Science.gov

Sample records for aminofluorene-modified dg adduct

  1. ACCUMULATION OF M1DG DNA ADDUCTS AFTER CHRONIC EXPOSURE TO PCBS, BUT NOT FROM ACUTE EXPOSURE TO DIOXIN-LIKE COMPOUNDS

    EPA Science Inventory

    ABSTRACT: Oxidative DNA damage is one of the key events leading to mutation and cancer. The present study examined the accumulation of M1dG DNA adducts, 3-(2’-deoxy-β-D-erythro-pentofuranosyl)-pyrimido[1,2-a]-purin-10(3H)-one, after single or yearly exposur...

  2. Base-Displaced Intercalated Conformation of the 2-Amino-3-methylimidazo[4,5-f]quinoline N(2)-dG DNA Adduct Positioned at the Nonreiterated G(1) in the NarI Restriction Site.

    PubMed

    Stavros, Kallie M; Hawkins, Edward K; Rizzo, Carmelo J; Stone, Michael P

    2015-07-20

    The conformation of an N(2)-dG adduct arising from the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a potent food mutagen, was determined in 5'-d(C(1)T(2)C(3)X(4)G(5)C(6)G(7)C(8)C(9)A(10)T(11)C(12))-3':5'-d(G(13)A(14)T(15)G(16)G(17)C(18)G(19)C(20)C(21)G(22)A(23)G(24))-3'; X = N(2)-dG-IQ, in which the modified nucleotide X(4) corresponds to G(1) in the 5'-d(G(1)G(2)CG(3)CC)-3' NarI restriction endonuclease site. Circular dichroism (CD) revealed blue shifts relative to the unmodified duplex, consistent with adduct-induced twisting, and a hypochromic effect for the IQ absorbance in the near UV region. NMR revealed that the N(2)-dG-IQ adduct adopted a base-displaced intercalated conformation in which the modified guanine remained in the anti conformation about the glycosidic bond, the IQ moiety intercalated into the duplex, and the complementary base C(21) was displaced into the major groove. The processing of the N(2)-dG-IQ lesion by hpol η is sequence-dependent; when placed at the reiterated G(3) position, but not at the G(1) position, this lesion exhibits a propensity for frameshift replication [Choi, J. Y., et al. (2006) J. Biol. Chem., 281, 25297-25306]. The structure of the N(2)-dG-IQ adduct at the nonreiterated G(1) position was compared to that of the same adduct placed at the G(3) position [Stavros, K. M., et al. (2014) Nucleic Acids Res., 42, 3450-3463]. CD indicted minimal spectral differences between the G(1) vs G(3) N(2)-dG-IQ adducts. NMR indicated that the N(2)-dG-IQ adduct exhibited similar base-displaced intercalated conformations at both the G(1) and G(3) positions. This result differed as compared to the corresponding C8-dG-IQ adducts placed at the same positions. The C8-dG-IQ adduct adopted a minor groove conformation when placed at position G(1) but a base-displaced intercalated conformation when placed at position G(3) in the NarI sequence. The present studies suggest that differences in lesion bypass by hpol η may be

  3. How Y-Family DNA polymerase IV is more accurate than Dpo4 at dCTP insertion opposite an N2-dG adduct of benzo[a]pyrene.

    PubMed

    Sholder, Gabriel; Creech, Amanda; Loechler, Edward L

    2015-11-01

    To bypass DNA damage, cells have Y-Family DNA polymerases (DNAPs). One Y-Family-class includes DNAP κ and DNAP IV, which accurately insert dCTP opposite N(2)-dG adducts, including from the carcinogen benzo[a]pyrene (BP). Another class includes DNAP η and DNAP V, which insert accurately opposite UV-damage, but inaccurately opposite BP-N(2)-dG. To investigate structural differences between Y-Family-classes, regions are swapped between DNAP IV (a κ/IV-class-member) and Dpo4 (a η/V-class-member); the kinetic consequences are evaluated via primer-extension studies with a BP-N(2)-dG-containing template. Four key structural elements are revealed. (1) Y-Family DNAPs have discreet non-covalent contacts between their little finger-domain (LF-Domain) and their catalytic core-domain (CC-Domain), which we call "non-covalent bridges" (NCBs). Arg37 and Arg38 in DNAP IV's CC-Domain near the active site form a non-covalent bridge (AS-NCB) by interacting with Glu251 and Asp252, respectively, in DNAP IV's LF-Domain. Without these interactions dATP/dGTP/dTTP misinsertions increase. DNAP IV's AS-NCB suppresses misinsertions better than Dpo4's equivalent AS-NCB. (2) DNAP IV also suppresses dATP/dGTP/dTTP misinsertions via a second non-covalent bridge, which is ∼8Å from the active site (Distal-NCB). Dpo4 has no Distal-NCB, rendering it inferior at dATP/dGTP/dTTP suppression. (3) dCTP insertion is facilitated by the larger minor groove opening near the active site in DNAP IV versus Dpo4, which is sensible given that Watson/Crick-like [dCTP:BP-N(2)-dG] pairing requires the BP-moiety to be in the minor groove. (4) Compared to Dpo4, DNAP IV has a smaller major groove opening, which suppresses dGTP misinsertion, implying BP-N(2)-dG bulk in the major groove during Hoogsteen syn-adduct-dG:dGTP pairing. In summary, DNAP IV has a large minor groove opening to enhance dCTP insertion, a plugged major groove opening to suppress dGTP misinsertion, and two non-covalent bridges (near and distal

  4. Base-Displaced Intercalated Conformation of the 2-Amino-3-methylimidazo[4,5-f]quinoline N2-dG DNA Adduct Positioned at the Nonreiterated G1 in the NarI Restriction Site

    PubMed Central

    2016-01-01

    The conformation of an N2-dG adduct arising from the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a potent food mutagen, was determined in 5′-d(C1T2C3X4G5C6G7C8C9A10T11C12)-3′:5′-d(G13A14T15G16G17C18G19C20C21G22A23G24)-3′; X = N2-dG-IQ, in which the modified nucleotide X4 corresponds to G1 in the 5′-d(G1G2CG3CC)-3′ NarI restriction endonuclease site. Circular dichroism (CD) revealed blue shifts relative to the unmodified duplex, consistent with adduct-induced twisting, and a hypochromic effect for the IQ absorbance in the near UV region. NMR revealed that the N2-dG-IQ adduct adopted a base-displaced intercalated conformation in which the modified guanine remained in the anti conformation about the glycosidic bond, the IQ moiety intercalated into the duplex, and the complementary base C21 was displaced into the major groove. The processing of the N2-dG-IQ lesion by hpol η is sequence-dependent; when placed at the reiterated G3 position, but not at the G1 position, this lesion exhibits a propensity for frameshift replication [Choi, J. Y., et al. (2006) J. Biol. Chem., 281, 25297–25306]. The structure of the N2-dG-IQ adduct at the nonreiterated G1 position was compared to that of the same adduct placed at the G3 position [Stavros, K. M., et al. (2014) Nucleic Acids Res., 42, 3450–3463]. CD indicted minimal spectral differences between the G1 vs G3N2-dG-IQ adducts. NMR indicated that the N2-dG-IQ adduct exhibited similar base-displaced intercalated conformations at both the G1 and G3 positions. This result differed as compared to the corresponding C8-dG-IQ adducts placed at the same positions. The C8-dG-IQ adduct adopted a minor groove conformation when placed at position G1 but a base-displaced intercalated conformation when placed at position G3 in the NarI sequence. The present studies suggest that differences in lesion bypass by hpol η may be mediated by differences in the 3′-flanking sequences, perhaps modulating the ability

  5. Meeting DG's

    ScienceCinema

    None

    2016-07-12

    Le DG J.Adams commente les 3 thèmes de la réunion: 1.) le prochain DG du Cern (qui sera H.Schopper) 2.) le LEP 3.) les conclusions du comité des finances concernant salaires, allocations etc. Discussion entre le DG J.Adams, Mons.Ullmann, chef du personel et l'auditoire

  6. Conformational and thermodynamic properties modulate the nucleotide excision repair of 2-aminofluorene and 2-acetylaminofluorene dG adducts in the NarI sequence

    PubMed Central

    Jain, Vipin; Hilton, Benjamin; Patnaik, Satyakam; Zou, Yue; Chiarelli, M. Paul; Cho, Bongsup P.

    2012-01-01

    Nucleotide excision repair (NER) is a major repair pathway that recognizes and corrects various lesions in cellular DNA. We hypothesize that damage recognition is an initial step in NER that senses conformational anomalies in the DNA caused by lesions. We prepared three DNA duplexes containing the carcinogen adduct N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene (FAAF) at G1, G2 or G3 of NarI sequence (5′-CCG1G2CG3CC-3′). Our 19F-NMR/ICD results showed that FAAF at G1 and G3 prefer syn S- and W-conformers, whereas anti B-conformer was predominant for G2. We found that the repair of FAAF occurs in a conformation-specific manner, i.e. the highly S/W-conformeric G3 and -G1 duplexes incised more efficiently than the B-type G2 duplex (G3∼G1 > G2). The melting and thermodynamic data indicate that the S- and W-conformers produce greater DNA distortion and thermodynamic destabilization. The N-deacetylated N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene (FAF) adducts in the same NarI sequence are repaired 2- to 3-fold less than FAAF: however, the incision efficiency was in order of G2∼G1 > G3, a reverse trend of the FAAF case. We have envisioned the so-called N-acetyl factor as it could raise conformational barriers of FAAF versus FAF. The present results provide valuable conformational insight into the sequence-dependent UvrABC incisions of the bulky aminofluorene DNA adducts. PMID:22241773

  7. NMR solution structure of a nonanucleotide duplex with a dG mismatch opposite a 10R adduct derived from trans addition of a deoxyadenosine N6-amino group to (-)-(7S,8R,9R,10S)-7,8-dihydroxy-9,10-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene.

    PubMed

    Schurter, E J; Yeh, H J; Sayer, J M; Lakshman, M K; Yagi, H; Jerina, D M; Gorenstein, D G

    1995-01-31

    A nonanucleotide in which (-)-(7S,8R,9R,10S)-7,8-dihydroxy-9,10-epoxy- 7,8,9,10-tetrahydrobenzo[a]pyrene (7-hydroxy group and epoxide oxygen are trans) is covalently bonded to the exocyclic N6-amino group of deoxyadenosine through trans addition at C10 of the epoxide (10R adduct) has been synthesized. The modified oligonucleotide d(GGTCA*CGAG) was incorporated into the duplex d(GGTCA*CGAG).d(CTCGGGACC), containing a dG mismatch opposite the modified base (dA*). Proton assignments for the solution structure of the duplex containing the 10R adduct were made using 2D TOCSY and NOESY NMR spectra. The complete hybrid relaxation matrix program, MORASS2.0, was used to generate NOESY distance constraints for iterative refinement using distance-restrained molecular dynamics calculations with AMBER4.0. The iteratively refined structure showed the hydrocarbon intercalated from the major groove immediately below the dC4-dG15 base pair and oriented toward the 5'-end of the modified strand. The modified dA is in an anti configuration, with the dG of the GA mismatch turned out into the major groove. Chemical shifts of the hydrocarbon protons and unusual chemical shifts of sugar protons were accounted for by this orientation of the adduct. The information available currently provides the foundation for the rational explanation of observed benzo[a]pyrene (BaP) structures and predictions for other BaP dG and dA adducts.

  8. Correlation between production of benzo(A)pyrene metabolites and BPDE I-DG adduct levels in human epithelial cells in vitro pretreated with cytochrome P450 inhibitors or inducer

    SciTech Connect

    Lehman, T.A.; Milo, G.E.

    1987-05-01

    Human epidermal keratinocytes were established from neonatal foreskins. Cultures were pretreated for 24 hr with either butylated hydroxyanisole (BHA), methyl butylated hydroxyanisole (MeBHA) or 7,8 benzoflavone (7,8BF). For metabolite detection studies, cultures were treated with radiolabeled benzo(a)pyrene (BP) for 24 hr. Ethyl acetate soluble metabolites were extracted for HPLC analysis. BHA and 7,8BF pretreatment both significantly decreased intracellular production of 7,8 diol BP compared to cultures treated only with radiolabeled BP. MeBHA pretreatment greatly increased intracellular 7,8 diol BP formation compared to BP treated controls. For DNA adduct analysis, cultures were pretreated as described above, and then treated for 24 hr with non-radiolabeled BP. Cellular DNA was isolated and /sup 32/P-postlabeled for adduct analysis. Cultures pretreated with either BHA or 7,8BF formed significantly fewer BPDE I-dG adducts than nonpretreated cultures, while cultures pretreated with MeBHa formed more BPDE I-dG adducts. Thus, BHA and 7,8BF act similarly in reducing BP activation and adduct formation while MeBHa, a structural analog of BHA, increases BP activation and adduct formation in human keratinocyte cultures in vitro.

  9. Chemistry and Biology of Aflatoxin-DNA Adducts

    SciTech Connect

    Stone, Michael P.; Banerjee, Surajit; Brown, Kyle L.; Egli, Martin

    2012-03-27

    Aspergillus flavus is a fungal contaminant of stored rice, wheat, corn, and other grainstuffs, and peanuts. This is of concern to human health because it produces the mycotoxin aflatoxin B{sub 1} (AFB{sub 1}), which is genotoxic and is implicated in the etiology of liver cancer. AFB{sub 1} is oxidized in vivo by cytochrome P450 to form aflatoxin B{sub 1} epoxide, which forms an N7-dG adduct (AFB{sub 1}-N7-dG) in DNA. The latter rearranges to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative that equilibrates between {alpha} and {beta} anomers of the deoxyribose. In DNA, both the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts intercalate above the 5'-face of the damaged guanine. Each produces G {yields} T transversions in Escherichia coli, but the AFB{sub 1}-{beta}-FAPY adduct is more mutagenic. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) provides a model for understanding error-prone bypass of the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts. It bypasses the AFB{sub 1}-N7-dG adduct, but it conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including mis-insertion of dATP, consistent with the G {yields} T mutations characteristic of AFB{sub 1} mutagenesis in E. coli. Crystallographic analyses of a series of binary and ternary complexes with the Dpo4 polymerase revealed differing orientations of the N7-C8 bond of the AFB{sub 1}-N7-dG adduct as compared to the N{sup 5}-C8 bond in the AFB{sub 1}-{beta}-FAPY adduct, and differential accommodation of the intercalated AFB{sub 1} moieties within the active site. These may modulate AFB{sub 1} lesion bypass by this polymerase.

  10. Bypass of Aflatoxin B[subscript 1] Adducts by the Sulfolobus solfataricus DNA Polymerase IV

    SciTech Connect

    Banerjee, Surajit; Brown, Kyle L.; Egli, Martin; Stone, Michael P.

    2012-07-18

    Aflatoxin B{sub 1} (AFB{sub 1}) is oxidized to an epoxide in vivo, which forms an N7-dG DNA adduct (AFB{sub 1}-N7-dG). The AFB{sub 1}-N7-dG can rearrange to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative. Both AFB{sub 1}-N7-dG and the {beta}-anomer of the AFB{sub 1}-FAPY adduct yield G {yields} T transversions in Escherichia coli, but the latter is more mutagenic. We show that the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) bypasses AFB{sub 1}-N7-dG in an error-free manner but conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including misinsertion of dATP, consistent with the G {yields} T mutations observed in E. coli. Three ternary (Dpo4-DNA-dNTP) structures with AFB{sub 1}-N7-dG adducted template:primers have been solved. These demonstrate insertion of dCTP opposite the AFB{sub 1}-N7-dG adduct, and correct vs incorrect insertion of dATP vs dTTP opposite the 5'-template neighbor dT from a primed AFB{sub 1}-N7-dG:dC pair. The insertion of dTTP reveals hydrogen bonding between the template N3 imino proton and the O{sup 2} oxygen of dTTP, and between the template T O{sup 4} oxygen and the N3 imino proton of dTTP, perhaps explaining why this polymerase does not efficiently catalyze phosphodiester bond formation from this mispair. The AFB{sub 1}-N7-dG maintains the 5'-intercalation of the AFB{sub 1} moiety observed in DNA. The bond between N7-dG and C8 of the AFB{sub 1} moiety remains in plane with the alkylated guanine, creating a 16{sup o} inclination of the AFB{sub 1} moiety with respect to the guanine. A binary (Dpo4-DNA) structure with an AFB{sub 1}-FAPY adducted template:primer also maintains 5'-intercalation of the AFB{sub 1} moiety. The {beta}-deoxyribose anomer is observed. Rotation about the FAPY C5-N{sup 5} bond orients the bond between N{sup 5} and C8 of the AFB{sub 1} moiety out of plane in the 5'-direction, with respect to the FAPY base. The formamide group extends in the 3'-direction. This improves stacking of the AFB{sub 1

  11. Adenine versus guanine DNA adducts of aristolochic acids: role of the carcinogen-purine linkage in the differential global genomic repair propensity.

    PubMed

    Kathuria, Preetleen; Sharma, Purshotam; Wetmore, Stacey D

    2015-09-03

    Computational modeling is employed to provide a plausible structural explanation for the experimentally-observed differential global genome repair (GGR) propensity of the ALII-N(2)-dG and ALII-N(6)-dA DNA adducts of aristolochic acid II. Our modeling studies suggest that an intrinsic twist at the carcinogen-purine linkage of ALII-N(2)-dG induces lesion site structural perturbations and conformational heterogeneity of damaged DNA. These structural characteristics correlate with the relative repair propensities of AA-adducts, where GGR recognition occurs for ALII-N(2)-dG, but is evaded for intrinsically planar ALII-N(6)-dA that minimally distorts DNA and restricts the conformational flexibility of the damaged duplex. The present analysis on the ALII adduct model systems will inspire future experimental studies on these adducts, and thereby may extend the list of structural factors that directly correlate with the propensity for GGR recognition.

  12. Accurate characterization of carcinogenic DNA adducts using MALDI tandem time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Barnes, Charles A.; Chiu, Norman H. L.

    2009-01-01

    Many chemical carcinogens and their in vivo activated metabolites react readily with genomic DNA, and form covalently bound carcinogen-DNA adducts. Clinically, carcinogen-DNA adducts have been linked to various cancer diseases. Among the current methods for DNA adduct analysis, mass spectroscopic method allows the direct measurement of unlabeled DNA adducts. The goal of this study is to explore the use of matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to determine the identity of carcinogen-DNA adducts. Two of the known carcinogenic DNA adducts, namely N-(2'-deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenyl-imidazo [4,5-b] pyridine (dG-C8-PhIP) and N-(2'-deoxyguanosin-8yl)-4-aminobiphenyl (dG-C8-ABP), were selected as our models. In MALDI-TOF MS measurements, the small matrix ion and its cluster ions did not interfere with the measurements of both selected dG adducts. To achieve a higher accuracy for the characterization of selected dG adducts, 1 keV collision energy in MALDI-TOF/TOF MS/MS was used to measure the adducts. In comparison to other MS/MS techniques with lower collision energies, more extensive precursor ion dissociations were observed. The detection of the corresponding fragment ions allowed the identities of guanine, PhIP or ABP, and the position of adduction to be confirmed. Some of the fragment ions of dG-C8-PhIP have not been reported by other MS/MS techniques.

  13. Use of LC-MS/MS and stable isotopes to differentiate hydroxymethyl and methyl DNA adducts from formaldehyde and nitrosodimethylamine.

    PubMed

    Lu, Kun; Craft, Sessaly; Nakamura, Jun; Moeller, Benjamin C; Swenberg, James A

    2012-03-19

    Formaldehyde is a known human and animal carcinogen that forms DNA adducts, and causes mutations. While there is widespread exposure to formaldehyde in the environment, formaldehyde is also an essential biochemical in all living cells. The presence of both endogenous and exogenous sources of formaldehyde makes it difficult to develop exposure-specific DNA biomarkers. Furthermore, chemicals such as nitrosodimethylamine form one mole of formaldehyde for every mole of methylating agent, raising questions about potential cocarcinogenesis. Formaldehyde-induced hydroxymethyl DNA adducts are not stable and need to be reduced to stable methyl adducts for detection, which adds another layer of complexity to identifying the origins of these adducts. In this study, highly sensitive mass spectrometry methods and isotope labeled compounds were used to differentiate between endogenous and exogenous hydroxymethyl and methyl DNA adducts. We demonstrate that N(2)-hydroxymethyl-dG is the primary DNA adduct formed in cells following formaldehyde exposure. In addition, we show that alkylating agents induce methyl adducts at N(2)-dG and N(6)-dA positions, which are identical to the reduced forms of hydroxymethyl adducts arising from formaldehyde. The use of highly sensitive LC-MS/MS and isotope labeled compounds for exposure solves these challenges and provides mechanistic insights on the formation and role of these DNA adducts.

  14. Isolevuglandin Adducts in Disease

    PubMed Central

    Bi, Wenzhao

    2015-01-01

    Abstract Significance: A diverse family of lipid-derived levulinaldehydes, isolevuglandins (isoLGs), is produced by rearrangement of endoperoxide intermediates generated through both cyclooxygenase (COX) and free radical-induced cyclooxygenation of polyunsaturated fatty acids and their phospholipid esters. The formation and reactions of isoLGs with other biomolecules has been linked to alcoholic liver disease, Alzheimer's disease, age-related macular degeneration, atherosclerosis, cardiac arythmias, cancer, end-stage renal disease, glaucoma, inflammation of allergies and infection, mitochondrial dysfunction, multiple sclerosis, and thrombosis. This review chronicles progress in understanding the chemistry of isoLGs, detecting their production in vivo and understanding their biological consequences. Critical Issues: IsoLGs have never been isolated from biological sources, because they form adducts with primary amino groups of other biomolecules within seconds. Chemical synthesis enabled investigation of isoLG chemistry and detection of isoLG adducts present in vivo. Recent Advances: The first peptide mapping and sequencing of an isoLG-modified protein present in human retina identified the modification of a specific lysyl residue of the sterol C27-hydroxylase Cyp27A1. This residue is preferentially modified by iso[4]LGE2 in vitro, causing loss of function. Adduction of less than one equivalent of isoLG can induce COX-associated oligomerization of the amyloid peptide Aβ1-42. Adduction of isoLGE2 to phosphatidylethanolamines causes gain of function, converting them into proinflammatory isoLGE2-PE agonists that foster monocyte adhesion to endothelial cells. Future Directions: Among the remaining questions on the biochemistry of isoLGs are the dependence of biological activity on isoLG isomer structure, the structures and mechanism of isoLG-derived protein–protein and DNA–protein cross-link formation, and its biological consequences. Antioxid. Redox Signal. 22

  15. Characterization of Nitrogen Mustard Formamidopyrimidine Adduct Formation of bis-(2-Chloroethyl)ethylamine with Calf Thymus DNA and a Human Mammary Cancer Cell Line

    PubMed Central

    Gruppi, Francesca; Hejazi, Leila; Christov, Plamen P.; Krishnamachari, Sesha; Turesky, Robert J.; Rizzo, Carmelo J.

    2015-01-01

    A robust, quantitative ultraperformance liquid chromatography ion trap multistage scanning mass spectrometric (UPLC/MS3) method was established to characterize and measure five deoxyguanosine (dG) adducts formed by reaction of the chemotherapeutic nitrogen mustard (NM) bis-(2-chloroethyl)ethylamine with calf thymus (CT) DNA. In addition to the known N7-guanine (NM-G) adduct and its crosslink (G-NM-G), the ring-opened formamidopyrimidine (FapyG) mono-adduct (NM-FapyG) and cross-links in which one (FapyG-NM-G) or both (FapyG-NM-FapyG) guanines underwent ring-opening to FapyG units were identified. Authentic standards of all adducts were synthesized and characterized by NMR and mass spectrometry. These adducts were quantified in CT DNA treated with NM (1 μM) as their deglycosylated bases. A two-stage neutral thermal hydrolysis was developed to mitigate the artifactual formation of ring-opened FapyG adducts involving hydrolysis of the cationic adduct at 37 °C, followed by hydrolysis of the FapyG adducts at 95 °C. The limit of quantification values ranged between 0.3 and 1.6 adducts per 107 DNA bases, when the equivalent of 5 μg DNA hydrolysate was assayed on column. The principal adduct formed was the G-NM-G cross-link, followed by the NM-G mono-adduct; the FapyG-NM-FapyG adduct was at the limit of detection. The NM-FapyG adducts formed in CT DNA at a level of ~20% that of the NM-G adduct. NM-FapyG has not been previously quanitified and the FapyG-NM-G and FapyG-NM-FapyG adducts have not be previously characterized. Our validated analytical method was then applied to measure DNA adduct formation in the MDA-MB-231 mammary tumor cell line exposed to NM (100 μM) for 24 h. The major adduct formed was NM-G (970 adducts per 107 bases), followed by G-NM-G (240 adducts per 107 bases) and NM-FapyG (180 adducts per 107 bases), and lastly the FapyG-NM-G cross-link adduct (6.0 adducts per 107 bases). These lesions are expected to contribute to the NM-mediated toxicity and

  16. The Degradation of dG Phosphoramidites in Solution.

    PubMed

    Hargreaves, John S; Kaiser, Robert; Wolber, Paul K

    2015-01-01

    The reaction of 2'-deoxynucleoside phosphoramidites with water is an important degradation reaction that limits the lifetimes of reagents used for chemical deoxyoligonucleotide synthesis. The hydrolysis of nucleoside phosphoramidites in solution has therefore been investigated. The degree of degradation depends not only on the presence of water but also on the specific nucleoside, 2'-deoxyguanosine (dG) being especially susceptible. Additionally, the nature of the group protecting the exocyclic amine on the nucleoside base strongly influences the rate of hydrolysis. For dG, the degradation is second order in phosphoramidite concentration, indicating autocatalysis of the hydrolysis reaction. Comparison of the degradation rates of dG phosphoramidites with different protecting groups as well as with phosphoramidites containing bases that are structurally similar to dG affords clues to the nature of how dG catalyzes its own destruction and indicates a direct correlation between ease of protecting group removal and propensity to undergo autocatalytic degradation.

  17. Alcohol, Aldehydes, Adducts and Airways

    PubMed Central

    Sapkota, Muna; Wyatt, Todd A.

    2015-01-01

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381

  18. DEVELOPMENT OF HFE SECTIONS OF DG-1145.

    SciTech Connect

    HIGGINS,J.C.; OHARA, J.M.; BONGARRA, J.

    2007-03-26

    For the licensing of the current fleet of commercial nuclear power plants (NPPs), the Nuclear Regulatory Commission (NRC) used two key documents, NUREG-0800 and Regulatory Guide (RG) 1.70. RG 1.70 provided guidance to applicants on the contents needed in their Safety Analysis Reports (SARs) submitted as part of their application to construct or operate an NPP. NUREG-0800, the NRC Standard Review Plan (SRP), provides guidance to the NRR staff reviewers on performing their safety reviews of these applications. As part of the preparation for a new wave of improved NPP designs the NRC is in the process of updating the SRP and is also developing a new RG designated as draft RG or DG-1145, ''Combined License Applications for Nuclear Power Plants (LWR Edition).'' This will eventually become RG 1.206 and will take the place of RG 1.70. This will provide guidance for combined license (COL) applicants, as well as for other 10CFR Part 52 variations that are permitted.

  19. Malondialdehyde–Deoxyguanosine Adducts among Workers of a Thai Industrial Estate and Nearby Residents

    PubMed Central

    Peluso, Marco; Srivatanakul, Petcharin; Munnia, Armelle; Jedpiyawongse, Adisorn; Ceppi, Marcello; Sangrajrang, Suleeporn; Piro, Sara; Boffetta, Paolo

    2010-01-01

    Background Humans living near industrial point emissions can experience high levels of exposures to air pollutants. Map Ta Phut Industrial Estate in Thailand is the location of the largest steel, oil refinery, and petrochemical factory complexes in Southeast Asia. Air pollution is an important source of oxidative stress and reactive oxygen species, which interact with DNA and lipids, leading to oxidative damage and lipid peroxidation, respectively. Objective We measured the levels of malondialdehyde–deoxyguanosine (dG) adducts, a biomarker of oxidative stress and lipid peroxidation, in petrochemical workers, nearby residents, and subjects living in a control district without proximity to industrial sources. Design We conducted a cross-sectional study to compare the prevalence of malondialdehyde-dG adducts in groups of subjects experiencing various degrees of air pollution. Results The multivariate regression analysis shows that the adduct levels were associated with occupational and environmental exposures to air pollution. The highest adduct level was observed in the steel factory workers. In addition, the formation of DNA damage tended to be associated with tobacco smoking, but without reaching statistical significance. A nonsignificant increase in DNA adducts was observed after 4–6 years of employment among the petrochemical complexes. Conclusions Air pollution emitted from the Map Ta Phut Industrial Estate complexes was associated with increased adduct levels in petrochemical workers and nearby residents. Considering the mutagenic potential of DNA lesions in the carcinogenic process, we recommend measures aimed at reducing the levels of air pollution. PMID:20056580

  20. Base sequence effects in bending induced by bulky carcinogen-DNA adducts: experimental and computational analysis.

    PubMed

    Ruan, Q; Zhuang, P; Li, S; Perlow, R; Srinivasan, A R; Lu, X J; Broyde, S; Olson, W K; Geacintov, N E

    2001-09-04

    The covalent binding of bulky mutagenic or carcinogenic compounds to DNA can lead to bending, which could significantly alter the interactions of DNA with critical replication and transcription proteins. The impact of adducts derived from the highly reactive bay region enantiomeric (+)- and (-)-anti-7,8-diol-9,10-epoxide derivatives of benzo[a]pyrene (BPDE) are of interest because the (+)-7R,8S,9S,10R-anti-BPDE enantiomer is highly tumorigenic in rodents, while the (-)-7S,8R,9R,10S-anti-BPDE enantiomer is not. Both (+)- and (-)-anti-BPDE bind covalently with DNA predominantly by trans addition at the exocyclic amino group of guanine to yield 10S (+)- and 10R (-)-trans-anti-[BP]-N(2)-dG adducts. We have synthesized a number of different oligonucleotides with single (+)- and (-)-trans-anti-[BP]-N(2)-dG adducts (G) in the base sequence context XG*Y, where X and Y are different DNA bases. The G* residues were positioned at or close to the center of 11 base pair ( approximately 1 helical turn) or 16 base pair ( approximately 1.5 turns) duplexes. All bases, except for X and Y and their partners, were identical. These sequences were self-ligated with T4 ligase to form multimers that yield a ladder of bands upon electrophoresis in native polyacrylamide gels. The extent of bending in each oligonucleotide was assessed by monitoring the decrease in gel mobilities of these linear, self-ligated oligomers, relative to unmodified oligonucleotides of the same base sequence. The extent of global bending was then estimated using a sequence-specific three-dimensional model from which the values of the base-pair step parameter roll adjacent to the lesion site could be extracted. We find that (+)-trans-anti-[BP]-N(2)-dG adducts are considerably more bent than the (-) isomers regardless of sequence and that A-T base pairs flanking the [BP]-N(2)-dG lesion site allow for local flexibility consistent with adduct conformational heterogeneity. Interestingly, the fit of computed versus

  1. The role of polycyclic aromatic hydrocarbon-DNA adducts in inducing mutations in mouse skin

    PubMed Central

    Chakravarti, Dhrubajyoti; Venugopal, Divya; Mailander, Paula C.; Meza, Jane L.; Higginbotham, Sheila; Cavalieri, Ercole L.; Rogan, Eleanor G.

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAH) form stable and depurinating DNA adducts in mouse skin to induce preneoplastic mutations. Some mutations transform cells, which then clonally expand to establish tumors. Strong clues about the mutagenic mechanism can be obtained if the PAH-DNA adducts can be correlated with both preneoplastic and tumor mutations. To this end, we studied mutagenesis in PAH-treated early preneoplastic skin (1 day after exposure) and in the induced papillomas in SENCAR mice. Papillomas were studied by PCR amplification of the H-ras gene and sequencing. For benzo[a]pyrene (BP), BP-7,8-dihydrodiol (BPDHD), 7,12-dimethylbenz[a]anthracene (DMBA) and dibenzo[a,l]pyrene (DB[a,l]P), the codon 13 (GGC to GTC) and codon 61 (CAA to CTA) mutations in papillomas corresponded to the relative levels of Gua and Ade-depurinating adducts, despite BP and BPDHD forming significant amounts of stable DNA adducts. Such a relationship was expected for DMBA and DB[a,l]P, as they formed primarily depurinating adducts. These results suggest that depurinating adducts play a major role in forming the tumorigenic mutations. To validate this correlation, preneoplastic skin mutations were studied by cloning H-ras PCR products and sequencing individual clones. DMBA- and DB[a,l]P-treated skin showed primarily A.T to G.C mutations, which correlated with the high ratio of the Ade/Gua-depurinating adducts. Incubation of skin DNA with T.G-DNA glycosylase eliminated most of these A.T to G.C mutations, indicating that they existed as G.T heteroduplexes, as would be expected if they were formed by errors in the repair of abasic sites generated by the depurinating adducts. BP and its metabolites induced mainly G.C to T.A mutations in preneoplastic skin. However, PCR over unrepaired anti-BPDE-N2dG adducts can generate similar mutations as artifacts of the study protocol, making it difficult to establish an adduct-mutation correlation for determining which BP-DNA adducts induce the early

  2. Base-Displaced Intercalated Structure of the N-(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone DNA Adduct.

    PubMed

    Politica, Dustin A; Malik, Chanchal K; Basu, Ashis K; Stone, Michael P

    2015-12-21

    3-Nitrobenzanthrone (3-NBA), an environmental mutagen found in diesel exhaust and a suspected carcinogen, undergoes metabolic reduction followed by reaction with DNA to form aminobenzanthrone (ABA) adducts, with the major alkylation product being N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (C8-dG-ABA). Site-specific synthesis of the C8-dG-ABA adduct in the oligodeoxynucleotide 5'-d(GTGCXTGTTTGT)-3':5'-d(ACAAACACGCAC)-3'; X = C8-dG-ABA adduct, including codons 272-275 of the p53 gene, has allowed for investigation into the structural and thermodynamic properties of this adduct. The conformation of the C8-dG-ABA adduct was determined using NMR spectroscopy and was refined using molecular dynamics (MD) calculations restrained by experimentally determined interproton distance restraints obtained from NOE experiments. The refined structure revealed that the C8-dG-ABA adduct formed a base-displaced intercalated conformation. The adducted guanine was shifted into the syn conformation about the glycosidic bond. The 5'- and 3'-neighboring base pairs remained intact. While this facilitated π-stacking interactions between the ABA moiety and neighboring bases, the thermal melting temperature (Tm) of the adduct-containing duplex showed a decrease of 11 °C as compared to the corresponding unmodified oligodeoxynucleotide duplex. Overall, in this sequence, the base-displaced intercalated conformation of the C8-dG-ABA lesion bears similarity to structures of other arylamine C8-dG adducts. However, in this sequence, the base-displaced intercalated conformation for the C8-dG-ABA adduct differs from the conformation of the N(2)-dG-ABA adduct reported by de los Santos and co-workers, in which it is oriented in the minor groove toward the 5' end of the duplex, with the modified guanine remaining in the anti conformation about the glyosidic torsion angle, and the complementary base remaining within the duplex. The results are discussed in relationship to differences between the C8-d

  3. Bulge Migration of the Malondialdehdye OPdG DNA Adduct When Placed Opposite a Two-Base Deletion in the (CpG)3 Frameshift Hotspot of the Salmonella typhimurium hisD3052 Gene

    PubMed Central

    Wang, Yazhen; Schnetz-Boutaud, Nathalie C.; Saleh, Sam; Marnett, Lawrence J.; Stone, Michael P.

    2009-01-01

    The OPdG adduct N2-(3-oxo-1-propenyl)dG, formed in DNA exposed to malondialdehyde, was introduced into 5′-d(ATCGCXCGGCATG)-3′•5′-d(CATGCCGCGAT)-3′ at pH 7 (X = OPdG). The OPdG adduct is the base-catalyzed rearrangement product of the M1dG adduct, 3-(β-d-ribofuranosyl)pyrimido[1,2-a]purin-10(3H)-one. This duplex, named the OPdG-2BD oligodeoxynucleotide, was derived from a frameshift hotspot of the Salmonella typhimuium hisD3052 gene and contained a two-base deletion in the complementary strand. NMR spectroscopy revealed that the OPdG-2BD oligodeoxynucleotide underwent rapid bulge migration. This hindered its conversion to the M1dG-2BD duplex, in which the bulge was localized and consisted of the M1dG adduct and the 3′-neighbor dC [Schnetz-Boutaud, N. C., Saleh, S., Marnett, L. J., and Stone, M. P. (2001) Biochemistry 40, 15638−15649]. The spectroscopic data suggested that bulge migration transiently positioned OPdG opposite dC in the complementary strand, hindering formation of the M1dG-2BD duplex, or alternatively, reverting rapidly formed intermediates in the OPdG to M1dG reaction pathway when dC was placed opposite from OPdG. The approach of initially formed M1dG-2BD or OPdG-2BD duplexes to an equilibrium mixture of the M1dG-2BD and OPdG-2BD duplexes was monitored as a function of time, using NMR spectroscopy. Both samples attained equilibrium in ∼140 days at pH 7 and 25 °C. PMID:17645303

  4. The N(2)-Furfuryl-deoxyguanosine Adduct Does Not Alter the Structure of B-DNA.

    PubMed

    Ghodke, Pratibha P; Gore, Kiran R; Harikrishna, S; Samanta, Biswajit; Kottur, Jithesh; Nair, Deepak T; Pradeepkumar, P I

    2016-01-15

    N(2)-Furfuryl-deoxyguanosine (fdG) is carcinogenic DNA adduct that originates from furfuryl alcohol. It is also a stable structural mimic of the damage induced by the nitrofurazone family of antibiotics. For the structural and functional studies of this model N(2)-dG adduct, reliable and rapid access to fdG-modified DNAs are warranted. Toward this end, here we report the synthesis of fdG-modified DNAs using phosphoramidite chemistry involving only three steps. The functional integrity of the modified DNA has been verified by primer extension studies with DNA polymerases I and IV from E. coli. Introduction of fdG into a DNA duplex decreases the Tm by ∼1.6 °C/modification. Molecular dynamics simulations of a DNA duplex bearing the fdG adduct revealed that though the overall B-DNA structure is maintained, this lesion can disrupt W-C H-bonding, stacking interactions, and minor groove hydrations to some extent at the modified site, and these effects lead to slight variations in the local base pair parameters. Overall, our studies show that fdG is tolerated at the minor groove of the DNA to a better extent compared with other bulky DNA damages, and this property will make it difficult for the DNA repair pathways to detect this adduct.

  5. Base-Displaced Intercalated Structure of the N-(2′-Deoxyguanosin-8-yl)-3-aminobenzanthrone DNA Adduct

    PubMed Central

    Politica, Dustin A.; Malik, Chanchal K.; Basu, Ashis K.; Stone, Michael P.

    2016-01-01

    3-Nitrobenzanthrone (3-NBA), an environmental mutagen found in diesel exhaust and a suspected carcinogen, undergoes metabolic reduction followed by reaction with DNA to form aminobenzanthrone (ABA) adducts, with the major alkylation product being N-(2′-deoxyguanosin-8-yl)-3-aminobenzanthrone (C8-dG-ABA). Site-specific synthesis of the C8-dG-ABA adduct in the oligodeoxynucleotide 5'-d(GTGCXTGTTTGT)-3':5'-d(ACAAACACGCAC)-3'; X = C8-dG-ABA adduct, including codons 272-275 of the p53 gene, has allowed for investigation into the structural and thermodynamic properties of this adduct. The conformation of the C8-dG-ABA adduct was determined using NMR spectroscopy and was refined using molecular dynamics (MD) calculations restrained by experimentally determined interproton distance restraints obtained from NOE experiments. The refined structure revealed that the C8-dG-ABA adduct formed a base-displaced intercalated conformation. The adducted guanine was shifted into the syn conformation about the glycosidic bond. The 5'- and 3'-neighboring base pairs remained intact. While this facilitated π-stacking interactions between the ABA moiety and neighboring bases, the thermal melting temperature (Tm) of the adduct-containing duplex showed a decrease of 11 °C as compared to the corresponding unmodified oligodeoxynucleotide duplex. Overall, in this sequence, the base-displaced intercalated conformation of the C8-dG-ABA lesion bears similarity to structures of other arylamine C8-dG adducts. However, in this sequence, the base-displaced intercalated conformation for the C8-dG-ABA adduct differs from the conformation of the N2-dG-ABA adduct reported by de los Santos and co-workers, which oriented in the minor groove towards the 5' end of the duplex, with the modified guanine remaining in the anti conformation about the glyosidic torsion angle, and the complementary base remaining within the duplex. The results are discussed in relationship to differences between the C8-dG-ABA and

  6. Specificity of mutagenesis by 4-aminobiphenyl: mutations at G residues in bacteriophage M13 DNA and G-->C transversions at a unique dG(8-ABP) lesion in single-stranded DNA.

    PubMed

    Verghis, S B; Essigmann, J M; Kadlubar, F F; Morningstar, M L; Lasko, D D

    1997-12-01

    Mutagenesis by the human bladder carcinogen 4-aminobiphenyl (ABP) was studied in single-stranded DNA from a bacteriophage M13 cloning vector. In comparison to ABP lesions in double-stranded DNA, lesions in single-stranded DNA were approximately 70-fold more mutagenic and 50-fold more genotoxic. Sequencing analysis of ABP-induced mutations in the lacZ gene revealed exclusively base-pair substitutions, with over 80% of the mutations occurring at G sites; the G at position 6310 accounted for 25% of the observed mutations. Among the sequence changes at G sites, G-->T transversions predominated, followed by G-->C transversions and G-->A transitions. In order to further elucidate the mutagenic mechanism of ABP, an oligonucleotide containing the major DNA adduct, N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG(8-ABP)), was situated within the PstI site of a single-stranded M13 genome. After in vivo replication of the adduct containing ABP-modified and control (unadducted) genomes, the mutational frequency and mutational specificity of the dG(8-ABP) lesion were determined. The targeted mutational efficiency was approximately 0.01%, and the primary mutation observed was the G-->C transversion. Thus dG(8-ABP), albeit weakly mutagenic at the PstI site, can contribute to the mutational spectrum of ABP lesions.

  7. WATER VAPOR IN THE PROTOPLANETARY DISK OF DG Tau

    SciTech Connect

    Podio, L.; Dougados, C.; Thi, W.-F.; Menard, F.; Pinte, C.; Codella, C.; Cabrit, S.; Nisini, B.; Sandell, G.; Williams, J. P.; Testi, L.; Woitke, P.

    2013-03-20

    Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high-excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the outer disk, where most water ice reservoirs are stored, was only reported in the nearby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para-water ground-state transitions at 557 and 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are {approx}19-26 times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H{sub 2}O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K and producing the observed bright water lines. The models suggest a disk mass of 0.015-0.1 M{sub Sun }, consistent with the estimated minimum mass of the solar nebula before planet formation, and a water reservoir of {approx}10{sup 2}-10{sup 3} Earth oceans in vapor and {approx}100 times larger in the form of ice. Hence, this detection supports the scenario of ocean delivery on terrestrial planets by the impact of icy bodies forming in the outer disk.

  8. Dynamic Rupture Benchmarking of the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Pelties, C.; Gabriel, A.

    2012-12-01

    We will verify the arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) method in various test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite (Harris et al. 2009). The ADER-DG scheme is able to solve the spontaneous rupture problem with high-order accuracy in space and time on three-dimensional unstructured tetrahedral meshes. Strong mesh coarsening or refinement at areas of interest can be applied to keep the computational costs feasible. Moreover, the method does not generate spurious high-frequency contributions in the slip rate spectra and therefore does not require any artificial damping as demonstrated in previous presentations and publications (Pelties et al. 2010 and 2012). We will show that the mentioned features hold also for more advanced setups as e.g. a branching fault system, heterogeneous background stresses and bimaterial faults. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies. References: Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise, Seismological Research Letters, vol. 80, no. 1, pages 119-126, 2009 Pelties, C., J. de la Puente, and M. Kaeser, Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method, AGU 2010 Fall Meeting, abstract #S21C-2068 Pelties, C., J. de la Puente, J.-P. Ampuero, G. Brietzke, and M. Kaeser, Three-Dimensional Dynamic Rupture Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, JGR. - Solid Earth, VOL. 117, B02309, 2012

  9. Dynamic Rupture Benchmarking of the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; Pelties, Christian

    2013-04-01

    We will verify the arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) method in various test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite (Harris et al. 2009). The ADER-DG scheme is able to solve the spontaneous rupture problem with high-order accuracy in space and time on three-dimensional unstructured tetrahedral meshes. Strong mesh coarsening or refinement at areas of interest can be applied to keep the computational costs feasible. Moreover, the method does not generate spurious high-frequency contributions in the slip rate spectra and therefore does not require any artificial damping as demonstrated in previous presentations and publications (Pelties et al. 2010 and 2012). We will show that the mentioned features hold also for more advanced setups as e.g. a branching fault system, heterogeneous background stresses and bimaterial faults. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies. References: Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise, Seismological Research Letters, vol. 80, no. 1, pages 119-126, 2009 Pelties, C., J. de la Puente, and M. Kaeser, Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method, AGU 2010 Fall Meeting, abstract #S21C-2068 Pelties, C., J. de la Puente, J.-P. Ampuero, G. Brietzke, and M. Kaeser, Three-Dimensional Dynamic Rupture Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, JGR. - Solid Earth, VOL. 117, B02309, 2012

  10. DG Planning with Amalgamation of Operational and Reliability Considerations

    NASA Astrophysics Data System (ADS)

    Battu, Neelakanteshwar Rao; Abhyankar, A. R.; Senroy, Nilanjan

    2016-04-01

    Distributed Generation has been playing a vital role in dealing issues related to distribution systems. This paper presents an approach which provides policy maker with a set of solutions for DG placement to optimize reliability and real power loss of the system. Optimal location of a Distributed Generator is evaluated based on performance indices derived for reliability index and real power loss. The proposed approach is applied on a 15-bus radial distribution system and a 18-bus radial distribution system with conventional and wind distributed generators individually.

  11. Identification of three major DNA adducts formed by the carcinogenic air pollutant 3-nitrobenzanthrone in rat lung at the C8 and N2 position of guanine and at the N6 position of adenine.

    PubMed

    Arlt, Volker M; Schmeiser, Heinz H; Osborne, Martin R; Kawanishi, Masanobu; Kanno, Takaharu; Yagi, Takashi; Phillips, David H; Takamura-Enya, Takeji

    2006-05-01

    3-Nitrobenzanthrone (3-NBA) is a potent mutagen and potential human carcinogen identified in diesel exhaust and ambient air particulate matter. Previously, we detected the formation of 3-NBA-derived DNA adducts in rodent tissues by 32P-postlabeling, all of which are derived from reductive metabolites of 3-NBA bound to purine bases, but structural identification of these adducts has not yet been reported. We have now prepared 3-NBA-derived DNA adduct standards for 32P-postlabeling by reacting N-acetoxy-3-aminobenzanthrone (N-Aco-ABA) with purine nucleotides. Three deoxyguanosine (dG) adducts have been characterised as N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone-3'-phosphate (dG3'p-C8-N-ABA), 2-(2'-deoxyguanosin-N2-yl)-3-aminobenzanthrone-3'-phosphate (dG3'p-N2-ABA) and 2-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone-3'-phosphate (dG3'p-C8-C2-ABA), and a deoxyadenosine (dA) adduct was characterised as 2-(2'-deoxyadenosin-N6-yl)-3-aminobenzanthrone-3'-phosphate (dA3'p-N6-ABA). 3-NBA-derived DNA adducts formed experimentally in vivo and in vitro were compared with the chemically synthesised adducts. The major 3-NBA-derived DNA adduct formed in rat lung cochromatographed with dG3'p-N2-ABA in two independent systems (thin layer and high-performance liquid chromatography). This is also the major adduct formed in tissue of rats or mice treated with 3-aminobenzanthrone (3-ABA), the major human metabolite of 3-NBA. Similarly, dG3'p-C8-N-ABA and dA3'p-N6-ABA cochromatographed with two other adducts formed in various organs of rats or mice treated either with 3-NBA or 3-ABA, whereas dG3'p-C8-C2-ABA did not cochromatograph with any of the adducts found in vivo. Utilizing different enzymatic systems in vitro, including human hepatic microsomes and cytosols, and purified and recombinant enzymes, we found that a variety of enzymes [NAD(P)H:quinone oxidoreductase, xanthine oxidase, NADPH:cytochrome P450 oxidoreductase, cytochrome P450s 1A1 and 1A2, N,O-acetyltransferases 1 and 2

  12. SYNTHESIS OF THE FULLY PROTECTED PHOSPHORAMIDITE OF THE BENZENE-DNA ADDUCT, N2- (4-HYDROXYPHENYL)-2'-DEOXYGUANOSINE AND INCORPORATION OF THE LATER INTO DNA OLIGOMERS

    SciTech Connect

    Chenna, Ahmed; Gupta, Ramesh C.; Bonala, Radha R.; Johnson, Francis; Huang, Bo

    2008-06-09

    N2-(4-Hydroxyphenyl)-2'-deoxyguanosine-5'-O-DMT-3'-phosphoramidite has been synthesized and used to incorporate the N2-(4-hydroxyphenyl)-2'-dG (N2-4-HOPh-dG) into DNA, using solid-state synthesis technology. The key step to obtaining the xenonucleoside is a palladium (Xantphos-chelated) catalyzed N2-arylation (Buchwald-Hartwig reaction) of a fully protected 2'-deoxyguanosine derivative by 4-isobutyryloxybromobenzene. The reaction proceeded in good yield and the adduct was converted to the required 5'-O-DMT-3'-O-phosphoramidite by standard methods. The latter was used to synthesize oligodeoxynucleotides in which the N2-4-HOPh-dG adduct was incorporated site-specifically. The oligomers were purified by reverse-phase HPLC. Enzymatic hydrolysis and HPLC analysis confirmed the presence of this adduct in the oligomers.

  13. Hydroxyl radical-induced oxidation of a phenolic C-linked 2'-deoxyguanosine adduct yields a reactive catechol.

    PubMed

    Witham, Aaron A; Beach, Daniel G; Gabryelski, Wojciech; Manderville, Richard A

    2012-02-20

    Phenolic toxins stimulate oxidative stress and generate C-linked adducts at the C8-site of 2'-deoxyguanosine (dG). We previously reported that the C-linked adduct 8-(4″-hydroxyphenyl)-dG (p-PhOH-dG) undergoes oxidation in the presence of Na(2)IrCl(6) or horseradish peroxidase (HRP)/H(2)O(2) to generate polymeric adducts through phenoxyl radical production [ Weishar ( 2008 ) Org. Lett. 10 , 1839 - 1842 ]. We now report on reaction of p-PhOH-dG with two radical-generating systems, Cu(II)/H(2)O(2) or Fe(II)-EDTA/H(2)O(2), which were utilized to study the fate of the C-linked adduct in the presence of hydroxyl radical (HO(•)). The radical-generating systems facilitate (i) hydroxylation of the phenolic ring to afford the catechol adduct 8-(3″,4″-dihydroxyphenyl)-dG (3″,4″-DHPh-dG) and (ii) H-atom abstraction from the sugar moiety to generate the deglycosylated base p-PhOH-G. The ratios of 3″,4″-DHPh-dG to p-PhOH-G were ∼1 for Cu(II)/H(2)O(2) and ∼0.13 for Fe(II)-EDTA/H(2)O(2). The formation of 3″,4″-DHPh-dG was found to have important consequences in terms of reactivity. The catechol adduct has a lower oxidation potential than p-PhOH-dG and is sensitive to aqueous basic media, undergoing decomposition to generate a dicarboxylic acid derivative. In the presence of excess N-acetylcysteine (NAC), oxidation of 3″,4″-DHPh-dG produced mono-NAC and di-NAC conjugates. Our results imply that secondary oxidative pathways of phenolic-dG lesions are likely to contribute to toxicity.

  14. Bending and circularization of site-specific and stereoisomeric carcinogen-DNA adducts.

    PubMed

    Xu, R; Mao, B; Amin, S; Geacintov, N E

    1998-01-13

    The potent tumorigen and mutagen (+)-7(R),8(S)-dihydroxy-9(S), 10(R)-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene ((+)-anti-BPDE) is a metabolite of benzo[a]pyrene that binds predominantly to the exocyclic amino group of guanine residues in DNA in vivo and in vitro. While the (-)-7S,8R,9R,10Senantiomer, (-)-anti-BPDE, also reacts with DNA to form similar covalent N2-deoxyguanosyl adducts, this diol epoxide is nontumorigenic and its mutagenic activities are different from those of (+)-anti-BPDE. In this work, T4 ligase-induced cyclization methods have been employed to demonstrate that the (+)-anti-[BP]-N2-dG lesions (G*) cause significantly greater amounts of bending and circularization of the one-base overhang undecamer duplex 5'-d(CACAT[G*]TACAC).d(TGTACATGTGG) than the stereoisomeric oligonucleotide duplex with G* = (-)-anti-[BP]-N2-dG. In the case of the (+)-anti-BPDE-modified oligonucleotides, the ratio of circular to linear DNA multimers reaches values of 8-9 for circle contour sizes of 99-121 base pairs, while for the (-)-anti-[BP]-N2-dG-modified DNA this ratio reaches a maximum value of only approximately 1 at 154-176 base pairs. Assuming a planar circle DNA model, the inferred bending angles for 90-92% of the observed circular ligation products range from 30 to 51 degrees per (+)-trans-anti-[BP]-N2-dG lesion and from 20 to 40 degrees per (-)-trans-anti-[BP]-N2-dG lesion. In the case of unmodified DNA, the probability of circular product formation is at least 1 order of magnitude less efficient than in the BPDE-modified sequences and about 90% of the circular products exhibit bending angles in the range of 14 -19 degrees . In the most abundant circular products observed experimentally, the bending angles are 40 degrees and 26 +/- 2 degrees per (+)-anti-[BP]- or (-)-anti-[BP]-modified 11-mer; these values correspond to a net contribution of 21-26 degrees and 5-19 degrees , respectively, to the observed overall bending per lesion. The coexistence of circular DNA

  15. Genomewide identification of target genes of histone methyltransferase dG9a during Drosophila embryogenesis.

    PubMed

    Shimaji, Kouhei; Konishi, Takahiro; Tanaka, Shintaro; Yoshida, Hideki; Kato, Yasuko; Ohkawa, Yasuyuki; Sato, Tetsuya; Suyama, Mikita; Kimura, Hiroshi; Yamaguchi, Masamitsu

    2015-11-01

    Post-translational modification of the histone plays important roles in epigenetic regulation of various biological processes. Among the identified histone methyltransferases (HMTases), G9a is a histone H3 Lys 9 (H3K9)-specific example active in euchromatic regions. Drosophila G9a (dG9a) has been reported to feature H3K9 dimethylation activity in vivo. Here, we show that the time required for hatching of a homozygous dG9a null mutant and heteroallelic combination of dG9a null mutants is delayed, suggesting that dG9a is at least partially responsible for progression of embryogenesis. Immunocytochemical analyses of the wild-type and the dG9a null mutant flies indicated that dG9a localizes in cytoplasm up to nuclear division cycle 7 where it is likely responsible for di-methylation of nucleosome-free H3K9. From cycles 8-11, dG9a moves into the nucleus and is responsible for di-methylating H3K9 in nucleosomes. RNA-sequence analysis utilizing early wild-type and dG9a mutant embryos showed that dG9a down-regulates expression of genes responsible for embryogenesis. RNA fluorescent in situ hybridization analysis further showed temporal and spatial expression patterns of these mRNAs did not significantly change in the dG9a mutant. These results indicate that dG9a controls transcription levels of some zygotic genes without changing temporal and spatial expression patterns of the transcripts of these genes.

  16. Detection of 1,N(2)-propano-2'-deoxyguanosine adducts in genomic DNA by ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry in combination with stable isotope dilution.

    PubMed

    Zhang, Ning; Song, Yuanyuan; Wu, Danni; Xu, Tian; Lu, Meiling; Zhang, Weibing; Wang, Hailin

    2016-06-10

    Crotonaldehyde (Cro) is one of widespread and genotoxic α,β-unsaturated aldehydes and can react with the exocyclic amino group of 2'-deoxyguanosine (dG) in genomic DNA to form 1,N(2)-propano-2'-deoxyguanosine (ProdG) adducts. In this study, two diastereomers of high purity were prepared, including non-isotope and stable isotope labeled ProdG adducts, and exploited stable isotope dilution-based calibration method. By taking advantage of synthesized ProdG standards, we developed a sensitive ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) method for accurate quantification of two diastereomers of ProdG adducts. In addition to optimization of the UHPLC separation, ammonium bicarbonate (NH4HCO3) was used as additive in the mobile phase for enhancing the ionization efficiency to ProdG adducts and facilitating MS detection. The limits of detection (LODs, S/N=3) and the limits of quantification (LOQs, S/N=10) are estimated about 50 amol and 150 amol, respectively. By the use of the developed method, both diastereomers of ProdG adducts can be detected in untreated human MRC5 cells with a frequency of 2.4-3.5 adducts per 10(8) nucleotides. Crotonaldehyde treatment dramatically increases the levels of ProdG adducts in human MRC5 in a concentration-dependent manner.

  17. Detection of DNA adducts by bioluminescence

    NASA Astrophysics Data System (ADS)

    Xu, Shunqing; Tan, Xianglin; Yao, Qunfeng; He, Min; Zhou, Yikai; Chen, Jian

    2001-09-01

    Luminescent assay for detection ATP is very sensitive with limitation of 10-17 moles. ATP using styrene oxide as a model carcinogen we currently apply a luminescence technique to detect the very low levels of carcinogen-DNA adducts in vitro and in vivo. The bioluminescent assay of DNA adducts entails three consecutive steps: digestion of modified DNA to adducted dinucleoside monophosphate and normal nucleotide are hydrolyzed to nucleosides (N) by nuclease P1 and prostatic acid phosphomonesterase (PAP); incorporation of (gamma) -P of ATP into normal nucleoside(N); detection of consumption of ATP by luminescence. This assay does not require separate manipulation because of the selective property of nuclease P1. One fmol of carcinogen- DNA adducts was detected by luminescent assay. A good correlation between results of luminescent assay and 32P-postlabeling procedures has been observed. We detect 1 adduct in 108 nucleotides for 10(mu) g DNA sample. The procedures of luminescent method is very simple and low- cost. IT appears applicable to the ultra sensitive detection of low levels of DNA adducts without radioactive isotope.

  18. Coronal Emission from dG Halo Stars

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Harnden, F. R.

    2005-01-01

    The halo dG star HD 114762 was observed with the XMM-Newton satellite on 28-29 June 2004, during orbit 834, and the data were processed using the XMM-Newton Science Analysis System (SAS), version 6.0.0. Somewhat surprisingly, the target was NOT detected during this approx.30 ks exposure, which yielded instead a count rate upper limit of less than 0.0041 cts/s. We computed an X-ray flux upper limit by assuming a Raymond-Smith thermal spectrum of coronal temperature 1 million degrees K, typical of quiet old stars, a hydrogen column density of 2-10$^{19)$ cm$^{-2)$ and sub-solar abundances of 0.2. Our calculated X-ray luminosity upper limit in the 0.25-7.8 keV band is L$_x < 4.95 $\\time$10$^{26)$ erg/s, where we have assumed a stellar distance of 28 pc. This relatively low upper limit has implications for the capability of metal poor stars to host solar-like dynamos, as we will report in a forthcoming paper (now in preparation).

  19. 75 FR 54918 - Draft Regulatory Guide, DG-1247, “Design-Basis Hurricane and Hurricane Missiles for Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... COMMISSION Draft Regulatory Guide, DG-1247, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power... issuance and availability of Draft Regulatory Guide (DG)--1247, ``Design-Basis Hurricane and Hurricane... permits and licenses. The draft regulatory guide (DG), entitled, ``Design-Basis Hurricane and...

  20. Mechanism of Repair of Acrolein- and Malondialdehyde-Derived Exocyclic Guanine Adducts by the α-Ketoglutarate/Fe(II) Dioxygenase AlkB

    PubMed Central

    2015-01-01

    The structurally related exocyclic guanine adducts α-hydroxypropano-dG (α-OH-PdG), γ-hydroxypropano-dG (γ-OH-PdG), and M1dG are formed when DNA is exposed to the reactive aldehydes acrolein and malondialdehyde (MDA). These lesions are believed to form the basis for the observed cytotoxicity and mutagenicity of acrolein and MDA. In an effort to understand the enzymatic pathways and chemical mechanisms that are involved in the repair of acrolein- and MDA-induced DNA damage, we investigated the ability of the DNA repair enzyme AlkB, an α-ketoglutarate/Fe(II) dependent dioxygenase, to process α-OH-PdG, γ-OH-PdG, and M1dG in both single- and double-stranded DNA contexts. By monitoring the repair reactions using quadrupole time-of-flight (Q-TOF) mass spectrometry, it was established that AlkB can oxidatively dealkylate γ-OH-PdG most efficiently, followed by M1dG and α-OH-PdG. The AlkB repair mechanism involved multiple intermediates and complex, overlapping repair pathways. For example, the three exocyclic guanine adducts were shown to be in equilibrium with open-ring aldehydic forms, which were trapped using (pentafluorobenzyl)hydroxylamine (PFBHA) or NaBH4. AlkB repaired the trapped open-ring form of γ-OH-PdG but not the trapped open-ring of α-OH-PdG. Taken together, this study provides a detailed mechanism by which three-carbon bridge exocyclic guanine adducts can be processed by AlkB and suggests an important role for the AlkB family of dioxygenases in protecting against the deleterious biological consequences of acrolein and MDA. PMID:25157679

  1. Repair of furocoumarin adducts in mammalian cells

    SciTech Connect

    Zolan, M.E.; Smith, C.A.; Hanawalt, P.C.

    1984-12-01

    DNA repair was studied in cultured mammalian cells treated with the furocoumarins 8-methoxypsoralen (8-MOP), aminomethyl trioxsalen, or angelicin and irradiated with near UV light. The amount of DNA cross-linked by 8-MOP in normal human cells decreased by about one-half in 24 hours after treatment; no decrease was observed in xeroderma pigmentosum cells, group A. At present, it is not known to what extent this decrease represents complete repair events at the sites of cross-links. Furocoumarin adducts elicited excision repair in normal human and monkey cells but not in xeroderma pigmentosum group A cells. This excision repair resembled in several aspects that elicited by pyrimidine dimers, formed in DNA by irradiation with 254-nm UV light; however, it appeared that for at least 8-MOP and aminomethyl trioxsalen, removal of adducts was not as efficient as was the removal of pyrimidine dimers. A comparison was also made of repair in the 172-base-pair repetitive alpha-DNA component of monkey cells to repair in the bulk of the genome. Although repair elicited by pyrimidine dimers in alpha-DNA was the same as in the bulk DNA, that following treatment of cells with either aminomethyl trioxsalen or angelicin and near UV was markedly deficient in alpha-DNA. This deficiency reflected the removal of fewer adducts from alpha-DNA after the same initial adduct frequencies. These results could mean that each furocoumarin may produce several structurally distinct adducts to DNA in cells and that the capacity of cellular repair systems to remove these various adducts may vary greatly.

  2. Sperm DNA oxidative damage and DNA adducts

    PubMed Central

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on

  3. Thermodynamics of translesion synthesis across a major DNA adduct of antitumor oxaliplatin: differential scanning calorimetric study.

    PubMed

    Florian, Jakub; Brabec, Viktor

    2012-02-06

    Differential scanning calorimetry (DSC) was used to measure the thermodynamic changes associated with translesion synthesis across major lesion induced in DNA by antitumor oxaliplatin [1,2-d(GG) intrastrand cross-link]. Insertion of matched nucleotides dC at the primer terminus (across unique 3'- or 5'-dG in the unplatinated template) and subsequent extensions resulted in an incremental increase in thermodynamic parameters. In contrast, incorporation of dC opposite either platinated dG in the intrastrand cross-link formed in the template strand and subsequent extensions by one nucleotide resulted only in little changes in thermodynamics. A similar thermodynamic delay was observed for a control template primer containing a dG:dT mismatch across 3'- or 5'-dG in the template and subsequent Watson-Crick primer extensions. The thermodynamic scarcity generated by either the lesion or mismatches was not localized but extended to the 5'-downstream sites, which may be connected with the phenomenon termed "short-term memory" of replication errors retained by some DNA polymerases responding to DNA damages or mismatches. Interestingly, formation of the 1,2-d(GG) intrastrand cross-link of oxaliplatin altered the overall DSC profiles of the dG:dT mismatch template/primers only in a very small extent. While addition of matched nucleotide dC across either dG in the template strand was thermodynamically favored over the presence of a mismatched dT (ΔΔG(0)(310) was 7.6 or 6.8 kJ mol(-1), ΔΔH was 14 or 49 kJ mol(-1)), no such thermodynamic advantage was observed with the 1,2-d(GG) intrastrand cross-link of oxaliplatin at these positions (ΔΔG(0)(310) was 2.8 or -0.3 kJ mol(-1), ΔΔH was 4 or 9 kJ mol(-1)). The equilibrium thermodynamic data also provide insight into the processes associated with misincorporation of incorrect nucleotides during replication bypass across major cross-links of antitumor oxaliplatin. On the other hand, besides thermodynamic effects also kinetic

  4. Repair of acetyl-aminofluorene modified pBR322 DNA in Xenopus laevis oocytes and eggs; effect of diadenosine tetraphosphate.

    PubMed

    Orfanoudakis, G; Gilson, G; Wolff, C M; Ebel, J P; Befort, N; Remy, P

    1990-04-01

    Using Xenopus laevis oocytes and unfertilized eggs, we have developed a system which allows the study of DNA repair upon microinjection of pBR 322 DNA which has been previously modified in vitro by N-acetyl-aminofluorene, under controlled conditions. In unfertilized eggs, an efficient repair of pBR-18AAF DNA takes place, leading to a restoration of the transforming activity of the plasmid DNA towards Escherichia coli. The repaired DNA is even efficiently replicated, the egg being "activated" by the microinjection. In the oocyte, a partial repair is observed as shown by the incorporation of labelled dCTP in the modified plasmid DNA, even in the presence of aphidicolin, an inhibitor of DNA polymerase alpha. However, the repair appears to be very limited, since it does not restore the transforming activity of the modified plasmid DNA. This inefficient repair in the oocyte may be due to the rapid packaging of foreign DNA into a minichromosome and/or to a very low level of DNA polymerase beta. This system was used to study the effect of diadenosine tetraphosphate (Ap4A) on DNA repair. Ap4A seems not to interfere with repair processes in the oocyte, but significantly inhibits the replication following the repair of AAF-modified plasmid DNA in unfertilized eggs. These results suggest that Ap4A could be involved in switching off the replication machinery when DNA is badly damaged, thus helping to avoid the perpetuation of DNA modifications in the daughter cells. This hypothesis is consistent with many previous reports on the accumulation of dinucleoside polyphosphates under stress conditions, which are known to result in modification of DNA.

  5. NITRO MUSK ADDUCTS OF RAINBOW TROUT ...

    EPA Pesticide Factsheets

    Rainbow trout and other fish species can serve as 'sentinel' species for the assessment of ecological status and the presence of certain environmental contaminants. As such they act as bioindicators of exposure. Here we present seminal data regarding dose-response and toxicokinetics of trout hemoglobin adduct formation from exposure to nitro musks that are frequently used as fragrance ingredients in formulations of personal care products. Hemoglobin adducts serve as biomarkers of exposure of the sentinel species as we have shown in previous studies of hemoglobin adducts formed in trout and environmental carp exposed to musk xylene (MX) and musk ketone (MK). Gas chromatography-electron capture negative ion chemical ionization-mass spectrometry (GC-NICI-MS) employing selected ion monitoring is used to measure 4-amino-MX (4-AMX), 2-amino-MX (2-AMX), and 2-amino-MK (2-AMK) released by alkaline hydrolysis from the sulfinamide adducts of hemoglobin. Dose-response and toxicokinetics were investigated using this sensitive method for analysis of these metabolites. In the dose-response investigation, the concentrations of 4-AMX and 2-2AMX are observed to pass through a maximum at 0.10 mg/g. In the case of 2-AMK, the adduct concentration is almost the same at dosages in the range of 0.030 to 0.10 mg/g. For toxicokinetics, the concentration of the metabolites in the Hb reaches a maximum in the 3-day sample after administration of MX or MK. Further elimination of the metabo

  6. 2DG suppresses the in vivo anti-tumor efficacy of erlotinib in HNSCC cells

    PubMed Central

    Sobhakumari, Arya; Orcutt, Kevin; Love-Homan, Laurie; Kowalski, Christopher; Parsons, Arlene; Knudson, C. Michael; Simons, Andrean L.

    2017-01-01

    Poor tumor response to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a significant challenge for effective treatment of head and neck squamous cell carcinoma (HNSCC). Therefore, strategies that may increase tumor response to EGFR TKIs are warranted in order to improve HNSCC patient treatment and overall survival. HNSCC tumors are highly glycolytic and increased EGFR signaling has been found to promote glucose metabolism through various mechanisms. We have previously shown that inhibition of glycolysis with 2-deoxy-D-glucose (2DG) significantly enhanced the antitumor effects of cisplatin and radiation which are commonly used to treat HNSCC. The goal of the current studies is to determine if 2DG will enhance the anti-tumor activity of the EGFR TKI erlotinib in HNSCC. Erlotinib transiently suppressed glucose consumption accompanied by alterations in pyruvate kinase M2 (PKM2) expression. 2DG enhanced the cytotoxic effect of erlotinib in vitro but reversed the anti-tumor effect of erlotinib in vivo. 2DG altered the N-glycosylation status of EGFR and induced the endoplasmic reticulum (ER) stress markers CHOP and BiP in vitro. Additionally, the effects of 2DG+erlotinib on cytotoxicity and ER stress in vitro were reversed by mannose but not glucose or antioxidant enzymes. Lastly, the protective effect of 2DG on erlotinib-induced cytotoxicity in vivo was reversed by chloroquine. Altogether, 2DG suppressed the anti-tumor efficacy of erlotinib in a HNSCC xenograft mouse model which may be due to increased cytoprotective autophagy mediated by ER stress activation. PMID:27178822

  7. A New Discontinuous Galerkin Method for Convection-Diffusion Problems: The Gradient-Recovery DG Method

    NASA Astrophysics Data System (ADS)

    Johnson, Philip; Johnsen, Eric

    2016-11-01

    The Discontinuous Galerkin (DG) numerical method, while well-suited for hyperbolic PDE systems such as the Euler equations, is not naturally competitive for convection-diffusion systems, such as the Navier-Stokes equations. Where the DG weak form of the Euler equations depends only on the field variables for calculation of numerical fluxes, the traditional form of the Navier-Stokes equations requires calculation of the gradients of field variables for flux calculations. It is this latter task for which the standard DG discretization is ill-suited, and several approaches have been proposed to treat the issue. The most popular strategy for handling diffusion is the "mixed" approach, where the solution gradient is constructed from the primal as an auxiliary. We designed a new mixed approach, called Gradient-Recovery DG; it uses the Recovery concept of Van Leer & Nomura with the mixed approach to produce a scheme with excellent stability, high accuracy, and unambiguous implementation when compared to typical mixed approach concepts. In addition to describing the scheme, we will perform analysis with comparison to other DG approaches for diffusion. Gas dynamics examples will be presented to demonstrate the scheme's capabilities.

  8. [Effects of intergenic interaction of the high pigmentation gene hp-2(dg) (high pigment-2 dark green) with the gene B (beta-carotene) in tomato].

    PubMed

    Kuzemenskiĭ, A V

    2008-01-01

    It was shown that during intergenic interaction of genes hp-2(dg) and B in dihomozygote an additive factor is formed activating biogenesis of beta-carotene in tomato fruits. In the genotype B/B//hp-2(dg)/hp-2(dg) there is preserved the positive effects of the gene hp-2(dg) on the content of ascorbic acid and the negative one on the content of titrated acids. With this stabilization of the gene hp-2(dg) genetic depression is observed, which is manifested in the increased productivity of B/B//hp-2(dg)/hp-2(dg)-genotypes.

  9. Accurate treatment of interface roughness in nanoscale DG MOSFETs using non-equilibrium Green's functions

    NASA Astrophysics Data System (ADS)

    Fonseca, James; Kaya, Savas

    2004-11-01

    In the sub-50-nm scale, the aggressive scaling of MOSFETs is expected to culminate in dual-gate (DG) architectures on SOI substrates. DG MOSFETs are widely accepted to be the ultimate design that silicon can deliver in terms of on and off currents. So far, the design efforts on these novel structures have concentrated on ideal geometries and doping profiles. However, at nanometer scale, devices fabricated with lithography and etching techniques cannot deliver perfect reproductions of the ideal design and suffer significantly from fluctuation effects associated with random doping and interfaces. While the former is less important in undoped, thin-body architecture, the interface roughness is a crucial factor in DG MOSFET performance, as indicated by the International Technology Roadmap for Semiconductors.

  10. Influence of adduct stereochemistry and hydrogen-bonding solvents on photoinduced charge transfer in a covalent benzo[a]pyrene diol epoxide-nucleoside adduct on picosecond time scales

    SciTech Connect

    O'Connor, D. ); Shafirovich, V.Y.; Geacintov, N.E. )

    1994-09-29

    Photoinduced electron transfer occurs with different rate constants upon picosecond laser pulse excitation of the stereoisomeric (+)-trans- and (-)-cis-benzo[a]pyrene diol epoxide-N[sup 2]-deoxyguanosine covalently linked adducts (BPDE-N[sup 2]-dG, bond with 10S absolute configuration) in polar solvents (N,N[prime]-dimethylformamide (DMF), and the hydrogen-bonding liquids H[sub 2]O, D[sub 2]O, formamide (FA), and N-methylformamide (NMF)). In the case of (+)-trans-BPDE-dG in DMF, photoinduced electron transfer occurs in the normal Marcus region, from dG to the pyrenyl residue singlet with a rate constant k[sub s] = (9.1 [+-] 0.9) x 10[sup 9] s[sup [minus]1], which is followed by a slower recombination (k[sub r] = (1.8 + 0.5) x 10[sup 9] s[sup [minus]1]) in the inverted Marcus region. In the cis-stereoisomeric adduct, both rate constants are enhanced by a factor of approximately 5. The presence of the hydrogen-bonding network in NMF and FA exerts opposite effects on these rate constants, decreasing k[sub s] and increasing k[sub r] by factors of 2-5. In aqueous solutions these effects are even more pronounced, and radical ions are not observed since k[sub r] [much gt] k[sub s]. A kinetic isotope effect on the delay of the pyrenyl singlets in H[sub 2]O and D[sub 2]O (k[sub s](H[sub 2]O)/k[sub s](D[sub 2]O) = 1.3-1.5) suggests that a proton-coupled electron transfer mechanism may be operative in aqueous solutions. 51 refs., 10 figs., 2 tabs.

