Science.gov

Sample records for aminopyrine

  1. Preliminary studies of a canine 13C-aminopyrine demethylation blood test.

    PubMed Central

    Moeller, E M; Steiner, J M; Williams, D A; Klein, P D

    2001-01-01

    The objectives of this study were to determine whether a 13C-aminopyrine demethylation blood test is technically feasible in clinically healthy dogs, whether oral administration of 13C-aminopyrine causes a detectable increase in percent dose/min (PCD) of 13C administered as 13C-aminopyrine and recovered in gas extracted from blood, and whether gas extraction efficiency has an impact on PCD. A dose of 2 mg/kg body weight of 13C-aminopyrine dissolved in deionized water was administered orally to 6 clinically healthy dogs. Blood samples were taken from each dog 0, 30, 60, and 120 min after administration of the 13C-aminopyrine. Carbon dioxide was extracted from blood samples by addition of acid and analyzed by fractional mass spectrometry. None of the 6 dogs showed any side effects after 13C-aminopyrine administration. All 6 dogs showed a measurable increase of the PCD in gas samples extracted from blood samples at 30 min, 60 min, and 120 min after 13C-aminopyrine administration. Coefficients of variation between the triplicate samples were statistically significantly higher for the %CO2, a measure of extraction efficiency, than for PCD values (P < 0.0001). The 13C-aminopyrine demethylation blood test described here is technically feasible. Oral administration of 13C-aminopyrine did not lead to gross side effects in the 6 dogs. Clinically healthy dogs show a measurable increase of PCD in gas extracted from blood samples after oral administration of 13C-aminopyrine. Efficiency of CO2 extraction from blood samples does not have an impact on PCD determined from these blood samples. This test may prove useful to evaluate hepatic function in dogs. PMID:11227194

  2. N-Demethylation of aminopyrine by the nasal mucosa in mice and rats.

    PubMed

    Brittebo, E B

    1982-09-01

    N-demethylation of aminopyrine was demonstrated in the nasal mucosa of C57 Bl mice and Sprague-Dawley rats by measurements of the 14CO2 formed at incubation of 14C-aminopyrine with tissue-slices. The metabolism of aminopyrine by the nasal mucosa was induced by phenobarbital pretreatment and susceptible to inhibition with metyrapone and SKF 525 A suggesting the presence of cytochrome P-450-dependent enzyme system in the tissue. Immediately after injection of 14C-aminopyrine in rats a uniform distribution of radioactivity in the body was recorded. After thirty minutes, however, a preferential localization of radioactivity was found in the nasal mucosa and in the liver. By pretreatment with metyrapone the uptake of radioactivity in the nasal mucosa and in the liver was blocked suggesting that the observed accumulation of radioactivity is due to metabolites.

  3. Interrelationship between aminopyrine oxidation and gluconeogenesis in hepatocytes prepared from fructose-pretreated mice.

    PubMed

    Bánhegyi, G; Mandl, J; Antoni, F; Garzó, T

    1987-03-11

    Aminopyrine oxidation was studied in isolated hepatocytes prepared from 24-h-starved mice (i) after induction of the NADPH-generating malic enzyme and glucose-6-phosphate dehydrogenase, but not the mixed function oxygenases by fructose, (ii) after induction of both mixed function oxygenases and NADPH-generating malic enzyme and glucose-6-phosphate dehydrogenase by phenobarbital and (iii) without any pretreatment. Phenobarbital pretreatment, as expected, increased the rate of aminopyrine oxidation of isolated hepatocytes. However, fructose pretreatment also enhanced the rate of N-demethylation of aminopyrine by more than 100% supporting the view that the availability of NADPH is rate limiting in drug oxidation under certain conditions. The role of malic enzyme and glucose-6-phosphate dehydrogenase in the NADPH supply for aminopyrine oxidation was investigated by the addition of two groups of gluconeogenic precursors: lactate or alanine and glycerol or fructose with the simultaneous measurement of glucose synthesis and aminopyrine N-demethylation. There was a clear correlation between the increased rate of aminopyrine oxidation and the decreases of glucose production caused by aminopyrine. Gluconeogenesis in the presence of 1 mM aminopyrine was decreased by 70-80% when alanine or lactate were used as precursors, it was decreased by only 35-40% when glucose production was started from glycerol or fructose; in an accordance with the facts that NADPH generation and gluconeogenesis starting from alanine or lactate share two common intermediates--malate and glucose-6 phosphate--, while there is only one common intermediate--glucose-6 phosphate--if fructose or glycerol are used. Similar results were obtained with the addition of the structurally dissimilar hexobarbital. It is concluded that besides malic enzyme, glucose-6-phosphate dehydrogenase also takes part in NADPH supply for drug oxidation in glycogen-depleted hepatocytes.

  4. In vivo effects of Faizol Ubat Batuk, a herbal product on aminopyrine metabolism in rat hepatocytes

    PubMed Central

    Taher, Yousef A.; Hussin, Abas Hj

    2011-01-01

    Traditional medicines, in particular herbal products, have been used abundantly over the years in curing several diseases. Pharmacological interactions of herbal products with modern drugs, however, remain to some extent unknown. Herein, we examined whether co-administration of Faizol Ubat Batuk (FUB), a mixture of aqueous extract of different plants, modifies the metabolism of aminopyrine, a conventional analgesic drug, in rat liver. We used rat hepatocytes outfitted by collagenase perfusion technique. Determination of aminopyrine n-demethylase activity was performed using the Nash colorimetric method, by measuring the amount of formaldehyde produced. Compared to control treatment, FUB significantly increased the hepatic metabolism of aminopyrine in healthy adult male rats. In contrast, the hepatic metabolism of aminopyrine in adult female rats was decreased. Besides, a biphasic effect in n-demethylase activity was observed in young male rats treated with FUB. In a subsequent experiment, FUB did not change the metabolism of aminopyrine in streptozotocin (STZ)-diabetic adult male rats. In conclusion, administration of FUB could affect phase I aminopyrine metabolism in rat heptocytes. In addition, the effects of FUB on hepatic n-demethylase activity were gender and disease dependent. PMID:21977110

  5. Recovery of liver function in partially hepatectomized rats evaluated by aminopyrine demethylation capacity

    SciTech Connect

    Sendama, I.; de Hemptinne, B.; Lambotte, L.

    1985-07-01

    Aminopyrine demethylation was investigated in rats after a 70% hepatectomy to assess possible parallelism between the recovery of mass and function. Tests were performed by analyzing UCO2 exhalation from 0.1 microCi per 100 gm of body weight of (dimethylamine- UC)aminopyrine given intraperitoneally with incremental doses of unlabeled drug. Early after 70% hepatectomy, Vmax was reduced by 52%. This discordance between mass and function was not due to extrahepatic aminopyrine demethylation, since liver exclusion reduced demethylation of aminopyrine to nearly nil. Whether it results from increased liver blood flow in the remnant liver is less clear. The early increase in Vmax could be related to a hepatotrophic factor of splanchnic origin which increased after partial hepatectomy and decreased after portacaval shunt. After the early period, Vmax, expressed per gram of actual liver weight, returned to control range. Throughout regeneration (4 to 144 hr), no modification was observed in Km nor in cytochrome P-450 concentration. Enzymatic induction with phenobarbital increased the demethylation capacity more than liver weight in intact and regenerating liver. Except for the first hours after partial hepatectomy or after enzymatic induction, the aminopyrine demethylation capacity directly correlated with liver mass and may be useful in evaluating liver regeneration in vivo.

  6. Impairment of aminopyrine clearance in aspirin-damaged canine gastric mucosa

    SciTech Connect

    Miller, T.A.; Henagan, J.M.; Loy, T.M.

    1983-09-01

    Using an in vivo canine chambered stomach preparation, the clearance of (/sup 14/C)aminopyrine across mucosa when intravenously infused and the back-diffusion of this substance from gastric lumen to mucosa when topically applied to gastric epithelium were evaluated in aspirin-damaged gastric epithelium. In mucosa damaged by either 20 mM or 40 mM aspirin, the recovery of (/sup 14/C)aminopyrine, when topically mixed with acid (pH . 1.1) perfusate solution, was not significantly different from nondamaged control mucosa. In addition, the degree of ''trapping'' of this substance from back-diffusion was not different in damaged mucosa from that observed in nondamaged epithelium. In contrast, when (/sup 14/C)aminopyrine was intravenously infused, its clearance was significantly impaired in aspirin-damaged mucosa when compared with control studies, as evidenced by the increased ''trapping'' of this substance in injured epithelium. These findings indicate that movement of aminopyrine from plasma to gastric lumen is impaired in damaged epithelium, making the aminopyrine clearance technique an unreliable method to accurately measure absolute gastric blood flow in this experimental setting.

  7. The relationship between aminopyrine breath test and severity of liver disease in cirrhosis

    SciTech Connect

    Morelli, A.; Narducci, F.; Pelli, M.A.; Farroni, F.; Vedovelli, A.

    1981-08-01

    Twenty-two patients with cirrhosis were evaluated by the 2 hr.-(C14)-aminopyrine breath test, the conventional liver tests and two systems for grading the severity of liver disease. Twenty-three patients with noncirrhotic liver disease and 15 controls were also studied. Reduced 14CO2 values were found in 21 of the 22 cirrhotic patients and seven of those had noncirrhotic liver disease associated with severe functional reserve impairment. The values in patients with minor liver diseases or cholestasis were normal. In the cirrhotic patients 2 hr.-(C14)-aminopyrine breath test scores correlated with prothrombin time, retention of bromosulfalein, fasting serum bile acid, albumin, bilirubin, serum aspartate aminotransferase and, above all, with the scores of the two clinical rating systems. The 2 hr.-(C14)-aminopyrine breath test was superior to conventional tests in quantifying the degree of hepatic functional reserve and forecasting the prognosis.

  8. Critical appraisal of 13C breath tests for microsomal liver function: aminopyrine revisited.

    PubMed

    Pijls, Kirsten E; de Vries, Hanne; Nikkessen, Suzan; Bast, Aalt; Wodzig, Will K W H; Koek, Ger H

    2014-04-01

    As liver diseases are a major health problem and especially the incidence of metabolic liver diseases like non-alcoholic fatty liver disease (NAFLD) is rising, the demand for non-invasive tests is growing to replace liver biopsy. Non-invasive tests such as carbon-labelled breath tests can provide a valuable contribution to the evaluation of metabolic liver function. This review aims to critically appraise the value of the (13) C-labelled microsomal breath tests for the evaluation of metabolic liver function, and to discuss the role of cytochrome P450 enzymes in the metabolism of the different probe drugs, especially of aminopyrine. Although a number of different probe drugs have been used in breath tests, the perfect drug to assess the functional metabolic capacity of the liver has not been found. Data suggest that both the (13) C(2) -aminopyrine and the (13) C-methacetin breath test can play a role in assessing the capacity of the microsomal liver function and may be useful in the follow-up of patients with chronic liver diseases. Furthermore, CYP2C19 seems to be an important enzyme in the N-demethylation of aminopyrine, and polymorphisms in this gene may influence breath test values, which should be kept in mind when performing the (13) C(2) -aminopyrine breath test in clinical practice.

  9. Effect of adenosine and adenosine analogs on ( sup 14 C)aminopyrine accumulation by rabbit parietal cells

    SciTech Connect

    Ota, S.; Hiraishi, H.; Terano, A.; Mutoh, H.; Kurachi, Y.; Shimada, T.; Ivey, K.J.; Sugimoto, T. )

    1989-12-01

    Adenosine receptors that modulate adenylate cyclase activity have been identified recently in a number of tissues. Adenosine A2 receptor is stimulatory to adenylate cyclase, whereas adenosine A1 receptor is inhibitory to adenylate cyclase. We investigated the effect of adenosine and its analogs on (14C)aminopyrine accumulation by rabbit parietal cells. Rabbit gastric mucosal cells were isolated by enzyme digestion. Parietal cells were enriched by nonlinear percoll gradients. (14C)Aminopyrine accumulation was used as an indicator of acid secretion. The effect of 2-chloroadenosine on histamine-stimulated (14C)aminopyrine accumulation was studied. The effects of N-ethylcarboxamideadenosine, 2-chloroadenosine, stable analogs of adenosine, and adenosine on (14C)aminopyrine accumulation were assessed. Cyclic AMP content of parietal cells was determined by radioimmunoassay. Histamine and carbachol, known secretagogues, stimulated (14C)aminopyrine accumulation. 2-Chloroadenosine did not suppress histamine-stimulated (14C)aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine dose dependently increased (14C)aminopyrine accumulation. The order of potency was N-ethylcarboxamideadenosine greater than 2-chloroadenosine greater than adenosine. 8-Phenyltheophylline and theophylline, adenosine-receptor antagonists, or cimetidine did not have significant effects on the increase of AP uptake induced by 2-chloroadenosine. Coadministration of dipyridamole, and adenosine uptake inhibitor, augmented the effect of adenosine on (14C)aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine each induced a significant increase in cellular cyclic AMP. We conclude that there may be adenosine A2 receptors on rabbit parietal cells which modulate gastric acid secretion.

  10. Aminopyrine N-demethylation by rats with liver cirrhosis. Evidence for the intact cell hypothesis. A morphometric-functional study.

    PubMed

    Reichen, J; Arts, B; Schafroth, U; Zimmermann, A; Zeltner, B; Zysset, T

    1987-10-01

    The intact cell hypothesis states that a reduced number of intrinsically normal hepatocytes, together with hemodynamic alterations, explains decreased drug metabolism in cirrhosis. We explored this hypothesis by comparing results of the aminopyrine breath test with in vitro measurements of aminopyrine N-demethylation and morphometrically determined liver cell volume in a rat model of cirrhosis. Aminopyrine N-demethylation in vivo (ABT-k) was 0.98 +/- 0.10/h (mean +/- SD) in controls. The cirrhotic rats were separated into those with normal (NCR) and those with abnormal ABT-k (PCR). Microsomal aminopyrine N-demethylase averaged 2.08 +/- 0.77 and 2.09 +/- 0.54 mumol/min in controls and NCRs, respectively; it was reduced to 1.00 +/- 0.81 mumol/min (p less than 0.02) in PCRs. Morphometrically determined hepatocellular volume was 18.8 +/- 2.8, 17.1 +/- 1.9, and 11.6 +/- 6.1 ml in controls, NCRs, and PCRs, respectively, PCRs being lower than controls (p less than 0.01) and NCRs (p less than 0.05). When N-demethylase and cytochrome P450 were related to hepatocellular volume (in milliliters), no significant difference between the three groups was apparent. We conclude that reduced aminopyrine N-demethylation in progressed cirrhosis is mainly due to a loss of liver cell volume. The function per liver cell volume remains constant, however, thus favoring the intact cell hypothesis for the handling of slowly metabolized compounds such as aminopyrine.

  11. (14C)Aminopyrine breath test in chronic liver disease: preliminary diagnostic implications

    SciTech Connect

    Burnstein, A.V.; Galambos, J.T.

    1981-12-01

    The (14C)aminopyrine breath test (APBT) score, an estimate of hepatic mixed-oxidase function, was evaluated in 21 consecutive patients wih active nonalcoholic chronic liver diseases. Ten had primary biliary cirrhosis (PBC) and 11 had chronic active hepatitis (CAH). The APBT score was normal or elevated in patients with PBC (P less than 0.001), and lower than normal in CAH patients (P less than 0.01); 10.5 +/- 1.6 and 3.5 +/- 1.86, respectively, vs control 7.65 +/- 1.15 (mean +/- SD). The 11 patients with CAH included two middle-aged women who displayed ambiguous severe intrahepatic cholestasis. There was no overlap between the APBT scores of the 10 PBC and 11 CAH patients. These initial data suggest that the APBT may be helpful in the differentiation of PBC and CAH, including misleading cholestatic forms of CAH.

  12. Influence of different proton pump inhibitors on activity of cytochrome P450 assessed by [(13)C]-aminopyrine breath test.

    PubMed

    Kodaira, Chise; Uchida, Shinya; Yamade, Mihoko; Nishino, Masafumi; Ikuma, Mutsuhiro; Namiki, Noriyuki; Sugimoto, Mitsushige; Watanabe, Hiroshi; Hishida, Akira; Furuta, Takahisa

    2012-03-01

    Aminopyrine is metabolized by cytochrome P450 (CYP) in the liver. The investigators evaluated influences of different PPIs on CYP activity as assessed by the [(13)C]-aminopyrine breath test ([(13)C]-ABT). Subjects were 15 healthy volunteers with different CYP2C19 status (5 rapid metabolizers [RMs], 5 intermediate metabolizers [IMs], and 5 poor metabolizers [PMs]). Breath samples were collected before and every 15 to 30 minutes for 3 hours after oral ingestion of [(13)C]-aminopyrine 100 mg on day 8 of each of the following regimens: control; omeprazole 20 mg and 80 mg, lansoprazole 30 mg, and rabeprazole 20 mg. Changes in carbon isotope ratios in carbon dioxide ((13)CO(2)/(12)CO(2)) in breath samples were measured by infrared spectrometry and expressed as delta-over-baseline (DOB) ratios (‰). Mean areas under the curve of DOB from 0 to 3 h (AUC(0-3h) of DOB) were significantly decreased by omeprazole 20 mg and lansoprazole 30 mg but not by rabeprazole 20 mg. Conversely, higher PPI dose (ie, omeprazole 80 mg) seemed to further decrease AUC(0-3h) of DOB in RMs but increased it in PMs. Omeprazole and lansoprazole at the standard doses inhibit CYP activity but rabeprazole does not, whereas high-dose omeprazole seems to induce CYPs. PMID:21415279

  13. Breath /sup 14/CO2 after intravenous administration of (/sup 14/C)aminopyrine in liver diseases

    SciTech Connect

    Pauwels, S.; Geubel, A.P.; Dive, C.; Beckers, C.

