Science.gov

Sample records for ammonia-water rectifyng column

  1. Compact sieve-tray distillation column for ammonia-water absorption heat pump: Part 1 -- Design methodology

    SciTech Connect

    Anand, G.; Erickson, D.C.

    1999-07-01

    The distillation column is a key component of ammonia-water absorption units including advanced generator-absorber heat exchange (GAX) cycle heat pumps. The design of the distillation column is critical to unit performance, size, and cost. The distillation column can be designed with random packing, structured packing, or various tray configurations. A sieve-tray distillation column is the least complicated tray design and is less costly than high-efficiency packing. Substantial literature is available on sieve tray design and performance. However, most of the correlations and design recommendations were developed for large industrial hydrocarbon systems and are generally not directly applicable to the compact ammonia-water column discussed here. The correlations were reviewed and modified as appropriate for this application, and a sieve-tray design model was developed. This paper presents the sieve-tray design methodology for highly compact ammonia-water columns. A conceptual design of the distillation column for an 8 ton vapor exchange (VX) GAX heat pump is presented, illustrating relevant design parameters and trends. The design process revealed several issues that have to be investigated experimentally to design the final optimized rectifier. Validation of flooding and weeping limits and tray/point efficiencies are of primary importance.

  2. Resurfacing of Titan by Ammonia-Water Cryomagma

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Showman, A. P.; Lunine, J. I.; Lopes, R.

    2006-03-01

    We propose mechanism for cryovolcanic processes on Titan involving bottom crevasse formation in an ice shell floating on an ammonia-water ocean, transport of ammonia-water pockets to the base of the stagnant lid by convective motions in the ice, and refreezing of chambers of ammonia-water.

  3. Radiation Chemistry in Ammonia-Water Ices

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Raut, U.; Baragiola, R. A.

    2010-01-01

    We studied the effects of 100 keV proton irradiation on films of ammonia-water mixtures between 20 and 120 K. Irradiation destroys ammonia, leading to the formation and trapping of H2, N2 NO, and N2O, the formation of cavities containing radiolytic gases, and ejection of molecules by sputtering. Using infrared spectroscopy, we show that at all temperatures the destruction of ammonia is substantial, but at higher temperatures (120 K), it is nearly complete (approximately 97% destroyed) after a fluence of 10(exp 16) ions per square centimeter. Using mass spectroscopy and microbalance gravimetry, we measure the sputtering yield of our sample and the main components of the sputtered flux. We find that the sputtering yield depends on fluence. At low temperatures, the yield is very low initially and increases quadratically with fluence, while at 120 K the yield is constant and higher initially. The increase in the sputtering yield with fluence is explained by the formation and trapping of the ammonia decay products, N2 and H2 which are seen to be ejected from the ice at all temperatures.

  4. Radiation chemistry in ammonia-water ices

    SciTech Connect

    Loeffler, M. J.; Raut, U.; Baragiola, R. A.

    2010-02-07

    We studied the effects of 100 keV proton irradiation on films of ammonia-water mixtures between 20 and 120 K. Irradiation destroys ammonia, leading to the formation and trapping of H{sub 2}, N{sub 2}, NO, and N{sub 2}O, the formation of cavities containing radiolytic gases, and ejection of molecules by sputtering. Using infrared spectroscopy, we show that at all temperatures the destruction of ammonia is substantial, but at higher temperatures (120 K), it is nearly complete ({approx}97% destroyed) after a fluence of 10{sup 16} ions/cm{sup 2}. Using mass spectroscopy and microbalance gravimetry, we measure the sputtering yield of our sample and the main components of the sputtered flux. We find that the sputtering yield depends on fluence. At low temperatures, the yield is very low initially and increases quadratically with fluence, while at 120 K the yield is constant and higher initially. The increase in the sputtering yield with fluence is explained by the formation and trapping of the ammonia decay products, N{sub 2} and H{sub 2}, which are seen to be ejected from the ice at all temperatures.

  5. Resurfacing of Titan by Ammonia-Water Cryomagma

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Showman, A. P.; Lunine, J. I.; Lopes, R.

    2005-12-01

    The Cassini Titan Radar Mapper observed several large features interpreted as cryovolcanic during the October 26, 2004, pass at high northern latitudes. These included a dome (~180 km in diameter) similar to Venusian "pancake" domes, two caldera-like features with associated flows tens of km long, and a large flow field ~24,000 km2 in area. No impact craters were seen on this region of Titan, implying a young surface. Circumstantial evidence from mass spectrometric measurements indicates the past and possibly present-day existence of ammonia within Titan. We show that ammonia-water mixtures can erupt from a subsurface ocean on Titan through the ice shell, leading to cryovolcanism. Cryovolcanic processes are related to bottom crevasse formation in an ice shell floating on an ammonia-water ocean, transport of ammonia-water pockets to the base of the stagnant lid by convective motions in the ice, refreezing of chambers of ammonia-water, and diurnal tidal pumping of ammonia-water liquid to the surface. We determine the tidal dissipation rates of mechanical energy in the bottom crevasses required to damp the orbital eccentricity of Titan and we estimate the maximum number of fractures in the ice shell. Rather than suggesting steady-state volcanism over the history of the solar system, the cryovolcanic features could have been associated with a late (~4.2 Gyr) onset of convection in a cooling shell, and hence a recent episode of methane outgassing.

  6. Thermodynamic properties of ammonia-water mixtures for power cycles

    SciTech Connect

    Thorin, E. |; Dejfors, C.; Svedberg, G.

    1998-03-01

    Power cycles with ammonia-water mixtures as working fluids have been shown to reach higher thermal efficiencies than the traditional steam turbine (Rankine) cycle with water as the working fluid. Different correlations for the thermodynamic properties of ammonia-water mixtures have been used in studies of ammonia-water mixture cycles described in the literature. Four of these correlations are compared in this paper. The differences in thermal efficiencies for a bottoming Kalina cycle when these four property correlations are used are in the range 0.5 to 3.3%. The properties for saturated liquid and vapor according to three of the correlations and available experimental data are also compared at high pressures and temperatures [up to 20 MPa and 337 C (610 K)]. The difference in saturation temperature for the different correlations is up to 20%, and the difference in saturation enthalpy is as high as 100% when the pressure is 20 MPa.

  7. Corrosion protection of steel in ammonia/water heat pumps

    DOEpatents

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  8. Silicate interactions with ammonia-water fluids on early Titan

    NASA Astrophysics Data System (ADS)

    Engel, S.; Lunine, J. I.

    1994-02-01

    Plausible models of the early history of Titan suggest that ammonia and water were present in liquid form at the surface. We show here by thermodynamic modeling that such an ocean could have reacted with silicates to put substantial quantities of sodium and potassium into solution. Following the formation of an ice crust by cooling, mantle ammonia-water fluids enriched in potassium would have been brought to the surface through the cryogenic equivalent of volcanism. Later impacts would have released the Ar-40 produced by decay of the K-40 into the atmosphere. The abundance of atmospheric Ar-40, measurable by the Huygens probe gas chromatograph mass spectrometer, may be dominated by this source and hence gives a proxy indication of the volume of ammonia-water resurfacing on Titan over geologic time.

  9. Silicate interactions with ammonia-water fluids on early Titan

    NASA Technical Reports Server (NTRS)

    Engel, Steffi; Lunine, Jonathan I.

    1994-01-01

    Plausible models of the early history of Titan suggest that ammonia and water were present in liquid form at the surface. We show here by thermodynamic modeling that such an ocean could have reacted with silicates to put substantial quantities of sodium and potassium into solution. Following the formation of an ice crust by cooling, mantle ammonia-water fluids enriched in potassium would have been brought to the surface through the cryogenic equivalent of volcanism. Later impacts would have released the Ar-40 produced by decay of the K-40 into the atmosphere. The abundance of atmospheric Ar-40, measurable by the Huygens probe gas chromatograph mass spectrometer, may be dominated by this source and hence gives a proxy indication of the volume of ammonia-water resurfacing on Titan over geologic time.

  10. Rheology of water and ammonia-water ices

    NASA Technical Reports Server (NTRS)

    Goldsby, D. L.; Kohlstedt, D. L.; Durham, W. B.

    1993-01-01

    Creep experiments on fine-grained water and ammonia-water ices have been performed at one atmosphere and high confining pressure in order to develop constitutive relationships necessary to model tectonic processes and interpret surface features of icy moons of the outer solar system. The present series of experiments explores the effects of temperature, strain rate, grain size, and melt fraction on creep strength. In general, creep strength decreases with increasing temperature, decreasing strain rate, and increasing melt fraction. A transition from dislocation creep to diffusion creep occurs at finer grain sizes, higher temperatures, and lower strain rates.

  11. BLISTERING AND EXPLOSIVE DESORPTION OF IRRADIATED AMMONIA-WATER MIXTURES

    SciTech Connect

    Loeffler, M. J.; Baragiola, R. A. E-mail: raul@virginia.edu

    2012-01-10

    We present laboratory studies on the thermal evolution of a solid ammonia-water mixture after it has been irradiated at 20, 70, and 120 K. In samples irradiated at {<=}70 K, we observed fast outbursts that appear to indicate grain ejection and correlate well with the formation of micron-sized scattering centers. The occurrence of this phenomenon at the lower irradiation temperatures indicates that our results may be most relevant for understanding the release of gas and grains by comets and the surfaces of some of the colder icy satellites. We observe outgassing at temperatures below those where ice sublimates, which suggests that comets containing radiolyzed material may have outbursts farther from the Sun that those that are passive. In addition, the estimated size of the grains ejected from our sample is on the order of the size of E-ring particles, suggesting that our results give a plausible mechanism for how micron-sized grains could be formed from an icy surface. Finally, we propose that the presence of the {approx}4.5 {mu}m N{sub 2}O absorption band on an icy surface in outer space will serve to provide indirect evidence for radiation-processed ices that originally contained ammonia or nitrogen, which could be particularly useful since nitrogen is such a weak absorber in the infrared and ammonia is rapidly decomposed by radiolysis.

  12. Characteristic of Local Boiling Heat Transfer of Ammonia / Water Binary Mixture on the Plate Type Evaporator

    NASA Astrophysics Data System (ADS)

    Okamoto, Akio; Arima, Hirofumi; Kim, Jeong-Hun; Akiyama, Hirokuni; Ikegami, Yasuyuki; Monde, Masanori

    Ocean thermal energy conversion (OTEC) and discharged thermal energy conversion (DTEC) are expected to be the next generation energy production systems. Both systems use a plate type evaporator, and ammonia or ammonia/water mixture as a working fluid. It is important to clarify heat transfer characteristic for designing efficient power generation systems. Measurements of local boiling heat transfer coefficients and visualization were performed for ammonia /water mixture (z = 0.9) on a vertical flat plate heat exchanger in a range of mass flux (7.5 - 15 kg/m2s), heat flux (15 - 23 kW/m2), and pressure (0.7 - 0.9 MPa). The result shows that in the case of ammonia /water mixture, the local heat transfer coefficients increase with an increase of vapor quality and mass flux, and decrease with an increase of heat flux, and the influence of the flow pattern on the local heat transfer coefficient is observed.

  13. Temperature Dependence of Cryogenic Ammonia-Water Ice Mixtures and Implications for Icy Satellite Surfaces

    NASA Technical Reports Server (NTRS)

    Dalton, J. B., III; Curchin, J. M.; Clark, R. N.

    2001-01-01

    Infrared spectra of ammonia-water ice mixtures reveal temperature-dependent absorption bands due to ammonia. These features, at 1.04, 2.0, and 2.25 microns, may shed light on the surface compositions of the Galilean and Saturnian satellites. Additional information is contained in the original extended abstract.

  14. Gas engine bottoming cycles with ammonia-water mixtures as working fluid

    SciTech Connect

    Jonsson, M.; Thorin, E.; Svedberg, G.

    1999-07-01

    Gas engines and diesel engines can be used for power generation in small-scale industrial and utility power plants. A bottoming cycle recovering heat from the exhaust gas, charge air, jacket water and lubrication oil can increase the power output of a gas or diesel engine power plant. The current study investigates ammonia-water power cycles as bottoming cycles to natural gas fired gas engines. The engines used in the calculations are 16V25SG and 18V34SG from Wartsila NSD. The configurations of the bottoming processes have been changed in order to achieve better temperature matching in the heat exchangers. The ammonia-water cycles have been compared to a simple Rankine steam cycle. All cycles have been optimized to give maximum power output. The ammonia-water bottoming cycles generate 18--54% more power than a simple Rankine steam cycle. An economic estimation of the bottoming cycles shows that the extra equipment needed for an ammonia-water cycle may be justified by the extra amount of power generated.

  15. Calorimetric studies of the ammonia-water system with application to the outer solar system

    NASA Astrophysics Data System (ADS)

    Yarger, J.; Lunine, J. I.; Burke, M.

    1993-07-01

    A series of heating experiments was performed on the condensed ammonia-water system using a differential scanning calorimeter (DSC). The water-rich samples were cooled quickly to below 130 K, then heated at a variety of rates. Rather than a single peritectic melt at 176 K, expected for the equilibrium system of water ice and ammonia dihydrate, four enthalpic transitions were repeatedly seen in the temperature range 150-176 K. These transitions are generally consistent with the earlier calorimetric results of Van Kasteren (1973), who interpreted the lowest temperature exotherm as crystallization of an amorphous ammonia-water compound formed during cooling. We propose that both sets of experiments are seeing the crystallization of ammonia monohydrate, which is metastable relative to the dihydrate, followed by partial remelting and crystallization of dihydrate upon further heating. The apparent stability of the monohydrate in the dihydrate equilibrium field implies a potentially complex behavior of ammonia-water ices in satellites. Possible self-heating of the mixture by several tens of degrees up to the 170 K eutectic could make mobilization of ammonia-water liquids in icy satellite interiors energetically easier than previously thought.

  16. Calorimetric studies of the ammonia-water system with application to the outer solar system

    NASA Technical Reports Server (NTRS)

    Yarger, Jeffery; Lunine, Jonathan I.; Burke, Michael

    1993-01-01

    A series of heating experiments was performed on the condensed ammonia-water system using a differential scanning calorimeter (DSC). The water-rich samples were cooled quickly to below 130 K, then heated at a variety of rates. Rather than a single peritectic melt at 176 K, expected for the equilibrium system of water ice and ammonia dihydrate, four enthalpic transitions were repeatedly seen in the temperature range 150-176 K. These transitions are generally consistent with the earlier calorimetric results of Van Kasteren (1973), who interpreted the lowest temperature exotherm as crystallization of an amorphous ammonia-water compound formed during cooling. We propose that both sets of experiments are seeing the crystallization of ammonia monohydrate, which is metastable relative to the dihydrate, followed by partial remelting and crystallization of dihydrate upon further heating. The apparent stability of the monohydrate in the dihydrate equilibrium field implies a potentially complex behavior of ammonia-water ices in satellites. Possible self-heating of the mixture by several tens of degrees up to the 170 K eutectic could make mobilization of ammonia-water liquids in icy satellite interiors energetically easier than previously thought.

  17. Effect and mechanism of coking residual ammonia water treating by flue gas.

    PubMed

    Cheng, Z J; Yin, G J; Yang, L Q; Wang, W; Cheng, D D

    2001-04-01

    The treatment of coking residual ammonia water has been a big difficult problem at home and abroad, and there is no breakthrough research achievement in the past. The invention patent "The method of treating all coking wastewater or treating coking residual ammonia water by flue gas" has been successfully used in Huaian Steel Works for high concentration and organic industry wastewater treatment. Not only can it realize the wastewater zero discharge, but also the wastewater treatment has an effect of de-sulfur and de-nitrogen for flue gas. So that the flue gas exhaust can meet the requirement of emission standard. The mass transfer and heat transfer, fly ash absorption and coagulation, acid and alkali neutralization reaction, catalysis oxidation and reduction reaction in flue gas would be the major factors.

  18. Equation of state of ammonia-water liquid - Derivation and planetological applications

    NASA Technical Reports Server (NTRS)

    Croft, S. K.; Lunine, J. I.; Kargel, J.

    1988-01-01

    The present least-squares fit calculation of the equation of state for ammonia-water liquid has yielded results for the zero-100 wt pct NH3, 170-300 K temperature, and zero-10 kb pressure parameter ranges. In conjunction with solid density and thermodynamic measurements, the present calculated and measured liquid densities are used to yield estimates of density and thermal expansion at 1 bar for the solid phases of ammonia's monohydrate, dihydrate, and hemihydrate between absolute zero and their respective melting points. Attention is given to the implications for icy satellite morphologic and tectonic forms of peritectic ammonia-water liquid that is neutrally buoyant relative to the corresponding solid phases.

  19. Formation of hydroxylamine (NH2OH) in electron-irradiated ammonia-water ices.

    PubMed

    Zheng, Weijun; Kaiser, Ralf I

    2010-04-29

    We investigated chemical and physical processes in electron-irradiated ammonia-water ices at temperatures of 10 and 50 K. Chemically speaking, the formation of hydroxylamine (NH(2)OH) was observed in electron-irradiated ammonia-water ices. The synthesis of molecular hydrogen (H(2)), molecular nitrogen (N(2)), molecular oxygen (O(2)), hydrazine (N(2)H(4)), and hydrogen peroxide (H(2)O(2)), which was also monitored in previous irradiation of pure ammonia and water ices, was also evident. These newly formed species were trapped inside of the ices and were released into the gas phase during the warm-up phase of the sample after the irradiation. A quantitative analysis of the data showed that the production rates of the newly formed species at 10 K are higher compared to those at 50 K. Our studies also suggest that hydroxylamine is likely formed by the recombination of amino (NH(2)) with hydroxyl (OH) radicals inside of the ices. Considering the physical effects on the ice sampled during the irradiation, the experiments provided compelling evidence that the crystalline ammonia-water ice samples can be partially converted to amorphous ices during the electron irradiation; similar to the chemical processes, the irradiation-induced amorphization of the ices is faster at 10 K than that at 50 K--a finding which is similar to electron-irradiated crystalline water ices under identical conditions. However, the amorphization of water in water-ammonia ices was found to be faster than that in pure water ices at identical temperatures.

  20. The ammonia-water system and the chemical differentiation of icy satellites

    USGS Publications Warehouse

    Hogenboom, D.L.; Kargel, J.S.; Consolmagno, G.J.; Holden, T.C.; Lee, L.; Buyyounouski, M.

    1997-01-01

    We report the discovery of the first high-pressure polymorphs of ammonia hydrates: ammonia monohydrate II and ammonia dihydrate II. The subsolidus transitions and melting curves of these substances are shown by their volume-temperature functions; uncalibrated calorimetry corroborates these phase changes. From 20 to 300 MPa ammonia dihydrate and ice melt at a eutectic to form water-rich liquids; at lower and higher pressures, ammonia dihydrate melts incongruently to ammonia-rich liquids. The new data are consistent with independently known thermodynamic parameters of the ammonia-water system. These results fill in an important region of pressure-temperature space not previously studied; a body of previous data reported by other investigators covers a complementary region (higher pressures), but in the light of the new data those earlier results now appear to have been misinterpreted. We show that a suitable reinterpretation of the previous data supports the identification of at least one high-pressure polymorph of each compound. The behavior of the system H2O-NH3in many ways follows that of MgO-SiO2, and the roles of ammonia-water in icy satellite evolution may parallel those of magnesium silicates in Earth's structure, volcanism, and deep mantle tectonism. Pressure-related effects, including a pressure influence on the ammonia content of cryomagmas, might be significant in determining some potentially observable aspects of cryovolcanic morphologies, surface compositions, and interior structures of icy satellites. ?? 1997 Academic Press.

  1. Characteristic of local boiling heat transfer of ammonia and ammonia / water binary mixture on the plate type evaporator

    NASA Astrophysics Data System (ADS)

    Okamoto, Akio; Arima, Hirofumi; Ikegami, Yasuyuki

    2011-08-01

    Power generation using small temperature difference such as ocean thermal energy conversion (OTEC) and discharged thermal energy conversion (DTEC) is expected to be the countermeasures against global warming problem. As ammonia and ammonia/water are used in evaporators for OTEC and DTEC as working fluids, the research of their local boiling heat transfer is important for improvement of the power generation efficiency. Measurements of local boiling heat transfer coefficients were performed for ammonia /water mixture ( z = 0.9-1) on a vertical flat plate heat exchanger in a range of mass flux (7.5-15 kg/m2 s), heat flux (15-23 kW/m2), and pressure (0.7-0.9 MPa). The result shows that in the case of ammonia /water mixture, the local heat transfer coefficients increase with an increase of mass flux and composition of ammonia, and decrease with an increase of heat flux.

  2. Effectiveness of an ammonia-water mixture turbine system to hot water heat source

    SciTech Connect

    Suzuki, Takashi; Noguchi, Hideki; Amano, Yoshiharu; Hashizume, Takumi; Akiba, Masashi; Tanzawa, Yoshiaki; Usui, Akira

    1999-07-01

    An ammonia-water mixture (AWM) turbine system is proposed in the paper. The authors call this Waseda ammonia-water Mixture Turbine System (W-MTS). The paper presents some results of the investigation for design of a bottoming cycle that is supplied steam as heat source. The results of the cycle simulation show that the W-MTS is superior to the other simple Kalina cycles (KCS1 and KCS34) to pressurized hot water and steam as a latent and a sensible heat source at a temperature of 160 C. The main components of the W-MTS are a heat recovery vapor generator, two condensers, an AWM turbine and two separators. The W-MTS features two simple Kalina cycles, KCS-1 and KCS-34. The W-MTS behaves like KCS-1 at low ammonia mass fraction region, and like KCS-34 at high ammonia mass fraction region. The W-MTS shows the higher output power rather than the two simple Kalina cycles at all over the ammonia mass fraction. The W-MTS is expected to be effective with the heat recovery of two preheaters in a AWM-vapor generation not only to sensible heat sources, such as exhaust gas that comes from gas turbine, hot water from a waste heat recovery system, etc., but also latent heat source e.g. steam. The results of the simulation show that the ammonia mass fraction at the inlet of the heat recovery vapor generator, turbine inlet pressure and temperature in the separator are the key parameters for optimizing the operating conditions of the cycles. In the temperature rage between 120 C and 200 C, the W-MTS generates more power rather than two simple Kaline cycles.

  3. THERMODYNAMIC ANALYSIS OF AMMONIA-WATER-CARBON DIOXIDE MIXTURES FOR DESIGNING NEW POWER GENERATION CYCLES

    SciTech Connect

    Ashish Gupta

    2003-01-15

    This project was undertaken with the goal of developing a computational package for the thermodynamic properties of ammonia-water-carbon dioxide mixtures at elevated temperature and pressure conditions. This objective was accomplished by modifying an existing set of empirical equations of state for ammonia-water mixtures. This involved using the Wagner equation of state for the gas phase properties of carbon dioxide. In the liquid phase, Pitzer's ionic model was used. The implementation of this approach in the form of a computation package that can be used for the optimization of power cycles required additional code development. In particular, this thermodynamic model consisted of a large set of non-linear equations. Consequently, in the interest of computational speed and robustness that is required when applied to optimization problems, analytic gradients were incorporated in the Newton solver routines. The equations were then implemented using a stream property predictor to make initial guesses of the composition, temperature, pressure, enthalpy, entropy, etc. near a known state. The predictor's validity is then tested upon the convergence of an iteration. It proved difficult to obtain experimental data from the literature that could be used to test the accuracy of the new thermodynamic property package, and this remains a critical need for future efforts in the area. It was possible, however, to assess the feasibility of using this complicated property prediction package for power cycle design and optimization. Such feasibility was first demonstrated by modification of our Kalina cycle optimization code to use the package with either a deterministic optimizer, MINOS, or a stochastic optimizer using differential evolution, a genetic-algorithm-based technique. Beyond this feasibility demonstration, a new approach to the design and optimization of power cycles was developed using a graph theoretic approach.

  4. DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES

    SciTech Connect

    Ashish Gupta

    2002-06-01

    A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

  5. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation

    NASA Astrophysics Data System (ADS)

    Anheier, N. C., Jr.; McDonald, C. E.; Cuta, J. M.; Cuta, F. M.; Olsen, K. B.

    1995-05-01

    This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. Pacific Northwest Laboratory (PNL) researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH4(+)). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

  6. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation

    SciTech Connect

    Anheier, N.C. Jr.; McDonald, C.E.; Cuta, J.M.; Cuta, F.M.; Olsen, K.B.

    1995-05-01

    This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose of this work was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. PNL researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH{sub 4}{sup +}). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

  7. An Assessment of Transport Property Estimation Methods for Ammonia-Water Mixtures and Their Influence on Heat Exchanger Size

    NASA Astrophysics Data System (ADS)

    Kærn, M. R.; Modi, A.; Jensen, J. K.; Haglind, F.

    2015-07-01

    Transport properties of fluids are indispensable for heat exchanger design. The methods for estimating the transport properties of ammonia-water mixtures are not well established in the literature. The few existent methods are developed from none or limited, sometimes inconsistent experimental datasets, conducted for the liquid phase only. These datasets are usually confined to low concentrations and temperatures, which are much less than those occurring in Kalina cycle boilers. This paper presents a comparison of various methods used to estimate the viscosity and the thermal conductivity of ammonia-water mixtures. Firstly, the different methods are introduced and compared at various temperatures and pressures. Secondly, their individual influence on the required heat exchanger size (surface area) is investigated. For this purpose, two case studies related to the use of the Kalina cycle are considered: a flue-gas-based heat recovery boiler for a combined cycle power plant and a hot-oil-based boiler for a solar thermal power plant. The different transport property methods resulted in larger differences at high pressures and temperatures, and a possible discontinuous first derivative, when using the interpolative methods in contrast to the corresponding state methods. Nevertheless, all possible mixture transport property combinations used herein resulted in a heat exchanger size within 4.3 % difference for the flue-gas heat recovery boiler, and within 12.3 % difference for the oil-based boiler.

  8. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community.

    PubMed

    Liu, Lijuan; Sun, Chengliang; Liu, Xingxing; He, Xiaolin; Liu, Miao; Wu, Hao; Tang, Caixian; Jin, Chongwei; Zhang, Yongsong

    2016-01-01

    The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the best ability to suppress R. solanacearum due to its highest capacity to increase soil and NO2(-) contents and pH. However, AW was more suitable to controlling bacterial wilt caused by R. solanacearum because it had a lower cost and its application rate of 0.25 g N kg(-1) soil could effectively suppress the survival of R. solanacearum. Additionally, soil microbial activity and community populations were restored to their initial state four weeks after the application of each fumigant, indicating that the three fumigants had few detrimental impacts on soil microbial activity and community structure with an exception of the suppression of R. solanacearum. The present study provides guidance for the selection of a suitable alkaline nitrogenous amendment and its application rate in controlling bacterial wilt. PMID:26738601

  9. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    NASA Astrophysics Data System (ADS)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  10. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community

    PubMed Central

    Liu, Lijuan; Sun, Chengliang; Liu, Xingxing; He, Xiaolin; Liu, Miao; Wu, Hao; Tang, Caixian; Jin, Chongwei; Zhang, Yongsong

    2016-01-01

    The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the best ability to suppress R. solanacearum due to its highest capacity to increase soil and NO2− contents and pH. However, AW was more suitable to controlling bacterial wilt caused by R. solanacearum because it had a lower cost and its application rate of 0.25 g N kg−1 soil could effectively suppress the survival of R. solanacearum. Additionally, soil microbial activity and community populations were restored to their initial state four weeks after the application of each fumigant, indicating that the three fumigants had few detrimental impacts on soil microbial activity and community structure with an exception of the suppression of R. solanacearum. The present study provides guidance for the selection of a suitable alkaline nitrogenous amendment and its application rate in controlling bacterial wilt. PMID:26738601

  11. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community.

    PubMed

    Liu, Lijuan; Sun, Chengliang; Liu, Xingxing; He, Xiaolin; Liu, Miao; Wu, Hao; Tang, Caixian; Jin, Chongwei; Zhang, Yongsong

    2016-01-01

    The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the best ability to suppress R. solanacearum due to its highest capacity to increase soil and NO2(-) contents and pH. However, AW was more suitable to controlling bacterial wilt caused by R. solanacearum because it had a lower cost and its application rate of 0.25 g N kg(-1) soil could effectively suppress the survival of R. solanacearum. Additionally, soil microbial activity and community populations were restored to their initial state four weeks after the application of each fumigant, indicating that the three fumigants had few detrimental impacts on soil microbial activity and community structure with an exception of the suppression of R. solanacearum. The present study provides guidance for the selection of a suitable alkaline nitrogenous amendment and its application rate in controlling bacterial wilt.

  12. PULSE COLUMN

    DOEpatents

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  13. Column internals

    SciTech Connect

    Bravo, J.L.

    1998-02-01

    In the fields of distillation, absorption, stripping and extraction, theory and technology go hand in hand. The thermodynamic principles of phase equilibrium and the concepts of mass transfer and fluid flow are of primary importance in all of these operations. The engineer must understand these phenomena to select equipment effectively. This article discusses the latest in commercial technology in column internals for gas-liquid and liquid-liquid contacting. The principles of operation are explained vis-a-vis the characteristics of the applications in which they are used. The focus is on moderate-to-large columns for refining and chemical applications. Guidelines for selecting the most appropriate type of device are presented, and examples of typical applications are described.

  14. Thermodynamic analysis of a new combined cooling, heat and power system driven by solid oxide fuel cell based on ammonia-water mixture

    NASA Astrophysics Data System (ADS)

    Ma, Shaolin; Wang, Jiangfeng; Yan, Zhequan; Dai, Yiping; Lu, Bingheng

    2011-10-01

    Although a solid oxide fuel cell combined with a gas turbine (SOFC-GT) has good performance, the temperature of exhaust from gas turbine is still relatively high. In order to recover the waste heat of exhaust from the SOFC-GT to enhance energy conversion efficiency as well as to reduce the emissions of greenhouse gases and pollutants, in this study a new combined cooling, heat and power (CCHP) system driven by the SOFC is proposed to perform the trigeneration by using ammonia-water mixture to recover the waste heat of exhaust from the SOFC-GT. The CCHP system, whose main fuel is methane, can generate electricity, cooling effect and heat effect simultaneously. The overall system performance has been evaluated by mathematical models and thermodynamic laws. A parametric analysis is also conducted to examine the effects of some key thermodynamic parameters on the system performance. Results indicate that the overall energy conversion efficiency exceeds 80% under the given conditions, and it is also found that the increasing the fuel flow rate can improve overall energy conversion efficiency, even though both the SOFC efficiency and electricity efficiency decrease. Moreover, with an increased compressor pressure ratio, the SOFC efficiency, electricity efficiency and overall energy conversion efficiency all increase. Ammonia concentration and pressure entering ammonia-water turbine can also affect the CCHP system performance.

  15. High Pressure Cosmochemistry of Major Planetary Interiors: Laboratory Studies of the Water-rich Region of the System Ammonia-water

    NASA Technical Reports Server (NTRS)

    Nicol, M.; Johnson, M.; Koumvakalis, A. S.

    1985-01-01

    The behavior of gas-ice mixtures in major planets at very high pressures was studied. Some relevant pressure-temperature-composition (P-T-X) regions of the hydrogen (H2)-helium (He)-water (H2O-ammonia (NH3)-methane (CH4) phase diagram were determined. The studies, and theoretical model, of the relevant phases, are needed to interpret the compositions of ice-gas systems at conditions of planetary interest. The compositions and structures of a multiphase, multicomponent system at very high pressures care characterized, and the goal is to characterize this system over a wide range of low and high temperatures. The NH3-H2O compositions that are relevant to planetary problems yet are easy to prepare were applied. The P-T surface of water was examined and the corresponding surface for NH3 was determined. The T-X diagram of ammonia-water at atmospheric pressure was studied and two water-rich phases were found, NH3-2H2O (ammonia dihydrate), which melts incongruently, and NH3.H2O (ammonia monohydrate), which is nonstoichiometric and melts at a higher temperature than the dihydrate. It is suggested that a P-T surface at approximately the monohydrate composition and the P-X surface at room temperature is determined.

  16. Simulation and performance analysis of an ammonia-water absorption heat pump based on the generator-absorber heat exchange (GAX) cycle

    SciTech Connect

    Grossman, G.; DeVault, R.C.; Creswick, F.A.

    1995-02-01

    A computer simulation has been conducted to investigate the performance of an absorption heat pump, based on the Generator-Absorber Heat Exchange (GAX) cycle employing ammonia-water as the working fluid pair. The particular feature of this cycle is the ability to recover heat from the absorber and employ it to partially heat the generator, thus improving the COP. In the present study, a detailed simulation has been conducted of one of the preferred configurations for the cycle. A modular computer code for flexible simulation of absorption systems (ABSIM) was employed. Performance parameters, including COP and capacity, were investigated as functions of different operating parameters over a wide range of conditions in both the cooling and heating mode. The effect of the ambient temperature, the rectifier performance, the flowrate in the GAX heat transfer loop and the refrigerant flow control were investigated. COP`s on the order of 1.0 for cooling and 2.0 for heating have been calculated.

  17. Starch columns: Analog model for basalt columns

    NASA Astrophysics Data System (ADS)

    Müller, Gerhard

    1998-07-01

    Desiccation of starch-water mixtures produces tensile-crack patterns which appear to be interesting, but largely unknown study objects for fracture mechanics, structural geology, and volcanology. This paper concentrates on columnar jointing and on columns in starch. Starch columns have polygonal cross sections and are very similar to basalt columns. They are produced by lamp drying starch specimens with dimensions of several centimeters and have diameters in the millimeter range. The columns develop behind a crack front which propagates from the surface into the interior. The experiments, supported by X ray tomograms, show that polygonal regularity of the crack pattern is not present at the surface but develops during penetration. This transition is steered by a minimum-fracture-energy principle. The analogy between basalt cooling and starch desiccation is far reaching: water concentration in starch is analogous to temperature in basalt, both quantities obey diffusion equations, water loss is equivalent to heat loss, the resulting contraction stresses have similar dependences on depth and time, and in both cases the material strength is exceeded. The starch experiments show that column diameters are controlled by the depth gradient of water concentration at the crack front. High (low) gradients are connected with thin (thick) columns. By analogy, a similar relation with the temperature gradient exists for basalt columns. The (normalized) starch gradients are about 3 orders of magnitude larger than the (normalized) gradients in basalt. This explains why starch columns are much thinner than basalt columns. The gradients are so different, because the crack front speeds differ by a factor of about 10: after 3 days the speed is about 10 mm/d in starch but about 100 mm/d in basalt [Peck, 1978]. The speed difference, in turn, results from the difference of the diffusion constants: the hydraulic diffusivity of starch is 2 orders of magnitude lower than the thermal

  18. Column Liquid Chromatography.

    ERIC Educational Resources Information Center

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  19. Inelastic column behavior

    NASA Technical Reports Server (NTRS)

    Duberg, John E; Wilder, Thomas W , III

    1952-01-01

    The significant findings of a theoretical study of column behavior in the plastic stress range are presented. When the behavior of a straight column is regarded as the limiting behavior of an imperfect column as the initial imperfection (lack of straightness) approaches zero, the departure from the straight configuration occurs at the tangent-modulus load. Without such a concept of the behavior of a straight column, one is led to the unrealistic conclusion that lateral deflection of the column can begin at any load between the tangent-modulus value and the Euler load, based on the original elastic modulus. A family of curves showing load against lateral deflection is presented for idealized h-section columns of various lengths and of various materials that have a systematic variation of their stress-strain curves.

  20. Distillation Column Modeling Tools

    SciTech Connect

    2001-09-01

    Advanced Computational and Experimental Techniques will Optimize Distillation Column Operation. Distillation is a low thermal efficiency unit operation that currently consumes 4.8 quadrillion BTUs of energy...

  1. Inflatable Column Structure

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1985-01-01

    Lightweight structural member easy to store. Billowing between circumferential loops of fiber inflated column becomes series of cells. Each fiber subjected to same tension along entire length (though tension is different in different fibers). Member is called "isotensoid" column. Serves as jack for automobiles or structures during repairs. Also used as support for temporary bleachers or swimming pools.

  2. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  3. Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  4. Nuclear reactor control column

    DOEpatents

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  5. Simultaneous Determination of Five Alkaloid Compounds in a Drug Based on a Hydrophilic Monolithic Column by Capillary Electrochromatography.

    PubMed

    Chen, Zongbao; Ye, Qing; Liu, Linghai; Dong, Hongxia

    2016-01-01

    A novel capillary electrochromatography (CEC) method was developed by using a hydrophilic monolithic column for the simultaneous determination of five alkaloids in a drug. The monolithic stationary phase was first prepared via in situ polymerization of acrylamide (AM), glycidyl methacrylate (GMA), N,N'-methylenebisacrylamide (MBA) and 2-acrylamido-2-methyl-1-propane-sulfonic acid (AMPS) in a ternary porogen solvent system consisting of cyclohexanol, dodecanol and toluene. The obtained monolithic stationary phase was subsequently modified by 0.1 mol/L ammonia water for opening epoxide groups of GMA. The separation performance and efficiency of the resulting monolithic column were investigated by the use of five compounds (thiourea, aniline, naphthylamine, diphenylamine and dimethyl acetamide) by CEC. The optimized monolithic column has obtained high column efficiencies with 74,000-121,000 theoretical plates/m. Finally, the prepared monolithic column was used to separate and determine five alkaloids (piperine, nuciferine, kukoline, berberine and tetrandrine) using CEC. Under the conditions of acetonitrile/10 mM phosphate buffer solution (65/35, v/v, pH 8.5) and 15 kV applied voltage, the baseline separation of five alkaloids was achieved. The proposed method has been successfully applied to the determination of berberine in a tablet sample. The percentage of recovery of spiked tablet samples ranged from 93.4 to 108.0% with relative standard deviations (RSDs) <9.20%. PMID:26187925

  6. Microminiature gas chromatographic column

    NASA Technical Reports Server (NTRS)

    Donaldson, R. W., Jr.

    1972-01-01

    Techniques commonly used for fabrication of integrated circuits are utilized to produce long capillary tubes for microminiature chromatographs. Method involves bonding of flat silicon plate to top of spirally grooved silicon chip to close groove and form capillary column.

  7. Distillation Column Flooding Predictor

    SciTech Connect

    2002-02-01

    This factsheet describes a research project whose goal is to develop the flooding predictor, an advanced process control strategy, into a universally useable tool that will maximize the separation yield of a distillation column.

  8. Towards Atomic Column-by-Column Spectroscopy

    SciTech Connect

    Pennycook, S.J.; Rafferty, B.

    1998-09-06

    The optical arrangement of the scanning transmission electron microscope (STEM) is ideally suited for performing analysis of individual atomic columns in materials. Using the incoherent Z-contrast image as a reference, and arranging incoherent conditions also for the spectroscopy, a precise correspondence is ensured between features in the inelastic image and elastic signals. In this way the exact probe position needed to maximise the inelastic signal from a selected column can be located and monitored during the analysis using the much higher intensity elastic signal. Although object functions for EELS are typically less than 1 {Angstrom} full width at half maximum, this is still an order of magnitude larger than the corresponding object functions for elastic (or diffuse) scattering used to form the Z-contrast image. Therefore the analysis is performed with an effective probe that is significantly broader than that used for the reference Z-contrast image. For a 2.2 {Angstrom} probe the effective probe is of the order of 2.5 {Angstrom}, while for a 1.3 {Angstrom} probe the effective probe is 1.6 {Angstrom}. Such increases in effective probe size can significantly reduce or even eliminate contrast between atomic columns that are visible in the image. However, this is only true if we consider circular collector apertures. Calculations based upon the theory of Maslen and Rossouw (Maslen and Rossouw 1984; Rossouw and Maslen 1984) show that employing an annular aperture can reduce the FWHM of the inelastic object function down to values close 0.1 {Angstrom}. With practical aperture sizes it should be possible to achieve this increased spatial resolution without loosing too much signal.

  9. Eruption column physics

    SciTech Connect

    Valentine, G.A.

    1997-03-01

    In this paper the author focuses on the fluid dynamics of large-scale eruption columns. The dynamics of these columns are rooted in multiphase flow phenomena, so a major part of the paper sets up a foundation on that topic that allows one to quickly assess the inherent assumptions made in various theoretical and experimental approaches. The first part is centered on a set of complex differential equations that describe eruption columns, but the focus is on a general understanding of important physical processes rather than on the mathematics. The author discusses briefly the relative merits and weaknesses of different approaches, emphasizing that the largest advances in understanding are made by combining them. He then focuses on dynamics of steady eruption columns and then on transient phenomena. Finally he briefly reviews the effects of varying behavior of the ambient medium through which an eruption column moves. These final sections will emphasize concepts and a qualitative understanding of eruption dynamics. This paper relies on principles of continuum mechanics and transport processes but does not go into detail on the development of those principles. 36 refs., 36 figs., 3 tabs.

  10. Columns in Clay

    ERIC Educational Resources Information Center

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  11. A Column Dispersion Experiment.

    ERIC Educational Resources Information Center

    Corapcioglu, M. Y.; Koroglu, F.

    1982-01-01

    Crushed glass and a Rhodamine B solution are used in a one-dimensional optically scanned column experiment to study the dispersion phenomenon in porous media. Results indicate that the described model gave satisfactory results and that the dispersion process in this experiment is basically convective. (DC)

  12. 11. TIMBER COLUMN AND CAST IRON COLUMN CAP IN FIFTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. TIMBER COLUMN AND CAST IRON COLUMN CAP IN FIFTH FLOOR WAREHOUSE SPACE. VIEW TO SOUTHWEST. - Commercial & Industrial Buildings, Becker-Hazelton Company Warehouse, 280 Iowa Street, Dubuque, Dubuque County, IA

  13. Successfully downsize trayed columns

    SciTech Connect

    Sloley, A.W.; Fleming, B. )

    1994-03-01

    Techniques for the design and sizing of new trayed distillation columns are abundant in the literature. So, too, are the guidelines for modifying towers for operation beyond their original design range. Reducing capacity of distillation trays merits at least as much consideration. Indeed, lack of knowledge and experience in this area causes many tower failures and misdesigned columns. In this article, the authors present some practical design considerations, based on field experience, for tower trays operating at loadings dramatically lower than normal for a particular design. General considerations cover liquid and vapor hydraulics and flow behavior. Case studies are included for there typical units: a refinery vacuum crude still, a petrochemical superfractionator, and a steam stripper.

  14. Column test-rig facility for column scanning studies

    NASA Astrophysics Data System (ADS)

    Zain, Rasif M.; Roslan, Y.

    2010-03-01

    Distillation columns are considered as one of the most critical components in oil and gas plants. The plant performance depends on the ability of these columns to function as intended. Defective columns may lead to serious consequences to the plant operation, and hence the quality of product. In order to perform any inspection techniques to distillation column for NDT practitioner, the best facility was designed when the adjustable defeats of distillation column test rig has been developed. The paper discussed the development and the function of this facility.

  15. Column test-rig facility for column scanning studies

    NASA Astrophysics Data System (ADS)

    Zain, Rasif M.; Roslan, Y.

    2009-12-01

    Distillation columns are considered as one of the most critical components in oil and gas plants. The plant performance depends on the ability of these columns to function as intended. Defective columns may lead to serious consequences to the plant operation, and hence the quality of product. In order to perform any inspection techniques to distillation column for NDT practitioner, the best facility was designed when the adjustable defeats of distillation column test rig has been developed. The paper discussed the development and the function of this facility.

  16. SPIRAL CONTACTOR FOR SOLVENT EXTRACTION COLUMN

    DOEpatents

    Cooley, C.R.

    1961-06-13

    The patented extraction apparatus includes a column, perforated plates extending across the column, liquid pulse means connected to the column, and an imperforate spiral ribbon along the length of the column.

  17. Why Hexagonal Basalt Columns?

    PubMed

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens

    2015-10-01

    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition.

  18. Why Hexagonal Basalt Columns?

    PubMed

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens

    2015-10-01

    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition. PMID:26550724

  19. Buckling of a holey column.

    PubMed

    Pihler-Puzović, D; Hazel, A L; Mullin, T

    2016-09-14

    We report the results from a combined experimental and numerical investigation of buckling in a novel variant of an elastic column under axial load. We find that including a regular line of centred holes in the column can prevent conventional, global, lateral buckling. Instead, the local microstructure introduced by the holes allows the column to buckle in an entirely different, internal, mode in which the holes are compressed in alternate directions, but the column maintains the lateral reflection symmetry about its centreline. The internal buckling mode can be accommodated within a smaller external space than the global one; and it is the preferred buckling mode over an intermediate range of column lengths for sufficiently large holes. For very short or sufficiently long columns a modification of the classical, global, lateral buckling is dominant. PMID:27501288

  20. Compact electron beam focusing column

    SciTech Connect

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-07-13

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2-D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  1. 45. MAIN MEETING ROOM COLUMNS. Ends of gallery columns identified ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. MAIN MEETING ROOM COLUMNS. Ends of gallery columns identified at the time of removal for transfer to the George School for re-erection. The stamp reads, 'REMOVED FROM 12th ST. MTG HSE PHILA 1972'. - Twelfth Street Meeting House, 20 South Twelfth Street, Philadelphia, Philadelphia County, PA

  2. Dorsal column stimulator applications

    PubMed Central

    Yampolsky, Claudio; Hem, Santiago; Bendersky, Damián

    2012-01-01

    Background: Spinal cord stimulation (SCS) has been used to treat neuropathic pain since 1967. Following that, technological progress, among other advances, helped SCS become an effective tool to reduce pain. Methods: This article is a non-systematic review of the mechanism of action, indications, results, programming parameters, complications, and cost-effectiveness of SCS. Results: In spite of the existence of several studies that try to prove the mechanism of action of SCS, it still remains unknown. The mechanism of action of SCS would be based on the antidromic activation of the dorsal column fibers, which activate the inhibitory interneurons within the dorsal horn. At present, the indications of SCS are being revised constantly, while new applications are being proposed and researched worldwide. Failed back surgery syndrome (FBSS) is the most common indication for SCS, whereas, the complex regional pain syndrome (CRPS) is the second one. Also, this technique is useful in patients with refractory angina and critical limb ischemia, in whom surgical or endovascular treatment cannot be performed. Further indications may be phantom limb pain, chronic intractable pain located in the head, face, neck, or upper extremities, spinal lumbar stenosis in patients who are not surgical candidates, and others. Conclusion: Spinal cord stimulation is a useful tool for neuromodulation, if an accurate patient selection is carried out prior, which should include a trial period. Undoubtedly, this proper selection and a better knowledge of its underlying mechanisms of action, will allow this cutting edge technique to be more acceptable among pain physicians. PMID:23230533

  3. An Undergraduate Column Chromatography Experiment.

    ERIC Educational Resources Information Center

    Danot, M.; And Others

    1984-01-01

    Background information, list of materials needed, and procedures used are provided for an experiment designed to introduce undergraduate students to the theoretical and technical aspects of column chromatography. The experiment can also be shortened to serve as a demonstration of the column chromatography technique. (JN)

  4. Analyze distillation columns with thermodynamics

    SciTech Connect

    Ognisty, T.P. )

    1995-02-01

    In a distillation column, heat supplies the work for separating the components of a feed stream into products. Distillation columns consume some 95% of the total energy used in separations. This amounts to roughly 3% of the energy consumed in the US. Since distillation is so energy intensive and requires significant capital outlays, an endless quest to improve the economics has continued since the beginning of the industry. By analyzing the thermodynamics of a distillation column, an engineer can quantify the thermodynamic efficiency of the process, identify the regions where energy can be better utilized, and define the minimum targets for energy consumption. This article reviews the principles of distillation column thermodynamics and outlines the analysis of lost work profiles and column heat profiles. It then illustrates these concepts through three examples.

  5. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  6. Microbial activity in weathering columns.

    PubMed

    García, C; Ballester, A; González, F; Blázquez, M L

    2007-03-22

    The aim of the present work was to evaluate the metabolic activity of the microbial population associated with a pyritic tailing after a column-weathering test. For this purpose, a column 150cm high and 15cm diameter was used. The solid was a tailing with 63.4% pyrite and with minor amounts of Cu, Pb and Zn sulfides (1.4, 0.5 and 0.8%, respectively). The column model was the habitual one for weathering tests: distilled water was added at the top of the column; the water flowed down through tailings and finally was collected at the bottom for chemical and microbiological analysis. Weathering was maintained for 36 weeks. The results showed a significant presence of microbial life that was distributed selectively over the column: sulfur- and iron-oxidizing aerobic bacteria were in the more oxygenated zone; anaerobic sulfur-reducing bacteria were isolated from the samples taken from the anoxic part of the column. Activity testing showed that (oxidizing and reducing) bacteria populations were active at the end of the weathering test. The quality of the water draining from the column was thus the final product of biological oxidation and reduction promoted by the bacteria consortia.

  7. Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns?

    PubMed

    Jones, Andrew; Pravadali-Cekic, Sercan; Dennis, Gary R; Shalliker, R Andrew

    2015-08-19

    Post Column derivatisation (PCD) coupled with high performance liquid chromatography or ultra-high performance liquid chromatography is a powerful tool in the modern analytical laboratory, or at least it should be. One drawback with PCD techniques is the extra post-column dead volume due to reaction coils used to enable adequate reaction time and the mixing of reagents which causes peak broadening, hence a loss of separation power. This loss of efficiency is counter-productive to modern HPLC technologies, -such as UHPLC. We reviewed 87 PCD methods published from 2009 to 2014. We restricted our review to methods published between 2009 and 2014, because we were interested in the uptake of PCD methods in UHPLC environments. Our review focused on a range of system parameters including: column dimensions, stationary phase and particle size, as well as the geometry of the reaction loop. The most commonly used column in the methods investigated was not in fact a modern UHPLC version with sub-2-micron, (or even sub-3-micron) particles, but rather, work-house columns, such as, 250 × 4.6 mm i.d. columns packed with 5 μm C18 particles. Reaction loops were varied, even within the same type of analysis, but the majority of methods employed loop systems with volumes greater than 500 μL. A second part of this review illustrated briefly the effect of dead volume on column performance. The experiment evaluated the change in resolution and separation efficiency of some weak to moderately retained solutes on a 250 × 4.6 mm i.d. column packed with 5 μm particles. The data showed that reaction loops beyond 100 μL resulted in a very serious loss of performance. Our study concluded that practitioners of PCD methods largely avoid the use of UHPLC-type column formats, so yes, very much, PCD is incompatible with the modern HPLC column. PMID:26343427

  8. Optimal design of thermally coupled distillation columns

    SciTech Connect

    Duennebier, G.; Pantelides, C.C.

    1999-01-01

    This paper considers the optimal design of thermally coupled distillation columns and dividing wall columns using detailed column models and mathematical optimization. The column model used is capable of describing both conventional and thermally coupled columns, which allows comparisons of different structural alternatives to be made. Possible savings in both operating and capital costs of up to 30% are illustrated using two case studies.

  9. Self-regenerating column chromatography

    DOEpatents

    Park, Woo K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  10. LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  11. FRACTIONATING COLUMN PRODUCT COLLECTOR CONTROL

    DOEpatents

    Paxson, G.D. Jr.

    1964-03-10

    Means for detecting minute fluid products from a chemical separation column and for advancing a collector tube rack in order to automatically separate and collect successive fractionated products are described. A charge is imposed on the forming drops at the column orifice to create an electric field as the drop falls in the vicinity of a sensing plate. The field is detected by an electrometer tube coupled to the plate causing an output signal to actuate rotation of a collector turntable rack, thereby positioning new collectors under the orifice. The invention provides reliable automatic collection independent of drop size, rate of fall, or chemical composition. (AEC)

  12. Beam Studies with Electron Columns

    SciTech Connect

    Shiltsev, V.; Valishev, A.; Kuznetsov, G.; Kamerdzhiev, V.; Romanov, A.; /Novosibirsk, IYF

    2009-04-01

    We report preliminary results of experimental studies of 'electron columns' in the Tevatron and in a specialized test setup. In the Tevatron, a beam of 150 GeV protons ionizes residual gas and ionization electrons are stored in an electrostatic trap immersed into strong longitudinal magnetic field. Shifts of proton betatron frequencies are observed. In the test setup, we observe effects pointing to accumulation and escape of ionization electrons.

