Science.gov

Sample records for ammonium calcium magnesium

  1. Association between patient-related factors and risk of calcium oxalate and magnesium ammonium phosphate urolithiasis in cats.

    PubMed

    Lekcharoensuk, C; Lulich, J P; Osborne, C A; Koehler, L A; Urlich, L K; Carpenter, K A; Swanson, L L

    2000-08-15

    To determine whether breed, age, sex, or reproductive status (i.e., neutered versus sexually intact) was associated with the apparent increase in prevalence of calcium oxalate (CaOx) uroliths and the decrease in prevalence of magnesium ammonium phosphate (MAP) uroliths in cats over time. Case-control study. Case cats consisted of cats with CaOx (n = 7,895) or MAP (7,334) uroliths evaluated at the Minnesota Urolith Center between 1981 and 1997. Control cats consisted of cats without urinary tract disease admitted to veterinary teaching hospitals in the United States and Canada during the same period (150,482). Univariate and multivariate logistic regression were performed. British Shorthair, Exotic Shorthair, Foreign Shorthair, Havana Brown, Himalayan, Persian, Ragdoll, and Scottish Fold cats had an increased risk of developing CaOx uroliths, as did male cats and neutered cats. Chartreux, domestic shorthair, Foreign Shorthair, Himalayan, Oriental Shorthair, and Ragdoll cats had an increased risk of developing MAP uroliths, as did female cats and neutered cats. Cats with CaOx uroliths were significantly older than cats with MAP uroliths. Results suggest that changes in breed, age, sex, or reproductive status did not contribute to the apparent reciprocal relationship between prevalences of CaOx and MAP uroliths in cats during a 17-year period. However, cats of particular breeds, ages, sex, and reproductive status had an increased risk of developing CaOx and MAP uroliths.

  2. STUDYING THE EFFECTS OF CALCIUM AND MAGNESIUM ON SIZE-DISTRIBUTED NITRATE AND AMMONIUM WITH EQUISOLV II. (R823186)

    EPA Science Inventory

    Abstract

    A chemical equilibrium code was improved and used to show that calcium and magnesium have a large yet different effect on the aerosol size distribution in different regions of Los Angeles. In the code, a new technique of solving individual equilibrium equation...

  3. STUDYING THE EFFECTS OF CALCIUM AND MAGNESIUM ON SIZE-DISTRIBUTED NITRATE AND AMMONIUM WITH EQUISOLV II. (R823186)

    EPA Science Inventory

    Abstract

    A chemical equilibrium code was improved and used to show that calcium and magnesium have a large yet different effect on the aerosol size distribution in different regions of Los Angeles. In the code, a new technique of solving individual equilibrium equation...

  4. Determination of ammonium, calcium, magnesium, potassium and sodium in drinking waters by capillary zone electrophoresis on a column-coupling chip.

    PubMed

    Masár, Marián; Sydes, Daniel; Luc, Milan; Kaniansky, Dusan; Kuss, Heinz-Martin

    2009-08-21

    This work deals with simultaneous determination of ammonium, calcium, magnesium, sodium and potassium in drinking waters by capillary zone electrophoresis (CZE) on a column-coupling (CC) chip with suppressed hydrodynamic and electroosmotic transports. CZE separations were carried out in a propionate background electrolyte at a low pH (3.2) containing 18-crown-6-ether (18-crown-6) to reach a complete resolution of the cations. In addition, triethylenetetramine (TETA) coated the inner wall surface of the chip channels. The concentration limits of detection (cLOD) for the studied cations ranged from 4.9 to 11.5 microg/l concentrations using a 900 nl volume of the sample injection channel. 93-106% recoveries of the cations in drinking waters indicate a good predisposition of the present method to provide accurate analytical results.

  5. Major Minerals - Calcium, Magnesium, Phosphorus

    USDA-ARS?s Scientific Manuscript database

    Calcium, magnesium and phosphorus are essential elements critically important for the function of the musculoskeletal system, including the formation and transduction of energy and the maintenance of healthy bone. The major calcium concern for physically active healthy middle-aged adults is to consu...

  6. Magnesium/Calcium Competition at Excitable Membranes.

    ERIC Educational Resources Information Center

    Belzer, Bill; Fry, Panni

    1998-01-01

    Considers some consequences of altering intracellular calcium supply by magnesium concentration changes. Focuses on using this procedure as an exercise with allied health students as they witness therapeutic uses of magnesium and other calcium entry inhibitors. (DDR)

  7. Magnesium/Calcium Competition at Excitable Membranes.

    ERIC Educational Resources Information Center

    Belzer, Bill; Fry, Panni

    1998-01-01

    Considers some consequences of altering intracellular calcium supply by magnesium concentration changes. Focuses on using this procedure as an exercise with allied health students as they witness therapeutic uses of magnesium and other calcium entry inhibitors. (DDR)

  8. Fabrication and cytocompatibility of spherical magnesium ammonium phosphate granules.

    PubMed

    Christel, Theresa; Geffers, Martha; Klammert, Uwe; Nies, Berthold; Höß, Andreas; Groll, Jürgen; Kübler, Alexander C; Gbureck, Uwe

    2014-09-01

    Magnesium phosphate compounds, as for example struvite (MgNH4PO4·6H2O), have comparable characteristics to calcium phosphate bone substitutes, but degrade faster under physiological conditions. In the present work, we used a struvite forming calcium doped magnesium phosphate cement with the formulation Ca0.75Mg2.25(PO4)2 and an ammonium phosphate containing aqueous solution to produce round-shaped granules. For the fabrication of spherical granules, the cement paste was dispersed in a lipophilic liquid and stabilized by surfactants. The granules were characterized with respect to morphology, size distribution, phase composition, compressive strength, biocompatibility and solubility. In general, it was seen that small granules can hardly be produced by means of emulsification, when the raw material is a hydraulic paste, because long setting times promote coalescence of initially small unhardened cement droplets. Here, this problem was solved by using an aqueous solution containing both the secondary (NH4)2HPO4 and primary ammonium phosphates NH4H2PO4 to accelerate the setting reaction. This resulted in granules with 97 wt.% having a size in the range between 200 and 1,000 μm. The novel solution composition doubled the compressive strength of the cement to 37 ± 5 MPa without affecting either the conversion to struvite or the cytocompatibility using human fetal osteoblasts.

  9. Final amended report on the safety assessment of Ammonium Thioglycolate, Butyl Thioglycolate, Calcium Thioglycolate, Ethanolamine Thioglycolate, Ethyl Thioglycolate, Glyceryl Thioglycolate, Isooctyl Thioglycolate, Isopropyl Thioglycolate, Magnesium Thioglycolate, Methyl Thioglycolate, Potassium Thioglycolate, Sodium Thioglycolate, and Thioglycolic Acid.

    PubMed

    Burnett, Christina L; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2009-01-01

    This safety assessment includes Ammonium and Glyceryl Thioglycolate and Thioglycolic Acid Butyl, Calcium, Ethanolamine, Ethyl, Isooctyl, Isopropyl, Magnesium, Methyl, Potassium, and Sodium Thioglycolate, as used in cosmetics. Thioglycolates penetrate skin and distribute to the kidneys, lungs, small intestine, and spleen; excretion is primarily in urine. Thioglycolates were slightly toxic in rat acute oral toxicity studies. Thioglycolates are minimal to severe ocular irritants. Thioglycolates can be skin irritants in animal and in vitro tests, and can be sensitizers. A no-observable-adverse-effect level for reproductive and developmental toxicity of 100 mg/kg per day was determined using rats. Thioglycolates were not mutagenic, and there was no evidence of carcinogenicity. Thioglycolates were skin irritants in some clinical tests. Clinically significant adverse reactions to these ingredients used in depilatories are not commonly seen, suggesting current products are formulated to be practically nonirritating under conditions of recommended use. Formulators should take steps necessary to assure that current practices are followed.

  10. A field method for the determination of calcium and magnesium in limestone and dolomite

    USGS Publications Warehouse

    Shapiro, Leonard; Brannock, Walter Wallace

    1957-01-01

    The method is an adaptation of a procedure described by Betz and Noll1 in 1950. Calcium and magnesium are determined by visual titration using Versene (disodium ethylenediamine tetraacetate) with Murexide (ammonium purpurate) as the indicator for calcium and Eriochrome Black T as the indicator for magnesium.

  11. Calcium sulphate in ammonium sulphate solution

    USGS Publications Warehouse

    Sullivan, E.C.

    1905-01-01

    Calcium sulphate, at 25?? C., is two-thirds as soluble in dilute (o.i mol per liter) and twice as soluble in concentrated (3 mois per liter) ammonium sulphate solution as in water. The specific electric conductivity of concentrated ammonium sulphate solutions is lessened by saturating with calcium sulphate. Assuming that dissociation of ammonium sulphate takes place into 2NH4?? and SO4" and of calcium sulphate into Ca and SO4" only, and that the conductivity is a measure of such dissociation, the solubility of calcium sulphate in dilute ammonium sulphate solutions is greater than required by the mass-law. The conductivity of the dilute mixtures may be accurately calculated by means of Arrhenius' principle of isohydric solutions. In the data obtained in these calculations, the concentration of non-dissociated calcium sulphate decreases with increasing ammonium sulphate. The work as a whole is additional evidence of the fact that we are not yet in possession of all the factors necessary for reconciling the mass-law to the behavior of electrolytes. The measurements above described were made in the chemical laboratory of the University of Michigan.

  12. Calcium, magnesium, and potassium in food

    USDA-ARS?s Scientific Manuscript database

    The biochemical and physiological functions and consequences of deficient intakes, which show the nutritional importance of calcium, magnesium and potassium for humans, are reviewed. The dietary recommendations and food sources for these essential mineral elements for humans are presented. Factors t...

  13. The Association Between Calcium, Magnesium, and Ratio of Calcium/Magnesium in Seminal Plasma and Sperm Quality.

    PubMed

    Liang, Hong; Miao, Maohua; Chen, Jianping; Chen, Kanglian; Wu, Bin; Dai, Qi; Wang, Jian; Sun, Fei; Shi, Huijuan; Yuan, Wei

    2016-11-01

    The study aimed to examine the relationships between calcium, magnesium, and calcium/magnesium ratio in semen plasma and sperm quality. It was a cross-sectional study based on a program aiming at promoting the reproductive health in less-developed areas. A total of 515 men aged between 18 and 55 years provided semen specimens at family planning clinics in Sandu County, Guizhou Province, China. Total calcium and magnesium concentrations in semen plasma were measured with flame atomic absorption spectrometry. Sperm quality, including sperm motility and concentration, was evaluated by using a computer-assisted sperm analysis method. The medians of seminal plasma calcium, magnesium, and zinc concentrations were 9.61, 4.41, and 2.23 mmol/l, respectively. Calcium concentration and calcium/magnesium ratio were negatively associated with sperm concentrations (β = -0.47, P = 0.0123 for calcium; β = -0.25, P = 0.0393 for calcium/magnesium ratio) after adjusting for zinc and other covariates. In stratified analyses, the association between calcium and sperm concentrations only persisted among subjects with a calcium/magnesium ratio of ≤2.5 (β = -0.71, P = 0.0268). In the same stratum, magnesium was associated with increased sperm concentration (β = 0.73, P = 0.0386). Among subjects with a calcium/magnesium ratio of >2.5, neither calcium nor magnesium was associated with sperm concentration. In conclusion, total calcium and magnesium concentrations were associated with sperm concentration among subjects with a lower calcium/magnesium ratio. The calcium and magnesium ratio had a modifying effect on the associations of calcium and magnesium with sperm concentration.

  14. Ascorbic acid, calcium, phosphorus and magnesium intake variations: effects on calcium, phosphorus and magnesium utilization by human adults

    SciTech Connect

    Kies, C.; Brennan, M.A.; Parks, S.K.; Stauffer, D.J.; Wang, H.Y.; Young, S.F.; Fox, H.M.

    1986-03-01

    The objective of the study was to determine the effects of feeding two levels of ascorbic acid, calcium, phosphorus, magnesium and ascorbic acid on the apparent utilization of calcium, phosphorus and magnesium by healthy, human adult subjects. During 4 randomly-arranged experimental periods of 7 days each, a laboratory-controlled diet alone or with supplements of ascorbic acid, dicalcium phosphate or magnesium oxide was fed to the 18 subjects. Results indicated that ascorbic acid supplementation tended to reduce urinary phosphorus loss and to slightly increase fecal phosphorus loss so that overall phosphorus balances became more positive. Conversely, under these conditions, urinary calcium losses were little affected but fecal calcium losses were increased resulting in an overall decrease in calcium balance with ascorbic acid supplementation. Ascorbic acid supplementation resulted in decreased urine and fecal losses of magnesium and more positive magnesium balances. Magnesium supplementation resulted in more positive calcium and phosphorus balances as did calcium phosphate supplementation on magnesium balance.

  15. Process for converting magnesium fluoride to calcium fluoride

    DOEpatents

    Kreuzmann, A.B.; Palmer, D.A.

    1984-12-21

    This invention is a process for the conversion of magnesium fluoride to calcium fluoride whereby magnesium fluoride is decomposed by heating in the presence of calcium carbonate, calcium oxide or calcium hydroxide. Magnesium fluoride is a by-product of the reduction of uranium tetrafluoride to form uranium metal and has no known commercial use, thus its production creates a significant storage problem. The advantage of this invention is that the quality of calcium fluoride produced is sufficient to be used in the industrial manufacture of anhydrous hydrogen fluoride, steel mill flux or ceramic applications.

  16. Disorders Involving Calcium, Phosphorus, and Magnesium

    PubMed Central

    Moe, Sharon M.

    2008-01-01

    Abnormalities of calcium, phosphorus and magnesium homeostasis are common, and collectively are called disorders of mineral metabolism. Normal homeostatic regulation maintains serum levels, intracellular levels, and optimal mineral content in bone. This regulation occurs at three major target organs, the intestine, kidney and bone, principally via the complex integration of two hormones, parathyroid hormone and vitamin D. An understanding of normal physiology is necessary to accurately diagnose and treat disorders of mineral metabolism and will be briefly reviewed before discussing the differential diagnosis and treatment of specific disorders. PMID:18486714

  17. Role of magnesium on the biomimetic deposition of calcium phosphate

    NASA Astrophysics Data System (ADS)

    Sarma, Bimal K.; Sarma, Bikash

    2016-10-01

    Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.

  18. The initial phases of calcium and magnesium phosphates precipitated from solutions of high to medium concentrations

    NASA Astrophysics Data System (ADS)

    Abbona, F.; Madsen, H. E. Lundager; Boistelle, R.

    1986-04-01

    The precipitation of calcium and magnesium phosphates is performed at 25°C by mixing solutions of ammonium phosphate and solutions of calcium and magnesium chlorides under the condition [ P] = [ Ca] + [ Mg] in large pH intervals. Before any nucleation the phosphate concentration ranges from 0.50M to 0.01M. The phases first precipitated are CaHPO 4·2H 2O (brushite), CaHPO 4 (monetite), Ca 3(PO 4) 2· xH 2O (amorphous calcium phosphate), MgNH 4PO 4·6H 2O (struvite), and MgHPO 4·3H 2O (newberyite). The precipitation fields of each phase are determined and discussed as a function of pH, composition and supersaturation. The solutions are even supersaturated with respect to several other calcium phosphates but they never occur first even if their supersaturation is the highest.

  19. Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery.

    PubMed

    Wang, Jiansen; Song, Yonghui; Yuan, Peng; Peng, Jianfeng; Fan, Maohong

    2006-11-01

    The crystallization of magnesium ammonium phosphate (MAP) is one of the main processes for recovering P and N from wastewater. Chemically defined solution systems were designed; the saturation indices (SIs) of the solution systems with respect to MAP were derived by using a geochemical aqueous model Program, PHREEQC 2.11; the effects of the solution conditions were evaluated using thermodynamic theories. The concentrations of P and Mg in the tested solutions were 10-600 mg l(-1) and 24-720 mg l(-1), respectively, the molar ratios of N/P and pH values of the solutions varied in the ranges of 1-40 and 6.0-12.0, respectively. The temperature of all the tests was set at 25 degrees C. The test results show that the SI value of MAP is the logarithmic functions of the concentrations of P, ammonium-N and Mg, and increases with the increase of the concentration of each element. The SI value of MAP is a polynomial function of pH value of the solution, and the optimum pH value for the crystallization of MAP is 9.0 but increases slightly with the increase of the N/P. Moreover, the SI value of MAP is a power law function of the ionic strength of solutions but decreases with its increase. The adjustment of the Mg concentration and the control of solution pH are two effective methods for the control of the crystallization of MAP. The results obtained from the research can be used to guide the design and control of MAP crystallization process for the removal and recovery of P.

  20. The effect of calcium gluconate and other calcium supplements as a dietary calcium source on magnesium absorption in rats.

    PubMed

    Chonan, O; Takahashi, R; Yasui, H; Watanuki, M

    1997-01-01

    The effects of commercially available calcium supplements (calcium carbonate, calcium gluconate, oyster shell preparation and bovine bone preparation) and gluconic acid on the absorption of calcium and magnesium were evaluated for 30 days in male Wistar rats. There were no differences in the apparent absorption ratio of calcium among rats fed each calcium supplement; however, the rats fed the calcium gluconate diet had a higher apparent absorption ratio of magnesium than the rats fed the other calcium supplements. Dietary gluconic acid also more markedly stimulated magnesium absorption than the calcium carbonate diet, and the bone (femur and tibia) magnesium contents of rats fed the gluconic acid diet were significantly higher than those of the rats fed the calcium carbonate diet. Furthermore, the weight of cecal tissue and the concentrations of acetic acid and butyric acid in cecal digesta of rats fed the calcium gluconate diet or the gluconic acid diet were significantly increased. We speculate that the stimulation of magnesium absorption in rats fed the calcium gluconate diet is a result of the gluconic acid component and the effect of gluconic acid on magnesium absorption probably results from cecal hypertrophy, magnesium solubility in the large intestine and the effects of volatile fatty acids on magnesium absorption.

  1. Injectable bioactive calcium-magnesium phosphate cement for bone regeneration.

    PubMed

    Wu, Fan; Su, Jiacan; Wei, Jie; Guo, Han; Liu, Changsheng

    2008-12-01

    Novel injectable and degradable calcium-magnesium phosphate cement (CMPC) with rapid-setting characteristic was developed by the introduction of magnesium phosphate cement (MPC) into calcium phosphate cement (CPC). The calcium-magnesium phosphate cement prepared under the optimum P/L ratio exhibited good injectability and desired workability. It could set within 10 min at 37 degrees C in 100% relative humidity and the compressive strength could reach 47 MPa after setting for 48 h, indicating that the prepared cement has relatively high initial mechanical strength. The results of in vitro degradation experiments demonstrated the good degradability of the injectable CMPC, and its degradation rate occurred significantly faster than that of pure CPC in simulated body fluid (SBF) solution. It can be concluded that the novel injectable calcium-magnesium phosphate cement is highly promising for a wide variety of clinical applications, especially for the development of minimally invasive techniques.

  2. Relation of Urinary Calcium and Magnesium Excretion to Blood Pressure

    PubMed Central

    Kesteloot†, Hugo; Tzoulaki, Ioanna; Brown, Ian J.; Chan, Queenie; Wijeyesekera, Anisha; Ueshima, Hirotsugu; Zhao, Liancheng; Dyer, Alan R.; Unwin, Robert J.; Stamler, Jeremiah; Elliott, Paul

    2011-01-01

    Data indicate an inverse association between dietary calcium and magnesium intakes and blood pressure (BP); however, much less is known about associations between urinary calcium and magnesium excretion and BP in general populations. The authors assessed the relation of BP to 24-hour excretion of calcium and magnesium in 2 cross-sectional studies. The International Study of Macro- and Micro-Nutrients and Blood Pressure (INTERMAP) comprised 4,679 persons aged 40–59 years from 17 population samples in China, Japan, the United Kingdom, and the United States, and the International Cooperative Study on Salt, Other Factors, and Blood Pressure (INTERSALT) comprised 10,067 persons aged 20–59 years from 52 samples around the world. Timed 24-hour urine collections, BP measurements, and nutrient data from four 24-hour dietary recalls (INTERMAP) were collected. In multiple linear regression analyses, urinary calcium excretion was directly associated with BP. After adjustment for multiple confounders (including weight, height, alcohol intake, calcium intake, urinary sodium level, and urinary potassium intake), systolic BP was 1.9 mm Hg higher per each 4.1 mmol per 24 hours (2 standard deviations) of higher urinary calcium excretion (associations were smaller for diastolic BP) in INTERMAP. Qualitatively similar associations were observed in INTERSALT analyses. Associations between magnesium excretion and BP were small and nonsignificant for most of the models examined. The present data suggest that altered calcium homoeostasis, as exhibited by increased calcium excretion, is associated with higher BP levels. PMID:21624957

  3. Recycle use of magnesium ammonium phosphate to remove ammonium nitrogen from rare-earth wastewater.

    PubMed

    Huang, H M; Xiao, X M; Yan, B

    2009-01-01

    This paper presents a recycle MAP process (magnesium ammonium phosphate) to remove NH4-N from a typical rare-earth wastewater. The optimum conditions for the MAP precipitation and recycle use of the MAP with a newly-designed process were investigated in laboratory. The results showed that the pH value and dosages of P (phosphate) and Mg reagents have a significant influence on NH4-N removal, with a maximum removal efficiency of 99.4% at the conditions of pH=9 and Mg:N:P molar ratio=1.2:1:1.2. In the process of recycle use of the MAP, adding some HCl to dissolve MAP decomposition residues could effectively enhance NH4-N removal. The NH4-N removal efficiency reached 99.6% by adding an HCl amount of H+:OH- molar ratio=0.8 into the reused MAP decomposition residues, whereas the NH4-N removal efficiency without addition of HCl was only 96.4%. Moreover, the residual PO4-P from the end of reaction was recovered and the optimum recovery efficiency was achieved at a Mg:P molar ratio=6 and pH=10. Under these optimum conditions, the residual NH4-N and PO4-P concentrations in the treated wastewater, through 6 times of the recycling, were less than 15 mg/L and 1 mg/L, respectively. On the basis of this, an economic evaluation of the recycling MAP was made, and this recycle process could save 48.6% cost used in the chemicals for treating per cubic meter of the rare-earth wastewater, compared to the conventional MAP process.

  4. Automatic photometric titrations of calcium and magnesium in carbonate rocks

    USGS Publications Warehouse

    Shapiro, L.; Brannock, W.W.

    1955-01-01

    Rapid nonsubjective methods have been developed for the determination of calcium and magnesium in carbonate rocks. From a single solution of the sample, calcium is titrated directly, and magnesium is titrated after a rapid removal of R2O3 and precipitation of calcium as the tungstate. A concentrated and a dilute solution of disodium ethylenediamine tetraacetate are used as titrants. The concentrated solution is added almost to the end point, then the weak solution is added in an automatic titrator to determine the end point precisely.

  5. Regulation of renin release by calcium and ammonium ions in normal man.

    PubMed

    Kisch, E S; Dluhy, R G; Williams, G H

    1976-12-01

    The effect of infusing calcium chloride, magnesium sulfate, sodium lactate, and ammonium chloride on renin secretion was compared to equimolar infusions of hypotonic and normal saline in sodium-deplete normal subjects. The infusion of 75 mEq of ammonium chloride for 60 min in 6 normal, sodium-deplete subjects suppressed plasma renin activity significantly (P less than 0.01) from 4.4 +/- 0.8 to 2.1 +/- 0.2 ng/ml/h, an effect comparable to that produced by normal saline. Sodium lactate (75 mEq sodium/hr) also significantly reduced renin levels at 20-30 min (P less than 0.01). The infusion of 1/3 normal saline (25 mEq sodium/h for 2 h) produced a significant reduction (P less than 0.01) in plasma renin activity (from control levels of 5.2 +/- 0.8 to 3.1 +/- 0.6 ng/ml/h at 90 min). On the other hand, comparable infusions of 50 mEq of magnesium sulfate over 2 h had no effect on renin release (4.6 +/- 0.8 to 4.6 +/- 0.9 ng/ml/h at 2 h), while the infusion of calcium chloride produced an intermediate reduction (5.2 +/- 1.2 to 3.7 +/- 0.8 ng/ml/h at 2 h (P less than 0.05). The observed effects of the hydrogen and calcium ions on suppressing renin release may be secondary to their known actions on renal sodium excretion. Since the infusions of calcium and hydrogen ions both result in an increased delivery of sodium to the distal segment of the nephron, the results may reflect the regulation of renin by the macula densa, a sensitive intrarenal sensor of renal tubular sodium.

  6. Effects of calcium and magnesium on strontium distribution coefficients

    USGS Publications Warehouse

    Bunde, R.L.; Rosentreter, J.J.; Liszewski, M.J.; Hemming, C.H.; Welhan, J.

    1997-01-01

    The effects of calcium and magnesium on the distribution of strontium between a surficial sediment and simulated wastewater solutions were measured as part of an investigation to determine strontium transport properties of surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experimental techniques were used to determine strontium linear sorption isotherms and distribution coefficients (K(d)'s) using simulated wastewater solutions prepared at pH 8.0??0.1 with variable concentrations of calcium and magnesium. Strontium linear sorption isotherm K(d)'s ranged from 12??1 to 85??3 ml/g, increasing as the concentration of calcium and magnesium decreased. The concentration of sorbed strontium and the percentage of strontium retained by the sediment were correlated to aqueous concentrations of strontium, calcium, and magnesium. The effect of these cation concentrations on strontium sorption was quantified using multivariate least-squares regression techniques. Analysis of data from these experiments indicates that increased concentrations of calcium and magnesium in wastewater discharged to waste disposal ponds at the INEL increases the availability of strontium for transport beneath the ponds by decreasing strontium sorption to the surficial sediment.

  7. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. V. Spectra of protiated and partially deuterated magnesium ammonium arsenate hexahydrate (arsenstruvite)

    NASA Astrophysics Data System (ADS)

    Stefov, V.; Šoptrajanov, B.; Najdoski, M.; Engelen, B.; Lutz, H. D.

    2008-01-01

    The Fourier transform infrared and Raman spectra of magnesium ammonium arsenate hexahydrate, MgNH 4AsO 4 · 6H 2O (arsenstruvite) and of its deuterated analogues were recorded at room temperature (RT) and the boiling temperature of liquid nitrogen (LNT). Not surprisingly, the spectra show pronounced similarities with the corresponding spectra of the previously studied magnesium potassium phosphate hexahydrate and magnesium ammonium phosphate hexahydrate with the expected differences in the regions of the arsenate vibrations. The main contribution to the intensity of the complex feature in the X-H stretching region (X being O or N) comes from the stretching vibrations of the water molecules, whereas the vibrations of the ammonium ions are less important as long as the intensity is concerned. This is due not only to the fact that four crystallographically different water molecules of crystallization exist in the structure (as compared with a single type of ammonium ions) but also because the hydrogen bonds formed by the water molecules are much stronger than those in which the ammonium ions take part. Difference infrared spectra were obtained by subtracting the properly normalized spectrum of the protiated compound from the spectrum of a deuterated analogue with low deuterium content. As evidenced by the spectra of the partially deuterated analogues and by the difference spectra, vibrational interactions are present in the crystal. Probably the most dramatic is the result of such an interaction producing a deep Evans-type hole in the stretching region of the difference spectrum but additional cases of vibrational mixing are found in the low-frequency region.

  8. Physiology of Calcium, Phosphate, Magnesium and Vitamin D.

    PubMed

    Allgrove, Jeremy

    2015-01-01

    The physiology of calcium and the other minerals involved in its metabolism is complex and intimately linked to the physiology of bone. Five principal humoral factors are involved in maintaining plasma concentrations of calcium, magnesium and phosphate and in coordinating the balance between their content in bone. The transmembrane transport of these elements is dependent on a series of complex mechanisms that are partly controlled by these hormones. The plasma concentration of calcium is initially sensed by a calcium-sensing receptor, which then sets up a cascade of events that initially determines parathyroid hormone secretion and eventually results in a specific action within the target organs, mainly bone and kidney. This chapter describes the physiology of these humoral factors and relates them to the pathological processes that give rise to disorders of calcium, phosphate and magnesium metabolism as well as of bone metabolism. This chapter also details the stages in the calcium cascade, describes the effects of calcium on the various target organs, gives details of the processes by which phosphate and magnesium are controlled and summarises the metabolism of vitamin D. The pathology of disorders of bone and calcium metabolism is described in detail in the relevant chapters. © 2015 S. Karger AG, Basel.

  9. Renal control of calcium, phosphate, and magnesium homeostasis.

    PubMed

    Blaine, Judith; Chonchol, Michel; Levi, Moshe

    2015-07-07

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. Copyright © 2015 by the American Society of Nephrology.

  10. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis

    PubMed Central

    Chonchol, Michel; Levi, Moshe

    2015-01-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933

  11. Moving cationic minerals to edible tissues: potassium, magnesium, calcium.

    PubMed

    Karley, Alison J; White, Philip J

    2009-06-01

    The principal dietary source to humans of the essential cationic mineral elements potassium, magnesium and calcium is through edible plants. The accumulation of these elements in edible portions is the product of selective transport processes catalysing their short-distance and long-distance movement within a plant. In this article we review recent work describing the identification and characterisation of the molecular mechanisms catalysing the uptake and distribution of potassium, magnesium and calcium between organs, cell types and subcellular compartments. Although potassium and magnesium are redistributed effectively within the plant, calcium concentrations in phloem-fed tissues, such as fruits, seeds and tubers, are generally low. However, limitations to the redistribution of mineral elements within the plant, and its consequences for the biofortification of edible crops, can be overcome by appropriate mineral fertilisation and plant breeding strategies. The techniques of ionomics can help identify better genotypes.

  12. Abnormalities of serum calcium and magnesium

    USDA-ARS?s Scientific Manuscript database

    Neonatal hypocalcemia is defined as a total serum calcium concentration of <7 mg/dL or an ionized calcium concentration of <4 mg/dL (1mmol/L). In very low birth weight (VLBW) infants, ionized calcium values of 0.8 to 1 mmol/L are common and not usually associated with clinical symptoms. In larger in...

  13. Effects of dietary vitamin D on calcium and magnesium levels in mice with abnormal calcium metabolism

    SciTech Connect

    Spurlock, B.G.; West, W.L.; Knight, E.M. )

    1991-03-11

    In previous studies vitamin D has been used to induce cardiac calcium overload in laboratory animals. Interrelationships between calcium and magnesium metabolism are also documented. The authors have investigated the effect of varying vitamin D in the diet on calcium and magnesium levels in plasma, kidney and heart of DBA mice which exhibit genetic abnormalities in cardiac calcium metabolism. Weanling DBA mice were maintained for 28 days on an AIN-76 diet containing either 1,000 I.U. of vitamin D{sub 3} per kg of diet (control); 4,000 I.U. of vitamin D{sub 3} per kg of diet; or no vitamin D. When compared to controls, supplemented animals showed significantly higher plasma magnesium, kidney calcium and kidney magnesium levels; animals receiving the vitamin D-deficient diet exhibited increases in cardiac calcium levels. The authors results support previous findings that vitamin D deficiency increases cardiac calcium uptake and suggest a possible role of vitamin D in magnesium metabolism.

  14. Disorders of calcium, phosphorus, and magnesium metabolism in the neonate

    USDA-ARS?s Scientific Manuscript database

    Approximately 98% of the calcium, 80% of the phosphorus, and 65% of the magnesium in the body are in the skeleton. These elements, often referred to as the "bone minerals" are also constituents of the intracellular and extracellular spaces. The metabolism of these bone minerals and mineralization of...

  15. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. III. Spectra of protiated and partially deuterated magnesium ammonium phosphate hexahydrate

    NASA Astrophysics Data System (ADS)

    Stefov, V.; Šoptrajanov, B.; Kuzmanovski, I.; Lutz, H. D.; Engelen, B.

    2005-10-01

    Magnesium ammonium phosphate hexahydrate, MgNH 4PO 4·6H 2O (synthetic struvite) is a well-known biomineral, its major biological importance being related to its presence in human urinary sediments and vesical and renal calculi. The Fourier transform infrared and Raman spectra of magnesium ammonium phosphate hexahydrate were recorded and analyzed from room temperature (RT) down to the boiling temperature of liquid nitrogen (LNT). Also recorded and analyzed were the spectra of its partially deuterated analogues. The recorded spectra were compared with the corresponding ones of the previously studied potassium analogue. On the basis of such a comparison it was concluded that the main contribution to the intensity of the broad and structured feature in the O-H/N-H stretching region comes from the bands originating from the H-O-H stretches. The location of at least some of the stretching vibrations of the ammonium ions (albeit one of its deuterated forms) is possible in the spectrum of the sample containing ≈2% deuterium. The bands at 2326 and 2277 cm -1 (and probably, at least partially, that at 2393 cm -1) can be assigned with certainty to N-D stretching vibrations of isotopically isolated NH 3D + ions. The LNT Raman bands at 1702 and 1685 cm -1 are attributed to the ν2NH4+ mode and those at 1477 and 1442 cm -1 are observed are attributed to the ν4 mode. The relatively high frequencies (1302 and 1295 cm -1) of some of the bands due to the ND bending vibrations of isotopically isolated NH 3D + ions are in line with the existence of quite strong hydrogen bonds formed by ammonium ions. The librations of the deuterated forms of water molecules may be coupled with the components of the phosphate ν4 vibration.

  16. Microdetermination of calcium and magnesium in biological materials

    PubMed Central

    Bowden, C. H.; Patston, Valerie J.

    1963-01-01

    The use of the dye calcon (1-(2 hydroxy-1-naphthylazo)-2-naphthol-4 sulphonic acid) for the estimation of calcium using E.D.T.A. and a commercial photoelectric titrimeter is described. The interfering effects of magnesium and phosphate have been overcome. The method has been extended to estimations on biological materials. Results on 55 sera show that the E.D.T.A./calcon method gave slightly lower results (—0·15 mg./100 ml. ± 0·029) than the oxalate precipitation method. Magnesium may also be estimated by incorporating the use of Eriochrome black T. PMID:14014590

  17. Magnesium and calcium in carbonate bedrock and groundwaters, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Crowther, J.

    Groundwaters draining Kuala Lumpur Limestone, Kinta Limestone and limestones of the Setul Formation were monitored over a 1 yr period. The closeness of the mean Mg:Ca + Mg ratios of the groundwaters (12.8%) and bedrock (13.3%) indicates calcium and magnesium dissolution to be broadly congruent. Ratios < 2.5and> 35% are much less common in groundwaters than in bedrock because of: (i) heterogeneity in bedrock mineralogy within groundwater catchments; (ii) differential solubilities of calcium and magnesium in calcites, high magnesium calcites and dolomites; and (iii) preferential precipitation of calcium in secondary carbonate deposits. In groundwaters with variable discharges, Mg:Ca + Mg correlates negatively with discharge, as calcium deposition per unit volume of water diminishes at higher flows. Use of groundwater survey data to locate areas of dolomitization and make specific inferences about the mineralogy of limestone formations is discussed, and estimates of net chemical denudation rates (range, 56.6-70.9m 3/km 2/yr) are presented.

  18. Mechanical properties of magnesium ammonium phosphate cements and their zeolite composites

    SciTech Connect

    Wagh, A.S.; Singh, D.; Subhan, W.; Chawla, N.

    1993-04-01

    Phosphate-bonded cements have been proposed as candidates for solidification and stabilization of mixed wastes. Magnesium ammonium phosphate (MAP) has been investigated as a candidate material. Detailed physical and mechanical properties of MAP cement are reported. It is synthesized by the route of reaction of calcined MgO and ammonium phosphate solution. Samples are made by setting the cement at room temperature and slight pressure. The porosity is reduced to {approximately}11% by impregnation of ammonium phosphate solution. Detailed mechanical properties such as flexural strength, fracture toughness and compression strength are reported and fracture mechanical analyses supported with scanning electron microscopy are provided. Properties of composites of these cements with zeolites, which may be used for containment of radioactive as well as chemical waste are studied. We demonstrate that the strengths of these composites compare well with portland cement even after 50% loading of zeolites. Fracture mechanical implications of such loadings are given.

  19. Phosphate recovery through struvite precipitation by CO2 removal: effect of magnesium, phosphate and ammonium concentrations.

    PubMed

    Korchef, Atef; Saidou, Hassidou; Ben Amor, Mohamed

    2011-02-15

    In the present study, the precipitation of struvite (MgNH(4)PO(4)·6H(2)O) using the CO(2) degasification technique is investigated. The precipitation of struvite was done from supersaturated solutions in which precipitation was induced by the increase of the solution supersaturation concomitant with the removal of dissolved carbon dioxide. The effect of magnesium, phosphate and ammonium concentrations on the kinetics and the efficiency of struvite precipitation was measured monitoring the respective concentrations in solution. In all cases struvite precipitated exclusively and the solid was characterized by powder XRD and FTIR. The morphology of the precipitated crystals was examined by scanning electronic microscopy and it was found that it exhibited the typical prismatic pattern of the struvite crystals with sizes in the range between 100 and 300 μm. The increase of magnesium concentration in the supersaturated solutions, resulted for all phosphate concentration tested, in significantly higher phosphate removal efficiency. Moreover, it is interesting to note that in this case the adhesion of the suspended struvite crystals to the reactor walls was reduced suggesting changes in the particle characteristics. The increase of phosphate concentration in the supersaturated solutions, for the magnesium concentrations tested resulted to the reduction of struvite suppression which reached complete suppression of the precipitate formation. Excess of ammonium in solution was found favour struvite precipitation. Contrary to the results found with increasing the magnesium concentration in solution, higher ammonium concentrations resulted to higher adhesion of the precipitated crystallites to the reactor walls. The results of the present work showed that it is possible to recover phosphorus in the form of struvite from wastewater reducing water pollution and at the same time saving valuable resources.

  20. Quantitative changes of calcium, phosphorus, and magnesium in common iliac arteries with aging.

    PubMed

    Tohno, S; Tohno, Y; Moriwake, Y; Azuma, C; Ohnishi, Y; Minami, T

    2001-01-01

    To elucidate the mechanism of element accumulations in the arteries with aging, the authors investigated the mass ratios among calcium, phosphorus, and magnesium in the common iliac arteries by inductively coupled plasma-atomic emission spectrometry. The subjects consisted of 16 men and 8 women, ranging in age from 65 to 93 yr. It was found that there were extremely significant correlations between calcium and phosphorus contents, between calcium and magnesium contents, and between phosphorus and magnesium contents in the common iliac arteries. In regard to the mass ratio, although the mass ratio of calcium to phosphorus was almost constant, the mass ratios of magnesium to calcium and phosphorus were different at early and advanced stages of the accumulation of calcium and phosphorus. It was found that both the mass ratios of magnesium to calcium and phosphorus were higher at an early stage of the accumulation of calcium and phosphorus in the arteries than at an advanced stage of the accumulation.

  1. Supplementary calcium ameliorates ammonium toxicity by improving water status in agriculturally important species.

    PubMed

    Hernández-Gómez, Elvia; Valdez-Aguilar, Luis A; Cartmill, Donita L; Cartmill, Andrew D; Alia-Tajacal, Irán

    2015-09-02

    Fertilization of agricultural plants with ammonium [Formula: see text] is often desirable because it is less susceptible to leaching than nitrate [Formula: see text] reducing environmental pollution, risk to human health and economic loss. However, a number of important agricultural species exhibit a reduction in growth when fertilized with [Formula: see text] and increasing the tolerance to [Formula: see text] may be of importance for the establishment of sustainable agricultural systems. The present study explored the feasibility of using calcium (Ca) to increase the tolerance of bell pepper (Capsicum annuum) to [Formula: see text] fertilization. Although [Formula: see text] at proportions ≥25 % of total nitrogen (N) decreased leaf dry mass (DM), supplementary Ca ameliorated this decrease. Increasing [Formula: see text] resulted in decreased root hydraulic conductance (Lo) and root water content (RWC), suggesting that water uptake by roots was impaired. The [Formula: see text]-induced reductions in Lo and RWC were mitigated by supplementary Ca. Ammonium induced increased damage to the cell membranes through lipid peroxidation, causing increased electrolyte leakage; Ca did not reduce lipid peroxidation and resulted in increased electrolyte leakage, suggesting that the beneficial effects of Ca on the tolerance to [Formula: see text] may be more of a reflection on its effect on the water status of the plant. Bell pepper plants that received [Formula: see text] had a low concentration of [Formula: see text] in the roots but a high concentration in the leaves, probably due to the high nitrate reductase activity observed. Ammonium nutrition depressed the uptake of potassium, Ca and magnesium, while increasing that of phosphorus. The results obtained in the present study indicate that [Formula: see text] caused growth reduction, nutrient imbalance, membrane integrity impairment, increased activity of antioxidant enzymes and affected water relations. Supplementary Ca

  2. Supplementary calcium ameliorates ammonium toxicity by improving water status in agriculturally important species

    PubMed Central

    Hernández-Gómez, Elvia; Valdez-Aguilar, Luis A.; Cartmill, Donita L.; Cartmill, Andrew D.; Alia-Tajacal, Irán

    2015-01-01

    Fertilization of agricultural plants with ammonium (NH4+) is often desirable because it is less susceptible to leaching than nitrate (NO3−), reducing environmental pollution, risk to human health and economic loss. However, a number of important agricultural species exhibit a reduction in growth when fertilized with NH4+, and increasing the tolerance to NH4+ may be of importance for the establishment of sustainable agricultural systems. The present study explored the feasibility of using calcium (Ca) to increase the tolerance of bell pepper (Capsicum annuum) to NH4+ fertilization. Although NH4+ at proportions ≥25 % of total nitrogen (N) decreased leaf dry mass (DM), supplementary Ca ameliorated this decrease. Increasing NH4+ resulted in decreased root hydraulic conductance (Lo) and root water content (RWC), suggesting that water uptake by roots was impaired. The NH4+-induced reductions in Lo and RWC were mitigated by supplementary Ca. Ammonium induced increased damage to the cell membranes through lipid peroxidation, causing increased electrolyte leakage; Ca did not reduce lipid peroxidation and resulted in increased electrolyte leakage, suggesting that the beneficial effects of Ca on the tolerance to NH4+ may be more of a reflection on its effect on the water status of the plant. Bell pepper plants that received NO3−N had a low concentration of NH4+ in the roots but a high concentration in the leaves, probably due to the high nitrate reductase activity observed. Ammonium nutrition depressed the uptake of potassium, Ca and magnesium, while increasing that of phosphorus. The results obtained in the present study indicate that NH4+ caused growth reduction, nutrient imbalance, membrane integrity impairment, increased activity of antioxidant enzymes and affected water relations. Supplementary Ca partially restored growth of leaves by improving root Lo and water relations, and our results suggest that it may be used as a tool to increase the tolerance to NH4

  3. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites.

    PubMed

    Nabiyouni, Maryam; Ren, Yufu; Bhaduri, Sarit B

    2015-01-01

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg(+2) and Ca(+2) ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg(+2) and Ca(+2) ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg(+2), calcium magnesium phosphates (CMPs) which release Mg(+2) and Ca(+2), and hydroxyapatites (HAs) which release Ca(+2) were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg(+2) and Ca(+2) ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Dual-setting calcium phosphate cement modified with ammonium polyacrylate.

    PubMed

    dos Santos, Luís Alberto; Carrodeguas, Raúl García; Boschi, Anselmo Ortega; de Arruda, Antônio Celso

    2003-05-01

    alpha-Tricalcium phosphate bone cement, as formerly designed and developed by Driessens et al., consists of a powder composed by alpha-tricalcium phosphate (alpha-TCP) and hydroxyapatite (HA) seeds, and an aqueous solution of Na2HPO4 as mixing liquid. After mixing powder and liquid, alpha-TCP dissolves into the liquid and calcium deficient hydroxyapatite (CDHA), more insoluble than the former, precipitates as an entanglement of crystals, which causes the setting and hardening of the cement. alpha-TCP bone cement offers several advantages in comparison to calcium phosphate bioceramics and acrylic bone cements as bone graft and repairing material, like perfect adaptability to the defect size and shape, osteotransductibility, and absence of thermal effect during setting. The main handicap is its low mechanical strength. Therefore, approaching its mechanical strength to that of human bone could considerably extend its applications. In the present work, an in situ polymerization system based on acrylamide (AA) and ammonium polyacrylate (PA) as liquid reducer was added to alpha-TCP cement to increase its mechanical strength. The results showed that the addition of 20 wt% of acrylamide and 1 wt% AP to the liquid increased the compressive and tensile strength of alpha-TCP bone cement by 149 and 69% (55 and 21 MPa), respectively. The improvement in mechanical strength seems to be caused by a decrease of porosity and the reinforcing effect of a polyacrylamide network coexisting with the entanglement of CDHA crystals. The studied additives do not affect the nature of the final product of the setting reaction, CDHA, but promote the reduction of its crystal size.

  5. Magnesium balance in adolescent females consuming a low- or high-calcium diet.

    PubMed

    Andon, M B; Ilich, J Z; Tzagournis, M A; Matkovic, V

    1996-06-01

    Increasing emphasis is being placed on optimizing calcium intake during growth as a way to enhance peak bone mass. Although some studies in adults have shown that high calcium intake may negatively affect magnesium utilization, few data are available regarding the interaction of calcium and magnesium in healthy children. The purpose of our study was to measure the effect of calcium intake on magnesium balance in 26 adolescent girls (mean age 11.3 y) during a 14-d period. Subjects ate a controlled basal diet containing 667 mg Ca and 176 mg Mg. In addition to the basal diet, subjects were randomly assigned in a double-blind fashion to consume 1000 mg elemental Ca/d as calcium citrate malate or a placebo. Magnesium use did not differ between the low-calcium and high-calcium groups as measured by absorption (50% compared with 55%), urinary excretion (70 compared with 74 mg/d), and fecal excretion (88 compared with 79 mg/d). Accordingly, magnesium balance was not different in subjects consuming 667 or 1667 mg Ca/d and averaged 21 mg Mg/d for the whole study group. Magnesium balance was significantly correlated with magnesium intake (r = 0.511, P = 0.008) and magnesium absorption (r = 0.723, P < 0.001). Prediction intervals from the regression of magnesium balance on intake indicated that the current recommended dietary allowance of magnesium would result in magnesium balance > or = 8.5 mg/d in 95% of the girls. This value appears consistent with long-term accretion rates needed to account for the expansion of the total-body magnesium pool during growth. In summary, our observations support the adequacy of the current recommended dietary allowance for magnesium and indicate that alterations in magnesium utilization should not be anticipated in adolescent females consuming a high-calcium diet.

  6. Impact of magnesium:calcium ratio on calcification of the aortic wall.

    PubMed

    Villa-Bellosta, Ricardo

    2017-01-01

    An inverse relationship between serum magnesium concentration and vascular calcification has been reported following observational clinical studies. Moreover, several studies have been suggesting a protective effect of magnesium on the vascular calcification. However, the exact mechanism remains elusive, and investigators have speculated among a myriad of potential actions. The effect of magnesium on calcification of the aortic wall is yet to be investigated. In the present study, the effects of magnesium and calcium on the metabolism of extracellular PPi, the main endogenous inhibitor of vascular calcification, were investigated in the rat aorta. Calcium and magnesium have antagonist effects on PPi hydrolysis in the aortic wall. Km and Ki values for PPi hydrolysis in rat aortic rings were 1.1 mmol/L magnesium and 32 μmol/L calcium, respectively, but ATP hydrolysis was not affected with calcium. Calcium deposition in the rat aortic wall dramatically increased when the magnesium concentration was increased (ratio of Mg:Ca = 1:1; 1.5 mmol/L calcium and 1.5 mmol/L magnesium) respect to low magnesium concentration (ratio Mg:Ca = 1:3, 1.5 mmol/L calcium and 0.75 mmol/L magnesium). Data from observational clinical studies showing that the serum magnesium concentration is inversely correlated with vascular calcification could be reinterpreted as a compensatory regulatory mechanism that reduces both PPi hydrolysis and vascular calcification. The impact of magnesium in vascular calcification in humans could be studied in association with calcium levels, for example, as the magnesium:calcium ratio.

  7. Development of magnesium calcium phosphate biocement for bone regeneration.

    PubMed

    Jia, Junfeng; Zhou, Huanjun; Wei, Jie; Jiang, Xin; Hua, Hong; Chen, Fangping; Wei, Shicheng; Shin, Jung-Woog; Liu, Changsheng

    2010-08-06

    Magnesium calcium phosphate biocement (MCPB) with rapid-setting characteristics was fabricated by using the mixed powders of magnesium oxide (MgO) and calcium dihydrogen phosphate (Ca(H(2)PO(4))(2).H(2)O). The results revealed that the MCPB hardened after mixing the powders with water for about 7 min, and the compressive strength reached 43 MPa after setting for 1 h, indicating that the MCPB had a short setting time and high initial mechanical strength. After the acid-base reaction of MCPB containing MgO and Ca(H(2)PO(4))(2).H(2)O in a molar ratio of 2 : 1, the final hydrated products were Mg(3)(PO(4))(2) and Ca(3)(PO(4))(2). The MCPB was degradable in Tris-HCl solution and the degradation ratio was obviously higher than calcium phosphate biocement (CPB) because of its fast dissolution. The attachment and proliferation of the MG(63) cells on the MCPB were significantly enhanced in comparison with CPB, and the alkaline phosphatase activity of MG(63) cells on the MCPB was significantly higher than on the CPB at 7 and 14 days. The MG(63) cells with normal phenotype spread well on the MCPB surfaces, and were attached in close proximity to the substrate, as seen by scanning electron microscopy (SEM). The results demonstrated that the MCPB had a good ability to support cell attachment, proliferation and differentiation, and exhibited good cytocompatibility.

  8. Development of magnesium calcium phosphate biocement for bone regeneration

    PubMed Central

    Jia, Junfeng; Zhou, Huanjun; Wei, Jie; Jiang, Xin; Hua, Hong; Chen, Fangping; Wei, Shicheng; Shin, Jung-Woog; Liu, Changsheng

    2010-01-01

    Magnesium calcium phosphate biocement (MCPB) with rapid-setting characteristics was fabricated by using the mixed powders of magnesium oxide (MgO) and calcium dihydrogen phosphate (Ca(H2PO4)2·H2O). The results revealed that the MCPB hardened after mixing the powders with water for about 7 min, and the compressive strength reached 43 MPa after setting for 1 h, indicating that the MCPB had a short setting time and high initial mechanical strength. After the acid–base reaction of MCPB containing MgO and Ca(H2PO4)2·H2O in a molar ratio of 2 : 1, the final hydrated products were Mg3(PO4)2 and Ca3(PO4)2. The MCPB was degradable in Tris–HCl solution and the degradation ratio was obviously higher than calcium phosphate biocement (CPB) because of its fast dissolution. The attachment and proliferation of the MG63 cells on the MCPB were significantly enhanced in comparison with CPB, and the alkaline phosphatase activity of MG63 cells on the MCPB was significantly higher than on the CPB at 7 and 14 days. The MG63 cells with normal phenotype spread well on the MCPB surfaces, and were attached in close proximity to the substrate, as seen by scanning electron microscopy (SEM). The results demonstrated that the MCPB had a good ability to support cell attachment, proliferation and differentiation, and exhibited good cytocompatibility. PMID:20181560

  9. Dietary calcium and magnesium in the development of hypertension in the spontaneously hypertensive rat

    SciTech Connect

    Evans, G.; Weaver, C.M.; Harrington, D.D.; Babbs, C.F.

    1986-03-01

    The role of dietary calcium and magnesium in attenuation of hypertension was studied in 9 groups of 9 spontaneously hypertensive rats ages 8 to 31 weeks. The animals were fed AIN 76 semipurified diets altered in calcium (0.075%, 0.5%, and 2.5%) and magnesium (0.01%, 0.05%, and 0.75%) using a 3 x 3 factorial design. An inverse relationship between dietary calcium and systolic blood pressure as determined by the photoelectric tail cuff method became significant (p<0.05) after 12 weeks. Repeated measures analysis of variance indicated that dietary magnesium had no effect on systolic blood pressure; no calcium x magnesium interaction was observed. Total and ultrafiltrable serum calcium had a significant inverse correlation with blood pressure (-0.4642, p = .001 and -0.5568, p = .001 respectively). Total and ultrafiltrable serum magnesium reflected dietary magnesium concentration. Magnesium deficiency signs, deposition of calcium in kidneys, and histological lesions were observed in high calcium fed groups receiving normal and low levels of magnesium. Thus, a lowering of blood pressure by calcium supplementation without concomitant magnesium supplementation was accompanied by biochemical and histologic abnormalities in this animal model.

  10. Precipitation of calcium carbonate from a calcium acetate and ammonium carbamate batch system

    NASA Astrophysics Data System (ADS)

    Prah, J.; Maček, J.; Dražič, G.

    2011-06-01

    In this paper, we report a novel approach for preparing precipitated calcium carbonate using solutions of ammonium carbamate and calcium acetate as the sources of calcium and carbon dioxide, respectively. Two different concentrations of the starting solutions at three different temperatures (15, 25 and 50 °C) were used for the reaction. The influence of temperature and concentration on the polymorphism and the resulting morphology of calcium carbonate are discussed. The most important parameter for controlling a particular crystal structure and precipitate morphology were the concentrations of the initial solutions. When initial solutions with lower concentrations were used, the crystal form of the precipitate changed with time. Regardless the different polymorphism at different temperatures, after one day only the calcite form was detected in all samples, regardless of at which temperature the samples were prepared. At higher concentrations, pure vaterite or a mixture of vaterite and calcite were present at the beginning of the experiment. After one day, pure vaterite was found in the samples that were prepared at 15 and 25 °C. If calcium carbonate precipitated at 50 °C, the XRD results showed a mixture of calcite and vaterite regardless of the time at which the sample was taken. The morphology of calcium carbonate particles prepared at various conditions changed from calcite cubes to spherical particles of vaterite and aragonite needles. When a low starting concentration was used, the morphology at the initial stage was strongly affected by the temperature at which the experiments were conducted. However, after one day only, cubes were present in all cases at low initial concentrations. In contrast, at high concentrations spherical particles precipitated at all three temperatures at the beginning of the reaction. Spherical particles were made up from smaller particles. Over time, the size of the particles was diminishing due to their disintegration into

  11. 21 CFR 180.37 - Saccharin, ammonium saccharin, calcium saccharin, and sodium saccharin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED IN FOOD OR IN CONTACT WITH FOOD ON AN INTERIM BASIS PENDING ADDITIONAL STUDY Specific Requirements for Certain Food Additives § 180.37 Saccharin, ammonium saccharin, calcium saccharin, and sodium saccharin. The food additives saccharin, ammonium...

  12. Stability and broad-sense heritability of mineral content in potato: calcium and magnesium

    USDA-ARS?s Scientific Manuscript database

    Calcium and magnesium are two minerals with prominent roles in animal and plant metabolism. Advanced potato breeding lines were found to contain between 266 and 944 µg per gram fresh weight of calcium and between 705 1089 µg per gram fresh weight of magnesium. All trials had significant genotype b...

  13. Magnesium supplementation through seaweed calcium extract rather than synthetic magnesium oxide improves femur bone mineral density and strength in ovariectomized rats.

    PubMed

    Bae, Yun Jung; Bu, So Young; Kim, Jae Young; Yeon, Jee-Young; Sohn, Eun-Wha; Jang, Ki-Hyo; Lee, Jae-Cheol; Kim, Mi-Hyun

    2011-12-01

    Commercially available seaweed calcium extract can supply high amounts of calcium as well as significant amounts of magnesium and other microminerals. The purpose of this study was to investigate the degree to which the high levels of magnesium in seaweed calcium extract affects the calcium balance and the bone status in ovariectomized rats in comparison to rats supplemented with calcium carbonate and magnesium oxide. A total of 40 Sprague-Dawley female rats (7 weeks) were divided into four groups and bred for 12 weeks: sham-operated group (Sham), ovariectomized group (OVX), ovariectomized with inorganic calcium and magnesium supplementation group (OVX-Mg), and ovariectomized with seaweed calcium and magnesium supplementation group (OVX-SCa). All experimental diets contained 0.5% calcium. The magnesium content in the experimental diet was 0.05% of the diet in the Sham and OVX groups and 0.1% of the diet in the OVX-Mg and OVX-SCa groups. In the calcium balance study, the OVX-Mg and OVX-SCa groups were not significantly different in calcium absorption compared to the OVX group. However, the femoral bone mineral density and strength of the OVX-SCa group were higher than those of the OVX-Mg and OVX groups. Seaweed calcium with magnesium supplementation or magnesium supplementation alone did not affect the serum ALP and CTx levels in ovariectomized rats. In summary, consumption of seaweed calcium extract or inorganic calcium carbonate with magnesium oxide demonstrated the same degree of intestinal calcium absorption, but only the consumption of seaweed calcium extract resulted in increased femoral bone mineral density and strength in ovariectomized rats. Our results suggest that seaweed calcium extract is an effective calcium and magnesium source for improving bone health compared to synthetic calcium and magnesium supplementation.

  14. Stimulated and Unstimulated Saliva Levels of Calcium and Magnesium in Giardiasis.

    PubMed

    Shaddel, Minoo; Mirzaii-Dizgah, Iraj; Sharifi-Sarasiabi, Khojasteh; Kamali, Zahra; Dastgheib, Mani

    2017-01-22

    Giardia lamblia causes malabsorption. The aim of this study was to evaluate serum and saliva calcium and magnesium levels in patients with giardiasis. Thirty patients with giardiasis as a case and 30 person without giardiasis as a control group were enrolled. The stimulated and unstimulated whole saliva and serum calcium and magnesium levels were assayed by Arsenazo reaction and xylidyl blue complex methods, respectively. Mean calcium and magnesium level was low in serum and stimulated saliva of case group than that of controls. However, they were higher in the unstimulated saliva of the case group. It is suggested that patients suffering from giardiasis have low calcium and magnesium levels, and they lose the most of calcium and magnesium by saliva during unstimulated condition.

  15. Specific heparin preparations interfere with the simultaneous measurement of ionized magnesium and ionized calcium.

    PubMed

    Lyon, M E; Bremner, D; Laha, T; Malik, S; Henderson, P J; Kenny, M A

    1995-02-01

    To determine whether heparin anticoagulants used for analysis of whole blood ionized calcium would influence the measurement of ionized magnesium. The effects of zinc heparin, lithium heparin, and electrolyte-balanced heparin on the simultaneous measurement of ionized magnesium and ionized calcium in serum were determined using ion selective electrodes. Time-dependent biases in ionized magnesium and calcium concentrations were apparent with zinc heparin but not with lithium or electrolyte-balanced heparin. Ionized magnesium and calcium concentrations were more significantly influenced by volume-dependent changes in zinc heparin potency than with lithium or electrolyte-balanced heparin. Zinc heparin produces a significant positive bias in the simultaneous determination of ionized magnesium and ionized calcium concentrations.

  16. Calcium orthophosphate coatings on magnesium and its biodegradable alloys.

    PubMed

    Dorozhkin, Sergey V

    2014-07-01

    Biodegradable metals have been suggested as revolutionary biomaterials for bone-grafting therapies. Of these metals, magnesium (Mg) and its biodegradable alloys appear to be particularly attractive candidates due to their non-toxicity and as their mechanical properties match those of bones better than other metals do. Being light, biocompatible and biodegradable, Mg-based metallic implants have several advantages over other implantable metals currently in use, such as eliminating both the effects of stress shielding and the requirement of a second surgery for implant removal. Unfortunately, the fast degradation rates of Mg and its biodegradable alloys in the aggressive physiological environment impose limitations on their clinical applications. This necessitates development of implants with controlled degradation rates to match the kinetics of bone healing. Application of protective but biocompatible and biodegradable coatings able to delay the onset of Mg corrosion appears to be a reasonable solution. Since calcium orthophosphates are well tolerated by living organisms, they appear to be the excellent candidates for such coatings. Nevertheless, both the high chemical reactivity and the low melting point of Mg require specific parameters for successful deposition of calcium orthophosphate coatings. This review provides an overview of current coating techniques used for deposition of calcium orthophosphates on Mg and its biodegradable alloys. The literature analysis revealed that in all cases the calcium orthophosphate protective coatings both increased the corrosion resistance of Mg-based metallic biomaterials and improved their surface biocompatibility.

  17. Recent advances in research on magnesium alloys and magnesium-calcium phosphate composites as biodegradable implant materials.

    PubMed

    Kuśnierczyk, Katarzyna; Basista, Michał

    2016-07-01

    Magnesium alloys are modern biocompatible materials suitable for orthopaedic implants due to their biodegradability in biological environment. Many studies indicate that there is a high demand to design magnesium alloys with controllable in vivo corrosion rates and required mechanical properties. A solution to this challenge can be sought in the development of metal matrix composites based on magnesium alloys with addition of relevant alloying elements and bioceramic particles. In this study, the corrosion mechanisms along with corrosion protection methods in magnesium alloys are discussed. The recently developed magnesium alloys for biomedical applications are reviewed. Special attention is given to the newest research results in metal matrix composites composed of magnesium alloy matrix and calcium phosphates, especially hydroxyapatite or tricalcium phosphate, as the second phase with emphasis on the biodegradation behavior, microstructure and mechanical properties in view of potential application of these materials in bone implants.

  18. Partial nitrification treatment for high ammonium wastewater from magnesium ammonium phosphate process of methane fermentation digester liquor.

    PubMed

    Qiao, Sen; Kanda, Ryuichi; Nishiyama, Takashi; Fujii, Takao; Bhatti, Zafar; Furukawa, Kenji

    2010-02-01

    This study investigated partial nitrification treatment of methane fermentation digester liquor effluent from magnesium ammonium phosphate precipitation process in a swim-bed reactor. The reactor was operated at a temperature of 35 degrees C and pH between 7.5 and 7.8. Partial nitrification was achieved at the onset of the experiments even though conventional activated sludge was used as seed sludge. The maximum nitrite production rate was 1.0 kg NO(2)-N/m(3)/d at a nitrogen loading rate of 2.0 kg-N/m(3)/d. The average effluent NO(2)-N/NH(4)-N ratio and the effluent NO(3)-N concentration were 1.04+/-0.34 and 5.7 mg/l, respectively, during the stable experiment periods. After 150 days of operation, the sludge volume index value decreased to 15 ml/g and the mean particle size of suspended sludge increased by approximately 3 times from 80 to 260 mum. Comparison of mineral analysis between the seed sludge and the partial nitrification sludge demonstrated that the mineral content of the latter increased approximately three-fold in comparison to that of the former. High Ca concentration was considered to be closely related to dense floc formation and superior settleability of the sludge. Both DGGE and DNA clone analysis verified that there were significant microbiological differences between the samples taken at different time periods. Nitrosomonas was confirmed to be the predominant species after stable partial nitrification performance was obtained. The overall results of this study validated our previous results that swim-bed reactor technology could be successfully used as a pre-treatment technology for anammox treatment. Copyright (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Calcium and magnesium concentrations in mature human milk: influence of calcium intake, age and socioeconomic level.

    PubMed

    Vítolo, M R; Valente Soares, L M; Carvalho, E B; Cardoso, C B

    2004-03-01

    Concentrations of calcium and magnesium were measured in mature milk, collected between 30 and 90 days after childbirth, from a group of 90 mothers between 14 and 39 years of age, exclusively breastfeeding. The group was divided into three sub-groups: low socioeconomic-level adolescents (LSAd), low socioeconomic-level adults (LSA), and high socioeconomic-level adults (HSA). Each mother's nutritional status was determined using the body-mass index (BMI) and her eating habits, obtained on the basis of a 24-h dietary recall. Adolescent and adult mothers in the low socioeconomic-level group had lower average calcium intake (LSAd = 618.4 +/- 555.2 mg and LSA = 679.4 +/- 411.4 mg) than adult mothers in the higher socioeconomic-level group (853.6 +/- 415.5 mg). The average concentration of calcium in the adolescent mothers' milk (LSAd) was significantly lower (5.30 +/- 1.42 mmol Ca/L, P = 0.01) than that of the two adult groups (LSA = 5.82 +/- 1.55 mmol Ca/L and HSA = 6.40 mmol Ca/L). The average magnesium concentrations for all groups did not show significant differences (LSAd = 1.06 +/- 0.18, LSA = 1.16 +/- 0.23 and HSA = 1.11 +/- 0.23 mmol Mg/L, for P= 0.16). These results indicate that magnesium concentrations in mature human milk do not seem to depend on maternal nutritional status. The condition of adolescence, however, associated with lower calcium intake by the mother, resulted in lower calcium concentrations in the milk secreted when compared to that of adult mothers.

  20. Crystallization Kinetics of Calcium-magnesium Aluminosilicate (CMAS) Glass

    NASA Technical Reports Server (NTRS)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    The crystallization kinetics of a calcium-magnesium aluminosilicate (CMAS) glass with composition relevant for aerospace applications, like air-breathing engines, were evaluated using differential thermal analysis (DTA) in powder and bulk forms. Activation energy and frequency factor values for crystallization of the glass were evaluated. X-ray diffraction (XRD) was used to investigate the onset of crystallization and the phases that developed after heat treating bulk glass at temperatures ranging from 690 to 960 deg for various times. Samples annealed at temperatures below 900 deg remained amorphous, while specimens heat treated at and above 900 deg exhibited crystallinity originating at the surface. The crystalline phases were identified as wollastonite (CaSiO3) and aluminum diopside (Ca(Mg,Al) (Si,Al)2O6). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to examine the microstructure and chemical compositions of crystalline phases formed after heat treatment.

  1. Moderate alcohol consumption and urinary excretion of magnesium and calcium.

    PubMed

    Rylander, R; Mégevand, Y; Lasserre, B; Amstutz, W; Granbom, S

    2001-01-01

    The aim of this study was to evaluate the magnesium (Mg) status of male subjects consuming moderate amounts of alcohol (n = 14) in comparison with that of a group of non-consumers of alcohol (n = 10). Plasma ionized Mg levels and total erythrocyte Mg content were determined as well as the excretion of Mg in urine before and after an oral loading test. Intake of Mg via food and water was estimated using a one-week dietary records. The results showed a significantly higher, alcohol dose-related excretion of Mg and Ca (calcium) in the urine after the oral Mg load among consumers of alcohol. Although the study is based on a small number of subjects with differences in smoking habits, it is suggested that alcohol consumption even in moderate amounts could contribute to Mg deficiency.

  2. Anhydrobiosis in yeast: influence of calcium and magnesium ions on yeast resistance to dehydration-rehydration.

    PubMed

    Trofimova, Yuliya; Walker, Graeme; Rapoport, Alexander

    2010-07-01

    The influence of calcium and magnesium ions on resistance to dehydration in the yeast, Saccharomyces cerevisiae, was investigated. Magnesium ion availability directly influenced yeast cells' resistance to dehydration and, when additionally supplemented with calcium ions, this provided further significant increase of yeast resistance to dehydration. Gradual rehydration of dry yeast cells in water vapour indicated that both magnesium and calcium may be important for the stabilization of yeast cell membranes. In particular, calcium ions were shown for the first time to increase the resistance of yeast cells to dehydration in stress-sensitive cultures from exponential growth phases. It is concluded that magnesium and calcium ion supplementations in nutrient media may increase the dehydration stress tolerance of S. cerevisiae cells significantly, and this finding is important for the production of active dry yeast preparations for food and fermentation industries.

  3. Recovery of phosphorus and nitrogen from alkaline hydrolysis supernatant of excess sludge by magnesium ammonium phosphate.

    PubMed

    Bi, Wei; Li, Yiyong; Hu, Yongyou

    2014-08-01

    Magnesium ammonium phosphate (MAP) method was used to recover orthophosphate (PO₄(3-)-P) and ammonium nitrogen (NH4(+)-N) from the alkaline hydrolysis supernatant of excess sludge. To reduce alkali consumption and decrease the pH of the supernatant, two-stage alkaline hydrolysis process (TSAHP) was designed. The results showed that the release efficiencies of PO₄(3-)-P and NH₄(+)-N were 41.96% and 7.78%, respectively, and the pH of the supernatant was below 10.5 under the running conditions with initial pH of 13, volume ratio (sludge dosage/water dosage) of 1.75 in second-stage alkaline hydrolysis reactor, 20 g/L of sludge concentration in first-stage alkaline hydrolysis reactor. The order of parameters influencing MAP reaction was analyzed and the optimized conditions of MAP reaction were predicted through the response surface methodology. The recovery rates of PO₄(3-)-P and NH₄(+)-N were 46.88% and 16.54%, respectively under the optimized conditions of Mg/P of 1.8, pH 9.7 and reaction time of 15 min.

  4. Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides.

    PubMed

    Goi, Anna; Viisimaa, Marika; Trapido, Marina; Munter, Rein

    2011-02-01

    Calcium and magnesium peroxides were applied for the treatment of soil contaminated by polychlorinated biphenyls-containing electrical insulating oil (Aroclor 1016). The removal of PCB-containing electrical insulating oil was achieved with the addition of either calcium peroxide or magnesium peroxide alone and dependent on dosages of the chemical. A 21-d treatment of 60% watered soil with the moderate addition (chemical/oil weight ratio of 0.005/1) of either calcium peroxide or magnesium peroxide resulted in nearly complete (96 ± 2%) oil removal, unsubstantial increase in soil pH and almost no changes in oxygen consumption and dehydrogenase activity, making it suitable for the soil decontamination.

  5. Estimation of calcium and magnesium in serum and urine by atomic absorption spectrophotometry

    PubMed Central

    Thin, Christian G.; Thomson, Patricia A.

    1967-01-01

    A method has been described for the estimation of calcium and magnesium in serum and urine using atomic absorption spectrophotometry. The precision and accuracy of the techniques have been determined and were found to be acceptable. The range of values for calcium and magnesium in the sera of normal adults was found to be: serum calcium (corrected to a specific gravity of 1·026) 8·38-10·08 mg. per 100 ml.; serum magnesium 1·83-2·43 mg. per 100 ml. PMID:5602562

  6. Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration.

    PubMed

    Wei, Jie; Jia, Junfeng; Wu, Fan; Wei, Shicheng; Zhou, Huanjun; Zhang, Hongbo; Shin, Jung-Woog; Liu, Changsheng

    2010-02-01

    Hierarchically 3D microporous/macroporous magnesium-calcium phosphate (micro/ma-MCP) scaffolds containing magnesium ammonium phosphate hexahydrate [NH(4)MgPO(4).6H(2)O] and hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2)] were fabricated from cement utilizing leaching method in the presence of sodium chloride (NaCl) particles and NaCl saturated water solution. NaCl particles produced macroporosity, and NaCl solution acted as both cement liquid and porogens, inducing the formation of microporosity. The micro/ma-MCP scaffolds with porosities varied from 52 to 78% showed well interconnected and open macropores with the sizes of 400-500 microm, and degradation of the scaffolds was significantly enhanced in Tris-HCl solution compared with macroporous MCP (ma-MCP) and corresponding calcium phosphate cement (CPC) scaffolds. Cell attachment and proliferation of MG(63) on micro/ma-MCP were significantly better than ma-MCP and CPC scaffolds because of the presence of microporosity, which enhanced the surface area of the scaffolds. Moreover, the alkaline phosphatase (ALP) activity of the MG(63) cells on micro/ma-MCP was significantly higher than ma-MCP and CPC scaffolds at 7 days, and the MG(63) cells with normal phenotype spread well and formed confluent layers across the macroporous walls of the micro/ma-MCP scaffolds. Histological evaluation confirmed that the micro/ma-MCP scaffolds improved the efficiency of new bone regeneration, and exhibited excellent biocompatibility, biodegradability and faster and more effective osteogenesis in vivo.

  7. Calcium and calcium magnesium carbonate specimens submitted as urinary tract stones.

    PubMed

    Gault, M H; Chafe, L; Longerich, L; Mason, R A

    1993-02-01

    Of 8,129 specimens submitted as urinary stones from 6,095 patients, 67 from 15 patients were predominantly calcium carbonate or calcium magnesium carbonate (dolomite) by infrared analysis. Detailed study of 1 man and 4 women who submitted 3 or more such specimens showed that all were of aragonite calcium carbonate crystal form in 2 women and all calcite in the man. All 3 patients had a long history of nephrolithiasis preceding submission of calcium carbonate stones. There was frequent and often painful spontaneous passage of many small stones. Medullary sponge kidney was reported in 2 patients. Specimens submitted by the other 2 women included dolomite and quartz artifacts. Of the other 10 patients 4 had calcite and 1 had aragonite (possibly true stones). Five patients had artifacts with dolomite in 3 and mixed specimens in 2. True calcium carbonate kidney stones and calcium carbonate artifacts may be difficult to distinguish, and dolomite and quartz artifacts may require x-ray diffraction for clear-cut diagnosis.

  8. Efficacy of Mixtures of Magnesium, Citrate and Phytate as Calcium Oxalate Crystallization Inhibitors in Urine.

    PubMed

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2015-09-01

    The main aim of the current study was to evaluate the effectiveness of mixtures of magnesium, citrate and phytate as calcium oxalate crystallization inhibitors. A turbidimetric assay in synthetic urine was performed to obtain induction times for calcium oxalate crystallization in the absence and presence of different mixtures of inhibitors. The morphology of calcium oxalate crystals in the absence or presence of inhibitors and mixtures of the inhibitors was evaluated in 2 crystallization experiments at low and high calcium oxalate supersaturation. The crystals formed were examined using scanning electron microscopy. Examination of crystallization induction times revealed clear inhibitory effects of magnesium, citrate and phytate on calcium oxalate crystallization, supporting usefulness in the treatment and prevention of calcium oxalate nephrolithiasis. Significant synergistic effects between magnesium and phytate were observed. Scanning electron microscopy images revealed that phytate is a powerful crystal growth inhibitor of calcium oxalate, totally preventing the formation of trihydrate and monohydrate. In addition to crystallization inhibition capacity, citrate and magnesium avoided calcium oxalate crystallization by decreasing its supersaturation. The synergistic effect between magnesium and phytate on calcium oxalate crystallization suggests that a combination of these 2 compounds may be highly useful as antilithiasis therapy. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Preparation of calcium- and magnesium-fortified potato starches with altered pasting properties.