    1982-01-01

    The determination of of /sup 14/CO2 in breath after oral administration of (/sup 14/C)aminopyrine has been proposed as a quantitative liver function test. In order to shorten the procedure and avoid misinterpretations related to variable rates of intestinal absorption, the (/sup 14/C)aminopyrine breath test (ABT) was performed after intravenous administration of (/sup 14/C)aminopyrine in 21 controls and 89 patients with biopsy-proven liver disease. The specific activity of the first hour sample corrected for body weight (SA1) was the most discriminant expression of breath data. The SA1 value, expressed as the percentage of the administered dose, was 0.86 +/- 0.1% (mean +/- SD) in controls and significantly less in patients (0.46 +/- 0.31%). Low values were observed in patients with untreated chronic active hepatitis (0.16 +/- 0.13%), alcoholic cirrhosis (0.2 +/ 0.15%0, and untreated postnecrotic cirrhosis (0.47 +/- 0.17%). In contrast, normal values were obtained in chronic persistent hepatitis (0.86 +/- 0.13%) and 58% of noncirrhotic alcoholic liver diseases (0.83 +/- 0.27%). The results of duplicate studies were reproducible and SA1 correlated with other conventional liver function tests, including 45-min BSP retention. Among these, ABT was the most sensitive screening test for the presence of cirrhosis, especially in alcoholic patients, where it allowed a sharp distinction between cirrhotic and noncirrhotic cases. The results obtained in chronic hepatitis suggested that ABT may provide a reliable index of the activity of the disease. In our hands, intravenous ABT, performed over a 1-hr period, was a fast, sensitive, and discriminant liver function test.

  14. A comparison of the inductive effects of phenobarbital, methaqualone, and methyprylon on hepatic mixed function oxidase enzymes in the rat.

    PubMed

    Reinke, L A; O'Connor, M F; Piepho, R W; Stohs, S J

    1975-05-01

    The effects of equal doses of three sedative-hypnotics, phenobarbital, methaqualone, and methyprylon, on the hepatic mixed function oxidase enzymes of the rat were investigated and compared. After 5 days of pretreatment, phenobarbital and methyprylon significantly increased aminopyrine demethylation, aniline hydroxylation, and cytochrome P-450 content in hepatic microsomes. Methaqualone pretreatment only increased hepatic aminopyrine demethylase activity and wet liver weights. After 29 days of pretreatment, phenobarbital significantly increases aminopyrine demethylase, aniline hydroxylase activity, liver weight and cytochrome P-450 content. Methaqualone only produced a significant increase in wet liver weight.

  15. [Effects of difenamizole on behavior maintained by schedule of positive reinforcement (author's transl)].

    PubMed

    Nabeshima, T; Kameyama, T

    1977-11-01

    The anti-nociceptive dose of difenamizole, morphine, aminopyrine and aspirin was studied for effects on behavior maintained by schedule of positive reinforcement. Male, albino rats were trained to press a lever for food pellets on a fixed-ratio (FR) 10 and 30 schedule of reinforcement or a differential reinforcement of low rates of responding (DRL) schedule. Difenamizole (200 and 400 mg/kg, p.o.) produced a dose-related decrease in the response under FR-10 schedule. The response rate decrease observed under the FR-10 schedule was similar to that resulting from the oral administration of 400 mg/kg of aminopyrine. Response in the FR-30 schedule was not affected by any dose of difenamizole (100 approximately 400 mg/kg, p.o.) and aminopyrine (200 approximately 400 mg/kg, p.o.). In the response maintained by the DRL schedule, the overall response rate and the mean interresponse time were not altered significantly by most doses of difenamizole, aminopyrine and aspirin given, however, food reinforcement was decreased significantly with ingestion of these drugs. Morphine (20 mg/kg, p.o.) shortened the mean interresponse time and increased the response in DRL schedule. These results suggest that the central action of difenamizole is similar to that produced by aminopyrine, but not that produced by morphine.

  16. Genetic variation in cytochrome P-450-dependent demethylation in Drosophila melanogaster.

    PubMed

    Hällström, I

    1987-07-15

    The genetic variation in the basal capacity to N-demethylate aminopyrine, d-benzphetamine and ethylmorphine was studied in microsomes from adult Drosophila of 9 different strains. Ethylmorphine and d-benzphetamine N-demethylase activity varied about fourfold between the strains, with the highest capacity for both reactions in the Aflatoxin B1-sensitive Florida 9 and the lowest in the insecticide-resistant Hikone R. The two activities were closely correlated with each other but not with aminopyrine demethylation or any previously studied cytochrome P-450-dependent reaction, indicating a common determination by a separate cytochrome P-450 form(s). Aminopyrine N-demethylase activity was more than fourfold higher in the DDT-resistant Oregon R than in Berlin K. A genetic analysis of aminopyrine N-demethylation revealed that the high activity in the Oregon R(R) strain was inherited as an apparently semidominant second chromosome trait. The similar mode of inheritance as well as the close correlation between aminopyrine demethylase and the previously analysed biphenyl 4-hydroxylase activity suggests that these activities are under the same genetic control. PMID:3111479

  17. Genetic variation in cytochrome P-450-dependent demethylation in Drosophila melanogaster.

    PubMed

    Hällström, I

    1987-07-15

    The genetic variation in the basal capacity to N-demethylate aminopyrine, d-benzphetamine and ethylmorphine was studied in microsomes from adult Drosophila of 9 different strains. Ethylmorphine and d-benzphetamine N-demethylase activity varied about fourfold between the strains, with the highest capacity for both reactions in the Aflatoxin B1-sensitive Florida 9 and the lowest in the insecticide-resistant Hikone R. The two activities were closely correlated with each other but not with aminopyrine demethylation or any previously studied cytochrome P-450-dependent reaction, indicating a common determination by a separate cytochrome P-450 form(s). Aminopyrine N-demethylase activity was more than fourfold higher in the DDT-resistant Oregon R than in Berlin K. A genetic analysis of aminopyrine N-demethylation revealed that the high activity in the Oregon R(R) strain was inherited as an apparently semidominant second chromosome trait. The similar mode of inheritance as well as the close correlation between aminopyrine demethylase and the previously analysed biphenyl 4-hydroxylase activity suggests that these activities are under the same genetic control.

  18. Effect of carbon monoxide on xenobiotic metabolism in the isolated perfused rabbit lung

    SciTech Connect

    Trela, B.A.

    1988-01-01

    It was the aim of this study to determine the level and duration of CO exposure necessary to alter mixed function oxidase-mediated activity in the intact lung and to determine the magnitude of this effect. The effect of CO on the mixed function oxidase-mediated activities of aminopyrine, aniline, 4-ipomeanol and p-nitroanisole in isolated perfused rabbit lungs (IPRL) was investigated. Several concentrations of CO were evaluated for their effect on cytochrome P-450-mediated activity in the lung. Both artificial medium and whole blood were utilized as recirculating perfusates. Monomethyl-4-aminoantipyrine was the major metabolite of aminopyrine produced by in vitro hepatic and pulmonary preparations and by the intact lung. Ventilation of isolated rabbit lungs with 7.5% CO for 2.5 hours caused a 40% decrease in the rates of metabolism of both aminopyrine and p-nitroanisole. This level of CO exposure did not alter the cytochrome P-450-mediated metabolism of aniline nor 4-ipomeanol in the intact lung. Aminopyrine metabolism in isolated rabbit lungs perfused with whole blood was also decreased following the administration of 7.5% CO suggesting that the hemoglobin in whole blood affords no protection against CO-induced inhibition of mixed function oxidase activity in the intact lung. The isozyme of cytochrome P-450 which preferentially metabolizes aminopyrine and p-nitroanisole may be more sensitive to CO-induced inhibition than the form(s) which metabolize aniline and 4-ipomeanol.

  19. Agranulocytosis: A Report of 30 Cases

    PubMed Central

    Pretty, Harry M.; Gosselin, Gilles; Colpron, Guy; Long, L.-A.

    1965-01-01

    Thirty cases of acute agranulocytosis, as defined by Schultz, were observed between 1946 and 1964 at the Hôtel-Dieu Hospital, Montreal. In 14 cases agents incriminated were: aminopyrine, phenylbutazone, sulfonamides and chlorpromazine. Aminopyrine alone was responsible for eight cases. In the remaining 16 cases no definite etiology was established. Clinical manifestations included fever, prostration, angina and multiple pharyngeal ulcerations; these were associated with severe leukopenia and agranulocytosis. The bone marrow showed hypoplasia, lymphocytosis and maturation arrest. Localized and pulmonary infections, pseudomembranous enterocolitis and septicemia were frequent complications in 21 cases and were usually responsible for death, which occurred in 12 cases. Almost all patients who developed septicemia or pseudomembranous enterocolitis died. The pathogenesis is still not clear, but chlorpromazine and its analogues may act as a metabolic inhibitor, while the aminopyrine group probably operates through an immune mechanism. PMID:5843865

  20. Autoantibody to the gastrin receptor in pernicious anemia

    SciTech Connect

    de Aizpurua, H.J.; Ungar, B.; Toh, B.H.

    1985-08-22

    The authors examined serum IgG fractions from 20 patients with pernicious anemia and 25 control subjects for their capacity to inhibit binding of (/sup 125/I)15-leu human gastrin-17 to parietal-cell-enriched gastric mucosal cells. IgG fractions from six patients reduced gastrin binding by 45.6 +/- 12.2 per cent, as compared with a reduction of 1.8 +/- 0.7 per cent by fractions from the 25 controls. The fractions from these six patients also reduced gastrin-stimulated (/sup 14/C)aminopyrine uptake by gastric cells (an index of gastric acid secretory activity in vitro) by 50.2 +/- 8.4 per cent (mean +/- S.D.), as compared with 9.2 +/- 4.1 per cent for the controls. IgG fractions from six other patients that did not reduce gastrin binding also inhibited gastrin-stimulated (/sup 14/C)aminopyrine uptake, by 48.1 +/- 9.1 per cent. These reductions in gastrin binding and aminopyrine uptake were abolished by absorption of the IgG fractions with suspensions of viable gastric mucosal cells but not by absorption with liver or kidney cells. The IgG fractions did not inhibit (/sup 3/H)histamine binding or histamine-stimulated (/sup 14/C)aminopyrine uptake. These results suggest that serum IgG from some patients with pernicious anemia contains autoantibodies to the gastrin receptor.

  1. [Isoniazid and rifampicin in the rabbit. Effect on hepatic microsomal enzyme activity].

    PubMed

    Kergueris, M F; Larousse, C; Le Normand, Y; Guillerme, G; Bourin, M

    1982-01-01

    1. Enzymatic induction or inhibition induced by isoniazid (10 mg/kg) and/or rifampicin (13 mg/kg) oral treatment of 13 days in the rabbit, is evaluated with the following parameters: --variation of antipyrine half-life measured before treatment and 24 h after the end of treatment, --cytochrome P450 content, aniline hydroxylase and aminopyrine N-demethylase activities in hepatic microsomes. Isoniazid half-life is evaluated before treatment, in order to obtain an homogeneous repartition of animals in each group: isoniazid, rifampicin, isoniazid + rifampicin and control. 2. Rifampicin treatment gives a variable enzyme induction of antipyrine metabolism, cytochrome P450 and aniline hydroxylase activity; aminopyrine N-demethylase activity is significantly inhibited. Isoniazid treatment inhibits antipyrine metabolism and increases the cytochrome P450 content.

  2. Measurement of gastric mucosal blood flow in dogs by the /sup 99m/Tc 4-methylaminophenazone clearance technique

    SciTech Connect

    Doebroente, Z.; Lang, J.; Sagi, I.; Varro, V.

    1982-07-01

    In anesthetized dogs, correlation was found between the /sup 99m/Tc 4-methylaminophenazone and aminopyrine clearance measured in the same animal after administration of the gastric secretory stimulants vasopressin or glucagon. Similar correlation was observed between the /sup 99m/Tc 4-methylaminophenazone and /sup 14/C aminopyrine clearance during histamine administration. The clearance values were always corrected by the actual degree of dissociation of the radioactive molecules. The results suggest that /sup 99m/Tc 4-methylaminophenazone is suitable to study circulatory changes in human gastric mucosa. Advantages of this compound include a much lower dose of radiation absorbed by the patient and his surroundings, a simplified measurement technique, and considerably reduced expenses.

  3. Loss of hepatic monooxygenase activities, glutathione, and 'green pigment' formation after the administration of vinyl-cyclooctane to mice.

    PubMed

    Gervasi, P G; Citti, L; Fassina, G; Testai, E; Turchi, G

    1983-05-01

    Vinylcyclooctane, when administered to mice at 500 mg/kg, produced reduction of microsomal cytochrome P-450, heme, aminopyrine-N-demethylase and ethoxycoumarin-O-deethylase activities with respect to control values; furthermore the hepatic reduced glutathione level was depleted suggesting that glutathione is involved in the vinylcyclooctane metabolism. The reduction of cytochrome P-450 and monooxygenase activities was accompanied by the formation of abnormal 'green pigments'.

  4. Inhibition of nitric oxide synthesis improves detoxication in inflammatory liver dysfunction in vivo.

    PubMed

    Veihelmann, A; Brill, T; Blobner, M; Scheller, I; Mayer, B; Prölls, M; Himpel, S; Stadler, J

    1997-08-01

    Inflammatory stimulation of the liver induces nitric oxide (NO) biosynthesis and suppression of detoxication. In this study the effect of NO biosynthesis on cytochrome P-450 (CYP) enzyme activity was investigated by comparing in vivo and in vitro assays. To establish liver inflammation, CD rats were injected with Corynebacterium parvum (C. parvum) suspension. After 5 days NO biosynthesis was highly induced as indicated by increased NO2- plus NO3- serum concentrations. At the same time the aminopyrine breath test (ABT), measuring CYP activity in vivo, was reduced to 42% and the in vitro assay of aminopyrine turnover was suppressed to 12% of NaCl- injected controls. When C. parvum-injected animals were treated with the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA), CYP activities significantly improved with an ABT of 76% and an in vitro aminopyrine turnover of 47% of controls. Neither C. parvum injections nor L-NMMA treatment resulted in a significant change of CYP protein concentrations. These data indicate that suppression of xenobiotic metabolism can be attenuated by inhibition of NO biosynthesis during an ongoing process of inflammation. PMID:9277434

  5. A study of liver microsomal enzymes in rats following propoxur (Baygon) administration.

    PubMed

    Nelson, D L; Lamb, D W; Mihail, F

    1984-08-01

    Groups of rats were given either propoxur, were left as untreated controls, or were given phenobarbital, DDT, chlordane or toxaphene which are known to induce liver microsomal detoxification enzymes. Microsomal enzyme activity was measured by testing the ability of liver homogenates to degrade EPN (O-ethyl O-(4-nitrophenyl) phenylphosphonothioate) to p-nitrophenol. The activity of aminopyrine-N-demethylase, cytochrome P-450 and p-nitroanisole-O-demethylase in liver homogenates of rats receiving propoxur was measured. Liver microsomal detoxification enzymes were not induced by propoxur exposure.

  6. The effects of estrus cycle on drug metabolism in the rat.

    PubMed

    Brandstetter, Y; Kaplanski, J; Leibson, V; Ben-Zvi, Z

    1986-01-01

    The effect of the female rat estral cycle on microsomal drug metabolism in-vivo and in-vitro has been studied. Two microsomal enzymes, aminopyrine-N-demethylase and aniline hydroxylase showed a greater specific activity (p less than 0.01) in the diestrus phase of the estral cycle while the oxidative enzyme aryl hydrocarbon hydroxylase and the conjugative enzyme, glucuronyl transferase, were not affected. In vivo studies which included theophylline and antipyrine metabolism, and hexobarbital sleeping times showed no difference between the different phases of the estral cycle. Conflicting evidence about the effect of steroid sex hormones on hepatic drug metabolism is discussed.

  7. Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112.

    PubMed

    Kalme, S D; Parshetti, G K; Jadhav, S U; Govindwar, S P

    2007-05-01

    Pseudomonas desmolyticum NCIM 2112 was able to degrade a diazo dye Direct Blue-6 (100 mg l(-1)) completely within 72 h of incubation with 88.95% reduction in COD in static anoxic condition. Induction in the activity of oxidative enzymes (LiP, laccase) and tyrosinase while decolorization in the batch culture represents their role in degradation. Dye also induced the activity of aminopyrine N-demethylase, one of the enzyme of mixed function oxidase system. The biodegradation was monitored by UV-Vis, IR spectroscopy and HPLC. The final products, 4-amino naphthalene and amino naphthalene sulfonic acid were characterized by GC-mass spectroscopy.

  8. Inhibitory effects of beryllium chloride on rat liver microsomal enzymes.

    PubMed

    Teixeira, C F; Yasaka, W J; Silva, L F; Oshiro, T T; Oga, S

    1990-04-30

    A single i.v. dose (0.1 mmol Be2+/kg) of beryllium chloride prolonged the duration of pentobarbital-induced sleep and zoxazolamine-induced paralysis, in rats. The effects are correlated with changes of the pharmacokinetic parameters and with the in vitro inhibition of both aliphatic and aromatic hydroxylation of pentobarbital and zoxazolamine. In vitro N-demethylation of meperidine and aminopyrine was partially inhibited while O-demethylation of quinidine was unaffected by liver microsomes of rats pretreated with beryllium salt. The findings give clues that beryllium chloride inhibits some forms of cytochrome P-450, especially those responsible for hydroxylation of substrates, like pentobarbital and zoxazolamine.

  9. The oxidation of drugs by fishes

    USGS Publications Warehouse

    Buhler, Donald R.; Rasmusson, Mary E.