  13. Temperature programmable microfabricated gas chromatography column

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-12-23

    A temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by the integration of a resistive heating element and temperature sensing on the microfabricated column. Additionally, means are provided to thermally isolate the heated column from their surroundings. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  14. 29 CFR 1926.755 - Column anchorage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) General requirements for erection stability. (1) All columns shall be anchored by a minimum of 4 anchor rods (anchor bolts). (2) Each column anchor rod (anchor bolt) assembly, including the column-to-base... of anchor rods (anchor bolts). (1) Anchor rods (anchor bolts) shall not be repaired, replaced...

  15. 29 CFR 1926.755 - Column anchorage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a) General requirements for erection stability. (1) All columns shall be anchored by a minimum of 4...

  16. Oscillating water column structural model

    SciTech Connect

    Copeland, Guild; Bull, Diana L; Jepsen, Richard Alan; Gordon, Margaret Ellen

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  17. Characterization of polyacrylamide based monolithic columns.

    PubMed

    Plieva, Fatima M; Andersson, Jonatan; Galaev, Igor Yu; Mattiasson, Bo

    2004-07-01

    Supermacroporous monolithic polyacrylamide (pAAm)-based columns have been prepared by radical cryo-copolymerization (copolymerization in the moderately frozen system) of acrylamide with functional co-monomer, allyl glycidyl ether (AGE), and cross-linker N,N'-methylene-bis-acrylamide (MBAAm) directly in glass columns (ID 10 mm). The monolithic columns have uniform supermacroporous sponge-like structure with interconnected supermacropores of pore size 5-100 microm. The monoliths can be dried and stored in the dry state. High mechanical stability of the monoliths allowed sterilization by autoclaving. Column-to-column reproducibility of pAAm-monoliths was demonstrated on 5 monolithic columns from different batches prepared under the same cryostructuration conditions.

  18. Characterization of polyacrylamide based monolithic columns.

    PubMed

    Plieva, Fatima M; Andersson, Jonatan; Galaev, Igor Yu; Mattiasson, Bo

    2004-07-01

    Supermacroporous monolithic polyacrylamide (pAAm)-based columns have been prepared by radical cryo-copolymerization (copolymerization in the moderately frozen system) of acrylamide with functional co-monomer, allyl glycidyl ether (AGE), and cross-linker N,N'-methylene-bis-acrylamide (MBAAm) directly in glass columns (ID 10 mm). The monolithic columns have uniform supermacroporous sponge-like structure with interconnected supermacropores of pore size 5-100 microm. The monoliths can be dried and stored in the dry state. High mechanical stability of the monoliths allowed sterilization by autoclaving. Column-to-column reproducibility of pAAm-monoliths was demonstrated on 5 monolithic columns from different batches prepared under the same cryostructuration conditions. PMID:15354560

  19. REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Bradley, J.G.

    1957-10-29

    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  20. Distillation of light hydrocarbons in packed columns

    SciTech Connect

    Strigle, R.F.

    1985-04-01

    Newly developed design procedures have led to a wider acceptance of packed columns for distillation operations, especially those operating at atmospheric or higher pressures. Based on these new design methods, modern IMTP packing has been used in a wide variety of services to revamp over 300 distillation columns previously equipped with trays. A few of these columns are listed. These revamps were justified by capacity increase and by greater product recovery. In addition, energy savings were realized from reduction of reflux ratio.

  1. Interstitial gas effect on vibrated granular columns

    NASA Astrophysics Data System (ADS)

    Pastenes, Javier C.; Géminard, Jean-Christophe; Melo, Francisco

    2014-06-01

    Vibrated granular materials have been intensively used to investigate particle segregation, convection, and heaping. We report on the behavior of a column of heavy grains bouncing on an oscillating solid surface. Measurements indicate that, for weak effects of the interstitial gas, the temporal variations of the pressure at the base of the column are satisfactorily described by considering that the column, despite the observed dilation, behaves like a porous solid. In addition, direct observation of the column dynamics shows that the grains of the upper and lower surfaces are in free fall in the gravitational field and that the dilation is due to a small delay between their takeoff times.

  2. Soil column leaching of pesticides.

    PubMed

    Katagi, Toshiyuki

    2013-01-01

    In this review, I address the practical and theoretical aspects of pesticide soil mobility.I also address the methods used to measure mobility, and the factors that influence it, and I summarize the data that have been published on the column leaching of pesticides.Pesticides that enter the unsaturated soil profile are transported downwards by the water flux, and are adsorbed, desorbed, and/or degraded as they pass through the soil. The rate of passage of a pesticide through the soil depends on the properties of the pesticide, the properties of the soil and the prevailing environmental conditions.Because large amounts of many different pesticides are used around the world, they and their degradates may sometimes contaminate groundwater at unacceptable levels.It is for this reason that assessing the transport behavior and soil mobility of pesticides before they are sold into commerce is important and is one indispensable element that regulators use to assess probable pesticide safety. Both elementary soil column leaching and sophisticated outdoor lysimeter studies are performed to measure the leaching potential for pesticides; the latter approach more reliably reflects probable field behavior, but the former is useful to initially profile a pesticide for soil mobility potential.Soil is physically heterogeneous. The structure of soil varies both vertically and laterally, and this variability affects the complex flow of water through the soil profile, making it difficult to predict with accuracy. In addition, macropores exist in soils and further add to the complexity of how water flow occurs. The degree to which soil is tilled, the density of vegetation on the surface, and the type and amounts of organic soil amendments that are added to soil further affect the movement rate of water through soil, the character of soil adsorption sites and the microbial populations that exist in the soil. Parameters that most influence the rate of pesticide mobility in soil are

  3. Effect of column dimension on observed column efficiency in very high pressure liquid chromatography.

    PubMed

    Wu, Naijun; Bradley, Ashley C

    2012-10-26

    The effect of extra-column volume on observed linear velocity was investigated for columns of various internal diameters in very high pressure liquid chromatography. The results showed that the observed linear velocities were approximately 4.5, 9.5, 16.8, and 39.5% lower than the linear velocities corrected for the extra-column volume contribution for 4.6, 3.0, 2.1, and 1.0mm internal diameter columns, respectively. An empirical relationship between extra-column band broadening and extra-column volume was obtained using 50 cm long tubings of various internal diameters. The peak variance from the extra-column volume is near linearly proportional to the square of the extra-column volume for tubings with 0.0635-0.178 mm (0.025-0.07 in.) i.d. using a 50/50 acetonitrile/water mobile phase at flow rates greater than 0.3 mL/min. The effect of column internal diameter and column length on observed efficiency was studied using 50mm columns with four different column internal diameters and 2.1mm i.d columns with three different lengths. The results showed that the observed column efficiencies for 3.0, 2.1, and 1.0mm internal diameter columns were 18, 33, and 73% lower than that for a 4.6mm internal diameter column for benzophenone (k=5.5), respectively. An approximate 20% decrease in theoretical plate number was observed for propiophenone (k=3.3) using a 50 mm × 2.1 mm column packed with 1.7 μm particles compared to a 150 mm × 2.1 mm column packed with 5.0 μm particles, while the former column provided 9 fold faster separation. It is the column to extra column volume ratio instead of absolute extra-column volume that determines the degree of extra-column band-broadening in VHPLC.

  4. Optimal operation of multivessel batch distillation columns

    SciTech Connect

    Furlonge, H.I.; Pantelides, C.C.; Soerensen, E.

    1999-04-01

    Increased interest in unconventional batch distillation column configurations offers new opportunities for increasing the flexibility and energy efficiency of batch distillation. One configuration of particular interest is the multivessel column, which can be viewed as a generalization of all previously studied batch column configurations. A detailed dynamic model was used for comparing various optimal operating policies for a batch distillation column with two intermediate vessels. A wide variety of degrees of freedom including reflux ratios, product withdrawal rates, heat input to the reboiler, and initial feed distribution were considered. A mixture consisting of methanol, ethanol, n-propanol and n-butanol was studied using an objective function relating to the economics of the column operation. Optimizing the initial distribution of the feed among the vessels improved column performance significantly. For some separations, withdrawing product from the vessels into accumulators was better than total reflux operation in terms of energy consumption. Open-loop optimal operation was also compared to a recently proposed feedback control strategy where the controller parameters are optimized. The energy consumption of a regular column was about twice that of a multivessel column having the same number of stages.

  5. Circulation in gas-slurry column reactors

    SciTech Connect

    Clark, N.; Kuhlman, J.; Celik, I.; Gross, R.; Nebiolo, E.; Wang, Yi-Zun.

    1990-08-15

    Circulation in bubble columns, such as those used in fischer-tropsch synthesis, detracts from their performance in that gas is carried on average more rapidly through the column, and the residence time distribution of the gas in the column is widened. Both of these factors influence mass-transfer operations in bubble columns. Circulation prediction and measurement has been undertaken using probes, one-dimensional models, laser Doppler velocimetry, and numerical modeling. Local void fraction was measured using resistance probes and a newly developed approach to determining air/water threshold voltage for the probe. A tall column of eight inch diameter was constructed of Plexiglas and the distributor plate was manufactured to distribute air evenly through the base of the column. Data were gathered throughout the volume at three different gas throughputs. Bubble velocities proved difficult to measure using twin probes with cross-correlation because of radial bubble movement. A series of three-dimensional mean and RMS bubble and liquid velocity measurements were also obtained for a turbulent flow in a laboratory model of a bubble column. These measurements have been made using a three-component laser Doppler velocimeter (LDV), to determine velocity distributions non-intrusively. Finally, the gas-liquid flow inside a vertically situated circular isothermal column reactor was simulated numerically. 74 refs., 170 figs., 5 tabs.

  6. Modeling of column apparatuses: A review

    SciTech Connect

    Doichinova, M. E-mail: petyabs@yahoo.com; Popova-Krumova, P. E-mail: petyabs@yahoo.com

    2013-12-18

    This paper presents a review of the modeling method on the base of the physical approximations of the mechanics of continua, which have been developed for processes in column apparatuses. This method includes diffusion type of model for modeling of mass transfer with chemical reaction in column apparatuses with and without circulation zones. The diffusion type of model is used for modeling of scale effect in column apparatuses too. The study concluded that the proposal method is possibility for investigation the influence of radial non uniformity of the velocity distribution on the process efficiency, influence of zones breadths on the mass transfer efficiency in the column. The method of the column apparatuses modeling can be used for modeling of physical and chemical absorption, chemical adsorption, homogeneous and heterogeneous (catalytic) chemical reactions, airlift reactors for chemical and photochemical reactions.

  7. Highly efficient capillary columns packed with superficially porous particles via sequential column packing.

    PubMed

    Treadway, James W; Wyndham, Kevin D; Jorgenson, James W

    2015-11-27

    Highly efficient capillary columns packed with superficially porous particles were created for use in ultrahigh pressure liquid chromatography. Superficially porous particles around 1.5μm in diameter were packed into fused silica capillary columns with 30, 50, and 75μm internal diameters. To create the columns, several capillary columns were serially packed from the same slurry, with packing progress plots being generated to follow the packing of each column. Characterization of these columns using hydroquinone yielded calculated minimum reduced plate heights as low as 1.24 for the most efficient 30μm internal diameter column, corresponding to over 500,000plates/m. At least one highly efficient column (minimum reduced plate height less than 2) was created for all three of the investigated column inner diameters, with the smallest diameter columns having the highest efficiency. This study proves that highly efficient capillary columns can be created using superficially porous particles and shows the efficiency potential of these particles.

  8. Microwaves Scattering by Underdense Inhomogeneous Plasma Column

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Ouyang, Jiting

    2016-03-01

    The scattering characteristics of microwaves (MWs) by an underdense inhomogeneous plasma column have been investigated. The plasma column is generated by hollow cathode discharge (HCD) in a glass tube filled with low pressure argon. The plasma density in the column can be varied by adjusting the discharge current. The scattering power of X-band MWs by the column is measured at different discharge currents and receiving angles. The results show that the column can affect the properties of scattering wave significantly regardless of its plasma frequency much lower than the incident wave frequency. The power peak of the scattering wave shifts away from 0° to about ±15° direction. The finite-different time-domain (FDTD) method is employed to analyze the wave scattering by plasma column with different electron density distributions. The reflected MW power from a metal plate located behind the column is also measured to investigate the scattering effect on reducing MW reflectivity of a metal target. This study is expected to deepen the understanding of plasma-electromagnetic wave interaction and expand the applications concerning plasma antenna and plasma stealth.

  9. Mechanical interactions of UIS support columns. [LMFBR

    SciTech Connect

    Kennedy, J.M.; Belytschko, T.B.

    1983-01-01

    Code development involving above-core structures (ACS) has recently focused on modeling the complexities of mechanical interactions in the ACS support columns which play a very important role in their behavior. These developments are directed toward two considerations: (1) the prediction of the forces exerted by the column in a hypothetical core-disruptive accident (HCDA) in order that the motion of the ACS can be predicted in a coupled fluid-structure analysis, (2) the calculation of the strains and deformations of the support columns so that situations which lead to complete failure can be identified. Finite element capabilities have been developed to handle various types of plant design for the analysis of coupled hydrodynamics and structural response. Beam elements, which previously represented the support columns were able to account for geometric nonlinearities and material nonlinearities, however, changes in the column cross section were not treated. Therefore, one of the aims of this study was to examine the effect of the change in cross section on the behavior of the support columns. A second effect which has been studied is the behavior of support columns consisting of two concentric cylinders.

  10. Neural network modeling of distillation columns

    SciTech Connect

    Baratti, R.; Vacca, G.; Servida, A.

    1995-06-01

    Neural network modeling (NNM) was implemented for monitoring and control applications on two actual distillation columns: the butane splitter tower and the gasoline stabilizer. The two distillation columns are in operation at the SARAS refinery. Results show that with proper implementation techniques NNM can significantly improve column operation. The common belief that neural networks can be used as black-box process models is not completely true. Effective implementation always requires a minimum degree of process knowledge to identify the relevant inputs to the net. After background and generalities on neural network modeling, the paper describes efforts on the development of neural networks for the two distillation units.

  11. The accretion column of AE Aqr

    NASA Astrophysics Data System (ADS)

    Rodrigues, Claudia; Costa, D. Joaquim; Luna, Gerardo; Lima, Isabel J.; Silva, Karleyne M. G.; De Araujo, Jose Carlos N.; Coelho, Jaziel

    2016-07-01

    AE Aqr is a magnetic cataclysmic variable, whose white dwarf rotates at the very fast rate of 33 s modulating the flux from high-energies to optical wavelengths. There are many studies of the origin of its emission, which consider emission from a rotating magnetic field or from an accretion column. Recently, MAGIC observations have discarded AE Aqr emission in very high energy gamma-rays discarding non-thermal emission. Furthermore, soft and hard X-ray data from Swift and NuSTAR were fitted using thermal models. Here we present the modelling of AE Aqr X-ray spectra and light curve considering the emission of a magnetic accretion column using the Cyclops code. The model takes into consideration the 3D geometry of the system, allowing to properly represent the white-dwarf auto eclipse, the pre-shock column absorption, and the varying density and temperature of a tall accretion column.

  12. PRTR ion exchange vault column sampling

    SciTech Connect

    Cornwell, B.C.

    1995-03-14

    This report documents ion exchange column sampling and Non Destructive Assay (NDA) results from activities in 1994, for the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. The objective was to obtain sufficient information to prepare disposal documentation for the ion exchange columns found in the PRTR Ion exchange vault. This activity also allowed for the monitoring of the liquid level in the lower vault. The sampling activity contained five separate activities: (1) Sampling an ion exchange column and analyzing the ion exchange media for purpose of waste disposal; (2) Gamma and neutron NDA testing on ion exchange columns located in the upper vault; (3) Lower vault liquid level measurement; (4) Radiological survey of the upper vault; and (5) Secure the vault pending waste disposal.

  13. A Versatile, Automatic Chromatographic Column Packing Device

    ERIC Educational Resources Information Center

    Barry, Eugene F.; And Others

    1977-01-01

    Describes an inexpensive apparatus for packing liquid and gas chromatographic columns of high efficiency. Consists of stainless steel support struts, an Automat Getriebmotor, and an associated three-pulley system capable of 10, 30, and 300 rpm. (MLH)

  14. Fabrication of Graphite/Epoxy Column Elements

    NASA Technical Reports Server (NTRS)

    Bluck, R. M.; Grotbeck, G. H.; Reighard, W. M.

    1983-01-01

    Dimensionally precise columns wound on vertical mandrels. Dry fiber wound on tapered aluminum mandrel and outer sleeve. Winding and injection done at elevated temperature to minimize thermal-expansion problems during curing of resin. Technique used in textile industry.

  15. Modeling Tropical Precipitation in a Single Column.

    NASA Astrophysics Data System (ADS)

    Sobel, Adam H.; Bretherton, Christopher S.

    2000-12-01

    A modified formulation of the traditional single column model for representing a limited area near the equator is proposed. This formulation can also be considered a two-column model in the limit as the area represented by one of the columns becomes very large compared to the other. Only a single column is explicitly modeled, but its free tropospheric temperature, rather than its mean vertical velocity, is prescribed. This allows the precipitation and vertical velocity to be true prognostic variables, as in prior analytical theories of tropical precipitation. Two models developed by other authors are modified according to the proposed formulation. The first is the intermediate atmospheric model of J. D. Neelin and N. Zeng, but with the horizontal connections between columns broken, rendering it a set of disconnected column models. The second is the column model of N. O. Rennó, K. A. Emanuel, and P. H. Stone. In the first model, the set of disconnected column models is run with a fixed temperature that is uniform in the Tropics, and insolation, SST, and surface wind speed taken from a control run of the original model. The column models produce a climatological precipitation field that is grossly similar to that of the control run, despite that the circulation implied by the column models is not required to conserve mass. The addition of horizontal moisture advection by the wind from the control run substantially improves the simulation in dry regions. In the second model the sensitivity of the modeled steady-state precipitation and relative humidity to varying SST and wind speed is examined. The transition from shallow to deep convection is simulated in a `Lagrangian' calculation in which the column model is subjected to an SST that increases in time. In this simulation, the onset of deep convection is delayed to a higher SST than in the steady-state case, due to the effect of horizontal moisture advection (viewed in a Lagrangian reference frame). In both of the

  16. Flow in a metal hydride chromatographic column

    SciTech Connect

    Nichols, G.S.

    1990-01-01

    The flow of hydrogen isotopes in a metal hydride chromatographic column is calculated by a one-dimensional finite difference method. The Ergun equation is used to define the gas flow; and equilibrium pressure isotherms are used to define the column holdup. Solid phase loadings are shown to move as a wave front on absorption, but remain more uniform on desorption. 3 refs., 4 figs.

  17. Commander prepares glass columns for electrophoresis experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Jack Lousma prepares on of the glass columns for the electrophoresis test in the middeck area of the Columbia. The experiment, deployed in an L-shaped mode in upper right corner, consists of the processing unit with glass columns in which the separation takes place; a camera (partially obscurred by Lousma's face) to document the process; and a cryogenic freezer to freeze and store the samples after separation.

  18. Avoid problems during distillation column startups

    SciTech Connect

    Sloley, A.W.

    1996-07-01

    The startup of a distillation column is the end product of the design process. Indeed, startup is the culmination of the theory and practice of designing the column to meet the process objectives. The author will direct most of this discussion towards column revamps due to their inherent complexity; however, the points apply equally to new columns, as well. The most important question that must be answered prior to a startup is how will the distillation system changes affect initial startup, process control of the system, and normal day-to-day operations? How will the operators run the system? Steady-state distillation-column simulations alone cannot provide an authoritative answer and, indeed, engineers` over-reliance on software too often has led them to ignore many practical aspects. Computer modeling, while an important engineering tool, is not reality. Distillation columns are real functioning pieces of equipment that require practical skills to successfully modify. They are not steady-state solutions that result from converged computer simulations. Early planning, coupled with thorough inspections and comprehensive reviews of instrumentation and procedures, can play a key role in assuring smooth startups.

  19. Interpretation of the lime column penetration test

    NASA Astrophysics Data System (ADS)

    Liyanapathirana, D. S.; Kelly, R. B.

    2010-06-01

    Dry soil mix (DSM) columns are used to reduce the settlement and to improve the stability of embankments constructed on soft clays. During construction the shear strength of the columns needs to be confirmed for compliance with technical assumptions. A specialized blade shaped penetrometer known as the lime column probe, has been developed for testing DSM columns. This test can be carried out as a pull out resistance test (PORT) or a push in resistance test (PIRT). The test is considered to be more representative of average column shear strength than methods that test only a limited area of the column. Both PORT and PIRT tests require empirical correlations of measured resistance to an absolute measure of shear strength, in a similar manner to the cone penetration test. In this paper, finite element method is used to assess the probe factor, N, for the PORT test. Due to the large soil deformations around the probe, an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation has been used. Variation of N with rigidity index and the friction at the probe-soil interface are investigated to establish a range for the probe factor.

  20. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    NASA Technical Reports Server (NTRS)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  1. Mass transfer model liquid phase catalytic exchange column simulation applicable to any column composition profile

    SciTech Connect

    Busigin, A.

    2015-03-15

    Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.

  2. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters.

    PubMed

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-21

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.

  3. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters

    PubMed Central

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-01

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis. PMID:26805819

  4. Post Column Derivatization Using Reaction Flow High Performance Liquid Chromatography Columns.

    PubMed

    Jones, Andrew; Pravadali-Cekic, Sercan; Hua, Stanley; Kocic, Danijela; Camenzuli, Michelle; Dennis, Gary; Shalliker, Andrew

    2016-04-26

    A protocol for the use of reaction flow high performance liquid chromatography columns for methods employing post column derivatization (PCD) is presented. A major difficulty in adapting PCD to modern HPLC systems and columns is the need for large volume reaction coils that enable reagent mixing and then the derivatization reaction to take place. This large post column dead volume leads to band broadening, which results in a loss of observed separation efficiency and indeed detection in sensitivity. In reaction flow post column derivatization (RF-PCD) the derivatization reagent(s) are pumped against the flow of mobile phase into either one or two of the outer ports of the reaction flow column where it is mixed with column effluent inside a frit housed within the column end fitting. This technique allows for more efficient mixing of the column effluent and derivatization reagent(s) meaning that the volume of the reaction loops can be minimized or even eliminated altogether. It has been found that RF-PCD methods perform better than conventional PCD methods in terms of observed separation efficiency and signal to noise ratio. A further advantage of RF-PCD techniques is the ability to monitor effluent coming from the central port in its underivatized state. RF-PCD has currently been trialed on a relatively small range of post column reactions, however, there is currently no reason to suggest that RF-PCD could not be adapted to any existing one or two component (as long as both reagents are added at the same time) post column derivatization reaction.

  5. Analysis of stone-column reinforced foundations

    NASA Astrophysics Data System (ADS)

    Lee, J. S.; Pande, G. N.

    1998-12-01

    A numerical model is proposed to analyse elastic as well as elastoplastic behaviour of stone-column reinforced foundations. The stone-columns are assumed to be dispersed within the in situ soil and a homogenization technique is invoked to establish equivalent material properties for in situ soil and stone-column composite. The difficulties encountered in carrying out elastoplastic analyses of composite materials are overcome by adopting a separate yield function for each of the constituent materials and a sub-iteration procedure within an implicit backward Euler stress integration scheme. In the proposed procedure, equilibrium as well as kinematic conditions implied in the homogenization procedure are satisfied for both elastic as well as elastoplastic stress states.The proposed model is implemented in an axi-symmetric finite element code and numerical prediction is made for the behaviour of model circular footings resting on stone-column reinforced foundations. This prediction indicates good agreement with experimental observation. Finally, a new scheme in which the length of stone-column is variable is proposed and its behaviour is examined through a numerical example.

  6. Counterflow isotachophoresis in a monolithic column.

    PubMed

    Liu, Bingwen; Cong, Yongzheng; Ivory, Cornelius F

    2014-09-01

    This study describes stationary counterflow isotachophoresis (ITP) in a poly(acrylamide-co-N,N'-methylenebisacrylamide) monolithic column as a means for improving ITP processing capacity and reducing dispersion. The flow profile in the monolith was predicted using COMSOL's Brinkman Equation application mode, which revealed that the flow profile was mainly determined by monolith permeability. As monolith permeability decreases, the flow profile changes from a parabolic shape to a plug shape. An experimental monolithic column was prepared in a fused-silica capillary using an ultraviolet-initiated polymerization method. A monolithic column made from 8% (wt.) monomer was chosen for the stationary counterflow ITP experiments. Counterflow ITP in the monolithic column showed undistorted analyte zones with significantly reduced dispersion compared to the severe dispersion observed in an open capillary. Particularly, for r-phycoerythrin focused by counterflow ITP, its zone width in the monolithic column was only one-third that observed in an open capillary. These experiments demonstrate that stationary counterflow ITP in monoliths can be a robust and practical electrofocusing method.

  7. Non-planar microfabricated gas chromatography column

    DOEpatents

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  8. Methylmercury production in the marine water column

    NASA Astrophysics Data System (ADS)

    Topping, G.; Davies, I. M.

    1981-03-01

    Although the biosynthesis of methylmercury in sediments is well established1, this is not necessarily the exclusive natural source of methylmercury entering the marine food chain, particularly commercial fish and shellfish species for human consumption. An examination of mercury levels in freshwater fish2, collected from a lake with a history of industrial mercury contamination, suggested that levels in fish are controlled in part by mercury in suspension and it followed that methylation should occur in the water column. Although methylmercury is present in seawater in coastal areas receiving discharges of waste containing either inorganic mercury3 or methylmercury4 there is no evidence that methylmercury is actually formed in the water column. We now present data which demonstrate that inorganic mercury can be methylated in the water column and we compare this production with that known to occur in marine sediments.

  9. Neutron camera employing row and column summations

    DOEpatents

    Clonts, Lloyd G.; Diawara, Yacouba; Donahue, Jr, Cornelius; Montcalm, Christopher A.; Riedel, Richard A.; Visscher, Theodore

    2016-06-14

    For each photomultiplier tube in an Anger camera, an R.times.S array of preamplifiers is provided to detect electrons generated within the photomultiplier tube. The outputs of the preamplifiers are digitized to measure the magnitude of the signals from each preamplifier. For each photomultiplier tube, a corresponding summation circuitry including R row summation circuits and S column summation circuits numerically add the magnitudes of the signals from preamplifiers for each row and for each column to generate histograms. For a P.times.Q array of photomultiplier tubes, P.times.Q summation circuitries generate P.times.Q row histograms including R entries and P.times.Q column histograms including S entries. The total set of histograms include P.times.Q.times.(R+S) entries, which can be analyzed by a position calculation circuit to determine the locations of events (detection of a neutron).

  10. Cadmium removal in a biosorption column

    SciTech Connect

    Volesky, B.; Prasetyo, I. . Dept. of Chemical Engineering)

    1994-05-01

    New biosorbent material derived from a ubiquitous brown marine alga Ascophyllum nodosum has been examined in packed-bed flow-through sorption columns. It effectively removed 10 mg/L of cadmium down to 1.5 ppb levels in the effluent, representing 99.985% removal. The experimental methodology used was based on the early Bohart and Adams sorption model, resulting in quantitative determination of the characteristic process parameters which can be used for performance comparison and process design. An average metal loading of the biosorbent (N[sub 0]) determined was 30 mg Cd/g, corresponding closely to that observed for the batch equilibrium metal concentration of 10 mg Cd/L. The critical bed depth (D[sub min]) for the potable water effluent quality standard varied with the column feed flow rate from 20 to 50 cm. The sorption column mass transfer and dispersion coefficients were determined, which are also required for solving the sorption model equations.

  11. Final Report, Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2003-05-31

    The Flooding Predictor is an advanced process control strategy comprising a patented pattern-recognition methodology that identifies pre-flood patterns discovered to precede flooding events in distillation columns. The grantee holds a U.S. patent on the modeling system. The technology was validated at the Separations Research Program, The University of Texas at Austin under a grant from the U. S. Department of Energy, Inventions & Innovation Program. Distillation tower flooding occurs at abnormally high vapor and/or liquid rates. The loss in tray efficiencies is attributed to unusual behavior of liquid inventories inside the column leading to conditions of flooding of the space in between trays with liquid. Depending on the severity of the flood condition, consequences range from off spec products to equipment damage and tower shutdown. This non-intrusive pattern recognition methodology, processes signal data obtained from existing column instrumentation. Once the pattern is identified empirically, it is modeled and coded into the plant's distributed control system. The control system is programmed to briefly "unload" the tower each time the pattern appears. The unloading takes the form of a momentary reduction in column severity, e.g., decrease bottom temperature, reflux or tower throughput. Unloading the tower briefly at the pre-flood state causes long-term column operation to become significantly more stable - allowing an increase in throughput and/or product purity. The technology provides a wide range of value between optimization and flooding. When a distillation column is not running at capacity, it should be run in such a way ("pushed") that optimal product purity is achieved. Additional benefits include low implementation and maintenance costs, and a high level of console operator acceptance. The previous commercial applications experienced 98% uptime over a four-year period. Further, the technology is unique in its ability to distinguish between different

  12. 29 CFR 1926.756 - Beams and columns.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Beams and columns. 1926.756 Section 1926.756 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.756 Beams and columns. (a.... (c) (1) Double connections at columns and/or at beam webs over a column. When two structural...

  13. 29 CFR 1926.756 - Beams and columns.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Beams and columns. 1926.756 Section 1926.756 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.756 Beams and columns. (a.... (c) (1) Double connections at columns and/or at beam webs over a column. When two structural...

  14. 29 CFR 1926.756 - Beams and columns.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Beams and columns. 1926.756 Section 1926.756 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.756 Beams and columns. (a.... (c) (1) Double connections at columns and/or at beam webs over a column. When two structural...

  15. 29 CFR 1926.756 - Beams and columns.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Beams and columns. 1926.756 Section 1926.756 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.756 Beams and columns. (a.... (c) (1) Double connections at columns and/or at beam webs over a column. When two structural...

  16. Systems for column-based separations, methods of forming packed columns, and methods of purifying sample components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2000-01-01

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  17. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components.

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2004-08-24

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  18. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2006-02-21

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  19. Density Gradient Columns for Chemical Displays.

    ERIC Educational Resources Information Center

    Guenther, William B.

    1986-01-01

    Procedures for preparing density gradient columns for chemical displays are presented. They include displays illustrating acid-base reactions, metal ion equilibria, and liquid density. The lifetime of these metastable displays is surprising, some lasting for months in display cabinets. (JN)

  20. Manual Microscale Column Chromatography Pressurization Apparatus

    NASA Astrophysics Data System (ADS)

    Baldwin, Bruce W.

    2003-10-01

    Pressurization of a Pasteur pipet for microscale chromatography is simplified by connecting a 20- or 30-mL syringe to the pipet using a length of Tygon tubing. This simple system allows the student to easily dry-pack a column using common chromatography packing materials. Results were uniformly good for introductory, organic, or upper-division research chemistry students.

  1. "Dry-column" chromatography of plant pigments

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Lehwalt, M. F.; Oyama, V. I.

    1973-01-01

    Separation of plant pigments which can be accomplished on thin-layer silica plates with mixture of petroleum ether, halocarbon, acetone, and polar solvent can be readily translated into dry-column technique that yields reproducible chromatograms after elution in fashion of liquid chromatography with fluorimeter as detector. Best solvent system was found to be mixture of petroleum ether, dichloromethane, acetone, and ethyl acetate.

  2. On Row Rank Equal Column Rank

    ERIC Educational Resources Information Center

    Khalili, Parviz

    2009-01-01

    We will prove a well-known theorem in Linear Algebra, that is, for any "m x n" matrix the dimension of row space and column space are the same. The proof is based on the subject of "elementary matrices" and "reduced row-echelon" form of a matrix.

  3. Heat Integration in Batch Distillation Column

    NASA Astrophysics Data System (ADS)

    Maiti, Debadrita; Jana, Amiya K.; Samanta, Amar Nath

    2010-10-01

    A new heat integrated batch distillation column has been configured in this paper. Here the column and reboiler are connected in an annular arrangement and a compressor is positioned between them to maintain the pressure difference. The heat integration is between the rectifying batch column and one concentric reboiler. Ethanol-Water binary system is chosen as an example for the design and analysis of this heat integrated batch distillation column (HIBDiC). In this work, a sensitivity test for selecting the optimal value of the total number of trays and reboiler duty and a thermodynamic feasibility test for its design acceptability has been accomplished. The principal objective of this study is to investigate the influence of compression ratio (CR) on the energy consumption of distillation and to find out the optimal value of CR. Also a comparative analysis of HIBiDC on energy consumption in steady state as well as in dynamic state has been carried out on the basis of its conventional model. The proposed scheme is capable to save the energy up to 50.52% compared to its conventional one by selecting the CR of 1.4 as an optimal value.

  4. Improve distillation-column control design

    SciTech Connect

    Fruehauf, P.S.; Mahoney, D.P.

    1994-03-01

    Steady-state process models have long been used to assist the engineer in designing control strategies for distillation columns. Yet, a large number of industrial columns still operate in manual or with ineffectual controls. So, better control design techniques using steady-state models certainly are needed. In this article, the authors introduced an improved method that already has proven itself on 33 industrial columns. This article deals exclusively with the design of single-point composition controls. The vast majority of columns have one-sided composition specifications. With such specifications, a single-point composition control scheme can keep both top and bottom product compositions at or below limits for a wide range of disturbances. The predominance of one-sided specifications means that the main incentive for dual-point control schemes is achieving energy savings. In most cases, though, the energy savings are small and do not justify the added difficulty of implementing and maintaining dual-point control. Additionally, dual-point schemes often have significantly longer recoveries from upsets due to interactions between the control loops. The design procedure can be best thought of as a general approach rather than a single detailed procedure that covers all cases. The produce must be adapted to each problem because there are many different types of distillation and almost every industrial problem has some unique requirement.

  5. Contexts for Column Addition and Subtraction

    ERIC Educational Resources Information Center

    Lopez Fernandez, Jorge M.; Velazquez Estrella, Aileen

    2011-01-01

    In this article, the authors discuss their approach to column addition and subtraction algorithms. Adapting an original idea of Paul Cobb and Erna Yackel's from "A Contextual Investigation of Three-Digit Addition and Subtraction" related to packing and unpacking candy in a candy factory, the authors provided an analogous context by designing…

  6. Extendible column can be stowed on drum

    NASA Technical Reports Server (NTRS)

    Holtz, G. M.; Howard, E. A.

    1965-01-01

    Column formed from a series of segments held together by an internal spring or cable can be coiled on a drum or extended into a rigid structure. This storable coil is useful in boring for soil samples and supporting electrical and optical sensors.

  7. Inklings: Collected Columns on Leadership and Creativity.

    ERIC Educational Resources Information Center

    Campbell, David P.

    This book brings together 35 of David P. Campbell's essays originally published as a regular column in a quarterly publication called "Issues and Observations." The articles deal with topics ranging from leadership issues such as risk-taking, executive motivation, decision making, and corporate taboos, to more general concerns such as father-son…

  8. Synthesis and applications of monolithic HPLC columns

    NASA Astrophysics Data System (ADS)

    Liang, Chengdu

    Silica and carbon monolithic columns were synthesized and modified for liquid chromatography applications. Column configurations and cladding techniques were investigated in detail. Three novel approaches have been developed for the synthesis of bimodal porous rods. Out of these three methods, gel-casting was adopted for the synthesis of silica monoliths with ordered mesopores and uniform macropores; the use of colloidal templates and dual phase separation has been successfully implemented for the synthesis of carbon monoliths with well-controlled meso- and macro- porosities. The formation of mesopores in carbon materials has been further studied in the microphase separation of block copolymers. Electrochemical modification of carbon monoliths was discovered to be an efficient method for converting covalently bonded functionalities to carbon monoliths. N,N'-diethylaminobenzene has been attached to carbon surface for the separation of proteins and protein digests. The performances of carbon-based monolithic columns were studied intensely through frontal analysis and Van Deemter plot. Temperature and pressure effects were also investigated in carbon-based columns. The density of bonding on the modified carbon monoliths was characterized by thermogravimetric analysis.

  9. WATER COLUMN DATA AND SPECTRAL IRRADIANCE MODEL

    EPA Science Inventory

    Water samples collected monthly, for 18 months, from six sites in the Laguna Madre were analyzed to identify and quantify phytopigments using High Performance Liquid Chromatography (HPLC). In addition, water column pigment and nutrient data were acquired at 12 stations in Upper ...

  10. Column agglutination technology: the antiglobulin test.

    PubMed

    Reis, K J; Chachowski, R; Cupido, A; Davies, D; Jakway, J; Setcavage, T M

    1993-08-01

    A new system for typing and screening blood, based on the sieving effect of glass bead microparticles, has been developed. The test is performed in a microcolumn in which the red cell agglutinates are trapped in the glass bead matrix during centrifugation, and unagglutinated cells form a pellet at the bottom of the column. Anti-human globulin reagents were incorporated in the diluent and the new test system, column agglutination technology, was compared to conventional tube tests and low-ionic-strength method. Sera and plasmas (228 samples) were screened for red cell antibodies with two anti-human globulin reagents: one containing only anti-IgG and the other containing both anti-IgG and anti-C3b, -C3d. After initial testing, there was 94-percent agreement between column agglutination technology and tube tests, and after repeat testing, there was 97-percent agreement. The column agglutination technology anti-human globulin test eliminates the need to wash red cells, which decreases the overall test time. The test is easy to perform, and the results are more objective than those with tube and microplate methods.

  11. DNAPL transport through macroporous, clayey till columns

    SciTech Connect

    Joergensen, P.R. |; Broholm, K.; Sonnenborg, T.O.; Arvin, E.

    1998-07-01

    This paper provides the first experimental determination of the rates and distribution of transport of a dense, nonaqueous phase liquid (DNAPL) through a naturally bioporous and fractured clayey till deposit. Until now, assessment of DNAPL behavior in this type of deposit has relied on theoretical studies. Predictions of DNAPL transport have proven to be uncertain as a result of difficulties in measuring critical parameters such as DNAPL entry pressure and flow behavior in response to natural fracture/biopore apertures and the degree of interconnection of these structures. In the present investigation, the migration of free product trichloroethylene (TCE) was studied by means of two undisturbed clayey till columns under in situ effective soil stress conditions. The experiments revealed that transport of TCE was restricted to biopores in one column and fractures in another column, bypassing the low-permeability clayey matrix. Effective porosities of the columns, i.e., biopores and fractures, were two to three orders of magnitude lower than total porosities, i.e., macropores and matrix. Single phase water flow rates through the columns at water-saturated conditions followed a linear relationship with hydraulic gradient. TCE flow could not be predicted from the single-phase calculations because of nonlinearity observed between applied TCE injection heads and resulting TCE flow. TCE flow rates were 24 and 10.3 m/day at TCE gradients of 1.18 and 0.91, respectively. The observed flow rates indicate that in cases where vertical biopores or fractures fully penetrate clayey till aquitards, a low-viscosity DNAPL may quickly enter underlying aquifers. The experiments further indicate that 100 liters of a low-viscosity DNAPL are sufficient to contaminate approximately 25 to 100 m{sup 3} of till material because of the small effective porosity constituted by the biopores and fractures.

  12. Flow of ices in the Ammonia-Water System

    NASA Technical Reports Server (NTRS)

    Durham, W. B.; Kirby, S. H.; Stern, L. A.

    1993-01-01

    We have fabricated in the laboratory and subsequently deformed crystalline hydrates and partial melts of the water-rich end of the NH3-H2O system, with the aim of improving our understanding of physical processes occurring in icy moons of the outer solar system. Deformation experiments were carried out at constant strain rate. The range of experimental variables are given. Phase relationships in the NH3-H2O system indicate that water ice and ammonia dihydrate, NH3-2H2O, are the stable phases under our experiment conditions. X-ray diffraction of our samples usually revealed these as the dominant phases, but we have also observed an amorphous phase (in unpressurized samples only) and occasionally significant ammonia monohydrate, NH3-H2O. The onset of partial melting at the peritectic temperature at about 176 K appeared as a sharp transition in strength observed in samples of x(sub NH3) = 0.05 and 0.01, the effect of melt was less pronounced. For any given water ice + dihydrate alloy in the subsolidus region, we observed one rheological law over the entire temperature range from 175 K to about 140 K. Below 140 K, a shear instability similar to that occurring in pure water ice under the same conditions limited our ability to measure ductile flow. The rheological laws for the several alloys vary systematically from that of pure ice to that of dihydrate. Pure dihydrate is about 4 orders of magnitude less viscous than water ice just below the peritectic temperature, but because of a very pronounced temperature dependence in dihydrate (100 kJ/mol versus 43 kJ/mol for water ice) the viscosity of dihydrate equals or exceeds that of water ice at T less than 140 K. The large variation in viscosity of dihydrate with relatively small changes in temperature may be helpful in explaining the rich variety of tectonic and volcanic features seen on the surfaces of icy moons in the outer solar system.

  13. Characterization of Ammonia-Water Clusters by Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Perez, Cristobal; Temelso, Berhane; Shields, George C.; Pate, Brooks

    2016-06-01

    Neon carrier gas at 0.3 MPa of backing pressure is flowed over a room-temperature ammonia hydroxide solution before being expanded into a chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating between 2 and 8 GHz. A dense spectrum was observed and the investigation allowed unambiguous assignment of the (NH3)2(H2O)n with n=1,2 and NH3(H2O)n with n=2,3,4,5,6,8 with a signal to noise of at least 3:1. The structures show a cyclic arrangement for clusters with up four monomer and then move to a 3D arrangement. These clusters are of interest because of the different possibilities for hydrogen bond network related to the isolated water clusters. Calculations indicate that there are several possible low-energy isomers, with different levels of theory identifying different isomers as the global minimum. The evidence for the assignment and a discussion of the derived properties for the species are presented.

  14. ON THE ORIGIN OF THE HIGH COLUMN DENSITY TURNOVER IN THE H I COLUMN DENSITY DISTRIBUTION

    SciTech Connect

    Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-12-10

    We study the high column density regime of the H I column density distribution function and argue that there are two distinct features: a turnover at N{sub H{sub I}} Almost-Equal-To 10{sup 21} cm{sup -2}, which is present at both z = 0 and z Almost-Equal-To 3, and a lack of systems above N{sub H{sub I}} Almost-Equal-To 10{sup 22} cm{sup -2} at z = 0. Using observations of the column density distribution, we argue that the H I-H{sub 2} transition does not cause the turnover at N{sub H{sub I}} Almost-Equal-To 10{sup 21} cm{sup -2} but can plausibly explain the turnover at N{sub H{sub I}} {approx}> 10{sup 22} cm{sup -2}. We compute the H I column density distribution of individual galaxies in the THINGS sample and show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the H I map or to averaging in radial shells. Our results indicate that the similarity of H I column density distributions at z = 3 and 0 is due to the similarity of the maximum H I surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within giant molecular clouds cannot affect the damped Ly{alpha} column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over {approx} kpc scales with those estimated from quasar spectra that probe sub-pc scales due to the steep power spectrum of H I column density fluctuations observed in nearby galaxies.

  15. Do column frits contribute to the on-column, flow-induced degradation of macromolecules?

    PubMed

    Striegel, André M

    2014-09-12

    Flow-induced, on-column degradation is a major hindrance to the accurate characterization of ultra-high molar mass macromolecules and colloids. This degradation is a direct result of the large shear rates which are generated within the column, which cause chain scission to occur both in the interstitial medium and, it has been postulated, at the packing particle pore boundary. An additional putative source of degradation has been the column frits, though little experimental evidence exists to either support or refute this claim. To this effect, the present experiments examine the role of the frits in the degradation of high molar mass macromolecules. Two narrow dispersity polystyrene standards, the molar mass of which differs by a factor of two, were analyzed on three different size-exclusion chromatography (SEC) columns, each with frits of different pore size, at various flow rates. In the smallest pore size column, which also contained the smallest frits and which was packed with the smallest diameter particles, the larger standard was forced to degrade by increasing the flow rate of the mobile phase. During the course of the latter portion of the study, the inlet and the outlet frits were removed from the column, in stepwise fashion. It was concluded that neither frit played any appreciable role in the degradation. Results of our studies were applied to explain previously observed degradation in ultra-high pressure liquid chromatography of polymers. The general conclusion arrived at herein is that the column frits are likely to have a secondary role (as compared to interstitial and pore boundary stresses), or no role at all, in polymer degradation for cases where the frit radius is larger than or equal to the hydraulic radius rcof the column.

  16. How to select equivalent and complimentary reversed phase liquid chromatography columns from column characterization databases.

    PubMed

    Borges, Endler M

    2014-01-01

    Three RP-LC column characterization protocols [Tanaka et al. (1989), Snyder et al. (PQRI, 2002), and NIST SRM 870 (2000)] were evaluated using both Euclidian distance and Principal Components Analysis to evaluate effectiveness at identifying equivalent columns. These databases utilize specific chromatographic properties such as hydrophobicity, hydrogen bonding, shape/steric selectivity, and ion exchange capacity of stationary phases. The chromatographic parameters of each test were shown to be uncorrelated. Despite this, the three protocols were equally successful in identifying similar and/or dissimilar stationary phases. The veracity of the results has been supported by some real life pharmaceutical separations. The use of Principal Component Analysis to identify similar/dissimilar phases appears to have some limitations in terms of loss of information. In contrast, the use of Euclidian distances is a much more convenient and reliable approach. The use of auto scaled data is favoured over the use of weighted factors as the former data transformation is less affected by the addition or removal of columns from the database. The use of these free databases and their corresponding software tools shown to be valid for identifying similar columns with equivalent chromatographic selectivity and retention as a "backup column". In addition, dissimilar columns with complimentary chromatographic selectivity can be identified for method development screening strategies.

  17. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    SciTech Connect

    Walker, D.D.

    1999-03-09

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A&038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports.

  18. Employing anatomical knowledge in vertebral column labeling

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Summers, Ronald M.

    2009-02-01

    The spinal column constitutes the central axis of human torso and is often used by radiologists to reference the location of organs in the chest and abdomen. However, visually identifying and labeling vertebrae is not trivial and can be timeconsuming. This paper presents an approach to automatically label vertebrae based on two pieces of anatomical knowledge: one vertebra has at most two attached ribs, and ribs are attached only to thoracic vertebrae. The spinal column is first extracted by a hybrid method using the watershed algorithm, directed acyclic graph search and a four-part vertebra model. Then curved reformations in sagittal and coronal directions are computed and aggregated intensity profiles along the spinal cord are analyzed to partition the spinal column into vertebrae. After that, candidates for rib bones are detected using features such as location, orientation, shape, size and density. Then a correspondence matrix is established to match ribs and vertebrae. The last vertebra (from thoracic to lumbar) with attached ribs is identified and labeled as T12. The rest of vertebrae are labeled accordingly. The method was tested on 50 CT scans and successfully labeled 48 of them. The two failed cases were mainly due to rudimentary ribs.

  19. Analysis of finishing reactive distillation columns

    SciTech Connect

    Espinosa, J.; Aguirre, P.; Frey, T.; Stichlmair, J.

    1999-01-01

    In this paper, a novel method to deal with the design and the synthesis of finishing reactive distillation columns with one reactive core, two rectifying sections, and one stripping section is presented. The attention of the work is concentrated on three subjects: (1) the feasibility of a given separation at both finite and total reflux operation; (2) the minimum energy demand operation; (3) the distribution of the reaction between the reactor and the finishing reactive column. The design problem presents the same grade of difficulty as that found in the design of conventional extractive columns. A geometric based method is used to explain key features of reactive distillation. Here, the relation between the reaction yield and the distillate flow rate plays a role similar to that of the entrainer flow in extractive distillation. Hence, special attention is given to the behavior of the profiles inside the rectifying section below the reactive core. The methodology is illustrated using the well-known MTBE case study.

  20. Whose Cortical Column Would that Be?

    PubMed Central

    da Costa, Nuno Maçarico; Martin, Kevan A. C.

    2010-01-01

    The cortical column has been an invaluable concept to explain the functional organization of the neocortex. While this idea was born out of experiments that cleverly combined electrophysiological recordings with anatomy, no one has ‘seen’ the anatomy of a column. All we know is that when we record through the cortex of primates, ungulates, and carnivores in a trajectory perpendicular to its surface there is a remarkable constancy in the receptive field properties of the neurons regarding one set of stimulus features. There is no obvious morphological analog for this functional architecture, in fact much of the anatomical data seems to challenge it. Here we describe historically the origins of the concept of the cortical column and the struggles of the pioneers to define the columnar architecture. We suggest that in the concept of a ‘canonical circuit’ we may find the means to reconcile the structure of neocortex with its functional architecture. The canonical microcircuit respects the known connectivity of the neocortex, and it is flexible enough to change transiently the architecture of its network in order to perform the required computations. PMID:20640245

  1. Dynamics of a Tapped Granular Column

    NASA Astrophysics Data System (ADS)

    Rosato, Anthony; Blackmore, Denis; Zuo, Luo; Hao, Wu; Horntrop, David

    2015-11-01

    We consider the behavior of a column of spheres subjected to a time-dependent vertical taps. Of interest are various dynamical properties, such as the motion of its mass center, its response to taps of different intensities and forms, and the effect of system size and material properties. The interplay between diverse time and length scales are the key contributors to the column's evolving dynamics. Soft sphere discrete element simulations were conducted over a very wide parameter space to obtain a portrait of column behavior as embodied by the collective dynamics of the mass center motion. Results compared favorably with a derived reduced-order paradigm of the mass center motion (surprisingly analogous to that for a single bouncing ball on an oscillating plate) with respect to dynamical regimes and their transitions. A continuum model obtained from a system of Newtonian equations, as a locally averaged limit in the transport mode along trajectories is described, and a numerical solution protocol for a one-dimensional system is outlined. Typical trajectories and density evolution profiles are shown. We conclude with a discussion of our investigations to relate predictions of the continuum and reduced dynamical systems models with discrete simulations.

  2. [Scale-up of conical column with 10 degree opening angle as preparative liquid chromatographic column].

    PubMed

    Lu, Liejuan; Chen, Jie; Guan, Yafeng

    2009-05-01

    A preparative scale liquid chromatographic column with the conical shape of 10 degrees opening angle was constructed and evaluated. The column was designed with the inlet/outlet diameters of 54/27 mm, the column length of 150 mm and the column volume of 200 mL, and packed with the spherical C18 bonded silica with the particle size of 40-75 microm and the aperture of 11 nm. The mobile phase in the conical column showed a plug like flow profile and plug like chromatographic band shape. For naphthalene, the reduced plate height was about 2.11; the maximum sample load was 2.1 mg or 1.7 mL (10% reduction of plate number), which is 20%, 16% and 19% higher than that of cylindrical one of the same length and volume. As the injection mass increased from 2. 4 mg up to 12 mg, the resolution of ethyl paraben/butyl (R, ) reduced from 2. 14 down to 1.71, and the butyl paraben/naphthalene (Rs3) from 2.91 down to 2.52; the injection volume increased from 3 mL up to 19 mL, Rs2, reduced from 2.23 down to 1.28, and Rs3 from 2.95 down to 2.30, while the peaks were still in symmetric shape without tailing. This characteristic of the column shall benefit for the separation of trace components from matrix. This demonstrated the conical shaped preparative columns would have a broad practical applicability for obtaining pure compounds. PMID:19803133

  3. 18. VIEW SOUTH OF TIMBER COLUMNS ON FIRST FLOOR OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW SOUTH OF TIMBER COLUMNS ON FIRST FLOOR OF BUILDING 21 SHOWING TYPICAL MILL CONSTRUCTION; COLUMNS REST ON CAST IRON BASE PLATES - Scovill Brass Works, 59 Mill Street, Waterbury, New Haven County, CT

  4. 6. HISTORIC AMERICAN BUILDINGS SURVEY, INTERIOR SHOWING ORIGINAL GRANITE COLUMNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. HISTORIC AMERICAN BUILDINGS SURVEY, INTERIOR SHOWING ORIGINAL GRANITE COLUMNS AND COLUMN BRICKFACED AFTER THE GREAT FIRE 1904 - Old U.S. Appraisers Stores, Gay & Lombard Streets, Baltimore, Independent City, MD

  5. Detail of roof trusses showing phoenix columns. Note structural phoenix ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of roof trusses showing phoenix columns. Note structural phoenix column in foreground. - Phoenix Iron Company, Rolling Mill, North of French Creek, west of Fairview Avenue, Phoenixville, Chester County, PA

  6. CAR MACHINE SHOP, FIRST FLOOR, DETAIL OF WOOD COLUMN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CAR MACHINE SHOP, FIRST FLOOR, DETAIL OF WOOD COLUMN AND INVERTED KING-POST TRUSS TO PROVIDE INCREASED SPAN BETWEEN COLUMNS, LOOKING SOUTH. - Southern Pacific, Sacramento Shops, Car Machine Shop, 111 I Street, Sacramento, Sacramento County, CA

  7. A Convenient Method for Comparison of Efficiency of Fractionating Columns.

    ERIC Educational Resources Information Center

    Higgins, Robert H.

