Science.gov

Sample records for ammonium carbonates

  1. 21 CFR 582.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1137 Ammonium carbonate. (a) Product. Ammonium carbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or...

  2. 21 CFR 582.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1137 Ammonium carbonate. (a) Product. Ammonium carbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or...

  3. 21 CFR 582.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium carbonate. 582.1137 Section 582.1137 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1137 Ammonium carbonate. (a) Product. Ammonium carbonate. (b) Conditions of use....

  4. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ingredient as generally recognized as safe (GRAS) as a direct human food ingredient is based upon the...) of this chapter. (2) The ingredient is used in food at levels not to exceed current good... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium carbonate. 184.1137 Section 184.1137...

  5. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ingredient as generally recognized as safe (GRAS) as a direct human food ingredient is based upon the...) of this chapter. (2) The ingredient is used in food at levels not to exceed current good... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium carbonate. 184.1137 Section 184.1137...

  6. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ingredient as generally recognized as safe (GRAS) as a direct human food ingredient is based upon the...) of this chapter. (2) The ingredient is used in food at levels not to exceed current good... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium carbonate. 184.1137 Section 184.1137...

  7. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ingredient as generally recognized as safe (GRAS) as a direct human food ingredient is based upon the...) of this chapter. (2) The ingredient is used in food at levels not to exceed current good... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ammonium carbonate. 184.1137 Section 184.1137...

  8. 40 CFR 721.10099 - Dialkyl dimethyl ammonium carbonate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dialkyl dimethyl ammonium carbonate... Specific Chemical Substances § 721.10099 Dialkyl dimethyl ammonium carbonate (generic). (a) Chemical... as dialkyl dimethyl ammonium carbonate (1:1) (PMN P-03-715) is subject to reporting under...

  9. 40 CFR 721.10099 - Dialkyl dimethyl ammonium carbonate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dialkyl dimethyl ammonium carbonate... Specific Chemical Substances § 721.10099 Dialkyl dimethyl ammonium carbonate (generic). (a) Chemical... as dialkyl dimethyl ammonium carbonate (1:1) (PMN P-03-715) is subject to reporting under...

  10. 40 CFR 721.10100 - Dialkyl dimethyl ammonium carbonate (2:1) (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dialkyl dimethyl ammonium carbonate (2... Specific Chemical Substances § 721.10100 Dialkyl dimethyl ammonium carbonate (2:1) (generic). (a) Chemical... as dialkyl dimethyl ammonium carbonate (2:1) (PMN P-03-716) is subject to reporting under...

  11. 40 CFR 721.10100 - Dialkyl dimethyl ammonium carbonate (2:1) (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dialkyl dimethyl ammonium carbonate (2... Specific Chemical Substances § 721.10100 Dialkyl dimethyl ammonium carbonate (2:1) (generic). (a) Chemical... as dialkyl dimethyl ammonium carbonate (2:1) (PMN P-03-716) is subject to reporting under...

  12. Structure, hydrogen bonding and thermal expansion of ammonium carbonate monohydrate

    PubMed Central

    Fortes, A. Dominic; Wood, Ian G.; Alfè, Dario; Hernández, Eduardo R.; Gutmann, Matthias J.; Sparkes, Hazel A.

    2014-01-01

    We have determined the crystal structure of ammonium carbonate monohydrate, (NH4)2CO3·H2O, using Laue single-crystal diffraction methods with pulsed neutron radiation. The crystal is orthorhombic, space group Pnma (Z = 4), with unit-cell dimensions a = 12.047 (3), b = 4.453 (1), c = 11.023 (3) Å and V = 591.3 (3) Å3 [ρcalc = 1281.8 (7) kg m−3] at 10 K. The single-crystal data collected at 10 and 100 K are complemented by X-ray powder diffraction data measured from 245 to 273 K, Raman spectra measured from 80 to 263 K and an athermal zero-pressure calculation of the electronic structure and phonon spectrum carried out using density functional theory (DFT). We find no evidence of a phase transition between 10 and 273 K; above 273 K, however, the title compound transforms first to ammonium sesquicarbonate monohydrate and subsequently to ammonium bicarbonate. The crystallographic and spectroscopic data and the calculations reveal a quite strongly hydrogen-bonded structure (E HB ≃ 30–40 kJ mol−1), on the basis of H⋯O bond lengths and the topology of the electron density at the bond critical points, in which there is no free rotation of the ammonium cation at any temperature. The barrier to free rotation of the ammonium ions is estimated from the observed librational frequency to be ∼ 36 kJ mol−1. The c-axis exhibits negative thermal expansion, but the thermal expansion behaviour of the a and b axes is ormal. PMID:25449618

  13. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate.

    PubMed

    Yang, Zhi; Xu, Minghan; Liu, Yun; He, Fengjiao; Gao, Feng; Su, Yanjie; Wei, Hao; Zhang, Yafei

    2014-01-01

    The synthesis of water-soluble nitrogen-doped carbon dots has received great attention, due to their wide applications in oxygen reduction reaction, cell imaging, sensors, and drug delivery. Herein, nitrogen-doped, carbon-rich, highly photoluminescent carbon dots have been synthesized for the first time from ammonium citrate under hydrothermal conditions. The obtained nitrogen-doped carbon dots possess bright blue luminescence, short fluorescence lifetime, pH-sensitivity and excellent stability at a high salt concentration. They have potential to be used for pH sensors, cell imaging, solar cells, and photocatalysis.

  14. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Xu, Minghan; Liu, Yun; He, Fengjiao; Gao, Feng; Su, Yanjie; Wei, Hao; Zhang, Yafei

    2014-01-01

    The synthesis of water-soluble nitrogen-doped carbon dots has received great attention, due to their wide applications in oxygen reduction reaction, cell imaging, sensors, and drug delivery. Herein, nitrogen-doped, carbon-rich, highly photoluminescent carbon dots have been synthesized for the first time from ammonium citrate under hydrothermal conditions. The obtained nitrogen-doped carbon dots possess bright blue luminescence, short fluorescence lifetime, pH-sensitivity and excellent stability at a high salt concentration. They have potential to be used for pH sensors, cell imaging, solar cells, and photocatalysis.The synthesis of water-soluble nitrogen-doped carbon dots has received great attention, due to their wide applications in oxygen reduction reaction, cell imaging, sensors, and drug delivery. Herein, nitrogen-doped, carbon-rich, highly photoluminescent carbon dots have been synthesized for the first time from ammonium citrate under hydrothermal conditions. The obtained nitrogen-doped carbon dots possess bright blue luminescence, short fluorescence lifetime, pH-sensitivity and excellent stability at a high salt concentration. They have potential to be used for pH sensors, cell imaging, solar cells, and photocatalysis. Electronic supplementary information (ESI) available: The curve of photoluminescence and absorbance of N-doped CDs and quinine sulfate, and the table showing XPS detailed information. See DOI: 10.1039/c3nr05380f

  15. Ammonium Laurate Surfactant for Cleaner Deposition of Carbon Nanotubes.

    PubMed

    Nilsson, Hanna M; Meany, Brendan; Ticey, Jeremy; Sun, Chuan-Fu; Wang, YuHuang; Cumings, John

    2015-06-30

    Experiments probing the properties of individual carbon nanotubes (CNTs) and those measuring bulk composites show vastly different results. One major issue limiting the results is that the procedures required to separate and test CNTs introduce contamination that changes the properties of the CNT. These contamination residues often come from the resist used in lithographic processing and the surfactant used to suspend and deposit the CNTs, commonly sodium dodecyl sulfate (SDS). Here we present ammonium laurate (AL), a surfactant that has previously not been used for this application, which differs from SDS only by substitution of ionic constituents but shows vastly cleaner depositions. In addition, we show that compared to SDS, AL-suspended CNTs have greater shelf stability and more selective dispersion. These results are verified using transmission electron microscopy, atomic force microscopy, ζ-potential measurements, and Raman and absorption optical spectroscopy. This surfactant is simple to prepare, and the nanotube solutions require minimal sonication and centrifugation in order to outperform SDS. PMID:26020583

  16. Quaternary ammonium sulfanilamide: a membrane-impermeant carbonic anhydrase inhibitor

    SciTech Connect

    Henry, R.P.

    1987-05-01

    A novel carbonic anhydrase (CA) inhibitor, quaternary ammonium sulfanilamide (QAS), was tested for potency as a CA inhibitor and for its ability to be excluded from permeating biological membranes. Inhibitor titration plots of QAS vs. pure bovine CA II and CA from the gills of the blue crab, Callinectes sapidus, yielded K/sub i/ values of approx. 15 ..mu..M; thus QAS is a relatively weak but effective CA inhibitor. Permeability of the QAS was directly tested by two independent methods. The inhibitor was excluded from human erythrocytes incubated in 5 mM QAS for 24 h as determined using an /sup 18/O-labeled mass spectrometer CA assay for intact cells. Also QAS injected into the hemolymph of C. sapidus (1 or 10 mM) did not cross the basal membrane of the gill. The compound was cleared from the hemolymph by 96 h after injection, and at no time during that period could the QAS be detected in homogenates of gill tissue. Total branchial CA activity was only slightly reduced following the QAS injection. These data indicate that QAS is a CA inhibitor to which biological membranes are impermeable and that can be used in vivo and in vitro in the study of membrane-associated CA.

  17. Quaternary ammonium sulfanilamide: a membrane-impermeant carbonic anhydrase inhibitor.

    PubMed

    Henry, R P

    1987-05-01

    A novel carbonic anhydrase (CA) inhibitor, quaternary ammonium sulfanilamide (QAS), was tested for potency as a CA inhibitor and for its ability to be excluded from permeating biological membranes. Inhibitor titration plots of QAS vs. pure bovine CA II and CA from the gills of the blue crab, Callinectes sapidus, yielded Ki values of approximately 15 microM; thus QAS is a relatively weak but effective CA inhibitor. Permeability of the QAS was directly tested by two independent methods. The inhibitor was excluded from human erythrocytes incubated in 5 mM QAS for 24 h as determined using an 18O-labeled mass spectrometer CA assay for intact cells. Also QAS injected into the hemolymph of C. sapidus (1 or 10 mM) did not cross the basal membrane of the gill. The compound was cleared from the hemolymph by 96 h after injection, and at no time during that period could the QAS be detected in homogenates of gill tissue. Total branchial CA activity was only slightly reduced following the QAS injection. These data indicate that QAS is a CA inhibitor to which biological membranes are impermeable and that can be used in vivo or in vitro in the study of membrane-associated CA.

  18. Ammonium removal in constructed wetland microcosms as influenced by season and organic carbon load.

    PubMed

    Riley, Kate A; Stein, Otto R; Hook, Paul B

    2005-01-01

    We evaluated ammonium nitrogen removal and nitrogen transformations in three-year-old, batch-operated, subsurface wetland microcosms. Treatments included replicates of Typha latifolia, Carex rostrata, and unplanted controls when influent carbon was excluded, and C. rostrata with an influent containing organic carbon. A series of 10-day batch incubations were conducted over a simulated yearlong cycle of seasons. The presence of plants significantly enhanced ammonium removal during both summer (24 degrees C, active plant growth) and winter (4 degrees C, plant dormancy) conditions, but significant differences between plant species were evident only in summer when C. rostrata outperformed T. latifolia. The effect of organic carbon load was distinctly seasonal, enhancing C. rostrata ammonium removal in winter but having an inhibitory effect in summer. Season did not influence ammonium removal in T. latifolia or unplanted columns. Net production of organic carbon was evident year-round in units without an influent organic carbon source, but was enhanced in summer, especially for C. rostrata, which produced significantly more than T. latifolia and unplanted controls. No differences in production were evident between species in winter. COD values for C. rostrata microcosms with and without influent organic carbon converged within 24 hours in winter and 7 days in summer. Gravel sorption, microbial immobilization and sequential nitrification/denitrification appear to be the major nitrogen removal mechanisms. All evidence suggests differences between season and species are due to differences in seasonal variation of root-zone oxidation.

  19. Brown Carbon Production in Aldehyde + Ammonium Sulfate Mixtures: Effects of Formaldehyde and Amines

    NASA Astrophysics Data System (ADS)

    Powelson, M.; De Haan, D. O.

    2012-12-01

    The formation of light-absorbing 'brown carbon,' or HULIS (humic- like substances), in atmospheric aerosol has an important impact on climate. However, the precursors responsible for brown carbon formation have not been identified. Several aldehydes present in clouds (methylglyoxal, glycolaldehyde, hydroxyacetone, glyoxal, and acetaldehyde) have the potential to create brown products when reacted with ammonium sulfate or primary amines such as methylamine or glycine. The formation of light-absorbing products from these reactions was characterized as a function of cloud-relevant pH (from 3- 6) using UV-Visible spectroscopy. Of the different aldehydes teste, the largest production rates of light-absorbing compounds were observed in reactions of glycolaldehyde and methylglyoxal. Primary amines produced more light- absorbing products than ammonium sulfate at lower concentrations. The addition of formaldehyde to any reaction with other aldehydes decreased the formation of light-absorbing products, while the addition of a small amount (1:5 mole ratio) of glycine to aldehyde + ammonium sulfate reactions can increase the production of light-absorbing products. These results suggest that the presence of primary amines significantly influence atmospheric brown carbon production by aldehydes even when much greater quantities of ammonium sulfate are present.

  20. Dissolution of Irradiated Commercial UO2 Fuels in Ammonium Carbonate and Hydrogen Peroxide

    SciTech Connect

    Soderquist, Chuck Z.; Johnsen, Amanda M.; McNamara, Bruce K.; Hanson, Brady D.; Chenault, Jeffrey W.; Carson, Katharine J.; Peper, Shane M.

    2011-01-18

    We propose and test a disposition path for irradiated nuclear fuel using ammonium carbonate and hydrogen peroxide media. We demonstrate on a 13 g scale that >98% of the irradiated fuel dissolves. Subsequent expulsion of carbonate from the dissolver solution precipitates >95% of the plutonium, americium, curium, and substantial amounts of fission products, effectively partitioning the fuel at the dissolution step. Uranium can be easily recovered from solution by any of several means, such as ion exchange, solvent extraction, or direct precipitation. Ammonium carbonate can be evaporated from solution and recovered for re-use, leaving an extremely compact volume of fission products, transactinides, and uranium. Stack emissions are predicted to be less toxic, less radioactive, chemically simpler, and simpler to treat than those from the conventional PUREX process.

  1. Full-scale sludge liquor treatment for ammonium reduction with low carbon dosage.

    PubMed

    Gustavsson, D J I; Nyberg, U; Jansen, J la Cour

    2011-01-01

    The separate treatment of sludge liquor, produced by dewatering anaerobic digested sludge at wastewater treatment plants, gives rise to extreme environments for nitrogen removal. A full-scale sequencing batch reactor was operated with the aim of introducing and studying denitritation as a supplement to nitritation in order to reduce operating costs. Since the main plant only has problems with ammonium reduction capacity, the initial strategy was to have sufficient ammonium reduction with optimal alkalinity production by denitrifiers, i.e. low carbon dosage and minimum alkalinity and residual oxidized ammonium in the effluent. This strategy led to an unbalanced and sensitive process because the denitrifiers were often inhibited. High dissolved oxygen (DO) readings and no decrease in oxidation-reduction potential (ORP) during anoxic phases with simultaneous ethanol dosage indicated inhibition of denitrifiers, probably by the intermediate product NO, which may have interfered with the DO sensor. Nitric oxide production was believed to be favoured in the beginning of the anoxic phase as a result of low pH and high nitrite concentration. A stable nitritation-denitritation process could be achieved when the aerobic hydraulic retention time (HRT) was decreased to the same length as the anoxic HRT, which resulted in increased unused alkalinity. PMID:21879560

  2. Non-Ideal Detonation Properties of Ammonium Nitrate and Activated Carbon Mixtures

    NASA Astrophysics Data System (ADS)

    Miyake, Atsumi; Echigoya, Hiroshi; Kobayashi, Hidefumi; Ogawa, Terushige; Katoh, Katsumi; Kubota, Shiro; Wada, Yuji; Ogata, Yuji

    To obtain a better understanding of detonation properties of ammonium nitrate (AN) and activated carbon (AC) mixtures, steel tube tests with several diameters were carried out for various compositions of powdered AN and AC mixtures and the influence of the charge diameter on the detonation velocity was investigated. The results showed that the detonation velocity increased with the increase of the charge diameter. The experimentally observed values were far below the theoretically predicted values made by the thermodynamic CHEETAH code and they showed so-called non-ideal detonation. The extrapolated detonation velocity of stoichiometric composition to the infinite diameter showed a good agreement with the theoretical value.

  3. Ultrasonic-assisted chemical oxidative cutting of multiwalled carbon nanotubes with ammonium persulfate in neutral media

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Wang, Tingmei

    2009-12-01

    A new, facile, and mild approach was developed to cut the conventional long and entangled multiwalled carbon nanotubes (MWCNTs) to short and dispersed ones with length of less than 1 μm by ultrasonic-assisted chemical oxidation with ammonium persulfate (APS) in neutral aqueous solution at room temperature. The resulting products were characterized with Fourier transform infrared (FTIR), Raman, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and transmission electron microscope (TEM) techniques. The shortened MWCNTs formed stable dispersion state in water without the help of surfactants that provided possibility for further functionalizations and applications.

  4. Porous polymers bearing functional quaternary ammonium salts as efficient solid catalysts for the fixation of CO2 into cyclic carbonates

    NASA Astrophysics Data System (ADS)

    Cai, Sheng; Zhu, Dongliang; Zou, Yan; Zhao, Jing

    2016-07-01

    A series of porous polymers bearing functional quaternary ammonium salts were solvothermally synthesized through the free radical copolymerization of divinylbenzene (DVB) and functionalized quaternary ammonium salts. The obtained polymers feature highly cross-linked matrices, large surface areas, and abundant halogen anions. These polymers were evaluated as heterogeneous catalysts for the synthesis of cyclic carbonates from epoxides and CO2 in the absence of co-catalysts and solvents. The results revealed that the synergistic effect between the functional hydroxyl groups and the halide anion Br- afforded excellent catalytic activity to cyclic carbonates. In addition, the catalyst can be easily recovered and reused for at least five cycles without significant loss in activity.

  5. Porous polymers bearing functional quaternary ammonium salts as efficient solid catalysts for the fixation of CO2 into cyclic carbonates.

    PubMed

    Cai, Sheng; Zhu, Dongliang; Zou, Yan; Zhao, Jing

    2016-12-01

    A series of porous polymers bearing functional quaternary ammonium salts were solvothermally synthesized through the free radical copolymerization of divinylbenzene (DVB) and functionalized quaternary ammonium salts. The obtained polymers feature highly cross-linked matrices, large surface areas, and abundant halogen anions. These polymers were evaluated as heterogeneous catalysts for the synthesis of cyclic carbonates from epoxides and CO2 in the absence of co-catalysts and solvents. The results revealed that the synergistic effect between the functional hydroxyl groups and the halide anion Br(-) afforded excellent catalytic activity to cyclic carbonates. In addition, the catalyst can be easily recovered and reused for at least five cycles without significant loss in activity.

  6. Integration of CO2 capture and mineral carbonation by using recyclable ammonium salts.

    PubMed

    Wang, Xiaolong; Maroto-Valer, M Mercedes

    2011-09-19

    A new approach to capture and store CO(2) by mineral carbonation using recyclable ammonium salts was studied. This process integrates CO(2) capture with mineral carbonation by employing NH(3), NH(4)HSO(4), and NH(4)HCO(3) in the capture, mineral dissolution, and carbonation steps, respectively. NH(4)HSO(4) and NH(3) can then be regenerated by thermal decomposition of (NH(4))(2)SO(4). The use of NH(4)HCO(3) as the source of CO(2) can avoid desorption and compression of CO(2). The mass ratio of Mg/NH(4)HCO(3)/NH(3) is the key factor controlling carbonation and the optimum ratio of 1:4:2 gives a conversion of Mg ions to hydromagnesite of 95.5%. Thermogravimetric analysis studies indicated that the regeneration efficiency of NH(4)HSO(4) and NH(3) in this process is 95%. The mass balance of the process shows that about 2.63 tonnes of serpentine, 0.12 tonnes of NH(4)HSO(4), 7.48 tonnes of NH(4)HCO(3), and 0.04 tonnes of NH(3) are required to sequester 1 tonne of CO(2) as hydromagnesite. PMID:21732542

  7. Brown carbon formation by aqueous-phase carbonyl compound reactions with amines and ammonium sulfate.

    PubMed

    Powelson, Michelle H; Espelien, Brenna M; Hawkins, Lelia N; Galloway, Melissa M; De Haan, David O

    2014-01-21

    Reactions between small water-soluble carbonyl compounds, ammonium sulfate (AS), and/or amines were evaluated for their ability to form light-absorbing species in aqueous aerosol. Aerosol chemistry was simulated with bulk phase reactions at pH 4, 275 K, initial concentrations of 0.05 to 0.25 M, and UV-vis and fluorescence spectroscopy monitoring. Glycolaldehyde-glycine mixtures produced the most intense absorbance. In carbonyl compound reactions with AS, methylamine, or AS/glycine mixtures, product absorbance followed the order methylglyoxal > glyoxal > glycolaldehyde > hydroxyacetone. Absorbance extended into the visible, with a wavelength dependence fit by absorption Ångstrom coefficients (Å(abs)) of 2 to 11, overlapping the Å(abs) range of atmospheric, water-soluble brown carbon. Many reaction products absorbing between 300 and 400 nm were strongly fluorescent. On a per mole basis, amines are much more effective than AS at producing brown carbon. In addition, methylglyoxal and glyoxal produced more light-absorbing products in reactions with a 5:1 AS-glycine mixture than with AS or glycine alone, illustrating the importance of both organic and inorganic nitrogen in brown carbon formation. Through comparison to biomass burning aerosol, we place an upper limit on the contribution of these aqueous carbonyl-AS-amine reactions of ≤ 10% of global light absorption by brown carbon. PMID:24351110

  8. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Iodide Perovskite Interface

    SciTech Connect

    Przepioski, Joshua

    2015-08-28

    This work correlates resonant peaks from first principles calculation on ammonia (NH3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH3NH3PbI3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI2 and the poly(9,9-dioctylfluorene- 2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to better identify the dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.

  9. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Trihalide Perovskite Interface - Oral Presentation

    SciTech Connect

    Przepioski, Joshua

    2015-08-25

    This work correlates resonant peaks from first principles calculation on ammonia (NH3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH3NH3PbI3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI2 and the poly(9,9-dioctylfluorene-2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to better identify the dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.

  10. CO2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance.

    PubMed

    Vega-Mas, Izargi; Marino, Daniel; Sánchez-Zabala, Joseba; González-Murua, Carmen; Estavillo, Jose María; González-Moro, María Begoña

    2015-12-01

    Ammonium (NH4(+)) toxicity typically occurs in plants exposed to high environmental NH4(+) concentration. NH4(+) assimilating capacity may act as a biochemical mechanism avoiding its toxic accumulation but requires a fine tuning between nitrogen assimilating enzymes and carbon anaplerotic routes. In this work, we hypothesized that extra C supply, exposing tomato plants cv. Agora Hybrid F1 to elevated atmospheric CO2, could improve photosynthetic process and thus ameliorate NH4(+) assimilation and tolerance. Plants were grown under nitrate (NO3(-)) or NH4(+) as N source (5-15mM), under two atmospheric CO2 levels, 400 and 800ppm. Growth and gas exchange parameters, (15)N isotopic signature, C and N metabolites and enzymatic activities were determined. Plants under 7.5mM N equally grew independently of the N source, while higher ammonium supply resulted toxic for growth. However, specific stomatal closure occurred in 7.5mM NH4(+)-fed plants under elevated CO2 improving water use efficiency (WUE) but compromising plant N status. Elevated CO2 annulled the induction of TCA anaplerotic enzymes observed at non-toxic NH4(+) nutrition under ambient CO2. Finally, CO2 enrichment benefited tomato growth under both nutritions, and although it did not alleviate tomato NH4(+) tolerance it did differentially regulate plant metabolism in N-source and -dose dependent manner. PMID:26706056

  11. CO2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance.

    PubMed

    Vega-Mas, Izargi; Marino, Daniel; Sánchez-Zabala, Joseba; González-Murua, Carmen; Estavillo, Jose María; González-Moro, María Begoña

    2015-12-01

    Ammonium (NH4(+)) toxicity typically occurs in plants exposed to high environmental NH4(+) concentration. NH4(+) assimilating capacity may act as a biochemical mechanism avoiding its toxic accumulation but requires a fine tuning between nitrogen assimilating enzymes and carbon anaplerotic routes. In this work, we hypothesized that extra C supply, exposing tomato plants cv. Agora Hybrid F1 to elevated atmospheric CO2, could improve photosynthetic process and thus ameliorate NH4(+) assimilation and tolerance. Plants were grown under nitrate (NO3(-)) or NH4(+) as N source (5-15mM), under two atmospheric CO2 levels, 400 and 800ppm. Growth and gas exchange parameters, (15)N isotopic signature, C and N metabolites and enzymatic activities were determined. Plants under 7.5mM N equally grew independently of the N source, while higher ammonium supply resulted toxic for growth. However, specific stomatal closure occurred in 7.5mM NH4(+)-fed plants under elevated CO2 improving water use efficiency (WUE) but compromising plant N status. Elevated CO2 annulled the induction of TCA anaplerotic enzymes observed at non-toxic NH4(+) nutrition under ambient CO2. Finally, CO2 enrichment benefited tomato growth under both nutritions, and although it did not alleviate tomato NH4(+) tolerance it did differentially regulate plant metabolism in N-source and -dose dependent manner.

  12. Is Ammonium Peroxydisulate Indispensable for Preparation of Aniline-Derived Iron-Nitrogen-Carbon Electrocatalysts?

    PubMed

    Xie, Nan-Hong; Yan, Xiang-Hui; Xu, Bo-Qing

    2016-09-01

    Iron and nitrogen co-doped carbon (Fe-N-C) materials are among the most active non-precious metal catalysts that could replace Pt-based electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries. The synthesis of the Fe-N-C catalysts often involves the use of aniline as the precursor for both N and C and ammonium peroxydisulfate (APS) as an indispensable oxidative initiator for aniline polymerization. Herein, a detailed structure and catalytic ORR performance comparison of aniline-derived Fe-N-C catalysts synthesized with and without the use of APS is reported. The APS-free preparation, which uses Fe(III) ions as the Fe source as well as the aniline polymerization initiator, results in a simple Fe-N-C catalyst with a high activity for the ORR. We show that APS is not necessary for the preparation and even detrimental to the performance of the catalyst.