    1968-01-01

    1. Fish liver microsomal systems have been found to catalyze the hydroxylation of aniline and acetanilide, the N-demethylation of aminopyrine and the O-dealkylation of phenacetin.2. These systems are similar to the corresponding mammalian enzymes and they may be considered to be mixed function oxidase since they require NADPH and oxygen. An absolute requirement for oxygen, however, was difficult to demonstrate for the hepatic phenacetin cleavage system from fish.3. Microsomal drug metabolizing systems from fish have temperature optima which are considerably lower than those of corresponding mammalian systems

  10. Chloroquine resistance of Plasmodium berghei: biochemical basis and countermeasures*

    PubMed Central

    Salganik, R. I.; Pankova, T. G.; Chekhonadskikh, T. V.; Igonina, T. M.

    1987-01-01

    Microsomal monooxygenases, enzymes that metabolize xenobiotics, may be responsible for the chloroquine resistance of malarial parasites. Plasmodium cells contain cytochrome P-450 and exhibit aryl hydrocarbon hydroxylase and aminopyrine N-dimethylase activity, two monooxygenases that inactivate chloroquine. The activities of these monooxygenases are considerably higher in chloroquine-resistant strains of Plasmodium berghei than in the chloroquine-sensitive strain of the parasite. Inhibitors of microsomal monooxygenases have the potential to overcome the chloroquine resistance of Plasmodium spp., and, of those inhibitors tested, the copper-lysine complex, copper(lysine)2, was the most effective. PMID:3117393

  11. Measurement and pharmacokinetic analysis of imipramine and its metabolite by brain microdialysis.

    PubMed Central

    Sato, Y.; Shibanoki, S.; Sugahara, M.; Ishikawa, K.

    1994-01-01

    1. The feasibility of the brain microdialysis method for direct measurement and pharmacokinetic study of imipramine (Imip) and its metabolite desipramine (DMI) was investigated in the rat brain. 2. A dialysis tube was inserted into the right striatum of male Wistar rats, which were administered i.p. with 12.5 mg kg-1 Imip. Thirty microliters dialysate was collected every 15 min, and the levels of Imip and DMI were measured by high-performance liquid chromatography with electrochemical detection (h.p.l.c.-e.c.d.). SKF-525A and aminopyrine were concomitantly administered in order to assess their respective effects on the pharmacokinetics of Imip and DMI in the brain. 3. The intracerebral half life (t1/2) of Imip was 2.4 +/- 0.3 h with Imip alone. Premedication with SKF-525A, an inhibitor of drug-metabolizing enzymes, significantly prolonged the t1/2 of Imip, while at the same time production of DMI from Imip was accordingly inhibited. Concomitant administration of aminopyrine did not induce any significant change in the concentrations of Imip, but significantly inhibited the concentrations of DMI through its competitive antagonism in the demethylation pathway. 4. The present results suggest that the brain microdialysis method reflects the intracerebral pharmacokinetics of Imip and DMI well and may be applicable to further pharmacokinetic investigations of psychotropic agents. PMID:8075879

  12. Stimulation of acid secretion and phosphoinositol production by rat parietal cell muscarinic M sub 2 receptors

    SciTech Connect

    Pfeiffer, A.; Rochlitz, H.; Herz, A.; Paumgartner, G. )

    1988-04-01

    The muscarinic receptor system involved in hydrogen production by enriched rat gastric parietal cells was investigated. Muscarinic receptor density determined by (N-methyl-{sup 3}H)scopolamine binding was 8,100/cell. The receptor appeared to be of the M{sub 2} muscarinic receptor subtype, since it had a low affinity (K{sub d} 189 nM) for the M{sub 1} receptor antagonist pirenzepine compared with atropine. Receptor activation by carbachol rapidly augmented levels of polyphosphoinositides, indicating an activation of phospholipase C. The dose-response relations for the increase in inositol phosphates closely paralleled the binding of carbachol to muscarinic receptors. The inositol phosphate response was antagonized by pirenzepine with a K{sub i} of 177 nM. the stimulation of inositol phosphate levels by carbachol correlated well with the stimulation of ({sup 14}C)aminopyrine uptake, determine as an index of acid secretion. The muscarinic agonists oxotremorine, pilocarpine, and bethanechol elicited partial increases in inositol phosphates at maximal drug concentrations, and these partial increases correlated with their ability to stimulate ({sup 14}C)aminopyrine uptake. These data indicate that inositolpolyphosphates may be a second messenger of M{sub 2} receptors stimulating acid secretion.

  13. Cytochrome P/sub 450/ dependent monooxygenases in nasal epithelial membranes: effect of phenobarbital and benzo(a)pyrene

    SciTech Connect

    Hadley, W.M.; Dahl, A.R.; Benson, J.M.; Hahn, F.F.; McClellan, R.O.

    1982-01-01

    The cytochrome P-450 content of microsomes isolated from nasal membranes, lungs, and livers of the mouse, rat, guinea pig, hamster, rabbit, and dog was measured. The cytochrome P-450 dependent monooxygenase activity (MO) was assayed in microsomes from dog nasal membrane, lung, and liver using aniline, p-nitroanisole, aminopyrine and hexamethylphosphoramide (HMPA) as substrates. Phenobarbital was administered as a saturated drinking water solution for 8 days or as an aerosol for 30 minutes on 4 successive days. Benzo(a)pyrene was administered as an aerosol for 1 h on 4 successive days. The drinking water was removed 12 h before sacrifice and the last aerosol exposure was 24 h before sacrifice. All species nasal membranes contained cytochrome P-450. The hamster nasal membranes contained the highest concentrations. All substrates used were metabolized (as measured by MO activity) by the nasal membrane microsomes except for aminopyrine by the maxilloturbinate microsomes. HMPA was the most rapidly metabolized substrate. Liver cytochrome P-450 was induced more than 2 times by the phenobarbital administered in the drinking water, but no induction of nasal membrane cytochrome P-450 was found. Neither the phenobarbital nor benzo(a)pyrene aerosols induced the liver, lung, or nasal membrane cytochrome P-450 content. (RJC)

  14. Effect of the degree of hydrogenation of dietary fish oil on the trans fatty acid content and enzymatic activity of rat hepatic microsomes.

    PubMed

    Morgado, N; Galleguillos, A; Sanhueza, J; Garrido, A; Nieto, S; Valenzuela, A

    1998-07-01

    The degree of fat hydrogenation and the trans fatty acid content of the diet affect the fatty acid composition of membranes, and the amount and the activity of some membrane enzymes. We describe the effects of four isocaloric diets containing either sunflower oil (SO, 0% trans), fish oil (FO, 0.5% trans), partially hydrogenated fish oil (PHFO, 30% trans), or highly hydrogenated fish oil (HHFO, 3.6% trans) as fat sources on the lipid composition and the trans fatty acid content of rat hepatic microsomes. We also describe the effect of these diets on the cytochrome P-450 content and on the aminopyrine N-demethylase, aniline hydroxylase, and UDP-glucuronyl transferase microsomal activities. Cytochrome P-450 content was dependent on the degree of unsaturation of the diet, being higher for the FO-containing diet and lower for the HHFO diet. Aminopyrine N-demethylase activity also correlated with the degree of unsaturation of the diet as did the cytochrome P-450 content did (FO > SO > PHFO > HHFO). Aniline hydroxylase activity appeared to be independent of the degree of unsaturation of the dietary fat, but correlated with the trans fatty acid content of the diet, which was also reflected in the trans content of the microsomal membranes. UDP-glucuronyl transferase activity was higher for the FO-containing diet than for the SO diet, showing intermediate values after the PHFO and HHFO diets.

  15. Induction of hepatic enzymes by methaqualone and effect on warfarin-induced hypoprothrombinemia.

    PubMed

    Mathur, P P; Smyth, R D; Herczeg, T; Reavey-Cantwell, N H

    1976-01-01

    The effect of methaqualone on the induction of hepatic enzymes was evaluated in rats and compared with that of phenobarbital by measuring effects on hexobarbital and methaqualone hypnosis, plasma and tissue levels of methaqualone, hepatic aniline hydroxylase and aminopyrine demethylase activity and warfarin-induced hypoprothrombinemia. Maximal reductions in hexobarbital hypnosis occurred 3 days after daily administration of 60 mg of methaqualone per kg per day. At this time, the activities of aniline hydroxylase and aminopyrine demethylase were increased 60 and 139%, respectively, and hepatic microsomal proteins increased 15% above controls in methaqualone-pretreated animals. Methaqualone altered its own metabolism as demonstrated by a 48% reduction in methaqualone hypnosis in pretreated animals. The extent and duration of induction by phenobarbital was considerably greater than methaqualone in all experiments. Methaqualone pretreatment did not affect warfarin-induced hypoprothrombinemia, whereas phenobarbital-pretreated animals showed a 32 to 64% reduction in response to the anticoagulant. These studies indicate that methaqualone is a relatively weak inducer of hepatic drug-metabolizing enzymes and has no effect on the anticoagulant acitivty of warfarin.

  16. Lack of in vitro and in vitro effects of fenbendazole on phase I and phase II biotransformation enzymes in rats, mice and chickens.

    PubMed

    Dalvi, R R; Gawai, K R; Dalvi, P S

    1991-12-01

    Intraperitoneal administration of 10 mg fenbendazole/kg bw daily for 5 d caused no significant alterations in the activities of hepatic microsomal drug-metabolizing enzymes viz aminopyrine N-demethylase, aniline hydroxylase and cytosolic glutathione S-transferase in rats, mice and chickens. Similarly no significant difference in the amount of microsomal cytochrome P-450 and NADPH-cytochrome c reductase was found between control and treated animals. In vitro incubation of fenbendazole with rat, mouse and chicken microsomes suggests that the drug neither binds to microsomal protein cytochrome P-450 nor inhibits the activities of aminopyrine N-demethylase and aniline hydroxylase. Similarly in vitro addition of fenbendazole to cytosolic glutathione S-transferase from the above species did not alter the activity of this enzyme. The results indicate that fenbendazole does not alter the activity of hepatic microsomal monooxygenase system significantly in rats, mice and chickens at a dosage level of 10 mg/kg body weight. In vitro studies also indicate that fenbendazole does not interact with the hepatic microsomal monooxygenase system, indicating it is not a substrate for cytochrome P-450-dependent monooxygenase system.

  17. Generation of free radical intermediates from foreign compounds by neutrophil-derived oxidants.

    PubMed Central

    Kalyanaraman, B; Sohnle, P G

    1985-01-01

    A large number of foreign compounds, including many drugs, industrial pollutants, and environmental chemicals, can be oxidized under appropriate conditions to potentially toxic free radical intermediates. We evaluated the ability of the oxidants produced by the neutrophil myeloperoxidase system to generate free radical intermediates from several such compounds. Sodium hypochlorite or hypochlorous acid produced by human peripheral blood neutrophils and trapped in the form of taurine chloramine were both found to be capable of producing free radicals from chlorpromazine, aminopyrine, and phenylhydrazine. These radical intermediates were demonstrated by visible light spectroscopy and by direct electron spin resonance (for the chlorpromazine and aminopyrine radicals) or by spin-trapping (for the phenyl radical generated from phenylhydrazine). Stable oxidants produced by the neutrophils (i.e., those present in the supernatants of stimulated neutrophils in the absence of added taurine) also were found to be capable of generating free radical intermediates. The production of the oxidants and the ability of neutrophil supernatants to generate these radicals were almost completely eliminated by sodium azide, a myeloperoxidase inhibitor. We suggest that the oxidation by neutrophils of certain chemical compounds to potentially damaging electrophilic free radical forms may represent a new metabolic pathway for these substances and could be important in the processes of drug toxicity and chemical carcinogenesis. PMID:2987307

  18. Mixed-function oxidase activity in seabirds and its relationship to oil pollution.

    PubMed

    Peakall, D B; Jeffrey, D A; Boersma, D

    1987-01-01

    1. The hepatic activity of epoxide hydrolase, aldrin epoxidase, aminopyrine N-demethylase, 7-ethoxyresorufin O-deethylase, benzo(a)pyrene 3-hydroxylase and UDP glucuronyl transferase was determined in adult herring gulls (Larus argentatus) at various stages of the breeding season. 2. MFO activity was measured for adult Leach's storm-petrels (Oceanodroma leucorhoa), guillemot (Uria aalge) and Atlantic puffins (Fratercula arctica). For most assays the values were highest for the puffin. 3. MFO activity in both nestling and adult Atlantic puffins was determined. The degree of induction caused by a single internal dose of Prudhoe Bay crude oil in adult puffins and that caused by multiple internal doses in nestling puffins was measured. PMID:2890477

  19. Consumption of poisonous plants (Senecio jacobaea, Symphytum officinale, Pteridium aquilinum, Hypericum perforatum) by rats: chronic toxicity, mineral metabolism, and hepatic drug-metabolizing enzymes.

    PubMed

    Garrett, B J; Cheeke, P R; Miranda, C L; Goeger, D E; Buhler, D R

    1982-02-01

    Effect of dietary tancy ragwort (Senecio jacobaea), comfrey (Symphytum officinale), bracken (Pteridium aquilinum) and alfalfa (Medicago sativa) on hepatic drug-metabolizing enzymes in rats were measured. Tansy ragwort and bracken increased (P less than 0.05) the activity of glutathione transferase and epoxide hydrolase. Comfrey and alfalfa increased (P less than 0.05) the activity of aminopyrine N-demethylase. Feeding bracken or St. John's wort (Hypericum perforatum) in conjunction with tansy ragwort did not influence chronic toxicity of tansy ragwort as assessed by rat survival time. Dietary tansy ragwort resulted in increased (P less than 0.05) hepatic copper levels; the other plants did not affect copper levels. The results do not suggest any major interaction in the toxicity of tansy ragwort with bracken or St. John's wort. PMID:7080084

  20. Induction of hepatic drug metabolizing enzymes by coal fly ash in rats

    SciTech Connect

    Srivastava, P.K.; Singh, Y.; Tyagi, S.R.; Misra, U.K.

    1987-12-01

    The effect of intratracheal administration of fly ash, its benzene-extracted residue and the benzene extract has been studied on the activities of hepatic mixed-function oxidases in the rat. Fly ash and its fractions significantly increased the levels of cytochrome P-450, cytochrome b/sub 5/, cytochrome b/sub 5/ reductase, NADPH-cytochrome c reductase, aminopyrine N-demethylase, aniline hydroxylase, and glutathione S-transferase in a dose-dependent manner. Phenobarbital or 3-methylcholanthrene treatment along with the administration of fly ash or its fractions showed an additive effect on the activities of the mixed-function oxidases. The observed effects were due to chemical component, i.e., organic and inorganic fractions of fly ash, and not due to its particulate nature. This was shown by the administration of glass beads, which did not cause any alteration in the activities of hepatic mixed-function oxidases.

  1. Biodegradation of hazardous triphenylmethane dye methyl violet by Rhizobium radiobacter (MTCC 8161).

    PubMed

    Parshetti, Ganesh; Saratale, Ganesh; Telke, Amar; Govindwar, Sanjay

    2009-09-01

    Rhizobium radiobacter MTCC 8161 completely decolorized methyl violet (10 mg l(-1)) within 8 h both at static and shaking conditions. The decolorization time increased with increasing dye concentration. The effect of different carbon and nitrogen sources on the decolorization of methyl violet was studied. The maximum decolorization was observed in the presence of sucrose (1%) and urea (1%). UV-Visible, HPLC and FTIR analysis of extracted products confirmed biodegradation of methyl violet. The significant increase in the activities of lignin peroxidase and aminopyrine N-demethylase in the cells obtained after decolorization indicated involvement of these enzymes in the decolorization process. In addition to methyl violet, this strain also shows an ability to decolorize various industrial dyes, (red HE7B, yellow 4G, blue 2B, navy blue HE22, red M5B and red HE3B).

  2. [Determination of six main components in compound theophylline tablet by convolution curve method after prior separation by column partition chromatography

    NASA Technical Reports Server (NTRS)

    Zhang, S. Y.; Wang, G. F.; Wu, Y. T.; Baldwin, K. M. (Principal Investigator)

    1993-01-01

    On a partition chromatographic column in which the support is Kieselguhr and the stationary phase is sulfuric acid solution (2 mol/L), three components of compound theophylline tablet were simultaneously eluted by chloroform and three other components were simultaneously eluted by ammonia-saturated chloroform. The two mixtures were determined by computer-aided convolution curve method separately. The corresponding average recovery and relative standard deviation of the six components were as follows: 101.6, 1.46% for caffeine; 99.7, 0.10% for phenacetin; 100.9, 1.31% for phenobarbitone; 100.2, 0.81% for theophylline; 99.9, 0.81% for theobromine and 100.8, 0.48% for aminopyrine.

  3. [The prognostic value of liver function tests--clinical aspects, laboratory chemical parameters and quantitative function tests].

    PubMed

    Wahlländer, A; Beuers, U

    1990-05-01

    In view of increasing therapeutic possibilities interest focuses on prognosis of liver cirrhosis. Until nowadays studies on prognosis revealed significant importance only for some parameters: Ascites, encephalopathy and portal hypertension as signs of decompensation, bilirubin, albumin and prothrombin time as laboratory indices of decreasing liver function. The commonly used Child-Pugh-score is based on these parameters and allows a reasonable classification of diseased patients. Cholestasis and inflammation seem to be of minor prognostic importance. Assessment of liver function by quantitative tests is desirable (e.g. aminopyrine breath test, bile acids). The prognostic value, however, has not yet been proven in large studies. Use of these tests should therefore be restricted to studies (prognosis, therapy, indication to liver transplantation).