    1990-01-01

    Presented is a method for demonstrating the use of various fractionating columns to resolve mixtures into individual components and to correlate the resolving powers of column packings to their "hold-up" volumes. Fractions were analyzed using refractive indices. (KR)

  8. Method to fabricate silicon chromatographic column comprising fluid ports

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.; Heller, Edwin J.; Adkins, Douglas R.

    2004-03-02

    A new method for fabricating a silicon chromatographic column comprising through-substrate fluid ports has been developed. This new method enables the fabrication of multi-layer interconnected stacks of silicon chromatographic columns.

  9. 3. Detail of beam splice and column capital on the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Detail of beam splice and column capital on the second floor of the Cloth Room Building/Old Bleach House, Monadnock Mills. Beam and column edges are chamfered. - Monadnock Mills, 15 Water Street, Claremont, Sullivan County, NH

  10. 14. Detail view of columns, capitals and beams at south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Detail view of columns, capitals and beams at south end of north section of mill. Note the transition from deep pocket to shallow pocket column capitals. - Lowe Mill, Eighth Avenue, Southwest, Huntsville, Madison County, AL

  11. 20. Detail of 8" square solid wood column at fruit ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail of 8" square solid wood column at fruit and vegetable storage room; note ledger plates bolted to top of column - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX

  12. 19. Detail of builtup 5" x 13" column at fruit ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Detail of built-up 5" x 13" column at fruit and vegetable storage room; note ledger plates bolted to top of column - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX

  13. Cross flow cyclonic flotation column for coal and minerals beneficiation

    DOEpatents

    Lai, Ralph W.; Patton, Robert A.

    2000-01-01

    An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.

  14. 46 CFR 174.085 - Flooding on column stabilized units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Flooding on column stabilized units. 174.085 Section 174... Units § 174.085 Flooding on column stabilized units. (a) Watertight compartments that are outboard of... of the unit, must be assumed to be subject to flooding as follows: (1) When a column is...

  15. 46 CFR 174.085 - Flooding on column stabilized units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Flooding on column stabilized units. 174.085 Section 174... Units § 174.085 Flooding on column stabilized units. (a) Watertight compartments that are outboard of... of the unit, must be assumed to be subject to flooding as follows: (1) When a column is...

  16. 46 CFR 174.085 - Flooding on column stabilized units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Flooding on column stabilized units. 174.085 Section 174... Units § 174.085 Flooding on column stabilized units. (a) Watertight compartments that are outboard of... of the unit, must be assumed to be subject to flooding as follows: (1) When a column is...

  17. Column density profiles of multiphase gaseous haloes

    NASA Astrophysics Data System (ADS)

    Liang, Cameron J.; Kravtsov, Andrey V.; Agertz, Oscar

    2016-05-01

    We analyse circumgalactic medium (CGM) in a suite of high-resolution cosmological re-simulations of a Milky Way size galaxy and show that CGM properties are quite sensitive to details of star formation-feedback loop modelling. The simulation that produces a realistic late-type galaxy, fails to reproduce existing observations of the CGM. In contrast, simulation that does not produce a realistic galaxy has the predicted CGM in better agreement with observations. This illustrates that properties of galaxies and properties of their CGM provide strong complementary constraints on the processes governing galaxy formation. Our simulations predict that column density profiles of ions are well described by an exponential function of projected distance d: N ∝ e^{-d/h_s}. Simulations thus indicate that the sharp drop in absorber detections at larger distances in observations does not correspond to a `boundary' of an ion, but reflects the underlying steep exponential column density profile. Furthermore, we find that ionization energy of ions is tightly correlated with the scaleheight hs: h_s ∝ E_ion^{0.74}. At z ≈ 0, warm gas traced by low-ionization species (e.g. Mg II and C IV) has hs ≈ 0.03 - 0.07Rvir, while higher ionization species (O VI and Ne VIII) have hs ≈ 0.32 - 0.45Rvir. Finally, the scaleheights of ions in our simulations evolve slower than the virial radius for z ≤ 2, but similarly to the halo scale radius, rs. Thus, we suggest that the column density profiles of galaxies at different redshifts should be scaled by rs rather than the halo virial radius.

  18. OH vertical column abundance - Tropical measurements

    NASA Astrophysics Data System (ADS)

    Burnett, Clyde R.; Minschwaner, Kenneth R.; Burnett, Elizabeth B.

    1990-09-01

    Measurements of the vertical column abundance of atmospheric hydroxyl (OH) have been made during the period 1987-1989 at the National Weather Service (NWS) station at Moen, Truk, Federated States of Micronesia (7 deg N, 152 deg E). A total of 384 independent data sets was obtained. Tropical OH abundance levels average about 22 percent above corresponding mid-latitude values, with OH levels during late winter and early spring up to 50 percent above those observed at 40 deg N. Stratospheric wind and temperature data obtained from the daily NWS radiosonde data are examined for correlations with the OH results.

  19. OH vertical column abundance - Tropical measurements

    NASA Technical Reports Server (NTRS)

    Burnett, Clyde R.; Minschwaner, Kenneth R.; Burnett, Elizabeth B.

    1990-01-01

    Measurements of the vertical column abundance of atmospheric hydroxyl (OH) have been made during the period 1987-1989 at the National Weather Service (NWS) station at Moen, Truk, Federated States of Micronesia (7 deg N, 152 deg E). A total of 384 independent data sets was obtained. Tropical OH abundance levels average about 22 percent above corresponding mid-latitude values, with OH levels during late winter and early spring up to 50 percent above those observed at 40 deg N. Stratospheric wind and temperature data obtained from the daily NWS radiosonde data are examined for correlations with the OH results.

  20. Wiring dendrites in layers and columns.

    PubMed

    Luo, Jiangnan; McQueen, Philip G; Shi, Bo; Lee, Chi-Hon; Ting, Chun-Yuan

    2016-06-01

    The most striking structure in the nervous system is the complex yet stereotyped morphology of the neuronal dendritic tree. Dendritic morphologies and the connections they make govern information flow and integration in the brain. The fundamental mechanisms that regulate dendritic outgrowth and branching are subjects of extensive study. In this review, we summarize recent advances in the molecular and cellular mechanisms for routing dendrites in layers and columns, prevalent organizational structures in the brain. We highlight how dendritic patterning influences the formation of synaptic circuits. PMID:27315108

  1. Growing Cobalt Silicide Columns In Silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Obert W.

    1991-01-01

    Codeposition by molecular-beam epitaxy yields variety of structures. Proposed fabrication process produces three-dimensional nanometer-sized structures on silicon wafers. Enables control of dimensions of metal and semiconductor epitaxial layers in three dimensions instead of usual single dimension (perpendicular to the plane of the substrate). Process used to make arrays of highly efficient infrared sensors, high-speed transistors, and quantum wires. For fabrication of electronic devices, both shapes and locations of columns controlled. One possible technique for doing this electron-beam lithography, see "Making Submicron CoSi2 Structures on Silicon Substrates" (NPO-17736).

  2. Research on Configurations of Thermally Integrated Distillation Column(TIDC)

    NASA Astrophysics Data System (ADS)

    Sun, Lanyi; Li, Jun; Liu, Xuenuan; Li, Qingsong

    Taking a C3 distillation column as the base case, possible configurations for Thermally Integrated Distillation Columns (TIDC) are proposed and compared to a conventional column and a column with a vapor recompression system (VRC). Thermal efficiency of the TIDC appears to be strongly sensitive to column configuration and a highly efficient asymmetrical configuration with stripping section stages thermally interconnected with the same number of stages in the upper part of the rectifying section emerges as the most promising option. The relationships among pressure ratio of rectifying section to stripping section and energy consumption were also discussed.

  3. 9. Detail view of columns on first floor. This row ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail view of columns on first floor. This row of columns indicates the former location of the exterior mill wall before World War II era expansion. The unusual column and beam connection was a key part of the mill structural system patented by Providence, Rhode Island engineers Charles Praray and Charles Makepeace in 1894. Each column was originally located in the apex of triangular window bay, but not connected to the exterior wall. Modifications on the right side of each column support the beams of the addition. - Dixie Cotton Mill, 710 Greenville Street, La Grange, Troup County, GA

  4. Performance of single particle fritted capillary columns in electrochromatography.

    PubMed

    Zhang, Bo; Liu, Qing; Yang, Lijun; Wang, Qiuquan

    2013-01-11

    Development of capillary electrochromatography (CEC) largely depends on column technology. The past ten years or so have seen a great number of CEC works performed on monolithic columns, due to simplicity and robustness in column fabrication. Monolithic columns eliminate the issue of column fritting, which conventionally made particle-packed capillary columns fragile and introduced nonuniformity to the chromatographic bed. The particulate packing material, however, is still a popular type of stationary phase widely used in CEC, as the rich library of HPLC packing material provides a wide range of choices for chromatographic separations performed in electrodriven mode. In this study, we investigated a purely physical fritting method, single particle fritting technology, to immobilize particulate chromatographic material inside capillary tube in a sinter-free manner to produce robust capillary columns. Single particle fritted columns present significantly improved column-to-column reproducibility (n=10) in peak efficiency, retention factor, peak area and asymmetry (%RSD=5.4, 7.7, 6.2 and 6.1, respectively, at 26 kV), enabling their practical application in high throughput parallel analysis using multiple columns.

  5. Lindane biodegradation in groundwater using semi-continuous soil columns

    SciTech Connect

    LaPat-Polasko, L.T.; Lazarr, N.C.; Reker, M.A.

    1995-12-31

    To evaluate the potential for bioremediation of various isomers of benzene hexachloride (BHC) including lindane (gamma BHC)-contaminated groundwater, a bench-scale study was conducted using site groundwater and soil collected from a chemical manufacturing facility located in southwest Missouri. Three soil columns were prepared to evaluate various conditions under which contaminant biodegredation is known to occur: Column 1 (the hydrogen peroxide and nutrient column) received site groundwater, hydrogen peroxide (an oxygen source to promote aerobic conditions) and ammonium polyphosphate (nutrients); Column 2 received site groundwater, nutrients and sodium sulfite (a reductant to promote anaerobic conditions); and Column 3 received the same amendments as Column 1 but under sterile conditions. Column 3 was used to evaluate abiotic losses of contaminants. The indigenous soil and/or groundwater microbial population removed more than 99 percent of the BHC isomers present in the hydrogen peroxide and nutrient column influent in 24 hours. Abiotic losses of contaminants were less than 20 percent after initial column exchanges based on the results of sterile column data. Anaerobic conditions were not as conducive to contaminant degradation. During the 24-hour exchange periods, less than 80 percent BHC removal was observed in the groundwater effluents from the anaerobic column.

  6. Column flooding and entrainment. [Estimation of maximum allowable vapor velocity and entrainment in a distillation column

    SciTech Connect

    Lygeros, A.I.; Magoulas, K.G.

    1986-12-01

    Here is a way to estimate maximum allowable vapor velocity and entrainment in a distillation column. The method can easily be computerized. It is based on equations derived from the widely accepted correlations. The equation for flooding velocity is applicable to bubble-cup, sieve and valve trays, while the entrainment equation applies only to sieve trays.

  7. Comparison between a spray column and a sieve tray column operating as liquid-liquid heat exchangers

    SciTech Connect

    Keller, A.; Jacobs, H.R.; Boehm, R.F.

    1980-12-01

    The performance of a spray column and a sieve tray column was compared as a liquid-liquid heat exchanger. In carrying out these studies a 15.2 cm (6.0 in.) diameter column, 183 cm (6.0 ft) tall was utilized. The performance of the spray column as a heat exchanger was shown to correlate with the model of Letan-Kehat which has as a basis that the heat transfer is dominated by the wakeshedding characteristics of the drops over much of the column length. This model defines several hydrodynamic zones along the column of which the wake formation zone at the bottom appears to have the most efficient heat transfer. The column was also operated with four perforated plates spaced two column diameters apart in order to take advantage of the wake formation zone heat transfer. The plates induce coalescence of the dispersed phase and reformation of the drops, and thus cause a repetition of the wake formation zone. It is shown that the overall volumetric heat transfer coefficient in a perforated plate column is increased by a minimum of eleven percent over that in a spray column. A hydrodynamic model that predicts the performance of a perforated plate column is suggested.

  8. Column properties and flow profiles of a flat, wide column for high-pressure liquid chromatography

    SciTech Connect

    Mriziq, Khaled S; Guiochon, Georges A

    2008-01-01

    The design and the construction of a pressurized, flat, wide column for high-performance liquid chromatography (HPLC) are described. This apparatus, which is derived from instruments that implement over-pressured thin layer chromatography, can carry out only uni-dimensional chromatographic separations. However, it is intended to be the first step in the development of more powerful instruments that will be able to carry out two-dimensional chromatographic separations, in which case, the first separation would be a space-based separation, LC{sup x}, taking place along one side of the bed and the second separation would be a time-based separation, LC{sup t}, as in classical HPLC but proceeding along the flat column, not along a tube. The apparatus described consists of a pressurization chamber made of a Plexiglas block and a column chamber made of stainless steel. These two chambers are separated by a thin Mylar membrane. The column chamber is a cavity which is filled with a thick layer (ca. 1 mm) of the stationary phase. Suitable solvent inlet and outlet ports are located on two opposite sides of the sorbent layer. The design allows the preparation of a homogenous sorbent layer suitable to be used as a chromatographic column, the achievement of effective seals of the stationary phase layer against the chamber edges, and the homogenous flow of the mobile phase along the chamber. The entire width of the sorbent layer area can be used to develop separations or elute samples. The reproducible performance of the apparatus is demonstrated by the chromatographic separations of different dyes. This instrument is essentially designed for testing detector arrays to be used in a two-dimensional LC{sup x} x LC{sup t} instrument. The further development of two-dimension separation chromatographs based on the apparatus described is sketched.

  9. Heat Transfer Analysis for a Fixed CST Column

    SciTech Connect

    Lee, S.Y.

    2004-02-19

    In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, a transient two-dimensional heat transfer model that includes the conduction process neglecting the convection cooling mechanism inside the crystalline silicotitanate (CST) column has been constructed and heat transfer calculations made for the present design configurations. For this situation, a no process flow condition through the column was assumed as one of the reference conditions for the simulation of a loss-of-flow accident. A series of the modeling calculations has been performed using a computational heat transfer approach. Results for the baseline model indicate that transit times to reach 130 degrees Celsius maximum temperature of the CST-salt solution column are about 96 hours when the 20-in CST column with 300 Ci/liter heat generation source and 25 degrees Celsius initial column temperature is cooled by natural convection of external air as a primary heat transfer mechanism. The modeling results for the 28-in column equipped with water jacket systems on the external wall surface of the column and water coolant pipe at the center of the CST column demonstrate that the column loaded with 300 Ci/liter heat source can be maintained non-boiling indefinitely. Sensitivity calculations for several alternate column sizes, heat loads of the packed column, engineered cooling systems, and various ambient conditions at the exterior wall of the column have been performed under the reference conditions of the CST-salt solution to assess the impact of those parameters on the peak temperatures of the packed column for a given transient time. The results indicate that a water-coolant pipe at the center of the CST column filled with salt solution is the most effective one among the potential design parameters related to the thermal energy dissipation of decay heat load. It is noted that the cooling mechanism at the wall boundary of the column has significant

  10. Comparison of two column characterisation systems based on pharmaceutical applications.

    PubMed

    Haghedooren, Erik; Németh, Tamás; Dragovic, Sanja; Noszál, Béla; Hoogmartens, Jos; Adams, Erwin

    2008-05-01

    A useful column characterisation system should help chromatographers to select the most appropriate column to use, e.g. when a particular chromatographic column is not available or when facing the dilemma of selecting a suitable column for analysis according to an official monograph. Official monographs of the European Pharmacopoeia and the United States Pharmacopeia are not allowed to mention the brand name of the stationary phase used for the method development. Also given the overwhelming offer of several hundreds of commercially available reversed-phase liquid chromatographic columns, the choice of a suitable column could be difficult sometimes. To support rational column selection, a column characterisation study was started in our laboratory in 2000. In the same period, Euerby et al. also developed a column characterisation system, which is now released as Column Selector by ACD/Labs. The aim of this project was to compare the two existing column characterisation systems, i.e. the KUL system and the Euerby system. Other research groups active in this field will not be discussed here. Euerby et al. developed a column characterisation system based on 6 test parameters, while the KUL system is based on 4 chromatographic parameters. Comparison was done using a set of 63 columns. For 7 different pharmaceutical separations (fluoxetine, gemcitabine, erythromycin, tetracycline, tetracaine, amlodipine and bisacodyl), a ranking was built based on an F-value (KUL method) or Column Difference Factor value (Euerby method) versus a (virtual) reference column. Both methods showed a similar ranking. The KUL and Euerby methods do not perfectly match, but they yield very similar results, allowing with a relatively high certainty, the selection of similar or dissimilar columns as compared to a reference column. An analyst that uses either of the two methods, will end up with a similar ranking. From a practical point of view, it must be noted that the KUL method only includes 4

  11. Enhanced reductive dechlorination in columns treated with edible oil emulsion

    NASA Astrophysics Data System (ADS)

    Long, Cameron M.; Borden, Robert C.

    2006-09-01

    The effect of edible oil emulsion treatment on enhanced reductive dechlorination was evaluated in a 14 month laboratory column study. Experimental treatments included: (1) emulsified soybean oil and dilute HCl to inhibit biological activity; (2) emulsified oil only; (3) emulsified oil and anaerobic digester sludge; and (4) continuously feeding soluble substrate. A single application of emulsified oil was effective in generating strongly reducing, anaerobic conditions for over 14 months. PCE was rapidly reduced to cis-DCE in all three live columns. Bioaugmentation with a halorespiring enrichment culture resulted in complete dechlorination of PCE to ethene in the soluble substrate column (yeast extract and lactate). However, an additional treatment with a pulse of yeast extract and bioaugmentation culture was required to stimulate complete dechlorination in the emulsion treated columns. Once the dechlorinating population was established, the emulsion only column degraded PCE from 90-120 μM to below detection with concurrent ethene production in a 33 day contact time. The lower biodegradation rates in the emulsion treated columns compared to the soluble substrate column suggest that emulsified oil barriers may require a somewhat longer contact time for effective treatment. In the HCl inhibited column, partitioning of PCE to the retained oil substantially delayed PCE breakthrough. However, reduction of PCE to more soluble degradation products ( cis-DCE, VC and ethene) greatly reduced the impact of oil-water partitioning in live columns. There was only a small decline in the hydraulic conductivity ( K) of column #1 (low pH + emulsion, Kfinal/ Kinitial = 0.57) and column #2 (live + emulsion, Kfinal/ Kinitial = 0.73) indicating emulsion injection did not result in appreciable clogging of the clayey sand. However, K loss was greater in column #3 (sludge +emulsion, Kfinal/ Kinitial = 0.12) and column #4 (soluble substrate, Kfinal/ Kinitial = 0.03) indicating clogging due

  12. The vertebral column of Australopithecus sediba.

    PubMed

    Williams, Scott A; Ostrofsky, Kelly R; Frater, Nakita; Churchill, Steven E; Schmid, Peter; Berger, Lee R

    2013-04-12

    Two partial vertebral columns of Australopithecus sediba grant insight into aspects of early hominin spinal mobility, lumbar curvature, vertebral formula, and transitional vertebra position. Au. sediba likely possessed five non-rib-bearing lumbar vertebrae and five sacral elements, the same configuration that occurs modally in modern humans. This finding contrasts with other interpretations of early hominin regional vertebral numbers. Importantly, the transitional vertebra is distinct from and above the last rib-bearing vertebra in Au. sediba, resulting in a functionally longer lower back. This configuration, along with a strongly wedged last lumbar vertebra and other indicators of lordotic posture, would have contributed to a highly flexible spine that is derived compared with earlier members of the genus Australopithecus and similar to that of the Nariokotome Homo erectus skeleton.

  13. Dynamic CT scanning of spinal column trauma

    SciTech Connect

    Brown, B.M.; Brant-Zawadzki, M.; Cann, C.E.

    1982-12-01

    Dynamic sequential computed tomographic scanning with automatic table incrementation uses low milliampere-second technique to eliminate tube cooling delays between scanning slices and, thus, markedly shortens examination times. A total of 25 patients with spinal column trauma involving 28 levels were studied with dynamic scans and retrospectively reviewed. Dynamic studies were considerably faster than conventional spine examinations and yielded reliable diagnosis. Bone disruption and subluxation was accurately evaluated, and the use of intrathecal metrizamide in low doses allowed direct visualization of spinal cord or radicular compromise. Multiplanar image reformation was aided by the dynamic incrementation technique, since motion between slices (and the resulting misregistration artifact on image reformation) was minimized. A phantom was devised to test spatial resolution of computed tomography for objects 1-3 mm in size and disclosed minimal differences for dynamic and conventional computed tomographic techniques in resolving medium-to-high-contrast objects.

  14. Ewing's sarcoma of the vertebral column

    SciTech Connect

    Pilepich, M.V.; Vietti, T.J.; Nesbit, M.E.; Tefft, M.; Kissane, J.; Burgert, O.; Pritchard, D.; Gehan, E.A.

    1981-01-01

    Twenty-two patients with vertebral primaries were registered in the Intergroup Ewing's Sarcoma Study between 1973 and 1977. The radiation doses to the primary tumors ranged between 3800 and 6200 rad. All patients received intensive combination chemotherapy. After a followup ranging between 14 and 62 months, 14 patients remained disease-free. All patients with primary tumor of the cervical and dorsal spine remained disease-free. Of eight patients with lesions in the distal spine, (sacrococcygeal region) six developed recurrence, in three a local recurrence was observed despite doses of 6000 rad or higher. Doses of 5000 rad or less (in addition to combination chemotherapy as used in the Intergroup Ewing's Study) appear adequate in controlling the primary tumors of the proximal segments of the spinal column.

  15. The vertebral column of Australopithecus sediba.

    PubMed

    Williams, Scott A; Ostrofsky, Kelly R; Frater, Nakita; Churchill, Steven E; Schmid, Peter; Berger, Lee R

    2013-04-12

    Two partial vertebral columns of Australopithecus sediba grant insight into aspects of early hominin spinal mobility, lumbar curvature, vertebral formula, and transitional vertebra position. Au. sediba likely possessed five non-rib-bearing lumbar vertebrae and five sacral elements, the same configuration that occurs modally in modern humans. This finding contrasts with other interpretations of early hominin regional vertebral numbers. Importantly, the transitional vertebra is distinct from and above the last rib-bearing vertebra in Au. sediba, resulting in a functionally longer lower back. This configuration, along with a strongly wedged last lumbar vertebra and other indicators of lordotic posture, would have contributed to a highly flexible spine that is derived compared with earlier members of the genus Australopithecus and similar to that of the Nariokotome Homo erectus skeleton. PMID:23580532

  16. Micro-column plasma emission liquid chromatograph

    DOEpatents

    Gay, Don D.

    1984-01-01

    In a direct current plasma emission spectrometer for use in combination with a micro-column liquid chromatograph, an improved plasma source unit. The plasma source unit includes a quartz capillary tube having an inlet means, outlet off gas means and a pair of spaced electrodes defining a plasma region in the tube. The inlet means is connected to and adapted to receive eluant of the liquid chromatograph along with a stream of plasma-forming gas. There is an opening through the wall of the capillary tube penetrating into the plasma region. A soft glass capillary light pipe is disposed at the opening, is connected to the spectrometer, and is adapted to transmit light passing from the plasma region to the spectrometer. There is also a source of electromotive force connected to the electrodes sufficient to initiate and sustain a plasma in the plasma region of the tube.

  17. Rapid Column Extraction Methods for Urine

    SciTech Connect

    Maxwell, S.L. III

    2000-06-09

    A new fecal analysis method that dissolves plutonium oxide was developed at the Westinghouse Savannah River Site. Diphonix Resin (Eichrom Industries), is used to pre-concentrate the actinides from digested fecal samples. A rapid microwave digestion technique is used to remove the actinides from the Diphonix Resin, which effectively extracts plutonium and americium from acidic solutions containing hydrofluoric acid. After resin digestion, the plutonium and americium are recovered in a small volume of nitric acid that is loaded onto small extraction chromatography columns, TEVA Resin and TRU Resin (Eichrom Industries). The method enables complete dissolution of plutonium oxide and provides high recovery of plutonium and americium with good removal of thorium isotopes such as thorium-228.

  18. The flotation column as a froth separator

    SciTech Connect

    Schultz, C.W.; Mehta, R.K.; Bates, J.B. )

    1991-12-01

    The Mineral Resources Institute, The University of Alabama, has for the past three years been engaged in a program to develop a beneficiation system for eastern (Devonian) oil shales. One objective of that program was to evaluate advanced technologies for effecting a kerogen-mineral matter separation. Column flotation was among the advanced technologies selected for evaluation. One observation made in the course of optimization testing was that introducing the feed into the froth (above the pulp- froth interface) resulted in an improved combination of concentrate grade and kerogen recovery. This observation was reported in a previous paper. Because the practice of maintaining the pulp froth interface below the feed point is contrary to conventional practice, it was decided to subject the observation to a systematic series of tests. This paper describes a recent series of tests and the results that were obtained.

  19. Novel electrostatic column for ion projection lithography

    SciTech Connect

    Chalupka, A.; Stengl, G.; Buschbeck, H.; Lammer, G.; Vonach, H.; Fischer, R.; Hammel, E.; Loeschner, H.; Nowak, R.; Wolf, P. ); Finkelstein, W.; Hill, R.W. ); Berry, I.L. ); Harriott, L.R. ); Melngailis, J. ); Randall, J.N. ); Wolfe, J.C. ); Stroh, H.; Wollnik, H. ); Mondelli, A.A.; Petillo, J.J. ); Leung, K. (Lawrence Berkeley Laboratory, University of Californi

    1994-11-01

    Ion projection lithography (IPL) is being considered for high volume sub-0.25-[mu]m lithography. A novel ion-optical column has been designed for exposing 20[times]20 mm[sup 2] fields at 3[times] reduction from stencil mask to wafer substrates. A diverging lens is realized by using the stencil mask as the first electrode of the ion-optical column. The second and third electrode form an accelerating field lens. The aberrations of the first two lenses (diverging lens and field lens) are compensated by an asymmetric Einzel lens projecting an ion image of the stencil mask openings onto the wafer substrate with better than 2 mrad telecentricity. Less than 30 nm intrafield distortion was calculated within 20[times]20 mm[sup 2] exposure fields. The calculation uncertainty is estimated to be about 10 nm. The calculation holds for helium ions with [approx]10 keV ion energy at the stencil mask and 150 keV ion energy at the wafer plane. A virtual ion source size of 10 [mu]m has been assumed. The calculated chromatic aberrations are less than 60 nm, assuming 6 eV energy spread of the ions extracted from a duoplasmatron source. Recently a multicusp ion source has been developed for which preliminary results indicate an energy spread of less than 2 eV. Thus, with a multicusp source chromatic aberrations of less than 20 nm are to be expected. The ion energy at the crossover between the field lens and the asymmetric Einzel lens is 200 keV. Therefore, stochastic space charge induced degradations in resolution can be kept sufficiently low. The divergence of the ion image projected to the wafer plane is less than 2 mrad. Thus, the usable'' depth of focus for the novel ion optics is in the order of 10 [mu]m.

  20. Multiple column high-throughput e-beam inspection (EBI)

    NASA Astrophysics Data System (ADS)

    Lam, David K.; Monahan, Kevin M.; Liu, Enden D.; Tran, Cong; Prescop, Ted

    2012-03-01

    Single-column e-beam systems are used in production for the detection of electrical defects, but are too slow to be used for the detection of small physical defects, and can't meet future inspection requirements. This paper presents a multiplecolumn e-beam technology for high throughput wafer inspection. Multibeam has developed all-electrostatic columns for high-resolution imaging. The elimination of magnetic coils enables the columns to be small; e-beam deflection is faster in the absence of magnetic hysteresis. Multiple miniaturecolumns are assembled in an array. An array of 100 columns covers the entire surface of a 300mm wafer, affording simultaneous cross-wafer sampling. Column performance simulations and system architecture are presented. Also provided are examples of high throughput, more efficient, multiple-column wafer inspection.

  1. Parallel array of independent thermostats for column separations

    DOEpatents

    Foret, Frantisek; Karger, Barry L.

    2005-08-16

    A thermostat array including an array of two or more capillary columns (10) or two or more channels in a microfabricated device is disclosed. A heat conductive material (12) surrounded each individual column or channel in array, each individual column or channel being thermally insulated from every other individual column or channel. One or more independently controlled heating or cooling elements (14) is positioned adjacent to individual columns or channels within the heat conductive material, each heating or cooling element being connected to a source of heating or cooling, and one or more independently controlled temperature sensing elements (16) is positioned adjacent to the individual columns or channels within the heat conductive material. Each temperature sensing element is connected to a temperature controller.

  2. Temperature-compensated 8-bit column driver for AMLCD

    NASA Astrophysics Data System (ADS)

    Dingwall, Andrew G. F.; Lin, Mark L.

    1995-06-01

    An all-digital, 5 V input, 50 Mhz bandwidth, 10-bit resolution, 128- column, AMLCD column driver IC has been designed and tested. The 10-bit design can enhance display definition over 6-bit nd 8-bit column drivers. Precision is realized with on-chip, switched-capacitor DACs plus transparently auto-offset-calibrated, opamp outputs. Increased resolution permits multiple 10-bit digital gamma remappings in EPROMs over temperature. Driver IC features include externally programmable number of output column, bi-directional digital data shifting, user- defined row/column/pixel/frame inversion, power management, timing control for daisy-chained column drivers, and digital bit inversion. The architecture uses fewer reference power supplies.

  3. Applicability of hydroxylamine nitrate reductant in pulse-column contactors

    SciTech Connect

    Reif, D.J.

    1983-05-01

    Uranium and plutonium separations were made from simulated breeder reactor spent fuel dissolver solution with laboratory-sized pulse column contactors. Hydroxylamine nitrate (HAN) was used for reduction of plutonium (1V). An integrated extraction-partition system, simulating a breeder fuel reprocessing flowsheet, carried out a partial partition of uranium and plutonium in the second contactor. Tests have shown that acceptable coprocessing can be ontained using HAN as a plutonium reductant. Pulse column performance was stable even though gaseous HAN oxidation products were present in the column. Gas evolution rates up to 0.27 cfm/ft/sup 2/ of column cross section were tested and found acceptable.

  4. Monolithic capillary columns based on pentaerythritol tetraacrylate for peptide analysis

    NASA Astrophysics Data System (ADS)

    Kucherenko, E. V.; Melnik, D. M.; Korolev, A. A.; Kanateva, A. Yu.; Pirogov, A. V.; Kurganov, A. A.

    2015-09-01

    Monolythic medium-polar capillary columns based on pentaerythritol tetraacrylate were optimized for separation of peptides. The synthesis temperature and time, the fraction of monomer in the initial polymerization mixture, and the nature of alcohol contained in the complex porogen were chosen as optimization parameters. The highest efficiency was attained for columns obtained with 33 and 34% monomer at a polymerization time of 75 min and a temperature of 75°C. The columns with the optimum structure were effective in separation of a model mixture of five peptides. The sensitivity of the method was 200 ng of peptide per column.

  5. Optimal packing characteristics of rolled, continuous stationary-phase columns.

    PubMed

    Li, Chenghong; Ladisch, Christine M; Yang, Yiqi; Hendrickson, Richard; Keim, Craig; Mosier, Nathan; Ladisch, Michael R

    2002-01-01

    Rolled, continuous stationary phases were constructed by tightly rolling and inserting a whole textile fabric into a chromatography column. This work reports the column performance, in terms of plate height, void fraction, and resolution, of 10 cellulose-based fabrics. The relation between fabric structural properties of yarn diameter, fabric count, fabric compressibility, and column performance are quantitated. General requirements, including reproducibility of packing, for choosing fabrics to make a good SEC column are identified. This research showed that the packed columns have an optimal mass of fabric that minimizes plate height and maximizes resolution, in a manner that is consistent with chromatography theory. Mass of material packed is then an important column parameter to consider when optimizing columns for the rapid desalting of proteins. Proteins were completely separated from salt and glucose in less than 8 min at a pressure drop less than 500 psi on the rolled, continuous stationary-phase columns. These results, together with stability and reproducibility, suggest potential industrial applications for cellulose-based rolled, continuous stationary-phase columns where speed is a key parameter in the production process. PMID:11934301

  6. Mini-columns for Conducting Breakthrough Experiments. Design and Construction

    SciTech Connect

    Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas

    2015-06-11

    Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or Kd values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.

  7. 15. FIRST FLOOR WAREHOUSE SPACE, SHOWING COLUMN / BEAM CONNECTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. FIRST FLOOR WAREHOUSE SPACE, SHOWING COLUMN / BEAM CONNECTION. VIEW TO SOUTHWEST. - Commercial & Industrial Buildings, Dubuque Seed Company Warehouse, 169-171 Iowa Street, Dubuque, Dubuque County, IA

  8. Stability of leaning column at Devils Tower National Monument, Wyoming

    USGS Publications Warehouse

    Harp, Edwin L.; Lindsay, Charles R.

    2006-01-01

    In response to reports from climbers that an 8-meter section (referred to as the leaning column) of the most popular climbing route on Devils Tower in northeastern Wyoming is now moving when being climbed, scientists from the U.S. Geological Survey inspected the site to determine the stability of the column and the underlying column that serves as a support pedestal. Evidence of a recent tensile spalling failure was observed on the pedestal surface immediately beneath the contact with the overlying leaning column. The spalling of a flake-shaped piece of the pedestal, probably due to the high stress concentration exerted by the weight of the leaning column along a linear contact with the pedestal, is likely causing the present movement of the leaning column. Although it is unlikely that climbers will dislodge the leaning column by their weight alone, the possibility exists that additional spalling failures may occur from the pedestal surface and further reduce the stability of the leaning column and result in its toppling. To facilitate detection of further spalling failures from the pedestal, its surface has been coated with a layer of paint. Any new failures from the pedestal could result in the leaning column toppling onto the climbing route or onto the section of the Tower trail below.

  9. Fracture Behaviour of Glass Columns Experimental Study of Axial Loaded Glass Columns

    NASA Astrophysics Data System (ADS)

    Jakab, A.; Nehme, K.; Nehme, S. G.

    2016-04-01

    Nowadays supporting structures can be transparent due to the development of glass strengthening procedures. The building glass as a versatile building material enables the efforts of the architects due to its transparency. This paper focuses on glass columns in the topic of load-bearing glasses and also on the design and load bearing capacity of fins and stability issues. Laboratory experiments were carried out at the BME, Department of Building Materials and Engineering Geology on the fracture behaviour of centrally compressed glass columns. More than 120 specimens where loaded until fracture. The load and deformations were measured. Based on the experimental results the critical force was determined and with force-deflection diagrams were illustrated the fracture and stability processes. Authors are going to compare the results of the laboratory experiments and theoretical calculations.

  10. Evolution of mantle column beneath Bartoy volcanoes.

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor; Karmanov, Nikolai; Kanakin, Sergei; Ntaflos, Theodoros

    2013-04-01

    Pleistocene Bartoy volcanoes 1.5-0.8 Ma (Ashchepkov et al., 2003) represent variable set of hydrous cumulates and megacrysts and peridotite mantle xenoliths from spinel facies (Ashchepkov, 1991; Ionov, Kramm, 1992). Hydrous peridotites give series of the temperature groups: 1) deformed Fe - lherzolites (1200-1100o) , 2) Phl porhyroclastiμ (1100-1020o), 3) Amph -Phl (1020-940o), 4) Dry protogranular (1020-940o), 5)Amph equigranular (940-880o) and 6) dry and fine grained (880-820o). and Fe-rich poikilitic (700-600o) (Ashchepkov, 1991). T according (Nimis, Taylor, 2000) The sequence of the megacrysts crystallized on the wall of basaltic feeder in pre - eruption stage is starting from HT dark green websterites (1300-1200o), black Cpx- Gar varieties (1250-1200o) evolved to Phl -CPx (1200-1130o) and Cpx - Kaers (1130-1020o) - Cpx low in TiO2., Ilm and San (<1000o) like in Vitim (Ashchepkov et la., 2011). The differentiation trends looks branched but the question if they. Differentiation ain relatively large magma bodies p produced Ga- Cpx (+Amph-Phl- Ilm +-San) and then Cpx-Gar -Pl cumulates in( ~8-12 kbar) interval. In the ToC-Fe# diagram the Intermediate trend between lherzolites and megacrysts sub parallel to lherzolitic is correspondent to the fractionation of the hydrous alkali basalt melts in vein network created from the highly H2O bearing basaltic derivates formed in intermediate magma chambers. The interaction of the peridotites with the pulsing rising and evolving basaltic system produced the wall rock metasomatism and separate groups of peridotites in different levels of mantle column. PT calculations show two PT path and probably melt intrusion events. Trace elements in glass from crystalline basalts show Zr, Pb dips and Ta, Nb, Sr enrichment for the black megacrystalline Cpx , Gar series. They show link with evolved basalts by HFSE, Ba enrichment but Cpx from kaersutite and further Gar - Cpx cumulates show depressions in Ta, Nb, Zr, and Pb moderate

  11. SPR Hydrostatic Column Model Verification and Validation.

    SciTech Connect

    Bettin, Giorgia; Lord, David; Rudeen, David Keith

    2015-10-01

    A Hydrostatic Column Model (HCM) was developed to help differentiate between normal "tight" well behavior and small-leak behavior under nitrogen for testing the pressure integrity of crude oil storage wells at the U.S. Strategic Petroleum Reserve. This effort was motivated by steady, yet distinct, pressure behavior of a series of Big Hill caverns that have been placed under nitrogen for extended period of time. This report describes the HCM model, its functional requirements, the model structure and the verification and validation process. Different modes of operation are also described, which illustrate how the software can be used to model extended nitrogen monitoring and Mechanical Integrity Tests by predicting wellhead pressures along with nitrogen interface movements. Model verification has shown that the program runs correctly and it is implemented as intended. The cavern BH101 long term nitrogen test was used to validate the model which showed very good agreement with measured data. This supports the claim that the model is, in fact, capturing the relevant physical phenomena and can be used to make accurate predictions of both wellhead pressure and interface movements.

  12. Kelvin waves in total column ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Stanford, J. L.

    1994-01-01

    Tropical Kelvin waves have been observed previously in ozone mixing ratio data from the SBUV (Solar Backscatter Ultraviolet) and LIMS (Limb Infrared Monitor of the Stratosphere) instruments on board the Nimbus-7 satellite. The present study investigates Kelvin wave features in total column ozone, using version 6 data from the Total Ozone Mapping Spectrometer (TOMS) instrument (also on Nimbus-7). Results show eastward-propagating zonal waves 1-2 with periods approx. 5-15 days, amplitudes approx. 3-5 Dobson Units (1-2% of the time mean), and latitudinal symmetry typical of Kelvin waves. The analyses and a linear model in this study suggest that the primary source of the perturbations is slow Kelvin waves in the lower-to-middle stratosphere. Maximum Kelvin wave signatures occur in conjunction with westward lower-to-middle stratospheric equatorial zonal winds (a quasi-biennial oscillation (QBO) wind modulation effect). The significance of these results is that the TOMS data are shown to be useful for investigations with global coverage of a major component of tropical stratospheric dynamics, Kelvin waves. The TOMS data set with its excellent coverage and high quality should be useful in validating model studies in the relatively data sparse and dynamically difficult tropical region.

  13. Exploring the Sulfur Nutrient Cycle Using the Winogradsky Column

    ERIC Educational Resources Information Center

    Rogan, Brian; Lemke, Michael; Levandowsky, Michael; Gorrell, Thomas

    2005-01-01

    The Winogradsky column demonstrates how the metabolic diversity of prokaryotes transforms sulfur to different forms with varying redox states and hence, supplies nutrients and/or energy to the organism. The Winogardsky column is an excellent way to show that not all bacteria are pathogens and they have an important role in the geochemical cycling…

  14. An Automated Distillation Column for the Unit Operations Laboratory

    ERIC Educational Resources Information Center

    Perkins, Douglas M.; Bruce, David A.; Gooding, Charles H.; Butler, Justin T.

    2005-01-01

    A batch distillation apparatus has been designed and built for use in the undergraduate unit operations laboratory course. The column is fully automated and is accompanied by data acquisition and control software. A mixture of 1­-propanol and 2-­propanol is separated in the column, using either a constant distillate rate or constant composition…

  15. Stabilization of the Circulation Flow of the Cryogenic Distillation Column

    NASA Astrophysics Data System (ADS)

    Juromskiy, V. M.

    Two-circuit system of automatic stabilization of the hydrodynamics of the cryogenic distillation column is considered. Control system eliminates flooding/depletion of column in long-term mode of operation when the accuracy of stabilization of the circulation flow is better than 1%.

  16. Ultrasonic testing device having an adjustable water column

    SciTech Connect

    Roach, Dennis P.; Neidigk, Stephen O.; Rackow, Kirk A.; Duvall, Randy L.

    2015-09-01

    An ultrasonic testing device having a variable fluid column height is disclosed. An operator is able to adjust the fluid column height in real time during an inspection to to produce optimum ultrasonic focus and separate extraneous, unwanted UT signals from those stemming from the area of interest.

  17. SURFACTANT ENHANCED REMEDIATION OF SOIL COLUMNS CONTAMINATED BY RESIDUAL TETRACHLOROETHYLENE

    EPA Science Inventory

    The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa sand was evaluated in four column experiments. Residual PCE was emplaced by injecting 14C-labeled PCE into water-saturated soil columns and displacing the free product ...

  18. A Better Method for Filling Pasteur Pipet Chromatography Columns

    ERIC Educational Resources Information Center

    Ruekberg, Ben

    2006-01-01

    An alternative method for the preparation of Pasteur pipet chromatography columns is presented that allows the column to be filled with solvent without bubbles and allows greater control of fluid flow while the materials to be separated are added. Students are required to wear gloves and goggles and caution should be used while handling glass…

  19. COLUMN EXPERIMENTS AND ANOMALOUS CONDUCTIVITY IN HYDROCARBON-IMPACTED SOILS

    EPA Science Inventory

    A laboratory experiment was designed to increase the understanding of the geoelectric effects of microbial " degradation of hydrocarbons. Eight large columns were were paired to provide a replicate of each of four experiments. These large-volume columns contained "sterilized" soi...

  20. Measurement of the axial and radial temperature profiles of a chromatographic column. Influence of thermal insulation on column efficiency.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2007-01-01

    The temperatures of the metal wall along a chromatographic column (longitudinal temperature gradients) and of the liquid phase across the outlet section of the column (radial temperature gradients) were measured at different flow rates with the same chromatographic column (250 mm x 4.6 mm). The column was packed with 5 microm C18-bonded silica particles. The measurements were carried out with surface and immersion thermocouples (all junction Type T, +/-0.1 K) that measure the local temperature. The column was either left in a still-air bath (ambient temperature, T(ext) = 295-296 K) or insulated in a packing foam to avoid air convection around its surface. The temperature profiles were measured at several values of the inlet pressure (approximately = 100, 200, 300 and 350 bar) and with two mobile phases, pure methanol and a 2.5:97.5 (v/v, %) methanol:water solution. The experimental results show that the longitudinal temperature gradients never exceeded 8 K for a pressure drop of 350 bars. In the presence of the insulating foam, the longitudinal temperature gradients become quasi-linear and the column temperature increases by +1 and +3 K with a water-rich (heat conductivity approximately = 0.6 W/m/K) and pure methanol (heat conductivity approximately = 0.2 W/m/K), respectively. The radial temperature gradients are maximum with methanol (+1.5 K at 290 bar inlet pressure) and minimum with water (+0.8 K at 290 bar), as predicted by the solution of the heat transfer balance in a chromatographic column. The profile remains parabolic all along the column. Combining the results of these measurements (determination of the boundary conditions on the wall, at column inlet and at column outlet) with calculations using a realistic model of heat dispersion in a porous medium, the temperature inside the column could be assessed for any radial and axial position.

  1. HEAT TRANSFER ANALYSIS FOR FIXED CST AND RF COLUMNS

    SciTech Connect

    Lee, S

    2007-10-17

    In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, transient and steady state two-dimensional heat transfer models have been constructed for columns loaded with cesium-saturated crystalline silicotitanate (CST) or spherical Resorcinol-Formaldehyde (RF) beads and 6 molar sodium tank waste supernate. Radiolytic decay of sorbed cesium results in heat generation within the columns. The models consider conductive heat transfer only with no convective cooling and no process flow within the columns (assumed column geometry: 27.375 in ID with a 6.625 in OD center-line cooling pipe). Heat transfer at the column walls was assumed to occur by natural convection cooling with 35 C air. A number of modeling calculations were performed using this computational heat transfer approach. Minimal additional calculations were also conducted to predict temperature increases expected for salt solution processed through columns of various heights at the slowest expected operational flow rate of 5 gpm. Results for the bounding model with no process flow and no active cooling indicate that the time required to reach the boiling point of {approx}130 C for a CST-salt solution mixture containing 257 Ci/liter of Cs-137 heat source (maximum expected loading for SCIX applications) at 35 C initial temperature is about 6 days. Modeling results for a column actively cooled with external wall jackets and the internal coolant pipe (inlet coolant water temperature: 25 C) indicate that the CST column can be maintained non-boiling under these conditions indefinitely. The results also show that the maximum temperature of an RF-salt solution column containing 133 Ci/liter of Cs-137 (maximum expected loading) will never reach boiling under any conditions (maximum predicted temperature without cooling: 88 C). The results indicate that a 6-in cooling pipe at the center of the column provides the most effective cooling mechanism for reducing the

  2. THERMAL MODELING OF ION EXCHANGE COLUMNS WITH SPHERICAL RF RESIN

    SciTech Connect

    Lee, S.; King, W.

    2009-12-30

    Models have been developed to simulate the thermal performance of RF columns fully loaded with radioactive cesium. Temperature distributions and maximum temperatures across the column were calculated during Small Column Ion Exchange (SCIX) process upset conditions with a focus on implementation at Hanford. A two-dimensional computational modeling approach was taken to include conservative, bounding estimates for key parameters such that the results will provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on RF. The current full-scale design for the SCIX system includes a central cooling tube, and one objective of these calculations was to examine its elimination to simplify the design. Results confirmed that a column design without a central cooling tube is feasible for RF, allowing for the possibility of significant design simplifications if it can be assumed that the columns are always filled with liquid. With active cooling through the four outer tubes, the maximum column diameter expected to maintain the temperature below the assumed media and safety limits is 26 inches, which is comparable to the current design diameter. Additional analysis was conducted to predict the maximum column temperatures for the previously unevaluated accident scenario involving inadvertent drainage of liquid from a cesium-saturated column, with retention of the ion exchange media and cesium in the column. As expected, much higher maximum temperatures are observed in this case due to the poor heat transfer properties of air versus liquid. For this hypothetical accident scenario involving inadvertent and complete drainage of liquid from a cesium-saturated column, the modeling results indicate that the maximum temperature within a 28 inch diameter RF column with external cooling is expected to exceed 250 C within 2 days, while the maximum temperature of a 12 inch column is maintained below

  3. Experimental study of wave propagation dynamics of multicomponent distillation columns

    SciTech Connect

    Ting, J.; Helfferich, F.G.; Hwang, Y.L.; Graham, G.K.; Keller, G.E. II

    1999-10-01

    Distillation columns with sharp separations exhibit severely nonlinear behavior, which has been known to cause difficulties in column control and design. Such a column is characterized by sharp composition and temperature variations in the column. Previously, the binary distillation case was thoroughly analyzed using a nonlinear wave theory and such an analysis was experimentally validated. For multicomponent distillation, the complicated nonlinear dynamics of the movement and interference of multiple sharp composition variations can be elucidated with a coherent-wave theory developed earlier for general countercurrent separation processes. With a ternary alcohol mixture, the present study has experimentally verified the theory by demonstrating the existence and propagation of constant-pattern coherent waves in a 50-tray stripping column in response to a step disturbance of feed composition, feed flow rate, or reboiler heat supply. The study has also tested the theory's predictions of composition profile, wave velocities, and asymmetric dynamics.

  4. Experimental study of wave propagation dynamics of binary distillation columns

    SciTech Connect

    Hwang, Y.L.; Graham, G.K.; Keller, G.E. II; Ting, J.; Helfferich, F.G.

    1996-10-01

    High-purity distillation columns are typically difficult to control because of their severely nonlinear behavior reflected by their sharp composition and temperature profiles. The dynamic behavior of such a column, as characterized by the movement of its sharp profile, was elucidated by a nonlinear wave theory established previously. With binary alcohol mixtures, this study provides an experimental observation of such wave-propagation dynamics of a 40-tray stripping column and a 50-tray fractionation column in response to step disturbances of feed composition, feed flow rate, and reboiler heat supply. These experimental results have verified that the sharp profile in a high-purity column moves as a constant-pattern wave and that the nonlinear wave theory predicts its velocity satisfactorily with very simple mathematics. Results also demonstrate the asymmetric dynamics of the transitions between two steady states.

  5. Mitigation of Liquefaction in Sandy Soils Using Stone Columns

    NASA Astrophysics Data System (ADS)

    Selcuk, Levent; Kayabalı, Kamil

    2010-05-01

    Soil liquefaction is one of the leading causes of earthquake-induced damage to structures. Soil improvement methods provide effective solutions to reduce the risk of soil liquefaction. Thus, soil ground treatments are applied using various techniques. However, except for a few ground treatment methods, they generally require a high cost and a lot of time. Especially in order to prevent the risk of soil liquefaction, stone columns conctructed by vibro-systems (vibro-compaction, vibro-replacement) are one of the traditional geotechnical methods. The construction of stone columns not only enhances the ability of clean sand to drain excess pore water during an earthquake, but also increases the relative density of the soil. Thus, this application prevents the development of the excess pore water pressure in sand during earthquakes and keeps the pore pressure ratio below a certain value. This paper presents the stone column methods used against soil liquefaction in detail. At this stage, (a) the performances of the stone columns were investigated in different spacing and diameters of columns during past earthquakes, (b) recent studies about design and field applications of stone columns were presented, and (c) a new design method considering the relative density of soil and the capacity of drenage of columns were explained in sandy soil. Furthermore, with this new method, earthquake performances of the stone columns constructed at different areas were investigated before the 1989 Loma Prieta and the 1994 Northbridge earthquakes, as case histories of field applications, and design charts were compiled for suitable spacing and diameters of stone columns with consideration to the different sandy soil parameters and earhquake conditions. Key Words: Soil improvement, stone column, excess pore water pressure

  6. HEAT TRANSFER ANALYSIS FOR ION-EXCHANGE COLUMN SYSTEM

    SciTech Connect

    Lee, S.; King, W.