  13. Continuing assessment of the 5 day sodium carbonate-ammonium nitrate extraction assay as an indicator test for silicon fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The five day sodium carbonate-ammonium nitrate extraction assay has been proposed by the AAFPCO as a standard test to identify fertilizers that provide plant-available Si. A single-lab validation test was previously performed; however, the analysis lacked any correlation to a grow-out study. To do...

  14. Ammonium removal of drinking water at low temperature by activated carbon filter biologically enhanced with heterotrophic nitrifying bacteria.

    PubMed

    Qin, Wen; Li, Wei-Guang; Zhang, Duo-Ying; Huang, Xiao-Fei; Song, Yang

    2016-03-01

    We sought to confirm whether use of Acinetobacter strains Y7 and Y16, both strains of heterotrophic nitrifying bacteria, was practical for removing ammonium (NH4 (+)-N) from drinking water at low temperatures. To test this, ammonium-containing drinking water was treated with strains Y7 and Y16 at 8 and 2 °C. Continuous ammonium treatment was conducted in order to evaluate the performance of three biologically enhanced activated carbon (BEAC) filters in removing ammonium. The three BEAC filters were inoculated with strain Y7, strain Y16, and a mixture of strains Y7 and Y16, respectively. A granular activated carbon (GAC) filter, without inoculation by any strains, was tested in parallel with the BEAC filters as control. The results indicated that NH4 (+)-N removal was significant when a BEAC filter was inoculated with the mixture of strains Y7 and Y16 (BEAC-III filter). Amounts of 0.44 ± 0.05 and 0.25 ± 0.05 mg L(-1) NH4 (+)-N were removed using the BEAC-III filter at 8 and 2 °C, respectively. These values were 2.8-4.0-fold higher than the values of ammonium removal acquired using the GAC filter. The synergistic effect of using strains Y7 and Y16 in concert was the cause of the high-ammonium removal efficiency achieved by using the BEAC-III filter at low temperatures. In addition, a high C/N ratio may promote NH4 (+)-N removal efficiency by improving biomass and microbial activity. This study provides new insight into the use of biofilters to achieve biological removal of ammonium at low temperature. PMID:26527340

  15. Ammonium removal of drinking water at low temperature by activated carbon filter biologically enhanced with heterotrophic nitrifying bacteria.

    PubMed

    Qin, Wen; Li, Wei-Guang; Zhang, Duo-Ying; Huang, Xiao-Fei; Song, Yang

    2016-03-01

    We sought to confirm whether use of Acinetobacter strains Y7 and Y16, both strains of heterotrophic nitrifying bacteria, was practical for removing ammonium (NH4 (+)-N) from drinking water at low temperatures. To test this, ammonium-containing drinking water was treated with strains Y7 and Y16 at 8 and 2 °C. Continuous ammonium treatment was conducted in order to evaluate the performance of three biologically enhanced activated carbon (BEAC) filters in removing ammonium. The three BEAC filters were inoculated with strain Y7, strain Y16, and a mixture of strains Y7 and Y16, respectively. A granular activated carbon (GAC) filter, without inoculation by any strains, was tested in parallel with the BEAC filters as control. The results indicated that NH4 (+)-N removal was significant when a BEAC filter was inoculated with the mixture of strains Y7 and Y16 (BEAC-III filter). Amounts of 0.44 ± 0.05 and 0.25 ± 0.05 mg L(-1) NH4 (+)-N were removed using the BEAC-III filter at 8 and 2 °C, respectively. These values were 2.8-4.0-fold higher than the values of ammonium removal acquired using the GAC filter. The synergistic effect of using strains Y7 and Y16 in concert was the cause of the high-ammonium removal efficiency achieved by using the BEAC-III filter at low temperatures. In addition, a high C/N ratio may promote NH4 (+)-N removal efficiency by improving biomass and microbial activity. This study provides new insight into the use of biofilters to achieve biological removal of ammonium at low temperature.

  16. Revealing Brown Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium Sulfate

    SciTech Connect

    Lin, Peng; Laskin, Julia; Nizkorodov, Sergey A.; Laskin, Alexander

    2015-12-15

    Atmospheric brown carbon (BrC) is an important contributor to light absorption and climate forcing by aerosols. Reactions between small water-soluble carbonyls and ammonia or amines have been identified as one of the potential pathways of BrC formation. However, detailed chemical characterization of BrC chromophores has been challenging and their formation mechanisms are still poorly understood. Understanding BrC formation is impeded by the lack of suitable methods which can unravel the variability and complexity of BrC mixtures. This study applies high performance liquid chromatography (HPLC) coupled to photodiode array (PDA) detector and high resolution mass spectrometry (HRMS) to investigate optical properties and chemical composition of individual BrC components produced through reactions of methylglyoxal (MG) and ammonium sulfate (AS), both of which are abundant in the atmospheric environment. A direct relationship between optical properties and chemical composition of 30 major BrC chromophores was established. Nearly all of these chromophores are nitrogen-containing compounds that account for >70% of the overall light absorption by the MG+AS system in the 300-500 nm range. These results suggest that reduced-nitrogen organic compounds formed in reactions between atmospheric carbonyls and ammonia/amines are important BrC chromophores. It is also demonstrated that improved separation of BrC chromophores by HPLC will significantly advance understanding of BrC chemistry.

  17. Is Ammonium Peroxydisulate Indispensable for Preparation of Aniline-Derived Iron-Nitrogen-Carbon Electrocatalysts?

    PubMed

    Xie, Nan-Hong; Yan, Xiang-Hui; Xu, Bo-Qing

    2016-09-01

    Iron and nitrogen co-doped carbon (Fe-N-C) materials are among the most active non-precious metal catalysts that could replace Pt-based electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries. The synthesis of the Fe-N-C catalysts often involves the use of aniline as the precursor for both N and C and ammonium peroxydisulfate (APS) as an indispensable oxidative initiator for aniline polymerization. Herein, a detailed structure and catalytic ORR performance comparison of aniline-derived Fe-N-C catalysts synthesized with and without the use of APS is reported. The APS-free preparation, which uses Fe(III) ions as the Fe source as well as the aniline polymerization initiator, results in a simple Fe-N-C catalyst with a high activity for the ORR. We show that APS is not necessary for the preparation and even detrimental to the performance of the catalyst. PMID:27514790

  18. Revealing Brown Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium Sulfate.

    PubMed

    Lin, Peng; Laskin, Julia; Nizkorodov, Sergey A; Laskin, Alexander

    2015-12-15

    Atmospheric brown carbon (BrC) is an important contributor to light absorption and climate forcing by aerosols. Reactions between small water-soluble carbonyls and ammonia or amines have been identified as one of the potential pathways of BrC formation. However, detailed chemical characterization of BrC chromophores has been challenging and their formation mechanisms are still poorly understood. Understanding BrC formation is impeded by the lack of suitable methods which can unravel the variability and complexity of BrC mixtures. This study applies high performance liquid chromatography (HPLC) coupled to photodiode array (PDA) detector and high resolution mass spectrometry (HRMS) to investigate optical properties and chemical composition of individual BrC components produced through reactions of methylglyoxal (MG) and ammonium sulfate (AS), both of which are abundant in the atmospheric environment. A direct relationship between optical properties and chemical composition of 30 major BrC chromophores is established. Nearly all of these chromophores are nitrogen-containing compounds that account for >70% of the overall light absorption by the MG+AS system in the 300-500 nm range. These results suggest that reduced-nitrogen organic compounds formed in reactions between atmospheric carbonyls and ammonia/amines are important BrC chromophores. It is also demonstrated that improved separation of BrC chromophores by HPLC will significantly advance understanding of BrC chemistry. PMID:26505092

  19. Revealing Brown Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium Sulfate.

    PubMed

    Lin, Peng; Laskin, Julia; Nizkorodov, Sergey A; Laskin, Alexander

    2015-12-15

    Atmospheric brown carbon (BrC) is an important contributor to light absorption and climate forcing by aerosols. Reactions between small water-soluble carbonyls and ammonia or amines have been identified as one of the potential pathways of BrC formation. However, detailed chemical characterization of BrC chromophores has been challenging and their formation mechanisms are still poorly understood. Understanding BrC formation is impeded by the lack of suitable methods which can unravel the variability and complexity of BrC mixtures. This study applies high performance liquid chromatography (HPLC) coupled to photodiode array (PDA) detector and high resolution mass spectrometry (HRMS) to investigate optical properties and chemical composition of individual BrC components produced through reactions of methylglyoxal (MG) and ammonium sulfate (AS), both of which are abundant in the atmospheric environment. A direct relationship between optical properties and chemical composition of 30 major BrC chromophores is established. Nearly all of these chromophores are nitrogen-containing compounds that account for >70% of the overall light absorption by the MG+AS system in the 300-500 nm range. These results suggest that reduced-nitrogen organic compounds formed in reactions between atmospheric carbonyls and ammonia/amines are important BrC chromophores. It is also demonstrated that improved separation of BrC chromophores by HPLC will significantly advance understanding of BrC chemistry.

  20. [Study on the start-up of anaerobic ammonium oxidation process in biological activated carbon reactor].

    PubMed

    Lai, Wei-Yi; Zhou, Wei-Li; He, Sheng-Bing

    2013-08-01

    In order to shorten the start-up time of anaerobic ammonium oxidation (ANAMMOX) reactor, biological activated cabon reactor was applied. Three lab scale UASB reactors were seeded with anaerobic sludge, fed with synthetic wastewater containing ammonia and nitrite, and supplemented with granular activated carbon on day 0, 33 and 56, respectively. The nitrogen removal performance of the first reactor, into which GAC was added on day 0, showed no significant improvement in 90 days. After being suspended for about one month, the secondary start-up of this reactor succeeded in another 33 days (totally 123 days). 49 d and 85 d were taken for the other two reactors started up by the addition of GAC on day 33 and 56, respectively. After the reactors were started up, the average removal rates of total nitrogen were 89.8%, 86.7% and 86.7%, respectively. The start-up process could be divided into four stages, namely, the bacterial autolysis phase, the lag phase, the improve phase and the stationary phase, and the best time for adding GAC carrier was right after the start of the lag phase.

  1. Dissolution of Uranium(IV) Oxide in Solutions of Ammonium Carbonate and Hydrogen Peroxide

    SciTech Connect

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew; Ziegelgruber, Kate L.; Finn, Erin C.

    2009-09-12

    Understanding the dissolution characteristics of uranium oxides is of fundamental scientific interest. Bench scale experiments were conducted to determine the optimal dissolution parameters of uranium(IV) oxide (UO2) powder in solutions of ammonium carbonate [(NH4)2CO3] and hydrogen peroxide (H2O2). Experimental parameters included variable peroxide and carbonate concentrations, and temperature. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M (1:1 to 40:1 mol ratio H2O2:U), with no apparent maximum rate reached under the limited conditions used in our study. Temperature ranging studies show the dissolution rate of UO2 in 1 M (NH4)2CO3 and 0.1 M H2O2 (2:1 mol ratio H2O2:U) increases linearly from 15 °C to 60 °C, again with no apparent maximum rate reached. Dissolution of UO2 in solutions with constant [H2O2] and [(NH4)2CO3] ranging from 0.5 to 2 M showed no difference in rate; however dissolution was significantly reduced in 0.05 M (NH4)2CO3 solution. The results of this study demonstrate the influence of [H2O2], [(NH4)2CO3], and temperature on the dissolution of UO2 in peroxide-containing (NH4)2CO3 solutions. Future studies are planned to elucidate the solution and solid state complexes in these systems.

  2. Combination of powdered activated carbon and powdered zeolite for enhancing ammonium removal in micro-polluted raw water.

    PubMed

    Liao, Zhen-Liang; Chen, Hao; Zhu, Bai-Rong; Li, Huai-Zheng

    2015-09-01

    Even zeolite is promising in ammonia pollution disposing, its removal efficiency is frequently interfered by organics. As activated carbon has good removal efficiency on organic contaminants, combination of two adsorbents may allow their respective adsorption characteristics into full play. This paper provides a performance assessment of the combination for enhancing ammonium removal in micro-polluted raw water. Gel-filtration chromatography (GFC) was carried out to quantify the molecular weight (MW) range of organic contaminants that powdered activated carbon (PAC) and powdered zeolite (PZ) can remove. The polydispersity difference which also calculated from GFC may indicate the wider organic contaminants removal range of PAC and the relatively centralized removal range of PZ. The jar tests of combination dosing confirm a synergistic effect which promotes ammonium removing. Nevertheless, it also shows an antagonism hindering the due removal performance of the two adsorbents on CODMn, while it is not much evident on UV254. Furthermore, a comparison study with simulated coagulation-sedimentation process was conducted to evaluate the optimum dosing points (spatial and temporal) of PAC and PZ among follows: suction well, pipeline mixer, early and middle phase of flocculation. We suggest to dose both two adsorbents into the early phase of flocculation to maximize the versatile removal efficiency on turbidity, ammonium and organic contaminants.

  3. Combination of powdered activated carbon and powdered zeolite for enhancing ammonium removal in micro-polluted raw water.

    PubMed

    Liao, Zhen-Liang; Chen, Hao; Zhu, Bai-Rong; Li, Huai-Zheng

    2015-09-01

    Even zeolite is promising in ammonia pollution disposing, its removal efficiency is frequently interfered by organics. As activated carbon has good removal efficiency on organic contaminants, combination of two adsorbents may allow their respective adsorption characteristics into full play. This paper provides a performance assessment of the combination for enhancing ammonium removal in micro-polluted raw water. Gel-filtration chromatography (GFC) was carried out to quantify the molecular weight (MW) range of organic contaminants that powdered activated carbon (PAC) and powdered zeolite (PZ) can remove. The polydispersity difference which also calculated from GFC may indicate the wider organic contaminants removal range of PAC and the relatively centralized removal range of PZ. The jar tests of combination dosing confirm a synergistic effect which promotes ammonium removing. Nevertheless, it also shows an antagonism hindering the due removal performance of the two adsorbents on CODMn, while it is not much evident on UV254. Furthermore, a comparison study with simulated coagulation-sedimentation process was conducted to evaluate the optimum dosing points (spatial and temporal) of PAC and PZ among follows: suction well, pipeline mixer, early and middle phase of flocculation. We suggest to dose both two adsorbents into the early phase of flocculation to maximize the versatile removal efficiency on turbidity, ammonium and organic contaminants. PMID:25929873

  4. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Wang, Xuefei; Ouyang, Qin; Chen, Yousi; Yan, Qing

    2012-10-01

    The surfaces of polyacrylonitrile-based carbon fibers were treated by an electrochemical anodic method. Three different kinds of ammonium-salt solutions namely NH4HCO3, (NH4)2CO3 and (NH4)3PO4 were respectively chosen as the electrolytes. The effect of these electrolytes on the surface structure was studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The results showed that longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment, and the root mean square roughness (RMS) of carbon fiber surface increased from 4.6 nm for untreated fibers to 13.5 nm for treated fibers in (NH4)3PO4 electrolytes. The concentration of oxygen and nitrogen atomic on the fiber surface increased after surface treatment. The tensile strength of oxidized fibers had an obvious decrease, whereas the interlaminar shear strength (ILSS) value of corresponding carbon fiber reinforced polymers (CFRPs) increased in a large extent. The intensity of oxidative reaction varied with the change of ammonium-salt solutions and electrochemical oxidation in (NH4)3PO4 electrolyte was of the most violence. The corresponding mechanism was also discussed and the result showed that the higher the concentration of OH- ions in the electrolytes, the violent the oxidative reaction happened.

  5. [Long ureteral ammonium-magnesium phosphate (struvite) and calcium phospho-carbonate calculi].

    PubMed

    Thomas, J; Boyer, C H; Benassayag, E; Steg, A; Debré, B

    1991-01-01

    The authors report about 12 cases of long ureteral calculi, 16 to 39 mm in size, observed over 10 years. They were all made of a mixture of ammonium-magnesium phosphate and calcium phosphocarbonate. Infection was the revealing symptom, either in the form of simple bacteriuria or as acute pyelonephritis or sepsis. These calculi, found in a lumbar or pelvic location, were very long, radiopaque but with a moderate radiological density, homogeneous and have regular contours. They were straight, sometimes slightly bent, rarely (one case out of 12) arciform. In 11 of 12 cases, the affected patient was female. In most cases, the urine was infected by Proteus mirabilis. In spite of their size, the calculi caused total obstruction in 3 of 12 cases only. They were or were not associated to ipsilateral coral calculi of the same chemical type. Destruction was easily achieved with physical agents. The etiological, radiological and therapeutic characteristics of these calculi give them a specific place among ammonium-magnesium phosphate calculi.

  6. Accelerated OH(-) transport in activated carbon air cathode by modification of quaternary ammonium for microbial fuel cells.

    PubMed

    Wang, Xin; Feng, Cuijuan; Ding, Ning; Zhang, Qingrui; Li, Nan; Li, Xiaojing; Zhang, Yueyong; Zhou, Qixing

    2014-04-01

    Activated carbon (AC) is a promising catalyst for the air cathode of microbial fuel cells (MFCs) because of its high performance and low cost. To increase the performance of AC air cathodes, the acceleration of OH(-) transport is one of the most important methods, but it has not been widely investigated. Here we added quaternary ammonium to ACs by in situ anchoring of a quaternary ammonium/epoxide-reacting compound (QAE) or ex situ mixing with anion exchange resins in order to modify ACs from not only the external surface but also inside the pores. In 50 mM phosphate buffer solution (PBS), the in situ anchoring of QAE was a more effective way to increase the power. The highest power density of 2781 ± 36 mW/m(2), which is 10% higher than that of the control, was obtained using QAE-anchored AC cathodes. When the medium was switched to an unbuffered NaCl solution, the increase in maximum power density (885 ± 25 mW/m(2)) was in accordance with the anion exchange capacity (0.219 mmol/g). The highest power density of the anion exchange resin-mixed air cathode was 51% higher than that of the control, indicating that anion exchange is urgently needed in real wastewaters. Excess anchoring of QAE blocked both the mesopores and micropores, causing the power output to be inhibited.

  7. Octa-ammonium POSS-conjugated single-walled carbon nanotubes as vehicles for targeted delivery of paclitaxel

    PubMed Central

    Naderi, Naghmeh; Madani, Seyed Y.; Mosahebi, Afshin; Seifalian, Alexander M.

    2015-01-01

    Background Carbon nanotubes (CNTs) have unique physical and chemical properties. Furthermore, novel properties can be developed by attachment or encapsulation of functional groups. These unique properties facilitate the use of CNTs in drug delivery. We developed a new nanomedicine consisting of a nanocarrier, cell-targeting molecule, and chemotherapeutic drug and assessed its efficacy in vitro. Methods The efficacy of a single-walled carbon nanotubes (SWCNTs)-based nanoconjugate system is assessed in the targeted delivery of paclitaxel (PTX) to cancer cells. SWCNTs were oxidized and reacted with octa-ammonium polyhedral oligomeric silsesquioxanes (octa-ammonium POSS) to render them biocompatible and water dispersable. The functionalized SWCNTs were loaded with PTX, a chemotherapeutic agent toxic to cancer cells, and Tn218 antibodies for cancer cell targeting. The nanohybrid composites were characterized with transmission electron microscopy (TEM), Fourier transform infrared (FTIR), and ultraviolet–visible–near-infrared (UV–Vis–NIR). Additionally, their cytotoxic effects on Colon cancer cell (HT-29) and Breast cancer cell (MCF-7) lines were assessed in vitro. Results TEM, FTIR, and UV–Vis–NIR studies confirmed side-wall functionalization of SWCNT with COOH-groups, PTX, POSS, and antibodies. Increased cell death was observed with PTX–POSS–SWCNT, PTX–POSS–Ab–SWCNT, and free PTX compared to functionalized-SWCNT (f-SWCNT), POSS–SWCNT, and cell-only controls at 48 and 72 h time intervals in both cell lines. At all time intervals, there was no significant cell death in the POSS–SWCNT samples compared to cell-only controls. Conclusion The PTX-based nanocomposites were shown to be as cytotoxic as free PTX. This important finding indicates successful release of PTX from the nanocomposites and further reiterates the potential of SWCNTs to deliver drugs directly to targeted cells and tissues. PMID:26356347

  8. Ammonium hydroxide modulated synthesis of high-quality fluorescent carbon dots for white LEDs with excellent color rendering properties

    NASA Astrophysics Data System (ADS)

    Wang, Shengda; Zhu, Zhifeng; Chang, Yajing; Wang, Hui; Yuan, Nan; Li, Guopeng; Yu, Dabin; Jiang, Yang

    2016-07-01

    A novel type of aqueous fluorescent carbon dot (CD) was synthesized using citric acid as the only carbon source via an ammonium hydroxide modulated method, providing a blue color gamut. The amino group is considered to be the key factor in the high fluorescence of CDs and a model is established to investigate the mechanism of fluorescence. In addition, white light-emitting diodes (WLEDs) are fabricated by utilizing the prepared CDs and rare earth luminescent materials (SrSi2O2N2:Eu and Sr2Si5N8:Eu) as color conversion layers and UV-LED chips as the excitation light source. The WLEDs produce bright white light with attractive color rendering properties including a color rendering index of up to 95.1, a CIE coordinate of (0.33, 0.37), and a T c of 5447 K under a 100 mA driven current, indicating that the CDs are promising in the field of optoelectronic devices.

  9. Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

    NASA Astrophysics Data System (ADS)

    Hlaing, Nwe Ni; Vignesh, K.; Sreekantan, Srimala; Pung, Swee-Yong; Hinode, Hirofumi; Kurniawan, Winarto; Othman, Radzali; Thant, Aye Aye; Mohamed, Abdul Rahman; Salim, Chris

    2016-02-01

    Calcium hydroxide (Ca(OH)2) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)2 based adsorbents for carbon dioxide (CO2) capture. The effect of CTAB concentration (0.2-0.8 M) on the structure, morphology and CO2 adsorption performance of Ca(OH)2 was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG-DTA) techniques. The phase purity, crystallite size, Brunauer-Emmett-Teller (BET) surface area and CO2 adsorption performance of Ca(OH)2 precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH)2 phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH)2 precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.

  10. Isolation and characterization of heterotrophic bacteria able to grow aerobically with quaternary ammonium alcohols as sole source of carbon and nitrogen.

    PubMed

    Kaech, Andres; Vallotton, Nathalie; Egli, Thomas

    2005-04-01

    The quaternary ammonium alcohols (QAAs) 2,3-dihydroxypropyl-trimethyl-ammonium (TM), dimethyl-diethanol-ammonium (DM) and methyl-triethanol-ammonium (MM) are hydrolysis products of their parent esterquat surfactants, which are widely used as softeners in fabric care. We isolated several bacteria growing with QAAs as the sole source of carbon and nitrogen. The strains were compared with a previously isolated TM-degrading bacterium, which was identified as a representative of the species Pseudomonas putida (Syst. Appl. Microbiol. 24 (2001) 252). Two bacteria were isolated with DM, referred to as strains DM 1 and DM 2, respectively. Based on 16S-rDNA analysis, they provided 97% (DM 1) and 98% (DM 2) identities to the closest related strain Zoogloea ramigera Itzigsohn 1868AL. Both strains were long, slim, motile rods but only DM 1 showed the floc forming activity, which is typical for representatives of the genus Zoogloea. Using MM we isolated a Gram-negative, non-motile rod referred to as strain MM 1. The 16S-rDNA sequence of the isolated bacterium revealed 94% identities (best match) to Rhodobacter sphaeroides only. The strains MM 1 and DM 1 exclusively grew with the QAA which was used for their isolation. DM 2 was also utilizing TM as sole source of carbon and nitrogen. However, all of the isolated bacteria were growing with the natural and structurally related compound choline. PMID:15900970

  11. Molecular interactions between carbon nanotubes and ammonium ionic liquids and their catalysis properties

    SciTech Connect

    Attri, Pankaj; Arora, Bharti; Kumar, Naresh; Park, Ji Hoon; Baik, Ku Youn; Lee, Geon Joon; Koo, Je Huan

    2014-10-15

    Highlights: • We report interactions between multi-walled carbon nanotubes and ionic liquids. • Triethylammonium hydrogen phosphate ionic liquids are studied. • Raman spectroscopy is used to study interactions. • Morphological studies were carried out using scanning electron microscopy. • Bucky gel was used as catalyst for Michael reactions. - Abstract: A new catalytic method has been developed for the synthesis of aza/thia-Michael addition reactions of amines/thiols, which provide higher product yields. This catalyst is a combination of multi-walled carbon nanotubes (MWCNT) with triethylammonium hydrogen phosphate (TEAP) ionic liquid (IL), commonly referred to as bucky gel. In order to gain insight into the interactions involved between IL and MWCNT, we utilised Raman spectroscopy for our analysis. The interactions between MWCNT with TEAP were clearly evidenced by the increasing intensity ratios and spectral shift in the wavelength for the Raman D and G bands of MWCNT. The morphological studies of the resulting composite materials of TEAP and MWCNT (bucky gel) were carried out using scanning electron microscopy (SEM). The key advantage of using bucky gel as a catalyst is that higher product yield is obtained in reduced reaction time for Michael reactions.

  12. Isolation and characterization of a Pseudomonas putida strain able to grow with trimethyl-1,2-dihydroxy-propyl-ammonium as sole source of carbon, energy and nitrogen.

