric protein† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00880e

    PubMed Central

    Prasad, Saumya; Mandal, Imon; Singh, Shubham; Paul, Ashim; Mandal, Bhubaneswar

    2017-01-01

    Electronic absorption spectra of proteins are primarily characterized over the ultraviolet region (185–320 nm) of the electromagnetic spectrum. While recent studies on peptide aggregates have revealed absorption beyond 350 nm, monomeric proteins lacking aromatic amino acids, disulphide bonds, and active site prosthetic groups are expected to remain optically silent beyond 250 nm. Here, in a joint theoretical and experimental investigation, we report the distinctive UV-Vis absorption spectrum between 250 nm [ε = 7338 M–1 cm–1] and 800 nm [ε = 501 M–1 cm–1] in a synthetic 67 residue protein (α3C), in monomeric form, devoid of aromatic amino acids. Systematic control studies with high concentration non-aromatic amino acid solutions revealed significant absorption beyond 250 nm for charged amino acids which constitute over 50% of the sequence composition in α3C. Classical atomistic molecular dynamics (MD) simulations of α3C reveal dynamic interactions between multiple charged sidechains of Lys and Glu residues present in α3C. Time-dependent density functional theory calculations on charged amino acid residues sampled from the MD trajectories of α3C reveal that the distinctive absorption features of α3C may arise from two different types of charge transfer (CT) transitions involving spatially proximal Lys/Glu amino acids. Specifically, we show that the charged amino (NH3+)/carboxylate (COO–) groups of Lys/Glu sidechains act as electronic charge acceptors/donors for photoinduced electron transfer either from/to the polypeptide backbone or to each other. Further, the sensitivity of the CT spectra to close/far/intermediate range of encounters between sidechains of Lys/Glu owing to the three dimensional protein fold can create the long tail in the α3C absorption profile between 300 and 800 nm. Finally, we experimentally demonstrate the sensitivity of α3C absorption spectrum to temperature and pH-induced changes in protein structure. Taken together, our investigation significantly expands the pool of spectroscopically active biomolecular chromophores and adds an optical 250–800 nm spectral window, which we term ProCharTS (Protein Charge Transfer Spectra), for label free probes of biomolecular structure and dynamics. PMID:28970921

  2. Crosslinked Polyamide

    DOEpatents

    Huang, Zhi H.; McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2002-06-04

    A crosslinked polyamide material and a process for preparing the crosslinked polyamide material are disclosed. The crosslinked polyamide material comprises a crosslinked chemical combination of (1) a polyamide of the formula: ##STR1## wherein n is between about 50 and 10,000, wherein each R is between 1 and 50 carbon atoms alone and is optionally substituted with heteroatoms, oxygen, nitrogen, sulfur, or phosphorus and combinations thereof, wherein multiple of the R are in vertically aligned spaced relationship along a backbone forming the polyamide, and wherein two or more of the R contain an amino group; and (2) a crosslinking agent containing at least two functional groups capable of reacting with the amino groups of the polyamide. In one embodiment of the invention, the crosslinking agent is an aliphatic or aromatic isocyanate compound having 2 or more --N.dbd.C.dbd.O groups. In another embodiment of the invention, the crosslinking agent is an aliphatic aldehyde or aromatic aldehyde compound having 2 or more --CHO groups. In still another embodiment of the invention, the crosslinking agent is selected from a phosphine having the general formula (A).sub.2 P(B) and mixtures thereof, wherein A is hydroxyalkyl, and B is hydroxyalkyl, alkyl, or aryl. In yet another embodiment of the invention, the crosslinking agent is selected from the group consisting of epoxy resins having more than one epoxide group per molecule.

  3. [Effect of amino acid and glucose infusion on perioperative body temperature and postoperative infection in patients undergoing total knee arthroplasty].

    PubMed

    Fujita, Yasuki; Yamaguchi, Sayo; Nakamura, Kayo; Horiguchi, Yuu; Ikeda, Daisuke; Kaneko, Michiko; Tomioka, Keiko; Tokunaga, Chiharu; Iwakura, Takeo

    2012-01-01

    We investigated whether the perioperative amino acid infusion with glucose is effective for preventing perioperative hypothermia and postoperative infection in patients undregoing total knee arthroplasty (TKA). Forty patients undergoing TKA under general anesthesia were enrolled in this study. The patients were randomly allocated to two groups: AA group (n = 22), to which amino acid was infused, and AAGlu group (n = 18), to which amino acid and glucose were infused. The infusions were started before the anesthetic induction. Remifentanil was administered during the surgery, and the dose of remifentanil was adjusted to keep stable hemodynamics. The levels of blood glucose and body temperature were evaluated. We also recorded the frequency of additional use of nonsteroidal anti-inflammatory drugs, the days required until the wound closure, and complications in the post-operative period. The levels of blood glucose in AAGlu group were significantly higher than those of AA group (P < 0.05). However, no significant differences were found in perioperative body temperature, postoperative days required until the wound closure and the frequency of additional use of analgesics between the groups. These results suggest that in patients undergoing TKA receiveing amino acid infusion perioperatively, thermogenic effect and prevention of postoperative infection are similar whether exogenous glucose is infused or not.

  4. Enzymatic functionalization of cork surface with antimicrobial hybrid biopolymer/silver nanoparticles.

    PubMed

    Francesko, Antonio; Blandón, Lucas; Vázquez, Mario; Petkova, Petya; Morató, Jordi; Pfeifer, Annett; Heinze, Thomas; Mendoza, Ernest; Tzanov, Tzanko

    2015-05-13

    Laccase-assisted assembling of hybrid biopolymer-silver nanoparticles and cork matrices into an antimicrobial material with potential for water remediation is herein described. Amino-functional biopolymers were first used as doping agents to stabilize concentrated colloidal dispersions of silver nanoparticles (AgNP), additionally providing the particles with functionalities for covalent immobilization onto cork to impart a durable antibacterial effect. The solvent-free AgNP synthesis by chemical reduction was carried out in the presence of chitosan (CS) or 6-deoxy-6-(ω-aminoethyl) aminocellulose (AC), leading to simultaneous AgNP biofunctionalization. This approach resulted in concentrated hybrid NP dispersion stable to aggregation and with hydrodynamic radius of particles of about 250 nm. Moreover, laccase enabled coupling between the phenolic groups in cork and amino moieties in the biopolymer-doped AgNP for permanent modification of the material. The antibacterial efficiency of the functionalized cork matrices, aimed as adsorbents for wastewater treatment, was evaluated against Escherichia coli and Staphylococcus aureus during 5 days in conditions mimicking those in constructed wetlands. Both intrinsically antimicrobial CS and AC contributed to the bactericidal effect of the enzymatically grafted on cork AgNP. In contrast, unmodified AgNP were easily washed off from the material, confirming that the biopolymers potentiated a durable antibacterial functionalization of the cork matrices.

  5. Effects of dietary arginine and glutamine on alleviating the impairment induced by deoxynivalenol stress and immune relevant cytokines in growing pigs.

    PubMed

    Wu, Li; Wang, Wence; Yao, Kang; Zhou, Ting; Yin, Jie; Li, Tiejun; Yang, Lin; He, Liuqin; Yang, Xiaojian; Zhang, Hongfu; Wang, Qi; Huang, Ruilin; Yin, Yulong

    2013-01-01

    Deoxynivalenol (DON) is a mycotoxin that reduces feed intake and animal performance, especially in swine. Arginine and glutamine play important roles in swine nutrition. The objective of this study was to determine the effects of dietary supplementation with arginine and glutamine on both the impairment induced by DON stress and immune relevant cytokines in growing pigs. A total of forty 60-d-old healthy growing pigs with a mean body weight of 16.28±1.54 kg were randomly divided into 5 groups, and assigned to 3 amino acid treatments fed 1.0% arginine (Arg), 1.0% glutamine (Gln) and 0.5% Arg+0.5% Gln, respectively, plus a toxin control and a non-toxin control. Pigs in the 3 amino acid treatments were fed the corresponding amino acids, and those in non-toxin control and toxin control were fed commercial diet with 1.64% Alanine as isonitrogenous control for 7 days. The toxin control and amino acid treatments were then challenged by feeding DON-contaminated diet with a final DON concentration of 6 mg/kg of diet for 21 days. No significant differences were observed between toxin control and the amino acid groups with regard to the average daily gain (ADG), although the values for average daily feed intake (ADFI) in the amino acid groups were significantly higher than that in toxin control (P<0.01). The relative liver weight in toxin control was significantly greater than those in non-toxin control, arginine and Arg+Glu groups (P<0.01), but there were no significant differences in other organs. With regard to serum biochemistry, the values of BUN, ALP, ALT and AST in the amino acid groups were lower than those in toxin control. IGF1, GH and SOD in the amino acid groups were significantly higher than those in toxin control (P<0.01). The IL-2 and TNFα values in the amino acid groups were similar to those in non-toxin control, and significantly lower than those in toxin control (P<0.01). These results showed the effects of dietary supplementation with arginine and glutamine on alleviating the impairment induced by DON stress and immune relevant cytokines in growing pigs.

  6. Realizing Serine/Threonine Ligation: Scope and Limitations and Mechanistic Implication Thereof

    NASA Astrophysics Data System (ADS)

    Wong, Clarence; Li, Tianlu; Lam, Hiu Yung; Zhang, Yinfeng; LI, Xuechen

    2014-05-01

    Serine/Threonine ligation (STL) has emerged as an alternative tool for protein chemical synthesis, bioconjugations as well as macrocyclization of peptides of various sizes. Owning to the high abundance of Ser/Thr residues in natural peptides and proteins, STL is expected to find a wide range of applications in chemical biology research. Herein, we have fully investigated the compatibility of the serine/threonine ligation strategy for X-Ser/Thr ligation sites, where X is any of the 20 naturally occurring amino acids. Our studies have shown that 17 amino acids are suitable for ligation, while Asp, Glu, and Lys are not compatible. Among the working 17 C-terminal amino acids, the retarded reaction resulted from the bulky β-branched amino acid (Thr, Val and Ile) is not seen under the current ligation condition. We have also investigated the chemoselectivity involving the amino group of the internal lysine which may compete with the N-terminal Ser/Thr for reaction with the C-terminal salicylaldehyde (SAL) ester aldehyde group. The result suggested that the free internal amino group does not adversely slow down the ligation rate.

  7. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    PubMed

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  8. Design, Synthesis, and Enzymatic Evaluation of Novel ZnO Quantum Dot-Based Assay for Detection of Proteinase 3 Activity.

    PubMed

    Popow-Stellmaszyk, Jadwiga; Bajorowicz, Beata; Malankowska, Anna; Wysocka, Magdalena; Klimczuk, Tomasz; Zaleska-Medynska, Adriana; Lesner, Adam

    2018-05-16

    Herein, the synthesis and application of functionalized quantum dot-based protease probes is described. Such probes are composed of nontoxic ZnO nanocrystals decorated by amino groups followed by linker and labeled peptide attachment. Spherical NH 2 -terminated ZnO quantum dots (QDs) with the average size ranging from 4 to 8 nm and strong emission centered at 530 nm were prepared using the sol-gel method. The fluorescence of ZnO QDs was quenched by the BHQ1 moiety present on the N-terminal amino group of the peptide. The enzymatic cleavage of the peptide mediated by the proteinase 3 (PR3) bond resulted in an increase in the QD probe fluorescence. This observation was verified using both model and biological systems; and the picomolar detection limit was found to be more than 30 times lower than that of the previously reported internally quenched peptide (a decrease in detection limit from 43 to 1.3 pmol was observed).

  9. On-resin conversion of Cys(Acm)-containing peptides to their corresponding Cys(Scm) congeners.

    PubMed

    Mullen, Daniel G; Weigel, Benjamin; Barany, George; Distefano, Mark D

    2010-05-01

    The Acm protecting group for the thiol functionality of cysteine is removed under conditions (Hg(2+)) that are orthogonal to the acidic milieu used for global deprotection in Fmoc-based solid-phase peptide synthesis. This use of a toxic heavy metal for deprotection has limited the usefulness of Acm in peptide synthesis. The Acm group may be converted to the Scm derivative that can then be used as a reactive intermediate for unsymmetrical disulfide formation. It may also be removed by mild reductive conditions to generate unprotected cysteine. Conversion of Cys(Acm)-containing peptides to their corresponding Cys(Scm) derivatives in solution is often problematic because the sulfenyl chloride reagent used for this conversion may react with the sensitive amino acids tyrosine and tryptophan. In this protocol, we report a method for on-resin Acm to Scm conversion that allows the preparation of Cys(Scm)-containing peptides under conditions that do not modify other amino acids. (c) 2010 European Peptide Society and John Wiley & Sons, Ltd.

  10. Comparison of polymer induced and solvent induced trypsin denaturation: the role of hydrophobicity.

    PubMed

    Jasti, Lakshmi S; Fadnavis, Nitin W; Addepally, Uma; Daniels, Siona; Deokar, Sarika; Ponrathnam, Surendra

    2014-04-01

    Trypsin adsorption from aqueous buffer by various copolymers of allyl glycidyl ether-ethylene glycol dimethacrylate (AGE-EGDM) copolymer with varying crosslink density increases with increasing crosslink density and the effect slowly wears off after reaching a plateau at 50% crosslink density. The copolymer with 25% crosslink density was reacted with different amines with alkyl/aryl side chains to obtain a series of copolymers with 1,2-amino alcohol functional groups and varying hydrophobicity. Trypsin binding capacity again increases with hydrophobicity of the reacting amine and a good correlation between logPoctanol of the amine and protein binding is observed. The bound trypsin is denatured to the extent of 90% in spite of the presence of hydrophilic hydroxyl and amino groups. The behavior was comparable to that in mixtures of aqueous buffer and water-miscible organic co-solvents where the solvent concentration required to deactivate 50% of the enzyme (C50) is dependent on logPoctanol of the co-solvent. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Computational analysis suggests that virulence of Chromobacterium violaceum might be linked to biofilm formation and poly-NAG biosynthesis.