    PubMed

    Noda, Takahiro; Takigawa, Shigenobu; Matsuura-Endo, Chie; Ishiguro, Koji; Nagasawa, Koichi; Jinno, Masahiro

    2014-09-15

    Calcium- and magnesium-fortified potato starches were prepared by immersion in various concentrations of CaCl2 and MgCl2 aqueous solutions, respectively. The pasting properties, i.e., peak viscosity and breakdown, of all the starches obtained above were analyzed using a Rapid Visco Analyzer. Furthermore, the gelatinization properties and in vitro digestibility of the representative calcium- and magnesium-fortified starches were tested. The maximum calcium content of the fortified potato starches was as high as 686 ppm with the addition of a high-concentration CaCl2 solution, while the calcium content of the control potato starch was 99 ppm. The magnesium content increased from 89 to 421 ppm by treatment of the potato starch with an MgCl2 solution. Markedly lower values of peak viscosity and breakdown were observed in calcium- and magnesium-fortified potato starches than in the control potato starch. However, the gelatinization temperature and enthalpy as well as resistant starch content of calcium- and magnesium-fortified potato starches were similar to those of the control potato starch. It is concluded that potato starches with altered pasting properties can be easily manufactured by the use of solutions containing high levels of calcium and magnesium.

  10. Essential Nutrient Interactions: Does Low or Suboptimal Magnesium Status Interact with Vitamin D and/or Calcium Status?12

    PubMed Central

    Rosanoff, Andrea; Dai, Qi; Shapses, Sue A

    2016-01-01

    Although much is known about magnesium, its interactions with calcium and vitamin D are less well studied. Magnesium intake is low in populations who consume modern processed-food diets. Low magnesium intake is associated with chronic diseases of global concern [e.g., cardiovascular disease (CVD), type 2 diabetes, metabolic syndrome, and skeletal disorders], as is low vitamin D status. No simple, reliable biomarker for whole-body magnesium status is currently available, which makes clinical assessment and interpretation of human magnesium research difficult. Between 1977 and 2012, US calcium intakes increased at a rate 2–2.5 times that of magnesium intakes, resulting in a dietary calcium to magnesium intake ratio of >3.0. Calcium to magnesium ratios <1.7 and >2.8 can be detrimental, and optimal ratios may be ∼2.0. Background calcium to magnesium ratios can affect studies of either mineral alone. For example, US studies (background Ca:Mg >3.0) showed benefits of high dietary or supplemental magnesium for CVD, whereas similar Chinese studies (background Ca:Mg <1.7) showed increased risks of CVD. Oral vitamin D is widely recommended in US age-sex groups with low dietary magnesium. Magnesium is a cofactor for vitamin D biosynthesis, transport, and activation; and vitamin D and magnesium studies both showed associations with several of the same chronic diseases. Research on possible magnesium and vitamin D interactions in these human diseases is currently rare. Increasing calcium to magnesium intake ratios, coupled with calcium and vitamin D supplementation coincident with suboptimal magnesium intakes, may have unknown health implications. Interactions of low magnesium status with calcium and vitamin D, especially during supplementation, require further study. PMID:26773013

  11. Essential Nutrient Interactions: Does Low or Suboptimal Magnesium Status Interact with Vitamin D and/or Calcium Status?

    PubMed

    Rosanoff, Andrea; Dai, Qi; Shapses, Sue A

    2016-01-01

    Although much is known about magnesium, its interactions with calcium and vitamin D are less well studied. Magnesium intake is low in populations who consume modern processed-food diets. Low magnesium intake is associated with chronic diseases of global concern [e.g., cardiovascular disease (CVD), type 2 diabetes, metabolic syndrome, and skeletal disorders], as is low vitamin D status. No simple, reliable biomarker for whole-body magnesium status is currently available, which makes clinical assessment and interpretation of human magnesium research difficult. Between 1977 and 2012, US calcium intakes increased at a rate 2-2.5 times that of magnesium intakes, resulting in a dietary calcium to magnesium intake ratio of >3.0. Calcium to magnesium ratios <1.7 and >2.8 can be detrimental, and optimal ratios may be ∼2.0. Background calcium to magnesium ratios can affect studies of either mineral alone. For example, US studies (background Ca:Mg >3.0) showed benefits of high dietary or supplemental magnesium for CVD, whereas similar Chinese studies (background Ca:Mg <1.7) showed increased risks of CVD. Oral vitamin D is widely recommended in US age-sex groups with low dietary magnesium. Magnesium is a cofactor for vitamin D biosynthesis, transport, and activation; and vitamin D and magnesium studies both showed associations with several of the same chronic diseases. Research on possible magnesium and vitamin D interactions in these human diseases is currently rare. Increasing calcium to magnesium intake ratios, coupled with calcium and vitamin D supplementation coincident with suboptimal magnesium intakes, may have unknown health implications. Interactions of low magnesium status with calcium and vitamin D, especially during supplementation, require further study. © 2016 American Society for Nutrition.

  12. Calcium and magnesium levels in primary tooth enamel and genetic variation in enamel formation genes.

    PubMed

    Halusic, Alina M; Sepich, Victoria R; Shirley, Daniel C; Granjeiro, José M; Costa, Marcelo C; Küchler, Erika C; Vieira, Alexandre R

    2014-01-01

    Evidence exists that a genetic component in caries susceptibility is related to variation in enamel formation genes. The purpose of this study was to explore the trends of demineralization and remineralization of teeth from individuals whose genotypes for selected genes (ENAM, MMP20, TUFT, TFIP, and AMBN) are known. In this study, primary baseline teeth (20) were exposed to an artificial caries solution, followed by a remineralizing solution. Biopsies of each tooth category (baseline, carious, and fluoridated) were completed via an acid wash solution. Concentrations of magnesium and calcium were measured using an optical emission spectrometer instrument. Allele and genotype frequencies for calcium and magnesium levels were compared between each tooth category. To help interpret the results, we also calculated odds ratios. Calcium levels exceeded magnesium levels in each sample. In addition, mineral concentration varied among samples. Associations could be seen between genetic variation in ENAM (P=.0003 baseline values for calcium, P<.001 baseline values for magnesium, P<.04 artificial caries values for magnesium) and AMBN (P<.02 artificial caries values for calcium) with mineral concentration. Our results suggest that genetic variation of enamel formation genes may influence calcium and magnesium concentrations of teeth and impact the development of caries.

  13. Citrate, calcium, phosphate and magnesium in sows' milk at initiation of lactation.

    PubMed

    Kent, J C; Arthur, P G; Hartmann, P E

    1998-02-01

    Colostrum and milk were collected from ten sows at frequent intervals from before farrowing until 9 d after farrowing. Ionized calcium, pH, and total concentrations of citrate, calcium, phosphate and magnesium were measured in whole milk. The diffusible fraction of the mammary secretion was separated by ultrafiltration and was used for the measurement of diffusible citrate, calcium, phosphate and magnesium. The pH before farrowing was 5.7, and increased to 6.5 on day 4 as total calcium and phosphate also increased. Before farrowing, total and diffusible citrate were 7.8 and 7.3 mM respectively, while diffusible phosphate was 11.9 mM, and these concentrations all decreased during the study period. Total magnesium ranged between 3.3 and 4.1 mM, while diffusible magnesium ranged between 2.0 and 3.1 mM. While these concentrations and patterns of change of diffusible calcium and citrate are quite different from those of women's milk during the first week after birth, theoretical physicochemical relationships between diffusible calcium and citrate, and ionized calcium and HPO4(2-) were corroborated by these results. We conclude that diffusible citrate plays an important role in the determination of the concentration of diffusible calcium. However, while citrate may be the major determinant of the total concentration of calcium in women's milk, this is not the case in sows' milk.

  14. Calcium and magnesium status is not impaired in pregnant women.

    PubMed

    Rocha, Vivianne S; Lavanda, Ivana; Nakano, Eduardo Y; Ruano, Rodrigo; Zugaib, Marcelo; Colli, Célia

    2012-07-01

    Deficiencies in calcium (Ca) and magnesium (Mg) are associated with various complications during pregnancy. To test the hypothesis that the status of these minerals is inadequate in pregnancy, a cross-sectional study was conducted of the dietary intake and status of Ca and Mg in pregnant women (n = 50) attending a general public university hospital in Brazil. Dietary intake was assessed from 4-day food records; levels of plasma Mg, erythrocyte Mg, and urinary Ca and Mg excretion were determined by flame atomic absorption spectroscopy; and type I collagen C-telopeptides were evaluated by enzyme-linked immunosorbent assay. Probabilities of inadequate Ca and Mg intake were exhibited by 58 and 98% of the study population, respectively. The mean levels of urinary Ca and Mg excretion were 8.55 and 3.77 mmol/L, respectively. Plasma C-telopeptides, plasma Mg, and erythrocyte Mg were within normal levels. Multiple linear regression analysis revealed positive relationships among urinary Ca excretion, Ca intake (P = .002) and urinary Mg excretion (P < .001) and between erythrocyte Mg and Mg intake (P = .023). It is concluded that the Ca and Mg status of participants was adequate even though the intake of Ca and Mg was lower than the recommended level.

  15. Magnesium-Calcite Crystal Formation Mediated by the Thermophilic Bacterium Geobacillus thermoglucosidasius Requires Calcium and Endospores.

    PubMed

    Murai, Rie; Yoshida, Naoto

    2016-11-01

    Fresh Geobacillus thermoglucosidasius cells grown on soybean-casein digest nutrient agar were inoculated as a parent colony 1 cm in diameter on the surface of an agar gel containing acetate and calcium ions (calcite-promoting hydrogel) and incubated at 60 °C for 4 days, after which magnesium-calcite single crystals of 50-130 µm in size formed within the parent colony. Addition of EDTA, polyacrylic acid or N,N-dicyclohexylcarbodiimide to the calcite-forming hydrogel inhibited the parent colony from forming magnesium-calcite crystals. Inoculation of G. thermoglucosidasius on calcite-forming hydrogel containing 5 µM cadmium and 20 µM zinc resulted in a decrease in the sporulation rate from 55 to 7-8 %. Magnesium-calcite synthesis decreased relative to the sporulation rate. G. thermoglucosidasius exhibited higher adsorption/absorbance of calcium than other Geobacillus sp. that do not mediate calcite formation and higher levels of magnesium accumulation. Calcium ions contained in the calcite-promoting hydrogel and magnesium ions concentrated in G. thermoglucosidasius cells serve as the elements for magnesium-calcite synthesis. The observed decreases in sporulation rate and magnesium-calcite formation support the hypothesis that endospores act as nuclei for the synthesis of magnesium-calcite single crystals.

  16. Deficiency of calcium and magnesium induces apoptosis via scavenger receptor BI

    PubMed Central

    Feng, Hong; Guo, Ling; Gao, Haiqing; Li, Xiang-An

    2011-01-01

    Aims Cell undergoes apoptosis in stressed status such as intracellular calcium overload or extracellular calcium/magnesium deficiency. The mechanisms of how deficiency of the divalent metal ions induces apoptosis remain to be defined. Scavenger receptor BI (SRBI) is a high density lipoprotein (HDL) receptor. Recent studies demonstrated that SR-BI is a stress response molecule which induces apoptosis upon serum deprivation. In this study, we assessed our hypothesis that the deficiency of calcium/magnesium induces apoptosis via SR-BI apoptotic pathway. Main methods We employed CHO cell lines expressing vector and SR-BI to test the effect of SR-BI on apoptosis induced by deficiency of calcium, magnesium and zinc in culture medium. The regain of different metal ions in deficient medium was also performed, respectively. Cell death was detected by morphological changes and quantified by LDH cytotoxicity assay. Apoptosis was also assessed by DNA ladder assay and DNA condensation assay. The SR-BIC323G mutant cells which lack the apoptotic activity of SR-BI were employed to verify the SR-BI-dependent effect on calcium/magnesium induced apoptosis. Key findings The deficiency of calcium/magnesium induced cell apoptosis CHO-SR-BI cells, but not in CHO-vector cells. Moreover, no apoptotic cell death was observed in SR-BIC323G mutant cells, indicating that the deficiency of divalent metal ions induces apoptosis in a SR-BI-dependent manner. Furthermore, the restoration of calcium or magnesium, but not zinc, protected CHO-SR-BI cells from apoptotic cell death, in a dose-dependent fashion. Significance These findings extend our understanding about how calcium and magnesium deficiency induces apoptosis. PMID:21291896

  17. Influence of magnesium on the absorption and excretion of calcium and oxalate ions.

    PubMed

    Berg, W; Bothor, C; Pirlich, W; Janitzky, V

    1986-01-01

    In two test series additional oxalic acid excretion in urine was induced in healthy test persons by administering a spinach diet. This additional excretion could be markedly reduced by magnesium administration. Calcium and citrate excretions are largely unaffected by magnesium administration. Magnesium excretions, however, are clearly increased. The calcium oxalate crystallization rates in the 5-or 7-hour urines reveal a behavior parallel to that of the oxalic acid excretion profile. In the control urines, the crystal picture is characterized by numerous medium-sized whewellite crystals. In contrast, in the test series weddellite crystals are reduced in size and frequency after magnesium administration. New aspects of magnesium effects must be discussed; above all the possible absorption changes resulting from gastrointestinal diseases.

  18. Evaluation and thermodynamic calculation of ureolytic magnesium ammonium phosphate precipitation from UASB effluent at pilot scale.

    PubMed

    Desmidt, E; Ghyselbrecht, K; Monballiu, A; Verstraete, W; Meesschaert, B D

    2012-01-01

    The removal of phosphate as magnesium ammonium phosphate (MAP, struvite) has gained a lot of attention. A novel approach using ureolytic MAP crystallization (pH increase by means of bacterial ureases) has been tested on the anaerobic effluent of a potato processing company in a pilot plant and compared with NuReSys(®) technology (pH increase by means of NaOH). The pilot plant showed a high phosphate removal efficiency of 83 ± 7%, resulting in a final effluent concentration of 13 ± 7 mg · L(-1) PO(4)-P. Calculating the evolution of the saturation index (SI) as a function of the remaining concentrations of Mg(2+), PO(4)-P and NH(4)(+) during precipitation in a batch reactor, resulted in a good estimation of the effluent PO(4)-P concentration of the pilot plant, operating under continuous mode. X-ray diffraction (XRD) analyses confirmed the presence of struvite in the small single crystals observed during experiments. The operational cost for the ureolytic MAP crystallization treating high phosphate concentrations (e.g. 100 mg · L(-1) PO(4)-P) was calculated as 3.9 € kg(-1) P(removed). This work shows that the ureolytic MAP crystallization, in combination with an autotrophic nitrogen removal process, is competitive with the NuReSys(®) technology in terms of operational cost and removal efficiency but further research is necessary to obtain larger crystals.

  19. Removal of ammonium from rare-earth wastewater using natural brucite as a magnesium source of struvite precipitation.

    PubMed

    Huang, H M; Xiao, X M; Yang, L P; Yan, B

    2011-01-01

    This paper presents a study regarding ammonium removal from rare-earth wastewater by struvite precipitation with natural brucite mineral as a source of magnesium. Experimental results indicated that a pH ranging from 8.5 to 9.5 was the optimum for the removal of ammonium using the soluble form of brucite as a magnesium source. Additionally, when solid brucite was used as a magnesium source as well as an alkali reagent, the initial ammonium concentration of 4,535 mg/L decreased to 239-317 mg/L after an reaction time of 12 h in wastewater treated with the S/L (solid brucite/liquid wastewater) ratios ranging from 31.2 to 63.2 g/L. Furthermore, as some non-reacted brucite still remained in the precipitates obtained at the end of reaction, the precipitates were subjected to reuse. The reuse results demonstrated that the reuse of the precipitates obtained with 63.2 g/L was feasible, and almost half of the brucite dose could be saved.

  20. A facile magnesium-containing calcium carbonate biomaterial as potential bone graft.

    PubMed

    He, Fupo; Zhang, Jing; Tian, Xiumei; Wu, Shanghua; Chen, Xiaoming

    2015-12-01

    The calcium carbonate is the main composition of coral which has been widely used as bone graft in clinic. Herein, we readily prepared novel magnesium-containing calcium carbonate biomaterials (MCCs) under the low-temperature conditions based on the dissolution-recrystallization reaction between unstable amorphous calcium carbonate (ACC) and metastable vaterite-type calcium carbonate with water involved. The content of magnesium in MCCs was tailored by adjusting the proportion of ACC starting material that was prepared using magnesium as stabilizer. The phase composition of MCCs with various amounts of magnesium was composed of one, two or three kinds of calcium carbonates (calcite, aragonite, and/or magnesian calcite). The different MCCs differed in topography. The in vitro degradation of MCCs accelerated with increasing amount of introduced magnesium. The MCCs with a certain amount of magnesium not only acquired higher compressive strength, but also promoted in vitro cell proliferation and osteogenic differentiation. Taken together, the facile MCCs shed light on their potential as bone graft. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Bioactive Peptides Isolated from Casein Phosphopeptides Enhance Calcium and Magnesium Uptake in Caco-2 Cell Monolayers.

    PubMed

    Cao, Yong; Miao, Jianyin; Liu, Guo; Luo, Zhen; Xia, Zumeng; Liu, Fei; Yao, Mingfei; Cao, Xiaoqiong; Sun, Shengwei; Lin, Yanyin; Lan, Yaqi; Xiao, Hang

    2017-03-22

    The ability of casein phosphopeptides (CPPs) to bind and transport minerals has been previously studied. However, the single bioactive peptides responsible for the effects of CPPs have not been identified. This study was to purify calcium-binding peptides from CPPs and to determine their effects on calcium and magnesium uptake by Caco-2 cell monolayers. Five monomer peptides designated P1 to P5 were isolated and the amino acid sequences were determined using LC-MS/MS. Compared with the CPP-free control, all five monomeric peptides exhibited significant enhancing effects on the uptake of calcium and magnesium (P < 0.05). Interestingly, when calcium and magnesium were presented simultaneously with P5, magnesium was taken up with priority over calcium in the Caco-2 cell monolayers. For example, at 180 min, the amount of transferred magnesium and calcium was 78.4 ± 0.95 μg/well and 2.56 ± 0.64 μg/well, respectively, showing a more than 30-fold difference in the amount of transport caused by P5. These results provide novel insight into the mineral transport activity of phosphopeptides obtained from casein.

  2. Ammonium-induced calcium mobilization in 1321N1 astrocytoma cells

    SciTech Connect

    Hillmann, Petra; Koese, Meryem; Soehl, Kristina; Mueller, Christa E.

    2008-02-15

    High blood levels of ammonium/ammonia (NH{sub 4}{sup +}/NH{sub 3}) are associated with severe neurotoxicity as observed in hepatic encephalopathy (HE). Astrocytes are the main targets of ammonium toxicity, while neuronal cells are less vulnerable. In the present study, an astrocytoma cell line 1321N1 and a neuroblastoma glioma hybrid cell line NG108-15 were used as model systems for astrocytes and neuronal cells, respectively. Ammonium salts evoked a transient increase in intracellular calcium concentrations ([Ca{sup 2+}]{sub i}) in astrocytoma (EC{sub 50} = 6.38 mM), but not in NG108-15 cells. The ammonium-induced increase in [Ca{sup 2+}]{sub i} was due to an intracellular effect of NH{sub 4}{sup +}/NH{sub 3} and was independent of extracellular calcium. Acetate completely inhibited the ammonium effect. Ammonium potently reduced calcium signaling by G{sub q} protein-coupled receptors (H{sub 1} and M3) expressed on the cells. Ammonium (5 mM) also significantly inhibited the proliferation of 1321N1 astrocytoma cells. While mRNA for the mammalian ammonium transporters RhBG and RhCG could not be detected in 1321N1 astrocytoma cells, both transporters were expressed in NG108-15 cells. RhBG and RhBC in brain may promote the excretion of NH{sub 3}/NH{sub 4}{sup +} from neuronal cells. Cellular uptake of NH{sub 4}{sup +}/NH{sub 3} was mainly by passive diffusion of NH{sub 3}. Human 1321N1 astrocytoma cells appear to be an excellent, easily accessible human model for studying HE, which can substitute animal studies, while NG108-15 cells may be useful for investigating the role of the recently discovered Rhesus family type ammonium transporters in neuronal cells. Our findings may contribute to the understanding of pathologic ammonium effects in different brain cells, and to the treatment of hyperammonemia.

  3. Deep tendon reflexes, magnesium, and calcium: assessments and implications.

    PubMed

    Nick, Jan M

    2004-01-01

    The perinatal nurse, in collaboration with physicians, can use deep tendon reflexes as a powerful tool in determining the need to start, adjust, or stop magnesium infusion. Toxicity can be detected using physical manifestations as a guide. Clinical signs may be a better indicator than serum levels of tissue levels of magnesium. Whether magnesium is given to prevent seizures or for tocolysis, patients in both situations are at risk for developing toxicity and must be assessed regularly to ensure patient safety.

  4. Daily intake of magnesium and calcium from drinking water in relation to myocardial infarction.

    PubMed

    Rosenlund, Mats; Berglind, Niklas; Hallqvist, Johan; Bellander, Tom; Bluhm, Gösta

    2005-07-01

    A decreased risk for cardiovascular disease has been related to the hardness of drinking water, particularly high levels of magnesium. However, the evidence is still uncertain, especially in relation to individual intake from water. We used data from the Stockholm Heart Epidemiology Program, a population-based case-control study conducted during 1992-1994, to study the association between myocardial infarction and the daily intake of drinking water magnesium and calcium. Our analyses are based on 497 cases age 45-70 years, and 677 controls matched on age, sex, and hospital catchment area. Individual data on magnesium, calcium, and hardness of the domestic drinking water were assessed from waterwork registers or analyses of well water. After adjustment for the matching variables and smoking, hypertension, socioeconomic status, job strain, body mass index, diabetes, and physical inactivity, the odds ratio for myocardial infarction was 1.09 (95% confidence interval = 0.81-1.46) associated with a tap water hardness above the median (>4.4 German hardness degrees) and 0.88 (0.67-1.15) associated with a water magnesium intake above the median (>1.86 mg/d). There was no apparent sign of any exposure-response pattern related to water intake of magnesium or calcium. This study does not support previous reports of a protective effect on myocardial infarction associated with consumption of drinking water with higher levels of hardness, magnesium, or calcium.

  5. Calcium and magnesium levels during automated plateletpheresis in normal donors.

    PubMed

    Das, S S; Chaudhary, R; Khetan, D; Shukla, J S; Agarwal, P; Mishra, R B

    2005-06-01

    It is well known that citrate induces ionized hypocalcaemia by the chelating effect during plateletpheresis. However, the kinetics of serum magnesium (Mg) ions has not been well documented. We, therefore, evaluated biochemical changes in healthy donors during plateletpheresis procedure. Ten healthy donors underwent plateletpheresis on continuous cell separator (CS3000, Baxter, Round Lake, IL, USA) and 10 on intermittent flow cell separator (MCS 3p, Hemonetics, Braintree, MA, USA). Serum levels of total and ionized calcium (tCa and iCa, respectively) and Mg (tMg and iMg, respectively) were measured before, during and after the procedures. Although, the fall in tCa (from 2.62 +/- 0.12 to 2.36 +/- 0.12 mmol L(-1)) and tMg (from 0.89 +/- 0.01 to 0.79 +/- 0.01 mmol L(-1)) was modest and not significant; drop in iCa (from 1.33 +/- 0.1 to 0.84 +/- 0.1 mmol L(-1)) and iMg (from 0.53 +/- 0.01 to 0.35 +/- 0.1 mmol L(-1)) was statistically significant (P < 0.001). There were no significant differences observed between the CS3000 and MCS 3p cell separators regarding the fall in Ca and Mg. None of the donors experienced any adverse reactions during the procedures. In the study, an acute ionized hypocalcaemia and hypomagnesaemia have been observed after the plateletpheresis; therefore, measurement of both the ions may be monitored. However, there is no justification for prophylactic supplementation of either of these elements.

  6. Thermodynamic properties of calcium-magnesium alloys determined by emf measurements

    SciTech Connect

    Newhouse, JM; Poizeau, S; Kim, H; Spatocco, BL; Sadoway, DR

    2013-02-28

    The thermodynamic properties of calcium-magnesium alloys were determined by electromotive force (emf) measurements using a Ca(in Bi)vertical bar CaF2 vertical bar Ca(in Mg) cell over the temperature range 713-1048 K. The activity and partial molar Gibbs free energy of calcium in magnesium were calculated for nine Ca-Mg alloys, calcium mole fractions varying from x(ca) = 0.01 to 0.80. Thermodynamic properties of magnesium in calcium and the molar Gibbs free energy of mixing were estimated using the Gibbs-Duhem relationship. In the all-liquid region at 1010 K, the activity of calcium in magnesium was found to range between 8.8 x 10(-4) and 0.94 versus pure calcium. The molecular interaction volume model (MIVM) was used to model the activity coefficient of Ca and Mg in Ca-Mg liquid alloys. Based on this work, Ca-Mg alloys show promise as the negative electrode of a liquid metal battery in which calcium is the itinerant species: alloying with Mg results in both a decrease in operating temperature and suppression of Ca metal solubility in the molten salt electrolyte. (C) 2012 Elsevier Ltd. All rights reserved.

  7. Calcium and magnesium in drinking water and risk of death from acute myocardial infarction in Taiwan.

    PubMed

    Yang, Chun-Yuh; Chang, Chih-Ching; Tsai, Shang-Shyue; Chiu, Hui-Fen

    2006-07-01

    Many studies have examined the association between cardiovascular disease mortality and water hardness. However, the results have not been consistent. This report examines whether calcium and magnesium in drinking water are protective against acute myocardial infarction (AMI). All eligible AMI deaths (10,094 cases) of Taiwan residents from 1994 to 2003 were compared with deaths from other causes (10,094 controls), and the levels of calcium and magnesium in drinking water of these residents were determined. Data on calcium and magnesium levels in drinking water throughout Taiwan have been obtained from the Taiwan Water Supply Corporation. The control group consisted of people who died from other causes and the controls were pair matched to the cases by sex, year of birth, and year of death. The adjusted odd ratios (95% confidence interval) were 0.79 (0.73-0.86) for the group with water calcium levels between 25.1 and 42.4 mg/L and 0.71 (0.65-0.77) for the group with calcium levels of 42.6 mg/L or more. After adjustment for calcium levels in drinking water, there was no difference between the groups with different levels of magnesium. The results of the present study show that there is a significant protective effect of calcium intake from drinking water on the risk of death from AMI.

  8. In situ synthesis of magnesium-substituted biphasic calcium phosphate and in vitro biodegradation

    SciTech Connect

    Kim, Tae-Wan; Lee, Hyeong-Shin; Kim, Dong-Hyun; Jin, Hyeong-Ho; Hwang, Kyu-Hong; Lee, Jong Kook; Park, Hong-Chae; Yoon, Seog-Young

    2012-09-15

    Highlights: ► Mg–BCP were successfully prepared through in situ aqueous co-precipitation method. ► The amount of β-TCP phase was changed with the magnesium substitution level. ► The substitution of magnesium led to a decrease in the unit cell volume. ► Mg–BCP could be able to develop a new apatite phase on the surface faster than BCP. -- Abstract: In situ preparation of magnesium (Mg) substituted biphasic calcium phosphate (BCP) of hydroxyapatite (HAp)/β-tricalcium phosphate (β-TCP) were carried out through aqueous co-precipitation method. The concentrations of added magnesium were varied with the calcium in order to obtain constant (Ca + Mg)/P ratios of 1.602. X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy were used to characterize the structure of synthesized magnesium substituted BCP powders. The results have shown that substitution of magnesium in the calcium deficient apatites revealed the formation of biphasic mixtures of different HAp/β-TCP ratios after heating at 1000 °C. The ratios of the formation of phase mixtures were dependent on the content of magnesium. After immersing in Hanks’ balanced salt solution (HBSS) for 1 week, 1 wt% magnesium substituted BCP powders were degraded and precipitation started to be formed with small granules consisting of number of flake-like crystal onto the surface of synthesized powders. On the other hand, in the case of pure BCP powders, the formation of new precipitates was detected after immersion in HBSS for 2 weeks. On the basis of these results, magnesium substituted BCP could be able to develop a new apatite phase on the surface in contact with physiological fluids faster than BCP does. In addition, the retention time to produce the new apatite phase in implantation operation for the BCP powder could be controlled by the amount of magnesium substitution.

  9. THE EFFECT OF EXTERNAL CALCIUM AND MAGNESIUM DEPLETION ON SINGLE NERVE FIBERS

    PubMed Central

    Adelman, William J.

    1956-01-01

    The three types of motor axons found in the walking legs of the lobster were shown to respond differently upon exposure to calcium-free solutions. While all fiber types became more excitable initially in calcium-free solutions, only openers became spontaneously active. Fast closers showed the least reduction in rheobase value upon calcium depletion. After 5 minutes in calcium-free solution all fibers showed a rise in rheobase value, and more rapid accommodation. A natural period for spontaneous firing of opener fibers was disclosed. Following such a spontaneous discharge, low amplitude rhythmical potentials were recorded. These small potentials had the same period as the spontaneous spikes. The role of calcium ion in the excitable process was discussed. Magnesium ion was shown to act synergistically with calcium ion. All fiber types became spontaneously active in solutions deprived of both calcium and magnesium. Subsequent hypoexcitability was more pronounced in calcium- and magnesium-depleted solutions than it was in only calcium-depleted solutions. PMID:13319660

  10. Calcium, magnesium, and nitrate in drinking water and gastric cancer mortality.

    PubMed

    Yang, C Y; Cheng, M F; Tsai, S S; Hsieh, Y L

    1998-02-01

    The possible association between the risk of gastric cancer and the levels of calcium, magnesium, and nitrate in drinking water from municipal supplies was investigated in a matched case-control study in Taiwan. Records of gastric cancer deaths among eligible residents in Taiwan from 1987 through 1991 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by sex, year-of-birth, and year-of-death. Each matched control was selected randomly from the set of possible controls for each case. Data on calcium, magnesium, and nitrate levels in drinking water throughout Taiwan were obtained from the Taiwan Water Supply Corporation. The municipality of residence of the cases and controls was assumed to be the source of the subject's calcium, magnesium, and nitrate exposure via drinking water. The subjects were divided into tertiles according to the levels of calcium, magnesium, and nitrate in their drinking water. The results of the present study show that there is a significant positive association between drinking water nitrate exposure and gastric cancer mortality. The present study also suggests that there was a significant protective effect of calcium intake from drinking water on the risk of gastric cancer. Magnesium also exerts a protective effect against gastric cancer, but only for the group with the highest levels.

  11. Simultaneous determination of calcium and magnesium by derivative spectrophotometry in pharmaceutical products

    NASA Astrophysics Data System (ADS)

    Benamor, M.; Aguerssif, N.

    2008-02-01

    First- and second-derivative spectrophotometric methods for the simultaneous determination of calcium and magnesium in their mixtures are described. The methods are based on the colored complexes formed by calcium and magnesium with bromopyrogallol red in presence of Tween 80 as a surfactant. The zero-crossing method has been utilized to measure the first- and second-derivative value of the derivative spectrum. Calcium (0.8-4.8 μg ml -1) is determined in the presence of magnesium (0.5-3.5 μg ml -1) at the pH 10 and vice versa at zero-crossing wavelengths of 544.5 and 570 nm in the first-derivative procedure and 574 and 531 nm in the second-derivative procedure, respectively. The detection limits achieved were 0.0575 μg ml -1 of calcium and 0.03 μg ml -1 of magnesium. The relative standard deviations were in all instances less than 2%. The proposed method has been applied to the simultaneous determination of calcium and magnesium in different samples: commercial multivitamin, human serum and drinking water where excellent agreement between reported and obtained results was achieved.

  12. A brief review of calcium phosphate conversion coating on magnesium and its alloys

    NASA Astrophysics Data System (ADS)

    Zaludin, Mohd Amin Farhan; Jamal, Zul Azhar Zahid; Jamaludin, Shamsul Baharin; Derman, Mohd Nazree

    2016-07-01

    Recent developments have shown that magnesium is a promising candidate to be used as a biomaterial. Owing to its light weight, biocompatibility and compressive strength comparable with natural bones makes magnesium as an excellent choice for biomaterial. However, high reactivity and low corrosion resistance properties have restricted the application of magnesium as biomaterials. At the moment, several strategies have been developed to solve this problem. Surface modification of magnesium is one of the popular solutions to solve the problem. Among many techniques developed in the surface modification, conversion coating method is one of the simple and effective techniques. From various types of conversion coating, calcium phosphate-based conversion coating is the most suitable for biomedical fields. This paper reviews some studies on calcium phosphate coating on Mg and its alloys via chemical conversion method and discusses some factors determining the coating performance.

  13. Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite.

    PubMed

    Elmore, Amy R

    2003-01-01

    This report reviews the safety of Aluminum, Calcium, Lithium Magnesium, Lithium Magnesium Sodium, Magnesium Aluminum, Magnesium, Sodium Magnesium, and Zirconium Silicates, Magnesium Trisilicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite as used in cosmetic formulations. The common aspect of all these claylike ingredients is that they contain silicon, oxygen, and one or more metals. Many silicates occur naturally and are mined; yet others are produced synthetically. Typical cosmetic uses of silicates include abrasive, opacifying agent, viscosity-increasing agent, anticaking agent, emulsion stabilizer, binder, and suspending agent. Clay silicates (silicates containing water in their structure) primarily function as adsorbents, opacifiers, and viscosity-increasing agents. Pyrophyllite is also used as a colorant. The International Agency for Research on Cancer has ruled Attapulgite fibers >5 microm as possibly carcinogenic to humans, but fibers <5 microm were not classified as to their carcinogenicity to humans. Likewise, Clinoptilolite, Phillipsite, Mordenite, Nonfibrous Japanese Zeolite, and synthetic Zeolites were not classified as to their carcinogenicity to humans. These ingredients are not significantly toxic in oral acute or short-term oral or parenteral toxicity studies in animals. Inhalation toxicity, however, is readily demonstrated in animals. Particle size, fibrogenicity, concentration, and mineral composition had the greatest effect on toxicity. Larger particle size and longer and wider fibers cause more adverse effects. Magnesium Aluminum Silicate was a weak primary skin irritant in rabbits and had no cumulative skin irritation in guinea pigs. No gross effects were reported in any of these studies. Sodium Magnesium Silicate had no primary skin irritation in rabbits and had no cumulative skin irritation in guinea pigs. Hectorite was nonirritating to the skin of rabbits in a Draize primary skin

  14. Is Mg-stabilized amorphous calcium carbonate a homogeneous mixture of amorphous magnesium carbonate and amorphous calcium carbonate?

    PubMed

    Yang, Sheng-Yu; Chang, Hsun-Hui; Lin, Cang-Jie; Huang, Shing-Jong; Chan, Jerry C C

    2016-10-04

    We find two types of carbonate ions in Mg stabilized amorphous calcium carbonate (Mg-ACC), whose short-range orders are identical to those of ACC and amorphous magnesium carbonate (AMC). Mg-ACC comprises a homogeneous mixture of the nano-clusters of ACC and AMC. Their relative amount varies systematically at different pH.

  15. Determination of calcium, magnesium and zinc in unused lubricating oils by atomic absorption spectroscopy.

    PubMed

    Udoh, A P

    1995-12-01

    Varying concentrations of lanthanum and strontium were added to solutions of ashed unused lubricating oils for the determination of calcium, magnesium and zinc content using flame atomic absorption spectrophotometry. At least 3000 mug g(-1) of lanthanum or strontium was required to completely overcome the interference of the phosphate ion, PO(3-)(4), and give peak values for calcium. The presence of lanthanum or strontium did not cause an appreciable increase in the amount of magnesium and zinc obtained from the analyses. The method is fast and reproducible, and the coefficients of variation calculated for the elements using one of the samples were 1.6% for calcium, 3.5% for magnesium and 0.2% for zinc. Results obtained by this method were better than those obtained by other methods for the same samples.

  16. [Impact of drinking water calcium and magnesium levels on morbidity in the Omsk Region].

    PubMed

    Erofeev, Iu V; Neskin, T A; Turchaninov, D V

    2006-01-01

    Drinking water calcium and magnesium levels were examined for impact on morbidity in a model rural area of a West Siberian region. It was ascertained that there were negative correlations between the water levels of the above elements and the incidence of respiratory, gastrointestinal, and locomotor diseases and positive correlations between the concentrations of calcium and magnesium and the incidence of nervous, urogenital, and eye diseases. It is concluded that by adjusting the findings, the medical care availability factor should be taken into account in the investigations using the health indices calculated on the data from official medical accounts. This investigation has shown the estimation of the drinking water levels of calcium and magnesium as a significant hygienic problem for a model region.

  17. RIGOR MORTIS AND THE INFLUENCE OF CALCIUM AND MAGNESIUM SALTS UPON ITS DEVELOPMENT.

    PubMed

    Meltzer, S J; Auer, J

    1908-01-01

    Calcium salts hasten and magnesium salts retard the development of rigor mortis, that is, when these salts are administered subcutaneously or intravenously. When injected intra-arterially, concentrated solutions of both kinds of salts cause nearly an immediate onset of a strong stiffness of the muscles which is apparently a contraction, brought on by a stimulation caused by these salts and due to osmosis. This contraction, if strong, passes over without a relaxation into a real rigor. This form of rigor may be classed as work-rigor (Arbeitsstarre). In animals, at least in frogs, with intact cords, the early contraction and the following rigor are stronger than in animals with destroyed cord. If M/8 solutions-nearly equimolecular to "physiological" solutions of sodium chloride-are used, even when injected intra-arterially, calcium salts hasten and magnesium salts retard the onset of rigor. The hastening and retardation in this case as well as in the cases of subcutaneous and intravenous injections, are ion effects and essentially due to the cations, calcium and magnesium. In the rigor hastened by calcium the effects of the extensor muscles mostly prevail; in the rigor following magnesium injection, on the other hand, either the flexor muscles prevail or the muscles become stiff in the original position of the animal at death. There seems to be no difference in the degree of stiffness in the final rigor, only the onset and development of the rigor is hastened in the case of the one salt and retarded in the other. Calcium hastens also the development of heat rigor. No positive facts were obtained with regard to the effect of magnesium upon heat vigor. Calcium also hastens and magnesium retards the onset of rigor in the left ventricle of the heart. No definite data were gathered with regard to the effects of these salts upon the right ventricle.

  18. Predicting effects on oxaliplatin clearance: in vitro, kinetic and clinical studies of calcium- and magnesium-mediated oxaliplatin degradation.

    PubMed

    Han, Catherine H; Khwaounjoo, Prashannata; Hill, Andrew G; Miskelly, Gordon M; McKeage, Mark J

    2017-06-22

    This study evaluated the impact of calcium and magnesium on the in vitro degradation and in vivo clearance of oxaliplatin. Intact oxaliplatin and Pt(DACH)Cl2 were measured in incubation solutions by HPLC-UV. A clinical study determined changes in plasma concentrations of calcium and magnesium in cancer patients and their impact on oxaliplatin clearance. Kinetic analyses modelled oxaliplatin degradation reactions in vitro and contributions to oxaliplatin clearance in vivo. Calcium and magnesium accelerated oxaliplatin degradation to Pt(DACH)Cl2 in chloride-containing solutions in vitro. Kinetic models based on calcium and magnesium binding to a monochloro-monooxalato ring-opened anionic oxaliplatin intermediate fitted the in vitro degradation time-course data. In cancer patients, calcium and magnesium plasma concentrations varied and were increased by giving calcium gluconate and magnesium sulfate infusions, but did not alter or correlate with oxaliplatin clearance. The intrinsic in vitro clearance of oxaliplatin attributed to chloride-, calcium- and magnesium-mediated degradation predicted contributions of <2.5% to the total in vivo clearance of oxaliplatin. In conclusion, calcium and magnesium accelerate the in vitro degradation of oxaliplatin by binding to a monochloro-monooxalato ring-opened anionic intermediate. Kinetic analysis of in vitro oxaliplatin stability data can be used for in vitro prediction of potential effects on oxaliplatin clearance in vivo.

  19. [Determination of calcium and magnesium in wheat flour by suspension sampling-flame atomic absorption spectrometry].

    PubMed

    Liu, L; Zhang, Q; Hu, Y

    1999-06-01

    Suspension sampling technique was applied to flame atomic absorption spectrometry and was successfully used to determine calcium and magnesium in wheat flour. The wheat flour was suspended in agar sol containing dibutyl phthalate and made into suspension. Choice of suspension agent and elimination of chemical interference were studied. The test solution was injected into air-acetylene flame to determine calcium and magnesium by standard addition method. Determination results were consistent with those obtained by ashing method. The t-test showed that no difference was found between the two methods. Displacement of ashing method by suspension sampling method for the sample pretreatment is possible. This method is convenient, rapid and accurate.

  20. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review.

    PubMed

    Shadanbaz, Shaylin; Dias, George J

    2012-01-01

    Magnesium has been suggested as a revolutionary biodegradable metal for use as an orthopaedic material. As a biocompatible and degradable metal, it has several advantages over the permanent metallic materials currently in use, including eliminating the effects of stress shielding, improving biocompatibility concerns in vivo and improving degradation properties, removing the requirement of a second surgery for implant removal. The rapid degradation of magnesium, however, is a double-edged sword as it is necessary to control the corrosion rates of the materials to match the rates of bone healing. In response, calcium phosphate coatings have been suggested as a means to control these corrosion rates. The potential calcium phosphate phases and their coating techniques on substrates are numerous and can provide several different properties for different applications. The reactivity and low melting point of magnesium, however, require specific parameters for calcium phosphate coatings to be successful. Within this review, an overview of the different calcium phosphate phases, their properties and their behaviour in vitro and in vivo has been provided, followed by the current coating techniques used for calcium phosphates that may be or may have been adapted for magnesium substrates. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Dietary magnesium, not calcium, prevents vascular calcification in a mouse model for pseudoxanthoma elasticum

    PubMed Central

    Waarsing, Jan H.; de Wolf, Anneke; ten Brink, Jacoline B.; Loves, Willem J. P.; Bergen, Arthur A. B.

    2010-01-01

    Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by ectopic calcification of connective tissue in skin, Bruch’s membrane of the eye, and walls of blood vessels. PXE is caused by mutations in the ABCC6 gene, but the exact etiology is still unknown. While observations on patients suggest that high calcium intake worsens the clinical symptoms, the patient organization PXE International has published the dietary advice to increase calcium intake in combination with increased magnesium intake. To obtain more data on this controversial issue, we examined the effect of dietary calcium and magnesium in the Abcc6−/− mouse, a PXE mouse model which mimics the clinical features of PXE. Abcc6−/− mice were placed on specific diets for 3, 7, and 12 months. Disease severity was measured by quantifying calcification of blood vessels in the kidney. Raising the calcium content in the diet from 0.5% to 2% did not change disease severity. In contrast, simultaneous increase of both calcium (from 0.5% to 2.0%) and magnesium (from 0.05% to 0.2%) slowed down the calcification significantly. Our present findings that increase in dietary magnesium reduces vascular calcification in a mouse model for PXE should stimulate further studies to establish a dietary intervention for PXE. PMID:20177653

  2. Calcium and magnesium in drinking water and risk of death from kidney cancer.

    PubMed

    Chiu, Hui-Fen; Chang, Chih-Ching; Chen, Chih-Cheng; Yang, Chun-Yuh

    2011-01-01

    The possible association between the risk of kidney cancer development and the levels of calcium and magnesium in drinking water from municipal supplies was investigated in a matched cancer case-control study in Taiwan. All eligible kidney cancer deaths (1778 cases) of Taiwan residents from 1999 through 2008 were compared with deaths from other causes (1778 controls), and the levels of calcium and magnesium in drinking water of these residents were determined. Data on calcium and magnesium levels in drinking water throughout Taiwan were obtained from the Taiwan Water Supply Corporation (TWSC). The control group consisted of individuals who died from other causes, and the controls were pair-matched to the cancer cases by gender, year of birth, and year of death. The adjusted odd ratios for death attributed to kidney cancer for individuals with higher calcium levels in their drinking water, as compared to the lowest tertile, were 0.89 (95% CI = 0.72-1.11) and 0.78 (95% CI = 0.62-0.98), respectively. The adjusted odd ratios were not statistically significant for the relationship between magnesium levels in drinking water and kidney cancer development. The results of the present study demonstrate that there may be a significant protective effect of calcium intake from drinking water against the risk of death due to kidney cancer.

  3. Common variants in CLDN14 are associated with differential excretion of magnesium over calcium in urine.

    PubMed

    Corre, Tanguy; Olinger, Eric; Harris, Sarah E; Traglia, Michela; Ulivi, Sheila; Lenarduzzi, Stefania; Belge, Hendrica; Youhanna, Sonia; Tokonami, Natsuko; Bonny, Olivier; Houillier, Pascal; Polasek, Ozren; Deary, Ian J; Starr, John M; Toniolo, Daniela; Gasparini, Paolo; Vollenweider, Peter; Hayward, Caroline; Bochud, Murielle; Devuyst, Olivier

    2017-01-01

    The nature and importance of genetic factors regulating the differential handling of Ca(2+) and Mg(2+) by the renal tubule in the general population are poorly defined. We conducted a genome-wide meta-analysis of urinary magnesium-to-calcium ratio to identify associated common genetic variants. We included 9320 adults of European descent from four genetic isolates and three urban cohorts. Urinary magnesium and calcium concentrations were measured centrally in spot urine, and each study conducted linear regression analysis of urinary magnesium-to-calcium ratio on ~2.5 million single-nucleotide polymorphisms (SNPs) using an additive model. We investigated, in mouse, the renal expression profile of the top candidate gene and its variation upon changes in dietary magnesium. The genome-wide analysis evidenced a top locus (rs172639, p = 1.7 × 10(-12)), encompassing CLDN14, the gene coding for claudin-14, that was genome-wide significant when using urinary magnesium-to-calcium ratio, but not either one taken separately. In mouse, claudin-14 is expressed in the distal nephron segments specifically handling magnesium, and its expression is regulated by chronic changes in dietary magnesium content. A genome-wide approach identified common variants in the CLDN14 gene exerting a robust influence on the differential excretion of Mg(2+) over Ca(2+) in urine. These data highlight the power of urinary electrolyte ratios to unravel genetic determinants of renal tubular function. Coupled with mouse experiments, these results support a major role for claudin-14, a gene associated with kidney stones, in the differential paracellular handling of divalent cations by the renal tubule.

  4. Simultaneous measurements of magnesium, calcium and sodium influxes in perfused squid giant axons under membrane potential control.

    PubMed

    Rojas, E; Taylor, R E

    1975-10-01

    the sodium or is involved in the activation of the sodium system. 7. These measurements confirm for Loligo, as previously shown for Dosidicus axons, that the magnitude and time course of the sodium entry during a depolarizing pulse deduced from electrical measurements is the same as that measured with 22Na. 8. Using 28Mg, or mixtures of 45Ca and 28Mg, we observed a single phase of magnesium entry which was insensitive to external tetrodotoxin or internal tetraethyl ammonium. The magnitude of the magnesium influx was considerably greater than the calcium extra entry and large enough to have been detected in the experiments of Meves & Vogel (1973) if it represented current. 9. We suggest the possibility that the calcium and magnesium extra influxes, after external treatment with tetrodotoxin, during a depolarizing pulse, do not contribute to the measured current.

  5. Measurement of serum ionized versus total levels of magnesium and calcium in hemodialysis patients.

    PubMed

    Saha, H; Harmoinen, A; Pietilä, K; Mörsky, P; Pasternack, A

    1996-11-01

    Until recently, only techniques for measuring total magnesium have been available. Now commercially available instruments using new ion-selective electrodes (ISE) for Mg+2 have made possible reliable measurement of ionized magnesium also in clinical practice. We measured changes induced by a hemodialysis session in serum ionized and total pools of magnesium and calcium using ISE methods. When compared with levels in age- and sex-matched control subjects, both serum ionized magnesium (0.68 +/- 0.11 vs. 0.56 +/- 0.06 mmol/l, p < 0.001) and total magnesium (1.00 +/- 0.19 vs. 0.82 +/- 0.08 mmol/l, p < 0.001) were higher in hemodialysis patients. The fraction of ionized Mg was 68.6 +/- 2.9% in hemodialysis patients, and did not differ significantly from that in controls (68.7 +/- 5.3%). The postdialysis value was 68.1 +/- 7.7%. The corresponding ratios of calcium (ionized/total) were 51.0 +/- 2.8% pre- and 50.9 +/- 4.6% postdialysis. Both prior to and after dialysis the correlation between ionized and total magnesium was high (r = 0.976, p < 0.001, and r = 0.925, p < 0.001, respectively). The corresponding ionized versus total calcium correlations were r = 0.724 (p < 0.001) before and 0.423 (p = 0.003) after dialysis. The changes induced by a hemodialysis session in serum concentration of ionized magnesium and calcium were dependent on the concentration of the cation in the dialysate. The change in PTH (suppression or stimulation) was very closely related to the changes in the serum concentration of ionized calcium. We concluded that measurement of ionized magnesium using ion-selective electrodes for Mg++ is an interesting new method in evaluating body magnesium status. Its definitive role in clinical practice cannot be judged on the basis of the results of the present study, but it will probably not achieve the same importance as the measurement of ionized calcium in clinical nephrology.

  6. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

  7. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

  8. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

  9. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

  10. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

  11. Liquid Heparin Anticoagulant Produces More Negative Bias in the Determination of Ionized Magnesium than Ionized Calcium

    PubMed Central

    Shin, Cheung Soo; Chang, Chul Ho

    2006-01-01

    The ionized calcium level in blood is known to be falsely decreased when self-prepared liquid heparin anticoagulant is used, due to dilution and binding effects. The effect of liquid heparin on the determination of ionized magnesium is not as well understood. We compared the effect of liquid sodium heparin on the determination of ionized calcium and magnesium in 44 clinical samples using two types of user-prepared heparin syringes which differed in the amount of residual heparin from the BD Preset™ reference syringe. With the type 1 syringe, the liquid heparin was expelled once or twice such that some heparin could be left in the dead space at the syringe hub, while the liquid sodium heparin was thoroughly expelled from the type 2 syringe. The ionized magnesium levels obtained with the type 1 syringe were significantly lower than the reference value (by 0.068 mmol/L) (p < 0.0001), while the value obtained with the type 2 syringe differed less from the reference, by only 0.014 mmol/L (p < 0.0001). The heparin binding effect resulted in more negative bias in ionized magnesium (- 0.026 ± 0.032 mmol/L) than in ionized calcium (- 0.009 ± 0.042 mmol/L, p < 0.0001). In conclusion, we recommend using lyophilized, calcium-balanced, heparinized syringes for the determination of ionized magnesium and ionized calcium due to the increased negative bias in ionized magnesium determinations. When user-prepared syringes are used, the thorough evacuation of heparin solution should be strictly prescribed. PMID:16642547

  12. Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition

    NASA Astrophysics Data System (ADS)

    Liu, G. Y.; Hu, J.; Ding, Z. K.; Wang, C.

    2011-01-01

    In order to improve the bioactivity of the micro-arc oxidized magnesium, a calcium phosphate coating was formed on the surface of micro-arc oxidized magnesium using a chemical method. The microstructures of the substrate and the calcium phosphate coating before and after the simulated body fluids (SBF) incubation were characterized by X-ray diffraction, Fourier-transformed infrared spectroscopy and scanning electron microscopy. The results showed that the calcified coating was composed of calcium deficient hydroxyapatite (HA) and dicalcium phosphate dihydrate (DCPD). After SBF incubation, some new apatite formation on the calcified coating surface from SBF could be found. The corrosion behaviours of the samples in SBF were also investigated by potentiodynamic polarization curves and immersion tests. The results showed that calcium phosphate coating increased the corrosion potential, and decreased the hydrogen gas release.

  13. Variations of Dietary Salt and Fluid Modulate Calcium and Magnesium Transport in Renal Distal Tubule

    PubMed Central

    Lee, Chien-Te; Lien, Yeong-Hau H; Lai, Li-Wen; Ng, Hwee-Yeong; Chiou, Terry Ting-Yu; Chen, Hung-Chun

    2014-01-01

    Background The renal distal tubule serves as the fine tuning of renal epithelial calcium transport. Dietary intake of salt and fluid varies day to day and the kidney adapts accordingly to maintain the homeostasis. The alternations in salt and fluid balance affect calcium and magnesium transport in the distal tubule, but the mechanisms are not fully understood. Methods Sprague-Dawley rats were grouped into high salt, low salt and dehydration treatment. Daily intake, water consumption and urine output were recorded. At the end of experiment, blood and urine samples were collected for hormonal and biochemical testes. Genetic analysis, immunoblotting, and immunofluorescence studies were then performed to assess the alterations of calcium and magnesium transport-related molecules. Results High salt treatment increased urinary sodium, calcium and magnesium excretion. Low salt treatment and dehydration were associated with decreased urinary excretion of all electrolytes. High salt treatment was associated with increased intact parathyroid hormone levels. Significant increase in gene expression of TRPV5, TRPV6, calbindin-D28k and TRPM6 was found during high salt treatment while low salt and dehydration diminished the expression. These findings were confirmed with immunofluorescence studies. High salt and low salt intake or dehydration did not cause any significant changes in WNK1, WNK3 and WNK4. Conclusions Alternations in salt and water intake affect renal calcium and magnesium handling. High salt intake increases distal delivery of the divalent cations which upregulates distal tubule calcium and magnesium transport molecules, while the opposite effects are associated with low salt intake or dehydration. PMID:23774784

  14. Fast Pressure Jumps Can Perturb Calcium and Magnesium Binding to Troponin C F29W

    PubMed Central

    Pearson, David S.; Swartz, Darl R.; Geeves, Michael A.

    2009-01-01

    We have used rapid pressure jump and stopped-flow fluorimetry to investigate calcium and magnesium binding to F29W chicken skeletal troponin C. Increased pressure perturbed calcium binding to the N-terminal sites in the presence and absence of magnesium and provided an estimate for the volume change upon calcium binding (-12 mL.mol-1). We observed a biphasic response to a pressure change which was characterized by fast and slow reciprocal relaxation times of the order 1000 s-1 and 100 s-1. Between pCa 8-5.4 and at troponin C concentrations of 8-28 μM, the slow relaxation times were invariant indicating that a protein isomerization was rate-limiting. The fast event was only detected over a very narrow pCa range (5.6-5.4). We have devised a model based on a Monod-Wyman-Changeux cooperative mechanism with volume changes of -9 and +6 mL/mol for the calcium binding to the regulatory sites and closed to open protein isomerization steps respectively. In the absence of magnesium, we discovered that calcium binding to the C-terminal sites could be detected, despite their position distal to the calcium sensitive tryptophan, with a volume change of +25 mL/mol. We used this novel observation to measure competitive magnesium binding to the C-terminal sites and deduced an affinity in the range 200 - 300 μM (and a volume change of +35 mL/mol). This affinity is an order of magnitude tighter than equilibrium fluorescence data suggest based on a model of direct competitive binding. Magnesium thus indirectly modulates binding to the N-terminal sites, which may act as a fine-tuning mechanism in vivo. PMID:18942859

  15. High Calcium-Magnesium Ratio in Hair Is Associated with Coronary Artery Calcification in Middle-Aged and Elderly Individuals.

    PubMed

    Park, Byoungjin; Kim, Mi-Hyun; Cha, Choong Keun; Lee, Yong-Jae; Kim, Kyong-Chol

    2017-02-06

    The interaction between calcium and magnesium as a risk modifier for cardiovascular disease (CVD) has been largely overlooked in previous studies, for the strict regulatory system in blood has been thought to keep such homeostatic interactions under tight control. This study aimed to investigate the association between calcium-magnesium ratio in hair and subclinical coronary artery calcification. Using multiple linear regression analysis, we examined the associations between calcium-magnesium ratio in hair and the coronary calcium score (CCS) in 216 Koreans aged 40 years and above (122 men and 94 women). We found that the calcium-to-magnesium ratio in hair was independently and positively associated with CCS after adjusting for age and sex (regression coefficient 6.051 ± 2.329, P = 0.010). When we assessed the association between the calcium-magnesium ratio and CCS after adjusting for potential cardiovascular risk factors and vascular function modifying drugs, we found that the strength of association with CCS was comparable to before (regression coefficient 5.434 ± 2.523, P = 0.032). Our findings suggest that among middle-aged and elderly Koreans without clinical CVD, the association between coronary artery calcification and hair calcium-magnesium ratio is stronger in those with a higher calcium-magnesium ratio in hair than in those with a lower ratio.

  16. Precipitation of Calcium, Magnesium, Strontium and Barium in Tissues of Four Acacia Species (Leguminosae: Mimosoideae)

    PubMed Central

    He, Honghua; Bleby, Timothy M.; Veneklaas, Erik J.; Lambers, Hans; Kuo, John

    2012-01-01

    Precipitation of calcium in plants is common. There are abundant studies on the uptake and content of magnesium, strontium and barium, which have similar chemical properties to calcium, in comparison with those of calcium in plants, but studies on co-precipitation of these elements with calcium in plants are rare. In this study, we compared morphologies, distributional patterns, and elemental compositions of crystals in tissues of four Acacia species grown in the field as well as in the glasshouse. A comparison was also made of field-grown plants and glasshouse-grown plants, and of phyllodes of different ages for each species. Crystals of various morphologies and distributional patterns were observed in the four Acacia species studied. Magnesium, strontium and barium were precipitated together with calcium, mainly in phyllodes of the four Acacia species, and sometimes in branchlets and primary roots. These elements were most likely precipitated in forms of oxalate and sulfate in various tissues, including epidermis, mesophyll, parenchyma, sclerenchyma (fibre cells), pith, pith ray and cortex. In most cases, precipitation of calcium, magnesium, strontium and barium was biologically induced, and elements precipitated differed between soil types, plant species, and tissues within an individual plant; the precipitation was also related to tissue age. Formation of crystals containing these elements might play a role in regulating and detoxifying these elements in plants, and protecting the plants against herbivory. PMID:22848528

  17. Precipitation of calcium, magnesium, strontium and barium in tissues of four Acacia species (Leguminosae: Mimosoideae).

    PubMed

    He, Honghua; Bleby, Timothy M; Veneklaas, Erik J; Lambers, Hans; Kuo, John

    2012-01-01

    Precipitation of calcium in plants is common. There are abundant studies on the uptake and content of magnesium, strontium and barium, which have similar chemical properties to calcium, in comparison with those of calcium in plants, but studies on co-precipitation of these elements with calcium in plants are rare. In this study, we compared morphologies, distributional patterns, and elemental compositions of crystals in tissues of four Acacia species grown in the field as well as in the glasshouse. A comparison was also made of field-grown plants and glasshouse-grown plants, and of phyllodes of different ages for each species. Crystals of various morphologies and distributional patterns were observed in the four Acacia species studied. Magnesium, strontium and barium were precipitated together with calcium, mainly in phyllodes of the four Acacia species, and sometimes in branchlets and primary roots. These elements were most likely precipitated in forms of oxalate and sulfate in various tissues, including epidermis, mesophyll, parenchyma, sclerenchyma (fibre cells), pith, pith ray and cortex. In most cases, precipitation of calcium, magnesium, strontium and barium was biologically induced, and elements precipitated differed between soil types, plant species, and tissues within an individual plant; the precipitation was also related to tissue age. Formation of crystals containing these elements might play a role in regulating and detoxifying these elements in plants, and protecting the plants against herbivory.

  18. Calcium/magnesium intake ratio, but not magnesium intake, interacts with genetic polymorphism in relation to colorectal neoplasia in a two-phase study

    PubMed Central

    Zhu, Xiangzhu; Shrubsole, Martha J.; Ness, Reid M.; Hibler, Elizabeth A; Cai, Qiuyin; Long, Jirong; Chen, Zhi; Li, Guoliang; Ming, Jiang; Hou, Lifang; Kabagambe, Edmond K.; Zhang, Bing; Smalley, Walter E.; Edwards, Todd L.; Giovannucci, Edward L.; Zheng, Wei; Dai, Qi

    2016-01-01

    Background Some studies suggest that the calcium to magnesium ratio intakes modifies the associations of calcium or magnesium with risk of colorectal adenoma, adenoma recurrence and cancer. Parathyroid hormone (PTH) plays a key role in the regulation of homeostasis for both calcium and magnesium. We hypothesized that polymorphisms in PTH and 13 other genes may modify the association between the calcium/magnesium intake ratio and colorectal neoplasia risk. Methods We conducted a two-phase study including 1,336 cases and 2,891 controls from the Tennessee Colorectal Polyp Study. Results In Phase I, we identified 19 SNPs that significantly interacted with the calcium/magnesium intake ratio in adenoma risk. In Phase II, rs11022858 in PTH was replicated. In combined analysis of phases I and II, we found high calcium/magnesium intake ratio tended to be associated with a reduced risk of colorectal adenoma (p for trend, 0.040) among those who carried the TT genotype in rs11022858. In stratified analyses, calcium intake (≥1000 mg/day) was significantly associated with 64% reduced adenoma risk (OR=0.36 (95% CI: 0.18–0.74)) among those homozygous for the minor allele (TT genotype) (p for trend, 0.012), but not associated with risk in other genotypes (CC/TC). Conversely, we found highest magnesium intake was significantly associated with 27% reduced risk (OR=0.73 (95% CI: 0.54–0.97)) of colorectal adenoma (p for trend, 0.026) among those who possessed the CC/TC genotypes, particularly among those with the TC genotype; whereas magnesium intake was not linked to risk among those with the TT genotype. Conclusions These findings, if confirmed, will help for the development of personalized prevention strategies for colorectal cancer. PMID:26333203

  19. Calcium/magnesium intake ratio, but not magnesium intake, interacts with genetic polymorphism in relation to colorectal neoplasia in a two-phase study.

    PubMed

    Zhu, Xiangzhu; Shrubsole, Martha J; Ness, Reid M; Hibler, Elizabeth A; Cai, Qiuyin; Long, Jirong; Chen, Zhi; Li, Guoliang; Jiang, Ming; Hou, Lifang; Kabagambe, Edmond K; Zhang, Bing; Smalley, Walter E; Edwards, Todd L; Giovannucci, Edward L; Zheng, Wei; Dai, Qi

    2016-10-01

    Some studies suggest that the calcium to magnesium ratio intakes modify the associations of calcium or magnesium with risk of colorectal adenoma, adenoma recurrence, and cancer. Parathyroid hormone (PTH) plays a key role in the regulation of homeostasis for both calcium and magnesium. We hypothesized that polymorphisms in PTH and 13 other genes may modify the association between the calcium/magnesium intake ratio and colorectal neoplasia risk. We conducted a two-phase study including 1336 cases and 2891 controls from the Tennessee Colorectal Polyp Study. In Phase I, we identified 19 SNPs that significantly interacted with the calcium/magnesium intake ratio in adenoma risk. In Phase II, rs11022858 in PTH was replicated. In combined analysis of phases I and II, we found high calcium/magnesium intake ratio tended to be associated with a reduced risk of colorectal adenoma (P for trend, 0.040) among those who carried the TT genotype in rs11022858. In stratified analyses, calcium intake (≥ 1000 mg/d) was significantly associated with 64% reduced adenoma risk (OR = 0.36 (95% CI : 0.18-0.74)) among those homozygous for the minor allele (TT genotype) (P for trend, 0.012), but not associated with risk in other genotypes (CC/TC). Conversely, we found that highest magnesium intake was significantly associated with 27% reduced risk (OR = 0.73 (95% CI : 0.54-0.97)) of colorectal adenoma (P for trend, 0.026) among those who possessed the CC/TC genotypes, particularly among those with the TC genotype, whereas magnesium intake was not linked to risk among those with the TT genotype. These findings, if confirmed, will help for the development of personalized prevention strategies for colorectal cancer. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Egg yolk protein and egg yolk phosvitin inhibit calcium, magnesium, and iron absorptions in rats.

    PubMed

    Ishikawa, S-I; Tamaki, S; Arihara, K; Itoh, M

    2007-08-01

    Egg yolk decreases the absorption of iron. The effects of egg yolk protein and egg yolk phosvitin on the absorption of calcium, magnesium, and iron were investigated by in vivo studies. Male Wistar rats were fed purified diets containing casein, soy protein, or egg yolk protein for 14 d. The apparent absorptions of calcium, magnesium, and iron in the rats fed the yolk protein-based diet were lower than those in rats fed the casein- and soy protein-based diets. The apparent phosphorus absorption and the apparent protein digestibility in the yolk protein group were lower than those in the casein and soy protein groups. In the feces of the yolk protein group, serine comprised more than 30% of the amino acids. The addition of egg yolk phosvitin to the casein diets at levels of 1% and 2% (w/w) produced effects on calcium and magnesium absorptions similar to those produced by the diet containing yolk protein. The tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) pattern suggested that phosphopeptide fragments having molecular masses of 28, 22, and 15 kDa were evident in the contents of the small intestine of the rats fed phosvitin diets. These results indicate that yolk protein, when compared with casein and soy protein, decreases calcium and magnesium absorption via the resistance of phosvitin to proteolytic action.

  1. Nitrogen, phosphorus, potassium, calcium, magnesium, and zinc in southeastern USA harvested flax

    USDA-ARS?s Scientific Manuscript database

    Flax (Linum usitatissimum L.) is a winter crop in the Southeast USA that has potential in double cropping systems. This research was conducted to provide estimates of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and zinc (Zn) removal in the harvested portions of the cro...

  2. Impact of Testosterone, Zinc, Calcium and Magnesium Concentrations on Sperm Parameters in Subfertile Men

    NASA Astrophysics Data System (ADS)

    Aydemir, Birsen; Kiziler, Ali Riza; Onaran, Ilhan; Alici, Bülent; Özkara, Hamdi; Akyolcu, Mehmet Can

    2007-04-01

    To investigate the impact of testosterone, zinc, calcium and magnesium concentrations in serum and seminal plasma on sperm parameters. There were significant decrease in sperm parameters, serum and seminal plasma zinc levels in subfertile males. It indicates zinc has a essential role in male infertility; the determination the level of zinc during infertility investigation is recommended.

  3. Effects of dietary calcium, phosphorus and magnesium on intranephronic calculosis in rats.

    PubMed

    Woodward, J C; Jee, W S

    1984-12-01

    The effects of varying dietary levels of calcium, phosphorus and magnesium on the incidence and severity of intranephronic calculosis were studied. Renal calculi were induced by feeding female rats the AIN-76TM semipurified diet for 4 weeks. During this time period, dietary levels of 350, 450 or 550 mg calcium per 100 g diet did not influence the occurrence of urolithiasis. Increasing dietary magnesium levels from 50 to 350 mg was beneficial in preventing the occurrence of calculi if the diet contained 400 mg or less phosphorus. The protective effects of dietary magnesium were counteracted when dietary phosphorus levels were increased from 400 mg to 550 or 700 mg. If the dietary content of phosphorus and magnesium permitted the formation of renal calculi, the severity of the condition was also influenced by the dietary level of calcium. Some animal groups fed semipurified diets did not have microscopic or radiographic evidence of renal calculi but were found to have significantly elevated renal calcium values. It was suggested that these animals might be in a precalculus-forming state.

  4. Effects of calcium magnesium acetate on the combustion of coal-water slurries

    SciTech Connect

    Levendis, Y.A.

    1991-01-01

    The general objective of the project is to investigate the combustion behavior of single and multiple Coal-Water Fuel (CWF) particles burning at high temperature environments. Both uncatalyzed as well as catalyzed CWF drops with Calcium Magnesium Acetate (CMA) catalyst will be studies. Emphasis will also be given in the effects of CMA on the sulfur capture during combustion.

  5. Serum Calcium, Magnesium, Zinc and Copper Levels in Sudanese Women with Preeclampsia.

    PubMed

    Elmugabil, Abdelmageed; Hamdan, Hamdan Z; Elsheikh, Anas E; Rayis, Duria A; Adam, Ishag; Gasim, Gasim I

    2016-01-01

    Although the exact pathophysiology of preeclampsia is not fully understood, several elemental micronutrient abnormalities have been suggested to play a contributory role in preeclampsia. To investigate the levels of calcium, magnesium, zinc and copper in women with preeclampsia. A case-control study was conducted in Omdurman Maternity Hospital, Sudan, during the period of September through December 2014. The cases were women with preeclampsia while healthy pregnant women were the controls. The medical and obstetrics history was gathered using questionnaires. The serum levels of calcium, magnesium, zinc and copper were measured using atomic absorption spectrophotometer. There was no significant difference between the two groups in their age, gestational age, parity and body mass index. Zinc and copper levels were not significantly different between the two groups. In comparison with the controls, women with preeclampsia had a significantly lower median (inter-quartile) serum calcium [7.6 (4.0─9.6) vs. 8.1 (10.6─14.2), mg/dl, P = 0.032] and higher levels of magnesium [1.9 (1.4─2.5) vs. 1.4 (1.0─1.9) mg/dl; P = 0.003]. In binary logistic regression, lower calcium (OR = 0.73, 95% CI = 0.56 ─ 0.95, P = 0.021) and higher magnesium (OR = 5.724, 95% CI = 1.23 ─ 26.50, P = 0.026) levels were associated with preeclampsia. There were no significant correlations between levels of hemoglobin and these trace elements. The current study showed significant associations between preeclampsia and serum levels of calcium and magnesium.

  6. Serum Calcium, Magnesium, Zinc and Copper Levels in Sudanese Women with Preeclampsia

    PubMed Central

    Elmugabil, Abdelmageed; Hamdan, Hamdan Z.; Elsheikh, Anas E.; Rayis, Duria A.; Gasim, Gasim I.

    2016-01-01

    Background Although the exact pathophysiology of preeclampsia is not fully understood, several elemental micronutrient abnormalities have been suggested to play a contributory role in preeclampsia. Aims To investigate the levels of calcium, magnesium, zinc and copper in women with preeclampsia. Subjects and Methods A case—control study was conducted in Omdurman Maternity Hospital, Sudan, during the period of September through December 2014. The cases were women with preeclampsia while healthy pregnant women were the controls. The medical and obstetrics history was gathered using questionnaires. The serum levels of calcium, magnesium, zinc and copper were measured using atomic absorption spectrophotometer. Results There was no significant difference between the two groups in their age, gestational age, parity and body mass index. Zinc and copper levels were not significantly different between the two groups. In comparison with the controls, women with preeclampsia had a significantly lower median (inter-quartile) serum calcium [7.6 (4.0─9.6) vs. 8.1 (10.6─14.2), mg/dl, P = 0.032] and higher levels of magnesium [1.9 (1.4─2.5) vs. 1.4 (1.0─1.9) mg/dl; P = 0.003]. In binary logistic regression, lower calcium (OR = 0.73, 95% CI = 0.56 ─ 0.95, P = 0.021) and higher magnesium (OR = 5.724, 95% CI = 1.23 ─ 26.50, P = 0.026) levels were associated with preeclampsia. There were no significant correlations between levels of hemoglobin and these trace elements. Conclusion The current study showed significant associations between preeclampsia and serum levels of calcium and magnesium. PMID:27911936

  7. [A comparative study of antiarrhythmic and antihypoxic effects of magnesium sulfate, its prolonged form and blockers of calcium channels].

    PubMed

    Samsonia, M D; Kandelaki, M A

    2013-01-01

    The aim of the study is the comparative study of treatment of heart and brain damages during the hypoxia with magnesium sulfate, verapamil, diltiazem. As a result of the experiment carried out on rats it was proved that magnesium sulfate and its prolonged form are not less active than the blockers of calcium channels, such as verapamil and diltiazem. It is possible to avoid lethal fibrillations caused by calcium chloride with the help of 25% magnesium sulfate solution (after intraperitoneal administration with the dose of 1000 mg/kg) in case we make arrythmogenic injection 5 minutes after inputting magnesium sulfate solution. During the arrhythmia induced by calcium chloride prolonged form of magnesium sulfate is also effective only if we inject the drug subcutaneous 30 minutes before the arrythmogenic injection. If the interval is 5 minutes lethal fibrillations cant be avoided as the release of magnesium ions from the drug form is slowed down. The drugs containing magnesium ions also displayed cytoprotective activity on the model of normobaric hypoxia. This was resulted in the increase of protective index. Neuroprotective action of magnesium ions (in the condition of hypoxia) is caused by maintaining homeostasis of calcium ions and by inhibition of exocytosis of neuromediators in the synaptic cleft. Thus, magnesium sulfate and its prolonged form can be used with the purpose of pharmacocorrection of heart and brain injuries during hypoxic conditions.

  8. Potassium, calcium, and magnesium intakes and risk of stroke in women.

    PubMed

    Larsson, Susanna C; Virtamo, Jarmo; Wolk, Alicja

    2011-07-01

    The authors examined the association between dietary potassium, calcium, and magnesium intakes and the incidence of stroke among 34,670 women 49-83 years of age in the Swedish Mammography Cohort who completed a food frequency questionnaire in 1997. The authors used Cox proportional hazards regression models to estimate relative risks and 95% confidence intervals. During a mean follow-up of 10.4 years (1998-2008), 1,680 stroke events were ascertained, including 1,310 cerebral infarctions, 154 intracerebral hemorrhages, 79 subarachnoid hemorrhages, and 137 unspecified strokes. There was no overall association between potassium, calcium, or magnesium intake and the risk of any stroke or cerebral infarction. However, among women with a history of hypertension, potassium intake was inversely associated with risk of all types of stroke (for highest vs. lowest quintile, adjusted relative risk = 0.64, 95% confidence interval (CI): 0.45, 0.92) and cerebral infarction (corresponding adjusted relative risk = 0.56, 95% CI: 0.38, 0.84), and magnesium intake was inversely associated with risk of cerebral infarction (corresponding adjusted relative risk = 0.63, 95% CI: 0.42, 0.93). Calcium intake was positively associated with risk of intracerebral hemorrhage (for highest vs. lowest tertile, adjusted relative risk = 2.04, 95% CI: 1.24, 3.35). These findings suggest that potassium and magnesium intakes are inversely associated with the risk of cerebral infarction among hypertensive women.

  9. Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement.

    PubMed

    Klammert, Uwe; Reuther, Tobias; Blank, Melanie; Reske, Isabelle; Barralet, Jake E; Grover, Liam M; Kübler, Alexander C; Gbureck, Uwe

    2010-04-01

    Brushite (CaHPO(4) x 2H(2)O)-forming calcium phosphate cements are of great interest as bone replacement materials because they are resorbable in physiological conditions. However, their short setting times and low mechanical strengths limit broad clinical application. In this study, we showed that a significant improvement of these properties of brushite cement could be achieved by the use of magnesium-substituted beta-tricalcium phosphate with the general formula Mg(x)Ca((3-x))((PO(4))(2) with 0 < x < 3 as cement reactants. The incorporation of magnesium ions increased the setting times of cements from 2 min for a magnesium-free matrix to 8-11 min for Mg(2.25)Ca(0.75)(PO(4))(2) as reactant. At the same time, the compressive strength of set cements was doubled from 19 MPa to more than 40 MPa after 24h wet storage. Magnesium ions were not only retarding the setting reaction to brushite but were also forming newberyite (MgHPO(4) x 3H(2)O) as a second setting product. The biocompatibility of the material was investigated in vitro using the osteoblast-like cell line MC3T3-E1. A considerable increase of cell proliferation and expression of alkaline phosphatase, indicating an osteoblastic differentiation, could be noticed. Scanning electron microscopy analysis revealed an obvious cell growth on the surface of the scaffolds. Analysis of the culture medium showed minor alterations of pH value within the physiological range. The concentrations of free calcium, magnesium and phosphate ions were altered markedly due to the chemical solubility of the scaffolds. We conclude that the calcium magnesium phosphate (newberyite) cements have a promising potential for their use as bone replacement material since they provide a suitable biocompatibility, an extended workability and improved mechanical performance compared with brushite cements.