  4. Curiosities in drug metabolism.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H; Smith, Robert L

    2014-07-01

    1. It is inevitable that during some xenobiotic biotransformation studies, a certain metabolite or degradation product arises of which the identity is uncertain, the route of formation is ambiguous, or it is just a plain mystery. 2. The following communication draws attention to three drugs reported in the literature, chlorphentermine, phenothiazine and aminopyrine, where after many years of investigation there still exists uncertainty over some of their metabolites. Noticeably, these three examples probably involve (potential) interaction of a nitrogen centre within the drug molecule. 3. It is hoped that the resurrection and assemblage of these data will offer interesting reading and that these examples may prove sufficiently intriguing to motivate further exploration and some resolution of these lingering concerns. PMID:24779638

  5. Serum cyclosporin levels, hepatic drug metabolism and renal tubulotoxicity.

    PubMed

    Cunningham, C; Gavin, M P; Whiting, P H; Burke, M D; Macintyre, F; Thomson, A W; Simpson, J G

    1984-09-15

    The present study was designed to examine inter-relationships between serum cyclosporin (CsA) levels, hepatic drug metabolising enzyme activity and CsA induced nephrotoxicity. CsA (25 mg/kg p.o.) was administered daily to male Sprague-Dawley rats: groups of animals were killed on days 0, 4, 7, 10 and 14 and thereafter at weekly intervals over the 7-week course of the experiment. Nephrotoxicity was evaluated by measuring tubular enzymuria and by light microscopy and serum CsA levels (parent drug plus certain metabolites) were determined by radioimmunoassay. The hepatic microsomal mono-oxygenase enzyme system was monitored by measurement of cytochrome P-450, aminopyrine N-demethylase and NADPH-cytochrome c reductase. Nephrotoxicity appeared within 4 days of starting treatment and continued for 4 weeks. Between weeks 4 and 6 there was a period of complete remission followed by the return of renal damage. Aminopyrine N-demethylase activity fell during the first 4 weeks. During the period of remission, however, N-demethylase activity rose to a point significantly higher than pretreatment values and serum CsA levels fell to their lowest concentration. With relapse, hepatic N-demethylase activity again fell below normal and serum drug levels rose to their pre-remission values. From the third week onward, changes in NADPH-cytochrome c reductase activity paralleled those in N-demethylase activity. The hepatic microsomal concentration of cytochrome P-450 did not, however, change significantly during the 7-week period of CsA treatment. Our results suggest that the spontaneous remission of CsA-induced nephrotoxicity is due to a reduction in circulating drug levels caused by increased hepatic CsA metabolism.

  6. Effects of rutin and quercetin on monooxygenase activities in experimental influenza virus infection.

    PubMed

    Savov, Varban M; Galabov, Angel S; Tantcheva, Lyubka P; Mileva, Milka M; Pavlova, Elitsa L; Stoeva, Emilia S; Braykova, Ana A

    2006-08-01

    The aim of this work is to study the effect of the flavonoids rutin and quercetin on hepatic monooxygenase activities in experimental influenza virus infection (EIVI). EIVI causes oxidative stress in the whole organism. This is confirmed by the rapidly increased concentrations of thiobarbituric reactive substances in influenza-infected mice: lungs - 290%; blood plasma - more than 320%; liver - 230%; brain - 50%. Although known for their antioxidant activities, rutin and quercetin exhibit prooxidant effect in healthy and antioxidant activity in influenza-infected animals. The pretreatment with both flavonoids (20 mg/kg b.w.) restores oxidative damage mostly in the target organ of the infection as well as in the liver of all infected mice (lungs: rutin - 30%, quercetin - 40%, combination - 45%; liver: rutin - 12%; quercetin - 40%; combination - 50%). As far as EIVI causes oxidative stress, toxicosis and inhibition of the hepatic monooxygenase activity, it is important to study the effects of rutin and quercetin on these systems. Both flavonoids induce the level of cytochrome P-450 (rutin - 13%, quercetin - 30%, combination - 22%) but inactivate NADPH-cytochrome c reductase, aminopyrine N-demethylase and analgin N-demethylase on the 5th day of EIVI. Probably, these flavonoids affect different components of the monooxygenase system. These effects could be explained with oxidative hepatic intoxication on the 5th critical day of EIVI as well as higher dose treatment. More data are needed on the antioxidant/prooxidant effects of rutin and quercetin, probably due to specific metabolic and physiological activities, chemical structure, etc.

  7. Antinociceptive and anti-inflammatory effects of ethanolic extracts of Glycine max (L.) Merr and Rhynchosia nulubilis seeds.

    PubMed

    Yim, Joo Hyuk; Lee, Ok-Hwan; Choi, Ung-Kyu; Kim, Young-Chan

    2009-11-01

    The aim of this study was to assess the in vivo potential of ethanolic extracts of Glycine max (L.) Merr. (SoRiTae) and Rhynchosia nulubilis (Yak-Kong) seeds as natural anti-nociceptive and anti-inflammatory agents. To assess the anti-nociceptive and anti-inflammatory potential, the ethanolic extracts of SoRiTae and Yak-Kong seeds were tested in arachidonic acid-induced ear edema, carrageenan induced paw edema, formalin-induced licking time, acetic acid induced writhing and hot plate-induced thermal stimulation in mice. The administration of ethanolic extracts of SoRiTae and Yak-Kong seeds evoked a significant effect of anti-nociceptive and anti-inflammatory activities as compared to standards aminopyrine and indomethacin. The ear edema, paw edema, paw licking time, pain and writhes in mice were significantly reduced (p < 0.05) as compared to the control. The results obtained in this study indicate that both SoRiTae and Yak-Kong soybeans possesses potential anti-nociceptive and anti-inflammatory activities.

  8. Antinociceptive and Anti-Inflammatory Effects of Ethanolic Extracts of Glycine max (L.) Merr and Rhynchosia nulubilis Seeds

    PubMed Central

    Yim, Joo Hyuk; Lee, Ok-Hwan; Choi, Ung-Kyu; Kim, Young-Chan

    2009-01-01

    The aim of this study was to assess the in vivo potential of ethanolic extracts of Glycine max (L.) Merr. (SoRiTae) and Rhynchosia nulubilis (Yak-Kong) seeds as natural anti-nociceptive and anti-inflammatory agents. To assess the anti-nociceptive and anti-inflammatory potential, the ethanolic extracts of SoRiTae and Yak-Kong seeds were tested in arachidonic acid-induced ear edema, carrageenan induced paw edema, formalin-induced licking time, acetic acid induced writhing and hot plate-induced thermal stimulation in mice. The administration of ethanolic extracts of SoRiTae and Yak-Kong seeds evoked a significant effect of anti-nociceptive and anti-inflammatory activities as compared to standards aminopyrine and indomethacin. The ear edema, paw edema, paw licking time, pain and writhes in mice were significantly reduced (p < 0.05) as compared to the control. The results obtained in this study indicate that both SoRiTae and Yak-Kong soybeans possesses potential anti-nociceptive and anti-inflammatory activities. PMID:20087462

  9. Breath tests with stable isotopes: have they a role in liver transplantation?

    PubMed

    Festi, D; Capodicasa, S; Vestito, A; Mazzella, G; Roda, E; Vitacolonna, E; Petrolati, A; Angelico, M; Colecchia, A

    2004-01-01

    Evaluation of liver function is crucial in the overall management of patients with liver disease. In particular, patients with end-stage liver disease need accurate prognostic indicators to plan liver transplantation, and in this case, to manage their presence in the waiting list. Availability of predictors of clinical outcome is further essential after liver transplant, mainly to correctly diagnose and adequately treat complications, such as acute rejection, drug toxicity, liver dysfunction. Breath tests using labelled substrates selectively metabolized within the liver may represent an accurate diagnostic and prognostic tool in these clinical conditions, possibly with an adjuntive role to the most commonly used prognostic models (Child-Pugh and MELD scores). Promising results have been in fact recently obtained by the use of different substrates (aminopyrine, methacetin, erythromycin, methionine) which explore different metabolic function of the hepatocyte. The usefulness of breath tests has been documented in liver disease patients both before and after liver transplantation, in the early as well as in the late phase.

  10. Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1.

    PubMed

    Kalyani, D C; Patil, P S; Jadhav, J P; Govindwar, S P

    2008-07-01

    A novel bacterial strain capable of decolorizing reactive textile dye Red BLI is isolated from the soil sample collected from contaminated sites of textile industry from Solapur, India. The bacterial isolate was identified as Pseudomonas sp. SUK1 on the basis of 16S rDNA analysis. The Pseudomonas sp. SUK1 decolorized Red BLI (50 mg l(-1)) 99.28% within 1h under static anoxic condition at pH range from 6.5 to 7.0 and 30 degrees C. This strain has ability to decolorize various reactive textile dyes. UV-Vis spectroscopy, FTIR and TLC analysis of samples before and after dye decolorization in culture medium confirmed decolorization of Red BLI. A significant increase in the activities of aminopyrine N-demethylase and NADH-DCIP reductase in cells obtained after decolorization indicates involvement of these enzymes in the decolorization process. Phytotoxicity testing with the seeds of Sorghum vulgare and Phaseolus mungo, showed more sensitivity towards the dye, while the products obtained after dye decolorization does not have any inhibitory effects.

  11. Canine gastric mucosal vasodilation with prostaglandins and histamine analogs

    SciTech Connect

    Gerber, J.G.; Nies, A.S.

    1982-10-01

    The effect of direct intragastric artery infusion of prostaglandins E2 and I2, arachidonic acid, dimaprit (histamine H2 agonist), and 2',2'-pyridylethylamine (histamine H1 agonist) on gastric mucosal blood flow was examined in dogs to elucidate the relationship between gastric secretory state and mucosal blood flow in dogs. These compounds were chosen because of their diverse effect on gastric acid secretion. Gastric fundus blood flow was measured both electromagnetically with a flow probe around the left gastric artery which supplies the fundus almost exclusively, and by the radioactive microsphere technique. Intraarterial infusion of all the compounds resulted in gastric mucosal vasodilation even though PGE2, PGI2, and arachidonic acid inhibit gastric acid secretion, dimaprit stimulated gastric acid secretion, and 2',2'-pyridylethylamine does not affect gastric acid secretion. There was total agreement in the blood flow measurements by the two different techniques. Our data suggest that gastric acid secretion and gastric vasodilation are independently regulated. In addition, the validity of the studies in which the aminopyrine clearance indicates that prostaglandins are mucosal vasoconstrictors needs to be questioned because of the reliance of those measurements on the secretory state of the stomach.

  12. Effect of penicillin-based antibiotics, amoxicillin, ampicillin, and piperacillin, on drug-metabolizing activities of human hepatic cytochromes P450.

    PubMed

    Niwa, Toshiro; Morimoto, Mari; Hirai, Takako; Hata, Tomomi; Hayashi, Misato; Imagawa, Yurie

    2016-02-01

    The effects of three kinds of penicillin-based antibiotics, amoxicillin, ampicillin, and piperacillin, on drug-metabolizing activity of human hepatic cytochrome P450 (P450 or CYP) were investigated. Metabolic activities of P450s expressed in recombinant Escherichia coli at substrate concentrations around the Michaelis constant were compared in the presence or absence of the antibiotics. Amoxicillin, ampicillin, and piperacillin at 0.5 or 1 mM concentrations neither inhibited nor stimulated CYP2C9-mediated tolbutamide methylhydroxylation, CYP2D6-mediated dopamine formation from p-tyramine, or CYP3A4- or CYP3A5-mediated testosterone 6β-hydroxylation. However, amoxicillin and piperacillin inhibited CYP2C8-mediated aminopyrine N-demethylation at 50% inhibitory concentration of 0.83 and 1.14 mM, respectively. These results suggest that piperacillin might inhibit CYP2C8 clinically, although the interactions between these three penicillin-based antibiotics and other drugs that are metabolized by P450s investigated would not be clinically significant.

  13. Thyroid hormone-induced changes in the hepatic monooxygenase system, heme oxygenase activity and epoxide hydrolase activity in adult male, female and immature rats.

    PubMed

    Leakey, J E; Mukhtar, H; Fouts, J R; Bend, J R

    1982-07-01

    In 8-day-old rat pups, pretreatment with a single injection of L-triiodothyronine or L-thyroxine decreased hepatic cytochrome P-450 content, aminopyrine N-demethylase activity and epoxide hydrolase activity but increased hepatic microsomal cytochrome c reductase, 7-ethoxyresorufin O-deethylase and heme oxygenase activities without significantly altering UDP-glucuronosyltransferase activity (towards o-aminophenol) or the microsomal yield. In adult rats of either sex such single injections of L-triiodothyronine failed to significantly alter these enzyme activities. However, multiple injections evoked changes similar to those observed in the pups, in all these enzyme activities, except that 7-ethoxyresorufin O-deethylase activity was slightly decreased rather than increased. These findings demonstrate that: (1) The hepatic monooxygenase system in the rat pup is more responsive to thyroid hormones than that in adult. (2) Thyroid hormones can decrease rat liver cytochrome P-450 content and its dependent monooxygenase activity independently of sexual maturity. (3) Thyroid hormones also decrease hepatic epoxide hydrolase activity in both pups and adults. Thus, hyperthyroidism could render the rat pup more susceptible to hepatotoxicity from electrophilic epoxides which utilize microsomal epoxide hydrolase as the major detoxication pathway.

  14. Microsomal lipid peroxidation. II. Stimulation by carbon tetrachloride

    SciTech Connect

    Kornbrust, D.J.; Mavis, R.D.

    1980-01-01

    Carbon tetrachloride initiated lipid peroxidation in isolated rat liver microsomes in the absence of free metal ions. In contrast to the nonenzymatic process stimulated by ferrous iron, CCl/sub 4/-induced peroxidation showed an absolute requirement for NADPH and appeared dependent on the integrity of cytochrome. No detectable peroxidation was induced by CCl/sub 4/ in microsomes from brain, kidney, or lung, and microsomal aminopyrine demethylase and aniline hydroxylase activities were more than 10-fold lower in these tissues compared to liver. These results are consistent with activation of CCl/sub 4/ by cytochrome P-450 to a reactive short lived radical which initiated peroxidation in the immediate vicinity of the cytochrome and thereby initiates peroxidation in the immediate vicinity of the cytochrome and thereby inhibits enzyme activity either by destruction of essential lipids or by direct attack on the enzyme by reactive intermediates of the peroxidative process. Loss of cytochrome P-450 activity then results in cessation of the CCl/sub 4/-induced peroxidative response prior to more extensive reaction of membrane polyunsaturated lipids.

  15. Purification and characterization of a benzene hydroxylase: A cytochrome P-450 from rat liver mitochondria

    SciTech Connect

    Karaszkiewicz, J.W.

    1989-01-01

    This laboratory previously demonstrated that incubation of ({sup 14}C)benzene with isolated mitochondria resulted in the formation of mtDNA adducts. Since benzene is incapable of spontaneously covalently binding to nuclei acids, it was hypothesized that enzyme(s) present in the organelle metabolized benzene to reactive derivatives. We have purified, to electrophoretic homogeneity, a 52 kDa cytochrome P-450 from liver mitoplasts which metabolizes benzene to phenol. The enzyme has a K{sub M} for benzene of 0.012 mM, and a V{sub MAX} of 22.6 nmol phenol/nmol P-450/10 min, and requires NADPH, adrenodoxin, and adrenodoxin reductase for activity. Activity also can be reconstituted with microsomal cytochrome P-450 reductase. Benzene hydroxylase activity could be inhibited by carbon monoxide and SKF-525A, and by specific inhibitors of microsomal benzene metabolism. The purified enzyme oxidized phenol, forming catechol; aminopyrine N-demethylase activity was also demonstrated. These data confirm that a cytochrome P-450 of mitochondrial origin is involved in benzene metabolism, and indicate a role for the mitochondrion in xenobiotic activation.

  16. Suppressive effect of accumulated aluminum trichloride on the hepatic microsomal cytochrome P450 enzyme system in rats.

    PubMed

    Zhu, Yanzhu; Han, Yanfei; Zhao, Hansong; Li, Jing; Hu, Chongwei; Li, Yanfei; Zhang, Zhigang

    2013-01-01

    Aluminum (Al) is a low toxicological metal and can accumulate in the liver. The hepatic microsomal cytochrome P450 enzyme system (CYPS) plays important role in the transformation of the toxic materials. It is not clear if the CYPS is affected by Al exposure. Thus, the aim of this study is to investigate the effects of aluminum trichloride (AlCl(3)) on CYPS in rats. Forty male Wistar rats (5weeks old) weighing 110-120g were randomly allocated and orally exposed to 0, 64.18, 128.36 and 256.72mg/kg body weight (BW) AlCl(3) in drinking water for 120days. The body weight (BW) of rats, hepatosomatic index (HSI), hepatic Al content, the concentrations of cytochrome P450 (CYP450), cytochrome B5 (B5), microsomal protein and the activities of NADPH-cytochrome c reductase (CR), aminopyrin N-demethylase (AND), erythromycin N-demethylase (ERND) and aniline-4-hydeoxylase (AH) were assessed at the end of the experiment. The results showed that the increase in Al concentration decreased BW, HIS, concentrations of CYP450, B5, microsomal protein and the activity of CR, AND, ERND and AH in hepatic microsomes. The results revealed that exposure to AlCl(3) inhibited the microsomal CYP450 dependent enzyme system of liver. Our findings suggest that long term daily exposure of AlCl(3) exerts the suppressive effects and thus may cause dysfunction of hepatic CYP450 dependent enzyme system of rat.

  17. Comparison of hepatic drug metabolizing enzymes in three-month-old lambs and kids.

    PubMed

    Kaddouri, M; Larrieu, G; Eeckhoutte, C; Galtier, P

    1990-01-01

    1. The comparative activity of hepatic cytochrome P-450 monooxygenase system, glucuronyl-transferase, glutathione S-transferase and N-acetyltransferase was studied in three-month-old male and female Lacaune lambs and male Saanen kids. 2. The study of mixed-function oxidase components showed that total cytochrome P-450 ranged from 0.54 in kids to 0.85-0.88 nmol/mg-1 in lambs. Male lambs had higher levels than kids (122-165%) for aminopyrine, benzphetamine, ethylmorphine and erythromycin demethylases or benzo(a)pyrene hydroxylase whereas NADPH-cytochrome c reductase was 1.19-fold lower in lambs. 3. Sex-related changes were observed in lambs in case of microsomal benzo(a)pyrene hydroxylase activity which appeared 1.31-fold more potent in male liver. Cytosolic N-acetyltransferase accepting sulfamethazine as substrate was about 8-fold higher in female than in male lambs. 4. The analysis of samples from various liver lobes, indicated the heterogenous distribution of microsomal proteins which is related to higher concentrations of both cytochrome b5, NADPH-cytochrome c reductase and p-nitrophenol glucuronyltransferase in left lobes.