    PubMed

    Becker, Sidnei; Soares, Cíntia; Porto, Luismar Marques

    2009-07-01

    Groups of genes that produce exopolysaccharide with a N-acetyl-D-glucosamine monomer are in the genome of several pathogenic bacteria. Chromobacterium violaceum, an opportunistic pathogen, has the operon hmsHFR-CV2940, whose proteins can synthesize such polysaccharide. In this work, multiple alignments among proteins from bacteria that synthesize such polysaccharide were used to verify the existence of amino acids that might be critical for pathogen activity. Three-dimensional models were generated for spatial visualization of these amino acid residues. The analysis carried out showed that the protein HmsR preserves the amino acids D135, D228, Q264 and R267, considered critical for the formation of biofilms and, furthermore, that these amino acids are close to each other. The protein HmsF of C. violaceum preserves the residues D86, D87, H156 and W115. It was also shown that these residues are also close to each other in their spatial arrangement. For the proteins HmsH and CV2940 there is evidence of conservation of the residues R104 and W94, respectively. Conservation and favorable spatial location of those critical amino acids that constitute the proteins of the operon indicates that they preserve the same enzymatic function in biofilm synthesis. This is an indicator that the operon hmsHFR-CV2940 is a possible target in C. violaceum pathogenicity.

  12. Preparation and development of block copolypeptide vesicles and hydrogels for biological and medical applications.

    PubMed

    Deming, Timothy J

    2014-01-01

    There have been many recent advances in the controlled polymerization of α-amino acid-N-carboxyanhydride (NCA) monomers into well-defined block copolypeptides. Transition metal initiating systems allow block copolypeptide synthesis with excellent control over number and lengths of block segments, chain length distribution, and chain-end functionality. Using this and other methods, block copolypeptides of controlled dimensions have been prepared and their self-assembly into organized structures studied by many research groups. The ability of well-defined block copolypeptides to assemble into supramolecular copolypeptide vesicles and hydrogels has led to the development of these materials for use in biological and medical applications. These assemblies have been found to possess unique properties that are derived from the amino acid building blocks and ordered conformations of the polypeptide segments. Recent work on the incorporation of active and stimulus-responsive functionality in these materials has tremendously increased their potential for use in biological and medical studies. © 2014 Wiley Periodicals, Inc.

  13. Physicochemical characterization of actomyosin-paramyosin from giant squid mantle (Dosidicus gigas).

    PubMed

    Tolano-Villaverde, Ivan J; Ocaño-Higuera, Victor; Ezquerra-Brauer, Josafat; Santos-Sauceda, Irela; Santacruz-Ortega, Hisila; Cárdenas-López, José L; Rodríguez-Olibarria, Guillermo; Márquez-Ríos, Enrique

    2018-03-01

    The giant squid (Dosidicus gigas) has been proposed as raw material to obtain myofibrillar protein concentrates. However, it has been observed that colloidal systems formed from squid proteins have limited stability. Therefore, the isolation and characterization of the actomyosin-paramyosin isolated (API) complex were performed, because they are the main proteins to which functionality has been attributed. Densitogram analysis revealed 45% of actin, 38% of myosin and 17% of paramyosin. The amino acid profile indicates a higher proportion of acidic amino acids, which gives a higher negative charge; this was supported by the zeta potential. Total sulfhydryl (TSH) content was lower compared with proteins of other aquatic species. The higher percentage of actin in relation to myosin, the presence of paramyosin, as well as the low content of sulfhydryl groups, could comprise the main causes of the low technological functional property of proteins from D. gigas mantle. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Functionalized sorbent for chemical separations and sequential forming process

    DOEpatents

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA

    2012-03-20

    A highly functionalized sorbent and sequential process for making are disclosed. The sorbent includes organic short-length amino silanes and organic oligomeric polyfunctional amino silanes that are dispersed within pores of a porous support that form a 3-dimensional structure containing highly functionalized active binding sites for sorption of analytes.

  15. Modeling solubility and acid-base properties of some amino acids in aqueous NaCl and (CH3)4NCl aqueous solutions at different ionic strengths and temperatures.

    PubMed

    Bretti, Clemente; Giuffrè, Ottavia; Lando, Gabriele; Sammartano, Silvio

    2016-01-01

    New potentiometric experiments have been performed in NaCl and in (CH3)4NCl media, to determine the protonation constants, the protonation enthalpy changes and the solubility of six natural α-amino acids, namely Glycine (Gly), Alanine (Ala), Valine (Val), Leucine (Leu), Serine (Ser) and Phenylalanine (Phe). The aim of the work is the rationalization of the protonation thermodynamics (log [Formula: see text], solubility and [Formula: see text]) in NaCl, determining recommended, tentative or provisional values in selected experimental conditions and to report, for the first time, data in a weak interacting medium, as (CH3)4NCl. Literature data analysis was performed selecting the most reliable values, analyzed together with new data here reported. Significant trends and similarities were observed in the behavior of the six amino acids, and in some cases it was possible to determine common parameters for the ionic strength and temperature dependence. In general, the first protonation step, relative to the amino group, is significantly exothermic (average value is [Formula: see text] = -44.5 ± 0.4 kJ mol(-1) at infinite dilution and T = 298.15 K), and the second, relative to the carboxylate group, is fairly close to zero ([Formula: see text] = -2.5 ± 1.6, same conditions). In both cases, the main contribution to the proton binding reaction is mainly entropic in nature. For phenylalanine and leucine, solubility measurements at different concentrations of supporting electrolyte allowed to determine total and specific solubility values, then used to obtain the Setschenow and the activity coefficients of all the species involved in the protonation equilibria. The values of the first protonation constant in (CH3)4NCl are lower than the corresponding values in NaCl, due to the weak interaction between the deprotonated amino group and (CH3)4N(+). In this light, differences between the protonation functions in NaCl and (CH3)4NCl were used for the quantification of the stability of the weak [(CH3)4N(+)-L(-)] complexes that resulted log K = -0.38 ± 0.07 as an average value for the six amino acids.

  16. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice.

    PubMed

    Loftus, Róisín M; Assmann, Nadine; Kedia-Mehta, Nidhi; O'Brien, Katie L; Garcia, Arianne; Gillespie, Conor; Hukelmann, Jens L; Oefner, Peter J; Lamond, Angus I; Gardiner, Clair M; Dettmer, Katja; Cantrell, Doreen A; Sinclair, Linda V; Finlay, David K

    2018-06-14

    Natural killer (NK) cells are lymphocytes with important anti-tumour functions. Cytokine activation of NK cell glycolysis and oxidative phosphorylation (OXPHOS) are essential for robust NK cell responses. However, the mechanisms leading to this metabolic phenotype are unclear. Here we show that the transcription factor cMyc is essential for IL-2/IL-12-induced metabolic and functional responses in mice. cMyc protein levels are acutely regulated by amino acids; cMyc protein is lost rapidly when glutamine is withdrawn or when system L-amino acid transport is blocked. We identify SLC7A5 as the predominant system L-amino acid transporter in activated NK cells. Unlike other lymphocyte subsets, glutaminolysis and the tricarboxylic acid cycle do not sustain OXPHOS in activated NK cells. Glutamine withdrawal, but not the inhibition of glutaminolysis, results in the loss of cMyc protein, reduced cell growth and impaired NK cell responses. These data identify an essential role for amino acid-controlled cMyc for NK cell metabolism and function.

  17. Small-molecule control of protein function through Staudinger reduction

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander

    2016-11-01

    Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).

  18. Functionalized Natural Carbon-Supported Nanoparticles as Excellent Catalysts for Hydrocarbon Production.

    PubMed

    Sun, Jian; Guo, Lisheng; Ma, Qingxiang; Gao, Xinhua; Yamane, Noriyuki; Xu, Hengyong; Tsubaki, Noritatsu

    2017-02-01

    We report a one-pot and eco-friendly synthesis of carbon-supported cobalt nanoparticles, achieved by carbonization of waste biomass (rice bran) with a cobalt source. The functionalized biomass provides carbon microspheres as excellent catalyst support, forming a unique interface between hydrophobic and hydrophilic groups. The latter, involving hydroxyl and amino groups, can catch much more active cobalt nanoparticles on surface for Fischer-Tropsch synthesis than chemical carbon. The loading amount of cobalt on the final catalyst is much higher than that prepared with a chemical carbon source, such as glucose. The proposed concept of using a functionalized natural carbon source shows great potential compared with conventional carbon sources, and will be meaningful for other fields concerning carbon support, such as heterogeneous catalysis or electrochemical fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Amino acid supplementation alters bone metabolism during simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Davis-Street, J. E.; Paddon-Jones, D.; Ferrando, A. A.; Wolfe, R. R.; Smith, S. M.

    2005-01-01

    High-protein and acidogenic diets induce hypercalciuria. Foods or supplements with excess sulfur-containing amino acids increase endogenous sulfuric acid production and therefore have the potential to increase calcium excretion and alter bone metabolism. In this study, effects of an amino acid/carbohydrate supplement on bone resorption were examined during bed rest. Thirteen subjects were divided at random into two groups: a control group (Con, n = 6) and an amino acid-supplemented group (AA, n = 7) who consumed an extra 49.5 g essential amino acids and 90 g carbohydrate per day for 28 days. Urine was collected for n-telopeptide (NTX), deoxypyridinoline (DPD), calcium, and pH determinations. Bone mineral content was determined and potential renal acid load was calculated. Bone-specific alkaline phosphatase was measured in serum samples collected on day 1 (immediately before bed rest) and on day 28. Potential renal acid load was higher in the AA group than in the Con group during bed rest (P < 0.05). For all subjects, during bed rest urinary NTX and DPD concentrations were greater than pre-bed rest levels (P < 0.05). Urinary NTX and DPD tended to be higher in the AA group (P = 0.073 and P = 0.056, respectively). During bed rest, urinary calcium was greater than baseline levels (P < 0.05) in the AA group but not the Con group. Total bone mineral content was lower after bed rest than before bed rest in the AA group but not the Con group (P < 0.05). During bed rest, urinary pH decreased (P < 0.05), and it was lower in the AA group than the Con group. These data suggest that bone resorption increased, without changes in bone formation, in the AA group.

  20. Molecular Structure of WlbB, a Bacterial N-Acetyltransferase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoden, James B.; Holden, Hazel M.

    2010-09-08

    The pathogenic bacteria Pseudomonas aeruginosa and Bordetella pertussis contain in their outer membranes the rare sugar 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Five enzymes are required for the biosynthesis of this sugar starting from UDP-N-acetylglucosamine. One of these, referred to as WlbB, is an N-acetyltransferase that converts UDP-2-acetamido-3-amino-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NA) to UDP-2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NAcA). Here we report the three-dimensional structure of WlbB from Bordetella petrii. For this analysis, two ternary structures were determined to 1.43 {angstrom} resolution: one in which the protein was complexed with acetyl-CoA and UDP and the second in which the protein contained bound CoA and UDP-GlcNAc3NA. WlbB adopts a trimericmore » quaternary structure and belongs to the L{beta}H superfamily of N-acyltransferases. Each subunit contains 27 {beta}-strands, 23 of which form the canonical left-handed {beta}-helix. There are only two hydrogen bonds that occur between the protein and the GlcNAc3NA moiety, one between O{sup {delta}1} of Asn 84 and the sugar C-3{prime} amino group and the second between the backbone amide group of Arg 94 and the sugar C-5{prime} carboxylate. The sugar C-3{prime} amino group is ideally positioned in the active site to attack the si face of acetyl-CoA. Given that there are no protein side chains that can function as general bases within the GlcNAc3NA binding pocket, a reaction mechanism is proposed for WlbB whereby the sulfur of CoA ultimately functions as the proton acceptor required for catalysis.« less

  1. Contributions of the Histidine Side Chain and the N-terminal α-Amino Group to the Binding Thermodynamics of Oligopeptides to Nucleic Acids as a Function of pH

    PubMed Central

    Ballin, Jeff D.; Prevas, James P.; Ross, Christina R.; Toth, Eric A.; Wilson, Gerald M.; Record, M. Thomas

    2010-01-01

    Interactions of histidine with nucleic acid phosphates and histidine pKa shifts make important contributions to many protein-nucleic acid binding processes. To characterize these phenomena in simplified systems, we quantified binding of a histidine-containing model peptide HWKK (+NH3-His-Trp-Lys-Lys-NH2) and its lysine analog KWKK (+NH3-Lys-Trp-Lys-Lys-NH2) to a single-stranded RNA model, polyuridylate (polyU), by changes in tryptophan fluorescence as a function of salt concentration and pH. For both HWKK and KWKK, equilibrium binding constants, Kobs, and magnitudes of log-log salt derivatives SKobs ≡ (∂logKobs/∂log[Na+]), decreased with increasing pH in the manner expected for a titration curve model in which deprotonation of the histidine and α-amino groups weakens binding and reduces its salt-dependence. Fully protonated HWKK and KWKK exhibit the same Kobs and SKobs within uncertainty, and these SKobs values are consistent with limiting-law polyelectrolyte theory for +4 cationic oligopeptides binding to single-stranded nucleic acids. The pH-dependence of HWKK binding to polyU provides no evidence for pKa shifts nor any requirement for histidine protonation, in stark contrast to the thermodynamics of coupled protonation often seen for these cationic residues in the context of native protein structure where histidine protonation satisfies specific interactions (e.g., salt-bridge formation) within highly complementary binding interfaces. The absence of pKa shifts in our studies indicates that additional Coulombic interactions across the nonspecific-binding interface between RNA and protonated histidine or the α-amino group are not sufficient to promote proton uptake for these oligopeptides. We present our findings in the context of hydration models for specific versus nonspecific nucleic acid binding. PMID:20108951

  2. Functional Versatility of AGY Serine Codons in Immunoglobulin Variable Region Genes

    PubMed Central

    Detanico, Thiago; Phillips, Matthew; Wysocki, Lawrence J.