    PubMed

    Kaech, A; Egli, T

    2001-07-01

    Trimethyl-1,2-dihydroxypropyl-ammonium (TM) originates from the hydrolysis of the parent esterquat surfactant, which is widely used as softener in fabric care. Based on test procedures mimicking complex biological systems, TM is supposed to degrade completely when reaching the environment. However, no organisms able to degrade TM were isolated nor has the degradation pathway been elucidated so far. We isolated a Gram-negative rod able to grow with TM as sole source of carbon, energy and nitrogen. The strain reached a maximum specific growth rate of 0.4(h-1) when growing with TM as the sole source of carbon, energy and nitrogen. TM was degraded to completion and surplus nitrogen was excreted as ammonium into the growth medium. A high percentage of the carbon in TM (68% in continuous culture and 60% in batch culture) was combusted to CO2 resulting in a low yield of 0.54 mg cell dry weight per mg carbon during continuous cultivation and 0.73 mg cell dry weight per mg carbon in batch cultures. Choline, a natural structurally related compound, served as a growth substrate, whereas a couple of similar other quaternary aminoalcohols also used in softeners did not. The isolated bacterium was identified by 165-rDNA sequencing as a strain of Pseudomonas putida with a difference of only one base pair to P. putida DSM 291T. Despite their high identity, the reference strain P. putida DSM 291T was not able to grow with TM and the two strains differed even in shape when growing on the same medium. This is the first microbial isolate able to degrade a quaternary ammonium softener head group to completion. Previously described strains growing on quaternary ammonium surfactants (decyltrimethylammonium, hexadecyltrimethylammonium and didecyldimethylammonium) either excreted metabolites or a consortium of bacteria was required for complete degradation. PMID:11518329

  13. Selective determination of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by atomic-absorption spectrometry with a carbon-tube atomizer.

    PubMed

    Kamada, T; Yamamoto, Y

    1977-05-01

    The extraction behaviour of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of frameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of antimony(III) and differential determination of antimony(III) and antimony(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone, when the aqueous phase/solvent volume ratio is 50 ml/10 ml and the injection volume in the carbon tube is 20 mul, the sensitivity for antimony is 0.2 ng/ml for 1% absorption. The relative standard deviations are ca. 2%. Interferences by many metal ions can be prevented by masking with EDTA. The proposed methods have been applied satisfactorily to determination of antimony(III) and antimony(V) in various types of water. PMID:18962096

  14. Continuing Assessment of the 5-Day Sodium Carbonate-Ammonium Nitrate Extraction Assay as an Indicator Test for Silicon Fertilizers.

    PubMed

    Zellner, Wendy; Friedrich, Russell L; Kim, Sujin; Sturtz, Douglas; Frantz, Jonathan; Altland, James; Krause, Charles

    2015-01-01

    The 5-day sodium carbonate-ammonium nitrate extraction assay (5-day method) has been recognized by the American Association of Plant Food Control Officials as a validated test method to identify fertilizers or beneficial substances that provide plant-available silicon (Si). The test method used the molybdenum blue colorimetric assay to quantify percentage Si; however, laboratories may use inductively coupled plasma optical emission spectroscopy (ICP-OES) for elemental analysis. To examine the use of either colorimetric or ICP-OES methods for Si determination, the 5-day method was performed on the following Si-containing compounds; wollastonite, sand, biochar, and a basic oven furnace (BOF) slag. Grow-out studies using Zinnia elegans were also performed using varying rates of the wollastonite, biochar, and BOF slag. Our results show using the 5-day method, wollastonite had the highest extracted amounts of silicic acid (H4SiO4) at 4% followed by biochar (2%), BOF slag (1%), and sand (0%). Extraction values calculated using either the molybdenum blue colorimetric assay or ICP-OES for detection of the H4SiO4 had a significant correlation, supporting the application of either detection method for this type of analysis. However, when extracted values were compared to amounts of Si taken up by the plants, the 5-day method overestimated both wollastonite and biochar. While this method is a valid indicator test for determining a soluble Si source, other plant species and methods should be perused to potentially provide more quantitative analyses for plant-available Si content of all materials.

  15. Continuing Assessment of the 5-Day Sodium Carbonate-Ammonium Nitrate Extraction Assay as an Indicator Test for Silicon Fertilizers.

    PubMed

    Zellner, Wendy; Friedrich, Russell L; Kim, Sujin; Sturtz, Douglas; Frantz, Jonathan; Altland, James; Krause, Charles

    2015-01-01

    The 5-day sodium carbonate-ammonium nitrate extraction assay (5-day method) has been recognized by the American Association of Plant Food Control Officials as a validated test method to identify fertilizers or beneficial substances that provide plant-available silicon (Si). The test method used the molybdenum blue colorimetric assay to quantify percentage Si; however, laboratories may use inductively coupled plasma optical emission spectroscopy (ICP-OES) for elemental analysis. To examine the use of either colorimetric or ICP-OES methods for Si determination, the 5-day method was performed on the following Si-containing compounds; wollastonite, sand, biochar, and a basic oven furnace (BOF) slag. Grow-out studies using Zinnia elegans were also performed using varying rates of the wollastonite, biochar, and BOF slag. Our results show using the 5-day method, wollastonite had the highest extracted amounts of silicic acid (H4SiO4) at 4% followed by biochar (2%), BOF slag (1%), and sand (0%). Extraction values calculated using either the molybdenum blue colorimetric assay or ICP-OES for detection of the H4SiO4 had a significant correlation, supporting the application of either detection method for this type of analysis. However, when extracted values were compared to amounts of Si taken up by the plants, the 5-day method overestimated both wollastonite and biochar. While this method is a valid indicator test for determining a soluble Si source, other plant species and methods should be perused to potentially provide more quantitative analyses for plant-available Si content of all materials. PMID:26268968

  16. Extraction of urea and ammonium ion

    NASA Technical Reports Server (NTRS)

    Anselmi, R. T.; Husted, R. R.; Schulz, J. R.

    1977-01-01

    Water purification system keeps urea and ammonium ion concentration below toxic limits in recirculated water of closed loop aquatic habitat. Urea is first converted to ammonium ions and carbon dioxide by enzygmatic action. Ammonium ions are removed by ion exchange. Bioburden is controlled by filtration through 0.45 micron millipore filters.

  17. Effect of carbon source on acclimatization of nitrifying bacteria to achieve high-rate partial nitrification of wastewater with high ammonium concentration

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyyed Alireza; Ibrahim, Shaliza; Aroua, Mohamed Kheireddine

    2014-08-01

    Experiments in two laboratory-scale sequential batch reactors were carried out to investigate the effect of heterotrophic bacteria on nitrifying bacteria using external carbon sources. Partial nitrification of ammonium-rich wastewater during short-term acclimatization enriched the activity of ammonia-oxidizing bacteria in both reactors. Heterotrophic bacteria exhibited a minor effect on nitrifying bacteria, and complete removal of ammonium occurred at a rate of 41 mg L-1 h-1 in both reactors. The main strategy of this research was to carry out partial nitrification using high-activity ammonia-oxidizing bacteria with a high concentration of free ammonia (70 mg L-1). The NO2 -/(NO3 - + NO2 -) ratio was greater than 0.9 in both reactors most of the time.

  18. Ammonium methacrylate

    Integrated Risk Information System (IRIS)

    Ammonium methacrylate ; CASRN 16325 - 47 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  19. Ammonium sulfamate

    Integrated Risk Information System (IRIS)

    Ammonium sulfamate ; CASRN 7773 - 06 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  20. Ammonium acetate

    Integrated Risk Information System (IRIS)

    Ammonium acetate ; CASRN 631 - 61 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  1. Secondary Organic Aerosol and Brown Carbon Formation in the Sunlit Aqueous Phase: Aldehyde Photooxidation in the Presence of Ammonium Salts and Amines

    NASA Astrophysics Data System (ADS)

    De Haan, D. O.; Galloway, M. M.; Sharp, K. D.; Jiménez, N. G.

    2014-12-01

    The chemistry of water-soluble carbonyl compounds in clouds is now acknowledged as an important source of secondary organic aerosol. These reactive carbonyl compounds are oxidized to carboxylic acids and form oligomers by radical-radical reactions and by "dark reactions" with ammonium salts (AS) and/or amines. The latter class of reactions also produces light-absorbing brown carbon compounds, especially reactions involving methylglyoxal or glyoxal and amines. However, recent work has found that UV light fades the color of glyoxal + AS and methylgyloxal + AS reaction mixtures. We recently studied aldehyde-AS-amine reactions in sunlight and in control vessels at the same temperature to determine the effects of solar radiation on the aqueous-phase production of brown carbon. In sunlight, methylglyoxal reaction mixtures lost their initial color and failed to brown, indicating the photolytic loss of reactants and/or pre-brown intermediates. In many other reactions, brown products are lost to photolysis, reducing the overall browning of solutions exposed to sunlight. In other experiments, hydrogen peroxide was added to generate OH radicals by photolysis. In the presence of OH radicals, some carbonyl compound mixtures (e.g. those containing hydroxyacetone or glycolaldehyde) browned more rapidly when exposed to sunlight. This indicates the existence of uncharacterized photooxidative browning pathways involving aqueous-phase OH radicals, carbonyls, ammonium salts, and/or amine compounds.

  2. Development and Characterization of Gas Diffusion Layer Using Carbon Slurry Dispersed by Ammonium Lauryl Sulfate for Proton Exchange Member Fuel Cells

    NASA Astrophysics Data System (ADS)

    Villacorta, Rashida

    Gas diffusion layers (GDLs) are a critical and essential part of proton exchange membrane fuel cells (PEMFCs). They carry out various important functions such as transportation of reactants to and from the reaction sites. The material properties and structural characteristics of the substrate and the microporous layer strongly influence fuel cell performance. The microporous layer of the GDLs was fabricated with the carbon slurry dispersed in water containing ammonium lauryl sulfate (ALS) using the wire rod coating method. GDLs were fabricated with different materials to compose the microporous layer and evaluated the effects on PEMFC power output performance. The consistency of the carbon slurry was achieved by adding 25 wt. % of PTFE, a binding agent with a 75:25 ratio of carbon (Pureblack and vapor grown carbon fiber). The GDLs were investigated in PEMFC under various relative humidity (RH) conditions using H2/O2 and H2/Air. GDLs were also fabricated with the carbon slurry dispersed in water containing sodium dodecyl sulfate (SDS) and multiwalled carbon nanotubes (MWCNTs) with isopropyl alcohol (IPA) based for fuel cell performance comparison. MWCNTs and SDS exhibits the highest performance at 60% and 70% RH with a peak power density of 1100 mW.cm-2 and 850 mW.cm-2 using air and oxygen as an oxidant. This means that the gas diffusion characteristics of these two samples were optimum at 60 and 70 % RH with high limiting current density range. It was also found that the composition of the carbon slurry, specifically ALS concentration has the highest peak power density of 1300 and 500mW.cm-2 for both H2/O 2 and H2/Air at 100% RH. However, SDS and MWCNTs demonstrates the lowest power density using air and oxygen as an oxidants at 100% RH.

  3. Changes in the C/N balance caused by increasing external ammonium concentrations are driven by carbon and energy availabilities during ammonium nutrition in pea plants: the key roles of asparagine synthetase and anaplerotic enzymes.

    PubMed

    Ariz, Idoia; Asensio, Aaron C; Zamarreño, Angel M; García-Mina, Jose M; Aparicio-Tejo, Pedro M; Moran, Jose F

    2013-08-01

    An understanding of the mechanisms underlying ammonium (NH(4)(+)) toxicity in plants requires prior knowledge of the metabolic uses for nitrogen (N) and carbon (C). We have recently shown that pea plants grown at high NH(4)(+) concentrations suffer an energy deficiency associated with a disruption of ionic homeostasis. Furthermore, these plants are unable to adequately regulate internal NH4(+) levels and the cell-charge balance associated with cation uptake. Herein we show a role for an extra-C application in the regulation of C-N metabolism in NH(4)(+) -fed plants. Thus, pea plants (Pisum sativum) were grown at a range of NH(4)(+) concentrations as sole N source, and two light intensities were applied to vary the C supply to the plants. Control plants grown at high NH(4)(+) concentration triggered a toxicity response with the characteristic pattern of C-starvation conditions. This toxicity response resulted in the redistribution of N from amino acids, mostly asparagine, and lower C/N ratios. The C/N imbalance at high NH(4)(+) concentration under control conditions induced a strong activation of root C metabolism and the upregulation of anaplerotic enzymes to provide C intermediates for the tricarboxylic acid cycle. A high light intensity partially reverted these C-starvation symptoms by providing higher C availability to the plants. The extra-C contributed to a lower C4/C5 amino acid ratio while maintaining the relative contents of some minor amino acids involved in key pathways regulating the C/N status of the plants unchanged. C availability can therefore be considered to be a determinant factor in the tolerance/sensitivity mechanisms to NH(4)(+) nutrition in plants.

  4. Synergistic inhibition behavior between indigo carmine and cetyl trimethyl ammonium bromide on carbon steel corroded in a 0.5 M HCl solution

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Tian, Ningchen; Li, Xiuying; Zhang, Lingzhi; Wu, Ling; Huang, Yan

    2015-12-01

    This work reports on a newly observed synergistic inhibition between indigo carmine and cetyl trimethyl ammonium bromide (CTAB) on 1045 carbon steel (CS) corroded in a 0.5 M HCl solution. The results of electrochemical measurements showed that CTAB could change indigo carmine in a manner that would accelerate corrosion and produce an effective inhibitor. The maximal protection efficiency was significantly greater than 0.985, with the concentration of the combination inhibitors reaching approximately 5 × 10-5 M. The microstructure of the CS corrosion surface demonstrated that the indigo disulfonate anions and cetyltrimethylammonium cations were adsorbed simultaneously on the CS surface to protect it from corrosion. Diffusion coefficient analysis and the surface concentration profiles of the corrosive species were used to investigate the synergistic effect of the indigo carmine/CTAB combination inhibitors, and the results demonstrate the existence of synergy.

  5. Direct and indirect effects of ammonia, ammonium and nitrate on phosphatase activity and carbon fluxes from decomposing litter in peatland.

    PubMed

    Johnson, David; Moore, Lucy; Green, Samuel; Leith, Ian D; Sheppard, Lucy J

    2010-10-01

    Here we investigate the response of soils and litter to 5 years of experimental additions of ammonium (NH4), nitrate (NO3), and ammonia (NH3) to an ombrotrophic peatland. We test the importance of direct (via soil) and indirect (via litter) effects on phosphatase activity and efflux of CO2. We also determined how species representing different functional types responded to the nitrogen treatments. Our results demonstrate that additions of NO3, NH4 and NH3 all stimulated phosphatase activity but the effects were dependent on species of litter and mechanism (direct or indirect). Deposition of NH3 had no effect on efflux of CO2 from Calluna vulgaris litter, despite it showing signs of stress in the field, whereas both NO3 and NH4 reduced CO2 fluxes. Our results show that the collective impacts on peatlands of the three principal forms of nitrogen in atmospheric deposition are a result of differential effects and mechanisms on individual components.

  6. Prokaryotic Responses to Ammonium and Organic Carbon Reveal Alternative CO2 Fixation Pathways and Importance of Alkaline Phosphatase in the Mesopelagic North Atlantic

    PubMed Central

    Baltar, Federico; Lundin, Daniel; Palovaara, Joakim; Lekunberri, Itziar; Reinthaler, Thomas; Herndl, Gerhard J.; Pinhassi, Jarone

    2016-01-01

    To decipher the response of mesopelagic prokaryotic communities to input of nutrients, we tracked changes in prokaryotic abundance, extracellular enzymatic activities, heterotrophic production, dark dissolved inorganic carbon (DIC) fixation, community composition (16S rRNA sequencing) and community gene expression (metatranscriptomics) in 3 microcosm experiments with water from the mesopelagic North Atlantic. Responses in 3 different treatments amended with thiosulfate, ammonium or organic matter (i.e., pyruvate plus acetate) were compared to unamended controls. The strongest stimulation was found in the organic matter enrichments, where all measured rates increased >10-fold. Strikingly, in the organic matter treatment, the dark DIC fixation rates—assumed to be related to autotrophic metabolisms—were equally stimulated as all the other heterotrophic-related parameters. This increase in DIC fixation rates was paralleled by an up-regulation of genes involved in DIC assimilation via anaplerotic pathways. Alkaline phosphatase was the metabolic rate most strongly stimulated and its activity seemed to be related to cross-activation by nonpartner histidine kinases, and/or the activation of genes involved in the regulation of elemental balance during catabolic processes. These findings suggest that episodic events such as strong sedimentation of organic matter into the mesopelagic might trigger rapid increases of originally rare members of the prokaryotic community, enhancing heterotrophic and autotrophic carbon uptake rates, ultimately affecting carbon cycling. Our experiments highlight a number of fairly unstudied microbial processes of potential importance in mesopelagic waters that require future attention.

  7. Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N2 production

    NASA Astrophysics Data System (ADS)

    Hardison, Amber K.; Algar, Christopher K.; Giblin, Anne E.; Rich, Jeremy J.

    2015-09-01

    Biologically available nitrogen is removed from ecosystems through the microbial processes of anaerobic ammonium oxidation (anammox) or denitrification, while dissimilatory nitrate reduction to ammonium (DNRA) retains it. A mechanistic understanding of controls on partitioning among these pathways is currently lacking. The objective of this study was to conduct a manipulative experiment to determine the influence of organic C and NO3- loading on partitioning. Sediment was collected from a location on the southern New England shelf (78 m water depth) and sieved. Half of the sediment was mixed with freeze-dried phytoplankton and the other half was not. Sediment was then spread into 1.5 mm, "thin discs" closed at the bottom and placed in large aquarium tanks with filtered, N2/CO2 sparged seawater to maintain O2 limited conditions. Half of the discs received high NO3- loading, while the other half received low NO3- loading, resulting in a multifactorial design with four treatments: no C addition, low NO3- (-C-N); C addition, low NO3- (+C-N); no C addition, high NO3- (-C+N); and C addition, high NO3- (+C+N). Sediment discs were incubated in the tanks for 7 weeks, during which time inorganic N (NH4+, NO3-, and NO2-) was monitored, and sediment discs were periodically removed from the tanks to conduct 15N isotope labeling experiments in vials to measure potential rates of anammox, denitrification, and DNRA. Temporal dynamics of inorganic N concentrations in the tanks were indicative of anoxic N metabolism, with strong response of the build up or consumption of the intermediate NO2-, depending on treatments. Vial incubation experiments with added 15NO2- + 14NH4+ indicated significant denitrification and DNRA activity in sediment thin discs, but incubations with added 15NH4+ + 14NO2- indicated anammox was not at all significant. Inorganic N concentrations in the tanks were fit to a reactive transport model assuming different N transformations. Organic C decomposition rates

  8. Preparation of Enteromorpha prolifera-based cetyl trimethyl ammonium bromide-doped activated carbon and its application for nickel(II) removal.

    PubMed

    Wang, Man; Hao, Fang; Li, Gang; Huang, Ji; Bao, Nan; Huang, Lihui

    2014-06-01

    Activated carbon was prepared from Enteromorpha prolifera (EP) by H3PO4 activation in the presence of doped cetyl trimethyl ammonium bromide (CTAB), producing EPAC-CTAB. The thermal decomposition process of the activated carbon substrate was identified by thermo-gravimetric analysis. Scanning electron microscope (SEM), N2 adsorption/desorption, Fourier transform infrared spectroscopy (FTIR), Boehm titration, and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the physicochemical properties of native EPAC and EPAC-CTAB. EPAC-CTAB exhibited smaller surface area (689.0m(2)/g) and lower total pore volume (0.361cm(3)/g) than those of EPAC (1045.8m(2)/g and 1.048cm(3)/g), while the number of acidic groups, oxygen and nitrogen groups on the surface of EPAC-CTAB increased through CTAB doping. The batch kinetics and isotherm adsorption studies of nickel(II) onto the adsorbents were examined and agreed well with the pseudo-second-order model and the Langmuir model. The maximum adsorption capacity determined from the Langmuir model was 16.9mg/g for EPAC and 49.8mg/g for EPAC-CTAB. Under acidic condition, the adsorption of nickel(II) onto EPAC and EPAC-CTAB was hindered due to ion competition and electrostatic repulsion. The results indicated that using CTAB as a dopant for EPAC modification could markedly enhance the nickel(II) removal.

  9. A Chitosan Derivative Containing Both Carboxylic Acid and Quaternary Ammonium Moieties for the Synthesis of Cyclic Carbonates.

    PubMed

    Besse, Vincent; Illy, Nicolas; David, Ghislain; Caillol, Sylvain; Boutevin, Bernard

    2016-08-23

    Chitosan, a renewable feedstock, is modified and used as a catalytic support in the presence of potassium iodide. The system is highly efficient towards the incorporation of carbon dioxide (CO2 ) into epoxides. It demonstrates very good thermal stability and is recyclable more than five times without loss of activity. The optimal reaction conditions were determined using allylglycidyl ether as a model and extended to a wide range of other epoxides. Cyclic carbonates were obtained with very high yield in a few hours under mild conditions (2-7 bar≈0.2-0.7 MPa, 80 °C) and no solvent. PMID:27440310

  10. Response of removal rates to various organic carbon and ammonium loads in laboratory-scale constructed wetlands treating artificial wastewater.

    PubMed

    Wu, Shubiao; Kuschk, Peter; Wiessner, Arndt; Kästner, Matthias; Pang, Changle; Dong, Renjie

    2013-01-01

    High levels (92 and 91%) of organic carbon were successfully removed from artificial wastewater by a laboratory-scale constructed wetland under inflow loads of 670 mg/m2 x d (100 mg/d) and 1600 mg/m2d (240 mg/d), respectively. Acidification to pH 3.0 was observed at the low organic carbon load, which further inhibited the denitrification process. An increase in carbon load, however, was associated with a significant elevation of pH to 6.0. In general, sulfate and nitrate reduction were relatively high, with mean levels of 87 and 90%, respectively. However, inhibition of nitrification was initiated with an increase in carbon loads. This effect was probably a result of competition for oxygen by heterotrophic bacteria and an inhibitory effect of sulfide (S2) toxicity (concentration approximately 3 mg/L). In addition, numbers of healthy stalks of Juncus effusus (common rush) decreased from 14 000 to 10 000/m2 with an increase of sulfide concentration, indicating the negative effect of sulfide toxicity on the wetland plants.

  11. Improve the catalytic activity of {alpha}-Fe{sub 2}O{sub 3} particles in decomposition of ammonium perchlorate by coating amorphous carbon on their surface

    SciTech Connect

    Zhang Yifu; Liu Xinghai; Nie Jiaorong; Yu Lei; Zhong Yalan; Huang Chi

    2011-02-15

    Sphere- and pod-like {alpha}-Fe{sub 2}O{sub 3} particles have been selectively synthesized using NH{sub 3}.H{sub 2}O and NaOH solution to adjust the pH value of the designed synthetic system, respectively. The sphere-like {alpha}-Fe{sub 2}O{sub 3} particles with diameter about 25 nm on average were encapsulated into carbon shells to fabricate a novel core-shell composite ({alpha}-Fe{sub 2}O{sub 3}-C) through the coating experiments. The catalytic performance of the products on the thermal decomposition of ammonium perchlorate (AP) was investigated by thermal gravimetric analyzer (TG) and differential thermal analysis (DTA). The thermal decomposition temperatures of AP in the presence of pod-like {alpha}-Fe{sub 2}O{sub 3}, sphere-like {alpha}-Fe{sub 2}O{sub 3} and {alpha}-Fe{sub 2}O{sub 3}-C are reduced by 72, 81 and 109 {sup o}C, respectively, which show that {alpha}-Fe{sub 2}O{sub 3}-C core-shell composites have higher catalytic activity than that of {alpha}-Fe{sub 2}O{sub 3}. -- Graphical abstract: The catalytic performance of pod-like {alpha}-Fe{sub 2}O{sub 3}, sphere-like {alpha}-Fe{sub 2}O{sub 3} and {alpha}-Fe{sub 2}O{sub 3}-C on the thermal decomposition of ammonium perchlorate (AP). Display Omitted Research highlights: {yields} Sphere- and pod-like {alpha}-Fe{sub 2}O{sub 3} particles have been selectively synthesized using NH{sub 3}.H{sub 2}O and NaOH solution to adjust the pH value. {yields} A novel core-shell composite ({alpha}-Fe{sub 2}O{sub 3}-C core-shell structured composite) has been successfully synthesized using sphere-like {alpha}-Fe{sub 2}O{sub 3} particles as the cores and glucose as the source of carbon. {yields} The thermal decomposition temperatures of AP in the presence of pod-like {alpha}-Fe{sub 2}O{sub 3}, sphere-like {alpha}-Fe{sub 2}O{sub 3} and {alpha}-Fe{sub 2}O{sub 3}-C are reduced by 72, 81 and 109 {sup o}C, respectively, which shows that these materials have high catalytic activity.

  12. Sensitivity enhancement of carbon nanotube based ammonium ion sensors through surface modification by using oxygen plasma treatment

    SciTech Connect

    Yeo, Sanghak; Woong Jang, Chi; Lee, Seok; Min Jhon, Young; Choi, Changrok

    2013-02-18

    We have shown that the sensitivity of carbon nanotube (CNT) based sensors can be enhanced as high as 74 times through surface modification by using the inductively coupled plasma chemical vapor deposition method with oxygen. The plasma treatment power was maintained as low as 10 W within 20 s, and the oxygen plasma was generated far away from the sensors to minimize the plasma damage. From X-ray photoelectron spectroscopy analysis, we found that the concentration of oxygen increased with the plasma treatment time, which implies that oxygen functional groups or defect sites were generated on the CNT surface.