  10. Nucleation reduction strategy of BaNH{4}MgHPO{4} (barium ammonium magnesium hydrogen phosphate, in vitro approach-1) crystals grown in silica gel medium and its characterization studies

    NASA Astrophysics Data System (ADS)

    Suresh, P.; Kanchana, G.; Sundaramoorthi, P.

    2009-02-01

    Kidney stones consist of various organic, inorganic and semi-organic compounds. Mineral oxalate monohydrate and di-hydrate is the main inorganic constituent of kidney stones. However, the mechanisms for the formation of crystal mineral oxalate are not clearly understood. In this field of study there are many hypothesis including nucleation, crystal growth and or aggregation of formation of AOMH (ammonium oxalate monohydrate) and AODH (ammonium oxalate di-hydrate) crystals. The effect of some urinary species such as ammonium oxalates, calcium, citrate, proteins and trace mineral elements have been previously reported by the author. The kidney stone constituents are grown in the kidney environments, the sodium meta silica gel medium (SMS) provides the necessary growth simulation (in vitro). In the artificial urinary stone growth process, growth parameters within the different chemical environments are identified. The author has reported the growth of urinary crystals such as CHP, SHP, BHP and AHP. In the present study, BaNH{4}MgHPO{4} (barium ammonium magnesium hydrogen phosphate) crystals have been grown in three different growth faces to attain the total nucleation reductions. As an extension of this research, many characterization studies have been carried out and the results are reported.

  11. Groundwater chemistry and cation budgets of tropical karst outcrops, Peninsular Malaysia, I. Calcium and magnesium

    NASA Astrophysics Data System (ADS)

    Crowther, J.

    1989-05-01

    The discharge and chemical properties of 217 autogenic groundwaters were monitored over a 1-yr period in the tower karsts of central Selangor and the Kinta Valley, and in the Setul Boundary Range. Because of differences in soil PCO 2, calcium concentrations are significantly higher in the Boundary Range (mean, 82.5 mg l -1) than in the tower karst terrain (44.6 mg l -1). Local differences in both source area PCO 2 and amounts of secondary deposition underground cause marked intersite variability, particularly in the tower karst. Dilution occurs during flood peaks in certain conduit and cave stream waters. Generally, however, calcium correlates positively with discharge, since the amount of secondary deposition per unit volume of water decreases at higher flows. Magnesium concentrations and Mg:Ca + Mg ratios of groundwaters are strongly influenced by bedrock composition, though bedrock heterogeneity and the kinetics and equilibria of carbonate dissolution reactions preclude extremely low or high Mg:Ca + Mg values. Net chemical denudation rates range from 56.6 to 70.9 m 3km 2yr -1. The results are considered in relation to cation fluxes in surface runoff, soil throughflow and nutrient cycling. Preliminary calcium and magnesium budgets show that (1) dissolutional activity is largely confined to the near-surface zone; and (2) the annual uptake of calcium and magnesium by tropical limestone forests is similar in magnitude to the net solute output in groundwaters.

  12. Why and how to implement sodium, potassium, calcium, and magnesium changes in food items and diets?

    PubMed

    Karppanen, H; Karppanen, P; Mervaala, E

    2005-12-01

    The present average sodium intakes, approximately 3000-4500 mg/day in various industrialised populations, are very high, that is, 2-3-fold in comparison with the current Dietary Reference Intake (DRI) of 1500 mg. The sodium intakes markedly exceed even the level of 2500 mg, which has been recently given as the maximum level of daily intake that is likely to pose no risk of adverse effects on blood pressure or otherwise. By contrast, the present average potassium, calcium, and magnesium intakes are remarkably lower than the recommended intake levels (DRI). In USA, for example, the average intake of these mineral nutrients is only 35-50% of the recommended intakes. There is convincing evidence, which indicates that this imbalance, that is, the high intake of sodium on one hand and the low intakes of potassium, calcium, and magnesium on the other hand, produce and maintain elevated blood pressure in a big proportion of the population. Decreased intakes of sodium alone, and increased intakes of potassium, calcium, and magnesium each alone decrease elevated blood pressure. A combination of all these factors, that is, decrease of sodium, and increase of potassium, calcium, and magnesium intakes, which are characteristic of the so-called Dietary Approaches to Stop Hypertension diets, has an excellent blood pressure lowering effect. For the prevention and basic treatment of elevated blood pressure, various methods to decrease the intake of sodium and to increase the intakes of potassium, calcium, and magnesium should be comprehensively applied in the communities. The so-called 'functional food/nutraceutical/food-ceutical' approach, which corrects the mineral nutrient composition of extensively used processed foods, is likely to be particularly effective in producing immediate beneficial effects. The European Union and various governments should promote the availability and use of such healthier food compositions by tax reductions and other policies, which make the

  13. Synthesis and Structural Studies of Calcium and Magnesium Phosphinate and Phosphonate Compounds

    NASA Astrophysics Data System (ADS)

    Bampoh, Victoria Naa Kwale

    The work presented herein describes synthetic methodologies leading to the design of a wide array of magnesium and calcium based phosphinate and phosphonates with possible applications as bone scaffolding materials or additives to bone cements. The challenge to the chemistry of the alkaline earth phosphonate target compounds includes poor solubility of compounds, and poorly understood details on the control of the metal's coordination environment. Hence, less is known on phosphonate based alkaline earth metal organic frameworks as compared to transition metal phosphonates. Factors governing the challenges in obtaining crystalline, well-defined magnesium and calcium solids lie in the large metal diameters, the absence of energetically available d-orbitals to direct metal geometry, as well as the overall weakness of the metal-ligand bonds. A significant part of this project was concerned with the development of suitable reaction conditions to obtain X-ray quality crystals of the reaction products to allow for structural elucidation of the novel compounds. Various methodologies to aid in crystal growth including hydrothermal methods and gel crystallization were employed. We have used phosphinate and phosphonate ligands with different number of phosphorus oxygen atoms as well as diphosphonates with different linker lengths to determine their effects on the overall structural features. An interesting correlation is observed between the dimensionality of products and the increasing number of donor oxygen atoms in the ligands as we progress from phosphinic acid to the phosphorous acids. As an example, monophosphinate ligand only yielded one-dimensional compounds, whereas the phosphonates crystallize as one and two-dimensional compounds, and the di- and triphosphonate based compounds display two or three-dimensional geometries. This thesis provides a selection of calcium and magnesium compounds with one-dimensional geometry, as represented in a calcium phosphinate to novel

  14. Calcium and magnesium levels in isolated mitochondria from human cardiac biopsies.

    PubMed

    Saetersdal, T; Engedal, H; Røli, J; Myklebust, R

    1980-01-01

    A non-enzymatic method is presented for isolating mitochondria from small-sized human cardiac samples, including ventricular needle biopsies of 15-25 mg of wet weight. Electron microscopy demonstrates that these fractions are rich in structurally well preserved mitochondria. Calcium and magnesium levels of fractions are determined by atomic absorption flame spectroscopy. Comparative analyses are made in similar fractions of the mouse ventricle. Calcium concentrations of mitocondria isolated in the presence of ruthenium red do not differ significantly between the human auricle and ventricle, averaging 61 nmol Ca/mg protein and 68 nmol Ca/mg protein, respectively. Mitochondrial calcium level is lower in the mouse ventricular fractions, averaging 7 nmol Ca/mg protein. Mitochondrial magnesium amounts to slightly less than 60% of the calcium levels in the human heart, while it exceeds the calcium level by more than 100 per cent in the mouse heart. There is no significant difference of mitochondrial calcium between normal auricles, and, auricles of patients with increased right atrial mean pressure and/or volume overload.

  15. [Effect of octadecyl amine (ODA) on the complex titration of magnesium and calcium ions studied with UV-visible spectrophotometry].

    PubMed

    Qing, Bin-Ju; Liu, Hai-Ning; Ye, Xiu-Shen; Li, Quan; Guo, Min; Liu, Teng-Yun; Wu, Zhi-Jian

    2009-10-01

    The effect of flotation agent octadecyl amine (ODA) on the complex titration of both magnesium and calcium ions was studied with two groups of comparative experiments: (1) Before titration, the suspension was not filtered. In this case, ODA had a great effect on the complex titration of both magnesium and calcium ions. The titration end-point of magnesium ions was difficult to be determined. Although the titration end-point of calcium ions could be determined, there was an obvious experimental error compared with the blank solution without ODA. These results were confirmed by the UV-Visible spectrum analyses of the related solutions. (2) Before titration, the suspension was filtered. In this case, the influence of ODA on the complex titration of both magnesium and calcium ions could be removed. UV-Visible spectrum studies showed that, in this case, both the spectra and time scanning curves of the tested solutions were similar to those of the blank solutions.

  16. Effect of ammonium carbonate on formation of calcium-deficient hydroxyapatite through double-step hydrothermal processing.

    PubMed

    Parthiban, S Prakash; Kim, Ill Yong; Kikuta, Koichi; Ohtsuki, Chikara

    2011-02-01

    Double-step hydrothermal processing is a process where powder compacts of calcium phosphates are exposed to vapor of solvent solution, followed by being immersed in the solution. In the present study, we investigated the effects of ammonium carbonate on formation of calcium-deficient hydroxyapatite (CDHA) through double-step hydrothermal processing. The synthesized CDHA has high crystallinity when the solution has relatively low concentration of the ammonium carbonate ranging from 0.01 to 0.25 mol dm(-3). Carbonate content in the prepared samples were distinctly increased with increasing the concentration of ammonium carbonate to indicate formation of carbonate-containing calcium-deficient hydroxyapatite (CHAp) with low crystallinity. Morphology of the CHAp formed on the compacts varied progressively from rods and rosette-like shape to irregular shape with increase in the initial concentration of the ammonium carbonate in the solution. Application of ammonium carbonate in the double-step hydrothermal processing allows fabrication of irregular-shaped CDHA containing carbonate ions in both phosphate and hydroxide site, with low crystallinity, when the initial concentration of ammonium carbonate was 0.5 mol dm(-3) and more.

  17. Calcium oxide and magnesium oxide inhibit plasma coagulation by Staphylococcus aureus cells at the lower concentration than zinc oxide.

    PubMed

    Akiyama, H; Yamasaki, O; Tada, J; Arata, J

    1999-12-01

    We examined the effect of ceramic powder slurries on the coagulation of plasma by Staphylococcus aureus cells. Plasma coagulation by S. aureus strains or their cultured supernatant was inhibited in the plasma with 0.12% calcium oxide or 0.25% magnesium oxide after incubation for 24 h at 37 degrees C. Inhibition of plasma coagulation by calcium oxide and magnesium oxide was observed at the lower concentration than zinc oxide.

  18. Protective effects of selenium, calcium, and magnesium against arsenic-induced oxidative stress in male rats.

    PubMed

    Srivastava, Deepti; Subramanian, Ramlingam B; Madamwar, Datta; Flora, Swaran J S

    2010-06-01

    Inorganic arsenic is a potent carcinogen and environmental pollutant. More than one hundred million people are reported to be exposed to elevated concentrations of arsenic mainly via drinking water. Essential trace elements can affect toxicity of metals by interacting with metals at the primary site of action and can also modify the body's response to toxic metals by altering their metabolism and transport. This study investigates the effects of concomitant administration of selenium, magnesium, and calcium with arsenic on blood biochemistry and oxidative stress. Selenium was the most effective in reducing arsenic-induced inhibition of blood delta-aminolevulinic acid dehydratase (ALAD) activity and liver oxidative stress. Calcium and magnesium also showed favourable effects on haematological and other biochemical parameters. Because selenium was the most effective, it should be added to chelation therapy to achieve the best protective effects against arsenic poisoning in humans.

  19. Effects of calcium magnesium acetate on the combustion of coal-water slurries

    SciTech Connect

    Levendis, Y.A.

    1991-01-01

    The general objective of the project is to investigate the combustion behavior of single and multiple Coal-Water Fuel (CWF) particles burning at high temperature environments. Both uncatalyzed as well as catalyzed CWF drops wit Calcium Magnesium Acetate (CMA) catalyst will be studied. Emphasis will also be given in the effects of CMA on the sulfur capture during combustion. To help achieve these objectives the following project tasks were carried over this 8th three-month period. Project Tasks: Work on two major tasks was conducted over this period: (1) Trouble-sooting of the pyrometer calibration equipment and then re-calibrating the pyrometer with two different NIST lamps. (2) Production and characterization of CaO particles derived from Calcium Magnesium Acetate. These particles are very promising SO{sub 2} sorbents. 10 figs.

  20. Relief of Casein Inhibition of Bacillus stearothermophilus by Iron, Calcium, and Magnesium1

    PubMed Central

    Ashton, D. H.; Busta, F. F.; Warren, J. A.

    1968-01-01

    Growth of Bacillus stearothermophilus strain NCA 1518 Smooth in Dextrose Tryptone Agar (DTA) was inhibited by sodium caseinate. Binding studies indicated that sodium caseinate, when present in DTA, had the capacity to effect an iron deficiency which could cause inhibition of growth. Additions of essential cations, iron (1 mM), calcium (5 mM), magnesium (10 mM), or hydrogen ion (pH 5.7), relieved inhibition. Responses to and interactions among these relief factors were analyzed statistically. Equations were fitted to the data and were used to estimate responses to all treatment combinations within the ranges tested. Results from these studies indicated that calcium, magnesium, and hydrogen ion acted by decreasing the binding capacity of the protein for iron, rendering this metal available for metabolic needs. Evidence was obtained that ferrous rather than ferric iron was the limiting factor in DTA containing sodium caseinate. PMID:5694503

  1. Plasma Calcium, Inorganic Phosphate and Magnesium During Hypocalcaemia Induced by a Standardized EDTA Infusion in Cows

    PubMed Central

    Mellau, LSB; Jørgensen, RJ; Enemark, JMD

    2001-01-01

    The intravenous Na2EDTA infusion technique allows effective specific chelation of circulating Ca2+ leading to a progressive hypocalcaemia. Methods previously used were not described in detail and results obtained by monitoring total and free ionic calcium were not comparable due to differences in sampling and analysis. This paper describes a standardized EDTA infusion technique that allowed comparison of the response of calcium, phosphorus and magnesium between 2 groups of experimental cows. The concentration of the Na2EDTA solution was 0.134 mol/l and the flow rate was standardized at 1.2 ml/kg per hour. Involuntary recumbency occurred when ionised calcium dropped to 0.39 – 0.52 mmol/l due to chelation. An initial fast drop of ionized calcium was observed during the first 20 min of infusion followed by a fluctuation leading to a further drop until recumbency. Pre-infusion [Ca2+] between tests does not correlate with the amount of EDTA required to induce involuntary recumbence. Total calcium concentration measured by atomic absorption remained almost constant during the first 100 min of infusion but declined gradually when the infusion was prolonged. The concentration of inorganic phosphate declined gradually in a fluctuating manner until recumbency. Magnesium concentration remained constant during infusion. Such electrolyte responses during infusion were comparable to those in spontaneous milk fever. The standardized infusion technique might be useful in future experimental studies. PMID:11503370

  2. The effect of intravenous magnesium hypophosphite in calcium borogluconate solution on the serum concentration of inorganic phosphorus in healthy cows.

    PubMed

    Braun, U; Jehle, W

    2007-03-01

    The goal of this study was to determine the effect of intravenous (IV) administration of phosphite on the serum concentration of inorganic phosphorus in cows. Twelve clinically healthy cows were divided into four groups of three. All cows received 600 mL of a 40% calcium borogluconate solution; three cows each received this as a rapid (20 min) IV infusion with and without 6% magnesium hypophosphite, and three other cows each received this as a slow IV infusion (8 h) with and without 6% magnesium hypophosphite. Samples of blood were collected for the determination of serum concentrations of calcium, inorganic phosphorus and magnesium before and 10, 20, 40, 60 and 90 min and 2, 3, 4, 5, 6, 7, 8, 24, 48 and 72 h after the start of treatment. The concentration of calcium increased after treatment in all cows but the increase was most rapid in cows that received the rapid infusion. In cows that received the rapid IV infusion containing magnesium hypophosphite, the mean concentration of inorganic phosphorus decreased significantly 3-4 h after treatment compared with initial serum levels. The serum concentration of inorganic phosphorus did not change significantly in cows that received the rapid IV solution without magnesium hypophosphite or the slow IV infusion with or without magnesium hypophosphite. The serum concentration of magnesium increased after treatment in all cows receiving magnesium hypophosphite but remained unchanged in the others. The rapid infusion of calcium borogluconate without magnesium hypophosphite made all three cows anorexic and hypercalcaemic and the slow infusion made 1/3 anorexic. It is concluded that the IV administration of a calcium solution containing magnesium hypophosphite does not increase the serum concentration of inorganic phosphorus.

  3. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    SciTech Connect

    Omar, R. S. Wagiran, H. Saeed, M. A.

    2016-01-22

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  4. Women with Fibromyalgia Have Lower Levels of Calcium, Magnesium, Iron and Manganese in Hair Mineral Analysis

    PubMed Central

    Kim, Young-Sang; Kim, Kwang-Min; Lee, Duck-Joo; Kim, Bom-Taeck; Park, Sat-Byul; Cho, Doo-Yeoun; Suh, Chang-Hee; Kim, Hyoun-Ah; Park, Rae-Woong

    2011-01-01

    Little is known about hair mineral status in fibromyalgia patients. This study evaluated the characteristics of hair minerals in female patients with fibromyalgia compared with a healthy reference group. Forty-four female patients diagnosed with fibromyalgia according to the American College of Rheumatology criteria were enrolled as the case group. Ageand body mass index-matched data were obtained from 122 control subjects enrolled during visit for a regular health check-up. Hair minerals were analyzed and compared between the two groups. The mean age was 43.7 yr. General characteristics were not different between the two groups. Fibromyalgia patients showed a significantly lower level of calcium (775 µg/g vs 1,093 µg/g), magnesium (52 µg/g vs 72 µg/g), iron (5.9 µg/g vs 7.1 µg/g), copper (28.3 µg/g vs 40.2 µg/g) and manganese (140 ng/g vs 190 ng/g). Calcium, magnesium, iron, and manganese were loaded in the same factor using factor analysis; the mean of this factor was significantly lower in fibromyalgia group in multivariate analysis with adjustment for potential confounders. In conclusion, the concentrations of calcium, magnesium, iron, and manganese in the hair of female patients with fibromyalgia are lower than of controls, even after adjustment of potential confounders. PMID:22022174

  5. Fully automated spectrophotometric procedure for simultaneous determination of calcium and magnesium in biodiesel.

    PubMed

    Shishov, Andrey Y; Nikolaeva, Larisa S; Moskvin, Leonid N; Bulatov, Andrey V

    2015-04-01

    An easily performed stepwise injection (SWIA) procedure based on on-line dilution of biodiesel samples and the formation of color-forming calcium (II) and magnesium (II) complexes with Eriochrome Black T (EBT) in an organic medium followed by spectrophotometric determination is presented. A sample of biodiesel was placed at the bottom of a mixing chamber connected to an automatic SWIA manifold. Isopropyl alcohol was used as the diluent under bubbling. The solution was submitted for on-line spectrophotometric simultaneous determination of calcium and magnesium based on the classic least-square method. The linear ranges were from 2 to 20 μg g(-1) and from 1.2 to 12 μg g(-1), and the detection limits, calculated as 3 s for a blank test (n=5), were found to be 0.6 μg g(-1) for calcium and 0.4 μg g(-1) for magnesium. The sample throughput was 30 h(-1). The method was successfully applied to the analysis of biodiesel samples.

  6. Indices of intact serum parathyroid hormone and renal excretion of calcium, phosphate, and magnesium.

    PubMed Central

    Shaw, N J; Wheeldon, J; Brocklebank, J T

    1990-01-01

    Up to date reference ranges were established for fasting renal excretion of calcium, phosphorus, and magnesium on 101 healthy children aged 2-15 years. A normal range for intact parathyroid hormone was also measured. The indices of calcium and magnesium excretion showed no correlation with age or sex so that a common range for all children could be established. The 97th centile values for urinary calcium:creatinine and magnesium:creatinine ratios were 0.69 mmol:mmol and 1.05 mmol:mmol respectively. The calculated tubular maximum for phosphate/litre of glomerular filtrate (TmPO4/GFR) showed no correlation with age with a geometric mean value of 1.67 mmol/l. The normal range for intact serum parathyroid hormone for the age group was 11-35 ng/l, which is lower than the adult normal range using the same assay. There was an inverse correlation between TmPO4/GFR and intact parathyroid hormone in this group of normal children. PMID:2248530

  7. Serum levels of selenium, calcium, copper magnesium, manganese and zinc in various human diseases.

    PubMed

    Sullivan, J F; Blotcky, A J; Jetton, M M; Hahn, H K; Burch, R E

    1979-08-01

    Serum selenium as well as serum zinc, copper, magnesium, calcium and manganese were investigated in a control group of adult males and in 11 groups of patients in various disease states. Not only the change of each trace element but also the possible association between elements was studied in the various groups. All patients were fasting when sampled and studied only after the acute phase of the disease was corrected. Trace metal determinations were performed by atomic absorption spectrophometry (Mg, Ca, Cu, Zn) and by neutron activation analysis (Se, Mn). All patients showed low serum zinc when compared to controls. Cirrhotic patients had a low serum selenium level as well as low calcium, magnesium and zinc. Emphysemia and cancer patients had an elevated serum copper concentration while copper and manganese levels were elevated in congestive heart failure, infection and pschoses. To our knowledge this is the first time low serum selenium values have been demonstrated to be associated with the low serum zinc, calcium and magnesium levels found in cirrhotic patients.

  8. The role of calcium and magnesium in the concrete tubes of the sandcastle worm.

    PubMed

    Sun, ChengJun; Fantner, Georg E; Adams, Jonathan; Hansma, Paul K; Waite, J Herbert

    2007-04-01

    Sandcastle worms Phragmatopoma californica build mound-like reefs by sticking together large numbers of sand grains with cement secreted from the building organ. The cement consists of protein plus substantial amounts of calcium and magnesium, which are not invested in any mineral form. This study examined the effect of calcium and magnesium depletion on the structural and mechanical properties of the cement. Divalent ion removal by chelating with EDTA led to a partial collapse of cement architecture and cement dislodgement from silica surfaces. Mechanical properties examined were sand grain pull-out force, tube resistance to compression and cement adhesive force. EDTA treatment reduced sand grain pull-out forces by 60% and tube compressive strength by 50% relative to controls. EDTA lowered both the maximal adhesive force and energy dissipation of cement by up to an order of magnitude. The adhesiveness of calcium- and magnesium-depleted cement could not be restored by re-exposure to the ions. The results suggest that divalent ions play a complex and multifunctional role in maintaining the structure and stickiness of Phragmatopoma cement.

  9. Removal of ammonium and heavy metals by cost-effective zeolite synthesized from waste quartz sand and calcium fluoride sludge.

    PubMed

    Zhang, Qian; Lin, Bing; Hong, Junming; Chang, Chang-Tang

    2017-02-01

    This study focuses on the effectiveness of zeolite (10% CF-Z [0.5]) hydrothermally synthesized from waste quartz sand and calcium fluoride (CF) for ammonium ion and heavy metal removal. Zeolite was characterized through powder X-ray diffraction, Fourier-transform infrared spectroscopy, micromeritics N2 adsorption/desorption analysis, and field emission scanning electron microscopy. The effects of CF addition, Si/Al ratio, initial ammonium concentration, solution pH, and temperature on the adsorption of ammonium on 10% CF-Z (0.5) were further examined. Results showed that 10% CF-Z (0.5) was a single-phase zeolite A with cubic-shaped crystals and 10% CF-Z (0.5) efficiently adsorbs ammonium and heavy metals. For instance, 91% ammonium (10 mg L(-1)) and 93% lead (10 mg L(-1)) are removed. The adsorption isotherm, kinetics, and thermodynamics of ammonium adsorption on 10% CF-Z (0.5) were also theoretically analyzed. The adsorption isotherm of ammonium and lead on 10% CF-Z (0.5) in single systems indicated that Freundlich model provides the best fit for the equilibrium data, whereas pseudo-second-order model best describes the adsorption kinetics. The adsorption degree of ions on 10% CF-Z (0.5) in mixed systems exhibits the following pattern: lead > ammonium > cadmium > chromium.

  10. The simultaneous removal of calcium, magnesium and chloride ions from industrial wastewater using magnesium-aluminum oxide.

    PubMed

    Hamidi, Roya; Kahforoushan, Davood; Fatehifar, Esmaeil

    2013-01-01

    In this article, a method for simultaneous removal of calcium, magnesium and chloride by using Mg0.80Al0.20O1.10 as a Magnesium-Aluminum oxide (Mg‒Al oxide) was investigated. Mg‒Al oxide obtained by thermal decomposition of the Mg-Al layered double hydroxide (Mg-Al LDH). The synthesized Mg‒Al oxide were characterized with respect to nitrogen physicosorption, X-ray diffraction (XRD) and field emission scan electron microscopy (FESEM) morphology. Due to high anion-exchange capacity of Mg‒Al oxide, it was employed in simultaneously removal of Cl(-), Mg(+2) and Ca(+2) from distiller waste of a sodium carbonate production factory. For this purpose, experiments were designed to evaluate the effects of quantity of Mg‒Al oxide, temperature and time on the removal process. The removal of Cl(-), Mg(+2) and Ca(+2) from wastewater was found 93.9%, 93.74% and 93.25% at 60°C after 0.5 h, respectively. Results showed that the removal of Cl(-), Mg(+2) and Ca(+2) by Mg‒Al oxide increased with increasing temperature, time and Mg‒Al oxide quantity.

  11. Assay of calcium borogluconate veterinary medicines for calcium gluconate, boric acid, phosphorus, and magnesium by using inductively coupled plasma emission spectrometry

    SciTech Connect

    Lyons, D.J.; Spann, K.P.

    1985-03-01

    An inductively coupled plasma spectrometric method is described for the determination of 4 elements (Ca, B, P, and Mg) in calcium borogluconate veterinary medicines. Samples are diluted, acidified, and sprayed directly into the plasma. Reproducibility relative confidence intervals for a single sample assay are +/- 1.4% (calcium), +/- 1.8% (boron), +/- 2.6% (phosphorus), and +/- 1.4% (magnesium). The total element concentrations for each of 4 elements compared favorably with concentrations determined by alternative methods. Formulation estimates of levels of calcium gluconate, boric acid, phosphorus, and magnesium salts can be made from the analytical data.

  12. Evaluating a Magnesium-Ammonium Phosphate Suspension as a Fertilizer Material

    DTIC Science & Technology

    1974-12-12

    Treatments of my"ini-bsmium-phosiftte ware .emiqhed on a gram scale and then diluted with water to a minimum of approximately. three pounds. The...A MAGNESIUM- AMONIUM PHOSPHATE SUSPENSION AS A FERTILIZER MATERIAL Eldon L. Hood Department of Agronomy Purdue Unl-verstty. West Lafayette, Indiana...theadditive and the conuv2rcial is 3.78% and 19.78% respectively, and the treatment rates for the fescue grass was 0 to 240 pounds per acre,-and 0 to

  13. Intakes of magnesium, potassium, and calcium and the risk of stroke among men.

    PubMed

    Adebamowo, Sally N; Spiegelman, Donna; Flint, Alan J; Willett, Walter C; Rexrode, Kathryn M

    2015-10-01

    Intakes of magnesium, potassium, and calcium have been inversely associated with the incidence of hypertension, a known risk factor for stroke. However, only a few studies have examined intakes of these cations in relation to risk of stroke. The aim of this study was to investigate whether high intake of magnesium, potassium, and calcium is associated with reduced stroke risk among men. We prospectively examined the associations between intakes of magnesium, potassium, and calcium from diet and supplements, and the risk of incident stroke among 42 669 men in the Health Professionals Follow-up Study, aged 40 to 75 years and free of diagnosed cardiovascular disease and cancer at baseline in 1986. We calculated the hazard ratio of total, ischemic, and haemorrhagic strokes by quintiles of each cation intake, and of a combined dietary score of all three cations, using multivariate Cox proportional hazard models. During 24 years of follow-up, 1547 total stroke events were documented. In multivariate analyses, the relative risks and 95% confidence intervals of total stroke for men in the highest vs. lowest quintile were 0·87 (95% confidence interval, 0·74-1·02; P, trend = 0·04) for dietary magnesium, 0·89 (95% confidence interval, 0·76-1·05; P, trend = 0·10) for dietary potassium, and 0·89 (95% confidence interval, 0·75-1·04; P, trend = 0·25) for dietary calcium intake. The relative risk of total stroke for men in the highest vs. lowest quintile was 0·74 (95% confidence interval, 0·59-0·93; P, trend = 0·003) for supplemental magnesium, 0·66 (95% confidence interval, 0·50-0·86; P, trend = 0·002) for supplemental potassium, and 1·01 (95% confidence interval, 0·84-1·20; P, trend = 0·83) for supplemental calcium intake. For total intake (dietary and supplemental), the relative risk of total stroke for men in the highest vs. lowest quintile was 0·83 (95% confidence interval, 0·70-0·99; P, trend = 0·04) for magnesium, 0

  14. Magnesium Test

    MedlinePlus

    ... Mag Formal name: Magnesium Related tests: Calcium , Potassium , Phosphorus , PTH , Vitamin D At a Glance Test Sample ... checked to help diagnose problems with calcium, potassium, phosphorus , and/or parathyroid hormone – another component of calcium ...

  15. Impact of orchard and tillage management practices on soil leaching of atrazine, potassium, magnesium, manganese, iron, ammonium, nitrates and phosphates

    NASA Astrophysics Data System (ADS)

    Szajdak, L.; Lipiec, J.; Siczek, A.; Kotowska, U.; Nosalewicz, A.

    2009-04-01

    The experiments were carried out on an Orthic Luvisol developed from loess, over limestone, at the experimental field of Lublin Agricultural University in Felin (51o15'N, 22o35'E), Poland. The investigation deals with the problems of leaching's rate of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,2,3-triazine), potassium, magnesium, manganese, iron, ammonium, nitrates and phosphates from two management systems of soil: (i) conventionally tilled field with main tillage operations including stubble cultivator (10 cm) + harrowing followed by mouldboard ploughing to 20 cm depth, and crop rotation including selected cereals, root crops and papillionaceous crops, (ii) 35-year-old apple orchard field (100x200m) with a permanent sward that was mown in the inter-rows during the growing season. The conventionally tilled plot was under the current management practice for approximately 30 years. Field sites were close to each other (about 150 m). Core samples of 100 cm3 volume and 5 cm diameter were taken from two depths 0-10 cm and 10-20 cm, and were used to determine the soil water characteristic curve. It was observed that management practices impacted on the physic-chemical properties of soils. pH (in H2O) in tilled soil ranged from 5.80 to 5.91. However soil of orchard soil revealed higher values of pH than tilled soil and ranged from 6.36 to 6.40. The content of organic carbon for tilled soil ranged from 1.13 to 1.17%, but in orchard soil from 1.59 to 1.77%. Tillled soil showed broader range of bulk density 1.38-1.62 mg m-3, than orchard soil 1.33-134 mg m-3. The first-order kinetic reaction model was fitted to the experimental atrazine, potassium, magnesium, manganese, iron, nitrates, ammonium and phosphates leaching vs. time data. The concentrations of leached chemical compounds revealed linear curves. The correlation coefficients ranged from -0.873 to -0.993. The first-order reaction constants measured for the orchard soils were from 3.8 to 19 times higher than

  16. Dental plaque microcosm biofilm behavior on calcium phosphate nanocomposite with quaternary ammonium

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Zhang, Ke; Wu, Eric; Xu, Sarah M.; Zhou, Xuedong; Xu, Hockin H. K.

    2012-01-01

    Objectives Half of dental restorations fail in 10 years, with secondary caries as the main reason. Calcium phosphate composites could remineralize tooth lesions. The objectives of this study were to: (1) Impart antibacterial activity to a composite with nanoparticles of amorphous calcium phosphate (NACP); and (2) investigate the effect of quaternary ammonium dimethacrylate (QADM) on mechanical and dental plaque microcosm biofilm properties for the first time. Methods The NACP and glass particles were filled into a dental resin that contained bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, the QADM. NACP nanocomposites containing 0%, 7%, 14%, and 17.5% of QADM by mass, respectively, were photo-cured. A commercial composite with no antibacterial activity was used as control. Mechanical properties were measured in three-point flexure. A human saliva microcosm model was used to grow biofilms on composites. Live/dead assay, metabolic activity, colony-forming unit (CFU) counts, and lactic acid production of biofilms on the composites were measured. Results Increasing QADM mass fraction monotonically reduced the biofilm viability, CFU and lactic acid. Biofilms on NACP nanocomposite with 17.5% QADM had metabolic activity that was 30% that on a commercial composite control (p<0.05). Total microorganisms, total streptococci, and mutans streptococci CFU counts (mean±sd; n=6) on composite control was 6-fold those on NACP+17.5% QADM nanocomposite. Composite control had long strings of cells with normal short-rod shapes, while some cells on NACP-QADM nanocomposites disintegrated into pieces. Adding QADM to NACP did not decrease the strength and elastic modulus, which matched (p>0.1) those of a commercial composite without Ca-PO4 or antibacterial activity. Significance A dental plaque microcosm model was used to evaluate the novel NACP-QADM nanocomposite. The nanocomposite greatly reduced the biofilm viability, metabolic activity and lactic acid, while its mechanical

  17. Elemental source attribution signatures for calcium ammonium nitrate (CAN) fertilizers used in homemade explosives.

    PubMed

    Fraga, Carlos G; Mitroshkov, Alexander V; Mirjankar, Nikhil S; Dockendorff, Brian P; Melville, Angie M

    2017-11-01

    Calcium ammonium nitrate (CAN) is a widely available fertilizer composed of ammonium nitrate (AN) mixed with some form of calcium carbonate such as limestone or dolomite. CAN is also frequently used to make homemade explosives. The potential of using elemental profiling and chemometrics to match both pristine and reprocessed CAN fertilizers to their factories of origin for use in future forensic investigations was examined. Inductively coupled plasma-mass spectrometry (ICP-MS) was used to determine the concentrations of 64 elements in 125 samples from 11 CAN stocks from 6 different CAN factories. Using Fisher ratio and degree-of-class-separation, the elements Na, V, Mn, Cu, Ga, Sr, Ba and U were selected for classification of the CAN samples into 5 factory groups; one group was two factories from the same fertilizer company. Partial least squares discriminant analysis (PLSDA) was used to develop a classification model which was tested on a separate set of samples. The test set included samples that were analyzed at a different time period and samples from factory stocks that were not part of the training set. For pristine CAN samples, i.e., unadulterated prills, 73% of the test samples were matched to their correct factory group with the remaining 27% undetermined using strict classification. The same PLSDA model was used to correctly match all CAN samples that were reprocessed by mixing with powdered sugar. For CAN samples that were reprocessed by mixing with aluminum or by extraction of AN with tap or bottled water, correct classification was observed for one factory group, but source matching was confounded with adulterant interference for two other factories. The elemental signatures of the water-insoluble (calcium carbonate) portions of CAN provided a greater degree of discrimination between factories than the water-soluble portions of CAN. In summary, this work illustrates the strong potential for matching unadulterated CAN fertilizer samples to their

  18. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Xu, Hockin H. K.; Antonucci, Joseph M.; Kraigsley, Alison M.; Lin, Nancy J.; Lin-Gibson, Sheng; Zhou, Xuedong

    2012-01-01

    Objectives Calcium and phosphate ion-releasing resin composites are promising for remineralization. However, there has been no report on incorporating antibacterial agents to these composites. The objective of this study was to develop antibacterial and mechanically-strong nanocomposites incorporating a quaternary ammonium dimethacrylate (QADM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP). Methods The QADM, bis(2-methacryloyloxyethyl) dimethylammonium bromide (ionic dimethacrylate-1), was synthesized from 2-(N,N-dimethylamino)ethyl methacrylate and 2-bromoethyl methacrylate. Ng was synthesized by dissolving Ag 2-ethylhexanoate salt in 2-(tertbutylamino)ethyl methacrylate. Mechanical properties were measured in three-point flexure with bars of 2×2×25 mm (n = 6). Composite disks (diameter = 9 mm, thickness = 2 mm) were inoculated with Streptococcus mutans. The metabolic activity and lactic acid production of biofilms were measured (n = 6). Two commercial composites were used as controls. Results Flexural strength and elastic modulus of NACP+QADM, NACP+NAg, and NACP+QADM+NAg matched those of commercial composites with no antibacterial property (p > 0.1). The NACP+QADM+NAg composite decreased the titer counts of adherent S. mutans biofilms by an order of magnitude, compared to the commercial composites (p < 0.05). The metabolic activity and lactic acid production of biofilms on NACP+QADM+NAg composite were much less than those on commercial composites (p < 0.05). Combining QADM and NAg rendered the nanocomposite more strongly antibacterial than either agent alone (p < 0.05). Significance QADM and NAg were incorporated into calcium phosphate composite for the first time. NACP+QADM+NAg was strongly-antibacterial and greatly reduced the titer counts, metabolic activity, and acid production of S. mutans biofilms, while possessing mechanical properties similar to commercial composites. These nanocomposites are promising to have

  19. Effect of calcium phosphate and vitamin D3 supplementation on bone remodelling and metabolism of calcium, phosphorus, magnesium and iron

    PubMed Central

    2014-01-01

    Background The aim of the present study was to determine the effect of calcium phosphate and/or vitamin D3 on bone and mineral metabolism. Methods Sixty omnivorous healthy subjects participated in the double-blind, placebo-controlled parallel designed study. Supplements were tricalcium phosphate (CaP) and cholecalciferol (vitamin D3). At the beginning of the study (baseline), all subjects documented their normal nutritional habits in a dietary record for three successive days. After baseline, subjects were allocated to three intervention groups: CaP (additional 1 g calcium/d), vitamin D3 (additional 10 μg/d) and CaP + vitamin D3. In the first two weeks, all groups consumed placebo bread, and afterwards, for eight weeks, the test bread according to the intervention group. In the last week of each study period (baseline, placebo, after four and eight weeks of intervention), a faecal (three days) and a urine (24 h) collection and a fasting blood sampling took place. Calcium, phosphorus, magnesium and iron were determined in faeces, urine and blood. Bone formation and resorption markers were analysed in blood and urine. Results After four and eight weeks, CaP and CaP + vitamin D3 supplementations increased faecal excretion of calcium and phosphorus significantly compared to placebo. Due to the vitamin D3 supplementations (vitamin D3, CaP + vitamin D3), the plasma 25-(OH)D concentration significantly increased after eight weeks compared to placebo. The additional application of CaP led to a significant increase of the 25-(OH)D concentration already after four weeks. Bone resorption and bone formation markers were not influenced by any intervention. Conclusions Supplementation with daily 10 μg vitamin D3 significantly increases plasma 25-(OH)D concentration. The combination with daily 1 g calcium (as CaP) has a further increasing effect on the 25-(OH)D concentration. Both CaP alone and in combination with vitamin D3 have no beneficial effect on bone

  20. Serum ionized magnesium levels and ionized calcium-to-magnesium ratios in adult patients with sickle cell anemia.

    PubMed

    Zehtabchi, Shahriar; Sinert, Richard; Rinnert, Stephan; Chang, Betty; Heinis, Christian; Altura, Rachel A; Altura, Bella T; Altura, Burton M

    2004-11-01

    Low levels of total magnesium in sickle cell erythrocytes have been linked to increased sickling due to cell dehydration. We tested the null hypothesis that adult sickle cell anemia (SCA) patients have the same serum level of ionized Mg (Mg(2+)) and Ca(2+)/Mg(2+) ratio as healthy African Americans (AA) and healthy Caucasians (CAUC). We measured serum Mg(2+) and ionized calcium (Ca(2+)) with ion-selective electrodes and calculated the serum Ca(2+)/Mg(2+) ratios in patients with SCA and control groups (AA and CAUC). Seventy-four SCA patients and 61 controls were compared. SCA patients had significantly (P < 0.001) lower levels of serum Mg(2+) (0.52 +/- 0.05) compared to healthy AA (0.57 +/- 0.04) and CAUC (0.62 +/- 0.03). Eighty-six percent of the adult SCA patients had serum Mg(2+) levels below the mean for the AA group, and 96% of SCA patients were above the AA group's mean serum Ca(2+)/Mg(2+). Of the SCA patients studied, 25.6% (95% CI, 16.2-37.2%) had serum Mg(2+) levels below the racially adjusted lower limit of normal and 50% (95% CI, 38.1-61.9%) were above the upper limit of serum Ca(2+)/Mg(2+) for AA controls. By measuring serum Mg(2+) and Ca(2+), we were able to define a subset of SCA patients with hypomagnesemia and elevated Ca(2+)/Mg(2+) ratios, who may benefit from magnesium supplementation.

  1. Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater.

    PubMed

    Song, Yonghui; Dai, Yunrong; Hu, Qiong; Yu, Xiaohua; Qian, Feng

    2014-04-01

    P recovery from swine wastewater has become a great concern as a result of the high demand for P resources and its potential eutrophication effects on water ecosystems. The method of magnesium ammonium phosphate (MAP) crystallization was used to recover P from simulated swine wastewater, and the effects of three organic acids (citric acid, succinic acid and acetic acid) on P removal efficiency and rate at different pH values were investigated. The results indicated that the P removal efficiency was worst affected by citric acid in the optimal pH range of 9.0-10.5, followed by succinic acid and acetic acid, and the influencing extent of organic acids decreased with the increasing pH value. Due to the complexation between organic acid and Mg(2+)/NH4(+), all of three organic acids could inhibit the P removal rate at the beginning of the reaction, which showed positive correlation between the inhibition effects and the concentration of organic acids. The high concentration of citric acid could completely suppress the MAP crystallization reaction. Moreover, citric acid and succinic acid brought obvious effects on the morphology of the crystallized products. The experimental results also demonstrated that MAP crystals could be obtained in the presence of different kinds and concentrations of organic acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Performance of magnesium ammonium phosphate precipitation and its effect on biological treatability of leather tanning industry wastewaters.

    PubMed

    Tünay, Olcay; Zengin, Gülsüm Emel; Kabdaşli, Işik; Karahan, Ozlem

    2004-01-01

    Leather tanning industry is one of the several industries discharging significant amount of nitrogen. Magnesium ammonium phosphate (MAP) precipitation is a promising pretreatment for leather tanning industry wastewaters for the control of toxic parameters; excess suspended solids as well as nitrogen which increase the cost and complexity of following biological treatment. Application of MAP precipitation, however, modifies the characteristics and biological treatability of wastewaters. In this study, characteristics and biological treatability of MAP precipitation effluent were experimentally investigated using the wastewaters obtained from a bovine leather processing plant. An experimental study involving the determination of COD fractions and kinetic parameters of biological treatment was conducted for both gravity settling and MAP precipitation. Results of the study indicated that MAP precipitation, in addition to high degree of nitrogen removal, yielded a soluble, readily biodegradable effluent which was also free from toxics. MAP precipitation provided an effluent COD of almost half of that of gravity settling. Reduced value of soluble residual microbial products (Sp) obtained with MAP precipitation effluent was an additional benefit.

  3. Second hyperpolarizability of delta shaped disubstituted acetylene complexes of beryllium, magnesium, and calcium.

    PubMed

    Hatua, Kaushik; Nandi, Prasanta K

    2015-10-01

    Present theoretical study involves the delta shape complexes of beryllium, magnesium, and calcium where the metal atom interacts perpendicularly with disubstituted acetylene. Most of the complexes are found to be fairly stable. The dependence of second-hyperpolarizability on the basis set with increasing polarization and diffuse functions has been examined which showed the importance of 'f-type' type polarization function for heavy metal (Mg, Ca) and 'd-type' polarization function for beryllium. Larger second hyperpolarizability has been predicted for complexes having significant ground state polarization and low lying excited states favoring strong electronic coupling. Transition energy plays the most significant role in modulating the second hyperpolarizability.

  4. Mechanical Properties and Durability of Advanced Environmental Barrier Coatings in Calcium-Magnesium-Alumino-Silicate Environments

    NASA Technical Reports Server (NTRS)

    Miladinovich, Daniel S.; Zhu, Dongming

    2011-01-01

    Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.

  5. Factors affecting ex-situ aqueous mineral carbonation using calcium and magnesium silicate minerals

    SciTech Connect

    Gerdemann, Stephen J.; Dahlin, David C.; O'Connor, William K.; Penner, Larry R.; Rush, G.E.

    2004-01-01

    Carbonation of magnesium- and calcium-silicate minerals to form their respective carbonates is one method to sequester carbon dioxide. Process development studies have identified reactor design as a key component affecting both the capital and operating costs of ex-situ mineral sequestration. Results from mineral carbonation studies conducted in a batch autoclave were utilized to design and construct a unique continuous pipe reactor with 100% recycle (flow-loop reactor). Results from the flow-loop reactor are consistent with batch autoclave tests, and are being used to derive engineering data necessary to design a bench-scale continuous pipeline reactor.

  6. Effect of propofol with and without EDTA on haemodynamics and calcium and magnesium homeostasis during and after cardiac surgery.

    PubMed

    Wahr, J; Vender, J; Gilbert, H C; Spiess, B; Horrow, J C; Maddi, R

    2000-01-01

    To determine the effect of the addition of disodium edetate (EDTA) to propofol on haemodynamics, ionised calcium and magnesium serum concentrations, and adverse events during cardiac surgery. Double-blind, randomised, multicenter trial. Operating room and intensive care unit of 5 academic health centres. A total of 102 evaluable patients, aged 34 to 85 years, undergoing first-time, elective coronary artery bypass graft surgery. Comparison of propofol with EDTA and propofol without EDTA, each in conjunction with the opioid sufentanil, for intraoperative anaesthesia and postoperative sedation. There were no significant differences at any time between the two formulations in any clinical chemistry measurements, including ionised calcium, ionised magnesium, total calcium, parathyroid hormone, blood urea nitrogen, creatinine, sodium, potassium, and phosphate. During bypass, the mean concentration of ionised calcium decreased to below the normal range, but the decrease was similar in both groups (propofol with EDTA, 0.98 +/- 0.07 mmol/L [N = 51]; propofol, 0.99 +/- 0.10 mmol/ L [N = 51]; p = NS). Calcium concentration returned to normal after rewarming. Mean ionised magnesium concentrations remained within normal limits in both groups. Similarly, there were no clinically meaningful differences between treatments with respect to haemodynamic variables, efficacy variables, or incidence of adverse events. The inclusion of EDTA in the current formulation of propofol appears to have no significant effects on calcium and magnesium profiles, renal function, haemodynamic variables, or other indicators of safety and efficacy during intraoperative anaesthesia and postoperative sedation in patients undergoing cardiac surgery.

  7. The effects of surgery and anesthesia on blood magnesium and calcium concentrations in canine and feline patients.

    PubMed

    Brainard, Benjamin M; Campbell, Vicki L; Drobatz, Kenneth J; Perkowski, Sandra Z

    2007-03-01

    To demonstrate the effect of anesthesia and surgery on serum ionized magnesium and ionized calcium concentrations in clinical canine and feline patients. 37 client-owned dogs, ASA PS I-III and 10 client-owned cats, ASA PS I, all receiving anesthesia for elective or emergent surgery at a Veterinary Teaching Hospital. Plasma ionized and serum total magnesium, and plasma ionized calcium were measured prior to and after a group-standardized anesthetic protocol. Regardless of pre-operative medication (hydromorphone or butorphanol), anesthetic induction (thiopental or lidocaine/hydromorphone/diazepam (LHD) and propofol combination), or type of surgical procedure (peripheral surgery or laparotomy), post-operative plasma ionized calcium concentration decreased in all groups of dogs, while post-operative plasma ionized magnesium increased in all groups, although the changes were not always significant. The dogs who were induced with an LHD and propofol technique had a greater increase in ionized magnesium (0.36 +/- 0.07 to 0.42 +/- 0.07 mmol L(-1)) than the group in which anesthesia was induced with thiopental (0.41 +/- 0.07 to 0.42 +/- 0.07 mmol L(-1), p = 0.009). The cats showed similar changes in ionized magnesium and ionized calcium, and also had a significant increase in serum total magnesium (2.17 +/- 0.20 to 2.31 +/- 0.25 mg dL(-1), p = 0.009) CONCLUSIONS, CLINICAL RELEVANCE: A post-operative decrease in ionized calcium was demonstrated in healthy animals, as well as an increase in ionized or total magnesium after various anesthetic protocols and surgeries. These changes, while statistically significant, do not appear to be clinically significant, as values remained within reference ranges at all times.

  8. Partial replacement of NaCl can be achieved with potassium, magnesium and calcium salts in brown bread.

    PubMed

    Charlton, Karen E; MacGregor, Elizabeth; Vorster, Nonnie H; Levitt, Naomi S; Steyn, Krisela

    2007-11-01

    To develop a reduced-sodium bread in which salt (NaCl) is partially replaced with potassium, magnesium and calcium salts. Experimental bread was compared against standard brown bread, after a drop test (to assess whether bread quality deteriorates with abuse) and after the usual baking practices for baking properties (volume, crust colour, crumb colour and cell structure), sensory properties and nutritional composition. Plant production feasibility was evaluated in an industrial plant. Breads produced there were subjected to sensory evaluation using triangulation tests in a panel of 122 consumers. Twenty-four samples of both standard and experimental bread were laboratory-analysed for sodium, potassium, magnesium and calcium content. A 32.3% reduced-sodium brown bread was developed that was acceptable in terms of baking qualities, appearance, texture and taste. The potassium, magnesium and calcium contents of the bread were increased by 55.2%, 69.0%, and 34.8%, respectively.

  9. [Calcium, magnesium, iron and zinc in drinking water and status biomarkers of these minerals among elder people from Warsaw region].

    PubMed

    Madej, Dawid; Kaluza, Joanna; Antonik, Anna; Brzozowska, Anna; Roszkowski, Wojciech

    2011-01-01

    The aim of this study was to estimate the influence of calcium, magnesium, iron and zinc contents in drinking water on chosen parameters of nutritional status of these minerals in 164 elder people, 75-80 age, living in Warsaw region. Blood, hair and saliva were collected to assess the calcium, magnesium, iron and zinc nutritional status, while the samples of drinking water were collected to determine these minerals in water Mineral concentrations in blood, hair saliva and water were assessment using the atomic spectrophotometer absorption method It was showed that contribution of drinking water to calcium, magnesium, iron and zinc intake was: 15%, 4%, 5%, 9%, respectively. The relationship between the contents of these minerals in drinking water and their levels in the blood, hair and saliva had low correlation coefficients. It probably showed that homeostasis was maintained in the human body and other factors such as demographic or lifestyle factors were important.

  10. The simultaneous measurement of ionized and total calcium and ionized and total magnesium in intensive care unit patients.

    PubMed

    Koch, Stephen M; Warters, R David; Mehlhorn, Uwe

    2002-09-01

    This study was undertaken to determine the relationship between total magnesium and ionized magnesium in critically ill and injured patients. Eighty consecutive intensive care unit (ICU) admissions were evaluated and 34 patients were enrolled in the study. Patients were enrolled who had indwelling arterial catheters and were within 4 days of ICU admission. Six milliliters of blood was collected and assayed simultaneously for total and ionized magnesium, total and ionized calcium, and albumin level. An Acute Physiology and Chronic Health Evaluation (APACHE II) score was calculated at the time of blood collection. The results of our study show a strong correlation between ionized and total magnesium (R =.903) that was not seen between ionized and total calcium (R =.748). We found total hypomagnesemia in 18% and ionized hypomagnesemia in 21% of ICU patients. We also found that 14.7% (5 of 34) of our patients had ionized hypermagnesemia whereas none displayed total hypermagnesemia. We did not find a correlation between APACHE II, sex, race, albumin level, and any electrolyte level. The mortality rate in the subjects studied was 21% (7 of 34). Based on our results we would recommend that intensivists directly measure ionized calcium whereas ionized magnesium can be inferred from total magnesium. Copyright 2002, Elsevier Science (USA). All rights reserved.

  11. [Urinary magnesium and its relationship to calcium in recurrent stone-formers and controls (author's transl)].

    PubMed

    Leskovar, P; Hartung, R; Siebert, A; Wellnhofer, E

    1980-07-01

    Over a period of 4--6 weeks, urine samples were collected three times daily in a group of 16 recurrent stone-formers and in a control group of 11 healthy persons and the urinary concentrations of magnesium, calcium, ionized calcium and creatinine were determined. The Mg-concentrations were distinctly lower in the group of recurrent stone-formers than in the group of healthy controls. The differences were clearly present also in the ratio Ca/Mg, but were diminished in the Mg/creatinine ratio. The Ca2+/Mg-ratio was significantly raised in the group of recurrent stone-formers (p < 0.01) because of the significantly increased Ca2+-concentration and the diminished Mg-concentration in the group of stone-patients. The correlation between the Ca-resp. Ca2+-concentration and the Mg-concentration was in both groups, in the patient and control group, high (r about 0.7).

  12. Dietary calcium and magnesium supplements in spontaneously hypertensive rats and isolated arterial reactivity.

    PubMed Central

    Mäkynen, H.; Kähönen, M.; Arvola, P.; Wuorela, H.; Vapaatalo, H.; Pörsti, I.

    1995-01-01

    1. High calcium diet attenuates the development of hypertension but an associated undesirable effect is that Mg2+ loss to the urine is enhanced. Therefore, we studied the effects of high calcium diet alone and in combination with increased magnesium intake on blood pressure and arterial function. 2. Forty-eight young spontaneously hypertensive rats (SHR) were allocated into four groups, the dietary contents of Ca2+ and Mg2+ being: 1.1%, 0.2% (SHR); 2.5%, 0.2% (Ca-SHR); 2.5%, 0.8% (CaMg-SHR); and 1.1%, 0.8% (Mg-SHR), respectively. Development of hypertension was followed for 13 weeks, whereafter electrolyte balance, lymphocyte intracellular free calcium ([Ca2+]i), and mesenteric arterial responses in vitro were examined. Forty normotensive Wistar-Kyoto (WKY) rats were investigated in a similar manner. 3. Calcium supplementation comparably attenuated the development of Lypertension during normal and high magnesium intake in SHR, with an associated reduced lymphocyte [Ca2+]i and increased Mg2+ loss to the urine. 4. Endothelium-dependent arterial relaxation to acetylcholine was augmented in Ca-SHR and CaMg-SHR, while the relaxations to isoprenaline and the nitric oxide donor SIN-1 were similar in all SHR groups. Relaxation responses induced by the return of K+ to the organ bath upon precontractions in K(+)-free solution were used to evaluate the function of arterial Na+, K(+)-ATPase. The rate of potassium relaxation was similar in Ca-SHR and CaMg-SHR and faster than in untreated SHR.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8564205

  13. Effects of calcium, magnesium, lead, or cadmium on lipoprotein metabolism and atherosclerosis in the pigeon

    SciTech Connect

    Revis, N.W.; Major, T.C.; Horton, C.Y.

    1980-01-01

    Epidemiological and clincal studies suggest that the incidence of atherosclerosis is higher in soft-water areas than in hard-water areas. In an attempt to discern the factor(s) in drinking water that may be associated with these observations, the current studies were performed to determine the effects of several elements associated with hard (i.e., calcium and magnesium) or soft (i.e., calcium and magnesium) or soft (i.e., cadmium and lead) water in the induction and progression of atherosclerosis in the white carneau pigeon. The effect of these elements on lipoprotein metabolism was also assessed because it has been suggested that changes in the metabolism of lipoprotein may play a role in the etiology of atherosclerosis. Results show that the number and size of atherosclerotic plaques in the aorta were increased in pigeons given drinking water containing lead and/or cadmium. The effects of these elements were antagonized by the addition of calcium to drinking water containing lead and/or cadmium. Although lead and cadmium altered the profile of lipoproteins, this change did not appear to be related to an increase in the number and size of atherosclerotic plaques of the aorta. However, in pigeons treated with calcium alone the low-density lipoprotein (LDL) increased fourfold, and arteriosclerosis of the coronary arteries was observed. This result suggests that marked increases in the LDL protein may be related to arteriosclerosis of the coronary arteries. Based on these preliminary results, we suggest that lead, cadmium, and the LDL protein may be important factors in the induction and progression of atherosclerosis and arteriosclerosis in the pigeon.

  14. RGDC Peptide-Induced Biomimetic Calcium Phosphate Coating Formed on AZ31 Magnesium Alloy

    PubMed Central

    Cao, Lin; Wang, Lina; Fan, Lingying; Xiao, Wenjun; Lin, Bingpeng; Xu, Yimeng; Liang, Jun; Cao, Baocheng

    2017-01-01

    Magnesium alloys as biodegradable metal implants have received a lot of interest in biomedical applications. However, magnesium alloys have extremely high corrosion rates a in physiological environment, which have limited their application in the orthopedic field. In this study, calcium phosphate compounds (Ca–P) coating was prepared by arginine–glycine–aspartic acid–cysteine (RGDC) peptide-induced mineralization in 1.5 simulated body fluid (SBF) to improve the corrosion resistance and biocompatibility of the AZ31 magnesium alloys. The adhesion of Ca–P coating to the AZ31 substrates was evaluated by a scratch test. Corrosion resistance and cytocompatibility of the Ca–P coating were investigated. The results showed that the RGDC could effectively promote the nucleation and crystallization of the Ca–P coating and the Ca–P coating had poor adhesion to the AZ31 substrates. The corrosion resistance and biocompatibility of the biomimetic Ca–P coating Mg alloys were greatly improved compared with that of the uncoated sample. PMID:28772717

  15. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy.

    PubMed

    Ren, Yufu; Zhou, Huan; Nabiyouni, Maryam; Bhaduri, Sarit B

    2015-04-01

    Due to their unique biodegradability, magnesium alloys have been recognized as suitable metallic implant materials for degradable bone implants and bioresorbable cardiovascular stents. However, the extremely high degradation rate of magnesium alloys in physiological environment has restricted its practical application. This paper reports the use of a novel microwave assisted coating technology to improve the in vitro corrosion resistance and biocompatibility of Mg alloy AZ31. Results indicate that a dense calcium deficient hydroxyapatite (CDHA) layer was uniformly coated on a AZ31 substrate in less than 10min. Weight loss measurement and SEM were used to evaluate corrosion behaviors in vitro of coated samples and of non-coated samples. It was seen that CDHA coatings remarkably reduced the mass loss of AZ31 alloy after 7days of immersion in SBF. In addition, the prompt precipitation of bone-like apatite layer on the sample surface during immersion demonstrated a good bioactivity of the CDHA coatings. Proliferation of osteoblast cells was promoted in 5days of incubation, which indicated that the CDHA coatings could improve the cytocompatibility of the AZ31 alloy. All the results suggest that the CDHA coatings, serving as a protective layer, can enhance the corrosion resistance and biological response of magnesium alloys. Furthermore, this microwave assisted coating technology could be a promising method for rapid surface modification of biomedical materials.

  16. Genetic variation in SLC7A2 interacts with calcium and magnesium intakes in modulating the risk of colorectal polyps.

    PubMed

    Sun, Pin; Zhu, Xiangzhu; Shrubsole, Martha J; Ness, Reid M; Hibler, Elizabeth A; Cai, Qiuyin; Long, Jirong; Chen, Zhi; Li, Guoliang; Hou, Lifang; Smalley, Walter E; Edwards, Todd L; Giovannucci, Edward; Zheng, Wei; Dai, Qi

    2017-09-01

    Solute carrier family 7, member 2 (SLC7A2) gene encodes a protein called cationic amino acid transporter 2, which mediates the transport of arginine, lysine and ornithine. l-Arginine is necessary for cancer development and progression, including an important role in colorectal cancer pathogenesis. Furthermore, previous studies found that both calcium and magnesium inhibit the transport of arginine. Thus, calcium, magnesium or calcium:magnesium intake ratio may interact with polymorphisms in the SLC7A2 gene in association with colorectal cancer. We conducted a two-phase case-control study within the Tennessee Colorectal Polyps Study. In the first phase, 23 tagging single-nucleotide polymorphisms in the SLC7A2 gene were included for 725 colorectal adenoma cases and 755 controls. In the second phase conducted in an independent set of 607 cases and 2113 controls, we replicated the significant findings in the first phase. We observed that rs2720574 significantly interacted with calcium:magnesium intake ratio in association with odds of adenoma, particularly multiple/advanced adenoma. In the combined analysis, among those with a calcium:magnesium intake ratio below 2.78, individuals who carried GC/CC genotypes demonstrated higher odds of adenoma [OR (95% CI):1.36 (1.11-1.68)] and multiple/advanced adenoma [OR (95% CI): 1.68 (1.28, 2.20)] than those who carried the GG genotype. The P values for interactions between calcium:magnesium intake ratio and rs2720574 were .002 for all adenomas and <.001 for multiple/advanced adenoma. Among those with the GG genotype, a high calcium:magnesium ratio was associated with increased odds of colorectal adenoma [OR (95% CI): 1.73 (1.27-2.36)] and advanced/multiple adenomas [1.62 (1.05-2.50)], whereas among those with the GC/CC genotypes, high calcium:magnesium ratio was related to reduced odds of colorectal adenoma [0.64 (0.42-0.99)] and advanced/multiple adenomas [0.55 (0.31-1.00)]. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Molecular Modeling of Ammonium, Calcium, Sulfur, and Sodium Lignosulphonates in Acid and Basic Aqueous Environments

    NASA Astrophysics Data System (ADS)

    Salazar Valencia, P. J.; Bolívar Marinez, L. E.; Pérez Merchancano, S. T.

    2015-12-01

    Lignosulphonates (LS), also known as lignin sulfonates or sulfite lignin, are lignins in sulfonated forms, obtained from the "sulfite liquors," a residue of the wood pulp extraction process. Their main utility lies in its wide range of properties, they can be used as additives, dispersants, binders, fluxing, binder agents, etc. in fields ranging from food to fertilizer manufacture and even as agents in the preparation of ion exchange membranes. Since they can be manufactured relatively easy and quickly, and that its molecular size can be manipulated to obtain fragments of very low molecular weight, they are used as transport agents in the food industry, cosmetics, pharmaceutical and drug development, and as molecular elements for the treatment of health problems. In this paper, we study the electronic structural and optical characteristics of LS incorporating ammonium, sulfur, calcium, and sodium ions in acidic and basic aqueous media in order to gain a better understanding of their behavior and the very interesting properties exhibit. The studies were performed using the molecular modeling program HyperChem 5 using the semiempirical method PM3 of the NDO Family (neglect of differential overlap), to calculate the structural properties. We calculated the electronic and optical properties using the semiempirical method ZINDO / CI.

  18. Bioactive calcium sulfate/magnesium phosphate cement for bone substitute applications.

    PubMed

    Yang, Guangyong; Liu, Jianli; Li, Fan; Pan, Zongyou; Ni, Xiao; Shen, Yue; Xu, Huazi; Huang, Qing

    2014-02-01

    A novel calcium sulfate/magnesium phosphate cement (CSMPC) composite was prepared and studied in the present work. The physical properties including the phases, the microstructures, the setting properties and the compressive strengths of the CSMPCs were studied. The bio-performances of the CSMPCs were comprehensively evaluated using in vitro simulated body fluid (SBF) method and in vitro cell culture. The dependence of the physical and chemical properties of the CSMPC on its composition and microstructure was studied in detail. It is found that the CSMPC composites exhibited mediate setting times (6-12 min) compared to the calcium sulfate (CS) and the magnesium phosphate cement (MPC). They showed an encapsulation structure in which the unconverted hexagonal prism CSH particles were embedded in the xerogel-like MPC matrix. The phase compositions and the mechanical properties of the CSMPCs were closely related to the content of MPC and the hardening process. The CSMPCs exhibited excellent bioactivity and good biocompatibility to support the cells to attach and proliferate on the surface. The CSMPC composite has the potential to serve as bone grafts for the bone regeneration.

  19. Dynamical behaviors of structural, constrained and free water in calcium- and magnesium-silicate-hydrate gels

    SciTech Connect

    Le, Peisi; Fratini, Emiliano; Ito, Kanae; Wang, Zhe; Mamontov, Eugene; Baglioni, Piero; Chen, Sow-Hsin

    2016-01-28

    We present the hypothesis that the mechanical properties of cement pastes depend strongly on their porosities. In a saturated paste, the porosity links to the free water volume after hydration. Structural water, constrained water, and free water have different dynamical behavior. Hence, it should be possible to extract information on pore system by exploiting the water dynamics. With our experiments we investigated the slow dynamics of hydration water confined in calcium- and magnesium-silicate-hydrate (C-S-H and M-S-H) gels using high-resolution quasi-elastic neutron scattering (QENS) technique. C-S-H and M-S-H are the chemical binders present in calcium rich and magnesium rich cements. We measured three M-S-H samples: pure M-S-H, M-S-H with aluminum-silicate nanotubes (ASN), and M-S-H with carboxyl group functionalized ASN (ASN-COOH). A C-S-H sample with the same water content (i.e. 0.3) is also studied for comparison. We found that structural water in the gels contributes to the elastic component of the QENS spectrum, while constrained water and free water contribute the quasi-elastic component. The quantitative analysis suggests that the three components vary for different samples and indicate the variance in the system porosity, which controls the mechanical properties of cement pastes.

  20. Dynamical behaviors of structural, constrained and free water in calcium- and magnesium-silicate-hydrate gels

    DOE PAGES

    Le, Peisi; Fratini, Emiliano; Ito, Kanae; ...

    2016-01-28

    We present the hypothesis that the mechanical properties of cement pastes depend strongly on their porosities. In a saturated paste, the porosity links to the free water volume after hydration. Structural water, constrained water, and free water have different dynamical behavior. Hence, it should be possible to extract information on pore system by exploiting the water dynamics. With our experiments we investigated the slow dynamics of hydration water confined in calcium- and magnesium-silicate-hydrate (C-S-H and M-S-H) gels using high-resolution quasi-elastic neutron scattering (QENS) technique. C-S-H and M-S-H are the chemical binders present in calcium rich and magnesium rich cements. Wemore » measured three M-S-H samples: pure M-S-H, M-S-H with aluminum-silicate nanotubes (ASN), and M-S-H with carboxyl group functionalized ASN (ASN-COOH). A C-S-H sample with the same water content (i.e. 0.3) is also studied for comparison. We found that structural water in the gels contributes to the elastic component of the QENS spectrum, while constrained water and free water contribute the quasi-elastic component. The quantitative analysis suggests that the three components vary for different samples and indicate the variance in the system porosity, which controls the mechanical properties of cement pastes.« less

  1. Mucoadhesion on urinary bladder mucosa: the influence of sodium, calcium, and magnesium ions.

    PubMed

    Kos, M Kerec; Bogataj, M; Mrhar, A

    2010-07-01

    The aim of the present work was to establish if different cations present in the lumen of the urinary bladder at the time of application affect the mucoadhesion strength of cationic chitosan, anionic sodium carboxymethyl cellulose (NaCMC), and nonionic hydroxypropyl cellulose (HPC). The mucoadhesion strength of polymeric films was determined on pig urinary bladder mucosa. Sodium, calcium, and magnesium ions decreased the mucoadhesion strength of all three polymers except NaCMC, whose detachment forces were not influenced by the presence of sodium. Lower mucoadhesion strength in the presence of cations should be considered when drug delivery systems, for example microspheres, containing the tested mucoadhesive polymers are applied intravesically. In the majority of the experiments, cations decreased the mucoadhesion strength of the polymers already in concentrations normally present in urine. For stronger mucoadhesion, application of microspheres into the empty urinary bladder would be recommended. Additionally, the mucoadhesion properties of the tested polymers could be controlled by the selection of a proper medium for the suspension of microspheres. Namely, for all three polymers bivalent calcium and magnesium had stronger influence on mucoadhesion compared to univalent sodium, and with increasing concentrations of cations mucoadhesion strength of the polymers decreased.

  2. Analysis of serum Calcium, Magnesium, and Parathyroid Hormone in neonates delivered following preeclampsia treatment.

    PubMed

    Vahabi, S; Zaman, M; Farzan, B

    2016-12-30

    Due to the approximate clinical and biochemical manifestations of calcium and magnesium disturbances, with regard to the regulatory effects of parathyroid hormone (PTH), this present study is designed to analyze serum calcium (Ca), magnesium (Mg), and (PTH) at the time of birth, 24 hours afterwards in newborns after the mother has been treated with Mg-sulfate. We registered 86 term and preterm neonates (43 in each group) using simple census method delivered through vagina to preeclampsia pregnant women treated with Mg-sulfate immediately before birth in Khoramabad Asali Hospital, Iran. The first specimen was obtained from umbilical cord blood at birth, followed by the second sample of 2cc peripherally obtained from blood 24 hours after birth. The mean serum Mg level was higher than normal for both specimens in both term and preterm groups with no significant difference. The mean serum Ca level was higher in term group at both occasions, which turned out to be statistically significant (P<0.000) and (P=0.001) for the first and second specimens respectively. The mean PTH level was also in normal range for both groups at both times with no statistical significance. On the other hand, magnesium level showed a significant decline at 24 hours (P = 0.005) while PTH increased significantly (p<0.000) and (p=0.005) for term and preterm groups respectively. In contrast, Ca changes were not significantly different between the two specimens. Treatment with Mg-sulfate immediately before vaginal delivery increases Mg in both term and preterm neonates with no effect on Ca and PTH levels.

  3. Determination of thermodynamic parameters for complexation of calcium and magnesium with chondroitin sulfate isomers using isothermal titration calorimetry: Implications for calcium kidney-stone research

    NASA Astrophysics Data System (ADS)

    Rodgers, Allen L.; Jackson, Graham E.

    2017-04-01

    Chondroitin sulfate (CS) occurs in human urine. It has several potential binding sites for calcium and as such may play an inhibitory role in calcium oxalate and calcium phosphate (kidney stone disease by reducing the supersaturation (SS) and crystallization of these salts. Urinary magnesium is also a role player in determining speciation in stone forming processes. This study was undertaken to determine the thermodynamic parameters for binding of the disaccharide unit of two different CS isomers with calcium and magnesium. These included the binding constant K. Experiments were performed using an isothermal titration calorimeter (ITC) at 3 different pH levels in the physiological range in human urine. Data showed that interactions between the CS isomers and calcium and magnesium occur via one binding site, thought to be sulfate, and that log K values are 1.17-1.93 and 1.77-1.80 for these two metals respectively. Binding was significantly stronger in Mg-CS than in Ca-CS complexes and was found to be dependent on pH in the latter but not in the former. Furthermore, binding in Ca-CS complexes was dependent on the location of the sulfate binding site. This was not the case in the Mg-CS complexes. Interactions were shown to be entropy driven and enthalpy unfavourable. These findings can be used in computational modeling studies to predict the effects of the calcium and magnesium CS complexes on the speciation of calcium and the SS of calcium salts in real urine samples.

  4. Reducing effect of calcium in combination with magnesium and lactulose on body fat mass in middle-aged Japanese women.

    PubMed

    Seki, Nobuo; Asano, Yuzou; Ochi, Hiroshi; Abe, Fumiaki; Uenishi, Kazuhiro; Kudou, Hideki

    2013-01-01

    It has been reported that adequate calcium intake decreases body fat and appropriate intakes of magnesium suppress the development of the metabolic syndrome. Furthermore, lactulose increases the absorption of calcium and magnesium. An optimal combination of calcium, magnesium and lactulose may therefore reduce body fat mass. An open-label randomized controlled trial was conducted to investigate the body fat-reducing effects of a test food containing 300 mg calcium, 150 mg magnesium, and 4.0 g lactulose. Body composition parameters and blood hormone and urine mineral concentrations were measured at baseline and at 6 and 12 months thereafter. Whole-body fat mass was measured with dual-energy x-ray absorptiometry. Seventy-six middle-aged Japanese women (47.5±4.7 years) were randomized to the intake group (n=48) or the non-intake control group (n=28). At 12 months the difference in body fat mass change between the two groups (intake group - control group) was -0.8 kg (95% CI: -1.5 - 0.0 kg, p=0.046), although there were no differences in anthropometric data between the two groups. Body fat percentage at 12 months tended to be lower in the intake group, but the difference was not significant (p=0.09). These findings may suggest that calcium in combination with magnesium and lactulose can reduce body fat mass in middle-aged Japanese women. However, the contribution of magnesium and lactulose are unclear in this study. Further studies are needed to clarify these contributions.

  5. Nationwide data on municipal drinking water and hip fracture: could calcium and magnesium be protective? A NOREPOS study.

    PubMed

    Dahl, Cecilie; Søgaard, Anne Johanne; Tell, Grethe S; Flaten, Trond Peder; Hongve, Dag; Omsland, Tone Kristin; Holvik, Kristin; Meyer, Haakon E; Aamodt, Geir

    2013-11-01

    Norway has a high incidence of hip fractures, and the incidence varies by degree of urbanization. This variation may reflect a difference in underlying environmental factors, perhaps variations in the concentration of calcium and magnesium in municipal drinking water. A trace metal survey (1986-1991) in 556 waterworks (supplying 64% of the Norwegian population) was linked geographically to hip fractures from hospitals throughout the country (1994-2000). In all, 5472 men and 13,604 women aged 50-85years suffered a hip fracture. Poisson regression models were fitted, adjusting for age, urbanization degree, region of residence, type of water source, and pH. The concentrations of calcium and magnesium in drinking water were generally low. An inverse association was found between concentration of magnesium and risk of hip fracture in both genders (IRR men highest vs. lowest tertile=0.80, 95% CI: 0.74, 0.87; IRR women highest vs. lowest tertile=0.90, 95% CI: 0.85, 0.95), but no consistent association between calcium and hip fracture risk was observed. The highest tertile of urbanization degree (city), compared to the lowest (rural), was related to a 23 and 24% increase in hip fracture risk in men and women, respectively. The association between magnesium and hip fracture did not explain the variation in hip fracture risk between city and rural areas. Magnesium in drinking water may have a protective role against hip fractures; however this association should be further investigated.