    2016-01-01

    In systemic autoimmunity, autoantibodies directed against nuclear antigens (Ags) often arise by somatic hypermutation (SHM) that converts AGT and AGC (AGY) Ser codons into Arg codons. This can occur by three different single-base changes. Curiously, AGY Ser codons are far more abundant in complementarity-determining regions (CDRs) of IgV-region genes than expected for random codon use or from species-specific codon frequency data. CDR AGY codons are also more abundant than TCN Ser codons. We show that these trends hold even in cartilaginous fishes. Because AGC is a preferred target for SHM by activation-induced cytidine deaminase, we asked whether the AGY abundance was solely due to a selection pressure to conserve high mutability in CDRs regardless of codon context but found that this was not the case. Instead, AGY triplets were selectively enriched in the Ser codon reading frame. Motivated by reports implicating a functional role for poly/autoreactive specificities in antiviral antibodies, we also analyzed mutations at AGY in antibodies directed against a number of different viruses and found that mutations producing Arg codons in antiviral antibodies were indeed frequent. Unexpectedly, however, we also found that AGY codons mutated often to encode nearly all of the amino acids that are reported to provide the most frequent contacts with Ag. In many cases, mutations producing codons for these alternative amino acids in antiviral antibodies were more frequent than those producing Arg codons. Mutations producing each of these key amino acids required only single-base changes in AGY. AGY is the only codon group in which two-thirds of random mutations generate codons for these key residues. Finally, by directly analyzing X-ray structures of immune complexes from the RCSB protein database, we found that Ag-contact residues generated via SHM occurred more often at AGY than at any other codon group. Thus, preservation of AGY codons in antibody genes appears to have been driven by their exceptional functional versatility, despite potential autoreactive consequences. PMID:27920779

  3. Sorption of heavy metal ions onto carboxylate chitosan derivatives--a mini-review.

    PubMed

    Boamah, Peter Osei; Huang, Yan; Hua, Mingqing; Zhang, Qi; Wu, Jingbo; Onumah, Jacqueline; Sam-Amoah, Livingstone K; Boamah, Paul Osei

    2015-06-01

    Chitosan is of importance for the elimination of heavy metals due to their outstanding characteristics such as the presence of NH2 and -OH functional groups, non-toxicity, low cost and, large available quantities. Modifying a chitosan structure with -COOH group improves it in terms of solubility at pH ≤7 without affecting the aforementioned characteristics. Chitosan modified with a carboxylic group possess carboxyl, amino and hydroxyl multifunctional groups which are good for elimination of metal ions. The focal point of this mini-review will be on the preparation and characterization of some carboxylate chitosan derivatives as a sorbent for heavy metal sorption. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Naturally occurring alkaline amino acids function as efficient catalysts on Knoevenagel condensation at physiological pH: a mechanistic elucidation.

    PubMed

    Li, Weina; Fedosov, Sergey; Tan, Tianwei; Xu, Xuebing; Guo, Zheng

    2014-05-01

    To maintain biological functions, thousands of different reactions take place in human body at physiological pH (7.0) and mild conditions, which is associated with health and disease. Therefore, to examine the catalytic function of the intrinsically occurring molecules, such as amino acids at neutral pH, is of fundamental interests. Natural basic α-amino acid of L-lysine, L-arginine, and L-histidine neutralized to physiological pH as salts were investigated for their ability to catalyze Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate. Compared with their free base forms, although neutralized alkaline amino acid salts reduced the catalytic activity markedly, they were still capable to perform an efficient catalysis at physiological pH as porcine pancreatic lipase (PPL), one of the best enzymes that catalyze Knoevenagel condensation. In agreement with the fact that the three basic amino acids were well neutralized, stronger basic amino acid Arg and Lys showed more obvious variation in NH bend peak from the FTIR spectroscopy study. Study of ethanol/water system and quantitative kinetic analysis suggested that the microenvironment in the vicinity of amino acid salts and protonability/deprotonability of the amine moiety may determine their catalytic activity and mechanism. The kinetic study of best approximation suggested that the random binding might be the most probable catalytic mechanism for the neutralized alkaline amino acid salt-catalyzed Knoevenagel condensation.

  5. Acid-base titrations of functional groups on the surface of the thermophilic bacterium Anoxybacillus flavithermus: comparing a chemical equilibrium model with ATR-IR spectroscopic data.

    PubMed

    Heinrich, Hannah T M; Bremer, Phil J; Daughney, Christopher J; McQuillan, A James

    2007-02-27

    Acid-base functional groups at the surface of Anoxybacillus flavithermus (AF) were assigned from the modeling of batch titration data of bacterial suspensions and compared with those determined from in situ infrared spectroscopic titration analysis. The computer program FITMOD was used to generate a two-site Donnan model (site 1: pKa = 3.26, wet concn = 2.46 x 10(-4) mol g(-1); site 2: pKa = 6.12, wet concn = 6.55 x 10(-5) mol g(-1)), which was able to describe data for whole exponential phase cells from both batch acid-base titrations at 0.01 M ionic strength and electrophoretic mobility measurements over a range of different pH values and ionic strengths. In agreement with information on the composition of bacterial cell walls and a considerable body of modeling literature, site 1 of the model was assigned to carboxyl groups, and site 2 was assigned to amino groups. pH difference IR spectra acquired by in situ attenuated total reflection infrared (ATR-IR) spectroscopy confirmed the presence of carboxyl groups. The spectra appear to show a carboxyl pKa in the 3.3-4.0 range. Further peaks were assigned to phosphodiester groups, which deprotonated at slightly lower pH. The presence of amino groups could not be confirmed or discounted by IR spectroscopy, but a positively charged group corresponding to site 2 was implicated by electrophoretic mobility data. Carboxyl group speciation over a pH range of 2.3-10.3 at two different ionic strengths was further compared to modeling predictions. While model predictions were strongly influenced by the ionic strength change, pH difference IR data showed no significant change. This meant that modeling predictions agreed reasonably well with the IR data for 0.5 M ionic strength but not for 0.01 M ionic strength.

  6. Rapid and scalable synthesis of innovative unnatural α,β or γ-amino acids functionalized with tertiary amines on their side-chains.

    PubMed

    Schneider, Séverine; Ftouni, Hussein; Niu, Songlin; Schmitt, Martine; Simonin, Frédéric; Bihel, Frédéric

    2015-07-07

    We report a selective ruthenium catalyzed reduction of tertiary amides on the side chain of Fmoc-Gln-OtBu derivatives, leading to innovative unnatural α,β or γ-amino acids functionalized with tertiary amines. Rapid and scalable, this process allowed us to build a library of basic unnatural amino acids at the gram-scale and directly usable for liquid- or solid-phase peptide synthesis. The diversity of available tertiary amines allows us to modulate the physicochemical properties of the resulting amino acids, such as basicity or hydrophobicity.

  7. Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain.

    PubMed

    Shnitko, Tatiana A; Taylor, Sarah C; Stringfield, Sierra J; Zandy, Shannon L; Cofresí, Roberto U; Doherty, James M; Lynch, William B; Boettiger, Charlotte A; Gonzales, Rueben A; Robinson, Donita L

    2016-06-01

    Dopamine plays a critical role in striatal and cortical function, and depletion of the dopamine precursors phenylalanine and tyrosine is used in humans to temporarily reduce dopamine and probe the role of dopamine in behavior. This method has been shown to alter addiction-related behaviors and cognitive functioning presumably by reducing dopamine transmission, but it is unclear what specific aspects of dopamine transmission are altered. We performed this study to confirm that administration of an amino acid mixture omitting phenylalanine and tyrosine (Phe/Tyr[-]) reduces tyrosine tissue content in the prefrontal cortex (PFC) and nucleus accumbens (NAc), and to test the hypothesis that Phe/Tyr[-] administration reduces phasic dopamine release in the NAc. Rats were injected with a Phe/Tyr[-] amino acid mixture, a control amino acid mixture, or saline. High-performance liquid chromatography was used to determine the concentration of tyrosine, dopamine, or norepinephrine in tissue punches from the PFC and ventral striatum. In a separate group of rats, phasic dopamine release was measured with fast-scan cyclic voltammetry in the NAc core after injection with either the Phe/Tyr[-] mixture or the control amino acid solution. Phe/Tyr[-] reduced tyrosine content in the PFC and NAc, but dopamine and norepinephrine tissue content were not reduced. Moreover, Phe/Tyr[-] decreased the frequency of dopamine transients, but not their amplitude, in freely moving rats. These results indicate that depletion of tyrosine via Phe/Tyr[-] decreases phasic dopamine transmission, providing insight into the mechanism by which this method modifies dopamine-dependent behaviors in human imaging studies.

  8. Carbon isotopic patterns of amino acids associated with various microbial metabolic pathways and physiological conditions

    NASA Astrophysics Data System (ADS)

    Wang, P. L.; Hsiao, K. T.; Lin, L. H.

    2017-12-01

    Amino acids represent one of the most important categories of biomolecule. Their abundance and isotopic patterns have been broadly used to address issues related to biochemical processes and elemental cycling in natural environments. Previous studies have shown that various carbon assimilative pathways of microorganisms (e.g. autotrophy, heterotrophy and acetotrophy) could be distinguished by carbon isotopic patterns of amino acids. However, the taxonomic and catabolic coverage are limited in previous examination. This study aims to uncover the carbon isotopic patterns of amino acids for microorganisms remaining uncharacterized but bearing biogeochemical and ecological significance in anoxic environments. To fulfill the purpose, two anaerobic strains were isolated from riverine wetland and mud volcano in Taiwan. One strain is a sulfate reducing bacterium (related to Desulfovibrio marrakechensis), which is capable of utilizing either H2 or lactate, and the other is a methanogen (related to Methanolobus profundi), which grows solely with methyl-group compounds. Carbon isotope analyses of amino acids were performed on cells grown in exponential and stationary phase. The isotopic patterns were similar for all examined cultures, showing successive 13C depletion along synthetic pathways. No significant difference was observed for the methanogen and lactate-utilizing sulfate reducer harvested in exponential and stationary phases. In contrast, the H2-utilizing sulfate reducer harvested in stationary phase depleted and enriched 13C in aspartic acid and glycine, respectively when compared with that harvested in exponential phase. Such variations might infer the change of carbon flux during synthesis of these two amino acids in the reverse TCA cycle. In addition, the discriminant function analysis for all available data from culture studies further attests the capability of using carbon isotope patterns of amino acids in identifying microbial metabolisms.

  9. The complete nucleotide sequence of RNA 3 of a peach isolate of Prunus necrotic ringspot virus.

    PubMed

    Hammond, R W; Crosslin, J M

    1995-04-01

    The complete nucleotide sequence of RNA 3 of the PE-5 peach isolate of Prunus necrotic ringspot ilarvirus (PNRSV) was obtained from cloned cDNA. The RNA sequence is 1941 nucleotides and contains two open reading frames (ORFs). ORF 1 consisted of 284 amino acids with a calculated molecular weight of 31,729 Da and ORF 2 contained 224 amino acids with a calculated molecular weight of 25,018 Da. ORF 2 corresponds to the coat protein gene. Expression of ORF 2 engineered into a pTrcHis vector in Escherichia coli results in a fusion polypeptide of approximately 28 kDa which cross-reacts with PNRSV polyclonal antiserum. Analysis of the coat protein amino acid sequence reveals a putative "zinc-finger" domain at the amino-terminal portion of the protein. Two tetranucleotide AUGC motifs occur in the 3'-UTR of the RNA and may function in coat protein binding and genome activation. ORF 1 homologies to other ilarviruses and alfalfa mosaic virus are confined to limited regions of conserved amino acids. The translated amino acid sequence of the coat protein gene shows 92% similarity to one isolate of apple mosaic virus, a closely related member of the ilarvirus group of plant viruses, but only 66% similarity to the amino acid sequence of the coat protein gene of a second isolate. These relationships are also reflected at the nucleotide sequence level. These results in one instance confirm the close similarities observed at the biophysical and serological levels between these two viruses, but on the other hand call into question the nomenclature used to describe these viruses.

  10. Correlating Mineralogy and Amino Acid Contents of Milligram-Scale Murchison Carbonaceous Chondrite Samples

    NASA Technical Reports Server (NTRS)

    Burton, Aaron, S.; Berger, Eve L.; Locke, Darren R.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2015-01-01

    Amino acids, the building blocks of proteins, have been found to be indigenous in most of the carbonaceous chondrite groups. The abundances of amino acids, as well as their structural, enantiomeric and isotopic compositions differ significantly among meteorites of different groups and petrologic types. This suggests that there is a link between parent-body conditions, mineralogy and the synthesis and preservation of amino acids (and likely other organic molecules). However, elucidating specific causes for the observed differences in amino acid composition has proven extremely challenging because samples analyzed for amino acids are typically much larger ((is) approximately 100 mg powders) than the scale at which meteorite heterogeneity is observed (sub mm-scale differences, (is) approximately 1-mg or smaller samples). Thus, the effects of differences in mineralogy on amino acid abundances could not be easily discerned. Recent advances in the sensitivity of instrumentation have made possible the analysis of smaller samples for amino acids, enabling a new approach to investigate the link between mineralogical con-text and amino acid compositions/abundances in meteorites. Through coordinated mineral separation, mineral characterization and highly sensitive amino acid analyses, we have performed preliminary investigations into the relationship between meteorite mineralogy and amino acid composition. By linking amino acid data to mineralogy, we have started to identify amino acid-bearing mineral phases in different carbonaceous meteorites. The methodology and results of analyses performed on the Murchison meteorite are presented here.

  11. Tuning peptide amphiphile supramolecular structure for biomedical applications

    NASA Astrophysics Data System (ADS)

    Pashuck, Eugene Thomas, III

    The use of biomaterials in regenerative medicine has been an active area of research for more than a decade. Peptide amphiphiles, which are short peptide sequences coupled to alkyl tails, have been studied in the Stupp group since the beginning of the decade and been used for a variety of biomedical applications. Most of the work has focused on the bioactive epitopes places on the periphery of the PA molecules, but the interior amino acids, known as the beta-sheet region, give the PA nanofiber gel much of its mechanical strength. To study the important parameters in the beta-sheet region, six PA molecules were constructed to determine the influence of beta-sheet length and order of the amino acids in the beta-sheet. It was found that having beta-sheet forming amino acids near the center of the fiber improves PA gel stiffness, and that having extra amino acids that have preferences for other secondary structures, like alpha-helix decreased the gels stiffness. Using FTIR and circular dichroism it was found that the mechanical properties are influenced by the amount of twist in the beta-sheet, and PAs that have more twisted beta-sheets form weaker gels. The effect amino acid properties have on peptide amphiphile self-assembly where studied by synthesizining molecules with varying side group size and hydrophobicity. It was found that smaller amino acids lead to stiffer gels and when two amino acids had the same size the amino acid with the larger beta-sheet propensity lead to a stiffer gel. Furthermore, small changes in peptide structure were found to lead to big changes in nanostructure, as leucine and isoleucine, which have the same size but slightly different structures, form flat ribbons and cylindrical nanofibers, respectively. Phenylalanine and alanine were studied more indepth because they represent the effects of adding an aromatic group to amino acids in the beta-sheet regon. These phenylalanine PAs formed short, twisted ribbons when freshly dissolved in water that rapdily elongate to form long twisted ribbons. After being aged for two weeks half of these twisted ribbons turn into helical ribbons and by one month all of them have formed this new nanostructure. As a target in regenerative medicine, spinal cord injury repair presents a daunting challenge that has so far eluded successful pharmaceutical treatment. Previous work showing that PAs bearing the IKVAV epitope were found to increase functional recovery in mice paved the way for the more complex systems studied here. By making a PA that bound growth factors like neurotrophin-3 (NT-3) and glial cell line derived neurotrophic factor (GDNF) in with the PA matrix, it was found that the release of NT-3 could be significantly slowed from an IKVAV with the presence of a novel binding epitope, and that including GDNF into the gel significantly increased neurite outgrowth compared to the standard IKVAV PA.