  18. Alteration in metabolism and toxicity of acetaminophen upon repeated administration in rats.

    PubMed

    Kim, Sun J; Lee, Min Y; Kwon, Do Y; Kim, Sung Y; Kim, Young C

    2009-10-01

    Our previous studies showed that administration of a subtoxic dose of acetaminophen (APAP) to female rats increased generation of carbon monoxide from dichloromethane, a metabolic reaction catalyzed mainly by cytochrome P450 (CYP) 2E1. In this study we examined the changes in metabolism and toxicity of APAP upon repeated administration. An intraperitoneal dose of APAP (500 mg/kg) alone did not increase aspartate aminotransferase, alanine aminotransferase, or sorbitol dehydrogenase activity in serum, but was significantly hepatotoxic when the rats had been pretreated with an identical dose of APAP 18 h earlier. The concentrations and disappearance of APAP and its metabolites in plasma were monitored for 8 h after the treatment. APAP pretreatment reduced the elevation of APAP-sulfate, but increased APAP-cysteine concentrations in plasma. APAP or APAP-glucuronide concentrations were not altered. Administration of a single dose of APAP 18 h before sacrifice increased microsomal CYP activities measured with p-nitrophenol, p-nitroanisole, and aminopyrine as probes. Expression of CYP2E1, CYP3A, and CYP1A proteins in the liver was also elevated significantly. The results suggest that administration of APAP at a subtoxic dose may result in an induction of hepatic CYP enzymes, thereby altering metabolism and toxicological consequences of various chemical substances that are substrates for the same enzyme system.

  19. Response of Japanese quail fed seed meal from sunflowers grown on municipal sludge-amended soil: elevation of cadmium in tissues

    SciTech Connect

    Stoewsand, G.S.; Babish, J.G.; Telford, J.N.; Bahm, C.; Bache, C.A.; Gutenmann, W.H.; Lisk, D.J.

    1986-01-01

    Sunflowers were grown on soil amended with 224 metric tons/ha of municipal sewage sludge from Syracuse, NY. The yield of sunflower seeds was reduced by 47.2% by the sludge addition. The harvested seeds contained 1.71 ppm dry weight of cadmium. Deoiled seed meal was incorporated as 25 and 50% of semipurified diet and feed to male and female Japanese quail. The concentrations of cadmium were higher in kidney, liver, muscle, and eggs of birds fed the sludge-grown seed meal as compared to control quail. Tissue concentrations of cadmium increased with increasing dietary levels of sludge-grown seed meal. No significant differences were observed between dietary treatments in the activity of hepatic microsomal p-nitroanisole O-demethylase or aminopyrine N-demethylase in the male birds. Additionally, no mutagenic activity, either direct or with metabolic activation, was found in quail eggs. No observable changes in tissue ultrastructure were observed under electron microscopy in any of the treatment groups. There were no significant differences among the dietary treatment groups in feed intake, growth rate, egg production, or egg hatchability.

  20. Multi-biomarker responses in fishes from two typical marine aquaculture regions of South China.

    PubMed

    He, Xiuting; Nie, Xiangping; Yang, Yufeng; Liu, Xinyu; Pan, Debo; Cheng, Zhang; Liang, Ximei

    2012-11-01

    The impact of typical pollutants upon the fish-farming was assessed by use of a battery of biomarkers in two typical marine aquaculture regions in South China. Biotransformation parameters including 7-ethoxyresorufin-O-deethylase (EROD), aminopyrine N-demethylase (APND), erythromycin N-demethylase (ERND), glutathione-S-transferase (GST) and Malondialdehyde (MDA) were measured in five cultured fish species. Pollutants such as polycyclic aromatic hydrocarbon (PAHs), organochlorinated compounds (OCs), heavy metals and antibiotics (quinolones and sulfonamides) in sediments were characterized. Higher pollutant residue levels were observed in Dapeng Cove. EROD, APND and ERND activities were lower in fish from Dapeng Cove compared with fish from Hailing Island, while it is just on the contrary for GST and MDA. ERND, APND and GST showed sensitivity corresponding to different pollutants. Small fish species seemed to exhibit more sensitive to pollutants. The study further supports usefulness of multi-biomarker approach considering multiple species to define the effects of anthropogenic inputs in marine aquaculture systems.

  1. Evaluation of intercostal cryoanalgesia versus conventional analgesia in postthoracotomy pain.

    PubMed

    Pastor, J; Morales, P; Cases, E; Cordero, P; Piqueras, A; Galán, G; París, F

    1996-01-01

    The objective of the study was to evaluate the effects of cryoanalgesia in patients undergoing posterolateral thoracotomy. A double-blind randomized and prospective study was performed in 100 patients undergoing thoracotomy. They were randomized into two groups: Group A, 55 patients, who had undergone an intercostal cryoanalgesia and group B, control, 45 patients treated only with pharmacological analgesia ad libitum. In both groups we assessed pain in the first 7 postsurgical days, the amount of analgesia required, electromyography of the intercostal muscles involved and recording of maximal static respiratory pressures. Postsurgical pain was significantly lower (p < 0.001) in group A. No patient in group A needed major analgesia and the amount of aminopyrines required was significantly lower (p < 0.001) than those used in group B. Maximal static inspiratory pressure (PImax) showed no significant changes and no significant differences were found between the two groups. Maximal static expiratory pressure (PEmax) significantly decreased (p < 0.001) in the 1st and 2nd week and it was not related to the type of analgesia used. We advocate the use of cryoanalgesia since it significantly reduces pain as well as the doses of analgesia. PMID:8815972

  2. Discrimination and quantification of cocaine and adulterants in seized drug samples by infrared spectroscopy and PLSR.

    PubMed

    Grobério, Tatiane S; Zacca, Jorge J; Botelho, Élvio D; Talhavini, Marcio; Braga, Jez W B

    2015-12-01

    Middle infrared spectroscopy and multivariate analysis have been applied for the development of methods to perform both quantitative and qualitative analysis of real drug samples seized by the Brazilian Police Federal (BPF). Currently, quantification of cocaine and determination of adulterants in seizures is performed using gas chromatography with flame ionization detection. However, this technique requires a relatively complex sample preparation, higher time of analysis, the destruction of sample and a high cost. In this context, this paper presents a simpler method to quantify cocaine and its major adulterants in seized materials. Out of 375 seizures, taken within a time frame of 2009-2013. A total of 1085 samples were analyzed of which 500 were selected for the calibration set and 585 for the validation set. Cocaine concentration in seized samples was determined by using middle infrared spectroscopy and partial least squares regression (PLSR), obtaining an average prediction error of 3.0% (w/w), precision of 2.0 and 11.8% (w/w) of minimum detectable cocaine concentration in a range varying from 24.2 to 99.9% (w/w). Results indicate that the developed method is able to discriminate between cocaine hydrochloride and free base samples, to quantify cocaine content as well as to estimate the concentration of main adulterants phenacetin, benzocaine, caffeine, lidocaine and aminopyrine. PMID:26448534

  3. Subacute inhalation toxicity of a medium-boiling coal liquefaction product (154-378 degrees C) in the rat [Part III].

    PubMed

    Chu, I; Rinehart, W; Hoffman, G; Villeneuve, D C; Otson, R; Valli, V E

    1989-01-01

    The short-term inhalation toxicity of a medium-boiling coal liquefaction product (CLP) was investigated in the rat. Groups of 5 male and 5 female Sprague-Dawley rats were exposed to CLP aerosols at 25 mg/m3 (low dose) or 100 mg/m3 (high dose) 6 h/d, 5 d/w, for 4 wk. The control group was exposed to filtered air while the positive control received diesel fuel aerosols at 100 mg/m3. Male rats exposed to high-dose CLP aerosols exhibited growth depression and increased hepatic aminopyrine demethylase activity compared to control animals. High-dose females had decreased hemoglobin content and hematocrit values. These biochemical and hematological effects were not observed in animals of either sex treated with the diesel fuel. No other biochemical and hematological changes were observed. Mild histological changes occurred in the liver and thyroid of rats treated with CLP and diesel fuel aerosols. Based on the data presented, inhalation of CLP aerosols resulted in toxicological effects that were similar to those caused by dermal exposure.

  4. Effect of clofibrate on cholesterol metabolism in rats treated with polychlorinated biphenyls

    SciTech Connect

    Nakagawa, M.; Shimokawa, T.; Noguchi, A.; Ishihara, N.; Kojima, S.

    1986-02-01

    Serum and hepatic cholesterol content in rats treated with polychlorinated biphenyls (PCBs, KC-400) were increased compared to those of control rats. This increase of cholesterol content was reduced to control level by simultaneous administration of ethyl p-chlorophenoxyisobutyrate (CPIB). Also, when lecithin-cholesterol acyltransferase (LCAT) activity was expressed as the net cholesterol esterification, the acyltransferase activity in rats treated with PCBs was elevated, while the elevated acyltransferase activity was brought to control level by simultaneous administration of CPIB. On the other hand, the amount of bile of rats treated with CPIB, PCBs and PCBs-CPIB was increased, but free and total cholesterol content in bile of these treated rats was decreased to 40-60% of those of control rats. Moreover, cytochrome P-450 content in liver microsomes of rats treated with CPIB, PCBs and PCBs-CPIB was increased. At the same time, cholesterol-metabolizing activity in liver microsomes of rats treated with CPIB, PCBs and PCBs-CPIB also was elevated. Similar results were obtained for drug metabolizing (aniline hydroxylation and aminopyrine N-demethylation) activity. In addition, the amount of bile acids excreted from rats treated with CPIB, PCBs and PCBs-CPIB was increased compared to that of control rats. These results suggest that hypercholesterolemia induced by oral ingestion of PCBs is recovered by CPIB treatment and that this hypocholesterolemic effect of CPIB may be related partly to the elevation of hepatic mixed function oxidase activity for cholesterol catabolism.

  5. Ultra-fast LC-ESI-MS/MS method for the simultaneous determination of six highly toxic Aconitum alkaloids from Aconiti kusnezoffii radix in rat plasma and its application to a pharmacokinetic study.

    PubMed

    Liu, Jingjing; Li, Qing; Yin, Yidi; Liu, Ran; Xu, Huarong; Bi, Kaishun

    2014-01-01

    A fast, sensitive, and efficient ultra-fast LC-ESI-MS/MS method was developed for the simultaneous quantitation of six highly toxic Aconitum alkaloids, that is, aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, in rat plasma after oral administration of crude ethanol extracts from Aconiti kusnezoffii radix by ultrasonic extraction, reflux extraction for 1 h, and reflux extraction for 3 h, respectively. The separation of six Aconitum alkaloids and aminopyrine (internal standard) was performed on an InertSustain® C18 column, and the quantification of the analytes was performed on a 4000Q ultra-fast LC-MS/MS system with turbo ion spray source in the positive ion and multiple-reaction monitoring mode. Absolute recoveries ranged within 65.06-85.1% for plasma samples. The intra- and interday precision and accuracy of analytes were satisfactory. The methods were validated with sensitivity reaching the lower LOQ for aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, which were 0.025, 0.025, 0.050, 0.025, 0.025, and 0.100 ng/mL, respectively. The method was successfully applied to a pharmacokinetic study of six Aconitum alkaloids in rat plasma after oral administration of crude ethanol extracts from the raw root of Aconitum kusnezoffii Reichb. by three different extraction processes.

  6. Determinants of hepatic function in liver cirrhosis in the rat. Multivariate analysis.

    PubMed Central

    Reichen, J; Egger, B; Ohara, N; Zeltner, T B; Zysset, T; Zimmermann, A

    1988-01-01

    We investigated the determinants of hepatic clearance functions in a rat model of liver cirrhosis induced by phenobarbital/CCl4. Aminopyrine N-demethylation (ABT), galactose elimination (GBT), and serum bile acids (SBA) were determined in vivo. The livers were then characterized hemodynamically: intrahepatic shunting (IHS) was determined by microspheres and sinusoidal capillarization by measuring the extravascular albumin space (EVA) by a multiple indicator dilution technique. The intrinsic clearance was determined by assaying the activity of the rate-limiting enzymes in vitro. Hepatocellular volume (HCV) was measured by morphometry. ABT and SBA, but not GBT, differentiated cirrhotic from normal liver. IHS ranged from normal to 10%; all cirrhotic livers showed evidence of sinusoidal capillarization (reduced EVA). The cirrhotic livers showed a bimodal distribution of HCV, HCV being decreased in 50% of the cirrhotic livers. Multivariate analysis showed EVA and portal flow to be the main determinants of microsomal (ABT) and cytosolic (GBT) clearance function; SBA, by contrast, were determined solely by IHS. We conclude that sinusoidal capillarization is the main determinant of hepatic clearance, while serum bile acids reflect intrahepatic shunting. These findings emphasize the importance of alterations of hepatic nutritional flow to explain reduced clearance function in cirrhosis of the liver. PMID:3198765

  7. Biodegradation of malachite green by Brevibacillus laterosporus MTCC 2298.

    PubMed

    Gomare, Sushama S; Parshetti, Ganesh K; Govindwar, Sanjay P

    2009-11-01

    Brevibacillus laterosporus MTCC 2298 was screened for the decolorization of eight triphenylmethane dyes. Decolorization of malachite green was found to be fastest (87% within 3 hours, at the concentration 0.1 g/L) among the screened dyes. Various triphenylmethane dyes showed differential induction patterns of the dye-degrading enzymes. The activities of the laccase, nicotinamide adenine dinucleotide-dichlorophenolindophenol reductase (NADH-DCIP reductase), malachite green reductase, and aminopyrine N-demethylase were increased in the cell-free extract obtained after decolorization of malachite green. Fourier transform infrared spectral analysis indicated formation of N-demethylated products, including primary and secondary aryl amines. High-performance liquid chromatography analysis confirmed the transformation of malachite green into new metabolites rather than its reduced form, leucomalachite green. Gas chromatography-mass spectroscopy analysis detected new degradation products, such as reduced tetradesmethyl leucomalachite green (m/z 283) and [4-(1-cyclohexyl)-(1'-phenyl)-methyl]-2, 4-hexenoic acid (m/z 282). Complete decolorization of malachite green also was observed by the partially purified laccase from B. laterosporus.

  8. Discrimination and quantification of cocaine and adulterants in seized drug samples by infrared spectroscopy and PLSR.

    PubMed

    Grobério, Tatiane S; Zacca, Jorge J; Botelho, Élvio D; Talhavini, Marcio; Braga, Jez W B

    2015-12-01

    Middle infrared spectroscopy and multivariate analysis have been applied for the development of methods to perform both quantitative and qualitative analysis of real drug samples seized by the Brazilian Police Federal (BPF). Currently, quantification of cocaine and determination of adulterants in seizures is performed using gas chromatography with flame ionization detection. However, this technique requires a relatively complex sample preparation, higher time of analysis, the destruction of sample and a high cost. In this context, this paper presents a simpler method to quantify cocaine and its major adulterants in seized materials. Out of 375 seizures, taken within a time frame of 2009-2013. A total of 1085 samples were analyzed of which 500 were selected for the calibration set and 585 for the validation set. Cocaine concentration in seized samples was determined by using middle infrared spectroscopy and partial least squares regression (PLSR), obtaining an average prediction error of 3.0% (w/w), precision of 2.0 and 11.8% (w/w) of minimum detectable cocaine concentration in a range varying from 24.2 to 99.9% (w/w). Results indicate that the developed method is able to discriminate between cocaine hydrochloride and free base samples, to quantify cocaine content as well as to estimate the concentration of main adulterants phenacetin, benzocaine, caffeine, lidocaine and aminopyrine.

  9. Effects of long-term tea polyphenols consumption on hepatic microsomal drug-metabolizing enzymes and liver function in Wistar rats

    PubMed Central

    Liu, Tao-Tao; Liang, Ning-Sheng; Li, Yan; Yang, Fan; Lu, Yi; Meng, Zi-Qing; Zhang, Li-Sheng

    2003-01-01

    AIM: To investigate the effects of long-term tea polyphenols (TPs) consumption on hepatic microsomal drug-metabolizing enzymes and liver function in rats. METHODS: TPs were administered intragastrically to rats at the doses of 833 mg·kg-1·d–1 (n = 20) and 83.3 mg·kg-1·d-1 (n = 20) respectively for six months. Controlled group (n = 20) was given same volume of saline solution. Then the contents of cytochrome P450, b5, enzyme activities of aminopyrine N-demethylase (ADM), glutathione S-trasferase (GST) and the biochemical liver function of serum were determined. RESULTS: The contents of cytochrome P450 and b5 in the livers of male rats in high dose groups (respectively 2.66 ± 0.55, 10.43 ± 2.78 nmol·mg MS pro-1) were significantly increased compared with the control group (1.08 ± 1.04, 5.51 ± 2.98 nmol·mg MS pro- 1; P < 0.01, respectively). The enzymatic activities of ADM in the livers of female rats in high dose groups (0.91 ± 0.08 mmol·mg MS pro-1min-1) were increased compared with the control group (0.82 ± 0.08 mmol·mg MS pro-1·min-1; P < 0.05). The GST activity was unchanged in all treated groups, and the function of liver was not obviously changed. CONCLUSION: The antidotal capability of rats’ livers can be significantly improved after long-term consumption of TPs. There are differences in changes of drug-metabolizing enzymes between the sexes induced by TPs and normal condition. PMID:14669325

  10. Inducing effect of oxfendazole on cytochrome P450IA2 in rabbit liver. Consequences on cytochrome P450 dependent monooxygenases.