  6. Effectiveness of calcium magnesium acetate as an SO[sub x] sorbent in coal combustion

    SciTech Connect

    Levendis, Y.A.; Zhu, W.; Wise, D.L. ); Simons, G.A. )

    1993-05-01

    A fundamental study was conducted on the effectiveness of the chemical calcium magnesium acetate (CMA) as a sulfur capture agent during combustion of pulverized coal. It was based on high-temperature laboratory-bench experiments with the scope of exploring the use of CMA as a dry scrubbing'' medium for in-boiler injection. Two methods of CMA introduction in the furnace were considered: dry-spraying fine powders of the chemical and wet-spraying aqueous solutions to generate fine aerosols. It considered conditions pertinent to post-flame in-boiler injection of CMA to identify optimum temperatures and residence times. In addition to the versatility of the water-soluble CMA to enable spray drying injection and therefore eliminate grinding costs, there are other attractive features. Mainly, its ability to form highly cenospheric, popcorn''-like, oxide particles on heating to high temperatures. These cenospheres possess thin, porous walls with blowholes that enable penetration of the SO[sub 2] in the interior of the particle which promotes high sorbent utilization. SO[sub 2] captures in the order of 90% were achieved with dry-injection of the chemical at furnace gas temperatures of about 1,000[degree]C, a Ca/S ratio of 2, and particle size of [approximately] 50[mu]m. Moreover, CMA was superior (by over 40%) to either CaCO[sub 3] or Ca(OH)[sub 2] in sulfur capture effectiveness per unit mass of calcium. This commercially obtained CMA was even superior to reagent-grade calcium acetate (by as much as 30%), again per unit mass of calcium. The utilization of CMA and calcium acetate depended on the cenosphere wall thickness, rather than the particle size and, thus, outperformed other sorbents regardless of the size of the resulting oxide particles.

  7. Effect of Calcium, Magnesium, and Aluminum-Iron on the Susceptibility of Loblolly Pine Seedlings to Fusiform Rust

    Treesearch

    S.J. Rowan

    1979-01-01

    The susceptibility (percentage of seedlings infected) of Pinus taeda seedlings to infection by Cronartium quercuum f. sp. fusiforme was not affected by fertilization with calcium, magnesium, or aluminum-iron. Fertilization with Al as Al2(SO4)2,and Fe as FeCl

  8. Effects of calcium and magnesium hardness on the fertilization and hatching success of channel X blue hybrid catfish eggs

    USDA-ARS?s Scientific Manuscript database

    The aquifer used for hybrid catfish hatcheries is less than 10 mg/L of calcium hardness and 1- 25 mg/L of magnesium hardness. Embryonic development is deemed to be the most sensitive stage in the life cycle of a teleost. As egg development takes outside the fish’s body, water hardness is one abioti...

  9. Chronic dietary fiber supplementation with wheat dextrin does not inhibit calcium and magnesium absorption in premenopausal and postmenopausal women

    USDA-ARS?s Scientific Manuscript database

    This placebo-controlled, randomized, crossover clinical study examined the effect of chronic wheat dextrin intake on calcium and magnesium absorption. Forty premenopausal and post menopausal women (mean +/- SD age 49.9 +/- 9.8 years)consumed wheat dextrin or placebo (15 g/day) for 2 weeks prior to 4...

  10. Influence of calcium, magnesium, or potassium ions on the formation and stability of emulsions prepared using highly hydrolyzed whey proteins.

    PubMed

    Ramkumar, C; Singh, H; Munro, P A; Singh, A M

    2000-05-01

    Oil-in-water emulsions (4 wt % soy oil) containing 4 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis) and different levels of calcium, magnesium, or potassium chloride were prepared in a two-stage homogenizer. Other emulsions containing 4 wt % WPH but including 0.35 wt % hydroxylated lecithin and different levels of the above minerals were similarly prepared. The formation and stability of these emulsions were determined by measuring oil droplet size distributions using laser light scattering and by confocal scanning laser microscopy and a gravity creaming test. Both lecithin-free and lecithin-containing emulsions showed no change in droplet size distributions with increasing concentration of potassium in the range 0-37.5 mM. In contrast, the diameter of emulsion droplets increased with increasing calcium or magnesium concentration >12.5 mM. Emulsions containing hydroxylated lecithin were more sensitive to the addition of calcium or magnesium than the lecithin-free emulsions. Storage of emulsions at 20 degrees C for 24 h further increased the diameter of droplets and resulted in extensive creaming in emulsions containing >25 mM calcium or magnesium. It appears that both flocculation and coalescence processes were involved in the destabilization of emulsions induced by the addition of divalent cations.

  11. [Comparative study of the urinary excretion of boron, calcium, magnesium and phosphorus in postmenopausal women with and without osteoporosis].

    PubMed

    José Ramón, Vielma; Mora Mora, Marylú; Marino Alarcón, Oscar; Hernández, Gladys; Josefina Linares, Ledy; Urdaneta Romero, Haideé; Arévalo González, Evelia

    2012-03-01

    In order to compare the possible relationship between urinary concentrations of boron, calcium, magnesium and phosphorus in serum and urine of postmenopausal women with and without osteoporosis, we selected 45 postmenopausal women over 47 years of age, divided into two groups: group I clinically healthy postmenopausal women and group II postmenopausal women with osteoporosis, without chronic kidney and hepatic diseases or diabetes mellitus. We determined the boron (B), phosphorus (P), total calcium (Ca) and total magnesium (Mg) in the urine of two hours, by atomic emission spectroscopy with induction-coupled plasma (ICPA-ES). Total calcium and total magnesium in serum were determined by atomic flame absorption spectroscopy (FAAS) and inorganic phosphorus in serum, and creatinine in serum and urine, by molecular absorption spectrometry. The preliminary results suggest the existence of a significant difference (p < 0.05) in boron and phosphorus concentrations in the urine of two hours between the groups. The model of linear regression analysis used showed a relationship between urinary concentrations of boron/creatinine index and calcium/ creatinine, magnesium/creatinine and phosphorus/creatinine indexes in the urine of postmenopausal women with osteoporosis.

  12. Intrauterine programming of urinary calcium and magnesium excretion in children born to mothers with insulin dependent diabetes mellitus

    PubMed Central

    Mughal, M; Eelloo, J; Roberts, S; Sibartie, S; Maresh, M; Sibley, C; Adams, J

    2005-01-01

    Background: Offspring of diabetic rats have reduced urinary calcium and magnesium excretion compared with offspring of controls; these differences persist up to16 weeks after birth, a time equivalent to young adulthood in humans. Objectives: To test the hypothesis that urinary calcium and magnesium excretion would be lower in children born to mothers with insulin dependent diabetes mellitus (ChMIDDM) than those born to non-diabetic mothers. Methods: Concentrations of calcium, magnesium, sodium, and creatinine were measured in first void spot urine samples collected from 45 (28 male; median age 9.6 years) ChMIDDM and 127 (58 male; median age 11.3 years) controls. Analysis of covariance was used to test for differences in urinary calcium to creatinine ratios (UCa/Cr), magnesium to creatinine ratios (UMg/Cr), and log sodium to creatinine ratios (logUNa/Cr) between controls and ChMIDDM after allowing for the effects of sex and age. Results: UCa/Cr (difference –0.10, 95% confidence interval (CI) –0.19 to –0.01; p = 0.03) and UMg/Cr (difference –0.15, 95% CI –0.22 to –0.08; p<0.0001) were lower in ChMIDDM than controls. However, logUNa/Cr did not differ between ChMIDDM and controls (difference –0.14, 95% CI –0.33 to 0.05; p = 0.1). The daily estimated intake of magnesium, sodium, and protein were significantly higher and that of calcium non-significantly higher in ChMIDDM than controls. In ChMIDDM, UCa/Cr and UMg/Cr were not related to diabetic control of mothers. Conclusions: Results of this study provide the first evidence that in humans, as in rats, there is modification of renal Ca and Mg handling in ChMIDDM, which persists well into childhood. PMID:16036891

  13. Intrauterine programming of urinary calcium and magnesium excretion in children born to mothers with insulin dependent diabetes mellitus.

    PubMed

    Mughal, M Z; Eelloo, J A; Roberts, S A; Sibartie, S; Maresh, M; Sibley, C P; Adams, J E

    2005-07-01

    Offspring of diabetic rats have reduced urinary calcium and magnesium excretion compared with offspring of controls; these differences persist up to 16 weeks after birth, a time equivalent to young adulthood in humans. To test the hypothesis that urinary calcium and magnesium excretion would be lower in children born to mothers with insulin dependent diabetes mellitus (ChMIDDM) than those born to non-diabetic mothers. Concentrations of calcium, magnesium, sodium, and creatinine were measured in first void spot urine samples collected from 45 (28 male; median age 9.6 years) ChMIDDM and 127 (58 male; median age 11.3 years) controls. Analysis of covariance was used to test for differences in urinary calcium to creatinine ratios (UCa/Cr), magnesium to creatinine ratios (UMg/Cr), and log sodium to creatinine ratios (logUNa/Cr) between controls and ChMIDDM after allowing for the effects of sex and age. UCa/Cr (difference -0.10, 95% confidence interval (CI) -0.19 to -0.01; p = 0.03) and UMg/Cr (difference -0.15, 95% CI -0.22 to -0.08; p<0.0001) were lower in ChMIDDM than controls. However, logUNa/Cr did not differ between ChMIDDM and controls (difference -0.14, 95% CI -0.33 to 0.05; p = 0.1). The daily estimated intake of magnesium, sodium, and protein were significantly higher and that of calcium non-significantly higher in ChMIDDM than controls. In ChMIDDM, UCa/Cr and UMg/Cr were not related to diabetic control of mothers. Results of this study provide the first evidence that in humans, as in rats, there is modification of renal Ca and Mg handling in ChMIDDM, which persists well into childhood.

  14. The role of ammonium citrate washing on the characteristics of mechanochemical-hydrothermal derived magnesium-containing apatites.

    PubMed

    Chen, Chun-Wei; Suchanek, Wojciech L; Shuk, Pavel; Byrappa, Kullaiah; Oakes, Charles; Riman, Richard E; Brown, Kelly; Tenhuisen, Kevor S; Janas, Victor F

    2007-07-01

    The role of citrate washing on the physical and chemical characteristics of magnesium-substituted apatites (HAMgs) was performed. HAMgs were synthesized by a mechanochemical-hydrothermal route at room temperature in as little as 1 h, which is five times faster than our previous work. Magnesium-substituted apatites had concentrations as high as 17.6 wt% Mg with a corresponding specific surface area (SSA) of 216 m(2)/g. A systematic study was performed to examine the influence of increasing magnesium content on the physical and chemical characteristics of the reaction products. As the magnesium content increased from 0 to 17.6 wt%, magnesium-doped apatite crystallite size decreased from 12 to 8.8 nm. The Mg/(Mg + Ca) ratio in the product was enriched relative to that used for the reacting precursor solution. During mechanochemical-hydrothermal reaction, magnesium doped apatites co-crystallize with magnesium hydroxide. Citrate washing serves to remove the magnesium hydroxide phase. The concomitant increase in surface area results because of the removal of this phase. Possible mechanisms for magnesium hydroxide leaching are discussed to explain the measured trends.

  15. Calcium-magnesium Aluminosilicate (CMAS) Interactions with Advanced Environmental Barrier Coating Material

    NASA Technical Reports Server (NTRS)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    Particulates, like sand and volcanic ash, threaten the development of robust environmental barrier coatings (EBCs) that protect next-generation silicon-based ceramic matrix composite (CMC) turbine engine components from harsh combustion environments during service. The siliceous particulates transform into molten glassy deposits of calcium-magnesium aluminosilicate (CMAS) when ingested by an aircraft engine operating at temperatures above 1200C. In this study, a sample of desert sand was melted into CMAS glass to evaluate high-temperature interactions between the sand glass and an advanced EBC material. Desert sand glass was added to the surface of hot-pressed EBC substrates, which were then heated in air at temperatures ranging from 1200C to 1500C. Scanning electron microscopy and X-ray energy-dispersive spectroscopy were used to evaluate microstructure and phase compositions of specimens and the CMASEBC interface after heat treatments.

  16. The final phases of calcium and magnesium phosphates precipitated from solutions of high to medium concentration

    NASA Astrophysics Data System (ADS)

    Abbona, Francesco; Lundager Madsen, Hans Erik; Boistelle, Roland

    1988-07-01

    The phases of calcium and magnesium phosphates, which are obtained by evolution at 25°C of the first precipitates in their mother solutions, are described in terms of pH and composition of solutions. The initial conditions were: 0.050M ≤ [P] ≤ 0.500M; [P] = [Ca] + [Mg]; 0 ≤ [Mg]/[Ca] ≤ 1. The most abundant final phases are brushite, CaHPO 4·2H 2O; monetite, CaHPO 4; newberyite, MgHPO 4·3H 2O and struvite, MgNH 4PO 4·6H 2O. At low concentration whitlockite, Ca 9MgH(PO 4) 7, occurs with the amorphous phase previously precipitated, Ca 3(PO 4) 2·nH 2O. The conditions for stability are discussed and the changes observed are interpreted.

  17. [Concentrations of calcium, magnesium, sodium and potassium in human milk and infant formulas].

    PubMed

    Rodríguez Rodríguez, E M; Sanz Alaejos, M; Díaz Romero, C

    2002-12-01

    Concentrations of calcium, magnesium, sodium and potassium were determined in 55 samples of mature human milk from Canary women and 5 samples of powdered infant formula. According to the literature our data fell within the normal intervals described for each kind of milk. The mean concentration of Ca, Mg, Na y K of powdered infant formula was higher than those concentrations found in the human milks. Significant differences among the concentrations of Ca, Mg and Na for the milks of the considered mothers were observed. Only the Ca intakes for infants fed with human milk were lower than those requirements recommended by the Food and Nutrition Board (1989). However, the infants fed with powdered infant formula had an adequate intake of all the studied metals. A progressive decrease of the Na, K and Ca concentrations with the lactation stage was observed. Maternal age, parity and sex of the newborns did not affect the metal concentrations significantly.

  18. Continental weathering following a Cryogenian glaciation: Evidence from calcium and magnesium isotopes

    NASA Astrophysics Data System (ADS)

    Kasemann, Simone A.; Pogge von Strandmann, Philip A. E.; Prave, Anthony R.; Fallick, Anthony E.; Elliott, Tim; Hoffmann, Karl-Heinz

    2014-06-01

    A marked ocean acidification event and elevated atmospheric carbon dioxide concentrations following the extreme environmental conditions of the younger Cryogenian glaciation have been inferred from boron isotope measurements. Calcium and magnesium isotope analyses offer additional insights into the processes occurring during this time. Data from Neoproterozoic sections in Namibia indicate that following the end of glaciation the continental weathering flux transitioned from being of mixed carbonate and silicate character to a silicate-dominated one. Combined with the effects of primary dolomite formation in the cap dolostones, this caused the ocean to depart from a state of acidification and return to higher pH after climatic amelioration. Differences in the magnitude of stratigraphic isotopic changes across the continental margin of the southern Congo craton shelf point to local influences modifying and amplifying the global signal, which need to be considered in order to avoid overestimation of the worldwide chemical weathering flux.

  19. Evaluation of AVL988/4 analyzer for measurement of ionized magnesium and ionized calcium.

    PubMed

    Cao, Z; Tongate, C; Elin, R J

    2001-01-01

    Ionized magnesium (Mg++) and ionized calcium (Ca++) are the physiologically active forms of these elements in the body and their concentrations have clinical value. Though the AVL988/4 instrument that measures concentrations of Mg++ and Ca++ has been evaluated, some clinically important parameters were unknown. In this study, we evaluated AVL988/4 analyzer for measuring Mg++ and Ca++ concentrations and provided the following information: (1) The newly formulated Becton Dickinson (BD) Vacutainer plastic tubes with clot activator and silicone as the stopper lubricant (serial no. 367820) caused a significant high bias for the Mg++ measurement but had no effect on the Ca++ measurement; (2) the optimal conditions for specimen storage were no exposure to air at 4 degrees C for up to 24 h; (3) no significant difference in the results of the Ca++ concentration determined using AVL988/4 or i-STAT; (4) no carryover between samples was found.

  20. Dissolved Calcium and Magnesium Carbonates Promote Arsenate Release From Ferrihydrite in Flow Systems

    NASA Astrophysics Data System (ADS)

    Saalfield, S. L.; Bostick, B. C.

    2007-12-01

    Field data from water systems around the world have shown that arsenic can reach toxic concentrations in dynamic groundwater systems. This is generally in contrast to analogous static systems at circumneutral pH, where arsenic is strongly retained by sorption to iron (hydr)oxides. Our research examines the effect of calcium and magnesium carbonates on As(V) mobility. In both dynamic flow and static experiments, arsenate was pre- sorbed to poorly crystalline iron hydroxides (1-10% sorption capacity), with varying aqueous compositions including calcium, magnesium, carbonate, sulfate, lactate, and other common groundwater species (pH 7.5-8). Thus we investigated how the dissolution of common carbonate minerals, specifically CaCO3 and MgCO3, affect arsenic behavior in the context of groundwater solutions. Under static (batch) conditions, no measurable arsenic (<10 μg/L) is released into solutions containing alkaline earth metals (AEMs) and carbonates. When elevated concentrations of AEMs and carbonate are introduced by dynamic flow, however, arsenic is mobilized at up to 500 μg/L, releasing significant proportions the total arsenic present. This is only the case when both of these species are present; with other common ion pairs, little to no arsenic is released. These results indicate that arsenate adsorption is kinetically controlled under flow conditions, resulting in very different mobility relative to otherwise equivalent static systems. Furthermore, the combination of alkaline earth metals and carbonates promotes As(V) mobility in column-based systems. We propose that these phenomena indicate a combination of physical and chemical effects by which diffusion limitation becomes dominant in limiting arsenic sorption in flow systems. Many carbonate-buffered aquifers, as well as those undergoing rapid mineralization of organic matter, could be affected by these processes of AEM-carbonate-limited sorption and increased arsenic mobility.

  1. Magnesium and calcium sulfate stabilities and the water budget of Mars

    USGS Publications Warehouse

    Chou, I.-Ming; Seal, R.R.

    2007-01-01

    Magnesium sulfate probably plays a dominant role in the water cycle of Mars away from the polar ice caps through hydration and dehydration reactions. This prominence is due to its abundance, its occurrence in numerous hydration states, and its ability to hydrate and dehydrate rapidly. New experimental studies on the metastable reaction between hexahydrite (MgSO4??6H2O) and starkeyite (MgSO4-4H2O) as a function of temperature and relative humidity, supplemented by recent investigations of the stable reaction between epsomite (MgSO4??7H2O) and hexahydrite and by phase equilibrium calculations, suggest that the most important magnesium sulfate phases involved in the Martian water cycle are MgSO4??11 H2O, epsomite, starkeyite, and possibly kieserite (MgSO4??H2O). Hexahydrite is not predicted to be stable on the surface of Mars. During diurnal variations in temperature and relative humidity, 1 kg of MgSO4 can release or remove from the atmosphere 1.5 kg of H2O by cycling between kieserite and MgSO4??11 H2O. Despite subequal abundances of calcium sulfate, calcium sulfates are not likely to be important in the water cycle of the planet because of sluggish rates of hydration and dehydration and a more limited range of H2O concentrations per kilogram of CaSO4 (0.00 to 0.26 kg kg-1). Modern or recent erosion on Mars attributed to liquid water may be due to the dehydration Of MgSO4??11 H2O because of the inferred abundance and likelihood of occurrence of this phase and its limited stability relative to known variations in temperature and relative humidity.

  2. Magnesium and calcium sulfate stabilities and the water budget of Mars

    NASA Astrophysics Data System (ADS)

    Chou, I.-Ming; Seal, Robert R.

    2007-11-01

    Magnesium sulfate probably plays a dominant role in the water cycle of Mars away from the polar ice caps through hydration and dehydration reactions. This prominence is due to its abundance, its occurrence in numerous hydration states, and its ability to hydrate and dehydrate rapidly. New experimental studies on the metastable reaction between hexahydrite (MgSO4.6H2O) and starkeyite (MgSO4.4H2O) as a function of temperature and relative humidity, supplemented by recent investigations of the stable reaction between epsomite (MgSO4.7H2O) and hexahydrite and by phase equilibrium calculations, suggest that the most important magnesium sulfate phases involved in the Martian water cycle are MgSO4.11H2O, epsomite, starkeyite, and possibly kieserite (MgSO4.H2O). Hexahydrite is not predicted to be stable on the surface of Mars. During diurnal variations in temperature and relative humidity, 1 kg of MgSO4 can release or remove from the atmosphere 1.5 kg of H2O by cycling between kieserite and MgSO4.11H2O. Despite subequal abundances of calcium sulfate, calcium sulfates are not likely to be important in the water cycle of the planet because of sluggish rates of hydration and dehydration and a more limited range of H2O concentrations per kilogram of CaSO4 (0.00 to 0.26 kg kg-1). Modern or recent erosion on Mars attributed to liquid water may be due to the dehydration of MgSO4.11H2O because of the inferred abundance and likelihood of occurrence of this phase and its limited stability relative to known variations in temperature and relative humidity.

  3. Cerebral spinal fluid and serum ionized magnesium and calcium levels in preeclamptic women during administration of magnesium sulfate.

    PubMed

    Apostol, Alexander; Apostol, Radu; Ali, Erum; Choi, Anne; Ehsuni, Nazanin; Hu, Bin; Li, Lei; Altura, Bella T; Altura, Burton M

    2010-06-01

    To study the distribution of ionized and total magnesium (Mg) in serum and cerebral spinal fluid (CSF) in preeclamptic women receiving MgSO(4) and how this treatment affects the ionized calcium (Ca(2+)) and ionized Ca:Mg ratios compared with healthy nonpregnant women and pregnant control women (HP). Controlled clinical study. An academic medical center. African-American women older than 20 and less than 35 years. The pregnant preeclamptic study and pregnant control groups each consisted of 16 women; the nonpregnant group consisted of 10 subjects. The preeclamptic women received a 6-g bolus of MgSO(4) IV started at least 4.5 hours before delivery during 15-20 minutes, then 2 g/h baseline. The CSF and serum levels of Ca(2+) and Mg(2+) and total Mg were measured in all three groups of women. The Ca(2+):Mg(2+) ratios were determined. Physiologic monitoring was done and recorded every 4 hours where appropriate. Bloods were drawn every 6 hours for complete blood count, metabolic panel, lactate dehydrogenase, uric acid, and electrolytes. Serum pH, total Mg, Apgar scores, and general health of the infants born to preeclamptic mothers given MgSO(4) were followed. The HP showed a reduction in mean serum ionized and total Mg, increase in ionized Ca, and a large increase in Ca(2+):Mg(2+) ratios compared with healthy nonpregnant women. Although the CSF ionized and total Mg and Ca(2+):Mg(2+) ratios were not altered with MgSO(4) treatment in the preeclamptic women receiving MgSO(4), the mean serum Mg values increased 3-fold. All infants were full-term, regardless of MgSO(4) treatment, and normal with respect to birth weight, Apgar scores, blood pH, total Mg, and neurologic scores. The data indicate that there is a direct relationship between the serum and CSF Ca(2+):Mg(2+) ratios in HP and this ratio may be crucial in preventing vascular and neurologic complications in preeclampsia-eclampsia. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc

  4. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.

    PubMed

    Kannan, M Bobby; Raman, R K Singh

    2008-05-01

    The successful applications of magnesium-based alloys as degradable orthopaedic implants are mainly inhibited due to their high degradation rates in physiological environment and consequent loss in the mechanical integrity. This study examines the degradation behaviour and the mechanical integrity of calcium-containing magnesium alloys using electrochemical techniques and slow strain rate test (SSRT) method, respectively, in modified-simulated body fluid (m-SBF). Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) results showed that calcium addition enhances the general and pitting corrosion resistances of magnesium alloys significantly. The corrosion current was significantly lower in AZ91Ca alloy than that in AZ91 alloy. Furthermore, AZ91Ca alloy exhibited a five-fold increase in the surface film resistance than AZ91 alloy. The SSRT results showed that the ultimate tensile strength and elongation to fracture of AZ91Ca alloy in m-SBF decreased only marginally (approximately 15% and 20%, respectively) in comparison with these properties in air. The fracture morphologies of the failed samples are discussed in the paper. The in vitro study suggests that calcium-containing magnesium alloys to be a promising candidate for their applications in degradable orthopaedic implants, and it is worthwhile to further investigate the in vivo corrosion behaviour of these alloys.

  5. Comparison of serum copper, magnesium, zinc and calcium levels between G6PD deficient and normal Chinese adults.

    PubMed

    Chen, B H; Tsai, J L; Tsai, L Y; Chao, M C

    1999-11-01

    Minerals are important for normal hematopoiesis and may play a role in acute hemolytic anemia induced by G6PD deficiency. To compare serum magnesium, copper, zinc and calcium levels between G6PD deficiency and normal control adults, we investigated 69 G6PD deficient (28 male, 41 female) and 61 age- matched G6PD normal adults (26 male, 35 female). Serum magnesium, copper, zinc and calcium levels were determined by atomic absorbance spectrometry. Our results revealed that male adults with G6PD deficiency had significantly higher serum copper and magnesium levels than those of the control group (P < 0.01, < 0.05, respectively). In G6PD normal adults, serum copper levels were significantly lower in males than in females (P < 0.01). In the group of G6PD deficiency adults, serum copper levels in males (103.0 +/- 10.4 ug/dL) were significantly lower than those in females (139.0 +/- 34.3 ug/dL) (P < 0.01). Serum magnesium values and zinc values in males (2.42 +/- 0.38 mEq/L and 102.2 +/- 26.5 ug/dL) were significantly higher than those in females (2.07 +/- 0.20 mEq/L and 87.0 +/- 14.9 ug/dL) (P all < 0.01). Female adults with G6PD deficiency had significantly higher serum calcium levels and lower magnesium levels than those of the control group (P all < 0.01). The significantly higher levels of serum copper and magnesium in G6PD deficient male adults may play some role concerning red blood cells in resistance to plasmodium falciparum.

  6. A comparison of mitochondria from Torulopsis utilis grown in continous culture with glycerol, iron, ammonium, magnesium or phosphate as the growth-limiting nutrient

    PubMed Central

    Light, P. Ann; Garland, P. B.

    1971-01-01

    1. Mitochondria prepared from Torulopsis utilis grown in a chemostat with iron-limited growth were found to lack energy conservation but not electron flow in that segment of the respiratory chain leading from intramitochondrial NADH to the cytochromes [i.e. the site 1 segment (Lehninger, 1964)]. 2. Site 1 energy conservation was present in mitochondria prepared from cells grown under conditions of limitation by glycerol, ammonium and magnesium. Phosphate-limited growth resulted in mitochondrial preparations without respiratory control. 3. Mitochondria from cells grown under conditions of iron limitation were insensitive to the respiratory inhibitor piericidin A, whereas sensitivity was present in mitochondria prepared from glycerol-, ammonium-, magnesium- or phosphate-limited cells. 4. These observations are considered to provide indirect evidence for a role of non-haem iron in the mechanism of energy conservation and also piericidin A sensitivity in T. utilis mitochondria. 5. A readily constructed and inexpensive pH-measuring and -controlling circuit is described for use with continuous-culture apparatus. PMID:4331254

  7. Beta-type calcium phosphates with and without magnesium: From hydrolysis of brushite powder to robocasting of periodic scaffolds.

    PubMed

    Richard, Raquel C; Sader, Márcia S; Dai, Jisen; Thiré, Rossana M S M; Soares, Gloria D A

    2014-10-01

    Several approaches have attempted to replace extensive bone loss, but each of them has their limitation. Nowadays, additive manufacture techniques have shown great potential for bone engineering. The objective of this study was to synthesize beta tricalcium phosphate (β-TCP), beta tricalcium phosphate substituted by magnesium (β-TCMP), and biphasic calcium phosphate substituted by magnesium (BCMP) via hydrolysis and produce scaffolds for bone regeneration using robocasting technology. Calcium deficient apatites, with and without magnesium were obtained by hydrolysis, calcined and physico-chemically characterized. Colorimetric cell viability assay, calcium nodule formation, and the expression of alkaline phosphatase, osteocalcin, transforming growth factor beta-1 and collagen were assessed using a mouse osteoblastic cell line (MC3T3-E1). Direct-write assembly of cylindrical periodic scaffolds was done via robotic deposition using β-TCP, β-TCMP, and BCMP colloidal inks. The sintered scaffolds were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, Archimede's method, and uniaxial compression test. According to the cell viability assay, the powders induced cell proliferation. Calcium nodule formation and bone markers activity suggested that the materials present potential value in bone tissue engineering. The scaffolds built by robocasting presented interconnected porous and exhibited mean compressive strength between 7.63 and 18.67 MPa, compatible with trabecular bone.

  8. CaSR-mediated interactions between calcium and magnesium homeostasis in mice

    PubMed Central

    Quinn, Stephen J.; Thomsen, Alex R. B.; Egbuna, Ogo; Pang, Jian; Baxi, Khanjan; Goltzman, David; Pollak, Martin

    2013-01-01

    Calcium (Ca) and magnesium (Mg) homeostasis are interrelated and share common regulatory hormones, including parathyroid hormone (PTH) and vitamin D. However, the role of the calcium-sensing receptor (CaSR) in Mg homeostasis in vivo is not well understood. We sought to investigate the interactions between Mg and Ca homeostasis using genetic mouse models with targeted inactivation of PTH (PTH KO) or both PTH and the calcium-sensing receptor (CaSR) (double knockout, DKO). Serum Mg is lower in PTH KO and DKO mice than in WT mice on standard chow, whereas supplemental dietary Ca leads to equivalent Mg levels for all three genotypes. Mg loading increases serum Mg in all genotypes; however, the increase in serum Mg is most pronounced in the DKO mice. Serum Ca is increased with Mg loading in the PTH KO and DKO mice but not in the WT mice. Here, too, the hypercalcemia is much greater in the DKO mice. Serum and especially urinary phosphate are reduced during Mg loading, which is likely due to intestinal chelation of phosphate by Mg. Mg loading decreases serum PTH in WT mice and increases serum calcitonin in both WT and PTH KO mice but not DKO mice. Furthermore, Mg loading elevates serum 1,25-dihydroxyvitamin D in all genotypes, with greater effects in PTH KO and DKO mice, possibly due to reduced levels of serum phosphorus and FGF23. These hormonal responses to Mg loading and the CaSR's role in regulating renal function may help to explain changes in serum Mg and Ca found during Mg loading. PMID:23360827

  9. Sodium, potassium, calcium, magnesium, and phosphorus intakes of infants and children: Bogalusa Heart Study.

    PubMed

    Frank, G C; Webber, L S; Nicklas, T A; Berenson, G S

    1988-07-01

    Electrolyte and mineral intakes assessed by 24-hour dietary recall were examined for race and sex differences in cohorts of infants and school-age children at 6 months and at 1, 2, 3, 4, 10, 13, 15, and 17 years. A fourfold increase in sodium intake occurred from 6 months to 4 years, and potassium intake doubled. Sodium increased from 0.88 gm at 6 months to 3.21 gm at 4 years and 3.67 gm by 17 years; a slight increase for potassium was noted from 4 to 17 years for boys. Calcium intake was relatively constant from 6 months to 17 years. Boys had higher intakes of sodium and sodium per kilogram body weight than did girls. Black children at 2, 3, and 4 years had significantly higher sodium, potassium, calcium, phosphorus, and magnesium expressed as total intake and per kilogram body weight than white children did. At 6 months, 66% of the infants exceeded the National Research Council's recommended range for sodium. At 1 to 10 years, 90% to 100% and at 13 to 17 years, 60% to 65% exceeded the recommended range. In contrast, 58% to 77% of preschool children and only 5% to 20% of school-age children surpassed the recommended potassium range. Fifty percent to 70% of children more than 10 years old achieved the recommended range for potassium. Approximately half of the children 6 months through 4 years of age met the Recommended Dietary Allowance (RDA) for calcium. Sixty percent to 80% of adolescents ingested less than two-thirds the RDA. Girls had lower intakes than did boys.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Magnesium hydrogen carbonate natural mineral water enriched with K(+)-citrate and vitamin B6 improves urinary abnormalities in patients with calcium oxalate nephrolithiasis.

    PubMed

    Bren, A; Kmetec, A; Kveder, R; Kaplan-Pavlovcic, S

    1998-01-01

    The influence of drinking magnesium hydrogen carbonate natural mineral water enriched with potassium citrate on urinary metabolic abnormalities was prospectively studied in 27 patients with recurrent calcium oxalate nephrolithiasis. The mean 24-hour urinary pH shifted from 6.34 to 6.93 (p < 0.01), the mean urinary magnesium/urinary creatinine ratio rose from 0.47 to 0.67 (p < 0.01), the mean urinary citrate/urinary creatinine ratio increased from 0.26 to 0.35 (p NS), and the mean 24-hour urinary calcium decreased from 7.98 to 6.05 mmol (p < 0.05). The effects of magnesium hydrogen carbonate natural mineral water enriched with potassium citrate were found to be favorable on urinary calcium, urinary magnesium/urinary creatinine ratio and urinary pH in patients with calcium oxalate nephrolithiasis.

  11. Cord blood calcium, phosphate, magnesium, and alkaline phosphatase gestational age-specific reference intervals for preterm infants

    PubMed Central

    2011-01-01

    Background The objective was to determine the influence of gestational age, maternal, and neonatal variables on reference intervals for cord blood bone minerals (calcium, phosphate, magnesium) and related laboratory tests (alkaline phosphatase, and albumin-adjusted calcium), and to develop gestational age specific reference intervals based on infants without influential pathological conditions. Methods Cross-sectional study. 702 babies were identified as candidates for this study in a regional referral neonatal unit. After exclusions (for anomalies, asphyxia, maternal magnesium sulfate administration, and death), relationships were examined between cord blood serum laboratory analytes (calcium, phosphate, magnesium, alkaline phosphatase, and albumin-adjusted calcium) with gestation age and also with maternal and neonatal variables using multiple linear regression. Infants with influential pathological conditions were omitted from the development of gestational age specific reference intervals for the following categories: 23-27, 28-31, 32-34, 35-36 and > 36 weeks. Results Among the 506 preterm and 54 terms infants included in the sample. Phosphate, magnesium, and alkaline phosphatase in cord blood serum decreased with gestational age, calcium increased with gestational age. Those who were triplets, small for gestational age, and those whose mother had pregnancy-induced hypertension were influential for most of the analytes. The reference ranges for the preterm infants ≥ 36 weeks were: phosphate 1.5 to 2.6 mmol/L (4.5 to 8.0 mg/dL), calcium: 2.1 to 3.1 mmol/L (8.3 to 12.4 mg/dL); albumin-adjusted calcium: 2.3 to 3.2 mmol/L (9.1 to 12.9 mg/dL); magnesium 0.6 to 1.0 mmol/L (1.4 to 2.3 mg/dL), and alkaline phosphatase 60 to 301 units/L. Conclusions These data suggest that gestational age, as well as potentially pathogenic maternal and neonatal variables should be considered in the development of reference intervals for preterm infants. PMID:21884590

  12. Synthesis, characterization, and in-vitro cytocompatibility of amorphous β-tri-calcium magnesium phosphate ceramics.

    PubMed

    Singh, Satish S; Roy, Abhijit; Lee, Boeun; Banerjee, Ipsita; Kumta, Prashant N

    2016-10-01

    Biphasic mixtures of crystalline β-tricalcium magnesium phosphate (β-TCMP) and an amorphous calcium magnesium phosphate have been synthesized and reported to support enhanced hMSC differentiation in comparison to β-tricalcium phosphate (β-TCP) due to the release of increased amounts of bioactive ions. In the current study, completely amorphous β-TCMP has been synthesized which is capable of releasing increased amounts of Mg(2+) and PO4(3-) ions, rather than a biphasic mixture as earlier reported. The amorphous phase formed was observed to crystallize between temperatures of 400-600°C. The scaffolds prepared with amorphous β-TCMP were capable of supporting enhanced hMSC proliferation and differentiation in comparison to commercially available β-TCP. However, a similar gene expression of mature osteoblast markers, OCN and COL-1, in comparison to biphasic β-TCMP was observed. To further study the role of Mg(2+) and PO4(3-) ions in regulating hMSC osteogenic differentiation, the capability of hMSCs to mineralize in growth media supplemented with Mg(2+) and PO4(3-) ions was studied. Interestingly, 5mM PO4(3-) supported mineralization while the addition of 5mM Mg(2+) to 5mM PO4(3-) inhibited mineralization. It was therefore concluded that the release of Ca(2+) ions from β-TCMP scaffolds also plays a role in regulating osteogenic differentiation on these scaffolds and it is noted that further work is required to more accurately determine the exact role of Mg(2+) in regulating hMSC osteogenic differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Accumulation and precipitation of magnesium, calcium, and sulfur in two Acacia (Leguminosae; Mimosoideae) species grown in different substrates proposed for mine-site rehabilitation.

    PubMed

    He, Honghua; Kirilak, Yaowanuj; Kuo, John; Lambers, Hans

    2015-02-01

    Few studies have investigated the effects of substrates on the accumulation and precipitation of magnesium, calcium, and sulfur in plants. Acacia stipuligera and A. robeorum growing in their natural habitats with different substrates show different accumulation and precipitation patterns of these elements. Here, we compared the accumulation and precipitation of magnesium, calcium, and sulfur in A. stipuligera and A. robeorum grown in different substrates proposed for mine-site rehabilitation and expected the differences in substrates to have significant effects on the accumulation and precipitation of these elements in the two species. Saplings were grown in sandy topsoil or in a topsoil-siltstone mixture in a glasshouse. Phyllode magnesium, calcium, and sulfur concentrations of 25-wk-old plants were measured. Precipitation of these elements in phyllodes and branchlets was investigated by means of scanning electron microscopy and energy-dispersive x-ray spectroscopy. Phyllode magnesium, calcium, and sulfur concentrations were generally significantly greater in A. robeorum than in A. stipuligera. The two species responded in unique ways to the substrate, with A. stipuligera having similar phyllode magnesium and calcium concentrations in both substrates, but greater sulfur concentration in the topsoil-siltstone mixture, while A. robeorum showed lower phyllode magnesium, calcium, and sulfur concentrations in the topsoil-siltstone mixture. For both substrates, mineral precipitates were observed in both species, with A. robeorum having more mineral precipitates containing magnesium, calcium, and sulfur in its phyllodes than A. stipuligera did. The accumulation and precipitation patterns of magnesium, calcium, and sulfur are more species-specific than substrate-affected. © 2015 Botanical Society of America, Inc.

  14. Effects of dietary ammonium chloride and variations in calcium to phosphorus ratio on silica urolithiasis in sheep.

    PubMed

    Stewart, S R; Emerick, R J; Pritchard, R H

    1991-05-01

    Ammonium chloride was added to diets varying in Ca content to evaluate its potential in preventing silica urolith formation in sheep. A 2 x 2 factorial experiment involved wether lambs with ad libitum access to a diet of 50% grass hay and 50% ground oats plus supplement. The basal diet contained on a DM basis 3.3% SiO2, .31% Ca, .22% P, 11.6% CP, and 26% ADF. Treatments (38 to 39 lambs/treatment) consisted of a control (C), limestone to increase dietary calcium to .6% (L), 1% ammonium chloride (A), and L + A (LA). After a 118-d experimental period, siliceous kidney deposits were found only in C and L, with silica making up 93% to 95% of the urolithic ash. Urolith incidences were 13% (C) and 18% (L), respectively. The lack of urolith development in lambs fed A and LA (ammonium chloride effect, P less than .01) and a trend toward a lower urolith incidence in C vs L (P less than .02) support the hypothesis that acid-forming effects of the diet and a reduction in the dietary Ca to P ratio reduce silica urolith formation.

  15. Effect of Spirulina maxima Supplementation on Calcium, Magnesium, Iron, and Zinc Status in Obese Patients with Treated Hypertension.

    PubMed

    Suliburska, J; Szulińska, M; Tinkov, A A; Bogdański, P

    2016-09-01

    The effects of Spirulina maxima supplementation on calcium, magnesium, iron, and zinc status were studied in a double-blind placebo-controlled trial of 50 obese subjects with treated hypertension, each randomized to receive 2 g of spirulina or a placebo daily for 3 months. At baseline and after treatment, the calcium, magnesium, iron, and zinc concentration in plasma was assessed. It was found that 3 months of S. maxima supplementation resulted in a significant decrease in the iron level in the plasma of obese patients. In conclusion, this is the first clinical study on the influence of spirulina supplementation on mineral status in obese patients with hypertension. Spirulina supplementation affects the iron status of obese Caucasians with well-treated hypertension.

  16. Inhibition of beta-amylase activity by calcium, magnesium and zinc ions determined by spectrophotometry and isothermal titration calorimetry.

    PubMed

    Dahot, M Umar; Saboury, A A; Moosavi-Movahedi, A A

    2004-04-01

    The inhibition effect of metal ions on beta amylase activity was studied. The inhibitor-binding constant (Ki) was determined by spectrophotometric and isothermal titration calorimetric (ITC) methods. The binding of calcium, magnesium and zinc ion as inhibitors at the active site of barley beta amylase was studied at pH = 4.8 (sodium acetate 16 mM) and T = 300K. The Ki and enthalpy of binding for calcium (13.4, 13.1 mM and -14.3 kJ/mol), magnesium (18.6, 17.8mM and -17.7 kJ/mol) and zinc (17.5, 17.7 mM and -20.0 kJ/mol) were found by spectrophotometric and ITC methods respectively.

  17. Influence of ethanol content in the precipitation medium on the composition, structure and reactivity of magnesium-calcium phosphate.

    PubMed

    Babaie, Elham; Zhou, Huan; Lin, Boren; Bhaduri, Sarit B

    2015-08-01

    Biocompatible amorphous magnesium calcium phosphate (AMCP) particles were synthesized using ethanol in precipitation medium from moderately supersaturated solution at pH10. Some synthesis parameters such as, (Mg+Ca):P, Mg:Ca ratio and different drying methods on the structure and stability of as-produced powder was studied and characterized using SEM, XRD and cell cytocompatibility. The results showed that depending on the Mg(2+) concentration, nano crystalline Struvite (MgNH4PO4·6H2O) can also be alternatively formed. However, the as-formed AMCP preserved its amorphous structure after 7 days of incubation in SBF for tested phosphate concentration, and equally ionic concentration of magnesium and calcium. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Analysis of the effects of calcium or magnesium on voltage-clamp currents in perfused squid axons bathed in solutions of high potassium.

    PubMed

    Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F

    1969-10-01

    Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system.

  19. Analysis of the Effects of Calcium or Magnesium on Voltage-Clamp Currents in Perfused Squid Axons Bathed in Solutions of High Potassium

    PubMed Central

    Rojas, Eduardo; Taylor, Robert E.; Atwater, Illani; Bezanilla, Francisco

    1969-01-01

    Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15–30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system. PMID:5823216

  20. Phase III Randomized, Placebo-Controlled, Double-Blind Study of Intravenous Calcium and Magnesium to Prevent Oxaliplatin-Induced Sensory Neurotoxicity (N08CB/Alliance)

    PubMed Central

    Loprinzi, Charles L.; Qin, Rui; Dakhil, Shaker R.; Fehrenbacher, Louis; Flynn, Kathleen A.; Atherton, Pamela; Seisler, Drew; Qamar, Rubina; Lewis, Grant C.; Grothey, Axel

    2014-01-01

    Purpose Cumulative neurotoxicity is a prominent toxicity of oxaliplatin-based therapy. Intravenous calcium and magnesium have been extensively used to reduce oxaliplatin-induced neurotoxicity. This trial was designed to definitively test whether calcium/magnesium decreases oxaliplatin-related neurotoxicity. Patients and Methods In all, 353 patients with colon cancer undergoing adjuvant therapy with FOLFOX (fluorouracil, leucovorin, and oxaliplatin) were randomly assigned to intravenous calcium/magnesium before and after oxaliplatin, a placebo before and after, or calcium/magnesium before and placebo after. The primary end point was cumulative neurotoxicity measured by the sensory scale of the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire-Chemotherapy-Induced Peripheral Neuropathy 20 tool. Results There were no statistically significant neuropathy differences among the study arms as measured by the primary end point or additional measures of neuropathy, including clinician-determined measurement of the time to grade 2 neuropathy by using the National Cancer Institute Common Terminology Criteria for Adverse Events scale or an oxaliplatin-specific neuropathy scale. In addition, calcium/magnesium did not substantially decrease oxaliplatin-induced acute neuropathy. Conclusion This study does not support using calcium/magnesium to protect against oxaliplatin-induced neurotoxicity. PMID:24297951

  1. Determination of the Effects of Magnesium on the Structural Order of Amorphous Calcium Phosphate

    NASA Astrophysics Data System (ADS)

    Hoeher, A.; Michel, F. M.; Rakovan, J. F.; Borkiewicz, O.; Klysubun, W.

    2016-12-01

    Determining the pathways and mechanisms of calcium phosphate formation is important for understanding bone mineralization and advancing potential biological applications such as coatings on internal prosthetics. Studies show that amorphous calcium phosphate (ACP) is a precursor phase in the low temperature crystallization of hydroxylapatite, the primary mineral component found in bone and teeth of most modern vertebrates. ACP has been shown to have a structural order out to about 1 nm. Our recent extended x-ray absorption fine structure (EXAFS) spectroscopy analysis of synthetic ACP showed that the local structure of calcium in ACP differed from that in hydroxylapatite. Phosphorus EXAFS, however, indicated that the local structure in ACP is similar to hydroxylapatite (i.e., tetrahedrally coordinated with oxygen). EXAFS results were limited to only the first and second nearest neighbors in these samples, so the intermediate range order in ACP is yet unexplored. Furthermore, it remains unclear how ACP structure varies as a function of initial solution chemistry, how common impurities such as Mg are incorporated, and what role they play in determining the structural and physical characteristics of the final crystalline solid. We are using synchrotron x-ray total scattering for pair distribution function (PDF) analysis to investigate the influence of initial solution chemistry and Mg content on the structure of ACP. Magnesium is commonly used to stabilize the amorphous nature of the material, preventing crystallization. Ex situ samples synthesized at pH 10, with Ca:Mg ratios of 2:1, and freeze-dried are structurally similar to hydroxylapatite. Samples synthesized in identical conditions without Mg are structurally similar to another calcium phosphate mineral, brushite. In situ PDF measurements done at similar conditions in a custom mixed-flow reactor reveal that the short range order of ACP after 10 minutes of reacting is structurally different from ACP formed ex situ

  2. Assessment of salivary calcium, phosphate, magnesium, pH, and flow rate in healthy subjects, periodontitis, and dental caries

    PubMed Central

    Rajesh, K. S.; Zareena; Hegde, Shashikanth; Arun Kumar, M. S.

    2015-01-01

    Aim: This study was conducted to estimate and compare inorganic salivary calcium, phosphate, magnesium, salivary flow rate, and pH of unstimulated saliva and oral hygiene status of healthy subjects, subjects with periodontitis and dental caries, and to correlate salivary calcium level with number of intact teeth. Materials and Methods: The study population consisted of 48 systemically healthy subjects in the age group of 18-55 years, which was further divided into three groups: healthy, periodontitis, and dental caries. Oral hygiene index-simplified, probing pocket depth, clinical attachment level, the number of intact teeth, and active carious lesions were recorded. Estimation of inorganic salivary calcium, phosphate, and magnesium was performed spectrophotometrically using Vitros 5.1 FS. Statistical analysis was performed using the one-way analysis of variance test at 5% significance level. Results: There was a statistically significant increase in inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene status in periodontitis group compared to dental caries and healthy group. Conclusion: Subjects with increased inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene are at a higher risk of developing periodontitis. Since there is increased remineralization potential, these subjects have more number of intact teeth compared to the dental caries group. PMID:26681848

  3. Calcium and magnesium interference studies for the binding of heavy metal ions in solution by Medicago sativa (alfalfa)

    SciTech Connect

    Gardea-Torresdey, J.L.; Tiemann, K.J.; Gonzalez, J.H.; Henning, J.A.; Townsend, M.S.

    1996-12-31

    Previous batch laboratory experiments performed to determine the potential ability of seven different varieties of Medicago sativa (alfalfa) revealed that the African shoots population was able to efficiently bind copper(II) and nickel(II) from aqueous solutions. Batch laboratory interference studies were performed with various calcium and magnesium concentrations (0.1 mM to 1 M) in order to ascertain the effects of these ions on the heavy metal binding ability of African alfalfa shoots. Results from these studies have shown that calcium and magnesium did not seriously reduce the binding of copper(II) and lead(II) to African alfalfa shoots. However, high concentrations of calcium and magnesium significantly reduced chromium(III), cadmium(II), nickel(II), and zinc(II) binding to African shoots. In addition, all these experiments were repeated maintaining the ionic strength constant, and similar results were obtained. Interference studies were also conducted in order to determine the effects of hard cations under flow conditions with silica-immobilized African alfalfa shoots. The information obtained from these studies will be useful for an innovative method of heavy metal ion removal and recovery from contaminated waters.

  4. Magnesium modulates parathyroid hormone secretion and upregulates parathyroid receptor expression at moderately low calcium concentration

    PubMed Central

    Rodríguez-Ortiz, Maria E.; Canalejo, Antonio; Herencia, Carmen; Martínez-Moreno, Julio M.; Peralta-Ramírez, Alan; Perez-Martinez, Pablo; Navarro-González, Juan F.; Rodríguez, Mariano; Peter, Mirjam; Gundlach, Kristina; Steppan, Sonja; Passlick-Deetjen, Jutta; Muñoz-Castañeda, Juan R.; Almaden, Yolanda

    2014-01-01

    Background The interest on magnesium (Mg) has grown since clinical studies have shown the efficacy of Mg-containing phosphate binders. However, some concern has arisen for the potential effect of increased serum Mg on parathyroid hormone (PTH) secretion. Our objective was to evaluate the direct effect of Mg in the regulation of the parathyroid function; specifically, PTH secretion and the expression of parathyroid cell receptors: CaR, the vitamin D receptor (VDR) and FGFR1/Klotho. Methods The work was performed in vitro by incubating intact rat parathyroid glands in different calcium (Ca) and Mg concentrations. Results Increasing Mg concentrations from 0.5 to 2 mM produced a left shift of PTH–Ca curves. With Mg 5 mM, the secretory response was practically abolished. Mg was able to reduce PTH only if parathyroid glands were exposed to moderately low Ca concentrations; with normal–high Ca concentrations, the effect of Mg on PTH inhibition was minor or absent. After 6-h incubation at a Ca concentration of 1.0 mM, the expression of parathyroid CaR, VDR, FGFR1 and Klotho (at mRNA and protein levels) was increased with a Mg concentration of 2.0 when compared with 0.5 mM. Conclusions Mg reduces PTH secretion mainly when a moderate low calcium concentration is present; Mg also modulates parathyroid glands function through upregulation of the key cellular receptors CaR, VDR and FGF23/Klotho system. PMID:24103811

  5. Climate Change Increasing Calcium and Magnesium Leaching from Granitic Alpine Catchments.

    PubMed

    Kopáček, Jiří; Kaňa, Jiří; Bičárová, Svetlana; Fernandez, Ivan J; Hejzlar, Josef; Kahounová, Marie; Norton, Stephen A; Stuchlík, Evžen

    2017-01-03

    Climate change can reverse trends of decreasing calcium and magnesium [Ca + Mg] leaching to surface waters in granitic alpine regions recovering from acidification. Despite decreasing concentrations of strong acid anions (-1.4 μeq L(-1) yr(-1)) during 2004-2016 in nonacidic alpine lakes in the Tatra Mountains (Central Europe), the average [Ca + Mg] concentrations increased (2.5 μeq L(-1) yr(-1)), together with elevated terrestrial export of bicarbonate (HCO3(-); 3.6 μeq L(-1) yr(-1)). The percent increase in [Ca + Mg] concentrations in nonacidic lakes (0.3-3.2% yr(-1)) was significantly and positively correlated with scree proportion in the catchment area and negatively correlated with the extent of soil cover. Leaching experiments with freshly crushed granodiorite, the dominant bedrock, showed that accessory calcite and (to a lesser extent) apatite were important sources of Ca. We hypothesize that elevated terrestrial export of [Ca + Mg] and HCO3(-) resulted from increased weathering caused by accelerated physical erosion of rocks due to elevated climate-related mechanical forces (an increasing frequency of days with high precipitation amounts and air temperatures fluctuating around 0 °C) during the last 2-3 decades. These climatic effects on water chemistry are especially strong in catchments where fragmented rocks are more exposed to weathering, and their position is less stable than in soil.

  6. Improved osteogenesis and angiogenesis of magnesium-doped calcium phosphate cement via macrophage immunomodulation.

    PubMed

    Wang, Meng; Yu, Yuanman; Dai, Kai; Ma, Zhengyu; Liu, Yang; Wang, Jing; Liu, Changsheng

    2016-10-18

    Immune responses are vital for bone regeneration and play an essential role in the fate of biomaterials after implantation. As a kind of plastic cell, macrophages are central regulators of the immune response during the infection and wound healing process including osteogenesis and angiogenesis. Magnesium-calcium phosphate cement (MCPC) has been reported as a promising candidate for bone repair with promoted osteogenesis both in vitro and in vivo. However, relatively little is known about the effects of MCPC on immune response and the following outcome. In this study, we investigated the interactions between macrophages and MCPC. Here we found that the pro-inflammatory cytokines including TNF-α and IL-6 were less expressed and the bone repair related cytokine of TGF-β1 was up-regulated by macrophages in MCPC extract. Furthermore, the enhanced osteogenic capacity of BMSCs and angiogenic potential of HUVECs were acquired in vitro by the MCPC-induced immune microenvironment. These findings suggest that MCPC is able to facilitate bone healing by endowing favorable osteoimmunomodulatory properties and influencing crosstalk behavior between immune cells and osteogenesis-related cells.

  7. Calcium and magnesium in drinking-water and risk of death from lung cancer in women.

    PubMed

    Cheng, Meng-Hsuan; Chiu, Hui-Fen; Tsai, Shang-Shyue; Chen, Chih-Cheng; Yang, Chun-Yuh

    2012-01-01

    The possible association between the risk of lung cancer in women and the levels of calcium (Ca) and magnesium (Mg) in drinking-water from municipal supplies was investigated in a matched, case-control study in Taiwan. All eligible female lung cancer deaths (3,532 cases) of Taiwan residents, from 2000 through to 2008, were compared with deaths from other causes (3,532 controls), and the levels of Ca and Mg in drinking-water of these residents were determined. Data on Ca and Mg levels in drinking-water throughout Taiwan were obtained from the Taiwan Water Supply Corporation (TWSC). The control group consisted of people who died from other causes, and the controls were pair-matched to the cases by sex, year of birth, and year of death. The adjusted odd ratios were not statistically significant for the relationship between Ca levels in drinking-water and lung cancer in women. The adjusted odd ratios for female lung cancer deaths for those with higher Mg levels in their drinking-water, as compared to the lowest tertile, were 0.82 (95% CI = 0.72-0.93) and 0.80 (95% CI = 0.69-0.93), respectively. The results of the present study show that there is a significant trend toward a decreased risk of lung cancer in women with increasing Mg levels in drinking-water.

  8. Calcium, copper, iron, magnesium, silicon and zinc content of hair in Parkinson's disease.

    PubMed

    Forte, Giovanni; Alimonti, Alessandro; Violante, Nicola; Di Gregorio, Marco; Senofonte, Oreste; Petrucci, Francesco; Sancesario, Giuseppe; Bocca, Beatrice

    2005-01-01

    The aetiology of Parkinson's disease (PD) is still unknown, but some hypotheses have focused on the imbalances in body levels of metals as co-factors of risk. To assess whether hair could be a reliable marker of possible changes, calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), silicon (Si) and zinc (Zn) were determined in hair from 81 patients affected by PD and 17 age-matched controls. Care was taken to eliminate external contamination of the hair by thorough washing. Digestion of the matrix was achieved by an acid-assisted microwave procedure. Quantification of the elements was performed by inductively coupled plasma atomic emission spectrometry. Results indicated significantly lower levels of Fe in the hair of patients (p=0.018) compared with controls. Ca and Mg levels were slightly lower while Zn levels were higher in patients, although these differences were not significant; neither were variations in Cu and Si. Ca and Mg were at least 1.5 times higher in females than in males in both controls and patients. In addition, Ca correlated positively with Mg in both groups and in both sexes (p-value always less than 0.03), and negatively with age in patients (p<0.01). Finally, element levels did not correlate with either the duration or the severity of the disease or with anti-Parkinson treatment.

  9. Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ahlborg, Nadia L.; Zhu, Dongming

    2013-01-01

    The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.

  10. Chemical and mechanical consequences of environmental barrier coating exposure to calcium-magnesium-aluminosilicate.

    SciTech Connect

    Harder, B.; Ramirez-Rico, J.; Almer, J. D.; Kang, L.; Faber, K.

    2011-06-01

    The success of Si-based ceramics as high-temperature structural materials for gas turbine applications relies on the use of environmental barrier coatings (EBCs) with low silica activity, such as Ba{sub 1-x}Sr{sub x}Al{sub 2}Si{sub 2}O{sub 8} (BSAS), which protect the underlying components from oxidation and corrosion in combustion environments containing water vapor. One of the current challenges concerning EBC lifetime is the effect of sandy deposits of calcium-magnesium-aluminosilicate (CMAS) glass that melt during engine operation and react with the EBC, changing both its composition and stress state. In this work, we study the effect of CMAS exposure at 1300 C on the residual stress state and composition in BSAS-mullite-Si-SiC multilayers. Residual stresses were measured in BSAS multilayers exposed to CMAS for different times using high-energy X-ray diffraction. Their microstructure was studied using a combination of scanning electron microscopy and transmission electron microscopy techniques. Our results show that CMAS dissolves the BSAS topcoat preferentially through the grain boundaries, dislodging the grains and changing the residual stress state in the topcoat to a nonuniform and increasingly compressive stress state with increasing exposure time. The presence of CMAS accelerates the hexacelsian-to-celsian phase transformation kinetics in BSAS, which reacts with the glass by a solution-reprecipitation mechanism. Precipitates have crystallographic structures consistent with Ca-doped celsian and Ba-doped anorthite.

  11. A Novel Injectable Magnesium/Calcium Sulfate Hemihydrate Composite Cement for Bone Regeneration

    PubMed Central

    2015-01-01

    Objective. A novel injectable magnesium/calcium sulfate hemihydrate (Mg/CSH) composite with improved properties was reported here. Methods. Composition, setting time, injectability, compressive strength, and bioactivity in simulated body fluid (SBF) of the Mg/CSH composite were evaluated. Furthermore, the cellular responses of canine bone marrow stromal cells (cBMSCs) and bone formation capacity after the implantation of Mg/CSH in tibia defects of canine were investigated. Results. Mg/CSH possessed a prolonged setting time and markedly improved injectability and mechanical property (p < 0.05). Mg/CSH samples showed better degradability than CSH in SBF after 21 days of soaking (p < 0.05). Moreover, the degrees of cell attachment, proliferation, and capability of osteogenic differentiation on the Mg/CSH specimens were higher than those on CSH, without significant cytotoxicity and with the increased proliferation index, ALP activity, and expression levels of integrin β1 and Coll I in cBMSCs (p < 0.05). Mg/CSH enhanced the efficiency of new bone formation at the tibia defect area, including the significantly elevated bone mineral density, bone area fraction, and Coll I expression level (p < 0.05). Conclusions. The results implied that this new injectable bone scaffold exhibited promising prospects for bone repair and had a great potential in bone tissue engineering. PMID:26114102

  12. Simultaneously detection of calcium and magnesium in various samples by calmagite and chemometrics data processing

    NASA Astrophysics Data System (ADS)

    Rasouli, Zolaikha; Ghavami, Raouf

    2016-12-01

    The current study describes results of the application of radial basis function-partial least squares (RBF-PLS), partial robust M-regression (PRM), singular value decomposition (SVD), evolving factor analysis (EFA), multivariate curve resolution with alternating least squares (MCR-ALS) and rank annihilation factor analysis (RAFA) methods for the purposes of simultaneous determination of trace amounts calcium (Ca2 +) and magnesium (Mg2 +) and exploratory analysis based on their colored complexes formation with 1-(1-hydroxy-4-methyl-2-phenylazo)-2-naphthol-4-sulfonic acid (calmagite) as chromomeric reagent. The complex formation Ca2 + and Mg2 + with calmagite was investigated under pH 10.20. The performance of RBF-PLS model in detection of minerals was compared with PRM as a linear model. The pure concentration and spectral profiles were obtained using MCR-ALS. EFA and SVD were used to distinguish the number species. The stability constants of the complexes were derived using RAFA. Finally, RBF-PLS was utilized for simultaneous determination of minerals in pharmaceutical formulation and various vegetable samples.

  13. Does a higher ratio of serum calcium to magnesium increase the risk for postmenopausal breast cancer?

    PubMed Central

    Sahmoun, Abe E.; Singh, Brij B.

    2011-01-01

    SUMMARY Breast cancer is the most commonly diagnosed cancer among United States (US) women. Established risk factors explain only about 13% of breast cancer incidence among women in the US. Thus, the cause of most cases of breast cancer remains unknown. In postmenopausal women, serum calcium (Ca) and serum magnesium (Mg) play an important role in skeletal health, cell proliferation and cancer. Mg is essential for DNA duplication and repair and Mg deficiency favors DNA mutations leading to carcinogenesis. Dietary intake of Mg in the US is less than the recommended amount, and the deficit is more pronounced in older individuals where gastrointestinal and renal mechanisms for Mg conservation are not as efficient. Furthermore, healthy postmenopausal women are frequently recommended to take supplemental Ca, but not Mg and vitamin D to maintain bone and overall health. Most women with hormone sensitive breast cancer are recommended to take aromatase inhibitors, which causes bone loss and thus are generally prescribed Ca and vitamin D, but not Mg. Although the association between serum Ca and breast cancer risk remains controversial, we hypothesize that this may be because Mg levels have not been accounted for. Mg level directly influences transient receptor potential melastatin 7 (TRPM7) related Ca influx, calcium–adenosine triphosphatase (Ca–ATP) levels, and cell proliferation, and thereby could lead to cancer. Thus a high serum Ca/Mg ratio is more appropriate and alterations in this ratio could lead to increased development of new and recurrent breast cancer. PMID:20371155

  14. Association of dietary calcium, phosphorus, and magnesium intake with caries status among schoolchildren.

    PubMed

    Lin, Han-Shan; Lin, Jia-Rong; Hu, Suh-Woan; Kuo, Hsiao-Ching; Yang, Yi-Hsin

    2014-04-01

    The aim of this study was to investigate the associations between caries experience and daily intake of calcium (Ca), phosphorus (P), magnesium (Mg), and Ca/P ratio. A total of 2248 schoolchildren were recruited based on a population-based survey. Each participant received a dental examination and questionnaire interviews about the 24-hour dietary recalls and food frequency. The daily intake of Ca, P, Mg, and Ca/P ratio were inversely associated with primary caries index, but only the Ca/P ratio remained significant after adjusting for potential confounders. According to the Taiwanese Dietary Reference Intakes, the Ca/P ratio was related to both caries in primary teeth (odds ratio = 0.52, p = 0.02) and in permanent teeth (odds ratio = 0.59, p = 0.02). The daily intakes of Ca/P ratio remained an important factor for caries after considering potential confounding factors.

  15. Incorporating magnesium and calcium cations in porous organic frameworks for high-capacity hydrogen storage.

    PubMed

    Wang, Lin; Sun, Yingxin; Sun, Huai

    2011-01-01

    We propose incorporating a bi-functional group consisting of magnesium or calcium cations and a 1,2,4,5-benzenetetroxide anion (C6H2O4(4-)) in porous materials to enhance the hydrogen storage capacity. The C6H2O4M2 bifunctional group is highly stable and polarized, and each group provides 18 (M = Mg) or 22 (M = Ca) binding sites for hydrogen molecules with an average binding energy of ca. 10 kJ mol(-1) per hydrogen molecule based on RIMP2/ TZVPP calculations. Two porous materials (PAF-Mg or PAF-Ca) constructed with the bi-functional groups show remarkable improvement in hydrogen uptakes at normal ambient conditions. At 233 K and 10 MPa, the predicted gravimetric uptakes are 6.8 and 6.4 wt% for PAF-Mg and PAF-Ca respectively. This work reveals that fabricating materials with large numbers of binding sites and relatively low binding energies is a promising approach to achieve high capacity for on-board storage of hydrogen.

  16. Effects of high calcium intake on bone metabolism in magnesium-deficient rats.

    PubMed

    Matsuzaki, H; Katsumata, S I; Uehara, M; Suzuki, K; Nakamura, K

    2005-06-01

    We examined the effects of high calcium (Ca) intake on bone metabolism in magnesium (Mg)-deficient rats. Male Wistar rats were divided into three groups, with each group having a similar mean body weight, and fed a control diet (control group), a Mg-deficient diet (Mg-deficient group) or a Mg-deficient Ca-supplemented diet (Mg-deficient Ca-supplemented group) for 14 d. Femoral Ca content was significantly lower in the Mg-deficient Ca-supplemented group than in the control group and Mg-deficient group. Femoral Mg content was significantly lower in the Mg-deficient group and Mg-deficient Ca-supplemented group than in the control group. Furthermore, femoral Mg content was significantly lower in the Mg-deficient Ca-supplemented group than in the Mg-deficient group. Serum osteocalcin levels (a biochemical marker of bone formation) were significantly lower in the two Mg-deficient groups than in the control group. As a biochemical marker of bone resorption, urinary deoxypyridinoline excretion was significantly higher in the Mg-deficient Ca-supplemented group than in the control group and Mg-deficient group. The results in the present study suggest that high Ca intake had no preventive effect on alteration of bone metabolism in Mg-deficient rats.

  17. A Novel Injectable Magnesium/Calcium Sulfate Hemihydrate Composite Cement for Bone Regeneration.

    PubMed

    Zhang, Shanchuan; Yang, Ke; Cui, Fuzhai; Jiang, Yi; E, Lingling; Xu, Baohua; Liu, Hongchen

    2015-01-01

    . A novel injectable magnesium/calcium sulfate hemihydrate (Mg/CSH) composite with improved properties was reported here. Composition, setting time, injectability, compressive strength, and bioactivity in simulated body fluid (SBF) of the Mg/CSH composite were evaluated. Furthermore, the cellular responses of canine bone marrow stromal cells (cBMSCs) and bone formation capacity after the implantation of Mg/CSH in tibia defects of canine were investigated. Mg/CSH possessed a prolonged setting time and markedly improved injectability and mechanical property (p < 0.05). Mg/CSH samples showed better degradability than CSH in SBF after 21 days of soaking (p < 0.05). Moreover, the degrees of cell attachment, proliferation, and capability of osteogenic differentiation on the Mg/CSH specimens were higher than those on CSH, without significant cytotoxicity and with the increased proliferation index, ALP activity, and expression levels of integrin β1 and Coll I in cBMSCs (p < 0.05). Mg/CSH enhanced the efficiency of new bone formation at the tibia defect area, including the significantly elevated bone mineral density, bone area fraction, and Coll I expression level (p < 0.05). The results implied that this new injectable bone scaffold exhibited promising prospects for bone repair and had a great potential in bone tissue engineering.

  18. Evaluation of an electrolyte analyser for measurement of concentrations of ionized calcium and magnesium in cats.

    PubMed

    Unterer, S; Gerber, B; Glaus, T M; Hässig, M; Reusch, C E

    2005-11-01

    The goal of this study was to evaluate the Nova CRT 8 electrolyte analyser for determination of concentrations of ionized calcium (Ca(i)) and magnesium (Mg(i)) in cats, to determine the effects of sample handling and storage and to establish reference ranges. The precision and analytical accuracy of the Nova CRT 8 analyser were good. The concentrations of Ca(i) and Mg(i) were significantly lower in aerobically handled serum samples than in those handled anaerobically. The concentrations of Ca(i) and Mg(i) differed significantly among whole blood, plasma and serum. In anaerobically handled serum, the concentration of Ca(i) was stable for 8 h at 22 degrees C, for 5 days at 4 degrees C and for 1 week at -20 degrees C. The concentration of Mg(i) was stable for 4 h at 22 degrees C but for less than 24 h at 4 degrees C and for less than 1 week at -20 degrees C. In serum from 36 cats, the reference ranges were 1.20-1.35 mmol/L for Ca(i) and 0.47-0.59 mmol/L for Mg(i). The Nova CRT 8 electrolyte analyser is suitable for determination of Ca(i) and Mg(i) concentrations in cats. Anaerobically handled serum samples are recommended and, stored at room temperature, they yield accurate results when analysed within 4 h.

  19. Aquatic toxicity of magnesium sulfate, and the influence of calcium, in very low ionic concentration water.

    PubMed

    van Dam, Rick A; Hogan, Alicia C; McCullough, Clint D; Houston, Melanie A; Humphrey, Chris L; Harford, Andrew J

    2010-02-01

    The toxicity of magnesium sulfate (MgSO(4)), and the influence of calcium (Ca), were assessed in very soft freshwater (natural Magela Creek water [NMCW]) using six freshwater species (Chlorella sp., Lemna aequinoctialis, Amerianna cumingi, Moinodaphnia macleayi, Hydra viridissima, and Mogurnda mogurnda). The study involved five stages: toxicity of MgSO(4) in NMCW, determination of the toxic ion, influence of Ca on Mg toxicity, toxicity of MgSO(4) at an Mg:Ca mass ratio of 9:1, and derivation of water quality guideline values for Mg. The toxicity of MgSO(4) was higher than previously reported, with chronic median inhibition concentration (IC50)/acute median lethal concentration (LC50) values ranging from 4 to 1,215 mg/L, as Mg. Experiments exposing the 3 most sensitive species (L. aequinoctialis, H. viridissima, and A. cumingi) to Na(2)SO(4) and MgCl(2) confirmed that Mg was the toxic ion. Additionally, Ca was shown to have an ameliorative effect on Mg toxicity. For L. aequinoctialis and H. viridissima, Mg toxicity at the IC50 concentration was eliminated at Mg:Ca (mass) ratios of < or =10:1 and < or =9:1, respectively. For A. cumingi, a 10 to 30% effect persisted at the IC50 concentration at Mg:Ca ratios <9:1. The toxicity of MgSO(4) in NMCW at a constant Mg:Ca ratio of 9:1 was lower than at background Ca, with chronic IC50/acute LC50 values from 96 to 4,054 mg/L, as Mg. Water quality guideline values for Mg (to protect 99% of species) at Mg:Ca mass ratios of >9:1 and < or =9:1 were 0.8 and 2.5 mg/L, respectively. Magnesium can be toxic at concentrations approaching natural background levels, but toxicity is dependent on Ca concentrations, with exposure in very low ionic concentration, Ca-deficient waters posing the greatest risk to aquatic life.

  20. Chelatometric determination of calcium and magnesium in iron ores, slags, anorthosite, limestone, copper-nickel-lead-zinc ores and divers materials.

    PubMed

    Hitchen, A; Zechanowitsch, G

    1980-03-01

    Chelatometric methods for the determination of calcium and magnesium in iron ores, slags, anorthosite, copper-nickel-lead-zinc ores and various other materials are described. Potential interfering elements are masked with triethanolamine and potassium cyanide. In one aliquot calcium is titrated at pH > 12, with calcein and thymolphthalein mixed indicator and in another aliquot calcium and magnesium are titrated in ammonia buffer, with o-cresolphthalein complexone screened with Naphthol Green B as indicator. The results compare favourably with certified values for reference materials of diverse nature.

  1. Efficacy and safety of calcium acetate-magnesium carbonate in the treatment of hyperphosphatemia in dialysis patients.

    PubMed

    Helal, Imed; Elkateb, Hanene; Hedri, Hafedh; Hajri, Malika; Hamida, Fethi Ben

    2016-01-01

    A phosphate binder combining calcium and magnesium offers an interesting therapeutic option to control hyperphosphatemia in dialysis patients. We investigated the effectiveness and tolerance of calcium acetate-magnesium carbonate (Ca-Mg). This is a 16-week prospective study including 16 dialysis patients. After an initial two-week washout period, serum phosphorus (sPho) ≥1.8 mmol/L, serum calcium (sCa) ≤2.6 mmol/L, and serum magnesium ≤1.5 mmol/L were the main inclusion criteria. The initial dose of Ca-Mg depended on sPho level and was titrated for every two weeks to have a sPho ≤ 1.8 mmol/L. A second two-week washout period followed the 12 weeks of treatment. Ca-Mg significantly reduced the mean sPho levels from 2.14 to 1.75 mmol/L by the end of the 12-week treatment period (P <0.006). Two weeks after the completion of the Ca-Mg study, the mean sPho levels increased to 2.2 mmol/L. The mean sCa levels did not significantly change during the Ca-Mg trial. The mean serum intact parathyroid hormone declined significantly from 446 pg/mL at the beginning of the study to 367 pg/mL at the end of the 12-week treatment period (P = 0.0002). Digestive tolerance was good in all patients which allowed good compliance. There were no episodes of hypercalcemia. However, six patients had a moderate hypermagnesemia (21 episodes) requiring adjustment of treatment dose. The Ca-Mg proved to be effective in the control of hyperphosphatemia in dialysis patients with good clinical and biological tolerance. Thus, in patients with hypercalcemia or poor tolerance to calcium carbonate, Ca-Mg might be a good alternative.

  2. Cadmium, lead, calcium, magnesium, copper, and zinc concentrations in human infant tissues: their relationship to Sudden Infant Death Syndrome

    SciTech Connect

    Erickson, M.M.

    1981-01-01

    The purpose of this study was to determine whether there was any evidence of an excess of the toxic elements, cadmium and lead, or a deficiency of any of the essential elements, calcium, magnesium, copper, and zinc, in the tissues of infants who died of Sudden Infant Death Syndrome (SIDS) as compared to those of infants who died of other causes. The literature was reviewed for SIDS, mineral metabolism, and mineral interactions. Lung, liver, kidney, and rib specimens were obtained at autopsy from 130 infants who died suddenly and unexpectedly. There were 85 SIDS cases ranging in age from 2 to 64 weeks and 45, aged 1 to 92 weeks, who died of other causes. Concentrations of cadmium, lead, calcium, magnesium, copper, and zinc in each tissue were determined by electrothermal and flame atomic absorption spectrophotometry. Statistical analysis of the data showed that liver and rib lead concentrations and liver magnesium concentrations were significantly higher in SIDS tissues in the 4 to 26 week age group than in non-SIDS tissues in the same age group. There was no evidence of a deficiency of the essential minerals measured.