  12. [Effects of keto/amino acids and a low-protein diet on the nutritional status of patients with Stages 3B-4 chronic kidney disease].

    PubMed

    Milovanova, S Yu; Milovanov, Yu S; Taranova, M V; Dobrosmyslov, I A

    To evaluate the efficacy of keto/amino acids in maintaining protein balance and preventing mineral metabolic disturbances and the development of uremic hyperparathyroidism in the long-term use of a low-protein diet (LPD) in patients with Stages 3B-4 chronic kidney disease (CKD). Ninety patients with CKD caused by chronic latent glomerulonephritis in 65 patients and chronic tubulointerstitial nephritis of various etiologies (gout, drug-induced, and infection) in 25 were examined. The investigators conducted clinical, laboratory, and instrumental examinations, including bioelectrical impedance analysis (body mass index (BMI), the percentages of lean and fat mass), echocardiography and radiography of the abdominal aorta in the lateral projection (the presence of cardiac valvular and aortic calcification), and pulse wave velocity measurements using a Sphygmocor apparatus (vessel stiffness estimation). The stages of CKD were defined according to the 2012 Kidney Disease: Improving Global Outcomes (KDIGO) criteria; glomerular filtration rate was calculated using the CKD EPI equation. According to the diet used, all the patients were divided into 3 groups: 1) 30 patients who took LPD (0.6 g of protein per kg of body weight/day) in combination with the keto/amino acid ketosteril (1 tablet per 5 kg of body weight/day; Diet One); 2) 30 patients who used LPD in combination with the other keto/amino acid ketoaminol at the same dose (Diet Two); 3) 30 patients had LPD without using the keto/amino acids (Diet Three) (a control group). During a follow-up, there were no signs of malnutrition in Groups 1 and 2 patients receiving LPD (0.6 g protein per kg/day) in combination with the keto/amino acids ketosteril and ketaminol, respectively. At the same time, 11 (36.6%) patients in Group 3 (a control group) who did not take the keto/amino acids showed a BMI decrease from 24 (23; 26) kg/m2 to 18.5 (17; 19.2) kg/m2 (p < 0.05), including that of lean body mass from 37.4 (36; 38.8) to 30 (29.1; 34.7)% in the men (p<0.05) and from 29.8 (26.8; 31) to 23.9 (22; 25.7)% in the women (p<0.01). In addition, at the end of the study, there were elevated serum phosphorus levels (p<0.05) and mainly higher parathyroid hormone concentrations in Group 3 patients who received LPD without using the amino/keto acids than in Groups 1 and 2. As compared to Group 3, Groups 1 and 2 displayed no differences in the quantity of cardiac and aortic calcification and in the augmentation index (arterial stiffness). The ketosteril and ketaminol groups versus the control group had also higher s-Klotho levels (p<0.01) that were inversely correlated with glomerular filtration rate (r =-0.467; p<0.01). The keto/amino acids ketosteril or ketoaminol are an important component of LPD, which prevents malnutrition and an additional source of calcium that inhibits hyperphosphatemia and slows the development of uremic hyperparathyroidism. Incorporation of keto/amino acids into LPD leads to a less pronounced reduction in s-Klotho protein in relation to the degree of renal failure than does LPD without keto/amino acids.

  13. JPRS Report. Science & Technology: China.

    DTIC Science & Technology

    1989-05-16

    Nine aminothiazo peniciliate derivatives were synthesized and their antibacterial activities were tested. The following is the basic structure of the...Ph)tCNNH, » (PhhCN, NHr / S\\/ v 6—APA \\ 4 -N VIII Or XCOOCHPh, Route of Synthesis In Vitro Antibacterial Activities of Compound VIIi_8...Lactam Antibiotics. VII. Effect on Antibacterial Activity of the Oxime O-Substituents with Various Functional Groups in the 7 3-(Z-2-(2-Amino-4

  14. Photoredox-catalyzed Direct Reductive Amination of Aldehydes without an External Hydrogen/Hydride Source.

    PubMed

    Alam, Rauful; Molander, Gary A

    2018-05-04

    The direct reductive amination of aromatic aldehydes has been realized using a photocatalyst under visible light irradiation. The single electron oxidation of an in situ formed aminal species generates the putative α-amino radical that eventually delivers the reductive amination product. This method is operationally simple, highly selective, and functional group tolerant, which allows the direct synthesis of benzylic amines by a unique mechanistic pathway.

  15. Physicochemical and functional properties of ultrasonic-treated tragacanth hydrogels cross-linked to lysozyme.

    PubMed

    Koshani, Roya; Aminlari, Mahmoud

    2017-10-01

    The purpose of this study was to prepare, characterize and investigate physiochemical and functional attributes of hen egg white lysozyme (LZM) cross-linked with ultrasonic-treated tragacanth (US-treated TGC) under mild Maillard reactions conditions. FT-IR spectroscopy together with OPA assay revealed that covalent attachment of LZM with TCG's. Under optimum condition (pH=8.5, 60°C, RH=79%, 8 days), only one of the free amino group of LZM was blocked by TGC whereas under the same condition, US treated-TGC's blocked about three amino groups. The thermal stability of the LZM-TGC conjugates differed depending on the lengths of the main and branch chains. The microstructure of LZM-TGC conjugates was characterized by scanning electron microscopy. US-treated TGC-LZM exhibited improved solubility, emulsion properties, foam capacity and stability as compared with the native LZM. Since this gum is extensively used in food industry and application of LZM as a natural antimicrobial agents in different food systems is recommended and practiced in some countries, the results of this study indicates that a conjugated product of these two polymers combines different properties into one macromolecule and improves the property of each. These properties may make the conjugate an attractive food ingredient. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Establishment of the structural and enhanced physicochemical properties of the cocrystal-2-benzyl amino pyridine with oxalic acid

    NASA Astrophysics Data System (ADS)

    Sangeetha, M.; Mathammal, R.

    2017-09-01

    We report on a cocrystal of 2-(benzyl amino) pyridine (BAP) with oxalic acid (OA) in the ratio 1:1. The cocrystal was synthesised and single crystals were grown under slow evaporation technique at room temperature. Single crystal X-ray diffraction (SCXRD) analysis determined the structure of the cocrystal formed and it belongs to orthorhombic system with Cc space group. It was also subjected to X-ray Powder diffraction (XRPD) to confirm the cocrystal structure. Hirshfeld surfaces and fingerprints were plotted to analyze the intermolecular interactions. Spectroscopic techniques such as FTIR, FT-Raman and NMR were carried out to identify the functional groups present in the cocrystal. The bioactivity of the cocrystal was revealed from the UV-Vis analysis. Computational Density Functional Theory (DFT) was adopted at the B3LYP/6-31+G** level to calculate the optimized geometrical parameters and the vibrational frequencies of the cocrystal. The non-linear optical property of the cocrystal was revealed from the SHG test. The different types of interactions and delocalization of charge were analysed from Natural Bond Orbital (NBO) calculations. The HOMO-LUMO energies and MEP surface maps confirmed the pharmaceutical importance of the (1:1) BAPOA cocrystal. The cocrystal has been explored for the invitro antioxidant activity and insilico molecular docking studies.

  17. Functional group and stereochemical requirements for substrate binding by ghrelin O-acyltransferase revealed by unnatural amino acid incorporation.

    PubMed

    Cleverdon, Elizabeth R; Davis, Tasha R; Hougland, James L

    2018-04-21

    Ghrelin is a small peptide hormone that undergoes a unique posttranslational modification, serine octanoylation, to play its physiological roles in processes including hunger signaling and glucose metabolism. Ghrelin O-acyltransferase (GOAT) catalyzes this posttranslational modification, which is essential for ghrelin to bind and activate its cognate GHS-R1a receptor. Inhibition of GOAT offers a potential avenue for modulating ghrelin signaling for therapeutic effect. Defining the molecular characteristics of ghrelin that lead to binding and recognition by GOAT will facilitate the development and optimization of GOAT inhibitors. We show that small peptide mimics of ghrelin substituted with 2,3-diaminopropanoic acid in place of the serine at the site of octanoylation act as submicromolar inhibitors of GOAT. Using these chemically modified analogs of desacyl ghrelin, we define key functional groups within the N-terminal sequence of ghrelin essential for binding to GOAT and determine GOAT's tolerance to backbone methylations and altered amino acid stereochemistry within ghrelin. Our study provides a structure-activity analysis of ghrelin binding to GOAT that expands upon activity-based investigations of ghrelin recognition and establishes a new class of potent substrate-mimetic GOAT inhibitors for further investigation and therapeutic interventions targeting ghrelin signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Enantioselective gamma- and delta-Borylation of Unsaturated Carbonyl Derivatives: Synthesis, Mechanistic Insights, and Applications

    NASA Astrophysics Data System (ADS)

    Hoang, Gia L.

    Chiral boronic esters are valuable synthetic intermediates widely used in a variety of stereospecific transformations. Transition metal-catalyzed asymmetric hydroboration (CAHB) of alkenes is among the most popular methods for their preparation. Enantioselective hydroboration of activated alkenes (i.e., vinyl arene derivatives or conjugated carbonyl compounds) have been extensively studied by many research groups. We, on the other hand, are interested in enantioselective hydroboration of unactivated alkenes utilizing coordinating functional groups (e.g., carbonyl derivatives) to give functionalized, chiral boronic esters. While conjugate addition and C-H activation methodologies provide efficient alternatives to CAHB for enantioselective beta-borylation of carbonyl compounds, direct gamma- and delta-borylations were essentially unknown prior to our wok on CAHB. The gamma-borylated products were used for understanding stereochemical aspects of Suzuki-Miyaura cross-coupling reactions resulting in stereoretention and in contrast to similar beta-borylated carbonyl derivatives reported in literature. Some other selected transformations were carried out to construct a number of biologically relevant structural motifs, such as lignan precursors, 1,4-amino alcohols, gamma-amino acid derivatives, 5-substitued-gamma-lactone and lactam ring systems. In addition, collaborative experimental and computational studies of the enantioselective desymmetrization via CAHB gain a better understanding of the mechanistic pathways.

  19. Development of a versatile procedure for the biofunctionalization of Ti-6Al-4V implants

    NASA Astrophysics Data System (ADS)

    Rezvanian, Parsa; Arroyo-Hernández, María; Ramos, Milagros; Daza, Rafael; Elices, Manuel; Guinea, Gustavo V.; Pérez-Rigueiro, José

    2016-11-01

    Titanium (Ti) and titanium alloys are among the most-commonly used metallic materials for implantation in the human body for the purpose of replacing hard tissue. Although Ti and its alloys are widely used for such an aim, in implants of a long duration they exhibit some shortcomings due to the loosening of the very implant. This phenomenon is highly dependent on the interaction between the organic tissues and the surface of the implant. In this study, the authors introduce a surface treatment technique for functionalization of the surface of Ti-6Al-4V alloy with amino groups that could help to control this interaction. The functionalized layer was deposited by activated vapor silanization (AVS), which has been proven as a reliable and robust technique with other materials. The resulting biofunctional layers were characterized by atomic force microscopy and fluorescence microscopy, with the optimal conditions for the deposition of a homogeneous film with a high density of amino groups being determined. Additionally, the non-toxic nature and stability of the biofunctional layer were confirmed by cell culturing. The results show the formation of a homogeneous biofunctional amine layer on Ti-6Al-4V alloy that may be used as a platform for the subsequent covalent immobilization of proteins or other biomolecules.

  20. Understanding the mechanism of LCST phase separation of mixed ionic liquids in water by MD simulations.

    PubMed

    Zhao, Yuling; Wang, Huiyong; Pei, Yuanchao; Liu, Zhiping; Wang, Jianji

    2016-08-17

    Recently, it has been found experimentally that two different amino acid ionic liquids (ILs) can be mixed to show unique lowest critical solution temperature (LCST) phase separation in water. However, little is known about the mechanism of phase separation in these IL/water mixtures at the molecular level. In this work, five kinds of amino acid ILs were chosen to study the mechanism of LCST-type phase separation by molecular dynamics (MD) simulations. Toward this end, a series of all-atom MD simulations were carried out on the ternary mixtures consisting of two different ILs and water at different temperatures. The various interaction energies and radial distribution functions (RDFs) were calculated and analyzed for these mixed systems. It was found that for amino acid ILs, the -NH2 or -COOH group of one anion could have a hydrogen bonding interaction with the -COO(-) group of another anion. With the increase of temperature, this kind of hydrogen bonding interaction between anions was strengthened and then the anion-H2O electrostatic interaction was weakened, which led to the LCST-type phase separation of the mixed ILs in water. In addition, a series of MD simulations for [P6668]1[Lys]n[Asp]1-n/H2O systems were also performed to study the effect of the mixing ratio of ILs on phase separation. It was also noted that the experimental critical composition corresponding to the lowest critical solution temperature was well predicted from the total electrostatic interaction energies as a function of mole fraction of [P6668][Lys] in these systems. The conclusions drawn from this study may provide new insight into the LCST-type phase behavior of ILs in water, and motivate further studies on practical applications.

  1. Significance of two distinct types of tryptophan synthase beta chain in Bacteria, Archaea and higher plants.

    PubMed

    Xie, Gary; Forst, Christian; Bonner, Carol; Jensen, Roy A

    2002-01-01

    Tryptophan synthase consists of two subunits, alpha and beta. Two distinct subgroups of beta chain exist. The major group (TrpEb_1) includes the well-studied beta chain of Salmonella typhimurium. The minor group of beta chain (TrpEb_2) is most frequently found in the Archaea. Most of the amino-acid residues important for catalysis are highly conserved between both TrpE subfamilies. Conserved amino-acid residues of TrpEb_1 that make allosteric contact with the TrpEa subunit (the alpha chain) are absent in TrpEb_2. Representatives of Archaea, Bacteria and higher plants all exist that possess both TrpEb_1 and TrpEb_2. In those prokaryotes where two trpEb genes coexist, one is usually trpEb_1 and is adjacent to trpEa, whereas the second is trpEb_2 and is usually unlinked with other tryptophan-pathway genes. TrpEb_1 is nearly always partnered with TrpEa in the tryptophan synthase reaction. However, by default at least six lineages of the Archaea are likely to use TrpEb_2 as the functional beta chain, as TrpEb_1 is absent. The six lineages show a distinctive divergence within the overall TrpEa phylogenetic tree, consistent with the lack of selection for amino-acid residues in TrpEa that are otherwise conserved for interfacing with TrpEb_1. We suggest that the standalone function of TrpEb_2 might be to catalyze the serine deaminase reaction, an established catalytic capability of tryptophan synthase beta chains. A coincident finding of interest is that the Archaea seem to use the citramalate pathway, rather than threonine deaminase (IlvA), to initiate the pathway of isoleucine biosynthesis.