    PubMed

    Gleizes, C; Eeckhoutte, C; Pineau, T; Alvinerie, M; Galtier, P

    1991-06-15

    Male New Zealand rabbits were dosed with either 0.9, 4.5 or 22.5 mg/kg/day of oxfendazole by gastric intubation for 10 days. Oxfendazole administered at the therapeutic dose (4.5 mg/kg) and at the highest dose (22.5 mg/kg) increased 1.54- and 2.36-fold the total liver microsomal cytochrome P450 and more particularly the isoenzyme P450IA2 (95 and 184% increases) as demonstrated by western blotting. Increases in ethoxyresorufin O-deethylation and hydroxylations of benzopyrene and acetanilide occurred in livers of the same animals without any change in N-demethylation of aminopyrine, benzphetamine or erythromycin. Because of the unchanged level of mRNA specific to cytochrome P450IA2, as shown by northern blot analysis of poly mRNA, an enzyme stabilization rather than a transcriptional activation of IA2 genes should be involved in the P450IA2 regulation mechanisms. Oxfendazole bound strongly to cytochrome P450, giving rise to a type II spectrum, and inhibited noncompetitively the ethoxyresorufin O-deethylase and acetanilide hydroxylase activities, this confirmed that oxfendazole interacts only with the P450IA2 family. On the basis of a comparison of the enzymatic activities induced by various imidazole drugs, it was concluded that oxfendazole, like omeprazole and albendazole, behaved as a 3-methylcholanthrene-type inducer. These three benzimidazoles did not all belong to the same category of cytochrome P450 inducers as the antifungal drugs miconazole, clotrimazole and ketoconazole.

  11. Effect of oxygen concentration on microsomal oxidation of ethanol and generation of oxygen radicals.

    PubMed Central

    Puntarulo, S; Cederbaum, A I

    1988-01-01

    The iron-catalysed production of hydroxyl radicals, by rat liver microsomes (microsomal fractions), assessed by the oxidation of substrate scavengers and ethanol, displayed a biphasic response to the concentration of O2 (varied from 3 to 70%), reaching a maximal value with 20% O2. The decreased rates of hydroxyl-radical generation at lower O2 concentrations correlates with lower rates of production of H2O2, the precursor of hydroxyl radical, whereas the decreased rates at elevated O2 concentrations correlate with lower rates (relative to 20% O2) of activity of NADPH-cytochrome P-450 reductase, which reduces iron and is responsible for redox cycling of iron by the microsomes. The oxidation of aniline or aminopyrine and the cytochrome P-450/oxygen-radical-independent oxidation of ethanol also displayed a biphasic response to the concentration of O2, reaching a maximum at 20% O2, which correlates with the dithionite-reducible CO-binding spectra of cytochrome P-450. Microsomal lipid peroxidation increased as the concentration of O2 was raised from 3 to 7 to 20% O2, and then began to level off. This different pattern of malondialdehyde generation compared with hydroxyl-radical production probably reflects the lack of a role for hydroxyl radical in microsomal lipid peroxidation. These results point to the complex role for O2 in microsomal generation of oxygen radicals, which is due in part to the critical necessity for maintaining the redox state of autoxidizable components of the reaction system. PMID:3415646

  12. Antimutagenic and mutagenic potentials of Chinese radish.

    PubMed Central

    Rojanapo, W; Tepsuwan, A

    1993-01-01

    The edible part of fresh Chinese radish was chopped into small pieces, lyophilized, and then extracted sequentially with hexane, chloroform, and methanol. The solvent in each fraction was removed by evaporation under reduced pressure at 50-55 degrees C, and the residue was dissolved in dimethylsufoxide just before being tested for antimutagenicity as well as mutagenicity using the Salmonella/mammalian microsome mutagenicity test. We found that none of the three fractions exhibited any mutagenicity toward S. typhimurium strains TA98 and TA100 when tested either in the presence or absence of S-9 mix. Interestingly, however, hexane and chloroform extracts could strongly inhibit the mutagenicities of both direct mutagens (e.g., 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide and sodium azide) and indirect mutagens (e.g., aflatoxin B1). In contrast, however, these two fractions did not inhibit the mutagenicity of benzo[a]pyrene, which is also an indirect mutagen. Both hexane and chloroform extracts could also markedly inhibit the activities of rat liver aniline hydroxylase and aminopyrine demethylase. The methanol fraction could inhibit neither the mutagenicities of direct or indirect mutagens tested nor the activities of those two rat liver enzymes. Results of the present study demonstrate that Chinese radish may not contain any mutagenic compound but does contain some nonpolar compounds with antimutagenic activity toward both direct and indirect mutagens. In addition, the antimutagenic activity toward aflatoxin B1 may be partly due to the inhibition of enzymes necessary for activation of this mutagen. PMID:8143625

  13. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    SciTech Connect

    Kim, Young C. Yim, Hye K.; Jung, Young S.; Park, Jae H.; Kim, Sung Y.

    2007-08-15

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomy also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards.

  14. Transfer of PCBs via lactation simultaneously induces the expression of P450 isoenzymes and the protooncogenes c-Ha-ras and c-raf in neonates.

    PubMed

    Borlak, J T; Scott, A; Henderson, C J; Jenke, H J; Wolf, C R

    1996-02-23

    At the first day of lactation, maternal rats were injected with a single i.p. dose of 100 or 250 mg/kg body weight of a mixture of polychlorinated biphenyls (Aroclor 1254). This treatment caused significant increases in both material and neonatal hepatic cytochrome P-450, cytochrome b5, and cytochrome-c-(P-450) reductase. Transfer of PCBs via lactation resulted in significant increases in hepatic enzyme activities catalysed by neonatal CYP1A1, CYP1A2, CYP2B1, CYP3A1, and CYP2E1 using a variety of substrates. In contrast, the metabolism of dimethylnitrosamine and aminopyrine was only marginally (up to 2-fold) increased in maternal animals four days post treatment. Further measurements showed significant increases in maternal and neonatal epoxide hydrolase, glutathione-S-transferase, and UDP-glucuronyl transferase activities, thus suggesting a coordinated response for an induction of CYP1A1, CYP1A2, CYP2A1, CYP2B1, CYP2E1, CYP3A1, and CYP4A1 in both maternal and neonatal CYP2C6, and at the higher dose the expression of neonatal CYP2E1 was significantly reduced. Northern blot analysis provided further evidence for significant increases in maternal and neonatal hepatic CYP1A1, CYP1A2, CYP2B1, and CYP2E1 mRNA, but reduced amounts of CYP2C7 and CYP4A1 mRNA. Additional Northern blot hybridization experiments may suggest an increased expression of the protooncogenes c-Ha-ras and c-raf in the mother and the neonate upon treatment of maternal rats with Aroclor 1254. Lactation itself may result in an increased expression of the latter protooncogenes, but the mRNA of the protooncogenes c-erb A and c-erb B was not detected in any of the tissues examined.

  15. Determination of selected pharmaceuticals in tap water and drinking water treatment plant by high-performance liquid chromatography-triple quadrupole mass spectrometer in Beijing, China.

    PubMed

    Cai, Mei-Quan; Wang, Rong; Feng, Li; Zhang, Li-Qiu

    2015-02-01

    A simultaneous determination method of 14 multi-class pharmaceuticals using solid-phase extraction (SPE) followed by high-performance liquid chromatography-tandem mass spectrometer (HPLC-MS/MS) was established to measure the occurrence and distribution of these pharmaceuticals in tap water and a drinking water treatment plant (DWTP) in Beijing, China. Target compounds included seven anti-inflammatory drugs, two antibacterial drugs, two lipid regulation drugs, one antiepileptic drug, and one hormone. Limits of detection (LODs) and limits of quantitation (LOQs) ranged from 0.01 to 1.80 ng/L and 0.05 to 3.00 ng/L, respectively. Intraday and inter-day precisions, recoveries of different matrices, and matrix effects were also investigated. Of the 14 pharmaceutical compounds selected, nine were identified in tap water of Beijing downtown with the concentration up to 38.24 ng/L (carbamazepine), and the concentration levels of detected pharmaceuticals in tap water (<5 ng/L for most pharmaceuticals) were lower than previous studies in other countries. In addition, ten and six pharmaceuticals were measured in raw water and finished water at the concentration ranged from 0.10 to 16.23 and 0.13 to 17.17 ng/L, respectively. Five compounds were detected most frequently in DWTP, namely antipyrine, carbamazepine, isopropylantipyrine, aminopyrine, and bezafibrate. Ibuprofen was found to be the highest concentration pharmaceutical during DWTP, up to 53.30 ng/L. DWTP shows a positive effect on the removal of most pharmaceuticals with 81.2-99.5 % removal efficiencies, followed by carbamazepine with 55.4 % removal efficiency, but it has no effect for removing ibuprofen and bezafibrate.

  16. Effect of cadmium, mercury, and zinc on the hepatic microsomal enzymes of Channa punctatus

    SciTech Connect

    Dalal, R.; Bhattacharya, S. )

    1994-06-01

    The increased use of heavy metals like cadmium and mercury in industry and agriculture, and their subsequent intrusion in indeterminate amounts into the environment has caused ecological and biological changes. In vivid contrast, zinc, one of the essential elements, and used in the cosmetic industry, is known to play a pivotal roles in various cellular processes. The seriousness and longevity of these metals in the environment are compounded by the fact that they are non-degradable with significant oxidizing capacity and substantial affinity for electronegative nucleophilic species in proteins and enzymes. Exposure of aquatic animals, especially fish, to these toxic metals for a prolonged period produces an intrinsic toxicity in relation to susceptible organs and/or tissues, although no serious morphological or anatomical changes in the animal or even their feeding behavior may occur. The p-hydroxylation of aniline by aniline hydroxylase (AH) and the N-demethylation of amines to generate formaldehyde (HCHO) by aminopyrine demethylase (APD) are the two oxygen-dependent reactions of microsomal mixed-function oxidase (MFOs) which control the pharmacological and toxicological activities of xenobiotics in mammalian and other species. While both these classical enzymes in fish are reported to demonstrate relatively low specific activity, they are used as criteria for delineating polluted areas. Unlike mammalian species, however, intoxication and interference of MFO enzymes by metal toxicants, especially during prolonged exposure, has not been investigated. The present report describes the results of studies from the concurrent exposure for 28 d to cadmium (CdCl[sub 2]), mercury (HgCl[sub 2]) or zinc (ZnCl[sub 2]) individually, on the AH and APD activities and microsomal protein content in liver of freshwater teleost Channa punctatus.

  17. [Formalin-induced minor tremor response as an indicator of pain].

    PubMed

    Takahashi, H; Shibata, M; Ohkubo, T; Naruse, S

    1984-10-01

    Formalin which was said to produce prolonged pain and inflammation was injected subcutaneously into the back of guinea pigs, and minor tremor pain response (MTP-response) was measured using the MT-pick up, integrator and digital volt meter. The MTP-response curve showed a biphasic pattern. Immediately after injection, the MTP-response curve showed a significant peak which lasted for about 2 min (the first phase) and subsequently dipped rapidly, and after 5 min, it began to rise slowly again and had a peak at 30 min (the second phase). Morphine (6 mg/kg, s.c.) inhibited completely the first and second phases. Levallorphan (1.2 mg/kg), however, reversed the inhibitory effect of morphine at the first phase, but not at the second phase. Aspirin (200 mg/kg, i.p.), aminopyrine (100 mg/kg, s.c.) and pentazocine (5 mg-10 mg/kg, s.c.) inhibited significantly the formalin-induced MTP-response at both phases. Pyridinol carbamate (200 mg/kg, i.p.) and hydrocortisone (25 mg/kg, i.p.) had no effect on the MTP-response at the first phase, but inhibited it at the second phase. There was a parallelism between the time course of the vascular permeability induced by formalin and that of the second phase of MTP-response. From these results, it is suggested that the first phase of MTP-response is derived from the direct effect of formalin on free nerve endings, while the second phase is derived from the inflammation. Since two kinds of pain features were differentiated in this method, the relationships with so-called "immediate pain" and "delayed pain" were discussed. Furthermore, this method can be utilized to assess pain and the action of analgesics objectively and quantitatively.

  18. Effects of selenium on 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis and DNA adduct formation

    SciTech Connect

    Ip, C.; Daniel, F.B.

    1985-01-01

    The purpose of the present investigation was to determine the effects of dietary selenium deficiency or excess on 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary neoplasia in rats and to delineate whether selenium-mediated modification of mammary carcinogenesis was associated with changes in carcinogen:DNA adduct formation and activities of liver microsomal enzymes that are involved in xenobiotic metabolism. Female Sprague-Dawley rats were divided into three groups from weaning and were maintained on one of three synthetic diets designated as follows: selenium deficient (less than 0.02 ppm); selenium adequate (0.2 ppm); or selenium excess (2.5 ppm). For the DMBA binding and DNA adduct studies, rats were given a dose of (/sup 3/H)DMBA p.o. after 1 month on their respective diets. Results from the liver and the mammary gland indicated that neither selenium deficiency nor excess had any significant effect on the binding levels, which were calculated on the basis of total radioactivity isolated with the purified DNA. Furthermore, it was found that dietary selenium intake did not seem to affect quantitatively or qualitatively the formation of DMBA:DNA adducts in the liver. Similarly, in a parallel group of rats that did not receive DMBA, the activities of aniline hydroxylase, aminopyrine N-demethylase, and cytochrome c reductase were not significantly altered by dietary selenium levels. Concurrent with the above experiments, the effect of dietary selenium intake on carcinogenesis was also monitored. Results of this experiment indicated that selenium deficiency enhanced mammary carcinogenesis only when this nutritional condition was maintained in the postinitiation phase. Likewise, an excess of selenium intake inhibited neoplastic development only when this regimen was continued after DMBA administration.

  19. Breath Tests to Assess Alcoholic Liver Disease.

    PubMed

    Furnari, Manuele; Ahmed, Iftikhar; Erpecum, Karel J van; Savarino, Vincenzo; Giannini, Edoardo G

    2016-01-01

    The prevalence of Alcohol related Liver Disease (ALD) continues to rise all over the world due to changing drinking behaviour of the population. Liver disease due to excessive alcohol consumption causes significant morbidity and mortality, and poses a substantial economic burden to the health care resources. Early diagnosis and treatment of ALD may help prevent progression to cirrhosis and hepatocellular carcinoma. The last decade has seen a rising interest in potential use of non-invasive tests in clinical practice, including diagnosis and monitoring of chronic liver diseases. Over the past few decades, breath testing has been investigated extensively in the diagnosis of ALD, and has shown promising results in predicting the early stages of ALD. A variety of breath tests have been utilised in this regard including the13Clabelled breath tests, aminopyrine breath test , galactose breath test , methacetin breath test, and keto-isocaproic acid breath test. These tests have demonstrated good results in identification of both significant and severe liver disease among patients with ALD. Volatile Organic Compounds (VOC) are chemicals, which can be quantified in breath and other biological fluids, and represent physio-pathological activities within an individual. Alteration in the pattern of breath VOCs can be correlated with a number of diseases including ALD. Early stages of ALD can be detected using these breath tests, which can lead to adoption of preventive measures to reduce the progression of liver disease. This review focuses on the clinical utility of current and future breath tests, including breath VOC, as a non-invasive means of predicting early stages of ALD. PMID:27515960

  20. Determination of selected pharmaceuticals in tap water and drinking water treatment plant by high-performance liquid chromatography-triple quadrupole mass spectrometer in Beijing, China.

    PubMed

    Cai, Mei-Quan; Wang, Rong; Feng, Li; Zhang, Li-Qiu

    2015-02-01

    A simultaneous determination method of 14 multi-class pharmaceuticals using solid-phase extraction (SPE) followed by high-performance liquid chromatography-tandem mass spectrometer (HPLC-MS/MS) was established to measure the occurrence and distribution of these pharmaceuticals in tap water and a drinking water treatment plant (DWTP) in Beijing, China. Target compounds included seven anti-inflammatory drugs, two antibacterial drugs, two lipid regulation drugs, one antiepileptic drug, and one hormone. Limits of detection (LODs) and limits of quantitation (LOQs) ranged from 0.01 to 1.80 ng/L and 0.05 to 3.00 ng/L, respectively. Intraday and inter-day precisions, recoveries of different matrices, and matrix effects were also investigated. Of the 14 pharmaceutical compounds selected, nine were identified in tap water of Beijing downtown with the concentration up to 38.24 ng/L (carbamazepine), and the concentration levels of detected pharmaceuticals in tap water (<5 ng/L for most pharmaceuticals) were lower than previous studies in other countries. In addition, ten and six pharmaceuticals were measured in raw water and finished water at the concentration ranged from 0.10 to 16.23 and 0.13 to 17.17 ng/L, respectively. Five compounds were detected most frequently in DWTP, namely antipyrine, carbamazepine, isopropylantipyrine, aminopyrine, and bezafibrate. Ibuprofen was found to be the highest concentration pharmaceutical during DWTP, up to 53.30 ng/L. DWTP shows a positive effect on the removal of most pharmaceuticals with 81.2-99.5 % removal efficiencies, followed by carbamazepine with 55.4 % removal efficiency, but it has no effect for removing ibuprofen and bezafibrate. PMID:25196960

  1. Metabolism, sister chromatid exchanges, and DNA single-strand breaks induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and their modulation by vitamin A in vitro.