    2011-05-23

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed, inadvertent column drainage, and loss of active cooling in the column. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature.

  7. Novel techniques for slurry bubble column hydrodynamics

    SciTech Connect

    Dudukovic, M.P.

    1999-05-14

    The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research Engineering Company was to improve the knowledge base for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. During the first year (July 1, 1995--June 30, 1996) of this three year program novel experimental tools (computer aided radioactive particle tracking (CARPT), particle image velocimetry (PIV), heat probe, optical fiber probe and gamma ray tomography) were developed and tuned for measurement of pertinent hydrodynamic quantities, such as velocity field, holdup distribution, heat transfer and bubble size. The accomplishments were delineated in the First Technical Annual Report. The second year (July, 1996--June 30, 1997) was spent on further development and tuning of the novel experimental tools (e.g., development of Monte Carlo calibration for CARPT, optical probe development), building up the hydrodynamic data base using these tools and comparison of the two techniques (PIV and CARPT) for determination of liquid velocities. A phenomenological model for gas and liquid backmixing was also developed. All accomplishments were summarized in the Second Annual Technical Report. During the third and final year of the program (July 1, 1997--June 30, 1998) and during the nine months no cost extension, the high pressure facility was completed and a set of data was taken at high pressure conditions. Both PIV, CT and CARPT were used. More fundamental hydrodynamic modeling was also undertaken and model predictions were compared to data. The accomplishments for this period are summarized in this report.

  8. Miniature Distillation Column for Producing LOX From Air

    NASA Technical Reports Server (NTRS)

    Rozzi, Jay C.

    2006-01-01

    The figure shows components of a distillation column intended for use as part of a system that produces high-purity liquid oxygen (LOX) from air by distillation. (The column could be easily modified to produce high-purity liquid nitrogen.) Whereas typical industrial distillation columns for producing high-purity liquid oxygen and/or nitrogen are hundreds of feet tall, this distillation column is less than 3 ft (less than about 0.9 m) tall. This column was developed to trickle-charge a LOX-based emergency oxygen system (EOS) for a large commercial aircraft. A description of the industrial production of liquid oxygen and liquid nitrogen by distillation is prerequisite to a meaningful description of the present miniaturized distillation column. Typically, such industrial production takes place in a chemical processing plant in which large quantities of high-pressure air are expanded in a turboexpander to (1) recover a portion of the electrical power required to compress the air and (2) partially liquefy the air. The resulting two-phase flow of air is sent to the middle of a distillation column. The liquid phase is oxygen-rich, and its oxygen purity increases as it flows down the column. The vapor phase is nitrogen-rich and its nitrogen purity increases as it flows up the column. A heater or heat exchanger, commonly denoted a reboiler, is at the bottom of the column. The reboiler is so named because its role is to reboil some of the liquid oxygen collected at the bottom of the column to provide a flow of oxygen-rich vapor. As the oxygen-rich vapor flows up the column, it absorbs the nitrogen in the down-flowing liquid by mass transfer. Once the vapor leaves the lower portion of the column, it interacts with down-flowing nitrogen liquid that has been condensed in a heat exchanger, commonly denoted a condenser, at the top of the column. Liquid oxygen and liquid nitrogen products are obtained by draining some of the purified product at the bottom and top of the column

  9. Self-Consistent Monte Carlo Simulations of Positive Column Discharges

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Kortshagen, U.

    1998-10-01

    In recent years it has become widely recognized that electron distribution functions in atomic gas positive column discharges are best described as non local over most of the range of R× N (column radius × gas density) where positive columns are stable. The use of an efficient Monte Carlo code with a radial potential expansion in powers of r^2 and with judiciously chosen constraints on the potential near the axis and wall now provides fully self-consistent kinetic solutions using only small computers. A set of solutions at smaller R× N and lower currents are presented which exhibit the classic negative dynamic resistance of the positive column at low currents. The negative dynamic resistance is due to a non-negligible Debye length and is sometimes described as a transition from free to ambipolar diffusion. This phenomenon is sensitive to radial variations of key parameters in the positive column and thus kinetic theory simulations are likely to provide a more realistic description than classic isothermal fluid models of the positive column. Comparisons of kinetic theory simulations to various fluid models of the positive column continue to provide new insight on this `corner stone' problem of Gaseous Electronics.

  10. Orientation and color columns in monkey visual cortex.

    PubMed

    Dow, Bruce M

    2002-10-01

    The literature on orientation and color columns in monkey visual cortex is reviewed. The orientation column model most consistent with existing data is one containing 'stripes' of alternating positive and negative orientation 'singularities' (cytochrome oxidase blobs) which run along the centers of ocular dominance (OD) columns, with horizontal and vertical orientations alternating at interblob centers. Evidence is summarized suggesting that color is mapped continuously across the monkey's primary visual cortex, with the ends of the spectrum located at 'red' and 'blue' cytochrome oxidase blobs and extra-spectral purple located between adjacent red and blue blobs in the same OD column. In the orientation column model, the 'linear zones' of Obermayer and Blasdel have the appearance of the lines on a pumpkin. A pinwheel model of color columns, consistent with existing data, includes spectral and extra-spectral colors as spokes. Spectral iso-color lines run across iso-orientation lines in linear zones, while extra-spectral iso-color lines occupy the 'saddle points' of Obermayer and Blasdel. The color column model accounts for closure of the perceptual color circle, as proposed by Isaac Newton in 1704, but does not account for color opponency.

  11. Model of decision system for 13C Isotope Separation column

    NASA Astrophysics Data System (ADS)

    Boca, M. L.

    2015-11-01

    This paper presents the model of a decisional system for 13C Isotope Separation column, which is used to detect mission critical situation. The start model was a model of one distributed control system of critical situations that may arise in the operation of the distillation column. The research work it is proposed a model of decision system which implement a temperature sensor inside of liquid nitrogen level in the condenser. The condenser is a part of column where take place the cryogenic process using nitrogen liquid. The work temperature is very low about -192oC, and because the temperature can grow or go down more than 2 degrees is a very critical location inside the column. In this way the column has a deeply monitor and supervised and it take a decision in a proper time when the temperature is grow up or getting down and became a critical situation. For monitor and supervised it was used MatLAB SimuLink. The model, the decision system gives a signal to one sensor when something is wrong in the condenser which is the most critical place of the isotopic column. In this way it creates an alarm that something is getting wrong in the isotopic column.

  12. Shortcut models and feasibility considerations for emerging batch distillation columns

    SciTech Connect

    Lotter, S.P.; Diwekar, U.M.

    1997-03-01

    The transient nature and flexibility of batch distillation allow for configuring the column in a number of different ways. Some of the new configurations are an inverted column, a middle vessel column, and a multivessel column. These new column configurations have also provided new ways of operation. The preliminary analysis of these emerging columns has shown promising behavior, because of the added flexibility. This added flexibility is especially interesting for a chemical industry where the quantity and lifetime of the products are uncertain, but it has also made the analysis of the system more difficult. Shortcut procedures provide an easy way of understanding the global behavior of complex systems. In this paper the authors are presenting shortcut procedures for the newly described batch distillation column configurations. The transient profiles obtained by the proposed shortcut procedures and rigorous models are compared using extensive test cases. Global qualitative properties and feasibility criteria are derived for these new designs, and a detailed analysis of these configurations is also presented.

  13. ITER relevant testing of a cryogenic distillation column system

    SciTech Connect

    Bellamy, D.G.; Robins, J.R.; Woodall, K.B.; Sood, S.K.; Gierszewski, P.

    1995-10-01

    A new experimental system has been constructed to test ITER relevant distillation columns and related cryogenic distillation (CD) hardware and control systems. These columns are used to purify tritium in the ITER fuel cycle. The ITER test column reported here has a diameter of about 30 mm and a packed length of approximately 150 cm. It can operate with a hydrogen isotope (Q{sub 2}) boilup of about 60 watts. Two 30 W refrigeration systems were coupled together to deliver as close as possible to 60 watts of cooling. The separation performance of the column was determined by accurately measuring the tritium concentration in the feed and product streams using a mixture of D{sub 2} and DT gas. Conditions which yield a column theoretical plate height as low as 2.05 cm. and a plate inventory of 0.118 moles are reported. The goal of this research program is to measure the performance of ITER relevant columns, packings, condensers, and reboilers in order to minimize hydrogen (Q{sub 2}) and tritium holdup and to show that ITER objectives can be met with smaller diameter and lower tritium inventory columns than have previously been considered. 5 refs., 4 figs.

  14. Investigation of Gas Holdup in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2015-11-01

    Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.

  15. The Effects of Pulsating Flow on Eruption Column Dynamics

    NASA Astrophysics Data System (ADS)

    Black, T.; Dufek, J.; Benage, M. C.

    2015-12-01

    Pulsating flow, at frequencies ranging from 10-2 to 101 Hz, has been recorded in explosive eruptions through video, thermal imagery, and infrasonic and seismic data. Such pulsating flow can be generated from instabilities in bubbly magma, and from granular instabilities in post-fragmentation conduit flow. Variable fluxes of gas and particles at the vent can alter entrainment conditions, and consequently affect eruption column stability. However, volcanic eruption models typically assume steady flow from the vent, and regime diagrams of eruption column stability are based on such steady flow assumptions. Using Eulerian-Eulerian multiphase numerical simulations of eruption columns with both steady and pulsating sources, we compared the relative behavior of steady and pulsed columns across a range of pulse frequencies and mass fluxes at the vent (mass flux is time-averaged for pulsating cases). Preliminary results suggest that pulsating flow increases air entrainment into the column relative to steady flow for otherwise constant eruption conditions, and that entrainment increases with decreasing pulse frequency. Increased entrainment at low frequency implies that low-frequency pulsed columns are more buoyant and potentially more stable than their steady counterparts, for a given mass flux. This effect disrupts the steady flow-based understanding of eruption column stability regimes and may be a factor to consider for future assessment of volcanic hazards and interpreting mass flux conditions from deposits.

  16. Miniature electron microscope beam column optics

    NASA Astrophysics Data System (ADS)

    Loyd, Jody Stuart

    This investigation is in the area of electrostatic lens design with the overarching goal of contributing to the creation of a miniaturized scanning electron microscope (SEM) for use in mineralogical analysis or detection of signs of life on the surface of Mars. Such an instrument could also have application in the exploration of Earth's moon, planetary moons, asteroids, or comets. Other embodiments could include tabletop or field portable SEMs for use on Earth. The scope of this research is in the design of a beam column that attains focusing, demagnification, and aberration control within the smallest achievable package. The goals of planetary exploration and of spaceflight in general impose severe constraints on the instrument's mass and electrical power consumption, while favoring a robust design of small size and high rigidity that is also simple to align. To meet these requirements a design using electrostatic lenses was favored because of the lower power requirement and mass of electrostatic versus magnetic lenses, their relatively simple construction, as well as inherently easier shielding from extraneous fields. In modeling the lens field, a hybrid of a Boundary Element Method (BEM) and a Fourier series solution was employed, whereby an initial solution from the BEM is used to derive the bounding potential of a cylindrical subdomain for the subsequent Fourier series solution. The approach is applicable to many problems in physics and combines the inherent precision of this series solution with the flexibility of BEM to describe practical, non-idealized electrode shapes. The resulting lens field in the Fourier series subdomain is of higher precision, thereby allowing smaller errors in subsequent calculations of electron ray paths. The effects of aberrations are thus easier to observe in tracing non-paraxial rays. A significant speed increase in tracing rays is also observed. The modeling technique has been validated by reproducing example ray-traces through

  17. Mass partitioning in transitional Plinian columns

    NASA Astrophysics Data System (ADS)

    Carazzo, G.; Kaminski, E.; Tait, S.

    2012-12-01

    The transitional regime of explosive volcanic eruptions is characterized by the coexistence of a stable atmospheric ash plume and an unstable ash fountain collapsing at ground level. Building a detailed understanding of the dynamics of this transitional behavior is of crucial importance for hazard assessment. Elaborate 3D numerical models are commonly used to identify the conditions separating the types of explosive volcanic flow regimes. To develop an alternative approach, we present new laboratory-scale experiments, which consist of injecting upwards a mixture of hot gas and hot particles at a fixed rate into a large chamber of atmospheric air at ambient temperature. The range of conditions imposed at the source allows us to reproduce the main forces acting on the dynamics of a volcanic plume, as inferred from our scaling analysis. The laboratory experiments presented here reproduce closely the different types of flow behavior observed during explosive eruptions, including the transitional regime. We show that the threshold condition for the triggering of the transitional regime is well described by a simple Top-Hat formalism. Furthermore, we identify a key stability parameter controlling the mass partitioning between convective material and collapsing flow that allows us to define a universal scaling relationship. In volcanic plumes, this stability number is found to be sensitive to the magmatic temperature and, to a lesser extent, to the source gas content. It does not depend on the mass discharge rate, even though this parameter strongly controls the initiation of the partial collapse regime. An exhaustive review of geological data on past explosive eruptions suggests that the stability parameter captures well the physics of partial collapse, and can be used to predict the mass of material that will flow to the ground once the eruption column has entered the partial collapse regime. Therefore, our experimentally-determined scaling law coupled with a simple Top

  18. Solute transport through large uniform and layered soil columns

    NASA Astrophysics Data System (ADS)

    Porro, I.; Wierenga, P. J.; Hills, R. G.

    1993-04-01

    Solute transport experiments are often conducted with homogeneous soils, whereas transport in real situations takes place in heterogeneous soils. An experiment was conducted to compare unsaturated solute transport through uniform and layered soils. Pulse inputs of tritiated water, bromide and chloride were applied under steady flow conditions to the tops of two large (0.95 m diameter by 6 m deep) soil columns. One column was uniformly filled with loamy fine sand and the other filled with alternating 20-cm-thick layers of loamy fine sand and silty clay loam. Soil solution samples were collected during the experiment with suction candles installed at various depths in the columns. Solute transport parameters were estimated by fitting the convection-dispersion equation to the observed breakthrough curves for each solute at various depths in each column. The match between the resulting calibrated curves and the experiment was better for the layered soil column than for the uniform soil column. The results displayed no clear relationship between the dispersion coefficients and depth for any of the tracers for either column. However, dispersivities were greater in the uniform column (3.5 cm) than in the layered column (1.2 cm), while retardation factors for bromide and chloride were similar (0.8 and 0.83, respectively, for the uniform and layered columns). A retardation factor less than one is attributed to anion exclusion. There was evidence of preferential flow in the uniform soil column. The peak concentrations at 5 m depth were greater than those observed at 4 m. Such behavior is inconsistent with one-dimensional flow. Similar results were observed in an experiment performed 3.5 years earlier using the same soil column and approximately the same flow rates, but using a different tracer and associated chemical analysis, different soil saturation prior to the execution of the experiment, and different experimental personnel. This supports the thesis that the anomalous

  19. SENSITIVITY ANALYSIS FOR SALTSTONE DISPOSAL UNIT COLUMN DEGRADATION ANALYSES

    SciTech Connect

    Flach, G.

    2014-10-28

    PORFLOW related analyses supporting a Sensitivity Analysis for Saltstone Disposal Unit (SDU) column degradation were performed. Previous analyses, Flach and Taylor 2014, used a model in which the SDU columns degraded in a piecewise manner from the top and bottom simultaneously. The current analyses employs a model in which all pieces of the column degrade at the same time. Information was extracted from the analyses which may be useful in determining the distribution of Tc-99 in the various SDUs throughout time and in determining flow balances for the SDUs.

  20. Buckling instability of self-assembled colloidal columns.

    PubMed

    Swan, James W; Vasquez, Paula A; Furst, Eric M

    2014-09-26

    Suspended, slender self-assembled domains of magnetically responsive colloids are observed to buckle in microgravity. Upon cessation of the magnetic field that drives their assembly, these columns expand axially and buckle laterally. This phenomenon resembles the buckling of long beams due to thermal expansion; however, linear stability analysis predicts that the colloidal columns are inherently susceptible to buckling because they are freely suspended in a Newtonian fluid. The dominant buckling wavelength increases linearly with column thickness and is quantitatively described using an elastohydrodynamic model and the suspension thermodynamic equation of state. PMID:25302919

  1. Buckling Instability of Self-Assembled Colloidal Columns

    NASA Astrophysics Data System (ADS)

    Swan, James W.; Vasquez, Paula A.; Furst, Eric M.

    2014-09-01

    Suspended, slender self-assembled domains of magnetically responsive colloids are observed to buckle in microgravity. Upon cessation of the magnetic field that drives their assembly, these columns expand axially and buckle laterally. This phenomenon resembles the buckling of long beams due to thermal expansion; however, linear stability analysis predicts that the colloidal columns are inherently susceptible to buckling because they are freely suspended in a Newtonian fluid. The dominant buckling wavelength increases linearly with column thickness and is quantitatively described using an elastohydrodynamic model and the suspension thermodynamic equation of state.

  2. Modeling Cooling Rates of Martian Flood Basalt Columns

    NASA Astrophysics Data System (ADS)

    Weiss, D. K.; Jackson, B.; Milazzo, M. P.; Barnes, J. W.

    2011-12-01

    Columnar jointing in large basalt flows have been extensively studied and can provide important clues about the emplacement conditions and cooling history of a basalt flow. The recent discovery of basalt columns on Mars in crater walls near Marte Vallis provides an opportunity to infer conditions on early Mars when the Martian basalt flows were laid down. Comparison of the Martian columns to Earth analogs allows us to gain further insight into the early Martian climate, and among the best terrestrial analogs are the basalt columns in the Columbia River Basalt Group (CRBG) in eastern Washington. The CRBG is one of the youngest (< 17 Myrs old) and most extensively studied basalt provinces in the world, extending over 163,700 square km with total thickness exceeding 1 km in some places. The morphologies and textures of CRBG basalt columns suggest that in many places flows ~100 m thick cooled at uniform rates, even deep in the flow interior. Such cooling seems to require the presence of water in the column joints since the flow interiors should have cooled much more slowly than the flow margins if conductive cooling dominated. Secondary features, such pillow basalts, likewise suggest the basalt flows were in direct contact with standing water in many places. At the resolution provided by the orbiting HiRISE camera (0.9 m), the Martian basalt columns resemble the CRBG columns in many respects, and so, subject to important caveats, inferences linking the morphologies of the CRBG columns to their thermal histories can be extended in some respects to the Martian columns. In this presentation, we will describe our analysis of the HiRISE images of the Martian columns and what can be reasonably inferred about their thermal histories and the conditions under which they were emplaced. We will also report on a field expedition to the CRBG in eastern Washington State. During that expedition, we surveyed basalt column outcrops on the ground and from the air using Unmanned Aerial

  3. MODELING AND SIMULATION OF SOLID FLUIDIZATION IN A RESIN COLUMN

    SciTech Connect

    Lee, S.

    2014-06-24

    The objective of the present work is to model the resin particles within the column during fluidization and sedimentation processes using computation fluid dynamics (CFD) approach. The calculated results will help interpret experimental results, and they will assist in providing guidance on specific details of testing design and establishing a basic understanding of particle’s hydraulic characteristics within the column. The model is benchmarked against the literature data and the test data (2003) conducted at Savannah River Site (SRS). The paper presents the benchmarking results and the modeling predictions of the SRS resin column using the improved literature correlations applicable for liquid-solid granular flow.

  4. Algebraic instability of hollow electron columns and cylindrical vortices

    SciTech Connect

    Smith, R.A. ); Rosenbluth, M.N. )

    1990-02-05

    An axisymmetric, amgnetically confined electron column, in which the {bold E}{times}{bold B} rotation frequency is not a monotone function of radius, is linearly unstable to two-dimensional, electrostatic disturbances with azimuthal mode number {ital l}=1. The perturbation density is asymptotically proportional to {radical}{ital t} and may be described as a shift of the core of the column. A particle-in-cell simulation indicates that harmonics grow rapidly and that there are secondary instabilities. An identical instability arises in hollow circular vortex columns in an inviscid, incompressible neutral fluid.

  5. Improved direct and indirect systems of columns for ternary distillation

    SciTech Connect

    Agrawal, R.; Fidkowski, Z.T.

    1998-04-01

    Separation of a ternary mixture into almost pure components is discussed. Systems of distillation columns, with higher thermodynamic efficiency, are developed from a direct sequence (or indirect sequence) of distillation columns by allowing for two interconnecting streams of the same composition and different enthalpy. This increases the reversibility of distillation in the second column, which results in replacing a portion of the high-temperature boiling duty with a lower-temperature heat in the direct split case. For the indirect split case, the improvement allows a portion of the low-temperature condensing duty to be replaced with a higher-temperature condensation.

  6. 3D printed metal columns for capillary liquid chromatography.

    PubMed

    Sandron, S; Heery, B; Gupta, V; Collins, D A; Nesterenko, E P; Nesterenko, P N; Talebi, M; Beirne, S; Thompson, F; Wallace, G G; Brabazon, D; Regan, F; Paull, B

    2014-12-21

    Coiled planar capillary chromatography columns (0.9 mm I.D. × 60 cm L) were 3D printed in stainless steel (316L), and titanium (Ti-6Al-4V) alloys (external dimensions of ~5 × 30 × 58 mm), and either slurry packed with various sized reversed-phase octadecylsilica particles, or filled with an in situ prepared methacrylate based monolith. Coiled printed columns were coupled directly with 30 × 30 mm Peltier thermoelectric direct contact heater/cooler modules. Preliminary results show the potential of using such 3D printed columns in future portable chromatographic devices. PMID:25285334

  7. Stone Columns - Determination of the soil improvement factor

    NASA Astrophysics Data System (ADS)

    Pivarč, J.

    2011-09-01

    A stone column is one of the soil stabilizing methods that is used to increase strength, decrease the compressibility of soft and loose fine graded soils, accelerate a consolidation effect and reduce the liquefaction potential of soils. The columns consist of compacted gravel or crushed stone arranged by a vibrator. This paper deals with Priebe's theory (1976) on the design of an improvement factor, which belongs among the most used analytical methods and also describes the numerical and laboratory models of stone columns. The improvement factors calculated from numerical and laboratory models are compared with the improvement factors resulting from Priebe's theory.

  8. Ion chromatographic separation of inorganic ions using a combination of hydrophilic interaction chromatographic column and cation-exchange resin column.

    PubMed

    Arai, Kaori; Mori, Masanobu; Hironaga, Takahiro; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2012-04-01

    A combination of hydrophilic interaction chromatographic (HILIC) column and a weakly acidic cation-exchange resin (WCX) column was used for simultaneous separation of inorganic anions and cations by ion chromatography (IC). Firstly, the capability of HILIC column for the separation of analyte ions was evaluated under acidic eluent conditions. The columns used were SeQuant ZIC-HILIC (ZIC-HILIC) with a sulfobetaine-zwitterion stationary phase (ZIC-HILIC) and Acclaim HILIC-10 with a diol stationary phase (HILIC-10). When using tartaric acid as the eluent, the HILIC columns indicated strong retentions for anions, based on ion-pair interaction. Especially, HILIC-10 could strongly retain anions compared with ZIC-HILIC. The selectivity for analyte anions of HILIC-10 with 5 mmol/L tartaric acid eluent was in the order of I(-) > NO3(-) > Br(-) > Cl(-) > H2PO4(-). However, since HILIC-10 could not separate analyte cations, a WCX column (TSKgel Super IC-A/C) was connected after the HILIC column in series. The combination column system of HILIC and WCX columns could successfully separate ten ions (Na+, NH4+, K+, Mg2+, Ca2+, H2PO4(-), Cl(-), Br(-), NO3(-) and I(-)) with elution of 4 mmol/L tartaric acid plus 8 mmol/L 18-crown-6. The relative standard deviations (RSDs) of analyte ions by the system were in the ranges of 0.02% - 0.05% in retention times and 0.18% - 5.3% in peak areas through three-time successive injections. The limits of detection at signal-to-noise ratio of 3 were 0.24 - 0.30 micromol/L for the cations and 0.31 - 1.2 micromol/L for the anions. This system was applied for the simultaneous determination of the cations and the anions in a vegetable juice sample with satisfactory results.

  9. 28. November 1969 CASTIRON DRAGON GROTESQUE BELOW BASE OF COLUMN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. November 1969 CAST-IRON DRAGON GROTESQUE BELOW BASE OF COLUMN SEPARATING WINDOWS ON NORTH SIDE OF RIGGS LIBRARY - Georgetown University, Healy Building, Thirty-seventh & O Streets, Northwest, Washington, District of Columbia, DC

  10. DETAIL OF UTILITY PIPES AND PLATFORM SUPPORT COLUMN, INTERIOR OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF UTILITY PIPES AND PLATFORM SUPPORT COLUMN, INTERIOR OF ALTITUDE CHAMBER L, FACING EAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  11. Exploring the pressure resistance limits of monolithic silica capillary columns.

    PubMed

    Hara, Takeshi; Eeltink, Sebastiaan; Desmet, Gert

    2016-05-13

    We report on an experimental approach to measure the pressure stability and mechanical strength of monolithic silica capillary columns with different diameters (50 and 100μm i.d.) and considering two different domain sizes, typical for the second generation monoliths or smaller. The approach consists of exposing the capillaries to ultra-high pressures (gradually stepwise increased from 20 to 80MPa), with intermediate measurements of the column efficiency, permeability and retention factors to check the mechanical stability of the bed. It was observed that all tested columns withstood the imposed pressure stress, i.e., all the tested parameters remained unaffected up till the maximal test pressure of 80MPa. The applied pressure gradient corresponded to 320MPa/m. The two 100μm i.d.-capillary columns were also exposed to pressures between 80 and 90MPa for a prolonged time (8h), and this did not cause any damage either. PMID:27086284

  12. Evaluating two process scale chromatography column header designs using CFD.

    PubMed

    Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris

    2014-01-01

    Chromatography is an indispensable unit operation in the downstream processing of biomolecules. Scaling of chromatographic operations typically involves a significant increase in the column diameter. At this scale, the flow distribution within a packed bed could be severely affected by the distributor design in process scale columns. Different vendors offer process scale columns with varying design features. The effect of these design features on the flow distribution in packed beds and the resultant effect on column efficiency and cleanability needs to be properly understood in order to prevent unpleasant surprises on scale-up. Computational Fluid Dynamics (CFD) provides a cost-effective means to explore the effect of various distributor designs on process scale performance. In this work, we present a CFD tool that was developed and validated against experimental dye traces and tracer injections. Subsequently, the tool was employed to compare and contrast two commercially available header designs.

  13. METHOD TO TEST ISOTOPIC SEPARATION EFFICIENCY OF PALLADIUM PACKED COLUMNS

    SciTech Connect

    Heung, L; Gregory Staack, G; James Klein, J; William Jacobs, W

    2007-06-27

    The isotopic effect of palladium has been applied in different ways to separate hydrogen isotopes for many years. At Savannah River Site palladium deposited on kieselguhr (Pd/k) is used in a thermal cycling absorption process (TCAP) to purify tritium for over ten years. The need to design columns for different throughputs and the desire to advance the performance of TCAP created the need to evaluate different column designs and packing materials for their separation efficiency. In this work, columns with variations in length, diameter and metal foam use, were tested using an isotope displacement method. A simple computer model was also developed to calculate the number of theoretical separation stages using the test results. The effects of column diameter, metal foam and gas flow rate were identified.

  14. Aspects of column fabrication for packed capillary electrochromatography.

    PubMed

    Angus, P D; Demarest, C W; Catalano, T; Stobaugh, J F

    2000-07-28

    Various parameters have been evaluated to develop a process for optimization of column manufacture for packed capillary electrochromatography (CEC). Spherisorb ODS-1 was packed into 75 microm I.D. capillaries to establish a standard set of packing conditions to afford high-performance columns free of voids. Numerous silica-based packing materials including porous and non-porous reversed-phase and ion-exchange phases were employed to evaluate the applicability of the standard conditions. Success of column manufacture and performance demonstrate a relationship to the colligative properties of the packing materials under the applied conditions. Frequently encountered difficulties arising from inadequate column conditioning and void formation in the packed bed are identified and discussed.

  15. DETAIL OF THE FRONT PORCH SHOWING THE SQUARE COLUMN, COVED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE FRONT PORCH SHOWING THE SQUARE COLUMN, COVED CEILING, AND STAINED CONCRETE FLOOR. VIEW FACING NORTHWEST. - Hickam Field, Officers' Housing Type H, 208 Sixth Street, Honolulu, Honolulu County, HI

  16. Optimization of bubble column performance for nanoparticle collection.

    PubMed

    Cadavid-Rodriguez, M C; Charvet, A; Bemer, D; Thomas, D

    2014-04-30

    Fibrous media embody the most effective and widely used method of separating ultrafine particles from a carrier fluid. The main problem associated with them is filter clogging, which induces an increasingly marked pressure drop with time and thus imposes regular media cleaning or replacement. This context has prompted the idea of investigating bubble columns, which operate at constant pressure drop, as alternatives to fibrous filters. This study examines the influence of different operating conditions, such as liquid height, air flow rate, bubble size and presence of granular beds on ultrafine particle collection. Experimental results show that bubble columns are characterised by high collection efficiency, when they feature a large liquid height and small diameter bubbling orifices, while their efficiencies remain lower than those of fibrous filters. Gas velocity does not greatly influence collection efficiency, but the inclusion of a granular bed, composed of beads, increases the bubble residence time in the column, thereby increasing the column collection efficiency.

  17. View of first level from north showing interstitial structural columns ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of first level from north showing interstitial structural columns for the Shuttle assemble configuration. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL

  18. 17. Truss suspended column, industrial loft building, looking at southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Truss suspended column, industrial loft building, looking at southeast corner. Note open floor plan as a result of the floor beams being suspended from above. - Dry Dock Engine Works, 1801 Atwater Street, Detroit, MI

  19. 22. TYPICAL FOR THE FIRST FLOOR INTERIORS, ARE PAIRED COLUMN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. TYPICAL FOR THE FIRST FLOOR INTERIORS, ARE PAIRED COLUMN PILASTERS IN KEENE CEMENT PLASTER. BASE OF PILASTER IS SHOWN. - Pacific Telephone & Telegraph Company Building, 1519 Franklin Street, Oakland, Alameda County, CA

  20. 8. DETAIL VIEW OF CASTIRON OCTAGONAL COLUMNS AND CASTIRON TRUSSES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW OF CAST-IRON OCTAGONAL COLUMNS AND CAST-IRON TRUSSES SUPPORTING SHED PORTION OF ROOF. - Baltimore & Ohio Railroad, Martinsburg West Roundhouse, East End of Race & Martin Streets, Martinsburg, Berkeley County, WV

  1. 9. Detail view of typical wooden column and beam connection, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail view of typical wooden column and beam connection, located in second floor carding room of 1866 section of mill. - Riverdale Cotton Mill, Corner of Middle & Lower Streets, Valley, Chambers County, AL

  2. GRAPHITE BLOCKS ARE ARRAYED IN "THERMAL COLUMN" ON NORTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GRAPHITE BLOCKS ARE ARRAYED IN "THERMAL COLUMN" ON NORTH SIDE OF REACTOR. INL NEGATIVE NO. 4000. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. Detail of three trusses resting on one column at the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of three trusses resting on one column at the junction of the roundhouse and care repair shop looking south. - U.S. Steel National Tube Works, Auxiliary Buildings, Along Monongahela River, McKeesport, Allegheny County, PA

  4. 9. DETAIL VIEW OF SUPPORT COLUMNS AND LATERAL BRACINGS INSIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL VIEW OF SUPPORT COLUMNS AND LATERAL BRACINGS INSIDE CUPOLA - Baltimore & Ohio Railroad, Mount Clare Passenger Car Shop, Southwest corner of Pratt & Poppleton Streets, Baltimore, Independent City, MD

  5. Applying risk assessment principles to a batch distillation column

    SciTech Connect

    Woodward, J.L.; Moosemiller, M.D.

    1996-12-31

    Some distillation columns in the chemical industry are operated in batch mode with a fairly short operating cycle. At the end of each cycle the columns are cooled and recharged. During the cooling cycle, air will be drawn into the column by the action of a vacuum relief valve. Consequently, for a finite portion of the operating cycle a flammable mixture will exist in the column. Here we evaluate the risk posed by such an operation to see if a mitigation measure is justified. We develop a fault tree and estimate the frequency of ignition by all possible ignition sources. By comparing the risk reduction attainable by installing a lightning protection system with that attainable by using an inert blanketing system the lightning protection system is found to be the preferred solution. It provides about the same risk reduction at a lower overall cost. 2 refs., 3 figs., 4 tabs.

  6. VIEW OF TWO HEAVY WATER STORAGE TANKS (BEHIND SUPPORT COLUMNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF TWO HEAVY WATER STORAGE TANKS (BEHIND SUPPORT COLUMNS AND STEEL BEAMS), SUB-BASEMENT LEVEL -27’, LOOKING SOUTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  7. INTERIOR FOURTH FLOOR, SOUTH HALF, LOOKING SOUTH. NOTE MUSHROOM COLUMNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR FOURTH FLOOR, SOUTH HALF, LOOKING SOUTH. NOTE MUSHROOM COLUMNS AND CEILING HAS WOODEN NAILERS. - Colt Fire Arms Company, North Armory, 36-150 Huyshope Avenue, 17-170 Van Dyke Avenue, 49 Vredendale Avenue, Hartford, Hartford County, CT

  8. Diagnostic considerations of lateral column foot pain in athletes.

    PubMed

    Traister, Eric; Simons, Stephen

    2014-01-01

    Foot maladies are often classified descriptively by general foot locations, i.e., forefoot, midfoot, and rearfoot. However, common vernacular verbiage, implicating a common biomechanical purpose, also applies pathology to the medial or lateral foot column. Although imprecisely defined, lateral column injuries to the foot encompass conditions that affect any of the lateral side of the foot from the calcaneus to the toes. The lateral column of the foot includes the calcaneus, the cuboid, the fourth and fifth metatarsals as well as the calcaneocuboid, cuboido-metatarsal, and intermetatarsal joints. It may be helpful to think in a "lateral column" fashion when evaluating and treating certain lateral foot injuries, load patterns, and biomechanical or anatomical faults. Misdiagnosed injuries in this area of the foot can be a source of great morbidity to the athlete. It is important for the clinician to be aware of common conditions presenting as pain to the lateral side of the foot.

  9. HILIC separation mechanisms of tetracyclines on amino bonded silica column

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of mobile phase variations on the chromatographic separation on amino bonded silica column in hydrophilic interaction chromatography (HILIC) were investigated for four zwitterionic tetracyclines (TCs): oxytetracycline, doxycycline, chlortetracycline and tetracycline. A mixed-mode retention m...

  10. INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED SALT BRINE TO MAKE BICARBONATE OF SODA. - Solvay Process Company, SA Wetside Building, Between Willis & Milton Avenue, Solvay, Onondaga County, NY

  11. 12. FIRST FLOOR CAR BARN SPACE, SHOWING COLUMNS AND ROOF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. FIRST FLOOR CAR BARN SPACE, SHOWING COLUMNS AND ROOF STRUCTURE. VIEW TO SOUTHEAST. - Commercial & Industrial Buildings, Key City Electric Street Railroad, Powerhouse & Storage Barn, Eighth & Washington Streets, Dubuque, Dubuque County, IA

  12. Looking East at Motor Control System, Clarity Columns and Blend ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking East at Motor Control System, Clarity Columns and Blend Tank Along East Side of Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  13. Detail view of fireplace and mantel, and flanking columns, in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of fireplace and mantel, and flanking columns, in first floor main room, looking from the southwest - National Park Seminary, Swiss Chalet, 2802 Woodstock Avenue, Silver Spring, Montgomery County, MD

  14. Plane shock wave interaction with a cylindrical water column

    NASA Astrophysics Data System (ADS)

    Sembian, S.; Liverts, M.; Tillmark, N.; Apazidis, N.

    2016-05-01

    A complex system of waves propagating inside a water column due to the impact of plane shock wave is investigated both experimentally and numerically. Flow features, such as, focusing of expansion waves generating large negative pressure, nucleation of cavitation bubbles, and a re-circulation zone are observed and discussed qualitatively and quantitatively. Experiments are conducted on a 22 mm diametrical water column hit by shock waves with Mach numbers 1.75 and 2.4 in a newly constructed exploding wire facility. A new technique to create a properly shaped, repeatable, large diameter water column with straight walls is presented. Qualitative features of the flow are captured using the shadowgraph technique. With the aid of numerical simulations the wave motions inside the column are analyzed; the spatial location of the expansion wave focusing point and the corresponding negative peak pressures is estimated.

  15. 8. INTERIOR OF BUILDING 242, SHOWING STRUCTURAL COLUMNS AND ROOF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. INTERIOR OF BUILDING 242, SHOWING STRUCTURAL COLUMNS AND ROOF TRUSSES. VIEW TO SOUTH. - Rocky Mountain Arsenal, Chlorine Production Cell Building, 405 feet South of December Seventh Avenue; 330 feet West of D Street, Commerce City, Adams County, CO

  16. 3. Detail of north loading dock area showing column, insulated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Detail of north loading dock area showing column, insulated doors, and detail of underside of canopy - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX

  17. East side, showing ruin of brownstone column capital that originally ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    East side, showing ruin of brownstone column capital that originally supported the east side portico, a feature that was destroyed in the 1886 earthquake - William Ravenel House, 13 East Battery Street, Charleston, Charleston County, SC

  18. 17. SECOND FLOOR WAREHOUSE SPACE, SHOWING COLUMN AND BEAM CONNECTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. SECOND FLOOR WAREHOUSE SPACE, SHOWING COLUMN AND BEAM CONNECTION. VIEW TO NORTHEAST. - Commercial & Industrial Buildings, Dubuque Seed Company Warehouse, 169-171 Iowa Street, Dubuque, Dubuque County, IA

  19. 10. DETAIL OF CAST IRON COLUMN BASE ON FIRST FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF CAST IRON COLUMN BASE ON FIRST FLOOR STOREFRONT, SHOWING MANUFACTURER'S STAMP: IOWA IRON WOKS CO. DUBUQUE. VIEW TO SOUTHWEST. - Commercial & Industrial Buildings, Dubuque Seed Company Warehouse, 169-171 Iowa Street, Dubuque, Dubuque County, IA

  20. 24. PHOTOGRAPH OF FIRST FLOOR. NOTE BRACKETS ON CENTER COLUMN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. PHOTOGRAPH OF FIRST FLOOR. NOTE BRACKETS ON CENTER COLUMN WHERE BRASS STATUS GAGES WERE MOUNTED TO MONITOR STEAM AND WATER PRESSURES IN YARD MAINS. SEE PHOTO CA-2294-25. - Mare Island Naval Shipyard, Firehouse, Vallejo, Solano County, CA

  1. PAINT SHOP, DETAIL OF FABRICATED COLUMN AT JUNCTION OF WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PAINT SHOP, DETAIL OF FABRICATED COLUMN AT JUNCTION OF WEST BAY (ORIGINAL) AND CENTER BAYS (SECOND ADDITION), LOOKING NORTHEAST. - Southern Pacific, Sacramento Shops, Paint Shop, 111 I Street, Sacramento, Sacramento County, CA

  2. View south; detail view of column A13, south bay ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View south; detail view of column A13, south bay - Naval Base Philadelphia-Philadelphia Naval Shipyard, Foundry-Propeller Shop, North of Porter Avenue, west of Third Street West, Philadelphia, Philadelphia County, PA

  3. Groundwater arsenic remediation using zerovalent iron: Batch and column tests

    EPA Science Inventory

    Recently, increasing efforts have been made to explore the applicability and limitations of zerovalent iron (Fe0) for the treatment of arsenicbearing groundwater and wastewater. The experimental batch and column tests have demonstrated that arsenate and arsenite are removed effec...

  4. In-situ polymerization PLOT columns I: divinylbenzene

    NASA Technical Reports Server (NTRS)

    Shen, T. C.

    1992-01-01

    A novel method for preparation of porous-layer open-tubular (PLOT) columns is described. The method involves a simple and reproducible, straight-forward in-situ polymerization of monomer directly on the metal tube.

  5. INTERIOR VIEW OF THE FIRST FLOOR, SHOWING COLUMNS WITH CONICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF THE FIRST FLOOR, SHOWING COLUMNS WITH CONICAL CAPITALS. VIEW FACING SOUTH. - U.S. Naval Base, Pearl Harbor, Aviation Storehouse, Vincennes Avenue at Simms Street, Pearl City, Honolulu County, HI

  6. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect

    Bernard A. Toseland, Ph.D.

    1999-03-01

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors. The past three months of research have been focused on two major areas of bubble column hydrodynamics: (1) pressure and temperature effects on gas holdup and (2) region transition using a sparger as a gas distributor.

  7. 27. VIEW WEST, TYPICAL DOUBLE CONCRETE COLUMN AT EXPANSION JOINT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VIEW WEST, TYPICAL DOUBLE CONCRETE COLUMN AT EXPANSION JOINT - Route 1 Extension, Southbound Viaduct, Spanning Conrail Yards, Wilson Avenue, Delancy Street, & South Street on Routes 1 & 9 Southbound, Newark, Essex County, NJ

  8. 19. VIEW SOUTH, NORTH ELEVATION AT DOUBLE COLUMN CONCRETE EXPANSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. VIEW SOUTH, NORTH ELEVATION AT DOUBLE COLUMN CONCRETE EXPANSION JOINT AT PIER NUMBER 112 - Route 1 Extension, South Street Viaduct, Spanning Conrail & Wheeler Point Road at South Street, Newark, Essex County, NJ

  9. Optimization of bubble column performance for nanoparticle collection.

    PubMed

    Cadavid-Rodriguez, M C; Charvet, A; Bemer, D; Thomas, D

    2014-04-30

    Fibrous media embody the most effective and widely used method of separating ultrafine particles from a carrier fluid. The main problem associated with them is filter clogging, which induces an increasingly marked pressure drop with time and thus imposes regular media cleaning or replacement. This context has prompted the idea of investigating bubble columns, which operate at constant pressure drop, as alternatives to fibrous filters. This study examines the influence of different operating conditions, such as liquid height, air flow rate, bubble size and presence of granular beds on ultrafine particle collection. Experimental results show that bubble columns are characterised by high collection efficiency, when they feature a large liquid height and small diameter bubbling orifices, while their efficiencies remain lower than those of fibrous filters. Gas velocity does not greatly influence collection efficiency, but the inclusion of a granular bed, composed of beads, increases the bubble residence time in the column, thereby increasing the column collection efficiency. PMID:24584069

  10. Evaluating two process scale chromatography column header designs using CFD.

    PubMed

    Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris

    2014-01-01

    Chromatography is an indispensable unit operation in the downstream processing of biomolecules. Scaling of chromatographic operations typically involves a significant increase in the column diameter. At this scale, the flow distribution within a packed bed could be severely affected by the distributor design in process scale columns. Different vendors offer process scale columns with varying design features. The effect of these design features on the flow distribution in packed beds and the resultant effect on column efficiency and cleanability needs to be properly understood in order to prevent unpleasant surprises on scale-up. Computational Fluid Dynamics (CFD) provides a cost-effective means to explore the effect of various distributor designs on process scale performance. In this work, we present a CFD tool that was developed and validated against experimental dye traces and tracer injections. Subsequently, the tool was employed to compare and contrast two commercially available header designs. PMID:24616438

  11. 37. HANGAR FROM RAILROAD DECK TELESCOPED IN COLUMN & SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. HANGAR FROM RAILROAD DECK TELESCOPED IN COLUMN & SHOWING PIN WHICH TRANSFERS LOAD FROM RAILROAD DECK TO TRUSS WHEN IN DOWN POSITION - Armour, Swift, Burlington Bridge, Kansas City, Jackson County, MO

  12. 7. DETAIL VIEW SHOWING CONNECTION OF BRIDGE COLUMN, TRUSS, TOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL VIEW SHOWING CONNECTION OF BRIDGE COLUMN, TRUSS, TOP BEAM, AND ARCHED CROSS MEMBER. NOTE KNEE BRACE FOR CROSS MEMBER AND DIAGONAL TENSION BAR - Heber Creeper Railroad Line, Olmstead Bridge, Spanning Provo River, Provo, Utah County, UT

  13. Rapid Column Extraction method for SoilRapid Column Extraction method for Soil

    SciTech Connect

    Maxwell, Sherrod, L. III; Culligan, Brian K.

    2005-11-07

    The analysis of actinides in environmental soil and sediment samples is very important for environmental monitoring as well as for emergency preparedness. A new, rapid actinide separation method has been developed and implemented that provides total dissolution of large soil samples, high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resin{reg_sign}, TRU Resin{reg_sign} and DGA-Resin{reg_sign} cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu) neptunium (Np), uranium (U), americium (Am), and curium (Cm) using a single multi-stage column combined with alpha spectrometry. The method combines a rapid fusion step for total dissolution to dissolve refractory analytes and matrix removal using cerium fluoride precipitation to remove the difficult soil matrix. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.

  14. Generator for ionic gallium-68 based on column chromatography

    DOEpatents

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A physiologically acceptable solution of gallium-68 fluorides, having an activity of 0.1 to 50 millicuries per milliliter of solution is provided. The solution is obtained from a generator comprising germanium-68 hexafluoride bound to a column of an anion exchange resin which forms gallium-68 in situ by eluting the column with an acid solution to form a solution containing .sup.68 Ga-fluorides. The solution then is neutralized prior to administration.

  15. Increasing the Strength of Aluminum-alloy Columns by Prestressing

    NASA Technical Reports Server (NTRS)

    Holt, M; Hartman, E C

    1937-01-01

    A series of tests was made in which the column strength of 17ST tubing was increased as much as 50 percent by prestressing the tubing to 40,000 pounds per square inch in compression under conditions of support that prevented column failure at this stress. This prestressing achieves it's beneficial effects entirely by improving the compressive properties of the material, principally the proportional limit.

  16. Some design aspects of reactive distillation columns (RDC)

    SciTech Connect

    Mahajani, S.M.; Kolah, A.K.

    1996-12-01

    The design approach of Doherty and co-workers (1988a,b; 1994) for reactive distillation columns (RDC) has been extended for the packed-bed column in which liquid phase backmixing is totally absent. The influence of various design parameters on the feasibility of design has been studied in detail for both kinetically controlled and equilibrium-controlled reactions. A hypothetical example of a three-component reactive system has been considered in the present exercise.

  17. TCAP HYDROGEN ISOTOPE SEPARATION USING PALLADIUM AND INVERSE COLUMNS

    SciTech Connect

    Heung, L.; Sessions, H.; Xiao, S.

    2010-08-31

    The Thermal Cycling Absorption Process (TCAP) was further studied with a new configuration. Previous configuration used a palladium packed column and a plug flow reverser (PFR). This new configuration uses an inverse column to replace the PFR. The goal was to further improve performance. Both configurations were experimentally tested. The results showed that the new configuration increased the throughput by a factor of more than 2.

  18. Design and minimum reflux calculations for multicomponent reactive distillation columns

    SciTech Connect

    Barbosa, D.; Doherty, M.F.

    1987-01-01

    A new set of transformed composition variables is introduced to simplify the design equations for single-feed, multicomponent reactive distillation columns. Based on these equations, a general method of calculating minimum reflux ratios for reactive distillation columns is presented. The new composition variables are also used to derive simple relationships between the dependent design variables, which are not evident when the design equations are written in terms of mole fractions.

  19. Fast GCxGC with short primary columns.

    PubMed

    Harynuk, James; Marriott, Philip J

    2006-03-15

    A novel approach to comprehensive two-dimensional gas chromatography (GCxGC) separations is presented, which operates in a new region of the "GCxGC optimization pyramid". The technique relies on the use of short primary columns to decrease elution temperatures (Te) of analytes from the primary column, with a Te reduction of up to 50 degrees C illustrated. This in turn has implications that will expand the areas where GCxGC can be used, as decreased elution temperatures will allow GCxGC to be applied to mixtures of less volatile compounds or permit the use of less thermally stable stationary phases in the column ensemble. As well, it will allow GCxGC to be applied to thermally labile compounds through a reduction in elution temperature. With short primary columns, resolution and efficiency in the first dimension is sacrificed, but speed is gained; however, the second column in GCxGC provides additional resolution and separation of compounds of differing chemical properties. Thus, it is possible to recover some of the analytical separation power of the system to provide resolution of target analytes from sample impurities. As an example, a case study using short primary columns for the separation of natural pyrethrins, which degrade above 200 degrees C, is described. Even with the sacrifices of overall separation power that are made, there is still sufficient resolution available to separate the six natural pyrethrins from each other and the complex chrysanthemum extract matrix. The use of cold-on-column injection, a short primary column, and a high carrier gas flow rate allow the pyrethrins to be eluted below 200 degrees C, with separation in 17 min and complete resolution from sample matrix.

  20. Column precipitation chromatography: an approach to quantitative analysis of eigencolloids.

    PubMed

    Breynaert, E; Maes, A

    2005-08-01

    A new column precipitation chromatography (CPC) technique, capable of quantitatively measuring technetium eigencolloids in aqueous solutions, is presented. The CPC technique is based on the destabilization and precipitation of eigencolloids by polycations in a confined matrix. Tc(IV) colloids can be quantitatively determined from their precipitation onto the CPC column (separation step) and their subsequent elution upon oxidation to pertechnetate by peroxide (elution step). A clean-bed particle removal model was used to explain the experimental results. PMID:16053321

  1. Thermal analysis for ion-exchange column system

    SciTech Connect

    Lee, S. Y.; King, W. D.

    2012-07-01

    Models have been developed to simulate the thermal characteristics of Crystalline Silico-titanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed, inadvertent column drainage, and loss of active cooling in the column. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. (authors)

  2. Initial testing of a dynamic column for fine coal flotation

    SciTech Connect

    Lai, R.W.; Patton, R.A.; He, D.X.; Joyce, T.; Chiang, S.H.

    1995-12-31

    This paper describes the design and initial performance of a dynamic column for fine coal column flotation. A dynamic column is a modified conventional column with the insertion of a series of draft tubes that provide individual mixing stages. The mixing is beneficial in generating small and uniform bubbles over a wide range of frother dosages. It is also beneficial in the control of flotation where the fluctuation of froth volume should be minimized. In the modified design, a vortex-inducing plate is attached to the top of each draft tube to create an artificial vortex. In theory the vortex action is desirable for collecting the light clean coal froth within the inner mixing zone, and for passing it upward to the next draft tube stage. The mineral laden slurry, particularly the pyrite, is accelerated outside the vortex zone by centrifugal force to reach the wall where it is carried downward to the bottom of the column. The draft tubes are arranged in a series to accomplish multistage cleaning. The experimental results showed that this dynamic column has the potential advantage of higher throughput and better product recovery as well as improved product quality.

  3. Gas chromatographic column for the storage of sample profiles

    NASA Technical Reports Server (NTRS)

    Dimandja, J. M.; Valentin, J. R.; Phillips, J. B.

    1994-01-01

    The concept of a sample retention column that preserves the true time profile of an analyte of interest is studied. This storage system allows for the detection to be done at convenient times, as opposed to the nearly continuous monitoring that is required by other systems to preserve a sample time profile. The sample storage column is essentially a gas chromatography column, although its use is not the separation of sample components. The functions of the storage column are the selective isolation of the component of interest from the rest of the components present in the sample and the storage of this component as a function of time. Using octane as a test substance, the sample storage system was optimized with respect to such parameters as storage and readout temperature, flow rate through the storage column, column efficiency and storage time. A 3-h sample profile was collected and stored at 30 degrees C for 20 h. The profile was then retrieved, essentially intact, in 5 min at 130 degrees C.