  11. Cytochrome c Adducts with PCB Quinoid Metabolites

    PubMed Central

    Li, Miao; Teesch, Lynn M.; Murry, Daryl J.; Pope, R. Marshal; Li, Yalan; Robertson, Larry W.; Ludewig, Gabriele

    2015-01-01

    PCBs are a group of 209 individual congeners widely used as industrial chemicals. PCBs are found as by-products in dye and paint manufacture and are legacy, ubiquitous and persistent as human and environmental contaminants. PCBs with fewer chlorine atoms may be metabolized to hydroxy- and dihydroxy- metabolites and further oxidized to quinoid metabolites both in vitro and in vivo. Specifically, quinoid metabolites may form adducts on nucleophilic sites within cells. We hypothesized that the PCB-quinones covalently bind to cytochrome c and thereby cause defects in the function of cytochrome c. In this study synthetic PCB quinones (2-(4’-chlorophenyl)-1,4-benzoquinone, 2-(3’, 5’-dichlorophenyl)-1,4-benzoquinone, 2-(3’,4’, 5’-trichlorophenyl)-1,4-benzoquinone, and 2-(4’-chlorophenyl)-3,6-dichloro-1,4-benzoquinone) were incubated with cytochrome c, and adducts were detected by LC-MS and MALDI TOF. SDS PAGE gel electrophoresis was employed to separate the adducted proteins, while trypsin digestion and LC-MS/MS were applied to identify the amino acid binding sites on cytochrome c. Conformation change of cytochrome c after binding with PCB3-para-quinone was investigated by SYBYL-X simulation and cytochrome c function was examined. We found that more than one molecule of PCB-quinone may bind to one molecule of cytochrome c. Lysine and glutamic acid were identified as the predominant binding sites. Software simulation showed conformation changes of adducted cytochrome c. Additionally, cross-linking of cytochrome c was observed on the SDS PAGE gel. Cytochrome c was found to be in the reduced form after incubation with PCB quinones. These data provide evidence that the covalent binding of PCB quinone metabolites to cytochrome c may be included among the toxic effects of PCBs. PMID:26062463

  12. Human DNA adduct measurements: State of the art

    SciTech Connect

    Poirier, M.C.; Weston, A.

    1996-10-01

    Human DNA adduct formation (covalent modification of DNA with chemical carcinogens) is a promising biomarker for elucidating the molecular epidemiology of cancer. Classes of compounds for which human DNA adducts have been observed include polycyclic aromatic hydrocarbons (PAHs), nitrosamines, mycotoxins, aromatic amines, heterocyclic amines, ultraviolet light, and alkylating cancer chemotherapeutic agents. Most human DNA adduct exposure monitoring has been performed with either {sup 32}P-postlabeling or immunoassays, neither of which is able to chemically characterize specific DNA adducts. Recently developed combinations of methods with chemical and physical end points have allowed identification of specific adducts in human tissues. Studies are presented that demonstrate that high ambient levels of benzo[a]pyrene are associated with high levels of DNA adducts in human blood cell DNA and that the same DNA adduct levels drop when the ambient PAH levels decrease significantly. DNA adduct dosimetry, which has been achieved with some dietary carcinogens and cancer chemotherapeutic agents, is described, as well as studies correlating DNA adducts with other biomarkers. It is likely that some toxic, noncarcinogenic compounds may have genotoxic effects, including oxidative damage, and that adverse health outcomes other than cancer may be correlated with DNA adduct formation. The studies presented here may serve as useful prototypes for exploration of other toxicological end points. 156 refs., 1 fig., 3 tabs.

  13. Development of an immunoassay to detect benzene adducts in hemoglobin

    SciTech Connect

    Grassman, J.A.

    1993-01-01

    The purpose of this project was to develop an immunoassay to detect the adducts formed in hemoglobin after exposure to benzene, which is known to cause bone marrow degeneration and acute myelogenous leukemia. The use of benzene-adduct detection as a biological monitoring method would permit measurement of low exposures and exposures sustained weeks earlier. The reactivity of hydroquinone, an important benzene metabolite, with blood proteins and amino acids was investigated in order to decide which antigens and analytes were likely to be suitable for immunoassay development. The second section determined the combination of benzene-metabolite and antigen need to produce an immunoassay with the requisite low detection limit and specificity. The immunoassays with the best performance were tested on hemoglobin from benzene-exposed mice. In vitro studies showed that hydroquinone efficiently formed adducts with erythrocyte membranes and hemoglobin but not with albumin. Adduction efficiency was greater in incubations using purified hemoglobin than whole blood. Cysteine accounted for 15 to 27% of the adducts formed by hydroquinone. The site of the other adducts were not identified although there was evidence that the hemoglobin heme was adducted. Adducts were found on only 1 of the 2 globin chains. Tryptic digestion of the globin failed to associate the adducts with a specific peptide. Antigens made from hydroquinone-adducted hemoglobin but not hydroquinone-adducted cysteines coupled to carrier proteins effectively elicited adduct-specific antibodies. Interference due to reactivity to hemoglobin was controlled by using uniform quantities of hemoglobin in all wells. The mid-range of the best assays were approximately 12 pmoles HQ per well. Antibodies directed toward hemoglobin adducted with the benzene metabolites phenol, catechol and 1,2,4-trihydroxybenzene were also made. The performance of the anti-1,2,4-trihydroxybenzene were suitable for quantitative immunoassays.

  14. DG-FDF solver for large eddy simulation of compressible flows

    NASA Astrophysics Data System (ADS)

    Sammak, Shervin; Brazell, Michael; Mavriplis, Dimitri; Givi, Peyman

    2016-11-01

    A new computational scheme is developed for large eddy simulation (LES) of compressible turbulent flows with the filtered density function (FDF) subgrid scale closure. This is a hybrid scheme, combining the discontinuous Galerkin (DG) Eulerian solver with a Lagrangian Monte Carlo FDF simulator. The methodology is shown to be suitable for LES, as a larger portion of the resolved energy is captured as the order of spectral approximation increases. Simulations are conducted of both subsonic and supersonic flows. The consistency and the overall performance of the DG-FDF solver are demonstrated, together with its shock capturing capabilities.

  15. A robust SN-DG-approximation for radiation transport in optically thick and diffusive regimes

    NASA Astrophysics Data System (ADS)

    Ragusa, J. C.; Guermond, J.-L.; Kanschat, G.

    2012-02-01

    We introduce a new discontinuous Galerkin (DG) method with reduced upwind stabilization for the linear Boltzmann equation applied to particle transport. The asymptotic analysis demonstrates that the new formulation does not suffer from the limitations of standard upwind methods in the thick diffusive regime; in particular, the new method yields the correct diffusion limit for any approximation order, including piecewise constant discontinuous finite elements. Numerical tests on well-established benchmark problems demonstrate the superiority of the new method. The improvement is particularly significant when employing piecewise constant DG approximation for which standard upwinding is known to perform poorly in the thick diffusion limit.

  16. Protein modification by acrolein: Formation and stability of cysteine adducts

    PubMed Central

    Cai, Jian; Bhatnagar, Aruni; Pierce, William M.

    2010-01-01

    The toxicity of the ubiquitous pollutant and endogenous metabolite, acrolein, is due in part to covalent protein modifications. Acrolein reacts readily with protein nucleophiles via Michael addition and Schiff base formation. Potential acrolein targets in protein include the nucleophilic side chains of cysteine, histidine, and lysine residues as well as the free amino terminus of proteins. Although cysteine is the most acrolein-reactive residue, cysteine-acrolein adducts are difficult to identify in vitro and in vivo. In this study, model peptides with cysteine, lysine, and histidine residues were used to examine the reactivity of acrolein. Results from these experiments show that acrolein reacts rapidly with cysteine residues through Michael addition to form M+56 Da adducts. These M+56 adducts are, however, not stable, even though spontaneous dissociation of the adduct is slow. Further studies demonstrated that when acrolein and model peptides are incubated at physiological pH and temperature, the M+56 adducts decreased gradually accompanied by the increase of M+38 adducts, which are formed from intra-molecular Schiff base formation. Adduct formation with the side chains of other amino acid residues (lysine and histidine) was much slower than cysteine and required higher acrolein concentration. When cysteine residues were blocked by reaction with iodoacetamide and higher concentrations of acrolein were used, adducts of the N-terminal amino group or histidyl residues were formed but lysine adducts were not detected. Collectively, these data demonstrate that acrolein reacts avidly with protein cysteine residues and that the apparent loss of protein-acrolein Michael adducts over time may be related to the appearance of a novel (M+38) adduct. These findings may be important in identification of in vivo adducts of acrolein with protein cysteine residues. PMID:19231900

  17. Long-term Optical Activity of the Hard X-ray Flaring Star DG CVn

    NASA Astrophysics Data System (ADS)

    Šimon, V.

    2017-04-01

    DG CVn is a young late-type star which displayed an X-ray and optical superflare in 2014. This paper presents an analysis of the long-term activity of this object in the optical band. I used the photographic data from DASCH (Digital Access to a Sky Century @ Harvard). These measurements from the years 1895-1989 cover the blue spectral region. CCD V-band ASAS data were used for several UV Cet-type stars to place the activity of DG CVn in the context of flaring stars. I show that three large brightenings (flares) of DG CVn by more than 1 mag were detected on the DASCH plates. The character of the long-term activity (regarding the histogram of brightness) of DG CVn is compatible with those of flaring stars UV Cet and V371 Ori. The flares brighter than ˜ 0.4 mag represent less than 1 percent of the observed data in all three objects

  18. Quantitation of carcinogen bound protein adducts by fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Gan, Liang-Shang; Otteson, Michael S.; Doxtader, Mark M.; Skipper, Paul L.; Dasari, Ramachandra R.; Tannenbaum, Steven R.

    1989-01-01

    A highly significant correlation of aflatoxin B 1 serum albumin adduct level with daily aflatoxin B 1 intake was observed in a molecular epidemiological study of aflatoxin carcinogenesis which used conventional fluorescence spectroscopy methods for adduct quantitation. Synchronous fluorescence spectroscopy and laser induced fluorescence techniques have been employed to quantitate antibenzo[ a]pyrene diol epoxide derived globin peptide adducts. Fast and efficient methods to isolate the peptide adducts as well as eliminate protein fluorescence background are described. A detection limit of several femtomoles has been achieved. Experimental and technical considerations of low temperature synchronous fluorescence spectroscopy and fluorescence line narrowing to improve the detection sensitivities are also presented.

  19. Role of malondialdehyde-acetaldehyde adducts in liver injury.

    PubMed

    Tuma, Dean J

    2002-02-15

    Malondialdehyde and acetaldehyde react together with proteins in a synergistic manner and form hybrid protein adducts, designated as MAA adducts. MAA-protein adducts are composed of two major products whose structures and mechanism of formation have been elucidated. MAA adduct formation, especially in the liver, has been demonstrated in vivo during ethanol consumption. These protein adducts are capable of inducing a potent immune response, resulting in the generation of antibodies against both MAA epitopes, as well as against epitopes on the carrier protein. Chronic ethanol administration to rats results in significant circulating antibody titers against MAA-adducted proteins, and high anti-MAA titers have been associated with the severity of liver damage in humans with alcoholic liver disease. In vitro exposure of liver endothelial or hepatic stellate cells to MAA adducts induces a proinflammatory and profibrogenic response in these cells. Thus, during excessive ethanol consumption, ethanol oxidation and ethanol-induced oxidative stress result in the formation of acetaldehyde and malondialdehyde, respectively. These aldehydes can react together synergistically with proteins and generate MAA adducts, which are very immunogenic and possess proinflammatory and profibrogenic properties. By virtue of these potentially toxic effects, MAA adducts may play an important role in the pathogenesis of alcoholic liver injury.

  20. Electrospray ionization mass spectrometric characterization of acrylamide adducts to hemoglobin

    SciTech Connect

    Springer, D.L.; Goheen, S.C.; Edmonds, C.G. ); Bull, R.J.; Sylvester, D.M. )

    1993-01-01

    The most common procedure to identify hemoglobin adducts has been to cleave the adducts from the protein and characterize the adducting species, by, for example, derivatization and gas chromatography/mass spectrometry. To extend these approaches we used electrospray ionization mass spectrometry (ESI-MS) to characterize adducted hemoglobin. For this we incubated [[sup 14]C]acrylamide with the purified human hemoglobin (type A[sub 0]) under conditions that yielded high adduct levels. When the hemoglobin was separated by reversed-phase high-performance liquid chromatography (HPLC), 65% of the radioactivity copurified with the [beta]-subunit. Three adducted species were prominent in the ESI mass spectrum of the intact [beta]-subunit, indicating acrylamide adduction (i.e., mass increase of 71 Da) and two addition unidentified moieties with mass increments of 102 and 135 Da. Endoproteinase Glu-C digestion of the adducted [beta]-subunit resulted in a peptide mixture that, upon reversed-phase HPLC separation, provided several radiolabeled peptides. Using ESI-MS we identified these as the V[sub 91-101] and V[sub 102-122] peptides that represent the cysteine-containing peptides of the [beta]-subunit. These results provide definitive information on acrylamide-modified human hemoglobin and demonstrate that ESI-MS provides valuable structure information on chemically adducted proteins. 30 refs., 9 figs., 3 tabs.

  1. HiCoDG: A Hierarchical Data-Gathering Scheme Using Cooperative Multiple Mobile Elements †

    PubMed Central

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2014-01-01

    In this paper, we study mobile element (ME)-based data-gathering schemes in wireless sensor networks. Due to the physical speed limits of mobile elements, the existing data-gathering schemes that use mobile elements can suffer from high data-gathering latency. In order to address this problem, this paper proposes a new hierarchical and cooperative data-gathering (HiCoDG) scheme that enables multiple mobile elements to cooperate with each other to collect and relay data. In HiCoDG, two types of mobile elements are used: the mobile collector (MC) and the mobile relay (MR). MCs collect data from sensors and forward them to the MR, which will deliver them to the sink. In this work, we also formulated an integer linear programming (ILP) optimization problem to find the optimal trajectories for MCs and the MR, such that the traveling distance of MEs is minimized. Two variants of HiCoDG, intermediate station (IS)-based and cooperative movement scheduling (CMS)-based, are proposed to facilitate cooperative data forwarding from MCs to the MR. An analytical model for estimating the average data-gathering latency in HiCoDG was also designed. Simulations were performed to compare the performance of the IS and CMS variants, as well as a multiple traveling salesman problem (mTSP)-based approach. The simulation results show that HiCoDG outperforms mTSP in terms of latency. The results also show that CMS can achieve the lowest latency with low energy consumption. PMID:25526356

  2. HiCoDG: a hierarchical data-gathering scheme using cooperative multiple mobile elements.

    PubMed

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2014-12-17

    In this paper, we study mobile element (ME)-based data-gathering schemes in wireless sensor networks. Due to the physical speed limits of mobile elements, the existing data-gathering schemes that use mobile elements can suffer from high data-gathering latency. In order to address this problem, this paper proposes a new hierarchical and cooperative data-gathering (HiCoDG) scheme that enables multiple mobile elements to cooperate with each other to collect and relay data. In HiCoDG, two types of mobile elements are used: the mobile collector (MC) and the mobile relay (MR). MCs collect data from sensors and forward them to the MR, which will deliver them to the sink. In this work, we also formulated an integer linear programming (ILP) optimization problem to find the optimal trajectories for MCs and the MR, such that the traveling distance of MEs is minimized. Two variants of HiCoDG, intermediate station (IS)-based and cooperative movement scheduling (CMS)-based, are proposed to facilitate cooperative data forwarding from MCs to the MR. An analytical model for estimating the average data-gathering latency in HiCoDG was also designed. Simulations were performed to compare the performance of the IS and CMS variants, as well as a multiple traveling salesman problem (mTSP)-based approach. The simulation results show that HiCoDG outperforms mTSP in terms of latency. The results also show that CMS can achieve the lowest latency with low energy consumption.

  3. The antimicrobial activities of the cinnamaldehyde adducts with amino acids.

    PubMed

    Wei, Qing-Yi; Xiong, Jia-Jun; Jiang, Hong; Zhang, Chao; Wen Ye

    2011-11-01

    Cinnamaldehyde is a well-established natural antimicrobial compound. It is probable for cinnamaldehyde to react with amino acid forming Schiff base adduct in real food system. In this paper, 9 such kind of adducts were prepared by the direct reaction of amino acids with cinnamaldehyde at room temperature. Their antimicrobial activities against Bacillus subtilis, Escherichia coli and Saccharomyces cerevisiae were evaluated with benzoic acid as a reference. The adducts showed a dose-dependent activities against the three microbial strains. Both cinnamaldehyde and their adducts were more active against B. subtilis than on E. coli, and their antimicrobial activities were higher at lower pH. Both cinnamaldehyde and its adducts were more active than benzoic acid at the same conditions. The adduct compound A was non-toxic by primary oral acute toxicity study in mice. However, in situ effect of the adduct compound A against E. coli was a little lower than cinnamaldehyde in fish meat. This paper for the first time showed that the cinnamaldehyde adducts with amino acids had similar strong antimicrobial activities as cinnamaldehyde, which may provide alternatives to cinnamaldehyde in food to avoid the strong unacceptable odor of cinnamaldehyde.

  4. Nuclear magnetic resonance solution structure of an N(2)-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: intercalation from the minor groove with ruptured Watson-Crick base pairing.

    PubMed

    Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H; Cai, Yuqin; Rodriguez, Fabian A; Sayer, Jane M; Jerina, Donald M; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E

    2012-12-04

    The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the nonplanar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14 position with the exocyclic amino group of guanine. Here, we present the first nuclear magnetic resonance solution structure of a DB[a,l]P-derived adduct, the 14R-(+)-trans-anti-DB[a,l]P-N(2)-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N(2)-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3'-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3'-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE-DNA adduct conformation differs from (1) the classical intercalation motif in which Watson-Crick base pairing is intact at the lesion site and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix. The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed.

  5. Adduct Formation in ESI/MS by Mobile Phase Additives

    NASA Astrophysics Data System (ADS)

    Kruve, Anneli; Kaupmees, Karl

    2017-03-01

    Adduct formation is a common ionization method in electrospray ionization mass spectrometry (ESI/MS). However, this process is poorly understood and complicated to control. We demonstrate possibilities to control adduct formation via mobile phase additives in ESI positive mode for 17 oxygen and nitrogen bases. Mobile phase additives were found to be a very effective measure for manipulating the formation efficiencies of adducts. An appropriate choice of additive may increase sensitivity by up to three orders of magnitude. In general, sodium adduct [M + Na]+ and protonated molecule [M + H]+ formation efficiencies were found to be in good correlation; however, the former were significantly more influenced by mobile phase properties. Although the highest formation efficiencies for both species were observed in water/acetonitrile mixtures not containing additives, the repeatability of the formation efficiencies was found to be improved by additives. It is concluded that mobile phase additives are powerful, yet not limiting factors, for altering adduct formation.

  6. Path Searching Based Fault Automated Recovery Scheme for Distribution Grid with DG

    NASA Astrophysics Data System (ADS)

    Xia, Lin; Qun, Wang; Hui, Xue; Simeng, Zhu

    2016-12-01

    Applying the method of path searching based on distribution network topology in setting software has a good effect, and the path searching method containing DG power source is also applicable to the automatic generation and division of planned islands after the fault. This paper applies path searching algorithm in the automatic division of planned islands after faults: starting from the switch of fault isolation, ending in each power source, and according to the line load that the searching path traverses and the load integrated by important optimized searching path, forming optimized division scheme of planned islands that uses each DG as power source and is balanced to local important load. Finally, COBASE software and distribution network automation software applied are used to illustrate the effectiveness of the realization of such automatic restoration program.

  7. A combined ADER-DG and PML approach for simulating wave propagation in unbounded domains

    NASA Astrophysics Data System (ADS)

    Amler, Thomas G.; Hoteit, Ibrahim; Alkhalifah, Tariq A.

    2012-09-01

    In this work, we present a numerical approach for simulating wave propagation in unbounded domains which combines discontinuous Galerkin methods with arbitrary high order time integration (ADER-DG) and a stabilized modification of perfectly matched layers (PML). Here, the ADER-DG method is applied to Bérenger's formulation of PML. The instabilities caused by the original PML formulation are treated by a fractional step method that allows to monitor whether waves are damped in PML region. In grid cells where waves are amplified by the PML, the contribution of damping terms is neglected and auxiliary variables are reset. Results of 2D simulations in acoustic media with constant and discontinuous material parameters are presented to illustrate the performance of the method.

  8. Combined effect of CVR and penetration of DG in the voltage profile and losses of lowvoltage secondary distribution networks

    NASA Astrophysics Data System (ADS)

    Bokhari, Abdullah

    Demarcations between traditional distribution power systems and distributed generation (DG) architectures are increasingly evolving as higher DG penetration is introduced in the system. The concerns in existing electric power systems (EPSs) to accommodate less restrictive interconnection policies while maintaining reliability and performance of power delivery have been the major challenge for DG growth. In this dissertation, the work is aimed to study power quality, energy saving and losses in a low voltage distributed network under various DG penetration cases. Simulation platform suite that includes electric power system, distributed generation and ZIP load models is implemented to determine the impact of DGs on power system steady state performance and the voltage profile of the customers/loads in the network under the voltage reduction events. The investigation designed to test the DG impact on power system starting with one type of DG, then moves on multiple DG types distributed in a random case and realistic/balanced case. The functionality of the proposed DG interconnection is designed to meet the basic requirements imposed by the various interconnection standards, most notably IEEE 1547, public service commission, and local utility regulation. It is found that implementation of DGs on the low voltage secondary network would improve customer's voltage profile, system losses and significantly provide energy savings and economics for utilities. In a network populated with DGs, utility would have a uniform voltage profile at the customers end as the voltage profile becomes more concentrated around targeted voltage level. The study further reinforced the concept that the behavior of DG in distributed network would improve voltage regulation as certain percentage reduction on utility side would ensure uniform percentage reduction seen by all customers and reduce number of voltage violations.

  9. DG-FTLE: Lagrangian coherent structures with high-order discontinuous-Galerkin methods

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel A.; Jacobs, Gustaaf B.

    2015-08-01

    We present an algorithm for the computation of finite-time Lyapunov exponent (FTLE) fields using discontinuous-Galerkin (dG) methods in two dimensions. The algorithm is designed to compute FTLE fields simultaneously with the time integration of dG-based flow solvers of conservation laws. Fluid tracers are initialized at Gauss-Lobatto quadrature nodes within an element. The deformation gradient tensor, defined by the deformation of the Lagrangian flow map in finite time, is determined per element with high-order dG operators. Multiple flow maps are constructed from a particle trace that is released at a single initial time by mapping and interpolating the flow map formed by the locations of the fluid tracers after finite time integration to a unit square master element and to the quadrature nodes within the element, respectively. The interpolated flow maps are used to compute forward-time and backward-time FTLE fields at several times using dG operators. For a large finite integration time, the interpolation is increasingly poorly conditioned because of the excessive subdomain deformation. The conditioning can be used in addition to the FTLE to quantify the deformation of the flow field and identify subdomains with material lines that define Lagrangian coherent structures. The algorithm is tested on three benchmarks: an analytical spatially periodic gyre flow, a vortex advected by a uniform inviscid flow, and the viscous flow around a square cylinder. In these cases, the algorithm is shown to have spectral convergence.

  10. A new approach to extracting the RF parameters of asymmetric DG MOSFETs with the NQS effect

    NASA Astrophysics Data System (ADS)

    Pati, Sudhansu Kumar; Koley, Kalyan; Dutta, Arka; Mohankumar, N.; Sarkar, Chandan Kumar

    2013-11-01

    In analog circuit design an important parameter, from the perspective of superior device performance, is linearity. The DG MOSFET in asymmetric mode operation has been found to present a better linearity. In addition to that it provides, at the discretion of analog circuit designer, an additional degree of freedom, by providing independent bias control for the front and the back gates. Here a non-quasi-static (NQS) small signal model for DGMOSFET with asymmetric gate bias is proposed for extracting the parameters of the device using TCAD simulations. The parameters extracted here for analysis are the intrinsic front and back gate to drain capacitance, Cgd1 and Cgd2, the intrinsic front and back distributed channel resistance, Rgd1 and Rgd2 respectively, the transport delay, τm, and the inductance, Lsd. The parameter extraction model for an asymmetric DG MOSFET is validated with pre-established extracted parameter data, for symmetric DG MOSFET devices, from the available literature. The device simulation is performed with respect to frequency up to 100 GHz.

  11. Optimization of a stand-alone Solar PV-Wind-DG Hybrid System for Distributed Power Generation at Sagar Island

    NASA Astrophysics Data System (ADS)

    Roy, P. C.; Majumder, A.; Chakraborty, N.

    2010-10-01

    An estimation of a stand-alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island, a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV-Wind-DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind-DG compared to Solar PV-DG.

  12. Prolonged Acetaminophen-Protein Adduct Elimination During Renal Failure, Lack of Adduct Removal by Hemodiafiltration, and Urinary Adduct Concentrations After Acetaminophen Overdose.

    PubMed

    Curry, Steven C; Padilla-Jones, Angela; O'Connor, Ayrn D; Ruha, Anne-Michelle; Bikin, Dale S; Wilkins, Diana G; Rollins, Douglas E; Slawson, Matthew H; Gerkin, Richard D

    2015-06-01

    Elevated concentrations of serum acetaminophen-protein adducts, measured as protein-derived acetaminophen-cysteine (APAP-CYS), have been used to support a diagnosis of APAP-induced liver injury when histories and APAP levels are unhelpful. Adducts have been reported to undergo first-order elimination, with a terminal half-life of about 1.6 days. We wondered whether renal failure would affect APAP-CYS elimination half-life and whether continuous venovenous hemodiafiltration (CVVHDF), commonly used in liver failure patients, would remove adducts to lower their serum concentrations. Terminal elimination half-lives of serum APAP-CYS were compared between subjects with and without renal failure in a prospective cohort study of 168 adults who had ingested excessive doses of APAP. APAP-CYS concentrations were measured in plasma ultrafiltrate during CVVHDF at times of elevated serum adduct concentrations. Paired samples of urine and serum APAP-CYS concentrations were examined to help understand the potential importance of urinary elimination of serum adducts. APAP-CYS elimination half-life was longer in 15 renal failure subjects than in 28 subjects with normal renal function (41.3 ± 2.2 h versus 26.8 ± 1.1 h [mean ± SEM], respectively, p < 0.001). CVVHDF failed to remove detectable amounts of APAP-CYS in any of the nine subjects studied. Sixty-eight percent of 557 urine samples from 168 subjects contained no detectable APAP-CYS, despite levels in serum up to 16.99 μM. Terminal elimination half-life of serum APAP-CYS was prolonged in patients with renal failure for reasons unrelated to renal urinary adduct elimination, and consideration of prolonged elimination needs to be considered if attempting back-extrapolation of adduct concentrations. CVVHDF did not remove detectable APAP-CYS, suggesting approximate APAP-protein adduct molecular weights ≥ 50,000 Da. The presence of urinary APAP-CYS in the minority of instances was most compatible with renal

  13. Immunodetection of Serum Albumin Adducts as Biomarkers for Organophosphorus Exposure

    PubMed Central

    Chen, Sigeng; Zhang, Jun; Lumley, Lucille

    2013-01-01

    A major challenge in organophosphate (OP) research has been the identification and utilization of reliable biomarkers for the rapid, sensitive, and efficient detection of OP exposure. Although Tyr 411 OP adducts to human serum albumin (HSA) have been suggested to be one of the most robust biomarkers in the detection of OP exposure, the analysis of HSA-OP adduct detection has been limited to techniques using mass spectrometry. Herein, we describe the procurement of two monoclonal antibodies (mAb-HSA-GD and mAb-HSA-VX) that recognized the HSA Tyr 411 adduct of soman (GD) or S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), respectively, but did not recognize nonphosphonylated HSA. We showed that mAb-HSA-GD was able to detect the HSA Tyr 411 OP adduct at a low level (i.e., human blood plasma treated with 180 nM GD) that could not be detected by mass spectrometry. mAb-HSA-GD and mAb-HSA-VX showed an extremely low-level detection of GD adducted to HSA (on the order of picograms). mAb-HSA-GD could also detect serum albumin OP adducts in blood plasma samples from different animals administered GD, including rats, guinea pigs, and monkeys. The ability of the two antibodies to selectively recognize nerve agents adducted to serum albumin suggests that these antibodies could be used to identify biomarkers of OP exposure and provide a new biologic approach to detect OP exposure in animals. PMID:23192655

  14. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  15. A Novel Rhamnose-Rich Hetero-exopolysaccharide Isolated from Lactobacillus paracasei DG Activates THP-1 Human Monocytic Cells.

    PubMed

    Balzaretti, Silvia; Taverniti, Valentina; Guglielmetti, Simone; Fiore, Walter; Minuzzo, Mario; Ngo, Hansel N; Ngere, Judith B; Sadiq, Sohaib; Humphreys, Paul N; Laws, Andrew P

    2017-02-01

    Lactobacillus paracasei DG is a bacterial strain with recognized probiotic properties and is used in commercial probiotic products. However, the mechanisms underlying its probiotic properties are mainly unknown. In this study, we tested the hypothesis that the ability of strain DG to interact with the host is at least partly associated with its ability to synthesize a surface-associated exopolysaccharide (EPS). Comparative genomics revealed the presence of putative EPS gene clusters in the DG genome; accordingly, EPS was isolated from the surface of the bacterium. A sample of the pure EPS from strain DG (DG-EPS), upon nuclear magnetic resonance (NMR) and chemical analyses, was shown to be a novel branched hetero-EPS with a repeat unit composed of l-rhamnose, d-galactose, and N-acetyl-d-galactosamine in a ratio of 4:1:1. Subsequently, we demonstrated that DG-EPS displays immunostimulating properties by enhancing the gene expression of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), and particularly that of the chemokines IL-8 and CCL20, in the human monocytic cell line THP-1. In contrast, the expression of the cyclooxygenase enzyme COX-2 was not affected. In conclusion, DG-EPS is a bacterial macromolecule with the ability to boost the immune system either as a secreted molecule released from the bacterium or as a capsular envelope on the bacterial cell wall. This study provides additional information about the mechanisms supporting the cross talk between L. paracasei DG and the host.

  16. A fluorescence-based analysis of aristolochic acid-derived DNA adducts.

    PubMed

    Romanov, Victor; Sidorenko, Victoria; Rosenquist, Thomas A; Whyard, Terry; Grollman, Arthur P

    2012-08-01

    Aristolochic acids (AAs), major components of plant extracts from Aristolochia species, form (after metabolic activation) pro-mutagenic DNA adducts in renal tissue. The DNA adducts can be used as biomarkers for studies of AA toxicity. Identification of these adducts is a complicated and time-consuming procedure. We present here a fast, nonisotopic, fluorescence-based assay for the detection of AA-DNA adducts in multiple samples. This approach allows analysis of AA adducts in synthetic DNA with known nucleotide composition and analysis of DNA adducts formed from chemically diverse AAs in vitro. The method can be applied to compare AA-DNA adduct formation in cells and tissues.

  17. High Efficiency Apoptosis Induction in Breast Cancer Cell Lines by MLN4924/2DG Co-Treatment.

    PubMed

    Oladghaffari, Maryam; Islamian, Jalil Pirayesh; Baradaran, Behzad; Monfared, Ali Shabestani; Farajollahi, Alireza; Shanehbandi, Dariush; Mohammadi, Mohsen

    2015-01-01

    2-deoxy-D-Glucose (2DG) causes cytotoxicity in cancer cells by disrupting thiol metabolism. It is an effective component in therapeutic strategies. It targets the metabolism of cancer cells with glycolysis inhibitory activity. On the other hand, MLN4924, a newly discovered investigational small molecule inhibitor of NAE (NEDD8 activating enzyme), inactivates SCF E3 ligase and causes accumulation of its substrates which triggers apoptosis. Combination of these components might provide a more efficient approach to treatment. In this research, 2DG and MLN4924 were co-applied to breast cancer cells (MCF-7 and SKBR-3) and cytotoxic and apoptotic activity were evaluated the by Micro culture tetrazolium test (MTT), TUNEL and ELISA methods. Caspase3 and Bcl2 genes expression were evaluated by real time Q-PCR methods. The results showed that MLN4924 and MLN4924/2DG dose-dependently suppressed the proliferation of MCF7 and SKBR-3 cells. Cell survival of breast cancer cells exposed to the combination of 2DG/MLN4924 was decreased significantly compared to controls (p<0.05), while 2DG and MLN4924 alone had less pronounced effects on the cells. The obtained results suggest that 2DG/MLN4924 is much more efficient in breast cancer cell lines with enhanced cytotoxicity via inducing a apoptosis cell signaling gene, caspase-3.

  18. Structure of adduct X, the last unknown of the six major DNA adducts of mitomycin C formed in EMT6 mouse mammary tumor cells.

    PubMed

    Palom, Y; Belcourt, M F; Musser, S M; Sartorelli, A C; Rockwell, S; Tomasz, M

    2000-06-01

    Treatment of EMT6 mouse mammary tumor cells with mitomycin C (MC) results in the formation of six major MC-DNA adducts. We identified the last unknown of these ("adduct X") as a guanine N(2) adduct of 2, 7-diaminomitosene (2,7-DAM), in which the mitosene is linked at its C-10 position to guanine N(2). The assigned structure is based on UV and mass spectra of adduct X isolated directly from the cells, as well as on its difference UV, second-derivative UV, and circular dichroism spectra, synthesis from [8-(3)H]deoxyguanosine, and observation of its heat stability. These tests were carried out using 17 microg of synthetic material altogether. The mechanism of formation of adduct X involves reductive metabolism of MC to 2,7-DAM, which undergoes a second round of reductive activation to alkylate DNA, yielding adduct X and another 2,7-DAM-guanine adduct (adduct Y), which is linked at guanine N7 to the mitosene. Adduct Y has been described previously. Adduct X is formed preferentially at GpC, while adduct Y favors the GpG sequence. In contrast to MC-DNA adducts, the 2,7-DAM-DNA adducts are not cytotoxic.

  19. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    PubMed Central

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T.; Pan, Chong-xian

    2016-01-01

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). This rapid report provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic. PMID:26544157

  20. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    DOE PAGES

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; ...

    2015-11-06

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid report provides themore » first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.« less

  1. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity

    SciTech Connect

    Jiang, Shuai; Pan, Amy W.; Lin, Tzu-yin; Zhang, Hongyong; Malfatti, Michael; Turteltaub, Kenneth; Henderson, Paul T.; Pan, Chong-xian

    2015-11-06

    This rapid report focuses on the pharmacodynamic mechanism of the carboplatin/paclitaxel combination and correlates it with its cytotoxicity. Consistent with the synergistic to additive antitumor activity (the combination index ranging from 0.53 to 0.94), cells exposed to this combination had significantly increased carboplatin-DNA adduct formation when compared to that of carboplatin alone (450 ± 30 versus 320 ± 120 adducts per 108 nucleotides at 2 h, p = 0.004). Removal of paclitaxel increased the repair of carboplatin-DNA adducts: 39.4 versus 33.1 adducts per 108 nucleotides per hour in carboplatin alone (p = 0.021). In conclusion, this rapid report provides the first pharmacodynamics data to support the use of carboplatin/paclitaxel combination in the clinic.

  2. Detection and quantitation of benzo(a)pyrene-derived DNA adducts in mouse liver by liquid chromatography - tandem mass spectrometry: comparison with P-32-postlabeling

    SciTech Connect

    Singh, R.; Gaskell, M.; Le Pla, R.C.; Kaur, B.; Azim-Araghi, A.; Roach, J.; Koukouves, G.; Souliotis, V.L.; Kyrtopoulos, S.A.; Farmer, P.B.

    2006-06-19

    The polycyclic aromatic hydrocarbon, benzo(a)pyrene (B(a)P) is a proven animal carcinogen that is potentially carcinogenic to humans. B( a)P is an ubiquitous environmental pollutant and is also present in tobacco smoke, coal tar, automobile exhaust emissions, and charred food. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using electrospray ionization and selected reaction monitoring (SRM) has been developed for the detection of 10-(deoxyguanosin-N{sub 2}-yl)-7,8,9-trihydroxy-7,8,9,10- tetrahydrobenzo(a)pyrene (B(a)PDE-N{sub 2}dG) adducts formed in DNA following the metabolic activation of B(a)P to benzo(a) pyrene-7,8-dihydrodiol-9,10-epoxide (B(a)PDE).

  3. Detection of adriamycin-DNA adducts by accelerator mass spectrometry.

    PubMed

    Coldwell, Kate; Cutts, Suzanne M; Ognibene, Ted J; Henderson, Paul T; Phillips, Don R

    2010-01-01

    There have been many attempts in the past to determine whether significant levels of Adriamycin-DNA adducts form in cells and contribute to the anticancer activity of this agent. Supraclincal drug levels have been required to study drug-DNA adducts because of the lack of sensitivity associated with many of the techniques employed, including liquid scintillation counting of radiolabeled drug. The use of accelerator mass spectrometry (AMS) has provided the first direct evidence of Adriamycin-DNA adduct formation in cells at clinically relevant Adriamycin concentrations. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection (compared to liquid scintillation counting) and has revealed adduct formation within an hour of drug treatment. The rigorous protocol required for this approach, together with many notes on the precautions and procedures required in order to ensure that absolute levels of Adriamycin-DNA adducts can be determined with good reproducibility, is outlined in this chapter.

  4. A mitomycin-N6-deoxyadenosine adduct isolated from DNA.

    PubMed

    Palom, Y; Lipman, R; Musser, S M; Tomasz, M

    1998-03-01

    A minor N6-deoxyadenosine adduct of mitomycin C (MC) was isolated from synthetic oligonucleotides and calf thymus DNA, representing the first adduct of MC and a DNA base other than guanine. The structure of the adduct (8) was elucidated using submilligram quantities of total available material. UV difference spectroscopy, circular dichroism, and electrospray mass spectroscopy as well as chemical transformations were utilized in deriving the structure of 8. A series of synthetic oligonucleotides was designed to probe the specificities of the alkylation of adenine by MC. The nature and frequency of the oligonucleotide-MC adducts formed under conditions of reductive activation of MC were determined by their enzymatic digestion to the nucleoside level followed by quantitative analysis of the products by HPLC. The analyses indicated the following: (i) (A)n sequence is favored over (AT)n for adduct formation; (ii) the alkylation favors the duplex structure; (iii) at adenine sites only monofunctional alkylation occurs; (iv) the adenine-to-alkylation frequency in the model oligonucleotides was 0.3-0.6 relative to guanine alkylation at the 5'-ApG sequence but only 0.02-0.1 relative to guanine alkylation at 5'-CpG. The 5'-phosphodiester linkage of the MC-adenine adduct is resistant to snake venom diesterase. The overall ratio of adenine to guanine alkylation in calf thymus DNA was 0.03, indicating that 8 is a minor MC-DNA adduct relative to MC-DNA adducts at guanine residues in the present experimental residues in the present experimental system. However, the HPLC elution time of 8 coincides with that of a major, unknown MC adduct detected previously in mouse mammary tumor cells treated with radiolabeled MC [Bizanek, R., Chowdary, D., Arai, H., Kasai, M., Hughes, C. S., Sartorelli, A. C., Rockwell, S., and Tomasz, M. (1993) Cancer Res. 53, 5127-5134]. Thus, 8 may be identical or closely related to this major adduct formed in vivo. This possibility can now be tested by

  5. Application of the DG-1199 methodology to the ESBWR and ABWR.

    SciTech Connect

    Kalinich, Donald A.; Gauntt, Randall O.; Walton, Fotini

    2010-09-01

    Appendix A-5 of Draft Regulatory Guide DG-1199 'Alternative Radiological Source Term for Evaluating Design Basis Accidents at Nuclear Power Reactors' provides guidance - applicable to RADTRAD MSIV leakage models - for scaling containment aerosol concentration to the expected steam dome concentration in order to preserve the simplified use of the Accident Source Term (AST) in assessing containment performance under assumed design basis accident (DBA) conditions. In this study Economic and Safe Boiling Water Reactor (ESBWR) and Advanced Boiling Water Reactor (ABWR) RADTRAD models are developed using the DG-1199, Appendix A-5 guidance. The models were run using RADTRAD v3.03. Low Population Zone (LPZ), control room (CR), and worst-case 2-hr Exclusion Area Boundary (EAB) doses were calculated and compared to the relevant accident dose criteria in 10 CFR 50.67. For the ESBWR, the dose results were all lower than the MSIV leakage doses calculated by General Electric/Hitachi (GEH) in their licensing technical report. There are no comparable ABWR MSIV leakage doses, however, it should be noted that the ABWR doses are lower than the ESBWR doses. In addition, sensitivity cases were evaluated to ascertain the influence/importance of key input parameters/features of the models.

  6. Evaluation of Superimposed Sequence Components of Currents based Islanding Detection Scheme during DG Interconnections

    NASA Astrophysics Data System (ADS)

    Sareen, Karan; Bhalja, Bhavesh R.; Maheshwari, Rudra Prakash

    2016-02-01

    A new islanding detection scheme for distribution network containing different types of distributed generations (DGs) is presented in this paper. The proposed scheme is based on acquiring three phase current samples for full cycle duration of each simulation case of islanding/non-islanding conditions at the point of common coupling (PCC) of the targeted DG. Afterwards, superimposed positive & negative sequence components of current are calculated and continuously compared with pre-determined threshold values. Performance of the proposed scheme has been evaluated on diversified islanding and non-islanding events which were generated by modeling standard IEEE 34-bus system using PSCAD/EMTDC software package. The proposed scheme is capable to detect islanding condition rapidly even for perfect power balance situation for both synchronous and inverter based DGs. Furthermore, it remains stable during non-islanding events such as tripping of multiple DGs and different DG interconnection operating conditions. Therefore, the proposed scheme avoids nuisance tripping during diversified non-islanding events. At the end, comparison of the proposed scheme with the existing scheme clearly indicates its advantage over the existing scheme.

  7. Novel 2DG-based harmine derivatives for targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Wang, Aqin; Chen, Yuqi; Chen, Wei R.; Gu, Yueqing

    2013-02-01

    Harmine is a beta-carboline alkaloid from the plant Peganum harmala. These alkaloids were stimulated by their promising antitumor activities in the recent years. In this study, we designed and synthesized two harmine derivatives #1and #2 modified at position-9 of harmine with ethyl and phenylpropyl, respectively. To improve the tumor targeting capability, #1' and #2' were synthesized by conjugating 2-amino-2-deoxy-D-glucose (2DG) to the derivatives #1 and #2, respectively. The MTT assays of all these compounds in vitro against L02, HepG2 showed all compounds had low toxicity to normal cells (L02) and significantly enhanced carcinoma cell inhibitory rate compared to harmine. Cytotoxicity against liver cancer cell lines of compound #1' #2' is higher than #1 #2, and even the compound #2' is better than positive drug 5-FU. The compound #2', a novel 2DG-based harmine derivatives, could become a promising drug for targeted cancer therapy and combination therapy with other antitumor drugs.

  8. 3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine adducts of workers exposed to asbestos fibers.

    PubMed

    Bonassi, Stefano; Cellai, Filippo; Munnia, Armelle; Ugolini, Donatella; Cristaudo, Alfonso; Neri, Monica; Milić, Mirta; Bonotti, Alessandra; Giese, Roger W; Peluso, Marco E M

    2017-03-15

    Asbestos is the commercial name for a group of silicate minerals naturally occurring in the environment and widely used in the industry. Asbestos exposure has been associated with pulmonary fibrosis, mesothelioma, and malignancies, which may appear after a period of latency of 20-40 years. Mechanisms involved in the carcinogenic effects of asbestos are still not fully elucidated, although the oxidative stress theory suggests that phagocytic cells produce large amounts of reactive oxygen species, due to their inability to digest asbestos fiber. We have conducted a mechanistic study to evaluate the association between 3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG) adducts, a biomarker of oxidative stress and lipid peroxidation, and asbestos exposure in the peripheral blood of 327 subjects living in Tuscany and Liguria, Italy, stratified by occupational exposure to asbestos. Adduct frequency was significantly greater into exposed subjects with respect to the controls. M1dG per 10(8) normal nucleotides were 4.0±0.5 (SE) in 156 asbestos workers, employed in mechanic, naval, petrochemical, building industries, and in pottery and ceramic plants, versus a value of 2.3±0.1 (SE) in 171 controls (p<0.001). After stratification for occupational history, the effects persisted in 54 current asbestos workers, mainly employed in building renovation industry (2.9±0.3 (SE)), and in 102 former asbestos workers (4.5±0.7 (SE)), with p-values of 0.033, and <0.001, respectively. A significant effect of smoking on heavy smokers was found (p=0.005). Our study gives additional support to the oxidative stress theory, where M1dG may reflect an additional potential mechanism of asbestos-induced toxicity.

  9. Structural and biochemical impact of C8-aryl-guanine adducts within the NarI recognition DNA sequence: influence of aryl ring size on targeted and semi-targeted mutagenicity

    PubMed Central

    Sproviero, Michael; Verwey, Anne M.R.; Rankin, Katherine M.; Witham, Aaron A.; Soldatov, Dmitriy V.; Manderville, Richard A.; Fekry, Mostafa I.; Sturla, Shana J.; Sharma, Purshotam; Wetmore, Stacey D.

    2014-01-01

    Chemical mutagens with an aromatic ring system may be enzymatically transformed to afford aryl radical species that preferentially react at the C8-site of 2′-deoxyguanosine (dG). The resulting carbon-linked C8-aryl-dG adduct possesses altered biophysical and genetic coding properties compared to the precursor nucleoside. Described herein are structural and in vitro mutagenicity studies of a series of fluorescent C8-aryl-dG analogues that differ in aryl ring size and are representative of authentic DNA adducts. These structural mimics have been inserted into a hotspot sequence for frameshift mutations, namely, the reiterated G3-position of the NarI sequence within 12mer (NarI(12)) and 22mer (NarI(22)) oligonucleotides. In the NarI(12) duplexes, the C8-aryl-dG adducts display a preference for adopting an anti-conformation opposite C, despite the strong syn preference of the free nucleoside. Using the NarI(22) sequence as a template for DNA synthesis in vitro, mutagenicity of the C8-aryl-dG adducts was assayed with representative high-fidelity replicative versus lesion bypass Y-family DNA polymerases, namely, Escherichia coli pol I Klenow fragment exo− (Kf−) and Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Our experiments provide a basis for a model involving a two-base slippage and subsequent realignment process to relate the miscoding properties of C-linked C8-aryl-dG adducts with their chemical structures. PMID:25361967

  10. A Monte Carlo study of monoenergetic and polyenergetic normalized glandular dose (DgN) coefficients in mammography

    NASA Astrophysics Data System (ADS)

    Sarno, Antonio; Mettivier, Giovanni; Di Lillo, Francesca; Russo, Paolo

    2017-01-01

    We investigated the influence of model assumptions in GEANT4 Monte Carlo (MC) simulations for the calculation of monoenergetic and polyenergetic normalized glandular dose coefficients (DgN) in mammography, focussing on the effect of the skin thickness and composition, of the role of compression paddles and of the bremsstrahlung processes. We showed that selecting a skin thickness of 4 mm instead of 1.45 mm produced DgN values with deviations from 9% to 32% for x-ray spectra routinely adopted in mammography. Consideration of the bremsstrahlung radiation had a weak influence on monoenergetic DgN. Simulations (in the range 8-40 kVp) which included consideration of bremsstrahlung radiation, a skin thickness of 1.45 mm and a 2 mm thick compression paddles produced polyenergetic DgN coefficients up to 19% higher than corresponding literature data. Adding a 2 mm thick adipose layer between the skin layer and the radiosensitive portion of the breast produces polyenergetic DgN values up to 15% higher than those routinely adopted. These findings provide a quantitative estimate of the influence of model parameters on the calculation of the mean glandular dose in mammography.

  11. Solution conformation of the N-(deoxyguanosin-8-yl)-1-aminopyrene ([AP]dG) adduct opposite dC in a DNA duplex

    SciTech Connect

    Mao, B.; Patel, D.J.; Vyas, R.R.

    1996-10-01

    Combined NMR-molecular mechanics computational studies were undertaken on the C{sup 8}-deoxyguanosine adduct formed by the carcinogen 1-nitropyrene embedded in the d(C5-[AP]G6-C7){center_dot}d(G16-C17-G18) sequence context in a 11-mer duplex, with dC opposite the modified deoxyguanosine. The exchangeable and nonexchangeable protons of the aminopyrene moiety and the nucleic acid were assigned following analysis of two-dimensional NMR data sets in H{sub 2}O and D{sub 2}O solution. There was a general broadening of several proton resonances for the three nucleotide d(G15-C17-G18) segment positioned opposite the [AP]dG6 lesion site resulting in weaker NOEs involving these protons in the adduct duplex. The solution conformation of the [AP]dG{center_dot}dC 11-mer duplex has been determined by incorporating intramolecular and intermolecular proton-proton distances defined by upper and lower bounds deduced from NOESY spectra as restraints in molecular mechanics computations in torsion angle space. 73 refs., 8 figs., 2 tabs.

  12. Antitumor Trans Platinum Adducts of GMP and AMP

    PubMed Central

    Liu, Yangzhong; Sivo, Maria F.; Natile, Giovanni

    2000-01-01

    Recently it has been shown that several analogues of the clinically ineffective trans-DDP exhibit antitumor activity comparable to that of cis-DDP. The present paper describes the binding of antitumor trans-[PtCl2(E-iminoether)2] (trans-EE) to guanosinemonophosphate (GMP) and adenosinemonophosphate (AMP). We have used HPLC and 1H and 15N NMR to characterize the different adducts. In the case of a 1:1 mixture of trans-EE and GMP, at an early stage of the reaction, a monofunctional adduct is formed which, subsequently, is partly converted into a monosolvated monofunctional species. After about 70 hours an equilibrium is established between chloro and solvato monofunctional adducts at a ratio of 30/70. In the presence of excess GMP (4:1) the initially formed monofunctional adducts react further to give two bifunctional adducts, one with the iminoether ligands in their original E configurations and the other with the iminoether ligands having one E and the other, Z configurations. The coordination geometry obtained by energy minimization calculations is in qualitative agreement with 2D NMR data. PMID:18475942

  13. PROTEIN ADDUCTS AS BIOMAKERS OF EXPOSURE TO ORGANOPHOSPHORUS COMPOUNDS

    PubMed Central

    Marsillach, Judit; Costa, Lucio G.; Furlong, Clement E.

    2013-01-01

    Exposure to organophosphorus (OP) compounds can lead to serious neurological damage or death. Following bioactivation by the liver cytochromes P450, the OP metabolites produced are potent inhibitors of serine active-site enzymes including esterases, proteases and lipases. OPs may form adducts on other cellular proteins. Blood cholinesterases (ChEs) have long served as biomarkers of OP exposure in humans. However, the enzymatic assays used for biomonitoring OP exposures have several drawbacks. A more useful approach will focus on multiple biomarkers and avoid problems with the enzymatic activity assays. OP inhibitory effects result from a covalent bond with the active-site serine of the target enzymes. The serine OP adducts become irreversible following a process referred to as aging where one alkyl group dissociates over variable lengths of time depending on the OP adduct. The OP-adducted enzyme then remains in circulation until it is degraded, allowing for a longer window of detection compared with direct analysis of OPs or their metabolites. Mass spectrometry (MS) provides a very sensitive method for identification of post-translational protein modifications. MS analyses of the percentage adduction of the active-site serine of biomarker proteins such as ChEs will eliminate the need for basal activity levels of the individual and will provide for a more accurate determination of OP exposure. MS analysis of biomarker proteins also provides information about the OP that has caused inhibition. Other useful biomarker proteins include other serine hydrolases, albumin, tubulin and transferrin. PMID:23261756

  14. Glutathione Adduct Patterns of Michael-Acceptor Carbonyls.

    PubMed

    Slawik, Christian; Rickmeyer, Christiane; Brehm, Martin; Böhme, Alexander; Schüürmann, Gerrit

    2017-02-22

    Glutathione (GSH) has so far been considered to facilitate detoxification of soft organic electrophiles through covalent binding at its cysteine (Cys) thiol group, followed by stepwise catalyzed degradation and eventual elimination along the mercapturic acid pathway. Here we show that in contrast to expectation from HSAB theory, Michael-acceptor ketones, aldehydes and esters may form also single, double and triple adducts with GSH involving β-carbon attack at the much harder N-terminus of the γ-glutamyl (Glu) unit of GSH. In particular, formation of the GSH-N single adduct contradicts the traditional view that S alkylation always forms the initial reaction of GSH with Michael-acceptor carbonyls. To this end, chemoassay analyses of the adduct formation of GSH with nine α,β-unsaturated carbonyls employing high performance liquid chromatography and tandem mass spectrometry have been performed. Besides enriching the GSH adductome and potential biomarker applications, electrophilic N-terminus functio-nalization is likely to impair GSH homeostasis substantially through blocking the γ-glutamyl transferase catalysis of the first breakdown step of modified GSH, and thus its timely reconstitution. The discussion includes a comparison with cyclic adducts of GSH and furan metabolites as reported in literature, and quantum chemically calculated thermodynamics of hard-hard, hard-soft and soft-soft adducts.

  15. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases

    NASA Astrophysics Data System (ADS)

    Karmakar, Saswata; Harcourt, Emily M.; Hewings, David S.; Lovejoy, Alexander F.; Kurtz, David M.; Ehrenschwender, Thomas; Barandun, Luzi J.; Roost, Caroline; Alizadeh, Ash A.; Kool, Eric T.

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens.

  16. DNA Sequence Modulates Geometrical Isomerism of the trans-8,9-Dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy Aflatoxin B1 Adduct

    PubMed Central

    2016-01-01

    Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus, is oxidized by cytochrome P450 enzymes to aflatoxin B1-8,9-epoxide, which alkylates DNA at N7-dG. Under basic conditions, this N7-dG adduct rearranges to yield the trans-8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy aflatoxin B1 (AFB1–FAPY) adduct. The AFB1–FAPY adduct exhibits geometrical isomerism involving the formamide moiety. NMR analyses of duplex oligodeoxynucleotides containing the 5′-XA-3′, 5′-XC-3′, 5′-XT-3′, and 5′-XY-3′ sequences (X = AFB1–FAPY; Y = 7-deaza-dG) demonstrate that the equilibrium between E and Z isomers is controlled by major groove hydrogen bonding interactions. Structural analysis of the adduct in the 5′-XA-3′ sequence indicates the preference of the E isomer of the formamide group, attributed to formation of a hydrogen bond between the formyl oxygen and the N6 exocyclic amino group of the 3′-neighbor adenine. While the 5′-XA-3′ sequence exhibits the E isomer, the 5′-XC-3′ sequence exhibits a 7:3 E:Z ratio at equilibrium at 283 K. The E isomer is favored by a hydrogen bond between the formyl oxygen and the N4-dC exocyclic amino group of the 3′-neighbor cytosine. The 5′-XT-3′ and 5′-XY-3′ sequences cannot form such a hydrogen bond between the formyl oxygen and the 3′-neighbor T or Y, respectively, and in these sequence contexts the Z isomer is favored. Additional equilibria between α and β anomers and the potential to exhibit atropisomers about the C5–N5 bond do not depend upon sequence. In each of the four DNA sequences, the AFB1–FAPY adduct maintains the β deoxyribose configuration. Each of these four sequences feature the atropisomer of the AFB1 moiety that is intercalated above the 5′-face of the damaged guanine. This enforces the Ra axial conformation for the C5–N5 bond. PMID:25587868

  17. DNA Sequence Modulates Geometrical Isomerism of the trans-8,9- Dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)- 9-hydroxy Aflatoxin B1 Adduct.

    PubMed

    Li, Liang; Brown, Kyle L; Ma, Ruidan; Stone, Michael P

    2015-02-16

    Aflatoxin B(1) (AFB(1)), a mycotoxin produced by Aspergillus flavus, is oxidized by cytochrome P450 enzymes to aflatoxin B(1)-8,9-epoxide, which alkylates DNA at N7-dG. Under basic conditions, this N7-dG adduct rearranges to yield the trans-8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy aflatoxin B(1) (AFB(1)−FAPY) adduct. The AFB(1)−FAPY adduct exhibits geometrical isomerism involving the formamide moiety. NMR analyses of duplex oligodeoxynucleotides containing the 5′-XA-3′, 5′-XC-3′, 5′-XT-3′, and 5′-XY-3′ sequences (X = AFB(1)−FAPY; Y = 7-deaza-dG)demonstrate that the equilibrium between E and Z isomers is controlled by major groove hydrogen bonding interactions.Structural analysis of the adduct in the 5′-XA-3′ sequence indicates the preference of the E isomer of the formamide group,attributed to formation of a hydrogen bond between the formyl oxygen and the N(6) exocyclic amino group of the 3′-neighboradenine. While the 5′-XA-3′ sequence exhibits the E isomer, the 5′-XC-3′ sequence exhibits a 7:3 E:Z ratio at equilibrium at 283K. The E isomer is favored by a hydrogen bond between the formyl oxygen and the N(4)-dC exocyclic amino group of the 3′-neighbor cytosine. The 5′-XT-3′ and 5′-XY-3′ sequences cannot form such a hydrogen bond between the formyl oxygen and the 3′-neighbor T or Y, respectively, and in these sequence contexts the Z isomer is favored. Additional equilibria between α and β anomers and the potential to exhibit atropisomers about the C5−N(5) bond do not depend upon sequence. In each of the four DNA sequences, the AFB(1)−FAPY adduct maintains the β deoxyribose configuration. Each of these four sequences feature the atropisomer of the AFB(1) moiety that is intercalated above the 5′-face of the damaged guanine. This enforces the Ra axialc onformation for the C5−N(5) bond.

  18. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    PubMed

    Zhang, Kuan; Zhou, Yanzhao; Zhao, Tong; Wu, Liying; Huang, Xin; Wu, Kuiwu; Xu, Lun; Li, Dahu; Liu, Shuhong; Zhao, Yongqi; Fan, Ming; Zhu, Lingling

    2015-01-01

    Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCs)in vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr) and DG (approximately 10 Torr) were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr). Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  19. Novel LC-ESI/MS/MS(n) method for the characterization and quantification of 2'-deoxyguanosine adducts of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by 2-D linear quadrupole ion trap mass spectrometry.

    PubMed

    Goodenough, Angela K; Schut, Herman A J; Turesky, Robert J

    2007-02-01

    An accurate and sensitive liquid chromatography-electrospray ionization/multi-stage mass spectrometry (LC-ESI/MS/MS(n)) technique has been developed for the characterization and quantification of 2'-deoxyguanosine (dG) adducts of the dietary mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). PhIP is an animal and potential human carcinogen that occurs in grilled meats. Following enzymatic digestion and adduct enrichment by solid-phase extraction (SPE), PhIP-DNA adducts were analyzed by MS/MS and MS(n) scan modes on a 2-D linear quadrupole ion trap mass spectrometer (QIT/MS). The major DNA adduct, N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP), was detected in calf thymus (CT) DNA modified in vitro with a bioactivated form of PhIP and in the colon and liver of rats given PhIP as part of the diet. The lower limit of detection (LOD) was 1 adduct per 10(8) DNA bases, and the limit of quantification (LOQ) was 3 adducts per 10(8) DNA bases in both MS/MS and MS(3) scan modes, using 27 microg of DNA for analysis. Measurements were based on isotope dilution with the internal standard, N-(deoxyguanosin-8-yl)-2-amino-1-(trideutero)methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-[2H3C]-PhIP). The selected reaction monitoring (SRM) scan mode in MS/MS was employed to monitor the loss of deoxyribose (dR) from the protonated molecules of the adducts ([M + H - 116]+). The consecutive reaction monitoring (CRM) scan modes in MS(3) and MS(4) were used to measure and further characterize product ions of the aglycone ion (BH2+) (Guanyl-PhIP). The MS(3) scan mode was effective in eliminating isobaric interferences observed in the MS/MS scan mode and resulted in an improved signal-to-noise (S/N) ratio. Moreover, the product ion spectra obtained by the MS(n) scan modes provided rich structural information about the adduct and were used to corroborate the identity of dG-C8-PhIP. In addition, an isomeric dG-PhIP adduct was detected in vivo

  20. Thermal conductivity of diethylene glycol based magnesium-aluminum spinel (MgAl2O4-DG) nanofluids

    NASA Astrophysics Data System (ADS)

    Żyła, Gaweł; Fal, Jacek; Gizowska, Magdalena; Perkowski, Krzysztof

    2016-12-01

    The paper presents the results of measurements of the thermal conductivity of MgAl_2O_4 -DG nanofluids. The dependence of the thermal conductivity on concentration of nanoparticles in various temperatures from 293.15 to 338.15 K with 15 K step was examined. Experimental data was modeled with existing theoretical models describing the effects of the concentration of particles on the thermal conductivity of the suspension. It was presented that thermal conductivity of MgAl_2O_4 -DG nanofluids increases proportional to volume concentration of nanoparticles.

  1. The OH rotational population and photodissociation of H{sub 2}O in DG Tauri

    SciTech Connect

    Carr, John S.; Najita, Joan R.

    2014-06-10

    We analyze the OH rotational emission in the Spitzer Space Telescope mid-infrared spectrum of the T Tauri star DG Tau. OH is observed in emission from upper level energies of 1900 K to 28,000 K. The rotational diagram cannot be fit with any single combination of temperature and column density and has slopes that correspond to excitation temperatures ranging from 200 K to 6000 K. The relative Λ-doublet population within each rotational level is not equal, showing that the OH population is not in thermal equilibrium. The symmetric Λ-doublet state is preferred in all rotational states, with an average of 0.5 for the population ratio of the anti-symmetric to symmetric state. We show that the population distribution of the high rotational lines and the Λ-doublet ratio are consistent with the formation of OH following the photo-dissociation of H{sub 2}O by FUV photons in the second absorption band of water (∼1150-1400 Å), which includes Lyα. Other processes, OH formation from either photo-dissociation of water in the first absorption band (1450-1900 Å) or the reaction O({sup 1} D) + H{sub 2}, or collisional excitation, cannot explain the observed emission in the high rotational states but could potentially contribute to the population of lower rotational levels. These results demonstrate that the photodissociation of water is active in DG Tau and support the idea that the hot rotational OH emission commonly observed in Classical T Tauri stars is due to the dissociation of H{sub 2}O by FUV radiation.

  2. DNA adducts: Mass spectrometry methods and future prospects

    SciTech Connect

    Farmer, P.B. . E-mail: pbf1@le.ac.uk; Brown, K.; Tompkins, E.; Emms, V.L.; Jones, D.J.L.; Singh, R.; Phillips, D.H.

    2005-09-01

    Detection of DNA adducts is widely used for the monitoring of exposure to genotoxic carcinogens. Knowledge of the nature and amounts of DNA adducts formed in vivo also gives valuable information regarding the mutational effects that may result from particular exposures. The power of mass spectrometry (MS) to achieve qualitative and quantitative analyses of human DNA adducts has increased greatly in recent years with the development of improved chromatographic interfaces and ionisation sources. Adducts have been detected on nucleic acid bases, 2'-deoxynucleosides or 2'-deoxynucleotides, with LC-MS/MS being the favoured technique for many of these analyses. Our current applications of this technique include the determination of N7-(2-carbamoyl-2-hydroxyethyl)-guanine, which was postulated to be found as a DNA repair product in urine following exposure to acrylamide, and of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-2'-deoxyadenosine, as markers of oxidative damage in human lymphocyte DNA. Higher sensitivity (with a detection limit of 1-10 adducts/10{sup 12} nucleotides) may be achieved by the use of accelerator mass spectrometry (AMS), although this requires the presence of certain isotopes, such as [{sup 14}C], in the material being analysed. In order to make this technique more amenable for studies of human exposure to environmental carcinogens, new postlabelling techniques, incorporating [{sup 14}C] into specific DNA adducts after formation, are being developed. It is expected that combining the use of advanced MS techniques with existing {sup 32}P-postlabelling and immunochemical methodologies will contribute greatly to the understanding of the burden of human exposure to environmental carcinogens.

  3. DG TO FT - AUTOMATIC TRANSLATION OF DIGRAPH TO FAULT TREE MODELS

    NASA Technical Reports Server (NTRS)

    Iverson, D. L.

    1994-01-01

    Fault tree and digraph models are frequently used for system failure analysis. Both types of models represent a failure space view of the system using AND and OR nodes in a directed graph structure. Each model has its advantages. While digraphs can be derived in a fairly straightforward manner from system schematics and knowledge about component failure modes and system design, fault tree structure allows for fast processing using efficient techniques developed for tree data structures. The similarities between digraphs and fault trees permits the information encoded in the digraph to be translated into a logically equivalent fault tree. The DG TO FT translation tool will automatically translate digraph models, including those with loops or cycles, into fault tree models that have the same minimum cut set solutions as the input digraph. This tool could be useful, for example, if some parts of a system have been modeled using digraphs and others using fault trees. The digraphs could be translated and incorporated into the fault trees, allowing them to be analyzed using a number of powerful fault tree processing codes, such as cut set and quantitative solution codes. A cut set for a given node is a group of failure events that will cause the failure of the node. A minimum cut set for a node is any cut set that, if any of the failures in the set were to be removed, the occurrence of the other failures in the set will not cause the failure of the event represented by the node. Cut sets calculations can be used to find dependencies, weak links, and vital system components whose failures would cause serious systems failure. The DG TO FT translation system reads in a digraph with each node listed as a separate object in the input file. The user specifies a terminal node for the digraph that will be used as the top node of the resulting fault tree. A fault tree basic event node representing the failure of that digraph node is created and becomes a child of the terminal

  4. Possible rare congenital dysinnervation disorder: congenital ptosis associated with adduction.

    PubMed

    Mendes, Sílvia; Beselga, Diana; Campos, Sónia; Neves, Arminda; Campos, Joana; Carvalho, Sílvia; Silva, Eduardo; Castro Sousa, João Paulo

    2015-01-01

    Ptosis is defined as an abnormally low position of the upper eyelid margin. It can be congenital or acquired, uni or bilateral, and isolated or associated with other ocular and nonocular defects. We report a case of a female child, aged 8 years, with congenital right ptosis increased on right adduction and with left ptosis on left adduction. There was no horizontal ocular movement limitation. Apparent underaction of the right inferior oblique muscle was also present. We believe that within the possible mechanisms it is more likely that it is a congenital innervation dysgenesis syndrome (CID)/congenital cranial dysinnervation disorder (CCDD).

  5. Malondialdehyde-acetaldehyde-adducted protein inhalation causes lung injury.

    PubMed

    Wyatt, Todd A; Kharbanda, Kusum K; McCaskill, Michael L; Tuma, Dean J; Yanov, Daniel; DeVasure, Jane; Sisson, Joseph H

    2012-02-01

    In addition to cigarette smoking, alcohol exposure is also associated with increased lung infections and decreased mucociliary clearance. However, little research has been conducted on the combination effects of alcohol and cigarette smoke on lungs. Previously, we have demonstrated in a mouse model that the combination of cigarette smoke and alcohol exposure results in the formation of a very stable hybrid malondialdehyde-acetaldehyde (MAA)-adducted protein in the lung. In in vitro studies, MAA-adducted protein stimulates bronchial epithelial cell interleukin-8 (IL-8) via the activation of protein kinase C epsilon (PKCɛ). We hypothesized that direct MAA-adducted protein exposure in the lungs would mimic such a combination of smoke and alcohol exposure leading to airway inflammation. To test this hypothesis, C57BL/6J female mice were intranasally instilled with either saline, 30μL of 50μg/mL bovine serum albumin (BSA)-MAA, or unadducted BSA for up to 3 weeks. Likewise, human lung surfactant proteins A and D (SPA and SPD) were purified from human pulmonary proteinosis lung lavage fluid and successfully MAA-adducted in vitro. Similar to BSA-MAA, SPD-MAA was instilled into mouse lungs. Lungs were necropsied and assayed for histopathology, PKCɛ activation, and lung lavage chemokines. In control mice instilled with saline, normal lungs had few inflammatory cells. No significant effects were observed in unadducted BSA- or SPD-instilled mice. However, when mice were instilled with BSA-MAA or SPD-MAA for 3 weeks, a significant peribronchiolar localization of inflammatory cells was observed. Both BSA-MAA and SPD-MAA stimulated increased lung lavage neutrophils and caused a significant elevation in the chemokine, keratinocyte chemokine, which is a functional homologue to human IL-8. Likewise, MAA-adducted protein stimulated the activation of airway and lung slice PKCɛ. These data support that the MAA-adducted protein induces a proinflammatory response in the lungs and

  6. Quantitation of DNA Adducts Induced by 1,3-Butadiene

    NASA Astrophysics Data System (ADS)

    Sangaraju, Dewakar; Villalta, Peter W.; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5-10 μM DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  7. Laboratory studies of weakly bound adducts of atmospheric interest

    SciTech Connect

    Wine, P.H.; Nicovich, J.M.; Stickel, R.E.; Hynes, A.J.

    1995-12-31

    It is now well-established that weakly bound adducts, i.e., species whose life-times toward unimolecular decomposition are only fractions of a second under atmospheric conditions, play an important role in tropospheric sulfur chemistry. In this presentation, recent results from our laboratory concerning the existence and atmospheric fates of two such weakly bound species, (CH{sub 3}){sub 2}S-OH and (CH{sub 3}){sub 2}S-Cl, will be discussed. In addition, evidence for the formation of weakly bound adducts in reactions of chlorine atoms with methyl halides will be presented.

  8. A Cyclic Disilylated Stannylene: Synthesis, Dimerization, and Adduct Formation

    PubMed Central

    2011-01-01

    Reaction of 1,4-dipotassio-1,1,4,4-tetrakis(trimethylsilyl)tetramethyltetrasilane with [(Me3Si)2N]2Sn led to the formation of an endocyclic distannene via the dimerization of a transient stannylene. In the presence of strong donor molecules such as PEt3, the stannylene could be trapped as adduct. Reaction of the PEt3 derivative with B(C6F5)3 gave rise to the formation of the stannylene B(C6F5)3 adduct. PMID:21438553

  9. Strategy for identifying unknown hemoglobin adducts using adductome LC-MS/MS data: Identification of adducts corresponding to acrylic acid, glyoxal, methylglyoxal, and 1-octen-3-one.

    PubMed

    Carlsson, Henrik; Törnqvist, Margareta

    2016-06-01

    Electrophilic compounds have the ability to form adducts with nucleophilic sites in proteins and DNA in tissues, and thereby constitute risks for toxic effects. Adductomic approaches are developed for systematic screening of adducts to DNA and blood proteins, with the aim to detect unknown internal exposures to electrophiles. In a previous adductomic screening of adducts to N-terminals in hemoglobin, using LC-MS/MS, 19 unknown adducts were detected in addition to seven previously identified adducts. The present paper describes the identification of four of these unknown adducts, as well as the strategy used to identify them. Using LC-MS data from the screening, hypotheses about adduct identities were formulated: probable precursor electrophiles with matching molecular weights were suggested based on the molecular weights of the modifications and the retention times of the analytes, in combination with comparisons of theoretical Log P calculations and databases. Reference adducts were generated by incubation of blood samples with the hypothesized precursor electrophiles. The four identified precursor electrophiles, corresponding to the observed unknown adducts, were glyoxal, methylglyoxal, acrylic acid and 1-octen-3-one. Possible origins/exposure sources and toxicological information concerning the electrophilic precursors are discussed. The identified adducts could be explored as possible biomarkers for exposure.

  10. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  11. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  12. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  13. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  14. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under...

  15. Volatile Barium Beta-Diketonate Polyether Adducts. Synthesis, Characterization and Metalorganic Chemical Vapor Deposition

    DTIC Science & Technology

    1991-05-31

    Volatile Barium 13- Diketonate Polyether Adducts.... Synthesis , Characterization and Metalorganic Chemical Vapor Deposition by Robin A. Gardiner...has been approved for public release and sale: its distribution is unlimited. Volatile, Barium B- Diketonate Polyether Adducts. Synthesis ...NO. NO. INO. ACCESSION NO. Arlington, VA 22217 II 11. TITLE (include Security Classification) Volatile Barium B- Diketonate Polyether Adducts

  16. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  17. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  18. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  19. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  20. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  1. Developing a Method for Operative Diagnostics and Appraisal of Working Capacity of a Combustion Chamber DG-90

    NASA Astrophysics Data System (ADS)

    Razboinikov, A. A.; Vashchilin, V. V.

    2016-10-01

    In the paper the problematics of gas transport system, main factors of an urgency of the development are described. Stages of a proposed reconstruction of combustion chamber DG-90 are introduced. Basic elements of the elaborated method for appraisal of risks of an emergency situation occurrence are given. The expected efficiency from implementation of the produced method is described.

  2. ZipperCream-CG and WhiteAcre-DG: Two Newly-released, Cream-type Southernpea Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts to incorporate genes conditioning a persistent green seed phenotype into Zipper Cream and White Acre type backgrounds were completed with the official release of the new southernpea cultivars ZipperCream-CG and WhiteAcre-DG on 29 January 2008. ZipperCream-CG is a high yielding, large-seeded...

  3. Q3DG: A computer program for strain-energy-release rates for delamination growth in composite laminates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1986-01-01

    The Q3DG is a computer program developed to perform a quasi-three-dimensional stress analysis for composite laminates which may contain delaminations. The laminates may be subjected to mechanical, thermal, and hygroscopic loads. The program uses the finite element method and models the laminates with eight-noded parabolic isoparametric elements. The program computes the strain-energy-release components and the total strain-energy release in all three modes for delamination growth. A rectangular mesh and data file generator, DATGEN, is included. The DATGEN program can be executed interactively and is user friendly. The documentation includes sections dealing with the Q3D analysis theory, derivation of element stiffness matrices and consistent load vectors for the parabolic element. Several sample problems with the input for Q3DG and output from the program are included. The capabilities of the DATGEN program are illustrated with examples of interactive sessions. A microfiche of all the examples is included. The Q3DG and DATGEN programs have been implemented on CYBER 170 class computers. Q3DG and DATGEN were developed at the Langley Research Center during the early eighties and documented in 1984 to 1985.

  4. DG TO FT - AUTOMATIC TRANSLATION OF DIGRAPH TO FAULT TREE MODELS

    NASA Technical Reports Server (NTRS)

    Iverson, D. L.