    PubMed

    Alaoui-Jamali, M A; Bélanger, P M; Rossignol, G; Castonguay, A

    1991-08-01

    The nicotine-derived N-nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1- butanone (NNK) is abundant in smokeless tobacco and tobacco smoke and is hepatocarcinogenic in F344 rats. We have investigated how vitamin A modulates sister chromatid exchanges and DNA single-strand breaks induced by NNK. In V79 cells, vitamin A at concentrations ranging from 34.9 to 139.6 microM inhibited sister chromatid exchange frequencies induced by 20 mM NNK activated by primary rat hepatocytes. Sister chromatid exchanges were inhibited by 24, 44, and 55% when cells were cotreated with 34.9, 69.8, and 139.6 microM vitamin A, respectively. DNA single-strand breaks induced by NNK in rat hepatocytes were also inhibited by vitamin A. After 9 h of elution, DNA single-strand breaks induced by 1, 5, and 10 mM NNK were inhibited by 13, 5, and 3.5% in the presence of 69.8 microM vitamin A, respectively. This protective effect by vitamin A was associated with a reduction of alpha-carbon hydroxylation, an activation pathway of NNK. This pathway was inhibited by 50% when cells were cotreated with 3.49 microM vitamin A. The reduction in the hepatic microsomal aminopyrine N-demethylase, aniline hydroxylase, and N,N-dimethyl aniline N-demethylase in the presence of vitamin A (0.035 to 0.35 microM) suggests that vitamin A could reduce NNK genotoxicity by inhibiting the enzymes involved in the activation process. PMID:1855212

  2. Pulmonary uptake of morphine (M)

    SciTech Connect

    Roerig, D.L.; Bunke, S.S.; Kotrly, K.J.; Dawson, C.A.; Kampine, J.P.

    1986-03-01

    Previously the authors reported less than 5% of M was taken up during the first pass through the human lung. The low uptake of this basic lipophilic amine was further investigated in a single pass isolated perfused rat lung (IPL) in comparison to uptake of radiolabelled H/sub 2/O, antipyrine (A), aminopyrine (AM), nicotine (N) and phenylethylamine (P). The IPL was perfused for 5 min with each drug (5nmol/ml) and effluent collected in 10 sec fractions. Pulmonary extraction was calculated using indocyanine green dye as a non-extractable reference indicator. Accumulation of all compounds in the IPL reached an apparent equilibrium within 4 min. At equilibrium lung/perfusate conc. ratios for H/sub 2/O, A, AM, N, P and M were 1.04, 0.84, 0.85, 1.44, 2.57 and 1.13 respectively. The time course of M uptake differed from the other compounds since initial extraction of M was low (23%) compared to 75%, 53%, 35%, 82% and 86% for H/sub 2/O, A, AM, N and P respectively. Also, the half time to equilibrium for M was longer (50 sec) compared to 18, 21, 26, 19 and 22 sec for H/sub 2/O, A, AM, N and P respectively. The low initial pulmonary extraction of M compared to these compounds followed by greater M extraction during the remainder of drug infusion suggests uptake mechanisms for M different than the flow limited uptake for water and other basic amine drugs.

  3. Effects of triclosan on the detoxification system in the yellow catfish (Pelteobagrus fulvidraco): expressions of CYP and GST genes and corresponding enzyme activity in phase I, II and antioxidant system.

    PubMed

    Ku, Peijia; Wu, Xiaoyan; Nie, Xiangping; Ou, Ruikang; Wang, Lan; Su, Tian; Li, Yigang

    2014-11-01

    Triclosan (TCS), a broad-spectrum antibacterial agent widely used in pharmaceuticals and personal case products (PPCPs), has been universally detected in aquatic ecosystem in recent years. Unfortunately, there is limited information about its potential impacts on responses of genes and enzymes related to fish detoxification. In the present work, we cloned CYP3A and alpha-GST of yellow catfish (Pelteobagrus fulvidraco) and tested the transcriptional expression of CYP1A, CYP3A and GST as well as the alterations of their corresponding enzymes, including ethoxyresorufin-O-deethylase (EROD), aminopyrine N-demethylase (APND), erythromycin N-demethylase (ERND), glutathione S-transferase (GST) and catalase (CAT), and also the oxidative product malondialdehyde (MDA) content in the liver of P. fulvidraco exposed to TCS. Amino acids of CYP3A and GST were deduced and phylogenetic tree was constructed respectively. High identity percent was exhibited between P. fulvidraco and other species, such as other fish, birds and mammals. Results indicated that TCS significantly elevated CYP1A and GST but decreased CYP3A expression, EROD activity and MDA content at lower concentrations of TCS at 24h. Moreover, CYP3A and GST were significantly inhibited at 72 h but induced at 168 h at lower concentrations. However, CYP3A was always induced at the highest concentration during the exposure period. Furthermore, CYP3A, GST, GST enzyme and MDA content exhibited a dose-effect relationship to some extent, but no significant responses were observed in ERND, APND and CAT except for individual treatments. Taken together, EROD was the most sensitive to TCS exposure as compared to other enzymes. Meanwhile, mRNA responses were more sensitive in yellow catfish.

  4. Blood cholinesterase in rats fed an insect resistance apple clone containing a natural cholinesterase inhibitor.

    PubMed

    Stoewsand, G S; Anderson, J L; Brown, S K

    1994-01-01

    A crab apple clone (Malus brevipes 1021), highly resistant to the apple maggot, is being used in breeding programs developing commercial apple cultivars. This study has discovered that this crab apple contains a natural cholinesterase (ChE) inhibitor that caused a 17.5% in vitro inhibition of rat blood ChE activity. This crab apple also showed a relatively high total (titratable) acidity of 1.28%. The commercial, nonresistant, apple cultivar McIntosh was capable of causing a 7.9% inhibition of blood ChE in vitro. The total acidity in McIntosh was 0.45%. A 4-wk feeding study compared 2 groups of 5-wk-old Fischer 344 male rats fed diets containing 45% of either M. brevipes or McIntosh freeze-dried apples to a third (control) group of rats fed a semipurified diet. In vivo blood ChE activities were similar in all groups of rats, as well as hemoglobin, hematocrit, and red blood cell counts. The liver mixed-function oxidase activity through aminopyrine N-demethylase in the rats fed the apple diets was higher than the controls, but p-nitroanisole O-demethylase activity was induced only in the animals fed the maggot-resistant crab apple. Lowered growth with concomitant lowered food intake, in the otherwise healthy rats fed the maggot-resistant crab apple diet, was attributed to the less palatable, highly acidic fruit. This study indicates that the natural ChE inhibitor in the insect-resistant apple M. brevipes is apparently detoxified upon ingestion.

  5. Drug metabolizing enzyme systems in the houbara bustard (Chlamydotis undulata).

    PubMed

    Bailey, T A; John, A; Mensah-Brown, E P; Garner, A; Samour, J; Raza, H

    1998-10-01

    This study compared catalytic and immunochemical properties of drug metabolizing phase I and II enzyme systems in houbara bustard (Chlamydotis undulata) liver and kidney and rat liver. P450 content in bustard liver (0.34 +/- 0.03 nmol mg-1 protein) was 50% lower than that of rat liver (0.70 +/- 0.02 nmol mg-1 protein). With the exception of aniline hydroxylase activity, monooxygenase activities using aminopyrine, ethoxyresorufin and ethoxycoumarin as substrates were all significantly lower than corresponding rat liver enzymes. As found in mammalian systems the P450 activities in the bird liver were higher than in the kidney. Immunohistochemical analysis of microsomes using antibodies to rat hepatic P450 demonstrated that bustard liver and kidney express P4502C11 homologous protein; no appreciable cross-reactivity was observed in bustards using antibodies to P4502E1, 1A1 or 1A2 isoenzymes. Glutathione content and glutathione S-transferase (GST) activity in bustard liver were comparable with those of rat liver. GST activity in the kidney was 65% lower than the liver. Western blotting of liver and kidney cytosol with human GST isoenzyme-specific antibodies revealed that the expression of alpha-class of antibodies exceeds mu in the bustard. In contrast, the pi-class of GST was not detected in the bustard liver. This data demonstrates that hepatic and renal microsomes from the bustard have multiple forms of phase I and phase II enzymes. The multiplicity and tissue specific expression of xenobiotic metabolizing enzymes in bustards may play a significant role in determining the pharmacokinetics of drugs and susceptibility of the birds to various environmental pollutants and toxic insults.

  6. Gastrin receptors on isolated canine parietal cells

    SciTech Connect

    Soll, A.H.; Amirian, D.A.; Thomas, L.P.; Reedy, T.J.; Elashoff, J.D.

    1984-05-01

    The receptors in the fundic mucosa that mediate gastrin stimulation of acid secretion have been studied. Synthetic human gastrin-17-I (G17) with a leucine substitution in the 15th position ((Leu15)-G17) was iodinated by chloramine T; high saturable binding was found to enzyme-dispersed canine fundic mucosal cells. /sup 127/I-(Leu15)-G17, but not /sup 127/I-G17, retained binding potency and biological activity comparable with uniodinated G17. Fundic mucosal cells were separated by size by using an elutriator rotor, and specific /sup 125/I-(Leu-15)-G17 binding in the larger cell fractions was highly correlated with the distribution of parietal cells. There was, however, specific gastrin binding in the small cell fractions, not accounted for by parietal cells. Using sequential elutriation and stepwise density gradients, highly enriched parietal and chief cell fractions were prepared; /sup 125/I-(Leu15)-G17 binding correlated positively with the parietal cell (r . 0.98) and negatively with chief cell content (r . -0.96). In fractions enriched to 45-65% parietal cells, specific /sup 125/I-(Leu15)-G17 binding was rapid, reaching a steady state at 37 degrees C within 30 min. Dissociation was also rapid, with the rate similar after 100-fold dilution or dilution plus excess pentagastrin. At a tracer concentration from 10 to 30 pM, saturable binding was 7.8 +/- 0.8% per 10(6) cells (mean +/- SE) and binding in the presence of excess pentagastrin accounted for 11% of total binding. G17 and carboxyl terminal octapeptide of cholecystokinin (26-33) were equipotent in displacing tracer binding and in stimulating parietal cell function ((/sup 14/C)aminopyrine accumulation), whereas the tetrapeptide of gastrin (14-17) had a much lower potency. Proglumide inhibited gastrin binding and selectively inhibited gastrin stimulation of parietal cell function.

  7. Metabolism of aromatic amines by prostaglandin H synthase.

    PubMed Central

    Boyd, J A; Eling, T E

    1985-01-01

    The metabolism of aromatic amines by the peroxidase activity of prostaglandin H synthase (PHS) has been studied in this laboratory by use of two model compounds, the carcinogenic primary amine 2-aminofluorene (2-AF) and the substituted amine aminopyrine (AP). 2-AF is oxidized by PHS to 2, 2-azobisfluorene, 2-aminodifluorenylamine, 2-nitrofluorene, polymeric material, and products covalently bound to macromolecules. In the presence of phenolic compounds, 2-AF oxidation results in the formation of amine/phenol adducts. The data are consistent with a one-electron mechanism of 2-AF oxidation by PHS; furthermore, an N-hydroxy intermediate is not involved in 2-AF metabolism by PHS. PHS also catalyzes the binding of 2-AF to DNA in vitro. Unique 2-AF/DNA adducts were isolated and are distinct from the N-(deoxyguanosin-8-yl)-2-AF adduct formed from the reaction of N-hydroxy-2-AF with DNA. These new adducts represent a marker unique to peroxidative activation of 2-AF. AP is oxidized by the peroxidase activity of PHS to the cation radical, with one molecule of hydroperoxy fatty acid reduced for every two molecules of AP free radical formed. The decay of the AP radical follows second order kinetics, supporting the proposed mechanism in which the AP radical disproportionates to an iminium cation, followed by hydrolysis of this species to the demethylated amine and formaldehyde. In the presence of glutathione, the cation radical is reduced to the parent amine, resulting in the formation of the glutathione thiyl radical. It thus appears that both primary and substituted aromatic amines may undergo one-electron oxidation by PHS. PMID:3938394

  8. Biodegradation of crystal violet by Agrobacterium radiobacter.

    PubMed

    Parshetti, G K; Parshetti, S G; Telke, A A; Kalyani, D C; Doong, R A; Govindwar, S P

    2011-01-01

    Agrobacterium radiobacter MTCC 8161 completely decolorized the Crystal Violet with 8 hr (10 mg/L) at static anoxic conditions. The decreased decolorization capability by A. radiobacter was observed, when the Crystal Violet concentration was increased from 10 to 100 mg/L. Semi-synthetic medium containing 1% yeast extract and 0.1% NH4C1 has shown 100% decolorization of Crystal Violet within 5 hr. A complete degradation of Crystal Violet by A. radiobacter was observed up to 7 cycles of repeated addition (10 mg/L). When the effect of increasing inoculum concentration on decolorization of Crystal Violet (100 mg/L) was studied, maximum decolorization was observed with 15% inoculum concentration. A significant increase in the activities of laccase (184%) and aminopyrine N-demethylase (300%) in cells obtained after decolorization indicated the involvement of these enzymes in decolorization process. The intermediates formed during the degradation of Crystal Violet were analyzed by gas chromatography and mass spectroscopy (GC/MS). It was detected the presence of N,N,N',N"-tetramethylpararosaniline, [N, N-dimethylaminophenyl] [N-methylaminophenyl] benzophenone, N, N-dimethylaminobenzaldehyde, 4-methyl amino phenol and phenol. We proposed the hypothetical metabolic pathway of Crystal Violet biodegradation by A. radiobacter. Phytotoxicity and microbial toxicity study showed that Crystal Violet biodegradation metabolites were less toxic to bacteria (A. radiobacter, P. aurugenosa and A. vinelandii) contributing to soil fertility and for four kinds of plants (Sorghum bicolor Vigna radiata, Lens culinaris and Triticum aestivum) which are most sensitive, fast growing and commonly used in Indian agriculture.

  9. Metabolism of aromatic amines by prostaglandin H synthase

    SciTech Connect

    Boyd, J.A.; Eling, T.E.

    1985-12-01

    The metabolism of aromatic amines by the peroxidase activity of prostaglandin H synthase (PHS) has been studied in this laboratory by use of two model compounds, the carcinogenic primary amine 2-aminofluorene (2-AF) and the substituted amine aminopyrine (AP). 2-AF is oxidized by PHS to 2, 2-azobisfluorene, 2-aminodifluorenylamine, 2-nitrofluorene, polymeric material, and products covalently bound to macromolecules. In the presence of phenolic compounds, 2-AF oxidation results in the formation of amine-phenol adducts. The data are consistent with a one-electron mechanism of 2-AF oxidation by PHS; furthermore, an N-hydroxy intermediate is not involved in 2-AF metabolism by PHS. PHS also catalyzes the binding of 2-AF to DNA in vitro. Unique 2-AF/DNA adducts were isolated and are distinct from the N-(deoxyguanosin-8-yl)-2-AF adduct formed from the reaction of N-hydroxy-2-AF with DNA. These new adducts represent a marker unique to peroxidative activation of 2-AF. AP is oxidized by the peroxidase activity of PHS to the cation radical, with one molecule of hydroperoxy fatty acid reduced for every two molecules of AP free radical formed. The decay of the AP radical follows second order kinetics, supporting the proposed mechanism in which the AP radical disproportionates to an iminium cation, followed by hydrolysis of this species to the demethylated amine and formaldehyde. In the presence of glutathione, the cation radical is reduced to the parent amine, resulting in the formation of the glutathione thiyl radical. It thus appears that both primary and substituted aromatic amines may undergo one-electron oxidation by PHS. 19 references.

  10. Effect of Siamese cassia leaves on the activities of chemical carcinogen metabolizing enzymes and on mammary gland carcinogenesis in the rat.

    PubMed

    Tepsuwan, A; Kupradinun, P; Kusamran, W R

    1999-07-16

    Male Wistar rats were fed AIN-76 semipurified diet or diet containing 5% ground lyophilized Siamese cassia leaves for 2 weeks before sacrifice. Hepatic S9 fractions were prepared and assayed for the level of cytochrome P450 (P450), the activities of monooxygenase, i.e., aniline hydroxylase (ANH), aminopyrine-N-demethylase (AMD) as well as the capacity to metabolically activate the mutagenicities of aflatoxin B(1) (AFB(1)) and benzo(a)pyrene (B(a)P). In addition, the activities of detoxificating enzymes such as glutathione-S-transferase (GST) and UDP-glucuronyltransferase (UGT) were also measured. It was found that feeding of Siamese cassia leaves significantly reduced the activities of hepatic ANH and AMD as well as the capacity to activate the mutagenicity of AFB(1) towards Salmonella typhimurium TA100, being 31, 73 and 41% of control group, respectively. It also slightly decreased, but not significantly, the capacity to activate the mutagenicity of B(a)P towards S. typhimurium YG1029. On the other hand, however, the activities of both GST and UGT were markedly increased in those animals, being 250 and 220% of control animals. The anticarcinogenic potential of Siamese cassia leaves was also investigated in female Sprague Dawley rats treated with 9,10-dimethyl-1,2-benzanthracene (DMBA). The animals were fed control diet or diet containing ground lyophilized Siamese cassia leaves 2 weeks prior to and 1 week after intragastrically administration of DMBA, and then they were placed on a pellet diet for additional 25 weeks. Interestingly, it was found that feeding of diet containing 2.5 and 4% Siamese cassia leaves resulted in a significant decrease in the multiplicity of mammary gland tumors as well as a slight delay of the onset of tumor development. The incidence of tumors in the group fed 4% Siamese cassia leaves, but not in the 2.5% group, was lowered, although not significantly, than that of control group. The results in the present study therefore demonstrated

  11. Captan impairs CYP-catalyzed drug metabolism in the mouse.

    PubMed

    Paolini, M; Barillari, J; Trespidi, S; Valgimigli, L; Pedulli, G F; Cantelli-Forti, G

    1999-11-30

    To investigate whether the fungicide captan impairs CYP-catalyzed drug metabolism in murine liver, kidney and lung, the modulation of the regio- and stereo-selective hydroxylation of testosterone, including 6beta-(CYP3A), 6alpha-(CYP2A1 and CYP2B1) and 16alpha-(CYP2B9) oxidations was studied. Specific substrates as probes for different CYP isoforms such as p-nitrophenol (CYP2E1), pentoxyresorufin (CYP2B1), ethoxyresorufin (CYP1A1), aminopyrine (CYP3A), phenacetin and methoxyresorufin (CYP1A2), and ethoxycoumarin (mixed) were also considered. Daily doses of captan (7.5 or 15 mg/kg b.w., i.p.) were administered to different groups of Swiss Albino CD1 mice of both sexes for 1 or 3 consecutive days. While a single dose of this fungicide did not affect CYP-machinery, repeated treatment significantly impaired the microsomal metabolism; in the liver, for example, a general inactivating effect was observed, with the sole exception of testosterone 2alpha-hydroxylase activity which was induced up to 8.6-fold in males. In vitro studies showed that the mechanism-based inhibition was related to captan metabolites rather than the parental compound. In the kidney, both CYP3A- and CYP1A2-linked monooxygenases were significantly induced (2-fold) by this pesticide. Accelerated phenacetin and methoxyresorufin metabolism (CYP1A2) was also observed in the lung. Data on CYP3A (kidney) and CYP1A2 (kidney and lung) induction were corroborated by Western immunoblotting using rabbit polyclonal anti-CYP3A1/2 and CYP1A1/2 antibodies. By means of electron spin resonance (EPR) spectrometry coupled to a spin-trapping technique, it was found that the recorded induction generates a large amounts of the anion radical superoxide (O*2-) either in kidney or lung microsomes. These findings suggest that alterations in CYP-associated activities by captan exposure may result in impaired (endogenous) metabolism as well as of coadministered drugs with significant implications for their disposition. The

  12. The anti-fibrotic effect of liver growth factor is associated with decreased intrahepatic levels of matrix metalloproteinases 2 and 9 and transforming growth factor beta 1 in bile duct-ligated rats.