  4. High efficiency, high temperature separations on silica based monolithic columns.

    PubMed

    Rogeberg, Magnus; Wilson, Steven Ray; Malerod, Helle; Lundanes, Elsa; Tanaka, Nobuo; Greibrokk, Tyge

    2011-10-14

    The effect of temperature on separation using reversed-phase monolithic columns has been investigated using a nano-LC pumping system for gradient separation of tryptic peptides with MS detection. A goal of this study was to find optimal conditions for high-speed separations. The chromatographic performance of the columns was evaluated by peak capacity and peak capacity per time unit. Column lengths ranging from 20 to 100 cm and intermediate gradient times from 10 to 30 min were investigated to assess the potential of these columns in a final step separation, e.g. after fractionation or specific sample preparation. Flow rates from 250 to 2000 nL/min and temperatures from 20 to 120°C were investigated. Temperature had a significant effect on fast separations, and a flow rate of 2000 nL/min and a temperature of 80°C gave the highest peak capacity per time unit. These settings produced 70% more protein identifications in a biological sample compared to a conventional packed column. Alternatively, an equal amount of protein identifications was obtained with a 40% reduction in run time compared to the conventional packed column.

  5. Installation of the Pulse-Plate Column Pilot Plant

    SciTech Connect

    Nick R. Mann

    2009-07-01

    There are three primary types of solvent extraction equipment utilized in the nuclear industry for reprocessing of used nuclear fuel; pulse columns, mixer-settlers, and centrifugal contactors. Considerable research and development has been performed at the INL and throughout the DOE complex on the application of centrifugal contactors for used fuel reprocessing and these contactors offer many significant advantages. However, pulse columns have been used extensively in the past in throughout the world for aqueous separations processes and remain the preferred equipment by many commercial entities. Therefore, a pulse-plate column pilot plant has been assembled as part of the Advanced Fuel Cycle Initiative to support experimentation and demonstration of pulse column operation. This will allow the training of personnel in the operation of pulse columns. Also, this capability will provide the equipment to allow for research to be conducted in the operation of pulse columns with advanced solvents and processes developed as part of the fuel cycle research and development being performed in the AFCI program.

  6. Revised Thermal Analysis of LANL Ion Exchange Column

    SciTech Connect

    Laurinat, J

    2006-04-11

    This document updates a previous calculation of the temperature distributions in a Los Alamos National Laboratory (LANL) ion exchange column.1 LANL operates two laboratory-scale anion exchange columns, in series, to extract Pu-238 from nitric acid solutions. The Defense Nuclear Facilities Safety Board has requested an updated analysis to calculate maximum temperatures for higher resin loading capacities obtained with a new formulation of the Reillex HPQ anion exchange resin. The increased resin loading capacity will not exceed 118 g plutonium per L of resin bed. Calculations were requested for normal operation of the resin bed at the minimum allowable solution feed rate of 30 mL/min and after an interruption of flow at the end of the feed stage, when one of the columns is fully loaded. The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades. At low temperatures, resin bed temperatures increase primarily due to decay heat. At {approx}70 C a Low Temperature Exotherm (LTE) resulting from the reaction between 8-12 M HNO{sub 3} and the resin has been observed. The LTE has been attributed to an irreversible oxidation of pendant ethyl benzene groups at the termini of the resin polymer chains by nitric acid. The ethyl benzene groups are converted to benzoic acid moities. The resin can be treated to permanently remove the LTE by heating a resin suspension in 8M HNO{sub 3} for 30-45 minutes. No degradation of the resin performance is observed after the LTE removal treatment. In fact, heating the resin in boiling ({approx}115-120 C) 12 M HNO{sub 3} for 3 hr displays thermal stability analogous to resin that has been treated to remove the LTE. The analysis is based on a previous study of the SRS Frames Waste Recovery (FWR) column, performed in support of the Pu-238 production campaign for NASA's Cassini mission. In that study, temperature transients

  7. The product composition regions of azeotropic distillation columns. 2. Separability in two-feed columns and entrainer selection

    SciTech Connect

    Wahnschafft, O.M.; Westerberg, A.W. . Engineering Design Research Center and Department of Chemical Engineering)

    1993-06-01

    A method to assess the product composition regions for distillation of ternary mixtures in single-feed distillation columns, introduced in the first paper of this series, is generalized to account for the effect of introducing multiple feeds of different trays. The method relies on so-called fixed point curves which are trajectories in the compositions space. These trajectories describe the possible compositions of pinch points in each column section as functions of the energy supplied to a column, i.e., for all conceivable values of the reflux ratio. Pinch point trajectories may be determined analytically or, for ternary mixtures, can be located graphically using residue curve maps. The authors carry out a mostly graphical analysis, using pinch point trajectories to establish separation feasibility ahead of design calculations. This analysis also provides information on the minimum entrainer supply for a specified separation and visualizes the phenomenon of the occurrence of a maximum reflux ratio for separation in a column with a separate, extractive agent feed. The analysis is analogous to that for single-feed columns, only the critical pinch trajectories may be those for the extractive column section between the feeds. This analogy suggests the notion of a generalized extractive distillation process, for which new entrainer selection criteria are proposed.

  8. Combined medial column primary arthrodesis, middle column open reduction internal fixation, and lateral column pinning for treatment of Lisfranc fracture-dislocation injuries.

    PubMed

    Boffeli, Troy J; Pfannenstein, Ryan R; Thompson, Jonathan C

    2014-01-01

    Lisfranc fracture-dislocation can be a devastating injury with significant long-term sequelae, including degenerative joint disease, progressive arch collapse, and chronic pain that can be potentiated if not effectively treated. We present a case to demonstrate our preferred surgical approach, consisting of combined medial column primary arthrodesis, middle column open reduction internal fixation, and lateral column pinning, with the primary goal of minimizing common long-term complications associated with Lisfranc injuries. We present the case of a typical patient treated according to this combined surgical approach to highlight our patient selection criteria, rationale, surgical technique, and operative pearls. A 36-year-old male who had sustained a homolateral Lisfranc fracture-dislocation injury after falling from a height initially underwent fasciotomy for foot compartment syndrome. The subsequent repair 16 days later involved primary first tarsometatarsal joint fusion, open reduction internal fixation of the second and third tarsometatarsal joints, and temporary pinning of the fourth and fifth tarsometatarsal joints. He progressed well postoperatively, exhibiting an American College of Foot and Ankle Surgeons forefoot score of 90 of 100 at 1 year after surgery with no need for subsequent treatment. Lisfranc fracture-dislocations often exhibit primary dislocation to the medial column and are conducive to arthrodesis to stabilize the tarsometatarsal complex. The middle column frequently involves comminuted intra-articular fractures and will often benefit from less dissection required for open reduction internal fixation instead of primary fusion. We propose that this surgical approach is a viable alternative technique for primary treatment of Lisfranc fracture-dislocation injuries.

  9. Effect of extra-column volume on practical chromatographic parameters of sub-2-μm particle-packed columns in ultra-high pressure liquid chromatography.

    PubMed

    Wu, Naijun; Bradley, Ashley C; Welch, Christopher J; Zhang, Li

    2012-08-01

    Effects of extra-column volume on apparent separation parameters were studied in ultra-high pressure liquid chromatography with columns and inlet connection tubings of various internal diameters (id) using 50-mm long columns packed with 1.8-μm particles under isocratic conditions. The results showed that apparent retention factors were on average 5, 11, 18, and 41% lower than those corrected with extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns, respectively, when the extra-column volume (11.3 μL) was kept constant. Also, apparent pressures were 31, 16, 12, and 10% higher than those corrected with pressures from extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns at the respective optimum flow rate for a typical ultra-high pressure liquid chromatography system. The loss in apparent efficiency increased dramatically from 4.6- to 3.0- to 2.1- to 1.0-mm id columns, less significantly as retention factors increased. The column efficiency was significantly improved as the inlet tubing id was decreased for a given column. The results suggest that maximum ratio of extra-column volume to column void volume should be approximately 1:10 for column porosity more than 0.6 and a retention factor more than 5, where 80% or higher of theoretically predicted efficiency could be achieved.

  10. High pressure humidification columns: Design equations, algorithm, and computer code

    SciTech Connect

    Enick, R.M.; Klara, S.M.; Marano, J.J.

    1994-07-01

    This report describes the detailed development of a computer model to simulate the humidification of an air stream in contact with a water stream in a countercurrent, packed tower, humidification column. The computer model has been developed as a user model for the Advanced System for Process Engineering (ASPEN) simulator. This was done to utilize the powerful ASPEN flash algorithms as well as to provide ease of use when using ASPEN to model systems containing humidification columns. The model can easily be modified for stand-alone use by incorporating any standard algorithm for performing flash calculations. The model was primarily developed to analyze Humid Air Turbine (HAT) power cycles; however, it can be used for any application that involves a humidifier or saturator. The solution is based on a multiple stage model of a packed column which incorporates mass and energy, balances, mass transfer and heat transfer rate expressions, the Lewis relation and a thermodynamic equilibrium model for the air-water system. The inlet air properties, inlet water properties and a measure of the mass transfer and heat transfer which occur in the column are the only required input parameters to the model. Several example problems are provided to illustrate the algorithm`s ability to generate the temperature of the water, flow rate of the water, temperature of the air, flow rate of the air and humidity of the air as a function of height in the column. The algorithm can be used to model any high-pressure air humidification column operating at pressures up to 50 atm. This discussion includes descriptions of various humidification processes, detailed derivations of the relevant expressions, and methods of incorporating these equations into a computer model for a humidification column.

  11. Virus movement in soil columns flooded with secondary sewage effluent.

    PubMed

    Lance, J C; Gerba, C P; Melnick, J L

    1976-10-01

    Secondary sewage effluent containing about 3 X 10(4) plaque-forming units of polio virus type 1 (LSc) per ml was passed through columns 250 cm in length packed with calcareous sand from an area in the Salt River bed used for ground-water recharge of secondary sewage effluent. Viruses were not detected in 1-ml samples extracted from the columns below the 160-cm level. However, viruses were detected in 5 of 43 100-ml samples of the column drainage water. Most of the viruses were adsorbed in the top 5 cm of soil. Virus removal was not affected by the infiltration rate, which varied between 15 and 55 cm/day. Flooding a column continuosly for 27 days with the sewage water virus mixture did not saturate the top few centimeters of soil with viruses and did not seem to affect virus movement. Flooding with deionized water caused virus desorption from the soil and increased their movement through the columns. Adding CaCl2 to the deionized water prevented most of the virus desorption. Adding a pulse of deionized water followed by sewage water started a virus front moving through the columns, but the viruses were readsorbed and none was detected in outflow samples. Drying the soil for 1 day between applying the virus and flooding with deionized water greatly reduced desorption, and drying for 5 days prevented desorption. Large reductions (99.99% or more) of virus would be expected after passage of secondary sewage effluent through 250 cm of the calcareous sand similar to that used in our laboratory columns unless heavy rains fell within 1 day after the application of sewage stopped. Such virus movement could be minimized by the proper management of flooding and drying cycles. PMID:185960

  12. Anaerobic biodegradation of TCE in laboratory columns of fractured saprolite.

    PubMed

    Lenczewski, Melissa E; McKay, Larry D; Layton, Alice

    2004-01-01

    An experiment was conducted to determine if biodegradation of trichloroethylene (TCE) can occur in previously uncontaminated ground water in saturated fractured saprolite (highly weathered material derived from sedimentary rocks). Two undisturbed columns (0.23 m diameter by 0.25 m long) of fractured saprolite were collected from approximately 2 m depth at an uncontaminated site on the Oak Ridge Reservation, Oak Ridge, Tennessee. Natural, uncontaminated ground water from the site, which was degassed and spiked with dissolved phase TCE, was continuously pumped through one column containing the natural microbial communities (the biotic column). In a second column, the microorganisms were inhibited and the dissolved phase TCE was added under aerobic conditions (dissolved oxygen conditions > 2 ppm). In effluent from the biotic column, reducing conditions rapidly developed and evidence of anaerobic biodegradation of TCE, by the production of cDCE, first appeared approximately 31 days after addition of TCE. Reductive dechlorination of TCE occurred after iron-reducing conditions were established and about the same time that sulfate reduction began. There was no evidence of methanogenesis. Analyses using polymerase chain reaction with specific primers sets detected the bacteria Geothrix, Geobacter, and Desulfococcus-Desulfonema-Desulfosarcina in the effluent of the biotic column, but no methanogens. The presence of these bacteria is consistent with iron- and sulfate-reducing conditions. In the inhibited column, there were no indicators of TCE degradation. Natural organic matter that occurs in the saprolite and ground water at the site is the most likely primary electron donor for supporting reductive dechlorination of TCE. The relatively rapid appearance of indicators of TCE dechlorination suggests that these processes may occur even in settings where low oxygen conditions occur seasonally due to changes in the water table.

  13. Mass transfer kinetics, band broadening and column efficiency.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2012-01-20

    Important progress was recently made in our understanding of the physico-chemical aspects of mass transfer kinetics in chromatographic columns, in methods used for accurate determination of the different contributions to the height equivalent to a theoretical plate (HETP), and in the application of these advances to the elucidation of mass transfer mechanisms in columns packed with recent chromatographic supports (sub-2 μm fully porous particles, sub-3 μm core-shell particles, and monoliths). The independent contributions to the HETP are longitudinal diffusion, eddy dispersion, liquid-solid mass transfer (including trans-particle or trans-skeleton mass transfer and external film mass transfer), and the contributions caused by the thermal heterogeneity of the column. The origin and importance of these contributions are investigated in depth. This work underlines the areas in which improvements are needed, an understanding of the contribution of the external film mass transfer term, a better design of HPLC instruments providing a decrease of the extra-column band broadening contributions to the apparent HETP, the development of better packing procedures giving more radially homogeneous column beds, and new packing materials having a higher thermal conductivity to eliminate the nefarious impact of heat effects in very high pressure liquid chromatography (vHPLC) and supercritical fluid chromatography (SFC).

  14. Carbon dioxide column abundances at the Wisconsin Tall Tower site

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Toon, G. C.; Blavier, J.-F.; Yang, Z.; Allen, N. T.; Wennberg, P. O.; Vay, S. A.; Matross, D. M.; Daube, B. C.

    2006-11-01

    We have developed an automated observatory for measuring atmospheric column abundances of CO2 and O2 using near-infrared spectra of the Sun obtained with a high spectral resolution Fourier Transform Spectrometer (FTS). This is the first dedicated laboratory in a new network of ground-based observatories named the Total Carbon Column Observing Network. This network will be used for carbon cycle studies and validation of spaceborne column measurements of greenhouse gases. The observatory was assembled in Pasadena, California, and then permanently deployed to northern Wisconsin during May 2004. It is located in the heavily forested Chequamegon National Forest at the WLEF Tall Tower site, 12 km east of Park Falls, Wisconsin. Under clear sky conditions, ˜0.1% measurement precision is demonstrated for the retrieved column CO2 abundances. During the Intercontinental Chemical Transport Experiment-North America and CO2 Boundary Layer Regional Airborne Experiment campaigns in summer 2004, the DC-8 and King Air aircraft recorded eight in situ CO2 profiles over the WLEF site. Comparison of the integrated aircraft profiles and CO2 column abundances shows a small bias (˜2%) but an excellent correlation.

  15. Colloid transport in a heterogeneous partially saturated sand column.

    PubMed

    Mishurov, Mikhail; Yakirevich, Alexander; Weisbrod, Noam

    2008-02-15

    Colloid transport was studied in heterogeneous sand columns under unsaturated steady-state conditions, using two sizes of acid-cleaned sand to pack the column. Heterogeneity was created by placing three continuous tubes of fine sand (3.6% of the total volume) within a column of coarse sand (mean grain diameters 0.36 and 1.2 mm, respectively). Experiments were performed under three flow rates (0.1, 0.2, and 0.4 cm/ min) applied by a rain simulator atthe top of the column. Constant water-content profile in the coarse sand was achieved by applying corresponding suction at the column bottom. Three sizes of latex microspheres (1, 0.2, and 0.02 microm) and soluble tracers (LiBr), diluted in a weak base (pH 7.3, ionic strength 0.0023 M) solution, were used simultaneously. Introduction of preferential pathways reduced front-arrival time about 2-fold and increased colloid recovery which, at the 0.2 cm/min flow rate, was higher than at 0.4 and 0.1 cm/min. Maximum solution flux from coarse to fine sand (due to differences in matric pressure) at 0.2 cm/min, verified by hydrodynamic modeling, could explain this phenomenon. Results suggest that in heterogeneous soil, maximum colloid recovery does not necessarily occur at maximum water content. This has clear implications for colloid transport in natural soils, many of which are heterogeneous.

  16. Jupiter's great red spot revisited. [validity of Taylor column theory

    NASA Technical Reports Server (NTRS)

    Hide, R.

    1972-01-01

    On the original Taylor column theory of Jupiter's Great Red Spot, the fixed latitude of the Spot is taken to imply that the Taylor column in Jupiter's atmosphere is associated with a disturbance such as a topographic feature of the surface Q underlying the atmosphere. The alternative suggestion that the Taylor column is produced by a solid raft floating at depth in the atmosphere is somewhat easier to reconcile with the approximately 10s difference between the respective rotation periods P sub S and P sub R of the Red Spot and of the radio sources, but it does not account so readily for the fixed latitude of the Spot unless it can be shown that the raft is in stable equilibrium under the north-south components of the dynamical forces, including wind effects, acting upon it. A slight wavering of the upper end of the Taylor column relative to the lower end could account at least in part for the most rapid variations in P sub S, but the slow large-amplitude variations in P sub S must reflect changes in the longitudinal motion of either the surface Q or of the raft. By generalizing the Proudman-Taylor theorem to the case of a non-homogeneous fluid it is shown that the Taylor column theory does not imply very special and therefore unlikely horizontal and vertical temperature variations in Jupiter's atmosphere, thus refuting a widely-held belief to the contrary.

  17. Colloid transport in a heterogeneous partially saturated sand column.

    PubMed

    Mishurov, Mikhail; Yakirevich, Alexander; Weisbrod, Noam

    2008-02-15

    Colloid transport was studied in heterogeneous sand columns under unsaturated steady-state conditions, using two sizes of acid-cleaned sand to pack the column. Heterogeneity was created by placing three continuous tubes of fine sand (3.6% of the total volume) within a column of coarse sand (mean grain diameters 0.36 and 1.2 mm, respectively). Experiments were performed under three flow rates (0.1, 0.2, and 0.4 cm/ min) applied by a rain simulator atthe top of the column. Constant water-content profile in the coarse sand was achieved by applying corresponding suction at the column bottom. Three sizes of latex microspheres (1, 0.2, and 0.02 microm) and soluble tracers (LiBr), diluted in a weak base (pH 7.3, ionic strength 0.0023 M) solution, were used simultaneously. Introduction of preferential pathways reduced front-arrival time about 2-fold and increased colloid recovery which, at the 0.2 cm/min flow rate, was higher than at 0.4 and 0.1 cm/min. Maximum solution flux from coarse to fine sand (due to differences in matric pressure) at 0.2 cm/min, verified by hydrodynamic modeling, could explain this phenomenon. Results suggest that in heterogeneous soil, maximum colloid recovery does not necessarily occur at maximum water content. This has clear implications for colloid transport in natural soils, many of which are heterogeneous. PMID:18351073

  18. The selection of suitable columns for a reversed-phase liquid chromatographic separation of beta-lactam antibiotics and related substances via chromatographic column parameters.

    PubMed

    Zhang, Wei-qing; Hu, Qiu-xin; Zhang, Xia; Li, Ya-ping; Wang, Ming-juan; Hu, Chang-qin

    2014-01-01

    The selection of RP-LC columns suitable for a particular analysis in official compendia is difficult as only a general description of the stationary phase in the description of a LC method is given. General methods to characterize RP-LC columns often assume that each of the column parameters is equally important. This can cause the user to select columns inappropriate for particular analyses. This paper focuses on the relationship between the critical peak pairs and the column parameters (H, S, A, B, and C) in the Snyder/Dolan column characterization methodology to find the key parameters influencing real separations. Some varieties of β-lactam antibiotics and their related compounds were used as test compounds. We found column parameter A to be the most important factor affecting their separation. Parameters B and C also played an important role in some separation processes. This indicated that the hydrogen bonding of column and solute can directly affect the separation of β-lactam antibiotics. Choosing columns for which column parameter A is near 0.1 can facilitate the ideal separations of impurities from β-lactam antibiotics. The most suitable column for any common pharmaceutical analysis could be selected easily if the key column parameters would be given in the description of the chromatographic method. For these reasons, key column parameters should be listed in the monographs of official compendia.

  19. Phosphate adsorption on granular palygorskite: batch and column studies.

    PubMed

    Fangqun, Gan; Jianmin, Zhou; Huoyan, Wang; Changwen, Du; Wenzhao, Zhang; Xiaoqin, Chen

    2011-02-01

    A method to prepare granular palygorskite (GPA) was put forward in this research, and its potential use to remove phosphate species from aqueous solution was assessed. Batch experiments were performed to study the adsorption equilibrium and influence of contact time and pH on the adsorption and desorption of phosphate onto GPA in water. The maximum phosphate adsorption capacity of GPA was 13.1 mg/g. Kinetic data revealed that more than 90% of phosphate was adsorbed onto GPA within 2 hours. Phosphate adsorption capacity was 0.10 mg/g in column experiments, and co-existing anions could decrease phosphate removal. The saturated column was regenerated by 0.2 mol/L sodium hydroxide, and the GPA could be reused in phosphate removal. The data obtained from both batch and column studies indicated that GPA could be used effectively to remove phosphate from water.

  20. Engineering Development of Slurry Bubble Column Reactor (SBCR) Technology

    SciTech Connect

    Toseland, B.A.

    1998-10-29

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  1. Contaminated marine sediments: Water column and interstitial toxic effects

    SciTech Connect

    Burgess, R.M.; Schweitzer, K.A.; McKinney, R.A.; Phelps, D.K.

    1993-01-01

    The toxicity that contaminated sediments may introduce into the water column has not been measured extensively. In order to quantify this potential toxicity, the seawater overlying two uncontaminated and three contaminated marine sediments was evaluated in the laboratory with the sea urchin Arbacia punctulata fertilization test. Concentrations of polychlorinated biphenyls (PCBs) and copper, as representative contaminants, were also measured. To characterize sources of toxicity, samples were chemically manipulated using reversed-phase chromatography, cation exchange, and chelation. Water column toxicity and contaminant concentrations were higher in the suspended exposures than in bedded exposures. Interstitial water toxicity and contaminant concentrations were generally greater than either bedded or suspended exposures. Chemical manipulation indicated that the observed toxicity in water column exposures was probably caused by metallic and/or nonionic organic contaminants. Conversely, manipulation of interstitial waters did not result in significantly reduced toxicity, suggesting that other toxicants such as ammonia and hydrogen sulfide may be active.

  2. Contaminated marine sediments: Water column and interstitial toxic effects

    SciTech Connect

    Burgess, R.M.; McKinney, R.A. ); Schweitzer, K.A. ); Phelps, D.K. )

    1993-01-01

    The toxicity that contaminated sediments may introduce into the water column has not been measured extensively. In order to quantify this potential toxicity, the seawater overlying two uncontaminated and three contaminated marine sediments was evaluated in the laboratory with the sea urchin Arbacia punctulata fertilization test. Concentration of polychlorinated biphenyls (PCBs) and copper, as representative contaminants, were also measured. To characterize sources of toxicity, samples were chemically manipulated using reversed-phase chromatography, cation exchange, and chelation. Water column toxicity and contaminant concentrations were higher in the suspended exposures than in bedded exposures. Interstitial water toxicity and contaminant concentrations were generally greater than either bedded or suspended exposures. Chemical manipulation indicated that the observed toxicity in water column exposures was probably caused by metallic and/or nonionic organic contaminants. Conversely, manipulation of interstitial water did not result in significantly reduced toxicity, suggesting that other toxicants such as ammonia and hydrogen sulfide may be active.

  3. Direct coupling of microbore HPLC columns to MS systems

    NASA Technical Reports Server (NTRS)

    Mcnair, H. M.

    1985-01-01

    A detailed investigation using electron microscopy was conducted which examined the conditions of materials used in the construction of stable, high performance microbore liquid chromatography (LC) columns. Small details proved to be important. The effects of temperature on the elution of several homologous series used as probe compounds was examined in reverse phase systems. They showed that accessible temperature changes provide roughly half the increase in solvent strength that would be obtained going from a 100% aqueous to a 100% organic mobile phase, which is sufficient to warrant their use in many analyses requiring the use of gradients. Air circulation temperature control systems provide the easiest means of obtaining rapid, wide range changes in column temperature. However, slow heat transfer from the gas leads to thermal nonuniformity in the column and a decrease in resolution as the temperature program progresses.

  4. Integrity of Bolted Angle Connections Subjected to Simulated Column Removal

    PubMed Central

    Weigand, Jonathan M.; Berman, Jeffrey W.

    2016-01-01

    Large-scale tests of steel gravity framing systems (SGFSs) have shown that the connections are critical to the system integrity, when a column suffers damage that compromises its ability to carry gravity loads. When supporting columns were removed, the SGFSs redistributed gravity loads through the development of an alternate load path in a sustained tensile configuration resulting from large vertical deflections. The ability of the system to sustain such an alternate load path depends on the capacity of the gravity connections to remain intact after undergoing large rotation and axial extension demands, for which they were not designed. This study experimentally evaluates the performance of steel bolted angle connections subjected to loading consistent with an interior column removal. The characteristic connection behaviors are described and the performance of multiple connection configurations are compared in terms of their peak resistances and deformation capacities. PMID:27110059

  5. A Flexible Moisture Content Probe for Unsaturated Soil Column Experiments

    SciTech Connect

    E. D. Mattson; K. E. Baker; C. D. Palmer; J. M Svoboda

    2006-05-01

    A commercially available soil moisture capacitance probe was modified by replacing rigid electrode traces with non-intrusive, flexible circuit board trace electrodes that can be attached to the interior of soil column walls. This new design minimizes soil packing difficulties and potential bias in flow pathways commonly associated with rigid probe installations in column experiments. Testing showed that the modified probe design provides reproducible output independent of sample bulk density. The electrical conductivity of the pore-water solution, however, affects the probe response. For cases where the specific conductance of the pore-water solution is constant, the probe can be calibrated. The flexible electrodes offer a simple means of minimizing sensor intrusion into laboratory soil columns while providing reproducible voltage output that is a function of moisture content.

  6. Oldshue-Rushton column in supercritical fluid extraction

    SciTech Connect

    Laitinen, A.; Kaunisto, J.

    1999-06-01

    The performance of a mechanically agitated Oldshue-Rushton column using carbon dioxide solvent at 10 MPa and 313 K to extract ethanol from aqueous feed was investigated. The overall mass-transfer coefficient K{sub od}a, the height equivalent to a theoretical stage (HETS), dispersed phase holdup, as well as the column capacity data were measured as a function of solvent-to-feed ratio and rotor speed. The values of overall mass transfer coefficient K{sub od}a generally ranged from 0.009 to 0.012 s{sup {minus}1}, and the values of the HETS ranged from 0.44 to 0.74 m. The total throughput of the Oldshue-Ruston column without agitation was approximately 68 m{sup 3}/h{center_dot}m{sup 2}, whereas at 300 rpm the total throughput was approximately 48 m{sup 3}/h{center_dot}m{sup 2}.

  7. Intermediate reboiler and condenser arrangement for binary distillation columns

    SciTech Connect

    Agrawal, R.; Herron, D.M.

    1998-06-01

    The most thermodynamically efficient configuration for adding or removing heat from an intermediate location of an ideal binary distillation column distilling pure products is derived. The optimal policy requires that preconditioning of the feed be part of the overall decision-making process. The optimal configuration can be determined through the use of two parameters, {alpha}{sub IR} and {alpha}{sub IC}, that are solely functions of feed composition. Simple and readily usable heuristics using these parameters are developed that help instantly identify the most efficient selection among (1) totally vaporizing and returning a side-draw liquid stream from an intermediate location of the distillation column, (2) partially or totally vaporizing a portion of the given saturated liquid feed, (3) partially or totally condensing a portion of the given saturated vapor feed, and (4) totally condensing and returning a side-draw vapor stream from an intermediate location of the distillation column.

  8. A geometric design method for side-stream distillation columns

    SciTech Connect

    Rooks, R.E.; Malone, M.F.; Doherty, M.F.

    1996-10-01

    A side-stream distillation column may replace two simple columns for some applications, sometimes at considerable savings in energy and investment. This paper describes a geometric method for the design of side-stream columns; the method provides rapid estimates of equipment size and utility requirements. Unlike previous approaches, the geometric method is applicable to nonideal and azeotropic mixtures. Several example problems for both ideal and nonideal mixtures, including azeotropic mixtures containing distillation boundaries, are given. The authors make use of the fact that azeotropes or pure components whose classification in the residue curve map is a saddle can be removed as side-stream products. Significant process simplifications are found among some alternatives in example problems, leading to flow sheets with fewer units and a substantial savings in vapor rate.

  9. Round robin testing of a percolation column leaching procedure.

    PubMed

    Geurts, Roeland; Spooren, Jeroen; Quaghebeur, Mieke; Broos, Kris; Kenis, Cindy; Debaene, Luc

    2016-09-01

    Round robin test results of a percolation column leaching procedure (CEN/TS 14405:2004), organised by the Flemish Institute for Technological Research (VITO), over a time span of 13years with a participation of between 8 and 18 different laboratories are presented and discussed. Focus is on the leachability of heavy metals As, Cd, Cr, Cu, Hg, Ni, Pb and Zn from mineral waste materials. By performing statistical analyses on the obtained results, insight into the reproducibility and repeatability of the column leaching test is gathered. A ratio of 1:3 between intra- and inter-laboratory variability is found. The reproducibility of the eluates' element concentrations differ significantly between elements, materials and fractions (i.e. different liquid-to-solid ratios). The reproducibility is discussed in light of the application of the column leaching test for legal and environmental policy purposes. In addition, the performances of laboratories are compared.

  10. Periodic explosions by positive feedback in a rising foam column.

    PubMed

    Zener, C; Noriega, J

    1982-05-01

    An aqueous foam rising adiabatically in a column suffers a drop in temperature. Under appropriate conditions, such a column periodically explodes. We here trace this explosion to the tight thermal coupling between the foam and its enclosing glass column. When the surface surfactant concentration is unbuffered by micelles, a positive feedback exists between the flow of heat from the walls into the foam and the thermal conductivity of the foam itself. In our highly expanded foam, heat is conducted through the foam cells' interior primarily by the heat-pipe effect. Such an effect is retarded by a dense layer of surfactant molecules. Heat absorption causes cell expansion, which, in a foam unbuffered by micelles, causes a reduction in surface concentration of surfactant molecules and, hence, in an increase in thermal conductivity. This interpretation of our observed periodic explosions is in agreement with all of our observations.

  11. Periodic explosions by positive feedback in a rising foam column

    PubMed Central

    Zener, Clarence; Noriega, Jaime

    1982-01-01

    An aqueous foam rising adiabatically in a column suffers a drop in temperature. Under appropriate conditions, such a column periodically explodes. We here trace this explosion to the tight thermal coupling between the foam and its enclosing glass column. When the surface surfactant concentration is unbuffered by micelles, a positive feedback exists between the flow of heat from the walls into the foam and the thermal conductivity of the foam itself. In our highly expanded foam, heat is conducted through the foam cells' interior primarily by the heat-pipe effect. Such an effect is retarded by a dense layer of surfactant molecules. Heat absorption causes cell expansion, which, in a foam unbuffered by micelles, causes a reduction in surface concentration of surfactant molecules and, hence, in an increase in thermal conductivity. This interpretation of our observed periodic explosions is in agreement with all of our observations. PMID:16593192

  12. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect

    Bernard A. Toseland, Ph.D.

    1999-01-01

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  13. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect

    Bernard A. Toseland, Ph.D.

    2002-01-01

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  14. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect

    Bernard A. Toseland

    2000-06-30

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  15. Round robin testing of a percolation column leaching procedure.

    PubMed

    Geurts, Roeland; Spooren, Jeroen; Quaghebeur, Mieke; Broos, Kris; Kenis, Cindy; Debaene, Luc

    2016-09-01

    Round robin test results of a percolation column leaching procedure (CEN/TS 14405:2004), organised by the Flemish Institute for Technological Research (VITO), over a time span of 13years with a participation of between 8 and 18 different laboratories are presented and discussed. Focus is on the leachability of heavy metals As, Cd, Cr, Cu, Hg, Ni, Pb and Zn from mineral waste materials. By performing statistical analyses on the obtained results, insight into the reproducibility and repeatability of the column leaching test is gathered. A ratio of 1:3 between intra- and inter-laboratory variability is found. The reproducibility of the eluates' element concentrations differ significantly between elements, materials and fractions (i.e. different liquid-to-solid ratios). The reproducibility is discussed in light of the application of the column leaching test for legal and environmental policy purposes. In addition, the performances of laboratories are compared. PMID:27311350

  16. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR)TECHNOLOGY

    SciTech Connect

    Bernard A. Toseland, Ph.D

    2000-06-01

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column 0reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  17. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect

    Bernard A. Toseland

    2002-09-30

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  18. Mobility of spiromesifen in packed soil columns under laboratory conditions.

    PubMed

    Mate, Ch Jamkhokai; Mukherjee, Irani; Das, Shaon Kumar

    2014-11-01

    On percolating water equivalent to 1,156 mm of rainfall, spiromesifen formulation did not leach out of 25-cm long columns, and 62.7 % of this was recovered in 5-10-cm soil depth. In columns treated with the analytical grade, 52.40 % of the recovered spiromesifen was confined to 0-5-cm soil depth, with 0.04 % in leachate fraction, suggesting high adsorption in soil. Results revealed that percolating 400 mL of water, residues of enol metabolite of spiromesifen was detected up to 20-25-cm soil layer, with 23.50 % residues of spiromesifen in this layer and 1.73 % in the leachate fraction indicating that metabolite is more mobile as compared to the parent compound. Results suggested a significant reduction in leaching losses of enol metabolite in amended soil columns with 5 % nano clay, farmyard manure (FYM), and vermicompost. No enol spiromesifen was recovered in the leachate in columns amended with nano clay, vermicompost, and FYM; however, 85.30, 70.5, and 65.40 %, respectively, was recovered from 0-5 cm-soil depth of column after percolating water equivalent to 1,156 mm of rainfall. Spiromesifen formulation is less mobile in sandy loam soil than analytical grade spiromesifen. The metabolite, enol spiromesifen, is relatively more mobile than the parent compound and may leach into groundwater. The study suggested that amendments were very effective in reducing the downward mobility of enol metabolite in soil column. Further, it resulted in greater retention of enol metabolite in the amendment application zone. PMID:25060860

  19. Volcanoes in the Classroom: Simulating an Eruption Column

    NASA Astrophysics Data System (ADS)

    Harpp, K. S.; Geist, D. J.; Koleszar, A. M.

    2005-12-01

    Few students have the opportunity to witness volcanic eruptions first hand. Analog models of eruptive processes provide ways for students to apply basic physical principles when field observations are not feasible. We describe a safe simulation of violent volcanic explosions, one that can be carried out simply and easily as a demonstration for specialized volcanology classes, introductory classes, and science outreach programs. Volcanic eruptions are fundamentally gas-driven phenomena. Depressurization of volatiles dissolved in magma during ascent is the driving force behind most explosive eruptions. We have developed a demonstration whereby the instructor can initiate a gas-driven eruption, which produces a dramatic but safe explosion and eruptive column. First, one pours liquid nitrogen into a weighted, plastic soda bottle, which is then sealed and placed into a trashcan filled with water. As the liquid nitrogen boils, the pressure inside the bottle increases until the seal fails, resulting in an explosion. The expansive force propels a column of water vertically, to 10 or more meters. Students can operate the demonstration themselves and carry out a sequence of self-designed variations, changing the vent size and viscosity of the "magma", for instance. They can also vary the material used as "tephra", studying the effects of projectile density, column height, and wind direction on tephra distribution. The physical measurements that students collect, such as column height and tephra radius, can be used as the basis for problem sets that explore the dynamics of eruption columns. Possible calculations include ejection velocity, the pressure needed to propel the water column, and average vesicularity of the "magma". Students can then compare their results to observations from real volcanic eruptions. We find this to be an exceedingly effective demonstration of gas-driven liquid explosions and one that is safe if done properly. [NOTE: Please do NOT attempt this

  20. Distillation column revamp eliminates jet flooding; increases efficiency

    SciTech Connect

    Arneson, A.D.; Boike, J.

    1986-10-01

    UOP's McCook, IL, plant produces a great variety of chemicals, among them many antioxidants and antiozonants which are used by gasoline producers, rubber processors and other industrial customers. Low boiling oxygenated aliphatics are stripped from high boiling nitrogenous compounds in a distillation column. In order to achieve the necessary separation, very high column reflux rates were required. This sometimes caused jet flooding which led to entrainment and contamination of the overhead streams. When the overhead streams did not meet purity specs, they had to be inventoried and later recycled. The result was unacceptably high costs and low overall unit efficiency. To correct the problem, UOP decided to revamp the column in question. The 28 original sieve trays were removed from the 28' tall, 19 1/4'' ID column, and 27 SS304 cartridge-type fabricated screen trays were installed don 12'' spacing. The closely spaced wires from which the decks of the trays are fabricated form venturi-shaped slots that allow operation in the froth regime over a wide range of conditions. Reduced entrainment and low pressure drop combine to permit use of very high vapor and liquid rates without flooding. After the revamp, UOP found that flooding problems were eliminated in the column. Pressure drop was considerably reduced, too. An increase in separation efficiency was also noticed which permitted reboiler temperatures to be lowered by 20-50/sup 0/F, and lower reflux rates to be employed. Energy requirements of the reboiler were cut by 400,000 Btu/hr at 80% of maximum column feed rate. This represented a savings of more that $16,000/yr in fuel costs on an annualized basis, calculated on 80% efficiency in the natural gas-fired furnace.

  1. Cervical column morphology in adult patients with obstructive sleep apnoea.

    PubMed

    Sonnesen, Liselotte; Petri, Niels; Kjaer, Inger; Svanholt, Palle

    2008-10-01

    Cervical column morphology was examined in adult patients with obstructive sleep apnoea (OSA) and compared with the cervical morphology of an adult control group with neutral occlusion, normal craniofacial morphology, and no history of sleep apnoea. The sleep apnoea group consisted of 91 patients, 16 females aged 29-59 years (mean 49.4 years) and 75 males aged 27-65 years (mean 49.0 years). All patients were diagnosed with OSA by overnight polysomnography. The control group consisted of 21 subjects, 15 females aged 23-40 years (mean 29.2 years) and 6 males aged 25-44 years (mean 32.8 years). From each individual, a visual assessment of the cervical column was performed on the radiograph. Differences in the cervical column morphology, between the genders and the groups were assessed by Fisher's exact test and the effect of age by logistic regression analysis. In the OSA group, 46.2 per cent had fusion anomalies of the cervical column and 5.5 per cent a posterior arch deficiency. Fusion anomalies occurred in 26.4 per cent as fusions between two cervical vertebrae. Block fusions occurred in 12.1 per cent and occipitalization in 14.3 per cent. A posterior arch deficiency occurred in 2.2 per cent as a partial cleft of C1 and in 3.3 per cent as dehiscence of C3 and C4. No statistical gender differences were found in the occurrence of morphological characteristics of the cervical column. The fusion anomalies of the cervical column occurred significantly more often in the OSA group. The results indicate that the morphological deviations of the upper cervical vertebrae play a role in the phenotypical subdivision and diagnosis of OSA.

  2. Relative cooling rates derived from basalt column geometries

    NASA Astrophysics Data System (ADS)

    Woodell, Daniel; Porritt, Lucy; Russell, Kelly

    2015-04-01

    Columnar joints form as a brittle relaxation response to tensile stresses that accumulate during cooling of lava flows, pyroclastic deposits, and intrusive magma bodies. Columnar jointing forms in different deposit types, in deposits of different compositions, and different outcrop geometries. Despite this diversity, columns follow a few "rules": column diameter is inversely proportional to cooling rate (small/quick cooling times, small diameter columns), columns only ever coalesce (never bifurcate), and columnar joints always propagate parallel to but in the opposite direction of heat flow (towards the hottest part of the flow). Using these "rules," cooling histories and emplacement environments can be reconstructed. While column geometries and definitions of various columnar structures vary between authors (upper and lower colonnade and entablature vs. master cracks and pseudopillows), this study focuses on relatively simple outcrops of basalt lava within the Cheakamus River valley near Whistler, BC, Canada. The basalt lavas described here, thought to have erupted subglacially, contain columns comprising only well-defined upper and lower colonnades (i.e., no entablature). Comparing the relative thicknesses of upper and lower colonnades reveals the cooling history, relative cooling rates, and amounts of heat transferred from the upper and lower flow boundaries. Forward numerical models using the finite element method are created with Matlab using the Partial Differential Equation Toolbox to model the outcrops in the Whistler field area, and determine the cooling rates and thermal gradients experienced by the lava flows during their formation. This study finds that noticeable differences in the thickness of upper and lower colonnades within an outcrop occur only when there are large differences in cooling rates between the upper and lower flow surfaces. Modeling shows that the cooling rates must differ by approximately an order of magnitude to produce the observed

  3. Differential column measurements using compact solar-tracking spectrometers

    NASA Astrophysics Data System (ADS)

    Chen, Jia; Viatte, Camille; Hedelius, Jacob K.; Jones, Taylor; Franklin, Jonathan E.; Parker, Harrison; Gottlieb, Elaine W.; Wennberg, Paul O.; Dubey, Manvendra K.; Wofsy, Steven C.

    2016-07-01

    We demonstrate the use of compact solar-tracking Fourier transform spectrometers (Bruker EM27/SUN) for differential measurements of the column-averaged dry-air mole fractions of CH4 and CO2 within urban areas. Using Allan variance analysis, we show that the differential column measurement has a precision of 0.01 % for XCO2 and XCH4 with an optimum integration time of 10 min, corresponding to Allan deviations of 0.04 ppm and 0.2 ppb, respectively. The sensor system is very stable over time and after relocation across the continent. We report tests of the differential column measurement, and its sensitivity to emission sources, by measuring the downwind-minus-upwind column difference ΔXCH4 across dairy farms in the Chino area, California, and using the data to verify emissions reported in the literature. Ratios of spatial column differences ΔXCH4/ΔXCO2 were observed across Pasadena within the Los Angeles basin, indicating values consistent with regional emission ratios from the literature. Our precise, rapid measurements allow us to determine significant short-term variations (5-10 min) of XCO2 and XCH4 and to show that they represent atmospheric phenomena.Overall, this study helps establish a range of new applications for compact solar-viewing Fourier transform spectrometers. By accurately measuring the small differences in integrated column amounts across local and regional sources, we directly observe the mass loading of the atmosphere due to the influence of emissions in the intervening locale. The inference of the source strength is much more direct than inversion modeling using only surface concentrations and less subject to errors associated with small-scale transport phenomena.

  4. Ammonia impacts on atrazine leaching through undisturbed soil columns

    SciTech Connect

    Liu, Z.; Clay, S.A.; Clay, D.E.

    1995-11-01

    Ammonia-based fertilizers such as anhydrous ammonia, aqua ammonia, and urea, initially increase soil pH, reducing atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) sorption and increasing atrazine desorption. Increased amounts of atrazine in soil solution may increase atrazine`s leaching potential. This laboratory study investigated atrazine leaching behavior when ammonia and atrazine applications overlap. Nondisturbed 15-cm diam. by 15-cm depth soil columns were excavated from a Brandt silty clay loam (fine silty, Pachic Udic Haploboroll) and a Ves clay loam (fine silty, mixed mesic Typic Hapludalf). Concentrated NH{sub 4}OH was applied to the soil surface at 0 or 220 kg N ha{sup -1}. Immediately after fertilizer application, 1.9 kg atrazine (spiked with ring-labeled {sup 14}C-atrazine) ha{sup -1} was applied. One day after chemical application, soil columns were leached with 5.4 L of water. The ammonia application increased leachate and surface soil pH by about 2.5 and 3.5 pH units, respectively. The amount of {sup 14}C collected in leachate from ammonia-treated columns was 60 and 30% greater for the Brandt and Ves soils, respectively, compared with untreated columns. Less {sup 14}C remained in the surface of the ammonia-treated columns than in the surface of the untreated columns. These data indicate that the interaction between ammonia-based fertilizers and atrazine must be considered when evaluating atrazine movement through soil. Applications of atrazine and ammonia-based fertilizers that increase pH should be physically separated to limit the leaching potential of atrazine. 13 refs., 3 figs., 3 tabs.

  5. Instrument for the measurement and determination of chemical pulse column parameters

    DOEpatents

    Marchant, Norman J.; Morgan, John P.

    1990-01-01

    An instrument for monitoring and measuring pneumatic driving force pulse parameters applied to chemical separation pulse columns obtains real time pulse frequency and root mean square amplitude values, calculates column inch values and compares these values against preset limits to alert column operators to the variations of pulse column operational parameters beyond desired limits.

  6. Packed column supercritical fluid chromatography using deactivated stationary phases

    SciTech Connect

    Ashraf-Khorassani, M.; Taylor, L.T.; Henry, R.A.

    1988-08-01

    A new cross-linked cyanopropyl bonded phase silica (Delta-bond) has been studied as a stationary phase for packed column supercritical fluid chromatography of basic nitrogen-containing compounds. The bonded phase impedes access to uncapped silanol sites, thereby giving rise to better peak shapes and more rapid elution without the necessity of a polar modifier in the mobile phase. Experiments both at elevated temperature and in the presence of a methanol modifier revealed that there is no short- or long-term deleterious effect on the column as opposed to the conventional cyanopropyl phase.

  7. Hoop/column and tetrahedral truss electromagnetic tests

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1987-01-01

    The distortion of antennas was measured with a metric camera system at discrete target locations on the surface. Given are surface distortion for hoop column reflector antennas, for tetrahedral truss reflector antennas, and distortion contours for the tetrahedral truss reflector. Radiation patterns at 2.27-GHz, 4.26-GHz, 7.73-GHz and 11.6-GHz are given for the hoop column antenna. Also given are radiation patterns at 4.26-GHz and 7.73-GHz for the tetrahedral truss antenna.

  8. Stud Reinforcement in Beam-Column Joints under Seismic Loads

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hatem Hassan Ali

    Current codes recommend large amounts of shear reinforcement for reinforced concrete beam-column joints causing significant congestion. This research aims at investigating experimentally and numerically the efficiency of using studs with a head at each end in lieu of conventional closed hoops in reinforced concrete beam-column joints. The proposed reinforcement reduces congestion and ensures easier assembly of the reinforcing cage, saving labour cost and enhancing performance of the joint. Based on this research, a recommended arrangement and detailing of headed studs and their design for exterior beam-column joint are presented. The experimental investigation consisted of testing ten full-scale beam-column joint specimens under quasi-static cyclic loading. The specimens represented an exterior beam-column joint subassembly isolated at the points of contra-flexure from a typical multi-storey, multi-bay reinforced concrete frame. A test setup was developed to simulate the lateral inter-storey drift. The test parameters included: the type, arrangement and amount of shear reinforcement, the load history and rate of loading, and the amount of reinforcement for out-of-plane confinement of the joint. Envelopes of the hysteretic behaviour of the specimens and the joint deformation under shear stress are presented. The stiffness degradation, the strain levels in the joint reinforcement, the contribution of joint, beam, and column to the inter-storey drift, and the energy dissipation were compared. All the test specimens reinforced with headed studs in the joint achieved considerable enhancement in their behaviour under cyclic loads and exhibited a performance close to that of a joint reinforced with closed hoops and cross ties according to the code. All the specimens with adequate out-of-plane confinement had an equivalent behaviour compared with the code-based specimen and achieved a desirable mode of failure. Use of double-headed studs proved to be a viable option for

  9. Column abundance measurements of atmospheric hydroxyl at 45 deg S

    NASA Technical Reports Server (NTRS)

    Wood, S. W.; Keep, D. J.; Burnett, C. R.; Burnett, E. B.

    1994-01-01

    The first Southern Hemisphere measurements of the vertical column abundance of atmospheric hydroxyl (OH) have been obtained at Lauder, New Zealand (45 deg S) with a PEPSIOS instrument measuring the absorption of sunlight at 308 nm. The variation of column OH with solar zenith angle is similar to that measured at other sites. However average annual abundances of OH are about 20% higher than those found by similar measurements at 40 deg N. Minimum OH abundances about 10% less than average levels at 40 deg N, are observed during austral spring. The OH abundance abruptly increases by 30% in early summer and remains at the elevated level until late the following winter.

  10. Self consistent modeling of accretion columns in accretion powered pulsars

    NASA Astrophysics Data System (ADS)

    Falkner, Sebastian; Schwarm, Fritz-Walter; Wolff, Michael Thomas; Becker, Peter A.; Wilms, Joern

    2016-04-01

    We combine three physical models to self-consistently derive the observed flux and pulse profiles of neutron stars' accretion columns. From the thermal and bulk Comptonization model by Becker & Wolff (2006) we obtain seed photon continua produced in the dense inner regions of the accretion column. In a thin outer layer these seed continua are imprinted with cyclotron resonant scattering features calculated using Monte Carlo simulations. The observed phase and energy dependent flux corresponding to these emission profiles is then calculated, taking relativistic light bending into account. We present simulated pulse profiles and the predicted dependency of the observable X-ray spectrum as a function of pulse phase.

  11. Low-frequency flute instabilities of a bounded plasma column.

    NASA Technical Reports Server (NTRS)

    Rognlien, T. D.

    1973-01-01

    Derivation of exact solutions for unstable waves (called flute waves) which occur in a radially bounded plasma column at frequencies below the ion cyclotron frequency. Both analytical and numerical solutions are presented for the m = 1 and m = 2 azimuthal modes for a variety of radial electric field profiles. It is shown that the behavior of the flute waves can depend sensitively on the radial extent of the plasma column. Moreover, it is found that the m = 1 mode and the m = 2 mode do not respond in the same way to changes in the radial boundary position or in the electric field profile.

  12. Column experiments on organic micropollutants - applications and limitations

    NASA Astrophysics Data System (ADS)

    Banzhaf, Stefan; Hebig, Klaus

    2016-04-01

    As organic micropollutants become more and more ubiquitous in the aquatic environment, a sound understanding of their fate and transport behaviour is needed. This is to assure both safe and clean drinking water supply for mankind in the future and to protect the aquatic environment from pollution and negative consequences caused by manmade contamination. Apart from countless field studies, column experiments were and are frequently used to study transport of organic micropollutants. As the transport of (organic) solutes in groundwater is controlled by the chemical and physical properties of the compounds, the solvent (the groundwater including all solutes), and the substrate (the aquifer material), the adjustment and control of these boundary conditions allow to study a multitude of different experimental setups and to address specific research questions. The main purpose, however, remains to study the transport of a specific compound and its sorption and degradation behaviour in a specific sediment or substrate. Apart from the effective control of the individual boundary conditions, the main advantage of columns studies compared to other experimental setups (such as field studies, batch/microcosm studies), is that conservative and reactive solute breakthrough curves are obtained, which represent the sum of the transport processes. The analysis of these curves is well-developed and established. Additionally, limitations of this experimental method are presented here: the effects observed in column studies are often a result of dynamic, non-equilibrium processes. Time (or flow velocity) plays a major role in contrast to batch experiments, in which all processes will be observed until equilibrium is reached in the substrate-solution-system. Slightly modifying boundary conditions in different experiments have a strong influence on transport and degradation behaviour of organic micropollutants. This is a significant severe issue when it comes to general findings on the

  13. Fundamental research on oscillating water column wave power absorbers

    SciTech Connect

    Maeda, H.; Kato, W.; Kinoshita, T.; Masuda, K.