    1994-01-01

    Fault tree and digraph models are frequently used for system failure analysis. Both types of models represent a failure space view of the system using AND and OR nodes in a directed graph structure. Each model has its advantages. While digraphs can be derived in a fairly straightforward manner from system schematics and knowledge about component failure modes and system design, fault tree structure allows for fast processing using efficient techniques developed for tree data structures. The similarities between digraphs and fault trees permits the information encoded in the digraph to be translated into a logically equivalent fault tree. The DG TO FT translation tool will automatically translate digraph models, including those with loops or cycles, into fault tree models that have the same minimum cut set solutions as the input digraph. This tool could be useful, for example, if some parts of a system have been modeled using digraphs and others using fault trees. The digraphs could be translated and incorporated into the fault trees, allowing them to be analyzed using a number of powerful fault tree processing codes, such as cut set and quantitative solution codes. A cut set for a given node is a group of failure events that will cause the failure of the node. A minimum cut set for a node is any cut set that, if any of the failures in the set were to be removed, the occurrence of the other failures in the set will not cause the failure of the event represented by the node. Cut sets calculations can be used to find dependencies, weak links, and vital system components whose failures would cause serious systems failure. The DG TO FT translation system reads in a digraph with each node listed as a separate object in the input file. The user specifies a terminal node for the digraph that will be used as the top node of the resulting fault tree. A fault tree basic event node representing the failure of that digraph node is created and becomes a child of the terminal

  5. Mean Glandular dose coefficients (DgN) for x-ray spectra used in contemporary breast imaging systems

    PubMed Central

    Nosratieh, Anita; Hernandez, Andrew; Shen, Sam Z.; Yaffe, Martin J.; Seibert, J. Anthony; Boone, John M.

    2015-01-01

    Purpose To develop tables of normalized glandular dose coefficients DgN for a range of anode–filter combinations and tube voltages used in contemporary breast imaging systems. Methods Previously published mono-energetic DgN values were used with various spectra to mathematically compute DgN coefficients. The tungsten anode spectra from TASMICS were used; Molybdenum and Rhodium anode-spectra were generated using MCNPx Monte Carlo code. The spectra were filtered with various thicknesses of Al, Rh, Mo or Cu. An initial HVL calculation was made using the anode and filter material. A range of the HVL values was produced with the addition of small thicknesses of polymethyl methacrylate (PMMA) as a surrogate for the breast compression paddle, to produce a range of HVL values at each tube voltage. Using a spectral weighting method, DgN coefficients for the generated spectra were calculated for breast glandular densities of 0%, 12.5%, 25%, 37.5%, 50% and 100% for a range of compressed breast thicknesses from 3 to 8 cm. Results Eleven tables of normalized glandular dose (DgN) coefficients were produced for the following anode/filter combinations: W + 50 μm Ag, W + 500 μm Al, W + 700 μm Al, W + 200 μm Cu, W + 300 μm Cu, W + 50 μm Rh, Mo + 400 μm Cu, Mo + 30 μm Mo, Mo + 25 μm Rh, Rh + 400 μm Cu and Rh + 25 μm Rh. Where possible, these results were compared to previously published DgN values and were found to be on average less than 2% different than previously reported values. Conclusion Over 200-pages of DgN coefficients were computed for modeled x-ray system spectra that are used in a number of new breast imaging applications. The reported values were found to be in excellent agreement when compared to published values. PMID:26348995

  6. Theoretical investigations on the formation of nitrobenzanthrone-DNA adducts.

    PubMed

    Arlt, Volker M; Phillips, David H; Reynisson, Jóhannes

    2011-09-07

    3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. The thermochemical formation cascades were calculated for six 3-NBA-derived DNA adducts employing its arylnitrenium ion as precursor using density functional theory (DFT). Clear exothermic pathways were found for four adducts, i.e., 2-(2'-deoxyadenosin-N(6)-yl)-3-aminobenzanthrone, 2-(2'-deoxyguanosin-N(2)-yl)-3-aminobenzanthrone, N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone and 2-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone. All four have been observed to be formed in cell-free experimental systems. The formation of N-(2'-deoxyadenosin-8-yl)-3-aminobenzanthrone is predicted to be not thermochemically viable explaining its absence in either in vitro or in vivo model systems. However, 2-(2'-deoxyadenosin-8-yl)-3-aminobenzanthrone, can be formed, albeit not as a major product, and is a viable candidate for an unknown adenine adduct observed experimentally. 2-nitrobenzanthrone (2-NBA), an isomer of 3-NBA, was also included in the calculations; it has a higher abundance in ambient air than 3-NBA, but a much lower genotoxic potency. Similar thermochemical profiles were obtained for the calculated 2-NBA-derived DNA adducts. This leads to the conclusion that enzymatic activation as well as the stability of its arylnitrenium ion are important determinants of 2-NBA genotoxicity.

  7. Infrared spectroscopy of fullerene C60/anthracene adducts

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Cataldo, F.; Manchado, A.

    2013-09-01

    Recent Spitzer Space Telescope observations of several astrophysical environments such as planetary nebulae, reflection nebulae and R Coronae Borealis stars show the simultaneous presence of mid-infrared features attributed to neutral fullerene molecules (i.e. C60) and polycyclic aromatic hydrocarbons (PAHs). If C60 fullerenes and PAHs coexist in fullerene-rich space environments, then C60 may easily form adducts with a number of different PAH molecules, at least with catacondensed PAHs. Here we present the laboratory infrared spectra (˜2-25 μm) of C60 fullerene and anthracene Diels-Alder mono- and bis-adducts as produced by sonochemical synthesis. We find that C60/anthracene Diels-Alder adducts display spectral features strikingly similar to those from C60 (and C70) fullerenes and other unidentified infrared emission features. Thus, fullerene adducts - if formed under astrophysical conditions and are stable/abundant enough - may contribute to the infrared emission features observed in fullerene-containing circumstellar/interstellar environments.

  8. NMR at the Picomole Level of a DNA Adduct

    PubMed Central

    Kautz, Roger; Wang, Poguang; Giese, Roger W.

    2014-01-01

    We investigate the limit of detection for obtaining NMR data of a DNA adduct using modern microscale NMR instrumentation, once the adduct has been isolated at the pmol level. Eighty nanograms (130 pmol) of a DNA adduct standard, N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene 5′-monophosphate (AAF-dGMP), in 1.5 μL of D2O with 10% methanol-d4, in a vial, was completely picked up as a droplet suspended in a fluorocarbon liquid, and loaded efficiently into a microcoil probe. This work demonstrates a practical manual method of droplet microfluidic sample loading, previously demonstrated using automated equipment, which provides a several-fold advantage over conventional flow injection. Eliminating dilution during injection and confining the sample into the observed volume realizes the full theoretical mass sensitivity of a microcoil, comparable to a micro-cryo probe. With 80 ng, an NMR spectrum acquired over 40 hr showed all of the resonances seen in a standard spectrum of AAF-dGMP, with a S/N of at least 10, despite broadening due to previously-noted effects of conformational exchange. Also a 2D TOCSY spectrum (total correlation spectroscopy) was acquired on 1.6 μg in 18 hr. This work helps to define the utility of NMR in combination with other analytical methods for the structural characterization of a small amount of a DNA adduct. PMID:24028148

  9. Conformations of DNA adducts with polycyclic aromatic carcinogens

    SciTech Connect

    Broyde, S.; Hingerty, B.

    1984-01-01

    Minimized semi-empirical potential energy calculations for a number of carcinogen adducts with dCpdG have yielded molecular views of the adduct conformations. The base displaced and Z type conformations of acetylaminofluorene (AAF) adducts to guanine C-8 have been detailed. Model building shows that base displacement causes kinking and denaturation in the B helix, while the Z helix is largely unperturbed by modification with AAF, in agreement with experimental findings. The minor AAF adduct linked to quanine N/sup 2/ can reside at a B-Z junction, with the carcinogen buried in a groove in the Z direction, without causing denaturation. The syn guanine in these modified Z forms could be mutagenic, the lesion escaping repair because the helix is undeformed, while the distorted base-displaced conformers are repaired. Aminofluorene (AF) and 4-aminobiphenyl (ABP) linked to guanine N/sup 2/ are currently believed to be critical lesions. They all have a pair of A or B type low energy states, one of which has base-base stacking with carcinogen at the helix exterior, and a second with carcinogen-base stacking. The two states are easily interconvertible. It is possible that the carcinogen may reside primarily at the unperturbed helix exterior where it escapes repair, but that carcinogen-base stacking may occur at a critical time during replication, leading to a mutation. 49 references, 8 figures.

  10. Chloroethyinitrosourea-derived ethano cytosine and adenine adducts are substrates for escherichia coli glycosylases excising analogous etheno adducts

    SciTech Connect

    Guliaev, Anton B.; Singer, B.; Hang, Bo

    2004-05-05

    Exocyclic ethano DNA adducts are saturated etheno ring derivatives formed mainly by therapeutic chloroethylnitrosoureas (CNUs), which are also mutagenic and carcinogenic. In this work, we report that two of the ethano adducts, 3,N{sup 4}-ethanocytosine (EC) and 1,N{sup 6}-ethanoadenine (EA), are novel substrates for the Escherichia coli mismatch-specific uracil-DNA glycosylase (Mug) and 3-methyladenine DNA glycosylase II (AlkA), respectively. It has been shown previously that Mug excises 3,N{sup 4}-ethenocytosine ({var_epsilon}C) and AlkA releases 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using synthetic oligonucleotides containing a single ethano or etheno adduct, we found that both glycosylases had a {approx}20-fold lower excision activity toward EC or EA than that toward their structurally analogous {var_epsilon}C or {var_epsilon}A adduct. Both enzymes were capable of excising the ethano base paired with any of the four natural bases, but with varying efficiencies. The Mug activity toward EC could be stimulated by E. coli endonuclease IV and, more efficiently, by exonuclease III. Molecular dynamics (MD) simulations showed similar structural features of the etheno and ethano derivatives when present in DNA duplexes. However, also as shown by MD, the stacking interaction between the EC base and Phe 30 in the Mug active site is reduced as compared to the {var_epsilon}C base, which could account for the lower EC activity observed in this study.

  11. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    SciTech Connect

    Shi, Yun-bo

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs.

  12. 32P-postlabeling DNA adduct assay: cigarette smoke-induced dna adducts in the respiratory and nonrespiratory rat tissues. Book chapter

    SciTech Connect

    Gupta, R.C.; Gairola, C.G.

    1990-01-01

    An analysis of the tissue DNA adducts in rats by the sensitive (32)p-postlabeling assay showed one to eight detectable DNA adducts in lung, trachea, larynx, heart and bladder of the sham controls. Chronic exposure of animals to mainstream cigarette smoke showed a remarkable enhancement of most adducts in the lung and heart DNA. Since cigarette smoke contains several thousand chemicals and a few dozen of them are known or potential carcinogens, the difference between the DNA adducts of nasal and the other tissues may reflect the diversity of reactive constituents and their differential absorption in different tissues. In comparison to the lung DNA adducts, the adducts in nasal DNA were less hydrophobic. Identity of the predominant adducts was further investigated by comparison with several reference DNA adducts from 10 PAH and aromatic amines. Since some of these chemicals are present in cigarette smoke, the results suggest that these constituents of cigarette smoke may not be directly responsible for formation of DNA adducts in the lung and heart of the smoke-exposed animals.

  13. Detection of Adriamycin-DNA adducts by accelerator mass spectrometry at clinically relevant Adriamycin concentrations.

    PubMed

    Coldwell, Kate E; Cutts, Suzanne M; Ognibene, Ted J; Henderson, Paul T; Phillips, Don R

    2008-09-01

    Limited sensitivity of existing assays has prevented investigation of whether Adriamycin-DNA adducts are involved in the anti-tumour potential of Adriamycin. Previous detection has achieved a sensitivity of a few Adriamycin-DNA adducts/10(4) bp DNA, but has required the use of supra-clinical drug concentrations. This work sought to measure Adriamycin-DNA adducts at sub-micromolar doses using accelerator mass spectrometry (AMS), a technique with origins in geochemistry for radiocarbon dating. We have used conditions previously validated (by less sensitive decay counting) to extract [(14)C]Adriamycin-DNA adducts from cells and adapted the methodology to AMS detection. Here we show the first direct evidence of Adriamycin-DNA adducts at clinically-relevant Adriamycin concentrations. [(14)C]Adriamycin treatment (25 nM) resulted in 4.4 +/- 1.0 adducts/10(7) bp ( approximately 1300 adducts/cell) in MCF-7 breast cancer cells, representing the best sensitivity and precision reported to date for the covalent binding of Adriamycin to DNA. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection and revealed adduct formation within an hour of drug treatment. This method has been shown to be highly reproducible for the measurement of Adriamycin-DNA adducts in tumour cells in culture and can now be applied to the detection of these adducts in human tissues.

  14. Regulation of iron transport related genes by boron in the marine bacterium Marinobacter algicola DG893.

    PubMed

    Romano, Ariel; Trimble, Lyndsay; Hobusch, Ashtian R; Schroeder, Kristine J; Amin, Shady A; Hartnett, Andrej D; Barker, Ryan A; Crumbliss, Alvin L; Carrano, Carl J

    2013-08-01

    While there has been extensive interest in the use of boron isotope ratios as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the high (0.4 mM) concentration and the depth-independent (conservative or non-nutrient-like) concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the modern ocean. Here we report that boron affects the expression of a number of protein and genes in the "algal-associated" Gram-negative marine bacterium Marinobacter algicola DG893. Most intriguingly, a number of these proteins and genes are related to iron uptake. In a recent separate publication we have shown that boron regulates one such iron transport related protein, i.e. the periplasmic iron binding protein FbpA via a direct interaction of the metalloid with this protein. Here we show that a number of other iron uptake related genes are also affected by boron but in the opposite way i.e. they are up-regulated. We propose that the differential effect of boron on FbpA expression relative to other iron transport related genes is a result of an interaction between boron and the global iron regulatory protein Fur.

  15. Effects of hexagonal boron nitride on dry compression mixture of Avicel DG and Starch 1500.

    PubMed

    Uğurlu, Timuçin; Halaçoğlu, Mekin Doğa

    2016-01-01

    The objective of this study was to investigate the lubrication properties of hexagonal boron nitride (HBN) on a (1:1) binary mixture of Avicel DG and Starch 1500 after using the dry granulation-slugging method and compare it with conventional lubricants, such as magnesium stearate (MGST), glyceryl behenate (COMP) and stearic acid (STAC). MGST is one of the most commonly used lubricants in the pharmaceutical industry. However, it has several adverse effects on tablet properties. In our current study, we employed various methods to eradicate the work hardening phenomenon in dry granulation, and used HBN as a new lubricant to overcome the adverse effects of other lubricants on tablet properties. HBN was found to be as effective as MGST and did not show any significant adverse effects on the crushing strength or work hardening. From the scanning electron microscope (SEM) images, it was concluded that HBN distributed better than MGST. As well as showing better distribution, HBN's effect on disintegration was the least pronounced. Semi-quantitative weight percent distribution of B and N elements in the tablets was obtained using EDS (energy dispersive spectroscopy). Based on atomic force microscope (AFM) surface roughness images, formulations prepared with 1% HBN showed better plastic character than those prepared with MGST.

  16. Analysis of high-k spacer on symmetric underlap DG-MOSFET with Gate Stack architecture

    NASA Astrophysics Data System (ADS)

    Das, Rahul; Chakraborty, Shramana; Dasgupta, Arpan; Dutta, Arka; Kundu, Atanu; Sarkar, Chandan K.

    2016-09-01

    This paper shows the systematic study of underlap double gate (U-DG) NMOSFETs with Gate Stack (GS) under the influence of high-k spacers. In highly scaled devices, underlap is used at the Source and Drain side so as to reduce the short channel effects (SCE's), however, it significantly reduces the on current due to the increased channel resistance. To overcome these drawbacks, the use of high-k spacers is projected as one of the remedies. In this paper, the analog performance of the devices is studied on the basis of parameters like transconductance (gm), transconductance generation factor (gm/Id) and intrinsic gain (gmro). The RF performance is analyzed on the merits of intrinsic capacitance (Cgd, Cgs), resistance (Rgd, Rgs), transport delay (τm), inductance (Lsd), cutoff frequency (fT), and the maximum frequency of oscillation (fmax). The circuit performance of the devices are studied by implementing the device as the driver MOSFET in a Single Stage Common Source Amplifier. The Gain Bandwidth Product (GBW) has been analyzed from the frequency response of the circuit.

  17. Results and limits in the 1-D analytical modeling for the asymmetric DG SOI MOSFET

    NASA Astrophysics Data System (ADS)

    Cobianu, O.; Glesner, M.

    2008-05-01

    This paper presents the results and the limits of 1-D analytical modeling of electrostatic potential in the low-doped p type silicon body of the asymmetric n-channel DG SOI MOSFET, where the contribution to the asymmetry comes only from p- and n-type doping of polysilicon used as the gate electrodes. Solving Poisson's equation with boundary conditions based on the continuity of normal electrical displacement at interfaces and the presence of a minimum electrostatic potential by using the Matlab code we have obtained a minimum potential with a slow variation in the central zone of silicon with the value pinned around 0.46 V, where the applied VGS voltage varies from 0.45 V to 0.95 V. The paper states clearly the validity domain of the analytical solution and the important effect of the localization of the minimum electrostatic potential value on the potential variation at interfaces as a function of the applied VGS voltage.

  18. Adducts of mitomycin C and DNA in EMT6 mouse mammary tumor cells: effects of hypoxia and dicumarol on adduct patterns.

    PubMed

    Bizanek, R; Chowdary, D; Arai, H; Kasai, M; Hughes, C S; Sartorelli, A C; Rockwell, S; Tomasz, M

    1993-11-01

    6-CH3-3H-Mitomycin C (MC) was used to identify MC-DNA adducts formed in EMT6 mouse mammary tumor cells. DNA was isolated from cells treated with 3H-MC. The DNA was enzymatically digested, and the digest was analyzed for 3H-labeled adducts by high performance liquid chromatography. All four major adducts previously isolated and characterized in cell-free systems were detected: two different monoadducts and two bisadducts forming DNA-interstrand and DNA-intrastrand cross-links, respectively. No MC-DNA adducts other than the DNA interstrand cross-link had been shown previously to be formed in living cells. A MC-deoxyguanosine adduct of unknown structure was also detected in DNA from EMT6 cells; this adduct was also formed with purified EMT6 DNA. High performance liquid chromatography analysis was further applied to study the relationship between DNA adducts and cytotoxicity. The number of adducts increased with the concentration of MC in both aerobic and hypoxic cells. At a constant drug level, more adducts were observed in cells treated under hypoxic conditions than in cells treated aerobically; at 2 microM MC, 4.8 x 10(-7) and 3.1 x 10(-7) adducts/nucleotide were observed under hypoxic and aerobic conditions, respectively. The increased adduct frequency under hypoxia correlates with the known increased cytotoxicity of MC to EMT6 cells under hypoxic conditions. In addition, a higher ratio of cross-linked adducts to monoadducts was observed in hypoxic cells. The high performance liquid chromatography techniques were also used to examine the effects of dicumarol (DIC) on adduct patterns in cells treated simultaneously with 3H-MC. The MC-DNA adduct frequencies in DIC-treated cells were increased 1.5-fold under hypoxia and decreased 1.6-fold under aerobic conditions from those observed without DIC. This finding correlates with the known DIC-induced increase and decrease in the cytotoxicity of MC in hypoxic and aerobic EMT6 cells, respectively. The monoadduct resulting

  19. Proteomic analysis of adducted butyrylcholinesterase for biomonitoring organophosphorus exposures

    PubMed Central

    Marsillach, Judit; Hsieh, Edward J.; Richter, Rebecca J.; MacCoss, Michael J.; Furlong, Clement E.

    2014-01-01

    Organophosphorus (OP) compounds include a broad group of toxic chemicals such as insecticides, chemical warfare agents and antiwear agents. The liver cytochromes P450 bioactivate many OPs to potent inhibitors of serine hydrolases. Cholinesterases were the first OP targets discovered and are the most studied. They are used to monitor human exposures to OP compounds. However, the assay that is currently used has limitations. The mechanism of action of OP compounds is the inhibition of serine hydrolases by covalently modifying their active-site serine. After structural rearrangement, the complex OP inhibitor-enzyme is irreversible and will remain in circulation until the modified enzyme is degraded. Mass spectrometry is a sensitive technology for analyzing protein modifications, such as OP-adducted enzymes. These analyses also provide some information about the nature of the OP adduct. Our aim is to develop high-throughput protocols for monitoring OP exposures using mass spectrometry. PMID:23123252

  20. Biocidal properties of metal oxide nanoparticles and their halogen adducts

    NASA Astrophysics Data System (ADS)

    Haggstrom, Johanna A.; Klabunde, Kenneth J.; Marchin, George L.

    2010-03-01

    Nanosized metal oxide halogen adducts possess high surface reactivities due to their unique surface morphologies. These adducts have been used as reactive materials against vegetative cells, such as Escherichia coli as well as bacterial endospores, including Bacillus subtilis and Bacillus anthracis (Δ Sterne strain). Here we report high biocidal activities against gram-positive bacteria, gram-negative bacteria, and endospores. The procedure consists of a membrane method. Transmission electron micrographs are used to compare nanoparticle-treated and untreated cells and spores. It is proposed that the abrasive character of the particles, the oxidative power of the halogens/interhalogens, and the electrostatic attraction between the metal oxides and the biological material are responsible for high biocidal activities. While some activity was demonstrated, bacterial endospores were more resistant to nanoparticle treatment than the vegetative bacteria.

  1. Nanoscale T-shaped Double Gate DG MOSFET: Numerical Investigation for Analog/RF and Digital Performance

    NASA Astrophysics Data System (ADS)

    Kumari, Vandana; Ilango, Aravindan; Saxena, Manoj; Gupta, Mridula

    2016-01-01

    The present work demonstrates the investigation of T-shaped Double Gate MOSFET for analog and digital performance. The 2D analytical modeling scheme is presented using Evanescent Mode Analysis (EMA). The applicability of the proposed model has been verified using ATLAS 3D device simulation. The device exploits peaks in the electric field inside the channel (due to T-shaped gate) for better carrier transport efficiency and subsequently higher drain current and trans-conductance. The impact of dielectric constant of the void layer (due to T-shaped gate) on the electrostatic of the device has been investigated using basic electrical parameters such as: sub-threshold slope, Drain Induced Barrier Lowering DIBL, device gain and Ion/Ioff ratio. The comparative study between T-shaped DG with the conventional DG MOSFET is also presented.

  2. Detection of DNA Adducts in Human Breast Tissues

    DTIC Science & Technology

    1997-07-01

    techniques employed are kept simple, which in turn limits the resolution and characterization. Fourth, the limited resolution can make it difficult to...PROCEDURES Our basic scheme for detecting DNA adducts in human samples consists of three general steps. In step I, standard techniques are used to isolate...this adjustment was done without changing the pH. Buffer A was added to part B to keep the volume the same. The samples were stored at room temperature

  3. 2' and 3' Carboranyl uridines and their diethyl ether adducts

    DOEpatents

    Soloway, Albert H.; Barth, Rolf F.; Anisuzzaman, Abul K.; Alam, Fazlul; Tjarks, Werner

    1992-01-01

    There is disclosed a process for preparing carboranyl uridine nucleoside compounds and their diethyl ether adducts, which exhibit a tenfold increase in boron content over prior art boron containing nucleoside compounds. Said carboranyl uridine nucleoside compounds exhibit enhanced lipophilicity and hydrophilic properties adequate to enable solvation in aqueous media for subsequent incorporation of said compounds in methods for boron neutron capture therapy in mammalian tumor cells.

  4. Ion Pairs or Neutral Molecule Adducts? Cooperativity in Hydrogen Bonding

    ERIC Educational Resources Information Center

    DeKock, Roger L.; Schipper, Laura A.; Dykhouse, Stephanie C.; Heeringa, Lee P.; Brandsen, Benjamin M.

    2009-01-01

    We performed theoretical studies on the systems NH[subscript 3] times HF times mH[subscript 2]O, NH[subscript 3] times HCl times mH[subscript 2]O, with m = 0, 1, 2, and 6. The molecules with m = 0 form hydrogen-bonded adducts with little tendency to form an ion-pair structure. The molecule NH[subscript 3] times HCl times H[subscript 2]O cannot be…

  5. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    SciTech Connect

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  6. Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils.

    PubMed

    Chen, Shaohua; Chang, Changqing; Deng, Yinyue; An, Shuwen; Dong, Yi Hu; Zhou, Jianuan; Hu, Meiying; Zhong, Guohua; Zhang, Lian-Hui

    2014-03-12

    The widely used insecticide fenpropathrin in agriculture has become a public concern because of its heavy environmental contamination and toxic effects on mammals, yet little is known about the kinetic and metabolic behaviors of this pesticide. This study reports the degradation kinetics and metabolic pathway of fenpropathrin in Bacillus sp. DG-02, previously isolated from the pyrethroid-manufacturing wastewater treatment system. Up to 93.3% of 50 mg L(-1) fenpropathrin was degraded by Bacillus sp. DG-02 within 72 h, and the degradation rate parameters qmax, Ks, and Ki were determined to be 0.05 h(-1), 9.0 mg L(-1), and 694.8 mg L(-1), respectively. Analysis of the degradation products by gas chromatography-mass spectrometry led to identification of seven metabolites of fenpropathrin, which suggest that fenpropathrin could be degraded first by cleavage of its carboxylester linkage and diaryl bond, followed by degradation of the aromatic ring and subsequent metabolism. In addition to degradation of fenpropathrin, this strain was also found to be capable of degrading a wide range of synthetic pyrethroids including deltamethrin, λ-cyhalothrin, β-cypermethrin, β-cyfluthrin, bifenthrin, and permethrin, which are also widely used insecticides with environmental contamination problems with the degradation process following the first-order kinetic model. Bioaugmentation of fenpropathrin-contaminated soils with strain DG-02 significantly enhanced the disappearance rate of fenpropathrin, and its half-life was sharply reduced in the soils. Taken together, these results depict the biodegradation mechanisms of fenpropathrin and also highlight the promising potentials of Bacillus sp. DG-02 in bioremediation of pyrethroid-contaminated soils.

  7. The [Ne III] Jet of DG Tau and its Ionization Scenarios

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Fan; Shang, Hsien; Herczeg, Gregory J.; Walter, Frederick M.

    2016-12-01

    Forbidden neon emission from jets of low-mass young stars can be used to probe the underlying high-energy processes in these systems. We analyze spectra of the jet of DG Tau obtained with the Very Large Telescope/X-Shooter spectrograph in 2010. [Ne iii] λ 3869 is clearly detected in the innermost 3″ microjet and the outer knot located at ˜ 6\\buildrel{\\prime\\prime}\\over{.} 5. The velocity structure of the inner microjet can be decomposed into the low-velocity component at ˜ -70 km s-1 and the high-velocity component (HVC) at ˜ -180 km s-1. Based on the observed [Ne iii] flux and its spatial extent, we suggest the origins of the [Ne iii] emission regions and their relation with known X-ray sources along the jet. The flares from the hard X-ray source close to the star may be the main ionization source of the innermost microjet. The fainter soft X-ray source at 0\\buildrel{\\prime\\prime}\\over{.} 2 from the star may provide sufficient heating to help to sustain the ionization fraction against recombination in the flow. The outer knot may be reionized by shocks faster than 100 km s-1 such that [Ne iii] emission reappears and the soft X-ray emission at 5\\buildrel{\\prime\\prime}\\over{.} 5 is produced. Velocity decomposition of the archival Hubble Space Telescope spectra obtained in 1999 shows that the HVC had been faster, with a velocity centroid of ˜ -260 km s-1. Such a decrease in velocity may potentially be explained by the expansion of the stellar magnetosphere, changing the truncation radius and thus the launching speed of the jet. The energy released by magnetic reconnections during relaxation of the transition can heat the gas up to several tens of megakelvin and provide the explanation for on-source keV X-ray flares that ionize the neon microjet.

  8. Thermal stability of DNA adducts induced by cyanomorpholinoadriamycin in vitro.

    PubMed Central

    Cullinane, C; Phillips, D R

    1993-01-01

    The Adriamycin derivative, cyanomorpholinoadriamycin (CMA) was reacted with DNA in vitro to form apparent interstrand crosslinks. The extent of interstrand crosslink formation was monitored by a gel electrophoresis assay and maximal crosslinking of DNA was observed within 1 hr with 5 microM of drug. The interstrand crosslinks were heat labile, with a midpoint melting temperature of 70 degrees C (10 min exposure to heat) in 45% formamide. When CMA-induced adducts were detected as blockages of lambda-exonuclease, 12 blockage sites were observed with 8 being prior to 5'-GG sequences, one prior to 5'-CC, one prior to 5'-GC and 2 at unresolved combinations of these sequences. These exonuclease-detected blockages reveal the same sites of CMA-induced crosslinking as detected by in vitro transcription footprinting and primer-extension blockages on single strand DNA, where the blockages at 5'-GG and 5'-CC were identified as sites of intrastrand crosslinking and the 5'-GC blockage as a probable site of interstrand crosslinking. The thermal stability of both types of crosslink (10 min exposure to heat) ranged from 63-70 degrees C at individual sites. High levels of adduct were detected with poly (dG-dC) but not with poly (dI-dC). These results suggest adduct formation involving an aminal linkage between the 3 position of the morpholino moiety and N2 of guanine. Images PMID:8493102

  9. Structural Characterization of Hydroxyl Radical Adducts in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2015-06-01

    The oxidation by the hydroxyl (OH) radical is one of the most widely studied reactions because of its central role in chemistry, biology, organic synthesis, and photocatalysis in aqueous environments, wastewater treatment, and numerous other chemical processes. Although the redox potential of OH is very high, direct electron transfer (ET) is rarely observed. If it happens, it mostly proceeds through the formation of elusive OH adduct intermediate which facilitates ET and formation of hydroxide anion. Using time resolved resonance Raman technique we structurally characterized variety of OH adducts to sulfur containing organic compounds, halide ions as well as some metal cations. The bond between oxygen of OH radical and the atom of oxidized molecule differs depending on the nature of solute that OH radical reacts with. For most of sulfur containing organics, as well as halide and pseudo-halide ions, our observation suggested that this bond has two-center three-electron character. For several metal aqua ions studied, the nature of the bond depends on type of the cation being oxidized. Discussion on spectral parameters of all studied hydroxyl radical adducts as well as the role solvent plays in their stabilization will be presented.

  10. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    PubMed Central

    Li, Bin; Eyer, Peter; Eddleston, Michael; Jiang, Wei; Schopfer, Lawrence M.; Lockridge, Oksana

    2013-01-01

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. PMID:23566956

  11. Malondialdehyde-acetaldehyde adducts decrease bronchial epithelial wound repair.

    PubMed

    Wyatt, Todd A; Kharbanda, Kusum K; Tuma, Dean J; Sisson, Joseph H; Spurzem, John R

    2005-05-01

    Most people who abuse alcohol are cigarette smokers. Previously, we have shown that malondialdehyde, an inflammation product of lipid peroxidation, and acetaldehyde, a component of both ethanol metabolism and cigarette smoke, form protein adducts that stimulate protein kinase C (PKC) activation in bronchial epithelial cells. We have also shown that PKC can regulate bronchial epithelial cell wound repair. We hypothesize that bovine serum albumin adducted with malondialdehyde and acetaldehyde (BSA-MAA) decreases bronchial epithelial cell wound repair via binding to scavenger receptors on bronchial epithelial cells. To test this, confluent monolayers of bovine bronchial epithelial cells were grown in serum-free media prior to wounding the cells. Bronchial epithelial cell wound closure was inhibited in a dose-dependent manner (up to 60%) in the presence of BSA-MAA than in media treated cells (Laboratory of Human Carcinogenesis [LHC]-9-Roswell Park Memorial Institute [RPMI]). The specific scavenger receptor ligand, fucoidan, also stimulated PKC activation and decreased wound repair. Pretreatment with fucoidan blocked malondialdehyde-acetaldehyde binding to bronchial epithelial cells. When bronchial epithelial cells were preincubated with a PKC alpha inhibitor, Gö 6976, the inhibition of wound closure by fucoidan and BSA-MAA was blocked. Western blot demonstrated the presence of several scavenger receptors on bronchial epithelial cell membranes, including SRA, SRBI, SRBII, and CD36. Scavenger receptor-mediated activation of PKC alpha may function to reduce wound healing under conditions of alcohol and cigarette smoke exposure where malondialdehyde-acetaldehyde adducts may be present.

  12. Tunable degradation of maleimide-thiol adducts in reducing environments

    PubMed Central

    Baldwin, Aaron D.; Kiick, Kristi L.

    2011-01-01

    Addition chemistries are widely used in preparing biological conjugates, and in particular, maleimide-thiol adducts have been widely employed. Here we show that the resulting succinimide thioether formed by a Michael type addition of a thiol to N-ethylmaleimide (NEM), generally accepted as stable, can in fact undergo retro and exchange reactions in the presence of other thiol compounds at physiological pH and temperature, offering a novel strategy for controlled release. Model studies (1H NMR, HPLC) of NEM conjugated to 4-mercaptophenylacetic acid (MPA), N-acetylcysteine, or 3-mercaptopropionic acid (MP) incubated with glutathione showed half lives of conversion from 20–80 hrs, with extents of conversion from 20–90% for MPA and N-acetylcysteine conjugates. Ring-opened the resultant succinimide thioether as well as any MP adduct did not show retro and exchange reactions. The kinetics of the retro reactions can be modulated by the Michael donor’s reactivity; therefore the degradation of maleimide-thiol adducts could be tuned for controlled release of drugs or degradation of materials at timescales different than those currently possible via disulfide-mediated release. Such approaches may find a new niche for controlled release in reducing environments relevant in chemotherapy and sub-cellular trafficking. PMID:21863904

  13. Acetaldehyde and the genome: beyond nuclear DNA adducts and carcinogenesis.

    PubMed

    Brooks, Philip J; Zakhari, Samir

    2014-03-01

    The designation of acetaldehyde associated with the consumption of alcoholic beverages as "carcinogenic to humans" (Group 1) by the International Agency for Research on Cancer (IARC) has brought renewed attention to the biological effects of acetaldehyde, as the primary oxidative metabolite of alcohol. Therefore, the overall focus of this review is on acetaldehyde and its direct and indirect effects on the nuclear and mitochondrial genome. We first consider different acetaldehyde-DNA adducts, including a critical assessment of the evidence supporting a role for acetaldehyde-DNA adducts in alcohol related carcinogenesis, and consideration of additional data needed to make a conclusion. We also review recent data on the role of the Fanconi anemia DNA repair pathway in protecting against acetaldehyde genotoxicity and carcinogenicity, as well as teratogenicity. We also review evidence from the older literature that acetaldehyde may impact the genome indirectly, via the formation of adducts with proteins that are themselves critically involved in the maintenance of genetic and epigenetic stability. Finally, we note the lack of information regarding acetaldehyde effects on the mitochondrial genome, which is notable since aldehyde dehydrogenase 2 (ALDH2), the primary acetaldehyde metabolic enzyme, is located in the mitochondrion, and roughly 30% of East Asian individuals are deficient in ALDH2 activity due to a genetic variant in the ALDH2 gene. In summary, a comprehensive understanding of all of the mechanisms by which acetaldehyde impacts the function of the genome has implications not only for alcohol and cancer, but types of alcohol related pathologies as well.

  14. Effect of phytochemical intervention on dibenzo[a,l]pyrene-induced DNA adduct formation

    PubMed Central

    Russell, Gilandra K.; Gupta, Ramesh C.; Vadhanam, Manicka V.

    2015-01-01

    Dibenzo[a,l]pyrene (DBP) has been found to be the most potent carcinogen of the polycyclic aromatic hydrocarbons (PAHs). Primary sources for DBP in the environment are combustion of wood and coal burning, gasoline and diesel exhaust, and tires. Given the likelihood of environmental exposure to DBP and strong experimental evidence of its potency, it is likely to contribute to lung cancer development. Intervention with compounds of natural origin (“phytochemicals”) is considered an effective means to prevent cancer development and favorably modulate the underlying mechanisms, including DNA adduct formation. In this study, several agents have been identified that inhibit environmental carcinogen-induced DNA adduct formation using a cell-free microsomal system. Of the ten agents tested, resveratrol (648 ± 26 adducts/109 nucleotides), oltipraz (1007 ± 348 adducts/109 nucleotides), delphinidin (1252 ± 142 adducts/109 nucleotides), tanshinone I (1981 ± 213 adducts/109 nucleotides), tanshinone IIA (2606 ± 478 adducts/109 nucleotides) and diindoylmethane (3643 ± 469 adducts/109 nucleotides) were the most effective compared to vehicle treatment (14,062 ± 1097 adducts/109 nucleotides). DBP is metabolized by phase I metabolizing enzymes CYP1A1, CYP1A2, and CYP1B1. DBP-induced DNA adducts can be inhibited by several mechanisms. We found that all the test agents inhibited DNA adducts by inhibiting one or more of these enzymes. Oltipraz inhibited DNA adducts entirely by inhibiting the CYP450s, while resveratrol and delphinidin inhibited DNA adducts by also interacting directly with the carcinogenic metabolite, anti-dibenzo(a,l)pyrene-11,12-dihydrodiol-13,14-epoxide. PMID:25794985

  15. TENTATIVE EVIDENCE FOR RELATIVISTIC ELECTRONS GENERATED BY THE JET OF THE YOUNG SUN-LIKE STAR DG Tau

    SciTech Connect

    Ainsworth, Rachael E.; Ray, Tom P.; Taylor, Andrew M.; Scaife, Anna M. M.; Green, David A.; Buckle, Jane V.

    2014-09-01

    Synchrotron emission has recently been detected in the jet of a massive protostar, providing further evidence that certain jet formation characteristics for young stars are similar to those found for highly relativistic jets from active galactic nuclei. We present data at 325 and 610 MHz taken with the Giant Metrewave Radio Telescope of the young, low-mass star DG Tau, an analog of the Sun soon after its birth. This is the first investigation of a low-mass young stellar object at such low frequencies. We detect emission with a synchrotron spectral index in the proximity of the DG Tau jet and interpret this emission as a prominent bow shock associated with this outflow. This result provides tentative evidence for the acceleration of particles to relativistic energies due to the shock impact of this otherwise very low-power jet against the ambient medium. We calculate the equipartition magnetic field strength B {sub min} ≈ 0.11 mG and particle energy E {sub min} ≈ 4 × 10{sup 40} erg, which are the minimum requirements to account for the synchrotron emission of the DG Tau bow shock. These results suggest the possibility of low energy cosmic rays being generated by young Sun-like stars.

  16. KINEMATICS OF THE OUTFLOW FROM THE YOUNG STAR DG TAU B: ROTATION IN THE VICINITIES OF AN OPTICAL JET

    SciTech Connect

    Zapata, Luis A.; Lizano, Susana; Rodríguez, Luis F.; Loinard, Laurent; Tafoya, Daniel; Ho, Paul T. P.; Fernández-López, Manuel

    2015-01-10

    We present {sup 12}CO(2-1) line and 1300 μm continuum observations made with the Submillimeter Array of the young star DG Tau B. We find, in the continuum observations, emission arising from the circumstellar disk surrounding DG Tau B. The {sup 12}CO(2-1) line observations, on the other hand, revealed emission associated with the disk and the asymmetric outflow related with this source. Velocity asymmetries about the flow axis are found over the entire length of the flow. The amplitude of the velocity differences is of the order of 1-2 km s{sup –1} over distances of about 300-400 AU. We interpret them as a result of outflow rotation. The sense of the outflow and disk rotation is the same. Infalling gas from a rotating molecular core cannot explain the observed velocity gradient within the flow. Magneto-centrifugal disk winds or photoevaporated disk winds can produce the observed rotational speeds if they are ejected from a Keplerian disk at radii of several tens of AU. Nevertheless, these slow winds ejected from large radii are not very massive, and cannot account for the observed linear momentum and angular momentum rates of the molecular flow. Thus, the observed flow is probably entrained material from the parent cloud. DG Tau B is a good laboratory to model in detail the entrainment process and see if it can account for the observed angular momentum.

  17. Influence of Underlap on Gate Stack DG-MOSFET for analytical study of Analog/RF performance

    NASA Astrophysics Data System (ADS)

    Kundu, Atanu; Dasgupta, Arpan; Das, Rahul; Chakraborty, Shramana; Dutta, Arka; Sarkar, Chandan K.

    2016-06-01

    In this paper, the characteristics of 18 nm Underlap Double Gate (U-DG) NMOSFET with gate stack, (GS) are presented. The high-k dielectric as gate insulator under consideration is Hafnium Dioxide (HfO2). The SiO2 padding reduces the effect of scattering at the silicon and oxide interface. The ratio of on current to off current is used for optimizing the underlap length. The Analog and RF performance comparison are shown in this paper considering the drain current (Id), the transconductance (gm), the intrinsic gain (gmRo), the intrinsic capacitances (Cgs, Cgd), the intrinsic resistances (Rgs, Rgd), the transport delay (τm), the intrinsic inductance (Hsd), the unity current gain cut-off frequency (fT) and the maximum frequency of oscillation (fmax). RF parameters are extracted using the Non Quasi Static (NQS) model of the U-DG MOSFET. The performance of single stage amplifiers using the devices is also analyzed. The sharpest transition is shown in case of U-DG-GS MOSFET with optimized underlap length and enhancement in the intrinsic capacitances and resistances, and unity Gain Bandwidth product in case of devices with GS.

  18. A Simultaneous Biogeography based Optimal Placement of DG Units and Capacitor Banks in Distribution Systems with Nonlinear Loads

    NASA Astrophysics Data System (ADS)

    Sadeghi, Hassan; Ghaffarzadeh, Navid

    2016-09-01

    This paper uses a new algorithm namely biogeography based optimization (BBO) intended for the simultaneous placement of the distributed generation (DG) units and the capacitor banks in the distribution network. The procedure of optimization has been conducted in the presence of nonlinear loads (a cause of harmonic injection). The purpose of simultaneous optimal placement of the DG and the capacitor is the reduction of active and reactive losses. The difference in the values of loss reduction at different levels of the load have been included in the objective function and the considered objective function includes the constraints of voltage, size and the number of DG units and capacitor banks and the allowable range of the total harmonic distortion (THD) of the total voltage in accordance with the IEEE 519 standards. In this paper the placement has been performed on two load types ie constant and mixed power, moreover the effects of load models on the results and the effects of optimal placement on reduction of the THD levels have also been analyzed. The mentioned cases have been studied on a 33 bus radial distribution system.

  19. Urinary C3dg and C5b-9 indicate active immune disease in human membranous nephropathy.

    PubMed

    Brenchley, P E; Coupes, B; Short, C D; O'Donoghue, D J; Ballardie, F W; Mallick, N P

    1992-04-01

    We have measured complement activation markers, C3dg and C5b-9 in plasma and urine from patients with idiopathic membranous nephropathy and IgA nephropathy. There was no significant difference in levels of plasma C5b-9 between the patient groups. However, high plasma concentrations of C3dg were associated significantly with IgA nephropathy with 45% of patients having levels over 25 U/ml (P less than 0.001). High concentrations of urinary C3dg and C5b-9 were associated significantly with membranous nephropathy (43% and 43% of the patient group, respectively) compared to patients with IgA nephropathy (10% and 0%, respectively, P less than 0.001). In a retrospective analysis of 31 patients with membranous nephropathy, 66% of patients with high initial urinary C5b-9 showed an unstable clinical course compared to 18% of patients with initially absent or low C5b-9 (P less than 0.001). We suggest that high urinary C5b-9 identifies those patients with a membranous lesion which retains an active immunological component contributing to the pathology of progressive glomerular damage.

  20. DgSMC-B code: A robust and autonomous direct simulation Monte Carlo code for arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Kargaran, H.; Minuchehr, A.; Zolfaghari, A.

    2016-07-01

    In this paper, we describe the structure of a new Direct Simulation Monte Carlo (DSMC) code that takes advantage of combinatorial geometry (CG) to simulate any rarefied gas flows Medias. The developed code, called DgSMC-B, has been written in FORTRAN90 language with capability of parallel processing using OpenMP framework. The DgSMC-B is capable of handling 3-dimensional (3D) geometries, which is created with first-and second-order surfaces. It performs independent particle tracking for the complex geometry without the intervention of mesh. In addition, it resolves the computational domain boundary and volume computing in border grids using hexahedral mesh. The developed code is robust and self-governing code, which does not use any separate code such as mesh generators. The results of six test cases have been presented to indicate its ability to deal with wide range of benchmark problems with sophisticated geometries such as airfoil NACA 0012. The DgSMC-B code demonstrates its performance and accuracy in a variety of problems. The results are found to be in good agreement with references and experimental data.

  1. Differential responses of tumors and normal brain to the combined treatment of 2-DG and radiation in glioablastoma.

    PubMed

    Prasanna, Venkatesh K; Venkataramana, Neelam K; Dwarakanath, B S; Santhosh, Vani

    2009-09-01

    2-Deoxy-D-glucose (2-DG), an inhibitor of glucose transport and glycolysis, enhances radiation damage selectively in tumor cells by modulating damage response pathways resulting in cell death in vitro and local tumor control. Phase I and II clinical trials in patients with malignant glioma have shown excellent tolerance to a combined treatment of orally administered 2-DG and hypofractionated radiotherapy without any acute toxicity and late radiation damage. Phase III efficacy trials are currently at an advanced stage. Re-exploratory surgery performed in 13 patients due to persistent symptoms of elevated ICP and mass effect at different follow-up periods revealed extensive tumor necrosis with well-preserved normal brain tissue adjoining the tumor included in the treatment volume as revealed by a histological examination. These observations are perhaps the first clinical evidences for differential effects of 2-DG on tumors and normal tissues in conformity with earlier in vitro and in vivo studies in normal and tumor-bearing mice.

  2. Serological characterization of polycyclic aromatic hydrocarbon diolepoxide-DNA adducts using monoclonal antibodies.

    PubMed

    Newman, M J; Weston, A; Carver, D C; Mann, D L; Harris, C C

    1990-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are a group of structurally related compounds that are present in the environment in complex mixtures as common pollutants. These compounds have been studied extensively because of their carcinogenic and toxic properties to humans. We reported previously that humans exposed to certain PAHs produce antibodies that bind to different PAH diolepoxide-DNA (PAH-DNA) adducts. The ability to detect and measure antibodies to PAH-DNA adducts in human blood samples could prove useful as a biological dosimeter for identifying persons that have been exposed to high levels of PAHs, i.e. persons who may be at high cancer risk. In our initial studies we found that it was common for persons who were exposed to PAH to produce antibodies against PAH-DNA adducts. However, we were unable to identify the actual chemical types of PAH-DNA adducts that were recognized by the serum antibodies because many serum samples contained antibody activity to more than one adduct. These data indicate that different PAH-DNA adducts may be serologically similar or that humans actually produce immune responses against more than a single PAH-DNA adduct. We have used monoclonal antibody technology to determine the extent to which different PAH-DNA adducts share serologically recognized epitopes. Monoclonal antibodies were produced against two different PAH-DNA adducts, benzo[a]pyrene diolepoxide-DNA (BPDE-DNA) and benz[a]anthracene diolepoxide-DNA (BADE-DNA). The binding of these antibodies to five PAH-DNA adduct preparations and to soluble PAHs was assessed. We found that most monoclonal antibodies bound to more than a single type of PAH-DNA adduct, documenting the serological relatedness of different PAH-DNA adducts. However, two monoclonal antibodies were produced that bound only to BPDE-DNA. Soluble non-metabolized PAHs and PAH tetraols were not recognized by these antibodies, thus demonstrating their specificity for PAH-DNA adducts and not the PAHs alone

  3. Hydrolytic Cleavage Products of Globin Adducts in Urine as Possible Biomarkers of Cumulative Dose: Proof of Concept Using Styrene Oxide as a Model Adduct-Forming Compound.

    PubMed

    Mráz, Jaroslav; Hanzlíková, Iveta; Moulisová, Alena; Dušková, Šárka; Hejl, Kamil; Bednářová, Aneta; Dabrowská, Ludmila; Linhart, Igor

    2016-04-18

    A new experimental model was designed to study the fate of globin adducts with styrene 7,8-oxide (SO), a metabolic intermediate of styrene and a model electrophilic compound. Rat erythrocytes were incubated with SO at 7 or 22 °C. Levels of specific amino acid adducts in globin were determined by LC/MS analysis of the globin hydrolysate, and erythrocytes with known adduct content were administered intravenously to recipient rats. The course of adduct elimination from the rat blood was measured over the following 50 days. In the erythrocytes incubated at 22 °C, a rapid decline in the adduct levels on the first day post-transfusion followed by a slow phase of elimination was observed. In contrast, the adduct elimination in erythrocytes incubated at 7 °C was nearly linear, copying elimination of intact erythrocytes. In the urine of recipient rats, regioisomeric SO adducts at cysteine, valine, lysine, and histidine in the form of amino acid adducts and/or their acetylated metabolites as well as SO-dipeptide adducts were identified by LC/MS supported by synthesized reference standards. S-(2-Hydroxy-1-phenylethyl)cysteine and S-(2-hydroxy-2-phenylethyl)cysteine, the most abundant globin adducts, were excreted predominantly in the form of the corresponding urinary mercapturic acids (HPEMAs). Massive elimination of HPEMAs via urine occurred within the first day from the erythrocytes incubated at both 7 and 22 °C. However, erythrocytes incubated at 7 °C also showed a slow second phase of elimination such that HPEMAs were detected in urine up to 50 days post-transfusion. These results indicate for the first time that globin adducts can be cleaved in vivo to modified amino acids and dipeptides. The cleavage products and/or their predictable metabolites are excreted in urine over the whole life span of erythrocytes. Some of the urinary adducts may represent a new type of noninvasive biomarker for exposure to adduct-forming chemicals.

  4. Structure of adducts of isoindolo[2,1-a]benzimidazole derivatives with maleimides

    NASA Astrophysics Data System (ADS)

    Korolev, Oleksandr; Yegorova, Tatyana; Levkov, Igor; Malytskyy, Volodymyr; Shishkin, Oleg; Zubatyuk, Roman; Palamarchuk, Genadiy; Vedrenne, Marc; Baltas, Michel; Voitenko, Zoia

    2015-03-01

    The selectivity of formation and some mechanistic insights during the synthesis of substituted isoindolo[2,1-a]benzimidazoles are discussed. Furthermore, the reactions of the obtained products with maleimides were carried out. Two types rearrangement adducts together with intermediate Michael type adducts were isolated. The influence of the reaction conditions and reagents ratio is discussed. Specific spectral criteria for the identification of the Michael type adducts are indicated.

  5. Detection and quantification of 4-ABP adducts in DNA from bladder cancer patients.

    PubMed

    Zayas, Beatriz; Stillwell, Sara W; Wishnok, John S; Trudel, Laura J; Skipper, Paul; Yu, Mimi C; Tannenbaum, Steven R; Wogan, Gerald N

    2007-02-01

    We analyzed bladder DNA from 27 cancer patients for dG-C8-4-aminobiphenyl (dG-C8-ABP) adducts using the liquid chromatography tandem mass spectrometry method with a 700 attomol (1 adduct in 10(9) bases) detection limit. Hemoglobin (Hb) 4-aminobiphenyl (4-ABP) adduct levels were measured by gas chromatography-mass spectrometry. After isolation of dG-C8-ABP by immunoaffinity chromatography and further purification, deuterated (d9) dG-C8-ABP (MW=443 Da) was added to each sample. Structural evidence and adduct quantification were determined by selected reaction monitoring, based on the expected adduct ion [M+H+]+1, at m/z 435 with fragmentation to the product ion at m/z 319, and monitoring of the transition for the internal standard, m/z 444-->328. The method was validated by analysis of DNA (100 microg each) from calf thymus; livers from ABP-treated and untreated rats; human placentas; and TK6 lymphoblastoid cells. Adduct was detected at femtomol levels in DNA from livers of ABP-treated rats and calf thymus, but not in other controls. The method was applied to 41 DNA samples (200 microg each) from 27 human bladders; 28 from tumor and 14 from surrounding non-tumor tissue. Of 27 tissues analyzed, 44% (12) contained 5-80 dG-C8-ABP adducts per 10(9) bases; only 1 out of 27 (4%) contained adduct in both tumor and surrounding tissues. The Hb adduct was detected in samples from all patients, at levels of 12-1960 pg per gram Hb. There was no correlation between levels of DNA and Hb adducts. The presence of DNA adducts in 44% of the subjects and high levels of Hb adducts in these non-smokers indicate environmental sources of exposure to 4-ABP.

  6. Chronic Dietary Administration of the Glycolytic Inhibitor 2-Deoxy-D-Glucose (2-DG) Inhibits the Growth of Implanted Ehrlich’s Ascites Tumor in Mice

    PubMed Central

    Singh, Saurabh; Pandey, Sanjay; Bhatt, Anant Narayan; Chaudhary, Richa; Bhuria, Vikas; Kalra, Namita; Soni, Ravi; Roy, Bal Gangadhar; Saluja, Daman; Dwarakanath, Bilikere S.

    2015-01-01

    Background Dietary energy restriction (DER) has been well established as a potent anticancer strategy. Non-adoption of restricted diet for an extended period has limited its practical implementation in humans with a compelling need to develop agents that mimic effects similar to DER, without reduction in actual dietary intake. Glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), has recently been shown to possess potential as an energy restriction mimetic agent (ERMA). In the present study we evaluated the effect of dietary 2-DG administration on a mouse tumor model, with a focus on several potential mechanisms that may account for the inhibition of tumorigenesis. Methodology/Principal Findings Swiss albino strain ‘A’ mice were administered with 0.2% and 0.4% w/v 2-DG in drinking water for 3 months prior to tumor implantation (Ehrlich’s ascites carcinoma; EAC) and continued till the termination of the study with no adverse effects on general physiology and animal growth. Dietary 2-DG significantly reduced the tumor incidence, delayed the onset, and compromised the tumor growth along with enhanced survival. We observed reduced blood glucose and serum insulin levels along with decreased proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine positive (BrdU+) tumor cells in 2-DG fed mice. Also, reduced levels of certain key players of metabolic pathways such as phosphatidylinositol 3-kinase (PI3K), phosphorylated-Akt and hypoxia inducible factor-1 alpha (HIF-1α) were also noted in tumors of 2-DG fed mice. Further, decrease in CD4+/CD8+ ratio and T-regulatory cells observed in 2-DG fed mice suggested enhanced antitumor immunity and T cell effector function. Conclusion/Significance These results strongly suggest that dietary 2-DG administration in mice, at doses easily achievable in humans, suitably modulates several pleotrophic factors mimicking DER and inhibits tumorigenesis, emphasizing the use of ERMAs as a promising cancer preventive strategy. PMID

  7. Formation of DNA adducts from oil-derived products analyzed by 32P-HPLC.

    PubMed

    Akkineni, L K; Zeisig, M; Baranczewski, P; Ekström, L G; Möller, L

    2001-01-01

    The aim of this study was to investigate the genotoxic potential of DNA adducts and to compare DNA adduct levels and patterns in petroleum vacuum distillates, coal tar distillate, bitumen fume condensates, and related substances that have a wide range of boiling temperatures. An in vitro assay was used for DNA adduct analysis with human and rat S-9 liver extract metabolic activation followed by 32P-postlabeling and 32P-high-performance liquid chromatography (32p-HPLC). For petroleum distillates originating from one crude oil there was a correlation between in vitro DNA adduct formation and mutagenic index, which showed an increase with a distillation temperature of 250 degrees C and a peak around a distillation point of approximately 400 degrees C. At higher temperatures, the genotoxicity (DNA adducts and mutagenicity) rapidly declined to very low levels. Different petroleum products showed a more than 100-fold range in DNA adduct formation, with severely hydrotreated base oil and bitumen fume condensates being lowest. Coal tar distillates showed ten times higher levels of DNA adduct formation than the most potent petroleum distillate. A clustered DNA adduct pattern was seen over a wide distillation range after metabolic activation with liver extracts of rat or human origin. These clusters were eluted in a region where alkylated aromatic hydrocarbons could be expected. The DNA adduct patterns were similar for base oil and bitumen fume condensates, whereas coal tar distillates had a wider retention time range of the DNA adducts formed. Reference substances were tested in the same in vitro assay. Two- and three-ringed nonalkylated aromatics were rather low in genotoxicity, but some of the three- to four-ringed alkylated aromatics were very potent inducers of DNA adducts. Compounds with an amino functional group showed a 270-fold higher level of DNA adduct formation than the same structures with a nitro functional group. The most potent DNA adduct inducers of the 16

  8. Diallyl sulfide inhibits diethylstilbesterol-induced DNA adducts in the breast of female ACI rats.

    PubMed

    Green, M; Wilson, C; Newell, O; Sadrud-Din, S; Thomas, R

    2005-09-01

    Diethylstilbestrol (DES) is metabolized to reactive intermediates that produce DNA adducts and ultimately cancer. Diallyl sulfide (DAS) has been shown to inhibit the metabolism of several procarcinogens. The ability of DES to produce DNA adducts in microsomal, mitochondrial, and nuclear in vitro metabolic systems and in the breast of female ACI rats, as well as ability of DAS to inhibit DNA adducts were investigated. Microsomes, mitochondria, and nuclei isolated from breast tissue of female ACI rats were used to catalyze oxidation reactions. Female ACI rats were treated i.p. as follows: (1) corn oil, (2) 200mg/kg DES, (3) 200mg/kg DES/200mg/kg of DAS, (4) 200mg/kg DES/400mg/kg DAS. DES produced DNA adducts in each metabolic system. The relative adduct levels were 2.1 x 10(-4), 6.2 x 10(-6), and 2.9 x 10(-7) in microsomal, mitochondrial, and nuclear reactions, respectively. DAS inhibited DNA adducts in each metabolic system. The percent inhibition ranged from 86% in microsomes to 93% in nuclei. DES produced DNA adducts in mtDNA and nDNA. DAS completely inhibited the DES-induced mtDNA adducts and caused a dose dependent decrease in nDNA adduct formation. These findings suggest that DAS could inhibit DES-induced breast cancer by inhibiting its metabolism.

  9. Lifetimes and stabilities of familiar explosives molecular adduct complexes during ion mobility measurements

    PubMed Central

    McKenzie, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco

    2015-01-01

    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailors the stability of the molecular adduct complex. TIMS flexibility to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments / low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with higher confidence levels. PMID:26153567

  10. Regiochemically controlled synthesis of a β-4-β' [70]fullerene bis-adduct

    DOE PAGES

    Cerón, Maira R.; Castro, Edison; Neti, Venkata S. Pavan K.; ...

    2016-12-22

    A β-4-β' C70 bis-adduct regioisomer and an uncommon mono-adduct β-malonate C70 derivative were synthesized by using a Diels–Alder cycloaddition followed by an addition–elimination of bromo-ethylmalonate and a retro-Diels–Alder cycloaddition reaction. Here, we also report the regioselective synthesis and spectroscopic characterization of Cs-symmetric tris- and C2v-symmetric tetra-adducts of C70, which are the precursors of the mono- and bis-adduct final products.

  11. Regiochemically controlled synthesis of a β-4-β' [70]fullerene bis-adduct

    SciTech Connect

    Cerón, Maira R.; Castro, Edison; Neti, Venkata S. Pavan K.; Dunk, Paul W.; Echegoyen, Luis A.

    2016-12-22

    A β-4-β' C70 bis-adduct regioisomer and an uncommon mono-adduct β-malonate C70 derivative were synthesized by using a Diels–Alder cycloaddition followed by an addition–elimination of bromo-ethylmalonate and a retro-Diels–Alder cycloaddition reaction. Here, we also report the regioselective synthesis and spectroscopic characterization of Cs-symmetric tris- and C2v-symmetric tetra-adducts of C70, which are the precursors of the mono- and bis-adduct final products.

  12. Mass spectrometry for the assessment of the occurrence and biological consequences of DNA adducts

    PubMed Central

    Liu, Shuo; Wang, Yinsheng

    2016-01-01

    Exogenous and endogenous sources of chemical species can react, directly or after metabolic activation, with DNA to yield DNA adducts. If not repaired, DNA adducts may compromise cellular functions by blocking DNA replication and/or inducing mutations. Unambiguous identification of the structures and accurate measurements of the levels of DNA adducts in cellular and tissue DNA constitute the first and important step towards understanding the biological consequences of these adducts. The advances in mass spectrometry (MS) instrumentation in the past 2–3 decades have rendered MS an important tool for structure elucidation, quantification, and revelation of the biological consequences of DNA adducts. In this review, we summarized the development of MS techniques on these fronts for DNA adduct analysis. We placed our emphasis of discussion on sample preparation, the combination of MS with gas chromatography-or liquid chromatography (LC)-based separation techniques for the quantitative measurement of DNA adducts, and the use of LC-MS along with molecular biology tools for understanding the human health consequences of DNA adducts. The applications of mass spectrometry-based DNA adduct analysis for predicting the therapeutic outcome of anti-cancer agents, for monitoring the human exposure to endogenous and environmental genotoxic agents, and for DNA repair studies were also discussed. PMID:26204249

  13. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin

    SciTech Connect

    Batal, Mohamed; Boudry, Isabelle; Mouret, Stéphane; Wartelle, Julien; Emorine, Sandy; Bertoni, Marine; Bérard, Izabel; and others

    2013-12-15

    Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM–DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6 h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM–DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker. - Highlights: • Sulfur mustard adducts are formed in DNA after skin exposure. • DNA damage formation is an early event in the pathological process of skin burn. • The amount of SM–DNA adducts is maximal at the earliest time point investigated. • Adducts are still detected 3 weeks after exposure. • Sulfur mustard diffuses in skin especially when large doses are applied.

  14. Correlation between Quadriceps Endurance and Adduction Moment in Medial Knee Osteoarthritis

    PubMed Central

    Ahn, Sung-Eun; Park, Min-Ji; Lee, Dae-Hee

    2015-01-01

    It is not clear whether the strength or endurance of thigh muscles (quadriceps and hamstring) is positively or negatively correlated with the adduction moment of osteoarthritic knees. This study therefore assessed the relationships between the strength and endurance of the quadriceps and hamstring muscles and adduction moment in osteoarthritic knees and evaluated predictors of the adduction moment. The study cohort comprised 35 patients with unilateral medial osteoarthritis and varus deformity who were candidates for open wedge osteotomy. The maximal torque (60°/sec) and total work (180°/sec) of the quadriceps and hamstring muscles and knee adduction moment were evaluated using an isokinetic testing device and gait analysis system. The total work of the quadriceps (r = 0.429, P = 0.037) and hamstring (r = 0.426, P = 0.045) muscles at 180°/sec each correlated with knee adduction moment. Preoperative varus deformity was positively correlated with adduction moment (r = 0.421, P = 0.041). Multiple linear regression analysis showed that quadriceps endurance at 180°/sec was the only factor independently associated with adduction moment (β = 0.790, P = 0.032). The adduction moment of osteoarthritic knees correlated with the endurance, but not the strength, of the quadriceps muscle. However, knee adduction moment did not correlate with the strength or endurance of the hamstring muscle. PMID:26539830

  15. Gas phase adduct reactions in MOCVD growth of GaN

    SciTech Connect

    Thon, A.; Kuech, T.F.

    1996-11-01

    Gas phase reactions between trimethylgallium (TMG) and ammonia were studied at high temperatures, characteristic to MOCVD of GaN reactors, by means of in situ mass spectroscopy in a flow tube reactor. It is shown, that a very fast adduct formation followed by elimination of methane occurs. The decomposition of TMG and the adduct-derived compounds are both first order and have similar apparent activation energy. The pre-exponential factor of the adduct decomposition is smaller, and hence is responsible for the higher full decomposition temperature of the adduct relative to that of TMG.

  16. Formation and persistence of arylamine DNA adducts in vivo.

    PubMed Central

    Beland, F A; Kadlubar, F F

    1985-01-01

    Aromatic amines are urinary bladder carcinogens in man and induce tumors at a number of sites in experimental animals including the liver, mammary gland, intestine, and bladder. In this review, the particular pathways involved in the metabolic activation of aromatic amines are considered as well as the specific DNA adducts formed in target and nontarget tissue. Particular emphasis is placed on the following compounds: 1-naphthylamine, 2-naphthylamine, 4-aminobiphenyl, 4-acetylaminobiphenyl, 4-acetylamino-4'-fluorobiphenyl, 3,2'-dimethyl-4-aminobiphenyl, 2-acetylaminofluorene, benzidine, N-methyl-4-aminoazobenzene, 4-aminoazobenzene, and 2-acetylaminophenanthrene. PMID:4085422

  17. Adducts of rare-earth pivaloyltrifluoroacetonates with macrocyclic polyethers

    SciTech Connect

    Martynova, T.N.; Korchkov, V.P.; Nikulina, L.D.

    1986-07-01

    Adducts of lanthanide tris(pivaloyltrifluoroacetonates) with crown ethers having the formulas Ln(PTA)/sub 3/ x 18-crown-6 (Ln = La, Nd, Tb, Er, Lu) and Ln(PTA)/sub 3/ x dibenzo-18-crown-6 (Ln = Nd, Tb, Er) have been synthesized. The compounds obtained have been studied by the methods of elemental analysis, UV and IR spectroscopy, PMR, and mass spectroscopy. On the basis of the physicochemical properties and the spectra studied it has been concluded that the lanthanide tris(..beta..-diketonates) interact with the crown ethers.

  18. Acute adduction deficit in a 7-week-old infant.

    PubMed

    Jain, Sunila; Goulstine, David; Gottlob, Irene

    2002-12-01

    A 7-week-old infant with sudden onset adduction deficit and proptosis is reported. The main differential diagnoses included orbital myositis, orbital cellulitis, capillary haemangioma and rhabdomyosarcoma. A CT scan revealed a postseptal cellulitis-like picture with thickening of the medial rectus muscle. He was given a course of antibiotics, withholding steroids and biopsy. His condition resolved completely on high-dose antibiotics alone. To our knowledge this is the youngest patient with infectious orbital myositis and postseptal cellulitis described in the literature. The clinical course emphasizes the importance of administering sufficiently high doses of antibiotics.

  19. Quantifying Metabolic Heterogeneity in Head and Neck Tumors in Real Time: 2-DG Uptake Is Highest in Hypoxic Tumor Regions

    PubMed Central

    Nakajima, Erica C.; Laymon, Charles; Oborski, Matthew; Hou, Weizhou; Wang, Lin; Grandis, Jennifer R.; Ferris, Robert L.; Mountz, James M.; Van Houten, Bennett

    2014-01-01

    Purpose Intratumoral metabolic heterogeneity may increase the likelihood of treatment failure due to the presence of a subset of resistant tumor cells. Using a head and neck squamous cell carcinoma (HNSCC) xenograft model and a real-time fluorescence imaging approach, we tested the hypothesis that tumors are metabolically heterogeneous, and that tumor hypoxia alters patterns of glucose uptake within the tumor. Experimental Design Cal33 cells were grown as xenograft tumors (n = 16) in nude mice after identification of this cell line's metabolic response to hypoxia. Tumor uptake of fluorescent markers identifying hypoxia, glucose import, or vascularity was imaged simultaneously using fluorescent molecular tomography. The variability of intratumoral 2-deoxyglucose (IR800-2-DG) concentration was used to assess tumor metabolic heterogeneity, which was further investigated using immunohistochemistry for expression of key metabolic enzymes. HNSCC tumors in patients were assessed for intratumoral variability of 18F-fluorodeoxyglucose (18F-FDG) uptake in clinical PET scans. Results IR800-2-DG uptake in hypoxic regions of Cal33 tumors was 2.04 times higher compared to the whole tumor (p = 0.0001). IR800-2-DG uptake in tumors containing hypoxic regions was more heterogeneous as compared to tumors lacking a hypoxic signal. Immunohistochemistry staining for HIF-1α, carbonic anhydrase 9, and ATP synthase subunit 5β confirmed xenograft metabolic heterogeneity. We detected heterogeneous 18F-FDG uptake within patient HNSCC tumors, and the degree of heterogeneity varied amongst tumors. Conclusion Hypoxia is associated with increased intratumoral metabolic heterogeneity. 18F-FDG PET scans may be used to stratify patients according to the metabolic heterogeneity within their tumors, which could be an indicator of prognosis. PMID:25127378

  20. Roles of DgBRC1 in Regulation of Lateral Branching in Chrysanthemum (Dendranthema ×grandiflora cv. Jinba)

    PubMed Central

    Chen, Xiaoli; Zhou, Xiaoyang; Xi, Lin; Li, Junxiang; Zhao, Ruiyan; Ma, Nan; Zhao, Liangjun

    2013-01-01

    The diverse plasticity of plant architecture is largely determined by shoot branching. Shoot branching is an event regulated by multiple environmental, developmental and hormonal stimuli through triggering lateral bud response. After perceiving these signals, the lateral buds will respond and make a decision on whether to grow out. TCP transcriptional factors, BRC1/TB1/FC1, were previously proven to be involved in local inhibition of shoot branching in Arabidopsis, pea, tomato, maize and rice. To investigate the function of BRC1, we isolated the BRC1 homolog from chrysanthemum. There were two transcripts of DgBRC1 coming from two alleles in one locus, both of which complemented the multiple branches phenotype of Arabidopsis brc1-1, indicating that both are functionally conserved. DgBRC1 was mainly expressed in dormant axillary buds, and down-regulated at the bud activation stage, and up-regulated by higher planting densities. DgBRC1 transcripts could respond to apical auxin supply and polar auxin transport. Moreover, we found that the acropetal cytokinin stream promoted branch outgrowth whether or not apical auxin was present. Basipetal cytokinin promoted outgrowth of branches in the absence of apical auxin, while strengthening the inhibitory effects on lower buds in the presence of apical auxin. The influence of auxin and strigolactons (SLs) on the production of cytokinin was investigated, we found that auxin locally down-regulated biosynthesis of cytokinin in nodes, SLs also down-regulated the biosynthesis of cytokinin, the interactions among these phytohormones need further investigation. PMID:23613914

  1. Bulky DNA adducts in white blood cells: a pooled analysis of 3600 subjects

    PubMed Central

    Ricceri, Fulvio; Godschalk, Roger; Peluso, Marco; Phillips, David H.; Agudo, Antonio; Georgiadis, Panos; Loft, Steffen; Tjonneland, Anne; Raaschou-Nielsen, Ole; Palli, Domenico; Perera, Frederica; Vermeulen, Roel; Taioli, Emanuela; Sram, Radim J.; Munnia, Armelle; Rosa, Fabio; Allione, Alessandra; Matullo, Giuseppe; Vineis, Paolo

    2013-01-01

    Background Bulky DNA adducts are markers of exposure to genotoxic aromatic compounds, which reflect an individual’s ability to metabolically activate carcinogens and to repair DNA damage. Polycyclic aromatic hydrocarbons (PAH) represent a major class of carcinogens that are capable of forming such adducts. Factors that have been reported to be related to DNA adduct levels include smoking, diet, body mass index (BMI), genetic polymorphisms, the season of collection of biologic material, and air pollutants. Methods We pooled eleven studies (3,600 subjects) in which bulky DNA adducts were measured in human white blood cells with similar 32P-postlabelling techniques and for which a similar set of variables was available, including individual data on age, gender, ethnicity, batch, smoking habits, BMI, season of blood collection and a limited set of gene variants. Results Lowest DNA adduct levels were observed in the spring (median 0.50 adducts per 108 nucleotides), followed by summer (0.64), autumn (0.70) and winter (0.85) (p=0.006). The same pattern emerged in multivariate analysis, but only among never smokers (p=0.02). Adduct levels were significantly lower (p=0.001) in Northern Europe (the Netherlands, Denmark) (mean 0.60, median 0.40) than in Southern Europe (Italy, Spain, France, Greece) (mean 0.79, median 0.60). Conclusions In this large pooled analysis, we have found only weak associations between bulky DNA adducts and exposure variables. Seasonality (with higher adducts levels in winter) and air pollution may partly explain some of the inter-area differences (North vs South Europe), but most inter-area and inter-individual variation in adduct levels still remain unexplained. Impact Our study describes the largest pooled analysis of bulky DNA adducts so far, showing that inter-individual variation is still largely unexplained, though seasonality appears to play a role. PMID:20921335

  2. Formation and persistence of benzo(a)pyrene metabolite-DNA adducts.

    PubMed Central

    Stowers, S J; Anderson, M W

    1985-01-01

    Benzo(a)pyrene (BP) and other polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants and are suspected to be carcinogenic in man. The in vivo formation of BP metabolite-DNA adducts has been characterized in a variety of target and nontarget tissues of mice and rabbits. Tissues included were lung, liver, forestomach, colon, kidney, muscle, and brain. The major adduct identified in each tissue was the (+)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydro-BP (BPDEI)-deoxyguanosine adduct. A 7 beta, 8 alpha-dihydroxy-9 beta,10 beta-epoxy-7,8,9,10-tetrahydro-BP (BPDEII)-deoxyguanosine adduct, a (-)-BPDEI-deoxyguanosine adduct, and an unidentified adduct were also observed. The adduct levels are unexpectedly similar in all the tissues examined from the same BP-treated animal. For example, the BPDEI-DNA adduct levels in muscle and brain of mice were approximately 50% of those in lung and liver at each oral BP dose used. We have also examined adduct levels formed in vivo in several cell types of lung and liver. Macrophages, type II cells, and Clara cells from lung and hepatocytes and nonpparenchymal cells from liver were isolated from BP-treated rabbits. BPDEI-deoxyguanosine adduct was observed in each cell type and, moreover, the levels were similar in various cell types. These and previous results strongly suggest that DNA in many human tissues is continuously damaged from known exposure of humans to BP and other PAH. Moreover, DNA adducts formed from BP are persistent in lung and brain.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:4085435

  3. Depurinating acylfulvene-DNA adducts: characterizing cellular chemical reactions of a selective antitumor agent.

    PubMed

    Gong, Jiachang; Vaidyanathan, V G; Yu, Xiang; Kensler, Thomas W; Peterson, Lisa A; Sturla, Shana J

    2007-02-21

    Acylfulvenes (AFs) are a class of semisynthetic agents with high toxicity toward certain tumor cells, and for one analogue, hydroxymethylacylfulvene (HMAF), clinical trials are in progress. DNA alkylation by AFs, mediated by bioreductive activation, is believed to contribute to cytotoxicity, but the structures and chemical properties of corresponding DNA adducts are unknown. This study provides the first structural characterization of AF-specific DNA adducts. In the presence of a reductive enzyme, alkenal/one oxidoreductase (AOR), AF selectively alkylates dAdo and dGuo in reactions with a monomeric nucleoside, as well as in reactions with naked or cellular DNA, with 3-alkyl-dAdo as the apparently most abundant AF-DNA adduct. Characterization of this adduct was facilitated by independent chemical synthesis of the corresponding 3-alkyl-Ade adduct. In addition, in naked or cellular DNA, evidence was obtained for the formation of an additional type of adduct resulting from direct conjugate addition of Ade to AF followed by hydrolytic cyclopropane ring-opening, indicating the potential for a competing reaction pathway involving direct DNA alkylation. The major AF-dAdo and AF-dGuo adducts are unstable under physiologically relevant conditions and depurinate to release an alkylated nucleobase in a process that has a half-life of 8.5 h for 3-alkyladenine and less than approximately 2 h for dGuo adducts. DNA alkylation further leads to single-stranded DNA cleavage, occurring exclusively at dGuo and dAdo sites, in a nonsequence-specific manner. In AF-treated cells that were transfected with either AOR or control vectors, the DNA adducts identified match those from in vitro studies. Moreover, a positive correlation was observed between DNA adduct levels and cell sensitivity to AF. The potential contributing roles of AOR-mediated bioactivation and adduct stability to the cytotoxicity of AF are discussed.