  2. A Complex Prime Numerical Representation of Amino Acids for Protein Function Comparison.

    PubMed

    Chen, Duo; Wang, Jiasong; Yan, Ming; Bao, Forrest Sheng

    2016-08-01

    Computationally assessing the functional similarity between proteins is an important task of bioinformatics research. It can help molecular biologists transfer knowledge on certain proteins to others and hence reduce the amount of tedious and costly benchwork. Representation of amino acids, the building blocks of proteins, plays an important role in achieving this goal. Compared with symbolic representation, representing amino acids numerically can expand our ability to analyze proteins, including comparing the functional similarity of them. Among the state-of-the-art methods, electro-ion interaction pseudopotential (EIIP) is widely adopted for the numerical representation of amino acids. However, it could suffer from degeneracy that two different amino acid sequences have the same numerical representation, due to the design of EIIP. In light of this challenge, we propose a complex prime numerical representation (CPNR) of amino acids, inspired by the similarity between a pattern among prime numbers and the number of codons of amino acids. To empirically assess the effectiveness of the proposed method, we compare CPNR against EIIP. Experimental results demonstrate that the proposed method CPNR always achieves better performance than EIIP. We also develop a framework to combine the advantages of CPNR and EIIP, which enables us to improve the performance and study the unique characteristics of different representations.

  3. N-Linked Glycosylation and Sequence Changes in a Critical Negative Control Region of the ASCT1 and ASCT2 Neutral Amino Acid Transporters Determine Their Retroviral Receptor Functions

    PubMed Central

    Marin, Mariana; Lavillette, Dimitri; Kelly, Sean M.; Kabat, David

    2003-01-01

    A widely dispersed interference group of retroviruses that includes the feline endogenous virus (RD114), baboon endogenous virus (BaEV), human endogenous virus type W (HERV-W), and type D primate retroviruses uses the human Na+-dependent neutral amino acid transporter type 2 (hASCT2; gene name, SLC1A5) as a common cell surface receptor. Although hamster cells are fully resistant to these viruses and murine cells are susceptible only to BaEV and HERV-W pseudotype viruses, these rodent cells both become highly susceptible to all of the viruses after treatment with tunicamycin, an inhibitor of protein N-linked glycosylation. A partial explanation for these results was recently provided by findings that the orthologous murine transporter mASCT2 is inactive as a viral receptor, that a related (ca. 55% identity) murine paralog (mASCT1; gene name, SLC1A4) mediates infections specifically of BaEV and HERV-W, and that N-deglycosylation of mASCT1 activates it as a receptor for all viruses of this interference group. Because the only two N-linked oligosaccharides in mASCT1 occur in the carboxyl-terminal region of extracellular loop 2 (ECL2), it was inferred that this region contributes in an inhibitory manner to infections by RD114 and type D primate viruses. To directly and more thoroughly investigate the receptor active sites, we constructed and analyzed a series of hASCT2/mASCT2 chimeras and site-directed mutants. Our results suggest that a hypervariable sequence of 21 amino acids in the carboxyl-terminal portion of ECL2 plays a critical role in determining the receptor properties of ASCT2 proteins for all viruses in this interference group. In addition, we analyzed the tunicamycin-dependent viral susceptibility of hamster cells. In contrast to mASCT1, which contains two N-linked oligosaccharides that partially restrict viral infections, hamster ASCT1 contains an additional N-linked oligosaccharide clustered close to the others in the carboxyl-terminal region of ECL2. Removal of this N-linked oligosaccharide by mutagenesis enabled hamster ASCT1 to function as a receptor for all viruses of this interference group. These results strongly suggest that combinations of amino acid sequence changes and N-linked oligosaccharides in a critical carboxyl-terminal region of ECL2 control retroviral utilization of both the ASCT1 and ASCT2 receptors. PMID:12584318

  4. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ɛ-aminocaproic acid) and α-amino- n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies ( ΔG o) of the non-α-amino acids as a function of temperature and pH. Comparison of their ΔG o values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ΔG o values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  5. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH.

    PubMed

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ε-aminocaproic acid) and α-amino-n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies (∆G (o)) of the non-α-amino acids as a function of temperature and pH. Comparison of their ∆G (o) values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ∆G (o) values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  6. Elevated levels of branched-chain amino acids have little effect on pancreatic islet cells, but L-arginine impairs function through activation of the endoplasmic reticulum stress response.

    PubMed

    Mullooly, Niamh; Vernon, Wendy; Smith, David M; Newsholme, Philip

    2014-03-01

    Recent metabolic profiling studies have identified a correlation between branched-chain amino acid levels, insulin resistance associated with prediabetes and susceptibility to type 2 diabetes. Glucose and lipids in chronic excess have been reported to induce toxic effects in pancreatic β-cells, but the effect of elevated amino acid concentrations on primary islet cell function has not been investigated to date. The aim of this study was to investigate the effect of chronic exposure to various amino acids on islet cell function in vitro. Isolated rat islets were incubated over periods of 48 h with a range of concentrations of individual amino acids (0.1 μm to 10 mm). After 48 h, islets were assessed for glucose-dependent insulin secretion capacity, proliferation or islet cell apoptosis. We report that elevated levels of branched-chain amino acids have little effect on pancreatic islet cell function or viability; however, increased levels of the amino acid l-arginine were found to be β-cell toxic, causing a dose-dependent decrease in insulin secretion accompanied by a decrease in islet cell proliferation and an increase in islet cell apoptosis. These effects were not due to l-arginine-dependent increases in production of nitric oxide but arose through elicitation of the islet cell endoplasmic reticulum stress response. This novel finding indicates, for the first time, that the l-arginine concentration in vitro may impact negatively on islet cell function, thus indicating further complexity in relationship to in vivo susceptibility of β-cells to nutrient-induced dysfunction.

  7. A Double-Blind Clinical Study to Investigate the Effects of a Fungal Protease Enzyme System on Metabolic, Hepato-renal, and Cardiovascular Parameters Following 30 Days of Supplementation in Active, Healthy Men.

    PubMed

    Anderson, Mark L

    2013-05-01

    Research on the role of digestion in overall health has driven increasing interest in the use of digestive enzymes, which may improve nutrient absorption and reduce gastrointestinal symptoms. Sales of digestive aids and enzymes have grown over 8% in 2009, with enzymes accounting for $69 million of this growing category. Recent clinical research reported that acute dosing of Aminogen®, a patented blend of digestive protease enzymes isolated from Aspergillus and blended with whey protein concentrate, increased the rate of protein absorption. The results indicated a faster rate of amino acid absorption reflected in significantly higher blood levels of amino acids, increased nitrogen retention, and significantly reduced levels of C-reactive protein. Few studies, however, have examined the safety of repeated dosing of oral enzymes with an appropriate substrate. The purpose of this study, therefore, was to evaluate basic measures of clinical safety during 30 days of continuous, repeated dosing of Aminogen® and whey protein supplementation in healthy, active men maintaining a regimen of resistance training. Parameters evaluated include various markers of general physical health, metabolic function, hepato-renal function, and cardiovascular health including fasting blood lipids. Forty healthy, resistance-trained men (27.1 ± 7.9 years) were recruited for this double-blind, randomized study. Group A ingested two 40-g doses of whey protein per day containing Aminogen®. Group B ingested two 40-g doses of whey protein per day. No significant changes were noted in measures of general physical health, metabolic function, cardiovascular health, and hepato-renal function within or between groups. However, total cholesterol, LDL cholesterol, and serum calcium significantly increased ( P  < 0.05) in group B. In group A, whey protein containing Aminogen® was well tolerated with no adverse reactions reported. No differences in serum markers of clinical safety and an improved blood lipid profile are also reported.

  8. Combining protein sequence, structure, and dynamics: A novel approach for functional evolution analysis of PAS domain superfamily.

    PubMed

    Dong, Zheng; Zhou, Hongyu; Tao, Peng

    2018-02-01

    PAS domains are widespread in archaea, bacteria, and eukaryota, and play important roles in various functions. In this study, we aim to explore functional evolutionary relationship among proteins in the PAS domain superfamily in view of the sequence-structure-dynamics-function relationship. We collected protein sequences and crystal structure data from RCSB Protein Data Bank of the PAS domain superfamily belonging to three biological functions (nucleotide binding, photoreceptor activity, and transferase activity). Protein sequences were aligned and then used to select sequence-conserved residues and build phylogenetic tree. Three-dimensional structure alignment was also applied to obtain structure-conserved residues. The protein dynamics were analyzed using elastic network model (ENM) and validated by molecular dynamics (MD) simulation. The result showed that the proteins with same function could be grouped by sequence similarity, and proteins in different functional groups displayed statistically significant difference in their vibrational patterns. Interestingly, in all three functional groups, conserved amino acid residues identified by sequence and structure conservation analysis generally have a lower fluctuation than other residues. In addition, the fluctuation of conserved residues in each biological function group was strongly correlated with the corresponding biological function. This research suggested a direct connection in which the protein sequences were related to various functions through structural dynamics. This is a new attempt to delineate functional evolution of proteins using the integrated information of sequence, structure, and dynamics. © 2017 The Protein Society.

  9. Effect of the quality of dietary amino acids composition on the urea synthesis in rats.

    PubMed

    Tujioka, Kazuyo; Ohsumi, Miho; Hayase, Kazutoshi; Yokogoshi, Hidehiko

    2011-01-01

    We have shown that urinary urea excretion increased in rats given a lower quality protein. The purpose of present study was to determine whether the composition of dietary amino acids affects urea synthesis. Experiments were done on three groups of rats given diets containing a 10% gluten amino acid mix diet or 10% casein amino acid mix diet or 10% whole egg protein amino acids mix diet for 10 d. The urinary excretion of urea, the liver concentration of N-acetylglutamate, and the liver concentration of free serine, glutamic acids and alanine were greater in the group given the amino acid mix diet of lower quality. The fractional and absolute rates of protein synthesis in tissues declined with a decrease in quality of dietary amino acids. The hepatic concentration of ornithine and the activities of hepatic urea-cycle enzymes were not related to the urea excretion. These results suggest that the increased concentrations of amino acids and N-acetylglutamate seen in the liver of rats given the amino acid mix diets of lower quality are likely among the factors stimulating urea synthesis. The protein synthesis in tissues is at least partly related to hepatic concentrations of amino acids. The composition of dietary amino acids is likely to be one of the factors regulating urea synthesis when the quality of dietary protein is manipulated.

  10. Reconstruction of Cysteine Biosynthesis Using Engineered Cysteine-Free and Methionine-Free Enzymes

    NASA Technical Reports Server (NTRS)

    Wang, Kendrick; Fujishima, Kosuke; Abe, Nozomi; Nakahigashi, Kenji; Endy, Drew; Rothschild, Lynn J.

    2016-01-01

    Ten of the proteinogenic amino acids can be generated abiotically while the remaining thirteen require biology for their synthesis. Paradoxically, the biosynthesis pathways observed in nature require enzymes that are made with the amino acids they produce. For example, Escherichia coli produces cysteine from serine via two enzymes that contain cysteine. Here, we substituted alternate amino acids for cysteine and also methionine, which is biosynthesized from cysteine, in serine acetyl transferase (CysE) and O-acetylserine sulfhydrylase (CysM). CysE function was rescued by cysteine-and-methionine-free enzymes and CysM function was rescued by cysteine-free enzymes. Structural modeling suggests that methionine stabilizes CysM and is present in the active site of CysM. Cysteine is not conserved among CysE and CysM protein orthologs, suggesting that cysteine is not functionally important for its own synthesis. Engineering biosynthetic enzymes that lack the amino acids being synthesized provides insights into the evolution of amino acid biosynthesis and pathways for bioengineering.

  11. Association between insulin resistance and plasma amino acid profile in non-diabetic Japanese subjects.

    PubMed

    Yamada, Chizumi; Kondo, Masumi; Kishimoto, Noriaki; Shibata, Takeo; Nagai, Yoko; Imanishi, Tadashi; Oroguchi, Takashige; Ishii, Naoaki; Nishizaki, Yasuhiro

    2015-07-01

    Elevation of the branched-chain amino acids (BCAAs), valine, leucine and isoleucine; and the aromatic amino acids, tyrosine and phenylalanine, has been observed in obesity-related insulin resistance. However, there have been few studies on Asians, who are generally less obese and less insulin-resistant than Caucasian or African-Americans. In the present study, we investigated the relationship between homeostasis model assessment of insulin resistance (HOMA-IR) and plasma amino acid concentration in non-diabetic Japanese participants. A total of 94 healthy men and women were enrolled, and plasma amino acid concentration was measured by liquid chromatography/mass spectrometry after overnight fasting. The associations between HOMA-IR and 20 amino acid concentrations, and anthropometric and clinical parameters of lifestyle-related diseases were evaluated. The mean age and body mass index were 40.1 ± 9.6 years and 22.7 ± 3.9, respectively. Significantly positive correlations were observed between HOMA-IR and valine, isoleucine, leucine, tyrosine, phenylalanine and total BCAA concentration. Compared with the HOMA-IR ≤ 1.6 group, the HOMA-IR > 1.6 group showed significantly exacerbated anthropometric and clinical parameters, and significantly elevated levels of valine, isoleucine, leucine, tyrosine, phenylalanine and BCAA. The present study shows that the insulin resistance-related change in amino acid profile is also observed in non-diabetic Japanese subjects. These amino acids include BCAAs (valine, isoleucine and leucine) and aromatic amino acids (tyrosine and phenylalanine), in agreement with previous studies carried out using different ethnic groups with different degrees of obesity and insulin resistance.