  13. Linking carbon and nitrogen metabolism to depth distribution of submersed macrophytes using high ammonium dosing tests and a lake survey

    PubMed Central

    Yuan, Guixiang; Cao, Te; Fu, Hui; Ni, Leyi; Zhang, Xiaolin; Li, Wei; Song, Xin; Xie, Ping; Jeppesen, Erik

    2013-01-01

    Strategies of carbon (C) and nitrogen (N) utilisation are among the factors determining plant distribution. It has been argued that submersed macrophytes adapted to lower light environments are more efficient in maintaining C metabolic homeostasis due to their conservative C strategy and ability to balance C shortage. We studied how depth distributions of 12 submersed macrophytes in Lake Erhai, China, were linked to their C-N metabolic strategies when facing acute dosing. dosing changed C-N metabolism significantly by decreasing the soluble carbohydrate (SC) content and increasing the -N and free amino acid (FAA) content of plant tissues.The proportional changes in SC contents in the leaves and FAA contents in the stems induced by dosing were closely correlated (positive for SC and negative for FAA) with the colonising water depths of the plants in Lake Erhai, the plants adapted to lower light regimes being more efficient in maintaining SC and FAA homeostasis.These results indicate that conservative carbohydrate metabolism of submersed macrophytes allowed the plants to colonise greater water depths in eutrophic lakes, where low light availability in the water column diminishes carbohydrate production by the plants. PMID:25810562

  14. Modeling the dependence of respiration and photosynthesis upon light, acetate, carbon dioxide, nitrate and ammonium in Chlamydomonas reinhardtii using design of experiments and multiple regression

    PubMed Central

    2014-01-01

    Background In photosynthetic organisms, the influence of light, carbon and inorganic nitrogen sources on the cellular bioenergetics has extensively been studied independently, but little information is available on the cumulative effects of these factors. Here, sequential statistical analyses based on design of experiments (DOE) coupled to standard least squares multiple regression have been undertaken to model the dependence of respiratory and photosynthetic responses (assessed by oxymetric and chlorophyll fluorescence measurements) upon the concomitant modulation of light intensity as well as acetate, CO2, nitrate and ammonium concentrations in the culture medium of Chlamydomonas reinhardtii. The main goals of these analyses were to explain response variability (i.e. bioenergetic plasticity) and to characterize quantitatively the influence of the major explanatory factor(s). Results For each response, 2 successive rounds of multiple regression coupled to one-way ANOVA F-tests have been undertaken to select the major explanatory factor(s) (1st-round) and mathematically simulate their influence (2nd-round). These analyses reveal that a maximal number of 3 environmental factors over 5 is sufficient to explain most of the response variability, and interestingly highlight quadratic effects and second-order interactions in some cases. In parallel, the predictive ability of the 2nd-round models has also been investigated by k-fold cross-validation and experimental validation tests on new random combinations of factors. These validation procedures tend to indicate that the 2nd-round models can also be used to predict the responses with an inherent deviation quantified by the analytical error of the models. Conclusions Altogether, the results of the 2 rounds of modeling provide an overview of the bioenergetic adaptations of C. reinhardtii to changing environmental conditions and point out promising tracks for future in-depth investigations of the molecular mechanisms

  15. Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salen)Co(III) complex tethering four quaternary ammonium salts

    PubMed Central

    Jeon, Jong Yeob; Eo, Seong Chan; Varghese, Jobi Kodiyan

    2014-01-01

    Summary The (salen)Co(III) complex 1 tethering four quaternary ammonium salts, which is a highly active catalyst in CO2/epoxide copolymerizations, shows high activity for propylene oxide/phthalic anhydride (PO/PA) copolymerizations and PO/CO2/PA terpolymerizations. In the PO/PA copolymerizations, full conversion of PA was achieved within 5 h, and strictly alternating copolymers of poly(1,2-propylene phthalate)s were afforded without any formation of ether linkages. In the PO/CO2/PA terpolymerizations, full conversion of PA was also achieved within 4 h. The resulting polymers were gradient poly(1,2-propylene carbonate-co-phthalate)s because of the drift in the PA concentration during the terpolymerization. Both polymerizations showed immortal polymerization character; therefore, the molecular weights were determined by the activity (g/mol-1) and the number of chain-growing sites per 1 [anions in 1 (5) + water (present as impurity) + ethanol (deliberately fed)], and the molecular weight distributions were narrow (M w/M n, 1.05–1.5). Because of the extremely high activity of 1, high-molecular-weight polymers were generated (M n up to 170,000 and 350,000 for the PO/PA copolymerization and PO/CO2/PA terpolymerization, respectively). The terpolymers bearing a substantial number of PA units (f PA, 0.23) showed a higher glass-transition temperature (48 °C) than the CO2/PO alternating copolymer (40 °C). PMID:25161738

  16. Small-angle neutron scattering study of activated carbon cloth and ammonium persulfate-modified activated carbon cloth: Effect of oxygen content

    NASA Astrophysics Data System (ADS)

    Pendleton, Phillip; Chen, Lin

    2006-11-01

    Small-angle neutron scattering (SANS) patterns of as-received, oxidized, and thermally reduced FM1/250 activated carbon cloth (ACC) samples are compared to determine the effects of surface chemistry on scattering. Porosity analyses show minimal effect on pore size distribution from oxidation, but an increase in micropore volume on heat treatment. SANS suggests an increase in localized order within the treated samples when compared with graphite cloth patterns. The ACC exhibits Porod scattering at q-ranges<0.3 nm -1; the graphite cloth exhibits the same at q-ranges>1.0 nm -1. A cylindrical model reproduces the scattering patterns in the micropore equivalent dimensions, q>0.5 nm -1.

  17. Ammonium and attachment of Rhodopirellula baltica.

    PubMed

    Frank, Carsten S; Langhammer, Philipp; Fuchs, Bernhard Maximilian; Harder, Jens

    2011-05-01

    A dimorphic life cycle has been described for the planctomycete Rhodopirellula baltica SH1(T), with juvenile motile, free-swimming cells and adult sessile, attached-living cells. However, attachment as a response to environmental factors was not investigated. We studied the response of R. baltica to nitrogen limitation. In batch cultures, ammonium limitation coincided with a dominance of free-swimming cells and a low number of aggregates. Flow cytometry revealed a quantitative shift with increasing ammonium availability, from single cells towards attached cells in large aggregates. During growth of R. baltica on glucose and ammonium in chemostats, an ammonium addition caused a macroscopic change of the growth behaviour, from homogeneous growth in the liquid phase to a biofilm on the borosilicate glass wall of the chemostat vessel. Thus, an ammonium limitation-a carbon to nitrogen supply ratio of 30:1-sustained free-living growth without aggregate formation. A sudden increase in ammonium supply induced sessile growth of R. baltica. These observations reveal a response of Rhodopirellula baltica cells to ammonium: they abandon the free-swimming life, attach to particles and form biofilms. PMID:21340506

  18. Ammonium nitrate explosive systems

    DOEpatents

    Stinecipher, Mary M.; Coburn, Michael D.

    1981-01-01

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  19. Infrared band intensities in ammonium hydroxide and ammonium salts

    NASA Technical Reports Server (NTRS)

    Sethna, P. P.; Downing, H. D.; Pinkley, L. W.; Williams, D.

    1978-01-01

    We have applied Kramers-Kronig analysis to reflection spectra to determine the optical constants of ammonium hydroxide and of aqueous solutions of ammonium chloride and bromide. From considerations of the absorption indices k(nu) we conclude that ammonium hydroxide consists of a solution of NH3 in water, in which NH3 molecules are hydrogen bonded to neighboring water molecules. The spectrum of ammonium hydroxide differs from the spectra of ammonium salts, in which bands characteristic of NH4(+) ions are prominent. The existence of ammonium hydroxide as an aerosol in planetary atmospheres is briefly discussed

  20. 70. INTERIOR VIEW OF AMMONIUM NITRATE HOUSE, LOOKING AT AMMONIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. INTERIOR VIEW OF AMMONIUM NITRATE HOUSE, LOOKING AT AMMONIUM NITRATE IN STORAGE. APRIL 18, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  1. Glufosinate-ammonium

    Integrated Risk Information System (IRIS)

    Glufosinate - ammonium ; CASRN 77182 - 82 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  2. Thermodynamic and kinetic verification of tetra-n-butyl ammonium nitrate (TBANO3) as a promoter for the clathrate process applicable to precombustion carbon dioxide capture.

    PubMed

    Babu, Ponnivalavan; Yao, Minghuang; Datta, Stuti; Kumar, Rajnish; Linga, Praveen

    2014-03-18

    In this study, tetra-n-butyl ammonium nitrate (TBANO3) is evaluated as a promoter for precombustion capture of CO2 via hydrate formation. New hydrate phase equilibrium data for fuel gas (CO2/H2) mixture in presence of TBANO3 of various concentrations of 0.5, 1.0, 2.0, 3.0, and 3.7 mol % was determined and presented. Heat of hydrate dissociation was calculated using Clausius-Clapeyron equation and as the concentration of TBANO3 increases, the heat of hydrate dissociation also increases. Kinetic performance of TBANO3 as a promoter at different concentrations was evaluated at 6.0 MPa and 274.2 K. Based on induction time, gas uptake, separation factor, hydrate phase CO2 composition, and rate of hydrate growth, 1.0 mol % TBANO3 solution was found to be the optimum concentration at the experimental conditions of 6.0 MPa and 274.2 K for gas hydrate formation. A 93.0 mol % CO2 rich stream can be produced with a gas uptake of 0.0132 mol of gas/mol of water after one stage of hydrate formation in the presence of 1.0 mol % TBANO3 solution. Solubility measurements and microscopic images of kinetic measurements provide further insights to understand the reason for 1.0 mol % TBANO3 to be the optimum concentration.

  3. Hydrothermal oxidation of organic wastes using reclaimed ammonium nitrate

    SciTech Connect

    Proesmans, P.I.; Luan, L.; Buelow, S.J.

    1996-04-01

    Ammonium nitrate is being studied as an alternative for ammonium perchlorate as an oxidizing agent in Department of Defense 1.1 and 1.3 rocket propellants. Use of ammonium nitrate would eliminate the HCl produced by ammonium perchlorate upon thermal decomposition. To stabilize the ammonium nitrate, which suffers from phase instability, potassium dinitramide (KDN) is added. This increased use of ammonium nitrate will ultimately create a need for environmentally responsible processes to reuse ammonium nitrate extracted from demilitarized rocket motors. Ammonium Nitrate was investigated as an oxidizing agent for methanol, acetic acid and phenol. High removal of organic, ammonia and nitrate was achieved at stoichiometric concentrations. The oxidation of ammonia by nitrate was much faster than the oxidation of either methanol or acetic acid. Phenol, however, was in strong competition with ammonia for the oxidizer (nitrate). Nitrogen products included N{sub 2}, N{sub 2}O, NO{sub 2{sup {minus}}} as well as toxic NO and trace amounts of NO{sub 2}. Carbon products were CO{sub 2}, HCO{sub 3{sup {minus}}}, CO{sub 3}{sup 2{minus}}, and CO.

  4. Overexpressing of OsAMT1-3, a High Affinity Ammonium Transporter Gene, Modifies Rice Growth and Carbon-Nitrogen Metabolic Status

    PubMed Central

    Bao, Aili; Liang, Zhijun; Zhao, Zhuqing; Cai, Hongmei

    2015-01-01

    AMT1-3 encodes the high affinity NH4+ transporter in rice roots and is predominantly expressed under nitrogen starvation. In order to evaluate the effect of AMT1-3 gene on rice growth, nitrogen absorption and metabolism, we generated AMT1-3-overexpressing plants and analyzed the growth phenotype, yield, carbon and nitrogen metabolic status, and gene expression profiles. Although AMT1-3 mRNA accumulated in transgenic plants, these plants displayed significant decreases in growth when compared to the wild-type plants. The nitrogen uptake assay using a 15N tracer revealed poor nitrogen uptake ability in AMT1-3-overexpressing plants. We found significant decreases in AMT1-3-overexpressing plant leaf carbon and nitrogen content accompanied with a higher leaf C/N ratio. Significant changes in soluble proteins and carbohydrates were also observed in AMT1-3-overexpressing plants. In addition, metabolite profile analysis demonstrated significant changes in individual sugars, organic acids and free amino acids. Gene expression analysis revealed distinct expression patterns of genes that participate in carbon and nitrogen metabolism. Additionally, the correlation between the metabolites and gene expression patterns was consistent in AMT1-3-overexpressing plants under both low and high nitrogen growth conditions. Therefore, we hypothesized that the carbon and nitrogen metabolic imbalance caused by AMT1-3 overexpressing attributed to the poor growth and yield of transgenic plants. PMID:25915023

  5. Hydrothermal synthesis of ammonium illite

    USGS Publications Warehouse

    Sucha, V.; Elsass, F.; Eberl, D.D.; Kuchta, L'.; Madejova, J.; Gates, W.P.; Komadel, P.

    1998-01-01

    Synthetic gel and glass of illitic composition, natural kaolinite, and mixed-layer illite-smectite were used as starting materials for hydrothermal synthesis of ammonium illite. Ammonium illite was prepared from synthetic gel by hydrothermal treatment at 300??C. The onset of crystallization began within 3 h, and well-crystallized ammonium illite appeared at 24 h. Increasing reaction time (up to four weeks) led to many illite layers per crystal. In the presence of equivalent proportions of potassium and ammonium, the gel was transformed to illite with equimolar contents of K and NH4. In contrast, synthesis using glass under the same conditions resulted in a mixture of mixed-layer ammonium illite-smectite with large expandability and discrete illite. Hydrothermal treatments of the fine fractions of natural kaolinite and illite-smectite produced ammonium illite from kaolinite but the illite-smectite remained unchanged.

  6. A 5-day method for determination of soluble silicon concentrations in nonliquid fertilizer materials using a sodium carbonate-ammonium nitrate extractant followed by visible spectroscopy with heteropoly blue analysis: single-laboratory validation.

    PubMed

    Sebastian, Dennis; Rodrigues, Hugh; Kinsey, Charles; Korndörfer, Gaspar; Pereira, Hamilton; Buck, Guilherme; Datnoff, Lawrence; Miranda, Stephen; Provance-Bowley, Mary

    2013-01-01

    A 5-day method for determining the soluble silicon (Si) concentrations in nonliquid fertilizer products was developed using a sodium carbonate (Na2CO3)-ammonium nitrate (NH4NO3) extractant followed by visible spectroscopy with heteropoly blue analysis at 660 nm. The 5-Day Na2CO3-NH4NO3 Soluble Si Extraction Method can be applied to quantify the plant-available Si in solid fertilizer products at levels ranging from 0.2 to 8.4% Si with an LOD of 0.06%, and LOQ of 0.20%. This Si extraction method for fertilizers correlates well with plant uptake of Si (r2 = 0.96 for a range of solid fertilizers) and is applicable to solid Si fertilizer products including blended products and beneficial substances. Fertilizer materials can be processed as received using commercially available laboratory chemicals and materials at ambient laboratory temperatures. The single-laboratory validation of the 5-Day Na2CO3-NH4NO3 Soluble Si Extraction Method has been approved by The Association of American Plant Food Control Officials for testing nonliquid Si fertilizer products.

  7. Hydroxyethyl cellulose as efficient organic inhibitor of zinc-carbon battery corrosion in ammonium chloride solution: Electrochemical and surface morphology studies

    NASA Astrophysics Data System (ADS)

    Deyab, M. A.

    2015-04-01

    Hydroxyethyl cellulose (HEC) has been investigated as corrosion inhibitor for zinc-carbon battery by polarization and electrochemical impedance spectroscopy (EIS) measurements. The obtained results show that the maximum inhibition efficiency by HEC in 26% NH4Cl solution at 300 ppm and 298 K is 92.07%. Tafel polarization studies reveal that HEC acts as an efficient mixed inhibitor. The corrosion rate is suppressed by the adsorption of HEC on the zinc surface. HEC adsorption obeys the Langmuir isotherm and the thermodynamic parameters Kads and Δ Gadso have been also calculated and discussed. Both physisorption and chemisorption may occur on the zinc surface. Surface characterization investigation using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) is used to ascertain the nature of the protective film.

  8. Alkali-metal ion coordination in uranyl(VI) poly-peroxo complexes in solution, inorganic analogues to crown-ethers. Part 2. Complex formation in the tetramethyl ammonium-, Li(+)-, Na(+)- and K(+)-uranyl(VI)-peroxide-carbonate systems.

    PubMed

    Zanonato, Pier Luigi; Szabó, Zoltán; Vallet, Valerie; Di Bernardo, Plinio; Grenthe, Ingmar

    2015-10-01

    The constitution and equilibrium constants of ternary uranyl(vi) peroxide carbonate complexes [(UO2)p(O2)q(CO3)r](2(p-q-r)) have been determined at 0 °C in 0.50 M MNO3, M = Li, K, and TMA (tetramethyl ammonium), ionic media using potentiometric and spectrophotometric data; (17)O NMR data were used to determine the number of complexes present. The formation of cyclic oligomers, "[(UO2)(O2)(CO3)]n", n = 4, 5, 6, with different stoichiometries depending on the ionic medium used, suggests that Li(+), Na(+), K(+) and TMA ions act as templates for the formation of uranyl peroxide rings where the uranyl-units are linked by μ-η(2)-η(2) bridged peroxide-ions. The templating effect is due to the coordination of the M(+)-ions to the uranyl oxygen atoms, where the coordination of Li(+) results in the formation of Li[(UO2)(O2)(CO3)]4(7-), Na(+) and K(+) in the formation of Na/K[(UO2)(O2)(CO3)]5(9-) complexes, while the large tetramethyl ammonium ion promotes the formation of two oligomers, TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-). The NMR spectra demonstrate that the coordination of Na(+) in the five- and six-membered oligomers is significantly stronger than that of TMA(+); these observations suggest that the templating effect is similar to the one observed in the synthesis of crown-ethers. The NMR experiments also demonstrate that the exchange between TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-) is slow on the (17)O chemical shift time-scale, while the exchange between TMA[(UO2)(O2)(CO3)]6(11-) and Na[(UO2)(O2)(CO3)]6(11-) is fast. There was no indication of the presence of large clusters of the type identified by Burns and Nyman (M. Nyman and P. C. Burns, Chem. Soc. Rev., 2012, 41, 7314-7367) and possible reasons for this and the implications for the synthesis of large clusters are briefly discussed.

  9. An unprecedented up-field shift in the 13C NMR spectrum of the carboxyl carbons of the lantern-type dinuclear complex TBA[Ru2(O2CCH3)4Cl2] (TBA+ = tetra(n-butyl)ammonium cation).

    PubMed

    Hiraoka, Yuya; Ikeue, Takahisa; Sakiyama, Hiroshi; Guégan, Frédéric; Luneau, Dominique; Gillon, Béatrice; Hiromitsu, Ichiro; Yoshioka, Daisuke; Mikuriya, Masahiro; Kataoka, Yusuke; Handa, Makoto

    2015-08-14

    A large up-field shift (-763 ppm) has been observed for the carboxyl carbons of the dichlorido complex TBA[Ru(2)(O(2)CCH(3))(4)Cl(2)] (TBA(+) = tetra(n-butyl)ammonium cation) in the (13)C NMR spectrum (CD(2)Cl(2) at 25 °C). The DFT calculations showed spin delocalization from the paramagnetic Ru(2)(5+) core to the ligands, in agreement with the large up-field shift.

  10. Biocidal quaternary ammonium resin

    NASA Technical Reports Server (NTRS)

    Janauer, G. E.

    1983-01-01

    Activated carbon (charcoal) and polymeric resin sorbents are widely used in the filtration and treatment of drinking water, mainly to remove dissolved organic and inorganic impurities and to improve the taste. Earlier hopes that activated carbon might "disinfect' water proved to be unfounded. The feasibility of protecting against microbial infestation in charcoal and resin beds such as those to be incorporated into total water reuse systems in spacecraft was investigated. The biocidal effect of IPCD (insoluable polymeric contact disinfectants) in combination with a representative charcoal was assessed. The ion exchange resins (IPCD) were shown to adequately protect charcoal and ion exchange beds.

  11. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  12. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts.

    PubMed

    Su, Ji; Yang, Lisha; Lu, Mi; Lin, Hongfei

    2015-03-01

    A highly efficient, reversible hydrogen storage-evolution process has been developed based on the ammonium bicarbonate/formate redox equilibrium over the same carbon-supported palladium nanocatalyst. This heterogeneously catalyzed hydrogen storage system is comparable to the counterpart homogeneous systems and has shown fast reaction kinetics of both the hydrogenation of ammonium bicarbonate and the dehydrogenation of ammonium formate under mild operating conditions. By adjusting temperature and pressure, the extent of hydrogen storage and evolution can be well controlled in the same catalytic system. Moreover, the hydrogen storage system based on aqueous-phase ammonium formate is advantageous owing to its high volumetric energy density.

  13. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., white or translucent mass. (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d..._locations.html. (c) In accordance with § 184.1(b)(1), the ingredient is used in food with no limitation... recognized as safe (GRAS) as a direct human food ingredient is based upon the following current...

  14. Solubility of the Sodium and Ammonium Salts of Oxalic Acid in Water with Ammonium Sulfate.

    PubMed

    Buttke, Lukas G; Schueller, Justin R; Pearson, Christian S; Beyer, Keith D

    2016-08-18

    The solubility of the sodium and ammonium salts of oxalic acid in water with ammonium sulfate present has been studied using differential scanning calorimetry, X-ray crystallography, and infrared spectroscopy. The crystals that form from aqueous mixtures of ammonium sulfate/sodium hydrogen oxalate were determined to be sodium hydrogen oxalate monohydrate under low ammonium sulfate conditions and ammonium hydrogen oxalate hemihydrate under high ammonium sulfate conditions. Crystals from aqueous mixtures of ammonium sulfate/sodium oxalate were determined to be ammonium oxalate monohydrate under moderate to high ammonium sulfate concentrations and sodium oxalate under low ammonium sulfate concentrations. It was also found that ammonium sulfate enhances the solubility of the sodium oxalate salts (salting in effect) and decreases the solubility of the ammonium oxalate salts (salting out effect). In addition, a partial phase diagram for the ammonium hydrogen oxalate/water system was determined.

  15. Solubility of the Sodium and Ammonium Salts of Oxalic Acid in Water with Ammonium Sulfate.

    PubMed

    Buttke, Lukas G; Schueller, Justin R; Pearson, Christian S; Beyer, Keith D

    2016-08-18

    The solubility of the sodium and ammonium salts of oxalic acid in water with ammonium sulfate present has been studied using differential scanning calorimetry, X-ray crystallography, and infrared spectroscopy. The crystals that form from aqueous mixtures of ammonium sulfate/sodium hydrogen oxalate were determined to be sodium hydrogen oxalate monohydrate under low ammonium sulfate conditions and ammonium hydrogen oxalate hemihydrate under high ammonium sulfate conditions. Crystals from aqueous mixtures of ammonium sulfate/sodium oxalate were determined to be ammonium oxalate monohydrate under moderate to high ammonium sulfate concentrations and sodium oxalate under low ammonium sulfate concentrations. It was also found that ammonium sulfate enhances the solubility of the sodium oxalate salts (salting in effect) and decreases the solubility of the ammonium oxalate salts (salting out effect). In addition, a partial phase diagram for the ammonium hydrogen oxalate/water system was determined. PMID:27482644

  16. Temperature effect on nickel release in ammonium citrate.

    PubMed

    Oller, Adriana R; Cappellini, Danielle; Henderson, Rayetta G; Bates, Hudson K

    2009-09-01

    Leaching in ammonium citrate has been extensively used to assess the fraction of water-soluble nickel compounds present in nickel producing and using workplace aerosols. Leaching in ammonium citrate according to the first step of the Zatka protocol was found to overestimate the water-soluble nickel fraction by more than ten-fold compared to synthetic lung fluid (37 degrees C), when nickel carbonate and subsulfide were present. These results suggest that exposure matrices based on this method should be reexamined. Leaching studies of refinery particles are needed to further clarify this important issue. PMID:19724840

  17. Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters*

    PubMed Central

    Zhang, Lei; Zheng, Ping; Tang, Chong-jian; Jin, Ren-cun

    2008-01-01

    The concept of anaerobic ammonium oxidation (ANAMMOX) is presently of great interest. The functional bacteria belonging to the Planctomycete phylum and their metabolism are investigated by microbiologists. Meanwhile, the ANAMMOX is equally valuable in treatment of ammonium-rich wastewaters. Related processes including partial nitritation-ANAMMOX and completely autotrophic nitrogen removal over nitrite (CANON) have been developed, and lab-scale experiments proved that both processes were quite feasible in engineering with appropriate control. Successful full-scale practice in the Netherlands will accelerate application of the process in future. This review introduces the microbiology and more focuses on application of the ANAMMOX process. PMID:18500782

  18. TREATMENT OF AMMONIUM NITRATE SOLUTIONS

    DOEpatents

    Boyer, T.W.; MacHutchin, J.G.; Yaffe, L.

    1958-06-10

    The treatment of waste solutions obtained in the processing of neutron- irradiated uranium containing fission products and ammonium nitrate is described. The object of this process is to provide a method whereby the ammonium nitrate is destroyed and removed from the solution so as to permit subsequent concentration of the solution.. In accordance with the process the residual nitrate solutions are treated with an excess of alkyl acid anhydride, such as acetic anhydride. Preferably, the residual nitrate solution is added to an excess of the acetic anhydride at such a rate that external heat is not required. The result of this operation is that the ammonium nitrate and acetic anhydride react to form N/sub 2/ O and acetic acid.

  19. Benzylic Ammonium Ylide Mediated Epoxidations

    PubMed Central

    Roiser, Lukas; Robiette, Raphaël; Waser, Mario

    2016-01-01

    A high yielding synthesis of stilbene oxides using ammonium ylides has been developed. It turned out that the amine leaving group plays a crucial role as trimethylamine gives higher yields than DABCO or quinuclidine. The amine group also influences the diastereoselectivity, and detailed DFT calculations to understand the key parameters of these reactions have been carried out. PMID:27766017

  20. Root Environment Acidity as a Regulatory Factor in Ammonium Assimilation by the Bean Plant 1

    PubMed Central

    Barker, A. V.; Volk, R. J.; Jackson, W. A.

    1966-01-01

    Previous experiments have revealed a much greater efficiency of ammonium utilization by bean plants (Phaseolus vulgaris L.) when the acidity of the ambient medium was maintained at near-neutral conditions with carbonates or hydroxides. The present investigation, in which 15N-labeled ammonium was used, permitted an assessment of the origin of nitrogen in tissue nitrogen pools with and without acidity control (CaCO3 treated and untreated, respectively) in the root environment. Control of acidity resulted in greater ammonium uptake and greater incorporation into the amino fraction, amide, and ethanol-insoluble nitrogen by the root tissue. These differences were clearly evident by the fifth day after ammonium nitrogen had been applied. Shoots of the untreated plants rapidly accumulated free ammonium and amino nitrogen. A substantial portion of both fractions came from pre-existing nitrogen in the plants, indicating significant protein degradation. No evidence was found for such degradation in the roots of the untreated plants or in either roots or shoots of CaCO3 treated plants. The data indicate that control of ambient acidity in the root environment during ammonium absorption enhanced the conversion of entering ammonium to organic nitrogen compounds in the root tissue thereby restricting movement of free ammonium to shoots. Consequently, the detrimental effects of high ammonium concentrations in the leaves were largely prevented. PMID:16656383

  1. 21 CFR 582.1135 - Ammonium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1135 Ammonium bicarbonate. (a) Product. Ammonium bicarbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or...