  4. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization.

    PubMed

    Shchepin, Roman; Möller, Matias N; Kim, Hye-young H; Hatch, Duane M; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael; Porter, Ned A

    2010-12-15

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic (13)C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl (13)C chemical shifts at ~198 ppm. All of the NMR HMBC and HSQC correlations support the structure assignments of the primary and Diels-Alder adducts, as does MS collision-induced dissociation data. Kinetic rate constants and activation parameters for the IMDA reaction were determined, and the primary adducts were reduced with cuprous ion to give a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found in either the primary or cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts, which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein cross-links via interprotein Michael adducts.

  5. A fluorescent-based HPLC assay for quantification of cysteine and cysteamine adducts in Escherichia coli-derived proteins.

    PubMed

    Soriano, Brian D; Tam, Lei-Ting T; Lu, Hsieng S; Valladares, Violeta G

    2012-01-01

    Recombinant proteins expressed in Escherichia coli are often produced as unfolded, inactive forms accumulated in inclusion bodies. Redox-coupled thiols are typically employed in the refolding process in order to catalyze the formation of correct disulfide bonds at maximal folding efficiency. These thiols and the recombinant proteins can form mixed disulfide bonds to generate thiol-protein adducts. In this work, we apply a fluorescent-based assay for the quantification of cysteine and cysteamine adducts as observed in E. coli-derived proteins. The thiols are released by reduction of the adducted protein, collected and labeled with a fluorescent reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. The derivatized thiols are separated by reversed-phase HPLC and can be accurately quantified after method optimization. The estimated thiol content represents total amount of adducted forms present in the analyzed samples. The limit of quantification (LOQ) was established; specifically, the lowest amount of quantifiable cysteine adduction is 30 picograms and the lowest amount of quantifiable cysteamine adduction is 60 picograms. The assay is useful for quantification of adducts in final purified products as well as in-process samples from various purification steps. The assay indicates that the purification process accomplishes a decrease in cysteine adduction from 0.19 nmol adduct/nmol protein to 0.03 nmol adduct/nmol protein as well as a decrease in cysteamine adduction from 0.24 nmol adduct/nmol protein to 0.14 nmol adduct/nmol protein.

  6. Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function.

    PubMed

    Liu, Zhi; Ding, Shuang; Kropachev, Konstantin; Jia, Lei; Lei, Jia; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E

    2015-01-01

    The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue-DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide excision

  7. Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function

    PubMed Central

    Liu, Zhi; Ding, Shuang; Kropachev, Konstantin; Lei, Jia; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2015-01-01

    The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide

  8. 32P-postlabeling analysis of adducts formed between DNA and safrole 2',3'-epoxide: absence of adduct formation in vivo.

    PubMed

    Qato, M K; Guenthner, T M

    1995-01-01

    We have used the 32P-postlabeling technique to examine the binding of safrole 2',3'-oxide to DNA. At least 8 covalent adducts are formed when calf thymus DNA is incubated with this oxygenated metabolite of safrole in vitro. However, no corresponding adducts are formed with liver DNA when whole animals are exposed to safrole 2',3'-oxide, or safrole itself. Although safrole 2',3'-oxide is readily formed in vivo, and is sufficiently reactive to covalently bind to DNA, it is probably not a factor in the in vivo genotoxicity of safrole. We also demonstrate that adducts with similar mobility to the major safrole 2',3'-oxide-DNA adduct are formed in vitro between safrole 2',3'-oxide and deoxyguanosine, and also between its chemical analogs allylbenzene 2',3'-oxide or estragole 2',3'-oxide and DNA.

  9. Nitropyrene: DNA binding and adduct formation in respiratory tissues.

    PubMed Central

    Jackson, M A; King, L C; Ball, L M; Ghayourmanesh, S; Jeffrey, A M; Lewtas, J

    1985-01-01

    Binding of 1-nitro (14C)pyrene (NP) or its metabolites to cellular DNA and protein in cultures of rabbit alveolar macrophages, lung tissue, and tracheal tissue was examined. DNA binding in tracheal tissue (136 +/- 18.3 pmole NP/mg DNA) was four to five times the levels measured in either lung tissue (38 +/- 9.4 pmole NP/mg DNA) or macrophages (26 +/- 7.5 pmole NP/mg DNA). Adduct analysis of DNA isolated from lung tissue incubated with 1-nitro[H3]pyrene in vitro resulted in the identification of 2 to 5% of the NP adducts as C8-deoxyguanosine 1-aminopyrene. NP was also bound to cellular protein in tracheal tissue and lung tissue, and at a lower level in macrophages. Cocultivation of the macrophages with lung and tracheal tissue decreased the DNA binding in tracheal tissue by 45%. Following intratracheal instillation of diesel particles (5 mg) vapor-coated with 14C-NP (380 ppm, 0.085 muCi/mg) particles into rats, 5-8% of the radioactivity remained in the lungs after 20 hr. Most of the diesel particles were also deposited in the lung. Examination of DNA and protein binding in this tissue showed 5 to 12% of the pulmonary 14C bound to protein and no detectable levels of 14C bound to DNA. PMID:3841313

  10. Turned head--adducted hip--truncal curvature syndrome.

    PubMed Central

    Hamanishi, C; Tanaka, S

    1994-01-01

    One hundred and eight neonates and infants who showed the clinical triad of a head turned to one side, adduction contracture of the hip joint on the occipital side of the turned head, and truncal curvature, which we named TAC syndrome, were studied. These cases included seven with congenital and five with late infantile dislocations of the hip joint and 14 who developed muscular torticollis. Forty one were among 7103 neonates examined by one of the authors. An epidemiological analysis confirmed the aetiology of the syndrome to be environmental. The side to which the head was turned and that of the adducted hip contracture showed a high correlation with the side of the maternal spine on which the fetus had been lying. TAC syndrome is an important asymmetrical deformity that should be kept in mind during neonatal examination, and may be aetiologically related to the unilateral dislocation of the hip joint, torticollis, and infantile scoliosis which develop after a vertex presentation. Images PMID:8048823

  11. Nonstoichiometric Adduct Approach for High-Efficiency Perovskite Solar Cells.

    PubMed

    Park, Nam-Gyu

    2017-01-03

    Since the groundbreaking report on a solid-state perovskite solar cell employing a methylammonium lead iodide-sensitized mesoporous TiO2 film and an organic hole conducting layer in 2012 by our group, the swift surge of perovskite photovoltaics opens a new paradigm in solar-cell research. As a result, ca. 1300 peer-reviewed research articles were published in 2015. In this Inorganic Chemistry Forum on Halide Perovskite, the researches with highlights of work on perovskite solar cells in my laboratory are reviewed. We have developed a size-controllable two-step spin-coating method and found that minimal nonradiative recombination in perovskite crystals could lead to high photovoltaic performance. A Lewis acid based adduct method and self-formed grain boundary process were developed for high-efficiency devices with reproducibility. A power conversion efficiency of 20.4% was achieved via grain boundary engineering based on a nonstoichiometric adduct approach. The incorporation of cesium in a formamidinium lead iodide perovskite was found to show better photostability and moisture-stability. A reduction in the dimensionality from a three-dimensitonal nanocrystal to a one-dimensional nanowire led to a hypsochromic shift of absorption and fluorescence. To enhance the charge-carrier transport and light-harvesting efficiency, a nanoarchitecture of oxide layers was proposed.

  12. Detection, characterization, and decay kinetics of ROS and thiyl adducts of mito-DEPMPO spin trap.

    PubMed

    Hardy, Micaël; Rockenbauer, Antal; Vásquez-Vivar, Jeannette; Felix, Christopher; Lopez, Marcos; Srinivasan, Satish; Avadhani, Narayan; Tordo, Paul; Kalyanaraman, B

    2007-07-01

    We report here the detection and characterization of spin adducts formed from the trapping of reactive oxygen species (superoxide and hydroxyl radicals) and glutathiyl and carbon-centered radicals by a newly synthesized nitrone, Mito-DEPMPO. This is a cationic nitrone spin trap with a triphenyl phosphonium cation conjugated to the DEPMPO analogue. The Mito-DEPMPO-OOH adduct, formed from the trapping of superoxide by Mito-DEPMPO, was enzymatically generated using xanthine/xanthine oxidase and neuronal nitric oxide synthase, and chemically generated by KO2 in 18-crown-6. The Mito-DEPMPO-OOH adduct exhibits an eight-line EPR spectrum with partial asymmetry arising from the alternate line-width effect. The half-life of the Mito-DEPMPO-OOH adduct is 2-2.5-times greater than that of the DEPMPO-OOH. The Mito-DEPMPO-SG adduct, formed from the trapping of glutathiyl radicals by Mito-DEPMPO, is 3-times more persistent than the analogue DEPMPO-SG adduct. In this study, we describe the EPR characterization of spin adducts formed from Mito-DEPMPO. The EPR parameters of Mito-DEPMPO adducts are distinctly different and highly characteristic. The detection of superoxide from an intact mitochondrion was feasible with Mito-DEPMPO but not with DEPMPO. We conclude that Mito-DEPMPO nitrone and its analogues are more effective than most nitrone spin traps for trapping superoxide, hydroxyl, and thiyl radicals formed in biological systems, including mitochondria.

  13. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  14. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  15. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  16. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  17. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  18. Quantitation of 4,4′-methylene diphenyl diisocyanate human serum albumin adducts

    PubMed Central

    Luna, Leah G.; Green, Brett J.; Zhang, Fagen; Arnold, Scott M.; Siegel, Paul D.; Bartels, Michael J.

    2016-01-01

    4,4′-Methylene diphenyl diisocyanate (herein 4,4′-MDI) is used in the production of polyurethane foams, elastomers, coatings, adhesives and the like for a wide range of commercial products. Occupational exposure to MDI levels above current airborne exposure limits can elicit immune mediated hypersensitivity reactions such as occupational asthma in sensitive individuals. To accurately determine exposure, there has been increasing interest in developing analytical methods to measure internal biomarkers of exposure to MDI. Previous investigators have reported methodologies for measuring MDI diamine metabolites and MDI-Lysine (4,4′-MDI-Lys) adducts. The purpose of this study was to develop and validate an ultra performance liquid chromatography isotope dilution tandem mass spectrometry (UPLC-ID/MS/MS) quantitation method via a signature peptide approach to enable biomonitoring of 4,4′-MDI adducted to human serum albumin (HSA) in plasma. A murine, anti-4,4′-MDI monoclonal IgM antibody was bound to magnetic beads and utilized for enrichment of the MDI adducted HSA. Following enrichment, trypsin digestion was performed to generate the expected 414 site (primary site of adduction) 4,4′-MDI-adducted HSA signature peptide that was quantified by UPLC-ID/MS/MS. An Agilent 6530 UPLC/quadrupole time of flight MS (QTOF) system was utilized for intact adducted protein analysis and an Agilent 6490 UPLC/MS/MS system operated in multiple reaction monitoring (MRM) mode was utilized for quantification of the adducted signature peptide biomarker both for in chemico and worker serum samples. Worker serum samples were initially screened utilizing the previously developed 4,4′-MDI-Lys amino acid method and results showed that 12 samples were identified as quantifiable for 4,4′-MDI-Lys adducts. The signature peptide adduct approach was applied to the 12 worker samples identified as quantifiable for 4,4′-MDI-Lys adducts. Results indicated no positive results were obtained

  19. Liquid chromatography-thermospray mass spectrometry of DNA adducts formed with mitomycin C, porfiromycin and thiotepa.

    PubMed

    Musser, S M; Pan, S S; Callery, P S

    1989-07-14

    High-performance liquid chromatography (HPLC) and thermospray mass spectrometry were combined for the analysis of DNA adducts formed from the interaction of the anticancer drugs mitomycin C, porfiromycin and thiotepa with calf thymus DNA. The adducts formed from reaction of mitomycin C and porfiromycin with DNA were separated from unmodified nucleosides by HPLC on a C18 column and identified by thermospray mass spectrometry. Thiotepa DNA adducts readily depurinated from DNA and were chromatographed and identified by thermospray liquid chromatography-mass spectrometry as the modified bases without the ribose moiety attached. The utility of thermospray mass spectrometry for the identification of microgram quantities of nucleoside adducts and depurinated base adducts of these anticancer drugs was demonstrated.

  20. DNA adducts in marine mussel and fresh water fishes living in polluted and unpolluted environments

    SciTech Connect

    Kurelec, B.; Checko, M.; Krca, S.; Garg, A.; Gupta, R.C. Baylor College of Medicine, Houston, TX )

    1988-09-01

    {sup 32}P-postlabeling analysis of DNA adducts in the digestive gland of marine mussel Mytilus galloprovincialis from polluted and unpolluted sites near Rovinj, Northern Adriatic, revealed that majority of adducts are caused by natural environmental factors rather than by man-made chemicals. The only pollutant-specific adducts were observed in a mussel exposed to seawater experimentally polluted with aminofluorene, and in a population of mussel living at a site heavily polluted with a waste waters of an oil refinery. Fresh water fish species Leuciscus cephalus, Barbus barbus, Abramis brama and Rutilus pigus virgo living in a polluted Sava River, Yugoslavia, or in its unpolluted tributary Korana River, have induced in their livers qualitatively identical and quantitatively similar DNA adducts. These DNA adducts had a species-specific patterns and their appearance was seasonally-dependent.

  1. MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts.

    PubMed

    Aparicio, Tomas; Baer, Richard; Gottesman, Max; Gautier, Jean

    2016-02-15

    Repair of DNA double-strand breaks (DSBs) with complex ends poses a special challenge, as additional processing is required before DNA ligation. For example, protein-DNA adducts must be removed to allow repair by either nonhomologous end joining or homology-directed repair. Here, we investigated the processing of topoisomerase II (Top2)-DNA adducts induced by treatment with the chemotherapeutic agent etoposide. Through biochemical analysis in Xenopus laevis egg extracts, we establish that the MRN (Mre11, Rad50, and Nbs1) complex, CtIP, and BRCA1 are required for both the removal of Top2-DNA adducts and the subsequent resection of Top2-adducted DSB ends. Moreover, the interaction between CtIP and BRCA1, although dispensable for resection of endonuclease-generated DSB ends, is required for resection of Top2-adducted DSBs, as well as for cellular resistance to etoposide during genomic DNA replication.

  2. Assessing the Impacts of Revising the Tobacco Products Directive: Study to Support a DG SANCO Impact Assessment.

    PubMed

    Tiessen, Jan; Hunt, Priscillia; Celia, Claire; Fazekas, Mihaly; de Vries, Han; Staetsky, Laura; Diepeveen, Stephanie; Rabinovich, Lila; Ridsdale, Helen; Ling, Tom

    2011-01-01

    Tobacco use is one of the largest avoidable causes of morbidity and premature death in the EU. Whilst smoking prevalence in the EU has been declining over the past 30 years, smoking has remained more prevalent among men than women in the EU-27, with some of the new Member States reporting the widest gaps between male and female smokers. For young smokers (13 to 15 years old) this situation is somewhat reversed, with slightly more girls than boys smoking. Against this background, the European Commission Directorate-General for Health and Consumer Protection (DG SANCO) considered a revision of the Tobacco Products Directive 2001/37/EC across five general areas: scope of the directive, labelling requirements, registration and market control fees, ingredients, and sales arrangements. More specifically, the types of policy options under consideration included (but were not limited to): an increase of warning label sizes on the back of packaging to 100%, a restriction for the display of products at retail outlets and an introduction of additional measurement method for TNCO (the modified ISO method) with maximum limits set accordingly. DG SANCO commissioned RAND Europe to provide support in assessing the potential health, macroeconomic, and compliance cost and administrative burden impacts of revising the Tobacco Products Directive. In addition to assessing impacts, the study provides an up-to-date overview of the evidence and basis for current tobacco product regulation that may be of interest to a wider audience interested in tobacco control policies.

  3. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    SciTech Connect

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ~25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G2 or G3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N2-dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N2-dG.

  4. Analysis of serum PAH`s and PAH adducts by LC/MS

    SciTech Connect

    McClure, P.C.; Barr, J.R.; Maggio, V.L.

    1995-12-31

    Polycyclic aromatic hydrocarbons are an important class of chemical carcinogens. Benzo[a]pyrene is the most extensively studied and best understood carcinogenic PAH It is believed that Benzo[a]pyrene is metabolized in vitro to the diol epoxide, Benzo[a]pyrene-7,8-dihydrodiol-9, 10-epoxide which then can react with various nucleophilic centers on DNA. The major alkylation product appears to be the reaction of the Benzo[a]pyrene diol epoxide with the N{sup 2} position of guanine sites on DNA. Methods that can measure exposure and biological response to carcinogens such as PAH`s are needed. Human Blood can be separated into plasma, lymphocytes, and red blood cells. The plasma should contain native PAH`s which may yield some useful information about recent exposure. The red blood cells contain hemoglobin and adducts of PAH`s. Hemoglobin has an average lifetime of 120 days so quantification of hemoglobin adducts should give an average of a persons exposure over four months. Also, the electrophilic metabolites that react with hemoglobin to form adducts are the same metabolites that form DNA adducts which can lead to mutations and cancer. Lymphocytes contain DNA and therefore DNA adducts. DNA adducts can be repaired by a series of enzymes so quantification of these adducts will only yield information about recent or non-repairable adducts. DNA adduct formation is believed to be the first important step in chemical carcinogenesis so quantification of these adducts should yield some information on exposure and a great deal of important data on biological response and risk from specific PAH`s.

  5. Recoveries of DNA adducts of polycyclic aromatic hydrocarbons in the 32P-postlabelling assay.

    PubMed

    Segerbäck, D; Vodicka, P

    1993-12-01

    The 32P-postlabelling assay for analysis of DNA adducts of chemical carcinogens has been applied in a large number of experimental animal and human studies. Most human studies have dealt with occupational and environmental exposures to polycyclic aromatic hydrocarbons (PAHs). The postlabelling assay does not allow direct chemical identification, and most studies with this method have not been performed in a quantitative way. Very little is therefore known about the identity and absolute levels of adducts, which are important contributors to the process of risk identification and quantitation. In the present study it was, therefore, decided to test some parameters suspected to affect recoveries of adducts in the phosphorylation step of the assay. For this purpose 12 different PAHs were reacted individually and in a mixture with DNA in the presence of a rat liver S9 metabolizing system. Different concentrations of ATP, calcium chloride and polynucleotide kinase were tested using the nuclease P1 enhancement. We found that each factor contributed to adduct recovery and that optimal conditions could be defined. Diluting the modified DNA samples up to 1000 times had little influence on the recoveries of adducts. Comparing the nuclease P1 and the butanol extraction procedures for adduct purification showed that both methods gave similar patterns and levels of major adducts. The absolute recoveries in postlabelling, based on 3H-binding of radiolabelled compounds, were for most of the tested compounds relatively low. The fact that the nuclease P1 and the butanol extraction procedures gave similar recoveries points towards common factor(s) involved in the reduction of the recovered adduct levels. Based on the observed recoveries the conclusion can be drawn that when postlabelling related adducts in human samples the true total adduct levels can be considerably underestimated, even if optimal conditions are used.

  6. ON BENZO[A]PYRENE DERIVED DNA ADDUCTS FORMED IN LUNG TISSUE OF MICE

    EPA Science Inventory

    On Benzo [a] pyrene Derived DNA Adducts Formed in Lung Tissue of Mice
    The previously identified major DNA adducts of benzo[a]pyrene (BP) in vitro and in vivo are the stable and unstable adducts formed by reaction of the bay-region diol epoxide of BP (BPDE) and BP radical catio...

  7. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  8. 2-Amino-2-deoxy-glucose conjugated cobalt ferrite magnetic nanoparticle (2DG-MNP) as a targeting agent for breast cancer cells.

    PubMed

    Aşık, Elif; Aslan, Tuğba Nur; Volkan, Mürvet; Güray, N Tülin

    2016-01-01

    In this study, 2-amino-2-deoxy-glucose (2DG) was conjugated to COOH modified cobalt ferrite magnetic nanoparticles (COOH-MNPs), which were designed to target tumor cells as a potential targetable drug/gene delivery agent for cancer treatment. According to our results, it is apparent that, 2DG labeled MNPs were internalized more efficiently than COOH-MNPs under the same conditions in all cell types (MDA-MB-231 and MCF-7 cancer and MCF-10A normal breast cells) (p<0.001). Moreover, the highest amount of uptake was observed in MDA-MB-231, followed by MCF-7 and normal MCF-10A cells for both MNPs. The apoptotic effects of 2DG-MNPs were further evaluated, and it was found that apoptosis was not induced at low concentrations of 2DG-MNPs in all cell types, whereas dramatic cell death was observed at higher concentrations. In addition, the gene expression levels of four drug-metabolizing enzymes, two Phase I (CYP1A1, CYP1B1) and two Phase II (GSTM3, GSTZ1) were also increased with the high concentrations of 2DG-MNPs.

  9. DNA adducts in hematopoietic tissues and blood of the mummichog (Fundulus heteroclitus) from a creosote-contaminated site in the Elizabeth River, Virginia.

    PubMed

    Rose, W L; French, B L; Reichert, W L; Faisal, M

    2000-01-01

    Hydrophobic DNA adducts were examined in liver, anterior kidney, spleen, and blood of tumor-prone mummichog (Fundulus heterclitus) from the creosote-contaminated Atlantic Wood (AW) site (Elizabeth River, Virginia). DNA adducts eluted in a diagonal radioactive zone, characteristic of polycyclic aromatic hydrocarbon exposure, in all examined tissues of AW fish. Mummichog demonstrated significantly higher levels of DNA adducts in spleen (394 +/- 109 nmol adducts/mol nucleotides) than in liver (201 +/- 77 nmol adducts/mol nucleotides) or anterior kidney (211 +/- 68 nmol adducts/mol nucleotides; P = 0.036). The levels of DNA adducts in the pooled blood (pool of four) were 142 nmol adducts/mol nucleotides. DNA adducts were not detected in the liver, anterior kidney, spleen and blood of fish collected from the reference site (< 2 nmol adducts/mol nucleotides). The high levels of DNA adducts detected in tissues of AW mummichog may be linked to the increased cancer incidence and immunosuppression in this population.

  10. DNA adduct formation by the environmental contaminant 3-nitrobenzanthrone after intratracheal instillation in rats.

    PubMed

    Bieler, Christian A; Cornelius, Michael G; Klein, Reinhold; Arlt, Volker M; Wiessler, Manfred; Phillips, David H; Schmeiser, Heinz H

    2005-10-10

    3-Nitrobenzanthrone (3-NBA) is an environmental pollutant and suspected human carcinogen found in emissions from diesel and gasoline engines and on the surface of ambient air particulate matter; human exposure to 3-NBA is likely to occur primarily via the respiratory tract. In our study female Sprague Dawley rats were treated by intratracheal instillation with a single dose of 0.2 or 2 mg/kg body weight of 3-NBA. Using the butanol enrichment version of the (32)P-postlabeling method, DNA adduct formation by 3-NBA 48 hr after intratracheal administration in different organs (lung, pancreas, kidney, urinary bladder, heart, small intestine and liver) and in blood was investigated. The same adduct pattern consisting of up to 5 DNA adduct spots was detected by thin layer chromatography in all tissues and blood and at both doses. Highest total adduct levels were found in lung and pancreas (350 +/- 139 and 620 +/- 370 adducts per 10(8) nucleotides for the high dose and 39 +/- 18 and 55 +/- 34 adducts per 10(8) nucleotides for the low dose, respectively) followed by kidney, urinary bladder, heart, small intestine and liver. Adduct levels were dose-dependent in all organs (approximately 10-fold difference between doses). It was demonstrated by high performance liquid chromatography (HPLC) that all 5 3-NBA-derived DNA adducts formed in rats after intratracheal instillation are identical to those formed by other routes of application and are, as previously shown, formed from reductive metabolites bound to purine bases. Although total adduct levels in the blood were much lower (41 +/- 27 and 9.5 +/- 1.9 adducts per 10(8) nucleotides for the high and low dose, respectively) than those found in the lung, they were related to dose and to the levels found in lung. These results show that uptake of 3-NBA by the lung induces high levels of specific DNA adducts in several organs of the rat and an identical adduct pattern in DNA from blood. Therefore, 3-NBA-DNA adducts present in the

  11. Rotational Spectra of Adducts of Formaldehyde with Freons

    NASA Astrophysics Data System (ADS)

    Qian, Gou; Feng, Gang; Evangelisti, Luca; Caminati, W.; Lopez, Montserrat Vallejo; Lesarri, Alberto; Cocinero, Emilio

    2013-06-01

    The rotational spectra of three 1:1 complexes of formaldehyde (H_{2}CO) with freons, i.e. difluoromethane (CH_{2}F_{2}), fluorochloromethane (CH_{2}FCl) and trifluorochloromethane (CF_{3}Cl), have been observed and assigned using pulsed jet Fourier transform microwave technique. Several isotopologues (including some ^{13}C species) have been measured in natural abundance. The tunnelling splittings have been measured in the first two adducts with relative intensity 1:3, due to the internal rotation of the formaldehyde moity along its symmetry axis. The barriers to this motion have been estimated by using a flexible model. For the latter two complexes, each of transition displays the hyperfine structures due to the quadrupolar effects of ^{35}Cl (^{37}Cl) nucleus. The dissociation energy has been estimated within the pseudo-diatomic approximation for all three complexes.

  12. Vitamin A-aldehyde adducts: AMD risk and targeted therapeutics

    PubMed Central

    Sparrow, Janet R.

    2016-01-01

    Although currently available treatment options for age-related macular degeneration (AMD) are limited, particularly for atrophic AMD, the identification of predisposing genetic variations has informed clinical studies addressing therapeutic options such as complement inhibitors and anti-inflammatory agents. To lower risk of early AMD, recommended lifestyle interventions such as the avoidance of smoking and the intake of low glycemic antioxidant-rich diets have largely followed from the identification of nongenetic modifiable factors. On the other hand, the challenge of understanding the complex relationship between aging and cumulative damage leading to AMD has fueled investigations of the visual cycle adducts that accumulate in retinal pigment epithelial (RPE) cells and are a hallmark of aging retina. These studies have revealed properties of these compounds that provide insights into processes that may compromise RPE and could contribute to disease mechanisms in AMD. This work has also led to the design of targeted therapeutics that are currently under investigation. PMID:27071115

  13. Structural phase transitions and adduct release in calcium borohydride

    SciTech Connect

    Paolone, A.; Palumbo, O.; Rispoli, P.; Miriametro, A.; Cantelli, R.; Luedtke, A.; Rönnebro, E.; Chandra, D.

    2011-09-01

    Ca(BH4)2 compounds were investigated above room temperature by anelastic spectroscopy (AS) and concomitant measurements of thermogravimetry and mass spectrometry (TGA/MS). Both AS and TGA/MS indicate that even after a thermal treatment at 125 °C for 20 h, a non-negligible residual of THF adduct is still present in the sample, which can be removed on a subsequent thermal treatment at temperatures lower than 250 °C. Above 250 °C dehydrogenation takes place. Moreover, AS sensitively detects the occurrence of the α → α’ structural phase transition around 180 °C, and the α’ → β transformation, which is completed around 330 °C. Finally, we also show that both transitions are irreversible and are not accompanied by a latent heat.

  14. Non Covalent Interactions and Internal Dynamics in Adducts of Freons

    NASA Astrophysics Data System (ADS)

    Caminati, Walther; Gou, Qian; Evangelisti, Luca; Feng, Gang; Spada, Lorenzo; Vallejo-López, Montserrat; Lesarri, Alberto; Cocinero, Emilio J.

    2014-06-01

    The complexation of chlorofluorocarbons (CFCs) with atmospheric water and pollutants of the atmosphere affects their reactivity and it seems to accelerate, for example, the decomposition rate of freons in the atmosphere [1]. For this reason we characterized shapes, stabilities, nature of the non-covalent interactions, structures and internal dynamics of a number of complexes of CFCs with water and of their dimers or oligomers by rotational spectroscopy. It has been found that hydrogenated CFCs form adducts with other molecules through weak hydrogen bonds (WHBs). Their C-H groups can act as proton donors, enhanced by the electron withdrawing of the halogen atoms, interacting with the electron rich regions of the partner molecules [2]. Also in adducts or oligomers of hydrogenated CFCs the monomer units are held together by nets of WHBs [3]. When CFCs are perhalogenated, the positive electrostatic region ("σ-hole") can interact electrostatically with negative sites of another, or of the same molecular entity, giving rise, according to IUPAC, to the so called halogen bond (HaB). However, it has been observed that when the perhalogenated CFCs has a Π electron system, a lone pair•••Π interaction (Bürgi-Dunitz) is favoured [4]. We describe here the HaBs that CF4 and CF3Cl form with a variety of partner molecules such as water, ammonia, dimethyl ether, etc. Important spectroscopic features outline strong dynamics effects taking place in this kind of complex. References [1] V. Vaida, H. G. Kjaergaard, K. J. Feierabend, Int. Rev. Phys. Chem. 22 (2003) 203. [2] See, for example: W. Caminati, S. Melandri, A. Maris, P. Ottaviani, Angew. Chem. Int. Ed. 45 (2006) 2438. [3] G. Feng, L. Evangelisti, I. Cacelli, L. Carbonaro, G. Prampolini, W. Caminati, Chem. Commun. 50 (2014) 171. [4] Q. Gou, G. Feng, L. Evangelisti, W. Caminati, Angew. Chem. Int. Ed. 52 (2013) 52 11888.

  15. Formation of monofunctional cisplatin-DNA adducts in carbonate buffer.

    PubMed

    Binter, Alexandra; Goodisman, Jerry; Dabrowiak, James C

    2006-07-01

    Carbonate in its various forms is an important component in blood and the cytosol. Since, under conditions that simulate therapy, carbonate reacts with cisplatin to form carbonato complexes, one of which is taken up and/or modified by the cell [C.R. Centerwall, J. Goodisman, D.J. Kerwood, J. Am. Chem. Soc., 127 (2005) 12768-12769], cisplatin-carbonato complexes may be important in the mechanism of action of cisplatin. In this report we study the binding of cisplatin to pBR322 DNA in two different buffers, using gel electrophoresis. In 23.8mM HEPES, N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid, 5mM NaCl, pH 7.4 buffer, cisplatin produces aquated species, which react with DNA to unwind supercoiled Form I DNA, increasing its mobility, and reducing the binding of ethidium to DNA. This behavior is consistent with the formation of the well-known intrastrand crosslink on DNA. In 23.8mM carbonate buffer, 5mM NaCl, pH 7.4, cisplatin forms carbonato species that produce DNA-adducts which do not significantly change supercoiling but enhance binding of ethidium to DNA. This behavior is consistent with the formation of a monofunctional cisplatin adduct on DNA. These results show that aquated cisplatin and carbonato complexes of cisplatin produce different types of lesions on DNA and they underscore the importance of carrying out binding studies with cisplatin and DNA using conditions that approximate those found in the cell.

  16. High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developments

    NASA Astrophysics Data System (ADS)

    Shu, Chi-Wang

    2016-07-01

    For solving time-dependent convection-dominated partial differential equations (PDEs), which arise frequently in computational physics, high order numerical methods, including finite difference, finite volume, finite element and spectral methods, have been undergoing rapid developments over the past decades. In this article we give a brief survey of two selected classes of high order methods, namely the weighted essentially non-oscillatory (WENO) finite difference and finite volume schemes and discontinuous Galerkin (DG) finite element methods, emphasizing several of their recent developments: bound-preserving limiters for DG, finite volume and finite difference schemes, which address issues in robustness and accuracy; WENO limiters for DG methods, which address issues in non-oscillatory performance when there are strong shocks, and inverse Lax-Wendroff type boundary treatments for finite difference schemes, which address issues in solving complex geometry problems using Cartesian meshes.

  17. A mathematical model for intracellular effects of toxins on DNA adduction and repair

    SciTech Connect

    Gaver, D.P.; Jacobs, P.A.; Carpenter, R.L.; Burkhart, J.G.

    1997-01-01

    The processes by which certain classes of toxic compounds or their metabolites may react with DNA to alter the genetic information contained in subsequent generations of cells or organisms are a major component of hazard associated with exposure to chemicals in the environment. Many classes of chemicals may form DNA adducts and there may or may not be a defined mechanism to remove a particular adduct from DNA independent of replication. Many compounds and metabolites that bind DNA also readily bind existing proteins; some classes of toxins and DNA adducts have the capacity to inactive a repair enzyme and divert the repair process competitively. This paper formulates an intracellular dynamic model for one aspect of the action of toxins that form DNA adducts, recognizing a capacity for removal of those adducts by a repair enzyme combined with reaction of the toxin and/or the DNA adduct to inactive the repair enzyme. This particular model illustrates the possible saturation of repair enzyme capacity by the toxin dosage and shows that bistable behavior can occur, with the potential to induce abrupt shifts away from steady-state equilibria. The model suggests that bistable behavior, dose and variation between individuals or tissues may combine under certain conditions to amplify the biological effect of dose observed as DNA adduction and its consequences as mutation. A model recognizing stochastic phenomena also indicates that variation in within-cell toxin concentration may promote jumps between stable equilibria.

  18. Effect of exercise and gait retraining on knee adduction moment in people with knee osteoarthritis.

    PubMed

    Khalaj, Nafiseh; Abu Osman, Noor A; Mokhtar, Abdul H; Mehdikhani, Mahboobeh; Wan Abas, Wan A B

    2014-02-01

    The knee adduction moment represents the medial knee joint load, and greater value is associated with higher load. In people with knee osteoarthritis, it is important to apply proper treatment with the least side effects to reduce knee adduction moment and, consequently, reduce medial knee joint load. This reduction may slow the progression of knee osteoarthritis. The research team performed a literature search of electronic databases. The search keywords were as follows: knee osteoarthritis, knee adduction moment, exercise program, exercise therapy, gait retraining, gait modification and knee joint loading. In total, 12 studies were selected, according to the selection criteria. Findings from previous studies illustrated that exercise and gait retraining programs could alter knee adduction moment in people with knee osteoarthritis. These treatments are noninvasive and nonpharmacological which so far have no or few side effects, as well as being low cost. The results of this review revealed that gait retraining programs were helpful in reducing the knee adduction moment. In contrast, not all the exercise programs were beneficial in reducing knee adduction moment. Future studies are needed to indicate best clinical exercise and gait retraining programs, which are most effective in reducing knee adduction moment in people with knee osteoarthritis.

  19. DNA adducts in carp exposed to artificial diesel-2 oil slicks.

    PubMed

    Kurelec, B; Garg, A; Krca, S; Britvić, S; Lucić, D; Gupta, R C

    1992-05-01

    In attempts to mimic field exposure, oil slicks prepared from diesel-2 oil/water emulsions were poured onto the surface of water in tanks prepared fresh every day and liver DNA adducts were analyzed by 32P-postlabeling in carp free-swimming in these tanks. 'Clusters' of lipophilic DNA adducts were detected, with five major and numerous minor adducts. Essentially a similar adduct pattern was found in the liver DNA of carp exposed to crude oil-polluted water. Diesel-2 adduct induction was observed slowly with a steady increase to greater than 3000 amol/microgram DNA at day 12. After this time fish were transferred to clean water. Adduct levels continued to increase through day 17 (approximately 10,000 amol/microgram DNA) despite the cessation of exposure, but a 30% and 80% decline was evident at day 22 and day 27, respectively. All major adducts were distinct from the known benzo[a]pyrene diolepoxide-dG. These results indicate that diesel-2 oil can cause extensive DNA damage in carp in vivo and the damage accumulates proportionately with time of exposure.

  20. Detection and characterization of human serum antibodies to polycyclic aromatic hydrocarbon diol-epoxide DNA adducts.

    PubMed Central

    Newman, M J; Light, B A; Weston, A; Tollurud, D; Clark, J L; Mann, D L; Blackmon, J P; Harris, C C

    1988-01-01

    The presence of serum antibodies to the diol-epoxide DNA adducts of representative polycyclic aromatic hydrocarbons (PAH), chrysene, benz[a]anthracene and benzo[a]pyrene, was determined by ELISA using serum samples obtained from normal healthy individuals. Antibodies that reacted against PAH adducted-DNA, but not against PAH-adducted protein, were found in the serum of approximately 40% of the test individuals. Specificity analysis of the antibodies demonstrated that serological cross-reactions between the benzo[a]pyrene and the chrysene diol-epoxide adducts were present. Similar cross-reactivity between the benz[a]anthracene and the chrysene adducts was observed. Sera containing antibodies that were apparently specific for each of the three PAH-DNA adducts were also identified. The presence of antibodies to PAH-DNA adducts indicates both past exposure to these carcinogenic PAH and their metabolic activation to the DNA damaging metabolites. These antibodies may prove to be useful in both retrospective and prospective epidemiological studies of various diseases associated with PAH exposure. PMID:3392204

  1. Polycyclic aromatic hydrocarbon-DNA adducts and the CYP1A1 restriction fragment length polymorphism

    SciTech Connect

    Shields, P.G.; Bowman, E.D.; Weston, A.; Harris, C.C.; Sugimura, H.; Caporaso, N.E.; Petruzzelli, S.F. ); Trump, B.F. )

    1992-11-01

    Human cancer risk assessment at a genetic level involves the investigation of carcinogen metabolism and DNA adduct formation. Wide interindividual differences in metabolism result in different DNA adduct levels. For this and other reasons, many laboratories have considered DNA adducts to be a measure of the biologically effective dose of a carcinogen. Techniques for studying DNA adducts using chemically specific assays are becoming available. A modification of the [sup 32]P-postlabeling assay for polycyclic aromatic hydrocarbon DNA adducts described here provides potential improvements in quantification. DNA adducts, however, reflect only recent exposure to carcinogens; in contrast, genetic testing for metabolic capacity indicates the extent to which carcinogens can be activated and exert genotoxic effects. Such studies may reflect both separate and integrated risk factors together with DNA adduct levels. A recently described restriction fragment length polymorphism for the CYP1A1, which codes for the cytochrome P450 enzyme primarily responsible for the metabolic activation of carcinogenic polycyclic aromatic hydrocarbons, has been found to be associated with lung cancer risk in a Japanese population. In a subset of individuals enrolled in a US lung cancer case-control study, no association with lung cancer was found. 17 refs., 3 figs.

  2. PROTEIN TARGETS OF ACRYLAMIDE ADDUCT FORMATION IN CULTURED RAT DOPAMINERGIC CELLS

    PubMed Central

    Martyniuk, Christopher J.; Feswick, April; Fang, Bin; Koomen, John M.; Barber, David S.; Gavin, Terrence; LoPachin, Richard M.

    2013-01-01

    Acrylamide (ACR) is an electrophilic unsaturated carbonyl derivative that produces neurotoxicity by forming irreversible Michael-type adducts with nucleophilic sulfhydryl thiolate groups on cysteine residues of neuronal proteins. Identifying specific proteins targeted by ACR can lead to a better mechanistic understanding of the corresponding neurotoxicity. Therefore, in the present study, the ACR-adducted proteome in exposed primary immortalized mesencephalic dopaminergic cells (N27) was determined using tandem mass spectrometry (LTQ-Orbitrap). N27 cells were characterized based on the presumed involvement of CNS dopaminergic damage in ACR neurotoxicity. Shotgun proteomics identified a total of 15,243 peptides in N27 cells of which 103 unique peptides exhibited ACR-adducted Cys groups. These peptides were derived from 100 individual proteins and therefore ~0.7% of the N27 cell proteome was adducted. Proteins that contained ACR adducts on multiple peptides included annexin A1 and pleckstrin homology domain-containing family M member 1. Sub-network enrichment analyses indicated that ACR-adducted proteins were involved in processes associated with neuron toxicity, diabetes, inflammation, nerve degeneration and atherosclerosis. These results provide detailed information regarding the ACR-adducted proteome in a dopaminergic cell line. The catalog of affected proteins indicates the molecular sites of ACR action and the respective roles of these proteins in cellular processes can offer insight into the corresponding neurotoxic mechanism. PMID:23566896

  3. Depurinating estrogen–DNA adducts in the etiology and prevention of breast and other human cancers

    PubMed Central

    Cavalieri, Ercole L; Rogan, Eleanor G

    2015-01-01

    Experiments on estrogen metabolism, formation of DNA adducts, mutagenicity, cell transformation and carcinogenicity have led to and supported the hypothesis that the reaction of specific estrogen metabolites, mostly the electrophilic catechol estrogen-3,4-quinones, with DNA can generate the critical mutations to initiate breast and other human cancers. Analysis of depurinating estrogen–DNA adducts in urine demonstrates that women at high risk of, or with breast cancer, have high levels of the adducts, indicating a critical role for adduct formation in breast cancer initiation. Men with prostate cancer or non-Hodgkin lymphoma also have high levels of estrogen–DNA adducts. This knowledge of the first step in cancer initiation suggests the use of specific antioxidants that can block formation of the adducts by chemical and biochemical mechanisms. Two antioxidants, N-acetylcysteine and resveratrol, are prime candidates to prevent breast and other human cancers because in various in vitro and in vivo experiments, they reduce the formation of estrogen–DNA adducts. PMID:20021210

  4. Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant.

    PubMed

    Persson, Tomas; Battenberg, Kai; Demina, Irina V; Vigil-Stenman, Theoden; Vanden Heuvel, Brian; Pujic, Petar; Facciotti, Marc T; Wilbanks, Elizabeth G; O'Brien, Anna; Fournier, Pascale; Cruz Hernandez, Maria Antonia; Mendoza Herrera, Alberto; Médigue, Claudine; Normand, Philippe; Pawlowski, Katharina; Berry, Alison M

    2015-01-01

    Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of D. glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in D. glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both α- and β-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors.

  5. Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant

    PubMed Central

    Persson, Tomas; Battenberg, Kai; Demina, Irina V.; Vigil-Stenman, Theoden; Vanden Heuvel, Brian; Pujic, Petar; Facciotti, Marc T.; Wilbanks, Elizabeth G.; O'Brien, Anna; Fournier, Pascale; Cruz Hernandez, Maria Antonia; Mendoza Herrera, Alberto; Médigue, Claudine; Normand, Philippe; Pawlowski, Katharina; Berry, Alison M.

    2015-01-01

    Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of D. glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in D. glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both α- and β-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors. PMID:26020781

  6. Ultraviolet irradiation of monkey cells enhances the repair of DNA adducts in alpha DNA

    SciTech Connect

    Leadon, S.A.; Hanawalt, P.C.

    1984-11-01

    Excision repair of bulky adducts in alpha DNA of African green monkey cells has previously been shown to be deficient relative to that in the overall genome. We have found that u.v. irradiation of these cells results in the enhanced removal of both aflatoxin B1 (AFB1) and acetylaminofluorene (AAF) adducts from the alpha DNA sequences without affecting repair in the bulk of the DNA. The degree of enhanced removal of AFB1 is dependent upon the u.v. dose and the time interval between irradiation and AFB1 treatment. The u.v. enhancement is not inhibited by cycloheximide. Exposure of the cells to dimethylsulfate or gamma-rays does not affect AFB1 adduct repair. The formation and removal of N-acetoxy-2-acetylaminofluorene (NA-AAF) adducts from alpha and bulk DNA was studied in detail. A higher initial level of the acetylated C8 adduct of guanine was found in alpha DNA than in bulk DNA. Although both the acetylated and deacetylated C8 adducts were removed from the two DNA species, the level of repair was significantly greater in the bulk DNA. Irradiation of cells with u.v. prior to treatment with NA-AAF enhanced the removal of both adducts from alpha DNA with little or no effect on repair in bulk DNA. We conclude that the presence of u.v. photoproducts or some intermediate in their processing alters the chromatin structure of alpha DNA thereby rendering bulky adducts accessible to repair enzymes. In addition, the differential formation and repair of AAF adducts in alpha DNA compared with that in the bulk of the genome supports the hypothesis of an altered chromatin structure for alpha domains.

  7. Knee adduction moment and medial contact force--facts about their correlation during gait.

    PubMed

    Kutzner, Ines; Trepczynski, Adam; Heller, Markus O; Bergmann, Georg

    2013-01-01

    The external knee adduction moment is considered a surrogate measure for the medial tibiofemoral contact force and is commonly used to quantify the load reducing effect of orthopedic interventions. However, only limited and controversial data exist about the correlation between adduction moment and medial force. The objective of this study was to examine whether the adduction moment is indeed a strong predictor for the medial force by determining their correlation during gait. Instrumented knee implants with telemetric data transmission were used to measure tibiofemoral contact forces in nine subjects. Gait analyses were performed simultaneously to the joint load measurements. Skeletal kinematics, as well as the ground reaction forces and inertial parameters, were used as inputs in an inverse dynamics approach to calculate the external knee adduction moment. Linear regression analysis was used to analyze the correlation between adduction moment and medial force for the whole stance phase and separately for the early and late stance phase. Whereas only moderate correlations between adduction moment and medial force were observed throughout the whole stance phase (R(2) = 0.56) and during the late stance phase (R(2) = 0.51), a high correlation was observed at the early stance phase (R(2) = 0.76). Furthermore, the adduction moment was highly correlated to the medial force ratio throughout the whole stance phase (R(2) = 0.75). These results suggest that the adduction moment is a surrogate measure, well-suited to predicting the medial force ratio throughout the whole stance phase or medial force during the early stance phase. However, particularly during the late stance phase, moderate correlations and high inter-individual variations revealed that the predictive value of the adduction moment is limited. Further analyses are necessary to examine whether a combination of other kinematic, kinetic or neuromuscular factors may lead to a more reliable

  8. Polycyclic aromatic hydrocarbon-DNA adducts and survival among women with breast cancer

    SciTech Connect

    Sagiv, Sharon K. Gaudet, Mia M.; Eng, Sybil M.; Abrahamson, Page E.; Shantakumar, Sumitra; Teitelbaum, Susan L.; Bell, Paula; Thomas, Joyce A.; Neugut, Alfred I.; Santella, Regina M.; Gammon, Marilie D.

    2009-04-15

    Polycyclic aromatic hydrocarbons (PAH) are mammary carcinogens in animal studies, and a few epidemiologic studies have suggested a link between elevated levels of PAH-DNA adducts and breast cancer incidence. An association between PAH-DNA adducts and survival among breast cancer cases has not been previously reported. We conducted a survival analysis among women with newly diagnosed invasive breast cancer between 1996 and 1997, enrolled in the Long Island Breast Cancer Study Project. DNA was isolated from blood samples that were obtained from cases shortly after diagnosis and assayed for PAH-DNA adducts using ELISA. Among the 722 cases with PAH-DNA adduct measurements, 97 deaths (13.4%) from all causes and 54 deaths (7.5%) due to breast cancer were reported to National Death Index (NDI) by December 31, 2002. Using Cox proportional hazards models and controlling for age at diagnosis, we did not find evidence that all-cause mortality (hazard ratio (HR)=0.88; 95% confidence interval (CI): 0.57-1.37), or breast cancer mortality (HR=1.20; 95% CI: 0.63-2.28) was strongly associated with detectable PAH-DNA adduct levels compared with non-detectable adducts; additionally, no dose-response association was observed. Among a subgroup with treatment data (n=520), adducts were associated with over a two-fold higher mortality among those receiving radiation, but mortality for adducts was reduced among hormone therapy users. Results from this large population-based study do not provide strong support for an association between detectable PAH-DNA adducts and survival among women with breast cancer, except perhaps among those receiving radiation treatment.

  9. Knee Adduction Moment and Medial Contact Force – Facts about Their Correlation during Gait

    PubMed Central

    Kutzner, Ines; Trepczynski, Adam; Heller, Markus O.; Bergmann, Georg

    2013-01-01

    The external knee adduction moment is considered a surrogate measure for the medial tibiofemoral contact force and is commonly used to quantify the load reducing effect of orthopedic interventions. However, only limited and controversial data exist about the correlation between adduction moment and medial force. The objective of this study was to examine whether the adduction moment is indeed a strong predictor for the medial force by determining their correlation during gait. Instrumented knee implants with telemetric data transmission were used to measure tibiofemoral contact forces in nine subjects. Gait analyses were performed simultaneously to the joint load measurements. Skeletal kinematics, as well as the ground reaction forces and inertial parameters, were used as inputs in an inverse dynamics approach to calculate the external knee adduction moment. Linear regression analysis was used to analyze the correlation between adduction moment and medial force for the whole stance phase and separately for the early and late stance phase. Whereas only moderate correlations between adduction moment and medial force were observed throughout the whole stance phase (R2 = 0.56) and during the late stance phase (R2 = 0.51), a high correlation was observed at the early stance phase (R2 = 0.76). Furthermore, the adduction moment was highly correlated to the medial force ratio throughout the whole stance phase (R2 = 0.75). These results suggest that the adduction moment is a surrogate measure, well-suited to predicting the medial force ratio throughout the whole stance phase or medial force during the early stance phase. However, particularly during the late stance phase, moderate correlations and high inter-individual variations revealed that the predictive value of the adduction moment is limited. Further analyses are necessary to examine whether a combination of other kinematic, kinetic or neuromuscular factors may lead to a more reliable prediction of

  10. 7-Alkylguanine adduct levels in urine, lungs and liver of mice exposed to styrene by inhalation

    SciTech Connect

    Vodicka, Pavel Erik . E-mail: pvodicka@biomed.cas.cz; Linhart, Igor; Novak, Jan; Koskinen, Mikko; Vodickova, Ludmila; Hemminki, Kari

    2006-01-15

    This study describes urinary excretion of two nucleobase adducts derived from styrene 7,8-oxide (SO), i.e., 7-(2-hydroxy-1-phenylethyl)guanine (N7{alpha}G) and 7-(2-hydroxy-2-phenylethyl)guanine (N7{beta}G), as well as a formation of N7-SO-guanine adducts in lungs and liver of two month old male NMRI mice exposed to styrene by inhalation in a 3-week subacute study. Strikingly higher excretion of both isomeric nucleobase adducts in the first day of exposure was recorded, while the daily excretion of nucleobase adducts in following time intervals reached the steady-state level at 4.32 + 1.14 and 6.91 + 1.17 pmol/animal for lower and higher styrene exposure, respectively. {beta}-SO-guanine DNA adducts in lungs increased with exposure in a linear way (F = 13.7 for linearity and 0.17 for non-linearity, respectively), reaching at the 21st day the level of 23.0 adducts/10{sup 8} normal nucleotides, i.e., 0.74 fmol/{mu}g DNA of 7-alkylguanine DNA adducts for the concentration of 1500 mg/m{sup 3}, while no 7-SO-guanine DNA adducts were detected in the liver after 21 days of inhalation exposure to both of styrene concentrations. A comparison of 7-alkylguanines excreted in urine with 7-SO-guanines in lungs (after correction for depurination and for missing {alpha}-isomers) revealed that persisting 7-SO-guanine DNA adducts in lungs account for about 0.5% of the total alkylation at N7 of guanine. The total styrene-specific 7-guanine alkylation accounts for about 1.0 x 10{sup -5}% of the total styrene uptake, while N1-adenine alkylation contributes to this percentage only negligibly.

  11. Preferential Formation of Benzo[a]pyrene Adducts at Lung Cancer Mutational Hotspots in P53

    NASA Astrophysics Data System (ADS)

    Denissenko, Mikhail F.; Pao, Annie; Tang, Moon-Shong; Pfeifer, Gerd P.

    1996-10-01

    Cigarette smoke carcinogens such as benzo[a]pyrene are implicated in the development of lung cancer. The distribution of benzo[a]pyrene diol epoxide (BPDE) adducts along exons of the P53 gene in BPDE-treated HeLa cells and bronchial epithelial cells was mapped at nucleotide resolution. Strong and selective adduct formation occurred at guanine positions in codons 157, 248, and 273. These same positions are the major mutational hotspots in human lung cancers. Thus, targeted adduct formation rather than phenotypic selection appears to shape the P53 mutational spectrum in lung cancer. These results provide a direct etiological link between a defined chemical carcinogen and human cancer.

  12. DNA Adduct Formation of 4-Aminobiphenyl and Heterocyclic Aromatic Amines in Human Hepatocytes

    PubMed Central

    Nauwelaers, Gwendoline; Bessette, Erin E.; Gu, Dan; Tang, Yijin; Rageul, Julie; Fessard, Valérie; Yuan, Jian-Min; Yu, Mimi C.; Langouët, Sophie; Turesky, Robert J.

    2011-01-01

    DNA adduct formation of the aromatic amine, 4-aminobiphenyl (4-ABP), a known human carcinogen present in tobacco smoke, and the heterocyclic aromatic amines (HAAs), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), potential human carcinogens, which are also present in tobacco smoke or formed during the high-temperature cooking of meats, was investigated in freshly cultured human hepatocytes. The carcinogens (10 μM) were incubated with hepatocytes derived from eight different donors for time periods up to 24 h. The DNA adducts were quantified by liquid chromatography-electrospray ionization mass spectrometry with a linear quadrupole ion trap mass spectrometer. The principal DNA adducts formed for all of the carcinogens were N-(deoxyguanosin-8-yl) (dG-C8) adducts. The levels of adducts ranged from 3.4 to 140 adducts per 107 DNA bases. The highest level of adduct formation occurred with AαC, followed by 4-ABP, then by PhIP, MeIQx, and IQ. Human hepatocytes formed dG-C8-HAA-adducts at levels that were up to 100-fold greater than the amounts of adducts produced in rat hepatocytes. In contrast to HAA adducts, the levels of dG-C8-4-ABP adduct formation were similar in human and rat hepatocytes. These DNA binding data demonstrate that the rat, an animal model that is used for carcinogenesis bioassays, significantly underestimates the potential hepatic genotoxicity of HAAs in humans. The high level of DNA adducts formed by AαC, a carcinogen produced in tobacco smoke at levels that are up to 100-fold higher than the amounts of 4-ABP, is noteworthy. The possible causal role of AαC in tobacco-associated cancers warrants investigation. PMID:21456541

  13. Evolution of Research on the DNA Adduct Chemistry of N-Nitrosopyrrolidine and Related Aldehydes

    PubMed Central

    Hecht, Stephen S.; Upadhyaya, Pramod; Wang, Mingyao

    2011-01-01

    This perspective reviews our work on the identification of DNA adducts of N-nitrosopyrrolidine and some related aldehydes. The research began as a focused project to investigate mechanisms of cyclic nitrosamine carcinogenesis but expanded into other areas as aldehyde metabolites of NPYR were shown to have their own diverse DNA adduct chemistry. A total of 69 structurally distinct DNA adducts were identified and some of these, found in human tissues, have provided intriguing leads for investigating carcinogenesis mechanisms in humans due to exposure to both endogenous and exogenous agents. PMID:21480629

  14. Enhanced plasmid DNA utilization in transiently transfected CHO-DG44 cells in the presence of polar solvents.

    PubMed

    Rajendra, Yashas; Balasubramanian, Sowmya; Kiseljak, Divor; Baldi, Lucia; Wurm, Florian M; Hacker, David L

    2015-01-01

    Although the protein yields from transient gene expression (TGE) with Chinese hamster ovary (CHO) cells have recently improved, the amount of plasmid DNA (pDNA) needed for transfection remains relatively high. We describe a strategy to reduce the pDNA amount by transfecting CHO-DG44 cells with 0.06 μg pDNA/10(6) cells (10% of the optimal amount) in the presence of nonspecific (filler) DNA and various polar solvents including dimethylsufoxide, dimethyl formamide, acetonitrile, dimethyl acetamide (DMA), and hexamethyl phosphoramide (HMP). All of the polar solvents with the exception of HMP increased the production of a recombinant antibody in comparison to the untreated control transfection. In the presence of 0.25% DMA, the antibody yield in a 7-day batch culture was 500 mg/L. This was fourfold higher than the yield from the untreated control transfection. Mechanistic studies revealed that the polar solvents did not affect polyethylenimine-mediated pDNA delivery into cells or nuclei. The steady-state transgene mRNA level was elevated in the presence of each of the polar solvents tested, while the transgene mRNA half-life remained the same. These results indicated that the polar solvents enhanced transgene transcription. When screening a panel of recombinant antibodies and Fc-fusion proteins for production in the presence of the polar solvents, the highest increase in yield was observed following DMA addition for 11 of the 12 proteins. These results are expected to enhance the applicability of high-yielding TGE processes with CHO-DG44 cells by decreasing the amount of pDNA required for transfection.

  15. Lifetimes and stabilities of familiar explosive molecular adduct complexes during ion mobility measurements.

    PubMed

    McKenzie-Coe, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco

    2015-08-21

    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailor the stability of the molecular adduct complex. The flexibility of TIMS to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments/low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with high confidence levels.

  16. Methods for synthesizing alane without the formation of adducts and free of halides

    DOEpatents

    Zidan, Ragaiy; Knight, Douglas A; Dinh, Long V

    2013-02-19

    A process is provided to synthesize an alane without the formation of alane adducts as a precursor. The resulting product is a crystallized .alpha.-alane and is a highly stable product and is free of halides.

  17. Stability and proton transfer in DNA base pairs of AMD473-DNA adduct

    NASA Astrophysics Data System (ADS)

    Sarmah, Pubalee; Deka, Ramesh C.

    2011-05-01

    We investigate the energetics of four different adducts of cisplatin analogue cis-[PtCl 2(NH 3)(2-picoline)] (AMD473) with a duplex DNA using DFT/ONIOM methods to probe their stabilities. Further, we study the possibilities of proton transfer between DNA base pairs of the most stable drug-DNA adduct. The adduct b(2-picoline trans to 3'-G and 2-methyl group directs to the DNA major groove) is found to be the most stable configuration among all the possible adducts. From the proton transfer analysis we found that the single proton transfer between N1 position of guanine (G) and N3 position of cytosine (C) of each GC pair gives a structure energetically as stable as the original one.

  18. Profiling Cys34 Adducts of Human Serum Albumin by Fixed-Step Selected Reaction Monitoring*

    PubMed Central

    Li, He; Grigoryan, Hasmik; Funk, William E.; Lu, Sixin Samantha; Rose, Sherri; Williams, Evan R.; Rappaport, Stephen M.

    2011-01-01

    A method is described for profiling putative adducts (or other unknown covalent modifications) at the Cys34 locus of human serum albumin (HSA), which represents the preferred reaction site for small electrophilic species in human serum. By comparing profiles of putative HSA-Cys34 adducts across populations of interest it is theoretically possible to explore environmental causes of degenerative diseases and cancer caused by both exogenous and endogenous chemicals. We report a novel application of selected-reaction-monitoring (SRM) mass spectrometry, termed fixed-step SRM (FS-SRM), that allows detection of essentially all HSA-Cys34 modifications over a specified range of mass increases (added masses). After tryptic digestion, HSA-Cys34 adducts are contained in the third largest peptide (T3), which contains 21 amino acids and an average mass of 2433.87 Da. The FS-SRM method does not require that exact masses of T3 adducts be known in advance but rather uses a theoretical list of T3-adduct m/z values separated by a fixed increment of 1.5. In terms of added masses, each triply charged parent ion represents a bin of ±2.3 Da between 9.1 Da and 351.1 Da. Synthetic T3 adducts were used to optimize FS-SRM and to establish screening rules based upon selected b- and y-series fragment ions. An isotopically labeled T3 adduct is added to protein digests to facilitate quantification of putative adducts. We used FS-SRM to generate putative adduct profiles from six archived specimens of HSA that had been pooled by gender, race, and smoking status. An average of 66 putative adduct hits (out of a possible 77) were detected in these samples. Putative adducts covered a wide range of concentrations, were most abundant in the mass range below 100 Da, and were more abundant in smokers than in nonsmokers. With minor modifications, the FS-SRM methodology can be applied to other nucleophilic sites and proteins. PMID:21193536

  19. Tamoxifen-DNA adduct formation in monkey and human reproductive organs.

    PubMed

    Hernandez-Ramon, Elena E; Sandoval, Nicole A; John, Kaarthik; Cline, J Mark; Wood, Charles E; Woodward, Ruth A; Poirier, Miriam C

    2014-05-01

    The estrogen analog tamoxifen (TAM), used for adjuvant therapy of breast cancer, induces endometrial and uterine tumors in breast cancer patients. Proliferation stimulus of the uterine endometrium is likely involved in tumor induction, but genotoxicity may also play a role. Formation of TAM-DNA adducts in human tissues has been reported but remains controversial. To address this issue, we examined TAM-DNA adducts in uteri from two species of monkeys, Erythrocebus patas (patas) and Macaca fascicularis (macaque), and in human endometrium and myometrium. Monkeys were given 3-4 months of chronic TAM dosing scaled to be equivalent to the daily human dose. In the uteri, livers and brains from the patas (n = 3), and endometrium from the macaques (n = 4), TAM-DNA adducts were measurable by TAM-DNA chemiluminescence immunoassay. Average TAM-DNA adduct values for the patas uteri (23 adducts/10(8) nucleotides) were similar to those found in endometrium of the macaques (19 adducts/10(8) nucleotides). Endometrium of macaques exposed to both TAM and low-dose estradiol (n = 5) averaged 34 adducts/10(8) nucleotides. To examine TAM-DNA persistence in the patas, females (n = 3) were exposed to TAM for 3 months and to no drug for an additional month, resulting in low or non-detectable TAM-DNA in livers and uteri. Human endometrial and myometrial samples from women receiving (n = 8) and not receiving (n = 8) TAM therapy were also evaluated. Women receiving TAM therapy averaged 10.3 TAM-DNA adducts/10(8) nucleotides, whereas unexposed women showed no detectable TAM-DNA. The data indicate that genotoxicity, in addition to estrogen agonist effects, may contribute to TAM-induced human endometrial cancer.

  20. Passive limitation of adduction after Cüppers's 'Fadenoperation' on medial recti.

    PubMed Central

    Paliaga, G P; Braga, M

    1989-01-01

    In 40 eyes of 20 esotropic subjects in which a 'Fadenoperation' was performed on the medial recti we measured the resistance to ocular rotation in adduction before and after the operation. The difference between the two sets of force measurements demonstrates that the Fadenoperation on medial recti produces a mechanical restriction to adduction which can explain the effect of the surgical procedure on the strabismic deviation. PMID:2765442

  1. Smoking-related DNA adducts as potential diagnostic markers of lung cancer: new perspectives.

    PubMed

    Grigoryeva, E S; Kokova, D A; Gratchev, A N; Cherdyntsev, E S; Buldakov, M A; Kzhyshkowska, J G; Cherdyntseva, N V

    2015-03-01

    In recent years, the new direction such as identification of informative circulating markers reflecting molecular genetic changes in the DNA of tumor cells was actively developed. Smoking-related DNA adducts are very promising research area, since they indicate high pathogenetic importance in the lung carcinogenesis and can be identified in biological samples with high accuracy and reliability using highly sensitive mass spectrometry methods (TOF/TOF, TOF/MS, MS/MS). The appearance of DNA adducts in blood or tissues is the result of the interaction of carcinogenic factors, such as tobacco constituents, and the body reaction which is determined by individual characteristics of metabolic and repair systems. So, DNA adducts may be considered as a cumulative mirror of heterogeneous response of different individuals to smoking carcinogens, which finally could determine the risk for lung cancer. This review is devoted to analysis of the role of DNA adducts in lung carcinogenesis in order to demonstrate their usefulness as cancer associated markers. Currently, there are some serious limitations impeding the widespread use of DNA adducts as cancer biomarkers, due to failure of standardization of mass spectrometry analysis in order to correctly measure the adduct level in each individual. However, it is known that all DNA adducts are immunogenic, their accumulation over some threshold concentration leads to the appearance of long-living autoantibodies. Thus, detection of an informative pattern of autoantibodies against DNA adducts using innovative multiplex ELISA immunoassay may be a promising approach to find lung cancer at an early stage in high-risk groups (smokers, manufacturing workers, urban dwellers).

  2. Malondialdehyde-acetaldehyde (MAA) adducted proteins bind to scavenger receptor A in airway epithelial cells

    PubMed Central

    Berger, John P.; Simet, Samantha M.; DeVasure, Jane M.; Boten, Jessica A.; Sweeter, Jenea M.; Kharbanda, Kusum K.; Sisson, Joseph H.; Wyatt, Todd A.

    2014-01-01

    Co-exposure to cigarette smoke and ethanol generates malondialdehyde and acetaldehyde, which can subsequently lead to the formation of aldehyde-adducted proteins. We have previously shown that exposure of bronchial epithelial cells to malondialdehyde-acetaldehyde (MAA) adducted protein increases protein kinase C (PKC) activity and proinflammatory cytokine release. A specific ligand to scavenger receptor A (SRA), fucoidan, blocks this effect. We hypothesized that MAA-adducted protein binds to bronchial epithelial cells via SRA. Human bronchial epithelial cells (BEAS-2B) were exposed to MAA-adducted protein (either bovine serum albumin [BSA-MAA] or surfactant protein D [SPD-MAA]) and SRA examined using confocal microscopy, fluorescent activated cell sorting (FACS), and immunoprecipitation. Differentiated mouse tracheal epithelial cells (MTEC) cultured by air-liquid interface were assayed for MAA-stimulated PKC activity and keratinocyte-derived chemokine (KC) release. Specific cell surface membrane dye co-localized with upregulated SRA after exposure to MAA for 3–7 min and subsided by 20 min. Likewise, MAA-adducted protein co-localized to SRA from 3–7 min with a subsequent internalization of MAA by 10 min. These results were confirmed using FACS analysis and revealed a reduced mean fluorescence of SRA after 3 min. Furthermore, increased amounts of MAA-adducted protein could be detected by Western blot in immunoprecipitated SRA samples after 3 min treatment with MAA. MAA stimulated PKCε-mediated KC release in wild type, but not SRA knockout mice. These data demonstrate that aldehyde-adducted proteins in the lungs rapidly bind to SRA and internalize this receptor prior to the MAA-adducted protein stimulation of PKC-dependent inflammatory cytokine release in airway epithelium. PMID:24880893

  3. Malondialdehyde-acetaldehyde (MAA) adducted proteins bind to scavenger receptor A in airway epithelial cells.

    PubMed

    Berger, John P; Simet, Samantha M; DeVasure, Jane M; Boten, Jessica A; Sweeter, Jenea M; Kharbanda, Kusum K; Sisson, Joseph H; Wyatt, Todd A

    2014-08-01

    Co-exposure to cigarette smoke and ethanol generates malondialdehyde and acetaldehyde, which can subsequently lead to the formation of aldehyde-adducted proteins. We have previously shown that exposure of bronchial epithelial cells to malondialdehyde-acetaldehyde (MAA) adducted protein increases protein kinase C (PKC) activity and proinflammatory cytokine release. A specific ligand to scavenger receptor A (SRA), fucoidan, blocks this effect. We hypothesized that MAA-adducted protein binds to bronchial epithelial cells via SRA. Human bronchial epithelial cells (BEAS-2B) were exposed to MAA-adducted protein (either bovine serum albumin [BSA-MAA] or surfactant protein D [SPD-MAA]) and SRA examined using confocal microscopy, fluorescent activated cell sorting (FACS), and immunoprecipitation. Differentiated mouse tracheal epithelial cells (MTEC) cultured by air-liquid interface were assayed for MAA-stimulated PKC activity and keratinocyte-derived chemokine (KC) release. Specific cell surface membrane dye co-localized with upregulated SRA after exposure to MAA for 3-7 min and subsided by 20 min. Likewise, MAA-adducted protein co-localized to SRA from 3 to 7 min with a subsequent internalization of MAA by 10 min. These results were confirmed using FACS analysis and revealed a reduced mean fluorescence of SRA after 3 min. Furthermore, increased amounts of MAA-adducted protein could be detected by Western blot in immunoprecipitated SRA samples after 3 min treatment with MAA. MAA stimulated PKCε-mediated KC release in wild type, but not SRA knockout mice. These data demonstrate that aldehyde-adducted proteins in the lungs rapidly bind to SRA and internalize this receptor prior to the MAA-adducted protein stimulation of PKC-dependent inflammatory cytokine release in airway epithelium.

  4. Correlation of haemoglobin-acrylamide adducts with airborne exposure: an occupational survey.

    PubMed

    Jones, Kate; Garfitt, Sarah; Emms, Vicky; Warren, Nick; Cocker, John; Farmer, Peter

    2006-04-10

    This paper reports an occupational hygiene survey of exposure to acrylamide comparing acrylamide haemoglobin adduct measurements with personal air monitoring and glove liner analysis. The air monitoring data showed that exposure to acrylamide was well-controlled with all samples below the UK maximum exposure limit (MEL) of 300 microg/m(3) with mean exposure about one tenth of the MEL. Each worker provided two blood samples approximately 3 months apart. These samples were well correlated (r=0.61) with a slope of 0.74, indicating that exposure was reasonably constant. Mean personal airborne acrylamide levels and mean acrylamide haemoglobin adduct levels were well correlated (r=0.72, N=46) and using the calculated linear correlation, exposure at the MEL would be expected to give rise to a haemoglobin adduct level of 1,550 pmol/g globin. Smoking status did not affect the correlation. There was also a correlation between levels of acrylamide detected on gloves and haemoglobin adduct levels. A combined regression model between haemoglobin adducts, airborne acrylamide and acrylamide glove contamination was significant for both airborne acrylamide and gloves with a regression coefficient of 0.89. The study showed that haemoglobin adduct level was a good biomarker of acrylamide exposure which correlated to both inhaled and potentially skin absorbed acrylamide estimates. There was excellent discrimination between well-controlled occupational levels and environmental levels from diet and smoking, allowing haemoglobin adduct measurement to be used to determine even low level exposures. Due to the complexity of the current methodology, new techniques would be useful in making haemoglobin adducts more widely applicable.

  5. Oxidation and glycolytic cleavage of etheno and propano DNA base adducts.

    PubMed

    Knutson, Charles G; Rubinson, Emily H; Akingbade, Dapo; Anderson, Carolyn S; Stec, Donald F; Petrova, Katya V; Kozekov, Ivan D; Guengerich, F Peter; Rizzo, Carmelo J; Marnett, Lawrence J

    2009-02-03

    Non-invasive strategies for the analysis of endogenous DNA damage are of interest for the purpose of monitoring genomic exposure to biologically produced chemicals. We have focused our research on the biological processing of DNA adducts and how this may impact the observed products in biological matrixes. Preliminary research has revealed that pyrimidopurinone DNA adducts are subject to enzymatic oxidation in vitro and in vivo and that base adducts are better substrates for oxidation than the corresponding 2'-deoxynucleosides. We tested the possibility that structurally similar exocyclic base adducts may be good candidates for enzymatic oxidation in vitro. We investigated the in vitro oxidation of several endogenously occurring etheno adducts [1,N(2)-epsilon-guanine (1,N(2)-epsilon-Gua), N(2),3-epsilon-Gua, heptanone-1,N(2)-epsilon-Gua, 1,N(6)-epsilon-adenine (1,N(6)-epsilon-Ade), and 3,N(4)-epsilon-cytosine (3,N(4)-epsilon-Cyt)] and their corresponding 2'-deoxynucleosides. Both 1,N(2)-epsilon-Gua and heptanone-1,N(2)-epsilon-Gua were substrates for enzymatic oxidation in rat liver cytosol; heteronuclear NMR experiments revealed that oxidation occurred on the imidazole ring of each substrate. In contrast, the partially or fully saturated pyrimidopurinone analogues [i.e., 5,6-dihydro-M(1)G and 1,N(2)-propanoguanine (PGua)] and their 2'-deoxynucleoside derivatives were not oxidized. The 2'-deoxynucleoside adducts, 1,N(2)-epsilon-dG and 1,N(6)-epsilon-dA, underwent glycolytic cleavage in rat liver cytosol. Together, these data suggest that multiple exocyclic adducts undergo oxidation and glycolytic cleavage in vitro in rat liver cytosol, in some instances in succession. These multiple pathways of biotransformation produce an array of products. Thus, the biotransformation of exocyclic adducts may lead to an additional class of biomarkers suitable for use in animal and human studies.

  6. Estrogen-DNA Adducts as Novel Biomarkers for Ovarian Cancer Risk and for Use in Prevention

    DTIC Science & Technology

    2013-03-01

    the association between ovarian cancer and (1) imbalances in estrogen metabolism that lead to higher levels of estrogen-DNA adducts in urine and/or (2...provides a measure of the imbalance 6 of estrogen metabolism in a person. A high ratio indicates that the person’s estrogen metabolism is...polymorphisms and risk of hormonal cancers. The estrogen quinone resulting from CYP1B1 activity may proceed to adduct formation in the presence of

  7. [Mass spectrometric analysis of polycyclic aromatic hydrocarbons adducted to DNA]. Final report

    SciTech Connect

    Barofsky, D.F.

    1992-12-31

    Studies described herein sought and to synthesize PAH-adducted residues of DNA to serve as models for carrying out the mass spectrometric studies; to construct and test a high performance, pulsed ion bombardment, time-of-flight (TOF) mass spectrometer; to initiate an investigation of the efficacy of using thin wire sample holders to increase sensitivity and focused ion beam bombardment to increase ion yield and ion transmission; and to initiate an investigation of sensitivity enhancing matrices for PAH-adducted DNA.

  8. Synthesis of a major mitomycin C DNA adduct via a triaminomitosene.

    PubMed

    Champeil, Elise; Paz, Manuel M; Lukasiewicz, Elaan; Kong, Wan S; Watson, Stephanie; Sapse, Anne-Marie

    2012-12-01

    We report here the synthesis of two amino precursors for the production of mitomycin C and 10-decarbamoylmitomycin C DNA adducts with opposite stereochemistry at C-1. The triamino mitosene precursors were synthesized in 5 steps from mitomycin C. In addition synthesis of the major mitomycin C-DNA adduct has been accomplished via coupling of a triaminomitosene with 2-fluoro-O(6)-(2-p-nitrophenylethyl)deoxyinosine followed by deprotection at the N(2) and O(6) positions.