  3. Osteoblast-like cell responses to ion products released from magnesium- and silicate-containing calcium carbonates.

    PubMed

    Yamada, Shinya; Ota, Yoshio; Obata, Akiko; Kasuga, Toshihiro

    2017-01-01

    Inorganic ions released from bioceramics and bioactive glasses have been reported to influence osteogenic cell functions. Cell responses depend on types of the ions provided, for example, silicate ion has been found to up-regulate their proliferation, differentiation and mineralization. Mouse osteoblast-like cells (MC3T3-E1) were cultured in media containing silicate and calcium ions with/without magnesium ion to evaluate their combined effects on the cell's functions. The cells were cultured in the media containing the extract of silicate-containing vaterite (SiV) and magnesium- and siloxane-containing one (MgSiV) and normal medium and then their adhesion, proliferation, differentiation and mineralization were evaluated. The adhesion of the cells was enhanced when they were cultured in the medium containing MgSiV-extract. Their proliferation and differentiation were up-regulated in both media containing MgSiV-extract and SiV-extract. In particular, the MgSiV-extract significantly enhanced their differentiation than the SiV-extract. This was supported by the mineralization test's results, which showed a large amount of mineral deposit was observed in the cells cultured in the MgSiV-extract medium. Providing the three kinds of ions was effective for up-regulating the cell's mineralization compared to providing silicate and calcium ions without magnesium ion.

  4. Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations.

    PubMed

    Harty, M A; Forrestal, P J; Watson, C J; McGeough, K L; Carolan, R; Elliot, C; Krol, D; Laughlin, R J; Richards, K G; Lanigan, G J

    2016-09-01

    The accelerating use of synthetic nitrogen (N) fertilisers, to meet the world's growing food demand, is the primary driver for increased atmospheric concentrations of nitrous oxide (N2O). The IPCC default emission factor (EF) for N2O from soils is 1% of the N applied, irrespective of its form. However, N2O emissions tend to be higher from nitrate-containing fertilisers e.g. calcium ammonium nitrate (CAN) compared to urea, particularly in regions, which have mild, wet climates and high organic matter soils. Urea can be an inefficient N source due to NH3 volatilisation, but nitrogen stabilisers (urease and nitrification inhibitors) can improve its efficacy. This study evaluated the impact of switching fertiliser formulation from calcium ammonium nitrate (CAN) to urea-based products, as a potential mitigation strategy to reduce N2O emissions at six temperate grassland sites on the island of Ireland. The surface applied formulations included CAN, urea and urea with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) and/or the nitrification inhibitor dicyandiamide (DCD). Results showed that N2O emissions were significantly affected by fertiliser formulation, soil type and climatic conditions. The direct N2O emission factor (EF) from CAN averaged 1.49% overall sites, but was highly variable, ranging from 0.58% to 3.81. Amending urea with NBPT, to reduce ammonia volatilisation, resulted in an average EF of 0.40% (ranging from 0.21 to 0.69%)-compared to an average EF of 0.25% for urea (ranging from 0.1 to 0.49%), with both fertilisers significantly lower and less variable than CAN. Cumulative N2O emissions from urea amended with both NBPT and DCD were not significantly different from background levels. Switching from CAN to stabilised urea formulations was found to be an effective strategy to reduce N2O emissions, particularly in wet, temperate grassland.

  5. Serum magnesium, phosphorus, and calcium are associated with risk of incident heart failure: the Atherosclerosis Risk in Communities (ARIC) Study.

    PubMed

    Lutsey, Pamela L; Alonso, Alvaro; Michos, Erin D; Loehr, Laura R; Astor, Brad C; Coresh, Josef; Folsom, Aaron R

    2014-09-01

    Heart failure (HF) is a major source of morbidity and mortality, particularly among the elderly. Magnesium, phosphorus, and calcium are micronutrients traditionally viewed in relation to bone health or chronic kidney disease. However, they also may be associated with risk of cardiovascular disease through a broad range of physiologic roles. With the use of data from the Atherosclerosis Risk in Communities (ARIC) cohort, we tested the hypotheses that the incidence of HF is greater among individuals with low serum magnesium and those with high serum phosphorus and calcium. A total of 14,709 African Americans (27%) and whites from the ARIC cohort [aged 45-64 y at baseline (1987-1989)] were observed through 2009. Proportional hazards regression was used to explore associations between biomarkers and incident HF. Serum calcium was corrected for serum albumin. Models were adjusted for demographics, behaviors, and physiologic characteristics. A total of 2250 incident HF events accrued over a median follow-up of 20.6 y. Participants in the lowest (≤1.4 mEq/L) compared with the highest (≥1.8 mEq/L) category of magnesium were at greater HF risk (HR: 1.71; 95% CI: 1.46, 1.99). For phosphorus, there appeared to be a threshold whereby only those in the highest quintile were at greater HF risk [HR(Q5 vs Q1): 1.34; 95% CI: 1.16, 1.54]. Higher concentrations of calcium were also associated with greater risk of HF [HR(Q5 vs Q1): 1.24; 95% CI: 1.07, 1.43]. Results were not modified by race, sex, or kidney function and were similar when incident coronary heart disease was included as a time-varying covariate. Low serum magnesium and high serum phosphorus and calcium were independently associated with greater risk of incident HF in this population-based cohort. Whether these biomarkers will be useful candidates for HF risk prediction or targets for prevention remains to be seen. © 2014 American Society for Nutrition.

  6. Are cyclopentadienylberyllium, magnesium and calcium hydrides carbon or metal acids in the gas phase?

    PubMed

    Hurtado, Marcela; Lamsabhi, Al-Mokhtar; Mó, Otilia; Yáñez, Manuel; Guillemin, Jean-Claude

    2010-05-21

    The structure and bonding of cyclopentadienylberyllium (CpBeH), magnesium (CpMgH), and calcium (CpCaH) hydrides as well as those of their deprotonated species have been investigated by means of B3LYP/6-311+G(3df,2p)//B3LYP/6-311+G(d,p) and B3LYP/6-311+G(3df,2p)//QCISD/6-311+G(d,p) density functional theory (DFT) calculations. The three compounds exhibit C(5v) equilibrium conformations in their ground states. For CpBeH the agreement between the calculated geometry and that determined by MW spectroscopy is excellent. CpMgH and CpCaH can be viewed almost as the result of the interaction between a C₅H₅⁻ anion and a XH(+) (X = Mg, Ca) cation. Conversely, for CpBeH the interaction between the C₅H₅ and the BeH subunits is significantly covalent. These compounds exhibit a significant aromaticity, usually named three-dimension aromaticity, in contrast with the unsubstituted cyclopentadiene compound. The CpBeH derivative behaves as a C acid in the gas phase and is less acidic than cyclopentadiene. More importantly, CpMgH and CpCaH, in spite of the X(+δ)H(-δ) polarity exhibited by the X-H bond in the neutral systems, are predicted to be metal acids in the gas phase. Also surprisingly, both the Mg and the Ca derivatives are stronger acids than the Be analogue, and only slightly weaker acids than cyclopentadiene. This somewhat unexpected result is the consequence of two concomitant facts: the lower dissociation energy of the X-H (X = Mg, Ca) bonds with respect to the C-H bonds, and the significantly high electron affinity of the C₅H₅X* (X = Mg, Ca) radicals.

  7. Nanostructured calcium phosphate coatings on magnesium alloys: characterization and cytocompatibility with mesenchymal stem cells

    PubMed Central

    Iskandar, Maria Emil; Aslani, Arash; Tian, Qiaomu

    2016-01-01

    This article reports the deposition and characterization of nanostructured calcium phosphate (nCaP) on magnesium–yttrium alloy substrates and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The nCaP coatings were deposited on magnesium and magnesium–yttrium alloy substrates using proprietary transonic particle acceleration process for the dual purposes of modulating substrate degradation and BMSC adhesion. Surface morphology and feature size were analyzed using scanning electron microscopy and quantitative image analysis tools. Surface elemental compositions and phases were analyzed using energy dispersive X-ray spectroscopy and X-ray diffraction, respectively. The deposited nCaP coatings showed a homogeneous particulate surface with the dominant feature size of 200–500 nm in the long axis and 100–300 nm in the short axis, and a Ca/P atomic ratio of 1.5–1.6. Hydroxyapatite was the major phase identified in the nCaP coatings. The modulatory effects of nCaP coatings on the sample degradation and BMSC behaviors were dependent on the substrate composition and surface conditions. The direct culture of BMSCs in vitro indicated that multiple factors, including surface composition and topography, and the degradation-induced changes in media composition, influenced cell adhesion directly on the sample surface, and indirect adhesion surrounding the sample in the same culture. The alkaline pH, the indicator of Mg degradation, played a role in BMSC adhesion and morphology, but not the sole factor. Additional studies are necessary to elucidate BMSC responses to each contributing factor. PMID:25917827

  8. Calcium and magnesium in exocrine secretion--an X-ray microanalytical study

    SciTech Connect

    Roomans, G.M.; Barnard, T.

    1982-01-01

    Calcium and magnesium distribution in mammalian exocrine glands under resting, stimulated and pathological conditions was investigated by X-ray microanalysis of thick and ultrathin cryosections. Ultrathin sections were cut from tissue frozen in the presence of a polymer cryoprotectant, dextran. The effect of this treatment on isolated rabbit pancreas. Dextran caused a disturbance in water and ion transport, partly due to an osmotic effect and the impermeability of the pancreatic epithelium to dextran; this does, however, not necessarily invalidate intracellular measurements on frozen-dried sections. Cholinergic stimulation of the rat pancreas caused a change of Ca distribution from the basal to the apical part of the cell; this may be a component of the secretory Ca flux. Kinetic considerations make a significant Ca movement via the ER-Golgi endomembrane space less likely. The mitochondrial Ca concentration is low, and not significantly changed by cholinergic stimulation. X-ray microanalysis was carried out on submandibular glands of rats after chronic treatment with reserpin and/or isoproterenol (an animal model for cystic fibrosis, CF). The acinar cells had elevated Mg and Ca and lowered K concentrations. Analysis of ultrathin cryosections showed high levels of Ca and Mg in secretory granules, mucus globules and the ER. Ca and Mg in the ER may be transported intracellularly with secretory proteins to secretion granules or mucus globules. The decrease in cell K may be due to efflux of K caused by elevated cytoplasmic Ca levels. A similar decrease in cell K was caused by incubation of rat salivary glands with diluted serum from CF patients, a treatment which has been reported to mimic the effect of a rise in cytoplasmic Ca.

  9. Electron Solvation in Liquid Ammonia: Lithium, Sodium, Magnesium, and Calcium as Electron Sources.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-03-10

    A free electron in solution, known as a solvated electron, is the smallest possible anion. Alkali and alkaline earth atoms serve as electron donors in solvents that mediate outer-sphere electron transfer. We report herein ab initio molecular dynamics simulations of lithium, sodium, magnesium, and calcium in liquid ammonia at 250 K. By analyzing the electronic properties and the ionic and solvation structures and dynamics, we systematically characterize these metals as electron donors and ammonia molecules as electron acceptors. We show that the solvated metal strongly modifies the properties of its solvation shells and that the observed effect is metal-specific. Specifically, the radius and charge exhibit major impacts. The single solvated electron present in the alkali metal systems is distributed more uniformly among the solvent molecules of each metal's two solvation shells. In contrast, alkaline earth metals favor a less uniform distribution of the electron density. Alkali and alkaline earth atoms are coordinated by four and six NH3 molecules, respectively. The smaller atoms, Li and Mg, are stronger electron donors than Na and Ca. This result is surprising, as smaller atoms in a column of the periodic table have higher ionization potentials. However, it can be explained by stronger electron donor-acceptor interactions between the smaller atoms and the solvent molecules. The structure of the first solvation shell is sharpest for Mg, which has a large charge and a small radius. Solvation is weakest for Na, which has a small charge and a large radius. Weak solvation leads to rapid dynamics, as reflected in the diffusion coefficients of NH3 molecules of the first two solvation shells and the Na atom. The properties of the solvated electrons established in the present study are important for radiation chemistry, synthetic chemistry, condensed-matter charge transfer, and energy sources.

  10. Effect of diuretics on renal tubular transport of calcium and magnesium.

    PubMed

    Alexander, R Todd; Dimke, Henrik

    2017-06-01

    Calcium (Ca(2+)) and Magnesium (Mg(2+)) reabsorption along the renal tubule is dependent on distinct trans- and paracellular pathways. Our understanding of the molecular machinery involved is increasing. Ca(2+) and Mg(2+) reclamation in kidney is dependent on a diverse array of proteins, which are important for both forming divalent cation-permeable pores and channels, but also for generating the necessary driving forces for Ca(2+) and Mg(2+) transport. Alterations in these molecular constituents can have profound effects on tubular Ca(2+) and Mg(2+) handling. Diuretics are used to treat a large range of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na(+)) transport, but also indirectly affect renal Ca(2+) and Mg(2+) handling, i.e., by establishing a prerequisite electrochemical gradient. It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca(2+) and Mg(2+) handling are reviewed in the context of the present understanding of basal molecular mechanisms of Ca(2+) and Mg(2+) transport. Acetazolamide, osmotic diuretics, Na(+)/H(+) exchanger (NHE3) inhibitors, and antidiabetic Na(+)/glucose cotransporter type 2 (SGLT) blocking compounds, target the proximal tubule, where paracellular Ca(2+) transport predominates. Loop diuretics and renal outer medullary K(+) (ROMK) inhibitors block thick ascending limb transport, a segment with significant paracellular Ca(2+) and Mg(2+) transport. Thiazides target the distal convoluted tubule; however, their effect on divalent cation transport is not limited to that segment. Finally, potassium-sparing diuretics, which inhibit electrogenic Na(+) transport at distal sites, can also affect divalent cation transport. Copyright © 2017 the American Physiological Society.

  11. Changes in serum calcium, phosphorus, and magnesium levels in captive ruminants affected by diet manipulation.

    PubMed

    Miller, Michele; Weber, Martha; Valdes, Eduardo V; Neiffer, Donald; Fontenot, Diedre; Fleming, Gregory; Stetter, Mark

    2010-09-01

    A combination of low serum calcium (Ca), high serum phosphorus (P), and low serum magnesium (Mg) has been observed in individual captive ruminants, primarily affecting kudu (Tragelaphus strepsiceros), eland (Taurotragus oryx), nyala (Tragelaphus angasii), bongo (Tragelaphus eurycerus), and giraffe (Giraffa camelopardalis). These mineral abnormalities have been associated with chronic laminitis, acute tetany, seizures, and death. Underlying rumen disease secondary to feeding highly fermentable carbohydrates was suspected to be contributing to the mineral deficiencies, and diet changes that decreased the amount of starch fed were implemented in 2003. Serum chemistry values from before and after the diet change were compared. The most notable improvement after the diet change was a decrease in mean serum P. Statistically significant decreases in mean serum P were observed for the kudu (102.1-66.4 ppm), eland (73.3-58.4 ppm), and bongo (92.1-64.2 ppm; P < 0.05). Although not statistically significant, mean serum P levels also decreased for nyala (99.3-86.8 ppm) and giraffe (82.6-68.7 ppm). Significant increases in mean serum Mg were also observed for kudu (15.9-17.9 ppm) and eland (17.1-19.7 ppm). A trend toward increased serum Mg was also observed in nyala, bongo, and giraffe after the diet change. No significant changes in mean serum Ca were observed in any of the five species evaluated, and Ca was within normal ranges for domestic ruminants. The mean Ca:P ratio increased to greater than one in every species after the diet change, with kudu, eland, and bongo showing a statistically significant change. The results of this study indicate that the diet change had a generally positive effect on serum P and Mg levels.

  12. Carboxylated molecules regulate magnesium content of amorphous calcium carbonates during calcification

    PubMed Central

    Wang, Dongbo; Wallace, Adam F.; De Yoreo, James J.; Dove, Patricia M.

    2009-01-01

    With the realization that many calcified skeletons form by processes involving a precursor phase of amorphous calcium carbonate (ACC), a new paradigm for mineralization is emerging. There is evidence the Mg content in biogenic ACC is regulated by carboxylated (acidic) proteins and other macromolecules, but the physical basis for such a process is unknown. We test the hypothesis that ACC compositions express a systematic relationship to the chemistry of carboxyl-rich biomolecules. A series of inorganic control experiments were conducted to establish the dependence of Mg/Ca ratios in ACC on solution composition. We then determined the influence of a suite of simple carboxylated organic acids on Mg content. Molecules with a strong affinity for binding Ca compared with Mg promote the formation of Mg-enriched ACC that is compositionally equivalent to high-magnesium calcites and dolomite. Measurements show Mg/Ca ratios are controlled by a predictable dependence upon the binding properties of the organic molecules. The trend appears rooted in the conformation and electrostatic potential topology of each molecule, but dynamic factors also may be involved. The dependence suggests a physical basis for reports that specific sequences of calcifying proteins are critical to modulating mineralization. Insights from this study may provide a plausible explanation for why some biogenic carbonates and carbonaceous cements often contain higher Mg signatures than those that are possible by classical crystal growth processes. The findings reiterate the controls of microenvironment on mineralization and suggest an origin of compositional offsets, or vital effects, long recognized by the paleoclimate community. PMID:19955417

  13. Blood Magnesium, and the Interaction with Calcium, on the Risk of High-Grade Prostate Cancer

    PubMed Central

    Motley, Saundra S.; Smith, Joseph A.; Concepcion, Raoul; Barocas, Daniel; Byerly, Susan

    2011-01-01

    Background Ionized calcium (Ca) and magnesium (Mg) compete as essential messengers to regulate cell proliferation and inflammation. We hypothesized that inadequate Mg levels, perhaps relative to Ca levels (e.g. a high Ca/Mg ratio) are associated with greater prostate cancer risk. Study Design In this biomarker sub-study of the Nashville Men's Health Study (NMHS), we included 494 NMHS participants, consisting of 98 high-grade (Gleason≥7) and 100 low-grade cancer cases, 133 prostate intraepithelial neoplasia (PIN) cases, and 163 controls without cancer or PIN at biopsy. Linear and logistic regression were used to determine associations between blood Ca, Mg, and the Ca/Mg ratio across controls and case groups while adjusting for potential confounding factors. Results Serum Mg levels were significantly lower, while the Ca/Mg ratio was significantly higher, among high-grade cases vs. controls (p = 0.04, p = 0.01, respectively). Elevated Mg was significantly associated with a lower risk of high-grade prostate cancer (OR = 0.26 (0.09, 0.85)). An elevated Ca/Mg ratio was also associated with an increased risk of high-grade prostate cancer (OR = 2.81 (1.24, 6.36) adjusted for serum Ca and Mg). In contrast, blood Ca levels were not significantly associated with prostate cancer or PIN.Mg, Ca, or Ca/Mg levels were not associated with low-grade cancer, PIN, PSA levels, prostate volume, or BPH treatment. Conclusion Low blood Mg levels and a high Ca/Mg ratio were significantly associated with high-grade prostate cancer. These findings suggest Mg affects prostate cancer risk perhaps through interacting with Ca. PMID:21541018

  14. Combined low calcium and lack magnesium is a risk factor for motor deficit in mice.

    PubMed

    Taniguchi, Ryoo; Nakagawasai, Osamu; Tan-no, Koichi; Yamadera, Fumihiro; Nemoto, Wataru; Sato, Shoko; Yaoita, Fukie; Tadano, Takeshi

    2013-01-01

    The populations of the Kii Peninsula in Japan and of Guam present high incidences of amyotrophic lateral sclerosis and Parkinsonism-dementia complex. It is thought that low levels of calcium (Ca) and magnesium (Mg) in the drinking water are involved in the pathogenesis of these diseases. The present study aimed to test the hypothesis that catalepsy, behavioral immobility and a Parkinsonian symptom results from functionally impaired dopaminergic neurons in mice fed low amounts of Ca and Mg (LCa/Mg). A group of mice fed a LCa/Mg diet for 6 weeks was compared to a control group on a standard diet. Cataleptic symptoms such as akinesia and rigidity were measured by the bar test. The anti-parkinsonian drugs dopamine (DA) precursor L-3,4-dihydroxy phenylamine (L-DOPA), the selective DA receptor D(2) agonist bromocriptine, and the DA releaser amantadine were tested for their effects on induced catalepsy. The mice developed catalepsy after 3 weeks on the LCa/Mg diet. LCa/Mg diet-induced catalepsy was improved by the administration of L-DOPA (50-200 mg/kg i.p.) in combination with benserazide (25 mg/kg i.p.), or of bromocriptine (0.25-4 mg/kg i.p.) or of amantadine (5-20 mg/kg i.p.). Immunohistochemical staining revealed that the intensity of tyrosine hydroxylase fluorescence was significantly decreased in the substantia nigra at the 6th week of LCa/Mg feeding in comparison with pair-fed controls. These results suggest that catalepsy in LCa/Mg mice results from hypofunction of the dopaminergic neurons. Moreover, our results support the hypothesis that LCa/Mg intake is one etiological factor in neurodegenerative disorders, including Parkinson's disease.

  15. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate ( struvite) and its isomorphous analogues. I. Spectra of protiated and partially deuterated magnesium potassium phosphate hexahydrate

    NASA Astrophysics Data System (ADS)

    Stefov, V.; Šoptrajanov, B.; Spirovski, F.; Kuzmanovski, I.; Lutz, H. D.; Engelen, B.

    2004-02-01

    The Fourier transform infrared and Raman spectra of magnesium potassium phosphate hexahydrate and a series of its deuterated analogues were recorded and analyzed. By comparing the spectra recorded at room temperature with those obtained at the boiling temperature of liquid nitrogen and by studying the spectra of the series of partially deuterated MgKPO 4·H 2O an assignment was proposed for the observed bands. The unusual behavior for bands originating from the ν4 modes of PO 43- ions in the Raman spectra of partially deuterated analogues of MgKPO 4·6H 2O was explained by coupling and mixing of the ν4(PO 4) mode and D 2O librations.

  16. Natural mineral bottled waters available on the Polish market as a source of minerals for the consumers. Part 1. Calcium and magnesium.

    PubMed

    Gątarska, Anna; Tońska, Elżbieta; Ciborska, Joanna

    2016-01-01

    Natural mineral waters may be an essential source of calcium, magnesium and other minerals. In bottled waters, minerals occur in an ionized form which is very well digestible. However, the concentration of minerals in underground waters (which constitute the material for the production of bottled waters) varies. In view of the above, the type of water consumed is essential. The aim of the study was to estimate the calcium and magnesium contents in products available on the market and to evaluate calcium and magnesium consumption with natural mineral water by different consumer groups with an assumed volume of the consumed product. These represented forty different brands of natural mineral available waters on Polish market. These waters were produced in Poland or other European countries. Among the studied products, about 30% of the waters were imported from Lithuania, Latvia, Czech Republic, France, Italy and Germany. The content of calcium and magnesium in mineral waters was determined using flame atomic absorption spectrometry in an acetylene-air flame. Further determinations were carried out using atomic absorption spectrometer--ICE 3000 SERIES-THERMO-England, equipped with a GLITE data station, background correction (a deuterium lamp) as well as other cathode lamps. Over half of the analysed natural mineral waters were medium-mineralized. The natural mineral waters available on the market can be characterized by a varied content of calcium and magnesium and a high degree of product mineralization does not guarantee significant amounts of these components. Among the natural mineral waters available on the market, only a few feature the optimum calcium-magnesium proportion (2:1). Considering the mineralization degree of the studied products, it can be stated that the largest percentage of products with significant calcium and magnesium contents can be found in the high-mineralized water group. For some natural mineral waters, the consumption of 1 litre daily may

  17. Should acidification of urine be performed before the analysis of calcium, phosphate and magnesium in the presence of crystals?

    PubMed

    Pratumvinit, Busadee; Reesukumal, Kanit; Wongkrajang, Preechaya; Khejonnit, Varanya; Klinbua, Cherdsak; Dangneawnoi, Weerapol

    2013-11-15

    Acidification of urine has been recommended before testing for calcium, phosphate, and magnesium. We investigated the necessity of pre-analytical acidification in both crystallized and non-crystallized urine samples. From 130 urine samples obtained via routine urine analysis, 65 (50%) samples were classified as non-crystallized. All samples were divided into three groups: untreated samples, acidified samples with HCl, and acidified samples after 1h room-temperature incubation. Urine samples were measured for calcium, phosphate, magnesium, and creatinine using Modular P800 and were examined for crystals using light microscopy. In crystallized samples, acidified samples with 1h incubation had significantly higher Ca/Cr, P/Cr, and Mg/Cr than did untreated samples with mean differences of 0.04, 0.03, and 0.01 mg/mg, respectively (P<0.001). In acidified samples that were analyzed immediately, crystallized samples had lower calcium concentrations than those of acidified samples with 1h incubation and a mean difference of 0.21 mg/dl (P = 0.025). None of the sample differences which exceeded the critical difference of urinary Ca, P and Mg was observed. Acidification of urine should be performed before the measurement of Ca, P, and Mg in the presence of urinary crystals. However, the lack of an acidification process does not result in a clinically significant change. © 2013.

  18. Impact of supplementary high calcium milk with additional magnesium on parathyroid hormone and biochemical markers of bone turnover in postmenopausal women.

    PubMed

    Green, J Hilary; Booth, Chris; Bunning, Richard

    2002-01-01

    The aim of this study was to investigate the impact of magnesium-enriched, high-calcium milk on serum parathyroid hormone (PTH) and biochemical markers of bone turnover in postmenopausal women. We recruited 50 healthy postmenopausal women to take part in this randomised controlled study. Half of the women consumed two serves of high-calcium skim milk enriched with magnesium (milk group) and half consumed two serves apple drink per day (apple group), each for 4 weeks. The milk provided 1200 mg calcium and an additional 106 mg magnesium. We investigated the responses of serum PTH, as well as the serum and urinary calcium, magnesium and biochemical markers of bone turnover. There was no effect of time or drink on the clinical biochemistry, serum PTH or urine markers of bone resorption (free deoxypyridinoline and N-telopeptides). Serum C-telopeptides (CTX), another marker of bone resorption, did not change with time in the apple group. However, in the milk group, serum CTX deceased significantly from 0.43 +/- 0.04 ng/mL to 0.32 +/- 0.02 at 2 weeks (p < 0.0001) and 0.28 +/- 0.02 at 4 weeks (p < 0.0001). In the milk group, urinary calcium and magnesium each increased during the night but not during the day. Overall, these data suggest that milk has an antiresorptive effect on bone, but that this is not accompanied by measurable changes in serum PTH.

  19. Comparison of serum zinc, calcium, and magnesium concentrations in women with pregnancy-induced hypertension and healthy pregnant women: A meta-analysis.

    PubMed

    He, Lianping; Lang, Lin; Li, Yijun; Liu, Qingqing; Yao, Yingshui

    2016-05-01

    The relationship between serum zinc, magnesium, and calcium levels and pregnancy-induced hypertension (PIH) is controversial. The aim of our study was to determine whether or not serum zinc, magnesium, and calcium levels are associated with PIH. In our study, we searched databases, including Wangfang, Chinese National Knowledge Infrastructure, and PubMed, to find literature regarding the relationship between PIH and serum trace elements. Meta-analysis was performed using the Review Manager5.3 software. A total of 14 articles were included in our study. The results of the meta-analysis indicated that patients with PIH had lower serum zinc (SMD = -1.14; 95% CI] = -1.69, -0.59; P < 0.05), calcium (MD = -0.26; 95% CI = -0.36, -0.15; P < 0.05), and magnesium concentration (MD = -0.0.06; 95% CI = -0.08, -0.05; P < 0.05) than healthy gravidas. Our research suggests that serum zinc, calcium, and magnesium concentrations may have an effect on PIH. Thus, the serum zinc, calcium, and magnesium levels could be measured for PIH patients.

  20. Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

    NASA Astrophysics Data System (ADS)

    Hlaing, Nwe Ni; Vignesh, K.; Sreekantan, Srimala; Pung, Swee-Yong; Hinode, Hirofumi; Kurniawan, Winarto; Othman, Radzali; Thant, Aye Aye; Mohamed, Abdul Rahman; Salim, Chris

    2016-02-01

    Calcium hydroxide (Ca(OH)2) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)2 based adsorbents for carbon dioxide (CO2) capture. The effect of CTAB concentration (0.2-0.8 M) on the structure, morphology and CO2 adsorption performance of Ca(OH)2 was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG-DTA) techniques. The phase purity, crystallite size, Brunauer-Emmett-Teller (BET) surface area and CO2 adsorption performance of Ca(OH)2 precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH)2 phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH)2 precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.

  1. Biocompatibility of fluoride-coated magnesium-calcium alloys with optimized degradation kinetics in a subcutaneous mouse model.

    PubMed

    Drynda, Andreas; Seibt, Juliane; Hassel, Thomas; Bach, Friedrich Wilhelm; Peuster, Matthias

    2013-01-01

    The principle of biodegradation has been considered for many years in the development of cardiovascular stents, especially for patients with congenital heart defects. A variety of materials have been examined with regard to their suitability for cardiovascular devices. Iron- and magnesium-based stents were investigated intensively during the last years. It has been shown, that iron, or iron based alloys have slow degradation kinetics whereas magnesium-based systems exhibit rapid degradation rates. Recently we have developed fluoride coated binary magnesium-calcium alloys with reduced degradation kinetics. These alloys exhibit good biocompatibility and no major adverse effects toward smooth muscle and endothelial cells in in vitro experiments. In this study, these alloys were investigated in a subcutaneous mouse model. Fluoride coated (fc) magnesium, as well as MgCa0.4%, MgCa0.6%, MgCa0.8%, MgCa1.0%, and a commercially available WE43 alloy were implanted in form of (fc) cylindrical plates into the subcutaneous tissue of NMRI mice. After a 3 and 6 months follow-up, the (fc) alloy plates were examined by histomorphometric techniques to assess their degradation rate in vivo. Our data indicate that all (fc) alloys showed a significant corrosion. For both time points the (fc) MgCa alloys showed a higher corrosion rate in comparison to the (fc) WE43 reference alloy. Significant adverse effects were not observed. Fluoride coating of magnesium-based alloys can be a suitable way to reduce degradation rates. However, the (fc) MgCa alloys did not exhibit decreased degradation kinetics in comparison to the (fc) WE43 alloy in a subcutaneous mouse model.

  2. Impurities Removal in Seawater to Optimize the Magnesium Extraction

    NASA Astrophysics Data System (ADS)

    Natasha, N. C.; Firdiyono, F.; Sulistiyono, E.

    2017-02-01

    Magnesium extraction from seawater is promising way because magnesium is the second abundant element in seawater and Indonesia has the second longest coastline in the world. To optimize the magnesium extraction, the impurities in seawater need to be eliminated. Evaporation and dissolving process were used in this research to remove the impurities especially calcium in seawater. Seawater which has been evaporated from 100 ml to 50 ml was dissolved with variations solution such as oxalic acid and ammonium bicarbonate. The solution concentration is 100 g/l and it variations are 2 ml, 4 ml, 6 ml, 8 ml, 10 ml, 20 ml, 30 ml, 40 ml and 50 ml. This step will produce precipitate and filtrate then it will be analysed to find out the result of this process. The precipitate was analysed by X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) but the filtrate was analysed by Inductively Coupled Plasma (ICP). XRD analysis shows that calcium oxalate and calcium carbonate were formed and ICP analysis shows that the remaining calcium in seawater using oxalic acid is about 0.01% and sodium 0.14% but when using ammonium bicarbonate the remaining calcium is 2.5% and sodium still more than 90%. The results show that both oxalic acid and ammonium bicarbonate can remove the impurities but when using oxalic acid, not only the impurities but also magnesium was precipitated. The conclusion of this research is the best solution to remove the impurities in seawater without precipitate the magnesium is using ammonium bicarbonate.

  3. Determination of calcium, magnesium and zinc in lubricating oils by flame atomic absorption spectrometry using a three-component solution.

    PubMed

    Zmozinski, Ariane V; de Jesus, Alexandre; Vale, Maria G R; Silva, Márcia M

    2010-12-15

    Lubricating oils are used to decrease wear and friction of movable parts of engines and turbines, being in that way essential for the performance and the increase of that equipment lifespan. The presence of some metals shows the addition of specific additives such as detergents, dispersals and antioxidants that improve the performance of these lubricants. In this work, a method for determination of calcium, magnesium and zinc in lubricating oil by flame atomic absorption spectrometry (F AAS) was developed. The samples were diluted with a small quantity of aviation kerosene (AVK), n-propanol and water to form a three-component solution before its introduction in the F AAS. Aqueous inorganic standards diluted in the same way have been used for calibration. To assess the accuracy of the new method, it was compared with ABNT NBR 14066 standard method, which consists in diluting the sample with AVK and in quantification by F AAS. Two other validating methods have also been used: the acid digestion and the certified reference material NIST (SRM 1084a). The proposed method provides the following advantages in relation to the standard method: significant reduction of the use of AVK, higher stability of the analytes in the medium and application of aqueous inorganic standards for calibration. The limits of detection for calcium, magnesium and zinc were 1.3 μg g(-1), 0.052 μg g(-1) and 0.41 μg g(-1), respectively. Concentrations of calcium, magnesium and zinc in six different samples obtained by the developed method did not differ significantly from the results obtained by the reference methods at the 95% confidence level (Student's t-test and ANOVA). Therefore, the proposed method becomes an efficient alternative for determination of metals in lubricating oil. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Investigating the Role of Carbonate Ion Concentration on the Magnesium Content of Amorphous Calcium Carbonate

    NASA Astrophysics Data System (ADS)

    Blue, C.; Dove, P. M.; Han, N.

    2011-12-01

    The fields of biomineralization and carbonate geochemistry are undergoing a paradigm shift with the realization that the formation of calcite with diverse compositions and textures can be understood within the framework of multiple pathways to mineralization. Many organisms do not form their skeletons via the classical step-growth process, but instead mineralization occurs through a mesocrystal pathway that begins with the formation of amorphous calcium carbonate (ACC), which subsequently transforms to calcite. Little is known about factors that regulate this type of calcification because the last 50 years of research have focused almost entirely on step-growth processes. In particular, new findings indicate that the chemical signatures and properties of calcites that form via an amorphous pathway are significantly different. Variable temperature has been shown to influence the amount of magnesium that is incorporated into ACC, but the effect of alkalinity has not been constrained. Here, a flow-through method was developed to produce ACC within a geochemically relevant pH range and with a constant supersaturation, and to determine the effect of carbonate ion concentration on magnesium uptake. The experimental approach uses a high precision syringe pump to prepare ACC under specified and constant chemical conditions. This study used two syringes that contained: 1) 100 ml of MgCl2?6H2O and CaCl2?2H2O such that the Mg/Ca ratio is fixed at 5:1 (modern seawater), and 2) 100 ml of 60mM - 400mM NaHCO3. The initial sodium bicarbonate solutions were buffered to a pH of 9.75 using NaOH, and upon mixing with the 5:1 Mg/Ca solution the resulting pH range was 9.2 - 9.7. All experiments were performed at temperatures between 21.5 and 23 degrees Celsius. Solution and solids were collected on 0.20 micron filter paper with a vacuum pump running continuously. Experiments were typically conducted for an hour and a half and all samples were rinsed with distilled deionized water before

  5. Effect of calcium magnesium acetate on the forming property and fractal dimension of sludge pore structure during combustion.

    PubMed

    Zhang, Lihui; Duan, Feng; Huang, Yaji; Chyang, Chiensong

    2015-12-01

    The changes in pore structure characteristics of sewage sludge particles under effect of calcium magnesium acetate (CMA) during combustion were investigated, the samples were characterized by N2 isothermal absorption method, and the data were used to analyze the fractal properties of the obtained samples. Results show that reaction time and the mole ratio of calcium to sulfur (Ca/S ratio) have notable impact on the pore structure and morphology of solid sample. The Brunauer-Emmett-Teller (BET) specific surface area (SBET) of sample increases with Ca/S ratio, while significant decreases with reaction time. The fractal dimension D has the similar trend with that of SBET, indicating that the surface roughness of sludge increases under the effect of CMA adding, resulting in improved the sludge combustion and the desulfurization process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Measurement and calculation of the Stark-broadening parameters for the resonance lines of singly ionized calcium and magnesium.

    NASA Technical Reports Server (NTRS)

    Jones, W. W.; Sanchez, A.; Greig, J. R.; Griem, H. R.

    1972-01-01

    The electron-impact-broadened profiles of the resonance lines of singly ionized calcium and magnesium have been measured using an electromagnetically driven shock tube and a rapid-scanning Fabry-Perot spectrometer. For an electron density of 10 to the 17th power per cu cm and a temperature of 19,000 K, we found the Lorentzian half-width of the Ca+ line to be 0.086 A plus or minus 10% and of the Mg+ line to be 0.044 A plus or minus 10%. Using the quantum-mechanical theory of Barnes and Peach and our semiclassical calculation for the calcium lines, we found that the temperature dependence of the theoretical curves is close to that measured, although both theories predict actual values which are somewhat large.

  7. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate ( struvite) and its isomorphous analogues. VII: Spectra of protiated and partially deuterated hexagonal magnesium caesium phosphate hexahydrate

    NASA Astrophysics Data System (ADS)

    Stefov, V.; Cahil, A.; Šoptrajanov, B.; Najdoski, M.; Spirovski, F.; Engelen, B.; Lutz, H. D.; Koleva, V.

    2009-04-01

    The Fourier transform infrared and Raman spectra of the struvite analogue, hexagonal magnesium caesium phosphate hexahydrate, MgCsPO 4·6H 2O ( hP50) and of its partially deuterated analogues were recorded from room temperature (RT) down to the boiling temperature of liquid nitrogen (LNT). The existence of strong hydrogen bonds between water molecules and PO 43- ions is supported by the appearance of a broad band from 3600 to 2200 cm -1 in the O-H stretching region of the vibrational spectra. In the region of the OD stretching vibrations of isotopically isolated HDO molecules of the analogue with a small deuterium content (≈5% D), at least two bands (from the expected three) are observed in the difference LNT infrared spectrum. In the region of ν3(PO 4) modes of the infrared spectra, a broad and asymmetric band (at around 1000 cm -1) is found, while in the region of the ν4(PO 4) bending vibration and of the external modes of the water molecules, several bands can be seen. The intense band at 945 cm -1 in the Raman spectra can with certainty be attributed to the ν1(PO 4) mode. On the basis of a careful analysis of the RT and LNT spectra of the protiated compound, as well as those of its partially deuterated analogues, the asymmetric band at around 550 cm -1 could be assigned to the components of the ν4(PO 4) mode, the bands between 470 and 430 cm -1 to the ν2(PO 4) vibrations and the remaining ones as due to pure or coupled librational and translational modes of the water molecules. The external modes of the phosphate ions and those of the water molecules are mixed.

  8. Deep SDSS optical spectroscopy of distant halo stars. II. Iron, calcium, and magnesium abundances

    NASA Astrophysics Data System (ADS)

    Fernández-Alvar, E.; Allende Prieto, C.; Schlesinger, K. J.; Beers, T. C.; Robin, A. C.; Schneider, D. P.; Lee, Y. S.; Bizyaev, D.; Ebelke, G.; Malanushenko, E.; Malanushenko, V.; Oravetz, D.; Pan, K.; Simmons, A.

    2015-05-01

    Aims: We analyze a sample of 3944 low-resolution (R ~ 2000) optical spectra from the Sloan Digital Sky Survey (SDSS), focusing on stars with effective temperatures 5800 ≤ Teff ≤ 6300 K, and distances from the Milky Way plane in excess of 5 kpc, and determine their abundances of Fe, Ca, and Mg. Methods: We followed the same methodology as in the previous paper in this series, deriving atmospheric parameters by χ2 minimization, but this time we obtained the abundances of individual elements by fitting their associated spectral lines. Distances were calculated from absolute magnitudes obtained by a statistical comparison of our stellar parameters with stellar-evolution models. Results: The observations reveal a decrease in the abundances of iron, calcium, and magnesium at large distances from the Galactic center. The median abundances for the halo stars analyzed are fairly constant up to a Galactocentric distance r ~ 20 kpc, rapidly decrease between r ~ 20 and r ~ 40 kpc, and flatten out to significantly lower values at larger distances, consistent with previous studies. In addition, we examine [Ca/Fe] and [Mg/Fe] as a function of [Fe/H] and Galactocentric distance. Our results show that the most distant parts of the halo show a steeper variation of [Ca/Fe] and [Mg/Fe] with iron. We found that at the range -1.6 < [Fe/H] < -0.4, [Ca/Fe] decreases with distance, in agreement with earlier results based on local stars. However, the opposite trend is apparent for [Mg/Fe]. Our conclusion that the outer regions of the halo are more metal-poor than the inner regions, based on in situ observations of distant stars, agrees with recent results based on inferences from the kinematics of more local stars, and with predictions of recent galaxy formation simulations for galaxies similar to the Milky Way. Table 1 and beginning of Tables 2 and 3 are available in electronic form at http://www.aanda.orgFull Tables 2 and 3 are only available at the CDS via anonymous ftp to http

  9. Modifying effect of calcium/magnesium intake ratio and mortality: a population-based cohort study

    PubMed Central

    Dai, Qi; Shu, Xiao-Ou; Deng, Xinqing; Xiang, Yong-Bing; Li, Honglan; Yang, Gong; Shrubsole, Martha J; Ji, Butian; Cai, Hui; Chow, Wong-Ho; Gao, Yu-Tang; Zheng, Wei

    2013-01-01

    Objectives Magnesium (Mg) and calcium (Ca) antagonise each other in (re)absorption, inflammation and many other physiological activities. Based on mathematical estimation, the absorbed number of Ca or Mg depends on the dietary ratio of Ca to Mg intake. We hypothesise that the dietary Ca/Mg ratio modifies the effects of Ca and Mg on mortality due to gastrointestinal tract cancer and, perhaps, mortality due to diseases occurring in other organs or systems. Design Prospective studies. Setting Population-based cohort studies (The Shanghai Women's Health Study and the Shanghai Men's Health Study) conducted in Shanghai, China. Participants 74 942 Chinese women aged 40–70 years and 61 500 Chinese men aged 40–74 years participated in the study. Primary outcome measures All-cause mortality and disease-specific mortality. Results In this Chinese population with a low Ca/Mg intake ratio (a median of 1.7 vs around 3.0 in US populations), intakes of Mg greater than US Recommended Daily Allowance (RDA) levels (320 mg/day among women and 420 mg/day among men) were related to increased risks of total mortality for both women and men. Consistent with our hypothesis, the Ca/Mg intake ratio significantly modified the associations of intakes of Ca and Mg with mortality risk, whereas no significant interactions between Ca and Mg in relation to outcome were found. The associations differed by gender. Among men with a Ca/Mg ratio >1.7, increased intakes of Ca and Mg were associated with reduced risks of total mortality, and mortality due to coronary heart diseases. In the same group, intake of Ca was associated with a reduced risk of mortality due to cancer. Among women with a Ca/Mg ratio ≤1.7, intake of Mg was associated with increased risks of total mortality, and mortality due to cardiovascular diseases and colorectal cancer. Conclusions These results, if confirmed, may help to understand the optimal balance between Ca and Mg in the aetiology and prevention of these

  10. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration.

    PubMed

    Wu, Fan; Wei, Jie; Guo, Han; Chen, Fangping; Hong, Hua; Liu, Changsheng

    2008-11-01

    Calcium phosphate cement (CPC) has been successfully used in clinics as bone repair biomaterial for many years. However, poor mechanical properties and a low biodegradation rate limit any further applications. Magnesium phosphate cement (MPC) is characterized by fast setting, high initial strength and relatively rapid degradation in vivo. In this study, MPC was combined with CPC to develop novel calcium-magnesium phosphate cement (CMPC). The setting time, compressive strength, phase composition of hardened cement, degradation in vitro, cells responses in vitro by MG-63 cell culture and tissue responses in vivo by implantation of CMPC in bone defect of rabbits were investigated. The results show that CMPC has a shorter setting time and markedly better mechanical properties than either CPC or MPC. Moreover, CMPC showed significantly improved degradability compared to CPC in simulated body fluid. Cell culture results indicate that CMPC is biocompatible and could support cell attachment and proliferation. To investigate the in vivo biocompatibility and osteogenesis, the CMPC samples were implanted into bone defects in rabbits. Histological evaluation showed that the introduction of MPC into CPC enhanced the efficiency of new bone formation. CMPC also exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results obtained suggest that CMPC, having met the basic requirements of bone tissue engineering, might have a significant clinical advantage over CPC, and may have the potential to be applied in orthopedic, reconstructive and maxillofacial surgery.

  11. Effect of gutta-percha solvents at different temperatures on the calcium, phosphorus and magnesium levels of human root dentin.

    PubMed

    Doğan, H; Taşman, F; Cehreli, Z C

    2001-08-01

    The aim of this study in vitro investigation was to evaluate the alterations caused by warmed gutta-percha solvents on the calcium, phosphorus and magnesium levels of root dentin. Extracted human anterior teeth, whose crowns and apical root thirds had been removed were used as root dentin specimens. The roots were sectioned longitudinally into two segments, cleaned and dried. Segments were divided into 12 groups (n=12). In 6 groups, the specimens received treatment with the following solvents at room temperature (22 degrees C): Chloroform, xylene, eucalyptol, orange oil, halothane and saline (control). Within each group, the specimens were further subgrouped into two to be incubated (100% humidity at 37 degrees C) for 5 and 10 min, respectively, following treatment with the solvents. The remaining six groups were treated with the same solvents which had been previously warmed to body temperature (37 degrees C) and received the same experimental procedures. The levels of calcium, phosphorus and magnesium in each specimen were analysed using energy dispersive spectrometric microanalysis. Statistical analysis of the readings showed that neither warming of the solvents nor prolonged incubation (treatment) time was capable of altering the histochemical composition of cut root dentin surfaces.

  12. Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography.

    PubMed

    Maciejewska, Magdalena; Krzywania-Kaliszewska, Alicja; Zaborski, Marian

    2012-09-28

    Inverse gas chromatography (IGC) was applied at infinite dilution to evaluate the surface properties of calcium and magnesium oxide nanoparticles and the effect of surface grafted unsaturated carboxylic acid on the nanopowder donor-acceptor characteristics. The dispersive components (γ(s)(D)) of the free energy of the nanopowders were determined by Gray's method, whereas their tendency to undergo specific interactions was estimated based on the electron donor-acceptor approach presented by Papirer. The calcium and magnesium oxide nanoparticles exhibited high surface energies (79 mJ/m² and 74 mJ/m², respectively). Modification of nanopowders with unsaturated carboxylic acids decreased their specific adsorption energy. The lowest value of γ(s)(D) was determined for nanopowders grafted with undecylenic acid, approximately 55 mJ/m². The specific interactions were characterised by the molar free energy (ΔG(A)(SP)) and molar enthalpy (ΔH(A)(SP)) of adsorption as well as the donor and acceptor interaction parameters (K(A), K(D)).

  13. Acute effect of high-calcium milk with or without additional magnesium, or calcium phosphate on parathyroid hormone and biochemical markers of bone resorption.

    PubMed

    Green, J H; Booth, C; Bunning, R

    2003-01-01

    To assess whether there are any differences in the postprandial physiological responses to apple drink (control), calcium phosphate (tricalcium phosphate, TCP) and high-calcium skim milk (HCSM) with or without additional magnesium in postmenopausal women. Randomized, controlled, cross-over. Measurements after overnight fast before each drink, and subsequently every hour for 8 h postprandially. Human Nutrition Studies Laboratory, Milk and Health Research Centre, Massey University, Palmerston North, New Zealand. Twenty-one healthy postmenopausal women. Four drinks, each 400 ml. (1) Apple drink (25% fruit juice). (2) TCP dispersed in water containing 1200 mg Ca. (3) HCSM containing 1200 mg Ca and 65.5 mg Mg. (4) HCSM containing 1200 mg Ca and 172 mg Mg. There was no difference in baseline serum calcium, PTH or C-telopeptide levels between drinks. There were no overall differences in serum calcium after apple or after either milk, but after TCP serum calcium increased from a baseline value of 2.12+/-0.08 to a mean peak of 2.21+/-0.12 mmol/l (s.d.) (P=0.0001) after 2 h. There were no significant differences in serum PTH after either apple or HCSM+Mg. In contrast, after TCP, serum PTH decreased from 2.76+/-0.69 to a mean nadir of 2.23+/-0.65 pmol/l (P=0.0001) after 1 h, and after HCSM, it decreased from 2.71+/-0.78 to a mean nadir of 2.51+/-0.87 pmol/l (P=0.007) after 2 h. Serum C-telopeptides decreased after each drink, reaching nadirs after 5 h. At this time the serum values for each of the high calcium drinks were not different from each other, but were significantly less than for apple (P=0.001 for each), being 0.22+/-0.09 ng/ml for apple, 0.15+/-0.08 for TCP, 0.14+/-0.07 for HCSM and 0.16+/-0.07 for HCSM+Mg. Despite differences in serum calcium and PTH responses to the three high-calcium drinks that we tested, there was no distinguishable difference in serum C-telopeptides between high calcium drinks.

  14. Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism.

    PubMed

    Zhang, Jing; Ma, Xiaoyu; Lin, Dan; Shi, Hengsong; Yuan, Yuan; Tang, Wei; Zhou, Huanjun; Guo, Han; Qian, Jiangchao; Liu, Changsheng

    2015-06-01

    The chemical composition, structure and surface characteristics of biomaterials/scaffold can affect the adsorption of proteins, and this in turn influences the subsequent cellular response and tissue regeneration. With magnesium/calcium phosphate cements (MCPC) as model, the effects of magnesium (Mg) on the initial adhesion and osteogenic differentiation of bone marrow stromal cells (BMSCs) as well as the underlying mechanism were investigated. A series of MCPCs with different magnesium phosphate cement (MPC) content (0∼20%) in calcium phosphate cement (CPC) were synthesized. MCPCs with moderate proportion of MPC (5% and 10%, referred to as 5MCPC and 10MCPC) were found to effectively modulate the orientation of the adsorbed fibronectin (Fn) to exhibit enhanced receptor binding affinity, and to up-regulate integrin α5β1 expression of BMSCs, especially for 5MCPC. As a result, the attachment, morphology, focal adhesion formation, actin filaments assembly and osteogenic differentiation of BMSCs on 5MCPC were strongly enhanced. Further in vivo experiments confirmed that 5MCPC induced promoted osteogenesis in comparison to ot her CPC/MCPCs. Our results also suggested that the Mg on the underlying substrates but not the dissolved Mg ions was the main contributor to the above positive effects. Based on these results, it can be inferred that the specific interaction of Fn and integrin α5β1 had predominant effect on the MCPC-induced enhanced cellular response of BMSCs. These results provide a new strategy to regulate BMSCs adhesion and osteogenic differentiation by adjusting the Mg/Ca content and distribution in CPC, guiding the development of osteoinductive scaffolds for bone tissue regeneration.

  15. Relative influences of solution composition and presence of intracrystalline proteins on magnesium incorporation in calcium carbonate minerals: Insight into vital effects

    NASA Astrophysics Data System (ADS)

    Hermans, Julie; André, Luc; Navez, Jacques; Pernet, Philippe; Dubois, Philippe

    2011-03-01

    Biogenic calcites may contain considerable magnesium concentrations, significantly higher than those observed in inorganic calcites. Control of ion concentrations in the calcifying space by transport systems and properties of the organic matrix of mineralization are probably involved in the incorporation of high magnesium quantities in biogenic calcites, but their relative effects have never been quantified. In vitro precipitation experiments performed at different Mg/Ca ratios in the solution and in the presence of soluble organic matrix macromolecules (SOM) extracted from sea urchin tests and spines showed that, at a constant temperature, magnesium incorporation in the precipitated minerals was mainly dependent on the Mg/Ca ratio of the solution. However, a significant increase in magnesium incorporation was observed in the presence of SOM compared with control experiments. Furthermore, this effect was more pronounced with SOM extracted from the test, which was richer in magnesium than the spines. According to SEM observations, amorphous calcium carbonate was precipitated at high Mg/Casolution. The observed predominant effect of Mg/Casolution, probably mediated in vivo by ion transport to and from the calcifying space, was suggested to induce and stabilize a transient magnesium-rich amorphous phase essential to the formation of high magnesium calcites. Aspartic acid rich proteins, shown to be more abundant in the test than in the spine matrix, further stabilize this amorphous phase. The involvement of the organic matrix in this process can explain the observation that sympatric organisms or even different skeletal elements of the same individual present different skeletal magnesium concentrations.

  16. Nutrient removal and energy production in a urine treatment process using magnesium ammonium phosphate precipitation and a microbial fuel cell technique.

    PubMed

    Zang, Guo-Long; Sheng, Guo-Ping; Li, Wen-Wei; Tong, Zhong-Hua; Zeng, Raymond J; Shi, Chen; Yu, Han-Qing

    2012-02-14

    Urine pretreatment has attracted increasing interest as it is able to relieve the nitrogen and phosphorus overloading problems in municipal wastewater treatment plants. In this study, an integrated process, which combines magnesium ammonium phosphate (MAP) precipitation with a microbial fuel cell (MFC), is proposed for the recovery of a slow-release fertilizer and electricity from urine. In such a two-step process, both nitrogen and phosphorus are recovered through the MAP process, and organic matters in the urine are converted into electricity in the MFCs. With this integrated process, when the phosphorus recovery is maximized without a dose of PO(4)(3-)-P in the MAP precipitation process, removal efficiencies for PO(4)(3)-P and NH(4)(+)-N of 94.6% and 28.6%, respectively, were achieved with a chemical oxygen demand (COD) of 64.9% accompanied by a power output of 2.6 W m(-3). Whereas removal efficiencies for PO(4)(3)-P and NH(4)(+)-N of 42.6% and 40%, respectively, and a COD of 62.4% and power density of 0.9 W m(-3) were obtained if simultaneous recovery of phosphorus and nitrogen was required through dosing with 620 mg L(-1) of PO(4)(3-)-P in the MAP process. This work provides a new sustainable approach for the efficient and cost-effective treatment of urine with the recovery of energy and resources.

  17. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community

    NASA Astrophysics Data System (ADS)

    Liu, Lijuan; Sun, Chengliang; Liu, Xingxing; He, Xiaolin; Liu, Miao; Wu, Hao; Tang, Caixian; Jin, Chongwei; Zhang, Yongsong

    2016-01-01

    The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the best ability to suppress R. solanacearum due to its highest capacity to increase soil and NO2- contents and pH. However, AW was more suitable to controlling bacterial wilt caused by R. solanacearum because it had a lower cost and its application rate of 0.25 g N kg-1 soil could effectively suppress the survival of R. solanacearum. Additionally, soil microbial activity and community populations were restored to their initial state four weeks after the application of each fumigant, indicating that the three fumigants had few detrimental impacts on soil microbial activity and community structure with an exception of the suppression of R. solanacearum. The present study provides guidance for the selection of a suitable alkaline nitrogenous amendment and its application rate in controlling bacterial wilt.

  18. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community.

    PubMed

    Liu, Lijuan; Sun, Chengliang; Liu, Xingxing; He, Xiaolin; Liu, Miao; Wu, Hao; Tang, Caixian; Jin, Chongwei; Zhang, Yongsong

    2016-01-07

    The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the best ability to suppress R. solanacearum due to its highest capacity to increase soil and NO2(-) contents and pH. However, AW was more suitable to controlling bacterial wilt caused by R. solanacearum because it had a lower cost and its application rate of 0.25 g N kg(-1) soil could effectively suppress the survival of R. solanacearum. Additionally, soil microbial activity and community populations were restored to their initial state four weeks after the application of each fumigant, indicating that the three fumigants had few detrimental impacts on soil microbial activity and community structure with an exception of the suppression of R. solanacearum. The present study provides guidance for the selection of a suitable alkaline nitrogenous amendment and its application rate in controlling bacterial wilt.

  19. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community

    PubMed Central

    Liu, Lijuan; Sun, Chengliang; Liu, Xingxing; He, Xiaolin; Liu, Miao; Wu, Hao; Tang, Caixian; Jin, Chongwei; Zhang, Yongsong

    2016-01-01

    The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the best ability to suppress R. solanacearum due to its highest capacity to increase soil and NO2− contents and pH. However, AW was more suitable to controlling bacterial wilt caused by R. solanacearum because it had a lower cost and its application rate of 0.25 g N kg−1 soil could effectively suppress the survival of R. solanacearum. Additionally, soil microbial activity and community populations were restored to their initial state four weeks after the application of each fumigant, indicating that the three fumigants had few detrimental impacts on soil microbial activity and community structure with an exception of the suppression of R. solanacearum. The present study provides guidance for the selection of a suitable alkaline nitrogenous amendment and its application rate in controlling bacterial wilt. PMID:26738601

  20. The effect of zeolite A supplementation in the dry period on periparturient calcium, phosphorus, and magnesium homeostasis.

    PubMed

    Thilsing-Hansen, T; Jørgensen, R J; Enemark, J M D; Larsen, T

    2002-07-01

    One potential way of preventing parturient hypocalcemia in the dairy cow is to feed dry cow rations very low in calcium (<20 g/d); but, because it is difficult to formulate rations sufficiently low in calcium, this principle has been almost abandoned. Recent studies have shown, however, that it is possible to prevent milk fever, as well as subclinical hypocalcemia, by supplementing the dry cow ration with sodium aluminium silicate (zeolite A), which has the capacity to bind calcium. The aim of this study was to further evaluate the effect, if any, of such supplementation on other blood constituents, feed intake, and milk production in the subsequent lactation. A total of 31 pregnant dry cows about to enter their third or later lactation were assigned as experimental or control cows according to parity and expected date of calving. The experimental cows received 1.4 kg of zeolite pellets per d (0.7 kg of pure zeolite A) for the last 2 wk of pregnancy. Blood samples were drawn from all cows 1 wk before the expected date of calving, at calving, at d 1 and 2 after calving, and 1 wk after calving. Additionally, a urine sample was drawn 1 wk before the expected date of calving. Zeolite supplementation significantly increased the plasma calcium level on the day of calving, whereas plasma magnesium as well as inorganic phosphate was suppressed. Serum 1,25(OH)2D was significantly increased 1 wk before the expected date of calving among the experimental cows, whereas there was no difference in the urinary excretion of the bone metabolite deoxypyridinoline between the two groups. Feed intake was decreased among the zeolite-treated cows during the last 2 wk of pregnancy. No effect was observed on milk yield, milk fat, and milk protein in the subsequent lactation. The mechanisms and interactions involved in zeolite supplementation are discussed in relation to the observed improvement in parturient calcium homeostasis and to the observed depression in blood magnesium and

  1. Effects of calcium magnesium acetate on the combustion of coal-water slurries. Ninth quarterly project status report, 1 September 1991--30 November 1991

    SciTech Connect

    Levendis, Y.A.

    1991-12-31

    The general objective of the project is to investigate the combustion behavior of single and multiple Coal-Water Fuel (CWF) particles burning at high temperature environments. Both uncatalyzed as well as catalyzed CWF drops with Calcium Magnesium Acetate (CMA) catalyst will be studies. Emphasis will also be given in the effects of CMA on the sulfur capture during combustion.

  2. Microstructure characterization and micro- and nanoscale mechanical behaviour of magnesium-aluminum and magnesium-aluminum-calcium alloys

    NASA Astrophysics Data System (ADS)

    Han, Lihong

    The application in the automotive industry of the as-cast AM50 alloy (Mg-5.0 wt.%%Al-0.3 wt.%Mn) has been limited by its low creep resistance at elevated temperatures. Permanent mold cast (PM) Mg-Al-Ca alloys with calcium additions (0 ˜ 2.0 wt.%) were investigated in this study due to their potential for improving the high temperature creep strength. The microstructures of the die cast (DC) or PM AM50 alloys consisted of an intergranular beta-Mg17Al12 phase surrounded by a region of Al-rich eutectic alpha-Mg phase, sometimes with attached Al8Mn5 particles. In this study, significant grain refinement was observed in the PM Mg-Al-Ca alloys with Ca addition to the AM50 alloy. The grain refining effect was confirmed by quantitative image analysis through measurement of the secondary dendrite arm spacing (SDAS). The intergranular phases in Mg-Al-Ca alloys with 0.5 or 1.0 wt.% Ca were beta-Mg17Al 12 and (Al, Mg)2Ca phases. As the Ca addition was increased to 1.5 wt.% Ca, the (beta-Mg17Al12 phase was completely replaced by a (Al, Mg)2Ca phase. Differential scanning calorimetry (DSC) results showed that the (Al, Mg)2Ca phase was thermally more stable than the beta-Mg 17Al12 phase, which contributed to the better creep strength of the Mg-Al-Ca alloys. The change in heating/cooling rates played an important role in the redistribution of alloying elements and the dissolution or precipitation of the eutectic phases in the as-cast Mg alloys during DSC runs. The micro- and nano-scale hardness and composite modulus of the PM Mg-Al-Ca alloys increased with increasing Ca content, and the indentation size effect (ISE) was also observed in the as-cast Mg-Al and Mg-Al-Ca alloys. PM AC52 alloy (Mg-5.0wt.%Al-2.0wt.%Ca) was a much more creep resistant alloy than other Mg-Al-Ca alloys with lower Ca contents because of the higher solute content in the primary alpha-Mg in the as-cast state and also because of the presence of nano precipitates within the primary alpha-Mg. The size and

  3. Potentiostatic pulse-deposition of calcium phosphate on magnesium alloy for temporary implant applications--an in vitro corrosion study.

    PubMed

    Kannan, M Bobby; Wallipa, O

    2013-03-01

    In this study, a magnesium alloy (AZ91) was coated with calcium phosphate using potentiostatic pulse-potential and constant-potential methods and the in vitro corrosion behaviour of the coated samples was compared with the bare metal. In vitro corrosion studies were carried out using electrochemical impedance spectroscopy and potentiodynamic polarization in simulated body fluid (SBF) at 37 °C. Calcium phosphate coatings enhanced the corrosion resistance of the alloy, however, the pulse-potential coating performed better than the constant-potential coating. The pulse-potential coating exhibited ~3 times higher polarization resistance than that of the constant-potential coating. The corrosion current density obtained from the potentiodynamic polarization curves was significantly less (~60%) for the pulse-deposition coating as compared to the constant-potential coating. Post-corrosion analysis revealed only slight corrosion on the pulse-potential coating, whereas the constant-potential coating exhibited a large number of corrosion particles attached to the coating. The better in vitro corrosion performance of the pulse-potential coating can be attributed to the closely packed calcium phosphate particles.

  4. Histamine release by exocytosis from rat mast cells on reduction of extracellular sodium: a secretory response inhibited by calcium, strontium, barium or magnesium.

    PubMed Central

    Cochrane, D E; Douglas, W W

    1976-01-01

    1. Histamine release from peritoneal mast cells of the rat was stimulated when the cells were exposed for 10 min to sodium-deficient media where all NaCl had been replaced by KC1, RbC1, glucose, sucrose, mannitol, or Tris, provided calcium was less than about 0-5 mM. 2. Light and electron microscopy showed the response to be exocytosis. 3. The chelating agents, EDTA and EGTA, abolished the response to sodium lack and their inhibitory effects were reversed by re-incubating cells with calcium but not magnesium. 4. The response was inhibited by dinitrophenol combined with glucose-deprivation. 5. The response was inversely related to the concentrations of sodium and calcium below 137-5 and 0-5 mM respectively. 6. The related alkaline earth metals, barium, strontium, and magnesium, resembled calcium in inhibiting the response to sodium lack. 7. No secretory response was seen when the cells were exposed for 10 min to calcium-free medium in which lithium replaced sodium. Exposure to this medium for 60 min, however, elicited secretion. 8. It is concluded that when extracellular calcium is low, a reduction in extracellular sodium induces a conventional exocytotic secretory response dependent on energy and cellular calcium. It is suggested that sodium lack may mobilize calcium from a cellular site possibly the inner aspect of the plasma membrane. Images A B C D E F G H PMID:59804

  5. In vitro degradability, bioactivity and primary cell responses to bone cements containing mesoporous magnesium-calcium silicate and calcium sulfate for bone regeneration.

    PubMed

    Ding, Yueting; Tang, Songchao; Yu, Baoqing; Yan, Yonggang; Li, Hong; Wei, Jie; Su, Jiacan

    2015-10-06

    Mesoporous calcium sulfate-based bone cements (m-CSBC) were prepared by introducing mesoporous magnesium-calcium silicate (m-MCS) with specific surface area (410.9 m² g(-1)) and pore volume (0.8 cm³ g(-1)) into calcium sulfate hemihydrate (CSH). The setting time of the m-CSBC was longer with the increase of m-MCS content while compressive strength decreased. The degradation ratio of m-CSBC increased from 48.6 w% to 63.5 w% with an increase of m-MCS content after soaking in Tris-HCl solution for 84 days. Moreover, the m-CSBC containing m-MCS showed the ability to neutralize the acidic degradation products of calcium sulfate and prevent the pH from dropping. The apatite could be induced on m-CSBC surfaces after soaking in SBF for 7 days, indicating good bioactivity. The effects of the m-CSBC on vitamin D3 sustained release behaviours were investigated. It was found that the cumulative release ratio of vitamin D3 from the m-CSBC significantly increased with the increase of m-MCS content after soaking in PBS (pH = 7.4) for 25 days. The m-CSBC markedly improved the cell-positive responses, including the attachment, proliferation and differentiation of MC3T3-E1 cells, suggesting good cytocompatibility. Briefly, m-CSBC with good bioactivity, degradability and cytocompatibility might be an excellent biocement for bone regeneration. © 2015 The Author(s).

  6. Phase transitions, prominent dielectric anomalies, and negative thermal expansion in three high thermally stable ammonium magnesium-formate frameworks.

    PubMed

    Shang, Ran; Xu, Guan-Cheng; Wang, Zhe-Ming; Gao, Song

    2014-01-20

    We present three Mg-formate frameworks, incorporating three different ammoniums: [NH4][Mg(HCOO)3] (1), [CH3CH2NH3][Mg(HCOO)3] (2) and [NH3(CH2)4NH3][Mg2(HCOO)6] (3). They display structural phase transitions accompanied by prominent dielectric anomalies and anisotropic and negative thermal expansion. The temperature-dependent structures, covering the whole temperature region in which the phase transitions occur, reveal detailed structural changes, and structure-property relationships are established. Compound 1 is a chiral Mg-formate framework with the NH4(+) cations located in the channels. Above 255 K, the NH4(+) cation vibrates quickly between two positions of shallow energy minima. Below 255 K, the cations undergo two steps of freezing of their vibrations, caused by the different inner profiles of the channels, producing non-compensated antipolarization. These lead to significant negative thermal expansion and a relaxor-like dielectric response. In perovskite 2, the orthorhombic phase below 374 K possesses ordered CH3CH2NH3(+) cations in the cubic cavities of the Mg-formate framework. Above 374 K, the structure becomes trigonal, with trigonally disordered cations, and above 426 K, another phase transition occurs and the cation changes to a two-fold disordered state. The two transitions are accompanied by prominent dielectric anomalies and negative and positive thermal expansion, contributing to the large regulation of the framework coupled the order-disorder transition of CH3CH2NH3(+). For niccolite 3, the gradually enhanced flipping movement of the middle ethylene of [NH3(CH2)4NH3](2+) in the elongated framework cavity finally leads to the phase transition with a critical temperature of 412 K, and the trigonally disordered cations and relevant framework change, providing the basis for the very strong dielectric dispersion, high dielectric constant (comparable to inorganic oxides), and large negative thermal expansion. The spontaneous polarizations

  7. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration.

    PubMed

    Mushahary, Dolly; Sravanthi, Ragamouni; Li, Yuncang; Kumar, Mahesh J; Harishankar, Nemani; Hodgson, Peter D; Wen, Cuie; Pande, Gopal

    2013-01-01

    Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr) alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants.

  8. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration

    PubMed Central

    Mushahary, Dolly; Sravanthi, Ragamouni; Li, Yuncang; Kumar, Mahesh J; Harishankar, Nemani; Hodgson, Peter D; Wen, Cuie; Pande, Gopal

    2013-01-01

    Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr) alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants. PMID:23976848

  9. Urinary outputs of oxalate, calcium, and magnesium in children with intestinal disorders. Potential cause of renal calculi.

    PubMed Central

    Ogilvie, D; McCollum, J P; Packer, S; Manning, J; Oyesiku, J; Muller, D P; Harries, J T

    1976-01-01

    24-hour urinary outputs of oxalate, calcium, and magnesium have been determined in a total of 62 children aged 3 months to 17 years who fell into the following groups: (i) 16 normal controls, (ii) 3 with primary hyperoxaluria, (iii) 9 with small and/or large intestinal resections, (iv) 9 with untreated coeliac disease, (v) 5 with pancreatic dysfunction, and (vi) a miscellaneous group of 20 children with a variety of intestinal disorders. Taken as a whole, 58% of patients with intestinal disorders had hyperoxaluria, and of these 7% had urinary outputs of oxalate which fell within the range seen in primary hyperoxaluria. The proportion of children with hyperoxaluria in the different diagnostic groups was as follows: intestinal resections (78%), coeliac disease (67%), pancreatic dysfunction (80%), and miscellaneous (45%). 35% of the patients with hyperoxaluria had hypercalciuria, whereas magnesium excretion was normal in all subjects studied. In 2 patients treatment of the underlying condition was accompanied by a return of oxalate excretion to normal. These results indicate that hyperoxaluria and hypercalciuria are common in children with a variety of intestinal disorders, and that such children may be at risk of developing renal calculi without early diagnosis and treatment. PMID:1008583

  10. Understanding growth mechanisms and tribocorrosion behaviour of porous TiO2 anodic films containing calcium, phosphorous and magnesium

    NASA Astrophysics Data System (ADS)

    Oliveira, Fernando G.; Ribeiro, Ana R.; Perez, Geronimo; Archanjo, Bráulio S.; Gouvea, Cristol P.; Araújo, Joyce R.; Campos, Andrea P. C.; Kuznetsov, Alexei; Almeida, Clara M.; Maru, Márcia M.; Achete, Carlos A.; Ponthiaux, Pierre; Celis, Jean-Pierre; Rocha, Luis A.

    2015-06-01

    The growth of the dental implant market increases the concern regarding the quality, efficiency, and lifetime of dental implants. Titanium and its alloys are dominant materials in this field thanks to their high biocompatibility and corrosion resistance, but they possess a very low wear resistance. Besides problems related to osteointegration and bacterial infections, tribocorrosion phenomena being the simultaneous action between corrosion and wear, are likely to occur during the lifetime of the implant. Therefore, tribocorrosion resistant surfaces are needed to guarantee the preservation of dental implants. This work focused on the incorporation of magnesium, together with calcium and phosphorous, in the structure of titanium oxide films produced by micro-arc oxidation (MAO). The characterization of morphology, chemical composition, and crystalline structure of the surfaces provided important insights leading to (1) a better understanding of the oxide film growth mechanisms during the MAO treatment; and (2) a better awareness on the degradation process during tribocorrosion tests. The addition of magnesium was shown to support the formation of rutile which improves the tribocorrosion properties of the surfaces.

  11. Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite

    PubMed Central

    Zhang, Ke; Cheng, Lei; Weir, Michael D; Bai, Yu-Xing; Xu, Hockin HK

    2016-01-01

    Composites containing nanoparticles of amorphous calcium phosphate (NACP) remineralize tooth lesions and inhibit caries. A recent study synthesized quaternary ammonium methacrylates (QAMs) with chain lengths (CLs) of 3–18 and determined their effects on a bonding agent. This study aimed to incorporate these QAMs into NACP nanocomposites for the first time to simultaneously endow the material with antibacterial and remineralizing capabilities and to investigate the effects of the CL on the mechanical and biofilm properties. Five QAMs were synthesized: DMAPM (CL3), DMAHM (CL6), DMADDM (CL12), DMAHDM (CL16), and DMAODM (CL18). Each QAM was incorporated into a composite containing 20% NACP and 50% glass fillers. A dental plaque microcosm biofilm model was used to evaluate the antibacterial activity. The flexural strength and elastic modulus of nanocomposites with QAMs matched those of a commercial control composite (n = 6; P > 0.1). Increasing the CL from 3 to 16 greatly enhanced the antibacterial activity of the NACP nanocomposite (P < 0.05); further increasing the CL to 18 decreased the antibacterial potency. The NACP nanocomposite with a CL of 16 exhibited biofilm metabolic activity and acid production that were 10-fold lesser than those of the control composite. The NACP nanocomposite with a CL of 16 produced 2-log decreases in the colony-forming units (CFU) of total microorganisms, total streptococci, and mutans streptococci. In conclusion, QAMs with CLs of 3–18 were synthesized and incorporated into an NACP nanocomposite for the first time to simultaneously endow the material with antibacterial and remineralization capabilities. Increasing the CL reduced the metabolic activity and acid production of biofilms and caused a 2-log decrease in CFU without compromising the mechanical properties. Nanocomposites exhibiting strong anti-biofilm activity, remineralization effects, and mechanical properties are promising materials for tooth restorations that inhibit

  12. One-year water-ageing of calcium phosphate composite containing nano-silver and quaternary ammonium to inhibit biofilms

    PubMed Central

    Cheng, Lei; Zhang, Ke; Zhou, Chen-Chen; Weir, Michael D; Zhou, Xue-Dong; Xu, Hockin H K

    2016-01-01

    Dental composites are commonly used restorative materials; however, secondary caries due to biofilm acids remains a major problem. The objectives of this study were (1) to develop a composite containing quaternary ammonium dimethacrylate (QADM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP), and (2) to conduct the first investigation of the mechanical properties, biofilm response and acid production vs water-ageing time from 1 day to 12 months. A 4 × 5 design was utilized, with four composites (NACP-QADM composite, NACP-NAg composite, NACP-QADM-NAg composite, and a commercial control composite), and five water-ageing time periods (1 day, and 3, 6, 9, and 12 months). After each water-ageing period, the mechanical properties of the resins were measured in a three-point flexure, and antibacterial properties were tested via a dental plaque biofilm model using human saliva as an inoculum. After 12 months of water-ageing, NACP-QADM-NAg had a flexural strength and elastic modulus matching those of the commercial control (P>0.1). Incorporation of QADM or NAg into the NACP composite greatly reduced biofilm viability, metabolic activity and acid production. A composite containing both QADM and NAg possessed a stronger antibacterial capability than one with QADM or NAg alone (P<0.05). The anti-biofilm activity was maintained after 12 months of water-ageing and showed no significant decrease with increasing time (P>0.1). In conclusion, the NACP-QADM-NAg composite decreased biofilm viability and lactic acid production, while matching the load-bearing capability of a commercial composite. There was no decrease in its antibacterial properties after 1 year of water-ageing. The durable antibacterial and mechanical properties indicate that NACP-QADM-NAg composites may be useful in dental restorations to combat caries. PMID:27281037

  13. One-year water-ageing of calcium phosphate composite containing nano-silver and quaternary ammonium to inhibit biofilms.