  2. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or...

  3. 21 CFR 582.1135 - Ammonium bicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1135 Ammonium bicarbonate. (a) Product. Ammonium bicarbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or...

  4. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or...

  5. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice....

  6. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice....

  7. 21 CFR 556.375 - Maduramicin ammonium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... residues of maduramicin ammonium in chickens as follows: (a) A tolerance for maduramicin ammonium (marker... concentration of marker residues in the target tissue used to monitor for total drug residues in the...

  8. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... from the filtrate on cooling. Alternatively, hydrogen chloride formed by the burning of hydrogen in... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS...

  9. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... from the filtrate on cooling. Alternatively, hydrogen chloride formed by the burning of hydrogen in... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS...

  10. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from the filtrate on cooling. Alternatively, hydrogen chloride formed by the burning of hydrogen in... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS...

  11. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... from the filtrate on cooling. Alternatively, hydrogen chloride formed by the burning of hydrogen in... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS...

  12. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Alternatively, hydrogen chloride formed by the burning of hydrogen in chlorine is dissolved in water and then... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ammonium chloride. 184.1138 Section 184.1138 Food... GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is...

  13. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  14. 21 CFR 556.375 - Maduramicin ammonium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... residues of maduramicin ammonium in chickens as follows: (a) A tolerance for maduramicin ammonium (marker residue) in chickens is 0.38 parts per million in fat (target tissue). A tolerance refers to the... animals. (b) The safe concentrations for total maduramicin ammonium residues in uncooked edible...

  15. 21 CFR 556.375 - Maduramicin ammonium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... residues of maduramicin ammonium in chickens as follows: (a) A tolerance for maduramicin ammonium (marker residue) in chickens is 0.38 parts per million in fat (target tissue). A tolerance refers to the... animals. (b) The safe concentrations for total maduramicin ammonium residues in uncooked edible...

  16. 21 CFR 582.1135 - Ammonium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium bicarbonate. 582.1135 Section 582.1135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1135 Ammonium bicarbonate. (a) Product. Ammonium bicarbonate. (b) Conditions of use....

  17. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This...

  18. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium hydroxide. 582.1139 Section 582.1139 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use....

  19. 21 CFR 582.7133 - Ammonium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium alginate. 582.7133 Section 582.7133 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Ammonium alginate. (a) Product. Ammonium alginate. (b) Conditions of use. This substance is...

  20. 21 CFR 582.7133 - Ammonium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium alginate. 582.7133 Section 582.7133 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Ammonium alginate. (a) Product. Ammonium alginate. (b) Conditions of use. This substance is...

  1. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  2. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, M.; Yoo, C. S.

    2014-05-01

    Ammonium Nitrate (AN) has often subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood -resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 17 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400 °C.

  3. Thermally Reduced Graphene Oxide Electrochemically Activated by Bis-Spiro Quaternary Alkyl Ammonium for Capacitors.

    PubMed

    He, Tieshi; Meng, Xiangling; Nie, Junping; Tong, Yujin; Cai, Kedi

    2016-06-01

    Thermally reduced graphene oxide (RGO) electrochemically activated by a quaternary alkyl ammonium-based organic electrolytes/activated carbon (AC) electrode asymmetric capacitor is proposed. The electrochemical activation process includes adsorption of anions into the pores of AC in the positive electrode and the interlayer intercalation of cations into RGO in the negative electrode under high potential (4.0 V). The EA process of RGO by quaternary alkyl ammonium was investigated by X-ray diffraction and electrochemical measurements, and the effects of cation size and structure were extensively evaluated. Intercalation by quaternary alkyl ammonium demonstrates a small degree of expansion of the whole crystal lattice (d002) and a large degree of expansion of the partial crystal lattice (d002) of RGO. RGO electrochemically activated by bis-spiro quaternary alkyl ammonium in propylene carbonate/AC asymmetric capacitor exhibits good activated efficiency, high specific capacity, and stable cyclability.

  4. Thermally Reduced Graphene Oxide Electrochemically Activated by Bis-Spiro Quaternary Alkyl Ammonium for Capacitors.

    PubMed

    He, Tieshi; Meng, Xiangling; Nie, Junping; Tong, Yujin; Cai, Kedi

    2016-06-01

    Thermally reduced graphene oxide (RGO) electrochemically activated by a quaternary alkyl ammonium-based organic electrolytes/activated carbon (AC) electrode asymmetric capacitor is proposed. The electrochemical activation process includes adsorption of anions into the pores of AC in the positive electrode and the interlayer intercalation of cations into RGO in the negative electrode under high potential (4.0 V). The EA process of RGO by quaternary alkyl ammonium was investigated by X-ray diffraction and electrochemical measurements, and the effects of cation size and structure were extensively evaluated. Intercalation by quaternary alkyl ammonium demonstrates a small degree of expansion of the whole crystal lattice (d002) and a large degree of expansion of the partial crystal lattice (d002) of RGO. RGO electrochemically activated by bis-spiro quaternary alkyl ammonium in propylene carbonate/AC asymmetric capacitor exhibits good activated efficiency, high specific capacity, and stable cyclability. PMID:27180820

  5. High irradiance improves ammonium tolerance in wheat plants by increasing N assimilation.

    PubMed

    Setién, Igor; Fuertes-Mendizabal, Teresa; González, Azucena; Aparicio-Tejo, Pedro Ma; González-Murua, Carmen; González-Moro, María Begoña; Estavillo, José María

    2013-05-15

    Ammonium is a paradoxical nutrient ion. Despite being a common intermediate in plant metabolism whose oxidation state eliminates the need for its reduction in the plant cell, as occurs with nitrate, it can also result in toxicity symptoms. Several authors have reported that carbon enrichment in the root zone enhances the synthesis of carbon skeletons and, accordingly, increases the capacity for ammonium assimilation. In this work, we examined the hypothesis that increasing the photosynthetic photon flux density is a way to increase plant ammonium tolerance. Wheat plants were grown in a hydroponic system with two different N sources (10mM nitrate or 10mM ammonium) and with two different light intensity conditions (300 μmol photon m(-2)s(-1) and 700 μmol photon m(-2)s(-1)). The results show that, with respect to biomass yield, photosynthetic rate, shoot:root ratio and the root N isotopic signature, wheat behaves as a sensitive species to ammonium nutrition at the low light intensity, while at the high intensity, its tolerance is improved. This improvement is a consequence of a higher ammonium assimilation rate, as reflected by the higher amounts of amino acids and protein accumulated mainly in the roots, which was supported by higher tricarboxylic acid cycle activity. Glutamate dehydrogenase was a key root enzyme involved in the tolerance to ammonium, while glutamine synthetase activity was low and might not be enough for its assimilation.

  6. Producing ammonium sulfate from flue gas desulfurization by-products

    USGS Publications Warehouse

    Chou, I.-Ming; Bruinius, J.A.; Benig, V.; Chou, S.-F.J.; Carty, R.H.

    2005-01-01

    Emission control technologies using flue gas desulfurization (FGD) have been widely adopted by utilities burning high-sulfur fuels. However, these technologies require additional equipment, greater operating expenses, and increased costs for landfill disposal of the solid by-products produced. The financial burdens would be reduced if successful high-volume commercial applications of the FGD solid by-products were developed. In this study, the technical feasibility of producing ammonium sulfate from FGD residues by allowing it to react with ammonium carbonate in an aqueous solution was preliminarily assessed. Reaction temperatures of 60, 70, and 80??C and residence times of 4 and 6 hours were tested to determine the optimal conversion condition and final product evaluations. High yields (up to 83%) of ammonium sulfate with up to 99% purity were achieved under relatively mild conditions. The optimal conversion condition was observed at 60??C and a 4-hour residence time. The results of this study indicate the technical feasibility of producing ammonium sulfate fertilizer from an FGD by-product. Copyright ?? Taylor & Francis Inc.

  7. Ammonium assmilation in spruce ectomycorrhizas

    SciTech Connect

    Chalot, M.; Brun, A.; Botton, B. ); Stewart, G. )

    1990-05-01

    Assimilation of labelled NH{sub 4}{sup +} into amino acids has been followed in ectomycorrhizal roots of spruce. Over an 18 h period of NH{sub 4}{sup +} feeding, Gln, Glu and Ala became the most abundant amino acids. Gln was also the most highly labelled amino acid during the experiment, followed by Glu and Ala. This result indicates that Gln synthesis is an important ammonium utilization reaction in spruce mycorrhizas. Addition of MSX to NH{sub 4}{sup +} fed mycorrhizas caused an inhibition of Gln accumulation with a corresponding increase in Glu, Ala and Asn levels. The supply of MSX induced a sharp diminution of {sup 15}N enrichment in both amino and amido groups of glutamine. In contrast, the {sup 15}N incorporation into Glu and derivatives (Ala and Asp) remained very high. This study demonstrates that the fungal glutamate dehydrogenase is quite operative in spruce ectomycorrhizas since it is able to sustain ammonium assimilation when glutamine synthetase is inhibited.

  8. Structural study of ammonium metatungstate

    SciTech Connect

    Christian, Joel B. Whittingham, M. Stanley

    2008-08-15

    Several techniques have been used to study the structure of the Keggin-type polyoxometalate salt ammonium metatungstate (AMT)-(NH{sub 4}){sub 6}[H{sub 2}W{sub 12}O{sub 40}]*nH{sub 2}O, a potential fuel cell catalyst. The dehydrated salt is comprised of a mixture of crystallites of different unit cells in a centered eutactic cubic configuration, with an average unit cell of a{approx_equal}12.295. Varied orientations of the Keggin ions in the cubic arrangement create the differences, and orientational variation within each unit cell size represents an energy well. Progressive hydration of each crystallite leads to expansion of the lattice, with the degree of expansion depending on the locations of the water added in relation to the Keggin ion, which is influenced by cation location and hydrogen bonding. The structural hypothesis is supported by electron diffraction of single and multicrystal samples, by powder density measurements, X-ray powder diffraction studies, synchrotron powder X-ray diffraction, and a priori structural modeling studies. Based on the structure, projected active site densities are compared with nanostructured platinum catalysts for fuel cell application. - Graphical abstract: The structure of ammonium metatungstate powders are highly dependent on hydration and POM molecule rotation, with cation and hydrogen bonding forces directing a mixture of structures that have been studied with bulk and single-crystal methods. The illustration shows Monte Carlo simulated anion structural disorder for the fully dehydrated form of the title compound.

  9. Phase Diagram of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-06-01

    Ammonium Nitrate (AN) has often been subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood - resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety, in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN, in different chemical environments, at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 15 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 673 K. The present study has been supported by the U.S. DHS under Award Number 2008-ST-061-ED0001.

  10. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  11. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  12. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  13. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  14. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  15. Phase diagram of ammonium nitrate.

    PubMed

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-12-01

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO-AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N2, N2O, and H2O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV' transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  16. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-12-01

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO-AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N2, N2O, and H2O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV' transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  17. Biodegradation of rocket propellant waste, ammonium perchlorate

    NASA Technical Reports Server (NTRS)

    Naqvi, S. M. Z.; Latif, A.

    1975-01-01

    The short term effects of ammonium perchlorate on selected organisms were studied. A long term experiment was also designed to assess the changes incurred by ammonium perchlorate on the nitrogen and chloride contents of soil within a period of 3 years. In addition, an attempt was made to produce methane gas from anaerobic fermentation of the aquatic weed, Alternanthera philoxeroides.

  18. 76 FR 46907 - Ammonium Nitrate Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... Federal Bureau of Investigation FR Federal Register HMR Hazardous Materials Regulations HMT Hazardous... ``Secure Handling of Ammonium Nitrate Program'' on October 29, 2008. See 73 FR 64280. The ANPRM solicited... interacting with state and local governments regarding ammonium nitrate security. ] See 73 FR 64280,...

  19. 21 CFR 573.170 - Ammonium formate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.170 Ammonium formate. The food additive, partially ammonium formate, may be safely used in...) To assure safe use of the additive, in addition to the other information required by the Federal...

  20. 21 CFR 573.170 - Ammonium formate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.170 Ammonium formate. The food additive, partially ammonium formate, may be safely used in...) To assure safe use of the additive, in addition to the other information required by the Federal...

  1. 21 CFR 573.170 - Ammonium formate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.170 Ammonium formate. The food additive, partially ammonium formate, may be safely used in...) To assure safe use of the additive, in addition to the other information required by the Federal...

  2. 21 CFR 573.170 - Ammonium formate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.170 Ammonium formate. The food additive, ammonium formate, may be safely used in the... safe use of the additive, in addition to the other information required by the Federal Food, Drug,...

  3. 21 CFR 558.340 - Maduramicin ammonium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Maduramicin ammonium. 558.340 Section 558.340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... for Use in Animal Feeds § 558.340 Maduramicin ammonium. (a) Approvals. Type A medicated articles:...

  4. Evolution of Electrogenic Ammonium Transporters (AMTs).

    PubMed

    McDonald, Tami R; Ward, John M

    2016-01-01

    The ammonium transporter gene family consists of three main clades, AMT, MEP, and Rh. The evolutionary history of the AMT/MEP/Rh gene family is characterized by multiple horizontal gene transfer events, gene family expansion and contraction, and gene loss; thus the gene tree for this family of transporters is unlike the organismal tree. The genomes of angiosperms contain genes for both electrogenic and electroneutral ammonium transporters, but it is not clear how far back in the land plant lineage electrogenic ammonium transporters occur. Here, we place Marchantia polymorpha ammonium transporters in the AMT/MEP/Rh phylogeny and we show that AMTs from the liverwort M. polymorpha are electrogenic. This information suggests that electrogenic ammonium transport evolved at least as early as the divergence of bryophytes in the land plant lineage. PMID:27066024

  5. Evolution of Electrogenic Ammonium Transporters (AMTs)

    PubMed Central

    McDonald, Tami R.; Ward, John M.

    2016-01-01

    The ammonium transporter gene family consists of three main clades, AMT, MEP, and Rh. The evolutionary history of the AMT/MEP/Rh gene family is characterized by multiple horizontal gene transfer events, gene family expansion and contraction, and gene loss; thus the gene tree for this family of transporters is unlike the organismal tree. The genomes of angiosperms contain genes for both electrogenic and electroneutral ammonium transporters, but it is not clear how far back in the land plant lineage electrogenic ammonium transporters occur. Here, we place Marchantia polymorpha ammonium transporters in the AMT/MEP/Rh phylogeny and we show that AMTs from the liverwort M. polymorpha are electrogenic. This information suggests that electrogenic ammonium transport evolved at least as early as the divergence of bryophytes in the land plant lineage. PMID:27066024

  6. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  7. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  8. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  9. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  10. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  11. The nucleation kinetics of ammonium metavanadate precipitated by ammonium chloride

    NASA Astrophysics Data System (ADS)

    Du, Guangchao; Sun, Zhaohui; Xian, Yong; Jing, Han; Chen, Haijun; Yin, Danfeng

    2016-05-01

    The nucleation kinetics of ammonium metavanadate (NH4VO3) was investigated under conditions of the simulated process for precipitation of NH4VO3 from the vanadium-containing solution. Induction periods for the nucleation of NH4VO3 were experimentally determined as a function of supersaturation at temperatures from 30 to 45 °C. Using the classical nucleation theory, the interfacial tension between NH4VO3 and supersaturated solution, the nucleation rate and critical radius of nucleus for the homogeneous nucleation of NH4VO3 were estimated. With temperature increasing, the calculated interfacial tension gradually decreased from 29.78 mJ/m2 at 30 °C to 23.66 mJ/m2 at 45 °C. The nucleation rate was found to proportionally increase but the critical radius of nucleus exponentially decreased, with increase in supersaturation ratio at a constant temperature. The activation energy for NH4VO3 nucleation was obtained from the relationship between temperature and induction period, ranging from 79.17 kJ/mol at S=25 to 115.50 kJ/mol at S=15. FT-IR and Raman spectrum indicated that the crystals obtained in the precipitation process were NH4VO3.

  12. 40 CFR 721.4095 - Quaternary ammonium alkyltherpropyl trialkylamine halides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Quaternary ammonium alkyltherpropyl... Specific Chemical Substances § 721.4095 Quaternary ammonium alkyltherpropyl trialkylamine halides. (a... generically as quaternary ammonium alkyltherpropyl trialkylamine halides (PMNs...

  13. 40 CFR 721.4095 - Quaternary ammonium alkyltherpropyl trialkylamine halides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Quaternary ammonium alkyltherpropyl... Specific Chemical Substances § 721.4095 Quaternary ammonium alkyltherpropyl trialkylamine halides. (a... generically as quaternary ammonium alkyltherpropyl trialkylamine halides (PMNs...

  14. Liquid-phase catalytic oxidation of CO by ammonium persulfate

    SciTech Connect

    Golodov, V.A.; Abilov, M.T.; Sokol'skii, D.V.

    1984-01-01

    The catalytic oxidation of carbon monoxide in aqueous solutions is investigated. The abilities of ammonium persulfate, palladium hydroxide, and silver oxide to force the oxidation are discussed. The rates for these reactions are displayed graphically. The reaction rates as a function of the concentrations of the above-mentioned reactants are determined. An excess of persulfate is found to oxidize Pd(II) to Pd(IV), and this produces a reduction in the rate of CO oxidation. The oxidation of CO is preceeded in the reaction by the interaction of the persulfate with the metal catalyst.

  15. Phase diagram of ammonium nitrate

    SciTech Connect

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-12-07

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO–AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N{sub 2}, N{sub 2}O, and H{sub 2}O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV{sup ′} transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  16. Biodegradation of rocket propellent waste, ammonium perchlorate

    NASA Technical Reports Server (NTRS)

    Naqui, S. M. Z.

    1975-01-01

    The impact of the biodegradation rate of ammonium perchlorate on the environment was studied in terms of growth, metabolic rate, and total biomass of selected animal and plant species. Brief methodology and detailed results are presented.

  17. Electrochemically and bioelectrochemically induced ammonium recovery.

    PubMed

    Gildemyn, Sylvia; Luther, Amanda K; Andersen, Stephen J; Desloover, Joachim; Rabaey, Korneel

    2015-01-22

    Streams such as urine and manure can contain high levels of ammonium, which could be recovered for reuse in agriculture or chemistry. The extraction of ammonium from an ammonium-rich stream is demonstrated using an electrochemical and a bioelectrochemical system. Both systems are controlled by a potentiostat to either fix the current (for the electrochemical cell) or fix the potential of the working electrode (for the bioelectrochemical cell). In the bioelectrochemical cell, electroactive bacteria catalyze the anodic reaction, whereas in the electrochemical cell the potentiostat applies a higher voltage to produce a current. The current and consequent restoration of the charge balance across the cell allow the transport of cations, such as ammonium, across a cation exchange membrane from the anolyte to the catholyte. The high pH of the catholyte leads to formation of ammonia, which can be stripped from the medium and captured in an acid solution, thus enabling the recovery of a valuable nutrient. The flux of ammonium across the membrane is characterized at different anolyte ammonium concentrations and currents for both the abiotic and biotic reactor systems. Both systems are compared based on current and removal efficiencies for ammonium, as well as the energy input required to drive ammonium transfer across the cation exchange membrane. Finally, a comparative analysis considering key aspects such as reliability, electrode cost, and rate is made. This video article and protocol provide the necessary information to conduct electrochemical and bioelectrochemical ammonia recovery experiments. The reactor setup for the two cases is explained, as well as the reactor operation. We elaborate on data analysis for both reactor types and on the advantages and disadvantages of bioelectrochemical and electrochemical systems.

  18. 21 CFR 172.430 - Iron ammonium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Iron ammonium citrate. 172.430 Section 172.430... CONSUMPTION Anticaking Agents § 172.430 Iron ammonium citrate. Iron ammonium citrate may be safely used in... human consumption so that the level of iron ammonium citrate does not exceed 25 parts per million...

  19. 21 CFR 172.430 - Iron ammonium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron ammonium citrate. 172.430 Section 172.430 Food... Anticaking Agents § 172.430 Iron ammonium citrate. Iron ammonium citrate may be safely used in food in... consumption so that the level of iron ammonium citrate does not exceed 25 parts per million (0.0025...

  20. 21 CFR 573.560 - Iron ammonium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Iron ammonium citrate. 573.560 Section 573.560... Additive Listing § 573.560 Iron ammonium citrate. Iron ammonium citrate may be safely used in animal feed... consumption so that the level of iron ammonium citrate does not exceed 25 parts per million (0.0025...

  1. 21 CFR 573.560 - Iron ammonium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron ammonium citrate. 573.560 Section 573.560... Additive Listing § 573.560 Iron ammonium citrate. Iron ammonium citrate may be safely used in animal feed... consumption so that the level of iron ammonium citrate does not exceed 25 parts per million (0.0025...

  2. 21 CFR 172.430 - Iron ammonium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Iron ammonium citrate. 172.430 Section 172.430... CONSUMPTION Anticaking Agents § 172.430 Iron ammonium citrate. Iron ammonium citrate may be safely used in... human consumption so that the level of iron ammonium citrate does not exceed 25 parts per million...

  3. 21 CFR 172.430 - Iron ammonium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Iron ammonium citrate. 172.430 Section 172.430... CONSUMPTION Anticaking Agents § 172.430 Iron ammonium citrate. Iron ammonium citrate may be safely used in... human consumption so that the level of iron ammonium citrate does not exceed 25 parts per million...

  4. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric ammonium citrate. 184.1296 Section 184.1296... Listing of Specific Substances Affirmed as GRAS § 184.1296 Ferric ammonium citrate. (a) Ferric ammonium citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric...

  5. Modeling conversion of ammonium diuranate (ADU) into uranium dioxide (UO2) powder

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Trong; Thuan, Le Ba; Khoai, Do Van; Lee, Jin-Young; Jyothi, Rajesh Kumar

    2016-10-01

    In the paper, Brandon mathematical model that describes the relationship between the essential fabrication parameters [reduction temperature (TR), calcination temperature (TC), calcination time (tC) and reduction time (tR)] and specific surface area of ammonium diuranate (ADU)-derived UO2 powder products was established. The proposed models can be used to predict and control the specific surface area of UO2 powders prepared through ADU route. Suitable temperatures for conversion of ADU and ammonium uranyl carbonate (AUC) was examined with the proposed model through assessment of the sinterability of UO2 powders.

  6. Calcium sulphate in ammonium sulphate solution

    USGS Publications Warehouse

    Sullivan, E.C.

    1905-01-01

    Calcium sulphate, at 25?? C., is two-thirds as soluble in dilute (o.i mol per liter) and twice as soluble in concentrated (3 mois per liter) ammonium sulphate solution as in water. The specific electric conductivity of concentrated ammonium sulphate solutions is lessened by saturating with calcium sulphate. Assuming that dissociation of ammonium sulphate takes place into 2NH4?? and SO4" and of calcium sulphate into Ca and SO4" only, and that the conductivity is a measure of such dissociation, the solubility of calcium sulphate in dilute ammonium sulphate solutions is greater than required by the mass-law. The conductivity of the dilute mixtures may be accurately calculated by means of Arrhenius' principle of isohydric solutions. In the data obtained in these calculations, the concentration of non-dissociated calcium sulphate decreases with increasing ammonium sulphate. The work as a whole is additional evidence of the fact that we are not yet in possession of all the factors necessary for reconciling the mass-law to the behavior of electrolytes. The measurements above described were made in the chemical laboratory of the University of Michigan.

  7. Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Dual Energy-Limited Chemostats

    PubMed Central

    Verhagen, Frank J. M.; Laanbroek, Hendrikus J.

    1991-01-01

    The absence of nitrification in soils rich in organic matter has often been reported. Therefore, competition for limiting amounts of ammonium between the chemolithotrophic ammonium-oxidizing species Nitrosomonas europaea and the heterotrophic species Arthrobacter globiformis was studied in the presence of Nitrobacter winogradskyi in continuous cultures at dilution rates of 0.004 and 0.01 h−1. Ammonium limitation of A. globiformis was achieved by increasing the glucose concentration in the reservoir stepwise from 0 to 5 mM while maintaining the ammonium concentration at 2 mM. The numbers of N. europaea and N. winogradskyi cells decreased as the numbers of heterotrophic bacteria rose with increasing glucose concentrations for both dilution rates. Critical carbon-to-nitrogen ratios of 11.6 and 9.6 were determined for the dilution rates of 0.004 and 0.01 h−1, respectively. Below these critical values, coexistence of the competing species was found in steady-state situations. Although the numbers were strongly reduced, the nitrifying bacteria were not fully outcompeted by the heterotrophic bacteria above the critical carbon-to-nitrogen ratios. Nitrifying bacteria could probably maintain themselves in the system above the critical carbon-to-nitrogen ratios because they are attached to the glass wall of the culture vessels. The numbers of N. europaea decreased more than did those of N. winogradskyi. This was assumed to be due to heterotrophic growth of the latter species on organic substrates excreted by the heterotrophic bacteria. PMID:16348588

  8. Sorption kinetic studies of ammonium from aqueous solution on different inorganic and organic media.

    PubMed

    Kucić, Dajana; Cosić, Ivana; Vuković, Marija; Briski, Felicita

    2013-01-01

    In this study, the sorption of ammonium from aqueous solution onto activated carbon, natural zeolite, peat and potting soil was studied by performing batch kinetic sorption experiments. The activated carbon wasn't efficiently removing ammonium at concentrations higher than 50 mg L(-1). Sorption isotherms of ammonium on zeolite, peat and potting soil were determined at 25 degrees C and 200 rpm with the initial concentration of 50-7000 mg L(-1). Equilibrium data were fitted by Freundlich, Langmuir and Temkin isotherm and parameters were evaluated according these models. Langmuir model gives better fit to experimental data than Freundlich and Temkin models. Maximum adsorption capacities were for activated carbon 0.631 mg g(-1), zeolite 58 mg g(-1), peat 595 mg g(-1) and for potting soil 575 mg g(-1). The equilibrium kinetic data were analyzed using adsorption kinetic models: the pseudo-first and second-order equations and were found to follow the pseudo-second-order kinetic model. A comparison between linear and non-linear regression method for estimating the adsorption and kinetics parameters was examined. The obtained results showed that non-linear method may be a better way to determine the kinetic parameters. Thermodynamic studies showed exothermic and endothermic nature of the adsorption of NH4(+) on inorganic and organic adsorbents, respectively. From present results it can be seen that zeolite, peat and potting soil are good adsorbents for removal ammonium from aqueous solution.