  9. Notice of Release of WhiteAcre-DG, a Small-seeded, Cream-type Southernpea with an Enhanced Persistent Green Seed Phenotype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA has developed a high yielding, small-seeded, cream-type southernpea cultivar that has a persistent green seed phenotype conditioned by both the green cotyledon gene (gc) and the green testa gene (gt). The new cultivar, named WhiteAcre-DG, can be harvested at the dry-pod stage of maturity w...

  10. Overexpression of a novel chrysanthemum Cys2/His2-type zinc finger protein gene DgZFP3 confers drought tolerance in tobacco.

    PubMed

    Liu, Qing-Lin; Xu, Ke-Dong; Zhong, Ming; Pan, Yuan-Zhi; Jiang, Bei-Bei; Liu, Guang-Li; Jia, Yin; Zhang, Hai-Qing

    2013-11-01

    A drought stress-responsive Cys2/His2-type zinc finger protein gene DgZFP3 was previously isolated (Liu et al., Afr J Biotechnol 11:7781-7788, 2012b) from chrysanthemum. To assess roles of DgZFP3 in plant drought stress responses, we performed gain-of-function experiment. The DgZFP3-overexpression tobacco plants showed significant drought tolerance over the wild type (WT). The transgenic lines exhibited less accumulation of H2O2 under drought stress, more accumulation of proline and greater activities of peroxidase (POD) and superoxide dismutase than the WT under both control conditions and drought stress. In addition, there was greater up-regulation of the ROS-related enzyme genes (NtSOD and NtPOD) and stress-related genes (NtLEA5 and NtDREB) in transgenic lines under normal or drought conditons. Thus DgZFP3 probably plays a positive regulatory role in drought stress response and has the potential to be utilized in transgenic breeding to improve drought stress tolerance in plants.

  11. A multi-dimensional high-order DG-ALE method based on gas-kinetic theory with application to oscillating bodies

    NASA Astrophysics Data System (ADS)

    Ren, Xiaodong; Xu, Kun; Shyy, Wei

    2016-07-01

    This paper presents a multi-dimensional high-order discontinuous Galerkin (DG) method in an arbitrary Lagrangian-Eulerian (ALE) formulation to simulate flows over variable domains with moving and deforming meshes. It is an extension of the gas-kinetic DG method proposed by the authors for static domains (X. Ren et al., 2015 [22]). A moving mesh gas kinetic DG method is proposed for both inviscid and viscous flow computations. A flux integration method across a translating and deforming cell interface has been constructed. Differently from the previous ALE-type gas kinetic method with piecewise constant mesh velocity at each cell interface within each time step, the mesh velocity variation inside a cell and the mesh moving and rotating at a cell interface have been accounted for in the finite element framework. As a result, the current scheme is applicable for any kind of mesh movement, such as translation, rotation, and deformation. The accuracy and robustness of the scheme have been improved significantly in the oscillating airfoil calculations. All computations are conducted in a physical domain rather than in a reference domain, and the basis functions move with the grid movement. Therefore, the numerical scheme can preserve the uniform flow automatically, and satisfy the geometric conservation law (GCL). The numerical accuracy can be maintained even for a largely moving and deforming mesh. Several test cases are presented to demonstrate the performance of the gas-kinetic DG-ALE method.

  12. Correlation of mutagenic potencies of various petroleum oils and oil coal tar mixtures with DNA adduct levels in vitro.

    PubMed

    Reddy, M V; Blackburn, G R; Schreiner, C A; Mackerer, C R

    1997-08-01

    An in vitro system was utilized to measure DNA adduct-forming ability of petroleum oils and oil coal tar mixtures to define correlations between DNA adduct levels and their mutagenic potencies. The system consisted of reaction of dimethyl sulfoxide extracts of oils with calf thymus DNA in the presence of Aroclor-induced hamster liver microsomes for 30 min. Following DNA extraction, DNA adducts were measured by the nuclease P1-enhanced postlabeling assay coupled with two-dimensional polyethyleneimine (PEI)-cellulose TLC. Thin layer plates showed putative aromatic DNA adducts, with levels ranging from 60 to 1400 adducts per 10(9) DNA nucleotides. TLC mobilities suggested adducts to be aromatic compounds containing 4 or more rings. A good correlation (coefficient of correlation = 0.91) was observed between DNA adduct levels and Salmonella mutagenicity for 19 oils. All 19 samples tested produced DNA adducts. To expedite the TLC procedure, adducts were resolved by one-dimensional TLC and the radioactivity measured using a mechanical scanner. Results were comparable to those obtained by two-dimensional TLC and quantification after scraping. Our data show that the in vitro incubation system coupled with the postlabeling adduct assay is a useful screening method to identify mutagenic and potentially carcinogenic oils.

  13. The use of an artificial nucleotide for polymerase-based recognition of carcinogenic O6-alkylguanine DNA adducts

    PubMed Central

    Wyss, Laura A.; Nilforoushan, Arman; Williams, David M.; Marx, Andreas; Sturla, Shana J.

    2016-01-01

    Enzymatic approaches for locating alkylation adducts at single-base resolution in DNA could enable new technologies for understanding carcinogenesis and supporting personalized chemotherapy. Artificial nucleotides that specifically pair with alkylated bases offer a possible strategy for recognition and amplification of adducted DNA, and adduct-templated incorporation of an artificial nucleotide has been demonstrated for a model DNA adduct O6-benzylguanine by a DNA polymerase. In this study, DNA adducts of biological relevance, O6-methylguanine (O6-MeG) and O6-carboxymethylguanine (O6-CMG), were characterized to be effective templates for the incorporation of benzimidazole-derived 2′-deoxynucleoside-5′-O-triphosphates (BenziTP and BIMTP) by an engineered KlenTaq DNA polymerase. The enzyme catalyzed specific incorporation of the artificial nucleotide Benzi opposite adducts, with up to 150-fold higher catalytic efficiency for O6-MeG over guanine in the template. Furthermore, addition of artificial nucleotide Benzi was required for full-length DNA synthesis during bypass of O6-CMG. Selective incorporation of the artificial nucleotide opposite an O6-alkylguanine DNA adduct was verified using a novel 2′,3′-dideoxy derivative of BenziTP. The strategy was used to recognize adducts in the presence of excess unmodified DNA. The specific processing of BenziTP opposite biologically relevant O6-alkylguanine adducts is characterized herein as a basis for potential future DNA adduct sequencing technologies. PMID:27378785

  14. Abacavir forms novel cross-linking abacavir protein adducts in patients.

    PubMed

    Meng, Xiaoli; Lawrenson, Alexandre S; Berry, Neil G; Maggs, James L; French, Neil S; Back, David J; Khoo, Saye H; Naisbitt, Dean J; Park, B Kevin

    2014-04-21

    Abacavir (ABC), a nucleoside-analogue reverse transcriptase inhibitor, is associated with severe hypersensitivity reactions that are thought to involve the activation of CD8+ T cells in a HLA-B*57:01-restricted manner. Recent studies have claimed that noncovalent interactions of ABC with HLA-B*57:01 are responsible for the immunological reactions associated with ABC. However, the formation of hemoglobin-ABC aldehyde (ABCA) adducts in patients exposed to ABC suggests that protein conjugation might represent a pathway for antigen formation. To further characterize protein conjugation reactions, we used mass spectrometric methods to define ABCA modifications in patients receiving ABC therapy. ABCA formed a novel intramolecular cross-linking adduct on human serum albumin (HSA) in patients and in vitro via Michael addition, followed by nucleophilic adduction of the aldehyde with a neighboring protein nucleophile. Adducts were detected on Lys159, Lys190, His146, and Cys34 residues in the subdomain IB of HSA. Only a cysteine adduct and a putative cross-linking adduct were detected on glutathione S-transferase Pi (GSTP). These findings reveal that ABC forms novel types of antigens in all patients taking the drug. It is therefore vital that the immunological consequences of such pathways of haptenation are explored in the in vitro models that have been used by various groups to define new mechanisms of drug hypersensitivity exemplified by ABC.

  15. Detection and characterization of DNA adducts formed from metabolites of the fungicide ortho-phenylphenol.

    PubMed

    Zhao, Shouxun; Narang, Amarjit; Gierthy, John; Eadon, George

    2002-05-22

    The significance of DNA adduction in ortho-phenylphenol-induced carcinogenesis remains unclear. Establishing adduct structures may contribute to resolving this issue. The chemical structures of the DNA adduction products resulting from the in vitro reaction of phenylbenzoquinone, the putative ultimate carcinogenic metabolite of the fungicide/disinfectant ortho-phenylphenol, are reported here. Three isomeric adducts that resulted from reaction of deoxyguanosine were characterized by UV, LC-ESI-MS, and MS/MS, and 1D and 2D COSY-NMR spectroscopy. The proposed mechanism of product formation is nucleophilic attack by the deoxyguanosine exocyclic amine nitrogen on an electrophilic quinone carbon, followed by stabilization through enolization. Another nucleophilic attack forms a five-membered ring, which aromatizes by dehydration to form the final product. Adducts were also characterized from deoxyadenosine and deoxycytidine, although conversions were at least 10 times lower. Structures are also proposed for these products. Cell culture studies confirmed that HepG2 cells incubated with phenylbenzoquinone at concentrations associated with cytotoxicity form the same DNA adducts.

  16. Formation and Repair of Tobacco Carcinogen-Derived Bulky DNA Adducts

    PubMed Central

    Hang, Bo

    2010-01-01

    DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N-nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O6-alkylguanine DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects. PMID:21234336

  17. Formation of dopamine adducts derived from brain polyunsaturated fatty acids: mechanism for Parkinson disease.

    PubMed

    Liu, Xuebo; Yamada, Naruomi; Maruyama, Wakako; Osawa, Toshihiko

    2008-12-12

    Oxidative stress appears to be directly involved in the pathogenesis of the neurodegeneration of dopaminergic systems in Parkinson disease. In this study, we formed four dopamine modification adducts derived from docosahexaenoic acid (C22:6/omega-3) and arachidonic acid (C18:4/omega-6), which are known as the major polyunsaturated fatty acids in the brain. Upon incubation of dopamine with fatty acid hydroperoxides and an in vivo experiment using rat brain tissue, all four dopamine adducts were detected. Furthermore, hexanoyl dopamine (HED), an arachidonic acid-derived adduct, caused severe cytotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells, whereas the other adducts were only slightly affected. The HED-induced cell death was found to include apoptosis, which also seems to be mediated by reactive oxygen species generation and mitochondrial abnormality. Additionally, the experiments using monoamine transporter inhibitor and mouse embryonic fibroblast NIH-3T3 cells that lack the monoamine transporter indicate that the HED-induced cytotoxicity might specially occur in the neuronal cells. These data suggest that the formation of the docosahexaenoic acid- and arachidonic acid-derived dopamine adducts in vitro and in vivo, and HED, the arachidonic acid-derived dopamine modification adduct, which caused selective cytotoxicity of neuronal cells, may indicate a novel mechanism responsible for the pathogenesis in Parkinson disease.

  18. Cigarette smoke-induced DNA adducts in the respiratory and nonrespiratory tissues of rats

    SciTech Connect

    Gairola, C.G.; Gupta, R.C. )

    1991-01-01

    Formation of DNA adducts is regarded as an essential initial step in the process of chemical carcinogenesis. To determine how chronic exposure to cigarette smoke affects the distribution of DNA adducts in selected respiratory and nonrespiratory tissues. The authors exposed male Sprague-Dawley rats daily to fresh mainstream smoke from the Univ. of Kentucky reference cigarettes (2R1) in a nose-only exposure system for 32 weeks. Blood carboxyhemoglobin, total particulate matter (TPM) intake, and pulmonary aryl hydrocarbon hydroxylase values indicated effective exposure of animals to cigarette smoke. DNA was extracted from three respiratory (larynx, trachea, and lung) and three nonrespiratory (liver, heart, and bladder) tissues and analyzed for DNA adducts by the {sup 32}P-postlabeling assay under conditions capable of detecting low levels of diverse aromatic/hydrophobic adducts. Data showed that the total DNA adducts in the lung, heart, and trachea, and larynx were increased by 10- to 20-fold in the smoke-exposed group. These data suggest selective formation of DNA adducts in the tissues.

  19. Biomonitoring Human Albumin Adducts: The Past, the Present, and the Future

    PubMed Central

    2016-01-01

    Serum albumin (Alb) is the most abundant protein in blood plasma. Alb reacts with many carcinogens and/or their electrophilic metabolites. Studies conducted over 20 years ago showed that Alb forms adducts with the human carcinogens aflatoxin B1 and benzene, which were successfully used as biomarkers in molecular epidemiology studies designed to address the role of these chemicals in cancer risk. Alb forms adducts with many therapeutic drugs or their reactive metabolites such as β-lactam antibiotics, acetylsalicylic acid, acetaminophen, nonsteroidal anti-inflammatory drugs, chemotherapeutic agents, and antiretroviral therapy drugs. The identification and characterization of the adduct structures formed with Alb have served to understand the generation of reactive metabolites and to predict idiosyncratic drug reactions and toxicities. The reaction of candidate drugs with Alb is now exploited as part of the battery of screening tools to assess the potential toxicities of drugs. The use of gas chromatography-mass spectrometry, liquid chromatography, or liquid chromatography-mass spectrometry (LC-MS) enabled the identification and quantification of multiple types of Alb xenobiotic adducts in animals and humans during the past three decades. In this perspective, we highlight the history of Alb as a target protein for adduction to environmental and dietary genotoxicants, pesticides, and herbicides, common classes of medicinal drugs, and endogenous electrophiles, and the emerging analytical mass spectrometry technologies to identify Alb-toxicant adducts in humans. PMID:27989119

  20. Single Molecule Study on Incorporation Efficiency of DPO4 and Klenow Fragment to BPDE Adduct

    NASA Astrophysics Data System (ADS)

    Song, Lu; Yeh, Yin; Balhorn, Rod; Cosman, Monique

    2009-03-01

    DNA synthesis involving high fidelity A-family polymerases such as Klenow fragment is blocked by DNA adducts, while Y-family DNA polymerases such as Dpo4 can bypass the DNA adducts to resume DNA synthesis. So understanding the functional relationship between A-family and Y-family DNA polymerases in DNA replication and the mechanism of bypassing DNA adducts is of great help to explain the cause of mutagenesis. We introduce a flow cell on modified surface to study the incorporation efficiency of Dpo4 and Klenow fragments to benzo[a]pyrene-diol-epoxide (BPDE) adduct at single molecule level. Specifically, we anchor the labeled DNA onto the modified surface with adduct site open for nucleotide incorporation and flow the polymerases and labeled nucleotides into flow cell. With Total Internal Reflection Fluorescence Microscopy (TIRFM) we identify the incorporation of the nucleotides onto the anchored DNA template by identifying the co-localization of the template position and that of the labeled nucleotide. We further quantify the signal densities of the images obtained from the two different polymerases, thus examining whether incorporation reactions have been executed and quantifying the incorporation efficiency of the polymerases. We can also identify, on the specific adduct site, which nucleotide, if any, is incorporated by each of the two polymerases.

  1. Reaction of epichlorohydrin with adenosine, 2'-deoxyadenosine and calf thymus DNA: identification of adducts.

    PubMed

    Sund, Pernilla; Kronberg, Leif

    2006-06-01

    Epichlorohydrin (a probable human carcinogen) was allowed to react with adenosine and the adducts were characterized by NMR and UV spectroscopy, and mass spectrometry. The adduct initially formed was 1-(3-chloro-2-hydroxypropyl)-adenosine, which subsequently ring closures to 1,N(6)-(2-hydroxypropyl)-adenosine at neutral and basic conditions. At acid conditions, the N-1 adduct undergoes a slow deamination to yield 1-(3-chloro-2-hydroxypropyl)-inosine. Minor adducts identified were 7-(3-chloro-2-hydroxypropyl)-adenosine and 3-(3-chloro-2-hydroxypropyl)-adenosine which are easily deglycosylated, and an adduct where the epichlorohydrin residue was attached to the sugar moiety of adenosine. A diadduct, 1,N(6)-(2-hydroxypropyl)-N(6)-(3-chloro-2-hydroxypropyl)-adenosine was also identified. The reaction of epichlorohydrin with calf thymus DNA gave 1,N(6)-(2-hydroxypropyl)-deoxyadenosine and 3-(3-chloro-2-hydroxypropyl)-adenine (major adduct).

  2. Effects of metal ion adduction on the gas-phase conformations of protein ions.

    PubMed

    Flick, Tawnya G; Merenbloom, Samuel I; Williams, Evan R

    2013-11-01

    Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion binding is most significant for intermediate charge state ions, and there is a greater reduction in collisional cross section with increasing number of metal ion adducts and increasing ion valency, consistent with an electrostatic interaction between the ions and the protein. Protein cations with the greatest number of adducted metal ions are no more compact than the lowest protonated ions formed from aqueous solutions. These results show that smaller collisional cross sections for metal-attached protein ions are not a good indicator of a specific metal-protein interaction in solution because nonspecific metal ion adduction also results in smaller gaseous protein cation cross sections. In contrast, the collisional cross section of α-lactalbumin, which specifically binds one Ca(2+), is larger for the holo-form compared with the apo-form, in agreement with solution-phase measurements. Because compaction of protein cations occurs when metal ion adduction is nonspecific, elongation of a protein cation may be a more reliable indicator that a specific metal ion-protein interaction occurs in solution.

  3. Formation and Repair of Tobacco Carcinogen-Derived Bulky DNA Adducts

    DOE PAGES

    Hang, Bo

    2010-01-01

    DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N -nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O 6more » -alkylguanine DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects.« less

  4. Implications of acetaldehyde-derived DNA adducts for understanding alcohol-related carcinogenesis.

    PubMed

    Balbo, Silvia; Brooks, Philip J

    2015-01-01

    Among various potential mechanisms that could explain alcohol carcinogenicity, the metabolism of ethanol to acetaldehyde represents an obvious possible mechanism, at least in some tissues. The fundamental principle of genotoxic carcinogenesis is the formation of mutagenic DNA adducts in proliferating cells. If not repaired, these adducts can result in mutations during DNA replication, which are passed on to cells during mitosis. Consistent with a genotoxic mechanism, acetaldehyde does react with DNA to form a variety of different types of DNA adducts. In this chapter we will focus more specifically on N2-ethylidene-deoxyguanosine (N2-ethylidene-dG), the major DNA adduct formed from the reaction of acetaldehyde with DNA and specifically highlight recent data on the measurement of this DNA adduct in the human body after alcohol exposure. Because results are of particular biological relevance for alcohol-related cancer of the upper aerodigestive tract (UADT), we will also discuss the histology and cytology of the UADT, with the goal of placing the adduct data in the relevant cellular context for mechanistic interpretation. Furthermore, we will discuss the sources and concentrations of acetaldehyde and ethanol in different cell types during alcohol consumption in humans. Finally, in the last part of the chapter, we will critically evaluate the concept of carcinogenic levels of acetaldehyde, which has been raised in the literature, and discuss how data from acetaldehyde genotoxicity are and can be utilized in physiologically based models to evaluate exposure risk.

  5. Benzo(a)pyrene-albumin adducts in humans exposed to polycyclic aromatic hydrocarbons in an industrial area of Poland.

    PubMed Central

    Kure, E H; Andreassen, A; Ovrebø, S; Grzybowska, E; Fiala, Z; Strózyk, M; Chorazy, M; Haugen, A

    1997-01-01

    OBJECTIVES: The interaction of benzo(a)pyrene with serum albumin was measured in an attempt to identify the actual exposure and to evaluate albumin adduct measurements as biomarkers for exposure monitoring. METHODS: Benzo(a)pyrene-diol-epoxide (BPDE)-albumin adducts were measured by competitive enzyme linked immunosorbent assay (ELISA) in plasma of coke oven plant workers from three plants and from people living in a highly industrialised area of Silesia in Poland. Due to the high air concentrations of polycyclic aromatic hydrocarbons (PAHs) in this area, a control group was selected from a rural non-industrialised area in Poland. Breathing zone air measurements of PAHs were collected from some of the participants. RESULTS: Coke oven plant workers and non-occupationally exposed people had similar concentrations of albumin adducts whereas the rural controls were significantly lower (2.74 fmol adducts/microgram albumin (SEM 0.124)). The mean concentration of BPDE-albumin adduct in plasma of both the occupational and the environmental groups were significantly higher in the summer samples (4.34 fmol adducts/microgram albumin (SEM 0.335) and 4.55 fmol adducts/microgram albumin (SEM 0.296), respectively) than in the winter samples (3.06 fmol adducts/microgram albumin (SEM 0.187) and 3.04 fmol adducts/microgram albumin (SEM 0.184), respectively) even though the air measurements showed higher concentrations of PAHs in the winter. The statistical analysis did not show any effects of air exposures on concentrations of BPDE-albumin adduct. CONCLUSIONS: A multiple regression analysis of the measured concentrations of BPDE-albumin adducts for all the groups, during both seasons, indicates that occupational exposures do not contribute significantly to the formation of adducts. In general, the concentrations of albumin adducts found vary within relatively small limits for the two seasons and between the various groups of participants. No extreme differences were found. PMID

  6. Persistence of benzo[a]pyrene--DNA adducts in hematopoietic tissues and blood of the mummichog, Fundulus heteroclitus.

    PubMed

    Rose, W L; French, B L; Reichert, W L; Faisal, M

    2001-05-01

    The formation and persistence of benzo[a]pyrene (B[a]P)-DNA adducts were investigated in blood, liver and two hematopoietic tissues (anterior kidney and spleen) of the mummichog (Fundulus heteroclitus). Fish were injected with a single, sublethal dose of B[a]P (12 mg/kg body weight) and sampled from 8 to 96 days post-injection. 32P-Postlabeling analysis and storage phosphor imaging were used to resolve and quantify hydrophobic DNA adducts. One major DNA adduct was present in each of the examined tissues at all sampling times. This adduct had similar chromatographic characteristics to those of the adduct standard, 7R,8S,9S-trihydroxy-10S-(N(2)-deoxyguanosyl-3'-phosphate)-7,8,9,10-tetrahydro-benzo[a]pyrene (B[a]PDE-dG). Minor DNA adduct spots, representing less than 2% of the total DNA adducts, were observed in some liver, anterior kidney and spleen samples for up to 32 days post-injection. The B[a]P-DNA adducts reached maximal levels at 32 days post-injection and persisted for at least 96 days in all examined tissues. B[a]P-DNA adduct levels were significantly higher in the liver and anterior kidney than in the spleen from 16 to 96 days (P<0.001), although liver and anterior kidney DNA adduct levels were not significantly different at any time. This is the first controlled study to demonstrate the formation and persistence of B[a]P-DNA adducts in hematopoietic tissues and blood of fishes exposed to the prototypical polycyclic aromatic hydrocarbon, B[a]P. Although persistent DNA adducts are generally recognized as potential initiators of carcinogenic processes, adducts in these vital tissues may also lead to disruption of physiological functions such defense mechanisms and hematopoiesis.

  7. Site-specific excision repair of 1-nitrosopyrene-induced DNA adducts at the nucleotide level in the HPRT gene of human fibroblasts: effect of adduct conformation on the pattern of site-specific repair.

    PubMed Central

    Wei, D; Maher, V M; McCormick, J J

    1996-01-01

    Studies showing that different types of DNA adducts are repaired in human cells at different rates suggest that DNA adduct conformation is the major determinant of the rate of nucleotide excision repair. However, recent studies of repair of cyclobutane pyrimidine dimers or benzo[a]pyrene diol epoxide (BPDE)-induced adducts at the nucleotide level in DNA of normal human fibroblasts indicate that the rate of repair of the same adduct at different nucleotide positions can vary up to 10-fold, suggesting an important role for local DNA conformation. To see if site-specific DNA repair is a common phenomenon for bulky DNA adducts, we determined the rate of repair of 1-nitrosopyrene (1-NOP)-induced adducts in exon 3 of the hypoxanthine phosphoribosyltransferase gene at the nucleotide level using ligation-mediated PCR. To distinguish between the contributions of adduct conformation and local DNA conformation to the rate of repair, we compared the results obtained with 1-NOP with those we obtained previously using BPDE. The principal DNA adduct formed by either agent involves guanine. We found that rates of repair of 1-NOP-induced adducts also varied significantly at the nucleotide level, but the pattern of site-specific repair differed from that of BPDE-induced adducts at the same guanine positions in the same region of DNA. The average rate of excision repair of 1-NOP adducts in exon 3 was two to three times faster than that of BPDE adducts, but at particular nucleotides the rate was slower or faster than that of BPDE adducts or, in some cases, equal to that of BPDE adducts. These results indicate that the contribution of the local DNA conformation to the rate of repair at a particular nucleotide position depends upon the specific DNA adduct involved. However, the data also indicate that the conformation of the DNA adduct is not the only factor contributing to the rate of repair at different nucleotide positions. Instead, the rate of repair at a particular nucleotide

  8. 4-hydroxynonenal protein adducts: Key mediator in Rett syndrome oxinflammation.

    PubMed

    Valacchi, Giuseppe; Pecorelli, Alessandra; Cervellati, Carlo; Hayek, Joussef

    2017-01-05

    In the last 15 years a strong correlation between oxidative stress (OxS) and Rett syndrome (RTT), a rare neurodevelopmental disorder known to be caused in 95% of the cases, by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, has been well documented. Here, we revised, summarized and discussed the current knowledge on the role of lipid peroxidation byproducts, with special emphasis on 4-hydroxynonenal (4HNE), in RTT pathophysiology. The posttranslational modifications of proteins via 4HNE, known as 4HNE protein adducts (4NHE-PAs), causing detrimental effects on protein functions, appear to contribute to the clinical severity of the syndrome, since their levels increase significantly during the subsequent 4 clinical stages, reaching the maximum degree at stage 4, represented by a late motor deterioration. In addition, 4HNE-PA are only partially removed due to the compromised functionality of the proteasome activity, contributing therefore to the cellular damage in RTT. All this will lead to a characteristic subclinical inflammation, defined "OxInflammation", derived by a positive feedback loop between OxS byproducts and inflammatory mediators that in a long run further aggravates the clinical features of RTT patients. Therefore, in a pathology completely orphan of any therapy, aiming 4HNE as a therapeutic target could represent a coadjuvant treatment with some beneficial impact in these patients.‬‬‬.

  9. Haemoglobin adducts of aromatic amines: diamines and polyaromatic amines.

    PubMed

    Sabbioni, G; Beyerbach, A

    2000-07-21

    Aromatic amines and nitroarenes are important antioxidants and intermediates in the synthesis of dyes, pesticides and plastics. In the present paper we introduce methods for the synthesis of deuterated standards: 3-[2H8]aminofluoranthene, 3,3'-dimethyl-[2H4]benzidine, [2H4]benzidine, N'-acetyl-[2H4]benzidine, 2,4-[2H6]toluenediamine, 2,6-[2H6]toluenediamine. These standards have been used for the quantification of haemoglobin adducts of diamines and polyaromatic amines. Haemoglobin was hydrolysed in 0.1 M sodium hydroxide and the hydrolysate extracted with dichloromethane. The extracts were derivatised with heptafluorobutyric anhydride and analysed by GC-MS with negative chemical ionisation. In one run up to 15 aromatic amines can be determined: 6-aminochrysene, 3-aminofluoranthene, 2-aminofluorene, 1-aminopyrene, benzidine, 3,3'-dichlorobenzidine, 3,3'-dimethoxybenzidine, 3,3'-dimethylbenzidine, 3,3'-methylenedianiline, 4,4'-methylenedianiline, N'-acetyl-benzidine, N'-acetyl-4,4'-methylenedianiline, 4,4'-methylene bis(2-chloroaniline), 2,4-toluenediamine and 2,6-toluenediamine.

  10. Cellulose based hybrid hydroxylated adducts for polyurethane foams

    NASA Astrophysics Data System (ADS)

    De Pisapia, Laura; Verdolotti, Letizia; Di Mauro, Eduardo; Di Maio, Ernesto; Lavorgna, Marino; Iannace, Salvatore

    2012-07-01

    Hybrid flexible polyurethane foams (HPU) were synthesized by using a hybrid hydroxilated adduct (HHA) based on renewable resources. In particular the HHA was obtained by dispersing cellulose wastes in colloidal silica at room temperature, pressure and humidity. The colloidal silica was selected for its ability of modifying the cellulose structure, by inducing a certain "destructurization" of the crystalline phase, in order to allow cellulose to react with di-isocyanate for the final synthesis of the polyurethane foam. In fact, cellulose-polysilicate complexes are engaged in the reaction with the isocyanate groups. This study provides evidence of the effects of the colloidal silica on the cellulose structure, namely, a reduction of the microfiber cellulose diameter and the formation of hydrogen bonds between the polysilicate functional groups and the hydroxyl groups of the cellulose, as assessed by IR spectroscopy and solid state NMR. The HHA was added to a conventional polyol in different percentages (between 5 and 20%) to synthesize HPU in presence of catalysts, silicone surfactant and diphenylmethane diisocyanate (MDI). The mixture was expanded in a mold and cured for two hours at room temperature. Thermal analysis, optical microscopy and mechanical tests were performed on the foams. The results highlighted an improvement of thermal stability and a decrease of the cell size with respect neat polyurethane foam. Mechanical tests showed an improvement of the elastic modulus and of the damping properties with increasing HHA amount.

  11. Transcriptional analysis of degenerate strain Clostridium beijerinckii DG-8052 reveals a pleiotropic response to CaCO3-associated recovery of solvent production

    PubMed Central

    Jiao, Shengyin; Zhang, Yan; Wan, Caixia; Lv, Jia; Du, Renjia; Zhang, Ruijuan; Han, Bei

    2016-01-01

    Degenerate Clostridium beijerinckii strain (DG-8052) can be partially recovered by supplementing CaCO3 to fermentation media. Genome resequencing of DG-8052 showed no general regulator mutated. This study focused on transcriptional analysis of DG-8052 and its response to CaCO3 treatment via microarray. The expressions of 5168 genes capturing 98.6% of C. beijerinckii NCIMB 8052 genome were examed. The results revealed that with addition of CaCO3 565 and 916 genes were significantly up-regulated, and 704 and 1044 genes significantly down-regulated at acidogenic and solventogenic phase of DG-8052, respectively. These genes are primarily responsible for glycolysis to solvent/acid production (poR, pfo), solventogensis (buk, ctf, aldh, adh, bcd) and sporulation (spo0A, sigE, sigma-70, bofA), cell motility and division (ftsA, ftsK, ftsY, ftsH, ftsE, mreB, mreC, mreD, rodA), and molecular chaperones (grpE, dnaK, dnaJ, hsp20, hsp90), etc. The functions of some altered genes in DG-8052, totalling 5.7% at acidogenisis and 8.0% at sovlentogenisis, remain unknown. The response of the degenerate strain to CaCO3 was suggested significantly pleiotropic. This study reveals the multitude of regulatory function that CaCO3 has in clostridia and provides detailed insights into degeneration mechanisms at gene regulation level. It also enables us to develop effective strategies to prevent strain degeneration in future. PMID:27966599

  12. Physical properties of the jet from DG Tauri on sub-arcsecond scales with HST/STIS

    NASA Astrophysics Data System (ADS)

    Maurri, L.; Bacciotti, F.; Podio, L.; Eislöffel, J.; Ray, T. P.; Mundt, R.; Locatelli, U.; Coffey, D.

    2014-05-01

    Context. Stellar jets are believed to play a key role in star formation, but the question of how they originate is still being debated. Aims: We derive the physical properties at the base of the jet from DG Tau both along and across the flow and as a function of velocity. Methods: We analysed seven optical spectra of the DG Tau jet, taken with the Hubble Space Telescope Imaging Spectrograph. The spectra were obtained by placing a long-slit parallel to the jet axis and stepping it across the jet width. The resulting position-velocity diagrams in optical forbidden emission lines allowed access to plasma conditions via calculation of emission line ratios. In this way, we produced a 3D map (2D in space and 1D in velocity) of the jet's physical parameters i.e. electron density ne, hydrogen ionisation fraction xe, and total hydrogen density nH. The method used is a new version of the BE-technique. Results: A fundamental improvement is that the new diagnostic method allows us to overcome the upper density limit of the standard [S ii] diagnostics. As a result, we find at the base of the jet high electron density, ne ~ 105, and very low ionisation, xe ~ 0.02-0.05, which combine to give a total density up to nH ~ 3 × 106. This analysis confirms previous reports of variations in plasma parameters along the jet, (i.e. decrease in density by several orders of magnitude, increase of xe from 0.05 to a plateau at 0.7 downstream at 2'' from the star). Furthermore, a spatial coincidence is revealed between sharp gradients in the total density and supersonic velocity jumps. This strongly suggests that the emission is caused by shock excitation. No evidence was found of variations in the parameters across the jet, within a given velocity interval. The position-velocity diagrams indicate the presence of both fast accelerating gas and slower, less collimated material. We derive the mass outflow rate, Ṁj, in the blue-shifted lobe in different velocity channels, that contribute to a

  13. Mutagenicity and DNA adduct formation by the urban air pollutant 2-nitrobenzanthrone.

    PubMed

    Arlt, Volker M; Glatt, Hansruedi; Gamboa da Costa, Gonçalo; Reynisson, Jóhannes; Takamura-Enya, Takeji; Phillips, David H

    2007-08-01

    2-Nitrobenzanthrone (2-NBA) has recently been detected in ambient air particulate matter. Its isomer 3-nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. The highest mutagenic activity of 2-NBA tested in Salmonella typhimurium was exhibited in strain TA1538-hSULT1A1 expressing human sulfotransferase (SULT) 1A1. 2-NBA also induced mutations in Chinese hamster lung V79 cells expressing human N-acetyltransferase 2 or SULT1A1, but no mutagenicity was observed in the parental cell line. DNA adduct formation in vitro was examined in different human cell lines by thin-layer chromatography (32)P-postlabeling. Whereas 3-NBA formed characteristic DNA adducts in lung A549, liver HepG2, colon HCT116, and breast MCF-7 cells, 2-NBA-derived DNA adducts were only observed in A549 and HepG2 cells, indicating differences in the bioactivation of each isomer. The pattern of 2-NBA-derived DNA adducts in both cell lines consisted of a cluster of up to five adducts. In HepG2 cells DNA binding by 2-NBA was up to 14-fold lower than by 3-NBA. DNA adduct formation of 2-NBA was also investigated in vivo in Wistar rats treated with a single dose of 2, 10, or 100 mg/kg body weight (bw). No DNA adduct formation was detected at doses of up to 10 mg/kg bw 2-NBA, even though 3-NBA induced DNA adducts at a dose of 2 mg/kg bw. Only after administration of one high dose of 100 mg/kg bw 2-NBA was a low level of DNA adduct formation detected, and then only in lung tissue. Density functional theory calculations for both NBAs revealed that the nitrenium ion of the 3-isomer is considerably more stable ( approximately 10 kcal/mol) than that of the 2-isomer, providing a possible explanation for the large differences in DNA adduct formation and mutagenicity between 2- and 3-NBA.

  14. New isocyanate-specific albumin adducts of 4,4'-methylenediphenyl diisocyanate (MDI) in rats.

    PubMed

    Kumar, Anoop; Dongari, Nagaraju; Sabbioni, Gabriele

    2009-12-01

    4,4'-Methylenediphenyl diisocyanate (MDI) is the most important of the isocyanates used as intermediates in the chemical industry. Among the main types of damage after exposure to low levels of MDI are lung sensitization and asthma. Albumin adducts of MDI might be involved in the etiology of sensitization reactions. It is, therefore, necessary to have sensitive and specific methods for monitoring the isocyanate exposure of workers. To date, urinary metabolites or protein adducts have been used as biomarkers in workers exposed to MDI. However, with these methods it is not possible to determine whether the biomarkers result from exposure to MDI or to the parent aromatic amine 4,4'-methylenedianiline (MDA). This work presents a procedure for the determination of isocyanate-specific albumin adducts. In a long-term experiment, designed to determine the carcinogenic and toxic effects of MDI, rats were exposed chronically for 3 months, to 0.0 (control), 0.26, 0.70, and 2.06 mg MDI/m(3) as aerosols. Albumin was isolated from plasma, digested with Pronase E, and analyzed by LC-MS/MS. MDI formed adducts with lysine: N(6)-[({4-[4-aminobenzyl]phenyl}amino)carbonyl]lysine (MDI-Lys) and N(6)-[({4-[4-(acetylamino)benzyl]phenyl}amino)carbonyl] lysine (AcMDI-Lys). For the quantitation of the adducts in vivo, isotope dilution mass spectrometry was used to measure the adducts in 2 mg of albumin. The adducts found in vivo (MDI-Lys and AcMDI-Lys) and the corresponding isotope labeled compounds (MDI-[(13)C(6)(15)N(2)]Lys and Ac[(2)H(4)]MDI-Lys) were synthesized and used for quantitation. The MDI-Lys levels increased from 0-24.8 pmol/mg albumin, and the AcMDI-Lys levels increased from 0-1.85 pmol/mg albumin. The mean ratio of MDI-Lys/AcMDI-Lys for each dose level was greater than >20. The albumin adducts correlate with other biomarkers measured in the same rats in the past: urinary metabolites and hemoglobin adducts released after mild base hydrolysis. This method will enable one to

  15. Studies on DNA adduction with heterocyclic amines by accelerator mass spectrometry: a new technique for tracing isotope-labelled DNA adduction.

    PubMed

    Turteltaub, K W; Vogel, J S; Frantz, C E; Fultz, E

    1993-01-01

    DNA adduction in rodents at doses equivalent to human dietary exposure (10(4)-10(6)-fold lower than laboratory studies) is being studied using accelerator mass spectrometry (AMS). AMS is a nuclear physics technique for detection of cosmogenic isotopes and has been used for specifically selecting and counting 14C. Using AMS, DNA adducts are detectable at levels of 1-10 adducts/10(12) nucleotides following acute and chronic dosing regimes with 14C-labelled carcinogens. The adduct detection limit has been imposed by the natural abundance of 14C in the samples and animal-to-animal variation. AMS is also being coupled to HPLC, multidimensional TLC and radio-immunoassay. In addition, AMS's great sensitivity makes it useful for demonstrating that drugs and chemicals do not bind to DNA. The use of AMS, however, is limited to situations where radiolabelled agents can be used. The data suggest that AMS is extremely useful in obtaining quantitative data on the effects of carcinogens on DNA at the low doses common for actual human exposures and may be useful in human studies.

  16. Drain Current Model for Double Gate (DG) p-n-i-n TFET: Accumulation to Inversion Region of Operation

    NASA Astrophysics Data System (ADS)

    Upasana; Narang, Rakhi; Saxena, Manoj; Gupta, Mridula

    2017-04-01

    In this paper, drain current model has been formulated for Double Gate (DG) p-n-i-n Tunnel FET (TFET) using Lambert-W function. The model includes the impact of mobile charges, gate dielectric thickness (tox) and channel thickness (tsi) on quasi fermi level, gate threshold voltage (VTG), onset voltage (VGonset) and Tunneling Barrier Width (TBW) over the entire operating range i.e. accumulation to inversion state. Important electrostatic and electrical parameters such as the effective potential (φeffective) at the center of the channel, 2-D channel potential, electric field, energy band profile and Tunneling Barrier Width (TBW) dependent drain current have been modeled. Moreover, gate and drain bias controllability in different operating regimes has also been investigated by varying oxide thickness (tox), channel thickness (tsi), intrinsic channel length (Lint) and at different temperatures. Important FOMs required for analog circuit performance such as transconductance (gm), drain conductance (gd), output resistance (Rout), early voltage (VEA) have also been evaluated and verified using ATLAS device simulation software.

  17. Simulating Large-Scale Earthquake Dynamic Rupture Scenarios On Natural Fault Zones Using the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; Pelties, Christian

    2014-05-01

    In this presentation we will demonstrate the benefits of using modern numerical methods to support physic-based ground motion modeling and research. For this purpose, we utilize SeisSol an arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) scheme to solve the spontaneous rupture problem with high-order accuracy in space and time using three-dimensional unstructured tetrahedral meshes. We recently verified the method in various advanced test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite, including branching and dipping fault systems, heterogeneous background stresses, bi-material faults and rate-and-state friction constitutive formulations. Now, we study the dynamic rupture process using 3D meshes of fault systems constructed from geological and geophysical constraints, such as high-resolution topography, 3D velocity models and fault geometries. Our starting point is a large scale earthquake dynamic rupture scenario based on the 1994 Northridge blind thrust event in Southern California. Starting from this well documented and extensively studied event, we intend to understand the ground-motion, including the relevant high frequency content, generated from complex fault systems and its variation arising from various physical constraints. For example, our results imply that the Northridge fault geometry favors a pulse-like rupture behavior.

  18. Carcinogen adducts as an indicator for the public health risks of consuming carcinogen-exposed fish and shellfish.

    PubMed Central

    Dunn, B P

    1991-01-01

    A large variety of environmental carcinogens are metabolically activated to electrophilic metabolites that can bind to nucleic acids and protein, forming covalent adducts. The formation of DNA-carcinogen adducts is thought to be a necessary step in the action of most carcinogens. Recently, a variety of new fluorescence, immunochemical, and radioactive-postlabeling procedures have been developed that allow the sensitive measurement of DNA-carcinogen adducts in organisms exposed to environmental carcinogens. In some cases, similar procedures have been developed for protein-carcinogen adducts. In an organism with active metabolic systems for a given carcinogen, adducts are generally much longer lived than the carcinogens that formed them. Thus, the detection of DNA- or protein-carcinogen adducts in aquatic foodstuffs can act as an indicator of prior carcinogen exposure. The presence of DNA adducts would, in addition, suggest a mutagenic/carcinogenic risk to the aquatic organism itself. Vertebrate fish are characterized by high levels of carcinogen metabolism, low body burdens of carcinogen, the formation of carcinogen-macromolecule adducts, and the occurrence of pollution-related tumors. Shellfish, on the other hand, have low levels of carcinogen metabolism, high body burdens of carcinogen, and have little or no evidence of carcinogen-macromolecule adducts or tumors. The consumption of carcinogen adducts in aquatic foodstuffs is unlikely to represent a human health hazard. There are no metabolic pathways by which protein-carcinogen or DNA-carcinogen adducts could reform carcinogens. Incorporation via salvage pathways of preformed nucleoside-carcinogen adducts from foodstuffs into newly synthesized human DNA is theoretically possible.(ABSTRACT TRUNCATED AT 250 WORDS) Images FIGURE 1. FIGURE 1. FIGURE 2. PMID:2050048

  19. Molecular mechanics and antibody binding in the structural analysis of polycyclic aromatic hydrocarbon-diol-epoxide--DNA adducts.

    PubMed

    Weston, A; Newman, M J; Mann, D L; Brooks, B R

    1990-05-01

    Analysis of polycyclic aromatic hydrocarbon (PAH)-DNA adducts using monoclonal antibodies raised against DNA that had been modified with (+-)-r-7-,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene in an enzyme-linked immunosorbent assay, as well as analysis using human serum antibodies and antibodies raised in laboratory animals, have suggested the presence on these adducts of both common and unique immunological epitopes. The molecular mechanics studies reported here establish a model for the analysis of PAH-DNA adducts through the identification of energetically favored binding conformations and they further reveal structural alterations in DNA due to the presence of carcinogen adducts. The data explain the antibody reactivity patterns by defining different molecular presenting surfaces that are available for antibody binding. The preferred orientation of the aromatic portions of the adducts, which align either 3' or 5' in the minor groove, were found to be correlated with antibody reactivity patterns. Examination of the topographical characteristics of the adducts facilitated correlation of adduct-antibody recognition and adduct presenting surface. Significant differences were found between benzo[a]pyrene-diol-epoxide (BPDE)-DNA adducts, which align 5' in the minor groove, and benz[a]anthracene-diol-epoxide (BADE)-DNA and dibenz[a,c]anthracene-diol-epoxide-DNA adducts, which align 3' within the minor groove. Chrysene-diol-epoxide-DNA adducts were found to have only a weak preference for 5' alignment and therefore share topographical characteristics with both BPDE-DNA and BADE-DNA adducts.

  20. Carcinogen adducts as an indicator for the public health risks of consuming carcinogen-exposed fish and shellfish

    SciTech Connect

    Dunn, B.P. )

    1991-01-01

    A large variety of environmental carcinogens are metabolically activated to electrophilic metabolites that can bind to nucleic acids and protein, forming covalent adducts. The formation of DNA-carcinogen adducts is thought to be a necessary step in the action of most carcinogens. Recently, a variety of new fluorescence, immunochemical, and radioactive-postlabeling procedures have been developed that allow the sensitive measurement of DNA-carcinogen adducts in organisms exposed to environmental carcinogens. In some cases, similar procedures have been developed for protein-carcinogen adducts. In an organism with active metabolic systems for a given carcinogen, adducts are generally much longer lived than the carcinogens that formed them. Thus, the detection of DNA- or protein-carcinogen adducts in aquatic foodstuffs can act as an indicator of prior carcinogen exposure. The presence of DNA adducts would, in addition, suggest a mutagenic/carcinogenic risk to the aquatic organism itself. Vertebrate fish are characterized by high levels of carcinogen metabolism, low body burdens of carcinogen, the formation of carcinogen-macromolecule adducts, and the occurrence of pollution-related tumors. Shellfish, on the other hand, have low levels of carcinogen metabolism, high body burdens of carcinogen, and have little or no evidence of carcinogen-macromolecule adducts or tumors. The consumption of carcinogen adducts in aquatic foodstuffs is unlikely to represent a human health hazard. There are no metabolic pathways by which protein-carcinogen or DNA-carcinogen adducts could reform carcinogens. Incorporation via salvage pathways of preformed nucleoside-carcinogen adducts from foodstuffs into newly synthesized human DNA is theoretically possible.

  1. Synthesis of an oligodeoxyribonucleotide adduct of mitomycin C by the postoligomerization method via a triamino mitosene.

    PubMed

    Champeil, Elise; Paz, Manuel M; Ladwa, Sweta; Clement, Cristina C; Zatorski, Andrzej; Tomasz, Maria

    2008-07-23

    The cancer chemotherapeutic agent mitomycin C (MC) alkylates and cross-links DNA monofunctionally and bifunctionally in vivo and in vitro, forming six major MC-deoxyguanosine adducts of known structures. The synthesis of one of the monoadducts (8) by the postoligomerization method was accomplished both on the nucleoside and oligonucleotide levels, the latter resulting in the site-specific placement of 8 in a 12-mer oligodeoxyribonucleotide 26. This is the first application of this method to the synthesis of a DNA adduct of a complex natural product. Preparation of the requisite selectively protected triaminomitosenes 14 and 24 commenced with removal of the 10-carbamoyl group from MC, followed by reductive conversion to 10-decarbamoyl-2,7-diaminomitosene 10. This substance was transformed to 14 or 24 in several steps. Both were successfully coupled to the 2-fluoro-O(6)-(2-trimethylsilylethyl)deoxyinosine residue of the 12-mer oligonucleotide. The N(2)-phenylacetyl protecting group of 14 after its coupling to the 12-mer oligonucleotide could not be removed by penicillinamidase as expected. Nevertheless, the Teoc protecting group of 24 after coupling to the 12-mer oligonucleotide was removed by treatment with ZnBr2 to give the adducted oligonucleotide 26. However, phenylacetyl group removal was successful on the nucleoside-level synthesis of adduct 8. Proof of the structure of the synthetic nucleoside adduct included HPLC coelution and identical spectral properties with a natural sample, and (1)H NMR. Structure proof of the adducted oligonucleotide 26 was provided by enzymatic digestion to nucleosides and authentic adduct 8, as well as MS and MS/MS analysis.

  2. Evaluation of serum estrogen-DNA adducts as potential biomarkers for breast cancer risk.

    PubMed

    Pruthi, Sandhya; Yang, Li; Sandhu, Nicole P; Ingle, James N; Beseler, Cheryl L; Suman, Vera J; Cavalieri, Ercole L; Rogan, Eleanor G

    2012-10-01

    This study was conducted to determine whether the ratio of estrogen-DNA adducts to their respective metabolites and conjugates in serum differed between women with early-onset breast cancer and those with average or high risk of developing breast cancer. Serum samples from women at average risk (n=63) or high risk (n=80) for breast cancer (using Gail model) and women newly diagnosed with early breast cancer (n=79) were analyzed using UPLC-MS/MS. Adduct ratios were statistically compared among the three groups, and the Area Under the Receiver Operating Characteristic Curve (AUC) was used to identify a diagnostic cut-off point. The median adduct ratio in the average-risk group was significantly lower than that of both the high-risk group and the breast cancer group (p values<0.0001), and provided good discrimination between those at average versus high risk of breast cancer (AUC=0.84, 95% CI 0.77-0.90). Sensitivity and specificity were maximized at an adduct ratio of 77. For women in the same age and BMI group, the odds of being at high risk for breast cancer was 8.03 (95% CI 3.46-18.7) times higher for those with a ratio of at least 77 compared to those with a ratio less than 77. The likelihood of being at high risk for breast cancer was significantly increased for those with a high adduct ratio relative to those with a low adduct ratio. These findings suggest that estrogen-DNA adducts deserve further study as potential biomarkers for risk of developing breast cancer.

  3. Protective effects of selenium against DNA adducts formation in Inuit environmentally exposed to PCBs

    PubMed Central

    Ravoori, Srivani; Srinivasan, Cidambi; Pereg, Daria; Robertson, Larry W; Ayotte, Pierre; Gupta, Ramesh C

    2012-01-01

    Dietary habits that expose populations to potential toxicants as well as protective agents simultaneously is a realistic scenario where a meaningful assessment of the interactions and net benefit or damage can be made. A group of Inuit from Salluit, Northern Canada are exposed to high levels of PCBs and selenium, both present in the Inuit traditional foods such as blubber from sea mammals and fatty fish. Blood samples were collected from 83 Inuit, 22–70 years old. Blood selenium and PCB levels were determined previously and ranged from 227 to 2,069 µg/L and 1.7 to 143 µg/L, respectively. DNA isolated from white blood cells were analyzed by modified 32P-postlabeling adductomics technology that detects a multitude of highly polar to lipophilic adducts. The levels of 8-oxodG adducts ranged from 470 to 7,400 adducts/109 nucleotides. Other as yet unidentified polar adducts showed a 30 to 800–fold inter-individual variability. Adduct levels were negatively associated with PCB and selenium levels. The subjects were classified into high and low ratio groups, with respect to selenium/PCB. In the high ratio group, the coefficient of selenium is significantly negatively correlated with 8-oxodG (r = −0.38, p = 0.014) and total adducts (r = −0.41, p = 0.009) while there was no correlation within the low selenium/PCB group. This study suggests increasing selenium has mitigating effect in reducing DNA adducts and therefore, possible negative effects of PCB were not rendered. A protective effect of selenium is highlighted. PMID:19735942

  4. DNA adducts of antitumor trans-[PtCl2 (E-imino ether)2].

    PubMed Central

    Brabec, V; Vrána, O; Nováková, O; Kleinwächter, V; Intini, F P; Coluccia, M; Natile, G

    1996-01-01

    It has been shown recently that some analogues of clinically ineffective trans-diamminedichloroplatinum (II) (transplatin) exhibit antitumor activity. This finding has inverted the empirical structure-antitumor activity relationships delineated for platinum(II) complexes, according to which only the cis geometry of leaving ligands in the bifunctional platinum complexes is therapeutically active. As a result, interactions of trans platinum compounds with DNA, which is the main pharmacological target of platinum anticancer drugs, are of great interest. The present paper describes the DNA binding of antitumor trans-[PtCl(2)(E-imino ether)(2)] complex (trans-EE) in a cell-free medium, which has been investigated using three experimental approaches. They involve thiourea as a probe of monofunctional DNA adducts of platinum (II) complexes with two leaving ligands in the trans configuration, ethidium bromide as a probe for distinguishing between monofunctional and bifunctional DNA adducts of platinum complexes and HPLC analysis of the platinated DNA enzymatically digested to nucleosides. The results show that bifunctional trans-EE preferentially forms monofunctional adducts at guanine residues in double-helical DNA even when DNA is incubated with the platinum complex for a relatively long time (48 h at 37 degrees C in 10 mM NaCIO(4). It implies that antitumor trans-EE modifies DNA in a different way than clinically ineffective transplatin, which forms prevalent amount of bifunctional DNA adducts after 48 h. This result has been interpreted to mean that the major adduct of trans-EE, occurring in DNA even after long reaction times, is a monofunctional adduct in which the reactivity of the second leaving group is markedly reduced. It has been suggested that the different properties of the adducts formed on DNA by transplatin and trans-EE are relevant to their distinct clinical efficacy. PMID:8628659

  5. Involvement of lipid peroxidation-derived aldehyde-protein adducts in autoimmunity mediated by trichloroethene.

    PubMed

    Wang, Gangduo; Ansari, G A S; Khan, M Firoze

    2007-12-01

    Lipid peroxidation, a major contributor to cellular damage, is also implicated in the pathogenesis of autoimmune diseases (AD). The focus of this study was to elucidate the role of lipid peroxidation-derived aldehydes in autoimmunity induced and/or exacerbated by chemical exposure. Previous studies showed that trichloroethene (TCE) is capable of inducing/accelerating autoimmunity. To test whether TCE-induced lipid peroxidation might be involved in the induction/exacerbation of autoimmune responses, groups of autoimmune-prone female MRL +/+ mice were treated with TCE (10 mmol/kg, i.p., every 4th day) for 6 or 12 wk. Significant increases of the formation of malondialdehyde (MDA)- and 4-hydroxynonenal (HNE)-protein adducts were found in the livers of TCE-treated mice at both 6 and 12 wk, but the response was greater at 12 wk. Further characterization of these adducts in liver microsomes showed increased formation of MDA-protein adducts with molecular masses of 86, 65, 56, 44, and 32 kD, and of HNE-protein adducts with molecular masses of 87, 79, 46, and 17 kD in TCE-treated mice. In addition, significant induction of anti-MDA- and anti-HNE-protein adduct-specific antibodies was observed in the sera of TCE-treated mice, and showed a pattern similar to MDA- or HNE-protein adducts. The increases in anti-MDA- and anti-HNE-protein adduct antibodies were associated with significant elevation in serum anti-nuclear-, anti-ssDNA- and anti-dsDNA-antibodies at 6 wk and, to a greater extent, at 12 wk. These studies suggest that TCE-induced lipid peroxidation is associated with induction/exacerbation of autoimmune response in MRL+/+ mice, and thus may play an important role in disease pathogenesis. Further interventional studies are needed to establish a causal relationship between lipid peroxidation and TCE-induced autoimmune response.

  6. The analysis of DNA adducts: The transition from 32P-postlabeling to mass spectrometry

    PubMed Central

    Klaene, Joshua J.; Sharma, Vaneet K.; Glick, James; Vouros, Paul

    2012-01-01

    The technique of 32P-postlabeling, which was introduced in 1982 for the analysis of DNA adducts, has long been the method of choice for in vivo studies because of its high sensitivity as it requires only <10 μg DNA to achieve the detection of 1 adduct in 1010 normal bases. 32P-postlabeling has therefore been utilized in numerous human and animal studies of DNA adduct formation. Like all techniques 32P-postlabeling does have several disadvantages including the use of radioactive phosphorus, lack of internal standards, and perhaps most significantly does not provide any structural information for positive identification of unknown adducts, a shortcoming that could significantly hamper progress in the field. Structural methods have since been developed to allow for positive identification of DNA adducts, but to this day, the same level of sensitivity and low sample requirements provided by 32P-postlabeling have not been matched. In this mini review we will discuss the 32P-postlabeling method and chronicle the transition to mass spectrometry via the hyphenation of gas chromatography, capillary electrophoresis, and ultimately liquid chromatography which, some 30 years later, is only just starting to approach the sensitivity and low sample requirements of 32P-postlabeling. This paper focuses on the detection of bulky carcinogen-DNA adducts, with no mention of oxidative damage or small alkylating agents. This is because the 32P-postlabeling assay is most compatible with bulky DNA adducts. This will also allow a more comprehensive focus on a subject that has been our particular interest since 1990. PMID:22960573

  7. Formation of acrolein-derived 2'-deoxyadenosine adduct in an iron-induced carcinogenesis model.

    PubMed

    Kawai, Yoshichika; Furuhata, Atsunori; Toyokuni, Shinya; Aratani, Yasuaki; Uchida, Koji

    2003-12-12

    Acrolein is a representative carcinogenic aldehyde found ubiquitously in the environment and formed endogenously through oxidation reactions, such as lipid peroxidation and myeloperoxidase-catalyzed amino acid oxidation. It shows facile reactivity toward DNA to form an exocyclic DNA adduct. To verify the formation of acrolein-derived DNA adduct under oxidative stress in vivo, we raised a novel monoclonal antibody (mAb21) against the acrolein-modified DNA and found that the antibody most significantly recognized an acrolein-modified 2' -deoxyadenosine. On the basis of chemical and spectroscopic evidence, the major antigenic product of mAb21 was the 1,N6-propano-2' -deoxyadenosine adduct. The exposure of rat liver epithelial RL34 cells to acrolein resulted in a significant accumulation of the acrolein-2' -deoxyadenosine adduct in the nuclei. Formation of this adduct under oxidative stress in vivo was immunohistochemically examined in rats exposed to ferric nitrilotriacetate, a carcinogenic iron chelate that specifically induces oxidative stress in the kidneys of rodents. It was observed that the acrolein-2' -deoxyadenosine adduct was formed in the nuclei of the proximal tubular cells, the target cells of this carcinogenesis model. The same cells were stained with a monoclonal antibody 5F6 that recognizes an acrolein-lysine adduct, by which cytosolic accumulation of acrolein-modified proteins appeared. Similar results were also obtained from myeloperoxidase knockout mice exposed to the iron complex, suggesting that the myeloperoxidase-catalyzed oxidation system might not be essential for the generation of acrolein in this experimental animal carcinogenesis model. The data obtained in this study suggest that the formation of a carcinogenic aldehyde through lipid peroxidation may be causally involved in the pathophysiological effects associated with oxidative stress.

  8. Noncovalent adducts of poly(ethylene glycols) with proteins.

    PubMed

    Topchieva, I N; Sorokina, E M; Efremova, N V; Ksenofontov, A L; Kurganov, B I

    2000-01-01

    A new method of preparation of noncovalent complexes between poly(ethylene glycol) (PEG) and proteins (alpha-chymotrypsin (ChT), lysozyme, bovine serum albumine) under high pressure has been developed. The involvement of polymer in the complexes was proved using (3)H-labeled PEG. The composition of the complexes (the number of polymer chains per one ChT molecule) depends on the molecular mass of PEG and decreases with the increase in molecular mass from 300 to 4000, whereas the portion of the protein (wt %) in complexes does not depend on the molecular mass of incorporated PEG and corresponds to approximately 70 wt %. The kinetic constants for enzymatic hydrolysis of N-benzoyl-L-tyrosine ethyl ester and azocasein catalyzed by the PEG-ChT complexes are identical with the corresponding values for the native ChT. According to the data obtained by the method of circular dichroism, the enzyme in the complexes fully retains its secondary structure. The steric availability of PEG polymer chains in the complexes was evaluated by their complexation with alpha-cyclodextrin (CyD) or polymer derivatives of beta-CyD modified with PEG (PEG-beta-CyD). In contrast to free PEG, only part of PEG polymer chains ( approximately 10%) interact with alpha-CyD. Thus, the complexation of PEG with ChT proceeds by means of multipoint interaction with surface groups of the protein globule located far from the active site and results in the sufficient decrease in the availability of polymer chains. The complexes between PEG chains in PEG-protein adducts and PEG-beta-CyD may be considered as a novel type of dendritic structures.

  9. Theoretical characterization of dihydrogen adducts with halide anions

    SciTech Connect

    Vitillo, Jenny G.; Damin, Alessandro; Zecchina, Adriano; Ricchiardi, Gabriele

    2006-06-14

    The interaction between a hydrogen molecule and the halide anions F{sup -}, Cl{sup -}, Br{sup -}, and I{sup -} has been studied at different levels of theory and with different basis sets. The most stable configurations of the complexes have a linear geometry, while the t-shaped complexes are saddle points on the potential energy surface, opposite to what is observed for alkali cations. An electrostatic analysis conducted on the resulting adducts has highlighted the predominance of the electrostatic term in the complexation energy and, in particular, of the quadrupole- and dipole-polarizability dependent contributions. Another striking difference with respect to the positive ions, is the fact that although the binding energies have similar values (ranging between 25 and 3 kJ/mol for F{sup -} and I{sup -}, respectively), the vibrational shift of the {nu}-tilde{sub H-H} and in general the perturbation of the hydrogen molecule in complexes are much greater in the complexes with anions ({delta}{nu}-tilde{sub H-H} ranges between -720 and -65 cm{sup -1}). Another difference with respect to the interaction with cations is a larger charge transfer from the anion to the hydrogen molecule. The {delta}{nu}-tilde is the result of the cooperative role of the electrostatics and of the charge transfer in the interaction. The correlation between binding energies and vibrational shift is far from linear, contrary to what is observed for cation complexes, in accordance with the higher polarizability and dynamic polarizability of the molecule along the molecular axis. The observed correlation may be valuable in the interpretation of spectra and thermodynamic properties of adsorbed H{sub 2} in storage materials.

  10. DNA adducts as a dosimeter for risk estimation

    SciTech Connect

    Belinsky, S.A.; White, C.M.; Devereux, T.R.; Anderson, M.W.

    1987-12-01

    The dose response for O/sup 6/-methylguanine (O/sup 6/MG) formation and cytotoxicity was determined in lung and nasal mucosa from Fischer 344 rats during multiple dose administration of the tobacco-specific nitrosamine 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK). O/sup 6/MG accumulated in the lung following treatment for 12 days with doses of NNK from 0.3 to 100 mgkgday. The dose response for NNK was nonlinear; the O/sup 6/MG-to-dose ratio, an index of alkylation efficiency, increased dramatically as the dose of carcinogen decreased. These data suggest that low- and high-K/sub m/ pathways may exist for activation to NNK to a methylating agent. Marked differences in O/sup 6/MG concentration were observed in specific lung cell populations. The presence of a high-affinity pathway in the Clara cell for activation of NNK may contribute to the potent carcinogenicity observed following low-dose exposure to this tobacco-specific carcinogen. The dose response for O/sup 6/MG formation differed considerably between the respiratory and olfactory mucosa from the nasal passages of the rat. These studies suggest that a low K/sub m/ pathway for NNK activation is also present in the nose and that this pathway is localized predominantly in the respiratory region. These data suggest that both the formation of promutagenic adducts and cell proliferation secondary to toxicity are required for the induction of neoplasia by NNK within the nose.

  11. Fabrication and electrochemical properties of insoluble fullerene-diamine adduct thin-films as buffer layer by alternate immersion process

    NASA Astrophysics Data System (ADS)

    Saito, Jo; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo

    2017-01-01

    Insoluble fullerene-diamine adduct thin-films consisting of C60 and 1,2-diaminoethane were easily fabricated on an electrode by an alternate immersion process. Formation of the C60-diamine adduct films were confirmed using transmission absorption spectroscopy and atomic force microscopy. An inverted-type organic solar cells were fabricated by using the C60-diamine adduct film as the electron transport layer. The resultant photoelectric conversation performance of the solar cells suggested that photocurrent is generated via the photoexcitation of polythiophene. The result suggests that the present insoluble fullerene-diamine adduct films worked as buffer layer for organic thin-film solar cells.

  12. Comparison of EMG activity on abdominal muscles during plank exercise with unilateral and bilateral additional isometric hip adduction.

    PubMed

    Kim, Soo-Yong; Kang, Min-Hyeok; Kim, Eui-Ryong; Jung, In-Gui; Seo, Eun-Young; Oh, Jae-Seop

    2016-10-01

    The aim of this study was to investigate the effects of additional isometric hip adduction during the plank exercise on the abdominal muscles. Twenty healthy young men participated in this study. Surface electromyography (EMG) was used to monitor the activity of the bilateral rectus abdominis (RA), the internal oblique (IO), and the external oblique (EO) muscles. The participants performed three types of plank exercise; the standard plank exercise, the plank exercise with bilateral isometric hip adduction, and the plank exercise with unilateral isometric hip adduction. All abdominal muscle activity was significantly increased during the plank exercise combined with the bilateral and unilateral isometric hip adduction compared with the standard plank exercise (p<0.05). Bilateral IO, EO, and left RA muscle activity was significantly increased during the unilateral isometric hip adduction compared with the bilateral isometric hip adduction (p<0.05). These findings suggest that additional isometric hip adduction during the plank exercise could be a useful method to enhance abdominal muscle activity. In particular, the unilateral isometric hip adduction is a more beneficial exercise than the bilateral isometric hip adduction.

  13. Quantitation of cis-diamminedichloroplatinum II (cisplatin)-DNA-intrastrand adducts in testicular and ovarian cancer patients receiving cisplatin chemotherapy.

    PubMed

    Reed, E; Yuspa, S H; Zwelling, L A; Ozols, R F; Poirier, M C

    1986-02-01

    The antitumor activity of cis-diamminedichloroplatinum II (cisplatin) is believed to be related to its covalent interaction with DNA where a major DNA binding product is an intrastrand N7-bidentate adduct on adjacent deoxyguanosines. A novel immunoassay was used to quantitate this adduct in buffy coat DNA from testicular and ovarian cancer patients undergoing cisplatin therapy. 44 out of 120 samples taken from 45 cisplatin patients had detectable cisplatin-DNA adducts. No adducts were detected in 18 samples of DNA taken from normal controls, patients on other chemotherapy, or patients before treatment. The quantity of measurable adducts increased as a function of cumulative dose of cisplatin. This was observed both during repeated daily infusion of the drug and over long-term, repeated 21-28 d cycles of administration. These results suggested that adduct removal is slow even though the tissue has a relatively rapid turnover. Patients receiving cisplatin for the first time on 56-d cycles, and those given high doses of cisplatin as a "salvage" regimen, did not accumulate adducts as rapidly as patients on first time chemotherapy on 21- or 28-d cycles. Disease response data, evaluated for 33 cisplatin-treated patients, showed a positive correlation between the formation of DNA adducts and response to drug therapy. However, more data will be required to confirm this relationship. These data show that specific immunological probes can readily be applied to quantitate DNA adducts in patients undergoing cancer chemotherapy.

  14. Formation of metal-ion adducts and evidence for surface-catalyzed ionization in electrospray analysis of pharmaceuticals and pesticides

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.

    2002-01-01

    The formation of metal ion adducts in liquid chromatography/mass spectrometry positive-ion electrospray analysis of pharmaceuticals and pesticides was investigated. The evidence of surface-catalyzed ionization in the electrospray analysis was also studied. Both positive and negative ion mass spectrometry were used for the analysis of the products. It was found that the sodium adducts formed in the analysis included single, double, and triple sodium adducts. Adduction was found to occur by attachment of the metal ion to carboxyl, carbonyl and aromatic pi electrons of the molecule.

  15. DNA adduct formation in precision-cut rat liver and lung slices exposed to benzo[a]pyrene.

    PubMed

    Harrigan, Jeanine A; Vezina, Chad M; McGarrigle, Barbara P; Ersing, Noreen; Box, Harold C; Maccubbin, Alexander E; Olson, James R

    2004-02-01

    Chemical-DNA adducts provide an integrated measure of exposure, absorption, bioactivation, detoxification, and DNA repair following exposure to a genotoxic agent. Benzo[a]pyrene (BaP), a prototypical polycyclic aromatic hydrocarbon (PAH), can be bioactivated by cytochrome P-450s (CYPs) and epoxide hydrolase to genotoxic metabolites which form covalent adducts with DNA. In this study, we utilized precision-cut rat liver and lung slices exposed to BaP to investigate tissue-specific differences in chemical absorption and formation of DNA adducts. To investigate the contribution of bioactivating CYPs (such as CYP1A1 and CYP1B1) on the formation of BaP-DNA adducts, animals were also pretreated in vivo with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) prior to in vitro incubation of tissue slices with BaP. Furthermore, the tissue distribution of BaP and BaP-DNA adduct levels from in vivo studies were compared with those from the in vitro tissue slice experiments. The results indicate a time- and concentration-dependent increase in tissue-associated BaP following exposure of rat liver and lung tissue slices to BaP in vitro, with generally higher levels of BaP retained in lung tissue. Furthermore, rat liver and lung slices metabolized BaP to reactive intermediates that formed covalent adducts with DNA. Total BaP-DNA adducts increased with concentration and incubation time. Adduct levels (fmol adduct/microg DNA) in lung slices were greater than liver at all doses. Liver slices contained one major and two minor adducts, while lung slices contained two major and 3 minor adducts. The tissue-specific qualitative profile of these adducts in tissue slices was similar to that observed from in vivo studies, further validating the use of this model. Pretreatment of animals with TCDD prior to in vitro incubation with BaP potentiated the levels of DNA adduct formation. TCDD pretreatment altered the adduct distribution in lung but not in liver slices. Together, the results

  16. Cisplatin intrastrand adducts sensitize DNA to base damage by hydrated electrons.

    PubMed

    Behmand, B; Wagner, J R; Sanche, L; Hunting, D J

    2014-05-08

    The oligonucleotide TTTTTGTGTTT with or without a cisplatin adduct was reacted with hydrated electrons generated by ionizing radiation. Hydroxyl radicals were quenched with ethylenediaminetetraacetic acid (EDTA), and the solutions were bubbled with wet nitrogen to eliminate oxygen, a scavenger of hydrated electrons. Prior to irradiation, the structure of the initial cisplatin adduct was identified by mass spectrometry as G-cisplatin-G. Radiation damage to DNA bases was quantified by high-performance liquid chromatography (HPLC), after enzymatic digestion of the TTTTTGTGTTT-cisplatin complex to deoxyribonucleosides. The masses of the platinum adducts following digestion and separation by HPLC were measured by mass spectrometry. Our results demonstrate that hydrated electrons induce damage to thymines as well as detachment of the cisplatin moiety from both guanines in the oligonucleotide. This detachment regenerates both unmodified guanine and damaged guanine, in equimolar amounts. At 1000 Gy, a net average of 2.5 thymines and 1 guanine are damaged for each platinum lost from the oligonucleotide. Given the extensive base damage that occurs for each cisplatin adduct lost, it is clear that, prior to undergoing detachment, these adducts must catalyze several cycles of reactions of hydrated electrons with DNA bases. It is likely that a single reaction leads to the loss of the cisplatin adduct and the damage observed on the guanine base; however, the damage to the thymine bases must require the continued presence of the cisplatin adduct, acting as a catalyst. To our knowledge, this is the first time that platinum-DNA adducts have been shown to have catalytic activity. We propose two pathways for the interaction of hydrated electrons with TTTTTGTGTTT-cisplatin: (1) the hydrated electron is initially captured by a thymine base and transferred by base to base electron hopping to the guanine site, where the cisplatin moiety detaches from the oligonucleotide via dissociative

  17. DNA adduct formation by o-phenylphenol metabolite in vivo and in vitro.

    PubMed

    Ushiyama, K; Nagai, F; Nakagawa, A; Kano, I

    1992-08-01

    [U-14C]o-Phenylphenol (OPP) was found to bind covalently to calf thymus DNA during a 60 min incubation in the presence of microsomes, but not in their absence, indicating that metabolic conversion of the parent compound, OPP, to an activated form is essential. Postlabeling analysis with bladder DNA of rats fed a diet containing 2% OPP for 13 weeks revealed one major adduct on TLC. In an in vitro postlabeling experiment with calf thymus DNA, both of the major metabolites of OPP, phenylhydroquinone (PHQ) and phenylbenzoquinone (PBQ), formed adducts, but no adducts were observed with OPP. The chemical structure responsible for adduct formation is thought to be the PHQ semiquinone radical intermediate formed during interconversion between PHQ and PBQ. When the oligonucleotides, pd(A)12-18, pd(C)12-18, pd(G)12-18 and pd(T)12-18, were used in vitro, only pd(G)12-18 gave TLC-detectable adducts on treatment with PHQ and PBQ. The covalent binding appears to be rather specific to guanine residues. These results suggest that covalent binding of the OPP metabolite is one of the underlying events in OPP-induced carcinogenesis in rats.

  18. Structural definition of early lysine and histidine adduction chemistry of 4-hydroxynonenal.

    PubMed

    Nadkarni, D V; Sayre, L M

    1995-03-01

    The lipid peroxidation product trans-4-hydroxy-2-nonenal (HNE) has been implicated in the covalent modification of low-density lipoproteins (LDL) thought to contribute to the over-accumulation of LDL in the arterial wall in the initial stages of atherosclerosis. Proposals for the exact structures of "early" protein side-chain modifications until now have been based on indirect evidence. In this paper, the structures of first-formed His- and Lys-based adducts were elucidated by correlating NMR spectral properties with those obtained on models with reduced chiral center content, in some cases following hydride reduction. In this manner, we could confirm unambiguously the structure of a HNE-His imidazole(N tau) Michael adduct, stabilized as a cyclic hemiacetal and isolated from a neutral aqueous 1:1 stoichiometry reaction mixture. In the case of Lys/amine reactivity, where an excess of amine is needed to avert HNE aldol condensation, the predominance of a 1:1 Michael adduct in homogeneous aqueous solution and a 1:2 Michael-Schiff base adduct under two-phase aqueous-organic conditions could be verified by isolation of the respective borohydride-reduced forms. The 1:2 adduct, shown to exist as the cyclic hemiaminal, could represent a stable lysine-based cross-link in certain protein microenvironments.

  19. 32P-postlabeling analysis of non-radioactive aromatic carcinogen--DNA adducts.

    PubMed

    Gupta, R C; Reddy, M V; Randerath, K

    1982-01-01

    A newly developed enzymatic 32P-postlabeling method was applied to the analysis of DNA's containing non-radioactive arylamine, arylamide, and polycyclic aromatic hydrocarbon adducts. DNA reacted in vitro with N-hydroxy-2-amino-fluorene, N-acetoxy-2-acetylaminofluorene, and 7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, respectively, as well as DNA preparations from the liver of rats treated with N-hydroxy-2-acetylaminofluorene and benzo[a]pyrene, respectively, were enzymatically digested to deoxyribonucleoside 3'-monophosphates, which were then converted to [5'-32P]deoxyribonucleoside 3',5'-bisphosphates by T4 polynucleotide kinase-catalyzed [32P]phosphate transfer from [gamma-32P]ATP. The 32P-labeled nucleotides were resolved by anion-exchange t.l.c. on polyethyleneimine-cellulose and detected by autoradiography. Aromatic adduct nucleotides were found to be retained at the origin in aqueous electrolyte solutions, but to migrate as distinct spots in solvents containing 7-8.5 M urea. Advantage was taken of this observation to remove 32P-labeled normal DNA nucleotides from adduct nucleotides. This purification enabled the detection of a single adduct in 10(7)-10(8) normal nucleotides. The method appears applicable to the ultrasensitive detection of a large number of carcinogen--DNA adducts of diverse structure without requiring radioactive carcinogens or specific antibodies.