    1985-03-01

    An oscillating water column (OWC) wave power absorber is one of the most promising devices, as well as the Salter Duck and the Clam. This paper presents a simple prediction method, in which the equivalent floating body approximation is used, for absorbing wave power characteristics of an oscillating water column device. The effects of the compressibility of air and inertia of an air turbine and electric generator on absorbed wave power are obtained by using the equivalent electric circuit concept. Both the experimental and theoretical studies are carried out in this paper.

  14. Column-by-column observation of dislocation motion in CdTe: Dynamic scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Li, Chen; Zhang, Yu-Yang; Pennycook, Timothy J.; Wu, Yelong; Lupini, Andrew R.; Paudel, Naba; Pantelides, Sokrates T.; Yan, Yanfa; Pennycook, Stephen J.

    2016-10-01

    The dynamics of partial dislocations in CdTe have been observed at the atomic scale using aberration-corrected scanning transmission electron microscopy (STEM), allowing the mobility of different dislocations to be directly compared: Cd-core Shockley partial dislocations are more mobile than Te-core partials, and dislocation cores with unpaired columns have higher mobility than those without unpaired columns. The dynamic imaging also provides insight into the process by which the dislocations glide. Dislocations with dangling bonds on unpaired columns are found to be more mobile because the dangling bonds mediate the bond exchanges required for the dislocations to move. Furthermore, a screw dislocation has been resolved to dissociate into a Shockley partial-dislocation pair along two different directions, revealing a way for the screw dislocation to glide in the material. The results show that dynamic STEM imaging has the potential to uncover the details of dislocation motion not easily accessible by other means.

  15. 40 CFR Table 25 to Subpart G of... - Effective Column Diameter (Fc)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Effective Column Diameter (Fc) 25 Table..., Table 25 Table 25 to Subpart G of Part 63—Effective Column Diameter (Fc) Column type Fc (feet) 9-inch by 7-inch built-up columns 1.1 8-inch-diameter pipe columns 0.7 No construction details known 1.0...

  16. If You Were a Molecule in a Chromatography Column, What Would You See?

    ERIC Educational Resources Information Center

    Mattice, John

    2008-01-01

    To visualize what takes place in a chromatography column, enlarge the molecules to human size and expand the columns to keep the ratio of size of molecule to size of column the same. If we were molecules, what would the columns be like? A typical gas chromatography (GC) capillary column would be 50 x 10 [superscript 6] 6 km (31 million mi) long,…

  17. METALS LEACHING FROM A MINERAL PROCESSING WASTE: A COLUMN STUDY

    EPA Science Inventory

    A mineral processing waste was used to study the effect of liquid to solid ratio (L/S) on the leaching behavior of metals. Leaching tests in the form of column and batch studies were carried out to investigate liquid to solid ratios ranging from 0.7 to 50. Although the waste pass...

  18. Continuous and Batch Distillation in an Oldershaw Tray Column

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Vaz, Raquel V.; Santiago, Ana S.; Lito, Patricia F.

    2011-01-01

    The importance of distillation in the separation field prompts the inclusion of distillation experiments in the chemical engineering curricula. This work describes the performance of an Oldershaw column in the rectification of a cyclohexane/n-heptane mixture. Total reflux distillation, continuous rectification under partial reflux, and batch…

  19. Interior detail view, nave arcade, compound column capitals, east aisle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior detail view, nave arcade, compound column capitals, east aisle vaulting, and decorative painting. Note the confessional in the west aisle in the photograph's lower right. (Similar to HABS No. PA-6694-22). - Acts of the Apostles Church in Jesus Christ, 1400-28 North Twenty-eighth Street, northwest corner of North Twenty-eighth & Master Streets, Philadelphia, Philadelphia County, PA

  20. 4. INTERIOR VIEW FROM LOBBY, LOOKING WEST; NOTE ORIGINAL COLUMN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR VIEW FROM LOBBY, LOOKING WEST; NOTE ORIGINAL COLUMN & DIAGONAL BRACE, & HEATING SYSTEM DUCTWORK - Fort McCoy, Building No. T-2675, South "F" Street, Midway Between 1700 Block & Intersection of South "F" Street & West Eaton Road, Sparta, Monroe County, WI

  1. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    PubMed

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-01

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation. PMID:27379799

  2. Water column correction for coral reef studies by remote sensing.

    PubMed

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-09-11

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.

  3. Thermal Analysis for Ion-Exchange Column System

    SciTech Connect

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models were used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.

  4. NO2 column changes induced by volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Johnston, Paul V.; Keys, J. Gordon; Mckenzie, Richard L.

    1994-01-01

    Nitrogen dioxide slant column amounts measured by ground-based remote sensing from Lauder, New Zealand (45 deg S) and Campbell Island (53 deg S) during the second half of 1991 and early 1992 show anomalously low values that are attributed to the effects of volcanic eruptions. It is believed that the eruptions of Mount Pinatubo in the Philippines in June 1991 and possibly Mount Hudson in Chile in August 1991 are responsible for the stratospheric changes, which first became apparent in July 1991. The effects in the spring of 1991 are manifested as a reduction in the retrieved NO2 column amounts from normal levels by 35 to 45 percent, and an accompanying increase in the overnight decay of NO2. The existence of an accurate long-term record of column NO2 from the Lauder site enables us to quantify departures from the normal seasonal behavior with some confidence. Simultaneous retrievals of column ozone agree well with Dobson measurements, confirming that only part of the NO2 changes can be attributed to a modification of the scattering geometry by volcanic aerosols. Other reasons for the observed behavior are explored, including the effects of stratospheric temperature increases resulting from the aerosol loading and the possible involvement of heterogeneous chemical processes.

  5. A Weekly Column Is a P.R. Plum.

    ERIC Educational Resources Information Center

    Wuehle, Edwin E.

    1988-01-01

    Advises superintendents to increase school visibility by writing a weekly newspaper column that communicates important school information, discusses school issues, recognizes educators' outstanding accomplishments, corrects false impressions or misinformation, and presents the human side of schooling. Several tips are provided for planning,…

  6. 16. View to southeast of underside, showing paired lally columns ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. View to southeast of underside, showing paired lally columns with southeast abutment beyond, floor beams, laterals, and stringers. Paired eye bars of lower chord visible at left. - Red Bank Creek Bridge, Spanning Red Bank Creek at Rawson Road, Red Bluff, Tehama County, CA

  7. Water Column Correction for Coral Reef Studies by Remote Sensing

    PubMed Central

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-01-01

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application. PMID:25215941

  8. Cyclodextrin-Functionalized Monolithic Capillary Columns: Preparation and Chiral Applications.

    PubMed

    Adly, Frady G; Antwi, Nana Yaa; Ghanem, Ashraf

    2016-02-01

    In this review, the recently reported approaches for the preparation of cyclodextrin-functionalized capillary monolithic columns are highlighted, with few applications in chiral separations using capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Chirality 28:97-109, 2016. © 2015 Wiley Periodicals, Inc.

  9. Separation of kafirins on surface porous RP-HPLC columns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface porous HPLC columns were investigated for the separation of kafarins, storage proteins of grain sorghum. Kafirins were successfully separated using C3, C8 and C18 surface porous stationary phases in less than 17 min. Separations using a monolithic C18 stationary phase were also developed ...

  10. Novel optical techniques for remote water column temperature measurement

    NASA Astrophysics Data System (ADS)

    Cresswell, Brian; Hodgson, Elizabeth M.; Wakefield, Clare

    1997-04-01

    This paper assesses novel optical techniques for the remote mastermind of water column temperatures, using non-linear effects such as stimulated Raman scattering. Results are presented from a modeling program to predict water flow patterns produced by an underwater heat source.

  11. CAR MACHINE SHOP, FIRST FLOOR, DETAIL OF STEEL COLUMN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CAR MACHINE SHOP, FIRST FLOOR, DETAIL OF STEEL COLUMN AND BEAM ALTERATION, LOOKING SOUTH. MODIFICATION WAS DONE TO ACCOMMODATE MACHINERY DURING THE BUILDING'S USE AS A WHEEL SHOP. - Southern Pacific, Sacramento Shops, Car Machine Shop, 111 I Street, Sacramento, Sacramento County, CA

  12. Chapter 2: Optical Properties of the Water Column

    NASA Technical Reports Server (NTRS)

    Kiefer, D. A.; Collins, D. J.

    1994-01-01

    In this chapter, and in chapter 29, the basic inter-relationship between the flux of radiant energy through the water column and the fixation of carbon by the phytoplankton in the ocean through processes of photosynthesis or primary production will be discussed.

  13. 3. DRAINING & DRYING BUILDING, REINFORCED CONCRETE MUSHROOM COLUMNS WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DRAINING & DRYING BUILDING, REINFORCED CONCRETE MUSHROOM COLUMNS WITH DROP PANELS SUPPORTING DRAINING BINS (IRON VALVES OF DRAINING BINS ARE EMBEDDED IN THE CEILING), VIEW LOOKING WEST - Mill "C" Complex, Sand Draining & Drying Building, South of Dee Bennet Road, near Illinois River, Ottawa, La Salle County, IL

  14. DETAIL VIEW OF THE BRACED IBEAM COLUMNS AT THE END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THE BRACED I-BEAM COLUMNS AT THE END OF THE CENTER FLAT TRUSS OF THE ROOF. NOTE THE ORIGINAL LIGHT FIXTURE WITH BENT CONDUIT TUBING. VIEW FACING SOUTHEAST. - U.S. Naval Base, Pearl Harbor, Seaplane Hangar, Lexington Boulevard, south of Enterprise Street, Pearl City, Honolulu County, HI

  15. Permeability studies in marine clays stabilized with lime column

    SciTech Connect

    Rao, S.N.; Mathew, P.K.

    1994-12-31

    Soft marine clays are very sensitive to changes in stress system, moisture content and system chemistry of the pore fluid. There is a necessity to improve the behavior of these deposits using any one of the available ground improvement techniques. In the present investigation an attempt is made to improve the permeability using lime column techniques in marine clays. The experimental program was carried out with model lime columns installed in two test setups. In the first setup a central lime column was installed in a circular tank and in the second setup number of columns were installed in a rectangular tank. A marine clay from east coast of India was used as a test bed. Number of samples were taken at different radial distances and time periods. From the tests conducted on these samples, it has been established that lime has seeped into the surrounding soil for large distances and this is indicated by pH values and XRD analysis. There is enormous improvement in permeability and the k values are improved by 10 to 15 times. This shows a good promise for improving the reclaimed coastal soft deposits and offshore deposits.

  16. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    PubMed

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-01

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  17. Water column methanotrophy controlled by a rapid oceanographic switch

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Graves, Carolyn A.; Treude, Tina; Ferré, Bénédicte; Biastoch, Arne; Bussmann, Ingeborg; Berndt, Christian; Krastel, Sebastian; James, Rachael H.; Behrens, Erik; Böning, Claus W.; Greinert, Jens; Sapart, Célia-Julia; Scheinert, Markus; Sommer, Stefan; Lehmann, Moritz F.; Niemann, Helge

    2015-05-01

    Large amounts of the greenhouse gas methane are released from the seabed to the water column, where it may be consumed by aerobic methanotrophic bacteria. The size and activity of methanotrophic communities, which determine the amount of methane consumed in the water column, are thought to be mainly controlled by nutrient and redox dynamics. Here, we report repeated measurements of methanotrophic activity and community size at methane seeps west of Svalbard, and relate them to physical water mass properties and modelled ocean currents. We show that cold bottom water, which contained a large number of aerobic methanotrophs, was displaced by warmer water with a considerably smaller methanotrophic community within days. Ocean current simulations using a global ocean/sea-ice model suggest that this water mass exchange is consistent with short-term variations in the meandering West Spitsbergen Current. We conclude that the shift from an offshore to a nearshore position of the current can rapidly and severely reduce methanotrophic activity in the water column. Strong fluctuating currents are common at many methane seep systems globally, and we suggest that they affect methane oxidation in the water column at other sites, too.

  18. Monolithic molecularly imprinted polymeric capillary columns for isolation of aflatoxins.

    PubMed

    Szumski, Michał; Grzywiński, Damian; Prus, Wojciech; Buszewski, Bogusław

    2014-10-17

    Monolithic molecularly imprinted polymers extraction columns have been prepared in fused-silica capillaries by UV or thermal polymerization in a two-step process. First, a poly-(trimethylolpropane trimethacrylate) (polyTRIM) core monolith was synthesized either by UV or thermal polymerization. Then it was grafted with the mixture of methacrylic acid (MAA) as a functional monomer, ethylene dimethacrylate (EDMA) as a cross-linking agent, 5,7-dimethoxycoumarin (DMC) as an aflatoxin-mimicking template, toluene as a porogen solvent and 2,2-azobis-(2-methylpropionitrile) (AIBN) as an initiator of the polymerization reaction. Different thermal condition of the photografting and different concentrations of the grafting mixture were tested during polymerization. The extraction capillary columns were evaluated in the terms of their hydrodynamic and chromatographic properties. Retention coefficients for aflatoxin B1 and DMC were used for assessment of the selectivity and imprinting factor. The obtained results indicate that the temperature of photografting and concentration of the grafting mixture are key parameters that determine the quality of the prepared MIPs. From the MIP columns characterized by the highest permeability the column of the highest imprinting factor was applied for isolation of aflatoxins B1, B2, G1 and G2 from the model aqueous sample followed by on-line chromatographic separation. The process was performed using a micro-MISPE-microLC-LIF system of a novel design, which allowed for detection of the eluates from the sample preparation part as well as from the chromatographic separation.

  19. Herbicide Leaching Column for a Weed Science Teaching Laboratory.

    ERIC Educational Resources Information Center

    Ahrens, W. H.

    1986-01-01

    Presents an experiment which enables weed science students to observe first-hand the process of herbicide leaching in soils. Features of this technique which demonstrate the movement of herbicide within a column of soil are outlined. Diagrams are provided of the apparatus employed in the exercise. (ML)

  20. Pressure effects on bubble-column flow characteristics

    SciTech Connect

    Adkins, D.R.; Shollenberger, K.A.; O`Hern, T.J.; Torczynski, J.R.

    1996-03-01

    Bubble-column reactors are used in the chemical processing industry for two-phase and three-phase chemical reactions. Hydrodynamic effects must be considered when attempting to scale these reactors to sizes of industrial interest, and diagnostics are needed to acquire data for the validation of multiphase scaling predictions. This paper discusses the use of differential pressure (DP) and gamma- densitometry tomography (GDT) measurements to ascertain the gas distribution in a two-phase bubble column reactor. Tests were performed on an industrial scale reactor (3-m tall, 0.48-m inside diameter) using a 5-Curie cesium-137 source with a sodium-iodide scintillation detector. GDT results provide information on the time- averaged cross-sectional distribution of gas in the liquid, and DP measurements provide information on the time and volume averaged axial distribution of gas. Close agreement was observed between the two methods of measuring the gas distribution in the bubble column. The results clearly show that, for a fixed volumetric flowrate through the reactor, increasing the system pressure leads to an increase in the gas volume fraction or ``gas holdup`` in the liquid. It is also shown from this work that GDT can provide useful diagnostic information on industrial scale bubble-column reactors.

  1. 46 CFR 174.085 - Flooding on column stabilized units.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Flooding on column stabilized units. 174.085 Section 174.085 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore...

  2. 46 CFR 174.085 - Flooding on column stabilized units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Flooding on column stabilized units. 174.085 Section 174.085 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore...

  3. Axonal processes and neural plasticity.I: Ocular dominance columns.

    PubMed

    Elliott, T; Howarth, C I; Shadbolt, N R

    1996-01-01

    We present two related computational models of ocular dominance column formation. Both address nervous system plasticity in terms of sprouting and retraction of axonal processes rather than changes in synaptic strength implied by synapse-specific Hebbian models. We employ statistical mechanics to simulate changes in the pattern of network connectivity. Our formalism uses the concept of an energy function, which we interpret as related to the levels of target-generated neurotrophins for which afferents compete. In contrast, synapse-specific Hebbian models impose synaptic normalization, for which there is little experimental evidence, in order to induce competition. Our models make many predictions which require experimental investigation. We suggest that the absence of monocular deprivation effects in the optic tectum may be due to a tendency of amphibian retinal ganglion cells to preserve the complexity of their terminal arbors. One model raises the possibility that boundaries separating columns in the mammalian cortex are poorly innervated if they have been formed by complete but asynchronous retinal activation. Both models exhibit a phase transition, suggesting a discontinuity in the transition from a binocular cortex to one possessing ocular dominance columns. Finally, our other model could account for the perpendicularity of ocular dominance columns to the boundary of the primary visual cortex while admitting of less ordered central patterns.

  4. 10. FIRST FLOOR BLDG. 28B: DETAIL FLARED COLUMN. Fafnir ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. FIRST FLOOR BLDG. 28B: DETAIL FLARED COLUMN. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  5. 14. FIRST FLOOR BLDG. 28: DETAIL OCTAGONAL COLUMN. Fafnir ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. FIRST FLOOR BLDG. 28: DETAIL OCTAGONAL COLUMN. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  6. 12. Detail of boxedin column capital and covered tin ceiling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail of boxed-in column capital and covered tin ceiling in first floor library reading room - National Home for Disabled Volunteer Soldiers Western Branch, Ward Memorial Building, Franklin Avenue, southeast of Intersection with Rowland Avenue, Leavenworth, Leavenworth County, KS

  7. Pulsed airborne lidar measurements of atmospheric CO2 column absorption

    NASA Astrophysics Data System (ADS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Kawa, S. Randoph; Biraud, Sebastien

    2010-11-01

    ABSTRACT We report initial measurements of atmospheric CO2 column density using a pulsed airborne lidar operating at 1572 nm. It uses a lidar measurement technique being developed at NASA Goddard Space Flight Center as a candidate for the CO2 measurement in the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. The pulsed multiple-wavelength lidar approach offers several new capabilities with respect to passive spectrometer and other lidar techniques for high-precision CO2 column density measurements. We developed an airborne lidar using a fibre laser transmitter and photon counting detector, and conducted initial measurements of the CO2 column absorption during flights over Oklahoma in December 2008. The results show clear CO2 line shape and absorption signals. These follow the expected changes with aircraft altitude from 1.5 to 7.1 km, and are in good agreement with column number density estimates calculated from nearly coincident airborne in-situ measurements.

  8. Combining micro dry column chromatography and mass spectrometry

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.

    1970-01-01

    Dry column chromatography principles applied in microscale produce technique to minimize time in preparing and analyzing colorless constituents of soluble mixtures. Glass pipette microcolumns filled with finely sieved adsorbents permit capillary attraction and separation in 3 to 15 minutes. Technique is adaptable to gas chromatography.

  9. Water column correction for coral reef studies by remote sensing.

    PubMed

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-01-01

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application. PMID:25215941

  10. COLUMN TESTS ON ARSENIC REMEDIATION USING ZEROVALENT IRON

    EPA Science Inventory

    It is urgent to find cost-effective remediation technologies to deal with arsenic contamination of groundwater if the current EPA allowable maximum contamination level of 0.05 mg As per liter is lowered to 0.01 mg As per liter in drinking water. We performed three column tests ea...

  11. NORTH BASEMENT WALL. IBEAM COLUMNS HAVE BEEN ENCASED IN CONCRETE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH BASEMENT WALL. I-BEAM COLUMNS HAVE BEEN ENCASED IN CONCRETE. STEEL BEAMS LAY ACROSS FIRST FLOOR AWAITING CONCRETE POUR. CAMERA LOOKS SOUTHWEST. INL NEGATIVE NO. 735. Unknown Photographer, 10/6/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. Comparison of neptunium sorption results using batch and column techniques

    SciTech Connect

    Triay, I.R.; Furlano, A.C.; Weaver, S.C.; Chipera, S.J.; Bish, D.L.

    1996-08-01

    We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments under static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases.

  13. Assessment of solution uncertainties in single-column modeling frameworks

    SciTech Connect

    Hack, J.J.; Pedretti, J.A.

    2000-01-15

    Single-column models (SCMs) have been extensively promoted in recent years as an effective means to develop and test physical parameterizations targeted for more complex three-dimensional climate models. Although there are some clear advantages associated with single-column modeling, there are also some significant disadvantages, including the absence of large-scale feedbacks. Basic limitations of an SCM framework can make it difficult to interpret solutions, and at times contribute to rather striking failures to identify even first-order sensitivities as they would be observed in a global climate simulation. This manuscript will focus on one of the basic experimental approaches currently exploited by the single-column modeling community, with an emphasis on establishing the inherent uncertainties in the numerical solutions. The analysis will employ the standard physics package from the NCAR CCM3 and will illustrate the nature of solution uncertainties that arise from nonlinearities in parameterized physics. The results of this study suggest the need to make use of an ensemble methodology when conducting single-column modeling investigations.

  14. Aggregating tags for column-free protein purification.

    PubMed

    Lin, Zhanglin; Zhao, Qing; Xing, Lei; Zhou, Bihong; Wang, Xu

    2015-12-01

    Protein purification remains a central need for biotechnology. In recent years, a class of aggregating tags has emerged, which offers a quick, cost-effective and column-free alternative for producing recombinant proteins (and also peptides) with yield and purity comparable to that of the popular His-tag. These column-free tags induce the formation of aggregates (during or after expression) when fused to a target protein or peptide, and upon separation from soluble impurities, the target protein or peptide is subsequently released via a cleavage site. In this review, we categorize these tags as follows: (i) tags that induce inactive protein aggregates in vivo; (ii) tags that induce active protein aggregates in vivo; and (iii) tags that induce soluble expression in vivo, but aggregates in vitro. The respective advantages and disadvantages of these tags are discussed, and compared to the three conventional tags (His-tag, maltose-binding protein [MBP] tag, and intein-mediated purification with a chitin-binding tag [IMPACT-CN]). While this new class of aggregating tags is promising, more systematic tests are required to further the use. It is conceivable, however, that the combination of these tags and the more traditional columns may significantly reduce the costs for resins and columns, particularly for the industrial scale.

  15. Learning Mechanism for Column Formation in the Olfactory Bulb

    PubMed Central

    Migliore, M.; Inzirillo, Carlo; Shepherd, Gordon M.

    2007-01-01

    Sensory discrimination requires distributed arrays of processing units. In the olfactory bulb, the processing units for odor discrimination are believed to involve dendrodendritic synaptic interactions between mitral and granule cells. There is increasing anatomical evidence that these cells are organized in columns, and that the columns processing a given odor are arranged in widely distributed arrays. Experimental evidence is lacking on the underlying learning mechanisms for how these columns and arrays are formed. To gain insight into these mechanisms, we have used a simplified realistic circuit model to test the hypothesis that distributed connectivity can self-organize through an activity-dependent dendrodendritic synaptic mechanism. The results point to action potentials propagating in the mitral cell lateral dendrites as playing a critical role in this mechanism. The model predicts that columns emerge from the interaction between the local temporal dynamics of the action potentials and the synapses that they activate during dendritic propagation. The results suggest a novel and robust learning mechanism for the development of distributed processing units in a cortical structure. PMID:18958240

  16. Arsenate removal from water using sand--red mud columns.

    PubMed

    Genç-Fuhrman, Hülya; Bregnhøj, Henrik; McConchie, David

    2005-08-01

    This study describes experiments in which sorption filters, filled with chemically modified red mud (Bauxsol) or activated Bauxsol (AB) coated sand, are used to remove As(V) (arsenate) from water. Bauxsol-coated sand (BCS) and AB-coated sand (ABCS) are prepared by mixing Bauxsol or AB with wet sand and drying. Samples of the BCS and ABCS are also used in batch experiments to obtain isotherm data. The observed adsorption data fit the Langmuir model well, with adsorption maxima of 3.32 and 1.64 mgg(-1) at pH values of 4.5 and 7.1, respectively for BCS; and of 2.14 mgg(-1) for ABCS at a pH of 7.1. Test results show that higher arsenate adsorption capacities can be achieved for both BCS and ABCS when using the columns compared to results for batch experiments; the difference is greater for BCS. Additional batch tests, carried out for 21 days using BCS to explain the observed discrepancy, show that the equilibrium time previously used in batch experiments was too short because adsorption continued for at least 21 days and reached 87% after 21 days compared to only 35% obtained after 4h. Fixed bed column tests, used to investigate the effects of flow rate and initial arsenate concentration indicate that the process is sensitive to both parameters, with lower flow rates (longer effective residence times in the columns) and initial arsenate concentrations providing better column performance. An examination of the combined effect of potential competing anions (i.e. silicate, phosphate, sulphate and bicarbonate) on the column performance showed that the presence of these anions in tap water slightly decreases arsenate removal. Each breakthrough curve is compared to the Thomas model, and it is found that the model may be applied to estimate the arsenate sorption capacity in columns filled with BCS and ABCS. The data obtained from both batch and column studies indicate that BCS and ABCS filtration could be effectively used to remove arsenate from water, with the latter being

  17. Slag columns for upgrading phosphorus removal from constructed wetland effluents.

    PubMed

    Chazarenc, F; Brisson, J; Comeau, Y

    2007-01-01

    The current best option to upgrade constructed wetlands (CWs) for phosphorus (P) retention, in terms of efficiency, cost and simplicity, consists in using media having a strong P affinity. The media can be used either in the planted beds or in a filtration system downstream of the beds. The use of slag filters was shown to be efficient for removing P from wastewater as it represented a slow release source of calcium and hydroxide, favouring the formation of hydroxyapatite. Our study aimed at maximising the P retention capacity of slag filters located at the outlet of CWs since electric arc furnace slag has been shown to inhibit the growth of macrophytes when used in the filtration matrix. Bench-scale columns (Vtot = 6.2 L) filled with various combinations of filter media (slag, granite, limestone) of different sizes (2-5, 5-10, 10-20 mm) were fed on-site during four months with a CW effluent (in mg/L: 30 COD, 30 TSS, 10 Pt). Results showed that the best media combination enabling the maximum o-PO4 retention (more than 80% removal without clogging) consisted in a series of a ternary mix column (slag 5-10 mm, granite 2-5 mm, limestone 5-10 mm) followed by a slag column (slag 5-10 mm). Pilot scale columns (Vtot = 300 L), filled with the best media combination, were installed at the outlet of a 28 m2 CW. These columns showed more than 75% removal efficiency during one year and were designed to be easily replaced each year.

  18. Fiber-based monolithic columns for liquid chromatography.

    PubMed

    Ladisch, Michael; Zhang, Leyu

    2016-10-01

    Fiber-based monoliths for use in liquid chromatographic separations are defined by columns packed with aligned fibers, woven matrices, or contiguous fiber structures capable of achieving rapid separations of proteins, macromolecules, and low molecular weight components. A common denominator and motivating driver for this approach, first initiated 25 years ago, was reducing the cost of bioseparations in a manner that also reduced residence time of retained components while achieving a high ratio of mass to momentum transfer. This type of medium, when packed into a liquid chromatography column, minimized the fraction of stagnant liquid and resulted in a constant plate height for non-adsorbing species. The uncoupling of dispersion from eluent flow rate enabled the surface chemistry of the stationary phase to be considered separately from fluid transport phenomena and pointed to new ways to apply chemistry for the engineering of rapid bioseparations. This paper addresses developments and current research on fiber-based monoliths and explains how the various forms of this type of chromatographic stationary phase have potential to provide new tools for analytical and preparative scale separations. The different stationary phases are discussed, and a model that captures the observed constant plate height as a function of mobile phase velocity is reviewed. Methods that enable hydrodynamically stable fiber columns to be packed and operated over a range of mobile phase flow rates, together with the development of new fiber chemistries, are shown to provide columns that extend the versatility of liquid chromatography using monoliths, particularly at the preparative scale. Graphical Abstract Schematic representation of a sample mixture being separated by a rolled-stationary phase column, resulting separated peaks shown in the chromatogram. PMID:27553948

  19. Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations

    NASA Astrophysics Data System (ADS)

    Ikegami, Tohru; Tanaka, Nobuo

    2016-06-01

    Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics.

  20. Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations.

    PubMed

    Ikegami, Tohru; Tanaka, Nobuo

    2016-06-12

    Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics. PMID:27306311

  1. [A novel multiple-channel apparatus for packing capillary chromatographic column and its application].

    PubMed

    Lü, Yayao; Hao, Feiran; Wang, Huanhuan; Fu, Bin; Qian, Xiaohong; Zhang, Yangjun

    2015-11-01

    A novel multiple-channel apparatus for packing capillary chromatographic column was designed and manufactured for packing six capillary chromatographic columns with close column efficiency at the same time. Briefly, it consists of a magnetic stirrer, a liquid chromatographic pump and a multiple-channel can. The reagents used for preparing ODS (C18) slurry and stirring condition of the magnetic stirrer were optimized in the study. Two batches of capillary chromatographic columns were packed under the optimum condition, and these packed capillary chromatographic columns were evaluated in the terms of peak capacity, sequence coverage, retention times of three peptide ions and column pressure using the tryptic digest of a bovine serum albumin (BSA) and detected by LC-MS in electrospray ionization (ESI) mode. The experimental results showed that the six capillary chromatographic columns packed at the same time had close column efficiencies, however, the column efficiencies of twelve capillary chromatographic columns packed at two times were significantly different. In addition, there was no significant column efficiency difference when packing one or six capillary chromatographic columns at the same time. The multiple-channel apparatus designed by us is simple, time-saving, and can be applied to pack capillary chromatographic columns with similar column efficiencies, thus it is of evident advantage over traditional one-channel apparatus.

  2. Topographic shear and the relation of ocular dominance columns to orientation columns in primate and cat visual cortex.

    PubMed

    Wood, Richard J.; Schwartz, Eric L.

    1999-03-01

    Shear has been known to exist for many years in the topographic structure of the primary visual cortex, but has received little attention in the modeling literature. Although the topographic map of V1 is largely conformal (i.e. zero shear), several groups have observed topographic shear in the region of the V1/V2 border. Furthermore, shear has also been revealed by anisotropy of cortical magnification factor within a single ocular dominance column. In the present paper, we make a functional hypothesis: the major axis of the topographic shear tensor provides cortical neurons with a preferred direction of orientation tuning. We demonstrate that isotropic neuronal summation of a sheared topographic map, in the presence of additional random shear, can provide the major features of cortical functional architecture with the ocular dominance column system acting as the principal source of the shear tensor. The major principal axis of the shear tensor determines the direction and its eigenvalues the relative strength of cortical orientation preference. This hypothesis is then shown to be qualitatively consistent with a variety of experimental results on cat and monkey orientation column properties obtained from optical recording and from other anatomical and physiological techniques. In addition, we show that a recent result of Das and Gilbert (Das, A., & Gilbert, C. D., 1997. Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature, 387, 594-598) is consistent with an infinite set of parameterized solutions for the cortical map. We exploit this freedom to choose a particular instance of the Das-Gilbert solution set which is consistent with the full range of local spatial structure in V1. These results suggest that further relationships between ocular dominance columns, orientation columns, and local topography may be revealed by experimental testing.

  3. Ground-based column abundance measurements of atmospheric hydroxyl

    NASA Technical Reports Server (NTRS)

    Burnett, Clyde R.

    1988-01-01

    The preliminary results of ground-based OH column abundance measurements from Truk, Federated States of Micronesia, are contained. These are the first OH column measurements from the tropics, and constitute a signficcant contribution to the OH data base. Comparisons of tropical OH behavior with the extensive mid-latitude observations serve as a critical test of the current understanding of the HO (sub x) photochemistry and its relationship to the other major chemical families. The quasi-biennial oscillation (QBO) in tropical stratospheric winds exerts a major influence on the Hadley cell vertical transport. Related QBOs in total O3 and in stratospheric H2O were identified, but QBO effects on other stratospheric species are still unknown. The solar tide in the tropics produces a diurnal surface pressure variation of 2 to 3 mb; its effect on OH photochemistry in the stratosphere may be significant.

  4. Ground-based column abundance measurements of atmospheric hydroxyl

    NASA Astrophysics Data System (ADS)

    Burnett, Clyde R.

    1988-04-01

    The preliminary results of ground-based OH column abundance measurements from Truk, Federated States of Micronesia, are contained. These are the first OH column measurements from the tropics, and constitute a signficcant contribution to the OH data base. Comparisons of tropical OH behavior with the extensive mid-latitude observations serve as a critical test of the current understanding of the HO (sub x) photochemistry and its relationship to the other major chemical families. The quasi-biennial oscillation (QBO) in tropical stratospheric winds exerts a major influence on the Hadley cell vertical transport. Related QBOs in total O3 and in stratospheric H2O were identified, but QBO effects on other stratospheric species are still unknown. The solar tide in the tropics produces a diurnal surface pressure variation of 2 to 3 mb; its effect on OH photochemistry in the stratosphere may be significant.

  5. Late Spontaneous Migration of a Dorsal Column Stimulator Paddle Lead

    PubMed Central

    Li, Chao; Carter, David A

    2016-01-01

    The most frequently encountered complication of dorsal column stimulators is lead migration. The vast majority of these events are seen in the first few weeks to months. Late paddle lead migration is a very uncommon occurrence in this setting. We describe a case of a 51-year-old male with a history of reflex sympathetic dystrophy having undergone dorsal column stimulator insertion at the level of C1-C2. A good clinical benefit was appreciated in the postoperative period once the stimulator was turned on. Approximately six months postoperatively, the patient suddenly lost coverage. Radiographic imaging revealed that the lead had migrated caudally to the C3-C4 level. Subsequent revision surgery took place. This description highlights a common complication, but occurring outside the expected time frame after surgery. PMID:27672531

  6. Sustenance of inhomogeneous electron temperature in a magnetized plasma column

    SciTech Connect

    Karkari, S. K. Mishra, S. K.; Kaw, P. K.

    2015-09-15

    This paper presents the equilibrium properties of a magnetized plasma column sustained by direct-current (dc) operated hollow cathode discharge in conjunction with a conducting end-plate, acting as the anode. The survey of radial plasma characteristics, performed in argon plasma, shows hotter plasma in the periphery as compared to the central plasma region; whereas the plasma density peaks at the center. The off-centered peak in radial temperature is attributed due to inhomogeneous power deposition in the discharge volume in conjunction with short-circuiting effect by the conducting end plate. A theoretical model based on particle flux and energy balance is given to explain the observed characteristics of the plasma column.

  7. Column Experiments to Interpret Weathering in Columbia Hills

    NASA Technical Reports Server (NTRS)

    Hausrath, E. M.; Morris, R.V.; Ming, D.W.; Golden, D.C.; Galindo, C.; Sutter, B.

    2009-01-01

    Phosphate mobility has been postulated as an indicator of early aqueous activity on Mars. In addition, rock surfaces analyzed by the Mars Exploration Rover Spirit are consistent with the loss of a phosphate- containing mineral To interpret phosphate alteration behavior on Mars, we performed column dissolution experiments leaching the primary phases Durango fluorapatite, San Carlos olivine, and basalt glass (Stapafjell Volcano, courtesy of S. Gislason, University of Iceland) [3,4]) with acidic solutions. These phases were chosen to represent quickly dissolving phases likely present in Columbia Hills. Column dissolution experiments are closer to natural dissolution conditions than batch experiments, although they can be difficult to interpret. Acidic solutions were used because the leached layers on the surfaces of these rocks have been interpreted as resulting from acid solutions [5].

  8. Hydrodynamics of a packed countercurrent column for the gas extraction

    SciTech Connect

    Stockfleth, R.; Brunner, G.

    1999-10-01

    The hydraulic capacity of a countercurrent column with gauze packing was examined at pressures between 8 and 30 MPa and temperatures between 313 and 373 K. The systems used were water + carbon dioxide, aqueous surfactant solution + carbon dioxide, and Toco, a substance whose physical properties are roughly similar to those of {alpha}-Tocopherol + carbon dioxide. A distinctive change in the flooding mechanisms from liquid layer flooding to bubble column flooding was observed. The different liquids, water and Toco, showed the same flooding behavior, indicating that the influence of the density on the flooding behavior prevails over the influence of any other physical property of the liquid. The foamability of the surfactant solution decreased significantly with increasing pressure--its influence on the flooding behavior could not be proved. The liquid holdup ranged between 2% and 6%. The dry pressure drop adhered to the Ergun equation.

  9. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1988-01-01

    This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  10. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1989-01-01

    This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  11. Tritium Isotope Separation Using Adsorption-Distillation Column

    SciTech Connect

    Fukada, Satoshi

    2005-07-15

    In order to miniaturize the height of a distillation tower for the detritiation of waste water from fusion reactors, two experiments were conducted: (1) liquid frontal chromatography of tritium water eluting through an adsorption column and (2) water distillation using a column packed with adsorbent particles. The height of the distillation tower depends on the height equivalent to a theoretical plate, HETP, and the equilibrium isotope separation factor, {alpha}{sub H-T}{sup equi}. The adsorption action improved not only HETP but also {alpha}{sub H-T}{sup equi}. Since the adsorption-distillation method proposed here can shorten the tower height with keeping advantages of the distillation, it may bring an excellent way for miniaturizing the distillation tower to detritiate a large amount of waste water from fusion reactors.

  12. Mt. Pinatubo SO2 column measurements from Mauna Loa

    NASA Astrophysics Data System (ADS)

    Goldman, A.; Murcray, F. J.; Rinsland, C. P.; Blatherwick, R. D.; David, S. J.; Murcray, F. H.; Murcray, D. G.

    1992-01-01

    Absorption features of the nu sub 1 band of SO2 are identified in high-resolution IR solar-absorption spectra recorded from Mauna Loa, Hawaii, on July 9 and 12, 1991, shortly after the arrival of the first eruption plume from the Mt. Pinatubo volcano. A total SO2 vertical column amount of (5.1 +/- 0.5) x 10 exp 16 molecules/sq cm on July 9 is retrieved based on nonlinear least-squares spectral fittings of 9 selected SO2 absorption features with an updated set of SO2 spectral parameters. A SO2 total-column upper limit of 0.9 x 10 exp 16 molecules/sq cm deduced from measurements on September 20-24, 1991, is consistent with the dispersion of the SO2 cloud and the rapid conversion of the SO2 vapor into volcanic aerosol particles.

  13. Using solvent extraction to process nitrate anion exchange column effluents

    SciTech Connect

    Yarbro, S.L.

    1987-10-01

    Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), a new organophosphorous extractant, and a new centrifugal mixer-settler both recently developed at Argonne were evaluated for their potential use in the recovery of actinides from nitrate anion exchange column effluents. The performance of the extractant was evaluated by measuring the extraction coefficient values as a function of acid and salt concentration. Additional performance parameters include extraction coefficient behavior as a function of the total metal concentration in the organic phase, and comparison of different stripping and organic scrubbing techniques. A simulated effluent stream was used to evaluate the performance of the centrifugal mixer-settlers by comparing experimental and calculated interstage concentration profiles. Both the CMPO extractant and the centrifugal mixer-settlers have potential for processing nitrate column effluents, particularly if the stripping behavior can be improved. Details of the proposed process are presented in the flowsheet and contactor design analyses.

  14. Bubble column apparatus for separating wax from catalyst slurry

    SciTech Connect

    Neathery, James K.; Davis, Burtron H.

    2004-07-13

    Novel methods and devices for production of liquid hydrocarbon products from gaseous reactants are disclosed. In one aspect, a method for separating a liquid hydrocarbon, typically a wax, from a catalyst containing slurry is provided, comprising passing the slurry through at least one downcomer extending from an overhead separation chamber and discharging into the bottom of a slurry bubble column reactor. The downcomer includes a cross-flow filtration element for separating a substantially particle-free liquid hydrocarbon for downstream processing. In another aspect, a method for promoting plug-flow movement in a recirculating slurry bubble column reactor is provided, comprising discharging the recirculating slurry into the reactor through at least one downcomer which terminates near the bottom of the reactor. Devices for accomplishing the above methods are also provided.

  15. Regenerated bacterial cellulose microfluidic column for glycoproteins separation.

    PubMed

    Chen, Chuntao; Zhu, Chunlin; Huang, Yang; Nie, Ying; Yang, Jiazhi; Shen, Ruiqi; Sun, Dongping

    2016-02-10

    To analysis and separate glycoproteins, a simple strategy to prepare regenerated bacterial cellulose (RBC) column with concanavalin A (Con A) lectin immobilized in microfluidic system was applied. RBC was filled into microchannel to fabricate RBC microcolumn after bacterial cellulose dissolved in NaOH-sulfourea water solution. Lectin Con A was covalently connected onto RBC matrix surface via Schiff-base formation. Lysozyme (non-glycoprotein) and transferrin (glycoprotein) were successfully separated based on their different affinities toward the immobilized Con A. Overall, the RBC microfluidic system presents great potential application in affinity chromatography of glycoproteins analysis, and this research represents a significant step to prepare bacterial cellulose (BC) as column packing material in microfluidic system. What is more, troublesome operations for lectin affinity chromatography were simplified by integrating the microfluidic chip onto a HPLC (High Performance Liquid Chromatography) system.

  16. Brewer spectrometer total ozone column measurements in Sodankylä

    NASA Astrophysics Data System (ADS)

    Karppinen, Tomi; Lakkala, Kaisa; Karhu, Juha M.; Heikkinen, Pauli; Kivi, Rigel; Kyrö, Esko

    2016-06-01

    Brewer total ozone column measurements started in Sodankylä in May 1988, 9 months after the signing of The Montreal Protocol. The Brewer instrument has been well maintained and frequently calibrated since then to produce a high-quality ozone time series now spanning more than 25 years. The data have now been uniformly reprocessed between 1988 and 2014. The quality of the data has been assured by automatic data rejection rules as well as by manual checking. Daily mean values calculated from the highest-quality direct sun measurements are available 77 % of time with up to 75 measurements per day on clear days. Zenith sky measurements fill another 14 % of the time series and winter months are sparsely covered by moon measurements. The time series provides information to survey the evolution of Arctic ozone layer and can be used as a reference point for assessing other total ozone column measurement practices.

  17. Multigroup representation of fusion product orbits in a plasma column

    SciTech Connect

    Willenberg, H.J.

    1980-03-01

    A method is derived for describing the time-depending behavior of ..cap alpha.. particles produced in a radially nonuniform slender plasma column as a distribution function among the possible orbits. A multigroup numerical approximation is introduced to analyze the development of the distribution function and its moments. Results are presented of calculations of the time-dependent ..cap alpha..-particle energy spectrum and radial density, energy, and electron heating profiles in plasma columns with radii comparable to the ..cap alpha.. Larmor radius. This technique allows calculation of the ..cap alpha.. particle history at much more rapid rates than allowed by Monte Carlo technuques: The characteristic time scale is the ..cap alpha..-electron slowing-down time rather than the cyclotron period.

  18. Late Spontaneous Migration of a Dorsal Column Stimulator Paddle Lead.

    PubMed

    Li, Chao; Galgano, Michael A; Carter, David A

    2016-01-01

    The most frequently encountered complication of dorsal column stimulators is lead migration. The vast majority of these events are seen in the first few weeks to months. Late paddle lead migration is a very uncommon occurrence in this setting. We describe a case of a 51-year-old male with a history of reflex sympathetic dystrophy having undergone dorsal column stimulator insertion at the level of C1-C2. A good clinical benefit was appreciated in the postoperative period once the stimulator was turned on. Approximately six months postoperatively, the patient suddenly lost coverage. Radiographic imaging revealed that the lead had migrated caudally to the C3-C4 level. Subsequent revision surgery took place. This description highlights a common complication, but occurring outside the expected time frame after surgery. PMID:27672531

  19. Collapse of a Liquid Column: Numerical Simulation and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Cruchaga, Marcela A.; Celentano, Diego J.; Tezduyar, Tayfun E.

    2007-03-01

    This paper is focused on the numerical and experimental analyses of the collapse of a liquid column. The measurements of the interface position in a set of experiments carried out with shampoo and water for two different initial column aspect ratios are presented together with the corresponding numerical predictions. The experimental procedure was found to provide acceptable recurrence in the observation of the interface evolution. Basic models describing some of the relevant physical aspects, e.g. wall friction and turbulence, are included in the simulations. Numerical experiments are conducted to evaluate the influence of the parameters involved in the modeling by comparing the results with the data from the measurements. The numerical predictions reasonably describe the physical trends.

  20. In-plant testing of microbubble column flotation

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.; Mankosa, M.J.

    1991-07-31

    Microbubble column flotation (MCF) was developed at the Virginia Center for Coal and Minerals Processing (VCCMP) for the selective recovery of fine particles. Bench-scale test work conducted at VCCMP, largely under the sponsorship of the U.S. Department of Energy (DOE), showed that the technology worked well for both coal and mineral applications. For the technology to be commercially successful, however, a full-scale demonstration of the MCF technology was deemed necessary. This report summarizes the results of work performed under the DOE project entitled In-plant Testing of Microbubble Column Flotation.'' The objectives of this research and development effort were to duplicate the bench-scale performance of the MCF process in a full-scale unit, to verify the scale-up procedure developed in an earlier project, and to demonstrate the applicability of the MCF technology to the coal industry.

  1. In-plant testing of microbubble column flotation. Final report

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.; Mankosa, M.J.

    1991-07-31

    Microbubble column flotation (MCF) was developed at the Virginia Center for Coal and Minerals Processing (VCCMP) for the selective recovery of fine particles. Bench-scale test work conducted at VCCMP, largely under the sponsorship of the U.S. Department of Energy (DOE), showed that the technology worked well for both coal and mineral applications. For the technology to be commercially successful, however, a full-scale demonstration of the MCF technology was deemed necessary. This report summarizes the results of work performed under the DOE project entitled ``In-plant Testing of Microbubble Column Flotation.`` The objectives of this research and development effort were to duplicate the bench-scale performance of the MCF process in a full-scale unit, to verify the scale-up procedure developed in an earlier project, and to demonstrate the applicability of the MCF technology to the coal industry.

  2. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, Harvey R.; Fanslow, Glenn E.

    1983-01-01

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed.

  3. Deformation Monitoring of Retrofitted Short Concrete Columns with Laser Sensor

    NASA Astrophysics Data System (ADS)

    Avsar, E. Ö.; Celik, M. F.; Binbir, E.; Arslan, A. E.; Çokkeçeci, D.; Seker, D. Z.; Pala, S.

    2016-06-01

    This paper presents one of the applications of monitoring mechanical tests carried out in Construction Materials Laboratory of Istanbul Technical University. In Turkey, as in many countries, large amount of existing buildings exposed to seismic hazard, therefore various analytical and experimental studies are being conducted to contribute to the solution of the problem. One of the new generation retrofitting techniques is to strength the structural members by using Fiber Reinforcing Polymer (FRP). This study summarize the results of monitoring of deformations short concrete column samples under the incremental compression load. In this study, result of two rectangular short columns are given. One of them was tested as a reference sample, the other sample were tested after strengthening by PET reinforced polymer composite materials. Besides conventional displacement and strain measurement systems, laser scanning method was used to get three dimensional deformed shape of sample at each selected steps.

  4. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, H.R.; Fanslow, G.E.

    1983-12-20

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed. 8 figs.

  5. Group-delay diagnostic for measuring vapor column density

    SciTech Connect

    Crane, J.K.; Presta, R.W.; Christensen, J.J.; Cooke, J.D.; Shaw, M.J.; Johnson, M.A.; Paisner, J.A. )

    1991-10-20

    We describe a technique for determining {ital Nfl} by measuring the group-velocity delay of a probe laser beam propagating through a vapor. This diagnostic has wide dynamic range, is simple to implement, and can be used as a high-bandwidth vapor rate monitor. In addition, it can be used to measure column density, {ital Nl}, number density, {ital N}, oscillator strengths, {ital f}, or absorption cross sections, collisional line broadening, and vapor group-velocity delay.

  6. Column oil agglomeration of fly ash with ultrasonics

    SciTech Connect

    Gray, M.L.; Champagne, K.J.; Soong, Y.; Finseth, D.H.

    1999-07-01

    A promising oil agglomeration process has been developed for the beneficiation of fly ash using a six-foot agglomeration column. Carbon concentrates have been separated from fly ash with yields greater than 60 % and purities of 55 to 74 %. The parameters examined in the study include ultrasonic exposure, pulse rate, frequency, agitation speed, and blade configuration. The effects of the experimental variables on the quality of separation are discussed.

  7. Simple, analytical criteria for the sequencing of distillation columns

    SciTech Connect

    Malone, M.F.; Douglas, J.M.; Glinos, K.; Marquez, F.E.

    1985-04-01

    A quantitative criterion for the selection of simple distillation sequences is derived for ideal mixtures. A simple cost model, along with a short-cut solution of Underwood's equations, gives an analytical form for the total vapor rate, which is the key design variable. The results for column sequencing that are based on the analytical criterion agree well with more exact solutions, but they indicate that in numerous situations the commonly accepted heuristics are incorrect.

  8. Cryogenic focussing, ohmically heated on-column trap

    SciTech Connect

    Springston, S.R.

    1991-12-01

    A procedure is described for depositing a conductive layer of gold on the exterior of a fused-silica capillary used in gas chromatography. By subjecting a section of the column near the inlet to a thermal cycle of cryogenic cooling and ohmic heating, volatile samples are concentrated and subsequently injected. The performance of this trap as a chromatographic injector is demonstrated. Several additional applications are suggested and the unique properties of this device are discussed. 11 refs., 5 figs., 1 tab.

  9. Detail of plaque beneath column on the south parapet at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of plaque beneath column on the south parapet at the west end of the bridge. The plaque reads “1914; Mayor E.J. Drussel; Councilmen E.S. Henry, E.F. Hogan, R.P. Lamdin, C.F. Ross, J.H. Shuppert; Leonard & Day, Engineers; C.H. Gildersleeve, Builder.” - First Street Bridge, Spanning Napa River at First Street between Soscol Avenue & Juarez Street, Napa, Napa County, CA

  10. Nickel migration and retention dynamics in natural soil columns

    NASA Astrophysics Data System (ADS)

    Raveh-Rubin, Shira; Edery, Yaniv; Dror, Ishai; Berkowitz, Brian

    2015-09-01

    Nickel migration measured in laboratory-scale, natural soil column experiments is shown to display anomalous (non-Fickian) transport, nonequilibrium adsorption and desorption patterns, and precipitation/dissolution. Similar experiments using a conservative tracer also exhibit anomalous behavior. The occurrence of ion exchange of nickel, mainly with calcium (but also with other soil components), is measured in both batch and flow-through column experiments; adsorption and desorption isotherms demonstrate hysteresis. Strong retention of nickel during transport in soil columns leads to delayed initial breakthrough (˜40 pore volumes), slow increase in concentration, and extended concentration tailing at long times. We describe the mechanisms of transport and retention in terms of a continuous time random walk (CTRW) model, and use a particle tracking formulation to simulate nickel migration in the column. This approach allows us to capture the non-Fickian transport and the subtle local effects of adsorption/desorption and precipitation/dissolution. Consideration also of preferential pathways accounts for the evolution of the measured breakthrough curve and measured spatial concentration profiles. The model uses non-Fickian transport parameters estimated from the conservative tracer and, as a starting point, adsorption/desorption parameters based on batch experiments and a precipitation parameter based on Ksp values. The batch parameters are found to underestimate the actual amount of adsorption. We suggest that the sorption and precipitation/dissolution dynamics, and resulting breakthrough curves, are influenced strongly by preferential pathways; such pathways significantly alter the availability of sorption sites and ion availability for precipitation. Analysis of these results provides further understanding of the interaction and dynamics among transport, precipitation, and sorption mechanisms in natural soil.

  11. [The prevalence of spinal column pathologies. Preventive measures].

    PubMed

    Lulich, A; Luna, C; Lupidi, S; Severina, M de los A

    1992-01-01

    It has been observed that a high percentage of students present problems with the spinal column; this is due to the lack of prevention in the activities of daily life and in hospitals' practice. Added to this, is the presence of a large percentage of alterations of the feet. This coincides with our hypothesis of work, and brings us to suggest the correct positions in the principal postures.

  12. OH Column Abundance Apparent Response to Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Burnett, C. R.; Minschwaner, K. R.