  9. The ammonium sulfate inhibition of human angiogenin.

    PubMed

    Chatzileontiadou, Demetra S M; Tsirkone, Vicky G; Dossi, Kyriaki; Kassouni, Aikaterini G; Liggri, Panagiota G V; Kantsadi, Anastassia L; Stravodimos, George A; Balatsos, Nikolaos A A; Skamnaki, Vassiliki T; Leonidas, Demetres D

    2016-09-01

    In this study, we investigate the inhibition of human angiogenin by ammonium sulfate. The inhibitory potency of ammonium sulfate for human angiogenin (IC50 = 123.5 ± 14.9 mm) is comparable to that previously reported for RNase A (119.0 ± 6.5 mm) and RNase 2 (95.7 ± 9.3 mm). However, analysis of two X-ray crystal structures of human angiogenin in complex with sulfate anions (in acidic and basic pH environments, respectively) indicates an entirely distinct mechanism of inhibition. While ammonium sulfate inhibits the ribonucleolytic activity of RNase A and RNase 2 by binding to the active site of these enzymes, sulfate anions bind only to peripheral substrate anion-binding subsites of human angiogenin, and not to the active site. PMID:27483019

  10. Stability of ammonium fluoride-treated Si(100)

    NASA Astrophysics Data System (ADS)

    Houston, Michael R.; Maboudian, Roya

    1995-09-01

    X-ray photoelectron spectroscopy (XPS) and contact angle analyses have been employed to investigate the chemical stability of silicon surfaces treated by an ammonium fluoride (NH4F) solution. Consistent with earlier results [Dumas and Chabal, Chem. Phys. Lett. 181, 537 (1991)], it is found that an NH4F final etch produces surfaces exhibiting lower oxygen and carbon contamination levels in comparison to the surfaces obtained with the traditional HF or buffered HF (BHF) etch. In conjunction with lower contamination levels, surfaces treated in ammonium fluoride show higher contact angles with water, indicating lower surface free energies. The Si-H surfaces produced by the ammonium fluoride etch were found to remain hydrophobic for weeks in air and showed no signs of oxidation for several days. After an induction period of about one week in air, oxidation began to occur in a more rapid fashion. The stability of the Si-H surfaces in water was also investigated, and it was found that the oxygen contamination levels measured by x-ray photoelectron spectroscopy were extremely sensitive to the final rinse time. An induction period of approximately one hour in water existed before any signs of oxidation were evident. Despite the fact that the NH4F-treated samples were initially cleaner than the HF-treated samples, both of these surfaces showed similar temporal behavior in air and water. We attribute this finding to the surface topographies produced by these treatments, as well as to the extreme sensitivity of the results to such factors as water rinse time.

  11. On the evaporation of ammonium sulfate solution

    SciTech Connect

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  12. On the evaporation of ammonium sulfate solution.

    PubMed

    Drisdell, Walter S; Saykally, Richard J; Cohen, Ronald C

    2009-11-10

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 +/- 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly. PMID:19861551

  13. Supercritical water oxidation of ammonium picrate

    SciTech Connect

    LaJeunesse, C.A.; Mills, B.E.; Brown, B.G.

    1994-11-01

    This study demonstrates the feasibility of using supercritical water oxidation to destroy ammonium picrate. Analyses of reactor effluent composition at various temperatures, residence times, and oxidant concentrations were used to design an improved reactor configuration for achieving destruction with minimum corrosion. The engineering evaluation reactor, a room-sized laboratory scale reactor, was reconfigured to incorporate this design change. Destruction of ammonium picrate with minimized corrosion was demonstrated on this reconfigured reactor. Factors that must be considered in scaling up to pilot plant size are discussed.

  14. Eutectic composite explosives containing ammonium nitrate

    SciTech Connect

    Stinecipher, M.M.

    1981-01-01

    The eutectic of ammonium nitrate (AN), the ammonium salt of 3,5-dinitro-1,2,4-triazole was prepared and its sensitivity and performance were studied. It was found that this AN formulation was unusual in that it performed ideally at small diameter, which indicated that it was a monomolecular explosive. Sensitivity tests included type 12 impact, Henkin thermal and wedge tests, and performance tests included rate stick/plate dent, cylinder, and aquarium tests. Results were compared with calculations, standard explosives, and another eutectic, ethylendiamine dinitrate (EDD)/AN.

  15. 77 FR 50613 - Didecyl Dimethyl Ammonium Carbonate and Didecyl Dimethyl Ammonium Bicarbonate; Exemption From the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    .... Background and Statutory Findings In the Federal Register of December 8, 2011 (76 FR 76674) (FRL- 9328-8... found at 73 FR 37852, July 2, 2008. IV. Aggregate Exposure In examining aggregate exposure, section 408... review under Executive Order 12866, entitled Regulatory Planning and Review (58 FR 51735, October 4,...

  16. Ammonium removal from landfill leachate by chemical precipitation

    SciTech Connect

    Li, X.Z. . Dept. of Civil and Structural Engineering); Zhao, Q.L. . School of Municipal and Environmental Engineering); Hao, X.D. . The Research Center of Ecological Economics and Environmental Technology)

    1999-01-01

    The landfill leachate in Hong Kong usually contains quite high NH[sub 4][sup +]-N concentration, which is well known to inhibit nitrification in biological treatment processes. A common pre-treatment for reducing high strength of ammonium (NH[sub 4][sup +]-N) is by an air-stripping process. However, there are some operational problems such as carbonate calling in the process of stripping. For this reason, some technical alternatives for NH[sub 4][sup +]-N removal from leachate need to be studied. In this study, a bench-scale experiment was initiated to investigate the feasibility of selectively precipitating NH[sub 4][sup +]-N in the leachate collected from a local landfill in Hong Kong as magnesium ammonium phosphate (MAP). In the experiment, three combinations of chemicals, MgCl[sub 2] [center dot] 6H[sub 2]O+Na[sub 2]HPO[sub 4] [center dot] 12H[sub 2]O, MgO + 85% H[sub 3]PO[sub 4], and Ca(H[sub 2]PO[sub 4])[sub 2] [center dot] H[sub 2]O + MgSO[sub 4] [center dot] 7H[sub 2]O, were used with the different stoichiometric ratios to generate the MAP precipitate effectively.

  17. Ammonium removal from landfill leachate by chemical precipitation

    SciTech Connect

    Li, X.Z.; Zhao, Q.L.; Hao, X.D.

    1999-11-01

    The landfill leachate in Hong Kong usually contains quite high NH{sub 4}{sup +}-N concentration, which is well known to inhibit nitrification in biological treatment processes. A common pre-treatment for reducing high strength of ammonium (NH{sub 4}{sup +}-N) is by an air-stripping process. However, there are some operational problems such as carbonate calling in the process of stripping. For this reason, some technical alternatives for NH{sub 4}{sup +}-N removal from leachate need to be studied. In this study, a bench-scale experiment was initiated to investigate the feasibility of selectively precipitating NH{sub 4}{sup +}-N in the leachate collected from a local landfill in Hong Kong as magnesium ammonium phosphate (MAP). In the experiment, three combinations of chemicals, MgCl{sub 2} {center_dot} 6H{sub 2}O+Na{sub 2}HPO{sub 4} {center_dot} 12H{sub 2}O, MgO + 85% H{sub 3}PO{sub 4}, and Ca(H{sub 2}PO{sub 4}){sub 2} {center_dot} H{sub 2}O + MgSO{sub 4} {center_dot} 7H{sub 2}O, were used with the different stoichiometric ratios to generate the MAP precipitate effectively.

  18. Manufacture of ammonium sulfate fertilizer from FGD-gypsum

    SciTech Connect

    Chou, M.I.M.; Bruinius, J.A.; Li, Y.C.

    1995-12-31

    The goal of this study is to assess the technical and economic feasibility of producing marketable products, namely fertilizer-grade ammonium sulfate and calcium carbonate, from gypsum produced as part of lime/limestone flue gas desulfurization (FGD) processes. Millions of tons of FGD-gypsum by-product will be produced in this decade. In this study, a literature review and bench-scale experiments were conducted to obtain process data for the production of marketable products from FGD-gypsum and to help evaluate technical and economic feasibility of the process. FGD-gypsum produced at the Abbott power plant in Champaign, IL was used as a raw material. The scrubber, a Chiyoda Thoroughbred 121 FGD, produced a filter cake product contains 98.36% gypsum (CaSO{sub 4}.2H{sub 2}O), and less than 0.01% calcium sulfate (CaSO{sub 3}). Conversion of FGD-gypsum to ammonium sulfate were tested at temperatures between 60 to 70{degrees}C for a duration of five to six hours. The results of a literature review and preliminary bench-scale experiments are presented in this paper.

  19. Ammonium Acetate Enhances the Attractiveness of a Variety of Protein-Based Baits to Female Ceratitis capitata (Diptera: Tephritidae).

    PubMed

    Piñero, Jaime C; Souder, Steven K; Smith, Trevor R; Fox, Abbie J; Vargas, Roger I

    2015-04-01

    Ammonia and its derivatives are used by female fruit flies (Diptera: Tephritidae) as volatile cues to locate protein-rich food needed to produce their eggs. This need for external protein sources has led to the development of behaviorally based control strategies such as food-based lures and insecticidal baits targeting pestiferous fruit fly species. In field cage studies conducted in Hawaii, we examined the behavioral response of laboratory-reared male and female Mediterranean fruit fly, Ceratitis capitata (Wiedemann), to seven commercially available protein baits and to beer waste, a relatively inexpensive and readily available substance. Each material was tested alone or in combination with either ammonium acetate or ammonium carbonate. For the majority of baits evaluated, the presence of ammonium acetate, but not ammonium carbonate, elicited a significantly greater level of response of female C. capitata compared with the protein baits alone. The addition of ammonium acetate to selected baits increased bait attractiveness to a level comparable with that elicited by the most widely used spinosad-based protein bait, GF-120. Our findings indicate that the addition of ammonium acetate to commercially available proteinaceous baits and to beer waste can greatly improve their attractiveness to C. capitata, potentially increasing the bait's effectiveness for fruit fly monitoring and suppression.

  20. Diamond Head Revisited with Ammonium Dichromate.

    ERIC Educational Resources Information Center

    Arrigoni, Edward

    1981-01-01

    The classroom demonstration using ammonium dichromate to simulate a volcanic eruption can be modified into a more dramatic and accurate representation of the geologic processes involved in the formation of a volcanic crater. The materials, demonstration setup, safety procedures, and applications to instruction are presented. (Author/WB)

  1. 21 CFR 558.340 - Maduramicin ammonium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS NEW ANIMAL DRUGS FOR USE IN ANIMAL FEEDS Specific New Animal Drugs for Use in Animal Feeds § 558.340 Maduramicin ammonium. (a) Approvals. Type A medicated articles:...

  2. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... this chapter. (e) Prior sanctions for this ingredient different from the uses established in this... is prepared by the neutralization of sulfuric acid with ammonium hydroxide. (b) The ingredient meets.../federal_register/code_of_federal_regulations/ibr_locations.html. (c) The ingredient is used as a...

  3. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... this chapter. (e) Prior sanctions for this ingredient different from the uses established in this... is prepared by the neutralization of sulfuric acid with ammonium hydroxide. (b) The ingredient meets.../federal_register/code_of_federal_regulations/ibr_locations.html. (c) The ingredient is used as a...

  4. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... this chapter. (e) Prior sanctions for this ingredient different from the uses established in this... is prepared by the neutralization of sulfuric acid with ammonium hydroxide. (b) The ingredient meets.../federal_register/code_of_federal_regulations/ibr_locations.html. (c) The ingredient is used as a...

  5. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... this chapter. (e) Prior sanctions for this ingredient different from the uses established in this... is prepared by the neutralization of sulfuric acid with ammonium hydroxide. (b) The ingredient meets.../federal_register/code_of_federal_regulations/ibr_locations.html. (c) The ingredient is used as a...

  6. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... sanctions for this ingredient different from the uses established in this section do not exist or have been... neutralization of sulfuric acid with ammonium hydroxide. (b) The ingredient meets the specifications of the “Food..._regulations/ibr_locations.html. (c) The ingredient is used as a dough strengthener as defined in §...

  7. 21 CFR 184.1133 - Ammonium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...: Category of food Maximum level of use in food (as served) (percent) Functional use Confections, frostings... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium alginate. 184.1133 Section 184.1133 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  8. 76 FR 70366 - Ammonium Nitrate Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Department previously announced a series of public meetings on the same topic on October 2, 2011 (see 76 FR... public comment on August 3, 2011. See 73 FR 64280 (advance notice of proposed rulemaking); 76 FR 46908... SECURITY Office of the Secretary 6 CFR Part 31 RIN 1601-AA52 Ammonium Nitrate Security Program...

  9. 76 FR 62311 - Ammonium Nitrate Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... FR 64280 (advance notice of proposed rulemaking); 76 FR 46908 (notice of proposed rulemaking...; ] DEPARTMENT OF HOMELAND SECURITY Office of the Secretary 6 CFR Part 31 RIN 1601-AA52 Ammonium Nitrate Security.... SUMMARY: The National Protection and Programs Directorate of the Department of Homeland Security...

  10. 21 CFR 184.1135 - Ammonium bicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ingredient as generally recognized as safe (GRAS) as a direct human food ingredient is based upon the... defined in § 170.3(o)(32) of this chapter. (2) The ingredient is used in food at levels not to exceed... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ammonium bicarbonate. 184.1135 Section...

  11. 21 CFR 184.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ingredient as generally recognized as safe (GRAS) as a direct human food ingredient is based upon the... water additive complying with § 173.310 of this chapter. (2) The ingredient is used in food at levels... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ammonium hydroxide. 184.1139 Section 184.1139...

  12. 21 CFR 184.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ingredient as generally recognized as safe (GRAS) as a direct human food ingredient is based upon the... water additive complying with § 173.310 of this chapter. (2) The ingredient is used in food at levels... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium hydroxide. 184.1139 Section 184.1139...

  13. 21 CFR 184.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ingredient as generally recognized as safe (GRAS) as a direct human food ingredient is based upon the... water additive complying with § 173.310 of this chapter. (2) The ingredient is used in food at levels... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium hydroxide. 184.1139 Section 184.1139...

  14. 21 CFR 184.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ingredient as generally recognized as safe (GRAS) as a direct human food ingredient is based upon the... water additive complying with § 173.310 of this chapter. (2) The ingredient is used in food at levels... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium hydroxide. 184.1139 Section 184.1139...

  15. 21 CFR 184.1133 - Ammonium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...: Category of food Maximum level of use in food (as served) (percent) Functional use Confections, frostings... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium alginate. 184.1133 Section 184.1133 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  16. 76 FR 47238 - Ammonium Nitrate From Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ...)). Background The Commission instituted this review on March 1, 2011 (76 FR 11273) and determined on June 6, 2011 that it would conduct an expedited review (76 FR 34749, June 14, 2011). The Commission transmitted... COMMISSION Ammonium Nitrate From Russia Determination On the basis of the record \\1\\ developed in the...

  17. A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium.

    PubMed

    Lei, Yu; Wang, Yangqing; Liu, Hongjie; Xi, Chuanwu; Song, Liyan

    2016-05-01

    A novel heterotrophic bacterium capable of heterotrophic nitrification and aerobic denitrification was isolated from ammonium contaminated landfill leachate and physiochemical and phylogenetically identified as Zobellella taiwanensis DN-7. DN-7 converted nitrate, nitrate, and ammonium to N2 as the primary end product. Single factor experiments suggested that the optimal conditions for ammonium removal were trisodium citrate as carbon source, C/N ratio 8, pH 8.0-10.0, salinity less than 3 %, temperature 30 °C, and rotation speed more than 150 rpm. Specifically, DN-7 could remove 1000.0 and 2000.0 mg/L NH4 (+)-N completely within 96 and 216 h, with maximum removal rates of 19.6 and 17.3 mg L(-1) h(-1), respectively. These results demonstrated that DN-7 is a promising candidate for application of high-strength ammonium wastewater treatments.

  18. Manufacture of ammonium sulfate fertilizer from gypsum-rich byproduct of flue gas desulfurization - A prefeasibility cost estimate

    USGS Publications Warehouse

    Chou, I.-Ming; Rostam-Abadi, M.; Lytle, J.M.; Achorn, F.P.

    1996-01-01

    Costs for constructing and operating a conceptual plant based on a proposed process that converts flue gas desulfurization (FGD)-gypsum to ammonium sulfate fertilizer has been calculated and used to estimate a market price for the product. The average market price of granular ammonium sulfate ($138/ton) exceeds the rough estimated cost of ammonium sulfate from the proposed process ($111/ ton), by 25 percent, if granular size ammonium sulfate crystals of 1.2 to 3.3 millimeters in diameters can be produced by the proposed process. However, there was at least ??30% margin in the cost estimate calculations. The additional costs for compaction, if needed to create granules of the required size, would make the process uneconomical unless considerable efficiency gains are achieved to balance the additional costs. This study suggests the need both to refine the crystallization process and to find potential markets for the calcium carbonate produced by the process.

  19. Biochemical parameters of Saccharopolyspora erythraea during feeding ammonium sulphate in erythromycin biosynthesis phase.

    PubMed

    Zou, X; Li, W-J; Zeng, W; Hang, H-F; Chu, J; Zhuang, Y P; Zhang, S L

    2013-01-01

    The physiology of feeding ammonium sulphate in erythromycin biosynthesis phase of Saccharopolyspora erythraea on the regulation of erythromycin A (Er-A) biosynthesis was investigated in 50 L fermenter. At an optimal feeding ammonium sulphate rate of 0.03 g/L per h, the maximal Er-A production was 8281 U/mL at 174 h of growth, which was increased by 26.3% in comparison with the control (6557 U/mL at 173 h). Changes in cell metabolic response of actinomycete were observed, i.e. there was a drastic increase in the level of carbon dioxide evolution rate and oxygen consumption. Assays of the key enzyme activities and organic acids of S. erythraea and amino acids in culture broth revealed that cell metabolism was enhanced by ammonium assimilation, which might depend on the glutamate transamination pathway. The enhancement of cell metabolism induced an increase of the pool of TCA cycle and the metabolic flux of erythromycin biosynthesis. In general, ammonium assimilation in the erythromycin biosynthesis phase of S. erythraea exerted a significant impact on the carbon metabolism and formation of precursors of the process for dramatic regulation of secondary metabolites biosynthesis.

  20. Technology for processing ammonium rhodanide of coking plants into high-purity ammonium thiocyanate and thiourea

    SciTech Connect

    Urakaev, F.K.

    2009-04-15

    The regularities of the reversible reaction of isomerization of ammonium thiocyanate (NH{sub 4}NCS) into thiourea (NH{sub 2}){sub 2}CS, and the reverse reaction, were analyzed. An ecologically clean and highly efficient method for the extraction, purification, separation, and production of isomers from the coal byproduct ammonium thiocyanate was developed based on the measured volatilities of NH{sub 4}NCS and (NH{sub 2}){sub 2}CS.

  1. Impact of Ammonium on Syntrophic Organohalide-Respiring and Fermenting Microbial Communities.

    PubMed

    Delgado, Anca G; Fajardo-Williams, Devyn; Kegerreis, Kylie L; Parameswaran, Prathap; Krajmalnik-Brown, Rosa

    2016-01-01

    Syntrophic interactions between organohalide-respiring and fermentative microorganisms are critical for effective bioremediation of halogenated compounds. This work investigated the effect of ammonium concentration (up to 4 g liter(-1) NH4 (+)-N) on trichloroethene-reducing Dehalococcoides mccartyi and Geobacteraceae in microbial communities fed lactate and methanol. We found that production of ethene by D. mccartyi occurred in mineral medium containing ≤2 g liter(-1) NH4 (+)-N and in landfill leachate. For the partial reduction of trichloroethene (TCE) to cis-dichloroethene (cis-DCE) at ≥1 g liter(-1) NH4 (+)-N, organohalide-respiring dynamics shifted from D. mccartyi and Geobacteraceae to mainly D. mccartyi. An increasing concentration of ammonium was coupled to lower metabolic rates, longer lag times, and lower gene abundances for all microbial processes studied. The methanol fermentation pathway to acetate and H2 was conserved, regardless of the ammonium concentration provided. However, lactate fermentation shifted from propionic to acetogenic at concentrations of ≥2 g liter(-1) NH4 (+)-N. Our study findings strongly support a tolerance of D. mccartyi to high ammonium concentrations, highlighting the feasibility of organohalide respiration in ammonium-contaminated subsurface environments. IMPORTANCE Contamination with ammonium and chlorinated solvents has been reported in numerous subsurface environments, and these chemicals bring significant challenges for in situ bioremediation. Dehalococcoides mccartyi is able to reduce the chlorinated solvent trichloroethene to the nontoxic end product ethene. Fermentative bacteria are of central importance for organohalide respiration and bioremediation to provide D. mccartyi with H2, their electron donor, acetate, their carbon source, and other micronutrients. In this study, we found that high concentrations of ammonium negatively correlated with rates of trichloroethene reductive dehalogenation and

  2. Impact of Ammonium on Syntrophic Organohalide-Respiring and Fermenting Microbial Communities

    PubMed Central

    Fajardo-Williams, Devyn; Kegerreis, Kylie L.; Parameswaran, Prathap

    2016-01-01

    ABSTRACT Syntrophic interactions between organohalide-respiring and fermentative microorganisms are critical for effective bioremediation of halogenated compounds. This work investigated the effect of ammonium concentration (up to 4 g liter−1 NH4+-N) on trichloroethene-reducing Dehalococcoides mccartyi and Geobacteraceae in microbial communities fed lactate and methanol. We found that production of ethene by D. mccartyi occurred in mineral medium containing ≤2 g liter−1 NH4+-N and in landfill leachate. For the partial reduction of trichloroethene (TCE) to cis-dichloroethene (cis-DCE) at ≥1 g liter−1 NH4+-N, organohalide-respiring dynamics shifted from D. mccartyi and Geobacteraceae to mainly D. mccartyi. An increasing concentration of ammonium was coupled to lower metabolic rates, longer lag times, and lower gene abundances for all microbial processes studied. The methanol fermentation pathway to acetate and H2 was conserved, regardless of the ammonium concentration provided. However, lactate fermentation shifted from propionic to acetogenic at concentrations of ≥2 g liter−1 NH4+-N. Our study findings strongly support a tolerance of D. mccartyi to high ammonium concentrations, highlighting the feasibility of organohalide respiration in ammonium-contaminated subsurface environments. IMPORTANCE Contamination with ammonium and chlorinated solvents has been reported in numerous subsurface environments, and these chemicals bring significant challenges for in situ bioremediation. Dehalococcoides mccartyi is able to reduce the chlorinated solvent trichloroethene to the nontoxic end product ethene. Fermentative bacteria are of central importance for organohalide respiration and bioremediation to provide D. mccartyi with H2, their electron donor, acetate, their carbon source, and other micronutrients. In this study, we found that high concentrations of ammonium negatively correlated with rates of trichloroethene reductive dehalogenation and

  3. Potential contribution of planktonic components to ammonium cycling in the coastal area off central-southern Chile during non-upwelling conditions

    NASA Astrophysics Data System (ADS)

    Molina, Veronica; Morales, Carmen E.; Farías, Laura; Cornejo, Marcela; Graco, Michelle; Eissler, Yoanna; Cuevas, Luis A.

    2012-01-01

    The potential contributions of different microbial components (<20 μm) and metabolisms to ammonium cycling were assessed during non-upwelling conditions in a coastal area off Concepción (∼36.5°S). Assays with specific inhibitors to estimate rates of ammonium consumption and production, and carbon assimilation associated with photolithotrophic and chemolithoautotrophic (nitrification) metabolisms in the water column were performed. Despite low water column concentrations of ammonium in wintertime, intense ammonium transformations were registered. Prokaryotes (or bacterioplankton) contributed most to ammonium generation rates over the entire water column; these rates increased with depth (0.4-3.1 μM d -1). In surface waters (10 m depth), aerobic ammonium oxidation (potentially by Bacteria and Archaea) was the dominant consumption process (average 0.7 μM d -1) whereas in the subsurface layer (20 and 50 m depth), unexpectedly, eukaryotes accounted for most of its consumption (average 2.1 μM d -1). Nitrification oxidized an important proportion of the ammonium in both layers (from 25% to 100%) and provided regenerated nitrate. The integrated water column rates of chemosynthesis (0.005 g C m -2 d -1) represented a large proportion (51%) of the total dark carbon fixation during the non-upwelling season when integrated rates of photosynthesis are relatively low (0.42 g C m -2 d -1) and microbial food webs dominate the transfer of carbon within this coastal system.

  4. 40 CFR 721.10302 - Zinc ammonium phosphate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Zinc ammonium phosphate (generic). 721... Substances § 721.10302 Zinc ammonium phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as zinc ammonium phosphate (PMN...

  5. 40 CFR 721.10302 - Zinc ammonium phosphate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Zinc ammonium phosphate (generic). 721... Substances § 721.10302 Zinc ammonium phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as zinc ammonium phosphate (PMN...

  6. 40 CFR 721.10302 - Zinc ammonium phosphate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Zinc ammonium phosphate (generic). 721... Substances § 721.10302 Zinc ammonium phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as zinc ammonium phosphate (PMN...

  7. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions...

  8. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions...