  20. Screening of hydrophobic DNA adducts in flounder (Platichthys flesus) from the Baltic Sea.

    PubMed

    Malmström, C; Konn, M; Bogovski, S; Lang, T; Lönnström, L-G; Bylund, G

    2009-12-01

    Neoplasia and other histopathological lesions in flounder (Platichthys flesus) liver have been investigated in several European sea areas, including the Baltic Sea. Several studies have been able to link neoplasm epizootics in fish with the exposure to genotoxins such as polycyclic aromatic hydrocarbons (PAHs). The level of hydrophobic DNA adducts in tissue DNA reflects the exposure of the organism to PAHs. Using hydrophobic DNA adduct levels as biomarkers, possible PAH exposure was assessed in flounder from 10 different sites in the Baltic Sea, collected during the years 1995-1997. The results show that the overall levels of hepatic DNA adducts were low and, in general, the chromatograms appeared clean. The highest levels of DNA adducts were found at two sites in the southern Baltic Sea. There were no statistically significant differences in adduct levels between the sites. Our results indicate that flounder from studied off shore sites of the Baltic Sea had not been exposed to a greater extent to large polycyclic hydrophobic hydrocarbons in their environment.

  1. The localization of DMPO spin adducts of OH in endothelial cells exposed to hydrogen peroxide.

    PubMed

    Kaneko, M; Kodama, M; Inoue, F

    1995-11-01

    Examination by electron spin resonance (ESR) spectroscopy revealed the localization of 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) spin adducts of hydroxyl radicals (.OH) produced by bovine endothelial cells exposed to hydrogen peroxide. Addition of 10 mM chromium oxalate, a line-broadening agent, to the reaction mixture virtually abolished the signal of DMPO-OH spin adducts. Moreover, the spin adducts were recovered in the filtrated fraction of the cell suspension. We, therefore, concluded that the location of DMPO-OH due to .OH radicals produced by endothelial cells was extracellular. Contrastingly, the site of formation of DMPO-OH was confirmed to be intracellular by the effect of Desferal, an iron chelator, and the effect of poly(ethylene glycol), an extracellular scavenger of OH radicals, as previously reported. The DMPO-OH adducts in the cell suspension mixture were degraded by a cyanide sensitive pathway and they were apparently more unstable than in the extracellular fraction. The initial amount of DMPO-OH adducts formed in endothelial cells could potentially be monitored by the DMPO-OH signals in the extracellular reaction mixture better than those in the cell suspension mixture.

  2. DNA isolation and sample preparation for quantification of adduct levels by accelerator mass spectrometry.

    PubMed

    Dingley, Karen H; Ubick, Esther A; Vogel, John S; Ognibene, Ted J; Malfatti, Michael A; Kulp, Kristen; Haack, Kurt W

    2014-01-01

    Accelerator mass spectrometry (AMS) is a highly sensitive technique used for the quantification of adducts following exposure to carbon-14- or tritium-labeled chemicals, with detection limits in the range of one adduct per 10(11)-10(12) nucleotides. The protocol described in this chapter provides an optimal method for isolating and preparing DNA samples to measure isotope-labeled DNA adducts by AMS. When preparing samples, special precautions must be taken to avoid cross-contamination of isotope among samples and produce a sample that is compatible with AMS. The DNA isolation method described is based upon digestion of tissue with proteinase K, followed by extraction of DNA using Qiagen isolation columns. The extracted DNA is precipitated with isopropanol, washed repeatedly with 70 % ethanol to remove salt, and then dissolved in water. DNA samples are then converted to graphite or titanium hydride and the isotope content measured by AMS to quantify adduct levels. This method has been used to reliably generate good yields of uncontaminated, pure DNA from animal and human tissues for analysis of adduct levels.

  3. Lewis acid-base adducts: a quantitative Raman analysis of formamide and dimethylsulfoxide mixtures.

    PubMed

    Alves, Wagner A; Antunes, Octavio A C

    2007-07-01

    Raman spectra of pure liquid dimethylsulfoxide (DMSO) and of binary mixtures of formamide (FA) and DMSO in different compositions were obtained. The vibrations involving the SO functional group in the band envelope at ca. 1050 cm(-1) of pure liquid DMSO are assigned to monomers, dimers and higher aggregates of DMSO. The appearance of a new band at 1024 cm(-1), whose intensity shows large dependence on the FA concentration, is assigned to a FA-DMSO adduct. This has been possible due to the two H-bond donor sites of FA and the strong donor character of DMSO that become the environment propitious for the donor-acceptor reaction. Quantitative analysis performed in the SO stretching region in the binary mixtures gives a 1:1 stoichiometry in this adduct in the limit of infinite dilution. This proportion is in full agreement with our previous determination for the FA-ACN adduct. The experimental evidence of the 1:1 FA-DMSO adduct is presented for the first time using Raman spectroscopy. The results described here open new possibilities to study the acid-base reactions nature of FA adducts.

  4. Lewis acid-base adducts: A quantitative Raman analysis of formamide and dimethylsulfoxide mixtures

    NASA Astrophysics Data System (ADS)

    Alves, Wagner A.; Antunes, Octavio A. C.

    2007-07-01

    Raman spectra of pure liquid dimethylsulfoxide (DMSO) and of binary mixtures of formamide (FA) and DMSO in different compositions were obtained. The vibrations involving the SO functional group in the band envelope at ca. 1050 cm -1 of pure liquid DMSO are assigned to monomers, dimers and higher aggregates of DMSO. The appearance of a new band at 1024 cm -1, whose intensity shows large dependence on the FA concentration, is assigned to a FA-DMSO adduct. This has been possible due to the two H-bond donor sites of FA and the strong donor character of DMSO that become the environment propitious for the donor-acceptor reaction. Quantitative analysis performed in the SO stretching region in the binary mixtures gives a 1:1 stoichiometry in this adduct in the limit of infinite dilution. This proportion is in full agreement with our previous determination for the FA-ACN adduct. The experimental evidence of the 1:1 FA-DMSO adduct is presented for the first time using Raman spectroscopy. The results described here open new possibilities to study the acid-base reactions nature of FA adducts.

  5. Thymine photodimer formation in DNA hairpins. Unusual conformations favor (6 - 4) vs. (2 + 2) adducts.

    PubMed

    Hariharan, Mahesh; Siegmund, Karsten; Saurel, Clifton; McCullagh, Martin; Schatz, George C; Lewis, Frederick D

    2014-02-01

    The photochemical reactions of eleven synthetic DNA hairpins possessing a single TT step either in a base-paired stem or in a hexanucleotide linker have been investigated. The major reaction products have been identified as the cis-syn (2 + 2) adduct and the (6 - 4) adduct on the basis of their spectroscopic properties including 1D and 2D NMR spectra, UV spectra and stability or instability to photochemical cleavage. Product quantum yields and ratios determined by HPLC analysis allow the behaviour of the eleven hairpins to be placed into three groups: Group I in which the (2 + 2) adduct is the major product, as is usually the case for DNA, Group II in which comparable amounts of (2 + 2) and (6 - 4) adducts are formed, and Group III in which the major product is the (6 - 4) adduct. The latter behaviour is without precedent in natural or synthetic DNA and appears to be related to the highly fluxional structures of the hairpin reactants. Molecular dynamics simulation of ground state conformations provides quantum yields and product ratios calculated using a single parameter model that are in reasonable agreement with most of the experimental results. Factors which may influence the observed product ratios are discussed.

  6. Rhodium-catalyzed formation of stereocontrolled trisubstituted alkenes from Baylis-Hillman adducts.

    PubMed

    Gendrineau, Thomas; Demoulin, Nicolas; Navarre, Laure; Genet, Jean-Pierre; Darses, Sylvain

    2009-01-01

    Efficient and general conditions for the formation of stereodefined trisubstituted alkenes by using the rhodium-catalyzed reaction of unactivated Baylis-Hillman adducts with either organoboronic acids or potassium trifluoro(organo)borates are reported (see scheme).We report here efficient and general conditions for the formation of stereodefined trisubstituted alkenes using the rhodium-catalyzed reaction of unactivated Baylis-Hillman adducts with either organoboronic acids and potassium trifluoro(organo)borates. The use of the [{Rh(cod)OH}(2)] precursor gave very fast coupling reactions under low catalyst loading, very mild reaction conditions (from room temperature up to 50 degrees C) and without the need of additional phosphane ligands. Based on the new reaction conditions, the reaction, originally limited to Baylis-Hillman adducts derived from esters, could be extended to a large variety of Baylis-Hillman adducts, bearing either keto, cyano or amido functionalities. Moreover, the reaction of Baylis-Hillman adducts bearing esters functionality was improved and could be conducted at lower temperature using lower catalyst loading.

  7. Metabolic stability of superoxide adducts derived from newly developed cyclic nitrone spin traps.

    PubMed

    Bézière, Nicolas; Hardy, Micael; Poulhès, Florent; Karoui, Hakim; Tordo, Paul; Ouari, Olivier; Frapart, Yves-Michel; Rockenbauer, Antal; Boucher, Jean-Luc; Mansuy, Daniel; Peyrot, Fabienne

    2014-02-01

    Reactive oxygen species are by-products of aerobic metabolism involved in the onset and evolution of various pathological conditions. Among them, the superoxide radical is of special interest as the origin of several damaging species such as H2O2, hydroxyl radical, or peroxynitrite (ONOO(-)). Spin trapping coupled with ESR is a method of choice to characterize these species in chemical and biological systems and the metabolic stability of the spin adducts derived from reaction of superoxide and hydroxyl radicals with nitrones is the main limit to the in vivo application of the method. Recently, new cyclic nitrones bearing a triphenylphosphonium or permethylated β-cyclodextrin moiety have been synthesized and their spin adducts demonstrated increased stability in buffer. In this article, we studied the stability of the superoxide adducts of four new cyclic nitrones in the presence of liver subcellular fractions and biologically relevant reductants using an original setup combining a stopped-flow device and an ESR spectrometer. The kinetics of disappearance of the spin adducts were analyzed using an appropriate simulation program. Our results highlight the interest of the new spin trapping agents CD-DEPMPO and CD-DIPPMPO for specific detection of superoxide with high stability of the superoxide adducts in the presence of liver microsomes.

  8. Serine Protease Catalysis: A Computational Study of Tetrahedral Intermediates and Inhibitory Adducts.

    PubMed

    Ngo, Phong D; Mansoorabadi, Steven O; Frey, Perry A

    2016-08-04

    Peptide boronic acids and peptidyl trifluoromethyl ketones (TFKs) inhibit serine proteases by forming monoanionic, tetrahedral adducts to serine in the active sites. Investigators regard these adducts as analogs of monoanionic, tetrahedral intermediates. Density functional theory (DFT) calculations and fractional charge analysis show that tetrahedral adducts of model peptidyl TFKs are structurally and electrostatically very similar to corresponding tetrahedral intermediates. In contrast, the DFT calculations show the structures and electrostatic properties of analogous peptide boronate adducts to be significantly different. The peptide boronates display highly electrostatically positive boron, with correspondingly negative ligands in the tetrahedra. In addition, the computed boron-oxygen and boron-carbon bond lengths in peptide boronates (which are identical or very similar to the corresponding bonds in a peptide boronate adduct of α-lytic protease determined by X-ray crystallography at subangstrom resolution) are significantly longer than the corresponding bond lengths in model tetrahedral intermediates. Since protease-peptidyl TFKs incorporate low-barrier hydrogen bonds (LBHBs) between an active site histidine and aspartate, while the protease-peptide boronates do not, these data complement the spectroscopic and chemical evidence for the participation of LBHBs in catalysis by serine proteases. Moreover, while the potency of these classes of inhibitors can be correlated to the structures of the peptide moieties, the present results indicate that the strength of their bonds to serine contribute significantly to their inhibitory properties.

  9. Dynamic rupture simulations on complex fault zone structures with off-fault plasticity using the ADER-DG method

    NASA Astrophysics Data System (ADS)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Igel, Heiner

    2015-04-01

    In dynamic rupture models, high stress concentrations at rupture fronts have to to be accommodated by off-fault inelastic processes such as plastic deformation. As presented in (Roten et al., 2014), incorporating plastic yielding can significantly reduce earlier predictions of ground motions in the Los Angeles Basin. Further, an inelastic response of materials surrounding a fault potentially has a strong impact on surface displacement and is therefore a key aspect in understanding the triggering of tsunamis through floor uplifting. We present an implementation of off-fault-plasticity and its verification for the software package SeisSol, an arbitrary high-order derivative discontinuous Galerkin (ADER-DG) method. The software recently reached multi-petaflop/s performance on some of the largest supercomputers worldwide and was a Gordon Bell prize finalist application in 2014 (Heinecke et al., 2014). For the nonelastic calculations we impose a Drucker-Prager yield criterion in shear stress with a viscous regularization following (Andrews, 2005). It permits the smooth relaxation of high stress concentrations induced in the dynamic rupture process. We verify the implementation by comparison to the SCEC/USGS Spontaneous Rupture Code Verification Benchmarks. The results of test problem TPV13 with a 60-degree dipping normal fault show that SeisSol is in good accordance with other codes. Additionally we aim to explore the numerical characteristics of the off-fault plasticity implementation by performing convergence tests for the 2D code. The ADER-DG method is especially suited for complex geometries by using unstructured tetrahedral meshes. Local adaptation of the mesh resolution enables a fine sampling of the cohesive zone on the fault while simultaneously satisfying the dispersion requirements of wave propagation away from the fault. In this context we will investigate the influence of off-fault-plasticity on geometrically complex fault zone structures like subduction

  10. Immunochemical quantitation of 3-(cystein-S-yl)acetaminophen adducts in serum and liver proteins of acetaminophen-treated mice.

    PubMed

    Pumford, N R; Hinson, J A; Potter, D W; Rowland, K L; Benson, R W; Roberts, D W

    1989-01-01

    Using a recently developed enzyme-linked immunosorbent assay specific for 3-(cystein-S-yl)acetaminophen adducts we have quantitated the formation of these specific adducts in liver and serum protein of B6C3F1 male mice dosed with acetaminophen. Administration of acetaminophen at doses of 50, 100, 200, 300, 400 and 500 mg/kg to mice resulted in evidence of hepatotoxicity (increase in serum levels of alanine aminotransferase and aspartate aminotransferase) at 4 hr in the 300, 400 and 500 mg/kg treatment groups only. The formation of 3-(cystein-S-yl)acetaminophen adducts in liver protein was not observed in the groups receiving 50, 100 and 200 mg/kg doses, but was observed in the groups receiving doses above 300 mg/kg of acetaminophen. Greater levels of adduct formation were observed at the higher doses. 3-(Cystein-S-yl)acetaminophen protein adducts were also observed in serum of mice receiving hepatotoxic doses of acetaminophen. After a 400 mg/kg dose of acetaminophen, 3-(cystein-S-yl)acetaminophen adducts in the liver protein reached peak levels 2 hr after dosing. By 12 hr the levels decreased to approximately 10% of the peak level. In contrast, 3-(cystein-S-yl)acetaminophen adducts in serum protein were delayed, reaching a sustained peak 6 to 12 hr after dosing. The dose-response correlation between the appearance of serum aminotransferases and 3-(cystein-S-yl)acetaminophen adducts in serum protein and the temporal correlation between the decrease in 3-(cystein-S-yl)acetaminophen adducts in liver protein and the appearance of adducts in serum protein are consistent with a hepatic origin of the adducts detected in serum protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Decay studies of DMPO-spin adducts of free radicals produced by reactions of metmyoglobin and methemoglobin with hydrogen peroxide.

    PubMed

    Kim, Y M; Jeong, S H; Yamazaki, I; Piette, L H; Han, S; Hong, S J

    1995-01-01

    The 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) spin adduct of myoglobin (Mb) or hemoglobin (Hb) was formed when metmyoglobin (MetMb) or methemoglobin (MetHb) reacted with H2O2 in the presence of DMPO, and both decayed with half-life of a few minutes. The DMPO spin adduct of Mb decayed with biphasic kinetics with k1 = 0.645 min-1 and k2 = 0.012 min-1, indicating that the spin adduct consisted of two kinetically heterogeneous species, stable and unstable ones. The DPMO spin adduct of Hb, however, was homogeneous. Decay of both spin adducts was accelerated in the presence of tyrosine, tryptophan or cysteine, but not phenylalanine, methionine or histidine. The decay obeyed the first order kinetics at varying concentrations of the spin adducts. The decay was accelerated by denaturation and proteolysis of protein moiety. The decay rate was not affected by the extra addition of MetMb or MetHb to each spin adduct. The decay rate of the spin adduct of Mb was increased by hematin in the presence of H2O2 and decreased by catalase. Decay of stable spin adduct of Mb, however, was not significantly changed under any experimental conditions used. These results led us to conclude that instability of the DMPO-spin adducts of Mb and Hb is due to intramolecular redox reactions between the spin adducts and amino acid residues and/or products of the reaction between heme and H2O2.

  12. Formation and persistence of novel benzo(a)pyrene adducts in rat lung, liver, and peripheral blood lymphocyte DNA

    SciTech Connect

    Ross, J.; Nelson, G.; Kligerman, A.; Erexson, G.; Bryant, M.; Earley, K.; Gupta, R.; Nesnow, S. )

    1990-08-15

    Male CD rats were injected with single i.p. doses of benzo(a)pyrene (B(a)P), and peripheral blood lymphocytes (PBLs), livers, and lungs were removed at various times after administration. DNA adducts were analyzed in each tissue by 32P postlabeling with nuclease P1 enhancement. Sister chromatid exchange frequencies were concomitantly measured in cultured whole blood. B(a)P-DNA adducts were observed in all three tissues from animals sacrificed between 1 and 56 days after injection. Maximal adduction levels occurred at about 4 days after administration, followed by a gradual loss of adducts over the period examined. The apparent half-lives of total DNA adducts were 15 days in liver, 17 days in PBLs, and 22 days in lung. Induced sister chromatid exchanges were linearly related to the amount of DNA adducts remaining in the PBLs at the time of harvest up to 56 days and were significantly elevated above concurrent controls up to 14 days. One of the major adducts found in each tissue was N2-(10 beta-(7 beta,8 alpha,9 alpha-trihydroxy-7,8,9,10-tetrahydrobenzo(a) pyrene)yl)deoxyguanosine. An additional novel major adduct was found in the liver DNA and is derived from the further metabolism of B(a)P-trans-7,8-dihydrodiol. A second major novel B(a)P adduct was found in the DNA of lung tissues and accounts for about 40% of the total adducts present. Experimental evidence suggests that this adduct is derived from a metabolic pathway that includes the formation of 9-hydroxy-B(a)P.

  13. Molecular characterization of a homolog of the ferric-uptake regulator, Fur, from the marine bacterium Marinobacter algicola DG893

    PubMed Central

    Barker, Ryan A.; Tisnado, Jerrell; Lambert, Lisa A.; Gärdes, Astrid; Carrano, Mary W.; Carrano, Paul N.; Gillian, Christopher

    2016-01-01

    Full length recombinant iron regulatory protein, Fur, has been isolated and characterized from the algal-associated marine bacterium Marinobacter algicola DG893. Under nondenaturing conditions the Fur protein behaves on size exclusion chromatography as a dimer while it is monomeric under SDS PAGE conditions. ICP-MS and fluorescence quenching experiments show that Mb-Fur binds a single metal ion (Zn, Mn, or Co) per monomer. Electrophoretic mobility shift assays were used to probe the interaction of Mb-Fur with the purported Fur box in the promoter region upstream of the vibrioferrin biosynthetic operon. Interaction of Mb-Fur with a 100 bp DNA fragment containing the Fur box in the presence of 10 μM Mn, Co or Zn(II) resulted in decreased migration of DNA on a 7.5 % polyacrylamide gel. In the absence of the Fur protein or the metal, no interaction is seen. The presence of EDTA in the binding, loading or running buffers also abolished all activity demonstrating the importance of the metal in formation of the promoter-repressor complex. Based on a high degree of similarity between Mb-Fur and its homolog from Pseudomonas aeruginosa (PA) whose X-ray structure is known we developed a structural model for the former which suggested that only one of the several metal binding sites found in other Fur’s would be functional. This is consistent with the single metal binding stoichiometry we observed. Since the purported metal binding site was one that has been described as “structural” rather than “functional” in PA and yet the monometallic Mb-Fur retains DNA Fur box binding ability it reopens the question of which site is which, or if different species have adapted the sites for different purposes. PMID:25528647

  14. Molecular characterization of a homolog of the ferric-uptake regulator, Fur, from the marine bacterium Marinobacter algicola DG893.

    PubMed

    Barker, Ryan A; Tisnado, Jerrell; Lambert, Lisa A; Gärdes, Astrid; Carrano, Mary W; Carrano, Paul N; Gillian, Christopher; Carrano, Carl J

    2015-02-01

    Full length recombinant iron regulatory protein, Fur, has been isolated and characterized from the algal-associated marine bacterium Marinobacter algicola DG893. Under nondenaturing conditions the Fur protein behaves on size exclusion chromatography as a dimer while it is monomeric under SDS PAGE conditions. ICP-MS and fluorescence quenching experiments show that Mb-Fur binds a single metal ion (Zn, Mn, or Co) per monomer. Electrophoretic mobility shift assays were used to probe the interaction of Mb-Fur with the purported Fur box in the promoter region upstream of the vibrioferrin biosynthetic operon. Interaction of Mb-Fur with a 100 bp DNA fragment containing the Fur box in the presence of 10 µM Mn, Co or Zn(II) resulted in decreased migration of DNA on a 7.5% polyacrylamide gel. In the absence of the Fur protein or the metal, no interaction is seen. The presence of EDTA in the binding, loading or running buffers also abolished all activity demonstrating the importance of the metal in formation of the promoter-repressor complex. Based on a high degree of similarity between Mb-Fur and its homolog from Pseudomonas aeruginosa (PA) whose X-ray structure is known we developed a structural model for the former which suggested that only one of the several metal binding sites found in other Fur's would be functional. This is consistent with the single metal binding stoichiometry we observed. Since the purported metal binding site was one that has been described as "structural" rather than "functional" in PA and yet the monometallic Mb-Fur retains DNA Fur box binding ability it reopens the question of which site is which, or if different species have adapted the sites for different purposes.

  15. Very Bright, Very Hot and Very Long: Swift Observations of the DG CVn "Superflare" of April 23rd, 2014

    NASA Astrophysics Data System (ADS)

    Drake, Stephen Alan; Osten, Rachel A.; Page, Kim L; Kennea, Jamie A; Oates, Samantha R; Krimm, Hans A; Gehrels, Neil; Page, Mathew J; Kowalski, Adam

    2014-08-01

    On April 23rd this year, one of the 2 stars in the close visual binary dM4e system DG CVn flared to a level bright enough 300 milliCrab in the 15-150 keV band) that it triggered the Swift Burst Alert Telescope. Two minutes later, after Swift had slewed to the direction of this source, the Swift X-ray Telescope (XRT) and the Ultraviolet Optical Telescope (UVOT) commenced observing this flare. These observations continued (intermittently) for about 20 days and yielded a fascinating case history of this colossal event, the decay of which took more than a week in the UV and soft X-ray regions, and included several smaller superimposed secondary flares. The peak 0.3-10 keV luminosity observed by the XRT of 1.9e32 erg/s at the 18 pc distance of this system is 1.5 times the 'normal' combined systemic bolometric luminosity of 1.3e32 erg/s, making this event a super-bolometric flare similar to the 2008 flare of EV Lac (also detected by Swift). The BAT and XRT spectra of this flare in the first 6 minutes indicate that the emission was dominated by very hot (>>10 keV) plasma and/or a non-thermal power-law emission. This flare is arguably the longest, most X-ray luminous and hottest flare ever seen for an M dwarf in the solar neighborhood, and is reminiscent of the 9 days long flare of the RS CVn binary CF Tuc detected by ROSAT. We discuss how these exceptional characteristics may be related to the known properties of this system, specifically to its youth (30 Myr) and rapid rotation (55 km/s).

  16. A Very Bright, Very Hot, and Very Long Flaring Event from the M Dwarf Binary System DG CVn

    NASA Astrophysics Data System (ADS)

    Osten, Rachel A.; Kowalski, Adam; Drake, Stephen A.; Krimm, Hans; Page, Kim; Gazeas, Kosmas; Kennea, Jamie; Oates, Samantha; Page, Mathew; de Miguel, Enrique; Novák, Rudolf; Apeltauer, Tomas; Gehrels, Neil

    2016-12-01

    On 2014 April 23, the Swift satellite responded to a hard X-ray transient detected by its Burst Alert Telescope, which turned out to be a stellar flare from a nearby, young M dwarf binary DG CVn. We utilize observations at X-ray, UV, optical, and radio wavelengths to infer the properties of two large flares. The X-ray spectrum of the primary outburst can be described over the 0.3-100 keV bandpass by either a single very high-temperature plasma or a nonthermal thick-target bremsstrahlung model, and we rule out the nonthermal model based on energetic grounds. The temperatures were the highest seen spectroscopically in a stellar flare, at T X of 290 MK. The first event was followed by a comparably energetic event almost a day later. We constrain the photospheric area involved in each of the two flares to be >1020 cm2, and find evidence from flux ratios in the second event of contributions to the white light flare emission in addition to the usual hot, T ˜ 104 K blackbody emission seen in the impulsive phase of flares. The radiated energy in X-rays and white light reveal these events to be the two most energetic X-ray flares observed from an M dwarf, with X-ray radiated energies in the 0.3-10 keV bandpass of 4 × 1035 and 9 × 1035 erg, and optical flare energies at E V of 2.8 × 1034 and 5.2 × 1034 erg, respectively. The results presented here should be integrated into updated modeling of the astrophysical impact of large stellar flares on close-in exoplanetary atmospheres.

  17. Electroluminescent TCC, C3dg and fB/Bb epitope assays for profiling complement cascade activation in vitro using an activated complement serum calibration standard.

    PubMed

    van Vuuren, B Jansen; Bergseth, G; Mollnes, T E; Shaw, A M

    2014-01-15

    Electroluminescent assays for epitopes on the complement components C3dg, terminal complement complex (TCC) and factor B/Bb (fB/Bb) have been developed with capture and detection antibodies to produce detection limits C3dg=91±9ng/mL, TCC=3±0.1ng/mL and fB=55.7±0.1ng/mL. The assay performance was assessed against a series of zymosan and heat aggregated IgG (HAIgG) in vitro activations of complement using a calibrated activated complement serum (ACS) as calibration standard. The ACS standard was stable within 20% accuracy over a 6-month period with freeze-thaw cycles as required. Differential activation of the complement cascade was observed for TCC showing a pseudo-first order formation half-life of 3.5h after activation with zymosan. The C3dg activation fragment indicates a 10% total activation for both activation agents. The kinetic-epitope analysis for fB indicates that the capture epitope is on the fB/Bb protein fragment which can then become covered by the formation of C3bBb or C3bBbP complexes during the time course of the cascade.

  18. Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct

    PubMed Central

    Pirovano, Paolo; Farquhar, Erik R.; Swart, Marcel; Fitzpatrick, Anthony J.; Morgan, Grace G.; McDonald, Aidan R.

    2015-01-01

    High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidising reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are sparse, meaning there is a dearth in the understanding of such oxidants. In this study, a monoanionic NiII-bicarbonate complex was found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (~95%). Electronic absorption, electronic paramagnetic resonance and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = ½), square planar NiIII-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-ditertbutylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively. PMID:25612563

  19. Atomic-Resolution Structure of an N(5) Flavin Adduct in D-Arginine Dehydrogenase

    SciTech Connect

    Fu, Guoxing; Yuan, Hongling; Wang, Siming; Gadda, Giovanni; Weber, Irene T.

    2011-09-06

    D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 {angstrom} atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct.

  20. The influence of antagonist muscle electrical stimulation on maximal hip adduction force

    PubMed Central

    Nakano, Sota; Wada, Chikamune

    2016-01-01

    [Purpose] The aim of this study was to determine whether electrical stimulation of the tensor fascia lata muscle decreases voluntary maximum resistance to passive abduction motion in participants without disease of the central nervous system. [Subjects] The participants were 16 healthy men. [Methods] The hip joint was moved from 10° adduction to 0° adduction with an angular velocity of 7°/s. During the passive leg motion, the subject was asked to resist the motion with maximum force. Two experimental conditions were prepared: (1) electrical stimulation provided to the tensor fascia lata muscle during the passive motion; and (2) no electrical stimulation provided. [Results] The force was 10.2 ± 3.5 kgf with electrical stimulation and 12.2 ± 3.8 kgf without electrical stimulation. [Conclusion] The results suggested that the maximum hip adduction force decreased in participants because of electrical stimulation of the tensor fascia lata muscle. PMID:26957742

  1. Rotational Investigation of the Adducts of Formic Acid with Alcohols, Ethers and Esters

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Spada, Lorenzo; Li, Weixing; Caminati, Walther

    2016-06-01

    Mixtures of formic acid with methyl alcohol, with isopropyl alcohol, with tert-butyl alcohol, with dimethylether and with isopropylformiate have been supersonically expanded as pulsed jets. The obtained cool plumes have been analyzed by Fourier transform microwave spectroscopy. It has been possible to assign the rotational spectra of the 1:1 adducts of formic acid with tert-butyl alcohol, with dimethyl ether and with isopropylformiate. The conformational shapes and geometries of these adducts, as well as the topologies of their itermolecular hydrogen bonds will be presented. An explanation is given of the failure of the assignments of the rotational spectra of the adducts of formic acid with methyl alcohol and isopropyl alcohol.

  2. Spectral characterization of environment-sensitive adducts of interleukin-1 beta.

    PubMed

    Epps, D E; Yem, A W; Fisher, J F; McGee, J E; Paslay, J W; Deibel, M R

    1992-02-15

    We have determined the fluorescence properties of two covalently attached acrylodan derivatives of recombinant human interleukin-1 beta, namely the Cys-8 and Lys-103 adducts. The emission and excitation maxima indicated the presence of two operationally distinct conformers for each probe. The iodide quenching and the kinetics of fluorescence changes associated with guanidinium chloride-induced denaturation show that each covalent adduct exists both in hydrated and dehydrated environments. Furthermore, fluorescence changes associated with the binding of the adducts to a recombinant soluble murine receptor indicated that only the conformers with the label in the hydrophobic environment are competent toward the soluble murine interleukin receptor and that the hydrated and dehydrated conformers are in a dynamic equilibrium on the time scale of the binding experiments.

  3. Solvent effect on the adduct formation of methyltrioxorhenium (MTO) and pyridine: enthalpy and entropy contributions.

    PubMed

    Nabavizadeh, S Masoud; Akbari, Alireza; Rashidi, Mehdi

    2005-07-21

    1:1 adduct formation between methyltrioxorhenium (MTO) and pyridine in different solvents (n-hexane, benzene, chloroform, ethyl acetate, dichloromethane and acetone) was studied using spectrophotometric techniques. The formation constants were determined from the absorbance change of the adduct versus pyridine concentration. The values of the formation constants vary from 114.5 to 752.5 L mol(-1) at T= 20 degrees C depending on the dielectric constant of the solvent (epsilon(r) = 1.89-20.7). Enthalpy and entropy changes during the adduct formation reactions were determined from van't Hoff plots. The measured enthalpy change of -37.0 to -22.2 kJ mol(-1) depends on epsilon(r), which is explained by Onsager's reaction field theory. The measured entropy change ranges from -71.2 to -36.6 J K(-1) mol(-1), and the dependence on the solvent is discussed in terms of the solvation effect.

  4. Inhibition of norovirus 3CL protease by bisulfite adducts of transition state inhibitors.

    PubMed

    Mandadapu, Sivakoteswara Rao; Gunnam, Mallikarjuna Reddy; Tiew, Kok-Chuan; Uy, Roxanne Adeline Z; Prior, Allan M; Alliston, Kevin R; Hua, Duy H; Kim, Yunjeong; Chang, Kyeong-Ok; Groutas, William C

    2013-01-01

    Noroviruses are the most common cause of acute viral gastroenteritis, accounting for >21 million cases annually in the US alone. Norovirus infections constitute an important health problem for which there are no specific antiviral therapeutics or vaccines. In this study, a series of bisulfite adducts derived from representative transition state inhibitors (dipeptidyl aldehydes and α-ketoamides) was synthesized and shown to exhibit anti-norovirus activity in a cell-based replicon system. The ED(50) of the most effective inhibitor was 60 nM. This study demonstrates for the first time the utilization of bisulfite adducts of transition state inhibitors in the inhibition of norovirus 3C-like protease in vitro and in a cell-based replicon system. The approach described herein can be extended to the synthesis of the bisulfite adducts of other classes of transition state inhibitors of serine and cysteine proteases, such as α-ketoheterocycles and α-ketoesters.

  5. A novel organo-zeolite adduct for environmental applications: sorption of phenol.

    PubMed

    Leone, V; Canzano, S; Iovino, P; Salvestrini, S; Capasso, S

    2013-04-01

    A novel organo-zeolite adduct has been synthesized by sorbing humic acids (HA) onto zeolitic tuff and then heating the resulting complex at 330°C for 1.5h. Desorption tests showed that this procedure effectively immobilized HA on the tuff. The crystal structure of the zeolitic tuff and the chemical structure of HA were not altered during the preparation. Phenol sorption analysis demonstrated that the HA-zeolite adduct had good sorbing properties; moreover, the sorbed amount markedly decreased with increased ionic strength. These results point to prospective application of the HA-zeolite adduct as a low-cost and environmentally friendly sorbent for water purification from phenol and possibly other neutral organic pollutants.

  6. Base-Resolution Analysis of Cisplatin–DNA Adducts at the Genome Scale

    PubMed Central

    Shu, Xiaoting; Xiong, Xushen; Song, Jinghui; He, Chuan; Yi, Chengqi

    2016-01-01

    Cisplatin, one of the most widely used anticancer drugs, crosslinks DNA and ultimately induces cell death. However, the genomic pattern of cisplatin–DNA adducts has remained unknown owing to the lack of a reliable and sensitive genome-wide method. Herein we present “cisplatin-seq” to identify genome-wide cisplatin crosslinking sites at base resolution. Cisplatin-seq reveals that mitochondrial DNA is a preferred target of cisplatin. For nuclear genomes, cisplatin–DNA adducts are enriched within promoters and regions harboring transcription termination sites. While the density of GG dinucleotides determines the initial crosslinking of cisplatin, binding of proteins to the genome largely contributes to the accumulative pattern of cisplatin–DNA adducts. PMID:27736024

  7. Synthesis of Mitomycin C and Decarbamoylmitomycin C N(2) deoxyguanosine-adducts.

    PubMed

    Champeil, Elise; Cheng, Shu-Yuan; Huang, Bik Tzu; Conchero-Guisan, Marta; Martinez, Thibaut; Paz, Manuel M; Sapse, Anne-Marie

    2016-04-01

    Mitomycin C (MC) and Decarbamoylmitomycin C (DMC) - a derivative of MC lacking the carbamate on C10 - are DNA alkylating agents. Their cytotoxicity is attributed to their ability to generate DNA monoadducts as well as intrastrand and interstrand cross-links (ICLs). The major monoadducts generated by MC and DMC in tumor cells have opposite stereochemistry at carbon one of the guanine-mitosene bond: trans (or alpha) for MC and cis (or beta) for DMC. We hypothesize that local disruptions of DNA structure from trans or cis adducts are responsible for the different biochemical responses produced by MC and DMC. Access to DNA substrates bearing cis and trans MC/DMC lesions is essential to verify this hypothesis. Synthetic oligonucleotides bearing trans lesions can be obtained by bio-mimetic methods. However, this approach does not yield cis adducts. This report presents the first chemical synthesis of a cis mitosene DNA adduct. We also examined the stereopreference exhibited by the two drugs at the mononucleotide level by analyzing the formation of cis and trans adducts in the reaction of deoxyguanosine with MC or DMC using a variety of activation conditions. In addition, we performed Density Functional Theory calculations to evaluate the energies of these reactions. Direct alkylation under autocatalytic or bifunctional conditions yielded preferentially alpha adducts with both MC and DMC. DFT calculations showed that under bifunctional activation, the thermodynamically favored adducts are alpha, trans, for MC and beta, cis, for DMC. This suggests that the duplex DNA structure may stabilize/oriente the activated pro-drugs so that, with DMC, formation of the thermodynamically favored beta products are possible in a cellular environment.

  8. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome.

    PubMed

    Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu

    2015-01-01

    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo.

  9. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome

    PubMed Central

    Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu

    2015-01-01

    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo. PMID:26559182

  10. Conformational evaluation of DNA-carcinogen adducts using semi-empirical potential energy calculations

    SciTech Connect

    Verna, L.K.

    1992-01-01

    The covalent attachment of an aromatic amine to guanine C8 can produce a conformational change within the DNA molecule. This conformational change is likely to influence the altered DNA's biological capacity. The author used semi-empirical potential energy calculations to evaluate conformational patterns of DNA-aromatic amine adducts using the series: aniline, 4-aminobiphenyl, 2-aminofluorene and 1-aminopyrene. An exhaustive search was made of the conformational space for carcinogen modified two-base sequences. Information was incorporated into single stranded modified trimers. Modified strands were incorporated in duplex trimers. Nine-base modified duplexes were constructed and evaluated. This procedure produced distinctly different patterns for each aromatic amine investigated. It was apparent that the base sequence in which the carcinogen modification was found was crucial to the conformational change produced. At the dimer level, aniline allows both syn and anti guanine orientations at the carcinogen modification site. There were base-base and base-carcinogen stacked states, suggesting a flexible adduct easily able to assume many conformations. 4-Aminobiphenyl attachment resulted in low energy base-carcinogen stacked states, and a guanine torsion predominantly in a low syn orientation. The flexibility of this adduct was greatly reduced from that of the aniline adduct. 2-Aminofluorene adducts assumed more of a conformational mix. The major portion was base-base stacked with modified guanine anti, with a portion with base-carcinogen stacking and guanine syn or low syn. 1-Aminopyrene adducts were inflexible. The majority assumed a base-carcinogen stack with guanine syn. The conformational profiles of large modified pieces provided details of a unique low energy wedge conformation, in which aminofluorene, particularly, was able to fit into the minor groove with very little helix distortion.

  11. Kinetics of DNA adduct formation in the oral cavity after drinking alcohol

    PubMed Central

    Balbo, Silvia; Meng, Lei; Bliss, Robin L.; Jensen, Joni A.; Hatsukami, Dorothy K.; Hecht, Stephen S.

    2012-01-01

    Background Alcohol consumption is one of the top-10 risks for the worldwide burden of disease and an established cause of head and neck cancer as well as cancer at other sites. Acetaldehyde, the major metabolite of ethanol, reacts with DNA to produce adducts, which are critical in the carcinogenic process and can serve as biomarkers of exposure and possibly of disease risk. Acetaldehyde associated with alcohol consumption is considered “carcinogenic to humans”. We have previously developed the technology to quantify acetaldehyde-DNA adducts in human tissues, but there are no studies in the literature defining the formation and removal of acetaldehyde-DNA adducts in people who consumed alcohol. Methods We investigated levels of N2-ethylidene-dGuo, the major DNA adduct of acetaldehyde, in DNA from human oral cells at several time points after consumption of increasing alcohol doses. Ten healthy non-smokers were dosed once a week for three weeks. Mouthwash samples were collected before and at several time points after the dose. N2-Ethylidene-dGuo was measured as its NaBH3CN reduction product N2-ethyl-dGuo by LC-ESI-MS/MS. Results N2-ethylidene-dGuo levels increased as much as 100-fold from baseline within 4h after each dose for all subjects and in a dose responsive manner (p = 0.001). Conclusion These results demonstrate an effect of alcohol on oral cell DNA adduct formation, strongly supporting the key role of acetaldehyde in head and neck cancer caused by alcohol drinking. Impact Our results provide some of the first conclusive evidence linking exposure to a lifestyle carcinogen and kinetics of DNA adduct formation in humans. PMID:22301829

  12. Adducts with haemoglobin and with DNA in epichlorohydrin-exposed rats.

    PubMed

    Landin, H H; Segerbäck, D; Damberg, C; Osterman-Golkar, S

    1999-01-01

    Epichlorohydrin (1-chloro-2,3-epoxypropane; ECH) is an important industrial chemical and a carcinogen in experimental animals. The main aims of the present study were to characterize the adduct formation in female Wistar rats and to identify adducts that could potentially be used in human biomonitoring studies. The total binding of radioactivity to haemoglobin in rats administered 0, 0. 11, 0.22, 0.43, or 0.97 mmol [3H]ECH/kg body weight by i.p. injection, and sacrificed 24 h after treatment, was linearly related to a dose up to 0.43 mmol/kg body weight. The binding at the highest dose was higher than predicted by extrapolation from lower doses, indicating saturation of a metabolic process for elimination of ECH. Ion-exchange chromatography of a globin hydrolysate showed one major radioactivity peak corresponding to S-(3-chloro-2-hydroxypropyl)cysteine. The half-life of this adduct was estimated as about 4 days by analysis of globin from rats administered 0.43 mmol/kg body weight and sacrificed after 1, 2 and 9 days. Crosslinking of the adduct, presumably with glutathione, appeared to be the predominant secondary reaction. Hydrolysis of N-(3-chloro-2-hydroxypropyl)valine, the primary reaction product of ECH with N-terminal valine, would give N-(2,3-dihydroxypropyl)valine. A sensitive gas chromatography/mass spectrometry method for the dihydroxypropyl adduct was used to follow its formation and removal after administration of nonlabelled ECH (0.11 mmol/kg body weight). The level of this adduct reached a maximum of about 20 pmol/g globin after a few weeks, corresponding to about 0.1% of the initial binding of ECH to globin. N-7-(3-Chloro-2-hydroxypropyl)guanine was detected in rats administered 0.97 mmol [3H]ECH/kg body weight and sacrificed 6 h after treatment. The adduct levels in haemoglobin and DNA were compared with previously reported adduct levels in male Fischer 344 rats exposed to propylene oxide. Despite its higher chemical reactivity, the capacity of ECH

  13. Selective synthesis of mono- and bis-butenolide α-aminomethyl adducts.

    PubMed

    Talbi, Arbia; Arfaoui, Aïcha; Bsaibess, Talia; Lotfi Efrit, Mohamed; Gaucher, Anne; Prim, Damien; M Rabet, Hédi

    2017-03-30

    The selective installation of α-methylamine residues at the butenolide core is described using α-bromomethylene-γ-butenolide and primary as well as secondary amines in methanol at 0 °C. The preparation of mono- and bis-butenolide α-adducts is described. Bis-γ-butenolide adducts as well as mono α-aminomethyl-γ-butenolides can be selectively obtained depending on the nature of the reacting primary amine. In contrast, the use of secondary amines allows two different pathways leading either to the expected amino derivatives or to the formation of a C-O bond.

  14. Lack of bioavailability of dichlorobenzidine form diarylide azo pigments: molecular dosimetry for hemoglobin and DNA adducts.

    PubMed

    Sagelsdorff, P; Haenggi, R; Heuberger, B; Joppich-Kuhn, R; Jung, R; Weideli, H J; Joppich, M

    1996-03-01

    The hypothetical release of 3,3'-dichlorobenzidine (DCB) from two insoluble azo pigments and from a soluble azo dye was investigated in female Wistar rats for a 4 week treatment with 0.2% (w/w) Colour Index Pigment 13 (PY13) or 0.2% (w/w) Colour Index Pigment Yellow 17 (PY17) in the diet or 0.06% (w/v) Colour Index Direct Red 46 (DR46) in the drinking water. Steady-state DCB-hemoglobin adduct levels were determined by GC/MS with negative chemical ionization as well as DCB-DNA adduct levels in the liver by (32)P-postlabelling and compared with the respective adduct levels obtained in animals after treatment for 4 weeks with 0.00024, 0.0012 or 0.006% (w/v) DCB in the drinking water. A dose-proportional increase in adduct levels from 8.1 ng/g hemoglobin and 2.6 ng/g DNA (relative adduct level, RAL, 3.3x10(-9)) to 160 ng/g hemoglobin and 45.4 ng/g DNA (RAL 56.1x10(-9)) was observed in the DCB-treated rats. In rats treated with DR46 total adduct levels of 17.7 ng/g hemoglobin and 5.2 ng/g DNA (RAL 6.4x10(-9))were determined. No hemoglobin of DNA adducts were found in rats treated with PY17 in the diet, at a limit of detection of 0.1 ng/g hemoglobin and 0.08 ng/g DNA (RAL 0.1x10(-9)). In animals treated with PY13 in the diet no adducts or only minimal amounts slightly above the limit of detection could be identified. Taking into consideration that PY13 was contaminated with 0.02% of the respective soluble monoazo compound, it is concluded that the small amounts of DCB detected have been released from the contaminating soluble monoazo compound and not from insoluble PY13. The results of the present study demonstrate the lack of bioavailability of DCB from the diarylide azo pigments PY17 and PY13.

  15. DNA adducts in marine mussel Mytilus galloprovincialis living in polluted and unpolluted environments. Chapter 12. Book chapter

    SciTech Connect

    Kurelec, B.; Garg, A.; Krca, S.; Gupta, R.C.

    1990-01-01

    A generally applicable (32)P-postlabeling assay was used to examine the presence of DNA adducts in mussels experimentally exposed to known carcinogens and in mussels collected from sites impacted by wastewaters. Mussels exposed to seawater artificially polluted with 2-aminofluorene showed exclusively one adduct which was identified to be dG-C8-2-aminofluorene. Under the same experimental conditions, Diesel-2 oil did not induce any detectable adducts. When mussel digestive gland DNA was collected and analyzed from one unpolluted site, two moderately impacted sites, and one site heavily impacted by cannery wastewaters, mussel DNA from the unpolluted and only one moderately polluted site showed the presence of 6 to 10 adducts. This indicates they were not related to the pollution. This was further supported by the absence of dose-related adducts. Clear evidence for the presence of pollution-related DNA adducts was, however, found in juvenile mussels collected from an oil refinery site. One major and three minor adducts were detected in these mussels with no adducts detected in juvenile mussels from an unpolluted site.

  16. Iridium-catalysed dehydrocoupling of aryl phosphine-borane adducts: synthesis and characterisation of high molecular weight poly(phosphinoboranes).

    PubMed

    Paul, Ursula S D; Braunschweig, Holger; Radius, Udo

    2016-06-30

    The thermal dehydrogenative coupling of aryl phosphine-borane adducts with iridium complexes bearing a bis(phosphinite) pincer ligand is reported. This catalysis produces high molecular weight poly(phosphinoboranes) [ArPH-BH2]n (Ar = Ph, (p)Tol, Mes). Furthermore, we investigated the reactivity of these pincer complexes towards primary phosphines and their respective borane adducts on a stoichiometric scale.

  17. Immunohistochemical localization and quantification of the 3-(cystein-S-yl)-acetaminophen protein adduct in acetaminophen hepatotoxicity.

    PubMed

    Roberts, D W; Bucci, T J; Benson, R W; Warbritton, A R; McRae, T A; Pumford, N R; Hinson, J A

    1991-02-01

    Acetaminophen overdose causes severe hepatotoxicity in humans and laboratory animals, presumably by metabolism to N-acetyl-p-benzoquinone imine: and binding to cysteine groups as 3-(cystein-S-yl)acetaminophen-protein adduct. Antiserum specific for the adduct was used immunohistochemically to demonstrate the formation, distribution, and concentration of this specific adduct in livers of treated mice and was correlated with cell injury as a function of dose and time. Within the liver lobule, immunohistochemically demonstrable adduct occurred in a temporally progressive, central-to-peripheral pattern. There was concordance between immunohistochemical staining and quantification of the adduct in hepatic 10,000g supernate, using a quantitative particle concentration fluorescence immunoassay. Findings include: 1) immunochemically detectable adduct before the appearance of centrilobular necrosis, 2) distinctive lobular zones of adduct localization with subsequent depletion during the progression of toxicity, 3) drug-protein binding in hepatocytes at subhepatotoxic doses and before depletion of total hepatic glutathione, 4) immunohistochemical evidence of drug binding in the nucleus, and 5) adduct in metabolically active and dividing hepatocytes and in macrophagelike cells in the regenerating liver.

  18. INVESTIGATION OF THE RADICAL-MEDIATED PRODUCTION OF BENZENE OXIDE PROTEIN ADDUCTS IN VITRO AND IN VIVO

    EPA Science Inventory

    High background levels of benzene oxide (BO) adducts with hemoglobin and albumin (BO-Hb and BO-Alb) have been measured in unexposed humans and animals. To test the influence of radical-mediated pathways on production of these BO-protein adducts, we employed Fenton chemistry to...

  19. Identification of DNA adducts using HPLC/MS/MS following in vitro and in vivo experiments with arylamines and nitroarenes.

    PubMed

    Jones, Christopher R; Sabbioni, Gabriele

    2003-10-01

    Arylamines and nitroarenes are suspected of playing a key role in chemical carcinogenesis. Therefore, the study of DNA adduct formation is an important step to determine the genotoxic potential of these compounds. Calf thymus DNA was modified in vitro by reaction with activated N-hydroxyarylamines: 2-chloroaniline (2CA), 4-chloroaniline (4CA), 2-methylaniline (2MA), 4-methylaniline (4MA), 2,4-dimethylaniline (24DMA), 2,6-dimethylaniline (26DMA), 2-aminobiphenyl (2ABP), 3-aminobiphenyl (3ABP), and 4-aminobiphenyl (4ABP). Female Wistar rats (n = 2) were given a single dose of the above arylamines and their analogous nitro derivatives by oral gavage and sacrificed after 24 h. Hepatic DNA and in vitro modified DNA were hydrolyzed enzymatically to individual 2'-deoxyribonucleosides. Adducts were determined using HPLC/MS/MS by comparison to synthesized standards. The hydrolysis efficiency was monitored by HPLC with UV detection. Each arylamine described above formed adducts to 2'-deoxyguanosine and 2'-deoxyadenosine after in vitro reaction with DNA. DNA adducts were found in rats dosed with 4ABP or with 4-nitrobiphenyl. DNA adducts were not detected in rats dosed with 2CA, 4CA, 2MA, 4MA, 24DMA, 26DMA, 2ABP, 3ABP, 2-chloronitrobenzene, 4-chloronitrobenzene, 2-nitrotoluene, and 4-nitrotoluene. All compounds formed hydrolyzable hemoglobin adducts. Therefore, biologically available N-hydroxyarylamines yielded hemoglobin adducts but not hepatic DNA adducts, except for 4ABP.

  20. Incorporation and/or adduction of formic acid with DNA in vivo studied by HPLC-AMS

    NASA Astrophysics Data System (ADS)

    Zhu, Jiadan; Cheng, Yan; Sun, Hongfang; Wang, Haifang; Li, Yuankai; Liu, Yuanfang; Ding, Xingfang; Fu, Dongpo; Liu, Kexin; Wang, Deqing; Deng, Xiaoyong

    2010-04-01

    The contribution of incorporation and/or adduction of formic acid with liver DNA in mouse was investigated using accelerator mass spectrometry (AMS) associated with high performance liquid chromatography (HPLC). Four kinds of 5'-formylated adducts, which were prepared by the reaction of formic acid and deoxyribonucleosides in vitro, were used as references for the HPLC-AMS analysis of in vivo adduction. After the administration of sodium 14C-formate to mice, the liver DNA pellets were isolated and enzymatically digested to deoxyribonucleosides. A precise analysis of the hydrolysate by HPLC-AMS indicates that a majority of formic acid incorporates directly into DNA, whereas less than 1.5% might form instable formylated DNA adducts in vivo. The results greatly support the important perspective that formic acid is not carcinogenic. Moreover, this study demonstrates that a combination of HPLC with AMS is an essential means for the evaluation of DNA adduction.

  1. The analysis of high explosives by liquid chromatography/electrospray ionization mass spectrometry: multiplexed detection of negative ion adducts.

    PubMed

    Mathis, John A; McCord, Bruce R

    2005-01-01

    The negative ion electrospray ionization mass spectrometric (ESI-MS) detection of adducts of high explosives with chloride, formate, acetate, and nitrate was used to demonstrate the gas-phase interaction of neutral explosives with these anions. The relative intensities of the adduct species were determined to compare the competitive formation of the selected high explosives and anions. The relative stability of the adduct species varies, yielding preferential formation of certain anionic adducts with different high explosives. To exploit this effect, an isocratic high-performance liquid chromatography (HPLC)/ESI-MS method was developed and used for the simultaneous analysis of high explosives using two different techniques for the addition of the anionic additives; pre- and post-column. The results show that the pre-column approach provides similar results with improved selectivity for specific explosives. By detecting characteristic adduct species for each explosive, this method provides a qualitative and quantitative approach for the analysis and identification of high explosives.

  2. Phosphorous bonding in PCl3:H2O adducts: A matrix isolation infrared and ab initio computational studies

    NASA Astrophysics Data System (ADS)

    Joshi, Prasad Ramesh; Ramanathan, N.; Sundararajan, K.; Sankaran, K.

    2017-01-01

    Non-covalent interaction between PCl3 and H2O was studied using matrix isolation infrared spectroscopy and ab initio computations. Computations indicated that the adducts are stabilized through novel P⋯O type phosphorus bonding and conventional Psbnd Cl⋯H type hydrogen bonding interactions, where the former adduct is the global minimum. Experimentally, the P⋯O phosphorus bonded adduct was identified in N2 matrix, which was evidenced from the shifts in the vibrational wavenumbers of the modes involving PCl3 and H2O sub-molecules. Atoms in Molecules and Natural Bond Orbital analyses have been performed to understand the nature of interactions in the phosphorus and hydrogen bonded adducts. Interestingly, experimental evidence for the formation of higher PCl3sbnd H2O adduct was also observed in N2 matrix.

  3. Analysis of the polycyclic aromatic hydrocarbon content of petrol and diesel engine lubricating oils and determination of DNA adducts in topically treated mice by 32P-postlabelling.

    PubMed

    Carmichael, P L; Jacob, J; Grimmer, G; Phillips, D H

    1990-11-01

    Engine lubricating oils are known to accumulate carcinogenic polycyclic aromatic hydrocarbons (PAHs) during engine running. Oils from nine petrol-powered and 11 diesel-powered vehicles, in addition to samples of unused oil, were analysed for PAH content and ability to form DNA adducts when applied topically to mouse skin. The levels of 19 PAHs, determined by GC, were in total, approximately 22 times higher in used oils from petrol engines than in oils from diesel engines. Male Parkes mice were treated with 50 microliters of oil daily for 4 days before they were killed and DNA isolated from skin and lung tissue. DNA samples were analysed by nuclease P1-enhanced 32P-postlabelling. Used oils from both diesel and petrol engines showed several adduct spots on PEI-cellulose plates at total adduct levels of up to 0.57 fmol/microgram DNA [approximately 60 times greater than in experiments with samples of unused oil in which adduct levels (0.01-0.02 fmol adducts/microgram DNA) were close to the limit of detection]. Higher adduct levels were generally formed by petrol engine oils than by diesel engine oils. Lung DNA contained similar total adduct levels to those in skin although the adduct maps were less complex. Total adduct levels correlated with extent of oil use in the engine, the total PAH concentration in oils and with the concentrations of certain individual PAHs present in the oils. An adduct spot that co-eluted with that of the major benzo[a]pyrene-DNA adduct accounted for 9-26% of the total adducts in skin DNA, and approximately 8% of the adducts in lung DNA, of mice treated with petrol engine oils. A major, and as yet unidentified, adduct spot comprised up to 30% of the total adducts in skin DNA, and up to 89% of the total adducts in lung DNA, of these animals.

  4. Translesion Synthesis of the N(2)-2'-Deoxyguanosine Adduct of the Dietary Mutagen IQ in Human Cells: Error-Free Replication by DNA Polymerase κ and Mutagenic Bypass by DNA Polymerases η, ζ, and Rev1.

    PubMed

    Bose, Arindam; Millsap, Amy D; DeLeon, Arnie; Rizzo, Carmelo J; Basu, Ashis K

    2016-09-19

    Translesion synthesis (TLS) of the N(2)-2'-deoxyguanosine (dG-N(2)-IQ) adduct of the carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was investigated in human embryonic kidney 293T cells by replicating plasmid constructs in which the adduct was individually placed at each guanine (G1, G2, or G3) of the NarI sequence (5'-CG1G2CG3CC-3'). TLS efficiency was 38%, 29%, and 25% for the dG-N(2)-IQ located at G1, G2, and G3, respectively, which suggests that dG-N(2)-IQ is bypassed more efficiently by one or more DNA polymerases at G1 than at either G2 or G3. TLS efficiency was decreased 8-35% in cells with knockdown of pol η, pol κ, pol ι, pol ζ, or Rev1. Up to 75% reduction in TLS occurred when pol η, pol ζ, and Rev1 were simultaneously knocked down, suggesting that these three polymerases play important roles in dG-N(2)-IQ bypass. Mutation frequencies (MFs) of dG-N(2)-IQ at G1, G2, and G3 were 23%, 17%, and 11%, respectively, exhibiting a completely reverse trend of the previously reported MF of the C8-dG adduct of IQ (dG-C8-IQ), which is most mutagenic at G3 ( ( 2015 ) Nucleic Acids Res. 43 , 8340 - 8351 ). The major type of mutation induced by dG-N(2)-IQ was targeted G → T, as was reported for dG-C8-IQ. In each site, knockdown of pol κ resulted in an increase in MF, whereas MF was reduced when pol η, pol ι, pol ζ, or Rev1 was knocked down. The reduction in MF was most pronounced when pol η, pol ζ, and Rev1 were simultaneously knocked down and especially when the adduct was located at G3, where MF was reduced by 90%. We conclude that pol κ predominantly performs error-free TLS of the dG-N(2)-IQ adduct, whereas pols η, pol ζ, and Rev1 cooperatively carry out the error-prone TLS. However, in vitro experiments using yeast pol ζ and κ showed that the former was inefficient in full-length primer extension on dG-N(2)-IQ templates, whereas the latter was efficient in both error-free and error-prone extensions. We believe that the observed differences

  5. Mapping DNA adducts of mitomycin C and decarbamoyl mitomycin C in cell lines using liquid chromatography/ electrospray tandem mass spectrometry.

    PubMed

    Paz, Manuel M; Ladwa, Sweta; Champeil, Elise; Liu, Yanfeng; Rockwell, Sara; Boamah, Ernest K; Bargonetti, Jill; Callahan, John; Roach, John; Tomasz, Maria

    2008-12-01

    The antitumor antibiotic and cancer chemotherapeutic agent mitomycin C (MC) alkylates and crosslinks DNA, forming six major MC-deoxyguanosine adducts of known structures in vitro and in vivo. Two of these adducts are derived from 2,7-diaminomitosene (2,7-DAM), a nontoxic reductive metabolite of MC formed in cells in situ. Several methods have been used for the analysis of MC-DNA adducts in the past; however, a need exists for a safer, more comprehensive and direct assay of the six-adduct complex. Development of an assay, based on mass spectrometry, is described. DNA from EMT6 mouse mammary tumor cells, Fanconi Anemia-A fibroblasts, normal human fibroblasts, and MCF-7 human breast cancer cells was isolated after MC or 10-decarbamoyl mitomycin C (DMC) treatment of the cells, digested to nucleosides, and submitted to liquid chromatography electrospray-tandem mass spectrometry. Two fragments of each parent ion were monitored ("multiple reaction monitoring"). Identification and quantitative analysis were based on a standard mixture of six adducts, the preparation of which is described here in detail. The lower limit of detection of adducts is estimated as 0.25 pmol. Three initial applications of this method are reported as follows: (i) differential kinetics of adduct repair in EMT6 cells, (ii) analysis of adducts in MC- or DMC-treated Fanconi Anemia cells, and (iii) comparison of the adducts generated by treatment of MCF-7 breast cancer cells with MC and DMC. Notable results are the following: Repair removal of the DNA interstrand cross-link and of the two adducts of 2,7-DAM is relatively slow; both MC and DMC generate DNA interstrand cross-links in human fibroblasts, Fanconi Anemia-A fibroblasts, and MCF-7 cells as well as EMT6 cells; and DMC shows a stereochemical preference of linkage to the guanine-2-amino group opposite from that of MC.

  6. Structural water cluster as a possible proton acceptor in the adduct decay reaction of oat phototropin 1 LOV2 domain.

    PubMed

    Chan, Ruby H; Bogomolni, Roberto A

    2012-09-06

    LOV domains (Light, Oxygen, Voltage) are the light-sensory modules of phototropins, the blue-light photoreceptor kinases in plants, and of a wide variety of flavoproteins found in all three domains of life. These 12 kDa modules bind a flavin chromophore (FMN or FAD) noncovalently and undergo a photochemical activation in which the sulfur atom of a conserved cysteine forms an adduct to the C(4a) carbon of the flavin. The adduct breaks spontaneously in a base-catalyzed reaction involving a rate-limiting proton-transfer step, regenerating the dark state in seconds. This photocycle involves chromophore and protein structural changes that activate the C-terminal serine/threonine kinase. Previous studies (Biochemistry 2007, 46, 7016-7021) showed that decreased hydration obtained at high glycerol concentrations stabilizes the adduct state in a manner similar to that attained at low temperatures, resulting in much longer adduct decay times. This kinetic effect was attributed to an increased protein rigidity that hindered structural fluctuations necessary for the decay reaction. In this work, we studied the adduct decay kinetics of oat phototropin 1 (phot1) LOV2 at varying hydration using a specially designed chamber that allowed for measurement of UV-visible and FTIR spectra of the same samples. Therefore, we obtained LOV protein concentrations, adduct decay kinetics, and the different populations of bound water by deconvolution of the broad water absorption peak around 3500 cm(-1). A linear dependence of the adduct decay rate constant on the concentration of double and triple hydrogen-bonded waters strongly suggests that the adduct decay is a pseudo-first-order reaction in which both the adduct and the strongly bound waters are reactants. We suggest that a cluster of strongly bound water functions as the proton acceptor in the rate-limiting step of adduct decay.

  7. NEARTOWARN: A new EU-DG ECHO-supported project for the near-field tsunami early warning

    NASA Astrophysics Data System (ADS)

    Papadopoulos, G. A.

    2012-04-01

    The early warning for near-field (local) tsunamis, with travel times of no more than about 30 min. from the tsunami source to the closest coastal zones, is today a hot topic of great importance in the international effort to reduce the loss of human lives and to mitigate other tsunami risks. Particularly, in the Mediterranean region earthquakes, and more rarely volcanic eruptions and landslides, produce near-field tsunamis threatening nearly all the coastal zones but mainly those in the Hellenic Arc and Trench (South Peloponnese, Cyclades, Crete, Rhodes, SW Turkey), in the Corinth Gulf (Central Greece), in the Messina strait and the east Sicily (Italy) in the Ligurian Sea, the Algeria and the Balearic islands, in the west Mediterranean basin, and the Cyprus-Lebanon area in the easternmost Mediterranean. The North East Atlantic and Mediterranean Tsunami Warning System (NEAMTWS), which is under construction with the supervision of the Intergovernmental Oceanographic Commission, is oriented to issue warnings only in regional scales, that is for about 1 hour of tsunami propagation time. For near-field warning it is unrealistic to rely on a unique system for the entire basin. Instead, several local systems working on the basis of some joint principles but with local adjustements is the most promising solution. This is exactly the aim of the new project NEARToWARN (Near-field Tsunami Warning) which is supported by the EU DG-ECHO. Partnership includes the National Observatory of Athens (Coordinator, Greece), the University of Bologna (Italy), the University of Cyprus, the ACRI-ST (Sophia-Antipolis, France), the University of Cantabria (Spain) and the Municipility of Rhodes. The main concept is to develop a prototype local early tsunami warning system. To minimize the time for emergency in less than 30 sec, seismic alert devices (SED's) make the core component of the system. SED's are activated and send alerting signals as soon as a P-phase of seismic wave is detected in

  8. MONTH-LONG EVOLUTION OF THE D/G JUPITER IMPACT SITES FROM COMET P/SHOEMAKER-LEVY 9

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This series of snapshots, taken with NASA's Hubble Space Telescope, shows evolution of the comet P/Shoemaker-Levy 9 impact region called the D/G complex. This feature was produced by two nuclei of comet P/Shoemaker-Levy 9 that collided with Jupiter on 17 and 18 July 1994, respectively, and was later modified again by the impact of the S fragment on 21 July 1994. Upper Left: This first image was taken about 90 minutes after the G impact on 18 July 1994. Nearly all of the structure in this image was created by the impact of fragment G, although a small dark spot to the left was the remainder of small fragment D that collided one day earlier. The explosion of the nucleus in Jupiter's atmosphere created the unique ring structure, which may be analogous to a 'sonic boom' on earth. Though this structure is best seen for the G impact, it is not unique. Hubble reveals similar rings around several other fresh impact sites. They are all clear evidence for coherent outward motion of this wave phenomena. Upper right: This second image, obtained on 23 July, shows that the Jovian winds have swept the material into a striking 'curly-cue' structure. Lower left, right: The structure seen in earlier views has disappeared rapidly in the images taken on 30 July and 24 August, respectively. Almost all of the changes between the images are due to Jupiter's east-west winds that play a key role in the dispersing of the dark material. Hubble Space Telescope's high resolution will allow astronomers to continue to trace the impact debris as it is transported by the Jovian winds. This information promises to advance current understanding of the physics of Jupiter's atmosphere. These black and white images were taken in near-ultraviolet light with the Wide Field Planetary Camera 2. They have been processed to correct for the curvature of Jupiter, so that the impact region appears flat, as if the viewer were hovering directly overhead. Each image is centered on -46 degrees latitude and 28

  9. Month-long Evolution of the D/G Jupiter Impact Sites from Comet P/Shoemaker-Levy 9

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This series of snapshots, taken with NASA's Hubble Space Telescope, shows evolution of the comet P/Shoemaker-Levy 9 impact region called the D/G complex. This feature was produced by two nuclei of comet P/Shoemaker-Levy 9 that collided with Jupiter on 17 and 18 July 1994, respectively, and was later modified again by the impact of the S fragment on 21 July 1994.

    Upper Left: This first image was taken about 90 minutes after the G impact on 18 July 1994. Nearly all of the structure in this image was created by the impact of fragment G, although a small dark spot to the left was the remainder of small fragment D that collided one day earlier. The explosion of the nucleus in Jupiter's atmosphere created the unique ring structure, which may be analogous to a 'sonic boom' on Earth. Though this structure is best seen for the G impact, it is not unique. Hubble reveals similar rings around several other fresh impact sites. They are all clear evidence for coherent outward motion of this wave phenomena.

    Upper right: This second image, obtained on 23 July, shows that the Jovian winds have swept the material into a striking 'curly-cue' structure.

    Lower left, right: The structure seen in earlier views has disappeared rapidly in the images taken on 30 July and 24 August, respectively. Almost all of the changes between the images are due to Jupiter's east-west winds that play a key role in the dispersing of the dark material.

    Hubble Space Telescope's high resolution will allow astronomers to continue to trace the impact debris as it is transported by the Jovian winds. This information promises to advance current understanding of the physics of Jupiter's atmosphere.

    These black and white images were taken in near-ultraviolet light with the Wide Field Planetary Camera 2. They have been processed to correct for the curvature of Jupiter, so that the impact region appears flat, as if the viewer were hovering directly overhead. Each image is centered on -46 degrees

  10. Situational Restriction of Elevation in Adduction Relieved by Faden on the Medial Rectus

    PubMed Central

    Muralidhar, R.; Vijayalakshmi, P.; Sujatha, K.; Shetty, Shashikanth; Malay, K.; Rosenberg, Steve

    2016-01-01

    We describe a patient with situational restriction of elevation in adduction in his left eye. Clinical examination pointed to instability of the left medial rectus pulley. This was corrected by Faden on the medial rectus. The importance of this relatively new concept in identifying and treating orbital pulley instability is discussed. PMID:27162460

  11. Cytotoxic and mutagenic effects of specific carcinogen-DNA adducts in diploid human fibroblasts

    SciTech Connect

    McCormick, J.J.; Maher, V.M.

    1985-10-01

    A comparison of the cytotoxicity and mutagenicity of a series of carcinogens in normal diploid human fibroblasts and in cells deficient in one or more DNA repair processes has provided insight into the specific DNA adduct(s) responsible for these biological effects. The carcinogens tested include ultraviolet radiation; reactive derivatives of structurally related aromatic amides; metabolites of benzo(a)pyrene; the simple alkylating agents N-methyl-N'-nitro-N-nitrosoguanidine and N-ethyl-N-nitrosourea; and aflatoxin B/sub 1/ dichloride, a model for the reactive 2,3-epoxide of aflatoxin B/sub 1/. Exponentially growing cells were exposed to agents and assayed for mutations and cell killing. Cells deficient in repair of particular DNA adducts or lesions proved more sensitive to the agent causing those lesions than did normally repairing cells. Many of the carcinogens were compared for their mutagenic and/or cytotoxic effect, not only as a function of dose administered, but also as a function of the initial number of adducts or photoproducts induced in DNA and the number remaining at critical times posttreatment. The results demonstrated a high correlation between the number of DNA lesions remaining unexcised at the time the DNA was replicated and frequency of mutations induced. Comparative studies of the frequency of UV-induced transformation of normal and repair-deficient cells showed this also to be true for transformation.

  12. Determination and applications of the molar absorptivity of phenolic adducts with captopril and mesna.

    PubMed

    García-Molina, F; Muñoz-Muñoz, J L; García-Molina, M; Molina-Alarcon, M; García-Ruíz, P A; Tudela, J; Rodríguez-López, J N

    2009-02-25

    Captopril and mesna are molecules with a free thiol group, used as active ingredients due to their hypotensor and mucolytic properties, respectively. These compounds cross the hematoencephalic barrier and, due to the reactivity of their thiol group, can form adducts with the o-quinones formed during the oxidation of mono- and o-diphenols. Polyphenol oxidase from plants and fungi can be used as a tool for generating o-quinones in their action on o-diphenols and facilitate the formation of adducts in the presence of captopril or mesna. The spectrophotometric characterization of these adducts is useful from several points of view. Here, using the end-point method, which involves the exhaustion of oxygen in the medium, we determined the molar absorptivity of the adducts of different o-diphenols with captopril and mesna. Besides the analytical interest of this approach, we also use it to make a kinetic characterization of polyphenol oxidase as it acts on o-diphenolic substrates that produce unstable o-quinones.

  13. Oral Cell DNA Adducts as Potential Biomarkers for Lung Cancer Susceptibility in Cigarette Smokers.

    PubMed

    Hecht, Stephen S

    2017-01-17

    This perspective considers the use of oral cell DNA adducts, together with exposure and genetic information, to potentially identify those cigarette smokers at highest risk for lung cancer, so that appropriate preventive measures could be initiated at a relatively young age before too much damage has been done. There are now well established and validated analytical methods for the quantitation of urinary and serum metabolites of tobacco smoke toxicants and carcinogens. These metabolites provide a profile of exposure and in some cases lung cancer risk, but they do not yield information on the critical DNA damage parameter that leads to mutations in cancer growth control genes such as KRAS and TP53. Studies demonstrate a correlation between changes in the oral cavity and lung in cigarette smokers, due to the field effect of tobacco smoke. Oral cell DNA is readily obtained in contrast to DNA samples from the lung. Studies in which oral cell DNA and salivary DNA have been analyzed for specific DNA adducts are reviewed; some of the adducts identified have also been previously reported in lung DNA from smokers. The multiple challenges of developing a panel of oral cell DNA adducts that could be routinely quantified by mass spectrometry are discussed.

  14. Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms?

    PubMed

    Domingues, Rosário M; Domingues, Pedro; Melo, Tânia; Pérez-Sala, Dolores; Reis, Ana; Spickett, Corinne M

    2013-10-30

    Protein lipoxidation refers to the modification by electrophilic lipid oxidation products to form covalent adducts, which for many years has been considered as a deleterious consequence of oxidative stress. Oxidized lipids or phospholipids containing carbonyl moieties react readily with lysine to form Schiff bases; alternatively, oxidation products containing α,β-unsaturated moieties are susceptible to nucleophilic attack by cysteine, histidine or lysine residues to yield Michael adducts, overall corresponding to a large number of possible protein adducts. The most common detection methods for lipoxidized proteins take advantage of the presence of reactive carbonyl groups to add labels, or use antibodies. These methods have limitations in terms of specificity and identification of the modification site. The latter question is satisfactorily addressed by mass spectrometry, which enables the characterization of the adduct structure. This has allowed the identification of lipoxidized proteins in physiological and pathological situations. While in many cases lipoxidation interferes with protein function, causing inhibition of enzymatic activity and increased immunogenicity, there are a small number of cases where lipoxidation results in gain of function or activity. For certain proteins lipoxidation may represent a form of redox signaling, although more work is required to confirm the physiological relevance and mechanisms of such processes. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.

  15. 4-HNE adduct stability characterized by collision-induced dissociation and electron transfer dissociation mass spectrometry.

    PubMed

    Fritz, Kristofer S; Kellersberger, Katherine A; Gomez, Jose D; Petersen, Dennis R

    2012-04-16

    4-Hydroxynonenal (4-HNE) alters numerous proteomic and genomic processes. Understanding chemical mechanisms of 4-HNE interactions with biomolecules and their respective stabilities may lead to new discoveries in biomarkers for numerous diseases of oxidative stress. Collision-induced dissociation (CID) and electron transfer dissociation (ETD) MS/MS were utilized to examine the stability of a 4-HNE-Cys Michael adduct. CID conditions resulted in the neutral loss of 4-HNE, also known as a retro-Michael addition reaction (RMA). Consequently, performing ETD fragmentation on this same adduct did not result in RMA. Interestingly, 4-HNE adduct reduction via sodium borohydride (NaBH₄) treatment stabilized against the CID induced RMA. In a direct comparison of three forms of 4-HNE adducts, computational modeling revealed sizable shifts in the shape and orientation of the lowest unoccupied molecular orbital (LUMO) density around the 4-HNE-Cys moiety. These findings demonstrate that ETD MS/MS analysis can be used to improve the detection of 4-HNE-protein modifications by preventing RMA reactions from occurring.