  12. Iron oxide inside SBA-15 modified with amino groups as reusable adsorbent for highly efficient removal of glyphosate from water

    NASA Astrophysics Data System (ADS)

    Fiorilli, Sonia; Rivoira, Luca; Calì, Giada; Appendini, Marta; Bruzzoniti, Maria Concetta; Coïsson, Marco; Onida, Barbara

    2017-07-01

    Iron oxide clusters were incorporated into amino-functionalized SBA-15 in order to obtain a magnetically recoverable adsorbent. The physical-chemical properties of the material were characterized by FE-SEM, STEM, XRD, TGA, XPS, FT-IR and acid-base titration analysis. Iron oxide nanoparticles were uniformly dispersed into the pore of mesoporous silica and that the adsorbent is characterized high specific surface area (177 m2/g) and accessible porosity. The sorbent was successfully tested for the removal of glyphosate in real water matrices. Despite the significant content of inorganic ions, a quantitative removal of the contaminant was found. The complete regeneration of the sorbent after the adsorption process through diluted NaOH solution was also proved.

  13. Chemo-Enzymatic Synthesis of Each Enantiomer of Orthogonally-Protected 4,4-Difluoroglutamic Acid – A Candidate Monomer for Chiral Brønsted-Acid Peptide-Based Catalysts

    PubMed Central

    Li, Yang

    2011-01-01

    We have accomplished an asymmetric synthesis of each enantiomer of 4,4-difluoroglutamic acid. This α-amino acid has been of interest in medicinal chemistry circles. Key features of the synthesis include highly scalable procedures, a Reformatsky-based coupling reaction, and straightforward functional group manipulations to make the parent amino acid. Enantioenrichment derives from an enzymatic resolution of the synthetic material. Conversion of the optically enriched compounds to orthogonally protected forms allows selective formation of peptide bonds. 4,4- Difluoroglutamic acid, in a suitably protected form, is also shown to exhibit enhanced catalytic activity in both an oxidation reaction and a reduction reaction, in comparison to the analogous glutamic acid derivative. PMID:22039908

  14. Supercritical water oxidation of 2-, 3- and 4-nitroaniline: A study on nitrogen transformation mechanism.

    PubMed

    Yang, Bowen; Cheng, Zhiwen; Fan, Maohong; Jia, Jinping; Yuan, Tao; Shen, Zhemin

    2018-08-01

    Supercritical water oxidation (SCWO) of 2-, 3- and 4-nitroaniline (NA) was investigated under residence time of 1-6 min, pressure of 18-26 MPa, temperature of 350-500 °C, with initial concentration of 1 mM and 300% excess oxygen. Among these operating conditions, temperature and residence time played a more significant role in decomposing TOC and TN than pressure. Moreover, the products of N-containing species were mainly N 2 , ammonia and nitrate. When temperature, pressure and retention time enhanced, the yields of NO 3 - and org-N were reduced, the amount of N 2 was increasing, the proportion of NH 4 + , however, presented a general trend from rise to decline in general. The experiment of aniline/nitrobenzene indicated that TN removal behavior between amino and nitro groups would prefer to happen in the molecule rather than between the molecules, therefore, the smaller interval between the amino and nitro group was the more easily to interreact. This might explain the reason why TN removal efficiency was in an order that 2-NA > 3-NA > 4-NA. The NH 4 + /NO 3 - experiment result demonstrated that ammonia and nitrate did convert into N 2 during SCWO, however, the formation of N 2 was little without auxiliary fuel. Density functional theory (DFT) method was used to calculate the molecular structures of 2-, 3- and 4-NA to further explore reaction mechanism, which verified that amino group was more easily to be attacked than nitro group. Based on these results, the conceivable reaction pathways of 2-, 3- and 4-NA were proposed, which contained three parts, namely denitrification, ring-open and mineralization. Copyright © 2018. Published by Elsevier Ltd.

  15. Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity1[OPEN

    PubMed Central

    Kim, Denis; Schreiber, Stefan; Zeier, Tatyana; Schuck, Stefan; Reichel-Deland, Vanessa

    2017-01-01

    The nonprotein amino acid pipecolic acid (Pip) regulates plant systemic acquired resistance and basal immunity to bacterial pathogen infection. In Arabidopsis (Arabidopsis thaliana), the lysine (Lys) aminotransferase AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) mediates the pathogen-induced accumulation of Pip in inoculated and distal leaf tissue. Here, we show that ALD1 transfers the α-amino group of l-Lys to acceptor oxoacids. Combined mass spectrometric and infrared spectroscopic analyses of in vitro assays and plant extracts indicate that the final product of the ALD1-catalyzed reaction is enaminic 2,3-dehydropipecolic acid (DP), whose formation involves consecutive transamination, cyclization, and isomerization steps. Besides l-Lys, recombinant ALD1 transaminates l-methionine, l-leucine, diaminopimelate, and several other amino acids to generate oxoacids or derived products in vitro. However, detailed in planta analyses suggest that the biosynthesis of 2,3-DP from l-Lys is the major in vivo function of ALD1. Since ald1 mutant plants are able to convert exogenous 2,3-DP into Pip, their Pip deficiency relies on the inability to form the 2,3-DP intermediate. The Arabidopsis reductase ornithine cyclodeaminase/μ-crystallin, alias SYSTEMIC ACQUIRED RESISTANCE-DEFICIENT4 (SARD4), converts ALD1-generated 2,3-DP into Pip in vitro. SARD4 significantly contributes to the production of Pip in pathogen-inoculated leaves but is not the exclusive reducing enzyme involved in Pip biosynthesis. Functional SARD4 is required for proper basal immunity to the bacterial pathogen Pseudomonas syringae. Although SARD4 knockout plants show greatly reduced accumulation of Pip in leaves distal to P. syringae inoculation, they display a considerable systemic acquired resistance response. This suggests a triggering function of locally accumulating Pip for systemic resistance induction. PMID:28330936

  16. Unfavorable regions in the ramachandran plot: Is it really steric hindrance? The interacting quantum atoms perspective.

    PubMed

    Maxwell, Peter I; Popelier, Paul L A

    2017-11-05

    Accurate description of the intrinsic preferences of amino acids is important to consider when developing a biomolecular force field. In this study, we use a modern energy partitioning approach called Interacting Quantum Atoms to inspect the cause of the φ and ψ torsional preferences of three dipeptides (Gly, Val, and Ile). Repeating energy trends at each of the molecular, functional group, and atomic levels are observed across both (1) the three amino acids and (2) the φ/ψ scans in Ramachandran plots. At the molecular level, it is surprisingly electrostatic destabilization that causes the high-energy regions in the Ramachandran plot, not molecular steric hindrance (related to the intra-atomic energy). At the functional group and atomic levels, the importance of key peptide atoms (O i -1 , C i , N i , N i +1 ) and some sidechain hydrogen atoms (H γ ) are identified as responsible for the destabilization seen in the energetically disfavored Ramachandran regions. Consistently, the O i -1 atoms are particularly important for the explanation of dipeptide intrinsic behavior, where electrostatic and steric destabilization unusually complement one another. The findings suggest that, at least for these dipeptides, it is the peptide group atoms that dominate the intrinsic behavior, more so than the sidechain atoms. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  17. Chemical mechanism of D-amino acid oxidase from Rhodotorula gracilis: pH dependence of kinetic parameters.

    PubMed Central

    Ramón, F; Castillón, M; De La Mata, I; Acebal, C

    1998-01-01

    The variation of kinetic parameters of d-amino acid oxidase from Rhodotorula gracilis with pH was used to gain information about the chemical mechanism of the oxidation of D-amino acids catalysed by this flavoenzyme. d-Alanine was the substrate used. The pH dependence of Vmax and Vmax/Km for alanine as substrate showed that a group with a pK value of 6.26-7.95 (pK1) must be unprotonated and a group with a pK of 10.8-9.90 (pK2) must be protonated for activity. The lower pK value corresponded to a group on the enzyme involved in catalysis and whose protonation state was not important for binding. The higher pK value was assumed to be the amino group of the substrate. Profiles of pKi for D-aspartate as competitive inhibitor showed that binding is prevented when a group on the enzyme with a pK value of 8.4 becomes unprotonated; this basic group was not detected in Vmax/Km profiles suggesting its involvement in binding of the beta-carboxylic group of the inhibitor. PMID:9461524

  18. Studies on the Selectivity Between Nickel-Catalyzed 1,2-Cis-2-Amino Glycosylation of Hydroxyl Groups of Thioglycoside Acceptors with C(2)-Substituted Benzylidene N-Phenyl Trifluoroacetimidates and Intermolecular Aglycon Transfer of the Sulfide Group

    PubMed Central

    Yu, Fei; Nguyen, Hien M.

    2012-01-01

    The stereoselective synthesis of saccharide thioglycosides containing 1,2-cis-2-amino glycosidic linkages is challenging. In addition to the difficulties associated with achieving high α-selectivity in the formation of 1,2-cis-2-amino glycosidic bonds, the glycosylation reaction is hampered by undesired transfer of the anomeric sulfide group from the glycosyl acceptor to the glycosyl donor. Overcoming these obstacles will pave the way for the preparation of oligosaccharides and glycoconjugates bearing the 1,2-cis-2-amino glycosidic linkages because the saccharide thioglycosides obtained can serve as donors for another coupling iteration. This approach streamlines selective deprotection and anomeric derivatization steps prior to the subsequent coupling event. We have developed an efficient approach for the synthesis of highly yielding and α-selective saccharide thioglycosides containing 1,2-cis-2-amino glycosidic bonds, via cationic nickel-catalyzed glycosylation of thioglycoside acceptors bearing the 2-trifluoromethylphenyl aglycon with N-phenyl trifluoroacetimidate donors. The 2-trifluoromethylphenyl group effectively blocks transfer of the anomeric sulfide group from the glycosyl acceptor to the C(2)-benzylidene donor and can be easily installed and activated. The current method also highlights the efficacy of the nickel catalyst selectively activating the C(2)-benzylidene imidate group in the presence of the anomeric sulfide group on the glycosyl acceptors. PMID:22838405

  19. Synthesis of chiral alpha-amino aldehydes linked by their amine function to solid support.

    PubMed

    Cantel, Sonia; Heitz, Annie; Martinez, Jean; Fehrentz, Jean-Alain

    2004-09-01

    The anchoring of an alpha-amino-acid derivative by its amine function on to a solid support allows some chemical reactions starting from the carboxylic acid function. This paper describes the preparation of alpha-amino aldehydes linked to the support by their amine function. This was performed by reduction with LiAlH4 of the corresponding Weinreb amide linked to the resin. The aldehydes obtained were then involved in Wittig or reductive amination reactions. In addition, the linked Weinreb amide was reacted with methylmagnesium bromide to yield the corresponding ketone. After cleavage from the support, the compounds were obtained in good to excellent yields and characterized.

  20. Inhibition of l-type amino acid transporter 1 activity as a new therapeutic target for cholangiocarcinoma treatment.

    PubMed

    Yothaisong, Supak; Dokduang, Hasaya; Anzai, Naohiko; Hayashi, Keitaro; Namwat, Nisana; Yongvanit, Puangrat; Sangkhamanon, Sakkarn; Jutabha, Promsuk; Endou, Hitoshi; Loilome, Watcharin

    2017-03-01

    Unlike normal cells, cancer cells undergo unlimited growth and multiplication, causing them to require massive amounts of amino acid to support their continuous metabolism. Among the amino acid transporters expressed on the plasma membrane, l-type amino acid transporter-1, a Na + -independent neutral amino acid transporter, is highly expressed in many types of human cancer including cholangiocarcinoma. Our previous study reported that l-type amino acid transporter-1 and its co-functional protein CD98 were highly expressed and implicated in cholangiocarcinoma progression and carcinogenesis. Therefore, this study determined the effect of JPH203, a selective inhibitor of l-type amino acid transporter-1 activity, on cholangiocarcinoma cell inhibition both in vitro and in vivo. JPH203 dramatically suppressed [ 14 C]l-leucine uptake as well as cell growth in cholangiocarcinoma cell lines along with altering the expression of l-type amino acid transporter-1 and CD98 in response to amino acid depletion. We also demonstrated that JPH203 induced both G2/M and G0/G1 cell cycle arrest, as well as reduced the S phase accompanied by altered expression of the proteins in cell cycle progression: cyclin D1, CDK4, and CDK6. There was also cell cycle arrest of the related proteins, P21 and P27, in KKU-055 and KKU-213 cholangiocarcinoma cells. Apoptosis induction, detected by an increase in trypan blue-stained cells along with a cleaved caspase-3/caspase-3 ratio, occurred in JPH203-treated cholangiocarcinoma cells at the highest concentration tested (100 µM). As expected, daily intravenous administration of JPH203 (12.5 and 25 mg/kg) significantly inhibited tumor growth in KKU-213 cholangiocarcinoma cell xenografts in the nude mice model in a dose-dependent manner with no statistically significant change in the animal's body weight and with no differences in the histology and appearance of the internal organs compared with the control group. Our study demonstrates that suppression of l-type amino acid transporter-1 activity using JPH203 might be used as a new therapeutic strategy for cholangiocarcinoma treatment.

  1. Supplementation with Silk Amino Acids improves physiological parameters defining stamina in elite fin-swimmers.

    PubMed

    Zubrzycki, Igor Z; Ossowski, Zbigniew; Przybylski, Stanislaw; Wiacek, Magdalena; Clarke, Anna; Trabka, Bartosz

    2014-01-01

    Previous animal study has shown that supplementation with silk amino acid hydrolysate (SAA) increases stamina in mice. The presented study was the first formal evaluation of the influence of SAA supplementation on parameters defining physiological fitness level in humans. It was a randomized controlled trial with a parallel-group design on elite male fin-swimmers. The experimental group was supplemented with 500 mg of SAA per kg of body mass, dissolved in 250 ml of a Carborade Drink®; the control group with Carborade Drink® alone; 3 times a day, 30 minutes prior to the training session. Changes discerned in the experimental group were more pronounced than those observed in the control group. For example, the change in the serum lactic acid concentration observed in the experimental group was sevenfold less than in the control group [21.8 vs. -3.7 L% for the control and experimental groups, respectively]. An analysis of a lactate profile as a function of a maximal swimming velocity exposed a statistically significant positive shift in the swimming velocity of 0.05 m/s, at the lactate concentration of 4 mmol/L in the experimental group. There was also a positive, although statistically insignificant, increase of 2.6 L% in serum testosterone levels in the experimental group. This study showed that a 12-day SAA supplementation combined with an extensive and rigorous training schedule was sufficient to increase an aerobic stamina. However, this phenomenon was associated with an augmented level of muscular damage (an increased level of creatine phosphokinase in the experimental group).