    2009-12-01

    The 33-year series of high spectral resolution measurements of absorption of sunlight by OH at 308 nm has exhibited temporary decreases of column abundances in 1986, 1997, and 2008 near the times of minimum solar activity. These observations and analyses are of significance as they encompass three complete solar cycles for comparison. During solar cycle 23, the annual average abundances increased approximately 20% from the minimum abundance in 1997 to high-sun enhanced values in 2000-2006, then dropped approximately 15% in 2008. The abundances exhibited a pronounced reduction at solar minimum in August-October 2008, similar to that seen in fall 1986 and fall 1997. The average morning abundances on those occasions were 13% smaller than the 1980-88 corresponding average, about 0.9 x 1013 cm-2, with minimum values broadly consistent with model results. In contrast, high-sun OH abundances observed during periods of solar maximum are approximately 33% larger than modeled abundances. This discrepancy cannot be explained by reasonable adjustments of reaction rates or modeled constituent concentrations in the stratosphere or mesosphere. However, the observed responses to a tropopause fold event in 1988 and to the Pinatubo aerosol in 1991 do suggest an important contribution to the total OH column from the lower stratosphere. In addition to the apparent variations with solar activity, this OH column database contains a number of other effects such as diurnal and seasonal patterns, and geographic differences between observations from Colorado, Florida, Alaska, Micronesia, New Zealand, and New Mexico.

  13. Prospects for Precision Measurement of CO2 Column from Space

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Kawa, S. Randolph; Burris, John F.; Wilson, Emily L.; Georgieva, Elena; Miodek, Marty

    2005-01-01

    In order to address the problem of sources and sinks of CO2 measurements are needed on a global scale. Clearly a satellite is a promising approach to meeting this requirement. Unfortunately, most methods for making a CO2 measurement from space involve the whole column. Since sources and sinks at the surface represent a small perturbation to the total column one is faced with the need to measure the column with a precision better than 1%. No species has ever been measured from space at this level. We have developed over the last 3 years a small instrument based upon a Fabry-Perot interferometer that is very sensitive to atmospheric CO2 and has a high signal to noise ratio. We have tested this instrument in a ground based configuration and from aircraft platforms simulating operation from a satellite. We will present results from these tests and discuss ways that this promising new instrument could be used to improve our understanding of the global carbon budget.

  14. On the performance of a cascade crossflow air stripping column

    SciTech Connect

    Akiyama, Y.; Valsaraj, K.T.; Wetzel, D.M.; Harrison, D.P.

    1996-10-01

    The cascade crossflow packed column is an innovative design that offers the separation advantages of countercurrent flow while avoiding flooding limitations. Liquid and gas cross-sectional flow areas and path length in contact with packing may be controlled independently. These features are illustrated by studying the air stripping of methylene chloride (MeCl), 1,2-dichloroethane (1,2-DCA), and methyl ethyl ketone (MEK). Stripping efficiencies in the cascade crossflow column were generally slightly smaller than in countercurrent flow at equal liquid and gas flow rates. However larger gas-to-liquid ratios were possible in crossflow, permitting larger maximum stripping efficiencies to be attained. The experimental mass transfer coefficients were smaller than predicted by the Onda correlation. Modifications to the gas-phase Onda correlation are proposed that reduce the magnitude of the average deviation between experiment and prediction for 40 tests to about 12%. Experimental values of 38 of 40 tests were within {+-}30% of modified Onda correlation predictions. Additional applications for the cascade crossflow concept are suggested, such as vacuum distillation columns and trickle-bed reactors, which require low pressure drop and/or large gas-to-liquid ratios.

  15. Saturated external kink instability of a laboratory plasma column

    NASA Astrophysics Data System (ADS)

    Sears, J.; Intrator, T. P.; Wurden, G.; Weber, T. E.; Daughton, W.; Klarenbeek, J.; Gao, K.

    2012-10-01

    A column of plasma generated in a longitudinal magnetic field in the Reconnection Scaling Experiment suffers from a catastrophic external kink instability when sufficient current density is driven along its length. At slightly lower current density but still above the Kruskal-Shafranov stability limit, we observe the amplitude of the kink to saturate at a, where a is the radius of the current distribution, and the column to gyrate at a steady rate for many periods. We evaluate how saturation of the kink mode is influenced by axial flow and shear therein, by rotation and Coriolis force, and by kinetic effects beyond the fluid regime. The plasma column of length l = 0.48 m has electron temperature Te = 10 eV and density ne = 1e19 m-3. The background axial field is B = 0.01 T, and the saturated steady state occurs for current I = 300 A. We measure the vector magnetic field and the plasma temperature and density in a cubic volume measuring 0.1 m on a side with resolution on the order of the electron skin depth. From these measurements we derive the flow. We present also results of a 2D numerical model simulated with the VPIC code. Study of the saturated kink mode in laboratory plasma may offer clues to the long lifetime of astrophysical jets.

  16. Chromatographic behaviors of proteins on cation-exchange column.

    PubMed

    Li, Rong; Chen, Guo-Liang; Zhao, Wen-Ming

    2004-12-01

    A weak cation-exchanger (XIDACE-WCX) has been synthesized by the indirect method. The chromatographic characteristics of the synthesized packing was studied in detail. The standard protein mixture and lysozyme from egg white were separated with the prepared chromatographic column. The chromatographic thermodynamics of proteins was studied in a wide temperature range. Thermodynamic parameters standard enthalpy change (deltaH0) and standard entropy change (deltaS0) and compensation temperature (beta) at protein denaturation were determined in the chromatographic system. By using obtained deltaS0, the conformational change of proteins was judged in the chromatographic process. The linear relationship between deltaH0 and deltaS0 can be used to identify the identity of the protein retention mechanism in the weak cation-exchange chromatography. The interaction between weak cation-exchanger and metal ions was investigated. Several metal chelate columns were prepared. The effects of introducing metal ion into the naked column on protein retention and the retention mechanism of proteins in the metal chalet affinity chromatography were discussed. PMID:15689030

  17. Extraction of 15 microcystins and nodularin using immunoaffinity columns.

    PubMed

    Aranda-Rodriguez, Rocio; Kubwabo, Cariton; Benoit, Frank M

    2003-11-01

    Microcystins (MCYSTs) were isolated from surface water using reusable immunoaffinity columns. Individual MCYST were determined by high performance liquid chromatography equipped with a photo-diode array detector (HPLC-PDA, 200-300 nm). Subsequent analysis of the samples by liquid chromatography-electrospray ionization mass spectrometry (LC-ESMS) provided molecular weight information, which was used to tentatively identify individual MCYST variants for which standards were not available. Results obtained using immunoaffinity columns (IAC)-HPLC-PDA were compared to those obtained using solid phase extraction (SPE) Oasis HLB-HPLC-PDA. This is the first report of the extraction of 15 microcystins and nodularin using immunoaffinity columns. Whereas previous reports demonstrates the use of IAC for four microcystins, we found that IAC selectively extracted the following microcystins: MCYST-RR, [D-Asp3]MCYST-RR, MCYST-YR, MCYST-LR, 3 MCYST-LR variants, MCYST-AR, MCYST-FR, MCYST-WR, MCYST-LA, MCYST-LA variant, the less polar microcystins such as MCYST-LF, MCYST-LW and nodularin. The IAC extracts were free of interferences which enabled better detection and identification of MCYSTs. Based on the amount loaded to the cartridges, the method detection limit was 10-14 ng when using IAC and 25 ng for SPE of each MCYST-RR, MCYST-YR and MCYST-LR. Reproducibilities expressed as relative standard deviation were 6-10% for SPE and 4-17% for IAC. PMID:14602114

  18. Methodology for optimally sized centrifugal partition chromatography columns.

    PubMed

    Chollet, Sébastien; Marchal, Luc; Jérémy Meucci; Renault, Jean-Hugues; Legrand, Jack; Foucault, Alain

    2015-04-01

    Centrifugal Partition Chromatography (CPC) is a separation process based on the partitioning of solutes between two partially miscible liquid phases. There is no solid support for the stationary phase. The centrifugal acceleration is responsible for both stationary phase retention and mobile phase dispersion. CPC is thus a process based on liquid-liquid mass transfer. The separation efficiency is mainly influenced by the hydrodynamics of the phases in each cell of the column. Thanks to a visualization system, called "Visual CPC", it was observed that the mobile phase can flow through the stationary phase as a sheet, or a spray. Hydrodynamics, which directly governs the instrument efficiency, is directly affected during scale changes, and non-linear phenomena prevent the successful achievement of mastered geometrical scale changes. In this work, a methodology for CPC column sizing is proposed, based on the characterization of the efficiency of advanced cell shapes, taking into account the hydrodynamics. Knowledge about relationship between stationary phase volume, cell efficiency and separation resolution in CPC allowed calculating the optimum cell number for laboratory and industrial scale CPC application. The methodology is highlighted with results on five different geometries from 25 to 5000 mL, for two applications: the separation of alkylbenzene by partitioning with heptane/methanol/water biphasic system; and the separation of peptides by partitioning with n-butanol/acetic acid/water (4/1/5) biphasic system. With this approach, it is possible to predict the optimal CPC column length leading to highest productivity.

  19. A photoautotrophic source for lycopane in marine water columns

    SciTech Connect

    Wakeham, S.G.; Freeman, K.H.; Pease, T.K. ); Hayes, J.M. )

    1993-01-01

    Suspended particulate matter and recent sediments from diverse oceanic sites have been investigated for their contents of lycopane. Lycopane was present in all samples, including both oxic and anoxic water column and sediments. The highest concentrations in the water column were found in surface waters of the central Pacific gyre (1.5 ng/L) and in the anoxic waters of the Cariaco Trench (1.1 ng/L) and the Black Sea (0.3 ng/L). Vertical concentration profiles suggest that lycopane is probably algal in origin. Moreover, biogeochemical conditions in anoxic zones apparently result in a secondary production of lycopane from an as yet unidentified precursor. Compound-specific carbon isotopic analyses have been carried out on lycopane from water column and sediment samples. Isotopic compositions of lycopane range between [minus]23.6[per thousand] and [minus]32.9[per thousand] and are consistent with a photoautotrophic origin. The authors postulate that some lycopane is produced in surface waters of the ocean, while additional lycopane is produced in anoxic zones by anaerobic microbial action on an algal precursor. 40 refs., 3 figs., 1 tab.

  20. Remote sensing of Akashiwo sanguinea in the vertical column

    NASA Astrophysics Data System (ADS)

    Moore, K.; Broughton, J.; Kudela, R. M.

    2013-12-01

    Harmful algal blooms can be extremely damaging to both humans and marine organisms. Harmful algal blooms have been known to cause deleterious effects due to either toxin production or enhanced biomass; mass mortalities of sea birds, dolphins and other creatures often result. Incidences of harmful algal blooms are increasing, so quantifying their locations is a pressing need for human health and the health of marine ecosystems. Past studies have used remote sensing to image dinoflagellate blooms at the ocean surface, but due to migrations of the dinoflagellates in the water column, surface blooms often correspond to non-optimal solar zenith angles for remote sensing imaging. Here we demonstrate a way to locate the blooms of Akashiwo sanguinea at depth in turbid, coastal water (Case II ocean water). Using Hydrolight to simulate the optical properties of A. sanguinea in Monterey Bay, we develop spectral profiles of dinoflagellate blooms in the vertical column. Spectral mixing analysis is used to process aerial data in ENVI-IDL image analysis software. Application of the model to SAMSON remote sensing imagery reveals strong biological and physical coupling in Monterey Bay, and distinguishes dinoflagellates at the surface from those at greater depth. The model is robust and holds up well under various atmospheric forcings and ocean conditions. This work suggests that harmful algal blooms can be detected far below the ocean surface, with the possibility of tracking dinoflagellate diel migrations in the vertical column from outer space.

  1. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    SciTech Connect

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  2. Strengthening of defected beam–column joints using CFRP

    PubMed Central

    Mahmoud, Mohamed H.; Afefy, Hamdy M.; Kassem, Nesreen M.; Fawzy, Tarek M.

    2013-01-01

    This paper presents an experimental study for the structural performance of reinforced concrete (RC) exterior beam–column joints rehabilitated using carbon-fiber-reinforced polymer (CFRP). The present experimental program consists of testing 10 half-scale specimens divided into three groups covering three possible defects in addition to an adequately detailed control specimen. The considered defects include the absence of the transverse reinforcement within the joint core, insufficient bond length for the beam main reinforcement and inadequate spliced implanted column on the joint. Three different strengthening schemes were used to rehabilitate the defected beam–column joints including externally bonded CFRP strips and sheets in addition to near surface mounted (NSM) CFRP strips. The failure criteria including ultimate capacity, mode of failure, initial stiffness, ductility and the developed ultimate strain in the reinforcing steel and CFRP were considered and compared for each group for the control and the CFRP-strengthened specimens. The test results showed that the proposed CFRP strengthening configurations represented the best choice for strengthening the first two defects from the viewpoint of the studied failure criteria. On the other hand, the results of the third group showed that strengthening the joint using NSM strip technique enabled the specimen to outperform the structural performance of the control specimen while strengthening the joints using externally bonded CFRP strips and sheets failed to restore the strengthened joints capacity. PMID:25685473

  3. Strengthening of defected beam-column joints using CFRP.

    PubMed

    Mahmoud, Mohamed H; Afefy, Hamdy M; Kassem, Nesreen M; Fawzy, Tarek M

    2014-01-01

    This paper presents an experimental study for the structural performance of reinforced concrete (RC) exterior beam-column joints rehabilitated using carbon-fiber-reinforced polymer (CFRP). The present experimental program consists of testing 10 half-scale specimens divided into three groups covering three possible defects in addition to an adequately detailed control specimen. The considered defects include the absence of the transverse reinforcement within the joint core, insufficient bond length for the beam main reinforcement and inadequate spliced implanted column on the joint. Three different strengthening schemes were used to rehabilitate the defected beam-column joints including externally bonded CFRP strips and sheets in addition to near surface mounted (NSM) CFRP strips. The failure criteria including ultimate capacity, mode of failure, initial stiffness, ductility and the developed ultimate strain in the reinforcing steel and CFRP were considered and compared for each group for the control and the CFRP-strengthened specimens. The test results showed that the proposed CFRP strengthening configurations represented the best choice for strengthening the first two defects from the viewpoint of the studied failure criteria. On the other hand, the results of the third group showed that strengthening the joint using NSM strip technique enabled the specimen to outperform the structural performance of the control specimen while strengthening the joints using externally bonded CFRP strips and sheets failed to restore the strengthened joints capacity.

  4. A photoautotrophic source for lycopane in marine water columns

    NASA Technical Reports Server (NTRS)

    Wakeham, Stuart G.; Freeman, Katherine H.; Pease, Tamara K.; Hayes, J. M.

    1993-01-01

    Suspended particulate matter and recent sediments from diverse oceanic sites have been investigated for their contents of lycopane. Lycopane was present in all samples, including both oxic and anoxic water column and sediments. The highest concentrations in the water column were found in surface waters of the central Pacific gyre (1.5 ng/L) and in the anoxic waters of the Cariaco Trench (1.1 ng/L) and the Black Sea (0.3 ng/L). Vertical concentration profiles suggest that lycopane is probably algal in origin. Moreover, biogeochemical conditions in anoxic zones apparently result in a secondary production of lycopane from an as yet unidentified precursor. Compound-specific carbon isotopic analyses have been carried out on lycopane from water column and sediment samples. Isotopic compositions of lycopane range between -23.6 and -32.9 percent and are consistent with a photoautotrophic origin. We postulate that some lycopane is produced in surface waters of the ocean, while additional lycopane is produced in anoxic zones by anaerobic microbial action on an algal precursor.

  5. The Total Carbon Column Observing Network (TCCON): overview and update

    NASA Astrophysics Data System (ADS)

    Griffith, David; Wennberg, Paul; Notholt, Justus

    2014-05-01

    The Total Carbon Column Observing Network (TCCON) is a network of ground-based Fourier Transform Spectrometers that record direct solar absorption spectra of the atmosphere in the near-infrared. From these spectra, accurate and precise column-averaged abundances of atmospheric constituents including CO2, CH4, N2O, HF, CO, H2O, and HDO, are retrieved. TCCON measurements are linked to WMO calibration scales by comparisons with co-incident in situ profiles measured from aircraft. For CO2, TCCON achieves 1-sigma precision of typically 0.2 ppm for single measurements, and a network wide comparability of better than 0.1 In this paper we present an overview and the current status of the network, ongoing efforts to improve network coverage, precision and accuracy, and examples of TCCON data and their application. Further information about TCCON and a full list of sites and TCCON partners is available from the TCCON wiki, https://tccon-wiki.caltech.edu/ and Wunch et al. (2011). Wunch, D., G.C. Toon, J.-F. Blavier, R. Washenfelder, J. Notholt, B. Connor, D.W.T. Griffith and P.O. Wennberg, The Total Carbon Column Observing Network (TCCON). Philosophical Transactions of the Royal Society A 2011. 369: p. 2087-2112.

  6. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    NASA Technical Reports Server (NTRS)

    LeVan, Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there. Modeling work was performed at the University of Virginia.

  7. Extraction of 15 microcystins and nodularin using immunoaffinity columns.

    PubMed

    Aranda-Rodriguez, Rocio; Kubwabo, Cariton; Benoit, Frank M

    2003-11-01

    Microcystins (MCYSTs) were isolated from surface water using reusable immunoaffinity columns. Individual MCYST were determined by high performance liquid chromatography equipped with a photo-diode array detector (HPLC-PDA, 200-300 nm). Subsequent analysis of the samples by liquid chromatography-electrospray ionization mass spectrometry (LC-ESMS) provided molecular weight information, which was used to tentatively identify individual MCYST variants for which standards were not available. Results obtained using immunoaffinity columns (IAC)-HPLC-PDA were compared to those obtained using solid phase extraction (SPE) Oasis HLB-HPLC-PDA. This is the first report of the extraction of 15 microcystins and nodularin using immunoaffinity columns. Whereas previous reports demonstrates the use of IAC for four microcystins, we found that IAC selectively extracted the following microcystins: MCYST-RR, [D-Asp3]MCYST-RR, MCYST-YR, MCYST-LR, 3 MCYST-LR variants, MCYST-AR, MCYST-FR, MCYST-WR, MCYST-LA, MCYST-LA variant, the less polar microcystins such as MCYST-LF, MCYST-LW and nodularin. The IAC extracts were free of interferences which enabled better detection and identification of MCYSTs. Based on the amount loaded to the cartridges, the method detection limit was 10-14 ng when using IAC and 25 ng for SPE of each MCYST-RR, MCYST-YR and MCYST-LR. Reproducibilities expressed as relative standard deviation were 6-10% for SPE and 4-17% for IAC.

  8. Methane gas seepage - Disregard of significant water column filter processes?

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Schmale, Oliver

    2016-04-01

    Marine methane seepage represents a potential contributor for greenhouse gas in the atmosphere and is discussed as a driver for climate change. The ultimate question is how much methane is released from the seafloor on a global scale and what fraction may reach the atmosphere? Dissolved fluxes from methane seepage sites on the seabed were found to be very efficiently reduced by benthic microbial oxidation, whereas transport of free gas bubbles from the seabed is considered to bypass the effective benthic methane filter. Numerical models are available today to predict the fate of such methane gas bubble release to the water column in regard to gas exchange with the ambient water column, respective bubble lifetime and rise height. However, the fate of rising gas bubbles and dissolved methane in the water column is not only governed by dissolution, but is also affected by lateral oceanographic currents and vertical bubble-induced upwelling, microbial oxidation, and physico-chemical processes that remain poorly understood so far. According to this gap of knowledge we present data from two study sites - the anthropogenic North Sea 22/4b Blowout and the natural Coal Oil point seeps - to shed light into two new processes gathered with hydro-acoustic multibeam water column imaging and microbial investigations. The newly discovered processes are hereafter termed Spiral Vortex and Bubble Transport Mechanism. Spiral Vortex describes the evolution of a complex vortical fluid motion of a bubble plume in the wake of an intense gas release site (Blowout, North Sea). It appears very likely that it dramatically changes the dissolution kinetics of the seep gas bubbles. Bubble Transport Mechanism prescribes the transport of sediment-hosted bacteria into the water column via rising gas bubbles. Both processes act as filter mechanisms in regard to vertical transport of seep related methane, but have not been considered before. Spiral Vortex and Bubble Transport Mechanism represent the

  9. Multisegment Kinematics of the Spinal Column: Soft Tissue Artifacts Assessment.

    PubMed

    Mahallati, Sara; Rouhani, Hossein; Preuss, Richard; Masani, Kei; Popovic, Milos R

    2016-07-01

    A major challenge in the assessment of intersegmental spinal column angles during trunk motion is the inherent error in recording the movement of bony anatomical landmarks caused by soft tissue artifacts (STAs). This study aims to perform an uncertainty analysis and estimate the typical errors induced by STA into the intersegmental angles of a multisegment spinal column model during trunk bending in different directions by modeling the relative displacement between skin-mounted markers and actual bony landmarks during trunk bending. First, we modeled the maximum displacement of markers relative to the bony landmarks with a multivariate Gaussian distribution. In order to estimate the distribution parameters, we measured these relative displacements on five subjects at maximum trunk bending posture. Then, in order to model the error depending on trunk bending angle, we assumed that the error grows linearly as a function of the bending angle. Second, we applied our error model to the trunk motion measurement of 11 subjects to estimate the corrected trajectories of the bony landmarks and investigate the errors induced into the intersegmental angles of a multisegment spinal column model. For this purpose, the trunk was modeled as a seven-segment rigid-body system described using 23 reflective markers placed on various bony landmarks of the spinal column. Eleven seated subjects performed trunk bending in five directions and the three-dimensional (3D) intersegmental angles during trunk bending were calculated before and after error correction. While STA minimally affected the intersegmental angles in the sagittal plane (<16%), it considerably corrupted the intersegmental angles in the coronal (error ranged from 59% to 551%) and transverse (up to 161%) planes. Therefore, we recommend using the proposed error suppression technique for STA-induced error compensation as a tool to achieve more accurate spinal column kinematics measurements. Particularly, for intersegmental

  10. Demonstration of motionless Knudsen pump based micro-gas chromatography featuring micro-fabricated columns and on-column detectors.

    PubMed

    Liu, Jing; Gupta, Naveen K; Wise, Kensall D; Gianchandani, Yogesh B; Fan, Xudong

    2011-10-21

    This paper reports the investigation of a micro-gas chromatography (μGC) system that utilizes an array of miniaturized motionless Knudsen pumps (KPs) as well as microfabricated separation columns and optical detectors. A prototype system was built to achieve a flow rate of 1 mL min(-1) and 0.26 mL min(-1) for helium and dry air, respectively, when they were used as carrier gas. This system was then employed to evaluate GC performance compromises and demonstrate the ability to separate and detect gas mixtures containing analytes of different volatilities and polarities. Furthermore, the use of pressure programming of the KP array was demonstrated to significantly shorten the analysis time while maintaining a high detection resolution. Using this method, we obtained a high resolution detection of 5 alkanes of different volatilities within 5 min. Finally, we successfully detected gas mixtures of various polarities using a tandem-column μGC configuration by installing two on-column optical detectors to obtain complementary chromatograms.

  11. Robust naphthyl methacrylate monolithic column for high performance liquid chromatography of a wide range of solutes.

    PubMed

    Jonnada, Murthy; El Rassi, Ziad

    2015-08-28

    An organic monolithic column based on the co-polymerization of 2-naphthyl methacrylate (NAPM) as the functional monomer and trimethylolpropane trimethacrylate (TRIM) as the crosslinker was introduced for high performance reversed-phase liquid chromatography (RPC). The co-polymerization was performed in situ in a stainless steel column of 4.6mm i.d. in the presence of a ternary porogen consisting of 1-dodecanol and cyclohexanol. This monolithic column (referred to as naphthyl methacrylate monolithic column or NMM column) showed high mechanical stability at relatively high mobile phase flow velocity indicating that the column has excellent hydrodynamic characteristics. To characterize the NMM column, different probe molecules including alkyl benzenes, and aniline, benzene, toluene and phenol derivatives were chromatographed on the column and the results in terms of k, selectivity and plate counts were compared to those obtained on an octadecyl silica (ODS) column in order to assess the presence of π-π and hydrophobic interactions on the NMM column under otherwise the same elution conditions. The NMM column offered additional π-π interactions with aromatic molecules in addition to hydrophobic interactions under RPC elution conditions. Run-to-run and column-to-column reproducibility of solute k values were evaluated, and percent relative standard deviation of <1% and ∼2-3.5%, respectively, were obtained. Six standard proteins were readily separated on the NMM column using shallow (30min at 1.0mL/min), steep (10min at 1.0mL/min) and ultra steep (1min at 3.0mL/min) linear gradient elution at increasing ACN concentration in the mobile phase using a 10cm×4.6mm i.d. column in case of shallow and steep linear gradients and a 3cm×4.6mm i.d. column for ultra steep linear gradient.

  12. 40 CFR Table 25 to Subpart G of... - Effective Column Diameter (Fc)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Effective Column Diameter (Fc) 25 Table 25 to Subpart G of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... 7-inch built-up columns 1.1 8-inch-diameter pipe columns 0.7 No construction details known 1.0...

  13. 40 CFR Table 25 to Subpart G of... - Effective Column Diameter (Fc)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Effective Column Diameter (Fc) 25 Table 25 to Subpart G of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... (feet) 9-inch by 7-inch built-up columns 1.1 8-inch-diameter pipe columns 0.7 No construction...

  14. Radial heterogeneity of some analytical columns used in high-performance liquid chromatography

    SciTech Connect

    Mriziq, Khaled S; Guiochon, Georges A

    2009-01-01

    An on-column electrochemical microdetector was used to determine accurately the radial distribution of the mobile phase velocity and of the column efficiency at the exit of three common analytical columns, namely a 100 mm x 4.6 mm C18 bonded silica-based monolithic column, a 150 mm x 4.6 mm column packed with 2.7 {micro}m porous shell particles of C18 bonded silica (HALO), and a 150 mm x 4.6 mm column packed with 3 {micro}m fully porous C18 bonded silica particles (LUNA). The results obtained demonstrate that all three columns are not radially homogeneous. In all three cases, the efficiency was found to be lower in the wall region of the column than in its core region (the central core with a radius of 1/3 the column inner radius). The decrease in local efficiency from the core to the wall regions was lower in the case of the monolith (ca. 25%) than in that of the two particle-packed columns (ca. 35-50%). The mobile phase velocity was found to be ca. 1.5% higher in the wall than in the core region of the monolithic column while, in contrast, it was ca. 2.5-4.0% lower in the wall region for the two particle-packed columns.

  15. The Winogradsky Column and Biofilms: Models for Teaching Nutrient Cycling and Succession in an Ecosystem.

    ERIC Educational Resources Information Center

    Anderson, Delia Castro; Hairston, Rosalina V.

    1999-01-01

    Presents protocols for setting up a Winogradsky column and biofilm slides, interpreting the chemical transformations that occur in the column as a result of color changes in the soil, identifying common microorganisms, and determining the microbial composition of the column over specified intervals of time. (WRM)

  16. Determining the Influence of Groundwater Composition on the Performance of Arsenic Adsorption Columns Using Rapid Small-Scale Column Tests

    NASA Astrophysics Data System (ADS)

    Aragon, A. R.; Siegel, M.

    2004-12-01

    The USEPA has established a more stringent drinking water standard for arsenic, reducing the maximum contaminant level (MCL) from 50 μ g/L to 10 μ g/L. This will affect many small communities in the US that lack the appropriate treatment infrastructure and funding to reduce arsenic to such levels. For such communities, adsorption systems are the preferred technology based on ease of operation and relatively lower costs. The performance of adsorption media for the removal of arsenic from drinking water is dependent on site-specific water quality. At certain concentrations, co-occurring solutes will compete effectively with arsenic for sorption sites, potentially reducing the sorption capacity of the media. Due to the site-specific nature of water quality and variations in media properties, pilot scale studies are typically carried out to ensure that a proposed treatment technique is cost effective before installation of a full-scale system. Sandia National Laboratories is currently developing an approach to utilize rapid small-scale columns in lieu of pilot columns to test innovative technologies that could significantly reduce the cost of treatment in small communities. Rapid small-scale column tests (RSSCTs) were developed to predict full-scale treatment of organic contaminants by adsorption onto granular activated carbon (GAC). This process greatly reduced the time and costs required to verify performance of GAC adsorption columns. In this study, the RSSCT methodology is used to predict the removal of inorganic arsenic using mixed metal oxyhydroxide adsorption media. The media are engineered and synthesized from materials that control arsenic behavior in natural and disturbed systems. We describe the underlying theory and application of RSSCTs for the performance evaluation of novel media in several groundwater compositions. Results of small-scale laboratory columns are being used to predict the performance of pilot-scale systems and ultimately to design full

  17. Stabilizing a laboratory plasma column beyond the external kink limit

    NASA Astrophysics Data System (ADS)

    Sears, J.; Intrator, T.; Weber, T.; Daughton, W. S.; Klarenbeek, J.; Gao, K.

    2012-12-01

    Astrophysical jets emanating from galaxies appear to outlive the current driven kink instability that would be expected from their axial current and magnetic field. Study of a similar saturated kink mode in laboratory plasma may offer clues to the long lifetime of the astrophysical structures. A column of plasma generated in a longitudinal magnetic field in the Reconnection Scaling Experiment suffers from a catastrophic external kink instability when sufficient current density is driven along its length. At slightly lower current density but still above the Kruskal-Shafranov stability limit, we observe the amplitude of the kink to saturate at ≈ ph{a}, where ph{a} is the radius of the current distribution, and the column to gyrate at a steady rate for many periods. We evaluate how saturation of the kink mode is influenced by axial flow and shear therein, by rotation and Coriolis force, and by kinetic effects beyond the fluid regime. The plasma column of length l = 0.48 m has electron temperature Te = 10 eV and density ne = 1e19 m-3. The background axial field is B = 0.01 T, and the saturated steady state occurs for current I = 300 A. We measure the vector magnetic field and the plasma temperature and density in a cubic volume measuring 0.1 m on a side with resolution on the order of the electron skin depth. We present also results of a 2D numerical model simulated with the VPIC code. *Supported by DOE Office of Fusion Energy Sciences under LANS contract DE-AC52-06NA25369, NASA Geospace NNHIOA044I, Basic

  18. Water column methanotrophy controlled by a rapid oceanographic switch

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Graves, Carolyn; Treude, Tina; Biastoch, Arne; Ferré, Bénédicte; Bussmann, Ingeborg; Berndt, Christian; Krastel, Sebastian; James, Rachael H.; Behrens, Erik; Böning, Claus W.; Greinert, Jens; Sapart, Célia-Julia; Sommer, Stefan; Lehmann, Moritz F.; Niemann, Helge

    2015-04-01

    Large amounts of the greenhouse gas methane are released from the seabed to the water column where it may be consumed by aerobic methanotrophic bacteria. This microbial filter is consequently the last marine sink for methane before its liberation into the atmosphere. The size and activity of methanotrophic communities, which determine the capacity of the water column methane filter, are thought to be mainly controlled by nutrient and redox dynamics, but little is known about the effects of ocean currents. Here we show that cold bottom water at methane seeps west of Svalbard, containing a large number of aerobic methanotrophs, was rapidly displaced by warmer water with a considerably smaller methanotrophic community. This community replacement led to a reduction of methane oxidation rates of 60 % and was independent of methane input. Measurements of temperature and salinity, combined with the output of a high-resolution ocean/sea-ice simulation model (VIKING20) showed that this water mass exchange was caused by short-term variations of the West Spitsbergen Current (WSC), which is characterized by two principal modes: The warm core of the WSC either flows along the continental shelf break and thus above the methane seeps (nearshore mode), or it meanders offshore thereby entraining colder shelf water, which then flows over the seeps (offshore mode). We could link the larger community to the colder shelf water during the offshore mode, and the smaller community and lower methane oxidation rates to the presence of the warmer WSC water above the seeps. As a result, the meandering of the WSC can be considered as an oceanographic switch severely reducing methanotrophic activity in the water column. Output from the ORCA12 model showed that strong and fluctuating bottom currents are common features at methane seep systems. We thus argue that the variability of physical water mass transport is a globally important control on the distribution and abundance of methanotrophs and

  19. Estimated global nitrogen deposition using NO2 column density

    USGS Publications Warehouse

    Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao

    2013-01-01

    Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.

  20. THE COLUMN DENSITY VARIANCE-M{sub s} RELATIONSHIP

    SciTech Connect

    Burkhart, Blakesley; Lazarian, A.

    2012-08-10

    Although there is a wealth of column density tracers for both the molecular and diffuse interstellar medium, there are few observational studies investigating the relationship between the density variance ({sigma}{sup 2}) and the sonic Mach number (M{sub s}). This is in part due to the fact that the {sigma}{sup 2}-M{sub s} relationship is derived, via MHD simulations, for the three-dimensional (3D) density variance only, which is not a direct observable. We investigate the utility of a 2D column density {sigma}{sub {Sigma}/{Sigma}0}{sup 2}-M{sub s} relationship using solenoidally driven isothermal MHD simulations and find that the best fit follows closely the form of the 3D density {sigma}{sub {rho}/{rho}0}{sup 2}-M{sub s} trend but includes a scaling parameter A such that {sigma}{sub ln({Sigma}/{Sigma}o)} = A x ln(1+b{sup 2} M{sub s}{sup 2}), where A = 0.11 and b = 1/3. This relation is consistent with the observational data reported for the Taurus and IC 5146 molecular clouds with b = 0.5 and A = 0.16, and b = 0.5 and A = 0.12, respectively. These results open up the possibility of using the 2D column density values of {sigma}{sup 2} for investigations of the relation between the sonic Mach number and the probability distribution function (PDF) variance in addition to existing PDF sonic Mach number relations.

  1. Transport of rimsulfuron and its metabolites in soil columns

    PubMed

    Martins; Mermoud

    1999-02-01

    This paper presents a study on degradation, sorption and transport of the sulfonylurea herbicide rimsulfuron and its major metabolites in alluvial soil columns. The formulation of rimsulfuron was found to strongly affect its degradability. Hydrolysis of pure rimsulfuron takes place rapidly in distilled water (t(1/2)=2.2 days) or indeed instantaneously in alkaline solution. The formulated rimsulfuron (Titus, 25% rimsulfuron, Du Pont De Nemours) is more persistent in alluvial soil suspensions (t(1/2)=7.5 days). The study of sorption of Titus and its two major metabolites (1 and 2) revealed that these three chemicals are potentially highly mobile in the studied soil: in suspension distribution coefficients of 0.0028, 0.125 and 0.149 cm3 g(-1) were obtained respectively. Given the instability of rimsulfuron in alkaline solutions, the pH effect was evaluated with metabolite 2 in water saturated Fontainebleau sand columns at pH 6, 8 and 10. Transport was found to be strongly dependent on pH; a linear relationship was obtained between pH and the retardation factor or the dispersion coefficient. In alluvial soil columns, rimsulfuron from Titus was found to be very mobile (R=1.2) and rapidly degraded into metabolites 1 and 2, which were transported at a similar velocity. Nevertheless, the risks of groundwater contamination by rimsulfuron seem very low, as it is rapidly degraded under dynamic conditions (t(1,2)=1.4 days). On the other hand the relatively stable metabolite 2 seems likely to persist in the soil and to be transported to the groundwater. Special attention should thus be given to this compound at least as long as its harmlessness is not demonstrated.

  2. Coal desulfurization by bacterial treatment and column flotation. Final report

    SciTech Connect

    Kawatra, S.K.

    1994-06-01

    A review of the literature showed that bacterial leaching, using the microorganism Thiobacillus ferrooxidans, was a very effective technique for removing pyrite from coal, as it could dissolve even the finest pyrite particles without the need for expensive reagents or extreme processing conditions. Unfortunately, bacterial leaching is also rather slow, and so the initial goal of this research was to decrease the leaching time as much as possible. However, this still left the bacteria needing approximately a week to remove half of the pyritic sulfur, and so a faster technique was sought. Since it had been reported in the literature that T. ferrooxidans could be used to depress the flotation of pyrite during froth flotation of coal, this was investigated further. By studying the recovery mechanisms of coal-pyrite in froth flotation, it was found that pyrite was being recovered by entrainment and by locking to coal particles, not by true flotation of hydrophobic pyrite. Therefore, no pyrite depressant could be of any significant benefit for keeping pyrite out of the coal froth product, and it was much more important to prevent entrainment from occurring. Countercurrent flotation columns were invented to essentially eliminate entrainment effects, by washing the froth and reducing mixing of the froth and tailings products. Existing flotation columns tend to be quite simple, and in order to give reasonable product quality they must be very tall (typically 30--45 feet). As a result, they have difficulty in handling the high froth volumes which occur in coal flotation, and are awkward to install in existing plants. The bulk of this project therefore concentrated on developing an improved coal flotation column, and testing it under actual plant conditions.

  3. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there by W. Scot Appel under the direction of Dr. John E. Finn. Modeling work was performed at the University of Virginia and at Vanderbilt University by W. Scot Appel under the direction of M. Douglas LeVan. All three participants collaborated in all of the various phases of the research. The most comprehensive document describing the research is the Ph.D. dissertation of W. Scot Appel. Results have been published in several papers and presented in talks at technical conferences. All documents have been transmitted to Dr. John E. Finn.

  4. Evolution of column density distributions within Orion A⋆

    NASA Astrophysics Data System (ADS)

    Stutz, A. M.; Kainulainen, J.

    2015-05-01

    We compare the structure of star-forming molecular clouds in different regions of Orion A to determine how the column density probability distribution function (N-PDF) varies with environmental conditions such as the fraction of young protostars. A correlation between the N-PDF slope and Class 0 protostar fraction has been previously observed in a low-mass star-formation region (Perseus); here we test whether a similar correlation is observed in a high-mass star-forming region. We used Herschel PACS and SPIRE cold dust emission observations to derive a column density map of Orion A. We used the Herschel Orion Protostar Survey catalog to accurately identify and classify the Orion A young stellar object content, including the cold and relatively short-lived Class 0 protostars (with a lifetime of ~0.14 Myr). We divided Orion A into eight independent regions of 0.25 square degrees (13.5 pc2); in each region we fit the N-PDF distribution with a power law, and we measured the fraction of Class 0 protostars. We used a maximum-likelihood method to measure the N-PDF power-law index without binning the column density data. We find that the Class 0 fraction is higher in regions with flatter column density distributions. We tested the effects of incompleteness, extinction-driven misclassification of Class 0 sources, resolution, and adopted pixel-scales. We show that these effects cannot account for the observed trend. Our observations demonstrate an association between the slope of the power-law N-PDF and the Class 0 fractions within Orion A. Various interpretations are discussed, including timescales based on the Class 0 protostar fraction assuming a constant star-formation rate. The observed relation suggests that the N-PDF can be related to an evolutionary state of the gas. If universal, such a relation permits evaluating the evolutionary state from the N-PDF power-law index at much greater distances than those accessible with protostar counts. Appendices are available in

  5. A nonequilibrium model for dynamic simulation of tray distillation columns

    SciTech Connect

    Kooijman, H.A.; Taylor, R.

    1995-08-01

    A nonequilibrium model for the dynamic simulation of distillation columns is described. The nonequilibrium model includes the direct calculation of the rates of mass and energy transfer and is better able to model the actual physical processes occurring on a real distillation tray than is the conventional equilibrium stage model. Example calculations show that heat-transfer limitations and the vapor holdup above the froth cannot be neglected at elevated pressures. Back-computed Murphree tray efficiencies are not constant over time, which implies that the equilibrium model should not be used for dynamic simulations.

  6. RETENTION TIME EFFECT ON METAL REMOVAL BY PEAT COLUMNS

    SciTech Connect

    Nelson, E

    2007-02-28

    The potential use of a peat bed to treat the H-12 Outfall discharge to bring it to new compliance limits was previously investigated and reported utilizing a 7 hour retention time. The influence of retention time (contact time) of water with peat moss on the removal of copper from the water was investigated under laboratory conditions using vertical flow peat moss columns. Reduction of the necessary retention time has a large influence on the design sizing of any peat bed that would be constructed to treat the H-12 discharge on a full scale basis. Retention times of 5 hours, 3 hours and 1 hour were tested to determine the copper removal by the peat columns using vertical flow. Water samples were collected after 4, 8, 12, and 16 water volumes had passed through the columns and analyzed for a suite of metals, with quantitative emphasis on copper. Laboratory results indicated that copper removal was very high at each of the 3 retention times tested, ranging from 99.6 % removal at 5 and 3 hours to 98.8% removal at 1 hour. All these values are much lower that the new compliance limit for the outfall. The results also indicated that most divalent metals were removed to their normal reporting detection limit for the analytical methods used, including zinc. Lead levels in the H-12 discharge used in this study were below PQL in all samples analyzed. While each of the retention times studied removed copper very well, there were indications that 1 hour is probably too short for an operational, long-term facility. At that retention time, there was about 6% compaction of the peat in the column due to the water velocity, and this may affect long term hydraulic conductivity of the peat bed. At that retention time, copper concentration in the effluent was higher than the other times tested, although still very low. Because of the potential compacting and somewhat reduced removal efficiency at a 1 hour retention time, it would be prudent to design to at least a 3 hour retention

  7. Improving the performance of conventional and column froth flotation cells

    SciTech Connect

    Arnold, B.J.

    1995-11-01

    Many existing mining operations hover on the brink of producing competitively priced fuel with marginally acceptable sulfur levels. To remain competitive, these operations need to improve the yield of their coal processing facilities, lower the sulfur content of their clean coal, or lower the ash content of their clean coal. Fine coal cleaning processes offer the best opportunity for coal producers to increase their yield of high quality product. Over 200 coal processing plants in the U.S. already employ some type of conventional or column flotation device to clean fines. an increase in efficiency in these existing circuits could be the margin required to make these coal producers competitive.

  8. [Application of electroosmotic pump on micro column liquid chromatography].

    PubMed

    Chen, Ling-Xin; Guan, Ya-Feng

    2002-03-01

    An electroosmotic pump(EOP) was designed and evaluated, which could replace the mechanical pump. The EOP could generate 2.0 MPa-6.0 MPa output pressure and tens of nL/min-3 microL/min flow rate. A test mixture containing naphthalene, anthracene and phenanthrene was separated on a 14 cm x 320 microns i.d., 5 microns, C18 micro column with acetonitrile/water as a mobile phase, which demonstrated the applicability of the EOP.

  9. Denitrification in the water column of the central Baltic Sea

    NASA Astrophysics Data System (ADS)

    Dalsgaard, Tage; De Brabandere, Loreto; Hall, Per O. J.

    2013-04-01

    Removal of fixed nitrogen in the water column of the eastern Gotland Basin, central Baltic Sea, was studied during two cruises in September 2008 and August 2010. The water column was stratified with anoxic sulfidic bottom water meeting oxic nitrate containing water at the oxic-anoxic interface. Anammox was never detected whereas denitrification was found in all incubations from anoxic depths and occurred immediately below the oxic-anoxic interface. Sulfide (H2S + HS- + S2-) was in most cases the only electron donor for denitrification but, in contrast to previous findings, denitrification was in some situations driven by organic matter alone. Nitrous oxide (N2O) became an increasingly important product of denitrification with increasing sulfide concentration and was >80% of the total N gas formation at 10 μM sulfide. The potential rates of denitrification measured in incubations at elevated NO3- or sulfide concentrations were converted to in situ rates using the measured water column concentrations of NO3- and sulfide and the actual measured relations between NO3- and sulfide concentrations and denitrification rates. In situ denitrification ranged from 0.24 to 15.9 nM N2 h-1. Assuming that these rates were valid throughout the anoxic NO3- containing zone, depth integrated in situ denitrification rates of 0.06-2.11 mmol N m-2 d-1 were estimated. The thickness of this zone was generally 3-6 m, which is probably what can be maintained through regular turbulent mixing induced by internal waves at the oxic-anoxic interface. However, layers of up to 55 m thickness with low O2 water (<10 μM) were observed which was probably the result of larger scale mixing. In such a layer nitrification may produce NO3- and once the O2 has been depleted denitrification will follow resulting in enormous rates per unit area. Even with an active denitrification layer of 3-6 m thickness the pelagic denitrification per unit area clearly exceeded sediment denitrification rates elsewhere in

  10. Direct electron detection for TEM with column parallel CCD

    NASA Astrophysics Data System (ADS)

    Moldovan, Grigore; Jeffery, Ben; Nomerotski, Andrei; Kirkland, Angus

    2009-06-01

    Step improvements in electron detectors are needed for transmission electron microscopes (TEM) to take full advantage of latest developments in electron optics and electron sources. This work presents beam tests performed with column parallel charge-coupled devices (CPCCD) and discusses measured cluster properties. Excellent signal-to-noise ratio is found, demonstrating that CPCCD are well suited for TEM. Large variations in cluster-integrated intensity and size are observed, attributed to the strong scattering of 120-200 keV electrons in silicon. Spatial momentum analysis of clusters reveals strong asymmetry indicating that position resolution could be limited for certain cluster shapes.

  11. Liquid deuterium cold source in graphite thermal column

    NASA Astrophysics Data System (ADS)

    Utsuro, M.; Kawai, T.; Maeda, Y.; Yamaoka, H.; Akiyoshi, T.; Okamoto, S.

    1989-01-01

    A liquid deuterium cold source with a non-spherical moderator chamber of about 4 litres was installed into the graphite thermal column of 5 MW Kyoto University Reactor (KUR). Three cold neutron holes and one very cold neutron hole are provided in the graphite for beam extractions. The operation tests with hydrogen liquefied in the condenser showed satisfactory performances and high gain factors of cold and very cold neutrons of more than 20 and 10, respectively. Neutron measurements with the deuterium moderator are now in progress.

  12. BNCT microdosimetry at the tapiro reactor thermal column.

    PubMed

    De Nardo, L; Seravalli, E; Rosi, G; Esposito, J; Colautti, P; Conte, V; Tornielli, G

    2004-01-01

    A thermal column is available for dosimetric and radiobiological studies by the fast reactor TAPIRO, located at the ENEA research centre Casaccia. The TAPIRO neutron field has been studied (in the frame of LNL BNCT project) with a tissue-equivalent proportional counter, which has worked alternatively with an ordinary tissue-equivalent cathode and with a boron-enriched cathode. Measurements have been performed with polyethylene caps of different thickness. Both the absorbed dose and the microdosimetric-calculated biological effective dose show a maximum at approximately 0.5 mg cm(-2) of depth. The different dose components have been calculated and the results are discussed.

  13. Tapped granular column dynamics: simulations, experiments and modeling

    NASA Astrophysics Data System (ADS)

    Rosato, A. D.; Zuo, L.; Blackmore, D.; Wu, H.; Horntrop, D. J.; Parker, D. J.; Windows-Yule, C.

    2016-07-01

    This paper communicates the results of a synergistic investigation that initiates our long term research goal of developing a continuum model capable of predicting a variety of granular flows. We consider an ostensibly simple system consisting of a column of inelastic spheres subjected to discrete taps in the form of half sine wave pulses of amplitude a/ d and period τ . A three-pronged approach is used, consisting of discrete element simulations based on linear loading-unloading contacts, experimental validation, and preliminary comparisons with our continuum model in the form of an integro-partial differential equation.

  14. Enhancing Photon Utilization Efficiency for Astaxanthin Production from Haematococcus lacustris Using a Split-Column Photobioreactor.

    PubMed

    Kim, Z-Hun; Park, Hanwool; Lee, Ho-Sang; Lee, Choul-Gyun

    2016-07-28

    A split-column photobioreactor (SC-PBR), consisting of two bubble columns with different sizes, was developed to enhance the photon utilization efficiency in an astaxanthin production process from Haematococcus lacustris. Among the two columns, only the smaller column of SC-PBR was illuminated. Astaxanthin productivities and photon efficiencies of the SC-PBRs were compared with a standard bubble-column PBR (BC-PBR). Astaxanthin productivity of SC-PBR was improved by 28%, and the photon utilization efficiencies were 28-366% higher than the original BC-PBR. The results clearly show that the effective light regime of SC-PBR could enhance the production of astaxanthin.

  15. Stationary phase modulation in liquid chromatography through the serial coupling of columns: A review.

    PubMed

    Alvarez-Segura, T; Torres-Lapasió, J R; Ortiz-Bolsico, C; García-Alvarez-Coque, M C

    2016-06-01

    Liquid chromatography with single columns often does not succeed in the analysis of complex samples, in terms of resolution and analysis time. A relatively simple solution to enhance chromatographic resolution is the modulation of the stationary phase through the serial coupling of columns. This can be implemented with any type of column using compatible elution conditions and conventional instruments. This review describes the key features of column coupling and published procedures, where two or more columns were coupled in series to solve separation problems. In all reports, the authors could not resolve their samples with single columns, whereas significant enhancement in chromatographic performance was obtained when the columns were combined. Particularly interesting is the reduction in the analysis time in the isocratic mode, which alleviates the "general elution problem" of liquid chromatography, and may represent a stimulus for the proposal of new procedures, especially in combination with mass spectrometric, electrochemical and refractometric detection. Developments proposed to make the serial coupling of columns useful in routine and research laboratories are outlined, including optimisation strategies that facilitate the selection of the appropriate column combination and elution conditions (solvent content, flow rate or temperature) in both isocratic and gradient modes. The availability of zero dead volume couplers, able to connect standard columns, and the commercialisation of short columns with multiple lengths, have expanded the possibilities of success. PMID:27155298

  16. Stationary phase modulation in liquid chromatography through the serial coupling of columns: A review.

    PubMed

    Alvarez-Segura, T; Torres-Lapasió, J R; Ortiz-Bolsico, C; García-Alvarez-Coque, M C

    2016-06-01

    Liquid chromatography with single columns often does not succeed in the analysis of complex samples, in terms of resolution and analysis time. A relatively simple solution to enhance chromatographic resolution is the modulation of the stationary phase through the serial coupling of columns. This can be implemented with any type of column using compatible elution conditions and conventional instruments. This review describes the key features of column coupling and published procedures, where two or more columns were coupled in series to solve separation problems. In all reports, the authors could not resolve their samples with single columns, whereas significant enhancement in chromatographic performance was obtained when the columns were combined. Particularly interesting is the reduction in the analysis time in the isocratic mode, which alleviates the "general elution problem" of liquid chromatography, and may represent a stimulus for the proposal of new procedures, especially in combination with mass spectrometric, electrochemical and refractometric detection. Developments proposed to make the serial coupling of columns useful in routine and research laboratories are outlined, including optimisation strategies that facilitate the selection of the appropriate column combination and elution conditions (solvent content, flow rate or temperature) in both isocratic and gradient modes. The availability of zero dead volume couplers, able to connect standard columns, and the commercialisation of short columns with multiple lengths, have expanded the possibilities of success.

  17. Separation characteristics of multistage water/hydrogen exchange column for water detritiation in fusion reactors

    SciTech Connect

    Yamanishi, T.; Okuno, K.

    1995-10-01

    A simulation code of multistage chemical exchange columns has been developed. The sieve trays for liquid-vapor scrubbing and the catalyst beds for vapor-hydrogen exchange reactions are alternately piled within the column. The code deals with all the twelve molecular species of hydrogen gas and water; and is based on the Newton-Raphson method. The characteristics of the column were discussed from the calculated results by this code such as effects of temperature and pressure. Similar to the distillation columns, the phase flow rates within the column (hydrogen gas and water vapor) and product flow rates have large effects on the separation performance of the column. A control method of the column was also proposed from these calculated results. 9 refs., 5 figs., 4 tabs.

  18. Numerical analysis of soft clay performance reinforced by geosynthetics encased stone columns

    NASA Astrophysics Data System (ADS)

    Nagy, Nabil M.