  9. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions...

  10. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate....

  11. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions...

  12. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate....

  13. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum ammonium sulfate. 182.1127 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions of use. This substance is...

  14. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate....

  15. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions...

  16. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate....

  17. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethoxylated alkyl quaternary ammonium... Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  18. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethoxylated alkyl quaternary ammonium... Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  19. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethoxylated alkyl quaternary ammonium... Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  20. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethoxylated alkyl quaternary ammonium... Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  1. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethoxylated alkyl quaternary ammonium... Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  2. 40 CFR 721.10591 - Tertiary ammonium compound (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tertiary ammonium compound (generic... Specific Chemical Substances § 721.10591 Tertiary ammonium compound (generic). (a) Chemical substance and... ammonium compound (PMN P-11-110) is subject to reporting under this section for the significant new...

  3. 40 CFR 721.10591 - Tertiary ammonium compound (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tertiary ammonium compound (generic... Specific Chemical Substances § 721.10591 Tertiary ammonium compound (generic). (a) Chemical substance and... ammonium compound (PMN P-11-110) is subject to reporting under this section for the significant new...

  4. 40 CFR 721.10582 - Quaternary ammonium compound (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium compound (generic... Specific Chemical Substances § 721.10582 Quaternary ammonium compound (generic). (a) Chemical substance and... ammonium compound (PMN P-10-571) is subject to reporting under this section for the significant new...

  5. 40 CFR 721.10582 - Quaternary ammonium compound (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium compound (generic... Specific Chemical Substances § 721.10582 Quaternary ammonium compound (generic). (a) Chemical substance and... ammonium compound (PMN P-10-571) is subject to reporting under this section for the significant new...

  6. 21 CFR 172.430 - Iron ammonium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Iron ammonium citrate. 172.430 Section 172.430... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Anticaking Agents § 172.430 Iron ammonium citrate. Iron ammonium citrate may be safely used in food in accordance with the...

  7. 40 CFR 721.10511 - Quaternary ammonium salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium salts (generic... Specific Chemical Substances § 721.10511 Quaternary ammonium salts (generic). (a) Chemical substance and... ammonium salts (PMNs P-07-320, P-07-321, P-07-322, P-07-323, and P-07-324) are subject to reporting...

  8. 40 CFR 721.10511 - Quaternary ammonium salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium salts (generic... Specific Chemical Substances § 721.10511 Quaternary ammonium salts (generic). (a) Chemical substance and... ammonium salts (PMNs P-07-320, P-07-321, P-07-322, P-07-323, and P-07-324) are subject to reporting...

  9. 21 CFR 573.560 - Iron ammonium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.560 Iron ammonium citrate. Iron ammonium citrate may be safely used in animal feed... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Iron ammonium citrate. 573.560 Section...

  10. 21 CFR 573.560 - Iron ammonium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.560 Iron ammonium citrate. Iron ammonium citrate may be safely used in animal feed... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Iron ammonium citrate. 573.560 Section...

  11. 21 CFR 573.560 - Iron ammonium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.560 Iron ammonium citrate. Iron ammonium citrate may be safely used in animal feed... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Iron ammonium citrate. 573.560 Section...

  12. 40 CFR 721.4467 - Quaternary ammonium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Quaternary ammonium hydroxide. 721... Substances § 721.4467 Quaternary ammonium hydroxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a quaternary ammonium...

  13. 40 CFR 721.4467 - Quaternary ammonium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Quaternary ammonium hydroxide. 721... Substances § 721.4467 Quaternary ammonium hydroxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a quaternary ammonium...

  14. Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Continuously Percolated Soil Columns

    PubMed Central

    Verhagen, Frank J. M.; Duyts, Hendrik; Laanbroek, Hendrikus J.

    1992-01-01

    Although the absence of nitrate formation in grassland soils rich in organic matter has often been reported, low numbers of nitrifying bacteria are still found in these soils. To obtain more insight into these observations, we studied the competition for limiting amounts of ammonium between the chemolithotrophic ammonium-oxidizing species Nitrosomonas europaea and the heterotrophic species Arthrobacter globiformis in the presence of Nitrobacter winogradskyi with soil columns containing calcareous sandy soil. The soil columns were percolated continuously at a dilution rate of 0.007 h-1, based on liquid volumes, with medium containing 5 mM ammonium and different amounts of glucose ranging from 0 to 12 mM.A. globiformis was the most competitive organism for limiting amounts of ammonium. The numbers of N. europaea and N. winogradskyi cells were lower at higher glucose concentrations, and the potential ammonium-oxidizing activities in the uppermost 3 cm of the soil columns were nonexistent when at least 10 mM glucose was present in the reservoir, although 107 nitrifying cells per g of dry soil were still present. This result demonstrated that there was no correlation between the numbers of nitrifying bacteria and their activities. The numbers and activities of N. winogradskyi cells decreased less than those of N. europaea cells in all layers of the soil columns, probably because of heterotrophic growth of the nitrite-oxidizing bacteria on organic substrates excreted by the heterotrophic bacteria or because of nitrate reduction at reduced oxygen concentrations by the nitrite-oxidizing bacteria. Our conclusion was that the nitrifying bacteria were less competitive than the heterotrophic bacteria for ammonium in soil columns but that they survived as viable inactive cells. Inactive nitrifying bacteria may also be found in the rhizosphere of grassland plants, which is rich in organic carbon. They are possibly reactivated during periods of net mineralization. PMID:16348787

  15. [Quaternary ammonium compounds--new occupational hazards].

    PubMed

    Lipińska-Ojrzanowska, Agnieszka; Walusiak-Skorupa, Jolanta

    2014-01-01

    Quaternary ammonium compounds (QACs, quats) belong to organic ionic chemical agents which display unique properties of both surfactants and disinfectants. Their wide distribution in the work environment and also in private households brings about new occupational hazards. This paper reviews reports about the health effects of QACs. QACs could play a role of sensitizers and irritants to the skin and mucous membranes. It is suspected that particular QACs can display an immunologic cross-reactivity between each other and with other chemical compounds containing ammonium ion, such as muscle relaxants widely used in anesthesia. They may promote the development of airway allergy, however, the background mechanisms are still unclear and need to be further investigated. Until now, a few cases of occupational asthma induced by QACs have been described and their involvement in contact dermatitis has been documented. The possibility of anaphylaxis due to QACs cannot be excluded as well. PMID:25812396

  16. Detonation Properties of Ammonium Dinitramide (ADN)

    NASA Astrophysics Data System (ADS)

    Wätterstam, A.; Östmark, H.; Helte, A.; Karlsson, S.

    1999-06-01

    Ammonium Dinitramide, ADN, has a potential as an oxidizer for underwater high explosives. Pure ADN has a large reaction-zone length and shows a strong non-ideal behaviour. The work presented here is an extension of previous work.(Sensitivity and Performance Characterization of Ammonium Dinitramide (ADN). Presented at 11th International Detonation Symposium, Snowmass, CO, 1998.) Experiments for determining the detonation velocity as a function of inverse charge radius and density, reaction-zone length and curvature, and the detonation pressure are presented. Measurements of pressure indicates that no, or weak von-Neumann spike exists, suggesting an immediate chemical decomposition. Experimental data are compared with predicted using thermochemical codes and ZND-theory.

  17. 3-Quaternary ammonium 1-carba-1-dethiacephems.

    PubMed

    Cook, G K; McDonald, J H; Alborn, W; Boyd, D B; Eudaly, J A; Indelicato, J M; Johnson, R; Kasher, J S; Pasini, C E; Preston, D A

    1989-11-01

    A series of structurally unique 1-carba-1-dethiacephems is described. The structural stability of the 1-carba-1-dethiacephem nucleus was essential for the preparation of this series of 3-quaternary ammonium carbacephems. The known p-nitrobenzyl 7 beta-(phenoxyacetamido)- 3-[(trifluoromethyl)sulfonyl]oxy]-1-carba-1-dethia-3-cephem- 4-carboxylate served as both a quaternization substrate as well as a precursor to derivatives such as allyl 7 beta-[[2-[allyloxy)carbonyl]amino-4- thiazoly] (methoxyimino)acetyl]amino]-3-[(trifluoromethyl) sulfonyl] oxy]-1-carba-1-dethia-3-cephem-4-carboxylate. Quaternization of these enol triflates was accomplished either by dissolution in acetonitrile containing the base or by dissolution in the base, with or without warning to 50 degrees C. Bases nucleophilic enough to displace the triflate include a variety of substituted pyridines and N-methylimidazole. Deprotection then produced a very active series of 1-[7 beta-[(2-amino- 4-thiazolyl)(methoxyimino)acetyl]amino]-2-carboxy-8-oxo- 1-azabicyclo[4.2.0]oct-2-en-3-yl] quaternary ammonium hydroxide inner salts. These compounds were extremely potent antibacterials against a broad range of Gram-positive and -negative bacteria including constitutive cephalosporinase producers, such as Enterobacter cloacae. The compounds exhibit similar hydrolysis kinetics and pharmacokinetics to the analogous cephalosporin-3'-quaternary ammonium salts.

  18. Equation of State of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Robbins, David L.; Sheffield, Stephen A.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Stahl, David B.

    2009-12-01

    Ammonium nitrate (AN) is a widely used fertilizer and mining explosive. AN is commonly used in ammonium nitrate-fuel oil (ANFO), which is a mixture of explosive-grade AN prills and fuel oil in a 94:6 ratio by weight. ANFO is a non-ideal explosive with measured detonation velocities around 4 km/s. The equation of state properties and known initiation behavior of neat AN are limited. We present the results of a series of gas gun-driven plate impact experiments on pressed neat ammonium nitrate at 1.72 g/cm3. No evidence of initiation was observed under shock loading to 22 GPa. High pressure x-ray diffraction experiments in diamond anvil cells provided insight into the high pressure phase behavior over the same pressure range (to 25 GPa), as well as a static isotherm at ambient temperature. From the isotherm and thermodynamic properties at ambient conditions, a preliminary unreacted equation of state (EOS) has been developed based on the Murnaghan isotherm and Helmholtz formalism [1], which compares favorably with the available experimental Hugoniot data on several densities of AN.

  19. DETECTION OF THE AMMONIUM ION IN SPACE

    SciTech Connect

    Cernicharo, J.; Tercero, B.; Fuente, A.; Domenech, J. L.; Cueto, M.; Carrasco, E.; Herrero, V. J.; Tanarro, I.; Marcelino, N.; Roueff, E.; Gerin, M.; Pearson, J.

    2013-07-01

    We report on the detection of a narrow feature at 262816.73 MHz toward Orion and the cold prestellar core B1-bS which we attribute to the 1{sub 0}-0{sub 0} line of the deuterated ammonium ion, NH{sub 3}D{sup +}. The observations were performed with the IRAM 30 m radio telescope. The carrier has to be a light molecular species as it is the only feature detected over 3.6 GHz of bandwidth. The hyperfine structure is not resolved, indicating a very low value for the electric quadrupolar coupling constant of nitrogen which is expected for NH{sub 3}D{sup +} as the electric field over the N nucleus is practically zero. Moreover, the feature is right at the predicted frequency for the 1{sub 0}-0{sub 0} transition of the ammonium ion, 262817 {+-} 6 MHz (3{sigma}), using rotational constants derived from new infrared data obtained in our laboratory in Madrid. The estimated column density is (1.1 {+-} 0.2) Multiplication-Sign 10{sup 12} cm{sup -2}. Assuming a deuterium enhancement similar to that of NH{sub 2}D, we derive N(NH{sub 4}{sup +}) {approx_equal} 2.6 Multiplication-Sign 10{sup 13} cm{sup -2}, i.e., an abundance for ammonium of a few 10{sup -11}.

  20. PROCESS FOR THE PRODUCTION OF AMMONIUM URANIUM FLUORIDE

    DOEpatents

    Ellis, A.S.; Mooney, R.B.

    1953-08-25

    This patent relates to the preparation of ammonium uranium fluoride. The process comprises adding a water soluble fluoride to an aqueous solution of a uranous compound containing an ammonium salt, and isolating the resulting precipitate. This patent relates to the manufacture of uranium tetnafluoride from ammonium uranium fluoride, NH/sub 4/UF/sub 5/. Uranium tetrafluoride is prepared by heating the ammonium uranium fluoride to a temperature at which dissociation occurs with liberation of ammonium fluoride. Preferably the process is carried out under reduced pressure, or in a current of an inert gas.

  1. Oxidation of ammonium sulfite in aqueous solutions using ozone technology

    NASA Astrophysics Data System (ADS)

    Li, Yue; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    How to deal with unstable ammonium sulfite, the byproduct of flue gas desulfuration by ammonia absorption methods, has been a difficult problem in recent years. Oxidation of ammonium sulfite in aqueous solutions using ozone produced by a surface discharge system was investigated in the paper. The oxidation efficiency of ammonium sulfite by ozone and traditional air aeration were compared, and the factors including ozone concentration, gas flow rate, initial concentration of ammonium sulfite solution and reaction temperature were discussed. The results show that the oxidation efficiency of ammonium sulfite by ozone technology reached nearly 100% under the optimum conditions, which had a significant increase compared with that by air aeration.

  2. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    NASA Astrophysics Data System (ADS)

    Kiko, R.; Hauss, H.; Buchholz, F.; Melzner, F.

    2015-10-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2 and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply considerably fuels bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a downregulation of ammonium excretion. Here we show that exposure to OMZ conditions can result in strong depression of respiration and ammonium excretion in calanoid copepods and euphausiids from the Eastern Tropical North Atlantic and the Eastern Tropical South Pacific. These physiological responses need to be taken into account when estimating DVM-mediated fluxes of carbon and nitrogen into OMZs.

  3. Conversion of Uric Acid into Ammonium in Oil-Degrading Marine Microbial Communities: a Possible Role of Halomonads.

    PubMed

    Gertler, Christoph; Bargiela, Rafael; Mapelli, Francesca; Han, Xifang; Chen, Jianwei; Hai, Tran; Amer, Ranya A; Mahjoubi, Mouna; Malkawi, Hanan; Magagnini, Mirko; Cherif, Ameur; Abdel-Fattah, Yasser R; Kalogerakis, Nicolas; Daffonchio, Daniele; Ferrer, Manuel; Golyshin, Peter N

    2015-10-01

    Uric acid is a promising hydrophobic nitrogen source for biostimulation of microbial activities in oil-impacted marine environments. This study investigated metabolic processes and microbial community changes in a series of microcosms using sediment from the Mediterranean and the Red Sea amended with ammonium and uric acid. Respiration, emulsification, ammonium and protein concentration measurements suggested a rapid production of ammonium from uric acid accompanied by the development of microbial communities containing hydrocarbonoclastic bacteria after 3 weeks of incubation. About 80 % of uric acid was converted to ammonium within the first few days of the experiment. Microbial population dynamics were investigated by Ribosomal Intergenic Spacer Analysis and Illumina sequencing as well as by culture-based techniques. Resulting data indicated that strains related to Halomonas spp. converted uric acid into ammonium, which stimulated growth of microbial consortia dominated by Alcanivorax spp. and Pseudomonas spp. Several strains of Halomonas spp. were isolated on uric acid as the sole carbon source showed location specificity. These results point towards a possible role of halomonads in the conversion of uric acid to ammonium utilized by hydrocarbonoclastic bacteria.

  4. CHLORIDEDETERMINATION IN HIGH IONIC STRENGTH SOLUTION OF AMMONIUM ACETATE USING NEGATIVE ION ELECTRON SPRAY IONIZATION (HPLC/MS)

    EPA Science Inventory

    A precise ion chromatography method has been developed for the determination of chloride in high ionic strength ammonium acetate solutions (10-5 M-5 M) using sodium carbonate/sodium bicarbonate as eluent. Negative ion electrospray ionization (ESI) mass spectrometry was used for q...

  5. Effects of high ammonium level on biomass accumulation of common duckweed Lemna minor L.

    PubMed

    Wang, Wenguo; Yang, Chuang; Tang, Xiaoyu; Gu, Xinjiao; Zhu, Qili; Pan, Ke; Hu, Qichun; Ma, Danwei

    2014-12-01

    Growing common duckweed Lemna minor L. in diluted livestock wastewater is an alternative option for pollutants removal and consequently the accumulated duckweed biomass can be used for bioenergy production. However, the biomass accumulation can be inhibited by high level of ammonium (NH4 (+)) in non-diluted livestock wastewater and the mechanism of ammonium inhibition is not fully understood. In this study, the effect of high concentration of NH4 (+) on L. minor biomass accumulation was investigated using NH4 (+) as sole source of nitrogen (N). NH4 (+)-induced toxicity symptoms were observed when L. minor was exposed to high concentrations of ammonium nitrogen (NH4 (+)-N) after a 7-day cultivation. L. minor exposed to the NH4 (+)-N concentration of 840 mg l(-1) exhibited reduced relative growth rate, contents of carbon (C) and photosynthetic pigments, and C/N ratio. Ammonium irons were inhibitory to the synthesis of photosynthetic pigments and caused C/N imbalance in L. minor. These symptoms could further cause premature senescence of the fronds, and restrain their reproduction, growth and biomass accumulation. L. minor could grow at NH4 (+)-N concentrations of 7-84 mg l(-1) and the optimal NH4 (+)-N concentration was 28 mg l(-1).

  6. Effects of high ammonium level on biomass accumulation of common duckweed Lemna minor L.

    PubMed

    Wang, Wenguo; Yang, Chuang; Tang, Xiaoyu; Gu, Xinjiao; Zhu, Qili; Pan, Ke; Hu, Qichun; Ma, Danwei

    2014-12-01

    Growing common duckweed Lemna minor L. in diluted livestock wastewater is an alternative option for pollutants removal and consequently the accumulated duckweed biomass can be used for bioenergy production. However, the biomass accumulation can be inhibited by high level of ammonium (NH4 (+)) in non-diluted livestock wastewater and the mechanism of ammonium inhibition is not fully understood. In this study, the effect of high concentration of NH4 (+) on L. minor biomass accumulation was investigated using NH4 (+) as sole source of nitrogen (N). NH4 (+)-induced toxicity symptoms were observed when L. minor was exposed to high concentrations of ammonium nitrogen (NH4 (+)-N) after a 7-day cultivation. L. minor exposed to the NH4 (+)-N concentration of 840 mg l(-1) exhibited reduced relative growth rate, contents of carbon (C) and photosynthetic pigments, and C/N ratio. Ammonium irons were inhibitory to the synthesis of photosynthetic pigments and caused C/N imbalance in L. minor. These symptoms could further cause premature senescence of the fronds, and restrain their reproduction, growth and biomass accumulation. L. minor could grow at NH4 (+)-N concentrations of 7-84 mg l(-1) and the optimal NH4 (+)-N concentration was 28 mg l(-1). PMID:25056754

  7. Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories.

    PubMed

    Ortiz-Marquez, Juan Cesar Federico; Do Nascimento, Mauro; Curatti, Leonardo

    2014-05-01

    The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. In this study we compared the effect of controlling the maximum activation state of the Azotobacter vinelandii glutamine synthase by a point mutation at the active site (D49S mutation) and impairing the ammonium-dependent homeostatic control of nitrogen-fixation genes expression by the ΔnifL mutation on ammonium release by the cells. Strains bearing the single D49S mutation were more efficient ammonium producers under carbon/energy limiting conditions and sustained microalgae growth at the expense of atmospheric N2 in synthetic microalgae-bacteria consortia. Ammonium delivery by the different strains had implications for the microalga׳s cell-size distribution. It was uncovered an extensive cross regulation between nitrogen fixation and assimilation that extends current knowledge on this key metabolic pathway and might represent valuable hints for further improvements of versatile N2-fixing microbial-cell factories.

  8. Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories.

    PubMed

    Ortiz-Marquez, Juan Cesar Federico; Do Nascimento, Mauro; Curatti, Leonardo

    2014-05-01

    The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. In this study we compared the effect of controlling the maximum activation state of the Azotobacter vinelandii glutamine synthase by a point mutation at the active site (D49S mutation) and impairing the ammonium-dependent homeostatic control of nitrogen-fixation genes expression by the ΔnifL mutation on ammonium release by the cells. Strains bearing the single D49S mutation were more efficient ammonium producers under carbon/energy limiting conditions and sustained microalgae growth at the expense of atmospheric N2 in synthetic microalgae-bacteria consortia. Ammonium delivery by the different strains had implications for the microalga׳s cell-size distribution. It was uncovered an extensive cross regulation between nitrogen fixation and assimilation that extends current knowledge on this key metabolic pathway and might represent valuable hints for further improvements of versatile N2-fixing microbial-cell factories. PMID:24680860

  9. Crystal structure of ammonium bis-[(pyridin-2-yl)meth-yl]ammonium dichloride.

    PubMed

    Trischler, Aaron; Oshin, Kayode; Pintauer, Tomislav

    2015-09-01

    In the title molecular salt, C12H14N3 (+)·NH4 (+)·2Cl(-), the central, secondary-amine, N atom is protonated. The bis-[(pyridin-2-yl)meth-yl]ammonium and ammonium cations both lie across a twofold rotation axis. The dihedral angles between the planes of the pyridine rings is 68.43 (8)°. In the crystal, N-H⋯N and N-H⋯Cl hydrogen bonds link the components of the structure, forming a two-dimensional network parallel to (010). In addition, weak C-H⋯Cl hydrogen bonds exist within the two-dimensional network.

  10. Crystal structure of ammonium bis­[(pyridin-2-yl)meth­yl]ammonium dichloride

    PubMed Central

    Trischler, Aaron; Oshin, Kayode; Pintauer, Tomislav

    2015-01-01

    In the title molecular salt, C12H14N3 +·NH4 +·2Cl−, the central, secondary-amine, N atom is protonated. The bis­[(pyridin-2-yl)meth­yl]ammonium and ammonium cations both lie across a twofold rotation axis. The dihedral angles between the planes of the pyridine rings is 68.43 (8)°. In the crystal, N—H⋯N and N—H⋯Cl hydrogen bonds link the components of the structure, forming a two-dimensional network parallel to (010). In addition, weak C—H⋯Cl hydrogen bonds exist within the two-dimensional network. PMID:26396908

  11. Crystal structure of ammonium bis-[(pyridin-2-yl)meth-yl]ammonium dichloride.

    PubMed

    Trischler, Aaron; Oshin, Kayode; Pintauer, Tomislav

    2015-09-01

    In the title molecular salt, C12H14N3 (+)·NH4 (+)·2Cl(-), the central, secondary-amine, N atom is protonated. The bis-[(pyridin-2-yl)meth-yl]ammonium and ammonium cations both lie across a twofold rotation axis. The dihedral angles between the planes of the pyridine rings is 68.43 (8)°. In the crystal, N-H⋯N and N-H⋯Cl hydrogen bonds link the components of the structure, forming a two-dimensional network parallel to (010). In addition, weak C-H⋯Cl hydrogen bonds exist within the two-dimensional network. PMID:26396908

  12. One-Pot Synthesis of α-Amino Acids through Carboxylation of Ammonium Ylides with CO2 Followed by Alkyl Migration.

    PubMed

    Mita, Tsuyoshi; Sugawara, Masumi; Sato, Yoshihiro

    2016-06-17

    A simple, yet powerful protocol for α-amino acid synthesis using carbon dioxide (CO2) was developed. α-Amino silanes could undergo four successive reactions (formation of ammonium salt, carboxylation, esterification, and 2,3- or 1,2-Stevens rearrangement) in the presence of allylic or benzylic halides under a CO2 atmosphere (1 atm). It is noteworthy that carboxylation at the position adjacent to a nitrogen atom proceeded via an ammonium ylide intermediate under mild conditions. PMID:27223669

  13. Review: Mechanisms of ammonium toxicity and the quest for tolerance.

    PubMed

    Esteban, Raquel; Ariz, Idoia; Cruz, Cristina; Moran, Jose Fernando

    2016-07-01

    Ammonium sensitivity of plants is a worldwide problem, constraining crop production. Prolonged application of ammonium as the sole nitrogen source may result in physiological and morphological disorders that lead to decreased plant growth and toxicity. The main causes of ammonium toxicity/tolerance described until now include high ammonium assimilation by plants and/or low sensitivity to external pH acidification. The various ammonium transport-related components, especially the non-electrogenic influx of NH3 (related to the depletion of (15)N) and the electrogenic influx of NH4(+), may contribute to ammonium accumulation, and therefore to NH3 toxicity. However, this accumulation may be influenced by increasing K(+) concentration in the root medium. Recently, new insights have been provided by "omics" studies, leading to a suggested involvement of GDP mannose-pyrophosphorylase in the response pathways of NH4(+) stress. In this review, we highlight the cross-talk signaling between nitrate, auxins and NO, and the importance of the connection of the plants' urea cycle to metabolism of polyamines. Overall, the tolerance and amelioration of ammonium toxicity are outlined to improve the yield of ammonium-grown plants. This review identifies future directions of research, focusing on the putative importance of aquaporins in ammonium influx, and on genes involved in ammonium sensitivity and tolerance. PMID:27181951

  14. Growth Layers on Ammonium Dihydrogen Phosphate.

    PubMed

    Torgesen, J L; Jackson, R W

    1965-05-14

    Microscopic observations of growth layers and etch pits on ammonium dihydrogen phosphate crystals reveal screw dislocations on the {100} face generating elliptical spirals that change rapidly but reversibly to rectangular shape when chromium-ion impurity is added. The effects of the impurity on crystal habit are judged to be secondary to changes in the morphology of the growth layers. No sources of growth are observed on the {101} faces; the layers spread inward from the edges and at times are mutually annihilating so that, temporarily, no steps are observed. Similar behavior is recorded for the {1011} faces of NaNO(3).

  15. [Achievement of Sulfate-Reducing Anaerobic Ammonium Oxidation Reactor Started with Nitrate-Reducting Anaerobic Ammonium Oxidation].