    PubMed

    Cheng, Lei; Zhang, Ke; Zhou, Chen-Chen; Weir, Michael D; Zhou, Xue-Dong; Xu, Hockin H K

    2016-09-29

    Dental composites are commonly used restorative materials; however, secondary caries due to biofilm acids remains a major problem. The objectives of this study were (1) to develop a composite containing quaternary ammonium dimethacrylate (QADM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP), and (2) to conduct the first investigation of the mechanical properties, biofilm response and acid production vs water-ageing time from 1 day to 12 months. A 4 × 5 design was utilized, with four composites (NACP-QADM composite, NACP-NAg composite, NACP-QADM-NAg composite, and a commercial control composite), and five water-ageing time periods (1 day, and 3, 6, 9, and 12 months). After each water-ageing period, the mechanical properties of the resins were measured in a three-point flexure, and antibacterial properties were tested via a dental plaque biofilm model using human saliva as an inoculum. After 12 months of water-ageing, NACP-QADM-NAg had a flexural strength and elastic modulus matching those of the commercial control (P>0.1). Incorporation of QADM or NAg into the NACP composite greatly reduced biofilm viability, metabolic activity and acid production. A composite containing both QADM and NAg possessed a stronger antibacterial capability than one with QADM or NAg alone (P<0.05). The anti-biofilm activity was maintained after 12 months of water-ageing and showed no significant decrease with increasing time (P>0.1). In conclusion, the NACP-QADM-NAg composite decreased biofilm viability and lactic acid production, while matching the load-bearing capability of a commercial composite. There was no decrease in its antibacterial properties after 1 year of water-ageing. The durable antibacterial and mechanical properties indicate that NACP-QADM-NAg composites may be useful in dental restorations to combat caries.

  14. The effects of calcium magnesium acetate (CMA) deicing material on the water quality of Bear Creek, Clackamas County, Oregon, 1999

    USGS Publications Warehouse

    Tanner, Dwight Q.; Wood, Tamara M.

    2000-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Oregon Department of Transportation (ODOT), to evaluate the effects of the highway deicing material, calcium magnesium acetate (CMA), on the water quality of Bear Creek, in the Cascade Range of Oregon. ODOT began using CMA (an alternative deicer that has fewer adverse environmental effects than road salt) in the mid-1990s and began this study with the USGS to ensure that there were no unexpected effects on the water quality of Bear Creek. Streamflow, precipitation, dissolved oxygen, pH, specific conductance, and water temperature were measured continuously through the 1998?99 winter. There was no measurable effect of the application of CMA to Highway 26 on the biochemical oxygen demand (BOD), calcium concentration, or magnesium concentration of Bear Creek and its tributaries. BOD was small in all of the water samples, some of which were collected before CMA application, and some of which were collected after application. Five-day BOD values ranged from 0.1 milligrams per liter to 1.5 milligrams per liter, and 20-day BOD values ranged from 0.2 milligrams per liter to 2.0 milligrams per liter. Dissolved copper concentrations in a small tributary ditch on the north side of Highway 26 exceeded the U.S. Environmental Protection Agency aquatic life criteria on three occasions. These exceedances were probably not caused by the application of CMA because (1) one of the samples was a background sample (no recent CMA application), and (2) dissolved copper was not detected in Bear Creek water samples to which CMA was added during laboratory experiments.

  15. Probing the limit of magnesium uptake by β-tricalcium phosphate in biphasic mixtures formed from calcium deficient apatites

    SciTech Connect

    Kumar, P. Nandha; Mishra, Sandeep K.; Kannan, S.

    2015-11-15

    A series of magnesium doped non-stoichiometric calcium deficient apatites were synthesized through an aqueous precipitation route. The resultant structural changes during heat treatment were investigated by X-ray diffraction, Raman and FT-IR spectroscopy and Rietveld refinement. The results confirmed the formation of biphasic mixtures comprising Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} and β-Ca{sub 3}(PO{sub 4}){sub 2} after heat treatment at 1000 °C with the preferential occupancy of Mg{sup 2+} at the crystal lattice of β-Ca{sub 3}(PO{sub 4}){sub 2}. The concentration of Mg{sup 2+} uptake in β-Ca{sub 3}(PO{sub 4}){sub 2} is limited till reaching the stoichiometric ratio of (Ca+Mg)/P=1.67 and beyond this stoichiometric value [(Ca+Mg)/P>1.67], Mg{sup 2+} precipitates as Mg(OH){sub 2} and thereafter gets converted to MgO during heat treatment. Any kind of Mg{sup 2+} uptake in the crystal lattice of Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} is discarded from the investigation. - Highlights: • Aqueous co-precipitation of calcium deficient apatites with excess magnesium (Mg{sup 2+}) additions. • Heat treatments beyond 800 °C results in the formation of biphasic apatite mixtures. • Mg{sup 2+} gets accommodated at the β-Ca{sub 3}(PO{sub 4}){sub 2} lattice of biphasic mixtures. • Mg{sup 2+} additions exceeding stoichiometric value (Ca/P>1.67) results in its formation as MgO. • Mg{sup 2+} occupancy at β-Ca{sub 3}(PO{sub 4}){sub 2} lattice delays its allotropic conversion α-Ca{sub 3}(PO{sub 4}){sub 2} till 1350 °C.

  16. Production of low-cost calcium magnesium acetate (CMA) as an environmentally friendly deicer from cheese whey

    SciTech Connect

    Yang, S.T.; Zhu, H.; Li, Y.; Tang, I.C.

    1993-12-31

    About 28 billion lbs of cheese whey are being wasted in the US because of the high biological oxygen demand (BOD) of whey, disposing of surplus whey is a pollution problem. An innovative, wide-scale solution to the whey disposal problem is to use whey as a zero- or low-cost feedstock for the production of an environmentally safe, noncorrosive, road deicer-calcium magnesium acetate (CMA). CMA can be used to replace some of the 10 to 14 million tons road salt used in the North America for deicing. A novel anaerobic fermentation process is developed to produce calcium magnesium acetate (CMA) from whey permeate. A co-culture consisting of homolactic (S. lactis) and homoacetic (C. formicoaceticum) bacteria was used to convert whey lactose to lactate and then to acetate in continuous, immobilized cell bioreactors. The acetate yield from lactose was {approximately}95% (wt/wt), and the final concentration of acetic acid was 4%. The acetic acid present in the fermentation broth can be recovered by solvent-extraction with a tertiary amine and reacted with dolomitic lime (Ca/MgO) to form a concentrated (>25%) CMA solution. About 25 tons CMA can be produced from a plant processing 1 million lbs whey permeate (4.5% lactose) per day. The production costs are estimated at {approximately}$220/ton CMA, which is only about one third of the present market price for CMA deicer. Therefore, about 0.8 million tons/yr CMA deicer can be produced from the currently unused whey. This will partially fulfill market demand for economically and environmentally sound chemicals for roadway deicing. This also will provide a viable solution to the whey disposal problem currently facing many dairies in the North America.

  17. Effect of calcium-enriched high-fat diet on calcium, magnesium and zinc retention in mice.

    PubMed

    Pérez-Gallardo, Lucía; Gómez, Marta; Parra, Pilar; Sánchez, Juana; Palou, Andreu; Serra, Francisca

    2009-05-01

    The aim of this work was to assess the effects of a high-fat diet enriched in Ca, which accompanies lower body fat deposition, on mineral depots, as well as to assess the potential role of adaptive thermogenesis in mice. Male mice were fed ad libitum a high-fat (43 %) diet with a Ca content of 4 g/kg from calcium carbonate (control group) or 12 g/kg (42 % from milk powder and the rest from calcium carbonate) (Ca group) for 56 d. Body weight, food intake and urine were periodically collected. Tissue samples were collected when the mice were killed and the composition was determined. Expression of uncoupling proteins was determined by Western blotting. Mineral content was measured by flame atomic absorption spectrometry. Lower body weight gain and fat accretion was found in the Ca group. This could not be attributable to lower gross energy intake or to activation of adaptive thermogenesis. Although significant urine mineral loss was found in the Ca group, preservation of mineral depots in bone was observed. Our data support the fact that adding more Ca to the diet, using a combination of calcium carbonate plus milk powder containing among other things higher Zn and Mg, contributes to counteracting obesity and improving lipid metabolism.

  18. Microwave assisted synthesis and characterization of magnesium substituted calcium phosphate bioceramics.

    PubMed

    Khan, Nida Iqbal; Ijaz, Kashif; Zahid, Muniza; Khan, Abdul S; Abdul Kadir, Mohammed Rafiq; Hussain, Rafaqat; Anis-Ur-Rehman; Darr, Jawwad A; Ihtesham-Ur-Rehman; Chaudhry, Aqif A

    2015-11-01

    Hydroxyapatite is used extensively in hard tissue repair due to its biocompatibility and similarity to biological apatite, the mineral component of bone. It differs subtly in composition from biological apatite which contains other ions such as magnesium, zinc, carbonate and silicon (believed to play biological roles). Traditional methods of hydroxyapatite synthesis are time consuming and require strict reaction parameter control. This paper outlines synthesis of magnesium substituted hydroxyapatite using simple microwave irradiation of precipitated suspensions. Microwave irradiation resulted in a drastic decrease in ageing times of amorphous apatitic phases. Time taken to synthesize hydroxyapatite (which remained stable upon heat treatment at 900°C for 1h) reduced twelve folds (to 2h) as compared to traditionally required times. The effects of increasing magnesium concentration in the precursors on particle size, surface area, phase-purity, agglomeration and thermal stability, were observed using scanning electron microscopy, BET surface area analysis, X-ray diffraction and photo acoustic Fourier transform infra-red spectroscopy. Porous agglomerates were obtained after a brief heat-treatment (1h) at 900°C.

  19. DETERMINATION OF MATERNAL SERUM ZINC, IRON, CALCIUM AND MAGNESIUM DURING PREGNANCY IN PREGNANT WOMEN AND UMBILICAL CORD BLOOD AND THEIR ASSOCIATION WITH OUTCOME OF PREGNANCY.

    PubMed

    Khoushabi, Fahimeh; Shadan, Mohammad Reza; Miri, Ali; Sharifi-Rad, Javad

    2016-04-01

    Trace elements and specially minerals are critical for the development of fetus. Many minerals are transferred to the fetus for fetal stores in the latter part of the pregnancy. It has been shown that various trace elements such as Zinc, Iron, Calcium and Magnesium are metabolically interrelated and there is alteration in their concentration during pregnancy. Beyond pregnancy is associated with increased demand of all the nutrients and deficiency of any of these could affect pregnancy, delivery and outcome of pregnancy. To study the levels of trace elements namely zinc, iron, magnesium and calcium in maternal and umbilical cord blood and their association with pregnancy outcome. Sixty pregnant women in Zabol, Iran were selected from those who had registered their names for the prenatal care and who had followed up till the 3rd trimester of pregnancy ending in child birth. Biochemical parameters analyzed with help of the biochemical laboratory. Data were analyzed by SPSS software. The mean biochemical profile such, serum calcium, magnesium, zinc and iron in the pregnant women were as follow: in the 1st trimester 8.3, 1.9, 74.9 and 74.4 µg/dl respectively; in the 2nd trimester 8.5, 1.9, 73.1 and 79.3 µg/dl, respectively; in the 3rd trimester 8.6, 1.9, 68.4, and 82.2 µg/dl, respectively. In the umbilical cord blood, the mean serum calcium, magnesium, zinc and iron were 8.5, 1.9, 84.1, and 89.8 µg/dl, respectively. The mean serum calcium and magnesium during the three trimesters of pregnancy were not significantly different from that in the umbilical cord blood, while the mean serum zinc and iron in the umbilical cord blood were significantly different (p<0.05) in the three trimester of pregnancy. The mean birth weight of neonates was 3.1 kg and 12% of neonates showed low birth weight. Our findings showed that, except magnesium, the profile of other biochemical variables, namely, calcium, zinc and iron in the umbilical cord blood of the neonates with normal birth

  20. DETERMINATION OF MATERNAL SERUM ZINC, IRON, CALCIUM AND MAGNESIUM DURING PREGNANCY IN PREGNANT WOMEN AND UMBILICAL CORD BLOOD AND THEIR ASSOCIATION WITH OUTCOME OF PREGNANCY

    PubMed Central

    Khoushabi, Fahimeh; Shadan, Mohammad Reza; Miri, Ali; Sharifi-Rad, Javad

    2016-01-01

    Background: Trace elements and specially minerals are critical for the development of fetus. Many minerals are transferred to the fetus for fetal stores in the latter part of the pregnancy. It has been shown that various trace elements such as Zinc, Iron, Calcium and Magnesium are metabolically interrelated and there is alteration in their concentration during pregnancy. Beyond pregnancy is associated with increased demand of all the nutrients and deficiency of any of these could affect pregnancy, delivery and outcome of pregnancy. Aim: To study the levels of trace elements namely zinc, iron, magnesium and calcium in maternal and umbilical cord blood and their association with pregnancy outcome. Methods: Sixty pregnant women in Zabol, Iran were selected from those who had registered their names for the prenatal care and who had followed up till the 3rd trimester of pregnancy ending in child birth. Biochemical parameters analyzed with help of the biochemical laboratory. Data were analyzed by SPSS software. Results: The mean biochemical profile such, serum calcium, magnesium, zinc and iron in the pregnant women were as follow: in the 1st trimester 8.3, 1.9, 74.9 and 74.4 µg/dl respectively; in the 2nd trimester 8.5, 1.9, 73.1 and 79.3 µg/dl, respectively; in the 3rd trimester 8.6, 1.9, 68.4, and 82.2 µg/dl, respectively. In the umbilical cord blood, the mean serum calcium, magnesium, zinc and iron were 8.5, 1.9, 84.1, and 89.8 µg/dl, respectively. The mean serum calcium and magnesium during the three trimesters of pregnancy were not significantly different from that in the umbilical cord blood, while the mean serum zinc and iron in the umbilical cord blood were significantly different (p<0.05) in the three trimester of pregnancy. The mean birth weight of neonates was 3.1 kg and 12% of neonates showed low birth weight. Our findings showed that, except magnesium, the profile of other biochemical variables, namely, calcium, zinc and iron in the umbilical cord blood

  1. Exogenous oestrogen affects calcium metabolism differently from exogenous testosterone in ovariectomized or orchiectomized rats fed a high fructose diet severely deficient in magnesium.

    PubMed

    Koh, E T; Owen, W L; Om, A S

    1996-03-01

    To investigate interactions between sex hormones, dietary fructose, and a severe magnesium deficiency on calcium metabolism, 10 week old ovariectomized (OVX) female, and orchiectomized (ORX) males rats were studied. The OVX and ORX animals were divided into two groups: one half of the animals in each group was injected with beta-oestradiol-3-benzoate dissolved in sesame oil twice a week; the other half was injected with testosterone cypionate in sesame oil twice a week. All animals were pari-fed a severely magnesium-deficient fructose diet. After a 4 week experimental period, a 24 h urine sample was collected for measurements of cAMP, calcium, magnesium, and phosphorus. Blood was collected for determination of calcium, magnesium, phosphorus, 25-hydroxy- and 1.25-dihydroxycholecalciferol [25(OH)D, 1.25(OH)2D], and parathyroid hormone (PTH). Femurs were used for measurements of bone mineral content (BMC) and density (BMD). Oestrogen treatment produced hypercalcaemia and hypercalciuria, and, further, this was higher in female than in male rats. In contrast, testosterone treatment produced hypocalcaemia and hypocalciuria. Hypocalcaemia in testosterone-treated animals may stimulate secretion of PTH. Testosterone-treated animals had significantly lower BMD than oestrogen-treated animals. High circulating PTH seemed to cause bone loss in the testosterone group. High PTH may stimulate hydroxylation of 25(OH) D to 1.25(OH)2D in the kidneys, and high circulating 1.25(OH)2D would antagonize bone formation. Either endogenous or exogenous oestrogen increased kidney calcification. The study indicates that oestrogen-fructose-magnesium interaction on calcium metabolism was significantly different from that of testosterone.

  2. Final report of the safety assessment of L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate as used in cosmetics.

    PubMed

    Elmore, Amy R

    2005-01-01

    L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate function in cosmetic formulations primarily as antioxidants. Ascorbic Acid is commonly called Vitamin C. Ascorbic Acid is used as an antioxidant and pH adjuster in a large variety of cosmetic formulations, over 3/4 of which were hair dyes and colors at concentrations between 0.3% and 0.6%. For other uses, the reported concentrations were either very low (<0.01%) or in the 5% to 10% range. Calcium Ascorbate and Magnesium Ascorbate are described as antioxidants and skin conditioning agents--miscellaneous for use in cosmetics, but are not currently used. Sodium Ascorbyl Phosphate functions as an antioxidant in cosmetic products and is used at concentrations ranging from 0.01% to 3%. Magnesium Ascorbyl Phosphate functions as an antioxidant in cosmetics and was reported being used at concentrations from 0.001% to 3%. Sodium Ascorbate also functions as an antioxidant in cosmetics at concentrations from 0.0003% to 0.3%. Related ingredients (Ascorbyl Palmitate, Ascorbyl Dipalmitate, Ascorbyl Stearate, Erythorbic Acid, and Sodium Erythorbate) have been previously reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel and found "to be safe for use as cosmetic ingredients in the present practices of good use." Ascorbic Acid is a generally recognized as safe (GRAS) substance for use as a chemical preservative in foods and as a nutrient and/or dietary supplement. Calcium Ascorbate and Sodium Ascorbate are listed as GRAS substances for use as chemical preservatives. L-Ascorbic Acid is readily and reversibly oxidized to L-dehydroascorbic acid and both forms exist in equilibrium in the body. Permeation rates of Ascorbic Acid through whole and stripped mouse skin were 3.43 +/- 0.74 microg/cm(2)/h and 33.2 +/- 5.2 microg/cm(2)/h. Acute oral and parenteral studies in mice, rats, rabbits, guinea pigs, dogs, and cats demonstrated little toxicity

  3. Subcellular concentrations of calcium, zinc, and magnesium in benign nodular hyperplasia of the human prostate: X-ray microanalysis of freeze-dried cryosections

    SciTech Connect

    Tvedt, K.E.; Kopstad, G.; Haugen, O.A.; Halgunset, J.

    1987-01-01

    Biopsies from human prostates were obtained from normal and hyperplastic glands. The intracellular concentrations of calcium, zinc, and magnesium were analyzed using X-ray microanalysis of freeze-dried cryosections. Two prostate biopsies were obtained from kidney donors, ages 19 and 50 years, without any sign of benign nodular hyperplasia. The normal tissues were frozen within 15 min after circulatory arrest. The central part of biopsies from eight elderly men suffering from benign nodular hyperplasia were frozen within 30 s after excision. Adjacent tissue was processed for light microscopy and histopathological diagnosis. All samples were fresh-frozen using liquid nitrogen cooled pliers, without the use of any freeze-protection, fixation, or staining. In both the normal and the hyperplastic prostates high concentrations (up to above 100 mmol/kg dry weight) of zinc were present in electron dense bodies in the cytoplasm of the epithelial cells. Together with zinc, about equal concentrations of magnesium were found. Calcium was detected in 4 to 8 times the concentration of zinc. Significant, positive correlation between calcium and zinc as well as between calcium and magnesium in the cytoplasm was a typical finding in both normal and hyperplastic glands. In six of eight patients, older than 60 years of age, high levels of calcium (17.0-38.8 mmol/kg dry weight) were observed in the nuclei of the epithelial cells, while very low values were found in the remaining two. In the two younger cases (19 and 50 years of age), the nuclear calcium level in prostatic epithelium was relatively low (about 10 mmol/kg dry weight). These observations suggest that an increase of intranuclear calcium with advancing age may be of pathogenetic significance to growth disturbances in the prostate.

  4. Petrographic evidence of calcium oxychloride formation in mortars exposed to magnesium chloride solution

    SciTech Connect

    Sutter, Lawrence . E-mail: cee@mtu.edu; Peterson, Karl . E-mail: cee@mtu.edu; Touton, Sayward . E-mail: cee@mtu.edu; Van Dam, Tom . E-mail: cee@mtu.edu; Johnston, Dan . E-mail: Dan.Johnston@state.sd.us

    2006-08-15

    Many researchers have reported chemical interactions between CaCl{sub 2} and MgCl{sub 2} solutions and hardened Portland cement paste. One potentially destructive phase reported in the literature is calcium oxychloride (3CaO.CaCl{sub 2}.15H{sub 2}O). In the past, limited numbers of researchers have reported identification of this phase by X-ray diffraction. In this work, petrographic evidence of oxychloride formation is presented based on optical microscopy, scanning electron microscopy and microanalysis. This evidence indicates that calcium oxychloride does form in mortars exposed to MgCl{sub 2} solutions.

  5. Structural Basis for Calcium and Magnesium Regulation of a Large Conductance Calcium-activated Potassium Channel with β1 Subunits*

    PubMed Central

    Liu, Hao-Wen; Hou, Pan-Pan; Guo, Xi-Ying; Zhao, Zhi-Wen; Hu, Bin; Li, Xia; Wang, Lu-Yang; Ding, Jiu-Ping; Wang, Sheng

    2014-01-01

    Large conductance Ca2+- and voltage-activated potassium (BK) channels, composed of pore-forming α subunits and auxiliary β subunits, play important roles in diverse physiological activities. The β1 is predominately expressed in smooth muscle cells, where it greatly enhances the Ca2+ sensitivity of BK channels for proper regulation of smooth muscle tone. However, the structural basis underlying dynamic interaction between BK mSlo1 α and β1 remains elusive. Using macroscopic ionic current recordings in various Ca2+ and Mg2+ concentrations, we identified two binding sites on the cytosolic N terminus of β1, namely the electrostatic enhancing site (mSlo1(K392,R393)-β1(E13,T14)), increasing the calcium sensitivity of BK channels, and the hydrophobic site (mSlo1(L906,L908)-β1(L5,V6,M7)), passing the physical force from the Ca2+ bowl onto the enhancing site and S6 C-linker. Dynamic binding of these sites affects the interaction between the cytosolic domain and voltage-sensing domain, leading to the reduction of Mg2+ sensitivity. A comprehensive structural model of the BK(mSlo1 α-β1) complex was reconstructed based on these functional studies, which provides structural and mechanistic insights for understanding BK gating. PMID:24764303

  6. Physicochemical changes in dry-cured hams salted with potassium, calcium and magnesium chloride as a partial replacement for sodium chloride.

    PubMed

    Aliño, M; Grau, R; Toldrá, F; Barat, J M

    2010-10-01

    The reduction of added sodium chloride in dry-cured ham has been proposed to reduce dietary sodium intake in Mediterranean countries. The effect of substituting sodium chloride with potassium chloride, calcium chloride and magnesium chloride on some physicochemical characteristics of dry-cured ham during processing was evaluated. The results showed that hams salted with a mixture of sodium and potassium chloride registered higher salt concentrations and lower water contents and thus, needed less time to reach the required weight loss at the end of the process. The opposite effect was observed when calcium and magnesium chloride were added to the salt mixture. The observed differences in the texture and colour parameters were mainly due to differences in water and salt content.

  7. DEGRADATION OF SM2ZR2O7 THERMAL BARRIER COATING CAUSED BY CALCIUM-MAGNESIUM-ALUMINUM-SILICON OXIDE (CMAS) DEPOSITION

    SciTech Connect

    Wang, Honglong; Sheng, Zhizhi; Tarwater, Emily; Zhang, Xingxing; Dasgupta, Sudip; Fergus, Jeffrey

    2015-03-16

    Rare earth zirconates are promising materials for use as thermal barrier coatings in gas turbine engines. Among the lanthanide zirconate materials, Sm2Zr2O7 with the pyrochlore structure has lower thermal conductivity and better corrosion resistance against calcium-magnesium-aluminum-silicon oxide (CMAS). In this work, after reaction with CMAS, the pyrochlore structure transforms to the cubic fluorite structure and Ca2Sm8(SiO4)6O2 forms in elongated grain.

  8. Alterations of serum zinc, copper, manganese, iron, calcium, and magnesium concentrations and the complexity of interelement relations in patients with obsessive-compulsive disorder.

    PubMed

    Shohag, Hasanuzzaman; Ullah, Ashik; Qusar, Shalahuddin; Rahman, Mustafizur; Hasnat, Abul

    2012-09-01

    The purpose of the present study was to evaluate the status of serum trace elements: zinc, copper, manganese, iron, calcium, and magnesium concentrations in obsessive-compulsive disorder patients. Forty-eight obsessive-compulsive disorder patients and 48 healthy volunteers were included in this study. Patients were recruited from Bangabandhu Sheikh Mujib Medical University by random sampling. Serum trace element concentrations were determined using flame atomic absorption spectroscopy (for zinc, copper, iron, calcium, and magnesium) as well as graphite furnace atomic absorption spectroscopy (for manganese). Data were analyzed using independent t test, Pearson's correlation analysis, regression analysis, and ANOVA. Statistical analysis of these data showed a definite pattern of variation among certain elements in patients with obsessive-compulsive disorder compared to controls. In patients' serum, zinc, iron, and magnesium concentrations decreased significantly (p<0.05) compared to the controls. Serum manganese and calcium concentrations were significantly higher (p<0.05) in patients compared to the controls. These data showed a definite imbalance in the interelement relations in obsessive-compulsive disorder patients compared to controls and therefore suggest a disturbance in the element homeostasis.

  9. Dietary magnesium and urolithiasis in growing calves.

    PubMed

    Kallfelz, F A; Ahmed, A S; Wallace, R J; Sasangka, B H; Warner, R G

    1987-01-01

    The effect of high levels of dietary magnesium (1.4%) alone or in combination with elevated calcium (1.8%) or phosphorus (1.6%) on growth and health of male calves was evaluated during a nine week feeding trial after weaning. Twenty calves were randomly divided into 4 feeding groups consisting of controls, high magnesium, high magnesium and calcium or high magnesium and phosphorus. Elevated dietary minerals caused decreased feed intake and growth rate. Blood urea nitrogen and serum creatinine levels were greatly elevated in calves fed high magnesium or magnesium and phosphorus and serum urea nitrogen was moderately elevated in calves fed high magnesium and calcium. These elevations suggested the occurrence of renal damage as a result of microcrystalline obstruction of renal tubules. Serum magnesium levels were three times normal in calves fed high magnesium or magnesium and phosphorus, but only twice normal in calves fed high magnesium and calcium. High dietary magnesium resulted in a significant depression in blood calcium level. This effect was somewhat overcome by additional dietary calcium Three calves fed the high magnesium diet and two calves fed the high magnesium and phosphorus diet developed urinary tract obstruction. The chemical composition of uroliths recovered from these calves was calcium apatite. Elevated dietary magnesium has been shown to be a cause of urolithiasis in growing male calves. Additional dietary calcium, but not phosphorus, appears to protect calves against urolithiasis induced by elevated dietary magnesium.

  10. Distribution of calcium (Ca) and magnesium (Mg) in the leaves of Brassica rapa under varying exogenous Ca and Mg supply

    PubMed Central

    Rios, Juan Jose; Ó Lochlainn, Seosamh; Devonshire, Jean; Graham, Neil S.; Hammond, John P.; King, Graham J.; White, Philip J.; Kurup, Smita; Broadley, Martin R.

    2012-01-01

    Background and Aims Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Methods Brassica rapa ssp. trilocularis ‘R-o-18’ was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Key Results Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. Conclusions The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding. PMID:22362665

  11. Distribution of calcium (Ca) and magnesium (Mg) in the leaves of Brassica rapa under varying exogenous Ca and Mg supply.

    PubMed

    Rios, Juan Jose; Lochlainn, Seosamh O; Devonshire, Jean; Graham, Neil S; Hammond, John P; King, Graham J; White, Philip J; Kurup, Smita; Broadley, Martin R

    2012-05-01

    Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Brassica rapa ssp. trilocularis 'R-o-18' was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.

  12. Response of sediment calcium and magnesium species to the regional acid deposition in eutrophic Taihu Lake, China.

    PubMed

    Tao, Yu; Dan, Dai; Chengda, He; Qiujin, Xu; Fengchang, Wu

    2016-11-01

    Acid deposition causes carbonate dissolution in watersheds and leads to profound impacts on water chemistry of lakes. Here, we presented a detailed study on the seasonal, spatial, and vertical variations of calcium and magnesium species in the overlying water, interstitial water, and sediment profiles in eutrophic Taihu Lake under the circumstance of regional acid deposition. The result showed that both the acid deposition and biomineralization in Taihu Lake had effects on Ca and Mg species. In the lake water, calcium carbonate was saturated or over-saturated based on long-term statistical calculation of the saturation index (SI). On the sediment profiles, significant difference in Ca and Mg species existed between the surface sediment (0-10 cm) and deeper sediments (>10 cm). The interstitial water Ca(2+) and Mg(2+), ion-exchangeable Ca and Mg in the surface sediment were higher than those in the deeper sediment. In the spring, when the acid deposition is more intensive, the acid-extracted Ca and Mg in the surface sediment were lower than that in the deeper sediment in the northwest lake, due to carbonate dissolution caused by the regional acid deposition. Spatially, the higher concentration of acid-extracted Ca and Mg in the northwest surface sediment than that in the east lake was observed, indicating the pronounced carbonate biomineralization by algae bloom in the northwest lake. Statistical analysis showed that acid deposition exerted a stronger impact on the variation of acid-extracted Ca and Mg in the surface sediment than the biomineralization in Taihu Lake. For the total Ca and Mg concentration in the spring, however, no significant change between the surface and deeper sediment in the northwest lake was observed, indicating that the carbonate precipitation via biomineralization and the carbonate dissolution due to acidic deposition were in a dynamic balance. These features are of major importance for the understanding of combined effects of acid

  13. Relationship between Tap Water Hardness, Magnesium, and Calcium Concentration and Mortality due to Ischemic Heart Disease or Stroke in the Netherlands

    PubMed Central

    Leurs, Lina J.; Schouten, Leo J.; Mons, Margreet N.; Goldbohm, R. Alexandra; van den Brandt, Piet A.

    2010-01-01

    Background Conflicting results on the relationship between the hardness of drinking water and mortality related to ischemic heart disease (IHD) or stroke have been reported. Objectives We investigated the possible association between tap water calcium or magnesium concentration and total hardness and IHD mortality or stroke mortality. Methods In 1986, a cohort of 120,852 men and women aged 55–69 years provided detailed information on dietary and other lifestyle habits. Follow-up for mortality until 1996 was established by linking data from the Central Bureau of Genealogy and Statistics Netherlands. We calculated tap water hardness for each postal code using information obtained from all pumping stations in the Netherlands. Tap water hardness was categorized as soft [< 1.5 mmol/L calcium carbonate (CaCO3)], medium hard (1.6–2.0 mmol/L CaCO3), and hard (> 2.0 mmol/L CaCO3). The multivariate case-cohort analysis was based on 1,944 IHD mortality and 779 stroke mortality cases and 4,114 subcohort members. Results For both men and women, we observed no relationship between tap water hardness and IHD mortality [hard vs. soft water: hazard ratio (HR) = 1.03; 95% confidence interval (CI), 0.85–1.28 for men and HR = 0.93; 95% CI, 0.71–1.21 for women) and stroke mortality (hard vs. soft water HR = 0.90; 95% CI, 0.66–1.21 and HR = 0.86; 95% CI, 0.62–1.20, respectively). For men with the 20% lowest dietary magnesium intake, an inverse association was observed between tap water magnesium intake and stroke mortality (HR per 1 mg/L intake = 0.75; 95% CI, 0.61–0.91), whereas for women with the 20% lowest dietary magnesium intake, the opposite was observed. Conclusions We found no evidence for an overall significant association between tap water hardness, magnesium or calcium concentrations, and IHD mortality or stroke mortality. More research is needed to investigate the effect of tap water magnesium on IHD mortality or stroke mortality in subjects with low dietary

  14. Relationship between tap water hardness, magnesium, and calcium concentration and mortality due to ischemic heart disease or stroke in The Netherlands.

    PubMed

    Leurs, Lina J; Schouten, Leo J; Mons, Margreet N; Goldbohm, R Alexandra; van den Brandt, Piet A

    2010-03-01

    Conflicting results on the relationship between the hardness of drinking water and mortality related to ischemic heart disease (IHD) or stroke have been reported. We investigated the possible association between tap water calcium or magnesium concentration and total hardness and IHD mortality or stroke mortality. In 1986, a cohort of 120,852 men and women aged 5569 years provided detailed information on dietary and other lifestyle habits. Follow-up for mortality until 1996 was established by linking data from the Central Bureau of Genealogy and Statistics Netherlands. We calculated tap water hardness for each postal code using information obtained from all pumping stations in the Netherlands. Tap water hardness was categorized as soft [< 1.5 mmol/L calcium carbonate (CaCO3)], medium hard (1.62.0 mmol/L CaCO3), and hard (> 2.0 mmol/L CaCO3). The multivariate case-cohort analysis was based on 1,944 IHD mortality and 779 stroke mortality cases and 4,114 subcohort members. For both men and women, we observed no relationship between tap water hardness and IHD mortality [hard vs. soft water: hazard ratio (HR) = 1.03; 95% confidence interval (CI), 0.851.28 for men and HR = 0.93; 95% CI, 0.711.21 for women) and stroke mortality (hard vs. soft water HR = 0.90; 95% CI, 0.661.21 and HR = 0.86; 95% CI, 0.621.20, respectively). For men with the 20% lowest dietary magnesium intake, an inverse association was observed between tap water magnesium intake and stroke mortality (HR per 1 mg/L intake = 0.75; 95% CI, 0.610.91), whereas for women with the 20% lowest dietary magnesium intake, the opposite was observed. We found no evidence for an overall significant association between tap water hardness, magnesium or calcium concentrations, and IHD mortality or stroke mortality. More research is needed to investigate the effect of tap water magnesium on IHD mortality or stroke mortality in subjects with low dietary magnesium intake.

  15. Micromorphological effect of calcium phosphate coating on compatibility of magnesium alloy with osteoblast

    PubMed Central

    Hiromoto, Sachiko; Yamazaki, Tomohiko

    2017-01-01

    Abstract Octacalcium phosphate (OCP) and hydroxyapatite (HAp) coatings were developed to control the degradation speed and to improve the biocompatibility of biodegradable magnesium alloys. Osteoblast MG-63 was cultured directly on OCP- and HAp-coated Mg-3Al-1Zn (wt%, AZ31) alloy (OCP- and HAp-AZ31) to evaluate cell compatibility. Cell proliferation was remarkably improved with OCP and HAp coatings which reduced the corrosion and prevented the H2O2 generation on Mg alloy substrate. OCP-AZ31 showed sparse distribution of living cell colonies and dead cells. HAp-AZ31 showed dense and homogeneous distribution of living cells, with dead cells localized over and around corrosion pits, some of which were formed underneath the coating. These results demonstrated that cells were dead due to changes in the local environment, and it is necessary to evaluate the local biocompatibility of magnesium alloys. Cell density on HAp-AZ31 was higher than that on OCP-AZ31 although there was not a significant difference in the amount of Mg ions released in medium between OCP- and HAp-AZ31. The outer layer of OCP and HAp coatings consisted of plate-like crystal with a thickness of around 0.1 μm and rod-like crystals with a diameter of around 0.1 μm, respectively, which grew from a continuous inner layer. Osteoblasts formed focal contacts on the tips of plate-like OCP and rod-like HAp crystals, with heights of 2–5 μm. The spacing between OCP tips of 0.8–1.1 μm was wider than that between HAp tips of 0.2–0.3 μm. These results demonstrated that cell proliferation depended on the micromorphology of the coatings which governed spacing of focal contacts. Consequently, HAp coating is suitable for improving cell compatibility and bone-forming ability of the Mg alloy. PMID:28179963

  16. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    NASA Astrophysics Data System (ADS)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    Al(OH)3 and Ca(OH)2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation.

  17. Preparation and characterization of bioactive and degradable composites containing ordered mesoporous calcium-magnesium silicate and poly(L-lactide)

    NASA Astrophysics Data System (ADS)

    Ji, Jiajin; Dong, Xieping; Ma, Xuhui; Tang, Songchao; Wu, Zhaoying; Xia, Ji; Wang, Quanxiang; Wang, Yutao; Wei, Jie

    2014-10-01

    Polylactide (PLA) and its copolymers have been widely used for bone tissue regeneration. In this study, a bioactive composite of ordered mesoporous calcium-magnesium silicate (m-CMS) and poly(L-lactide) (PLLA) was fabricated by melt blending method. The results indicated that the m-CMS particles were entrapped by polymer phase, and crystallinity of PLLA significantly decreased while the thermal stability of the m-CMS/PLLA composites was not obviously affected by addition of the m-CMS into PLLA. In addition, compared to PLLA, incorporation of the m-CMS into PLLA significantly improved the hydrophilicity, in vitro degradability and bioactivity (apatite-formation ability) of the m-CMS/PLLA composite, which were m-CMS content dependent. Moreover, it was found that incorporation of the m-CMS into PLLA could neutralize the acidic degradation by-products and thus compensated for the decrease of pH value. In cell culture experiments, the results showed that the composite enhanced attachment, proliferation and alkaline phosphatase activity (ALP) of MC3T3-E1 cells, which were m-CMS content dependent. The results indicated that the addition of bioactive materials to PLLA could result in a composite with improved properties of hydrophilicity, degradability, bioactivity and cytocompatibility.

  18. Estimation of calcium, magnesium, cadmium, and lead in biological samples from paralyzed quality control and production steel mill workers.

    PubMed

    Afridi, Hassan Imran; Talpur, Farah Naz; Kazi, Tasneem Gul; Kazi, Naveed; Arain, Sadaf Sadia; Shah, Faheem

    2015-06-01

    The determination of trace and toxic metals in the biological samples of human beings is an important clinical screening procedure. The aim of the present study was to compare the level of essential trace and toxic elements cadmium (Cd), calcium (Ca), lead (Pb), and magnesium (Mg) in biological samples (whole blood, urine, and scalp hair) of male paralyzed production (PPW) and quality control workers (PQW) of a steel mill, age ranged (35-55 years). For comparison purposes, healthy age-matched exposed referent subjects (EC), working in steel mill and control subjects (NEC), who were not working in industries and lived far away from the industrial areas, were selected as control subjects. The concentrations of electrolytes and toxic elements in biological samples were measured by atomic absorption spectrometry after microwave-assisted acid digestion. The validity and accuracy of the methodology were checked using certified reference materials. The results of this study showed that the mean values of Cd and Pb were significantly higher in scalp hair, blood, and urine samples of PPW and PQW as compared to NEC and EC (p < 0.001), whereas the concentrations of Ca and Mg were found to be lower in the scalp hair and blood but higher in the urine samples of PPW and PQW. The results show the need for immediate improvements in workplace, ventilation, and industrial hygiene practices.

  19. Automated Measurement of Magnesium/Calcium Ratios in Gastropod Shells Using Laser-Induced Breakdown Spectroscopy for Paleoclimatic Applications.

    PubMed

    Cobo, Adolfo; García-Escárzaga, Asier; Gutiérrez-Zugasti, Igor; Setién, Jesús; González-Morales, Manuel R; López-Higuera, José Miguel

    2017-04-01

    The chemical composition of mollusk shells offers information about environmental conditions present during the lifespan of the organism. Shells found in geological deposits and in many archeological sites can help to reconstruct past climatic conditions. For example, a correlation has been found between seawater temperature and the amount of some substituent elements (e.g., magnesium, strontium) in the biogenerated calcium carbonate matrix of the shell, although it is very species-specific. Here we propose the use laser-induced breakdown spectroscopy (LIBS) to estimate Mg/Ca ratios in modern specimens of the common limpet Patella vulgata. An automated setup was used to obtain a sequence of Mg/Ca ratios across a sampling path that could be compared with the seawater temperatures recorded during the organism's lifespan. Results using four shells collected in different months of the year showed a direct relationship between the Mg/Ca ratios and the seawater temperature, although the sequences also revealed small-scale (short-term) variability and an irregular growth rate. Nevertheless, it was possible to infer the season of capture and the minimum and maximum seawater temperatures from the LIBS sequences. This fact, along with the reduction in sampling and measurement time compared with other spectrometric techniques (such as inductively coupled plasma mass spectrometry [ICP-MS]), makes LIBS useful in paleoclimatic studies.

  20. Thermodynamics of the conversion of calcium and magnesium fluorides to the parent metal oxides and hydrogen fluoride

    SciTech Connect

    West, M.H.; Axler, K.M.

    1997-02-01

    The authors have used thermodynamic modeling to examine the reaction of calcium fluoride (CaF{sub 2}) and magnesium fluoride (MgF{sub 2}) with water (H{sub 2}O) at elevated temperatures. The calculated, equilibrium composition corresponds to the global free-energy minimum for the system. Optimum, predicted reaction temperatures and reactant mole ratios are reported for the recovery of hydrogen fluoride (HF), a valuable industrial feedstock. Complete conversion of MgF{sub 2} is found at 1,000 C and a ratio of 40 moles of H{sub 2}O per 1 mole of MgF{sub 2}. For CaF{sub 2}, temperatures as high as 1,400 C are required for complete conversion at a corresponding mole ratio of 40 moles of H{sub 2}O per 1 mole of CaF{sub 2}. The authors discuss the presence of minor chemical constituents as well as the stability of various potential container materials for the pyrohydrolysis reactions at elevated temperatures. CaF{sub 2} and MgF{sub 2} slags are available as wastes at former uranium production facilities within the Department of Energy Complex and other facilities regulated by the Nuclear Regulatory Commission. Recovery of HF from these wastes is an example of environmental remediation at such facilities.

  1. Calcium and Magnesium Ions Modulate the Oligomeric State and Function of Mitochondrial 2-Cys Peroxiredoxins in Leishmania Parasites.

    PubMed

    Morais, Mariana A B; Giuseppe, Priscila O; Souza, Tatiana A C B; Castro, Helena; Honorato, Rodrigo V; Oliveira, Paulo S L; Netto, Luis E S; Tomas, Ana M; Murakami, Mario T

    2017-03-14

    Leishmania parasites have evolved a number of strategies to cope with the harsh environmental changes during mammalian infection. One of these mechanisms involves the functional gain that allowed mitochondrial 2-Cys peroxiredoxins to act as molecular chaperones when forming decamers. This function was demonstrated to be critical for the parasite infectivity in mammals and its activation was considered to be controlled exclusively by the enzyme redox state under physiological conditions. Herein, we revealed that magnesium and calcium ions play a major role in modulating the ability of these enzymes to act as molecular chaperones, surpassing the redox effect. These ions are directly involved in the mitochondrial metabolism and now also integrate a novel mechanism to stabilize the decameric form of 2-Cys peroxiredoxins in Leishmania mitochondrion. Moreover, we demonstrated that a constitutively dimeric Prx1m mutant impairs Leishmania's survival under heat stress, supporting the central role of chaperone function of Prx1m for Leishmania parasites during the transition from insect to mammalian hosts.

  2. Stabilization/solidification of mercury-contaminated waste ash using calcium sodium phosphate (CNP) and magnesium potassium phosphate (MKP) processes.

    PubMed

    Cho, Jae Han; Eom, Yujin; Lee, Tai Gyu

    2014-08-15

    This study examined the stabilization and solidification (S/S) of mercury (Hg)-contaminated waste ash generated from an industrial waste incinerator using chemically bonded phosphate ceramic (CBPC) technology. A magnesium potassium phosphate (MKP; MgKPO4 · 6H2O) ceramic, fabricated from MgO and KH2PO4, and a calcium sodium phosphate (CNP; CaNaPO4) ceramic, fabricated from CaO and Na2HPO4, were used as solidification binders in the CBPC process, and Na2S or FeS was added to each solidification binder to stabilize the Hg-contaminated waste ash. The S/S processes were conducted under various operating conditions (based on the solidification binder and stabilization reagent, stabilization reagent dosage, and waste loading ratio), and the performance characteristics of the S/S sample under each operating condition were compared, including the Hg leaching value and compressive strength. The Hg leaching value of untreated Hg-contaminated waste ash was 231.3 μg/L, whereas the S/S samples treated using the MKP and CNP processes exhibited Hg leaching values below the universal treatment standard (UTS) limit (25 μg/L). Although the compressive strengths of the S/S samples decreased as the sulfide dosage and waste loading ratio were increased, most of the S/S samples fabricated by the MKP and CNP processes exhibited good mechanical properties.

  3. Calcium and magnesium elimination enhances accumulation of cardenolides in callus cultures of endemic Digitalis species of Turkey.

    PubMed

    Sahin, G; Verma, S K; Gurel, E

    2013-12-01

    Elimination of calcium (Ca), magnesium (Mg) or both from the medium of callus cultures of Digitalis davisiana Heywood, Digitalis lamarckii Ivanina, Digitalis trojana Ivanina and Digitalis cariensis Boiss. ex Jaub. et Spach increased cardenolides production. Callus was induced from hypocotyl segments from one-month old seedlings were cultured on MS medium containing 0.5 μg ml(-1) thidiazuron (TDZ) and 0.25 μg ml(-1) indole acetic acid (IAA). After 30 days of culture, callus was transferred in hormone-free MS medium (MSO) as well as Ca or Mg or both were completely eliminated from same medium. The amount of five cardenolides from D. davisiana Heywood, D. lamarckii Ivanina, D. trojana Ivanina and D. cariensis Boiss. ex Jaub. et Spach were compared. Higher amounts of five cardenolides and total cardenolides were obtained when callus of four Digitalis species were incubated on MS medium lacking both Ca and Mg. The mean contents of total cardenolides obtained were in the order of D. lamarckii (2017.97 μg g(-1))>D. trojana (1385.75 μg g(-1))>D. cariensis (1038.65 μg g(-1))>D. davisiana (899.86 μg g(-1)) when both Ca and Mg were eliminated from the medium, respectively. This protocol is useful for development of new strategies for the large-scale production of cardenolides.

  4. Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots

    PubMed Central

    Fukao, Yoichiro; Kobayashi, Mami; Zargar, Sajad Majeed; Kurata, Rie; Fukui, Risa; Mori, Izumi C.; Ogata, Yoshiyuki

    2016-01-01

    The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex), respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots. PMID:28248212

  5. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  6. Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots.

    PubMed

    Fukao, Yoichiro; Kobayashi, Mami; Zargar, Sajad Majeed; Kurata, Rie; Fukui, Risa; Mori, Izumi C; Ogata, Yoshiyuki

    2016-01-12

    The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex), respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots.

  7. Report on the Study of Radiation Damage in Calcium Fluoride and Magnesium Fluoride Crystals for use in Excimer Laser Applications

    SciTech Connect

    None, None

    1999-10-04

    A study was performed to investigate the effects of radiation damage in calcium fluoride and magnesium fluoride crystals caused by gamma rays and UV photons from excimer lasers. The purpose was to study and correlate the damage caused by these two different mechanisms in various types of material used for fabricating optical elements in high power excimer lasers and lens systems of lithography tools. These optical systems are easily damaged by the laser itself, and it is necessary to use only the most radiation resistant materials for certain key elements. It was found that a clear correlation exists between the, radiation induced damage caused by high energy gamma rays and that produced by UV photons from the excimer laser. This correlation allows a simple procedure to be developed to select the most radiation resistant material at the ingot level, which would be later used to fabricate various components of the optical system. This avoids incurring the additional cost of fabricating actual optical elements with material that would later be damaged under prolonged use. The result of this screening procedure can result in a considerable savings in the overall cost of the lens and laser system.

  8. Individual effects of sodium, potassium, calcium, and magnesium chloride salts on Lactobacillus pentosus and Saccharomyces cerevisiae growth.

    PubMed

    Bautista-Gallego, J; Arroyo-López, F N; Durán-Quintana, M C; Garrido-Fernandez, A

    2008-07-01

    A quantitative investigation on the individual effects of sodium (NaCl), potassium (KCl), calcium (CaCl2), and magnesium (MgCl2) chloride salts against Lactobacillus pentosus and Saccharomyces cerevisiae, two representative microorganisms of table olives and other fermented vegetables, was carried out. In order to assess their potential activities, both the kinetic growth parameters and dose-response profiles in synthetic media (deMan Rogosa Sharpe broth medium and yeast-malt-peptone-glucose broth medium, respectively) were obtained and analyzed. Microbial growth was monitored via optical density measurements as a function of contact time in the presence of progressive chloride salt concentrations. Relative maximum specific growth rate and lag-phase period were modeled as a function of the chloride salt concentrations. Moreover, for each salt and microorganism tested, the noninhibitory concentrations and the MICs were estimated and compared. All chloride salts exerted a significant antimicrobial effect on the growth cycle; particularly, CaCl2 showed a similar effect to NaCl, while KCl and MgCl2 were progressively less inhibitory. Microbial susceptibility and resistance were found to be nonlinearly dose related.

  9. Calcium-magnesium carbonate solid solutions from Holocene conglomerate cements and travertines in the Coast Range of California

    USGS Publications Warehouse

    Barnes, I.; O'Neil, J.R.

    1971-01-01

    Two calcium-magnesium carbonate solid solutions form Holocene travertines and conglomerate cements in fresh water stream channels of the Coast Range of California. Calcite does not yield the {015} diffraction maximum. The {006} diffraction maximum is lacking over most of the range of composition of calcite. Calcite has compositions from CaCO3 to Ca0.5Mg0.5CO3. Dolomite yields both the {006} and {015} diffraction maxima over its entire composition range, Ca0.6Mg0.4CO3 to Ca0.5Mg0.5CO3. The Ca-Mg carbonates form in isotopic equilibrium and thermodynamic disequilibrium from dispersion of Ca2+-rich water into CO32--rich water within the alluvium. The stable isotope data suggest that all the Mg-rich carbonates are primary precipitates and not a result of Mg-substitution in precursor CaCO3. There is a correlation between ??C13 and Mg content of the carbonates which predicts a 5%. fractionation of C13 between dolomite and calcite at sedimentary temperatures. C14 is incorporated in Ca-Mg carbonates forming from C13-poor meteoric waters and C13-rich waters from Cretaceous sediments. C14 ages of the Ca-Mg carbonates are apparent, and cannot be corrected to absolute values. Solution rates of calcite decrease with increasing MgCO3 content; dolomite dissolves slower than any calcite. ?? 1971.

  10. FTIR study on phase behavior of magnesium-doped biphasic calcium phosphate synthesized via sol-gel method

    NASA Astrophysics Data System (ADS)

    Toibah, A. R.; Sopyan, I.; Yuhazri, Y. Mohd; Jeefferie, R. A.; Nooririnah, O.

    2012-06-01

    Incorporation of metal as sintering additive is a simple way to improve physical and mechanical properties of biphasic calcium phosphate (BCP) materials as well as its performance in biomedical applications. In this work, magnesium (Mg) was incorporated into the BCP as sintering additive to improve the properties of BCP. The aim of this work was to study the effect of Mg doping to the BCP on its phase behavior. Mg-doped BCP powders have been synthesized via sol-gel method. The as prepared powders at different Mg concentration were calcined at different temperatures ranged from 500°C to 900°C. FT-IR technique was used to study the phase behavior and thermal stability of as prepared powders. FT-IR study revealed that the intensity of the OH band of HA phase was increased with the powder crystallinity and calcination temperature. FT-IR analysis confirmed the formation of biphasic mixtures of HA and Mg stabilized β-TCP in the synthesized powders when calcined at high temperatures as bands of HPO4-2 and P2O7-4 decreased. Moreover, FT-IR study also showed that the intensity of peak resolution of OH and PO4 bands are viewed less intensity with the increased in Mg percent concentration. FT-IR also revealed the presence of stable phase of P2O5 band at 400-450 cm-1 which promotes the crystal growth Mg-doped BCP powder.

  11. Evaluation of calcium magnesium acetate and road salt for contact hypersensitivity potential and dermal irritancy in humans.

    PubMed

    Cushman, J R; Duff, V A; Buteau, G H; Aust, L B; Caldwell, N; Lazer, W

    1991-04-01

    Calcium magnesium acetate (CMA) and road salt are both de-icing agents to which workers may be dermally exposed. A commercial formulation of CMA (Chevron Ice-B-Gon Deicer) and road salt were tested in a human repeat insult patch test to evaluate the contact hypersensitivity potential of these materials and to evaluate irritation following single or multiple applications. 72 of the initial 82 panelists completed the study. CMA and road salt (each at 10% and 30% w/w in distilled water; 0.3 ml) were administered under occlusive patches on the forearm for 14 h 3 x per week for 3 weeks. The panelists were challenged 2 weeks later; 2 panelists who had mild reactions were subsequently rechallenged 6 weeks later. Neither CMA nor road salt produced contact hypersensitivity in any panelists. Following the first application, moderate acute irritation was observed only at 1 skin site exposed to 30% road salt. Repeated exposure to CMA or road salt produced mild to moderate irritation. The highest incidence of moderate irritation was observed with 30% road salt. Thus, neither material is expected to cause significant dermal effects in exposed workers. CMA is expected to cause dermal irritation equivalent to or less than that caused by road salt.

  12. Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Ming; Guo, Jun-Wei; Wu, Yun-Feng; Liu, Yan; Cao, Jian-Yun; Zhou, Yu; Jia, De-Chang

    2014-09-01

    The key to use magnesium alloys as suitable biodegradable implants is how to adjust their degradation rates. We report a strategy to prepare biocompatible ceramic coating with improved biocorrosion resistance property on AZ91D alloy by microarc oxidation (MAO) in a silicate-K2ZrF6 solution with and without Ca(H2PO4)2 additives. The microstructure and biocorrosion of coatings were characterized by XRD and SEM, as well as electrochemical and immersion tests in simulated body fluid (SBF). The results show that the coatings are mainly composed of MgO, Mg2SiO4, m-ZrO2 phases, further Ca containing compounds involve the coating by Ca(H2PO4)2 addition in the silicate-K2ZrF6 solution. The corrosion resistance of coated AZ91D alloy is significantly improved compared with the bare one. After immersing in SBF for 28 d, the Si-Zr5-Ca0 coating indicates a best corrosion resistance performance.

  13. Experimental and theoretical study of molecular structure of beryllium, magnesium, calcium, strontium and barium 4-nitrobenzoates.

    PubMed

    Samsonowicz, M; Regulska, E; Świsłocka, R; Lewandowski, W

    2013-02-15

    The influence of alkaline earth metal ions on the electronic system of 4-nitrobenzoic acid was studied in this paper. The vibrational (FT-IR) and NMR ((1)H and (13)C) spectra were recorded for 4-nitrobenzoic acid (4-nba) and its salts (4-nb). The assignment of vibrational spectra was done. Some shifts of band wavenumbers in alkaline earth metal 4-nitrobenzoates spectra were observed in the series from magnesium to barium salts. Good correlations between wavenumbers of the vibrational bands in the IR spectra of studied salts and ionic potential, electronegativity, inverse of atomic mass, ionic radius and ionization energy of studied metals were found. The regular changes in the chemical shifts of protons ((1)H NMR) and carbons ((13)C NMR) in the series of studied salts were also observed. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G(**) as well as LANL2DZ basis sets. Theoretical wavenumbers and intensities in IR and chemical shifts in NMR spectra were also obtained. The calculated parameters were compared with experimental data of studied compounds.

  14. Experimental and theoretical study of molecular structure of beryllium, magnesium, calcium, strontium and barium 4-nitrobenzoates

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Regulska, E.; Świsłocka, R.; Lewandowski, W.

    2013-02-01

    The influence of alkaline earth metal ions on the electronic system of 4-nitrobenzoic acid was studied in this paper. The vibrational (FT-IR) and NMR (1H and 13C) spectra were recorded for 4-nitrobenzoic acid (4-nba) and its salts (4-nb). The assignment of vibrational spectra was done. Some shifts of band wavenumbers in alkaline earth metal 4-nitrobenzoates spectra were observed in the series from magnesium to barium salts. Good correlations between wavenumbers of the vibrational bands in the IR spectra of studied salts and ionic potential, electronegativity, inverse of atomic mass, ionic radius and ionization energy of studied metals were found. The regular changes in the chemical shifts of protons (1H NMR) and carbons (13C NMR) in the series of studied salts were also observed. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G** as well as LANL2DZ basis sets. Theoretical wavenumbers and intensities in IR and chemical shifts in NMR spectra were also obtained. The calculated parameters were compared with experimental data of studied compounds.

  15. Effects of foliar sprays containing calcium, magnesium and titanium on plum (Prunus domestica L.) fruit quality.

    PubMed

    Alcaraz-Lopez, Carlos; Botia, Maria; Alcaraz, Carlos F; Riquelme, Fernando

    2003-12-01

    An experiment was performed in which Ti(4+)-ascorbate was sprayed onto plum trees in several combinations with other commercial compounds containing Ca2+ and Mg2+ to study the effects on the commercial quality of fruits, with special focus on improving their resistance against postharvest handling damage. All the treatments containing titanium increased the tree performance (branch elongation, flowering and fruit setting intensities) and fruit size. At harvest fruits from the Ti-treated trees showed improved resistance to compression and penetration, as well as a decrease in weight-loss during postharvest storage. A similar response was obtained for the external colour, though all the treatments seemed to delay somewhat the apparent ripening status. Nevertheless, the fruits from Ti-treated trees showed a better behaviour in the evolution of the colour parameters during storage than did the control fruits. Titanium application significantly increased the calcium, iron, copper and zinc concentrations in peel and flesh. This improvement in the calcium absorption is explained as a consequence of the beneficial effect of titanium on the absorption, translocation and assimilation processes.

  16. Study of the protein-bound fraction of calcium, iron, magnesium and zinc in bovine milk

    NASA Astrophysics Data System (ADS)

    Silva, Fernando V.; Lopes, Gisele S.; Nóbrega, Joaquim A.; Souza, Gilberto B.; Nogueira, Ana Rita A.

    2001-10-01

    Two approaches were used to study the interaction of Ca, Fe, Mg and Zn with bovine milk proteins by inductively coupled plasma optical emission spectrometry (ICPOES). Selective separations in bovine milk samples were accomplished employing an acid protein precipitation using 100 g l -1 trichloroacetic acid (TCA), and an enzymatic protein hydrolysis using 50 g l -1 pepsin (PEP) solution, respectively. The results were compared with total mineral contents determined after microwave-assisted acid digestion. The results obtained by enzymatic and acid precipitation evidenced the different interaction forms of Ca, Fe, Mg and Zn in the system formed by milk components. Iron was not solubilized by the TCA treatment, but was recovered completely after the enzymatic treatment. Quantitative recoveries of Ca, Mg and Zn were obtained using both approaches, showing that these analytes were bound to milk compounds affected by either treatment. Calcium, Mg and Zn are mainly associated with colloidal calcium phosphate and Fe is bound to the backbone of the casein polypeptide chain, cleaved by pepsin enzyme. The proposed approaches could be used to assess the complexity of these chemical interactions.

  17. Synthesis of phospholipids in microstructures, prepared by the interaction of ammonium thiocyanate, minerals, calcium acetate, potassium dihydrogen phosphate, and formaldehyde.

    PubMed

    Ranganayaki, S; Srivastava, B; Bahadur, K

    1980-01-01

    The photochemically formed microstructures, synthesized in sterilized aqueous mixture containing ammonium thiocyanate and formaldehyde in appropriate mineral environment in the presence of ferric chloride, on exposure to sunlight revealed the presence of phospholipids. The microsturctures synthesized in the unexposed mixture showed a less degree of synthesis. The microstructures showed the formation of amino acids, peptides, organic acids, and sugars as well.

  18. Short term spatio-temporal variability of soil water-extractable calcium and magnesium after a low severity grassland fire in Lithuania.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Martin, David

    2014-05-01

    Fire has important impacts on soil nutrient spatio-temporal distribution (Outeiro et al., 2008). This impact depends on fire severity, topography of the burned area, type of soil and vegetation affected, and the meteorological conditions post-fire. Fire produces a complex mosaic of impacts in soil that can be extremely variable at small plot scale in the space and time. In order to assess and map such a heterogeneous distribution, the test of interpolation methods is fundamental to identify the best estimator and to have a better understanding of soil nutrients spatial distribution. The objective of this work is to identify the short-term spatial variability of water-extractable calcium and magnesium after a low severity grassland fire. The studied area is located near Vilnius (Lithuania) at 54° 42' N, 25° 08 E, 158 masl. Four days after the fire, it was designed in a burned area a plot with 400 m2 (20 x 20 m with 5 m space between sampling points). Twenty five samples from top soil (0-5 cm) were collected immediately after the fire (IAF), 2, 5, 7 and 9 months after the fire (a total of 125 in all sampling dates). The original data of water-extractable calcium and magnesium did not respected the Gaussian distribution, thus a neperian logarithm (ln) was applied in order to normalize data. Significant differences of water-extractable calcium and magnesium among sampling dates were carried out with the Anova One-way test using the ln data. In order to assess the spatial variability of water-extractable calcium and magnesium, we tested several interpolation methods as Ordinary Kriging (OK), Inverse Distance to a Weight (IDW) with the power of 1, 2, 3 and 4, Radial Basis Functions (RBF) - Inverse Multiquadratic (IMT), Multilog (MTG), Multiquadratic (MTQ) Natural Cubic Spline (NCS) and Thin Plate Spline (TPS) - and Local Polynomial (LP) with the power of 1 and 2. Interpolation tests were carried out with Ln data. The best interpolation method was assessed using the

  19. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  20. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  1. Effects of magnesium chloride and organic additives on the synthesis of aragonite precipitated calcium carbonate

    NASA Astrophysics Data System (ADS)

    Park, Woon Kyoung; Ko, Sang-Jin; Lee, Seung Woo; Cho, Kye-Hong; Ahn, Ji-Whan; Han, Choon

    2008-05-01

    The synthesis of aragonite precipitated calcium carbonate by treating a suspension of Ca(OH) 2 with CO 2 gas was investigated with regard to the effects of Mg 2+ ions and organic additives on polymorphism and alternative orientations. In the presence of a small amount of Mg 2+, Mg-calcite formed, but as the Mg 2+ ion concentration increased, the amount of Mg-calcite decreased and the amount of aragonite increased. Thus, the formation of Mg-calcite is suppressed and only aragonite is formed in the presence of 60 mol% MgCl 2. As the Mg 2+ ion concentration increased, the aragonite that formed was found to have decreased in terms of its longitude and aspect ratio. Furthermore, the effect of Mg 2+ ions in conjunction with organic additives was also investigated with regard to polymorphs and morphology and the structure-forming properties of the organic additives.

  2. Evaluation of calcium acetate/magnesium carbonate as a phosphate binder compared with sevelamer hydrochloride in haemodialysis patients: a controlled randomized study (CALMAG study) assessing efficacy and tolerability

    PubMed Central

    de Francisco, Angel L.M.; Leidig, Michael; Covic, Adrian C.; Ketteler, Markus; Benedyk-Lorens, Ewa; Mircescu, Gabriel M.; Scholz, Caecilia; Ponce, Pedro; Passlick-Deetjen, Jutta

    2010-01-01

    Background. Phosphate binders are required to control serum phosphorus in dialysis patients. A phosphate binder combining calcium and magnesium offers an interesting therapeutic option. Methods. This controlled randomized, investigator-masked, multicentre trial investigated the effect of calcium acetate/magnesium carbonate (CaMg) on serum phosphorus levels compared with sevelamer hydrochloride (HCl). The study aim was to show non-inferiority of CaMg in lowering serum phosphorus levels into Kidney Disease Outcome Quality Initiative (K/DOQI) target level range after 24 weeks. Three hundred and twenty-six patients from five European countries were included. After a phosphate binder washout period, 255 patients were randomized in a 1:1 fashion. Two hundred and four patients completed the study per protocol (CaMg, N = 105; dropouts N = 18; sevelamer-HCl, N = 99; dropouts N = 34). Patient baseline characteristics were similar in both groups. Results. Serum phosphorus levels had decreased significantly with both drugs at week 25, and the study hypothesis of CaMg not being inferior to sevelamer-HCl was confirmed. The area under the curve for serum phosphorus (P = 0.0042) and the number of visits above K/DOQI (≤1.78 mmol/L, P = 0.0198) and Kidney disease: Improving global outcomes (KDIGO) targets (≤1.45 mmol/L, P = 0.0067) were significantly lower with CaMg. Ionized serum calcium did not differ between groups; total serum calcium increased in the CaMg group (treatment difference 0.0477 mmol/L; P = 0.0032) but was not associated with a higher risk of hypercalcaemia. An asymptomatic increase in serum magnesium occurred in CaMg-treated patients (treatment difference 0.2597 mmol/L, P < 0.0001). There was no difference in the number of patients with adverse events. Conclusion. CaMg was non-inferior to the comparator at controlling serum phosphorus levels at Week 25. There was no change in ionized calcium; there was minimal increase in total serum calcium and a small

  3. Magnesium toxicosis in two horses.

    PubMed

    Henninger, R W; Horst, J

    1997-07-01

    Magnesium sulfate, a saline laxative, is often used for treatment of intestinal impactions in horses. Clinical signs of hypermagnesemia are an uncommon complication following oral administration of magnesium sulfate. Overdose of magnesium sulfate in combination with renal insufficiency, hypocalcemia, or compromise of intestinal integrity may predispose horses to magnesium toxicosis. Establishment of diuresis with fluids and IV administration of calcium may provide successful treatment of magnesium toxicosis in horses.

  4. Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation.

    PubMed

    Rayssiguier, Yves; Libako, Patrycja; Nowacki, Wojciech; Rock, Edmond

    2010-06-01

    Magnesium (Mg) intake is inadequate in the western diet and metabolic syndrome is highly prevalent in populations around the world. Epidemiological studies suggest that high Mg intake may reduce the risk but the possibility of confounding factors exists, given the strong association between Mg and other beneficial nutriments (vegetables, fibers, cereals). The concept that metabolic syndrome is an inflammatory condition may explain the role of Mg.Mg deficiency results in a stress effect and increased susceptibility to physiological damage produced by stress. Stress activates the hypothalamic-pituitary-adrenal axis (HPA) axis and the sympathetic nervous system. The activation of the renin-angiotensin-aldosterone system is a factor in the development of insulin resistance by increasing oxidative stress. In both humans and rats, aldosteronism results in an immunostimulatory state and leads to an inflammatory phenotype. Stress response induces the release of large quantities of excitatory amino acids and activates the nuclear factor NFkappaB, promoting translation of molecules involved in cell regulation, metabolism and apoptosis. The rise in neuropeptides is also well documented. Stress-induced HPA activation has been identified to play an important role in the preferential body fat accumulation but evidence that Mg is involved in body weight regulation is lacking. One of the earliest events in the acute response to stress is endothelial dysfunction. Endothelial cells actively contribute to inflammation by elaborating cytokines, synthesizing chemical mediators and expressing adhesion molecules. Experimental Mg deficiency in rats induces a clinical inflammatory syndrome characterized by leukocyte and macrophage activation, synthesis of inflammatory cytokines and acute phase proteins, extensive production of free radicals. An increase in extracellular Mg concentration decreases inflammatory effects, while reduction in extracellular Mg results in cell activation. The

  5. Controlling the Biodegradation of Magnesium Implants Through Nanostructured Calcium-Phosphate Coating

    NASA Astrophysics Data System (ADS)

    Iskandar, Maria Emil

    Magnesium (Mg) alloys, a novel class of degradable, metallic biomaterials, have attracted growing interest as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. Moreover, Mg is biodegradable in the physiological environments. However, the major obstacle for Mg to be used as medical implants is its rapid degradation in physiological fluids. Therefore, the present key challenge lies in controlling Mg degradation rate in the physiological environment. The objective of this study was to develop a nanostructured-hydroxyapatite (nHA) coating on polished Mg implants to control the degradation and bone tissue integration of the implants. The nHA coatings were deposited on Mg using the Spire's patented TPA process to moderate the aggressive degradation of Mg and to improve quick osteointegration between Mg and natural bone. Nanostructured-HA coatings mimic the nanostructure and chemistry of natural bone, which will provide a desirable environment for bone tissue regeneration. Surface morphology, element compositions, and crystal structures were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and x-ray diffractometry (XRD), respectively. SEM images of the deposited nHA-coating was analyzed using ImageJ's quantitative image analysis tool, to determine the nHA-coating particle size and thickness. The degradation of nHA-coated and non-coated Mg samples was investigated by incubating samples in phosphate buffered saline (PBS) and revised simulated body fluid (r-SBF), under standard cell culture conditions. To mimic the in vivo cell response in the physiological environment, rat bone marrow stromal cells (BMSC) were harvested and cultured with nHA-coated and non-coated polished Mg samples to determine cytocompatibilty. The degradation results suggested that the nanocoatings positively mediated Mg degradation. It can therefore be concluded that n

  6. Beneficial effect of pollen and/or propolis on the metabolism of iron, calcium, phosphorus, and magnesium in rats with nutritional ferropenic anemia.

    PubMed

    Haro, A; López-Aliaga, I; Lisbona, F; Barrionuevo, M; Alférez, M J; Campos, M S

    2000-11-01

    There has been considerable debate regarding the nutritional benefits of pollen and the propolis produced by bees, although most contributions have lacked scientific soundness. This paper describes the possible beneficial effect of their use in pharmacological products in cases of anemic syndrome. We studied the effect of these two natural products on the digestive utilization of iron, calcium, phosphorus, and magnesium, using control rats and rats with nutritional ferropenic anemia. The addition of these products to the diet produced a positive effect on weight gain; this fact could constitute a scientific basis for the application of pollen and propolis as fortifiers. They improve the digestive utilization of iron and the regeneration efficiency of hemoglobin, especially during recovery from an anemic syndrome. They also have a positive effect on phosphocalcic metabolism and maintain an appropiate level of magnesium metabolism. Furthermore, in iron-deficient rats, these natural products palliate, to a large extent, the adverse effects of iron deficiency on calcium and magnesium metabolism as a result of the improvement in the digestive utilization of these minerals.

  7. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...). It is prepared by the sublimation of a mixture of ammonium sulfate and calcium carbonate and occurs... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium carbonate. 184.1137 Section 184.1137 Food... Specific Substances Affirmed as GRAS § 184.1137 Ammonium carbonate. (a) Ammonium carbonate ((NH4)2CO3, CAS...

  8. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...). It is prepared by the sublimation of a mixture of ammonium sulfate and calcium carbonate and occurs... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ammonium carbonate. 184.1137 Section 184.1137 Food... Specific Substances Affirmed as GRAS § 184.1137 Ammonium carbonate. (a) Ammonium carbonate ((NH4)2CO3, CAS...

  9. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...). It is prepared by the sublimation of a mixture of ammonium sulfate and calcium carbonate and occurs... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium carbonate. 184.1137 Section 184.1137 Food... Specific Substances Affirmed as GRAS § 184.1137 Ammonium carbonate. (a) Ammonium carbonate ((NH4)2CO3, CAS...

  10. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...). It is prepared by the sublimation of a mixture of ammonium sulfate and calcium carbonate and occurs... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium carbonate. 184.1137 Section 184.1137 Food... Specific Substances Affirmed as GRAS § 184.1137 Ammonium carbonate. (a) Ammonium carbonate ((NH4)2CO3, CAS...

  11. Establishing homology between mitochondrial calcium uniporters, prokaryotic magnesium channels and chlamydial IncA proteins.

    PubMed

    Lee, Andre; Vastermark, Ake; Saier, Milton H

    2014-08-01

    Mitochondrial calcium uniporters (MCUs) (TC no. 1.A.77) are oligomeric channel proteins found in the mitochondrial inner membrane. MCUs have two well-conserved transmembrane segments (TMSs), connected by a linker, similar to bacterial MCU homologues. These proteins and chlamydial IncA proteins (of unknown function; TC no. 9.B.159) are homologous to prokaryotic Mg(2+) transporters, AtpI and AtpZ, based on comparison scores of up to 14.5 sds. A phylogenetic tree containing all of these proteins showed that the AtpZ proteins cluster coherently as a subset within the large and diverse AtpI cluster, which branches separately from the MCUs and IncAs, both of which cluster coherently. The MCUs and AtpZs share the same two TMS topology, but the AtpIs have four TMSs, and IncAs can have either two (most frequent) or four (less frequent) TMSs. Binary alignments, comparison scores and motif analyses showed that TMSs 1 and 2 align with TMSs 3 and 4 of the AtpIs, suggesting that the four TMS AtpI proteins arose via an intragenic duplication event. These findings establish an evolutionary link interconnecting eukaryotic and prokaryotic Ca(2+) and Mg(2+) transporters with chlamydial IncAs, and lead us to suggest that all members of the MCU superfamily, including IncAs, function as divalent cation channels. © 2014 The Authors.

  12. Establishing homology between mitochondrial calcium uniporters, prokaryotic magnesium channels and chlamydial IncA proteins

    PubMed Central

    Lee, Andre; Vastermark, Ake

    2014-01-01

    Mitochondrial calcium uniporters (MCUs) (TC no. 1.A.77) are oligomeric channel proteins found in the mitochondrial inner membrane. MCUs have two well-conserved transmembrane segments (TMSs), connected by a linker, similar to bacterial MCU homologues. These proteins and chlamydial IncA proteins (of unknown function; TC no. 9.B.159) are homologous to prokaryotic Mg2+ transporters, AtpI and AtpZ, based on comparison scores of up to 14.5 sds. A phylogenetic tree containing all of these proteins showed that the AtpZ proteins cluster coherently as a subset within the large and diverse AtpI cluster, which branches separately from the MCUs and IncAs, both of which cluster coherently. The MCUs and AtpZs share the same two TMS topology, but the AtpIs have four TMSs, and IncAs can have either two (most frequent) or four (less frequent) TMSs. Binary alignments, comparison scores and motif analyses showed that TMSs 1 and 2 align with TMSs 3 and 4 of the AtpIs, suggesting that the four TMS AtpI proteins arose via an intragenic duplication event. These findings establish an evolutionary link interconnecting eukaryotic and prokaryotic Ca2+ and Mg2+ transporters with chlamydial IncAs, and lead us to suggest that all members of the MCU superfamily, including IncAs, function as divalent cation channels. PMID:24869855

  13. Calcium-phosphate coatings obtained biomimetically on magnesium substrates under low magnetic field

    NASA Astrophysics Data System (ADS)

    Yanovska, A.; Kuznetsov, V.; Stanislavov, A.; Danilchenko, S.; Sukhodub, L.

    2012-09-01

    A simple method of hydroxyapatite (HA) coating deposition on Mg substrates at 37 °C is proposed. It was established that variation of ionic composition of the initial solution leads to the deposition of coatings with various phase composition, i.e. DCPD, DCPD + HA, HA which decreased corrosion rate of Mg. The paper also discusses the crystallization of dicalcium phosphate dehydrate (DCPD) and HA coatings on Mg substrates obtained by dipping method under the permanent magnetic field (0.3 T) in the neighborhood of the north and the south pole. A difference in particle morphology and crystal texture of precipitates in the north pole and the south pole proximity was observed. Lattice parameters of DCPD coatings obtained near opposite magnet poles were calculated using XRD results. It was found that the proximity to the south pole of magnet increases the crystallinity of calcium-phosphates. Increase of crystallite sizes in (0 2 0) and (0 4 0) plane was observed for DCPD in the presence of magnetic field.