    2013-10-01

    To improve the behavior of stone columns, the Geosynthetics is used for encasing the stone column as reinforcement material. The Geosynthetics Encased Stone Column (GESC) system has been developed to increase the confinement effect of the ordinary stone columns, and consequently to improve the load carrying capacity of stone columns. In this paper, finite element based numerical study has been carried out using ABAQUS program to study the performance of the GESC systems under different conditions. The influences of some effective parameters were studied to show the improvement in soil bearing and settlement decrease for the stone column-soil system. These include the column dimensions, the encasement stiffness and shear strength of the foundation soil.

  19. Performance of a Chromolith RP-18e column for the screening of beta-blockers.

    PubMed

    Pous-Torres, Sandra; Ruiz-Angel, Maria-José; Torres-Lapasió, José Ramón; García-Alvarez-Coque, Maria Celia

    2009-08-01

    The chromatographic performance of a monolithic column (Chromolith RP-18e) was comprehensively examined in the isocratic separation of ten beta-blockers, using ACN-water mobile phases, and compared with the performance of three microparticulate RP columns manufactured with different types of silica: Spherisorb ODS-2, Kromasil C18 and XTerra MS C18. The comparison considered the analysis time, selectivity, peak shape (column efficiency and asymmetry) and resolution, and was extended to a wide range of mobile phase compositions. The Chromolith column showed good performance for the analysis of beta-blockers with regard to the packed columns. In terms of selectivity and analysis time, the greatest similarity was found between the Chromolith and XTerra columns. The addition of a silanol blocking agent (0.1% triethylamine) to both Chromolith and Spherisorb columns yielded, apparently, a similar blocking degree of the silanol groups (based on the similar peak shapes), and gave rise to similar selectivity.

  20. Group type analysis of asphalt by column liquid chromatography

    SciTech Connect

    Zhang, C.; Yang, J.; Xue, Y.; Li, Y.

    2008-07-01

    An improved analysis method for characterization of asphalt was established. The method is based on column chromatography technique. The asphalts were separated into four groups: saturates, aromatics, resins, and asphaltenes, quantitatively. About 0.1 g of sample was required in each analysis. About 20 mL of n-heptanes was used to separate out saturates first. Then about 35 mL of n-heptanes/dichloromethane (.5, v/v) mixture was used to separate out aromatics. About 30 mL of dichloromethane/tetrahydrofuran (1/3, v/v) mixture was used to separate out resin. The quality of the separation was confirmed by infrared spectra (IR) and {sup 1}H NMR analysis. The model compounds, tetracosan for saturates, dibenz(o)anthracen for aromatics, and acetanilide for resins were used for verification. The IR and {sup 1}H NMR analysis of the prepared fractions from the column liquid chromatography were in good agreement that of pure reagents.

  1. The vertebral column of the Regourdou 1 Neandertal.

    PubMed

    Gómez-Olivencia, Asier; Couture-Veschambre, Christine; Madelaine, Stéphane; Maureille, Bruno

    2013-06-01

    The Regourdou 1 partial skeleton was found in 1957 in level IV of the eponymous site located in Montignac-sur-Vézère (Dordogne, France) and until now it has been only partially published. The ongoing revision of the faunal remains from the site has yielded additional fossils that pertain to this skeleton. Here we study the vertebral column of this individual, providing for the first time detailed descriptions for all of the fossils and reassessing the anatomical position of all of the fragments. The vertebral column of Regourdou 1 is one of the most complete in the Neandertal fossil record with at least 20 pre-sacral vertebrae (seven cervicals, nine thoracic and four lumbars), a partial sacrum and a fragmentary first coccygeal vertebra. When compared with modern humans, the vertebrae of Regourdou 1 display significant metric differences, and fit well within the range of Neandertal variability. A preliminary analysis of the most complete thoracic vertebrae of this individual indicates that Neandertals displayed significant differences from modern humans in the thoracic spine, which adds to the differences already observed in the cervical and lumbar regions. Finally, we have also observed mild signs of osteoarthrosis, albeit to a lower degree of that present in other Neandertals such as La Chapelle-aux-Saints, La Ferrassie 1 or Shanidar 3. This is consistent with the younger adult age for Regourdou 1. PMID:23566460

  2. Angiotensin-converting enzyme kinetics in an endothelial cell column

    SciTech Connect

    Howell, R.E.; Haselton, F.R.; Mueller, S.N. )

    1990-04-01

    The kinetics of saturable endothelial metabolic functions have been assessed in vivo by transient (indicator-dilution) measurements and in culture by steady-state measurements, but comparisons between the two are difficult. Therefore, we used indicator-dilution methods to assess the kinetics of angiotensin-converting enzyme (ACE) activity in cultured endothelium. Bovine fetal aortic endothelial cells were grown to confluence on microcarrier beads. Cell-covered beads were poured into polypropylene columns and perfused with serum-free culture medium. Six injections, containing (3H)benzol-Phe-Ala-Pro (( 3H)BPAP, an ACE substrate) and varying amounts of unlabeled BPAP, were applied to each column and effluent was collected in serial samples. The apparent kinetics of BPAP metabolism were determined by four models used previously to determine pulmonary endothelial ACE kinetics in vivo, the most useful model incorporating transit time heterogeneity. The Km averaged 5 microM, which is close to values determined previously in vivo and in vitro. The Amax (Vmax.reaction volume) and Amax/Km averaged 6 nmol/min and 1.5 ml/min, respectively, which are lower than estimates in vivo. In conclusion, we have developed a new method for investigating saturable metabolic activity in cultured endothelium, which after further exploration should also enable better comparisons of endothelial metabolic functions in vivo and in culture.

  3. NEW COLUMN SEPARATION METHOD FOR EMERGENCY URINE SAMPLES

    SciTech Connect

    Maxwell, S; Brian Culligan, B

    2007-08-28

    The Savannah River Site Environmental Bioassay Lab participated in the 2007 NRIP Emergency Response program administered by the National Institute for Standards and Technology (NIST) in May, 2007. A new rapid column separation method was applied directly to the NRIP 2007 emergency urine samples, with only minimal sample preparation to reduce preparation time. Calcium phosphate precipitation, previously used to pre-concentrate actinides and Sr-90 in NRIP 2006 urine and water samples, was not used for the NRIP 2007 urine samples. Instead, the raw urine was acidified and passed directly through the stacked resin columns (TEVA+TRU+SR Resins) to separate the actinides and strontium from the NRIP urine samples more quickly. This improvement reduced sample preparation time for the NRIP 2007 emergency urine analyses significantly. This approach works well for small volume urine samples expected during an emergency response event. Based on initial feedback from NIST, the SRS Environmental Bioassay Lab had the most rapid analysis times for actinides and strontium-90 analyses for NRIP 2007 urine samples.

  4. Distillation column for the XENON1T experiment

    NASA Astrophysics Data System (ADS)

    Fieguth, Alexander; XENON Collaboration

    2016-05-01

    The XENON1T experiment will probe a new parameter space in the direct dark matter search. Besides the enlargement of target mass to the ton scale, a further background reduction with respect to its predecessor XENON100 is necessary. A major contribution to the intrinsic contamination is the β-decaying isotope 85Kr, which leads to the requirement of a concentration less than 0.2 ppt of natural krypton in xenon. Its removal from the xenon gas is achieved by cryogenic distillation. For the new experiment a custom-build distillation column with a separation factor larger than 105 and a throughput of 3kg/h has been designed and built at the University of Muenster. Furthermore its performance has been characterized using different trace gas detection techniques, e.g. a novel 83mKr-tracer method, and its functionality has been tested successfully. The distillation column, which is installed and commissioned at the XENON1T experiment, is ready to process the 3.5 tons of xenon.

  5. Development of the 15 meter diameter hoop column antenna

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The building of a deployable 15-meter engineering model of the 100 meter antenna based on the point-design of an earlier task of this contract, complete with an RF-capable surface is described. The 15 meter diameter was selected so that the model could be tested in existing manufacturing, near-field RF, thermal vacuum, and structural dynamics facilities. The antenna was designed with four offset paraboloidal reflector surfaces with a focal length of 366.85 in and a primary surface accuracy goal of .069 in rms. Surface adjustment capability was provided by manually resetting the length of 96 surface control cords which emanated from the lower column extremity. A detailed description of the 15-meter Hoop/Column Antenna, major subassemblies, and a history of its fabrication, assembly, deployment testing, and verification measurements are given. The deviation for one aperture surface (except the outboard extremity) was measured after adjustments in follow-on tests at the Martin Marietta Near-field Facility to be .061 in; thus the primary surface goal was achieved.

  6. Variability of the point spread function in the water column

    NASA Astrophysics Data System (ADS)

    Voss, Kenneth J.

    1990-09-01

    The Point Spread Function (PSF) is an importantproperty in predicting beam propagation and imaging system performance. An instrument to measure the in situ PSF of ocean water has been built and PSF profiles obtained. This instrument consists of two parts, a flashlamp with cosine emission characteristics, and an imaging solid state camera system. The camera system includes a thermoelectrically cooled CCD array with over 50dB of dynamic range. This allows the camera to measure the steeply peaked PSF over short (lOm) to long (80 m) ranges. Measurements of the PSF in three different locations are presented. One location was a coastal station off San Diego where the water column exhibited a well defmed shallow (approximately 30 meter) mixed layer with a particulate maximum (defined by a maximum in beam attenuation) at the bottom of this layer. During these measurements the PSF was highly variable with depth, as was to be expected due to the dependence of the PSF on particle concentration and size distribution. In the second example the water column was almost homogeneous (as evidenced in the beam attenuation profiles). Hence, the PSF showed very little dependence on depth. Measurements of the variation of the PSF with range are also presented. A simple relationship of the variation of the PSF with angle and optical path length is presented.

  7. Modified method to improve the design of Petlyuk distillation columns

    PubMed Central

    2014-01-01

    Background A response surface analysis was performed to study the effect of the composition and feeding thermal conditions of ternary mixtures on the number of theoretical stages and the energy consumption of Petlyuk columns. A modification of the pre-design algorithm was necessary for this purpose. Results The modified algorithm provided feasible results in 100% of the studied cases, compared with only 8.89% for the current algorithm. The proposed algorithm allowed us to attain the desired separations, despite the type of mixture and the operating conditions in the feed stream, something that was not possible with the traditional pre-design method. The results showed that the type of mixture had great influence on the number of stages and on energy consumption. A higher number of stages and a lower consumption of energy were attained with mixtures rich in the light component, while higher energy consumption occurred when the mixture was rich in the heavy component. Conclusions The proposed strategy expands the search of an optimal design of Petlyuk columns within a feasible region, which allow us to find a feasible design that meets output specifications and low thermal loads. PMID:25061476

  8. The Computational Properties of a Simplified Cortical Column Model.

    PubMed

    Cain, Nicholas; Iyer, Ramakrishnan; Koch, Christof; Mihalas, Stefan

    2016-09-01

    The mammalian neocortex has a repetitious, laminar structure and performs functions integral to higher cognitive processes, including sensory perception, memory, and coordinated motor output. What computations does this circuitry subserve that link these unique structural elements to their function? Potjans and Diesmann (2014) parameterized a four-layer, two cell type (i.e. excitatory and inhibitory) model of a cortical column with homogeneous populations and cell type dependent connection probabilities. We implement a version of their model using a displacement integro-partial differential equation (DiPDE) population density model. This approach, exact in the limit of large homogeneous populations, provides a fast numerical method to solve equations describing the full probability density distribution of neuronal membrane potentials. It lends itself to quickly analyzing the mean response properties of population-scale firing rate dynamics. We use this strategy to examine the input-output relationship of the Potjans and Diesmann cortical column model to understand its computational properties. When inputs are constrained to jointly and equally target excitatory and inhibitory neurons, we find a large linear regime where the effect of a multi-layer input signal can be reduced to a linear combination of component signals. One of these, a simple subtractive operation, can act as an error signal passed between hierarchical processing stages. PMID:27617444

  9. Mini-column screening assay for tetracyclines in chicken.

    PubMed

    Shalaby, Ali R

    2015-01-01

    A simple, rapid, reliable and economical mini-column (MC) method for the detection of tetracyclines (TCs) residues in chicken meat was developed. The method employs a commonly available Pasteur pipette which is tightly packed with silica gel and anhydrous sodium sulfate. Clean-up and detection of illegal levels can be achieved on the same column. Viewing the developed MC under an ultraviolet lamp revealed that TCs can be detected as a compact golden yellow fluorescent band at the junction between the anhydrous sodium sulfate and silica gel layers. Comparing the yellow band of control extracts with those fortified (100 ng ml(-1)) showed no overlap between analyte and impurities. The limit of detection (LOD) of the MC assay was 1 ng, indicating that the chicken sample containing 10 µg TCs kg(-1) sample could be easily detected. Moreover, the intensity of the yellow band increased whenever TCs levels in the extract increased. Evaluation utility of the method with blind samples as controls or samples fortified with total TCs at various levels indicated that the total blank and spiked samples at levels equal or below the permissible limits were assessed as accepted. The method can provide an alternative to microbial screening assays and could be used as an effective pre-screening technique in public health laboratories. PMID:25430068

  10. Approximations for column effect in airplane wing spars

    NASA Technical Reports Server (NTRS)

    Warner, Edward P; Short, Mac

    1927-01-01

    The significance attaching to "column effect" in airplane wing spars has been increasingly realized with the passage of time, but exact computations of the corrections to bending moment curves resulting from the existence of end loads are frequently omitted because of the additional labor involved in an analysis by rigorously correct methods. The present report represents an attempt to provide for approximate column effect corrections that can be graphically or otherwise expressed so as to be applied with a minimum of labor. Curves are plotted giving approximate values of the correction factors for single and two bay trusses of varying proportions and with various relationships between axial and lateral loads. It is further shown from an analysis of those curves that rough but useful approximations can be obtained from Perry's formula for corrected bending moment, with the assumed distance between points of inflection arbitrarily modified in accordance with rules given in the report. The discussion of general rules of variation of bending stress with axial load is accompanied by a study of the best distribution of the points of support along a spar for various conditions of loading.

  11. The Two-Column Aerosol Project (TCAP) Science Plan

    SciTech Connect

    Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

    2011-07-27

    The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

  12. The Computational Properties of a Simplified Cortical Column Model

    PubMed Central

    Iyer, Ramakrishnan; Koch, Christof; Mihalas, Stefan

    2016-01-01

    The mammalian neocortex has a repetitious, laminar structure and performs functions integral to higher cognitive processes, including sensory perception, memory, and coordinated motor output. What computations does this circuitry subserve that link these unique structural elements to their function? Potjans and Diesmann (2014) parameterized a four-layer, two cell type (i.e. excitatory and inhibitory) model of a cortical column with homogeneous populations and cell type dependent connection probabilities. We implement a version of their model using a displacement integro-partial differential equation (DiPDE) population density model. This approach, exact in the limit of large homogeneous populations, provides a fast numerical method to solve equations describing the full probability density distribution of neuronal membrane potentials. It lends itself to quickly analyzing the mean response properties of population-scale firing rate dynamics. We use this strategy to examine the input-output relationship of the Potjans and Diesmann cortical column model to understand its computational properties. When inputs are constrained to jointly and equally target excitatory and inhibitory neurons, we find a large linear regime where the effect of a multi-layer input signal can be reduced to a linear combination of component signals. One of these, a simple subtractive operation, can act as an error signal passed between hierarchical processing stages. PMID:27617444

  13. Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns.

    PubMed

    Kuhn, E P; Zeyer, J; Eicher, P; Schwarzenbach, R P

    1988-02-01

    Toluene and m-xylene were rapidly mineralized in an anaerobic laboratory aquifer column operated under continuous-flow conditions with nitrate as an electron acceptor. The oxidation of toluene and m-xylene was coupled with the reduction of nitrate, and mineralization was confirmed by trapping 14CO2 evolved from 14C-ring-labeled substrates. Substrate degradation also took place when nitrous oxide replaced nitrate as an electron acceptor, but decomposition was inhibited in the presence of molecular oxygen or after the substitution of nitrate by nitrite. The m-xylene-adapted microorganisms in the aquifer column degraded toluene, benzaldehyde, benzoate, m-toluylaldehyde, m-toluate, m-cresol, p-cresol, and p-hydroxybenzoate but were unable to metabolize benzene, naphthalene, methylcyclohexane, and 1,3-dimethylcyclohexane. Isotope-dilution experiments suggested benzoate as an intermediate formed during anaerobic toluene metabolism. The finding that the highly water-soluble nitrous oxide served as electron acceptor for the anaerobic mineralization of some aromatic hydrocarbons may offer attractive options for the in situ restoration of polluted aquifers.

  14. Fast HPLC for quality control of Harpagophytum procumbens by using a monolithic silica column: method transfer from conventional particle-based silica column.

    PubMed

    Schmidt, Alexander H

    2005-05-01

    The applicability of a monolithic C18-bonded silica column for the rapid HPLC separation of ingredients in medicinal plants and their phytopharmaceutical preparations has been evaluated in the author's laboratory. In this presentation, an existing method for the determination of the iridoid glycoside harpagoside in Harpagophytum procumbens (Devil's Claw) was successfully transferred from a conventional particle-based C18 silica column to a monolithic silica column. The very high porosity of the stationary phase allows chromatography with a much lower backpressure than on conventional columns. Therefore, the flow rate could be easily increased from 0.8 mL/min (particle-based column) to 5 mL/min (monolithic column) and the run-time reduced from 30 to 5 min (that is a reduction about 85% !), without losing any chromatographic resolution of the compound of interest. The amount of harpagoside was measured with the original method on a conventional particle-based silica column and on the adapted method on a monolithic silica column. The statistical mean t-test showed no significant differences of the variances and the means indicating that the fast HPLC method is an acceptable alternative. The shorter analysis time makes the method very valuable for commercial quality control of Harpagophytum extracts and its pharmaceutical preparations. PMID:15909544

  15. [Ion-pair chromatography-indirect ultraviolet detection for determination of tetraethyl ammonium using a monolithic column and a packed column].

    PubMed

    Zou, Chunmiao; Zhang, Xiaodong; Yu, Hong; Guan, Chao; Wang, Miaoyu

    2015-07-01

    Two methods were developed for the determination of tetraethyl ammonium by ion-pair chromatography-indirect ultraviolet detection using a monolithic column and a packed column with ionic liquid as additive in mobile phase. Chromatographic separations were performed on a monolithic column and a packed column both on reversed phase using imidazolium ionic liquid aqueous solution-ion-pair reagent-organic solvent as mobile phase. The effects of the background ultraviolet absorption reagent, detection wavelength, ion-pair reagent, organic solvent, column temperature and flow rate on the determination of tetraethyl ammonium were investigated. The difference between the two chromatographic columns was compared and the retention rules were discussed. Under the optimized chromatographic conditions, for tetraethyl ammonium on monolithic column and packed column, the retention times were 2.40 and 3.02 min; the detection limits (S/N=3), 0.04 and 0.07 mg/L; the RSDs (n = 5) for peak areas, 0.16% and 0.11%; and the RSDs (n=5) for retention times, 0.02% and 0.01%, respectively. The two methods have been successfully applied to the determination of tetraethyl ammonium ionic liquids synthesized by laboratory. The recoveries of the tetraethyl ammonium after spiking were 98.2% and 99.1%, respectively. The two methods can meet the requirements for the quantitative analysis of tetraethyl ammonium.

  16. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.

    PubMed

    Harkness, Mark; Fisher, Angela

    2013-08-01

    The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity. PMID:23697993

  17. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns

    NASA Astrophysics Data System (ADS)

    Harkness, Mark; Fisher, Angela

    2013-08-01

    The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~ 75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity.

  18. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.

    PubMed

    Harkness, Mark; Fisher, Angela

    2013-08-01

    The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity.

  19. Specific Yield--Column drainage and centrifuge moisture content

    USGS Publications Warehouse

    Johnson, A.I.; Prill, R.C.; Morris, D.A.

    1963-01-01

    The specific yield of a rock or soil, with respect to water, is the ratio of (1) the volume of water which, after being saturated, it will yield by gravity to (2) its own volume. Specific retention represents the water retained against gravity drainage. The specific yield and retention when added together are equal to the total interconnected porosity of the rock or soil. Because specific retention is more easily determined than specific yield, most methods for obtaining yield first require the determination of specific retention. Recognizing the great need for developing improved methods of determining the specific yield of water-bearing materials, the U.S. Geological Survey and the California Department of Water Resources initiated a cooperative investigation of this subject. The major objectives of this research are (1) to review pertinent literature on specific yield and related subjects, (2) to increase basic knowledge of specific yield and rate of drainage and to determine the most practical methods of obtaining them, (3) to compare and to attempt to correlate the principal laboratory and field methods now commonly used to obtain specific yield, and (4) to obtain improved estimates of specific yield of water-bearing deposits in California. An open-file report, 'Specific yield of porous media, an annotated bibliography,' by A. I. Johnson, D. A. Morris, and R. C. Prill, was released in 1960 in partial fulfillment of the first objective. This report describes the second phase of the specific-yield study by the U.S. Geological Survey Hydrologic Laboratory at Denver, Colo. Laboratory research on column drainage and centrifuge moisture equivalent, two methods for estimating specific retention of porous media, is summarized. In the column-drainage study, a wide variety of materials was packed into plastic columns of 1- to 8-inch diameter, wetted with Denver tap water, and drained under controlled conditions of temperature and humidity. The effects of cleaning the

  20. Temperature-assisted on-column solute focusing: a general method to reduce pre-column dispersion in capillary high performance liquid chromatography.

    PubMed

    Groskreutz, Stephen R; Weber, Stephen G

    2014-08-01

    Solvent-based on-column focusing is a powerful and well known approach for reducing the impact of pre-column dispersion in liquid chromatography. Here we describe an orthogonal temperature-based approach to focusing called temperature-assisted on-column solute focusing (TASF). TASF is founded on the same principles as the more commonly used solvent-based method wherein transient conditions are created that lead to high solute retention at the column inlet. Combining the low thermal mass of capillary columns and the temperature dependence of solute retention TASF is used effectively to compress injection bands at the head of the column through the transient reduction in column temperature to 5°C for a defined 7mm segment of a 6cm long 150μm I.D. column. Following the 30s focusing time, the column temperature is increased rapidly to the separation temperature of 60°C releasing the focused band of analytes. We developed a model to simulate TASF separations based on solute retention enthalpies, focusing temperature, focusing time, and column parameters. This model guides the systematic study of the influence of sample injection volume on column performance. All samples have solvent compositions matching the mobile phase. Over the 45-1050nL injection volume range evaluated, TASF reduces the peak width for all solutes with k' greater than or equal to 2.5, relative to controls. Peak widths resulting from injection volumes up to 1.3 times the column fluid volume with TASF are less than 5% larger than peak widths from a 45nL injection without TASF (0.07 times the column liquid volume). The TASF approach reduced concentration detection limits by a factor of 12.5 relative to a small volume injection for low concentration samples. TASF is orthogonal to the solvent focusing method. Thus, it can be used where on-column focusing is required, but where implementation of solvent-based focusing is difficult.

  1. Synthesis and characterization of a cellular membrane affinity chromatography column containing histamine 1 and P2Y1 receptors: A multiple G-protein coupled receptor column

    PubMed Central

    Moaddel, Ruin; Musyimi, Harrison K.; Sanghvi, Mitesh; Bashore, Charlene; Frazier, Chester R.; Khadeer, Mohammad; Bhatia, Prateek; Wainer, Irving W.

    2015-01-01

    A cellular membrane affinity chromatography (CMAC) column has been created using cellular membrane fragments from a 1321N1 cell line stably transfected with the P2Y1 receptor. The CMAC(1321N1P2Y1) column contained functional P2Y1 and histamine 1 receptors, which independently bound receptor-specific ligands. The data obtained with the CMAC(1321N1P2Y1) column demonstrate that multiple-G-protein coupled receptor (GPCR) columns can be developed and used to probe interactions with the immobilized receptors and that endogenously expressed GPCRs can be used to create CMAC columns. The results also establish that the histamine 1 receptor can be immobilized with retention of ligand-specific binding. PMID:19608372

  2. Column liquid chromatography-ultraviolet and column liquid chromatography/mass spectrometry evaluation of stress degradation behavior of escitalopram oxalate.

    PubMed

    Dhaneshwar, Sunil R; Mahadik, Mahadeo V; Kulkarni, Mahesh J

    2009-01-01

    The objective of this work was to study the degradation behavior of escitalopram oxalate under different International Conference on Harmonization (ICH)-recommended stress conditions by column liquid chromatography (LC)-UV and LC/mass spectrometry (LC/MS) and to establish a validated stability-indicating LC assay method. Escitalopram oxalate was subjected to stress conditions of hydrolysis, oxidation, photolysis, and thermal decomposition. Extensive degradation was found to occur in alkaline medium. Mild degradation was observed in acidic and oxidative conditions. Escitalopram oxalate was stable to neutral, photolytic, and thermal stress. Successful separation of the drug from degradation products formed under stress conditions was achieved on a PerfectSil-100 ODS-3 column [C18 (5 microm, 25 cm x 4.6 mm id)] using methanol-0.01 M acetate buffer pH 3.8 adjusted with acetic acid (45 + 55) as the mobile phase. The flow rate was 1 ml/min, and the detection wavelength was 239 nm. The method was validated according to ICH guidelines. Major degradation products formed in hydrolysis and oxidative conditions were isolated, and structural elucidation of degradation products was done by LCIMS and infrared spectrometry studies. The major hydrolysis degradation product was confirmed as 1-(3-dimethylaminopropyl)-1-(4-fluoro- phenyl)-1,3dihydroisobenzofuran-5-carboxylic acid, and the major oxidative degradation product was confirmed as 1-{[3-dimethylamino(oxide)- propyl]-1-(4-fluro-phenyl)}-1,3-dihydro-isobenzofuran- 5-carbonitrile.

  3. High performance liquid chromatography column packings with deliberately broadened particle size distribution: relation between column performance and packing structure.

    PubMed

    Liekens, Anuschka; Billen, Jeroen; Sherant, Ron; Ritchie, Harald; Denayer, Joeri; Desmet, Gert

    2011-09-23

    The effect of the addition of 25%, 50% and 75% (weight percent, wt%) of larger particles (resp. 3 and 5 μm) to a commercial batch of 1.9 μm particles has been investigated as an academic exercise to study the effects of particle size distribution on the kinetic performance of packed bed columns in a magnified way. Comparing the performance of the different mixtures in a kinetic plot, it could be irrefutably shown that the addition of larger particles to a commercial batch of small particles cannot be expected to lead to an improved kinetic performance. Whereas the addition of 25 wt% of larger particles still only has a minor negative effect, a significantly deteriorated performance is obtained when 50 or 75 wt% of larger particles are added. In this case, separation impedance number increases up to 200% were observed. Studying the packing structure through computational packing simulations, together with the experimental determination of the external porosity, helped in understanding the obtained results. This showed that small particles tend to settle in the flow-through pores surrounding the larger particles, leading to very high packing densities (external porosities as low as 32% were observed) and also negatively influencing the column permeability as well as the band broadening (because of the broadened flow-through pore size range).

  4. Investigations of infiltration processes from flooded areas by column experiments

    NASA Astrophysics Data System (ADS)

    Mohrlok, U.; Bethge, E.; Golalipour, A.

    2009-04-01

    In case of inundation of flood plains during flood events there is an increased risk of groundwater contamination due to infiltration of increasingly polluted river water. Specifically in densely populated regions, this groundwater may be used as source for drinking water supply. For the evaluation of this a detailed quantitative understanding of the infiltration processes under such conditions is required. In this context the infiltration related to a flood event can be described by three phases. The first phase is defined by the saturation of the unsaturated soils. Within the second phase infiltration takes place under almost saturated conditions determined by the hydraulic load of the flood water level. The drainage of the soils due to falling groundwater table is characterizing the third phase. Investigations by soil columns gave a detailed insight into the infiltration processes caused by flooding. Inflow at the soil top was established by a fixed water table fed by a Mariotte bottle. Free outflow and a groundwater table were used as lower boundary condition. Inflow and outflow volume were monitored. The evolution of the matrix pressure was observed by micro-tensiometers installed at several depths within the soil column. The flow processes during phase one and two were characterized by a tracer test. Some of the experiments were repeated in order to study the influence of preliminary events. Main results were a difference in infiltration due to the lower boundary condition with regard to inflow rate, outflow dynamics and matrix pressure evolution which is directly related to the water content evolution. Further, the influence of preliminary events was different for the different boundary conditions. A replacement of pre-event water could be observed which was confirmed by volume balances calculated for the infiltration experiments. Although these water balances were almost closed significant dynamics of the matrix pressure remained in soil column in the

  5. The cat vertebral column: stance configuration and range of motion

    NASA Technical Reports Server (NTRS)

    Macpherson, J. M.; Ye, Y.; Peterson, B. W. (Principal Investigator)

    1998-01-01

    This study examined the configuration of the vertebral column of the cat during independent stance and in various flexed positions. The range of motion in the sagittal plane is similar across most thoracic and lumbar joints, with the exception of a lesser range at the transition region from thoracic-type to lumbar-type vertebrae. The upper thoracic column exhibits most of its range in dorsiflexion and the lower thoracic and lumbar in ventroflexion. Lateral flexion is limited to less than 5 degrees at all segments. The range in torsion is almost 180 degrees and occurs primarily in the midthoracic region, T4-T11. Contrary to the depiction in most atlases, the standing cat exhibits several curvatures, including a mild dorsiflexion in the lower lumbar segments, a marked ventroflexion in the lower thoracic and upper lumbar segments, and a profound dorsiflexion in the upper thoracic (above T9) and cervical segments. The curvatures are not significantly changed by altering stance distance but are affected by head posture. During stance, the top of the scapula lies well above the spines of the thoracic vertebrae, and the glenohumeral joint is just below the bodies of vertebrae T3-T5. Using a simple static model of the vertebral column in the sagittal plane, it was estimated that the bending moment due to gravity is bimodal with a dorsiflexion moment in the lower thoracic and lumbar region and a ventroflexion moment in the upper thoracic and cervical region. Given the bending moments and the position of the scapula during stance, it is proposed that two groups of scapular muscles provide the major antigravity support for the head and anterior trunk. Levator scapulae and serratus ventralis form the lateral group, inserting on the lateral processes of cervical vertebrae and on the ribs. The major and minor rhomboids form the medial group, inserting on the spinous tips of vertebrae from C4 to T4. It is also proposed that the hypaxial muscles, psoas major, minor, and quadratus

  6. Small Column Ion Exchange Design and Safety Strategy

    SciTech Connect

    Huff, T.; Rios-Armstrong, M.; Edwards, R.; Herman, D.

    2011-02-07

    Small Column Ion Exchange (SCIX) is a transformational technology originally developed by the Department of Energy (DOE) Environmental Management (EM-30) office and is now being deployed at the Savannah River Site (SRS) to significantly increase overall salt processing capacity and accelerate the Liquid Waste System life-cycle. The process combines strontium and actinide removal using Monosodium Titanate (MST), Rotary Microfiltration, and cesium removal using Crystalline Silicotitanate (CST, specifically UOP IONSIV{reg_sign}IE-911 ion exchanger) to create a low level waste stream to be disposed in grout and a high level waste stream to be vitrified. The process also includes preparation of the streams for disposal, e.g., grinding of the loaded CST material. These waste processing components are technically mature and flowsheet integration studies are being performed including glass formulations studies, application specific thermal modeling, and mixing studies. The deployment program includes design and fabrication of the Rotary Microfilter (RMF) assembly, ion-exchange columns (IXCs), and grinder module, utilizing an integrated system safety design approach. The design concept is to install the process inside an existing waste tank, Tank 41H. The process consists of a feed pump with a set of four RMFs, two IXCs, a media grinder, three Submersible Mixer Pumps (SMPs), and all supporting infrastructure including media receipt and preparation facilities. The design addresses MST mixing to achieve the required strontium and actinide removal and to prevent future retrieval problems. CST achieves very high cesium loadings (up to 1,100 curies per gallon (Ci/gal) bed volume). The design addresses the hazards associated with this material including heat management (in column and in-tank), as detailed in the thermal modeling. The CST must be size reduced for compatibility with downstream processes. The design addresses material transport into and out of the grinder and

  7. Water column hydrothermal plumes on the Juan de Fuca Ridge

    SciTech Connect

    Lupton, J.E. )

    1990-08-10

    Hydrographic surveys on the Juan de Fuca Ridge (JdFR) carried out from 1980 to 1987 show a complex pattern of {sup 3}He and Mn-rich water column plumes produced by venting from several submarine hot spring areas. In the vicinity of Axial Volcano at latitude 46{degree}N, distinct plumes were detected in 1980, 1982, and 1983 with {sup 3}He signatures up to {delta}({sup 3}He) = 64% at {approximately} 1,500 m depth at distances of {approximately} 10 km from the seamount summit. However, the same plumes had no detectable thermal signature, a paradox which is attributed to the high {sup 3}He/heat ratios and low salinities of the fluids venting within the caldera of Axial Volcano. Profiles directly over the seamount show hydrothermal {sup 3}He in the water column up to 300 m above the caldera floor, with the {sup 3}He signal increasing with depth to very high and uniform ratios of {delta}({sup 3}He) = 108-150% below the {approximately} 1,500-m caldera sill depth. Another apparent locus of hydrothermal input is Helium Basin, a depression on the northeast flank of Axial Volcano which had {delta}({sup 3}He) = 51% when first sampled in 1980. However, subsequent hydrocasts into Helium Basin in 1982 and 1983 yielded lower helium enrichments, suggesting either a decrease in hydrothermal input or flushing of the basin via a mixing event. To the south of Axial Volcano, high {delta}({sup 3}He) values of {approximately} 40% observed over the ridge axis at 45{degree}18{prime}N and 45{degree}39{prime}N indicate venting on this previously unexplored section of the ridge. The water column plumes over the US Geological Survey vent site at {approximately} 44{degree}40{prime}N on the southern JdFR have very high Mn/{sup 3}He ratios of 4,600 mol/cm{sup 3}, an apparently unique characteristic which can be used to distinguish these plumes from those originating at other JdFR vent fields.

  8. Carbon monoxide total column retrievals from TROPOMI shortwave infrared measurements

    NASA Astrophysics Data System (ADS)

    Landgraf, Jochen; aan de Brugh, Joost; Scheepmaker, Remco; Borsdorff, Tobias; Hu, Haili; Houweling, Sander; Butz, Andre; Aben, Ilse; Hasekamp, Otto

    2016-10-01

    The Tropospheric Monitoring Instrument (TROPOMI) spectrometer is the single payload of the Copernicus Sentinel 5 Precursor (S5P) mission. It measures Earth radiance spectra in the shortwave infrared spectral range around 2.3 µm with a dedicated instrument module. These measurements provide carbon monoxide (CO) total column densities over land, which for clear sky conditions are highly sensitive to the tropospheric boundary layer. For cloudy atmospheres over land and ocean, the column sensitivity changes according to the light path through the atmosphere. In this study, we present the physics-based operational S5P algorithm to infer atmospheric CO columns satisfying the envisaged accuracy ( < 15 %) and precision ( < 10 %) both for clear sky and cloudy observations with low cloud height. Here, methane absorption in the 2.3 µm range is combined with methane abundances from a global chemical transport model to infer information on atmospheric scattering. For efficient processing, we deploy a linearized two-stream radiative transfer model as forward model and a profile scaling approach to adjust the CO abundance in the inversion. Based on generic measurement ensembles, including clear sky and cloudy observations, we estimated the CO retrieval precision to be ≤ 11 % for surface albedo ≥ 0.03 and solar zenith angle ≤ 70°. CO biases of ≤ 3 % are introduced by inaccuracies in the methane a priori knowledge. For strongly enhanced CO concentrations in the tropospheric boundary layer and for cloudy conditions, CO errors in the order of 8 % can be introduced by the retrieval of cloud parameters of our algorithm. Moreover, we estimated the effect of a distorted spectral instrument response due to the inhomogeneous illumination of the instrument entrance slit in the flight direction to be < 2 % with pseudo-random characteristics when averaging over space and time. Finally, the CO data exploitation is demonstrated for a TROPOMI orbit of simulated shortwave infrared

  9. COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS

    SciTech Connect

    Paul C.K. Lam; Isaac K. Gamwo; Dimitri Gidaspow

    2002-05-01

    The objective of this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed and is appended in this report. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The details are presented in the attached paper titled ''CFD Simulation of Flow and Turbulence in a Slurry Bubble Column''. This phase of the work is in press in a referred journal (AIChE Journal, 2002) and was presented at the Fourth International Conference on Multiphase Flow (ICMF 2001) in New Orleans, May 27-June 1, 2001 (Paper No. 909). The computed time averaged particle velocities and concentrations agree with Particle Image Velocimetry (PIV) measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. To better understand turbulence we studied fluidization in a liquid-solid bed. This work was also presented at the Fourth International Conference on Multiphase Flow (ICMF 2001, Paper No. 910). To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV technique. This report

  10. Bioreduction of uranium in a contaminated soil column.

    PubMed

    Gu, Baohua; Wu, Wei-Min; Ginder-Vogel, Matthew A; Yan, Hui; Fields, Matthew W; Zhou, Jizhong; Fendorf, Scott; Criddle, Craig S; Jardine, Philip M

    2005-07-01

    The bioreduction of soluble uranium [U(VI)] to sparingly soluble U(IV) species is an attractive remedial technology for contaminated soil and groundwater due to the potential for immobilizing uranium and impeding its migration in subsurface environments. This manuscript describes a column study designed to simulate a three-step strategy proposed for the remediation of a heavily contaminated site at the U.S. Department of Energy's NABIR Field Research Center in Oak Ridge, TN. The soil is contaminated with high concentrations of uranium, aluminum, and nitrate and has a low, highly buffered pH (approximately 3.5). Steps proposed for remediation are (i) flushing to remove nitrate and aluminum, (ii) neutralization to establish pH conditions favorable for biostimulation, and (iii) biostimulation for U(VI) reduction. We simulated this sequence using a packed soil column containing undisturbed aggregates of U(VI)-contaminated saprolite that was flushed with an acidified salt solution (pH 4.0), neutralized with bicarbonate (60 mM), and then biostimulated by adding ethanol. The column was operated anaerobically in a closed-loop recirculation setup. However, during the initial month of biostimulation, ethanol was not utilized, and U(VI) was not reduced. A bacterial culture enriched from the site groundwaterwas subsequently added, and the consumption of ethanol coupled with sulfate reduction immediately ensued. The aqueous concentration of U(VI) initially increased, evidently because of the biological production of carbonate, a ligand known to solubilize uranyl. After approximately 50 days, aqueous U(VI) concentrations rapidly decreased from approximately 17 to <1 mg/L. At the conclusion of the experiment,the presence of reduced solid phase U(IV) was confirmed using X-ray absorption near edge structure spectroscopy. The results indicate that bioreduction to immobilize uranium is potentially feasible at this site; however, the stability of the reduced U(IV) and its potential

  11. Improved micromachined column design and fluidic interconnects for programmed high-temperature gas chromatography separations.

    PubMed

    Gaddes, David; Westland, Jessica; Dorman, Frank L; Tadigadapa, Srinivas

    2014-07-01

    This work focuses on the development and experimental evaluation of micromachined chromatographic columns for use in a commercial gas chromatography (GC) system. A vespel/graphite ferrule based compression sealing technique is presented using which leak-proof fluidic interconnection between the inlet tubing and the microchannel was achieved. This sealing technique enabled separation at temperatures up to 350°C on a μGC column. This paper reports the first high-temperature separations in microfabricated chromatographic columns at these temperatures. A 2m microfabricated column using a double Archimedean spiral design with a square cross-section of 100μm×100μm has been developed using silicon microfabrication techniques. The microfabricated column was benchmarked against a 2m 100μm diameter commercial column and the performance between the two columns was evaluated in tests performed under identical conditions. High temperature separations of simulated distillation (ASTM2887) and polycyclic aromatic hydrocarbons (EPA8310) were performed using the μGC column in temperature programmed mode. The demonstrated μGC column along with the high temperature fixture offers one more solution toward potentially realizing a portable μGC device for the detection of semi-volatile environmental pollutants and explosives without the thermal limitations reported to date with μGC columns using epoxy based interconnect technology. PMID:24866564

  12. Improved micromachined column design and fluidic interconnects for programmed high-temperature gas chromatography separations.

    PubMed

    Gaddes, David; Westland, Jessica; Dorman, Frank L; Tadigadapa, Srinivas

    2014-07-01

    This work focuses on the development and experimental evaluation of micromachined chromatographic columns for use in a commercial gas chromatography (GC) system. A vespel/graphite ferrule based compression sealing technique is presented using which leak-proof fluidic interconnection between the inlet tubing and the microchannel was achieved. This sealing technique enabled separation at temperatures up to 350°C on a μGC column. This paper reports the first high-temperature separations in microfabricated chromatographic columns at these temperatures. A 2m microfabricated column using a double Archimedean spiral design with a square cross-section of 100μm×100μm has been developed using silicon microfabrication techniques. The microfabricated column was benchmarked against a 2m 100μm diameter commercial column and the performance between the two columns was evaluated in tests performed under identical conditions. High temperature separations of simulated distillation (ASTM2887) and polycyclic aromatic hydrocarbons (EPA8310) were performed using the μGC column in temperature programmed mode. The demonstrated μGC column along with the high temperature fixture offers one more solution toward potentially realizing a portable μGC device for the detection of semi-volatile environmental pollutants and explosives without the thermal limitations reported to date with μGC columns using epoxy based interconnect technology.

  13. Surface modification of polytetrafluoroethylene column for two-stationary phase separations by counter-current chromatography.

    PubMed

    Quan, Kai-jun; Huang, Xin-yi; Li, Xiao-ting; Wang, Gao-hong; Liu, Yan-juan; Duan, Wen-da; Di, Duo-long

    2015-11-27

    To improve the separation capability of CCC, a novel solid-liquid two-stationary phases CCC (ASP-CCC) column was prepared employing graphene oxide (GO) conjugated poly-dopamine (PD) coating (GO/PD) as auxiliary stationary phase (ASP). The results of Scanning electron microscopy (SEM), contact angle and X-ray photoelectron spectroscopy (XPS) indicated that nanostructured GO and PD were successfully grafted on the inner wall of the PTFE column. Three alkaloid compounds were selected as the target analytes to evaluate the performance of the novel column. Because of the intermolecular force (hydrogen bond, electrostatic interaction and π-π interaction) between the ASP and model compounds, three analytes were well separated with this novel ASP-CCC column. Additionally, the novel column exhibited higher stationary phase retention ratio, about 8%, than original column without changing the chromatographic condition. Furthermore, the eluotropic sequence of analytes on novel column was in accordance with that in the original column. This suggested that the novel column is a CCC column with auxiliary stationary phase (ASP) in its own right, and the present separation mode is the combination of partition chromatography and adsorption chromatography.

  14. Influence of the crosslinker type on the chromatographic properties of hydrophilic sulfoalkylbetaine-type monolithic columns.

    PubMed

    Liu, Chusheng; Chen, Weijia; Yuan, Guangxin; Xiao, Yao; Crommen, Jacques; Xu, Shihai; Jiang, Zhengjin

    2014-12-19

    In order to investigate the effects of the crosslinker on the separation performance of polar zwitterionic sulfoalkylbetaine-type monolithic columns, three crosslinkers, i.e. 1,4-bis(acryloyl)piperazine (PDA), ethylene dimethacrylate (EDMA) and N,N'-methylenebisacrylamide (MBA), were copolymerized with the hydrophilic monomer N,N-dimethyl-N-acryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPDA). The chromatographic properties of the three hydrophilic sulfoalkylbetaine-type monolithic columns, including column efficiency, permeability, porosity and separation mechanism, were systematically compared using scanning electron microscopy or micro-HPLC. Good selectivity in micro-HPLC separations was achieved on all three monolithic columns. The results indicate that the polarity of sulfoalkylbetaine-type monolithic columns may be related to the polarity of the crosslinker, which further affects column selectivity and efficiency. A particularly high column efficiency (100,000 plates/m) was obtained on the novel poly(SPDA-co-PDA) monolithic column at a linear velocity of 1mm/s using thiourea as test analyte. A higher resolution was also observed for nucleobases, nucleosides and hydrophilic organic acids on this novel poly(SPDA-co-PDA) monolithic column compared to the other two columns. PMID:25464999

  15. Surface modification of polytetrafluoroethylene column for two-stationary phase separations by counter-current chromatography.

    PubMed

    Quan, Kai-jun; Huang, Xin-yi; Li, Xiao-ting; Wang, Gao-hong; Liu, Yan-juan; Duan, Wen-da; Di, Duo-long

    2015-11-27

    To improve the separation capability of CCC, a novel solid-liquid two-stationary phases CCC (ASP-CCC) column was prepared employing graphene oxide (GO) conjugated poly-dopamine (PD) coating (GO/PD) as auxiliary stationary phase (ASP). The results of Scanning electron microscopy (SEM), contact angle and X-ray photoelectron spectroscopy (XPS) indicated that nanostructured GO and PD were successfully grafted on the inner wall of the PTFE column. Three alkaloid compounds were selected as the target analytes to evaluate the performance of the novel column. Because of the intermolecular force (hydrogen bond, electrostatic interaction and π-π interaction) between the ASP and model compounds, three analytes were well separated with this novel ASP-CCC column. Additionally, the novel column exhibited higher stationary phase retention ratio, about 8%, than original column without changing the chromatographic condition. Furthermore, the eluotropic sequence of analytes on novel column was in accordance with that in the original column. This suggested that the novel column is a CCC column with auxiliary stationary phase (ASP) in its own right, and the present separation mode is the combination of partition chromatography and adsorption chromatography. PMID:26518492

  16. Exogenous factors contributing to column bed heterogeneity: Part 1: Consequences of 'air' injections in liquid chromatography.

    PubMed

    Samuelsson, Jörgen; Fornstedt, Torgny; Shalliker, Andrew

    2015-08-01

    It has been shown that not only the packing homogeneity, but also factors external to the column bed, such as, frits and distributors can have important effects on the column performance. This current communication is the first in a series focusing on the impact of exogenous factors on the column bed heterogeneity. This study is based on several observations by us and others that chromatographic runs often, for technical reasons, include more or less portions of air in the injections. It is therefore extremely important to find out the impact of air on the column performance, the reliability of the results derived from analyses where air was injected, and the effect on the column homogeneity. We used a photographic approach for visualising the air transport phenomena, and found that the air transport through the column is comprised of many different types of transport phenomena, such as laminal flow, viscous fingering like flows, channels and bulbs, and pulsations. More particularly, the air clouds within the column definitely interact in the adsorption, i.e. mobile phase adsorbed to the column surface is displaced. In addition, irrespective of the type of air transport phenomena, the air does not penetrate the column homogeneously. This process is strongly flow dependent. In this work we study air transport both in an analytical scale and a semi-prep column.

  17. Hysteretic behavior of special shaped columns composed of steel and reinforced concrete (SRC)

    NASA Astrophysics Data System (ADS)

    Chen, Zongping; Xu, Jinjun; Xue, Jianyang

    2015-06-01

    This paper describes a series of experimental investigations on seventeen specimens of steel reinforced concrete special shaped (SRCSS) columns under low cyclic reversed loading using parallel crosshead equipment. Nine T-shaped SRC columns, four L-shaped SRC columns and four +-shaped SRC columns were tested to examine the effects of shape steel configuration, loading angle, axial compressive ratio and shear-span ratio on the behavior (strength, stiffness, energy dissipation, ductility, etc.) of SRCSS column specimens. The failure modes and hysteretic performance of all the specimens were obtained in the tests. Test results demonstrate that the shear-span ratio is the main parameter affecting the failure modes of SRCSS columns. The specimens with small shear-span ratio are prone to shear failure, and the primary failure planes in SRCSS columns are parallel to the loading direction. As a result, there is a symmetry between positive and negative loading directions in the hysteretic curves of the SRCSS columns. The majority of displacement ductility coefficients for all the specimens are over 3.0, so that the SRCSS columns demonstrate a better deformation capacity. In addition, the equivalent viscous damping coefficients of all the specimens are greater than 0.2, indicating that the seismic behavior of SRCSS columns is adequate. Finally, the superposition theory was used to calculate the limits of axial compressive ratio for the specimens, and it is found that the test axial compressive ratio is close to or smaller than the calculated axial compressive ratio limit.

  18. Adenovirus purification by two-column, size-exclusion, simulated countercurrent chromatography.

    PubMed

    Nestola, Piergiuseppe; Silva, Ricardo J S; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T; Mota, José P B

    2014-06-20

    Adenovirus serotype 5 (Ad5) was successfully separated by size-exclusion chromatography (SEC) using a simple, yet efficient, two-column, quasi-continuous, simulated moving-bed process operated in an open-loop configuration. The operating cycle is divided into two identical half-cycles, each of them consisting of the following sequence of sub-steps: (i) elution of the upstream column and direction of the effluent of the downstream column to waste; (ii) elution of the upstream column and redirection of its effluent to waste while the downstream column is fed with the clarified bioreaction bulk and its effluent collected as purified product; (iii) operation of the system as in step (i) but collecting the effluent of the downstream column as product; (iv) elution of the upstream column and direction of its effluent to waste while the flow through the downstream column is temporarily halted. Clearance of impurities, namely DNA and host cell protein (HCP), were experimentally assessed. The pilot-scale run yielded a virus recovery of 86%, and a clearance of 90% and 89% for DNA and HCP, respectively, without any fine tunning of the predetermined operating parameters. These figures compare very favorably against single-column batch chromatography for the same volume of size-exclusion resin. However, and most importantly, the virus yield was increased from 57% for the batch system to 86% for the two-column SEC process because of internal recycling of the mixed fractions of contaminated Ad5, even though the two-column process was operated strictly in an open-loop configuration. And last, but not least, the productivity was increased by 6-fold with the two-column process. In conclusion, the main drawbacks of size-exclusion chromatography, namely low productivity and low product titer, were overcome to a considerable extent by an innovative two-column configuration that keeps the mixed fractions inside the system at all times.

  19. Congenital malformations of the vertebral column in ancient amphibians.

    PubMed

    Witzmann, F; Rothschild, B M; Hampe, O; Sobral, G; Gubin, Y M; Asbach, P

    2014-04-01

    Temnospondyls, the largest group of Palaeozoic and Mesozoic amphibians, primitively possess rhachitomous vertebrae with multipartite centra (consisting of one horse-shoe-shaped inter- and paired pleurocentra). In a group of temnospondyls, the stereospondyls, the intercentra became pronounced and disc-like, whereas the pleurocentra were reduced. We report the presence of congenital vertebral malformations (hemi, wedge and block vertebrae) in Permian and Triassic temnospondyls, showing that defects of formation and segmentation in the tetrapod vertebral column represent a fundamental failure of somitogenesis that can be followed throughout tetrapod evolution. This is irrespective of the type of affected vertebra, that is, rhachitomous or stereospondylous, and all components of the vertebra can be involved (intercentrum, pleurocentrum and neural arch), either together or independently on their own. This is the oldest known occurrence of wedge vertebra and congenital block vertebra described in fossil tetrapods. The frequency of vertebral congenital malformations in amphibians appears unchanged from the Holocene.

  20. Engineering Development of Slurry Bubble Column Reactor (SBCR) Technology

    SciTech Connect

    Puneet Gupta

    2002-07-31

    This report summarizes the procedures used and results obtained in determining radial gas holdup profiles, via gamma ray scanning, and in assessing liquid and gas mixing parameters, via radioactive liquid and gas tracers, during Fischer Tropsch synthesis. The objectives of the study were (i) to develop a procedure for detection of gas holdup radial profiles in operating reactors and (ii) to test the ability of the developed, previously described, engineering models to predict the observed liquid and gas mixing patterns. It was shown that the current scanning procedures were not precise enough to obtain an accurate estimate of the gas radial holdup profile and an improved protocol for future use was developed. The previously developed physically based model for liquid mixing was adapted to account for liquid withdrawal from the mid section of the column. The ability of our engineering mixing models for liquid and gas phase to predict both liquid and gas phase tracer response was established and illustrated.