    PubMed

    Díaz-Gil, Juan J; García-Monzón, Carmelo; Rúa, Carmen; Martín-Sanz, Paloma; Cereceda, Rosa M; Miquilena-Colina, María E; Machín, Celia; Fernández-Martínez, Amalia; García-Cañero, Rarael

    2008-05-01

    Liver growth factor (LGF), a mitogen for liver cells, behaves as an anti-fibrotic agent even in extrahepatic sites, but its mechanistic basis is unknown. We aimed to determine the intrahepatic expression pattern of key modulators of liver fibrosis in bile duct-ligated rats (BDL) after injection of LGF. BDL rats received either LGF (4.5 microg/ratXdose, two doses/week, at time 0 or 2 or 5w after operation, depending on the group (BDL+LGF groups, n=20) or saline (BDL+S groups, n=20). Groups were compared in terms of fibrosis (histomorphometry), liver function (aminopyrine breath test), matrix metalloproteinases MMP-2 and MMP-9, transforming growth factor beta 1 (TGF-beta1) and liver endoglin content (Western blotting), and serum tissue inhibitor of metalloproteinases 1 (TIMP-1) levels (ELISA). In BDL+LGF rats, the fibrotic index was significantly lower at 5w, p=0.006, and at 8w, p=0.04, than in BDL+S rats. Liver function values in BDL+LGF rats were higher than those obtained in BDL+S rats (80% at 5w and 79% at 8w, versus 38% and 29%, p<0.01, taking healthy controls as 100%). Notably, in BDL+LGF rats the intrahepatic expression levels of both MMPs were lower at 2w (MMP-2, p=0.03; MMP-9, p=0.05) and 5w (MMP-2, p=0.05, MMP-9, p=0.04). In addition, the hepatic TGF-beta1 level in BDL+LGF rats was lower at 2w (36%, p=0.008), 5w (50%) and 8wk (37%), whereas intrahepatic endoglin expression remained constant in all BDL rats studied. LGF ameliorates liver fibrosis and improves liver function in BDL rats. The LGF-induced anti-fibrotic effect is associated with a decreased hepatic level of MMP-2, MMP-9 and TGF-beta1 in fibrotic rats.

  13. Correlations between polychlorinated biphenyl immunotoxicity, the aromatic hydrocarbon locus, and liver microsomal enzyme induction in C57BL/6 and DBA/2 mice.

    PubMed

    Silkworth, J B; Antrim, L; Kaminsky, L S

    1984-08-01

    The suppression of the antibody response by polychlorinated biphenyls (PCB) in mice is dependent on the planarity of the PCB molecule and on the expression of the aromatic hydrocarbon (Ah) receptor. In this study, the hypothesis that this form of immunotoxicity is a consequence of the activation of the Ah gene complex and that other compounds which are Ah receptor ligands would also be immunotoxic was tested. 2,2',4,4'-Tetrachlorobiphenyl (TCB), 2,3,3',4,4',5-hexachlorobiphenyl (HCB), phenobarbital (PB), or beta-naphthoflavone (BNF) was given ip to either C57BL/6 (B6,Ahb/Ahb) or DBA/2 (D2, Ahd/Ahd) mice 2 days before immunization with sheep erythrocytes. Organ weights, histopathology, hemagglutinating antibody titers, and the splenic direct antibody plaque-forming cell (PFC) response were evaluated on Day 5. Hepatic aryl hydrocarbon hydroxylase (AHH) induction by these compounds and by 2,2',5,5'-TCB and 3,3',4,4'-TCB was measured as an indicator of Ah receptor binding and subsequent activation of the Ah gene complex by methylcholanthrene-type inducers, while aminopyrine N-demethylase (APND) was measured as an indicator of PB-type induction. 2,2',4,4'-TCB and PB had no effects on the immune parameters of either strain but induced APND activity in both strains. 2,2',5,5'-TCB slightly induced APND activity in B6 mice. 2,3,3',4,4',5-HCB caused a 70% suppression of PFC per spleen, decreased the serum antibody titer, elevated cytochrome P-450 levels (193%), induced both APND (165%) and AHH (217%) activity in B6 mice, but it induced only APND (156%) activity in D2 mice. 3,3',4,4'-TCB elevated cytochrome P-450 levels (210%) and induced both APND (129%) and AHH (321%) activities in B6 mice but only increased APND activities (115%) in D2 mice. BNF elevated cytochrome P-450 (144%), caused a 49% suppression in PFC per spleen, and induced both APND (156%) and AHH (248%) activities but only in B6 mice. These results support the hypothesis that the immunotoxicity caused by

  14. Gene response of CYP360A, CYP314, and GST and whole-organism changes in Daphnia magna exposed to ibuprofen.

    PubMed

    Wang, Lan; Peng, Ying; Nie, Xiangping; Pan, Benben; Ku, Peijia; Bao, Shuang

    2016-01-01

    The fate and ecological impact of non-steroidal anti-inflammatory drugs (NSAIDs) in aquatic environments has gained increasingly concern recently. However, limited information is provided about the toxicity mechanism of NSAIDs to aquatic invertebrates. In the present study, we investigated the expression of CYP360A, CYP314, and GST genes involved in the detoxification process and the responses of their associated enzymes activity, as well as whole-organism changes in Daphnia magna exposed to environmentally relevant concentrations of ibuprofen (IBU). Results showed that the total amount of eggs produced per female, total number of brood per female, and body length were significantly decreased under IBU exposure, suggesting the effects of chronic IBU exposure on growth and reproduction of D. magna cannot be ignored. In gene expression level, the CYP360A gene, homologue to CYP3A in mammalian, showed inhibition at low concentration of IBU (0.5μg·L(-1)) and induction at high concentration of IBU (50μg·L(-1)). GST gene also exhibited a similar performance to CYP3A. CYP314 displayed inhibition for short time exposure (6h) and induced with prolonged exposure time (48h) at low concentration of IBU (0.5μg·L(-1)). Erythromycin N-demethylase (ERND) and aminopyrine N-demethylase (APND) related to cytochrome oxidase P450 (CYPs) were inhibited for short time exposure (6h) to IBU and then activated with prolonged exposure time (48h) at low concentration of IBU (0.5μg·L(-1)), while EROD showed a dose-dependent pattern under IBU exposure. As for antioxidative system, induction of glutathione S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) was observed in short-term exposure to IBU. Meanwhile, methane dicarboxylic aldehyde (MDA) content increased with the increasing IBU concentration and the delayed exposure time, displaying obvious dose- and time-dependent pattern. In summary, IBU significantly altered some physiological and biochemical parameters and

  15. Effect of the degree of hydrogenation of fish oil on the enzymatic activity and on the fatty acid composition of hepatic microsomes from young and aged rats.

    PubMed

    Morgado, Nora; Sanhueza, Julio; Nieto, Susana; Valenzuela, Alfonso

    2003-01-01

    By modifying the degree of hydrogenation of dietary fat, it is possible to modify the fatty acid composition and the biochemical activity of cellular tissues. The age can be another variable influencing these modifications. The effect of isocaloric diets containing oils with different degrees of hydrogenation: fish oil (FO, 0.3% TRANS), partially hydrogenated fish oil (PHFO, 29% TRANS), or highly hydrogenated fish oil (HHFO, 2.3% TRANS), in the fatty acid composition (CIS and TRANS isomers) of hepatic microsomes from young (70-day-old) and aged (18-month-old) rats, in the microsomal cytochrome P-450 (C-450) content, and in the aminopyrine N-demethylase (AND), aniline hydroxylase (AH), NADPH cytochrome P-450 reductase (NCR), UDP-glucuronyl transferase (UGT), and GSH-S transferase (GST) enzymatic activities were studied. Fatty acid composition and n-6/n-3 ratio of microsomal membranes was modified to a higher extent in young rats. C-450 content and AND activity were reduced when the degree of hydrogenation of dietary fat was increased in the young and the aged rats. AH activity was higher after the PHFO diet in the young rats only. NCR activity was reduced in the young animals when the hydrogenation of the fat was increased. However, in aged rats the enzyme exhibited a higher activity after the PHFO and HHFO diet. UGT and GST activities where not affected by the level of hydrogenation of the dietary fat in both the young and the aged rats. However, UGT activity was higher in the young rats, while GST activity was higher in the aged animals. We conclude that hydrogenation of dietary fat can modify the fatty acid composition of hepatic microsomes, young animals being more sensitive to these changes than aged animals. These effects were also reflected in the amount and/or the activity of some molecular components of the hepatic microsomal mixed-function oxidase enzyme system. Microsomal TRANS fatty acid composition is not affecting the activity of the enzymes, the age

  16. Effects of simultaneous repeated exposure at high levels of arsenic and malathion on hepatic drug-biotransforming enzymes in broiler chickens.

    PubMed

    Naraharisetti, Suresh Babu; Aggarwal, Manoj; Ranganathan, V; Sarkar, Souvendra Nath; Kataria, Meena; Malik, Jitendra Kumar

    2009-09-01

    Groundwater contamination with arsenic is a major global health concern. The organophosphorus insecticide malathion has gained significance as an environmental pollutant due to its widespread use in agriculture, grain storage, ectoparasite control and public health management. The deleterious effects produced by arsenic or malathion alone are documented, but very little is known about the consequences of their coexposure. The aim of the current study was to examine the effects of repeated simultaneous exposure to arsenic and malathion on drug-biotransforming enzymes in the liver of broiler chickens. One-month-old broiler chickens were exposed daily to arsenic (50 ppm)-supplemented drinking water, malathion (500 ppm)-mixed diet or in a similar fashion coexposed to these agents for 28 days. At the term, changes in body weight, organ weights, and levels of hepatic cytochrome P450 (CYP), cytochrome b(5), microsomal and cytosolic proteins; aminopyrine N-demethylase (ANDM), aniline P-hydroxylase (APH), glutathione S-transferase (GST) and uridine diphosphate glucuronosyltransferase (UGT) were assessed. Arsenic, malathion or their coexposure decreased the body weight gain and liver weight. Brain weight (relative) was increased with arsenic or malathion, but not with the coexposure. Treatment with arsenic decreased the CYP and cytochrome b(5) contents by 39 and 36%, than with malathion by 54 and 22% and the coexposure by 45 and 28%, respectively. The ANDM activity was decreased with arsenic (44%), malathion (23%) and the coexposure (32%). Arsenic (23%) and the coexposure (37%), but not malathion (14%), reduced the APH activity. The activities of hepatic microsomal and cytosolic GST were increased with all the three treatments [Arsenic (microsomal: 88% cytosolic: 113%), malathion (microsomal: 137%, cytosolic: 94%) and coexposure (microsomal: 140%, cytosolic: 148%)]. These treatments did not significantly affect the hepatic UGT activity, but reduced the hepatic microsomal

  17. Concurrent subacute exposure to arsenic through drinking water and malathion via diet in male rats: effects on hepatic drug-metabolizing enzymes.

    PubMed

    Naraharisetti, Suresh Babu; Aggarwal, Manoj; Sarkar, S N; Malik, J K

    2008-08-01

    Arsenic is a known global groundwater contaminant, while malathion is one of the most widely used pesticides in agriculture and public health practices in the world. Here, we investigated whether repeated exposure to arsenic at the groundwater contamination levels and to malathion at sublethal levels exerts adverse effects on the hepatic drug-metabolizing system in rats, and whether concurrent exposure is more hazardous than the single agent. Male Wistar rats were exposed daily to 4 or 40 ppm of arsenic via drinking water, 50 or 500 ppm of malathion-mixed feed and in a similar fashion co-exposed to 4 ppm of arsenic and 50 ppm of malathion or 40 ppm of arsenic and 500 ppm of malathion for 28 days. At term, toxicity was assessed by evaluating changes in body weight, liver weight, levels of cytochrome P(450) (CYP), cytochrome b (5) and microsomal and cytosolic proteins, and activities of aminopyrine-N-demethylase (ANDM), aniline-P-hydroxylase (APH), glutathione-S-transferase (GST) and uridine diphosphate glucuronosyltransferase (UGT) in liver. Arsenic and malathion alone did not alter body weight and liver weight, but these were significantly decreased in both the co-exposed groups. These treatments decreased the activities of ANDM and APH and the levels of liver microsomal and cytosolic proteins, increased GST activity and had no effect on UGT activity. The effects of exposure to low-dose and high-dose combinations on the activities of either phase I or phase II drug-metabolizing enzymes and protein content were mostly similar to that produced by the respective low and high dose of either arsenic or malathion, except APH activity. The effect of arsenic (40 ppm) on APH activity was partially, but significantly, inhibited by malathion (500 ppm). Results indicate that the body or liver weights and the biochemical parameters were differentially affected in male rats following concurrent subacute exposure to arsenic and malathion, with the co-exposure appearing more

  18. Amended final report of the safety assessment of Drometrizole as used in cosmetics.

    PubMed

    2008-01-01

    Drometrizole is used in cosmetics as an ultraviolet (UV) light absorber and stabilizer. In an earlier safety assessment, the available data were found insufficient to support the safety of this ingredient, but new data have been provided and assessed. In voluntary industry reports to the Food and Drug Administration, this ingredient is reported to be used in noncoloring hair care products, and in an industry use concentration survey, uses in nail care products at 0.07% were reported. Drometrizole has absorbance maxima at 243, 298, and 340 nm. Drometrizole is used widely as a UV absorber and stabilizer in plastics, polyesters, celluloses, acrylates, dyes, rubber, synthetic and natural fibers, waxes, detergent solutions, and orthodontic adhesives. It is similarly used in agricultural products and insecticides. Drometrizole is approved as an indirect food additive for use as an antioxidant and/or stabilizer in polymers. Short-term studies using rats reported liver weight increases, increases in the activities of enzymes aminopyrine N-demethylase, and UDP glucuronosyl transferase, but no significant effects were noted in the activities of acid hydrolases or in hepatocyte organelles. Although Drometrizole is insoluble in water and soluble in a wide range of organic solvents, a distribution and elimination study using rats indicated that some Drometrizole was absorbed, then metabolized and excreted in the urine. Drometrizole and products containing Drometrizole were nontoxic in acute oral, inhalation, and dermal studies using animals. No increase in mortality or local and/or systemic toxicity were observed in a 13-week oral toxicity study using dogs; the no observed effect level (NOEL) was 31.75 mg/kg day(- 1) for males and 34.6 mg/kg day(-1) for females. In a 2-year feeding study using rats, a NOEL of 47 to 58 mg/kg day(- 1) was reported. Developmental studies of Drometrizole in rats and mice found no teratogenic effects and a NOEL of 1000 mg/kg day(- 1) was reported

  19. Triacylglycerol metabolism in the phenobarbital-treated rat

    PubMed Central

    Goldberg, David M.; Roomi, M. Waheed; Yu, Alexander; Roncari, Daniel A. K.

    1981-01-01

    1. Various aspects of triacylglycerol metabolism were compared in rats given phenobarbital at a dose of 100mg/kg body wt. per day by intraperitoneal injection; controls were injected with an equal volume of 0.15m-NaCl by the same route. Animals were killed after 5 days of treatment. 2. Rats injected with phenobarbital demonstrated increased liver weight, and increased microsomal protein per g of liver. Other evidence of microsomal enzyme induction was provided by increased activity of aminopyrine N-demethylase and cytochrome P-450 content. Increased hepatic activity of γ-glutamyltransferase (EC 2.3.2.2) occurred in male rats, but not in females, and was not accompanied by any detectable change in the activity of this enzyme in serum. 3. Phenobarbital treatment increased the hepatic content of triacylglycerol after 5 days in starved male and female rats, as well as in non-starved male rats; non-starved females were not tested in this regard. At 5 days after withdrawal of the drug, there was no difference in hepatic triacylglycerol content or in hepatic functions of microsomal enzyme induction between the treated and control rats. 4. After 5 days, phenobarbital increased the synthesis in vitro of glycerolipids in cell-free liver fractions fortified with optimal concentrations of substrates and co-substrates when results were expressed per whole liver. The drug caused a significant increment in the activity of hepatic diacylglycerol acyltransferase (EC 2.3.1.20), but did not affect the activity per liver of phosphatidate phosphohydrolase (EC 3.1.3.4) in cytosolic or washed microsomal fractions. A remarkable sex-dependent difference was observed for this latter enzyme. In female rats, the activity of the microsomal enzyme per liver was 10-fold greater than that of the cytosolic enzyme, whereas in males, the activities of phosphohydrolases per liver from both subcellular fractions were similar. 5. The phenobarbital-mediated increase in hepatic triacylglycerol content