  14. Effect of low ambient mineral concentrations on the accumulation of calcium, magnesium and phosphorus by early life stages of the air-breathing armoured catfish Megalechis personata (Siluriformes: Callichthyidae).

    PubMed

    Mol, J H; Atsma, W; Flik, G; Bouwmeester, H; Osse, J W

    1999-08-01

    The accumulation of calcium, magnesium and phosphorus was measured during an 8-week period in the early life stages of the air-breathing armoured catfish Megalechis personata acclimated to low-mineral fresh water (0.073 mmol l-1 calcium, 0.015 mmol l-1 magnesium, <0.001 mmol l-1 phosphate) and high-mineral fresh water (0.59 mmol l-1 calcium, 1.94 mmol l-1 magnesium, <0.001 mmol l-1 phosphate). The fish accumulated calcium twice as fast and phosphorus 1.5 times as fast in low-mineral fresh water (LMF) as in high-mineral fresh water (HMF), while the rate of accumulation of magnesium did not differ in LMF and HMF. The difference in the rates of accumulation of calcium and phosphorus between LMF and HMF was independent of the growth performance (food intake) in LMF and HMF. The mineral content of young M. personata from natural swamps and rainforest creeks in Suriname followed the LMF accumulation curves. The transition from aquatic respiration to bimodal respiration in the third week after hatching did not affect rates of mineral accumulation. The high rates of accumulation of calcium and magnesium of M. personata in LMF of 654 and 58 micromol h-1 kg-1, respectively, exceed the rates of uptake of calcium and magnesium of teleosts reported in the literature. The high rates of mineral accumulation in the early life stages of M. personata reflect the exponential growth during the first 8 weeks after hatching and the requirements of the juveniles while building their dermal armour. M. personata is well-adapted to neotropical fresh waters with an extremely low mineral content. The accumulation of calcium and phosphorus is discussed in relation to the function of the bony armour of M. personata.

  15. Serum magnesium, phosphorus, and calcium are associated with risk of incident heart failure: the Atherosclerosis Risk in Communities (ARIC) Study123

    PubMed Central

    Lutsey, Pamela L; Alonso, Alvaro; Michos, Erin D; Loehr, Laura R; Astor, Brad C; Coresh, Josef; Folsom, Aaron R

    2014-01-01

    Background: Heart failure (HF) is a major source of morbidity and mortality, particularly among the elderly. Magnesium, phosphorus, and calcium are micronutrients traditionally viewed in relation to bone health or chronic kidney disease. However, they also may be associated with risk of cardiovascular disease through a broad range of physiologic roles. Objective: With the use of data from the Atherosclerosis Risk in Communities (ARIC) cohort, we tested the hypotheses that the incidence of HF is greater among individuals with low serum magnesium and those with high serum phosphorus and calcium. Design: A total of 14,709 African Americans (27%) and whites from the ARIC cohort [aged 45–64 y at baseline (1987–1989)] were observed through 2009. Proportional hazards regression was used to explore associations between biomarkers and incident HF. Serum calcium was corrected for serum albumin. Models were adjusted for demographics, behaviors, and physiologic characteristics. Results: A total of 2250 incident HF events accrued over a median follow-up of 20.6 y. Participants in the lowest (≤1.4 mEq/L) compared with the highest (≥1.8 mEq/L) category of magnesium were at greater HF risk (HR: 1.71; 95% CI: 1.46, 1.99). For phosphorus, there appeared to be a threshold whereby only those in the highest quintile were at greater HF risk [HR(Q5 vs Q1): 1.34; 95% CI: 1.16, 1.54]. Higher concentrations of calcium were also associated with greater risk of HF [HR(Q5 vs Q1): 1.24; 95% CI: 1.07, 1.43]. Results were not modified by race, sex, or kidney function and were similar when incident coronary heart disease was included as a time-varying covariate. Conclusions: Low serum magnesium and high serum phosphorus and calcium were independently associated with greater risk of incident HF in this population-based cohort. Whether these biomarkers will be useful candidates for HF risk prediction or targets for prevention remains to be seen. PMID:25030784

  16. Effects of manganese, calcium, magnesium and zinc on nickel-induced suppression of murine natural killer cell activity

    SciTech Connect

    Smialowicz, R.J.; Rogers, R.R.; Riddle, M.M.; Luebke, R.W.; Fogelson, L.D.; Rowe, D.G.

    1987-01-01

    The effects that divalent metals have on nickel-induced suppression of natural killer (NK) cell activity were studied in mice. Male CBA/J mice were given a single intramuscular injection of the following: nickel chloride, 4.5-36 ..mu..g/g; manganese chloride, 20-80 ..mu..g/g; magnesium acetate, 50-200 ..mu..g/g; zinc acetate, 2-8 ..mu..g/g; or calcium acetate, 12.5-50 ..mu..g/g. Twenty-four hours after metal injection, splenic NK cell activity was assessed using a /sup 51/Cr-release assay. Ni significantly suppressed NK activity, while Mn significantly enhanced NK activity. No alteration in NK activity was observed in mice injected with Mg, Ca, or Zn. The injection of Ni and Mn in combination at a single site resulted in the enhancement of NK activity, although this enhancement was at a level below that observed following the injection of Mn alone. Injection of Mg, Zn, or Ca in combination with Ni did not affect NK activity compared to saline controls. In contrast, the injection of Ni in one thigh followed immediately by Mn, Mg, Ca, or Zn into the other thigh resulted in significant suppression of NK activity for all metals compared with saline controls. An interesting finding was that the injection of Ni followed immediately by Mn into the opposite thigh resulted in even greater reduction in NK activity than Ni alone. Suppression of NK activity by Ni and Mn injected at separate sites was not seen when Mn injection preceded Ni injection by 1 h.

  17. Evaluation of calcium and magnesium in scalp hair samples of population consuming different drinking water: risk of kidney stone.

    PubMed

    Panhwar, Abdul Haleem; Kazi, Tasneem Gul; Afridi, Hassan Imran; Shaikh, Haffeezur Rehman; Arain, Salma Aslam; Arain, Sadaf Sadia; Brahman, Kapil Dev

    2013-12-01

    The objective of this study was to examine the relationship between calcium (Ca) and magnesium (Mg) in underground water (UGW), bottled mineral water (BMW), and domestic treated water (DTW) with related to risk of kidney stones. The water samples were collected from different areas of Sindh, Pakistan. The scalp hair samples of both genders, age ranged 30-60 years, consuming different types of water, have or have not kidney disorders, were selected. The Ca and Mg concentrations were determined in scalp hair of study subjects and water by flame atomic absorption spectroscopy. The Ca and Mg contents in different types of drinking water, UGW, DTW, and BMW, were found in the range of 79.1-466, 23.7-140, and 45-270 mg/L and 4.43-125, 5.23-39.6, and 7.16-51.3 mg/L, respectively. It was observed that Ca concentration in the scalp hair samples of kidney stone patients consuming different types of drinking water was found to be higher (2,895-4721 μg/g) while Mg level (84.3-101 μg/g) was lower as compare to referents subjects (2,490-2,730 μg/g for Ca, 107-128 μg/g for Mg) in both genders. The positive correlation was found between Ca and Mg levels in water with related to kidney stone formations in population, especially who consumed underground water. A relative risk and odd ratio were calculated; the relative risk had a strong positive association with incidence of kidney stone which depends on types of drinking water.

  18. Effect of calcium and magnesium on the antimicrobial action of enterocin LR/6 produced by Enterococcus faecium LR/6.

    PubMed

    Kumar, Manoj; Srivastava, Sheela

    2011-06-01

    Enterococci are well-known producers of antimicrobial peptides (enterocins) that possess potential as biopreservatives in food. In this study, divalent cations and release of intracellular potassium were used to assess the mechanism of interaction and killing of enterocin LR/6 produced by Enterococcus faecium LR/6 on three target Gram-positive and Gram-negative bacteria, namely Micrococcus luteus, Enterococcus sp. strain LR/3 and Escherichia coli K-12. Whilst treatment with enterocin LR/6 in all cases led to a significant loss of viability, suggesting a bactericidal mode of action, E. coli K-12 showed better tolerance than the other two strains. Bacteriocins have generally been reported to create pores in the membrane of sensitive cells and this function is diminished by divalent cations. In this study it was shown that Ca(2+) and Mg(2+) markedly improved the viability of enterocin LR/6-treated cells in a concentration-dependent manner. K(+) release as a sign of membrane leakiness was higher in M. luteus compared with the other two test strains. In agreement with the viability response, pre-exposure to Ca(2+) and Mg(2+) substantially reduced the amount of K(+) leakage by M. luteus and Enterococcus sp.; in the case of E. coli K-12, no leakage of K(+) was recorded. These results suggest that enterocin LR/6, which possesses good antibacterial potential, may not be very effective as a preservative in foods containing high concentrations of calcium and magnesium. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  19. Evaluation of an electrolyte analyzer for measurement of ionized calcium and magnesium concentrations in blood, plasma, and serum of dogs.

    PubMed

    Unterer, Stefan; Lutz, Hans; Gerber, Bernhard; Glaus, Tony M; Hässig, Michael; Reusch, Claudia E

    2004-02-01

    To evaluate an electrolyte analyzer for measurement of ionized calcium (Ca(i)) and magnesium (Mg(i)) concentrations in blood, plasma, and serum; investigate the effect of various factors on measured values; and establish reference ranges for Ca(i) and Mg(i) in dogs. 30 healthy adult dogs of various breeds. Precision in a measurement series, day-to-day precision, and linearity were used to evaluate the analyzer. The effects of exposure of serum samples to air, type of specimen (blood, plasma, or serum), and storage temperature on sample stability were assessed. Reference ranges were established with anaerobically handled serum. The coefficient of variation for precision in a measurement series was < or = 1.5% for both electrolytes at various concentrations. The Ca(i) and Mg(i) concentrations were significantly lower in aerobically handled serum samples, compared with anaerobically handled samples. The Ca(i) and Mg(i) concentrations differed significantly among blood, plasma, and serum samples. In anaerobically handled serum, Ca(i) was stable for 24 hours at 22 degrees C, 48 hours at 4 degrees C, and 11 weeks at -20 degrees C; Mg(i) was stable for 8 hours at 22 degrees C, < 24 hours at 4 degrees C, and < 1 week at -20 degrees C. In anaerobically handled serum, reference ranges were 1.20 to 1.35 mmol/L for Ca(i) and 0.42 to 0.58 mmol/L for Mg(i). The electrolyte analyzer was suitable for determination of Ca(i) and Mg(i) concentrations in dogs. Accurate results were obtained in anaerobically handled serum samples analyzed within 8 hours and kept at 22 degrees C.

  20. Copper, zinc, calcium and magnesium content of alcoholic beverages and by-products from Spain: nutritional supply.

    PubMed

    Navarro-Alarcon, M; Velasco, C; Jodral, A; Terrés, C; Olalla, M; Lopez, H; Lopez, M C

    2007-07-01

    Levels of copper, zinc, calcium and magnesium were measured in alcoholic beverages (whiskies, gins, rums, liquors, brandies, wines and beers) and by-products (non-alcoholic liquors and vinegars) using flame atomic absorption spectrometry (FAAS). Mineral concentrations were found to be significantly different between the nine alcoholic and non-alcoholic by-products studied (p < 0.001). In distilled alcoholic beverages, concentrations measured in rums and brandies were statistically lower than those determined in gins and alcoholic liquors (p = 0.001). For Cu, measured concentrations were statistically different for each of the five groups of distilled alcoholic beverages studied (p < 0.001). In fermented beverages, Zn, Ca and Mg levels were significantly higher than those concentrations determined in distilled drinks (p < 0.005). Contrarily, Cu concentrations were statistically lower (p < 0.001). Wines designated as sherry had significantly higher Ca and Mg levels (p < 0.005). White wines had significantly higher Ca and Zn levels (p < 0.05) compared with red wines and, contrarily, Cu concentrations were significantly lower (p < 0.005). In wine samples and corresponding by-products (brandy and vinegar), statistical differences were established for all minerals analysed (p < 0.01). Remarkably, for Cu, the concentrations determined in brandies were statistically higher. On the basis of element levels and the official data on consumption of alcoholic beverages and by-products in Spain, their contribution to the daily dietary intake (DDI) was calculated to be 124.6 microg Cu day(-1) and 193.3 microg Zn day(-1), 40.3 mg Ca day(-1) and 19.9 mg Mg day(-1). From all studied elements, Cu was the one for which alcoholic beverages constitute a significant source (more than 10% of recommended daily intake). These findings are of potential use to food composition tables.

  1. Equilibrium intakes of calcium and magnesium within an adequate and limited range of sodium intake in human.

    PubMed

    Nishimuta, Mamoru; Kodama, Naoko; Morikuni, Eiko; Yoshioka, Yayoi H; Matsuzaki, Nobue; Takeyama, Hidemaro; Yamada, Hideaki; Kitajima, Hideaki

    2006-12-01

    In the previous analysis of our human mineral balance studies, we demonstrated positive correlations between the balances of calcium (Ca) and magnesium (Mg) and sodium (Na) intake in the range of 3.06 and 4.06 g/d or 43.71 and 96.40 mg/kg body weight (BW)/d, but there was no correlation between Na intake and Na balance. This suggested that the balances of Ca and Mg are affected by Na intake. Therefore, in the current study, we recalculated equilibrium intakes for Ca and Mg when balances of their intakes and outputs were equal to zero within the above Na range to reduce the effects of Na intake. From 1986 to 2000, 90 volunteers (10 male, 80 female; age 18 to 28 y) took part in 9 mineral balance studies. The balance periods ranged from 8 to 12 d, with adaptation periods of 2 to 4 d. The dietary intakes of Ca and Mg ranged from 294 to 719 and 154 to 334 mg/d, or from 4.83 to 15.07 and 2.44 to 6.42 mg/kg BW/d, respectively. Intake of Ca significantly correlated with Ca balance (r2 = 0.268; p < 0.0001). When the balance was equal to zero, the mean value and upper limit of the 95% confidence interval for the regression equation between intake vs. balance were 10.072 and 10.660 mg/kg BW/d, respectively. Mg intake correlated significantly with Mg balance (r2 = 0.141, p = 0.003). When the balance was equal to zero, the mean value and upper limit of the 95% confidence interval for the regression equation between intake and balance were 4.078 and 4.287 mg/kg BW/d, respectively.

  2. Differential effects of zinc and magnesium ions on mineralization activity of phosphatidylserine calcium phosphate complexes.

    PubMed

    Wu, Licia N Y; Genge, Brian R; Wuthier, Roy E

    2009-07-01

    Mg(2+) and Zn(2+) are present in the mineral of matrix vesicles (MVs) and biological apatites, and are known to influence the onset and progression of mineral formation by amorphous calcium phosphate (ACP) and hydroxyapatite (HAP). However, neither has been studied systematically for its effect on mineral formation by phosphatidylserine-Ca(2+)-Pi complexes (PS-CPLX), an important constituent of the MV nucleation core. Presented here are studies on the effects of increasing levels of Mg(2+) and Zn(2+) on the process of mineral formation, either when present in synthetic cartilage lymph (SCL), or when incorporated during the formation of PS-CPLX. Pure HAP and PS-CPLX proved to be powerful nucleators, but ACP took much longer to induce mineral formation. In SCL, Mg(2+) and Zn(2+) had significantly different inhibitory effects on the onset and amount of mineral formation; HAP and PS-CPLX were less affected than ACP. Mg(2+) and Zn(2+) caused similar reductions in the rate and length of rapid mineral formation, but Zn(2+) was a more potent inhibitor on a molar basis. When incorporated into PS-CPLX, Mg(2+) and Zn(2+) caused significantly different effects than when present in SCL. Even low, subphysiological levels of Mg(2+) altered the inherent structure of PS-CPLX and markedly reduced its ability to induce and propagate mineral formation. Incorporated Zn(2+) caused significantly less effect, low (<20 microM) levels causing almost no inhibition. Levels of Zn(2+) present in MVs do not appear to inhibit their nucleational activity.

  3. Calcium

    MedlinePlus

    ... You'll also find calcium in broccoli and dark green, leafy vegetables (especially collard and turnip greens, ... can enjoy good sources of calcium such as dark green, leafy vegetables, broccoli, chickpeas, and calcium-fortified ...

  4. The Journal of Nutrition, Volume 106, 1976: Decreased absorption of calcium, magnesium, zinc and phosphorus by humans due to increased fiber and phosphorus consumption as wheat bread.

    PubMed

    Reinhold, J G; Faradji, B; Abadi, P; Ismail-Beigi, F

    1991-07-01

    During a 20 day period of high fiber consumption in the form of bread made partly from wheaten wholemeal, two men developed negative balances of calcium, magnesium, zinc and phosphorus due to increased fecal excretion of each element. The fecal losses correlated closely with fecal dry matter and phosphorus. Fecal dry matter, in turn, was directly proportional to fecal fiber excretion. Balances of nitrogen remained positive. Mineral elements were well-utilized by the same subjects during a 20 day period of white bread consumption.

  5. White tea consumption slightly reduces iron absorption but not growth, food efficiency, protein utilization, or calcium, phosphorus, magnesium, and zinc absorption in rats.

    PubMed

    Pérez-Llamas, Francisca; González, Daniel; Cabrera, Lorena; Espinosa, Cristobal; López, Jose A; Larqué, Elvira; Almajano, M Pilar; Zamora, Salvador

    2011-09-01

    We investigated the antinutritional effect of white tea extract (0, 15, and 45 mg of the tea solid extract per kilogram body weight) incorporated in the drinking water of rats for 3 and 30 days. Gender-based differences were found for all these variables, except apparent protein digestibility and the apparent absorption of calcium, phosphorus, and iron. White tea extract consumption did not significantly change body weight gain, food intake, food efficiency, protein efficiency ratio, apparent protein digestibility, nitrogen balance, or the apparent absorption of calcium, phosphorus, magnesium, and zinc. Nevertheless, the apparent absorption of iron was slightly (15-18%) but significantly (P<0.05) lower in rats that consumed white tea at the highest dose compared with the control groups at both 3 and 30 days. Our results suggest that the usual consumption of white tea is safe, although its effect on long-term iron absorption at high doses warrants more detailed investigation.

  6. Macroscopic and microscopic variation in recovered magnesium phosphate materials: implications for phosphorus removal processes and product re-use.

    PubMed

    Massey, Michael S; Ippolito, James A; Davis, Jessica G; Sheffield, Ron E

    2010-02-01

    Phosphorus (P) recovery and re-use will become increasingly important for water quality protection and sustainable nutrient cycling as environmental regulations become stricter and global P reserves decline. The objective of this study was to examine and characterize several magnesium phosphates recovered from actual wastewater under field conditions. Three types of particles were examined including crystalline magnesium ammonium phosphate hexahydrate (struvite) recovered from dairy wastewater, crystalline magnesium ammonium phosphate hydrate (dittmarite) recovered from a food processing facility, and a heterogeneous product also recovered from dairy wastewater. The particles were analyzed using "wet" chemical techniques, powder X-ray diffraction (XRD), and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy (SEM-EDS). The struvite crystals had regular and consistent shape, size, and structure, and SEM-EDS analysis clearly showed the struvite crystals as a surface precipitate on calcium phosphate seed material. In contrast, the dittmarite crystals showed no evidence of seed material, and were not regular in size or shape. The XRD analysis identified no crystalline magnesium phosphates in the heterogeneous product and indicated the presence of sand particles. However, magnesium phosphate precipitates on calcium phosphate seed material were observed in this product under SEM-EDS examination. These substantial variations in the macroscopic and microscopic characteristics of magnesium phosphates recovered under field conditions could affect their potential for beneficial re-use and underscore the need to develop recovery processes that result in a uniform, consistent product.

  7. The influence of calcium and magnesium in drinking water and diet on cardiovascular risk factors in individuals living in hard and soft water areas with differences in cardiovascular mortality.

    PubMed

    Nerbrand, Christina; Agréus, Lars; Lenner, Ragnhild Arvidsson; Nyberg, Per; Svärdsudd, Kurt

    2003-06-18

    The role of water hardness as a risk factor for cardiovascular disease has been widely investigated and evaluated as regards regional differences in cardiovascular disease. This study was performed to evaluate the relation between calcium and magnesium in drinking water and diet and risk factors for cardiovascular disease in individuals living in hard and soft water areas with considerable differences in cardiovascular mortality. A random sample of 207 individuals living in two municipalities characterised by differences in cardiovascular mortality and water hardness was invited for an examination including a questionnaire about health, social and living conditions and diet. Intake of magnesium and calcium was calculated from the diet questionnaire with special consideration to the use of local water. Household water samples were delivered by each individual and were analysed for magnesium and calcium. In the total sample, there were positive correlations between the calcium content in household water and systolic blood pressure (SBP) and negative correlations with s-cholesterol and s-LDL-cholesterol. No correlation was seen with magnesium content in household water to any of the risk factors. Calcium content in diet showed no correlation to cardiovascular risk factors. Magnesium in diet was positively correlated to diastolic blood pressure (DBP). In regression analyses controlled for age and sex 18.5% of the variation in SBP was explained by the variation in BMI, HbA1c and calcium content in water. Some 27.9% of the variation in s-cholesterol could be explained by the variation in s-triglycerides (TG), and calcium content in water. This study of individuals living in soft and hard water areas showed significant correlations between the content of calcium in water and major cardiovascular risk factors. This was not found for magnesium in water or calcium or magnesium in diet. Regression analyses indicated that calcium content in water could be a factor in the

  8. Reference intervals of plasma calcium, phosphorus, and magnesium for African grey parrots (Psittacus erithacus) and Hispaniolan parrots (Amazona ventralis).

    PubMed

    de Carvalho, Fernanda M; Gaunt, Stephen D; Kearney, Michael T; Rich, Gregory A; Tully, Thomas N

    2009-12-01

    Calcium (Ca), phosphorus (P), and magnesium (Mg) are important elements for body homeostasis in several diseases associated with imbalances in the plasma concentration of these ions. This is the first published report of reference intervals for Mg in association with Ca and P levels for psittacine species. One milliliter of blood was collected from 26 Hispaniolan parrots (Amazona ventralis) and 24 African grey parrots (Psittacus erithacus). The plasma concentrations of Ca, P, and Mg were determined for each sample. Statistical analyses were performed including all data (analysis 1) and after exclusion of the subjects with Ca > or = 14.00 mg/dl (3.5 mmol) (analysis 2). The data from analysis 1 have a narrower interval than that observed in analysis 2. Following the normality test (Shapiro-Wilk, alpha = 0.05), the univariate and mean procedures were run. For the reference intervals, the lower and upper values were used, after elimination of the outliers calculated by Blom scores from the ranked variables. The analysis 1 references for the Hispaniolans were Ca = 8.80-10.40 mg/dl (2.20-2.60 mmol/L), P = 1.80-4.40 mg/dl (0.58-1.42 mmol/L), Mg = 1.80-3.10 mg/dl (0.74-1.27 mmol/L), and Ca:P ratio = 2.62-5.39; for the African greys analysis 1 references were Ca = 8.20-20.20 mg/dl (2.05-5.05 mmol/L), P = 2.50-5.90 mg/dl (0.81-1.91 mmol/L), Mg = 2.10-3.40 mg/dl (0.82-1.4 mmol/L), and Ca:P ratio = 1.81-3.77. The analysis 2 references for the Hispaniolans were Ca = 8.80-10.30 mg/dl (2.20-2.58 mmol/L), P = 1.80-3.80 mg/dl (0.58-1.23 mmol/L), Mg = 1.90-3.00 mg/dl (0.82-1.07 mmol/L), Ca:P ratio = 2.62-5.39; for the African greys analysis 2 references were Ca = 1.07 mmol/L), Ca:P ratio = 1.67-3.50. The results of this study are important for evaluating Mg concentrations in relation to the Ca and P parameters in psittacines. This information will be particularly helpful for veterinarians evaluating the hypocalcemic syndrome in African grey parrots and other disease processes

  9. Magnesium and calcium isotopic characteristics of Tengchong volcanics: Recycling of marine carbonates into the SE Tibetan mantle

    NASA Astrophysics Data System (ADS)

    Liu, F.; Zhang, Z.; Liu, Y.; Zhu, H.; Kang, J.; Zhang, C.; Sun, W.; Wang, G. Q.

    2015-12-01

    Post-collisional high-K calc-alkaline volcanic rocks are widely distributed in Tengchong in the southeastern margin of Tibetan Plateau. Previous considerable petrological and Sr-Nd-Pb isotopic researches undoubtedly indicate that the mantle beneath Tengchong is heterogeneous and enriched. However, the genesis of such a kind of mantle is still poor understood and needs more constrains. One of the key points lead to the answer to this question is that, is there any recycled carbonate involved? Therefore, Magnesium and calcium isotopic compositions of mantle-derived volcanics should be investigated because they are good candidates to be potentially used to trace recycling of ancient marine carbonates into the mantle. In this study, we report high-precision Mg and Ca isotopic compositions for calc-alkaline volcanic rocks in Tengchong. These volcanic rocks show significantly lighter δ26Mg values (-0.44 to -0.36‰) than the mantle value (-0.25±0.07‰). Similarly, they display lighter δ44Ca values (0.65-0.80‰) than the mantle value (1.05±0.04‰). Because neither δ26Mg nor δ44Ca are correlated with SiO2 (50.8-61.6 wt.%) contents, and there is no relationships between δ26Mg or δ44Ca and typical trace element abundance ratios (e.g. Sm/Yb, Ba/Y), we conclude that magma differentiation or partial melting would lead to limited Mg and Ca isotopes fractionation. Thus, low δ26Mg and δ44Ca signatures of Tengchong volcanic rocks probably reflect that the δ26Mg and δ44Ca characteristics of the underneath mantle source, and are resulted from adding ancient marine carbonates into the primitive mantle which has low Mg and Ca isotopic compositions. Our model simulation using a two end-member mixing between Mg-Ca isotopic compositions of primitive mantle and ancient marine carbonate indicates that carbonates involved in the mantle source is mainly dolostone with minor limestone. Combined with the geotectonic evolution history in Tengchong, we propose that the enriched

  10. Calcium-aluminum-rich inclusions with fractionation and unidentified nuclear effects (FUN CAIs): II. Heterogeneities of magnesium isotopes and 26Al in the early Solar System inferred from in situ high-precision magnesium-isotope measurements

    NASA Astrophysics Data System (ADS)

    Park, Changkun; Nagashima, Kazuhide; Krot, Alexander N.; Huss, Gary R.; Davis, Andrew M.; Bizzarro, Martin

    2017-03-01

    Calcium-aluminum-rich inclusions with isotopic mass fractionation effects and unidentified nuclear isotopic anomalies (FUN CAIs) have been studied for more than 40 years, but their origins remain enigmatic. Here we report in situ high precision measurements of aluminum-magnesium isotope systematics of FUN CAIs by secondary ion mass spectrometry (SIMS). Individual minerals were analyzed in six FUN CAIs from the oxidized CV3 carbonaceous chondrites Axtell (compact Type A CAI Axtell 2271) and Allende (Type B CAIs C1 and EK1-4-1, and forsterite-bearing Type B CAIs BG82DH8, CG-14, and TE). Most of these CAIs show evidence for excess 26Mg due to the decay of 26Al. The inferred initial 26Al/27Al ratios [(26Al/27Al)0] and the initial magnesium isotopic compositions (δ26Mg0) calculated using an exponential law with an exponent β of 0.5128 are (3.1 ± 1.6) × 10-6 and 0.60 ± 0.10‰ (Axtell 2271), (3.7 ± 1.5) × 10-6 and -0.20 ± 0.05‰ (BG82DH8), (2.2 ± 1.1) × 10-6 and -0.18 ± 0.05‰ (C1), (2.3 ± 2.4) × 10-5 and -2.23 ± 0.37‰ (EK1-4-1), (1.5 ± 1.1) × 10-5 and -0.42 ± 0.08‰ (CG-14), and (5.3 ± 0.9) × 10-5 and -0.05 ± 0.08‰ (TE) with 2σ uncertainties. We infer that FUN CAIs recorded heterogeneities of magnesium isotopes and 26Al in the CAI-forming region(s). Comparison of 26Al-26Mg systematics, stable isotope (oxygen, magnesium, calcium, and titanium) and trace element studies of FUN and non-FUN igneous CAIs indicates that there is a continuum among these CAI types. Based on these observations and evaporation experiments on CAI-like melts, we propose a generic scenario for the origin of igneous (FUN and non-FUN) CAIs: (i) condensation of isotopically normal solids in an 16O-rich gas of approximately solar composition; (ii) formation of CAI precursors by aggregation of these solids together with variable abundances of isotopically anomalous grains-possible carriers of unidentified nuclear (UN) effects; and (iii) melt evaporation of these precursors

  11. Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate.

    PubMed

    Kaabi Falahieh Asl, Sara; Nemeth, Sandor; Tan, Ming Jen

    2016-11-01

    Ceramic type coatings on metallic implants, such as calcium phosphate (Ca-P), are generally stiff and brittle, potentially leading to the early failure of the bone-implant interface. To reduce material brittleness, polyacrylic acid and carboxymethyl cellulose were used in this study to deposit two types of novel Ca-P/polymer composite coatings on AZ31 magnesium alloy using a one-step hydrothermal process. X-ray diffraction and scanning electron microscopy showed that the deposited Ca-P crystal phase and morphology could be controlled by the type and concentration of polymer used. Incorporation of polymer in the Ca-P coatings reduced the coating elastic modulus bringing it close to that of magnesium and that of human bone. Nanoindentation test results revealed significantly decreased cracking tendency with the incorporation of polymer in the Ca-P coating. Apart from mechanical improvements, the protective composite layers had also enhanced the corrosion resistance of the substrate by a factor of 1000 which is sufficient for implant application. Cell proliferation studies indicated that the composite coatings induced better cell attachment compared with the purely inorganic Ca-P coating, confirming that the obtained composite materials could be promising candidates for surface protection of magnesium for implant application with the multiple functions of corrosion protection, interfacial stress reduction, and cell attachment/cell growth promotion. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1643-1657, 2016.

  12. In Situ 13C NMR at Elevated-Pressures and -Temperatures Investigating the Conversion of CO2 to Magnesium and Calcium Carbonate Minerals

    NASA Astrophysics Data System (ADS)

    Surface, J. A.; Conradi, M. S.; Skemer, P. A.; Hayes, S. E.

    2013-12-01

    We have constructed specialized NMR hardware to conduct in situ elevated-pressure, elevated-temperature 13C NMR studies of unmixed heterogeneous mixtures of solids, liquids, gases, and supercritical fluids. Specifically, our aim is to monitor CO2 uptake in both ultramafic rocks and in more porous geological materials to understand the mechanisms of chemisorption as a function of temperature, pressure and pH. In this in situ NMR probe, we are able to simulate processes at geologically relevant fluid pressures and temperatures, monitoring the kinetics of CO2 conversion to carbonates. The in situ NMR experiments consist of heterogeneous mixtures of rock, salty brine solution, and moderate pressure CO2 gas at elevated temperatures. The purpose of studying these reactions is to determine efficacy of carbonate formation in various geological reservoirs. Via 13C NMR, we have spectroscopically characterized and quantified the conversion of CO2 to magnesium carbonate and calcium carbonate minerals. When CO2 reacts with the calcium or magnesium in a mineral or rock sample, the 13C chemical shift, linewidth, lineshape, and relaxation times change dramatically. This change can be monitored in situ and provide instantaneous and continuous characterization that maps the chemistry that is taking place. For example, on the pathway to MgCO3 formation, there are a number of phases of Mg(OH)x(H2O)y(CO3)z that are apparent via NMR spectroscopy. We will demonstrate that NMR can be used for quantitative characterization of multiple metastable mineral phases in pure forms and in mixtures. Results are confirmed via powder XRD and Raman spectroscopy of aquo- hydro- carbonato- magnesium species and calcium carbonate species. We also have monitored the 13C spectroscopy to analyze the phase of CO2 (liquid, supercritical, or gas) and its conversion into other forms, such as bicarbonate and carbonate species, providing a "window" into the in situ pH of the reacting system. Reference: 'In Situ

  13. Effect of different soaking solutions on nutritive utilization of minerals (calcium, phosphorus, and magnesium) from cooked beans (Phaseolus vulgaris L.) in growing rats.

    PubMed

    Nestares, Teresa; Barrionuevo, Mercedes; López-Frías, Magdalena; Vidal, Concepción; Urbano, Gloria

    2003-01-15

    The effects of the commonly used processing techniques of soaking (at different pH values) and cooking on the digestive and nutritive utilization of calcium, phosphorus, and magnesium from common beans (Phaseolus vulgaris L.) were studied. Before the cooking step, the beans were soaked in solutions of acid (2.6 and 5.3) or basic (8.4) pH. Chemical and biological methods were used to determine nutritional parameters in growing rats, and the fiber content of the beans was established. As the pH of the soaking solution increased, so did mineral absorption and the apparent digestibility coefficient, which reached suitable values for growing rats, due to the reduced losses of soluble minerals and the increased food intake. Metabolic utilization also improved with increased pH of the soaking solution, although the values were, in general, low as a result of urinary losses under the experimental conditions. For the experimental period of 10 days, the femur and the muscle seem to be good metabolic indicators for calcium, but not for phosphorus or magnesium. The increased amount of cellulose in the soaked seed did not have a negative effect on the digestive utilization of minerals.

  14. Lead, cadmium, iron, zinc, copper, manganese, calcium and magnesium in SPF male rats exposed to a dilution of automotive exhaust gas throughout their lives.

    PubMed

    Stupfel, M; Valleron, A J; Radford, E

    1983-12-15

    Male pathogen free CFE albino Sprague Dawley rats were exposed 8 h per day, 5 days per week, for three years to a 1/1000 dilution of automotive exhaust gas, containing 58 ppm carbon monoxide, 0.37% carbon dioxide, 23 ppm nitrogen oxides, 2 ppm aldehydes, less than 5 mg/l hydrocarbons and 8.5 micrograms/m3 lead. Lead, cadmium, iron, zinc, calcium and magnesium were measured by atomic absorption in the femurs and tibias of the rats which died during the experiment. A comparison with two control groups revealed that the only significant difference in the elements measured in the bones was a 500% increase in lead concentration. The calculations of the correlations between the percentages of the elements in bones, the ages and the body weights of the rats, as well as cluster analysis, did not show consistent variations of the water, calcium, magnesium concentrations nor of the other studied metals related to this increase in lead concentration. Moreover, longevity was the same in the 3 groups of rats, but the body weight was statistically smaller (4%) in the group exposed to the auto exhaust dilution.

  15. A comparison of the effects of glucose ingestion and NH4Cl acidosis on urinary calcium and magnesium excretion in man

    PubMed Central

    Lennon, Edward J.; Piering, Walter F.

    1970-01-01

    Both glucose ingestion and NH4Cl acidosis have been reported to augment urinary calcium (UCa V) and magnesium (UMg V) excretion. Both also cause acidification of the urine and an increase in renal acid excretion. To examine whether a common mechanism of action was involved, the effects of glucose ingestion and NH4Cl acidosis on UCa V and UMg V were tested in the same subjects. Glucose ingestion caused significant increases in both UCa V and UMg V. During stable NH4Cl acidosis, UCa V increased significantly, while UMg V was unaffected. When a glucose load was given during acidosis, the separate effects of acidosis and glucose on UCa V were additive, whereas UMg V increased less than observed during normal acid-base balance. Although renal acid excretion increased and the urine was acidified after glucose in the normal steady state, when glucose was administered during NH4Cl acidosis urine pH rose and there was no change in renal acid excretion. We concluded that NH4Cl acidosis and glucose ingestion reduce the renal tubular reabsorption of magnesium and (or) calcium, but they act through separate mechanisms. PMID:5432375

  16. What is next for the Dietary Reference Intakes for bone metabolism related nutrients beyond calcium: phosphorus, magnesium, vitamin D, and fluoride?

    PubMed

    Bergman, Christine; Gray-Scott, Darlene; Chen, Jau-Jiin; Meacham, Susan

    2009-02-01

    The science supporting the Dietary Reference Intakes (DRI) for phosphorus, magnesium, vitamin D, and fluoride was examined in this review. Along with the previous article on calcium in this series both of these reviews represent all the DRI for nutrients considered essential for bone metabolism and health, as reported in the Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride (Institute of Medicine, Food and Nutrition Board (FNB), 1997). The Recomended Dietary Allowances (RDA) or adequate intake (AI), and the tolerable upper intake level (UL) were recommended for each of these essential nutrients. For adults and in the case of fluoride, for infants as well, UL were calculated since all of these nutrients have the potential for mild to detrimental side effects. Dietary intake data and controversies regarding the role these nutrients may play in other chronic diseases have also been discussed. Advances and controversies reported since the publication of the DRI for these nutrients were also addressed in this review. A recent Dietary Reference Intake Research Synthesis Workshop report identified an extensive range of suggested future research directions needed to improve our understanding of these bone-related nutrients and their contributions to human health.

  17. Bioavailability of iodine and hardness (magnesium and calcium salt) in drinking water in the etiology of endemic goitre in Sundarban delta of West Bengal (India).

    PubMed

    Chandra, Amar K; Tripathy, Smritiratan; Debnath, Arijit; Ghosh, Dishari

    2007-04-01

    Endemic goitre has been reported from the ecologically diverse Sundarban delta of West Bengal (India). To study the etiological factors for the persistence of endemic goitre, bioavailability of iodine and hardness of water used for drinking in the region were evaluated because these common environmental factors are inversely and directly related with goitre prevalence in several geographical regions. For the present study from 19 Community Development Blocks of Sundarban delta, 19 areas were selected at random. From each area at least 8 drinking water samples were collected and analyzed for iodine and the hardness (calcium and magnesium salt content). Iodine content in the drinking water samples was found in the range from 21 to 119 mg/L and total hardness of drinking water was found to range from 50 to 480 ppm. Presence of magnesium salt was found higher than the calcium salts in most of the samples. These findings suggest that the entire delta region is environmentally iodine sufficient but water is relatively hard and thus possibility of hardness of water for the persistence of endemic goitre may not be ruled out.

  18. Promotion of in vivo degradability, vascularization and osteogenesis of calcium sulfate-based bone cements containing nanoporous lithium doping magnesium silicate.

    PubMed

    Cao, Liehu; Weng, Weizong; Chen, Xiao; Zhang, Jun; Zhou, Qirong; Cui, Jin; Zhao, Yuechao; Shin, Jung-Woog; Su, Jiacan

    2017-01-01

    Nanoporous lithium doping magnesium silicate (nl-MS) was introduced into calcium sulfate hemihydrate to prepare calcium sulfate composite (nl-MSC) bone cements. The introduction of nl-MS improved the in vitro degradability of nl-MSC cements, which could neutralize acidic degradable products of calcium sulfate and prevented the pH from dropping. The cements were implanted into the bone defects of femur bone of rabbits, and the results of histological and immunohistochemical analysis revealed that massive new bone tissue formed in the defects while the cements were degradable, indicating that the osteogenesis and degradability of the nl-MSC cements were much better than the control calcium sulfate dihydrate (CSD) cements. Furthermore, the positive expression of vascular endothelial growth factor and collagen type I for nl-MSC cements was higher than CSD, indicating that addition of nl-MS into the cements enhanced vascularization and osteogenic differentiation. The results suggested that the nl-MSC cements with good biocompatibility and degradability could promote vascularization and osteogenesis, and had great potential to treat bone defects.

  19. Promotion of in vivo degradability, vascularization and osteogenesis of calcium sulfate-based bone cements containing nanoporous lithium doping magnesium silicate

    PubMed Central

    Cao, Liehu; Weng, Weizong; Chen, Xiao; Zhang, Jun; Zhou, Qirong; Cui, Jin; Zhao, Yuechao; Shin, Jung-Woog; Su, Jiacan

    2017-01-01

    Nanoporous lithium doping magnesium silicate (nl-MS) was introduced into calcium sulfate hemihydrate to prepare calcium sulfate composite (nl-MSC) bone cements. The introduction of nl-MS improved the in vitro degradability of nl-MSC cements, which could neutralize acidic degradable products of calcium sulfate and prevented the pH from dropping. The cements were implanted into the bone defects of femur bone of rabbits, and the results of histological and immunohistochemical analysis revealed that massive new bone tissue formed in the defects while the cements were degradable, indicating that the osteogenesis and degradability of the nl-MSC cements were much better than the control calcium sulfate dihydrate (CSD) cements. Furthermore, the positive expression of vascular endothelial growth factor and collagen type I for nl-MSC cements was higher than CSD, indicating that addition of nl-MS into the cements enhanced vascularization and osteogenic differentiation. The results suggested that the nl-MSC cements with good biocompatibility and degradability could promote vascularization and osteogenesis, and had great potential to treat bone defects. PMID:28260883

  20. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate ( struvite) and its isomorphous analogues. IV. FTIR spectra of protiated and partially deuterated nickel ammonium phosphate hexahydrate and nickel potassium phosphate hexahydrate

    NASA Astrophysics Data System (ADS)

    Cahil, A.; Najdoski, M.; Stefov, V.

    2007-05-01

    The Fourier transform infrared spectra recorded from room temperature down to the boiling temperature of liquid nitrogen of two struvite analogues, nickel ammonium phosphate hexahydrate (NiNH 4PO 4·6H 2O) and nickel potassium phosphate hexahydrate (NiKPO 4·6H 2O) and their partially deuterated analogues were analyzed and compared to the previously studied spectra of struvite and its potassium analogue. In the stretching mode region of the water molecules and ammonium ions, a broad asymmetric and deuteration sensitive band appears, which is an indication for strong hydrogen bonds in the structure of NiNP. In the LNT difference spectra of samples with low deuterium content (≈2-3% D), several bands appear between 2520 and 2080 cm -1 due to vibrations of isotopically isolated HDO molecules and NH 3D + ions. The most significant difference between the two studied spectra is between 2350 and 2250 cm -1 where additional bands from ND stretching modes of isotopically isolated NH 3D + ions are expected in the spectrum of NiNP. In the region of ν3(PO 4) modes one strong, slightly asymmetric, temperature-sensitive band appears above 1000 cm -1 in both spectra. The analysis of the RT and LNT spectra of the protiated and partially deuterated compounds, the band at around 575 cm -1 is assigned to the ν4(PO 4) modes and the remaining ones as due to librational and translational modes of the water molecules.

  1. Calcium

    MedlinePlus

    ... in luck if you like sardines and canned salmon with bones. Almond milk. previous continue Working Calcium ... drinks, and cereals. Other Considerations for Building Bones Vitamin D is essential for calcium absorption, so it's ...

  2. Calcium

    MedlinePlus

    ... such as canned sardines and salmon Calcium-enriched foods such as breakfast cereals, fruit juices, soy and rice drinks, and tofu. Check the product labels. The exact amount of calcium you need depends on your age and other factors. Growing children and teenagers need more calcium than ...

  3. Calcium- and ammonium ion-modification of zeolite amendments affects the metal-uptake of Hieracium piloselloides in a dose-dependent way.

    PubMed

    Peter, Anca; Mihaly-Cozmuta, Leonard; Mihaly-Cozmuta, Anca; Nicula, Camelia; Indrea, Emil; Tutu, Hlanganani

    2012-10-26

    The role of natural zeolite and of two types of modified zeolite (with ammonium and with calcium ions) in reducing the accumulation of ions of heavy metals in roots and leaves of Hieracium piloselloides grown on tailing ponds was investigated. The variation of the content of zeolite (5% w/w and 10% w/w) is another parameter that significantly and positively affects the accumulation of the metal ions in Hieracium piloselloides. The results showed that zeolite used as an amendment in the soil in tailing ponds significantly reduces the accumulation of heavy metal ions in Hieracium piloselloides. The highest concentrations of heavy metals were accumulated in plants grown on soil without zeolite, being followed by the plants grown on the substrate with natural zeolite. Moreover, the translocation factors of heavy metal ions uptake in roots and leaves grown on substrates with modified zeolites are lower than those calculated for the organs grown on the substrate amended with natural zeolite. This behaviour has demonstrated the positive effect of those changes of zeolite amendments in the potential phytoremediation practice.

  4. Calcium, Magnesium, and Phosphorus Metabolism, and Parathyroid- Calcitonin Function during Prolonged Exposure to Elevated CO2 Concentrations on Submarines

    DTIC Science & Technology

    1975-12-01

    blood Pco * and bicarbonate. Urinary calcium excretion decreased again during the 5th to 8th week, with a secondary decrease in blood pH and plasma...analyzed in the laboratory. *P =s 0.05. CALCIUM METABOLISM DURING SUBMARINE PATROL S61 three weeks of exposure, followed by a secondary increase in Pco ...G. Nichols, Jr., and R. H. Wasserman, Eds. Some implications in cellular mechanisms for calcium transfer and homeostasis . Academic Press, New York

  5. What We Eat In America, NHANES 2005-2006, usual nutrient intakes from food and water compared to 1997 Dietary Reference Intakes for vitamin D, calcium, phosphorus, and magnesium

    USDA-ARS?s Scientific Manuscript database

    This report presents national estimates of usual nutrient intake distributions from food and water for vitamin D, calcium, phosphorus, and magnesium and compares those estimates to the Dietary Reference Intakes published by the Institute of Medicine in 1997. Estimates are based on data from 8,437 in...

  6. Maxillary sinus floor elevation using a tissue-engineered bone with calcium-magnesium phosphate cement and bone marrow stromal cells in rabbits.

    PubMed

    Zeng, Deliang; Xia, Lunguo; Zhang, Wenjie; Huang, Hui; Wei, Bin; Huang, Qingfeng; Wei, Jie; Liu, Changsheng; Jiang, Xinquan

    2012-04-01

    The objective of this study was to assess the effects of maxillary sinus floor elevation with a tissue-engineered bone constructed with bone marrow stromal cells (bMSCs) and calcium-magnesium phosphate cement (CMPC) material. The calcium (Ca), magnesium (Mg), and phosphorus (P) ions released from calcium phosphate cement (CPC), magnesium phosphate cement (MPC), and CMPC were detected by inductively coupled plasma atomic emission spectroscopy (ICP-AES), and the proliferation and osteogenic differentiation of bMSCs seeded on CPC, MPC, and CMPC or cultured in CPC, MPC, and CMPC extracts were measured by MTT analysis, alkaline phosphatase (ALP) activity assay, alizarin red mineralization assay, and real-time PCR analysis of the osteogenic genes ALP and osteocalcin (OCN). Finally, bMSCs were combined with CPC, MPC, and CMPC and used for maxillary sinus floor elevation in rabbits, while CPC, MPC, or CMPC without cells served as control groups. The new bone formation in each group was detected by histological finding and fluorochrome labeling at weeks 2 and 8 after surgical operation. It was observed that the Ca ion concentrations of the CMPC and CPC scaffolds was significantly higher than that of the MPC scaffold, while the Mg ions concentration of CMPC and MPC was significantly higher than that of CPC. The bMSCs seeded on CMPC and MPC or cultured in their extracts proliferated more quickly than the cells seeded on CPC or cultured in its extract, respectively. The osteogenic differentiation of bMSCs seeded on CMPC and CPC or cultured in the corresponding extracts was significantly enhanced compared to that of bMSCs seeded on MPC or cultured in its extract; however, there was no significant difference between CMPC and CPC. As for maxillary sinus floor elevation in vivo, CMPC could promote more new bone formation and mineralization compared to CPC and MPC, while the addition of bMSCs could further enhance its new bone formation ability significantly. Our data suggest that

  7. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G

    2013-09-01

    Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Reported Dietary Intake, Disparity between the Reported Consumption and the Level Needed for Adequacy and Food Sources of Calcium, Phosphorus, Magnesium and Vitamin D in the Spanish Population: Findings from the ANIBES Study †

    PubMed Central

    Olza, Josune; Aranceta-Bartrina, Javier; González-Gross, Marcela; Ortega, Rosa M.; Serra-Majem, Lluis; Varela-Moreiras, Gregorio; Gil, Ángel

    2017-01-01

    Calcium, phosphorus, magnesium and vitamin D have important biological roles in the body, especially in bone metabolism. We aimed to study the reported intake, the disparity between the reported consumption and the level needed for adequacy and food sources of these four nutrients in the Spanish population. We assessed the reported intake for both, general population and plausible reporters. Results were extracted from the ANIBES survey, n = 2009. Three-day dietary reported intake data were obtained and misreporting was assessed according to the European Food Safety Authority (EFSA). Mean ± SEM (range) total reported consumption of calcium, phosphorus, magnesium, and vitamin D for the whole population were 698 ± 7 mg/day (71–2551 mg/day), 1176 ± 8 mg/day, (331–4429 mg/day), 222 ± 2 mg/day (73–782 mg/day), and 4.4 ± 0.1 µg/day (0.0–74.2 µg/day), respectively. In the whole group, 76% and 66%; 79% and 72%; and 94% and 93% of the population had reported intakes below 80% of the national and European recommended daily intakes for calcium, magnesium and vitamin D, respectively; these percentages were over 40% when the plausible reporters were analysed separately. The main food sources were milk and dairy products for calcium and phosphorus, cereals and grains for magnesium and fish for vitamin D. In conclusion, there is an important percentage of the Spanish ANIBES population not meeting the recommended intakes for calcium, magnesium and vitamin D. PMID:28230782

  9. Reported Dietary Intake, Disparity between the Reported Consumption and the Level Needed for Adequacy and Food Sources of Calcium, Phosphorus, Magnesium and Vitamin D in the Spanish Population: Findings from the ANIBES Study.

    PubMed

    Olza, Josune; Aranceta-Bartrina, Javier; González-Gross, Marcela; Ortega, Rosa M; Serra-Majem, Lluis; Varela-Moreiras, Gregorio; Gil, Ángel

    2017-02-21

    Calcium, phosphorus, magnesium and vitamin D have important biological roles in the body, especially in bone metabolism. We aimed to study the reported intake, the disparity between the reported consumption and the level needed for adequacy and food sources of these four nutrients in the Spanish population. We assessed the reported intake for both, general population and plausible reporters. Results were extracted from the ANIBES survey, n = 2009. Three-day dietary reported intake data were obtained and misreporting was assessed according to the European Food Safety Authority (EFSA). Mean ± SEM (range) total reported consumption of calcium, phosphorus, magnesium, and vitamin D for the whole population were 698 ± 7 mg/day (71-2551 mg/day), 1176 ± 8 mg/day, (331-4429 mg/day), 222 ± 2 mg/day (73-782 mg/day), and 4.4 ± 0.1 µg/day (0.0-74.2 µg/day), respectively. In the whole group, 76% and 66%; 79% and 72%; and 94% and 93% of the population had reported intakes below 80% of the national and European recommended daily intakes for calcium, magnesium and vitamin D, respectively; these percentages were over 40% when the plausible reporters were analysed separately. The main food sources were milk and dairy products for calcium and phosphorus, cereals and grains for magnesium and fish for vitamin D. In conclusion, there is an important percentage of the Spanish ANIBES population not meeting the recommended intakes for calcium, magnesium and vitamin D.

  10. Effects of calcium magnesium acetate on the combustion of coal-water slurries. Fourteenth quarterly project status report, 1 December 1992--28 February 1993

    SciTech Connect

    Levendis, Y.A.

    1993-04-01

    The general objective of the project is to investigate the combustion behavior of single and multiple Coal-Water Fuel (CWF) particles burning at high temperature environments. Both uncatalyzed as well as catalyzed CWF drops with Calcium Magnesium Acetate (CMA) catalyst will be studied. Emphasis will also be given in the effects of CMA on the sulfur capture during combustion. Over this period work concentrated in producing CWF agglomerates from pulverized-grain coal ({approx} 40{mu}m) and studying their pyrolysis and combustion behavior. Ash residues were also captured and examined. These results will serve as a basis for comparison with those obtained earlier for CWF with a micronized-grain coal ({approx} 3.5{mu}m).

  11. The content of fluoride, calcium and magnesium in the hair of young men of the Bantu language group from Tanzania versus social conditioning.

    PubMed

    Rębacz-Maron, Ewa; Baranowska-Bosiacka, Irena; Gutowska, Izabela; Krzywania, Natalia; Chlubek, Dariusz

    2013-12-01

    The present study aimed at analysing the content of fluorine (F), calcium (Ca) and magnesium (Mg) in the hair of young male students (n =52) of a secondary school in Mafinga in Tanzania (Africa) who participated in anthropological examinations. Ca and Mg concentrations were determined using atomic absorption spectrophotometer while F levels using a potentiometric method. F in the hair of boys from older group (≥16 years old; n =24) was significantly higher than in the younger group (<16 years old; n =28) versus Ca and Mg levels. High carbohydrate diet was predominant- mainly based on corn or bean and meat served once a week, with few fruit and raw vegetables. Collective catering in the dormitory reflected habits and culinary preferences at home. The lack of balanced diet, with majority of the nutritional energy supplied by easily accessible and cheap carbohydrates, was reflected in dietary deficiencies, characterised, among others, by visible skin conditions and tooth decay.

  12. Studies of the interaction of potassium(I), calcium(II), magnesium(II), and copper(II) with cyclosporin A.

    PubMed

    Cusack, Rodney M; Grøndahl, Lisbeth; Fairlie, David P; Hanson, Graeme R; Gahan, Lawrence R

    2003-10-01

    Metal ion binding properties of the immunosuppressant drug cyclosporin A have been investigated. Complexation studies in acetonitrile solution using 1H NMR and CD spectroscopy yielded 1:1 metal-peptide binding constants (log(10)K) for potassium(I), <1, magnesium(II), 4.8+/-0.2, and calcium(II), 5.0+/-1.0. The interaction of copper(II) with cyclosporin A in methanol was investigated with UV/visible and electron paramagnetic resonance (EPR) spectroscopy. No complexation of copper(II) was observed in neutral solution. In the presence of base, monomeric copper(II) complexes were detected. These results support the possibility that cyclosporin A has ionophoric properties for biologically important essential metal ions.

  13. Absorption of calcium, magnesium, phosphorus, iron and zinc in growing male rats fed diets containing either phytate-free soybean protein or soybean protein isolate or casein.

    PubMed

    Kamao, M; Tsugawa, N; Nakagawa, K; Kawamoto, Y; Fukui, K; Takamatsu, K; Kuwata, G; Imai, M; Okano, T

    2000-02-01

    The effect of dietary phytate-free soybean protein (PFS) on intestinal mineral absorption and retention was examined in growing male rats using a three-day mineral balance technique. The rats were fed diets containing PFS, soybean protein isolate (SPI) or casein at a 20% level for 5 wk. Total calcium (Ca), magnesium (Mg), phosphorus (P), iron (Fe) and zinc (Zn) contents in diets were adjusted to 0.35, 0.05, 0.7, 0.0035 and 0.003%, respectively, by supplementation of the diet with their salts. Mineral absorption and retention ratios in rats fed the PFS diet were significantly higher than those in rats fed either the SPI or casein diet. These results suggest that PFS may be a promising dietary protein source for improving the mineral bioavailability in humans.

  14. Magnesium in obstetrics.

    PubMed

    James, M F M

    2010-06-01

    Magnesium is a critical physiological ion, and magnesium deficiency might contribute to the development of pre-eclampsia, to impaired neonatal development and to metabolic problems extending into adult life. Pharmacologically, magnesium is a calcium antagonist with substantial vasodilator properties but without myocardial depression. Cardiac output usually increases following magnesium administration, compensating for the vasodilatation and minimising hypotension. Neurologically, the inhibition of calcium channels and antagonism of the N-methyl-d-aspartic acid (NMDA) receptor raises the possibility of neuronal protection, and magnesium administration to women with premature labour may decrease the incidence of cerebral palsy. It is the first-line anticonvulsant for the management of pre-eclampsia and eclampsia, and it should be administered to all patients with severe pre-eclampsia or eclampsia. Magnesium is a moderate tocolytic but the evidence for its effectiveness remains disputed. The side effects of magnesium therapy are generally mild but the major hazard of magnesium therapy is neuromuscular weakness. 2009 Elsevier Ltd. All rights reserved.

  15. Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite.

    PubMed

    Weatherley, L R; Miladinovic, N D

    2004-12-01

    In this study the uptake performances of the naturally occurring zeolite, clinoptilolite, and of New Zealand mordenite are compared. The uptake of fully ionised ammonium ion from aqueous solutions in the concentration range 0-200 mg/l on to these two materials was compared. The influence of other cations present in water upon the ammonia uptake was also determined. The cations studied were potassium, calcium and magnesium. In all cases the anionic counterion present was chloride. The results showed that the mordenite exhibited higher overall uptake concentrations at equilibrium compared with clinoptilolite at solution concentrations greater than 80 mg/l. Beyond this value, the difference in solid-phase equilibrium concentrations on the mordenite became greater at higher solution-phase ammonium ion concentrations. The effect of the other cations upon uptake of ammonium ion was relatively small. In all cases, the ammonium ion showed the highest uptake on to both the mordenite and the clinoptilolite. In the case of clinoptilolite this was rather an unexpected result since the majority of other work shows clinoptilolite exhibiting a higher affinity for potassium ion compared with ammonium ion. This may be explained by the fact that the clinoptilolite came from volcanic deposits in New Zealand. This is the first such study on this material. At solution-phase equilibrium concentrations of greater than 80 mg/l, the mordenite showed smaller reductions in ammonium ion uptake in the presence of the other cations when compared with clinoptilolite.

  16. Effects of partial and total colectomy on mineral and acid-base homoeostasis in the rat: magnesium deficiency, hyperphosphaturia and osteopathy, in the presence of high serum 1,25-dihydroxyvitamin D but normal parathyroid hormone.

    PubMed

    Croner, R; Schwille, P O; Erben, R G; Gepp, H; Stahr, K; Rümenapf, G; Parth, R; Scheuerlein, H

    2000-06-01

    The effects of colectomy on acid-base status, extra-osseous and bone minerals, calciotropic hormones and bone morphology have not yet been studied. To rectify this, groups of normally fed male rats were subjected to distal (n=11), proximal (n=12) or total (n=12) colectomy. Sham-operated rats (n=12) served as controls. At 112 (+/-2) days after colectomy the following changes were noted: (1) weight gain was delayed; (2) faecal excretion of calcium and phosphorus was normal, whereas that of magnesium was increased; (3) intestinal calcium secretion and absorption of calcium and phosphorus were normal, but magnesium absorption was decreased; (4) urinary excretion of magnesium was also decreased, that of phosphorus was increased, and that of pyridinium and deoxypyridinium tended to be high; (5) the serum levels of ionized magnesium, total calcium, 25-hydroxyvitamin D and parathyroid hormone were normal, while that of 1,25-dihydroxyvitamin D was markedly elevated; and (6) bone magnesium and phosphorus content were decreased, but bone calcium was normal, and thus the bone calcium/phosphorus ratio was high. These abnormalities were associated with moderate metabolic acidosis, as reflected by high urinary ammonium, low citrate and low total CO(2), but normal blood gases. Significant structural abnormalities of bone were not detectable, but trabecular bone tended to show rarefication. Distal colectomy had the least effect, whereas proximal and total colectomies had a distinct effect, on these parameters. It is concluded that colectomy in the rat causes: (1) a syndrome of magnesium deficiency of intestinal origin, compensated metabolic acidosis, urinary phosphorus loss, and high circulating 1,25-dihydroxyvitamin D levels, with the degree depending on the extent of surgical resection; and (2) brittle bones, a feature characteristic of low bone magnesium and more generalized magnesium deficiency. The mechanisms leading to this syndrome are unknown, but altered tissue levels of

  17. Calcium, magnesium, and phosphorus metabolism, and parathyroid-calcitonin function during prolonged exposure to elevated CO2 concentrations on submarines.

    PubMed

    Messier, A A; Heyder, E; Braithwaite, W R; McCluggage, C; Peck, A; Schaefer, K E

    1979-01-01

    Studies of calcium and phosphorus metabolism and acid-base balance were carried out on three Fleet Ballistic Missile (FBM) submarines during prolonged exposure to elevated concentrations of CO2. The average CO2 concentration in the submarine atmosphere during patrols ranged from 0.85% to 1% CO2. In the three studies, in which 9--15 subjects participated, the urinary excretion of calcium and phosphate fell during the first three weeks to a level commensurate with a decrease in plasma calcium and increase in phosphorus. In the fourth week of one patrol, a marked increase was found in urinary calcium excretion, associated with a rise in blood PCO2 and bicarbonate. Urinary calcium excretion decreased again during the 5th to 8th week, with a secondary decrease in blood pH and plasma calcium. During the third patrol, the time course of acid-base changes corresponded well with that found during the second patrol. There was a trend toward an increase in plasma calcium between the fourth and fifth week commensurate with the transient rise in pH and bicarbonate. Plasma parathyroid and calcitonin hormone activities were measured in two patrols and no significant changes were found. Hydroxyproline excretion decreased in the three-week study and remained unchanged in the second patrol, which lasted 57 days. It is suggested that during prolonged exposure to low levels of CO2 (up to 1% CO2), calcium metabolism is controlled by the uptake and release of CO2 in the bones. The resulting phases in bone buffering, rather than renal regulation, determine acid-base balance.

  18. Effects of magnesium-based hydrogen storage materials on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant.

    PubMed

    Liu, Leili; Li, Jie; Zhang, Lingyao; Tian, Siyu

    2017-08-24

    MgH2, Mg2NiH4, and Mg2CuH3 were prepared, and their structure and hydrogen storage properties were determined through X-ray photoelectron spectroscopy and thermal analyzer. The effects of MgH2, Mg2NiH4, and Mg2CuH3 on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant were subsequently studied. Results indicated that MgH2, Mg2NiH4, and Mg2CuH3 can decrease the thermal decomposition peak temperature and increase the total released heat of decomposition. These compounds can improve the effect of thermal decomposition of the propellant. The burning rates of the propellant increased using Mg-based hydrogen storage materials as promoter. The burning rates of the propellant also increased using MgH2 instead of Al in the propellant, but its explosive heat was not enlarged. Nonetheless, the combustion heat of MgH2 was higher than that of Al. A possible mechanism was thus proposed. Copyright © 2017. Published by Elsevier B.V.

  19. Physico-chemical and sensory properties of reduced-fat mortadella prepared with blends of calcium, magnesium and potassium chloride as partial substitutes for sodium chloride.

    PubMed

    Horita, C N; Morgano, M A; Celeghini, R M S; Pollonio, M A R

    2011-12-01

    Blends of calcium, magnesium and potassium chloride were used to partially replace sodium chloride (50-75%) in reduced-fat mortadella formulations. The presence of calcium chloride reduced the emulsion stability, cooking yield, elasticity and cohesiveness and increased hardness; however, it yielded the best sensory acceptance when 50% NaCl was replaced by 25% CaCl(2) and 25% KCl. There was no effect of the salt substitutes on mortadella color, appearance and aroma. All salt combinations studied showed stable lipid oxidation during its shelf life. The use of a blend with 1% NaCl, 0.5% KCl and 0.5% MgCl(2) resulted in the best emulsion stability, but the worst scores for flavor. This study suggests that it is possible to reduce the sodium chloride concentration by 50% in reduced-fat mortadella using the studied salt combinations with necessary adjustments to optimize the sensory properties (MgCl(2) 25%; KCl 25%) or emulsion stability (CaCl(2) 25%; KCl 25%).

  20. Reversible Coordination of Boron-, Aluminum-, Zinc-, Magnesium-, and Calcium-Hydrogen Bonds to Bent {CuL2} Fragments: Heavy σ Complexes of the Lightest Coinage Metal.

    PubMed

    Hicken, Alexandra; White, Andrew J P; Crimmin, Mark R

    2017-08-07

    A series of copper(I) complexes bearing electron-deficient β-diketiminate ligands have been prepared. The study includes [{{ArNC(CR3)}2CH}Cu(η(2)-toluene)n] (Ar = Mes, R = F, n = 0.5, [12·tol]; Ar = C6F5, R = Me, n = 1, [2·tol]; Ar = 2,6-Cl2C6H3, R = H, n = 0.5, [32·tol]). Reactions of [1-3n·tol] with boranes, alanes, a zinc hydride, a magnesium hydride, and a calcium hydride generate the corresponding σ complexes ([1-3·B], [3·B'], [3·Al], [3·Al'], [1-3·Zn], [1·Mg], and [1·Ca]). These species all form reversibly, being in equilibrium with the arene solvates in solution. With the exception of the calcium complex, the complexes have all been characterized by single-crystal X-ray diffraction studies. In solution, the σ-hydride of the aluminum, zinc, magnesium, and calcium derivatives resonates between -0.12 and -1.77 ppm (C6D6 or toluene-d8, 193-298 K). For the σ-borane complexes, the hydrides are observed as a single resonance between 2 and 3.5 ppm (C6D6, 298 K) and bridging and terminal hydrides rapidly exchange on the NMR time scale even at 193 K. Quantification of the solution dynamics by van't Hoff analysis yields expectedly small values of ΔH° and negative values of ΔS° consistent with weak binding and a reversible process that does not involve aggregation of the copper species. The donor-acceptor complexes can be rationalized in terms of the Dewar-Chatt-Duncanson model. Density functional theory calculations show that the donation of σ-M-H (or E-H) electrons into the 4s-based orbital (LUMO or LUMO+1) of the copper fragment is accompanied by weak back-donation from a dxz-based orbital (HOMO or HOMO-1) into the σ*-M-H (or E-H) orbital.

  1. Self-dissolution assisted coating on magnesium metal for biodegradable bone fixation devices

    NASA Astrophysics Data System (ADS)

    Khakbaz, Hadis; Walter, Rhys; Gordon, Timothy; Bobby Kannan, M.

    2014-12-01

    An attempt was made to develop a self-dissolution assisted coating on a pure magnesium metal for potential bone fixation implants. Magnesium phosphate cement (MPC) was coated successfully on the magnesium metal in ammonium dihydrogen phosphate solution. The in vitro degradation behaviour of the MPC coated metal was evaluated using electrochemical techniques. The MPC coating increased the polarisation resistance (RP) of the metal by ˜150% after 2 h immersion in simulated body fluid (SBF) and reduced the corrosion current density (icorr) by ˜80%. The RP of the MPC coated metal remained relatively high even after 8 h immersion period. However, post-degradation analysis of the MPC coated metal revealed localized attack. Hence, the study suggests that MPC coating alone may not be beneficial, but this novel coating could provide additional protection if used as a precursor for other potential coatings such as biodegradable polymers or calcium phosphates.

  2. Supplement use contributes to meeting recommended dietary intakes for calcium, magnesium, and vitamin C in four ethnicities of middle-aged and older Americans: the Multi-Ethnic Study of Atherosclerosis.

    PubMed

    Burnett-Hartman, Andrea N; Fitzpatrick, Annette L; Gao, Kun; Jackson, Sharon A; Schreiner, Pamela J

    2009-03-01

    Low intake of nutrients is associated with poor health outcomes. We examined the contribution of dietary supplementation to meeting recommended dietary intakes of calcium, magnesium, potassium, and vitamin C in participants of the Multi-Ethnic Study of Atherosclerosis, a cohort of white, African-American, Hispanic, and Chinese-American participants ages 45 to 84 years. We also assessed the prevalence of intakes above Tolerable Upper Intake Levels (ULs). At the baseline exam in 2000-2001, 2,938 men and 3,299 women completed food frequency questionnaires and provided information about dietary supplementation. We used relative risk regression to estimate the probability of meeting Recommended Dietary Allowances (RDAs) or Adequate Intakes (AIs) in supplement users vs nonusers and Fisher's exact tests to compare the proportion of those exceeding ULs between the two groups. RDAs, AIs, and ULs were defined by the National Academy of Sciences Food and Nutrition Board's Dietary Reference Intakes (DRIs). After adjustment for age and education, the relative risk of meeting RDAs or AIs in supplement-users vs nonusers ranged from 1.9 (1.6, 2.3) in white men to 5.7 (4.1, 8.0) in African-American women for calcium, from 2.5 (1.9, 3.3) in Hispanic men to 5.2 (2.4, 11.2) in Chinese men for magnesium, and from 1.4 (1.3, 1.5) in African-American women to 2.0 (1.7, 2.2) in Chinese men for vitamin C. The relative risks for meeting RDAs for calcium differed significantly by ethnicity (P<0.001) and sex (P<0.001), and by ethnicity for magnesium (P=0.01). The relative risk for each sex/ethnicity strata was close to 1 and did not reach statistical significance at alpha=.05 for potassium. For calcium, 15% of high-dose supplement users exceeded the UL compared with only 2.1% of nonusers. For vitamin C, the percentages were 6.6% and 0%, and for magnesium, 35.3% and 0% (P<0.001 for all). Although supplement use is associated with meeting DRI guidelines for calcium, vitamin C and magnesium, many

  3. [Influence of different surface machining treatments of resorbable implants made from different magnesium-calcium alloys on their degradation--a pilot study in rabbit models].

    PubMed

    von der Höh, N; Krause, A; Hackenbroich, C; Bormann, D; Lucas, A; Meyer-Lindenberg, A

    2006-12-01

    To examine the influence of different surface machining treatments of resorbable implants 3x5 mm cylinders of magnesium-calcium-alloys with plane, rough or sand blasted surface and different concentrations of calcium (0.4 %, 0.8 %, 1.2 % und 2.0 %) were implanted into the distal femur condylus of 18 New Zealand White Rabbits. They were placed into the spongy-cortical passage. During six weeks the animals were examined daily and x-rayed weekly. After euthanasia the bone was explanted and scanned in a microcomputed tomograph. The implants were well tolerated by the rabbits, neither lameness nor signs of pain occured. Wound healing was mostly without complications. Eight of 36 implants (22 %) showed dehiscence of suture within first ten days, whereby implants made of 1,2 % MgCa were mainly affected (six of 12 cases, 50 %). At the place of insertion all implants induced obvious callus genesis which could be seen in MgCa 1,2-cylinders with plane surface and MgCa 0,8-cylinders with rough and sand blasted surface the most. Influence of different calcium concentrations on degradation behaviour could not be discovered. They showed different stages of resorption. Concerning the different surface machining treatments sand blasted implants showed the highest degree of degradation which could be seen by the totally loss of structure in micro-computed examinations. These implants also showed in six of 36 cases a clinical occurrence of gas production. Rough implants showed an irregular degradation with high degree of resorption of some implants and signs of degradation only in the border area of others. Cylindricity maintained in plane implants. They showed loss of structure only in border areas.

  4. The influence of dietary palmitic acid triacylglyceride position on the fatty acid, calcium and magnesium contents of at term newborn faeces.

    PubMed

    López-López, A; Castellote-Bargalló, A I; Campoy-Folgoso, C; Rivero-Urgël, M; Tormo-Carnicé, R; Infante-Pina, D; López-Sabater, M C

    2001-11-01

    The distribution of long-chain saturated fatty acids in triglycerides is different in infant formulas to that in human milk. In human milk, palmitic acid is predominantly esterified in the sn-2 position (beta-position) of the triglycerides, whereas in infant formulas, it is esterified mainly in the sn-1,3 positions (alpha,alpha'-positions). The specific distribution of the fatty acids in the triglyceride plays a key role in lipid digestion and absorption. We studied fatty-acid, calcium and magnesium composition in the faeces of three groups of at term newborn infants fed different diets: Group A (n=12) was fed from birth to 2 months with human milk (66% palmitic acid in beta-position), Group B (n=12) was fed with formula alpha (19% palmitic acid esterified in beta-position) for 2 months, and Group C (n=12) was fed with formula alpha during the first month and with formula beta (44.5% palmitic acid in beta-position) during the second month. Samples were taken at the end of the first month (t0) and at the end of the second month (t1). Groups A and C presented significantly lower contents of palmitic acid in faeces at t1 than at t0, whereas in Group B, amounts remained similar. Faecal calcium in Groups A and C decreased in the second month (t1), although the fall was no statistically significant. In Group B, calcium amounts showed no change. We found that infant formula beta when compared with infant formula alpha reduced significantly the contents of total fatty acids and palmitic acid in faeces. We conclude that palmitic acid in beta-position is, therefore, beneficial for term infants.

  5. Effect of magnesium/calcium ratio in solutions subjected to electrodialysis: characterization of cation-exchange membrane fouling.

    PubMed

    Casademont, Christophe; Pourcelly, Gérald; Bazinet, Laurent

    2007-11-15

    Electrodialysis is based on the migration of charged species through perm-selective membranes under an electric field. Fouling, which is the accumulation of undesired solid materials at the interfaces of these membranes, is one of the major problems of this process. The aim of the present work was to investigate the nature and the morphology of fouling observed at different Mg/Ca ratios (R=0, 1/20, 1/10, 1/5, 2/5) on cation-exchange membranes (CEM) during conventional electrodialysis treatments. It appeared that for R=0, the fouling observed on the surface in contact with the basified concentrate was formed of only Ca(OH)2. As soon as magnesium was introduced into the solution treated, CaCO3 was observed. Furthermore, the X-ray diffraction results also identified the CaCO3 observed as calcite. To our knowledge, this is the first time that the presence of magnesium has been demonstrated to induce a CaCO3 fouling on CEM during electrodialysis.

  6. Magnesium modification up-regulates the bioactivity of bone morphogenetic protein-2 upon calcium phosphate cement via enhanced BMP receptor recognition and Smad signaling pathway.

    PubMed

    Ding, Sai; Zhang, Jing; Tian, Yu; Huang, Baolin; Yuan, Yuan; Liu, Changsheng

    2016-09-01

    Efficient presentation of growth factors is one of the great challenges in tissue engineering. In living systems, bioactive factors exist in soluble as well as in matrix-bound forms, both of which play an integral role in regulating cell behaviors. Herein, effect of magnesium on osteogenic bioactivity of recombinant human bone morphogenetic protein-2 (rhBMP-2) was investigated systematically with a series of Mg modified calcium phosphate cements (xMCPCs, x means the content of magnesium phosphate cement wt%) as matrix model. The results indicated that the MCPC, especially 5MCPC, could promote the rhBMP-2-induced in vitro osteogenic differentiation via Smad signaling of C2C12 cells. Further studies demonstrated that all MCPC substrates exhibited similar rhBMP-2 release rate and preserved comparable conformation and biological activity of the released rhBMP-2. Also, the ionic extracts of MCPC made little difference to the bioactivity of rhBMP-2, either in soluble or in matrix-bound forms. However, with the quartz crystal microbalance (QCM), we observed a noticeable enhancement of rhBMP-2 mass-uptake on 5MCPC as well as a better recognition of the bound rhBMP-2 to BMPR IA and BMPR II. In vivo results demonstrated a better bone regeneration capacity of 5MCPC/rhBMP-2. From the above, our results demonstrated that it was the Mg anchored on the underlying substrates that tailored the way of rhBMP-2 bound on MCPC, and thus facilitated the recognition of BMPRs to stimulate osteogenic differentiation. The study will guide the development of Mg-doped bioactive bone implants for tissue regeneration.