  2. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry

    PubMed Central

    Carter, Charles W.; Wolfenden, Richard

    2016-01-01

    abstract The universal genetic code is a translation table by which nucleic acid sequences can be interpreted as polypeptides with a wide range of biological functions. That information is used by aminoacyl-tRNA synthetases to translate the code. Moreover, amino acid properties dictate protein folding. We recently reported that digital correlation techniques could identify patterns in tRNA identity elements that govern recognition by synthetases. Our analysis, and the functionality of truncated synthetases that cannot recognize the tRNA anticodon, support the conclusion that the tRNA acceptor stem houses an independent code for the same 20 amino acids that likely functioned earlier in the emergence of genetics. The acceptor-stem code, related to amino acid size, is distinct from a code in the anticodon that is related to amino acid polarity. Details of the acceptor-stem code suggest that it was useful in preserving key properties of stereochemically-encoded peptides that had developed the capacity to interact catalytically with RNA. The quantitative embedding of the chemical properties of amino acids into tRNA bases has implications for the origins of molecular biology. PMID:26595350

  3. Dietary Glutamate Supplementation Ameliorates Mycotoxin-Induced Abnormalities in the Intestinal Structure and Expression of Amino Acid Transporters in Young Pigs

    PubMed Central

    Wu, Miaomiao; Liao, Peng; Deng, Dun; Liu, Gang; Wen, Qingqi; Wang, Yongfei; Qiu, Wei; Liu, Yan; Wu, Xingli; Ren, Wenkai; Tan, Bie; Chen, Minghong; Xiao, Hao; Wu, Li; Li, Tiejun; Nyachoti, Charles M.; Adeola, Olayiwola; Yin, Yulong

    2014-01-01

    The purpose of this study was to investigate the hypothesis that dietary supplementation with glutamic acid has beneficial effects on growth performance, antioxidant system, intestinal morphology, serum amino acid profile and the gene expression of intestinal amino acid transporters in growing swine fed mold-contaminated feed. Fifteen pigs (Landrace×Large White) with a mean body weight (BW) of 55 kg were randomly divided into control group (basal feed), mycotoxin group (contaminated feed) and glutamate group (2% glutamate+contaminated feed). Compared with control group, mold-contaminated feed decreased average daily gain (ADG) and increased feed conversion rate (FCR). Meanwhile, fed mold-contaminated feed impaired anti-oxidative system and intestinal morphology, as well as modified the serum amino acid profile in growing pigs. However, supplementation with glutamate exhibited potential positive effects on growth performance of pigs fed mold-contaminated feed, ameliorated the imbalance antioxidant system and abnormalities of intestinal structure caused by mycotoxins. In addition, dietary glutamate supplementation to some extent restored changed serum amino acid profile caused by mold-contaminated feed. In conclusion, glutamic acid may be act as a nutritional regulating factor to ameliorate the adverse effects induced by mycotoxins. PMID:25405987

  4. Base-promoted one-pot tandem reaction of 3-(1-alkynyl)chromones under microwave irradiation to functionalized amino-substituted xanthones.

    PubMed

    Liu, Yang; Huang, Liping; Xie, Fuchun; Hu, Youhong

    2010-09-17

    A base-promoted one-pot tandem reaction has been developed from 3-(1-alkynyl)chromones with various acetonitriles to afford functionalized amino-substituted xanthones 3 under microwave irradiation. This tandem process involves multiple reactions, such as Michael addition/cyclization/1,2-addition, without a transition metal catalyst. This method provides an efficient approach to build up natural product-like diversified amino-substituted xanthone scaffolds rapidly.

  5. The Apollo Program and Amino Acids

    ERIC Educational Resources Information Center

    Fox, Sidney W.

    1973-01-01

    Discusses the determination of hydrolyzable amino acid precursors and a group of six amino acids in the returned lunar samples of the Apollo programs. Indicates that molecular evolution is arrested at the precursor stage on the Moon because of lack of water. (CC)

  6. Oral supplementation with carbohydrate- and branched-chain amino acid-enriched nutrients improves postoperative quality of life in patients undergoing hepatic resection.

    PubMed

    Okabayashi, Takehiro; Iyoki, Miho; Sugimoto, Takeki; Kobayashi, Michiya; Hanazaki, Kazuhiro

    2011-04-01

    The long-term outcomes of branched-chain amino acid (BCAA) administration in patients undergoing hepatic resection remain unclear. The aim of this study is to assess the impact of oral supplementation with BCAA-enriched nutrients on postoperative quality of life (QOL) in patients undergoing liver resection. A prospective randomized clinical trial was conducted in 96 patients undergoing hepatic resection. Patients were randomly assigned to receive BCAA supplementation (AEN group, n = 48) or a conventional diet (control group, n = 48). Postoperative QOL and short-term outcomes were regularly and continuously evaluated in all patients using a short-form 36 (SF-36) health questionnaire and by measuring various clinical parameters. This study demonstrated a significant improvement in QOL after hepatectomy for liver neoplasm in the AEN group based on the same patients' preoperative SF-36 scores (P < 0.05). Perioperative BCAA supplementation preserved liver function and general patient health in the short term for AEN group patients compared to those not receiving the nutritional supplement. BCAA supplementation improved postoperative QOL after hepatic resection over the long term by restoring and maintaining nutritional status and whole-body kinetics. This study was registered at http://www.clinicaltrials.gov (registration number: NCT00945568).

  7. Tryptophanase from Proteus vulgaris: the conformational rearrangement in the active site, induced by the mutation of Tyrosine 72 to phenylalanine, and its mechanistic consequences.

    PubMed

    Kulikova, Vitalia V; Zakomirdina, Ludmila N; Dementieva, Irene S; Phillips, Robert S; Gollnick, Paul D; Demidkina, Tatyana V; Faleev, Nicolai G

    2006-04-01

    Tyr72 is located at the active site of tryptophanase (Trpase) from Proteus vulgaris. For the wild-type Trpase Tyr72 might be considered as the general acid catalyst at the stage of elimination of the leaving groups. The replacement of Tyr72 by Phe leads to a decrease in activity for L-tryptophan by 50,000-fold and to a considerable rearrangement of the active site of Trpase. This rearrangement leads to an increase of room around the alpha-C atom of any bound amino acid, such that covalent binding of alpha-methyl-substituted amino acids becomes possible (which cannot be realized in wild-type Trpase). The changes in reactivities of S-alkyl-L-cysteines provide evidence for an increase of congestion in the proximity of their side groups in the mutant enzyme as compared to wild-type enzyme. The observed alteration of catalytic properties in a large degree originates from a conformational change in the active site. The Y72F Trpase retains significant activity for L-serine, which allowed us to conclude that in the mutant enzyme, some functional group is present which fulfills the role of the general acid catalyst in reactions associated with elimination of small leaving groups.

  8. Protonation equilibrium and lipophilicity of olamufloxacin (HSR-903), a newly synthesized fluoroquinolone antibacterial.

    PubMed

    Sun, Jin; Sakai, Shigeko; Tauchi, Yoshihiko; Deguchi, Yoshiharu; Cheng, Gang; Chen, Jimin; Morimoto, Kazuhiro

    2003-09-01

    This study was performed to characterize the protonation equilibrium at the molecular level and pH-dependent lipophilicity of olamufloxacin. The deprotonation fraction of the carboxyl group as a function of pH was specifically calculated at the critical wavelength 294 nm, where UV pH-dependent absorbance of olamufloxacin was independent of the ionized state of the aminopyrrolidinyl amino group but heavily depended on that of the carboxyl moiety. Accordingly, micro-protonation equilibrium could be described using a nonlinear least-squares regression program MULTI. In contrast, macro-protonation equilibrium was depicted at most wavelengths where olamufloxacin absorbance was influenced by ionized states of both proton-binding groups, results coinciding with the former. Furthermore, distribution features of four microspecies in aqueous phase were assessed. The apparent partition coefficient versus pH profile of olamufloxacin showed a parabolic curve in n-octanol/buffer system which reached peak near pH 8, agreeing with the above determined isoelectric point (pI). Ion-pair effect was observed for olamufloxacin under an acidic condition, eliciting experimental values higher than those theoretically calculated, which was similar to ciprofloxacin but not levofloxacin due to amino group type. Moreover, olamufloxacin was moderately lipophilic in comparison with other quinolones, with an apparent partition coefficient of 1.95 at pH 7.4.

  9. An ultrasensitive and selective electrochemical aptasensor based on rGO-MWCNTs/Chitosan/carbon quantum dot for the detection of lysozyme.

    PubMed

    Rezaei, Behzad; Jamei, Hamid Reza; Ensafi, Ali Asghar

    2018-05-09

    An aptamer-based method is described for the electrochemical determination of lysozyme. A glassy carbon electrode was modified with a nanocomposite composed of reduced graphene oxide (rGO), multi-walled carbon nanotubes (MWCNTs), chitosan (CS), and a synthesized carbon quantum dot (CQD) from CS. The composition of the nanocomposite (rGO-MWCNT/CS/CQD) warrants a high surface-to-volume ratio, high conductivity, high stability, and great electrocatalytic activity. This nanocomposite provides a suitable site for better immobilization of aptamers due to the existence of many amino and carboxyl functional groups, and remaining oxygen-related defects properties in rGO. In addition, this nanocomposite allows considerable enhancement of the electrochemical signal and contributes to improving sensitivity. The amino-linked lysozyme aptamers were immobilized on the nanocomposite through covalent coupling between the amino groups of the aptamer and the amino groups of the nanocomposite using glutaraldehyde (GLA) linker. The modified electrode was characterized by electrochemical methods including differential pulse voltammetry (DPV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). In the presence of lysozyme, the immobilized aptamer selectively caught the target lysozyme on the electrode interface that leads to a decrease in the DPV peak current and an increase in Charge Transfer Resistance (R ct ) in EIS as an analytical signal. Using the obtained data from DPV and EIS techniques, two calibration curves were drawn. The anti-lysozyme aptasensor proposed has two very low LODs. These measures are 3.7 and 1.9 fmol L -1 within the wide detection ranges of 20 fmol L -1 to 10 nmol L -1 , and 10 fmol L -1 to 100 nmol L -1 for DPV and EIS calibration curves, respectively. The GCE/rGO-MWCNT/CS/CQD showed sensitivity, high reproducibility, specificity and rapid response for lysozyme which can be used in biomedical fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Gene cloning and in vivo characterization of a dibenzothiophene dioxygenase from Xanthobacter polyaromaticivorans.

    PubMed

    Hirano, Shin-Ichi; Haruki, Mitsuru; Takano, Kazufumi; Imanaka, Tadayuki; Morikawa, Masaaki; Kanaya, Shigenori

    2006-02-01

    Xanthobacter polyaromaticivorans sp. nov. 127W is a bacterial strain that is capable of degrading a wide range of cyclic aromatic compounds such as dibenzothiophene, biphenyl, naphthalene, anthracene, and phenanthrene even under extremely low oxygen [dissolved oxygen (DO)< or = 0.2 ppm] conditions (Hirano et al., Biosci Biotechnol Biochem 68:557-564, 2004). A major protein fraction carrying dibenzothiophene degradation activity was purified. Based on its partial amino acid sequences, dbdCa gene encoding alpha subunit terminal oxygenase (DbdCa) and its flanking region were cloned and sequenced. A phylogenetic analysis based on the amino acid sequence demonstrates that DbdCa is a member of a terminal oxygenase component of group IV ring-hydroxylating dioxygenases for biphenyls and monocyclic aromatic hydrocarbons, rather than group III dioxygenases for polycyclic aromatic hydrocarbons. Gene disruption in dbdCa abolished almost of the degradation activity against biphenyl, dibenzothiophene, and anthracene. The gene disruption also impaired degradation activity of the strain under extremely low oxygen conditions (DO< or = 0.2 ppm). These results indicate that Dbd from 127W represents a group IV dioxygenase that is functional even under extremely low oxygen conditions.

  11. Effects of Combined Treatment with Branched-Chain Amino Acids, Citric Acid, L-Carnitine, Coenzyme Q10, Zinc, and Various Vitamins in Tumor-Bearing Mice.

    PubMed

    Awa, Hiroko; Futamura, Akihiko; Higashiguchi, Takashi; Ito, Akihiro; Mori, Naoharu; Murai, Miyo; Ohara, Hiroshi; Chihara, Takeshi; Kaneko, Takaaki

    2017-03-01

    A functional dietary supplement (FDS) containing Coenzyme Q10, branched-chain amino acids and L-carnitine was administered to tumor-bearing mice, investigating its effects on tumor and muscle tissues. Experiment (A): B16 melanoma cells were implanted subcutaneously into the right side of the abdomen of 8- to 9-week-old C57BL/6J mice. The mice were divided into two groups: a FDS group that received oral administration of FDS (n=10), and a control group that received oral administration of glucose (n=10). The moribund condition was used as the endpoint, and median survival time was determined. Experiment (B): On day 21 after tumor implantation, tumors, soleus muscle, gastrocnemius muscle, and suprahyoid muscles were collected. Tumor and muscle weight and other aspects were evaluated in each group: FDS group (n=15) and control group (n=15). The median survival time was comparable (21 d in the FDS group vs. 18 d in the control group, p=0.30). However, cumulative food intake was significantly higher in the FDS group than the control group (p=0.011). Metastasis of melanoma to the lung was observed in the control group but not in the FDS group (p=0.043). The weight of the suprahyoid muscles was significantly higher in the FDS group than in the control group (p=0.0045). The weight of the tumor was significantly lower in the FDS group than in the control group (p=0.013). The results possibly suggest oral administration of FDS in tumor-bearing mice enhances the maintenance of suprahyoid muscles, resulting in an extended feeding period and suppression of tumor growth and metastasis.

  12. New fluorescent perylene bisimide indicators--a platform for broadband pH optodes.

    PubMed

    Aigner, Daniel; Borisov, Sergey M; Klimant, Ingo

    2011-06-01

    Asymmetric perylene bisimide (PBI) dyes are prepared and are shown to be suitable for the preparation of fluorescence chemosensors for pH. They carry one amino-functional substituent which introduces pH sensitivity via photoinduced electron transfer (PET) while the other one increases solubility. The luminescence quantum yields for the new indicators exceed 75% in the protonated form. The new indicators are non-covalently entrapped in polyurethane hydrogel D4 and poly(hydroxyalkylmethacrylates). Several PET functions including aliphatic and aromatic amino groups were successfully used to tune the dynamic range of the sensor. Because of their virtually identical spectral properties, various PBIs with selected PET functions can easily be integrated into a single sensor with enlarged dynamic range (over 4 pH units). PBIs with two different substitution patterns in the bay position are investigated and possess variable spectral properties. Compared with their tetrachloro analogues, tetra-tert-butyl-substituted PBIs yield more long-wave excitable sensors which feature excellent photostability. Cross-sensitivity to ionic strength was found to be negligible. The practical applicability of the sensors may be compromised by the long response times (especially in case of tetra-tert-butyl-substituted PBIs).