  16. Hydroxynonenal inactivates cathepsin B by forming Michael adducts with active site residues.

    PubMed

    Crabb, John W; O'Neil, June; Miyagi, Masaru; West, Karen; Hoff, Henry F

    2002-04-01

    Oxidation of plasma low-density lipoprotein (oxLDL) generates the lipid peroxidation product 4-hydroxy-2 nonenal (HNE) and also reduces proteolytic degradation of oxLDL and other proteins internalized by mouse peritoneal macrophages in culture. This leads to accumulation of undegraded material in lysosomes and formation of ceroid, a component of foam cells in atherosclerotic lesions. To explore the possibility that HNE contributes directly to the inactivation of proteases, structure-function studies of the lysosomal protease cathepsin B have been pursued. We found that treatment of mouse macrophages with HNE reduces degradation of internalized maleyl bovine serine albumin and cathepsin B activity. Purified bovine cathepsin B treated briefly with 15 microM HNE lost approximately 76% of its protease activity and also developed immunoreactivity with antibodies to HNE adducts in Western blot analysis. After stabilization of the potential Michael adducts by sodium borohydride reduction, modified amino acids were localized within the bovine cathepsin B protein structure by mass spectrometric analysis of tryptic peptides. Michael adducts were identified by tandem mass spectrometry at cathepsin B active site residues Cys 29 (mature A chain) and His 150 (mature B chain). Thus, covalent interaction between HNE and critical active site residues inactivates cathepsin B. These results support the hypothesis that the accumulation of undegraded macromolecules in lysosomes after oxidative damage are caused in part by direct protease inactivation by adduct formation with lipid peroxidation products such as HNE.

  17. Crystal structure of ball-milled mixture of sodium chloride and magnesium chloride-ethanol adduct

    SciTech Connect

    Jiang Xue; Tian Xiuzhi; Fan Zhiqiang

    2008-02-05

    NaCl doped MgCl{sub 2}.nEtOH adducts were prepared by ball-milling MgCl{sub 2}.2.5EtOH with NaCl. Both the ball-milled MgCl{sub 2}.nEtOH/NaCl mixture and pure MgCl{sub 2}.2.5EtOH adducts were analyzed by X-ray diffraction (XRD), transmission electron microscope (TEM), thermogravimetry (TG) and differencial scanning calorimetry (DSC). A simple MgCl{sub 2}.nEtOH/NaCl mixture without ball-milling treatment was also studied for comparison. Two kinds of mixed crystals, Na{sub 2}MgCl{sub 4} and NaMgCl{sub 3}, were found to be formed in a ball-milled mixture that contained 16 mol.% NaCl. TG and DSC analysis of the samples also provided indirect evidences supporting the presence of the mixed crystals in the ball-milled mixture. Adding certain amounts of NaCl in MgCl{sub 2}.2.5EtOH adduct, either by co-milling or by simple mixing, greatly increased the thermal stability of the adduct, but thermal decomposition behaviour of the ball-milled mixture was still different from that of a simple mixture.

  18. Gender differences in hip adduction motion and torque during a single-leg agility maneuver.

    PubMed

    Hewett, Timothy E; Ford, Kevin R; Myer, Gregory D; Wanstrath, Kim; Scheper, Melia

    2006-03-01

    The purpose of this study was to identify gender differences in hip motion and kinetics during a single leg bidirectional deceleration maneuver. The rationale for the development of this maneuver was to test dynamic hip control during the deceleration of three different types of single-leg landings. The hypothesis was that female athletes would display increased hip adduction angles and moments during the maneuver compared to male athletes. Thirty-six collegiate soccer players (19 female, 17 male) volunteered to participate. Subjects were instructed to start the maneuver balancing on one foot, to hop through an agility-speed ladder on the same leg "up two boxes, back one, and then up one and hold it." Hip kinematics and kinetics during all three landings were examined. Females demonstrated significantly greater hip adduction angles at initial contact during all three landings and greater maximal hip adduction during landings 1 and 2 compared to male athletes. Females also exhibited significantly increased external hip adduction moments during landing 1, however, no differences were found between genders during landings 2 and 3.

  19. Acetonitrile adduct formation as a sensitive means for simple alcohol detection by LC-MS.

    PubMed

    Bogseth, Roy; Edgcomb, Eric; Jones, Christopher M; Chess, Edward K; Hu, Peifeng

    2014-11-01

    Simple alcohols formed protonated acetonitrile adducts containing up to two acetonitrile molecules when analyzed by ESI or APCI in the presence of acetonitrile in the solvent. These acetonitrile adducts underwent dissociation to form a nitrilium ion, also referred to as the substitution ion. Diols and triols behaved differently. In ESI, they formed only one acetonitrile adduct containing one acetonitrile. The S ion was not observed in ESI and was only weakly observed from the dissociation of the (M + ACN + H)(+) ion. On the other hand, the S ion was abundantly formed from the diols in APCI. This formation of acetonitrile adducts and substitution ion from simple alcohols/diols offers an opportunity to detect simple alcohols/diols sensitively by LC-MS interfaced by ESI or APCI. The utility of this chemistry was demonstrated in a method developed for the quantification of cyclohexanol in rat plasma by monitoring the CID-induced fragmentation from the S ion to a fragment ion.

  20. The use of lithiated adducts for structural analysis of acylglycerols by MS-ESI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrospray ionization mass spectrometry (ESI-MS) using lithium adducts is the method of choice for the analysis of acyglycerols. The method can be used for the identification of the structures of fatty acid constituents, including the number and location of double bonds and hydroxyl groups. The me...

  1. Quantification of acylfulvene- and illudin S-DNA adducts in cells with variable bioactivation capacities

    PubMed Central

    Pietsch, Kathryn E.; van Midwoud, Paul M.; Villalta, Peter W.; Sturla, Shana J.

    2013-01-01

    Illudin S and its semi-synthetic analogue acylfulvene are structurally similar but elicit different biological responses. AF is a bioreductive alkylating anti-cancer agent with a favorable therapeutic index, while illudin S is in general highly toxic. AF toxicity is dependent on the reductase enzyme prostaglandin reductase 1 (PTGR1) for activation to a cytotoxic reactive intermediate. While illudin S can be metabolized by PTGR1, available data suggest that its toxicity does not correspond with PTGR1 function. The goal of this study was to understand how drug cytotoxicity relates to cellular bioactivation capacity, and the identity and quantity of AF- or illudin S-DNA adducts. The strategy involved identification of novel illudin S-DNA adducts and their quantitation in a newly engineered SW-480 colon cancer cell line that stably overexpresses PTGR1 (PTGR1-480). These data were compared with cytotoxicity data for both compounds in PTGR1-480 vs. normal SW-480 cells, demonstrating that AF forms more DNA adducts and is more cytotoxic in cells with higher levels of PTGR1, whereas illudin S cytotoxicity and adduct formation is not influenced by PTGR1 levels. Results are discussed in the context of an overall model for how changes in relative propensities of these compounds to undergo cellular processes, such as bioactivation, contribute to DNA damage and cytotoxicity. PMID:23227857

  2. DNA Adducts from Anticancer Drugs as Candidate Predictive Markers for Precision Medicine

    PubMed Central

    2016-01-01

    Biomarker-driven drug selection plays a central role in cancer drug discovery and development, and in diagnostic strategies to improve the use of traditional chemotherapeutic drugs. DNA-modifying anticancer drugs are still used as first line medication, but drawbacks such as resistance and side effects remain an issue. Monitoring the formation and level of DNA modifications induced by anticancer drugs is a potential strategy for stratifying patients and predicting drug efficacy. In this perspective, preclinical and clinical data concerning the relationship between drug-induced DNA adducts and biological response for platinum drugs and combination therapies, nitrogen mustards and half-mustards, hypoxia-activated drugs, reductase-activated drugs, and minor groove binding agents are presented and discussed. Aspects including measurement strategies, identification of adducts, and biological factors that influence the predictive relationship between DNA modification and biological response are addressed. A positive correlation between DNA adduct levels and response was observed for the majority of the studies, demonstrating the high potential of using DNA adducts from anticancer drugs as mechanism-based biomarkers of susceptibility, especially as bioanalysis approaches with higher sensitivity and throughput emerge. PMID:27936622

  3. The Utility of Naphthyl-Keratin Adducts as Biomarkers for Jet-Fuel Exposure

    EPA Science Inventory

    We investigated the association between biomarkers of dermal exposure, naphthyl-keratin adducts (NKA), and urine naphthalene biomarker levels in 105 workers routinely exposed to jet-fuel. A moderate correlation was observed between NKA and urine naphthalene levels (p = 0.061). Th...

  4. Biotransformation of a cage-like diels-alder adduct and derivatives by Mucor ramosissimus samutsevitsch

    PubMed Central

    Ito, Felicia Megumi; Mena, Ana Elisa Maciel; Marques, Maria Rita; de Lima, Dênis Pires; Beatriz, Adilson

    2009-01-01

    The present study aimed to evaluate the ability for biotransformation of the Diels-Alder adduct tricyclo[6.2.1.02,7]undeca-4,9-dien-3,6-dione (1) and two synthetic derivatives by the saprobe fungus Mucor ramosissimus Samutsevitsch. Products from oxidation, isomerization and, regioselective and enantioselective reduction were achieved. PMID:24031400

  5. Adduct supported analysis of γ-hydroxybutyrate in human serum with LC-MS/MS.

    PubMed

    Dziadosz, Marek; Weller, Jens-Peter; Klintschar, Michael; Teske, Jörg

    2013-08-01

    To avoid the detection of small fragmentation products of γ-hydroxybutyrate (GHB), a liquid chromatography-tandem mass spectrometry GHB quantification method in human serum supported by adduct formation was developed and validated. The continuous infusion of GHB/GHB-D6 made the identification of two adducts possible and GHB/GHB-D6 sodium acetate adduct fragmentation was used as target mass transition. A Luna 5 μm C18 (2) 100 A, 150 mm × 2 mm analytical column and elution with a programmed flow of the mobile phase consisting of 10% A (H2O/methanol = 95/5, v/v) and 90% B (H2O/methanol = 3/97, v/v), both with 10 mM ammonium acetate and 0.1% acetic acid (pH = 3.2), were used. Protein precipitation with 1 mL of the mobile phase B was used as the sample preparation. The calculated limit of detection/quantification was 1 μg/mL. The presented study shows that the fragmentation of GHB sodium acetate adducts is an effective way of quantification of this small molecule and is an interesting alternative to other methods based on the detection of ions smaller than 85 Da. This fact together with the short analysis time of 3 min and the fast sample preparation make this method very attractive for forensic/clinical application.

  6. Oral Cell DNA Adducts as Potential Biomarkers for Lung Cancer Susceptibility in Cigarette Smokers

    PubMed Central

    Hecht, Stephen S.

    2017-01-01

    This perspective considers the use of oral cell DNA adducts, together with exposure and genetic information, to potentially identify those cigarette smokers at highest risk for lung cancer, so that appropriate preventive measures could be initiated at a relatively young age before too much damage has been done. There are now well established and validated analytical methods for the quantitation of urinary and serum metabolites of tobacco smoke toxicants and carcinogens. These metabolites provide a profile of exposure and in some cases lung cancer risk. But they do not yield information on the critical DNA damage parameter that leads to mutations in cancer growth control genes such as KRAS and TP53. Studies demonstrate a correlation between changes in the oral cavity and lung in cigarette smokers, due to the field effect of tobacco smoke. Oral cell DNA is readily obtained in contrast to DNA samples from the lung. Studies in which oral cell DNA and salivary DNA have been analyzed for specific DNA adducts are reviewed; some of the adducts identified have also been previously reported in lung DNA from smokers. The multiple challenges of developing a panel of oral cell DNA adducts that could be routinely quantified by mass spectrometry are discussed. PMID:28092948

  7. Conformational, IR spectroscopic and electronic properties of conium alkaloids and their adducts with C60 fullerene

    NASA Astrophysics Data System (ADS)

    Zabolotnyi, M. A.; Prylutskyy, Yu I.; Poluyan, N. A.; Evstigneev, M. P.; Dovbeshko, G. I.

    2016-08-01

    Conformational, IR spectroscopic and electronic properties of the components of Conium alkaloids (Conium maculatum) in aqueous environment were determined by model calculations and experiment. With the help of FT-IR spectroscopy the possibility of formation of an adduct between γ-coniceine alkaloid and C60 fullerene was demonstrated, which is important for further application of conium analogues in biomedical purposes.

  8. N-acetyl cysteine directed detoxification of 2-hydroxyethyl methacrylate by adduct formation.

    PubMed

    Nocca, Giuseppina; D'Antò, Vincenzo; Desiderio, Claudia; Rossetti, Diana Valeria; Valletta, Rosa; Baquala, Adriana Marquez; Schweikl, Helmut; Lupi, Alessandro; Rengo, Sandro; Spagnuolo, Gianrico

    2010-03-01

    Cytotoxicity of the dental resin monomer 2-hydroxyethyl methacrylate (HEMA) and the protective effects of N-acetyl cysteine (NAC) on monomer-induced cell damage are well demonstrated. The aim of our study was to analyze the hypothesis that the protection of NAC from HEMA cytotoxicity might be due to direct NAC adduct formation. To this end, using HPLC we first measured the actual intracellular HEMA concentrations able to cause toxic effects on 3T3-fibroblasts and then determined the decrease in intracellular and extracellular HEMA levels in the presence of NAC. In addition, by capillary electrophoresis coupled with mass spectrometry analysis (CE-MS), we evaluated NAC-HEMA adduct formation. HEMA reduced 3T3 cell vitality in a dose- and time-dependent manner. The concentration of HEMA inside the cells was 15-20 times lower than that added to the culture medium for cell treatment (0-8 mmol/L). In the presence of 10 mmol/L NAC, both intracellular and extracellular HEMA concentrations greatly decreased in conjunction with cytotoxicity. NAC-HEMA adducts were detected both in the presence and absence of cells. Our findings suggest that the in vitro detoxification ability of NAC against HEMA-induced cell damage occurs through NAC adduct formation. Moreover, we provide evidence that the actual intracellular concentration of HEMA able to cause cytotoxic effects is at least one magnitude lower than that applied extracellularly.

  9. Noni juice reduces lipid peroxidation-derived DNA adducts in heavy smokers.

    PubMed

    Wang, Mian-Ying; Peng, Lin; Jensen, Claude J; Deng, Shixin; West, Brett J

    2013-03-01

    Food plants provide important phytochemicals which help improve or maintain health through various biological activities, including antioxidant effects. Cigarette smoke-induced oxidative stress leads to the formation of lipid hydroperoxides (LOOHs) and their decomposition product malondialdehyde (MDA), both of which cause oxidative damage to DNA. Two hundred forty-five heavy cigarette smokers completed a randomized, double-blind, placebo-controlled clinical trial designed to investigate the effect of noni juice on LOOH- and MDA-DNA adducts in peripheral blood lymphocytes (PBLs). Volunteers drank noni juice or a fruit juice placebo every day for 1 month. DNA adducts were measured by (32)P postlabeling analysis. Drinking 29.5-118 mL of noni juice significantly reduced adducts by 44.6-57.4%. The placebo, which was devoid of iridoid glycosides, did not significantly influence LOOH- and MDA-DNA adduct levels in current smokers. Noni juice was able to mitigate oxidative damage of DNA in current heavy smokers, an activity associated with the presence of iridoids.

  10. Creating Context for the Use of DNA Adduct Data in Risk Assessment

    EPA Science Inventory

    Assessments of human cancer risk require the integration of diverse types of data. Advancing technologies for quantitative measurements at the sub-cellular domain raise the critical issue of interpretation and use of DNA adduct data in context with current understanding of cancer...

  11. Adduct formation of 4-hydroxynonenal and malondialdehyde with elongation factor-2 in vitro and in vivo.

    PubMed

    Argüelles, Sandro; Machado, Alberto; Ayala, Antonio

    2009-08-01

    Protein synthesis is universally affected by aging in all organisms. There is no clear consensus about the mechanism underlying the decline of translation with aging. Previous reports from our laboratory have shown that the elongation step is especially affected with aging as a consequence of alterations in elongation factor-2 (eEF-2), the monomeric protein that catalyzes the movement of the ribosome along the mRNA during protein synthesis. eEF-2 seems to be specifically affected by lipid peroxidant compounds, which concomitantly produce several reactive, toxic aldehydes, such as MDA and HNE. These aldehydes are able to form adducts with proteins that lead to their inactivation. In this paper we studied the formation of adducts between MDA or HNE and eEF-2. The study was performed both in vitro, using liver homogenates treated with cumene hydroperoxide, and in vivo using young control rats, treated with the same oxidant, and 12-and 24-month-old rats. In all cases we found a decrease in the levels of eEF-2, an increase in the amount of lipid peroxidation, and a concomitant formation of adducts between eEF-2 and MDA or HNE. The results suggest that one possible mechanism responsible for the decline of protein synthesis during aging could be the alteration in eEF-2 levels, secondary to lipid peroxidation and adduct formation with these aldehydes.

  12. MALDI-TOF analysis of steroid/PAH-modified DNA adducts at the femtomole level

    SciTech Connect

    Gooden, J.K.; Gross, M.L.; Stack, D.

    1995-12-31

    Covalent binding of polycyclic aromatic hydrocarbons (PAH`s) and steroids to DNA to form adducts is one of the first events in the process of tumor initiation in carcinogenesis. Structure elucidation and characterization of these adducts provide important information that leads to further understanding of their biological metabolic pathways. In in vivo and in vitro steroid/PAH-DNA binding studies, the reaction products (adducts) are often of low amount (low picomole to femtomole). Previous results from this laboratory have shown that the sensitivity of MALDI-TOF can be improved by proper matrix selection. An increase in sensitivity can also be obtained with the use of d-fucose as a co-matrix. In this study 4-phenyl-{alpha}-cyanocinnamic acid, PCC, 4-benzyloxy-{alpha}-cyanocinnamic acid, BCC, ferulic acid, FA, {alpha}-cyano-4-hydroxycinnamic acid, 4HCCA, and 3-(2-naphthyl)-2-cyanoacrylic NCA, were used in the determination of the limit of detection for two different DNA adducts dibenzocarbazole-5-N7Ade, and 4-hydroxyestrone-N7Gua.

  13. DNA adducts induced by in vitro activation of extracts of diesel and biodiesel exhaust particles

    EPA Science Inventory

    AbstractContext: Biodiesel and biodiesel-blend fuels offer a renewable alternative to petroleum diesel, but few data are available concerning the carcinogenic potential of biodiesel exhausts. Objectives: We compared the formation of covalent DNA adducts by the in vitro metabol...

  14. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity

    PubMed Central

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury. PMID:26208104

  15. Inhibition by resistant starch of red meat-induced promutagenic adducts in mouse colon.

    PubMed

    Winter, Jean; Nyskohus, Laura; Young, Graeme P; Hu, Ying; Conlon, Michael A; Bird, Anthony R; Topping, David L; Le Leu, Richard K

    2011-11-01

    Population studies have shown that high red meat intake may increase colorectal cancer risk. Our aim was to examine the effect of different amounts and sources of dietary protein on induction of the promutagenic adduct O(6)-methyl-2-deoxyguanosine (O(6)MeG) in colonocytes, to relate these to markers of large bowel protein fermentation and ascertain whether increasing colonic carbohydrate fermentation modified these effects. Mice (n = 72) were fed 15% or 30% protein as casein or red meat or 30% protein with 10% high amylose maize starch as the source of resistant starch. Genetic damage in distal colonocytes was detected by immunohistochemical staining for O(6)MeG and apoptosis. Feces were collected for measurement of pH, ammonia, phenols, p-cresol, and short-chain fatty acids (SCFA). O(6)MeG and fecal p-cresol concentrations were significantly higher with red meat than with casein (P < 0.018), with adducts accumulating in cells at the crypt apex. DNA adducts (P < 0.01) and apoptosis (P < 0.001) were lower and protein fermentation products (fecal ammonia, P < 0.05; phenol, P < 0.0001) higher in mice fed resistant starch. Fecal SCFA levels were also higher in mice fed resistant starch (P < 0.0001). This is the first demonstration that high protein diets increase promutagenic adducts (O(6)MeG) in the colon and dietary protein type seems to be the critical factor. The delivery of fermentable carbohydrate to the colon (as resistant starch) seems to switch from fermentation of protein to that of carbohydrate and a reduction in adduct formation, supporting previous observations that dietary resistant starch opposes the mutagenic effects of dietary red meat.

  16. Correlations between Photodegradation of Bisretinoid Constituents of Retina and Dicarbonyl Adduct Deposition*

    PubMed Central

    Zhou, Jilin; Ueda, Keiko; Zhao, Jin; Sparrow, Janet R.

    2015-01-01

    Non-enzymatic collagen cross-linking and carbonyl adduct deposition are features of Bruch's membrane aging in the eye, and disturbances in extracellular matrix turnover are considered to contribute to Bruch's membrane thickening. Because bisretinoid constituents of the lipofuscin of retinal pigment epithelial (RPE) cells are known to photodegrade to mixtures of aldehyde-bearing fragments and small dicarbonyls (glyoxal (GO) and methylglyoxal (MG)), we investigated RPE lipofuscin as a source of the reactive species that covalently modify protein side chains. Abca4−/− and Rdh8−/−/Abca4−/− mice that are models of accelerated bisretinoid formation were studied and pre-exposure of mice to 430 nm light enriched for dicarbonyl release by bisretinoid photodegradation. MG protein adducts were elevated in posterior eyecups of mutant mice, whereas carbonylation of an RPE-specific protein was observed in Abca4−/− but not in wild-type mice under the same conditions. Immunolabeling of cryostat-sectioned eyes harvested from Abca4−/− mice revealed that carbonyl adduct deposition in Bruch's membrane was accentuated. Cell-based assays corroborated these findings in mice. Moreover, the receptor for advanced glycation end products that recognizes MG and GO adducts and glyoxylase 1 that metabolizes MG and GO were up-regulated in Abca4−/− mice. Additionally, in acellular assays, peptides were cross-linked in the presence of A2E (adduct of two vitamin A aldehyde and ethanolamine) photodegradation products, and in a zymography assay, reaction of collagen IV with products of A2E photodegradation resulted in reduced cleavage by the matrix metalloproteinases MMP2 and MMP9. In conclusion, these mechanistic studies demonstrate a link between the photodegradation of RPE bisretinoid fluorophores and aging changes in underlying Bruch's membrane that can confer risk of age-related macular degeneration. PMID:26400086

  17. PAH-DNA adducts in cord blood and fetal and child development in a Chinese cohort

    SciTech Connect

    Tang, D.L.; Li, T.Y.; Liu, J.J.; Chen, Y.H.; Qu, L.R.; Perera, F.

    2006-08-15

    Polycyclic aromatic hydrocarbons (PAHs) are an important class of toxic pollutants released by fossil fuel combustion. Other pollutants include metals and particulate matter. PAH-DNA adducts, or benzo(a)pyrene (BaP) adducts as their proxy, provide a chemical-specific measure of individual biologically effective doses that have been associated with increased risk of cancer and adverse birth outcomes. In the present study we examined the relationship between prenatal PAH exposure and fetal and child growth and development in Tongliang, China, where a seasonally operated coal-fired power plant was the major pollution source. In a cohort of 150 nonsmoking women and their newborns enrolled between 4 March 2002 and 19 June 2002, BaP-DNA adducts were measured in maternal and umbilical cord blood obtained at delivery. High PAH-DNA adduct levels (above the median of detectable adduct level) were associated with decreased birth head circumference (p = 0.057) and reduced children's weight at 18 months, 24 months, and 30 months of age (p {lt} 0.05), after controlling for potential confounders. In addition, in separate models, longer duration of prenatal exposure was associated with reduced birth length (p = 0.033) and reduced children's height at 18 (p = 0.001), 24 (p {lt} 0.001), and 30 months of age (p {lt} 0.001). The findings suggest that exposure to elevated levels of PAHS, with the Tongliang power plant being a significant source, is associated with reduced fetal and child growth in this population.

  18. Covalent adduct formation between the plasmalogen-derived modification product 2-chlorohexadecanal and phloretin

    PubMed Central

    Üllen, Andreas; Nusshold, Christoph; Glasnov, Toma; Saf, Robert; Cantillo, David; Eibinger, Gerald; Reicher, Helga; Fauler, Günter; Bernhart, Eva; Hallstrom, Seth; Kogelnik, Nora; Zangger, Klaus; Oliver Kappe, C.; Malle, Ernst; Sattler, Wolfgang

    2015-01-01

    Hypochlorous acid added as reagent or generated by the myeloperoxidase (MPO)-H2O2-Cl− system oxidatively modifies brain ether-phospholipids (plasmalogens). This reaction generates a sn2-acyl-lysophospholipid and chlorinated fatty aldehydes. 2-Chlorohexadecanal (2-ClHDA), a prototypic member of chlorinated long-chain fatty aldehydes, has potent neurotoxic potential by inflicting blood–brain barrier (BBB) damage. During earlier studies we could show that the dihydrochalcone-type polyphenol phloretin attenuated 2-ClHDA-induced BBB dysfunction. To clarify the underlying mechanism(s) we now investigated the possibility of covalent adduct formation between 2-ClHDA and phloretin. Coincubation of 2-ClHDA and phloretin in phosphatidylcholine liposomes revealed a half-life of 2-ClHDA of approx. 120 min, decaying at a rate of 5.9 × 10−3 min−1. NMR studies and enthalpy calculations suggested that 2-ClHDA-phloretin adduct formation occurs via electrophilic aromatic substitution followed by hemiacetal formation on the A-ring of phloretin. Adduct characterization by high-resolution mass spectroscopy confirmed these results. In contrast to 2-ClHDA, the covalent 2-ClHDA-phloretin adduct was without adverse effects on MTT reduction (an indicator for metabolic activity), cellular adenine nucleotide content, and barrier function of brain microvascular endothelial cells (BMVEC). Of note, 2-ClHDA-phloretin adduct formation was also observed in BMVEC cultures. Intraperitoneal application and subsequent GC–MS analysis of brain lipid extracts revealed that phloretin is able to penetrate the BBB of C57BL/6J mice. Data of the present study indicate that phloretin scavenges 2-ClHDA, thereby attenuating 2-ClHDA-mediated brain endothelial cell dysfunction. We here identify a detoxification pathway for a prototypic chlorinated fatty aldehyde (generated via the MPO axis) that compromises BBB function in vitro and in vivo. PMID:25576489

  19. Leptin influences estrogen metabolism and increases DNA adduct formation in breast cancer cells

    PubMed Central

    Shouman, Samia; Wagih, Mohamed; Kamel, Marwa

    2016-01-01

    Objective: The elevated incidence of obesity has been paralleled with higher risks of breast cancer. High adiposity increases leptin secretion from adipose tissue, which in turn increases cancer cell proliferation. The interplay between leptin and estrogen is one of the mechanisms through which leptin influences breast carcinogenesis. An unbalanced estrogen metabolism increases the formations of catechol estrogen quinones, DNA adducts, and cancer mutations. This study aims to investigate the effect of leptin on some estrogen metabolic enzymes and DNA adduction in breast cancer cells. Methods: High performance liquid chromatography (HPLC) was performed to analyze the DNA adducts 4-OHE1[E2]-1-N3 adenine and 4-OHE1[E2]-1-N7 guanine. Reporter gene assay, real time reverse transcription polymerase chain reaction (real time RT-PCR), and Western blot were used to assess the expression of estrogen metabolizing genes and enzymes: Cytochrome P-450 1B1 (CYP1B1), Nicotinamide adenine dinucleotide phosphate-quinone oxidoreductase1 (NQO1), and Catechol-O-methyl transferase (COMT). Results: Leptin significantly increased the DNA adducts 4-OHE1[E2]-1-N3 adenine and 4-OHE1[E2]-1-N7 guanine. Furthermore, leptin significantly upregulated CYP1B1 promoter activity and protein expression. The luciferase promoter activities of NQO1 and mRNA levels were significantly reduced. Moreover, leptin greatly reduced the reporter activities of the COMT-P1 and COMT-P2 promoters and diminished the protein expression of COMT. Conclusions: Leptin increases DNA adduct levels in breast cancer cells partly by affecting key genes and enzymes involved in estrogen metabolism. Thus, increased focus should be directed toward leptin and its effects on the estrogen metabolic pathway as an effective approach against breast cancer. PMID:28154783

  20. Role of CYP1B1 in PAH-DNA adduct formation and breast cancer risk

    SciTech Connect

    Goth-Goldstein, Regine; Russell, Marion L.; Muller, A.P.; Caleffi, M.; Eschiletti, J.; Graudenz, M.; Sohn, Michael D.

    2010-04-01

    This study investigated the hypothesis that increased exposure to polycyclic aromatic hydrocarbons (PAHs) increases breast cancer risk. PAHs are products of incomplete burning of organic matter and are present in cigarette smoke, ambient air, drinking water, and diet. PAHs require metabolic transformation to bind to DNA, causing DNA adducts, which can lead to mutations and are thought to be an important pre-cancer marker. In breast tissue, PAHs appear to be metabolized to their cancer-causing form primarily by the cytochrome P450 enzyme CYP1B1. Because the genotoxic impact of PAH depends on their metabolism, we hypothesized that high CYP1B1 enzyme levels result in increased formation of PAH-DNA adducts in breast tissue, leading to increased development of breast cancer. We have investigated molecular mechanisms of the relationship between PAH exposure, CYP1B1 expression and breast cancer risk in a clinic-based case-control study. We collected histologically normal breast tissue from 56 women (43 cases and 13 controls) undergoing breast surgery and analyzed these specimens for CYP1B1 genotype, PAH-DNA adducts and CYP1B1 gene expression. We did not detect any difference in aromatic DNA adduct levels of cases and controls, only between smokers and non-smokers. CYP1B1 transcript levels were slightly lower in controls than cases, but the difference was not statistically significant. We found no correlation between the levels of CYP1B1 expression and DNA adducts. If CYP1B1 has any role in breast cancer etiology it might be through its metabolism of estrogen rather than its metabolism of PAHs. However, due to the lack of statistical power these results should be interpreted with caution.

  1. In Vivo Kinematics of the Trapeziometacarpal Joint During Thumb Extension-flexion and Abduction-adduction

    PubMed Central

    Crisco, Joseph J.; Halilaj, Eni; Moore, Douglas C.; Patel, Tarpit; Weiss, Arnold-Peter C.; Ladd, Amy L.

    2014-01-01

    Purpose The primary aim of this study was to determine whether the in vivo kinematics of the trapeziometacarpal (TMC) joint differ as a function of age and sex during thumb extension-flexion and abduction-adduction motions. Methods The hands and wrists of 44 subjects (10 men and 11 women aged 18 to 35 years and 10 men and 13 women aged 40 to 75 years) with no symptoms or signs of TMC joint pathology were imaged with computed tomography (CT) during thumb extension, flexion, abduction, and adduction. The kinematics of the TMC joint were computed and compared across direction, age, and sex. Results We found no significant effects of age or sex, after normalizing for size, in any of the kinematic parameters. The extension-flexion and abduction-adduction rotation axes did not intersect, and both were oriented obliquely to the saddle-shaped anatomy of the TMC articulation. The extension-flexion axis was located in the trapezium and the abduction-adduction axis was located in the metacarpal. Metacarpal translation and internal rotation occurred primarily during extension-flexion. Discussion Our in vivo findings support previous cadaver and modeling studies that have concluded that the functional axes of the TMC joint are non-orthogonal and non-intersecting. However, in contrast to previous studies, we found extension-flexion and adduction-abduction to be coupled with internal-external rotation and translation. Specifically, internal rotation and ulnar translation were coupled with flexion, indicating a potential stabilizing screw-home mechanism. Clinical Relevance The treatment of TMC pathology and arthroplasty design require a detailed and accurate understanding of TMC function. This study confirms the complexity of TMC kinematics and describes metacarpal translation coupled with internal rotation during extension-flexion, which may explain some of the limitations of current treatment strategies and should help improve implant designs. PMID:25542440

  2. Immunoassay of haemoglobin-acrylonitrile adduct in rat as a biomarker of exposure.

    PubMed

    L Wong Yu Ting Zheng Junyu Li Carlo H Tamburro Frederick W Benz, J

    1998-01-01

    Acrylonitrile (AN) is a rat carcinogen. Human exposure may come from chemical industries and smoking. A haemoglobin adduct of acrylonitrile (Hb-AN) has been used as a biomarker of exposure by means of gas chromatography-mass spectrometry (GC-MS) analysis. We have developed specific monoclonal antibodies (Mab) to human Hb-AN and wish to report evaluation of an immunoassay in rats using an Mab that cross-reacts with rat Hb-AN. A dose response study of LD 0, 10, 50, and 90 in Sprague-Dawley rats was undertaken, with each rat receiving \\[2,3-14C]AN at 50 Ci kg-1 sc, and Hb from an aliquot of blood was taken for covalent binding analysis by liquid scintillation spectrometry and fluorescence ELISA. The dose responses of rats at 0.25, 0.5, 1.0, and 2.0 h after AN doses of 20, 50, 80, 115 mg kg-1 were compared by both methods with Hb and globin samples. Regression analysis showed a linear relationship between immunoassay and 14C-AN binding. This indicates that an antigenic form of Hb-AN may be used as a surrogate of Hb-AN adduct. The sensitivity of ELISA was tested in rats exposed for 1 h to sub-toxic doses of AN (10-1.1 mg kg-1). Quantification of Hb-AN by immunoassay was achieved by calibration with a synthetic adduct HbAN4h, a reference adduct prepared by treating rat Hb with excess AN for 4 h. ELISA and GC-MS analysis of N-terminal valine-AN in the Hb-AN adduct were compared and similar detection levels were found. This rat study appears to have validated the new immunoassay method for biomonitoring of AN exposure.

  3. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    PubMed

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  4. Both physiological and pharmacological levels of melatonin reduce DNA adduct formation induced by the carcinogen safrole.

    PubMed

    Tan, D; Reiter, R J; Chen, L D; Poeggeler, B; Manchester, L C; Barlow-Walden, L R

    1994-02-01

    Hepatic DNA adduct formation induced by the chemical carcinogen, safrole, was suppressed by both endogenous pineal melatonin release and by the exogenous administration of melatonin to rats. DNA damage after administration of of melatonin to rats. DNA damage after administration of 100 mg/kg safrole (i.p.) was measured by the P1 enhanced 32P-postlabeling analysis method. The RAL (relative adduct labeling) x 10(7) of carcinogen modified DNA in the liver of untreated controls and in safrole treated animals killed during the day, at night, after pinealectomy and pinealectomy plus melatonin injection (0.15 mg/kg x 4 or a total of 0.6 mg/kg) was 0, 12.6 +/- 0.75, 10.9 +/- 0.72, 13.6 +/- 1.12 and 5.7 +/- 0.53 respectively. For the same groups of animals, circulating melatonin levels at the termination of the study were 31 +/- 3, 29 +/- 2, 276 +/- 31, 24 +/- 1 and 13,950 +/- 1016 pg/ml serum respectively. The higher the melatonin concentration in the serum the lower was DNA adduct formation in the rat liver. Thus, high nocturnal levels of melatonin were protective against safrole-induced DNA damage. These findings indicate that the functional pineal gland plays an important role in oncostatic actions of carcinogens such as safrole. At physiological levels, melatonin seemed to prevent especially the formation of what was referred to as the N1 DNA adduct. Melatonin's ability to suppress DNA adduct formation may relate to its inhibitory effect on a mixed function oxidase, cytochrome p-450, and on the recently identified hydroxyl radical scavenging capacity of the indole. The oncostatic action of melatonin is also suggested by its nuclear accumulation and DNA stabilization characteristics. At pharmacological levels melatonin is extremely potent in preventing DNA modification induced by the chemical carcinogen, safrole.

  5. Formation of DNA adducts in vitro and in Salmonella typhimurium upon metabolic reduction of the environmental mutagen 1-nitropyrene

    SciTech Connect

    Howard, P.C.; Heflich, R.H.; Evans, F.E.; Beland, F.A.

    1983-05-01

    The polycyclic nitroaromatic hydrocarbon 1-nitropyrene is an environmental pollutant, a potent bacterial mutagen, and a carcinogen. Xanthine oxidase, a mammalian nitroreductase, catalyzed the in vitro metabolic activation of this compound to DNA-bound adducts. Maximum adduct formation occurred at pH 5.5 to 6.0 and was increased by the addition of catalase to the incubation medium. DNA binding from 1-nitropyrene was inhibited by hydrogen peroxide, L-ascorbate, and glutathione. Enzymatic hydrolysis of the modified DNA and subsequent analysis by high-pressure liquid chromatography indicated the presence of one major and two minor adducts. The major adduct was characterized by mass spectrometry and nuclear magnetic resonance spectroscopy as N-(deoxyguanosin-8-yl)-1-aminopyrene. The minor adducts appear to be decomposition products of the major adduct. When Salmonella typhimurium TA1538 was incubated with 1-nitropyrene, a strong correlation was found between the extent of DNA binding and the frequency of induced histidine reversions. Analysis of the bacterial DNA indicated one major adduct which had chromatographic properties and pKaS identical to those of N-(deoxyguanosin-8-yl)-1-aminopyrene. These data indicate that N-hydroxy-1-aminopyrene is probably the mutagenic and DNA-binding species formed during the metabolic reduction of 1-nitropyrene.

  6. Particulate adducts based on sodium risedronate and titanium dioxide for the bioavailability enhancement of oral administered bisphosphonates.

    PubMed

    Dissette, Valeria; Bozzi, Pietro; Bignozzi, Carlo Alberto; Dalpiaz, Alessandro; Ferraro, Luca; Beggiato, Sarah; Leo, Eliana; Vighi, Eleonora; Pasti, Luisa

    2010-10-09

    Adducts based on a bisphosphonate drug (sodium risedronate) and titanium dioxide (TiO(2)) particles have been developed and characterized in order to improve the bioavailability of orally administrated bisphosphonates. Nanocrystalline and colloidal TiO(2), both characterized by powder X-ray diffraction, were used to obtain the adducts 1 and 2, respectively. Adducts 1 and 2 appeared constituted by nanoparticles of about 50nm and 90nm grouped in clusters of about 0.2microm and 2.5microm, respectively. Higher amounts of drugs were adsorbed on adduct 2 (7.2+/-0.3%) with respect to adduct 1 (4.0+/-0.3%). In vitro studies demonstrate that the adducts were able to release the drug in the pH range of 6-9, whereas they remained essentially stable in the pH range of 0-5. In vivo studies indicate that after oral administration to male Wistar rats, the microparticles of adduct 2 were able to prolong the presence of risedronate in the bloodstream during an 8h period, resulting in a relative bioavailability almost doubled with respect to the free drug. This behaviour allows envisioning an improvement of the risedronate therapeutic effects and/or a reduction of its frequency of administration with consequent reduction of gastro-oesophageal injuries typically induced by oral administration of bisphosphonates.

  7. sup 14 C-sulfur mustard adducts of calf thymus DNA. Final report, Aug-Sep 90

    SciTech Connect

    Yaverbaum, S.

    1991-02-01

    A grant was awarded to TNO-PML to develop immunochemical monitoring systems for the detection of DNA-HD and Protein-HD adducts in humans following exposure to HD. TNO-PML has been using 35S-HD to prepare adducts for their assays, which have inherent shortcomings that limit detection sensitivity. An experimental batch of 14C-HD-DNA adducts was prepared in an attempt to increase the assay sensitivity. Double - and single-stranded purified calf thymus DNA preparations were reacted with 142, 14.2 and 1.42 uM of 14C-HD under aqueousfree conditions. The 14C-HD-DNA adducts were isolated at -20C in 75% ethanol solution and freed of HD agent and organic solvents (i.e., acetone and alcohol). The 14C-HD-DNA adducts in aqueous buffer were analyzed for specific activity and purity. The ds-DNA-HD adducts were uncontaminated, but the ss-DNA-HD adducts were initially slightly contaminated with alcohol.

  8. Aromatic adducts and lung cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Spanish cohort.

    PubMed

    Gilberson, Tamra; Peluso, Marco E M; Munia, Armelle; Luján-Barroso, Leila; Sánchez, María-José; Navarro, Carmen; Amiano, Pilar; Barricarte, Aurelio; Quirós, J Ramón; Molina-Montes, Esther; Sánchez-Cantalejo, Emilio; Tormo, María-José; Chirlaque, María-Dolores; Ardanaz, Eva; Dorronsoro, Miren; Confortini, Massimo; Bonet, Catalina; Sala, Núria; González, Carlos A; Agudo, Antonio

    2014-09-01

    In this case-cohort study, we examined the association between bulky DNA adducts and the risk of lung cancer within the European Prospective Investigation into Cancer and Nutrition (EPIC) Spanish cohort with an average 7-year follow-up, including 98 cases of primary lung cancer and 296 subjects randomly selected from the cohort. Aromatic adducts were measured using (32)P-postlabeling in leukocyte DNA from blood samples collected at enrollment. The association between DNA adducts and the risk of lung cancer was estimated using a Cox proportional hazards model with a modified partial likelihood. There was an overall significant increased risk for developing lung cancer when DNA adduct concentrations were doubled, with relative risk (RR) adjusting for all relevant confounders of 1.36 with 95% confidence interval (CI) 1.18-157. There was a significant increased risk for developing lung cancer when DNA adduct concentrations were doubled for current smokers and among subjects exposed to PAH at work; there was also a slightly higher increase among males than females. However, no statistically significant differences were observed for the effect of adduct levels across smoking status, sex or occupational exposure to PAH. A meta-analysis combined four prospective studies, including this study, resulting in a significant association among current smokers, with an overall estimate of 34% increase in the risk of lung cancer when doubling the level of aromatic DNA adducts in leukocytes.

  9. {sup 32}P-postlabeling analysis of DNA adducts in wild perch (Perca fluviatilis) and northern pike (Esox lucius)

    SciTech Connect

    Ericson, G.; Liewenborg, B.; Balk, L.

    1995-12-31

    Several previous studies have demonstrated a correlation between high concentrations of sediment-associated contaminants and elevated levels of aromatic/hydrophobic DNA adduct levels in the liver of benthic fish species. In the present study DNA adducts was analyzed in coastal populations of perch (Perca fluviatilis) and northern pike (Esox lucius). Fish were sampled from four different sites in a gradient from a heavily industrialized area at the Swedish Baltic coast. For comparison, fish were also caught in a reference area with no main industries and comparatively low levels of contaminants of anthropogenic origin. DNA was extracted from liver and several extrahepatic tissues and DNA adducts were analyzed by the nuclease PI version of the {sup 32}P-postlabeling assay. The autoradiograms derived from DNA of fish from the contaminated sites showed several adduct spots not visible on the autoradiograms derived from fish from the reference area. Total adduct levels were significantly elevated in several tissues in fish from contaminated sites compared to the reference area. Species and tissue-specific differences in adduct levels and the use of {sup 32}P-postlabeling analysis of DNA adducts as a biomarker to monitor the presence and effects of genotoxic chemicals in the aquatic environment are discussed.

  10. Effects of Push-up Exercise with Hip Adduction on the COP Deviation and the Serratus Anterior and L1 Paraspinal Muscles.

    PubMed

    Kim, Min-Hee; Yoo, Won-Gyu

    2013-07-01

    [Purpose] This study investigated the effect of push-up exercise with hip adduction on the COP deviation and SA and L1 spinal muscle activation. [Subjects] Twelve males aged 20-30 years were recruited. [Methods] We measured the COP deviation and SA and L1 spinal muscle activities during push-up exercise with and without hip adduction [Results] The COP deviation significantly decreased and the SA and L1 spinal muscles were significantly increased during push-ups with hip adduction when compared with push-ups without hip adduction. [Conclusion] We thought that the push-up exercise with hip adduction might help to selectively strengthen the SA.

  11. Poor recognition of O6-isopropyl dG by MGMT triggers double strand break-mediated cell death and micronucleus induction in FANC-deficient cells

    PubMed Central

    Hashimoto, Kiyohiro; Sharma, Vyom; Sasanuma, Hiroyuki; Tian, Xu; Takata, Minoru; Takeda, Shunichi; Swenberg, James A.; Nakamura, Jun

    2016-01-01

    Isopropyl methanesulfonate (IPMS) is the most potent genotoxic compound among methanesulfonic acid esters. The genotoxic potential of alkyl sulfonate esters is believed to be due to their alkylating ability of the O6 position of guanine. Understanding the primary repair pathway activated in response to IPMS-induced DNA damage is important to profile the genotoxic potential of IPMS. In the present study, both chicken DT40 and human TK6 cell-based DNA damage response (DDR) assays revealed that dysfunction of the FANC pathway resulted in higher sensitivity to IPMS compared to EMS or MMS. O6-alkyl dG is primarily repaired by methyl guanine methyltransferase (MGMT), while isopropyl dG is less likely to be a substrate for MGMT. Comparison of the cytotoxic potential of IPMS and its isomer n-propyl methanesulfonate (nPMS) revealed that the isopropyl moiety avoids recognition by MGMT and leads to higher cytotoxicity. Next, the micronucleus (MN) assay showed that FANC deficiency increases the sensitivity of DT40 cells to MN induction by IPMS. Pretreatment with O6-benzyl guanine (OBG), an inhibitor of MGMT, increased the MN frequency in DT40 cells treated with nPMS, but not IPMS. Lastly, IPMS induced more double strand breaks in FANC-deficient cells compared to wild-type cells in a time-dependent manner. All together, these results suggest that IPMS-derived O6-isopropyl dG escapes recognition by MGMT, and the unrepaired DNA damage leads to double strand breaks, resulting in MN induction. FANC, therefore, plays a pivotal role in preventing MN induction and cell death caused by IPMS. PMID:27486975

  12. Adduct formation of 7,12-dimethylbenz(a)anthracene in the embryo of the Japanese medaka (Oryzias latipes)

    SciTech Connect

    Liu, H.; Cooper, K.R.

    1995-12-31

    DNA adduct formation of 7,1 2-dimethylbenz(a)anthracene (DMBA) in vivo in the Japanese medaka embryo were investigated using {sup 32}P-postlabeling analysis. 1-compounds (endogenous adducts) were not observed in the Japanese medaka embryo on days 4 (prior to liver formation), 6 (liver/swim bladder) or 10 (prior to hatch) of development. The level of DMBA:DNA adducts were concentration-dependent over the range of 0.625 ppm (Total Adducts 0.05707 pmol/mg of DNA) to 2.50 ppm (0.43341 pmol/mg of DNA) and decreased at 5.00 ppm (0.25338 pmol/mg of DNA) after medaka embryos were exposed to DMBA for 6 days from the day of fertilization. The decrease in DMBA:DNA adducts at 5.00 ppm was probably due to embryo toxicity (78% death). The level of DMBA:DNA adducts formed from the embryos exposed to DMBA for 24 hr decreased as the stage of development increased: day 4 > day 6 > day 10; 0.0262, 0.0179, 0.0129 pmol/mg of DNA, respectively. The level of DMBA:DNA adducts increased as the length of exposure increased: 4 day < 6 day < 10 day; 0.0233, 0.0614, 0.1502, respectively. There was both a time and dose dependence to the number of adducts detected. The data presented demonstrated the development of DM BA-DNA adducts in the developing Japanese medaka (Oryzias latipes) and the lack of I-compounds.

  13. DNA Adduct Profiles Predict in Vitro Cell Viability after Treatment with the Experimental Anticancer Prodrug PR104A

    PubMed Central

    2017-01-01

    PR104A is an experimental DNA-alkylating hypoxia-activated prodrug that can also be activated in an oxygen-independent manner by the two-electron aldo-keto reductase 1C3. Nitroreduction leads to the formation of cytotoxic hydroxylamine (PR104H) and amine (PR104M) metabolites, which induce DNA mono and cross-linked adducts in cells. PR104A-derived DNA adducts can be utilized as drug-specific biomarkers of efficacy and as a mechanistic tool to elucidate the cellular and molecular effects of PR104A. Toward this goal, a mass spectrometric bioanalysis approach based on a stable isotope-labeled adduct mixture (SILAM) and selected reaction monitoring (SRM) data acquisition for relative quantitation of PR104A-derived DNA adducts in cells was developed. Use of this SILAM-based approach supported simultaneous relative quantitation of 33 PR104A-derived DNA adducts in the same sample, which allowed testing of the hypothesis that the enhanced cytotoxicity, observed by preconditioning cells with the transcription-activating isothiocyanate sulforaphane, is induced by an increased level of DNA adducts induced by PR104H and PR104M, but not PR104A. By applying the new SILAM-SRM approach, we found a 2.4-fold increase in the level of DNA adducts induced by PR104H and PR104M in HT-29 cells preconditioned with sulforaphane and a corresponding 2.6-fold increase in cytotoxicity. These results suggest that DNA adduct levels correlate with drug potency and underly the possibility of monitoring PR104A-derived DNA adducts as biomarkers of efficacy. PMID:28140568

  14. Modulatory effects of essential oils from spices on the formation of DNA adduct by aflatoxin B1 in vitro.

    PubMed

    Hashim, S; Aboobaker, V S; Madhubala, R; Bhattacharya, R K; Rao, A R

    1994-01-01

    Essential oils from common spices such as nutmeg, ginger, cardamom, celery, xanthoxylum, black pepper, cumin, and coriander were tested for their ability to suppress the formation of DNA adducts by aflatoxin B1 in vitro in a microsomal enzyme-mediated reaction. All oils were found to inhibit adduct formation very significantly and in a dose-dependent manner. The adduct formation appeared to be modulated through the action on microsomal enzymes, because an effective inhibition on the formation of activated metabolite was observed with each oil. The enzymatic modulation is perhaps due to the chemical constituents of the oils, and this could form a basis for their potential anticarcinogenic roles.

  15. DNA adducts and mutagenic specificity of the ubiquitous environmental pollutant 3-nitrobenzanthrone in Muta Mouse.

    PubMed

    Arlt, Volker M; Zhan, Li; Schmeiser, Heinz H; Honma, Masamitsu; Hayashi, Makoto; Phillips, David H; Suzuki, Takayoshi

    2004-01-01

    3-nitrobenzanthrone (3-NBA) is an extremely potent mutagen in the Salmonella reversion assay and a suspected human carcinogen identified in diesel exhaust and in ambient airborne particulate matter. To evaluate the in vivo mutagenicity of 3-NBA, we analyzed the mutant frequency (MF) in the cII gene of various organs (lung, liver, kidney, bladder, colon, spleen, and testis) in lambda/lacZ transgenic mice (Muta Mouse) after intraperitoneal treatment with 3-NBA (25 mg/kg body weight injected once a week for 4 weeks). Increases in MF were found in colon, liver, and bladder, with 7.0-, 4.8-, and 4.1-fold increases above the control value, respectively, whereas no increase in MF was found in lung, kidney, spleen, and testis. Simultaneously, induction of micronuclei in peripheral blood reticulocytes was observed. The sequence alterations in the cII gene recovered from 41 liver mutants from 3-NBA-treated mice were compared with 32 spontaneous mutants from untreated mice. Base substitution mutations predominated for both the 3-NBA-treated (80%) and the untreated (81%) groups. However, the proportion of G:C-->T:A transversions in the mutants from 3-NBA-treated mice was higher (49% vs. 6%) and the proportion of G:C-->A:T transitions was lower than those from untreated mice (10% vs. 66%). The increase in MF in the liver was associated with strong DNA binding by 3-NBA, whereas in lung, in which there was no increase in MF, a low level of DNA binding was observed (268.0-282.7 vs. 8.8-15.9 adducts per 10(8) nucleotides). DNA adduct patterns with multiple adduct spots, qualitatively similar to those formed in vitro after activation of 3-NBA with nitroreductases and in vivo in rats, were observed in all tissues examined. Using high-pressure liquid cochromatographic analysis, we confirmed that all major 3-NBA-DNA adducts produced in vivo in mice are derived from reductive metabolites bound to purine bases (70-80% with deoxyguanosine and 20-30% with deoxyadenosine in liver). These

  16. Determinants of formation of aflatoxin-albumin adducts: a seven-township study in Taiwan

    PubMed Central

    Sun, C-A; Wu, D-M; Wang, L-Y; Chen, C-J; You, S-L; Santella, R M

    2002-01-01

    Dietary exposure to aflatoxins is one of the major risk factors for hepatocellular carcinoma. Individual susceptibility to aflatoxin-induced hepatocarcinogenesis may be modulated by both genetic and environmental factors affecting metabolism. A cross-sectional study was performed to evaluate determinants of the formation of aflatoxin covalently bound to albumin (AFB1-albumin adducts). A total of 474 subjects who were free of liver cancer and cirrhosis and were initially selected as controls for previous case–control studies of aflatoxin-induced hepatocarcinogenesis in Taiwan, were employed in this study. Aflatoxin-albumin adducts were determined by competitive enzyme-linked immunosorbent assay, hepatitis B surface antigen and antibodies to hepatitis C virus by enzyme immunoassay, as well as genotypes of glutathione S-transferase M1-1 and T1-1 by polymerase chain reaction. The detection rate of AFB1-albumin adducts was significantly higher in males (42.5%) than in females (21.6%) (multivariate-adjusted odds ratio=2.6, 95% confidence interval=1.4–5.0). The formation of detectable albumin adducts was moderately higher in hepatitis B surface antigen carriers (42.8%) than in non-carriers (36.6%) (multivariate-adjusted odds ratio=1.4, 95% confidence interval=1.0–2.1). In addition, the detection rate of AFB1-albumin adducts tended to increase with the increasing number of null genotypes of glutathione S-transferase M1-1 and glutathione S-transferase T1-1. In conclusion, this cross-sectional study has assessed the relative contributions of environmental exposure and host susceptibility factors in the formation of AFB1-albumin adducts in a well characterised Chinese adult population. This study further emphasises the necessity to reduce aflatoxin exposure in people living in an area endemic for chronic hepatitis B virus infection. British Journal of Cancer (2002) 87, 966–970. doi:10.1038/sj.bjc.6600584 www.bjcancer.com © 2002 Cancer Research UK PMID:12434285

  17. An adaptive spectral/DG method for a reduced phase-space based level set approach to geometrical optics on curved elements

    NASA Astrophysics Data System (ADS)

    Cockburn, Bernardo; Kao, Chiu-Yen; Reitich, Fernando

    2014-02-01

    We present an adaptive spectral/discontinuous Galerkin (DG) method on curved elements to simulate high-frequency wavefronts within a reduced phase-space formulation of geometrical optics. Following recent work, the approach is based on the use of level sets defined by functions satisfying the Liouville equations in reduced phase-space and, in particular, it relies on the smoothness of these functions to represent them by rapidly convergent spectral expansions in the phase variables. The resulting (hyperbolic) system of equations for the coefficients in these expansions are then amenable to a high-order accurate treatment via DG approximations. In the present work, we significantly expand on the applicability and efficiency of the approach by incorporating mechanisms that allow for its use in scattering simulations and for a reduced overall computational cost. With regards to the former we demonstrate that the incorporation of curved elements is necessary to attain any kind of accuracy in calculations that involve scattering off non-flat interfaces. With regards to efficiency, on the other hand, we also show that the level-set formulation allows for a space p-adaptive scheme that under-resolves the level-set functions away from the wavefront without incurring in a loss of accuracy in the approximation of its location. As we show, these improvements enable simulations that are beyond the capabilities of previous implementations of these numerical procedures.

  18. Quantitation of the DNA Adduct of Semicarbazide in Organs of Semicarbazide-Treated Rats by Isotope-Dilution Liquid Chromatography-Tandem Mass Spectrometry: A Comparative Study with the RNA Adduct.

    PubMed

    Wang, Yinan; Wong, Tin-Yan; Chan, Wan

    2016-09-19

    Semicarbazide is a widespread food contaminant that is produced by multiple pathways. However, the toxicity of semicarbazide to human health remains unclear. Using a highly accurate and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry method, we identified and quantitated in this study for the first time the DNA and RNA adduct of semicarbazide in DNA/RNA isolated from the internal organs of semicarbazide-exposed rats. The analysis revealed a dose-dependent formation of the adducts in the internal organs of the semicarbazide-dosed rats and with the highest adduct levels identified in the stomach and small intestine. Furthermore, results showed significantly higher levels of the RNA adduct (4.1-7.0 times) than that of the DNA adducts. By analyzing DNA/RNA samples isolated from rat organs in semicarbazide-dosed rats at different time points postdosing, the adduct stability in vivo was also investigated. These findings suggest that semicarbazide could have exerted its toxicity by affecting both the transcription and translation processes of the cell.

  19. Mitomycin C-DNA adducts generated by DT-diaphorase. Revised mechanism of the enzymatic reductive activation of mitomycin C.

    PubMed

    Suresh Kumar, G; Lipman, R; Cummings, J; Tomasz, M

    1997-11-18

    Mitomycin C (MC) was reductively activated by DT-diaphorase [DTD; NAD(P)H:quinone oxidoreductase] from rat liver carcinoma cells in the presence of Micrococcus lysodeicticus DNA at pH 5.8 and 7.4. The resulting alkylated MC-DNA complexes were digested to the nucleoside level and the covalent MC-nucleoside adducts were separated, identified, and quantitatively analyzed by HPLC. In analogous experiments, two other flavoreductases, NADH-cytochrome c reductase and NADPH-cytochrome c reductase, as well as two chemical reductive activating agents Na2S2O4 and H2/PtO2 were employed as activators for the alkylation of DNA by MC. DTD as well as all the other activators generated the four known major guanine-N2-MC adducts at both pHs. In addition, at the lower pH, the guanine-N7-linked adducts of 2,7-diaminomitosene were detectable in the adduct patterns. At a given pH all the enzymatic and chemical reducing agents generated very similar adduct patterns which, however, differed dramatically at the acidic as compared to the neutral pH. Overall yield of MC adducts was 3-4-fold greater at pH 7.4 than at 5. 8 except in the case of DTD when it was 4-fold lower. Without exception, however, cross-link adduct yields were greater at the acidic pH (2-10-fold within the series). The ratio of adducts of bifunctional activation to those of monofunctional activation was 6-20-fold higher at the acidic as compared to the neutral pH. A comprehensive mechanism of the alkylation of DNA by activated MC was derived from the DNA adduct analysis which complements earlier model studies of the activation of MC. The mechanism consists of three competing activation pathways yielding three different DNA-reactive electrophiles 11, 12, and 17 which generate three unique sets of DNA adducts as endproducts. The relative amounts of these adducts are diagnostic of the relative rates of the competing pathways in vitro, and most likely, in vivo. Factors that influence the relative rates of individual pathways

  20. Pyrrolizidine alkaloid-derived DNA adducts as a common biological biomarker of pyrrolizidine alkaloid-induced tumorigenicity.

    PubMed

    Xia, Qingsu; Zhao, Yuewei; Von Tungeln, Linda S; Doerge, Daniel R; Lin, Ge; Cai, Lining; Fu, Peter P

    2013-09-16

    Pyrrolizidine alkaloid-containing plants are the most common poisonous plants affecting livestock, wildlife, and humans. The U.S. National Toxicology Program (NTP) classified riddelliine, a tumorigenic pyrrolizidine alkaloid, as "reasonably anticipated to be a human carcinogen" in the NTP 12th Report on Carcinogens in 2011. We previously determined that four DNA adducts were formed in rats dosed with riddelliine. The structures of the four DNA adducts were elucidated as (i) a pair of epimers of 7-hydroxy-9-(deoxyguanosin-N(2)-yl)dehydrosupinidine adducts (termed as DHP-dG-3 and DHP-dG-4) as the predominant adducts; and (ii) a pair of epimers of 7-hydroxy-9-(deoxyadenosin-N(6)-yl)dehydrosupinidine adducts (termed as DHP-dA-3 and DHP-dA-4 adducts). In this study, we selected a nontumorigenic pyrrolizidine alkaloid, platyphylliine, a pyrrolizidine alkaloid N-oxide, riddelliine N-oxide, and nine tumorigenic pyrrolizidine alkaloids (riddelliine, retrorsine, monocrotaline, lycopsamine, retronecine, lasiocarpine, heliotrine, clivorine, and senkirkine) for study in animals. Seven of the nine tumorigenic pyrrolizidine alkaloids, with the exception of lycopsamine and retronecine, are liver carcinogens. At 8-10 weeks of age, female F344 rats were orally gavaged for 3 consecutive days with 4.5 and 24 μmol/kg body weight test article in 0.5 mL of 10% DMSO in water. Twenty-four hours after the last dose, the rats were sacrificed, livers were removed, and liver DNA was isolated for DNA adduct analysis. DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts were formed in the liver of rats treated with the individual seven hepatocarcinogenic pyrrolizidine alkaloids and riddelliine N-oxide. These DNA adducts were not formed in the liver of rats administered retronecine, the nontumorigenic pyrrolizidine alkaloid, platyphylliine, or vehicle control. These results indicate that this set of DNA adducts, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, is a common biological biomarker of

  1. Reduction of metal adducts in oligonucleotide mass spectra in ion‐pair reversed‐phase chromatography/mass spectrometry analysis

    PubMed Central

    Gilar, Martin; Shion, Henry; Yu, Ying Qing; Chen, Weibin

    2016-01-01

    Rationale Electrospray ionization mass spectrometry (ESI‐MS)‐based techniques commonly used in oligonucleotide analyses are known to be sensitive to alkali metal adduct formation. Adducts directly impact the sensitivity of MS‐based analyses as the available charge is distributed across the parent peak and adduct(s). The current study systematically evaluated common liquid chromatography (LC) components in LC/ESI‐MS configurations used in oligonucleotide analysis to identify metal adduct contributions from LC instrumentation. Methods A UPLC liquid chromatography system was configured with a single quadrupole MS detector (ACQUITY QDa, Waters Corp.) to monitor adduct formation in oligonucleotide separations. An ion‐pairing mobile phase comprised of 15 mM triethylamine and 400 mM hexafluoro‐2‐propanol was used in conjunction with an oligonucleotide separation column (Waters OST BEH C18, 2.1 mm × 50 mm) for all separations. A 10‐min method was used to provide statistical figures of merit and evaluate adduct formation over time. Results Trace alkali metal salts in the mobile phase and reagents were determined to be the main source of metal salt adducts in LC/ESI‐MS‐based configurations. Non‐specific adsorption sites located throughout the fluidic path contribute to adduct formation in oligonucleotide analyses. Ion‐pairing mobile phases prepared at neutral or slightly basic pH result in up to a 57% loss of spectral abundance to adduct formation in the current study. Conclusions Implementation of a short low pH reconditioning step was observed to effectively displace trace metal salts non‐specifically adsorbed to surfaces in the fluidic path and was able to maintain an average MS spectral abundance ≥94% with a high degree of repeatability (relative standard deviation (R.S.D.) 0.8%) over an extended time study. The proposed method offers the ability to rapidly regenerate adsorption sites with minimal impact on productivity while retaining

  2. Monitoring the apple polyphenol oxidase-modulated adduct formation of phenolic and amino compounds.

    PubMed

    Reinkensmeier, Annika; Steinbrenner, Katrin; Homann, Thomas; Bußler, Sara; Rohn, Sascha; Rawel, Hashadrai M

    2016-03-01

    Minimally processed fruit products such as smoothies are increasingly coming into demand. However, they are often combined with dairy ingredients. In this combination, phenolic compounds, polyphenoloxidases, and amino compounds could interact. In this work, a model approach is presented where apple serves as a source for a high polyphenoloxidase activity for modulating the reactions. The polyphenoloxidase activity ranged from 128 to 333nakt/mL in different apple varieties. From these, 'Braeburn' was found to provide the highest enzymatic activity. The formation and stability of resulting chromogenic conjugates was investigated. The results show that such adducts are not stable and possible degradation mechanisms leading to follow-up products formed are proposed. Finally, apple extracts were used to modify proteins and their functional properties characterized. There were retaining antioxidant properties inherent to phenolic compounds after adduct formation. Consequently, such interactions may also be utilized to improve the textural quality of food products.

  3. Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus.

    PubMed

    Bourajjaj, M; Stehouwer, C D A; van Hinsbergh, V W M; Schalkwijk, C G

    2003-12-01

    Various theories have been proposed to explain the hyperglycaemia-induced pathogenesis of vascular complications of diabetes, including detrimental effects of AGEs (advanced glycation end products) on vascular tissues. Increased formation of the very reactive dicarbonyl compound MGO (methylglyoxal), one of the side-products of glycolysis, and MGO-derived AGEs seem to be implicated in the development of diabetic vascular complications. Although the exact role of MGO and MGO adducts in the development of vascular complications is unknown, receptor-mediated activation of vascular cells by the MGO-arginine adduct hydroimidazolone, as well as intracellular modifications of protein by MGO, seem to be involved. The aim of this mini-review is to assess to what extent MGO is related to vascular complications in diabetes.

  4. Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells.

    PubMed

    Lee, Jin-Wook; Kim, Hui-Seon; Park, Nam-Gyu

    2016-02-16

    Since the first report on the long-term durable 9.7% solid-state perovskite solar cell employing methylammonium lead iodide (CH3NH3PbI3), mesoporous TiO2, and 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-MeOTAD) in 2012, following the seed technologies on perovskite-sensitized liquid junction solar cells in 2009 and 2011, a surge of interest has been focused on perovskite solar cells due to superb photovoltaic performance and extremely facile fabrication processes. The power conversion efficiency (PCE) of perovskite solar cells reached 21% in a very short period of time. Such an unprecedentedly high photovoltaic performance is due to the intrinsic optoelectronic property of organolead iodide perovskite material. Moreover, a high dielectric constant, sub-millimeter scale carrier diffusion length, an underlying ferroelectric property, and ion migration behavior can make organolead halide perovskites suitable for multifunctionality. Thus, besides solar cell applications, perovskite material has recently been applied to a variety fields of materials science such as photodetectors, light emitting diodes, lasing, X-ray imaging, resistive memory, and water splitting. Regardless of application areas, the growth of a well-defined perovskite layer with high crystallinity is essential for effective utilization of its excellent physicochemical properties. Therefore, an effective methodology for preparation of high quality perovskite layers is required. In this Account, an effective methodology for production of high quality perovskite layers is described, which is the Lewis acid-base adduct approach. In the solution process to form the perovskite layer, the key chemicals of CH3NH3I (or HC(NH2)2I) and PbI2 are used by dissolving them in polar aprotic solvents. Since polar aprotic solvents bear oxygen, sulfur, or nitrogen, they can act as a Lewis base. In addition, the main group compound PbI2 is known to be a Lewis acid. Thus, PbI2 has a chance

  5. Kinds and spectrum of mutations induced by 1-nitrosopyrene adducts during plasmid replication in human cells.

    PubMed Central

    Yang, J L; Maher, V M; McCormick, J J

    1988-01-01

    1-Nitropyrene has been shown in bacterial assays to be the principal mutagenic agent in diesel emission particulates. It has also been shown to be mutagenic in human fibroblasts and carcinogenic in animals. To investigate the kinds of mutations induced by this carcinogen and compare them with those induced by a structurally related carcinogen, (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetra-hydrobenzo [a]pyrene (BPDE) (J.-L. Yang, V. M. Maher, and J. J. McCormick, Proc. Natl. Acad. Sci. USA 84:3787-3791, 1987), we treated a shuttle vector with tritiated 1-nitrosopyrene (1-NOP), a carcinogenic mutagenic intermediate metabolite of 1-nitropyrene which forms the same DNA adduct as the parent compound, and introduced the plasmids into a human embryonic kidney cell line, 293, for DNA replication to take place. The treated plasmid, pZ189, carrying a bacterial suppressor tRNA target gene, supF, was allowed 48 h to replicate in the human cells. Progeny plasmids were then rescued, purified, and introduced into bacteria carrying an amber mutation in the beta-galactosidase gene in order to detect those carrying mutations in the supF gene. The frequency of mutants increased in direct proportion to the number of DNA-1-NOP adducts formed per plasmid. At the highest level of adduct formation tested, the frequency of supF mutants was 26 times higher than the background frequency of 1.4 X 10(-4). DNA sequencing of 60 unequivocally independent mutant derived from 1-NOP-treated plasmids indicated that 80% contained a single base substitution, 5% had two base substitutions, 4% had small insertions or deletions (1 or 2 base pairs), and 11% showed a deletion or insertion of 4 or more base pairs. Sequence data from 25 supF mutants derived from untreated plasmids showed that 64% contained deletions of 4 or more base pairs. The majority (83%) of the base substitution in mutants from 1-NOP-treated plasmids were transversions, with 73% of these being G . C --> T . A. This

  6. Raman spectroscopic evaluation of DNA adducts of a platinum containing anticancer drug

    NASA Astrophysics Data System (ADS)

    Jangir, Deepak K.; Mehrotra, Ranjana

    2014-09-01

    Mechanistic understanding of the interaction of drugs with their target molecules is important for better understanding of their mode of action and to improve their efficacy. Carboplatin is a platinum containing anticancer drug, used to treat different type of tumors. In the present work, we applied Raman spectroscopy to study the interaction of carboplatin with DNA at molecular level using different carboplatin-DNA molar ratios. These Raman spectroscopic results provide comprehensive understanding on the carboplatin-DNA interactions and indicate that DNA cross-linked adducts formed by carboplatin are similar to cisplatin adducts. The results indicate that guanine N7 and adenine N7 are the putative sites for carboplatin interaction. It is observed that carboplatin has some affinity toward cytosine in DNA. Phosphate sugar backbone of DNA showed conformation perturbation in DNA which were easily sensible at higher concentrations of carboplatin. Most importantly, carboplatin interaction induces intermediate A- and B-DNA conformations at the cross-linking sites.

  7. Energy-Dependent Electron Activated Dissociation of Metal-Adducted Permethylated Oligosaccharides

    PubMed Central

    Yu, Xiang; Huang, Yiqun; Lin, Cheng; Costello, Catherine E.

    2013-01-01

    The effects of varying the electron energy and cationizing agents on electron activated dissociation (ExD) of metal-adducted oligosaccharides were explored, using permethylated maltoheptaose as the model system. Across the examined range of electron energy, the metal-adducted oligosaccharide exhibited several fragmentation processes, including electron capture dissociation (ECD) at low energies, hot-ECD at intermediate energies, and electronic excitation dissociation (EED) at high energies. The dissociation threshold depended on the metal charge carrier(s), whereas the types and sequence spans of product ions were influenced by the metal-oligosaccharide binding pattern. Theoretical modeling contributed insight into the metal-dependent behavior of carbohydrates during low-energy ECD. When ExD was applied to a permethylated high mannose N-linked glycan, EED provided more structural information than either collision-induced dissociation (CID) or low-energy ECD, thus demonstrating its potential for oligosaccharide linkage analysis. PMID:22881449

  8. Methylthiodeoxynivalenol (MTD): insight into the chemistry, structure and toxicity of thia-Michael adducts of trichothecenes.

    PubMed

    Fruhmann, Philipp; Weigl-Pollack, Theresa; Mikula, Hannes; Wiesenberger, Gerlinde; Adam, Gerhard; Varga, Elisabeth; Berthiller, Franz; Krska, Rudolf; Hametner, Christian; Fröhlich, Johannes

    2014-07-28

    Methylthiodeoxynivalenol (MTD), a novel derivative of the trichothecene mycotoxin deoxynivalenol (DON), was prepared by applying a reliable procedure for the formal Michael addition of methanethiol to the conjugated double bond of DON. Structure elucidation revealed the preferred formation of the hemiketal form of MTD by intramolecular cyclisation between C8 and C15. Computational investigations showed a negative total reaction energy for the hemiketalisation step and its decrease in comparison with theoretical model compounds. Therefore, this structural behaviour seems to be a general characteristic of thia-Michael adducts of type B trichothecenes. MTD was shown to be less inhibitory for a reticulocyte lysate based in vitro translation system than the parent compound DON, which supports the hypothesis that trichothecenes are detoxified through thia-adduct formation during xenobiotic metabolism.

  9. Morphological changes of calcite single crystals induced by graphene-biomolecule adducts

    NASA Astrophysics Data System (ADS)

    Calvaresi, Matteo; Di Giosia, Matteo; Ianiro, Alessandro; Valle, Francesco; Fermani, Simona; Polishchuk, Iryna; Pokroy, Boaz; Falini, Giuseppe

    2017-01-01

    Calcite has the capability to interact with a wide variety of molecules. This usually induces changes in shape and morphology of crystals. Here, this process was investigated using sheets of graphene-biomolecule adducts. They were prepared and made dispersible in water through the exfoliation of graphite by tip sonication in the presence tryptophan or N-acetyl-D-glucosamine. The crystallization of calcium carbonate in the presence of these additives was obtained by the vapor diffusion method and only calcite formed. The analysis of the microscopic observations showed that the graphene-biomolecule adducts affected shape and morphology of rhombohedral {10.4} faced calcite crystals, due to their stabilization of additional {hk.0} faces. The only presence of the biomolecule affected minimally shape and morphology of calcite crystals, highlighting the key role of the graphene sheets as 2D support for the adsorption of the biomolecules.

  10. Mass Spectrometric Evidence of Malonaldehyde and 4-Hydroxynonenal Adductions to Radical-Scavenging Soy Peptides

    PubMed Central

    Zhao, Jing; Chen, Jing; Zhu, Haining; Xiong, Youling L.

    2012-01-01

    Antioxidative peptides in food systems are potential targets of lipid oxidation-generated reactive aldehydes, such as malonaldehyde (MDA) and 4-hydroxynonenal (HNE). In this study, covalent modifications on radical-scavenging peptides prepared from soy protein hydrolysate by MDA and HNE were characterized by liquid chromatography–electrospray ionization-mass spectrometry (LC-ESI-MS/MS). MS/MS analyses detected the formation of Schiff base type adducts of MDA on the side chain groups of lysine, histidine, arginine, glutamine, and asparagine residues as well as the N-termini of peptides. MDA also formed a fluorescent product with lysine residues. HNE adducted on lysine residues through Schiff base formation and on histidine, arginine, glutamine, and asparagine residues mainly through Michael addition. In spite of the extensive MDA modification, peptide cross-linking by this potential mechanism was undetectable. PMID:22946674

  11. B(a)P adduct levels and fertility: A cross‑sectional study in a Sicilian population.

    PubMed

    Oliveri Conti, Gea; Calogero, Aldo Eugenio; Giacone, Filippo; Fiore, Maria; Barchitta, Martina; Agodi, Antonella; Ferrante, Margherita

    2017-03-27

    Benzo(a)pyrene (BaP) is a carcinogenic polycyclic aromatic hydrocarbon for human tissues. Still today it is not fully investigated if BaP can affect negatively the male fertility through the BaP‑DNA adducts production. In the present study, BaP Tetrol I‑1 (TI‑1) and BaP Tetrol II‑2 (TII‑2) BaP‑DNA adducts were investigated in spermatozoa of a Sicilian male population. Semen samples from 86 volunteers in two eastern Sicilian cities (Regalbuto and Melilli) were collected. The quality of semen was evaluated in all samples according to the World Health Organization (WHO) guidelines. We analyzed BaP‑DNA adducts in extracted sperm cell DNA using the modified high‑performance liquid chromatography‑fluorescence method to detects both Tetrols. Differences between Tetrol levels were assessed by the Wilcoxon signed‑rank test and the Mann‑Whitney U test, as appropriate. Correlation between semen quality parameters and Tetrol concentrations were analyzed using the Spearman's correlation coefficient. Σ(TI‑1+TII‑2) were significantly higher in spermatozoa of volunteers from Regalbuto. Furthermore, a greater dispersion of the levels of adducts was observed in these specimens. TI‑1 adducts were higher than TII‑2 in Melilli samples (95% CI) and TII‑2 were higher than TI‑1 in Regalbuto semen samples (95% CI). A significant inverse correlation between sperm progressive motility and both TI‑1 and TII‑2 adducts was observed. The present study showed that BaP negatively affects male fertility by TI‑1 and TII‑2 DNA‑adduct production. These results suggest that DNA adducts could be used as biomarker to assess BaP exposure by air pollution. Further studies are needed to confirm if these findings could affect male fertility because of the growing impairment of this function observed in recent years.