  7. Novel injectable, self-gelling hydrogel-microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles.

    PubMed

    Douglas, Timothy E L; Łapa, Agata; Reczyńska, Katarzyna; Krok-Borkowicz, Małgorzata; Pietryga, Krzysztof; Samal, Sangram Keshari; Declercq, Heidi A; Schaubroeck, David; Boone, Marijn; Van der Voort, Pascal; De Schamphelaere, Karel; Stevens, Christian V; Bliznuk, Vitaliy; Balcaen, Lieve; Parakhonskiy, Bogdan V; Vanhaecke, Frank; Cnudde, Veerle; Pamuła, Elżbieta; Skirtach, Andre G

    2016-11-21

    The suitability of hydrogel biomaterials for bone regeneration can be improved by incorporation of an inorganic phase in particle form, thus maintaining hydrogel injectability. In this study, carbonate microparticles containing different amounts of calcium (Ca) and magnesium (Mg) were added to solutions of the anionic polysaccharide gellan gum (GG) to crosslink GG by release of Ca(2+) and Mg(2+) from microparticles and thereby induce formation of hydrogel-microparticle composites. It was hypothesized that increasing Mg content of microparticles would promote GG hydrogel formation. The effect of Mg incorporation on cytocompatibility and cell growth was also studied. Microparticles were formed by mixing Ca(2+) and Mg(2+) and [Formula: see text] ions in varying concentrations. Microparticles were characterized physiochemically and subsequently mixed with GG solution to form hydrogel-microparticle composites. The elemental Ca:Mg ratio in the mineral formed was similar to the Ca:Mg ratio of the ions added. In the absence of Mg, vaterite was formed. At low Mg content, magnesian calcite was formed. Increasing the Mg content further caused formation of amorphous mineral. Microparticles of vaterite and magnesium calcite did not induce GG hydrogel formation, but addition of Mg-richer amorphous microparticles induced gelation within 20 min. Microparticles were dispersed homogeneously in hydrogels. MG-63 osteoblast-like cells were cultured in eluate from hydrogel-microparticle composites and on the composites themselves. All composites were cytocompatible. Cell growth was highest on composites containing particles with an equimolar Ca:Mg ratio. In summary, carbonate microparticles containing a sufficient amount of Mg induced GG hydrogel formation, resulting in injectable, cytocompatible hydrogel-microparticle composites.

  8. A CALPHAD study on the thermodynamic stability of calcium-, zinc-, and yttrium-doped magnesium in aqueous environments

    SciTech Connect

    Wu, Kaisheng; Dogan, Omar N.; Velikokhatnyl, Oleg I.; Kumta, Prashant N.

    2011-12-15

    Magnesium has attracted the attention of the biomaterials community as a potential biodegradable metallic candidate for use in stents and orthopedic applications. Alloying of Mg with metals such as Ca, Y and Zn, etc., to form alloy precursors is important to optimize its corrosion rate in electrolytic and aqueous environments to understand the alloy response in body fluid environments. In the current study, the chemical reactions of Mg–Me alloys (Me = Ca, Y, and Zn) with pure water have been investigated using the CALPHAD technique. A qualitative agreement between CALPHAD and first-principles results has been obtained. The CALPHAD method has also been employed to study the reactions of Mg alloys in the human blood fluid environment. The effects of alloying elements and compositions on the reaction enthalpies, reaction products, amount of gas release and gas compositions as well as the pH of the fluids have been systematically discussed and reported.

  9. A CALPHAD Study on the Thermodynamic Stability of Calcium-, Zinc-, and Yttrium-Doped Magnesium in Aqueous Environments

    SciTech Connect

    Wu, Kaisheng

    2011-12-15

    Magnesium has attracted the attention of the biomaterials community as a potential biodegradable metallic candidate for use in stents and orthopedic applications. Alloying of Mg with metals such as Ca, Y and Zn, etc., to form alloy precursors is important to optimize its corrosion rate in electrolytic and aqueous environments to understand the alloy response in body fluid environments. In the current study, the chemical reactions of Mg–Me alloys (Me = Ca, Y, and Zn) with pure water have been investigated using the CALPHAD technique. A qualitative agreement between CALPHAD and first-principles results has been obtained. The CALPHAD method has also been employed to study the reactions of Mg alloys in the human blood fluid environment. The effects of alloying elements and compositions on the reaction enthalpies, reaction products, amount of gas release and gas compositions as well as the pH of the fluids have been systematically discussed and reported.

  10. Calcium.

    PubMed

    Williams, Robert J P

    2002-01-01

    This chapter describes the chemical and biological value of the calcium ion. In calcium chemistry, our main interest is in equilibria within static, nonflowing systems. Hence, we examined the way calcium formed precipitates and complex ions in solution. We observed thereafter its uses by humankind in a vast number of materials such as minerals, e.g., marble, concrete, mortars, which parallel the biological use in shells and bones. In complex formation, we noted that many combinations were of anion interaction with calcium for example in the uses of detergents and medicines. The rates of exchange of calcium from bound states were noted but they had little application. Calcium ions do not act as catalysts of organic reactions. In biological systems, interest is in the above chemistry, but extends to the fact that Ca2+ ions can carry information by flowing in one solution or from one solution to another through membranes. Hence, we became interested in the details of rates of calcium exchange. The fast exchange of this divalent ion from most organic binding sites has allowed it to develop as the dominant second messenger. Now the flow can be examined in vitro as calcium binds particular isolated proteins, which it activates as seen in physical mechanical changes or chemical changes and this piece-by-piece study of cells is common. Here, however, we have chosen to stress the whole circuit of Ca2+ action indicating that the cell is organized both at a basal and an activated state kinetic level by the steady state flow of the ion (see Fig. 11). Different time constants of exchange utilizing very similar binding constants lead to: 1) fast responses as in the muscle of an animal; or 2) slower change as in differentiation of an egg or seed. Many other changes of state may relate to Ca2+ steady-state levels of flow in the circuitry and here we point to two: 1) dormancy in reptiles and animals; and 2) sporulation in both bacteria and lower plants. In the other chapters of

  11. Involvement of oxygen free radicals in the respiratory uncoupling induced by free calcium and ADP-magnesium in isolated cardiac mitochondria: comparing reoxygenation in cultured cardiomyocytes.

    PubMed

    Meynier, Alexandra; Razik, Hafida; Cordelet, Catherine; Grégoire, Stéphane; Demaison, Luc

    2003-01-01

    Recently, we have observed that the simultaneous application of free calcium (fCa) and ADP-magnesium (Mg) reduced the ADP:O ratio in isolated cardiac mitochondria. The uncoupling was prevented by cyclosporin A, an inhibitor of the permeability transition pore. The purpose of this study was to know if the generation of oxygen free radicals (OFR) is involved in this phenomenon and if it occurs during reoxygenation (Reox) of cultured cardiomyocytes. Cardiac mitochondria were harvested from male Wistar rats. Respiration was assessed in two media with different fCa concentrations (0 or 0.6 microM) with palmitoylcarnitine and ADP-Mg as respiration substrates. The production of Krebs cycle intermediates (KCI) was determined. Without fCa in the medium, the mitochondria displayed a large production of citrate + isocitrate + alpha-ketoglutarate. fCa drastically reduced these KCI and promoted the accumulation of succinate. To know if OFR are involved in the respiratory uncoupling, the effect of 4OH-TEMPO (250 microM), a hydrosoluble scavenger of OFR, was tested. 4OH-TEMPO completely abolished the fCa- and ADP-Mg-induced uncoupling. Conversely, vitamin E contributed to further decreasing the ADP:O ratio. Since no hydrosoluble electron acceptor was added in our experiment, the oxygen free radical-induced oxidized vitamin E was confined near the mitochondrial membranes, which should reduce the ADP:O ratio by opening the permeability transition pore. The generation of OFR could result from the matrix accumulation of succinate. Taken together, these results indicate that mitochondrial Ca uptake induces a slight increase in membrane permeability. Thereafter, Mg enters the matrix and, in combination with Ca, stimulates the isocitrate and/or alpha-ketoglutarate dehydrogenases. Matrix succinate favors oxygen free radical generation that further increases membrane permeability and allows respiratory uncoupling through proton leakage. To determine whether the phenomenon takes place

  12. Magnesium-phosphate-glass cements with ceramic-type properties

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  13. Magnesium phosphate glass cements with ceramic-type properties

    SciTech Connect

    Sugama, T.; Kukacka, L.E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono-and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  14. Magnesium phosphate glass cements with ceramic-type properties

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  15. Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means.

    PubMed

    Douglas, Timothy E L; Krawczyk, Grzegorz; Pamula, Elzbieta; Declercq, Heidi A; Schaubroeck, David; Bucko, Miroslaw M; Balcaen, Lieve; Van Der Voort, Pascal; Bliznuk, Vitaliy; van den Vreken, Natasja M F; Dash, Mamoni; Detsch, Rainer; Boccaccini, Aldo R; Vanhaecke, Frank; Cornelissen, Maria; Dubruel, Peter

    2016-11-01

    Mineralization of hydrogels, desirable for bone regeneration applications, may be achieved enzymatically by incorporation of alkaline phosphatase (ALP). ALP-loaded gellan gum (GG) hydrogels were mineralized by incubation in mineralization media containing calcium and/or magnesium glycerophosphate (CaGP, MgGP). Mineralization media with CaGP:MgGP concentrations 0.1:0, 0.075:0.025, 0.05:0.05, 0.025:0.075 and 0:0.1 (all values mol/dm(3) , denoted A, B, C, D and E, respectively) were compared. Mineral formation was confirmed by IR and Raman, SEM, ICP-OES, XRD, TEM, SAED, TGA and increases in the the mass fraction of the hydrogel not consisting of water. Ca was incorporated into mineral to a greater extent than Mg in samples mineralized in media A-D. Mg content and amorphicity of mineral formed increased in the order A < B < C < D. Mineral formed in media A and B was calcium-deficient hydroxyapatite (CDHA). Mineral formed in medium C was a combination of CDHA and an amorphous phase. Mineral formed in medium D was an amorphous phase. Mineral formed in medium E was a combination of crystalline and amorphous MgP. Young's moduli and storage moduli decreased in dependence of mineralization medium in the order A > B > C > D, but were significantly higher for samples mineralized in medium E. The attachment and vitality of osteoblastic MC3T3-E1 cells were higher on samples mineralized in media B-E (containing Mg) than in those mineralized in medium A (not containing Mg). All samples underwent degradation and supported the adhesion of RAW 264.7 monocytic cells, and samples mineralized in media A and B supported osteoclast-like cell formation. Copyright © 2014 John Wiley & Sons, Ltd.

  16. The Association between the Risk of Premenstrual Syndrome and Vitamin D, Calcium, and Magnesium Status among University Students: A Case Control Study.

    PubMed

    Saeedian Kia, Afsaneh; Amani, Reza; Cheraghian, Bahman

    2015-01-01

    Premenstrual syndrome (PMS) is one of major health problems in childbearing age women. Herein, we compared the nutritional status of vitamin D, calcium (Ca) and magnesium (Mg) in young students affected by PMS with those of normal participants. This study was conducted on 62 students aged 20‒25 yr in the city of Abadan (31 PMS cases and 31 controls). All participants completed four or more criteria according to the Utah PMS Calendar 3. Age, height, body mass index (BMI), serum Ca, Mg and vitamin D levels and a 24-hour food recall questionnaire were recorded. Vitamin D serum levels were lower than the normal range in the two groups. The odds ratios (CI 95%) of having PMS based on serum Ca and Mg concentrations were 0.81(0.67 - 0.89) and 0.86 (0.72 - 0.93), respectively. Based on serum levels, 855 of all participants showed vitamin D deficiency and more than one-third of the PMS cases were Mg deficient (P<0.05). In addition, there were signifi-cant differences in dietary intake of Ca and Mg, and potassium but not vitamin D in the two groups. Dietary intakes of Ca and Mg were quite below the recommendation in all participants. Vitamin D, Ca and Mg nutritional status are compromised in PMS subjects. Because PMS is a prevalent health problem among young women, it merits more attention regarding improvement of their health and nutritional status.

  17. Fluoride and calcium-phosphate coated sponges of the magnesium alloy AX30 as bone grafts: a comparative study in rabbits.

    PubMed

    Lalk, Mareike; Reifenrath, Janin; Angrisani, Nina; Bondarenko, Alexandr; Seitz, Jan-Marten; Mueller, Peter P; Meyer-Lindenberg, Andrea

    2013-02-01

    Biocompatibility and degradation of magnesium sponges (alloy AX30) with a fluoride (MgF(2) sponge, n = 24, porosity 63 ± 6 %, pore size 394 ± 26 μm) and with a fluoride and additional calcium-phosphate coating (CaP sponge, n = 24, porosity 6 ± 4 %, pore size 109 ± 37 μm) were evaluated over 6, 12 and 24 weeks in rabbit femurs. Empty drill holes (n = 12) served as controls. Clinical and radiological examinations, in vivo and ex vivo μ-computed tomographies and histological examinations were performed. Clinically both sponge types were tolerated well. Radiographs and XtremeCT evaluations showed bone changes comparable to controls and mild gas formation. The μCT80 depicted a higher and more inhomogeneous degradation of the CaP sponges. Histomorphometrically, the MgF(2) sponges resulted in the highest bone and osteoid fractions and were integrated superiorly into the bone. Histologically, the CaP sponges showed more inflammation and lower vascularization. MgF(2) sponges turned out to be better biocompatible and promising, biodegradable bone replacements.

  18. Association of Long-term Proton Pump Inhibitor Therapy with Bone Fractures and effects on Absorption of Calcium, Vitamin B12, Iron, and Magnesium

    PubMed Central

    Ito, Tetsuhide; Jensen, Robert T.

    2010-01-01

    Proton pump inhibitors (PPI) are now one of the most widely used classes of drugs. PPIs have proven to have a very favorable safety profile and it is unusual for a patient to stop these drugs because of side effects. However, increasing numbers of patients are chronically taking PPIs for gastroesophageal reflux disease and a number of other common persistent conditions, therefore the long-term potential adverse effects are receiving increasing attention. One area that is receiving much attention and generally has been poorly studied, is the long-term effects of chronic acid suppression on the absorption of vitamins and nutrients. This area has received increased attention because of the reported potential adverse effect of chronic PPI treatment leading to an increased occurrence of bone fractures. This has led to an increased examination of the effects of PPIs on calcium absorption/metabolism as well as numerous cohort, case control and prospective studies of their ability to affect bone density and cause bone fractures. In this article these studies are systematically examined, as well as the studies of the effects of chronic PPI usage on VB12, iron and magnesium absorption. In general the studies in each of thee areas have led to differing conclusions, but when examined systematically, a number of the studies are showing consistent results that support the conclusion that long-term adverse effects on these processes can have important clinical implications. PMID:20882439

  19. Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine.

    PubMed

    White, Philip J; Broadley, Martin R

    2009-01-01

    The diets of over two-thirds of the world's population lack one or more essential mineral elements. This can be remedied through dietary diversification, mineral supplementation, food fortification, or increasing the concentrations and/or bioavailability of mineral elements in produce (biofortification). This article reviews aspects of soil science, plant physiology and genetics underpinning crop biofortification strategies, as well as agronomic and genetic approaches currently taken to biofortify food crops with the mineral elements most commonly lacking in human diets: iron (Fe), zinc (Zn), copper (Cu), calcium (Ca), magnesium (Mg), iodine (I) and selenium (Se). Two complementary approaches have been successfully adopted to increase the concentrations of bioavailable mineral elements in food crops. First, agronomic approaches optimizing the application of mineral fertilizers and/or improving the solubilization and mobilization of mineral elements in the soil have been implemented. Secondly, crops have been developed with: increased abilities to acquire mineral elements and accumulate them in edible tissues; increased concentrations of 'promoter' substances, such as ascorbate, beta-carotene and cysteine-rich polypeptides which stimulate the absorption of essential mineral elements by the gut; and reduced concentrations of 'antinutrients', such as oxalate, polyphenolics or phytate, which interfere with their absorption. These approaches are addressing mineral malnutrition in humans globally.

  20. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes.

  1. Influences of doping mesoporous magnesium silicate on water absorption, drug release, degradability, apatite-mineralization and primary cells responses to calcium sulfate based bone cements.

    PubMed

    Gu, Zhengrong; Wang, Sicheng; Weng, Weizong; Chen, Xiao; Cao, Liehu; Wei, Jie; Shin, Jung-Woog; Su, Jiacan

    2017-06-01

    In this study, composite cements containing mesoporous magnesium silicate (m-MS) and calcium sulfate (CS) were fabricated. The results revealed that the setting time of the m-MS/CS composite cements (m-MSC) slightly prolonged with the increase of m-MS content while the compressive strength suffered a little loss. The doping of m-MS improved the water absorption, drug release (vancomycin) and degradability of the m-MSC in Tris-HCl solution (pH=7.4). In addition, addition of m-MS facilitated the apatite-mineralization of m-MSC in simulated body fluid (SBF), indicating good bioactivity. For cell cultural experiments, the results revealed that the m-MSC promoted the cells adhesion and proliferation, and improved the alkaline phosphatase (ALP) activity of MC3T3-E1 cells, revealing good cytocompatibility. It could be suggested that the m-MSC might be promising cements biomaterials for bone tissue regeneration. Copyright © 2017. Published by Elsevier B.V.

  2. Ingestion of potato starch containing high levels of esterified phosphorus reduces calcium and magnesium absorption and their femoral retention in rats.

    PubMed

    Mineo, Hitoshi; Ohmi, Sayako; Ishida, Kyo; Morikawa, Nao; Machida, Ayaka; Kanazawa, Takumi; Chiji, Hideyuki; Fukusima, Michihiro; Noda, Takahiro

    2009-09-01

    Many studies have shown that esterified phosphorus (P) in diets has a favorable effect on mineral absorption in humans and animals. Phosphorylated oligosaccharides derived from potato starch increase calcium (Ca) absorption from the rat intestine both in situ and in vitro. We hypothesized that the feeding of potato starch has a potential to increase Ca or magnesium (Mg) absorption. Male Sprague-Dawley rats at 7 weeks were fed 4 types of diet containing either 60% sucrose, cornstarch, or 1 of 2 types of potato starch with different P contents for 1, 3, or 5 weeks. A balance test for Ca, Mg, and P was undertaken, and these mineral contents in the femur were determined for the 4 diet groups at each feeding period in vivo. Ingestion of potato starch increased Ca, Mg, and P excretion into feces and decreased the absorption rate of Ca and Mg. Femoral Ca contents were also decreased in the rats fed the potato starch diets compared with those in rats fed the sucrose or cornstarch diet. In vitro experiment in Ca absorption was undertaken using everted jejunal and ileal sacs of the small intestine in male Sprague-Dawley rats (7 weeks old). The potato starch application did not induce significant increase in Ca absorption compared with nonstarch (control) or cornstarch application. In conclusion, the ingestion of potato starch does not increase Ca and Mg absorption and rather accelerates their excretion, inducing the decrease in mineral absorption and retention in growing rats.

  3. Effects of a high-calcium diet on serum insulin-like growth factor-1 levels in magnesium-deficient rats.

    PubMed

    Matsuzaki, Hiroshi; Kajita, Yasutaka; Miwa, Misao

    2012-01-01

    In order to clarify the effects of a high-calcium (Ca) diet on bone formation in magnesium (Mg)-deficient rats, this study focused on the effects of a high-Ca diet on serum insulin-like growth factor-1 (IGF-1) levels. Male rats were randomized by weight into four groups, and fed one of four experimental diets containing two different Mg concentrations (0.05% (normal-Mg) or Mg-free (Mg-deficient)), and two different Ca concentrations (0.5% (normal-Ca) or 1.0% (high-Ca)) for 14 days. Serum concentrations of osteocalcin and IGF-1 were significantly lower in rats fed the Mg-deficient diet than in rats fed the normal-Mg diet. On the other hand, dietary Ca concentration had no significant influence on serum concentrations of osteocalcin and IGF-1. This study suggested that: 1) a high-Ca diet has no preventive effects on the decreased bone formation seen in Mg-deficient rats; and 2) a high-Ca diet does not enhance serum IGF-1 levels in Mg-deficient rats. Moreover, unchanged serum IGF-1 concentrations may contribute to the decreased bone formation seen in Mg-deficient rats receiving a high-Ca diet.

  4. Investigation on the thermo-chemical reaction mechanism between yttria-stabilized zirconia (YSZ) and calcium-magnesium-alumino-silicate (CMAS)

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Bo; Wang, Bin-Yi; Cao, Jian; Song, Guan-Yu; Liu, Juan-Bo

    2015-03-01

    Thermal barrier coatings (TBCs) with Y2O3-stabilized ZrO2 (YSZ) top coat play a very important role in advanced turbine blades by considerably increasing the engine efficiency and improving the performance of highly loaded blades. However, at high temperatures, environment factors result in the failure of TBCs. The influence of calcium-magnesium-alumino-silicate (CMAS) is one of environment factors. Although thermo-physical effect is being paid attention to, the thermo-chemical reaction becomes the hot-spot in the research area of TBCs affected by CMAS. In this paper, traditional twolayered structured TBCs were prepared by electron beam physical vapor deposition (EBPVD) as the object of study. TBCs coated with CMAS were heated at 1240°C for 3 h. Additionally, 15 wt.% simulated molten CMAS powder and YSZ powder were mixed and heated at 1240°C or 1350°C for 48 h. SEM and EDS were adopted to detect morphology and elements distribution. According to XRD and TEM results, it was revealed that CMAS react with YSZ at high temperature and form ZrSiO4, Ca0.2Zr0.8O1.8 and Ca0.15Zr0.85O1.85 after reaction, as a result, leading to the failure of TBCs and decreasing the TBC lifetime.

  5. Effects of calcium magnesium acetate on the combustion of coal-water slurries. Final project report, 1 September 1989--28 February 1993

    SciTech Connect

    Levendis, Y.A.; Wise, D.; Metghalchi, H.; Cumper, J.; Atal, A.; Estrada, K.R.; Murphy, B.; Steciak, J.; Hottel, H.C.; Simons, G.

    1993-07-01

    To conduct studies on the combustion of coal water fuels (CWFs) an appropriate facility was designed and constructed. The main components were (1) a high-temperature isothermal laminar flow furnace that facilitates observation of combustion events in its interior. The design of this system and its characterization are described in Chapter 1. (2) Apparatus for slurry droplet/agglomerate particle generation and introduction in the furnace. These devices are described in Chapters 1 and 3 and other attached publications. (3) An electronic optical pyrometer whose design, construction theory of operation, calibration and performance are presented in Chapter 2. (4) A multitude of other accessories, such as particle fluidization devices, a suction thermometer, a velocimeter, high speed photographic equipment, calibration devices for the pyrometer, etc., are described throughout this report. Results on the combustion of CWF droplets and CWF agglomerates made from micronized coal are described in Chapter 3. In the same chapter the combustion of CWF containing dissolved calcium magnesium acetate (CMA) axe described. The combustion behavior of pre-dried CWF agglomerates of pulverized grain coal is contrasted to that of agglomerates of micronized coal in Chapter 4. In the same chapter the combustion of agglomerates of carbon black and diesel soot is discussed as well. The effect of CMA on the combustion of the above materials is also discussed. Finally, the sulfur capture capability of CMA impregnated micronized and pulverized bituminous coals is examined in Chapter 5.

  6. Effects of Calcium and Magnesium Ions on Acute Copper Toxicity to Glochidia and Early Juveniles of the Chinese Pond Mussel Anodonta woodiana.

    PubMed

    Liu, Hongbo; Chen, Xiubao; Su, Yanping; Kang, Ik Joon; Qiu, Xuchun; Shimasaki, Yohei; Oshima, Yuji; Yang, Jian

    2016-10-01

    We evaluated the effects of calcium (Ca(2+)) and magnesium (Mg(2+)) ions on copper (Cu) toxicity to glochidia and newly-transformed juvenile mussels (age 1-2 days) of the Chinese pond mussel (Anodonta woodiana). Acute Cu toxicity tests were performed with glochidia for 24 h and juveniles for 96 h with measured Ca(2+) concentrations of 1.1, 14, 26, 51, and 99 mg L(-1), or measured Mg(2+) concentrations of 2.6, 11, 21, and 39 mg L(-1). The Ca(2+) and Mg(2+) cations provided no statistically significant protection against Cu toxicity to glochidia or juveniles. The 24-h EC50 value for glochidia was 82 μg L(-1) Cu, and contrastly, 96-h EC50 value for newly-transformed juvenile mussels was as low as 12 μg L(-1) Cu, implying that the juveniles of A. woodiana are more vulnerable to Cu contamination at concentrations close to currently-accepted levels.

  7. Behavior of Osteoblast-Like Cells on a β-Tricalcium Phosphate Synthetic Scaffold Coated With Calcium Phosphate and Magnesium.

    PubMed

    Park, Ki-Deog; Jung, Young-Suk; Lee, Kyung-Ku; Park, Hong-Ju

    2016-06-01

    Tricalcium phosphate (TCP) is one of the most useful synthetic scaffolds for bone grafts and has several advantages. However, the rapid degradation of TCP makes it less osteoconductive than the other candidates, and represents a major shortcoming. To overcome this problem, the authors investigated magnesium (Mg) and/or hydroxyapatite (HA) coating on a β-TCP substrate using a sputtering technique. Biocompatibility tests were carried out on β-TCP discs that were either uncoated (TCP), coated with HA by radio frequency magnetron sputtering (HA-TCP), coated with Mg by DC sputtering (Mg-TCP), or multicoated with Mg and HA by DC and radio frequency magnetron sputtering (MgHA-TCP). Cells showed similar morphology in all 4 groups, and were widely spread, had flattened elongated shapes, and were connected to adjacent cells by pseudopods. An MTT assay revealed higher cell proliferation on HA-TCP, Mg-TCP, and MgHA-TCP compared with TCP at 3 and 5 days. MgHA-TCP also showed significantly higher alkaline phosphatase activity levels compared with TCP, HA-TCP, and Mg-TCP (P < 0.05). Results suggest that Mg-coated β-TCP could have great potential as a bone graft material for future applications in hard tissue regeneration.

  8. Effects of magnesium salts in preventing experimental oxalate urolithiasis in rats.

    PubMed

    Ogawa, Y; Yamaguchi, K; Morozumi, M

    1990-08-01

    Magnesium oxide, magnesium hydroxide, magnesium sulfate, magnesium trisilicate, and magnesium citrate were added to a calcium-oxalate lithogenic diet in order to determine their effects in preventing lithogenesis. Male Wistar-strain rats which had been fed the glycolic-acid diet developed marked urinary calculi within four weeks. Rats in the magnesium-hydroxide, magnesium-citrate, and magnesium-trisilicate groups, however, had almost no stones in the urinary system. Rats in the magnesium-oxide and magnesium-sulfate groups showed significantly less effect than those in the former three groups. During the experimental period, the 24-hour urinary oxalate excretion and concentration were higher in the glycolic-acid group than in the other groups. The urinary citrate excretion and concentration were the highest in the magnesium-hydroxide and magnesium-citrate groups and higher in the magnesium-trisilicate and magnesium-oxide groups than in the magnesium-sulfate and glycolic-acid groups. Similar trends were observed in the urinary magnesium excretion and in its concentration. The urinary calcium excretion and concentration were higher in the experimental groups than in the glycolic-acid group. The urinary calcium/magnesium ratio remained mostly unchanged. Therefore, it can be concluded that alkaline magnesium salts increase the urinary calcium and magnesium concentrations, without changing the calcium/magnesium ratio, and inhibit urinary calculi formation, most likely by increasing the urinary citrate concentration.

  9. Calcium Solubility and Cation Exchange Properties in Zeoponic Soil

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, Raymond E.

    1999-01-01

    An important aspect of a regenerative life support system at a Lunar or Martian outpost is the ability to produce food. Essential plant nutrients, as well as a solid support substrate, can be provided by: (1) treated Lunar or Martian regolith; (2) a synthetic soil or (3) some combination of both. A synthetic soil composed of ammonium- and potassium-saturated chinoptlolite (a zeolite mineral) and apatite, can provide slow-release fertilization of plants via dissolution and ion-exchange reactions. Previous equilibrium studies (Beiersdorfer, 1997) on mixtures of synthetic hydroxyapatite and saturated-clinoptilolite indicate that the concentrations of macro-nutrients such as ammonium, phosphorous, potassium, magnesium, and calcium are a function of the ratio of chinoptilolite to apatite in the sample and to the ratio of potassium to ammonium on the exchange sites in the clinoptilolite. Potassium, ammonium, phosphorous, and magnesium are available to plants at sufficient levels. However, calcium is deficient, due to the high degree of calcium adsorption by the clinoptilolite. Based on a series of batch-equilibration experiments, this calcium deficiency can be reduced by (1) treating the clinoptilolite with CaNO3 or (2) adding a second Ca-bearing mineral (calcite, dolomite or wollastonite) to the soil. Treating the Cp with CaNO3 results in increased Ca in solution, decreased P in solution and decreased NH4 in solution. Concentrations of K were not effected by the CaNO3 treatment. Additions of Cal, Dol and Wol changed the concentrations of Ca and P in solution in a systematic fashion. Cal has the greatest effect, Dol the least and Wol is intermediate. The changes are consistent with changes expected for a common ion effect with Ca. Higher concentrations of Ca in solution with added Cal, Dol or Wol do not result in changes in K or NH4 concentrations.

  10. Magnesium basics

    PubMed Central

    Ketteler, Markus

    2012-01-01

    As a cofactor in numerous enzymatic reactions, magnesium fulfils various intracellular physiological functions. Thus, imbalance in magnesium status—primarily hypomagnesaemia as it is seen more often than hypermagnesaemia—might result in unwanted neuromuscular, cardiac or nervous disorders. Measuring total serum magnesium is a feasible and affordable way to monitor changes in magnesium status, although it does not necessarily reflect total body magnesium content. The following review focuses on the natural occurrence of magnesium and its physiological function. The absorption and excretion of magnesium as well as hypo- and hypermagnesaemia will be addressed. PMID:26069819

  11. Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium-calcium (Mg-Ca) alloy.

    PubMed

    Sealy, M P; Guo, Y B

    2010-10-01

    Current permanent metallic biomaterials of orthopedic implants, such as titanium, stainless steel, and cobalt-chromium alloys, have excellent corrosive properties and superior strengths. However, their strengths are often too high resulting in a stress shielding effect that is detrimental to the bone healing process. Without proper healing, costly and painful revision surgeries may be required. The close Young's modulus between magnesium-based implants and cancellous bones has the potential to minimize stress shielding while providing both biocompatibility and adequate mechanical properties. The problem with Mg implants is how to control corrosion rates so that the degradation of Mg implants matches that of bone growth. Laser shock peening (LSP) is an innovative surface treatment method to impart compressive residual stress to a novel Mg-Ca implant. The high compressive residual stress has great potential to slow corrosion rates. Therefore, LSP was initiated in this study to investigate surface topography and integrity produced by sequential peening a Mg-Ca alloy. Also, a 3D semi-infinite simulation was developed to predict the topography and residual stress fields produced by sequential peening. The dynamic mechanical behavior of the biomaterial was modeled using a user material subroutine from the internal state variable plasticity model. The temporal and spatial peening pressure was modeled using a user load subroutine. The simulated dent agrees with the measured dent topography in terms of profile and depth. Sequential peening was found to increase the tensile pile-up region which is critical to orthopedic applications. The predicted residual stress profiles are also presented.

  12. Ammonium sulfamate

    Integrated Risk Information System (IRIS)

    Ammonium sulfamate ; CASRN 7773 - 06 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  13. Ammonium methacrylate

    Integrated Risk Information System (IRIS)

    Ammonium methacrylate ; CASRN 16325 - 47 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  14. Ammonium acetate

    Integrated Risk Information System (IRIS)

    Ammonium acetate ; CASRN 631 - 61 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  15. A preorganized metalloreceptor for alkaline earth ions showing calcium versus magnesium selectivity in water: biological activity of selected metal complexes.

    PubMed

    Amatori, Stefano; Ambrosi, Gianluca; Fanelli, Mirco; Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Macedi, Eleonora; Micheloni, Mauro; Paoli, Paola; Rossi, Patrizia

    2014-08-25

    The N,N'-bis[(3-hydroxy-4-pyron-2-yl)methyl]-N,N'-dimethylethylendiamine (Malten = L) forms the highly stable [CuH(-2)L] species in water, in which the converging maltol oxygen atoms form an electron-rich area able to host hard metal ions. When considering the alkaline earth series (AE), the [Cu(H(-2)L)] species binds all metal ions, with the exception of Mg(2+), exhibiting the relevant property to discriminate Ca(2+) versus Mg(2+) at physiological pH 7.4; the binding of the AE metal is visible to the naked eye. The stability constant values of the trinuclear [AE{Cu(H(-2)L)}2](2+) species formed reach the maximum for Ca(2+) (log K=7.7). Ca(2+) also forms a tetranuclear [Ca{Cu(H(-2)L)}]2(4+) species at a high Ca(2+) concentration. Tri- and tetranuclear calcium complexes show blue- and pink-colored crystals, respectively. [Cu(H(-2)L)] is the most active species in inducing DNA alterations. The DNA damages are compatible with its hydrolytic cleavages. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Crystallization of calcium sulfate dihydrate under simulated conditions of phosphoric acid production in the presence of aluminum and magnesium ions

    NASA Astrophysics Data System (ADS)

    Rashad, M. M.; Mahmoud, M. H. H.; Ibrahim, I. A.; Abdel-Aal, E. A.

    2004-06-01

    The effect of Al 3+ and Mg 2+ ions, as additives, on the crystallization of gypsum was studied under simulated conditions of the phosphoric acid production. Calcium hydrogen phosphate and sulfuric acid were mixed with dilute phosphoric acid at 80°C, and the turbidity of the reaction mixture was measured at different time periods to calculate the induction time of gypsum crystals formation. Addition of Al 3+ ions up to 2% decreased the induction time and increased the growth efficiency while addition of Mg 2+ increased the induction time and decreased the growth efficiency compared with in absence of additives. Interestingly, the crystals mean and median diameters were found to increase in the presence of Al 3+ and decrease in the presence of Mg 2+. The surface energy increased with Al 3+ and decreased with Mg 2+ compared to the baseline (without additives). Gypsum morphology changed from needle-like type in absence of additives to thick-rhombic in the presence of Al 3+ ions.

  17. The Association between the Risk of Premenstrual Syndrome and Vitamin D, Calcium, and Magnesium Status among University Students: A Case Control Study

    PubMed Central

    Saeedian Kia, Afsaneh; Amani, Reza; Cheraghian, Bahman

    2015-01-01

    Background: Premenstrual syndrome (PMS) is one of major health problems in childbearing age women. Herein, we compared the nutritional status of vitamin D, calcium (Ca) and magnesium (Mg) in young students affected by PMS with those of normal participants. Methods: This study was conducted on 62 students aged 20‒25 yr in the city of Abadan (31 PMS cases and 31 controls). All participants completed four or more criteria according to the Utah PMS Calendar 3. Age, height, body mass index (BMI), serum Ca, Mg and vitamin D levels and a 24-hour food recall questionnaire were recorded. Results: Vitamin D serum levels were lower than the normal range in the two groups. The odds ratios (CI 95%) of having PMS based on serum Ca and Mg concentrations were 0.81(0.67 – 0.89) and 0.86 (0.72 – 0.93), respectively. Based on serum levels, 855 of all participants showed vitamin D deficiency and more than one-third of the PMS cases were Mg deficient (P<0.05). In addition, there were signifi­cant differences in dietary intake of Ca and Mg, and potassium but not vitamin D in the two groups. Dietary intakes of Ca and Mg were quite below the recommendation in all participants. Conclusion: Vitamin D, Ca and Mg nutritional status are compromised in PMS subjects. Because PMS is a prevalent health problem among young women, it merits more attention regarding improvement of their health and nutritional status. PMID:26634201

  18. Evaluation of calcium, magnesium, potassium and sodium in biological samples of male human immunodeficiency virus patients with tuberculosis and diarrhea compared to healthy control subjects in Pakistan.

    PubMed

    Afridi, Hassan Imran; Kazi, Tasneem Gul; Talpur, Farah Naz; Kazi, Naveed; Naeemullah, Faheem Shah; Arain, Sadaf Sadia; Brahman, Kapil Dev

    2013-01-01

    Electrolyte deficiency has been associated with an increased risk of human immunodeficiency virus type 1 (HIV-1) disease progression and mortality. This study examined the association between low electrolyte concentrations in blood and scalp hair and the presence of opportunistic infections in patients with acquired immune deficiency syndrome (AIDS). Sixty-two male HIV positive patients (HIV-1) from various cities in Pakistan were recruited to the study. These Patients were divided into two groups according to secondary infections (tuberculosis and high fever with diarrhea), and biological samples (scalp hair, serum, blood and urine) were collected from them. As a comparative control group, 120 healthy subjects (males) of the same age group (31 - 45 years), socio-economic status, localities and dietary habits were also included in the study. The elements in the biological samples were analyzed by flame atomic absorption spectrophotometry after microwave-assisted acid digestion. Validity and accuracy of the methodology were checked using certified reference materials (CRMs) and against values obtained by a conventional wet acid digestion method on the same CRMs. The results indicated significantly lower levels of calcium, potassium, magnesium and natrium in all analyzed biological samples (blood, serum and scalp hair) of male patients with Acquired Immune Deficiency Syndrome (AIDS) in comparison to healthy controls (p < 0.01), while the levels of these elements were found to be higher in urine samples of the AIDS patients than in those of the control group. These data offer guidance to clinicians and other professionals investigating the deficiency of electrolytes in biological samples (scalp hair, serum and blood) of AIDS patients in relation to healthy subjects.

  19. The effects of secular calcium and magnesium concentration changes on the thermodynamics of seawater acid/base chemistry: Implications for Eocene and Cretaceous ocean carbon chemistry and buffering

    NASA Astrophysics Data System (ADS)

    Hain, Mathis P.; Sigman, Daniel M.; Higgins, John A.; Haug, Gerald H.

    2015-05-01

    Reconstructed changes in seawater calcium and magnesium concentration ([Ca2+], [Mg2+]) predictably affect the ocean's acid/base and carbon chemistry. Yet inaccurate formulations of chemical equilibrium "constants" are currently in use to account for these changes. Here we develop an efficient implementation of the MIAMI Ionic Interaction Model to predict all chemical equilibrium constants required for carbon chemistry calculations under variable [Ca2+] and [Mg2+]. We investigate the impact of [Ca2+] and [Mg2+] on the relationships among the ocean's pH, CO2, dissolved inorganic carbon (DIC), saturation state of CaCO3 (Ω), and buffer capacity. Increasing [Ca2+] and/or [Mg2+] enhances "ion pairing," which increases seawater buffering by increasing the concentration ratio of total to "free" (uncomplexed) carbonate ion. An increase in [Ca2+], however, also causes a decline in carbonate ion to maintain a given Ω, thereby overwhelming the ion pairing effect and decreasing seawater buffering. Given the reconstructions of Eocene [Ca2+] and [Mg2+] ([Ca2+] 20 mM; [Mg2+] 30 mM), Eocene seawater would have required essentially the same DIC as today to simultaneously explain a similar-to-modern Ω and the estimated Eocene atmospheric CO2 of 1000 ppm. During the Cretaceous, at 4 times modern [Ca2+], ocean buffering would have been at a minimum. Overall, during times of high seawater [Ca2+], CaCO3 saturation, pH, and atmospheric CO2 were more susceptible to perturbations of the global carbon cycle. For example, given both Eocene and Cretaceous seawater [Ca2+] and [Mg2+], a doubling of atmospheric CO2 would require less carbon addition to the ocean/atmosphere system than under modern seawater composition. Moreover, increasing seawater buffering since the Cretaceous may have been a driver of evolution by raising energetic demands of biologically controlled calcification and CO2 concentration mechanisms that aid photosynthesis.

  20. Net requirements of calcium, phosphorus, magnesium, and sulphur for growth of non-descript breed hair lambs of different sex classes in the Brazilian semiarid conditions.

    PubMed

    da Silva, Ivonete Ferreira; de Souza Rodrigues, Rafael Torres; Queiroz, Mário Adriano Ávila; Chizzotti, Mario Luiz; Zanetti, Marcus Antonio; da Cunha, José Aparecido; Busato, Karina Costa

    2016-04-01

    The aim of this study was to determine the net requirements of calcium (Ca), phosphorus (P), magnesium (Mg), and sulphur (S) for weight gain of non-descript breed hair lambs (NDBL) of different sex classes reared under Brazilian semiarid conditions. Sixty NDBL (20 intact males, 20 castrated males, and 20 females), with an average initial body weight of 18.1 ± 0.4 kg and average age of 5 months were used. The macromineral requirements were determined by the differences in body composition through comparative slaughter direct method. The animals were confined for 58 days, and the average fasting body weight (FBW) and average daily gain (ADG) of lambs fed ad libitum were 29.2 ± 0.6 and 0.19 ± 0.01 kg, respectively. The net requirements of macrominerals for gain of NDBL did not differ between sex classes (P > 0.05), and ranged from 1.83 to 1.46 g/day of Ca, 1.21 to 1.01 g/day of P, 37 to 30 mg/day of Mg, and 0.31 to 0.28 g/day of S, for lambs with an ADG of 0.200 kg and 15 or 30 kg of FBW, respectively (P < 0.05). The N to S net ratio reduced and increased, respectively, as the body weight and ADG increase. The net requirements of Ca, P, Mg, and S for gain of NDBL slaughtered young and at the same age did not differ between sex classes and decreased as the body weight increased. The net requirements for gain of Ca and P were similar to those recommended by NRC (2007).

  1. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  2. Calcium and magnesium content of the uterine fluid and blood serum during the estrous cycle and pre-pubertal phase in water buffaloes.

    PubMed

    Alavi Shoushtari, Sayed Mortaza; Asri Rezaie, Siamak; Khaki, Amir; Belbasi, Abulfazle; Tahmasebian, Hamid

    2014-01-01

    To investigate uterine fluid and serum calcium (Ca) and Magnesium (Mg) variations during the estrus cycle in water buffaloes, 71 genital tracts and blood samples were collected from the abattoir in Urmia. The phase of the estrous cycle was determined by examining ovarian structures. 18 animals were pro-estrous, 15 estrous, 16 met-estrous and 22 diestrous. The uterine fluid was collected by gentle scraping of the uterine mucosa with a curette. Blood serum and uterine fluid samples of 71 pre-pubertal buffalo calves were also collected and treated in similar manners. The mean ± SEM total serum and uterine fluid Ca in cyclic buffaloes were 8.68 ± 0.28 mg dL(-1) and 8.10 ± 0.2 mg dL(-1) vs. 6.76 ± 0.65 mg dL(-1) and 7.90 ± 0.15 mg dL(-1) in pre-pubertal calves, respectively. Blood serum Mg was not different in cyclic and pre-pubertal animals but the uterine fluid Mg in cyclic cows was higher than those in pre-pubertal calves. Serum Ca in pro-estrus and estrus were higher than those in other stages and also higher than those in the uterine fluid. The lowest Mg content of serum was recorded in diestrus, while in the uterine fluid it was observed in estrus. In all stages of estrous cycle except for estrus the uterine fluid Mg content was significantly higher than those of the serum. These results suggested that during the estrous cycle in the buffalo cows, Ca was passively secreted in uterine lumen and mostly dependent on blood serum Ca concentrations but Mg was secreted independently. The values (except for serum total Mg) also increased after puberty.

  3. Evidence for cross-tolerance to nutrient deficiency in three disjunct populations of Arabidopsis lyrata ssp. lyrata in response to substrate calcium to magnesium ratio.

    PubMed

    Veatch-Blohm, Maren E; Roche, Bernadette M; Campbell, Maryjean

    2013-01-01

    Species with widespread distributions that grow in varied habitats may consist of ecotypes adapted to a particular habitat, or may exhibit cross-tolerance that enables them to exploit a variety of habitats. Populations of Arabidopsis lyrata ssp. lyrata (L.) O'Kane & Al-Shehbaz grow in a wide variety of edaphic settings including serpentine soil, limestone sand, and alluvial flood plains. While all three of these environments share some stressors, a crucial difference among these environments is soil calcium to magnesium ratio, which ranges from 25:1 in the limestone sand to 0.2:1 in serpentine soil. The three populations found on these substrates were subjected to three different Ca to Mg ratios under controlled environmental conditions during germination and rosette growth. Response to Ca to Mg ratio was evaluated through germination success and radicle growth rate, rosette growth rate, and the content of Ca and Mg in the rosette. All three populations were particularly efficient in fueling growth under nutrient deficiency, with the highest nutrient efficiency ratio for Ca under Ca deficiency and for Mg under Mg deficiency. Although the serpentine population had significantly higher leaf Ca to Mg ratio than the limestone or flood plain populations under all three Ca to Mg ratios, this increase did not result in any advantage in growth or appearance of the serpentine plants, during early life stages before the onset of flowering, even in the high Mg substrate. The three populations showed no population by substrate interaction for any of the parameters measured indicating that these populations may have cross-tolerance to substrate Ca to Mg ratio.

  4. Osteogenic evaluation of calcium/magnesium-doped mesoporous silica scaffold with incorporation of rhBMP-2 by synchrotron radiation-based μCT.

    PubMed

    Dai, Chenglong; Guo, Han; Lu, Jingxiong; Shi, Jianlin; Wei, Jie; Liu, Changsheng

    2011-11-01

    The regenerative treatment of large osseous defects remains a formidable challenge in orthopedic surgery today. In the present study, we have synthesized biodegradable calcium/magnesium-doped silica-based scaffolds with hierarchically macro/mesoporous structure (CMMS), and incorporated recombinant human bone morphogenetic protein-2 (rhBMP-2) into the scaffolds to obtain a hybrid system for osteogenic factor delivery in the functional repair of bone defects. The developed CMMS/rhBMP-2 scaffolds presented interconnected porous network, macropores (200-500 μm) and mesopores (5.7 nm), as well as good bioactivity and biocompatibility and proper degradation rate. Combined with the capacity to deliver ions and growth factors, the CMMS/rhBMP-2 scaffolds significantly promoted the in vitro osteogenic differentiation of bone marrow stromal cells (bMSCs), as evidenced by the enhanced expression of Runx-2, osteopontin, osteocalcin and bone sialoprotein, and induced the ectopic bone formation in the thigh muscle pouches of mice. We further assessed the in vivo effects of CMMS/rhBMP-2 scaffolds in a rabbit femur cavity defect model by using synchrotron radiation-based μCT (SRμCT) imaging and histological analysis, indicating that the CMMS/rhBMP-2 scaffolds resulted in more bone regeneration compared to that observed with the CMMS scaffolds without rhBMP-2. Moreover, scaffolds with or without rhBMP-2 underwent gradual resorption and replacement with bone and almost disappeared at 12 weeks, while the dense CMMS/rhBMP-2 material showed slower degradation rate and promoted the least extensive neo-bone formation. This study suggested that the hybrid CMMS/rhBMP-2 scaffolds system demonstrates promise for bone regeneration in clinical case of large bone defects.

  5. Summary measure of dietary musculoskeletal nutrient (calcium, vitamin D, magnesium, and phosphorus) intakes is associated with lower-extremity physical performance in homebound elderly men and women.

    PubMed

    Sharkey, Joseph R; Giuliani, Carol; Haines, Pamela S; Branch, Laurence G; Busby-Whitehead, Jan; Zohoori, Namvar

    2003-04-01

    Nutritional intake has been overlooked as a possible contributing factor to lower-extremity physical performance, especially in homebound elderly persons. Our objectives were to examine the association of a summary measure of calcium, vitamin D, magnesium, and phosphorus intakes with 1) the inability to perform lower-extremity physical performance tests and 2) declining levels of summary lower-extremity physical performance. Baseline data from the Nutrition and Function Study were used to calculate a summary musculoskeletal nutrient (SMN) score as a measure of nutrient intake (factor analysis) and to examine the association of SMN intake with physical performance (multivariable regression models) among recipients of home-delivered meals who completed an in-home assessment (anthropometric measures and performance-based physical tests) and three 24-h dietary recalls. Among the 321 participants, elderly age, black race, body mass index (in kg/m2) > or = 35, arthritis, frequent fear of falling, and lowest SMN intake were independently associated with being unable to perform functional tests. The lowest SMN intake and the highest BMI were both significantly associated with increasingly worse levels of lower-extremity physical performance, after adjustment for health and demographic characteristics. Considering the importance of identifying short- and long-term outcomes that help elderly persons maintain adequate nutritional status and remain functionally independent at home, the results of this study suggest the need to identify intervention strategies that target the improvement of dietary intake and physical performance. Further investigation is indicated to identify the manner in which nutritional status contributes to the preservation or deterioration of physical performance in homebound elderly persons.

  6. Evidence for Cross-Tolerance to Nutrient Deficiency in Three Disjunct Populations of Arabidopsis lyrata ssp. lyrata in Response to Substrate Calcium to Magnesium Ratio

    PubMed Central

    Veatch-Blohm, Maren E.; Roche, Bernadette M.; Campbell, MaryJean

    2013-01-01

    Species with widespread distributions that grow in varied habitats may consist of ecotypes adapted to a particular habitat, or may exhibit cross-tolerance that enables them to exploit a variety of habitats. Populations of Arabidopsis lyrata ssp. lyrata (L.) O’Kane & Al-Shehbaz grow in a wide variety of edaphic settings including serpentine soil, limestone sand, and alluvial flood plains. While all three of these environments share some stressors, a crucial difference among these environments is soil calcium to magnesium ratio, which ranges from 25∶1 in the limestone sand to 0.2∶1 in serpentine soil. The three populations found on these substrates were subjected to three different Ca to Mg ratios under controlled environmental conditions during germination and rosette growth. Response to Ca to Mg ratio was evaluated through germination success and radicle growth rate, rosette growth rate, and the content of Ca and Mg in the rosette. All three populations were particularly efficient in fueling growth under nutrient deficiency, with the highest nutrient efficiency ratio for Ca under Ca deficiency and for Mg under Mg deficiency. Although the serpentine population had significantly higher leaf Ca to Mg ratio than the limestone or flood plain populations under all three Ca to Mg ratios, this increase did not result in any advantage in growth or appearance of the serpentine plants, during early life stages before the onset of flowering, even in the high Mg substrate. The three populations showed no population by substrate interaction for any of the parameters measured indicating that these populations may have cross-tolerance to substrate Ca to Mg ratio. PMID:23650547

  7. Concentration of Zinc, Copper, Iron, Calcium, and Magnesium in the Serum, Tissues, and Urine of Streptozotocin-Induced Mild Diabetic Rat Model.

    PubMed

    Gómez, Tahiry; Bequer, Leticia; Mollineda, Angel; Molina, José L; Álvarez, Alain; Lavastida, Mayrelis; Clapés, Sonia

    2017-03-03

    The present study aimed to investigate, in the streptozotocin-induced mild diabetic rat model, the zinc (Zn), copper (Cu), iron (Fe), calcium (Ca), and magnesium (Mg) concentration in serum, liver, and kidney tissues, and urine samples from adult Wistar rats treated neonatally with streptozotocin (STZ). Diabetes was induced by subcutaneous administration of streptozotocin (100 mg/Kg) in female Wistar rats of 2 days old (STZ, n = 10). Control group (CG, n = 10) received only sodium-citrate buffer. The mineral concentrations were measured by atomic absorption spectrophotometry. The validity and accuracy were checked by conventional methods. STZ neonatal injection successfully leaded to mild diabetes in the adult rats. Serum concentrations of Zn, Cu, Fe, Ca, and Mg showed no changes (p > 0.05) due to diabetes. The Zn, Fe, Ca, and Mg concentrations in liver and kidney tissues were not different (p > 0.05) between STZ and CG. The mean values of Cu were higher (p < 0.05) in liver and kidney samples from STZ as compared to CG. Urine minerals concentrations (Zn, Cu, Fe and Ca) in STZ-rats group were lower (p < 0.05) than CG. However, the content of all evaluated minerals in the excreted urine were higher (p < 0.01) in STZ-rats during a 24 h collection period. Urinary excretion of Zn, Cu, Fe, Ca, and Mg was strongly correlated with urinary volume during the 24 h period (r > 0.7; p < 0.001). Observed changes in mineral metabolism of STZ-induced mild diabetes model could be due to the endocrine imbalance associated with the diabetic condition.

  8. Calcium and magnesium content of the uterine fluid and blood serum during the estrous cycle and pre-pubertal phase in water buffaloes

    PubMed Central

    Alavi Shoushtari, Sayed Mortaza; Asri Rezaie, Siamak; Khaki, Amir; Belbasi, Abulfazle; Tahmasebian, Hamid

    2014-01-01

    To investigate uterine fluid and serum calcium (Ca) and Magnesium (Mg) variations during the estrus cycle in water buffaloes, 71 genital tracts and blood samples were collected from the abattoir in Urmia. The phase of the estrous cycle was determined by examining ovarian structures. 18 animals were pro-estrous, 15 estrous, 16 met-estrous and 22 diestrous. The uterine fluid was collected by gentle scraping of the uterine mucosa with a curette. Blood serum and uterine fluid samples of 71 pre-pubertal buffalo calves were also collected and treated in similar manners. The mean ± SEM total serum and uterine fluid Ca in cyclic buffaloes were 8.68 ± 0.28 mg dL-1 and 8.10 ± 0.2 mg dL-1 vs. 6.76 ± 0.65 mg dL-1 and 7.90 ± 0.15 mg dL-1 in pre-pubertal calves, respectively. Blood serum Mg was not different in cyclic and pre-pubertal animals but the uterine fluid Mg in cyclic cows was higher than those in pre-pubertal calves. Serum Ca in pro-estrus and estrus were higher than those in other stages and also higher than those in the uterine fluid. The lowest Mg content of serum was recorded in diestrus, while in the uterine fluid it was observed in estrus. In all stages of estrous cycle except for estrus the uterine fluid Mg content was significantly higher than those of the serum. These results suggested that during the estrous cycle in the buffalo cows, Ca was passively secreted in uterine lumen and mostly dependent on blood serum Ca concentrations but Mg was secreted independently. The values (except for serum total Mg) also increased after puberty. PMID:25610582

  9. Role of magnesium and calcium in alcohol-induced hypertension and strokes as probed by in vivo television microscopy, digital image microscopy, optical spectroscopy, 31P-NMR, spectroscopy and a unique magnesium ion-selective electrode.

    PubMed

    Altura, B M; Altura, B T

    1994-10-01

    It is not known why alcohol ingestion poses a risk for development of hypertension, stroke and sudden death. Of all drugs, which result in body depletion of magnesium (Mg), alcohol is now known to be the most notorious cause of Mg-wasting. Recent data obtained through the use of biophysical (and noninvasive) technology suggest that alcohol may induce hypertension, stroke, and sudden death via its effects on intracellular free Mg2+ ([Mg2+]i), which in turn alter cellular and subcellular bioenergetics and promote calcium ion (Ca2+) overload. Evidence is reviewed that demonstrates that the dietary intake of Mg modulates the hypertensive actions of alcohol. Experiments with intact rats indicates that chronic ethanol ingestion results in both structural and hemodynamic alterations in the microcirculation, which, in themselves, could account for increased vascular resistance. Chronic ethanol increases the reactivity of intact microvessels to vasoconstrictors and results in decreased reactivity to vasodilators. Chronic ethanol ingestion clearly results in vascular smooth muscle cells that exhibit a progressive increase in exchangeable and cellular Ca2+ concomitant with a progressive reduction in Mg content. Use of 31P-NMR spectroscopy coupled with optical-backscatter reflectance spectroscopy revealed that acute ethanol administration to rats results in dose-dependent deficits in phosphocreatine (PCr), the [PCr]/[ATP] ratio, intracellular pH (pHi), oxyhemoglobin, and the mitochondrial level of oxidized cytochrome oxidase aa3 concomitant with a rise in brain-blood volume and inorganic phosphate. Temporal studies performed in vivo, on the intact brain, indicate that [Mg2+]i is depleted before any of the bioenergetic changes. Pretreatment of animals with Mg2+ prevents ethanol from inducing stroke and prevents all of the adverse bioenergetic changes from taking place. Use of quantitative digital imaging microscopy, and mag-fura-2, on single-cultured canine cerebral vascular

  10. Emissions of alkaline elements calcium, magnesium, potassium, and sodium from open sources in the contiguous United States

    SciTech Connect

    Gillette, D.A. ); Stensland, G.J.; Williams, A.L.; Barnard, W.; Gatz, D. ); Sinclair, P.C. ); Johnson, T.C. )

    1992-12-01

    Models of dust emissions by wind erosion (including winds associated with regional activity as well as dust devils) and vehicular disturbances of unpaved roads were developed, calibrated, and used to estimate alkaline dust emissions from elemental soil and road composition data. Emissions from tillage of soils were estimated form the work of previous researchers. The area of maximum dust production by all of those sources is the area of the old Dust Bowl' of the 1930s (the panhandles of Texas and Oklahoma, eastern New Mexico and Colorado, and western Kansas). The areas of maximum alkaline dust production are the arid southwest, the Dust Bowl,' and the midwestern-mideastern states from Iowa to Pennsylvania. Our calculations show that calcium is the dominant alkaline element produced by open sources' (sources too great in extent to be controlled by enclosure or ducting). Although the largest dust mass source is wind erosion (by winds associated with regional activity and convective activity), the largest producer of the alkaline component is road dust because the abundance of alkaline materials in road coverings (which include crushed limestone) is significantly higher than for soils. Comparing the above estimated sources of alkaline material with inventories of SO[sub 2] and NO[sub x] emissions by previous investigators gives the rough approximation that alkaline emission rates are of the order of the SO[sub 2] + NO[sub x] emissions in the western United States and that they are much smaller than SO[sub 2] + NO[sub x] in the eastern United States. This approximation is substantiated by data on Ca/(SO[sub 4] + NO[sub 3]) for wet deposition for National Atmospheric Deposition Program sites. 53 refs., 9 figs., 2 tabs.

  11. Modulation of L-type calcium current by intracellular magnesium in differentiating cardiomyocytes derived from induced pluripotent stem cells.

    PubMed

    Nguemo, Filomain; Semmler, Judith; Reppel, Michael; Hescheler, Jürgen

    2014-06-15

    Intracellular Mg(2+), which is implicated in arrhythmogenesis and transient cardiac ischemia, inhibits L-type Ca(2+) calcium channel current (ICaL) of adult cardiomyocytes (CMs). We take the advantage of an in vitro model of CMs based on induced pluripotent stem cells to investigate the effects of intracellular Mg(2+) on the phosphorylation or dephosphorylation processes of L-type Ca(2+) channels (LTCCs) at early and late stages of cardiac cell differentiation. Using the whole-cell patch-clamp technique, we demonstrate that increasing intracellular Mg(2+) concentration [Mg(2+)]i from 0.2 to 5 mM markedly reduced the peak of ICaL density, showing less effect on both the activation and inactivation properties in the late differentiation stage (LDS) of CMs more so than in the early differentiation stage (EDS). Increasing the [Mg(2+)]i from 0.2 to 2 mM in the presence of cAMP-dependent protein kinase A significantly decreased ICaL in LDS (70%) and in EDS (36%) CMs. In addition, the effect of forskolin was greatly attenuated in the presence of 2 mM [Mg(2+)]i in LDS but not in EDS CMs. The effect of forskolin was enhanced in the presence of ATP-γ-S in LDS CMs compared with EDS CMs. The exposure of both EDS and LDS CMs to 2 mM [Mg(2+)]i considerably reduced the effects of isobutylmethylxanthine (IBMX) and okadaic acid on ICaL. Our results provide evidence for differential regulation of LTCCs activities by cytosolic Mg(2+) concentration in developing cardiac cells and confirm that Mg(2+) acts under conditions that favor opening of the LTCCs caused by channel phosphorylation.

  12. Effect of high calcium diet on magnesium, catecholamines, and blood pressure of stroke-prone spontaneously hypertensive rats.

    PubMed

    Luft, F C; Ganten, U; Meyer, D; Steinberg, H; Gless, K H; Unger, T; Ganten, D

    1988-04-01

    To test the effect of a high dietary calcium intake on blood pressure, we fed stroke-prone spontaneously hypertensive (SHR-SP) and Wistar-Kyoto rats (WKY) diets containing (a) 0.25% Ca/0.08% Mg, (b) 4.0% Ca/0.02% Mg, and (c) 4.0% Ca/0.08% mg, beginning at 6 weeks of age. SHR-SP and WKY rats receiving 4% Ca with the lower Mg content had lower blood pressures, hypomagnesemia, and hypomagnesuria, and grew poorly. SHR-SP receiving 4% Ca and the higher Mg diet had blood pressures no different from those of rats receiving the 0.25% Ca diet, in spite of having lower body weights. Rubidium flux studies in erythrocytes were not influenced by Ca or Mg in the diets. Plasma phosphate values were moderately reduced in rats receiving 4% Ca diets. Epinephrine and norepinephrine values were higher in SHR-SP than in WKY rats. Norepinephrine increased with stress in both strains, independent of diet. Epinephrine values were lower in SHR-SP receiving the 4% Ca diets and showed less of an increase with stress compared to SHR-SP receiving the 0.25% Ca diet. After 26 weeks of diets, SHR-SP and WKY rats were given 0.9% NaCl in their drinking water. NaCl increased blood pressure in SHR-SP irrespective of Ca content of the diet. These data suggest that a high Ca diet influences Mg homeostasis and adrenal medullary function in SHR-SP. Further, SHR-SP appear resistant to any blood pressure lowering effect of Ca irrespective of NaCl intake.

  13. Ionized serum magnesium levels in umbilical cord blood of normal pregnant women at delivery: relationship to calcium, demographics, and birthweight.

    PubMed

    Handwerker, S M; Altura, B T; Royo, B; Altura, B M

    1993-09-01

    Using a novel ion-selective electrode for ionized Mg (IMg2+), we sought to: (1) determine levels and fractions of IMg2+ in umbilical vessels of normal pregnant women: (2) determine their relationships with ionized calcium (ICa2+) levels: (3) determine whether any demographic or clinical parameters affect these levels of divalent cations: and (4) compare levels of IMg2+, total Mg, percent IMg2+, and ICa2+ with sera of normal pregnant and nonpregnant women. We obtained umbilical arterial and venous serum from 38 normal subjects and venous samples from 26 normal pregnant women and 42 nonpregnant women. The mean umbilical venous IMg2+ level (0.51 +/- 0.01 mmol/liter) was significantly greater than the umbilical arterial level (0.48 +/- 0.01 mmol/liter, p < 0.05), and the latter was similar to maternal venous levels (0.48 +/- 0.01 mmol/liter). The maternal venous mean value is 20% less than that found (0.60 +/- 0.005 mmol/liter) in peripheral serum of nonpregnant women. The ionized fractions were significantly (p < 0.01) higher in the umbilical veins than umbilical arteries, and the percent IMg2+ fractions were similar in umbilical arteries and maternal venous blood. IMg2+ levels were lower in multiparous patients and those who received epidural analgesia and higher in patients who had operative vaginal delivery and in Asians. Ionized fractions of Mg in umbilical veins were higher in large for gestational age infants. Our findings provide evidence of a Mg deficiency in pregnancy and suggest that measurement of IMg2+ may have clinical value for diagnosis and therapy of such deficiency.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Deep formation waters of Western Europe, Russia and North America characterised by sodium, calcium, magnesium and chloride concentrations

    NASA Astrophysics Data System (ADS)

    Bozau, Elke; Hemme, Christina; Sattler, Carl-Diedrich; van Berk, Wolfgang

    2015-04-01

    Deep formation water can be classified according to depth, temperature, and salinity (e.g., Graf et al. 1966, Kharaka & Hanor 2007). Most of the deep formation waters contain dissolved solids in excess of sea water. The hydrogeochemical development of formation water has been discussed for a long time. It is widely accepted that deep aquifers are influenced by the meteoric cycle and geochemical processes within the crust (e.g., Hebig et al. 2012). Similar hydrogeochemical signatures are found in deep formation waters of all continents and can be explained by general geochemical processes within the deep reservoirs (e.g., Land 1995). Therefore, data of deep formation waters from Western Europe, Russia, and North America are collected and classified by the major water components. The data are used to identify important hydrogeochemical processes (e.g., halite dissolution and albitisation) leading to different compositions of formation water. Two significant water types are identified: Na-Cl water and Na-Ca-Cl water. Based on the collected hydrogeochemical data, development trends are stated for the formation waters, and albitisation is favoured as the main process for calcium enrichment. Furthermore, differences of formation water according to stratigraphical units are shown for deep reservoirs of the North German Basin and the North Sea. References: Graf, D.L., 1982. Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines. Geochimica Cosmochimica Acta 46, 1431-1448. Hebig, K.H., Ito, N., Scheytt, T., Marui, A., 2012. Review: Deep groundwater research with focus on Germany. Hydrogeology Journal 20, 227-243. Kharaka, Y.K., Hanor, J.S., 2007. Deep fluids in continents: I. Sedimentary Basins. Treatise on Geochemistry 5, 1-48. Land, L.S., 1995. The role of saline formation water in the crustal cycling. Aquatic Geochemistry 1, 137-145. Acknowledgements: The presented data are results of the collaborative research program "gebo" (Geothermal energy

  15. Magnesium and magnesium alloys

    SciTech Connect

    Avedesian, M.; Baker, H.

    1998-12-31

    This new handbook is the most comprehensive publication of engineering information on commercial magnesium alloys under one cover in the last sixty years. Prepared with the cooperation of the International Magnesium Association, it presents the industrial practices currently used throughout the world, as well as the properties of the products critical to their proper application. Contents include: general characteristics; physical metallurgy; melting, refining, alloying, recycling, and powder production; casting; heat treatment; forging, rolling, and extrusion; semisolid processing; forming; joining; cleaning and finishing; selection, application, and properties of grades and alloys; design considerations; mechanical behavior and wear resistance; fatigue and fracture-mechanics; high-temperature strength and creep; corrosion and stress-corrosion cracking; specification.

  16. Magnesium and cardiovascular system.

    PubMed

    Shechter, Michael

    2010-06-01

    Hypomagnesemia is common in hospitalized patients, especially in the elderly with coronary artery disease (CAD) and/or those with chronic heart failure. Hypomagnesemia is associated with an increased incidence of diabetes mellitus, metabolic syndrome, mortality rate from CAD and all causes. Magnesium supplementation improves myocardial metabolism, inhibits calcium accumulation and myocardial cell death; it improves vascular tone, peripheral vascular resistance, afterload and cardiac output, reduces cardiac arrhythmias and improves lipid metabolism. Magnesium also reduces vulnerability to oxygen-derived free radicals, improves human endothelial function and inhibits platelet function, including platelet aggregation and adhesion, which potentially gives magnesium physiologic and natural effects similar to adenosine-diphosphate inhibitors such as clopidogrel. The data regarding its use in patients with acute myocardial infarction (AMI) is conflicting. Although some previous, relatively small randomized clinical trials demonstrated a remarkable reduction in mortality when administered to relatively high risk AMI patients, two recently published large-scale randomized clinical trials (the Fourth International Study of Infarct Survival and Magnesium in Coronaries) failed to show any advantage of intravenous magnesium over placebo. Nevertheless, there are theoretical potential benefits of magnesium supplementation as a cardioprotective agent in CAD patients, as well as promising results from previous work in animal and humans. These studies are cost effective, easy to handle and are relatively free of adverse effects, which gives magnesium a role in treating CAD patients, especially high-risk groups such as CAD patients with heart failure, the elderly and hospitalized patients with hypomagnesemia. Furthermore, magnesium therapy is indicated in life-threatening ventricular arrhythmias such as Torsades de Pointes and intractable ventricular tachycardia.

  17. Dynamic sorption of ammonium by sandy soil in fixed bed columns: Evaluation of equilibrium and non-equilibrium transport processes.

    PubMed

    Jellali, S; Diamantopoulos, E; Kallali, H; Bennaceur, S; Anane, M; Jedidi, N

    2010-01-01

    The release of excess nitrogen-containing compounds into groundwater is a major concern in aquifer recharge by the Soil Aquifer Treatment (SAT) process. Ammonium (NH(4)(+)) is one of the most nocive and common nitrogen compounds in wastewaters. In order to assess the risk of wastewater use for aquifer recharge, NH(4)(+)adsorption onto Souhil wadi soil sampled from the SAT pilot plant (Nabeul, Tunisia) was studied using laboratory columns experiments. Several experiments were conducted using aqueous synthetic solutions under different aqueous ammonium concentrations and flow rates. Furthermore, a real wastewater solution was used to test the effect of competitive cations contents on NH(4)(+) adsorption. Afterwards, the Hydrus-1D model was used in inverse mode to simulate the ammonium transport through the Souhil wadi soil. For the synthetic solutions, the adsorbed ammonium amount varied from 1 to 30.7 mg kg(-1) for aqueous ammonium concentrations between 4.9 and 36.4 mg L(-1). The linear isotherm model was found to be the most suitable for describing this adsorption. The flow rate decrease from 45 to 15 mL min(-1) induced an increase in the ammonium adsorption capacity by 49%. Indeed, the lesser the flow rate is, the longer the residence time and the higher the exchange between the aqueous solution and soil matrix. The use of wastewater instead of aqueous synthetic solution decreased about 7 times the Souhil wadi adsorption capacity of ammonium because of its relatively high concentrations of competitive ions such as calcium and magnesium. The use of the Hydrus-1D model showed that the chemical non-equilibrium model was the best to simulate the ammonium transport through the laboratory soil columns.

  18. [Magnesium deficiency in an endocrinologist's practice].

    PubMed

    Tereshchenko, I V

    2008-01-01

    The review concerning a value of magnesium in an organism in healthy persons and cases with endocrine disorders is presented. The causes of magnesium-deficient conditions in cases with type 1 and type 2 diabetes, thyrotoxic goiter, hypothyroidism and obesity were analyzed. Participation of magnesium in secretion of parathormone and a control of calcium exchange is shown. The clinical semiology of hypomagnesemia seems to be nonspecific and manifold, and, therefore, as a rule, in most of endocrine patients magnesium deficiency remains to be undiagnosed. Questions on preventive measures and management of treatment magnesium-deficient conditions are considered.

  19. Photosynthetic and growth response of sugar maple (Acer saccharum Marsh.) mature trees and seedlings to calcium, magnesium, and nitrogen additions in the Catskill Mountains, NY, USA

    USGS Publications Warehouse

    Momen, Bahram; Behling, Shawna J; Lawrence, Gregory B.; Sullivan, Joseph H

    2015-01-01

    Decline of sugar maple in North American forests has been attributed to changes in soil calcium (Ca) and nitrogen (N) by acidic precipitation. Although N is an essential and usually a limiting factor in forests, atmospheric N deposition may cause N-saturation leading to loss of soil Ca. Such changes can affect carbon gain and growth of sugar maple trees and seedlings. We applied a 22 factorial arrangement of N and dolomitic limestone containing Ca and Magnesium (Mg) to 12 forest plots in the Catskill Mountain region of NY, USA. To quantify the short-term effects, we measured photosynthetic-light responses of sugar maple mature trees and seedlings two or three times during two summers. We estimated maximum net photosynthesis (An-max) and its related light intensity (PAR at An-max), apparent quantum efficiency (Aqe), and light compensation point (LCP). To quantify the long-term effects, we measured basal area of living mature trees before and 4 and 8 years after treatment applications. Soil and foliar chemistry variables were also measured. Dolomitic limestone increased Ca, Mg, and pH in the soil Oe horizon. Mg was increased in the B horizon when comparing the plots receiving N with those receiving CaMg. In mature trees, foliar Ca and Mg concentrations were higher in the CaMg and N+CaMg plots than in the reference or N plots; foliar Ca concentration was higher in the N+CaMg plots compared with the CaMg plots, foliar Mg was higher in the CaMg plots than the N+CaMg plots; An-max was maximized due to N+CaMg treatment; Aqe decreased by N addition; and PAR at An-max increased by N or CaMg treatments alone, but the increase was maximized by their combination. No treatment effect was detected on basal areas of living mature trees four or eight years after treatment applications. In seedlings, An-max was increased by N+CaMg addition. The reference plots had an open herbaceous layer, but the plots receiving N had a dense monoculture of common woodfern in the

  20. Photosynthetic and Growth Response of Sugar Maple (Acer saccharum Marsh.) Mature Trees and Seedlings to Calcium, Magnesium, and Nitrogen Additions in the Catskill Mountains, NY, USA.

    PubMed

    Momen, Bahram; Behling, Shawna J; Lawrence, Greg B; Sullivan, Joseph H

    2015-01-01

    Decline of sugar maple in North American forests has been attributed to changes in soil calcium (Ca) and nitrogen (N) by acidic precipitation. Although N is an essential and usually a limiting factor in forests, atmospheric N deposition may cause N-saturation leading to loss of soil Ca. Such changes can affect carbon gain and growth of sugar maple trees and seedlings. We applied a 22 factorial arrangement of N and dolomitic limestone containing Ca and Magnesium (Mg) to 12 forest plots in the Catskill Mountain region of NY, USA. To quantify the short-term effects, we measured photosynthetic-light responses of sugar maple mature trees and seedlings two or three times during two summers. We estimated maximum net photosynthesis (An-max) and its related light intensity (PAR at An-max), apparent quantum efficiency (Aqe), and light compensation point (LCP). To quantify the long-term effects, we measured basal area of living mature trees before and 4 and 8 years after treatment applications. Soil and foliar chemistry variables were also measured. Dolomitic limestone increased Ca, Mg, and pH in the soil Oe horizon. Mg was increased in the B horizon when comparing the plots receiving N with those receiving CaMg. In mature trees, foliar Ca and Mg concentrations were higher in the CaMg and N+CaMg plots than in the reference or N plots; foliar Ca concentration was higher in the N+CaMg plots compared with the CaMg plots, foliar Mg was higher in the CaMg plots than the N+CaMg plots; An-max was maximized due to N+CaMg treatment; Aqe decreased by N addition; and PAR at An-max increased by N or CaMg treatments alone, but the increase was maximized by their combination. No treatment effect was detected on basal areas of living mature trees four or eight years after treatment applications. In seedlings, An-max was increased by N+CaMg addition. The reference plots had an open herbaceous layer, but the plots receiving N had a dense monoculture of common woodfern in the forest floor