  13. Reducing renal uptake of 111In-DOTATOC: a comparison among various basic amino acids.

    PubMed

    Lin, Yung-Chang; Hung, Guang-Uei; Luo, Tsai-Yueh; Tsai, Shih-Chuan; Sun, Shung-Shung; Hsia, Chien-Chung; Chen, Shu-Ling; Lin, Wan-Yu

    2007-01-01

    Several studies have reported significant renal toxicity after the use of a high dose of 90Y-DOTATOC. Thus, renal protection is necessary in treatments with 90Y-DOTA Tyr3-octreotide (DOTATOC). The infusion of certain positively charged amino acids has been shown to effectively reduce renal uptake of DOTATOC. In this study, we compared the effectiveness of three kinds of amino acids, D-lysine (lysine), L-arginine (arginine) and histidine, on renal protection in healthy rats and tried to determine which one was the most effective. Twenty SD healthy male rats were divided into 4 groups: lysine, histidine, arginine, and control. The rats were injected with a dose of 400 mg/kg of amino acid or 2 ml of phosphate-buffered saline (PBS) (as control) intraperitoneally. All rats were sacrificed at 4 hrs after the injection of 1 MBq 111In-DOTATOC. Samples of the kidney were taken and weighed carefully. The counts of radioactivity were measured by a gamma counter and renal concentrations were calculated and expressed as percent injected dose per gram (% ID/g). The renal uptake of 111In-DOTATOC was significantly lower for all three kinds of amino acids when compared to the control group. The renal uptake of 111In-DOTATOC in the lysine group was significantly lower than those in the histidine and arginine groups. The renal uptake of 111In-DOTATOC in the histidine group was lower than that in the arginine group, but no statistical difference was noted. Among these three amino acids, lysine had the best reduction rate of renal uptake of DOTATOC. Histidine was more effective than arginine but no statistical difference was noted.

  14. Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation.

    PubMed

    Pardo, Beatriz; Rodrigues, Tiago B; Contreras, Laura; Garzón, Miguel; Llorente-Folch, Irene; Kobayashi, Keiko; Saheki, Takeyori; Cerdan, Sebastian; Satrústegui, Jorgina

    2011-01-01

    The glutamate-glutamine cycle faces a drain of glutamate by oxidation, which is balanced by the anaplerotic synthesis of glutamate and glutamine in astrocytes. De novo synthesis of glutamate by astrocytes requires an amino group whose origin is unknown. The deficiency in Aralar/AGC1, the main mitochondrial carrier for aspartate-glutamate expressed in brain, results in a drastic fall in brain glutamine production but a modest decrease in brain glutamate levels, which is not due to decreases in neuronal or synaptosomal glutamate content. In vivo (13)C nuclear magnetic resonance labeling with (13)C(2)acetate or (1-(13)C) glucose showed that the drop in brain glutamine is due to a failure in glial glutamate synthesis. Aralar deficiency induces a decrease in aspartate content, an increase in lactate production, and lactate-to-pyruvate ratio in cultured neurons but not in cultured astrocytes, indicating that Aralar is only functional in neurons. We find that aspartate, but not other amino acids, increases glutamate synthesis in both control and aralar-deficient astrocytes, mainly by serving as amino donor. These findings suggest the existence of a neuron-to-astrocyte aspartate transcellular pathway required for astrocyte glutamate synthesis and subsequent glutamine formation. This pathway may provide a mechanism to transfer neuronal-born redox equivalents to mitochondria in astrocytes.

  15. Utilization of Alternate Chirality Enantiomers in Microbial Communities

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    Our previous study of chirality led to interesting findings for some anaerobic extremophiles: the ability to metabolize substrates with alternate chirality enantiomers of amino acids and sugars. We have subsequently found that not just separate microbial species or strains but entire microbial communities have this ability. The functional division within a microbial community on proteo- and sugarlytic links was also reflected in a microbial diet with L-sugars and D-amino acids. Several questions are addressed in this paper. Why and when was this feature developed in a microbial world? Was it a secondary de novo adaptation in a bacterial world? Or is this a piece of genetic information that has been left in modern genomes as an atavism? Is it limited exclusively to prokaryotes, or does this ability also occur in eukaryotes? In this article, we have used a broader approach to study this phenomenon using anaerobic extremophilic strains from our laboratory collection. A series of experiments were performed on physiologically different groups of extremophilic anaerobes (pure and enrichment cultures). The following characteristics were studied: 1) the ability to grow on alternate chirality enantiomers -- L-sugars and D- amino acids; 2) Growth-inhibitory effect of alternate chirality enantiomers; 3) Stickland reaction with alternate chirality amino acids. The results of this research are presented in this paper.

  16. Measurement of metabolite variations and analysis of related gene expression in Chinese liquorice (Glycyrrhiza uralensis) plants under UV-B irradiation.

    PubMed

    Zhang, Xiao; Ding, Xiaoli; Ji, Yaxi; Wang, Shouchuang; Chen, Yingying; Luo, Jie; Shen, Yingbai; Peng, Li

    2018-04-18

    Plants respond to UV-B irradiation (280-315 nm wavelength) via elaborate metabolic regulatory mechanisms that help them adapt to this stress. To investigate the metabolic response of the medicinal herb Chinese liquorice (Glycyrrhiza uralensis) to UV-B irradiation, we performed liquid chromatography tandem mass spectrometry (LC-MS/MS)-based metabolomic analysis, combined with analysis of differentially expressed genes in the leaves of plants exposed to UV-B irradiation at various time points. Fifty-four metabolites, primarily amino acids and flavonoids, exhibited changes in levels after the UV-B treatment. The amino acid metabolism was altered by UV-B irradiation: the Asp family pathway was activated and closely correlated to Glu. Some amino acids appeared to be converted into antioxidants such as γ-aminobutyric acid and glutathione. Hierarchical clustering analysis revealed that various flavonoids with characteristic groups were induced by UV-B. In particular, the levels of some ortho-dihydroxylated B-ring flavonoids, which might function as scavengers of reactive oxygen species, increased in response to UV-B treatment. In general, unigenes encoding key enzymes involved in amino acid metabolism and flavonoid biosynthesis were upregulated by UV-B irradiation. These findings lay the foundation for further analysis of the mechanism underlying the response of G. uralensis to UV-B irradiation.

  17. Functional analysis of aromatic biosynthetic pathways in Pseudomonas putida KT2440

    PubMed Central

    Molina‐Henares, M. Antonia; García‐Salamanca, Adela; Molina‐Henares, A. Jesús; De La Torre, Jesús; Herrera, M. Carmen; Ramos, Juan L.; Duque, Estrella

    2009-01-01

    Summary Pseudomonas putida KT2440 is a non‐pathogenic prototrophic bacterium with high potential for biotechnological applications. Despite all that is known about this strain, the biosynthesis of essential chemicals has not been fully analysed and auxotroph mutants are scarce. We carried out massive mini‐Tn5 random mutagenesis and screened for auxotrophs that require aromatic amino acids. The biosynthesis of aromatic amino acids was analysed in detail including physical and transcriptional organization of genes, complementation assays and feeding experiments to establish pathway intermediates. There is a single pathway from chorismate leading to the biosynthesis of tryptophan, whereas the biosynthesis of phenylalanine and tyrosine is achieved through multiple convergent pathways. Genes for tryptophan biosynthesis are grouped in unlinked regions with the trpBA and trpGDE genes organized as operons and the trpI, trpE and trpF genes organized as single transcriptional units. The pheA and tyrA gene‐encoding multifunctional enzymes for phenylalanine and tyrosine biosynthesis are linked in the chromosome and form an operon with the serC gene involved in serine biosynthesis. The last step in the biosynthesis of these two amino acids requires an amino transferase activity for which multiple tyrB‐like genes are present in the host chromosome. PMID:21261884

  18. Synthesis of some glycoside analogs and related compounds from 9-amino-6-(methylthio)-9H-purine.

    PubMed

    Temple, C; Kussner, C L; Montgomery, J A

    1975-12-01

    Additional information on the anticancer activity of 9-amino-9H-purine-6(1H)-thione and its derivatives was sought by the synthesis of some 9-(substituted amino)-6-(methylthio)-9H-purines in which the 9-substituent contained functional groups capable of either reversible or irreversible binding with an enzymatic site. Condensation of 9-amino-6-(methylthio)-9H-purine (1) with some carbonyl compounds followed by hydride reduction of the azomethine linkage in the intermediates leads to the 2-pyrrolylmethyl (8), 2,3,4-trihydroxybutyl (10), and the 1,5-dihydroxy-2- and 3-pentyl (11 and 12) compounds. A 4-hydroxybutyl derivative (13) was obtained by alkylation of 18, the 9-acetyl derivative of 1, with 4-chlorobutyl acetate followed by saponification. The cyclization of 13 and 11 with a sulfonyl chloride gave the 9-pyrrolidin-1-yl (27) and the 9-[2-(tosyloxymethyl)pyrrolidin-1-yl] (28), respectively. Acylation of 1 with ethyl L-2-pyrrolidine-5-carboxylate and ethyl 1-methyl-5-pyrrolidone-3-carboxylate, respectively, in Me2SO containing NaH gave the corresponding amides 15 and 17. Alkylation of 18 with 1-bromo-2-chloroethane and epichlorohydrin gave the N-(2-chloroethyl) and N-(1,2-epoxy-3-propyl) derivatives 19 and 20. The chloro group of the chlorobutyl derivative of 18 was displaced with KSCN and NaN3, respectively, to give the thiocyanate and azido derivatives 23 and 24. Hydrogenation of the latter gave the amine (25), which was acylated with ethyl chloroformate to give the (ethoxycarbonyl)amino compound 26. None of these compounds showed activity against L1210 leukemia cells implanted ip in mice on a single-dose schedule, suggesting that the activity observed in the simpler 9-aminopurines resulted from cleavage of the hydrazino linkage to give pH-purine-6(1H)-thione.

  19. Evolution of Substrate Specificity within a Diverse Family of [beta/alpha]-Barrel-fold Basic Amino Acid Decarboxylases X-ray Structure Determination of Enzymes with Specificity for L-Arginine and Carboxynorspermidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Xiaoyi; Lee, Jeongmi; Michael, Anthony J.

    2010-08-26

    Pyridoxal 5{prime}-phosphate (PLP)-dependent basic amino acid decarboxylases from the {beta}/{alpha}-barrel-fold class (group IV) exist in most organisms and catalyze the decarboxylation of diverse substrates, essential for polyamine and lysine biosynthesis. Herein we describe the first x-ray structure determination of bacterial biosynthetic arginine decarboxylase (ADC) and carboxynorspermidine decarboxylase (CANSDC) to 2.3- and 2.0-{angstrom} resolution, solved as product complexes with agmatine and norspermidine. Despite low overall sequence identity, the monomeric and dimeric structures are similar to other enzymes in the family, with the active sites formed between the {beta}/{alpha}-barrel domain of one subunit and the {beta}-barrel of the other. ADC contains bothmore » a unique interdomain insertion (4-helical bundle) and a C-terminal extension (3-helical bundle) and it packs as a tetramer in the asymmetric unit with the insertions forming part of the dimer and tetramer interfaces. Analytical ultracentrifugation studies confirmed that the ADC solution structure is a tetramer. Specificity for different basic amino acids appears to arise primarily from changes in the position of, and amino acid replacements in, a helix in the {beta}-barrel domain we refer to as the 'specificity helix.' Additionally, in CANSDC a key acidic residue that interacts with the distal amino group of other substrates is replaced by Leu{sup 314}, which interacts with the aliphatic portion of norspermidine. Neither product, agmatine in ADC nor norspermidine in CANSDC, form a Schiff base to pyridoxal 5{prime}-phosphate, suggesting that the product complexes may promote product release by slowing the back reaction. These studies provide insight into the structural basis for the evolution of novel function within a common structural-fold.« less

  20. Antioxidant Activities, Metabolic Profiling, Proximate Analysis, Mineral Nutrient Composition of Salvadora persica Fruit Unravel a Potential Functional Food and a Natural Source of Pharmaceuticals.

    PubMed

    Kumari, Asha; Parida, Asish K; Rangani, Jaykumar; Panda, Ashok

    2017-01-01

    Salvadora persica is a medicinally important plant mainly used in oral hygiene. However, little attention has been given towards the nutritional prominence of this plant. This study encloses the proximate and mineral nutrient contents, amino acid composition, metabolite profiling and antioxidant potential of S. persica fruit. The ripen fruit contained substantial amount of sugars, mineral nutrients, carotenoids, polyphenols and flavonoids. The metabolic profiling of the fruit extract by GC-MS revealed a total of 22 metabolites comprising of sugars, sugar alcohols, organic acids, organic base, and aromatic silica compound. The identified metabolites have been previously reported to have potential antioxidant, antimicrobial, anti-hyperglycemic, and antitumor properties. The GC-MS analysis indicated high glucose and glucopyranose (247.62 and 42.90 mg g -1 FW respectively) contents in fruit of S. persica . The fruit extract demonstrated a significantly higher antioxidant and ROS scavenging properties along with high contents of mineral nutrients and essential amino acids. HPLC analysis revealed presence of essential and non-essential amino acid required for healthy body metabolism. The cysteine was found to be in highest amount (733.69 mg 100 g -1 DW) among all amino acids quantified. Specifically, compared to similar medicinal plants, previously reported as a source of non-conventional food and with some of the commercially important fruits, S. persica fruit appears to be a potential source of essential mineral nutrients, amino acids, vitamins (ascorbic acid and carotenoid) and pharmaceutically important metabolites contributing towards fulfilling the recommended daily requirement of these for a healthy human being. This is the first report establishing importance of S. persica fruit as nutraceuticals. The data presented here proposed that fruit of S. persica may be used as functional food or reinvigorating ingredient for processed food to reduce deficiency of nutrients among the vulnerable population group. The phytochemicals identified from S. persica fruit may be used as natural source for pharmaceutical preparations.

Top