  12. Hydroxyl radical reaction with trans-resveratrol: initial carbon radical adduct formation followed by rearrangement to phenoxyl radical.

    PubMed

    Li, Dan-Dan; Han, Rui-Min; Liang, Ran; Chen, Chang-Hui; Lai, Wenzhen; Zhang, Jian-Ping; Skibsted, Leif H

    2012-06-21

    In the reaction between trans-resveratrol (resveratrol) and the hydroxyl radical, kinetic product control leads to a short-lived hydroxyl radical adduct with an absorption maximum at 420 nm and a lifetime of 0.21 ± 0.01 μs (anaerobic acetonitrile at 25 °C) as shown by laser flash photolysis using N-hydroxypyridine-2(1H)-thione (N-HPT) as a "photo-Fenton" reagent. The transient spectra of the radical adduct are in agreement with density functional theory (DFT) calculations showing an absorption maximum at 442 or 422 nm for C2 and C6 hydroxyl adducts, respectively, and showing the lowest energy for the transition state leading to the C2 adduct compared to other radical products. From this initial product, the relative long-lived 4'-phenoxyl radical of resveratrol (τ = 9.9 ± 0.9 μs) with an absorption maximum at 390 nm is formed in a process with a time constant (τ = 0.21 ± 0.01 μs) similar to the decay constant for the C2 hydroxyl adduct (or a C2/C6 hydroxyl adduct mixture) and in agreement with thermodynamics identifying this product as the most stable resveratrol radical. The hydroxyl radical adduct to phenoxyl radical conversion with concomitant water dissociation has a rate constant of 5 × 10(6) s(-1) and may occur by intramolecular hydrogen atom transfer or by stepwise proton-assisted electron transfer. Photolysis of N-HPT also leads to a thiyl radical which adds to resveratrol in a parallel reaction forming a sulfur radical adduct with a lifetime of 0.28 ± 0.04 μs and an absorption maximum at 483 nm.

  13. Amadori adducts activate nuclear factor-κB-related proinflammatory genes in cultured human peritoneal mesothelial cells

    PubMed Central

    Nevado, Julián; Peiró, Concepción; Vallejo, Susana; El-Assar, Mariam; Lafuente, Nuria; Matesanz, Nuria; Azcutia, Veronica; Cercas, Elena; Sánchez-Ferrer, Carlos F; Rodríguez-Mañas, Leocadio

    2005-01-01

    Diabetes mellitus leads to a high incidence of several so-called complications, sharing similar pathophysiological features in several territories. Previous reports points at early nonenzymatic glycosylation products (Amadori adducts) as mediators of diabetic vascular complications. In the present study, we analysed a possible role for Amadori adducts as stimulators of proinflammatory pathways in human peritoneal mesothelial cells (HPMCs). Cultured HPMCs isolated from 13 different patients (mean age 38.7±16 years) were exposed to different Amadori adducts, that is, highly glycated haemoglobin (10 nM) and glycated bovine serum albumin (0.25 mg ml−1), as well as to their respective low glycosylation controls. Amadori adducts, but not their respective controls, elicited a marked increase of NF-κB activation, as determined by electromobility shift assays and transient transfection experiments. Additionally, Amadori adducts significantly increased the production of NF-κB-related proinflammatory molecules, including cytokines, such as TNF-α, IL-1β or IL-6, and enzymes, such as cyclooxygenase-2 and inducible nitric oxide (NO) synthase, this latter leading to the release of NO by HPMCs. The effects of Amadori adducts were mediated by different reactive oxygen and nitrosative species (e.g. superoxide anions, hydroxyl radicals, and peroxynitrite), as they were blunted by coincubation with the appropriate scavengers. Furthermore, NO generated upon exposure to Amadori adducts further stimulated NF-κB activation, either directly or after combination with superoxide anions to form peroxynitrite. We conclude that Amadori adducts can favour peritoneal inflammation by exacerbating changes in NO synthesis pathway and triggering NF-κB-related proinflammatory signals in human mesothelial cells. PMID:15997235

  14. Feasibility of Biomonitoring of Exposure to Permethrin Through Analysis of Long-Lived (Metabolite) Adducts to Proteins

    DTIC Science & Technology

    2006-09-01

    transacylation mechanism 21 Figure 8. Adduct formation by acyl glucuronides via the glycation Mechanism 22 Figure 9. Identity of presumed...adduct of permethrin-derived O-acyl glucuronide, according to the glycation mechanism 22 Figure 10. Chemical structure of glutathione 3-PBA...ASSAKQR, formed by the glycation mechanism 25 Figure 14. Tandem ES(+) MS spectrum of Cl2CA-glucuronide to Glutathione 26 Appendix

  15. Contribution of artifacts to N-methylated piperazine cyanide adduct formation in vitro from N-alkyl piperazine analogs.

    PubMed

    Zhang, Minli; Resuello, Christina M; Guo, Jian; Powell, Mark E; Elmore, Charles S; Hu, Jun; Vishwanathan, Karthick

    2013-05-01

    In the liver microsome cyanide (CN)-trapping assays, piperazine-containing compounds formed significant N-methyl piperazine CN adducts. Two pathways for the N-methyl piperazine CN adduct formation were proposed: 1) The α-carbon in the N-methyl piperazine is oxidized to form a reactive iminium ion that can react with cyanide ion; 2) N-dealkylation occurs followed by condensation with formaldehyde and dehydration to produce N-methylenepiperazine iminium ion, which then reacts with cyanide ion to form the N-methyl CN adduct. The CN adduct from the second pathway was believed to be an artifact or metabonate. In the present study, a group of 4'-N-alkyl piperazines and 4'-N-[¹³C]methyl-labeled piperazines were used to determine which pathway was predominant. Following microsomal incubations in the presence of cyanide ions, a significant percentage of 4'-N-[¹³C]methyl group in the CN adduct was replaced by an unlabeled natural methyl group, suggesting that the second pathway was predominant. For 4'-N-alkyl piperazine, the level of 4'-N-methyl piperazine CN adduct formation was limited by the extent of prior 4'-N-dealkylation. In a separate study, when 4'-NH-piperaziens were incubated with potassium cyanide and [¹³C]-labeled formaldehyde, 4'-N-[¹³C]methyl piperazine CN-adduct was formed without NADPH or liver microsome suggesting a direct Mannich reaction is involved. However, when [¹³C]-labeled methanol or potassium carbonate was used as the one-carbon donor, 4'-N-[¹³C]methyl piperazine CN adduct was not detected without liver microsome or NADPH present. The biologic and toxicological implications of bioactivation via the second pathway necessitate further investigation because these one-carbon donors for the formation of reactive iminium ions could be endogenous and readily available in vivo.

  16. Protein Adducts of the Prostate Carcinogen PhlP in Children

    DTIC Science & Technology

    2006-02-01

    DAMD17-03-1-0076 TITLE: Protein Adducts of the Prostate Carcinogen PhIP in Children PRINCIPAL INVESTIGATOR: Paul T. Henderson, Ph.D...response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and... reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information

  17. Free flow electrophoresis separation and AMS quantitation of 14C-naphthalene-protein adducts

    NASA Astrophysics Data System (ADS)

    Buchholz, Bruce A.; Haack, Kurt W.; Sporty, Jennifer L.; Buckpitt, Alan R.; Morin, Dexter

    2010-04-01

    Naphthalene is a volatile aromatic hydrocarbon to which humans are exposed from a variety of sources including mobile air sources and cigarette smoke. Naphthalene produces dose-(concentration)dependent injury to airway epithelial cells of murine lung which is observed at concentrations well below the current occupational exposure standard. Toxicity is dependent upon the cytochrome P450 mediated metabolic activation of the parent substrate to unstable metabolites which become bound covalently to tissue proteins. Nearly 70 proteins have been identified as forming adducts with reactive naphthalene metabolites using in vitro systems but very little work has been conducted in vivo because reasonably large amounts (100 μCi) of 14C labeled parent compound must be administered to generate detectable adduct levels on storage phosphor screens following separation of labeled proteins by 2D gel electrophoresis. The work described here was done to provide proof of concept that protein separation by free flow electrophoresis followed by AMS detection of protein fractions containing protein bound reactive metabolites would provide adducted protein profiles in animals dosed with trace quantities of labeled naphthalene. Mice were administered 200 mg/kg naphthalene intraperitoneally at a calculated specific activity of 2 DPM/nmol (1 pCi/nmol) and respiratory epithelial tissue was obtained by lysis lavage 4 h post injection. Free flow electrophoresis (FFE) separates proteins in the liquid phase over a large pH range (2.5-11.5) using low molecular weight acids and bases to modify the pH. The apparatus separates fractions into standard 96-well plates that can be used in other protein analysis techniques. The buffers of the fractions have very high carbon content, however, and need to be dialyzed to yield buffers compatible with 14C-AMS. We describe the processing techniques required to couple FFE to AMS for quantitation of protein adducts.

  18. Electrochemical oxidation and protein adduct formation of aniline: a liquid chromatography/mass spectrometry study.

    PubMed

    Melles, Daniel; Vielhaber, Torsten; Baumann, Anne; Zazzeroni, Raniero; Karst, Uwe

    2012-04-01

    Historically, skin sensitization tests are typically based on in vivo animal tests. However, for substances used in cosmetic products, these tests have to be replaced according to the European Commission regulation no. 1223/2009. Modification of skin proteins by electrophilic chemicals is a key process associated with the induction of skin sensitization. The present study investigates the capabilities of a purely instrumental setup to determine the potential of commonly used non-electrophilic chemicals to cause skin sensitization by the generation of electrophilic species from the parent compound. In this work, the electrophiles were generated by the electrochemical oxidation of aniline, a basic industrial chemical which may also be released from azo dyes in cosmetics. The compound is a known sensitizer and was oxidized in an electrochemical thin-layer cell which was coupled online to electrospray ionization-mass spectrometry. The electrochemical oxidation was performed on a boron-doped diamond working electrode, which is able to generate hydroxyl radicals in aqueous solutions at high potentials. Without any pretreatment, the oxidation products were identified by electrospray ionization/time-of-flight mass spectrometry (ESI-ToF-MS) using their exact masses. A mass voltammogram was generated by plotting the obtained mass spectra against the applied potential. Oligomerization states with up to six monomeric units in different redox states of aniline were observed using this setup. This approach was extended to generate adducts between the oxidation products of aniline and the tripeptide glutathione. Two adducts were identified with this trapping experiment. Protein modification was carried out subsequently: Aniline was oxidized at a constant potential and was allowed to react with β-lactoglobulin A (β-LGA) or human serum albumin (HSA), respectively. The generated adducts were analyzed by liquid chromatography coupled to ESI-ToF-MS. For both β-LGA and HSA, aniline

  19. 2[prime] and 3[prime] Carboranyl uridines and their diethyl ether adducts

    DOEpatents

    Soloway, A.H.; Barth, R.F.; Anisuzzaman, A.K.; Alam, F.; Tjarks, W.

    1992-12-15

    A process is described for preparing carboranyl uridine nucleoside compounds and their diethyl ether adducts, which exhibit a tenfold increase in boron content over prior art boron containing nucleoside compounds. The carboranyl uridine nucleoside compounds exhibit enhanced lipophilicity and hydrophilic properties adequate to enable solvation in aqueous media for subsequent incorporation of the compounds in methods for boron neutron capture therapy in mammalian tumor cells. No Drawings

  20. Maternal diet and dioxin-like activity, bulky DNA adducts and micronuclei in mother-newborns.

    PubMed

    Pedersen, Marie; Halldorsson, Thorhallur I; Autrup, Herman; Brouwer, Abraham; Besselink, Harrie; Loft, Steffen; Knudsen, Lisbeth E

    2012-06-01

    Maternal diet can contribute to carcinogenic exposures and also modify effects of environmental exposures on maternal and fetal genetic stability. In this study, associations between maternal diet and the levels of dioxin-like plasma activity, bulky DNA adducts in white blood cells and micronuclei (MN) in lymphocytes from mother to newborns were examined. From 98 pregnant women living in the greater area of Copenhagen, Denmark in 2006-2007, maternal peripheral blood and umbilical cord blood were collected, together with information on health, environmental exposure and lifestyle. Maternal diet was estimated on the basis of maternal food frequency questionnaire (FFQ) completed by the end of pregnancy. Biomarkers were detected in paired blood samples through the dioxin-responsive chemical-activated luciferase expression (CALUX)(®) bioassay, (32)P-postlabelling technique and cytokinesis-block MN assay. Maternal preference for meats with dark surface were significantly associated with higher bulky DNA adducts in both maternal (β 95%CI; 0.46 (0.08, 0.84)) and cord blood (β 95%CI; 0.46 (0.05, 0.86)) before and after adjustment for potential confounders. No other significant associations between the 18 dietary variables and the biomarkers measured in maternal and fetal samples were identified. The present study suggests that maternal intake of meats with dark surface contributes to the bulky DNA adduct levels in maternal and umbilical cord blood. Relationship between food preparation and bulky DNA adducts appear to be captured by a FFQ while potential associations for other biomarkers might be more complex or need larger sample size.

  1. Assessment of long-term health risks after accidental exposure using haemoglobin adducts of epichlorohydrin.

    PubMed

    Wollin, Klaus-Michael; Bader, Michael; Müller, Michael; Lilienblum, Werner; Csicsaky, Michael

    2014-12-15

    On September 9th, 2002, two goods trains collided in Bad Münder, Lower Saxony, causing the release of more than 40 metric tonnes of epichlorohydrin (1-chloro-2,3-epoxypropane) into the environment. A human biomonitoring study was performed to evaluate the accidental exposure to epichlorohydrin and to assess the possible long-term, i.e. carcinogenic health effects. This was done on the basis of a biochemical effect monitoring using the N-(3-chloro-2-hydroxypropyl)valine and the N-(2,3-dihydroxypropyl)valine haemoglobin adducts of epichlorohydrin in blood to respond to missing ambient monitoring immediately after the crash. N-(3-chloro-2-hydroxypropyl)valine adduct levels above the LOQ (25 pmol/g globin) ranged from 32.0 to 116.4 pmol/g globin in 6 out of 628 samples. The N-(2,3-dihydroxypropyl)valine adduct was not detected above the LOD (10 pmol/g globin) in any of the blood samples. Based on the quantified N-(3-chloro-2-hydroxypropyl)valine adduct values, the body doses after two days of exposure were estimated to be in the range of 1.7-6.2 nmol/kg body weight. The reverse estimation of the external exposure leads to cumulative additional lifetime cancer risks ranging from 2.61×10(-8) to 9.48×10(-8). The estimated excess lifetime cancer risks have to be assessed as extremely low. Our biomonitoring study facilitated the dialogue between individuals and groups concerned and authorities, because suspected or occurred exposures and risks to human health could be quantified and interpreted in a sound manner.

  2. Estrogen-DNA Adducts as Novel Biomarkers For Ovarian Cancer Risk and for Use in Prevention

    DTIC Science & Technology

    2011-03-31

    amplification and genotyping of the four single nucleotide polymorphisms , CYP1A1 (I462V), CYP1B1 (V432L), COMT (V158M) and NQO1 (P609S). Task 6. Order...genetic polymorphisms in selected enzymes that metabolize estrogens. The first year of the grant has been spent collecting urine and saliva samples...DNA adducts, estrogen metabolism, genetic polymorphisms , cancer etiology, tool for early diagnosis of ovarian cancer 16. SECURITY CLASSIFICATION OF

  3. Acrylamide Hemoglobin Adduct Levels and Ovarian Cancer Risk: a nested case-control study

    PubMed Central

    Xie, Jing; Terry, Kathryn L.; Poole, Elizabeth M.; Wilson, Kathryn M.; Rosner, Bernard A.; Willett, Walter C.; Vesper, Hubert W.; Tworoger, Shelley S.

    2013-01-01

    Background Acrylamide is a probable human carcinogen formed during cooking of starchy foods. Two large prospective cohort studies of dietary acrylamide intake and ovarian cancer risk observed a positive association, although two other studies reported no association. Methods We measured acrylamide exposure using red blood cell acrylamide and glycidamide hemoglobin adducts among women in two large prospective cohorts: the Nurses’ Health Study and Nurses’ Health Study II. Between blood collection and 2010, we identified 263 incident cases of epithelial ovarian cancer, matching two controls per case. We used logistic regression models to examine the association between acrylamide exposure and ovarian cancer risk, adjusting for matching factors, family history of ovarian cancer, tubal ligation, oral contraceptive use, body mass index (BMI), parity, alcohol intake, smoking, physical activity, and caffeine intake. Results The multivariate-adjusted relative risk (RR) of ovarian cancer comparing the highest versus lowest tertile of total acrylamide adducts was 0.79 (95% CI: 0.50–1.24, P trend = 0.08). The comparable RR of ovarian cancer among non-smokers at blood draw was 0.85 (95% CI: 0.57–1.27, P trend =0.14). The association did not differ by tumor histology (serous invasive versus not), P for heterogeneity=0.41. Individual adduct types (acrylamide or glycidamide) were not associated with risk. Conclusions We observed no evidence that acrylamide exposure as measured by adducts to hemoglobin is associated with an increased risk of ovarian cancer. Impact Our finding indicates that acrylamide intake may not increase risk of ovarian cancer. PMID:23417989

  4. Free flow electrophoresis separation and AMS quantitation of C-naphthalene-protein adducts.

    PubMed

    Buchholz, Bruce A; Haack, Kurt W; Sporty, Jennifer L; Buckpitt, Alan R; Morin, Dexter

    2010-04-01

    Naphthalene is a volatile aromatic hydrocarbon to which humans are exposed from a variety of sources including mobile air sources and cigarette smoke. Naphthalene produces dose- (concentration) dependent injury to airway epithelial cells of murine lung which is observed at concentrations well below the current occupational exposure standard. Toxicity is dependent upon the cytochrome P450 mediated metabolic activation of the parent substrate to unstable metabolites which become bound covalently to tissue proteins. Nearly 70 proteins have been identified as forming adducts with reactive naphthalene metabolites using in vitro systems but very little work has been conducted in vivo because reasonably large amounts (100 μCi) of (14)C labeled parent compound must be administered to generate detectable adduct levels on storage phosphor screens following separation of labeled proteins by 2 D gel electrophoresis. The work described here was done to provide proof of concept that protein separation by free flow electrophoresis followed by AMS detection of protein fractions containing protein bound reactive metabolites would provide adducted protein profiles in animals dosed with trace quantities of labeled naphthalene. Mice were administered 200 mg/kg naphthalene intraperitoneally at a calculated specific activity of 2 DPM/nmol (1 pCi/nmol) and respiratory epithelial tissue was obtained by lysis lavage 4 hr post injection. Free flow electrophoresis (FFE) separates proteins in the liquid phase over a large pH range (2.5-11.5) using low molecular weight acids and bases to modify the pH. The apparatus separates fractions into standard 96-well plates that can be used in other protein analysis techniques. The buffers of the fractions have very high carbon content, however, and need to be dialyzed to yield buffers compatible with (14)C-AMS. We describe the processing techniques required to couple FFE to AMS for quantitation of protein adducts.

  5. Unique cyanide adduct in human serum albumin: potential as a surrogate exposure marker.

    PubMed

    Fasco, Michael J; Stack, Robert F; Lu, Shijun; Hauer, Charles R; Schneider, Erasmus; Dailey, Michael; Aldous, Kenneth M

    2011-04-18

    Cyanide (CN = HCN + CN(-)) is a renowned poison and neurotoxicant that is prevalent throughout the environment. Despite a plethora of studies conducted over the last half century, relatively little is known of its potential to cause adverse health outcomes at sublethal exposures. CN exposure is normally determined from blood, but because CN is rapidly metabolized and cleared from this compartment (t(1/2) < 1 h), it is common for several half-lives to have passed before blood samples are drawn for analysis. This variable, coupled with a very narrow toxic index and metabolic diversity within the human population, has rendered accurate assessment of CN exposure, and consequently any predictions of possible adverse health outcomes, highly problematic. Prior studies by us showed the potential of Cys-SCN adducts within human serum albumin (HSA) to act as retrospective surrogates of CN exposure. Here, we report the discovery of a stable, SCN adduct at Cys(567) formed by the reaction of CN with the C-terminal Cys(558)Cys(567) disulfide bond of HSA. Treatment of HSA purified from human serum with base in guanidine hydrochloride releases a readily detectable, uniquely modified, C-terminal-19-mer peptide from Cys(567)-SCN moieties in all the samples examined thus far. Inclusion of a HSA-Cys(567)-S(13)C(15)N labeled internal standard permits quantitation of the Cys(567)-SCN adduct by LC-MS/MS in selective reaction monitoring (SRM) of the surrogate peptide with high sensitivity and good precision. Reaction of CN in vitro with the Cys(558)Cys(567) disulfide bond in HSA is specific, rapid, and concentration dependent within a putative, physiologically relevant range. Data from various human sera demonstrate the potential usefulness of this adduct as a biomarker of CN exposure.

  6. Melamine-melem adduct phases: investigating the thermal condensation of melamine.

    PubMed

    Sattler, Andreas; Pagano, Sandro; Zeuner, Martin; Zurawski, Alexander; Gunzelmann, Daniel; Senker, Jürgen; Müller-Buschbaum, Klaus; Schnick, Wolfgang

    2009-12-07

    By studying the thermal condensation of melamine, we have identified three solid molecular adducts consisting of melamine C(3)N(3)(NH(2))(3) and melem C(6)N(7)(NH(2))(3) in differing molar ratios. We solved the crystal structure of 2 C(3)N(3)(NH(2))(3)C(6)N(7)(NH(2))(3) (1; C2/c; a=21.526(4), b=12.595(3), c=6.8483(14) A; beta=94.80(3) degrees ; Z=4; V=1850.2(7) A(3)), C(3)N(3)(NH(2))(3)C(6)N(7)(NH(2))(3) (2; Pcca; a=7.3280(2), b=7.4842(2), c=24.9167(8) A; Z=4; V=1366.54(7) A(3)), and C(3)N(3)(NH(2))(3)3 C(6)N(7)(NH(2))(3) (3; C2/c; a=14.370(3), b=25.809(5), c=8.1560(16) A; beta=94.62(3) degrees ; Z=4; V=3015.0(10) A(3)) by using single-crystal XRD. All syntheses were carried out in sealed glass ampoules starting from melamine. By variation of the reaction conditions in terms of temperature, pressure, and the presence of ammonia-binding metals (europium) we gained a detailed insight into the occurrence of the three adduct phases during the thermal condensation process of melamine leading to melem. A rational bulk synthesis allowed us to realize adduct phases as well as phase separation into melamine and melem under equilibrium conditions. A solid-state NMR spectroscopic investigation of adduct 1 was conducted.

  7. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns.

    PubMed

    Zhao, Dong; Banks, Scott A; Mitchell, Kim H; D'Lima, Darryl D; Colwell, Clifford W; Fregly, Benjamin J

    2007-06-01

    The external knee adduction torque has been proposed as a surrogate measure for medial compartment load during gait. However, a direct link between these two quantities has not been demonstrated using in vivo measurement of medial compartment load. This study uses in vivo data collected from a single subject with an instrumented knee implant to evaluate this link. The subject performed five different overground gait motions (normal, fast, slow, wide, and toe-out) with simultaneous collection of instrumented implant, video motion, and ground reaction data. For each trial, the knee adduction torque was measured externally while the total axial force applied to the tibial insert was measured internally. Based on data collected from the same subject performing treadmill gait under fluoroscopic motion analysis, a regression equation was developed to calculate medial contact force from the implant load cell measurements. Correlation analyses were performed for the stance phase and entire gait cycle to quantify the relationship between the knee adduction torque and both the medial contact force and the medial to total contact force ratio. When the entire gait cycle was analyzed, R(2) for medial contact force was 0.77 when all gait trials were analyzed together and between 0.69 and 0.93 when each gait trial was analyzed separately (p < 0.001 in all cases). For medial to total force ratio, R(2) was 0.69 for all trials together and between 0.54 and 0.90 for each trial separately (p < 0.001 in all cases). When only the stance phase was analyzed, R(2) values were slightly lower. These results support the hypothesis that the knee adduction torque is highly correlated with medial compartment contact force and medial to total force ratio during gait.

  8. Repair of O6-methylguanine adducts in human telomeric G-quadruplex DNA by O6-alkylguanine-DNA alkyltransferase

    PubMed Central

    Hellman, Lance M.; Spear, Tyler J.; Koontz, Colton J.; Melikishvili, Manana; Fried, Michael G.

    2014-01-01

    O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on O6-methylguanine (6mG) adducts in the four-stranded structure of the human telomeric G-quadruplex. On a folded 22-nt G-quadruplex substrate, binding saturated at 2 AGT:DNA, significantly less than the ∼5 AGT:DNA found with linear single-stranded DNAs of similar length, and less than the value found with the telomere sequence under conditions that inhibit quadruplex formation (4 AGT:DNA). Despite these differences, AGT repaired 6mG adducts located within folded G-quadruplexes, at rates that were comparable to those found for a duplex DNA substrate under analogous conditions. Repair was kinetically biphasic with the amplitudes of rapid and slow phases dependent on the position of the adduct within the G-quadruplex: in general, adducts located in the top or bottom tetrads of a quadruplex stack exhibited more rapid-phase repair than did adducts located in the inner tetrad. This distinction may reflect differences in the conformational dynamics of 6mG residues in G-quadruplex DNAs. PMID:25080506

  9. Detection and evaluation of estrogen DNA-adducts and their carcinogenic effects in cultured human cells using biotinylated estradiol.

    PubMed

    Tripathi, Kaushlendra; Mani, Chinnadurai; Somasagara, Ranganatha R; Clark, David W; Ananthapur, Venkateshwari; Vinaya, Kambappa; Palle, Komaraiah

    2017-03-01

    The normal female reproductive hormone estrogen has been linked with increased risk of breast and many other forms of cancer. This is largely due to metabolic conversion of estrogens into highly reactive catechol estrogen quinones which can interact with DNA and cause a variety of DNA adducts and lesions. Detection and analysis of these adducts and their associated cellular responses involve complex chemical, enzymatic, and LC-MS based methods, which are both laborious and require specialized expertise and instrumentation. Herein, we show that using a biotin-labeled estradiol allows immunodetection of estrogen-induced DNA adducts by slot blot and single-cell molecular combing and proximity ligation assays. The biotinylated and unlabeled estradiols induced similar levels of DNA single and double strand breaks as measured by comet assays. Using biotinylated estrogen, we further show that estrogens are able to activate the Fanconi anemia-BRCA tumor suppressor pathway and cause DNA strand breaks and oxidatively modified DNA bases as well as gross chromosomal aberrations. Utilization of biotin-labeled estrogens could be a powerful tool to detect estrogen adducts and associated DNA damage, and to track estrogen adduct-induced cellular responses and carcinogenic mechanisms in cultured cells. The techniques presented here allow simple and rapid detection and quantitation of estrogen adducts by slot blot as well as direct visualization on the DNA strand and could pave the way for developing new treatments to protect the genome from the effects of reactive estrogen metabolites. © 2016 Wiley Periodicals, Inc.

  10. Tumors and DNA adducts in mice exposed to benzo[a]pyrene and coal tars: implications for risk assessment.

    PubMed Central

    Goldstein, L S; Weyand, E H; Safe, S; Steinberg, M; Culp, S J; Gaylor, D W; Beland, F A; Rodriguez, L V

    1998-01-01

    Current methods to estimate the quantitative cancer risk of complex mixtures of polycyclic aromatic hydrocarbons (PAH) such as coal tar assume that overall potency can be derived from knowledge of the concentration of a few carcinogenic components such as benzo[a]pyrene (B[a]P). Genotoxic damage, such as DNA adducts, is thought to be an essential aspect of PAH-induced tumorigenesis and could be a biomarker for exposure useful for estimating risk. However, the role of B[a]P and the relationship of adduct formation in tumorigenesis have not been tested rigorously in models appropriate for human health risk assessment. Therefore, we directly compared tumor induction and adduct formation by B[a]P and coal tars in several experimental protocols, including one broadly accepted and used by regulators. We found that B[a]P content did not account for tumor incidences after exposure to coal tars. DNA adducts were found in both tumors and tumor-free tissue and tumor outcomes were not predicted by either quantitation of total DNA adducts or by the DNA adduct formed by B[a]P. These data suggest that risk assessments based on B[a]P content may not predict accurately risk to human health posed by environmental PAH. PMID:9860888

  11. Extraction of rare earth oxides using supercritical carbon dioxide modified with Tri-n-butyl phosphate–nitric acid adducts

    DOE PAGES

    Baek, Donna L.; Fox, Robert V.; Case, Mary E.; ...

    2016-06-14

    A new tri-n-butylphosphate–nitric acid (TBP–HNO3) adduct was prepared by combining TBP and fuming (90%) HNO3. The adduct was characterized, and its phase-equilibrium behavior in supercritical carbon dioxide is reported. Supercritical carbon dioxide (sc-CO2) was modified with this new adduct [TBP(HNO3)5.2(H2O)1.7], and the extraction efficacies of selected rare earth oxides (Y, Ce, Eu, Tb, and Dy) at 338 K and 34.5 MPa were compared with those obtained using an adduct formed from concentrated (70%) HNO3 and TBP [TBP(HNO3)1.7(H2O)0.6]. All rare earth oxides tested with both adduct species could be extracted with the exception of cerium oxide. Furthermore, the water and acidmore » concentrations in the different adducts were found to play a significant role in rare earth oxide extraction efficiency.« less

  12. Detection of Benzo[a]pyrene-Guanine Adducts in Single-Stranded DNA using the α-Hemolysin Nanopore

    PubMed Central

    Perera, Rukshan T.; Fleming, Aaron M.; Johnson, Robert P.; Burrows, Cynthia J.; White, Henry S.

    2017-01-01

    The carcinogenic precursor benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon, is released into the environment through the incomplete combustion of hydrocarbons. Metabolism of BP in the human body yields a potent alkylating agent (benzo[a]pyrene diol epoxide, BPDE) that reacts with guanine (G) in DNA to form an adduct implicated in cancer initiation. We report that the α-hemolysin (αHL) nanopore platform can be used to detect a BPDE adduct to G in synthetic oligodeoxynucleotides. Translocation of a 41-mer poly-2′-deoxycytidine strand with a centrally located BPDE adduct to G through αHL in 1 M KCl produces a unique multi-level current signature allowing the adduct to be detected. This readily distinguishable current modulation was observed when the BPDE-adducted DNA strand translocated from either the 5′ or 3′ directions. This study suggests that BPDE adducts and other large aromatic biomarkers can be detected with αHL, presenting opportunities for the monitoring, quantification, and sequencing of mutagenic compounds from cellular DNA samples. PMID:25629967

  13. Detection of benzo[a]pyrene-guanine adducts in single-stranded DNA using the α-hemolysin nanopore.

    PubMed

    Perera, Rukshan T; Fleming, Aaron M; Johnson, Robert P; Burrows, Cynthia J; White, Henry S

    2015-02-20

    The carcinogenic precursor benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon, is released into the environment through the incomplete combustion of hydrocarbons. Metabolism of BP in the human body yields a potent alkylating agent (benzo[a]pyrene diol epoxide, BPDE) that reacts with guanine (G) in DNA to form an adduct implicated in cancer initiation. We report that the α-hemolysin (αHL) nanopore platform can be used to detect a BPDE adduct to G in synthetic oligodeoxynucleotides. Translocation of a 41-mer poly-2'-deoxycytidine strand with a centrally located BPDE adduct to G through αHL in 1 M KCl produces a unique multi-level current signature allowing the adduct to be detected. This readily distinguishable current modulation was observed when the BPDE-adducted DNA strand translocated from either the 5' or 3' directions. This study suggests that BPDE adducts and other large aromatic biomarkers can be detected with αHL, presenting opportunities for the monitoring, quantification, and sequencing of mutagenic compounds from cellular DNA samples.

  14. Detection of benzo[a]pyrene-guanine adducts in single-stranded DNA using the α-hemolysin nanopore

    NASA Astrophysics Data System (ADS)

    Perera, Rukshan T.; Fleming, Aaron M.; Johnson, Robert P.; Burrows, Cynthia J.; White, Henry S.

    2015-02-01

    The carcinogenic precursor benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon, is released into the environment through the incomplete combustion of hydrocarbons. Metabolism of BP in the human body yields a potent alkylating agent (benzo[a]pyrene diol epoxide, BPDE) that reacts with guanine (G) in DNA to form an adduct implicated in cancer initiation. We report that the α-hemolysin (αHL) nanopore platform can be used to detect a BPDE adduct to G in synthetic oligodeoxynucleotides. Translocation of a 41-mer poly-2‧-deoxycytidine strand with a centrally located BPDE adduct to G through αHL in 1 M KCl produces a unique multi-level current signature allowing the adduct to be detected. This readily distinguishable current modulation was observed when the BPDE-adducted DNA strand translocated from either the 5‧ or 3‧ directions. This study suggests that BPDE adducts and other large aromatic biomarkers can be detected with αHL, presenting opportunities for the monitoring, quantification, and sequencing of mutagenic compounds from cellular DNA samples.

  15. Process for making a calcium/sodium ferrate adduct by the electrochemical formation of sodium ferrate

    SciTech Connect

    Deininger, J.P.; Dotson, R.L.

    1984-05-29

    Described is a process for making a calcium/sodium ferrate adduct with sodium ferrate in a divided-type electrolysis cell. The anolyte chamber of the cell is charged with an aqueous solution of sodium hydroxide and a sodium ferrate-stabilizing proportion of at least one sodium halide salt. The anolyte chamber additionally contains ferric ions (Fe(III)). The catholyte chamber contains an aqueous sodium hydroxide solution during operation. The source of ferric ion in the anolyte may be either an iron-containing anode or at least one iron-containing compound present in the anolyte solution or both. The preferred material separating the anolyte chamber from the catholyte chamber is comprised of a gas- and hydraulic-impermeable, ionically-conductive, chemically-stable ionomeric film (e.g., a cation-exchange membrane with carboxylic, sulfonic or other inorganic exchange sites). Sodium ferrate is prepared in the anolyte chamber by passing an electric current and impressing a voltage between the anode and cathode of the cell. During electrolysis, sodium ferrate forms in the aqueous sodium hydroxide anolyte. This anolyte is reacted with a calcium compound to produce a calcium/sodium ferrate adduct. Alternatively the sodium ferrate may be first recovered in a solid form and then reacted with a calcium compound to produce said adduct.

  16. Activation of proinflammatory signaling by 4-hydroxynonenal-Src adducts in aged kidneys

    PubMed Central

    Lee, Bonggi; Lee, Eun Kyeong; Chung, Ki Wung; Moon, Kyoung Mi; Kim, Min Jo; An, Hye Jin; Jeong, Ji Won; Kim, Ye Ra; Yu, Byung Pal; Chung, Hae Young

    2016-01-01

    In our previous study, reactive 4-hydroxy-2-nonenal (4-HNE) was shown to activate Src (a non-receptor tyrosine kinase) by forming an adduct on binding with a specific residue of Src, leading to the activation of proinflammatory signaling pathways in cultured cells. However, to date, the deleterious roles of 4-HNE in inflammatory signaling activation in kidneys during aging have not been explored. The purpose of the present study was to document the mechanisms by which 4-HNE induces inflammation in the kidney during aging. Initial experiments revealed that activated nuclear factor-κB (NF-κB) expression was caused by 4-HNE activation, which suppressed transcriptional activity in the aged kidney. Treatment of human umbilical vein endothelial cells with 4-HNE revealed that Src caused senescence via NF-κB activation. Furthermore, our immunohistochemistry data showed that 4-HNE-adducted Src significantly increased in aged kidney tissues. The data showed age-related upregulation of downstream signaling molecules such as mitogen activated protein kinases (MAPKs), activator protein-1 (AP-1), NF-κB, and COX-2 in a cell culture cell system. Taken together, the results of this study show that the formation of adducts between 4-HNE and Src activates inflammatory signaling pathways in the aged kidney, contributing to age-related nephropathy. PMID:27472463

  17. Catalytic activities of Werner protein are affected by adduction with 4-hydroxy-2-nonenal.

    PubMed

    Czerwińska, Jolanta; Poznański, Jarosław; Dębski, Janusz; Bukowy, Zuzanna; Bohr, Vilhelm A; Tudek, Barbara; Speina, Elżbieta

    2014-01-01

    4-Hydroxy-2-nonenal (HNE) is a reactive α,β-unsaturated aldehyde generated during oxidative stress and subsequent peroxidation of polyunsaturated fatty acids. Here, Werner protein (WRN) was identified as a novel target for modification by HNE. Werner syndrome arises through mutations in the WRN gene that encodes the RecQ DNA helicase which is critical for maintaining genomic stability. This hereditary disease is associated with chromosomal instability, premature aging and cancer predisposition. WRN appears to participate in the cellular response to oxidative stress and cells devoid of WRN display elevated levels of oxidative DNA damage. We demonstrated that helicase/ATPase and exonuclease activities of HNE-modified WRN protein were inhibited both in vitro and in immunocomplexes purified from the cell extracts. Sites of HNE adduction in human WRN were identified at Lys577, Cys727, His1290, Cys1367, Lys1371 and Lys1389. We applied in silico modeling of the helicase and RQC domains of WRN protein with HNE adducted to Lys577 and Cys727 and provided a potential mechanism of the observed deregulation of the protein catalytic activities. In light of the obtained results, we postulate that HNE adduction to WRN is a post-translational modification, which may affect WRN conformational stability and function, contributing to features and diseases associated with premature senescence.

  18. Catalytic activities of Werner protein are affected by adduction with 4-hydroxy-2-nonenal

    PubMed Central

    Czerwińska, Jolanta; Poznański, Jarosław; Dębski, Janusz; Bukowy, Zuzanna; Bohr, Vilhelm A.; Tudek, Barbara; Speina, Elżbieta

    2014-01-01

    4-Hydroxy-2-nonenal (HNE) is a reactive α,β-unsaturated aldehyde generated during oxidative stress and subsequent peroxidation of polyunsaturated fatty acids. Here, Werner protein (WRN) was identified as a novel target for modification by HNE. Werner syndrome arises through mutations in the WRN gene that encodes the RecQ DNA helicase which is critical for maintaining genomic stability. This hereditary disease is associated with chromosomal instability, premature aging and cancer predisposition. WRN appears to participate in the cellular response to oxidative stress and cells devoid of WRN display elevated levels of oxidative DNA damage. We demonstrated that helicase/ATPase and exonuclease activities of HNE-modified WRN protein were inhibited both in vitro and in immunocomplexes purified from the cell extracts. Sites of HNE adduction in human WRN were identified at Lys577, Cys727, His1290, Cys1367, Lys1371 and Lys1389. We applied in silico modeling of the helicase and RQC domains of WRN protein with HNE adducted to Lys577 and Cys727 and provided a potential mechanism of the observed deregulation of the protein catalytic activities. In light of the obtained results, we postulate that HNE adduction to WRN is a post-translational modification, which may affect WRN conformational stability and function, contributing to features and diseases associated with premature senescence. PMID:25170083

  19. The reversibility of the glutathionyl-quercetin adduct spreads oxidized quercetin-induced toxicity

    SciTech Connect

    Boots, Agnes W. . E-mail: a.boots@farmaco.unimaas.nl; Balk, Jiska M.; Bast, Aalt; Haenen, Guido R.M.M.

    2005-12-16

    Quercetin is one of the most prominent dietary antioxidants. During its antioxidant activity, quercetin becomes oxidized into its o-quinone/quinone methide QQ. QQ is toxic since it instantaneously reacts with thiols of, e.g., proteins. In cells, QQ will initially form an adduct with glutathione (GSH), giving GSQ. We have found that GSQ is not stable; it dissociates continuously into GSH and QQ with a half life of 2 min. Surprisingly, GSQ incubated with 2-mercapto-ethanol (MSH), a far less reactive thiol, results in the conversion of GSQ into the MSH-adduct MSQ. A similar conversion of GSQ into relatively stable protein thiol-quercetin adducts is expected. With the dithiol dihydrolipoic acid (L(SH){sub 2}), quercetin is formed out of GSQ. These results indicate that GSQ acts as transport and storage of QQ. In that way, the initially highly focussed toxicity of QQ is dispersed by the formation of GSQ that finally spreads QQ-induced toxicity, probably even over cells.

  20. N-Heterocyclic Olefin-Carbon Dioxide and -Sulfur Dioxide Adducts: Structures and Interesting Reactivity Patterns.

    PubMed

    Finger, Lars H; Guschlbauer, Jannick; Harms, Klaus; Sundermeyer, Jörg

    2016-11-02

    Depending on the amount of methanol present in solution, CO2 adducts of N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) have been found to be in fully reversible equilibrium with the corresponding methyl carbonate salts [EMIm][OCO2 Me] and [EMMIm][OCO2 Me]. The reactivity pattern of representative 1-ethyl-3-methyl-NHO-CO2 adduct 4 has been investigated and compared with the corresponding NHC-CO2 zwitterion: The protonation of 4 with HX led to the imidazolium salts [NHO-CO2 H][X], which underwent decarboxylation to [EMMIm][X] in the presence of nucleophilic catalysts. NHO-CO2 zwitterion 4 can act as an efficient carboxylating agent towards CH acids such as acetonitrile. The [EMMIm] cyanoacetate and [EMMIm]2 cyanomalonate salts formed exemplify the first C-C bond-forming carboxylation reactions with NHO-activated CO2 . The reaction of the free NHO with dimethyl carbonate selectively led to methoxycarbonylated NHO, which is a perfect precursor for the synthesis of functionalized ILs [NHO-CO2 Me][X]. The first NHO-SO2 adduct was synthesized and structurally characterized; it showed a similar reactivity pattern, which allowed the synthesis of imidazolium methyl sulfites upon reaction with methanol.

  1. Microfluidic array for simultaneous detection of DNA oxidation and DNA-adduct damage.

    PubMed

    Song, Boya; Shen, Min; Jiang, Di; Malla, Spundana; Mosa, Islam M; Choudhary, Dharamainder; Rusling, James F

    2016-10-21

    Exposure to chemical pollutants and pharmaceuticals may cause health issues caused by metabolite-related toxicity. This paper reports a new microfluidic electrochemical sensor array with the ability to simultaneously detect common types of DNA damage including oxidation and nucleobase adduct formation. Sensors in the 8-electrode screen-printed carbon array were coated with thin films of metallopolymers osmium or ruthenium bipyridyl-poly(vinylpyridine) chloride (OsPVP, RuPVP) along with DNA and metabolic enzymes by layer-by-layer electrostatic assembly. After a reaction step in which test chemicals and other necessary reagents flow over the array, OsPVP selectively detects oxidized guanines on the DNA strands, and RuPVP detects DNA adduction by metabolites on nucleobases. We demonstrate array performance for test chemicals including 17β-estradiol (E2), its metabolites 4-hydroxyestradiol (4-OHE2), 2-hydroxyestradiol (2-OHE2), catechol, 2-nitrosotoluene (2-NO-T), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and 2-acetylaminofluorene (2-AAF). Results revealed DNA-adduct and oxidation damage in a single run to provide a metabolic-genotoxic chemistry screen. The array measures damage directly in unhydrolyzed DNA, and is less expensive, faster, and simpler than conventional methods to detect DNA damage. The detection limit for oxidation is 672 8-oxodG per 10(6) bases. Each sensor requires only 22 ng of DNA, so the mass detection limit is 15 pg (∼10 pmol) 8-oxodG.

  2. Signal transduction in light-oxygen-voltage receptors lacking the adduct-forming cysteine residue.

    PubMed

    Yee, Estella F; Diensthuber, Ralph P; Vaidya, Anand T; Borbat, Peter P; Engelhard, Christopher; Freed, Jack H; Bittl, Robert; Möglich, Andreas; Crane, Brian R

    2015-12-09

    Light-oxygen-voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications.

  3. Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct

    SciTech Connect

    Pirovano, Paolo; Farquhar, Erik R.; Swart, Marcel; Fitzpatrick, Anthony J.; Morgan, Grace G.; McDonald, Aidan R.

    2015-01-22

    Here, high-valent terminal metal–oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel–oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic NiII-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S=1/2), square planar NiIII–oxygen adduct. Moreover, this rare example of a high-valent terminal nickel–oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively.

  4. Weight, Rather Than Obesity Distribution, Explains Peak External Knee Adduction Moment During Level Gait

    PubMed Central

    Segal, Neil A.; Yack, H. John; Khole, Priyanka

    2010-01-01

    Objective To determine whether a lower-body obesity pattern increases estimated forces on the medial compartment of the knee joint. Design Cross-sectional clinical biomechanical study. Results Nineteen normal weight (body mass index, 22.8 ± 1.8 kg/m2), 20 centrally obese (body mass index, 35.0 ± 4.0 kg/m2 and waist-hip ratio ≥0.85 for women; ≥0.95 for men), and 20 lower-body obese (body mass index, 36.4 ± 5.4 kg/m2) adults aged 37–55 yrs and without knee pain were recruited. There were no intergroup differences for age. Weight did not differ between obese groups, but thigh girth differed between groups (P < 0.0001). In univariate analysis, both obesity group and thigh girth were significantly related to peak external knee adduction moment in mid-stance phase. However, in multivariate analysis after adjusting for weight, no statistically significant differences persisted using either obesity distribution or thigh girth as predictors. Weight was a significant predictor of external knee adduction moment, explaining 33% (P < 0.0001) of variance in external knee adduction moment for level gait. Conclusions These data do not support a significant difference in knee medial compartment loading based on obesity distribution, but do support greater torque with higher weight. This suggests that the mechanism of obesity increasing risk for knee osteoarthritis may not be related to obesity distribution. PMID:19847127

  5. Protein adducts of the prostate carcinogen PhIP in children

    SciTech Connect

    Lawrence Livermore National Laboratory

    2004-02-20

    Prostate cancer is the second leading cause of cancer death in men in the United States. few epidemiology studies have indicated that exposure to PhIP, a rodent prostate carcinogen formed in meat during cooking, may be an important risk factor for prostate cancer in humans. Therefore, a highly sensitive biomarker assay is urgently needed to clarify the role of PhIP in prostate cancer. The goal of this project is to develop an assay that can be used to more accurately quantify human exposure to PhIP and potential prostate cancer risk. Our hypothesis is that an Accelerator Mass Spectrometry-based method can be developed to measure protein adducts of PhIP in the blood of humans. This will provide a measure of the internal dose, as well as the capacity for carcinogen bioactivation to a form that can initiate the cancer process. Towards this goal, we have characterized an adduct formed by PhIP in vitro with the amino acid cysteine. This adduct should provide a biomarker of dietary PhIP exposure and potential prostate cancer risk that could be used to identify individuals for prevention and for monitoring the effect chemoprevention strategies.

  6. Immune response to acetaldehyde-human serum albumin adduct among healthy subjects related to alcohol intake.

    PubMed

    Romanazzi, Valeria; Schilirò, Tiziana; Carraro, Elisabetta; Gilli, Giorgio

    2013-09-01

    Acetaldehyde (AA) is the main metabolic product in ethanol metabolism, although it can also derive from sources of airborne pollution. As a typical aldehyde, AA is able to react with a variety of molecular targets, including DNA and protein. This property justifies the hypothesis of a immune reaction against this kind of adduct, to be studied by a seroprevalence screening approach. In this study, the correlation between drinking habits and the amount of circulating AA-human serum albumin adduct (AA-HSA) was evaluated in a group of healthy subjects, non alcohol-addicted. Daily ethanol intake (grams) was inferred for each subject using the information collected through a questionnaire, and AA-HSA antibodies (AA-HSA ab) analyses were performed using the Displacement Assay on whole blood samples. The findings showed a correlation between ethanol intake and immune response to molecular adduct. These results underscore the evaluation of AA-HSA ab amount as a suitable molecular marker for alcohol intake that can be applied in future investigations on a large scale for prevention screening.

  7. A three-dimensional model of vocal fold abduction/adduction

    NASA Astrophysics Data System (ADS)

    Hunter, Eric J.; Titze, Ingo R.; Alipour, Fariborz

    2004-04-01

    A three-dimensional biomechanical model of tissue deformation was developed to simulate dynamic vocal fold abduction and adduction. The model was made of 1721 nearly incompressible finite elements. The cricoarytenoid joint was modeled as a rocking-sliding motion, similar to two concentric cylinders. The vocal ligament and the thyroarytenoid muscle's fiber characteristics were implemented as a fiber-gel composite made of an isotropic ground substance imbedded with fibers. These fibers had contractile and/or passive nonlinear stress-strain characteristics. The verification of the model was made by comparing the range and speed of motion to published vocal fold kinematic data. The model simulated abduction to a maximum glottal angle of about 31°. Using the posterior-cricoarytenoid muscle, the model produced an angular abduction speed of 405° per second. The system mechanics seemed to favor abduction over adduction in both peak speed and response time, even when all intrinsic muscle properties were kept identical. The model also verified the notion that the vocalis and muscularis portions of the thyroarytenoid muscle play significantly different roles in posturing, with the muscularis portion having the larger effect on arytenoid movement. Other insights into the mechanisms of abduction/adduction were given.

  8. Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct

    DOE PAGES

    Pirovano, Paolo; Farquhar, Erik R.; Swart, Marcel; ...

    2015-01-22

    Here, high-valent terminal metal–oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel–oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic NiII-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S=1/2), square planar NiIII–oxygen adduct. Moreover, this rare example of amore » high-valent terminal nickel–oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively.« less

  9. Signal transduction in light–oxygen–voltage receptors lacking the adduct-forming cysteine residue

    PubMed Central

    Yee, Estella F.; Diensthuber, Ralph P.; Vaidya, Anand T.; Borbat, Peter P.; Engelhard, Christopher; Freed, Jack H.; Bittl, Robert; Möglich, Andreas; Crane, Brian R.

    2015-01-01

    Light–oxygen–voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications. PMID:26648256

  10. Supramolecular Adducts of Cucurbit[7]uril and Amino Acids in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Kovalenko, Ekaterina; Vilaseca, Marta; Díaz-Lobo, Mireia; Masliy, A. N.; Vicent, Cristian; Fedin, Vladimir P.

    2016-02-01

    The complexation of the macrocyclic cavitand cucurbit[7]uril (Q7) with a series of amino acids (AA) with different side chains (Asp, Asn, Gln, Ser, Ala, Val, and Ile) is investigated by ESI-MS techniques. The 1:1 [Q7 + AA + 2H]2+ adducts are observed as the base peak when equimolar Q7:AA solutions are electrosprayed, whereas the 1:2 [Q7 + 2AA + 2H]2+ dications are dominant when an excess of the amino acid is used. A combination of ion mobility mass spectrometry (IM-MS) and DFT calculations of the 1:1 [Q7 + AA + 2H]2+ (AA = Tyr, Val, and Ser) adducts is also reported and proven to be unsuccessful at discriminating between exclusion or inclusion-type conformations in the gas phase. Collision induced dissociation (CID) revealed that the preferred dissociation pathways of the 1:1 [Q7 + AA + 2H]2+ dications are strongly influenced by the identity of the amino acid side chain, whereas ion molecule reactions towards N-butylmethylamine displayed a common reactivity pattern comprising AA displacement. Special emphasis is given on the differences between the gas-phase behavior of the supramolecular adducts with amino acids (AA = Asp, Asn, Gln, Ser, Ala, Val, and Ile) and those featuring basic (Lys and Arg) and aromatic (Tyr and Phe) side chains.

  11. Molecular structures of five adducts assembled from p-dimethylaminobenzaldehyde and organic acids

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Wang, Lanqing; Liu, Hui; Liu, Li; Zhang, Huan; Wang, Daqi; Li, Minghui; Guo, Jianzhong; Guo, Ming

    2016-07-01

    Five adducts 1-5 derived from p-dimethylaminobenzaldehyde have been prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the five adducts two are organic salts (1, and 2) and the other three (3-5) are cocrystals. In salts 1, and 2, the L molecules are protonated. The supramolecular architectures of the adducts 1-5 involve extensive intermolecular N-H⋯O, O-H⋯O, O-H⋯S, and C-H⋯O hydrogen bonds as well as other non-covalent interactions. The role of weak and strong non-covalent interactions in the crystal packing is ascertained. The complexes displayed 2D/3D framework structure for the synergistic effect of the various non-covalent interactions. The results presented herein tell that the strength and directionality of the N-H⋯O, O-H⋯O, and O-H⋯S hydrogen bonds between organic acids and p-dimethylaminobenzaldehyde are sufficient to bring about the formation of binary cocrystals or organic salts.

  12. Modified immunoslotblot assay to detect hemi and sulfur mustard DNA adducts.

    PubMed

    Kehe, Kai; Schrettl, Verena; Thiermann, Horst; Steinritz, Dirk

    2013-12-05

    Sulfur mustard (SM) is an old chemical warfare agent causing blisters (vesicant). Skin toxicity is thought to be partly caused by SM induced DNA damage. SM and the hemi mustard 2-chloroethyl ethyl sulfide (CEES) are bi- and monofunctional DNA alkylating agents, respectively. Both chemicals react especially with N7 guanine. The most abundant adducts are 7-hydroxyethylthioethylguanine for SM (61%) and 7-ethyl thioethylguanine for CEES. Thus, DNA alkylation should serve as a biomarker of SM exposure. A specific monoclonal antibody (2F8) was previously developed to detect SM and CEES adducts at N7 position by means of immunoslotblot (ISB) technique (van der Schans et al. (2004) [16]). Nitrogen mustards (HN-1, HN-2, HN-3) are alkylating agents with structural similarities, which can form DNA adducts with N7 guanine. The aim of the presented work was to modify the van der Schans protocol for use in a field laboratory and to test the cross reactivity of the 2F8 antibody against nitrogen mustards. Briefly, human keratinocytes were exposed to SM and CEES (0-300μM, 60min) or HN-1, HN-2, HN-3 (120min). After exposure, cells were scraped and DNA was isolated and normalized. 1μg DNA was transferred to a nitrocellulose membrane using a slotblot technique. After incubation with 2F8 antibody, the DNA adducts were visualized with chromogen staining (3,3'-diaminobenzidine (DAB), SeramunGrün). Blots were photographed and signal intensity was quantified. In general, DAB was superior to SeramunGrün stain. A staining was seen from 30nM to 300μM of SM or CEES, respectively. However, statistically significant DNA adducts were detected after CEES and SM exposure above 30μM which is below the vesicant threshold. No signal was observed after HN-1, HN-2, HN-3 exposure. The total hands-on time to complete the assay was about 36h. Further studies are necessary to validate SM or CEES exposure in blister roofs of exposed patients.

  13. Characterization of glycidol-hemoglobin adducts as biomarkers of exposure and in vivo dose

    SciTech Connect

    Honda, Hiroshi; Törnqvist, Margareta; Nishiyama, Naohiro; Kasamatsu, Toshio

    2014-03-15

    Hemoglobin adducts have been used as biomarkers of exposure to reactive chemicals. Glycidol, an animal carcinogen, has been reported to form N-(2,3-dihydroxy-propyl)valine adducts to hemoglobin (diHOPrVal). To support the use of these adducts as markers of glycidol exposure, we investigated the kinetics of diHOPrVal formation and its elimination in vitro and in vivo. Five groups of rats were orally administered a single dose of glycidol ranging from 0 to 75 mg/kg bw, and diHOPrVal levels were measured 24 h after administration. A dose-dependent increase in diHOPrVal levels was observed with high linearity (R{sup 2} = 0.943). Blood sampling at different time points (1, 10, 20, or 40 days) from four groups administered glycidol at 12 mg/kg bw suggested a linear decrease in diHOPrVal levels compatible with the normal turnover of rat erythrocytes (life span, 61 days), with the calculated first-order elimination rate constant (k{sub el}) indicating that the diHOPrVal adduct was chemically stable. Then, we measured the second-order rate constant (k{sub val}) for the reaction of glycidol with N-terminal valine in rat and human hemoglobin in in vitro experiments with whole blood. The k{sub val} was 6.7 ± 1.1 and 5.6 ± 1.3 (pmol/g globin per μMh) in rat and human blood, respectively, indicating no species differences. In vivo doses estimated from k{sub val} and diHOPrVal levels were in agreement with the area under the (concentration–time) curve values determined in our earlier toxicokinetic study in rats. Our results indicate that diHOPrVal is a useful biomarker for quantification of glycidol exposure and for risk assessment. - Highlight: • Glycidol-hemoglobin adduct (diHOPrVal) was characterized for exposure evaluation. • We studied the kinetics of diHOPrVal formation and elimination in vitro and in vivo. • Dose dependent formation and chemical stability were confirmed in the rat study. • In vivo dose (AUC) of glycidol could be estimated from diHOPrVal levels

  14. Discrimination against major groove adducts by Y-family polymerases of the DinB subfamily.

    PubMed

    Walsh, Jason M; Ippoliti, Paul J; Ronayne, Erin A; Rozners, Eriks; Beuning, Penny J

    2013-09-01

    Y-family DNA polymerases bypass DNA adducts in a process known as translesion synthesis (TLS). Y-family polymerases make contacts with the minor groove side of the DNA substrate at the nascent base pair. The Y-family polymerases also contact the DNA major groove via the unique little finger domain, but they generally lack contacts with the major groove at the nascent base pair. Escherichia coli DinB efficiently and accurately copies certain minor groove guanosine adducts. In contrast, we previously showed that the presence in the DNA template of the major groove-modified base 1,3-diaza-2-oxophenothiazine (tC) inhibits the activity of E. coli DinB. Even when the DNA primer is extended up to three nucleotides beyond the site of the tC analog, DinB activity is strongly inhibited. These findings prompted us to investigate discrimination against other major groove modifications by DinB and its orthologs. We chose a set of pyrimidines and purines with modifications in the major groove and determined the activity of DinB and several orthologs with these substrates. DinB, human pol kappa, and Sulfolobus solfataricus Dpo4 show differing specificities for the major groove adducts pyrrolo-dC, dP, N(6)-furfuryl-dA, and etheno-dA. In general, DinB was least efficient for bypass of all of these major groove adducts, whereas Dpo4 was most efficient. DinB activity was essentially completely inhibited by the presence of etheno-dA, while pol kappa activity was strongly inhibited. All three of these DNA polymerases were able to bypass N(6)-furfuryl-dA with modest efficiency, with DinB being the least efficient. We also determined that the R35A variant of DinB enhances bypass of N(6)-furfuryl-dA but not etheno-dA. In sum, we find that whereas DinB is specific for bypass of minor groove adducts, it is specifically inhibited by major groove DNA modifications.

  15. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins

    PubMed Central

    Zdżalik, Daria; Domańska, Anna; Prorok, Paulina; Kosicki, Konrad; van den Born, Erwin; Falnes, Pål Ø.; Rizzo, Carmelo J.; Guengerich, F. Peter; Tudek, Barbara

    2015-01-01

    AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno (ε)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ε-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ε-adducts, 1,N6-ethenoadenine (εA), 3,N4-ethenocytosine (εC) and 1,N2-ethenoguanine (1,N2-εG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ε-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed εA and εC from ds and ssDNA but were inactive toward 1,N2-εG. SC-1A repaired only εA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ε-adducts in dsDNA, while only εA and εC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only εC in ssDNA Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N2-εG and that ALKBH3 removes only εC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins. PMID:25797601

  16. S-arylcysteine-keratin adducts as biomarkers of human dermal exposure to aromatic hydrocarbons.

    PubMed

    Kang-Sickel, Juei-Chuan C; Fox, Donii D; Nam, Tae-Gyu; Jayaraj, Karupiah; Ball, Louise M; French, John E; Klapper, David G; Gold, Avram; Nylander-French, Leena A

    2008-04-01

    To measure biomarkers of skin exposure to ubiquitous industrial and environmental aromatic hydrocarbons, we sought to develop an ELISA to quantitate protein adducts of metabolites of benzene and naphthalene in the skin of exposed individuals. We hypothesized that electrophilic arene oxides formed by CYP isoforms expressed in the human skin react with nucleophilic sites on keratin, the most abundant protein in the stratum corneum that is synthesized de novo during keratinocyte maturation and differentiation. The sulfhydryl groups of cysteines in the head region of the keratin proteins 1 (K1) and 10 (K10) are likely targets. The following synthetic S-arylcysteines were incorporated into 10-mer head sequences of K1 [GGGRFSS( S-aryl-C)GG] and K10 [GGGG( S-aryl-C)GGGGG] to form the predicted immunogenic epitopes for antibody production for ELISA: S-phenylcysteine-K1 (SPK1), S-phenylcysteine-K10 (SPK10), S-(1-naphthyl)cysteine-K1 (1NK1), S-(1-naphthyl)cysteine-K10 (1NK10), S-(2-naphthyl)cysteine-K1 (2NK1), and S-(2-naphthyl)cysteine-K10 (2NK10). Analysis by ELISA was chosen based on its high throughput and sensitivity, and low cost. The synthetic modified oligopeptides, available in quantity, served both as immunogens and as chemical standards for quantitative ELISA. Polyclonal rabbit antibodies produced against the naphthyl-modified keratins reacted with their respective antigens with threshold sensitivities of 15-31 ng/mL and high specificity over a linear range up to 500 ng/mL. Anti- S-phenylcysteine antibodies were not sufficiently specific or sensitive toward the target antigens for use in ELISA under our experimental conditions. In dermal tape-strip samples collected from 13 individuals exposed to naphthalene-containing jet fuel, naphthyl-conjugated peptides were detected at levels from 0.343 +/- 0.274 to 2.34 +/- 1.61 pmol adduct/microg keratin but were undetectable in unexposed volunteers. This is the first report of adducts of naphthalene (or of any polycyclic

  17. Induction of ovarian cancer and DNA adducts by dibenzo[a,l]pyrene in the mouse

    PubMed Central

    Chen, Kun-Ming; Zhang, Shang-Min; Aliaga, Cesar; Sun, Yuan-Wan; Cooper, Timothy; Gowdahalli, Krishnegowda; Zhu, Junjia; Amin, Shantu; El-Bayoumy, Karam

    2011-01-01

    Tobacco smoking is an etiological factor of ovarian cacner; however, the mechanisms remain largely undefined. Therefore, as an initial investigation we examined the carcinogenicity and DNA adducts formation in the ovary of mice treated with DB[a,l]P, a tobacco smoke constituent and environmental pollutant. Ovarian tumors in B6C3F1 mice were induced by direct application of DB[a,l]P (24, 12, 6, and 3 nmol/mouse, 3 times a week for 38 weeks) into the oral cavity of mice. At 6 nmol, DB[a,l]P induced the highest total ovarian tumor incidence (79%), but the incidence of malignancy was only 15%. However, at the dose of 12 nmol, the total ovarian tumor incidence was 75%, and the incidence of malignancy was 65%. In addition to ovarian tumors, at the dose of 24 nmol, DB[a,l]P induced lesions in sites distal from the ovaries including the skin, mammary, lung, and oral tissues which were rare at doses lower than 24 nmol. Another bioassay was conducted to detect and quantify DNA-adducts induced by DB[a,l]P (24 nmol, 3 times a week for 5 weeks) in the ovary at 48 h, 1, 2 and 4 weeks after the last administration of DB[a,l]P. DNA was isolated, and the dibenzo[a,l]pyrene-11,12-dihydrodiol-13,14-epoxide (DB[a,l]PDE)-DNA adducts were analyzed by a LC-MS/MS method. DB[a,l]P resulted in the formation of (−)-anti-cis-DB[a,l]PDE-dA and (−)-anti-trans-DB[a,l]PDE-dA adducts, which were 0.8 and 1.6 fmol/106 dA respectively in ovaries of mice within 48 h, and the level of adducts decreased over a week. Our results indicated that DB[a,l]P can be metabolized to form (−)-anti-DB[a,l]PDE; the latter may, in part, account for DB[a,l]P-induced ovarian cancer. This animal model should assist to better understand the mechanisms, account for the induction of ovarian cancer by tobacco carcinogens, and facilitate the development of chemopreventive agents against ovarian cancer. PMID:22107356

  18. Role of α-Subunit VISIT-DG Sequence Residues Ser-347 and Gly-351 in the Catalytic Sites of Escherichia coli ATP Synthase*

    PubMed Central

    Li, Wenzong; Brudecki, Laura E.; Senior, Alan E.; Ahmad, Zulfiqar

    2009-01-01

    This paper describes the role of α-subunit VISIT-DG sequence residues αSer-347 and αGly-351 in catalytic sites of Escherichia coli F1Fo ATP synthase. X-ray structures show the very highly conserved α-subunit VISIT-DG sequence in close proximity to the conserved phosphate-binding residues αArg-376, βArg-182, βLys-155, and βArg-246 in the phosphate-binding subdomain. Mutations αS347Q and αG351Q caused loss of oxidative phosphorylation and reduced ATPase activity of F1Fo in membranes by 100- and 150-fold, respectively, whereas αS347A mutation showed only a 13-fold loss of activity and also retained some oxidative phosphorylation activity. The ATPase of αS347Q mutant was not inhibited, and the αS347A mutant was slightly inhibited by MgADP-azide, MgADP-fluoroaluminate, or MgADP-fluoroscandium, in contrast to wild type and αG351Q mutant. Whereas 7-chloro-4-nitrobenzo-2-oxa-1, 3-diazole (NBD-Cl) inhibited wild type and αG351Q mutant ATPase essentially completely, ATPase in αS347A or αS347Q mutant was inhibited maximally by ∼80–90%, although reaction still occurred at residue βTyr-297, proximal to the α-subunit VISIT-DG sequence, near the phosphate-binding pocket. Inhibition characteristics supported the conclusion that NBD-Cl reacts inβE (empty) catalytic sites, as shown previously by x-ray structure analysis. Phosphate protected against NBD-Cl inhibition in wild type and αG351Q mutant but not in αS347Q or αS347A mutant. The results demonstrate that αSer-347 is an additional residue involved in phosphate-binding and transition state stabilization in ATP synthase catalytic sites. In contrast, αGly-351, although strongly conserved and clearly important for function, appears not to play a direct role. PMID:19240022

  19. Separation and identification of DMPO adducts of oxygen-centered radicals formed from organic hydroperoxides by HPLC-ESR, ESI-MS and MS/MS.

    PubMed

    Guo, Qiong; Qian, Steven Y; Mason, Ronald P

    2003-08-01

    Many electron spin resonance (ESR) spectra of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) radical adducts from the reaction of organic hydroperoxides with heme proteins or Fe(2+) were assigned to the adducts of DMPO with peroxyl, alkoxyl, and alkyl radicals. In particular, the controversial assignment of DMPO/peroxyl radical adducts was based on the close similarity of their ESR spectra to that of the DMPO/superoxide radical adduct in conjunction with their insensitivity to superoxide dismutase, which distinguishes the peroxyl adducts from the DMPO/superoxide adduct. Although recent reports assigned the spectra suggested to be DMPO/peroxyl radical adducts to the DMPO/methoxyl adduct based on independent synthesis of the adduct and/or (17)O-labeling, (17)O-labeling is extremely expensive, and both of these assignments were still based on hyperfine coupling constants, which have not been confirmed by independent techniques. In this study, we have used online high performance liquid chromatography (HPLC or LC)/ESR, electrospray ionization-mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) to separate and directly characterize DMPO oxygen-centered radical adducts formed from the reaction of Fe(2+) with t-butyl or cumene hydroperoxide. In each reaction system, two DMPO oxygen-centered radical adducts were separated and detected by online LC/ESR. The first DMPO radical adduct from both systems showed identical chromatographic retention times (t(R) = 9.6 min) and hyperfine coupling constants (a(N) = 14.51 G, a(H)(beta) = 10.71 G, and a(H)(gamma) = 1.32 G). The ESI-MS and MS/MS spectra demonstrated that this radical was the DMPO/methoxyl radical adduct, not the peroxyl radical adduct as was thought at one time, although its ESR spectrum is nearly identical to that of the DMPO/superoxide radical adduct. Similarly, based on their MS/MS spectra, we verified that the second adducts (a(N) = 14.86 G and a(H)(beta) = 16.06 G in the reaction system containing t

  20. Optimal Siting and Sizing of Multiple DG Units for the Enhancement of Voltage Profile and Loss Minimization in Transmission Systems Using Nature Inspired Algorithms.

    PubMed

    Ramamoorthy, Ambika; Ramachandran, Rajeswari

    2016-01-01

    Power grid becomes smarter nowadays along with technological development. The benefits of smart grid can be enhanced through the integration of renewable energy sources. In this paper, several studies have been made to reconfigure a conventional network into a smart grid. Amongst all the renewable sources, solar power takes the prominent position due to its availability in abundance. Proposed methodology presented in this paper is aimed at minimizing network power losses and at improving the voltage stability within the frame work of system operation and security constraints in a transmission system. Locations and capacities of DGs have a significant impact on the system losses in a transmission system. In this paper, combined nature inspired algorithms are presented for optimal location and sizing of DGs. This paper proposes a two-step optimization technique in order to integrate DG. In a first step, the best size of DG is determined through PSO metaheuristics and the results obtained through PSO is tested for reverse power flow by negative load approach to find possible bus locations. Then, optimal location is found by Loss Sensitivity Factor (LSF) and weak (WK) bus methods and the results are compared. In a second step, optimal sizing of DGs is determined by PSO, GSA, and hybrid PSOGSA algorithms. Apart from optimal sizing and siting of DGs, different scenarios with number of DGs (3, 4, and 5) and PQ capacities of DGs (P alone, Q alone, and P and Q both) are also analyzed and the results are analyzed in this paper. A detailed performance analysis is carried out on IEEE 30-bus system to demonstrate the effectiveness of the proposed methodology.

  1. Optimal Siting and Sizing of Multiple DG Units for the Enhancement of Voltage Profile and Loss Minimization in Transmission Systems Using Nature Inspired Algorithms

    PubMed Central

    Ramamoorthy, Ambika; Ramachandran, Rajeswari

    2016-01-01

    Power grid becomes smarter nowadays along with technological development. The benefits of smart grid can be enhanced through the integration of renewable energy sources. In this paper, several studies have been made to reconfigure a conventional network into a smart grid. Amongst all the renewable sources, solar power takes the prominent position due to its availability in abundance. Proposed methodology presented in this paper is aimed at minimizing network power losses and at improving the voltage stability within the frame work of system operation and security constraints in a transmission system. Locations and capacities of DGs have a significant impact on the system losses in a transmission system. In this paper, combined nature inspired algorithms are presented for optimal location and sizing of DGs. This paper proposes a two-step optimization technique in order to integrate DG. In a first step, the best size of DG is determined through PSO metaheuristics and the results obtained through PSO is tested for reverse power flow by negative load approach to find possible bus locations. Then, optimal location is found by Loss Sensitivity Factor (LSF) and weak (WK) bus methods and the results are compared. In a second step, optimal sizing of DGs is determined by PSO, GSA, and hybrid PSOGSA algorithms. Apart from optimal sizing and siting of DGs, different scenarios with number of DGs (3, 4, and 5) and PQ capacities of DGs (P alone, Q alone, and  P and Q both) are also analyzed and the results are analyzed in this paper. A detailed performance analysis is carried out on IEEE 30-bus system to demonstrate the effectiveness of the proposed methodology. PMID:27057557

  2. GenoMass software: a tool based on electrospray ionization tandem mass spectrometry for characterization and sequencing of oligonucleotide adducts

    PubMed Central

    Sharma, Vaneet K; Glick, James; Liao, Qing; Shen, Chang; Vouros, Paul

    2012-01-01

    The analysis of DNA adducts is of importance in understanding DNA damage, and in the last few years mass spectrometry (MS) has emerged as the most comprehensive and versatile tool for routine characterization of modified oligonucleotides. The structural analysis of modified oligonucleotides, although routinely analyzed using mass spectrometry, is followed by a large amount of data, and a significant challenge is to locate the exact position of the adduct by computational spectral interpretation, which still is a bottleneck. In this report, we present an additional feature of the in-house developed GenoMass software, which determines the exact location of an adduct in modified oligonucleotides by connecting tandem mass spectrometry (MS/MS) to a combinatorial isomer library generated in silico for nucleic acids. The performance of this MS/MS approach using GenoMass software was evaluated by MS/MS data interpretation for an unadducted and its corresponding N-acetylaminofluorene (AAF) adducted 17-mer (5′OH-CCT ACC CCT TCC TTG TA-3′OH) oligonucleotide. Further computational screening of this AAF adducted 17-mer oligonucleotide (5′OH-CCT ACC CCT TCC TTG TA-3′OH) from a complex oligonucleotide mixture was performed using GenoMass. Finally, GenoMass was also used to identify the positional isomers of the AAF adducted 15-mer oligonucleotide (5′OH-ATGAACCGGAGGCCC-3′OH). GenoMass is a simple, fast, data interpretation software that uses an in silico constructed library to relate the MS/MS sequencing approach to identify the exact location of adduct on oligonucleotides. PMID:22689626

  3. Sequence mapping of epoxide adducts in human hemoglobin with LC-tandem MS and the SALSA algorithm.

    PubMed

    Badghisi, Hamid; Liebler, Daniel C

    2002-06-01

    The rapid development and integration of liquid chromatography-tandem mass spectrometry (LC-MS-MS) has enabled the high-throughput identification of proteins and driven the expanding field of proteomics. LC-MS-MS also offers an attractive general approach to the analysis of xenobiotic adducts on proteins. The aim of this study was to examine the combined use of LC-MS-MS and the SALSA algorithm as a general approach to map xenobiotic adducts on proteins at the level of amino acid sequence. Hemoglobin (Hb) adducts are commonly used as biomarkers for exposure to environmental toxicants. Human Hb was incubated with styrene oxide, ethylene oxid