    PubMed

    Liu, Zheng-chuan; Yuan, Lin-jiang; Zhou, Guo-biao; Li, Jing

    2015-09-01

    The transformation of nitrite-reducing anaerobic ammonium oxidation to sulfate-reducing anaerobic ammonium oxidation in an UASB was performed and the changes in microbial community were studied. The result showed that the sulfate reducing anaerobic ammonium oxidation process was successfully accomplished after 177 days' operation. The removal rate of ammonium nitrogen and sulfate were up to 58. 9% and 15. 7%, the removing load of ammonium nitrogen and sulfate were 74. 3 mg.(L.d)-1 and 77. 5 mg.(L.d)-1 while concentration of ammonium nitrogen and sulfate of influent were 130 mg.(L.d)-1 and 500 mg.(L.d)-1, respectively. The lost nitrogen and sulphur was around 2 in molar ratio. The pH value of the effluent was lower than that of the influent. Instead of Candidatus brocadia in nitrite reducing anaerobic ammonium oxidation granular sludge, Bacillus benzoevorans became the dominant species in sulfate reducing anaerobic ammonium oxidation sludge. The dominant bacterium in the two kinds of anaerobic ammonium oxidation process is different. Our results imply that the two anaerobic ammonium oxidation processes are carried out by different kind of bacterium.

  16. Mild ammonium stress increases chlorophyll content in Arabidopsis thaliana.

    PubMed

    Sanchez-Zabala, Joseba; González-Murua, Carmen; Marino, Daniel

    2015-01-01

    Nitrate (NO3(-)) and ammonium (NH4(+)) are the main forms of nitrogen available in the soil for plants. Excessive NH4(+) accumulation in tissues is toxic for plants and exclusive NH4(+)-based nutrition enhances this effect. Ammonium toxicity syndrome commonly includes growth impairment, ion imbalance and chlorosis among others. In this work, we observed high intraspecific variability in chlorophyll content in 47 Arabidopsis thaliana natural accessions grown under 1 mM NH4(+) or 1 mM NO3(-) as N-source. Interestingly, chlorophyll content increased in every accession upon ammonium nutrition. Moreover, this increase was independent of ammonium tolerance capacity. Thus, chlorosis seems to be an exclusive effect of severe ammonium toxicity while mild ammonium stress induces chlorophyll accumulation.

  17. Utilization of by-product ammonium sulfate

    SciTech Connect

    Boles, J.L.

    1992-12-31

    Sulfur is generally referred to as a secondary plant nutrients but it actually ranks in importance with nitrogen and phosphorous in protein synthesis. It is also an integral part of vitamins and enzymes essential to life. Soils in many areas of the world today are deficient in sulfur and soil sulfur reserves are being rapidly depleted. To address growing agronomic needs for sulfur, TVA`s National Fertilizer and Environmental Research Center (NFERC) has been committed to development of technologies to produce low-cost sulfur-containing fertilizers since the mid 1970`s. In the late 1970`s and early 1980`s, NFERC developed and demonstrated a 29-0-0-5S urea-ammonium sulfate (UAS) suspension. In 1984, NFERC developed and later patented a new family of nitrogen-sulfur (NS) suspensions to replace the earlier UAS suspension with more versatile, better quality products made by a simpler, more economical process. NFERC`s current endeavors involve development of technologies for successful utilization of low-quality, by-product ammonium sulfate (AS) in the fertilizer industry, which is the subject of this paper. NFERC`s current focus on utilization of by-product AS centers around the economic and environmental aspects of these technologies as the primary rationale for development, since the needs for sulfur in soils is now generally well known and sulfur application is common and now charged for in many areas.

  18. Utilization of by-product ammonium sulfate

    SciTech Connect

    Boles, J.L.

    1992-01-01

    Sulfur is generally referred to as a secondary plant nutrients but it actually ranks in importance with nitrogen and phosphorous in protein synthesis. It is also an integral part of vitamins and enzymes essential to life. Soils in many areas of the world today are deficient in sulfur and soil sulfur reserves are being rapidly depleted. To address growing agronomic needs for sulfur, TVA's National Fertilizer and Environmental Research Center (NFERC) has been committed to development of technologies to produce low-cost sulfur-containing fertilizers since the mid 1970's. In the late 1970's and early 1980's, NFERC developed and demonstrated a 29-0-0-5S urea-ammonium sulfate (UAS) suspension. In 1984, NFERC developed and later patented a new family of nitrogen-sulfur (NS) suspensions to replace the earlier UAS suspension with more versatile, better quality products made by a simpler, more economical process. NFERC's current endeavors involve development of technologies for successful utilization of low-quality, by-product ammonium sulfate (AS) in the fertilizer industry, which is the subject of this paper. NFERC's current focus on utilization of by-product AS centers around the economic and environmental aspects of these technologies as the primary rationale for development, since the needs for sulfur in soils is now generally well known and sulfur application is common and now charged for in many areas.

  19. Ammonium nitrate: a promising rocket propellant oxidizer

    PubMed

    Oommen; Jain

    1999-06-30

    Ammonium nitrate (AN) is extensively used in the area of fertilizers and explosives. It is present as the major component in most industrial explosives. Its use as an oxidizer in the area of propellants, however, is not as extensive as in explosive compositions or gas generators. With the growing demand for environmental friendly chlorine free propellants, many attempts have been made of late to investigate oxidizers producing innocuous combustion products. AN, unlike the widely used ammonium perchlorate, produces completely ecofriendly smokeless products. Besides, it is one of the cheapest and easily available compounds. However, its use in large rocket motors is restricted due to some of its adverse characteristics like hygroscopicity, near room temperature phase transformation involving a volume change, and low burning rate (BR) and energetics. The review is an attempt to consolidate the information available on the various issues pertaining to its use as a solid propellant oxidizer. Detailed discussions on the aspects relating to phase modifications, decomposition chemistry, and BR and energetics of AN-based propellants, are presented. To make the review more comprehensive brief descriptions of the history, manufacture, safety, physical and chemical properties and various other applications of the salt are also included. Copyright 1999 Elsevier Science B.V.

  20. Reassimilation of ammonium in Lotus japonicus.

    PubMed

    Betti, Marco; García-Calderón, Margarita; Pérez-Delgado, Carmen M; Credali, Alfredo; Pal'ove-Balang, Peter; Estivill, Guillermo; Repčák, Miroslav; Vega, José M; Galván, Francisco; Márquez, Antonio J

    2014-10-01

    This review summarizes the most recent results obtained in the analysis of two important metabolic pathways involved in the release of internal sources of ammonium in the model legume Lotus japonicus: photorespiratory metabolism and asparagine breakdown mediated by aparaginase (NSE). The use of photorespiratory mutants deficient in plastidic glutamine synthetase (GS2) enabled us to investigate the transcriptomics and metabolomic changes associated with photorespiratory ammonium accumulation in this plant. The results obtained indicate the existence of a coordinate regulation of genes involved in photorespiratory metabolism. Other types of evidence illustrate the multiple interconnections existing among the photorespiratory pathway and other processes such as intermediate metabolism, nodule function, and secondary metabolism in this plant, all of which are substantially affected in GS2-deficient mutants because of the impairment of the photorespiratory cycle. Finally, the importance of asparagine metabolism in L. japonicus is highlighted because of the fact that asparagine constitutes the vast majority of the reduced nitrogen translocated between different organs of this plant. The different types of NSE enzymes and genes which are present in L. japonicus are described. There is a particular focus on the most abundant K(+)-dependent LjNSE1 isoform and how TILLING mutants were used to demonstrate by reverse genetics the importance of this particular isoform in plant growth and seed production.

  1. System Response of Metabolic Networks in Chlamydomonas reinhardtii to Total Available Ammonium

    PubMed Central

    Lee, Do Yup; Park, Jeong-Jin; Barupal, Dinesh K.; Fiehn, Oliver

    2012-01-01

    Drastic alterations in macronutrients are known to cause large changes in biochemistry and gene expression in the photosynthetic alga Chlamydomonas reinhardtii. However, metabolomic and proteomic responses to subtle reductions in macronutrients have not yet been studied. When ammonium levels were reduced by 25–100% compared with control cultures, ammonium uptake and growth rates were not affected at 25% or 50% nitrogen-reduction for 28 h. However, primary metabolism and enzyme expression showed remarkable changes at acute conditions (4 h and 10 h after ammonium reduction) compared with chronic conditions (18 h and 28 h time points). Responses of 145 identified metabolites were quantified using gas chromatography-time of flight mass spectrometry; 495 proteins (including 187 enzymes) were monitored using liquid chromatography-ion trap mass spectrometry with label-free spectral counting. Stress response and carbon assimilation processes (Calvin cycle, acetate uptake and chlorophyll biosynthesis) were altered first, in addition to increase in enzyme contents for lipid biosynthesis and accumulation of short chain free fatty acids. Nitrogen/carbon balance metabolism was found changed only under chronic conditions, for example in the citric acid cycle and amino acid metabolism. Metabolism in Chlamydomonas readily responds to total available media nitrogen with temporal increases in short-chain free fatty acids and turnover of internal proteins, long before nitrogen resources are depleted. PMID:22787274

  2. Ammonium dichromate poisoning: A rare cause of acute kidney injury

    PubMed Central

    Radhakrishnan, H.; Gopi, M.; Arumugam, A.

    2014-01-01

    Ammonium dichromate is an inorganic compound frequently used in screen and color printing. Being a strong oxidizing agent, it causes oxygen free radical injury resulting in organ failure. We report a 25-year-old female who presented with acute kidney injury after consumption of ammonium dichromate. She was managed successfully with hemodialysis and supportive measures. This case is reported to highlight the toxicity of ammonium dichromate. PMID:25484533

  3. Stability and economics of solar ponds using ammonium salts

    SciTech Connect

    Hull, J.R.

    1986-01-01

    The use of ammonium salts in salt gradient solar ponds eliminates the environmental problems associated with NaCl by incorporating the salt discharge from the solar pond into the fertilizer cycle of an agricultural system. An examination of thermophysical properties of several ammonium salts suggests that both ammonium nitrate and ammonium sulfate can provide hydrodynamic stability equivalent to NaCl. The cost of the fertilizer salt is based on the real interest for holding the fertilizer in inventory. Costs are independent of the rate at which the salt is cycled through the pond, which makes desirable a maintenance scheme that minimizes the thickness of the upper convecting zone.

  4. Evidence for ammonium-bearing minerals in Ceres

    NASA Technical Reports Server (NTRS)

    King, T. V. V.; Clark, R. N.; Calvin, W. M.; Sherman, D. M.; Swayze, G. A.; Brown, R. H.

    1991-01-01

    Evidence for ammonium-bearing minerals was found on the surface of the largest asteroid Ceres. The presence of ammonium-bearing clays suggests that Ceres has experienced a period of alteration by substantial amounts of an ammonium-bearing fluid. The presence of the ammonium-bearing clays does not preclude Ceres maintaining a volatile inventory in the core or in a volatile-rich zone at some distance below the surface. Telescopic observations of Ceres, using the 3.0 meter NASA Infrared telescope facility prompted this reevaluation of its surface mineralogy.

  5. Evaluation of corrosion inhibitor for low-pH ammonium nitrate-methanol completion fluid

    SciTech Connect

    Krilov, Z.; Soric, T.; Tomic, M.; Wojtanowicz, A.K.

    1997-02-01

    A specially formulated completion fluid, low-pH ammonium nitrate-methanol-water mixture (ANM), compatible with argillaceous and calcareous Adriatic Sea sandstone formations, appears to be very corrosive for steel wellbore equipment. More than 12 commercially available, as well as some originally formulated, chemical additives were laboratory tested at room temperature using weight-loss and electrochemical methods to find an effective corrosion inhibitor for ANM. Two inhibitors, a commercially available, organic, amine base (OA) and an originally formulated, inorganic, ammonium dihydrogen phosphate base (IB), showed effective protection of carbon steel in contact with ANM fluid (corrosion rate was less than 5 mil/yr). Both selected corrosion inhibitors did not exhibit any additional rock permeability impairment during fluid-rock compatibility flow tests if ANM fluid was filtered before injection into the core samples. For inorganic inhibitor IB, additional filtration of inhibited fluid is not required.

  6. Complex Refractive Index of Ammonium Nitrate in the 2-20 micron Spectral Range

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Norman, Mark L.; Fuller, Kirk A.; Srivastava, Vandana; Cutten, Dean R.

    2002-01-01

    Using high resolution Fourier Transform Infrared Spectroscopy (FTIR) absorbance/transmittance spectral data for ammonium sulfate (AMS), calcium carbonate (CAC) and ammonium nitrate (AMN), comparisons were made with previously published complex refractive indices data for AMS and CAC to infer experimental parameters to determine the imaginary refractive index for AMN in the infrared wavelength range from 2 to 20 microns. Kramers-Kronig mathematical relations were applied to calculate the real refractive index for the three compositions. Excellent agreement for AMS and CAC with the published values was found, validating the complex refractive indices obtained for AMN. Backscatter calculations using a lognormal size distribution for AMS, AMN, and CAC aerosols were performed to show differences in their backscattered spectra.

  7. Bedrock Nitrogen and Hydrothermal Ammonium in Yellowstone National Park, WY, USA

    NASA Astrophysics Data System (ADS)

    Holloway, J. M.; Bohlke, J. K.; Nordstrom, D. K.

    2003-12-01

    High ammonium concentrations in some of the hot springs of Yellowstone National Park (up to 880 mg L-1 as N at Washburn Hot Springs) have been attributed to leaching of sedimentary rock by hydrothermal solutions. However, relatively little is known about the direct relationship between rock geochemistry in volcanic centers and nitrogen in thermal waters. For this study, a suite of core samples from US Geological Survey drill holes in Yellowstone National Park were characterized for nitrogen and carbon in different lithologies. These data were related to the aqueous geochemistry and δ 15N-NH4+ of thermal waters in different hot spring basins in the park to better understand the water-rock interactions. Core samples selected for study included tuff, water-reworked volcanic sediments, glacial sediment, lacustrine sedimentary rock, and marine sedimentary rock. Substantial amounts of nitrogen were present in all bedrock types, with the highest nitrogen concentrations measured in marine sedimentary rocks (430-830 mg N kg-1) from Y10, which is located at Mammoth Hot Springs. Although the underlying bedrock has elevated nitrogen concentrations, hydrothermal ammonium concentrations at Mammoth Hot Springs are relatively low (~1 mg L-1 as N). These solutions are buffered by carbonate (pH >8) and may have lost some N by volatilization as ammonia gas. Thermal waters in Norris Geyser Basin are acid to circumneutral with ammonium concentrations ranging from <0.03 to 80 mg L-1 as N. Nitrogen in tuffs (400-620 mg N kg-1) from drill holes Y9 and Y12 at Norris Geyser Basin may be present as a result of ammonium partitioning from solution to zeolites or other secondary minerals. Thermal waters sampled at Mammoth, Norris, and other geyser basins in the park varied widely in ammonium concentrations and isotopic compositions (δ 15N), from <0.3 to 450 mg L-1 as N and -5 to +25‰ , respectively. The isotope data are interpreted to reflect multiple processes, including leaching of

  8. Role of anaerobic ammonium oxidation (anammox) in nitrogen removal from a freshwater aquifer

    USGS Publications Warehouse

    Smith, Richard L.; Bohlke, John Karl; B. Song,; C. Tobias,

    2015-01-01

    Anaerobic ammonium oxidation (anammox) couples the oxidation of ammonium with the reduction of nitrite, producing N2. The presence and activity of anammox bacteria in groundwater were investigated at multiple locations in an aquifer variably affected by a large, wastewater-derived contaminant plume. Anammox bacteria were detected at all locations tested using 16S rRNA gene sequencing and quantification of hydrazine oxidoreductase (hzo) gene transcripts. Anammox and denitrification activities were quantified by in situ 15NO2–tracer tests along anoxic flow paths in areas of varying ammonium, nitrate, and organic carbon abundances. Rates of denitrification and anammox were determined by quantifying changes in 28N2, 29N2, 30N2, 15NO3–, 15NO2–, and 15NH4+ with groundwater travel time. Anammox was present and active in all areas tested, including where ammonium and dissolved organic carbon concentrations were low, but decreased in proportion to denitrification when acetate was added to increase available electron supply. Anammox contributed 39–90% of potential N2 production in this aquifer, with rates on the order of 10 nmol N2–N L–1 day–1. Although rates of both anammox and denitrification during the tracer tests were low, they were sufficient to reduce inorganic nitrogen concentrations substantially during the overall groundwater residence times in the aquifer. These results demonstrate that anammox activity in groundwater can rival that of denitrification and may need to be considered when assessing nitrogen mass transport and permanent loss of fixed nitrogen in aquifers.

  9. Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge

    PubMed Central

    Dai, Xiaohu; Yan, Han; Li, Ning; He, Jin; Ding, Yueling; Dai, Lingling; Dong, Bin

    2016-01-01

    A high solid digester with dewatered sludge was operated for 110 days to ascertain the interactions between bacterial and archaeal communities under ammonium stress, as well as the corresponding changes in bio-degradation mechanisms. The volatile solids reduction (95% confidence intervals in mean) changed from 31.6 ± 0.9% in the stable period (day 40–55) to 21.3 ± 1.5% in the last period (day 71–110) when ammonium concentration was elevated to be within 5,000–6,000 mgN/L. Biogas yield dropped accordingly from 11.9 ± 0.3 to 10.4 ± 0.2 L/d and carbon dioxide increased simultaneously from 35.2% to 44.8%. Anaerobranca better adapted to the ammonium stress, while the initially dominant protein-degrading microbes-Tepidimicrobium and Proteiniborus were suppressed, probably responsible for the increase of protein content in digestate. Meanwhile, Methanosarcina, as the dominant Archaea, was resistant to ammonium stress with the constant relative abundance of more than 92% during the whole operation. Nonmetric Multidimensional Scaling (NMDS) analysis was thus conducted which indicated that the gradually increased TAN dictated the bacterial clusters. The dominant Methanosarcina and the increased carbon dioxide content under ammonium stress suggested that, rather than the commonly acknowledged syntrophic acetate oxidation (SAO) with hydrogenotrophic methanogenesis, only SAO pathway was enhanced during the initial ‘ammonium inhibition’. PMID:27312792

  10. Mathematical modeling of competition for ammonium among Bacteria, Archaea and cyanobacteria within cyanobacterial mats: Can ammonia-oxidizers force nitrogen fixation?

    NASA Astrophysics Data System (ADS)

    Boyett, Matthew R.; Tavakkoli, Alireza; Sobolev, Dmitri

    2013-09-01

    Molecular analysis of cyanobacterial mat communities indicated that cyanobacteria, ammonia-oxidizing Archaea (AOA), and ammonia-oxidizing bacteria (AOB) coexist in those systems, competing for ammonium; this situation would imply competitive exclusion. We attempted to model how ammonia utilization niche partitioning occurs, and how ammonium levels can influence the interaction between those groups in a one-dimensional diffusionlimited system using Michaelis-Menten kinetics to describe ammonium consumption by each of those three groups. In our model, AOAs were able to dominate ammonium uptake by the community under most circumstances, except for unrealistically high (millimolar) levels of ammonium, where AOBs gained advantage. Cyanobacteria were unable to effectively compete for ammonium with either AOBs or AOAs throughout the mat at all ammonium concentrations and cell counts, suggesting that the presence of AOAs or AOBs forces cyanobacteria into nitrogen fixation mode. Such interaction can make cyanobacterial mats a net nitrogen source, as well as provide a carbon-independent energy transfer pathway from primary producers to the rest of the ecosystem.

  11. Unsteady growth of ammonium chloride dendrites

    NASA Astrophysics Data System (ADS)

    Martyushev, L. M.; Terentiev, P. S.; Soboleva, A. S.

    2016-02-01

    Growth of ammonium chloride dendrites from aqueous solution is experimentally investigated. The growth rate υ and the radius ρ of curvature of branches are measured as a function of the relative supersaturation Δ for steady and unsteady growth conditions. It is shown that the experimental results are quantitatively described by the dependences ρ=a/Δ+b, υ=сΔ2, where the factors for primary branches are a=(1.3±0.2)·10-7 m, b=(2.5±0.4)·10-7 m, and c=(2.2±0.3)·10-4 m/s. The factor c is found to be approximately 7 times smaller for the side branches than that for the primary branches.

  12. Unsteady growth of ammonium chloride dendrites

    NASA Astrophysics Data System (ADS)

    Martyushev, L. M.; Terentiev, P. S.; Soboleva, A. S.

    2016-02-01

    Growth of ammonium chloride dendrites from aqueous solution is experimentally investigated. The growth rate υ and the radius ρ of curvature of branches are measured as a function of the relative supersaturation Δ for steady and unsteady growth conditions. It is shown that the experimental results are quantitatively described by the dependences ρ=a/Δ+b, υ=cΔ2, where the factors for primary branches are a=(1.3±0.2)·10-7 m, b=(2.5±0.4)·10-7 m, and c=(2.2±0.3)·10-4 m/s. The factor c is found to be approximately 7 times smaller for the side branches than that for the primary branches.

  13. Biological reduction of uranium coupled with oxidation of ammonium by Acidimicrobiaceae bacterium A6 under iron reducing conditions.

    PubMed

    Gilson, Emily R; Huang, Shan; Jaffé, Peter R

    2015-11-01

    This study investigated the possibility of links between the biological immobilization of uranium (U) and ammonium oxidation under iron (Fe) reducing conditions. The recently-identified Acidimicrobiaceae bacterium A6 (ATCC, PTA-122488) derives energy from ammonium oxidation coupled with Fe reduction. This bacterium has been found in various soil and wetland environments, including U-contaminated wetland sediments. Incubations of Acidimicrobiaceae bacteria A6 with nontronite, an Fe(III)-rich clay, and approximately 10 µM U indicate that these bacteria can use U(VI) in addition to Fe(III) as an electron acceptor in the presence of ammonium. Measurements of Fe(II) production and ammonium oxidation support this interpretation. Concentrations of approximately 100 µM U were found to entirely inhibit Acidimicrobiaceae bacteria A6 activity. These results suggest that natural sites of active ammonium oxidation under Fe reducing conditions by Acidimicrobiaceae bacteria A6 could be hotspots of U immobilization by bioreduction. This is the first report of biological U reduction that is not coupled to carbon oxidation.

  14. Laboratory column study for evaluating a multimedia permeable reactive barrier for the remediation of ammonium contaminated groundwater.

    PubMed

    Kong, Xiangke; Bi, Erping; Liu, Fei; Huang, Guoxin; Ma, Jianfei

    2015-01-01

    In order to remediate ammonium contaminated groundwater, an innovative multimedia permeable reactive barrier (M-PRB) was proposed, which consisted of sequential columns combining oxygen releasing compound (ORC), zeolite, spongy iron and pine bark in the laboratory scale. Results showed that both ammonium and nitrate could be reduced to levels below the regulatory discharge limits through ion exchange and microbial degradation (nitrification and denitrification) in different compartments of the M-PRB system. The concentration of dissolved oxygen (DO) increased from 2 to above 20 mg/L after the simulated groundwater flowed through the oxygen releasing column packed with ORC, demonstrating that ORC could supply sufficient oxygen for subsequent microbial nitrification. Ammonium was efficiently removed from about 10 to below 0.5 mg N/L in the aerobic reaction column which was filled with biological zeolite. After 54 operating days, more than 70% ammonium could be removed by microbial nitrification in the aerobic reaction column, indicating that the combined use of ion exchange and nitrification by biological zeolite could ensure high and sustainable ammonium removal efficiency. To avoid the second pollution of nitrate produced by the former nitrification, spongy iron and pine bark were used to remove oxygen and supply organic carbon for heterotrophic denitrification in the oxygen removal column and anaerobic reaction column separately. The concentration of nitrate decreased from 14 to below 5 mg N/L through spongy iron-based chemical reduction and microbial denitrification.

  15. Environmental aspects of surface-active quaternary ammonium compounds

    SciTech Connect

    Boethling, R.S.

    1994-12-31

    Cationic surfactants first gained prominence more than 50 years ago, after Domagk`s discovery that the biocidal properties of quaternary ammonium compounds were greatly enhanced by the presence of a long alkyl chain. Present-day applications include fabric softeners, biocides, textile dye leveling agents, oil fields chemicals and asphalt additives, to name only a few. US consumption was estimated at 190,000 metric tons in 1987, most of which was sewered. Cationics thus represent a major class of potential environmental contaminants. As a class they sorb strongly and rapidly to solids in sewage and the aquatic environment. Most major categories of cationics have been shown to undergo extensive aerobic biodegradation in low-biomass test systems, when tested at environmentally relevant concentrations. But anaerobic biodegradation, although not well studied, appears to be slow, and the lower degradability of dialkyl quaternaries in general is now leading to their replacement by analogs containing ester or amide linkages to enhance biodegradation. Cationics are also toxic to aquatic organisms, including fish, invertebrates and algae. Acute toxicity is fairly well characterized, but data on chronic toxicity are more limited and support concern concentrations in the ug/L range. In the aquatic environment sorption to sediment and dissolved organic carbon may substantially reduce acute toxicity, but bioavailability in the gut warrants further study.

  16. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... color additive ferric ammonium citrate consists of complex chelates prepared by the interaction...

  17. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... color additive ferric ammonium citrate consists of complex chelates prepared by the interaction...

  18. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... color additive ferric ammonium citrate consists of complex chelates prepared by the interaction...

  19. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... color additive ferric ammonium citrate consists of complex chelates prepared by the interaction...

  20. 40 CFR 721.10430 - Tetra alkyl ammonium salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tetra alkyl ammonium salt (generic... Specific Chemical Substances § 721.10430 Tetra alkyl ammonium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as tetra...

  1. 40 CFR 721.6070 - Alkyl phosphonate ammonium salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl phosphonate ammonium salts. 721... Substances § 721.6070 Alkyl phosphonate ammonium salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl phosphonate...

  2. 40 CFR 721.10430 - Tetra alkyl ammonium salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tetra alkyl ammonium salt (generic... Specific Chemical Substances § 721.10430 Tetra alkyl ammonium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as tetra...

  3. 40 CFR 721.6070 - Alkyl phosphonate ammonium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl phosphonate ammonium salts. 721... Substances § 721.6070 Alkyl phosphonate ammonium salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl phosphonate...

  4. 40 CFR 721.6070 - Alkyl phosphonate ammonium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl phosphonate ammonium salts. 721... Substances § 721.6070 Alkyl phosphonate ammonium salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl phosphonate...

  5. 40 CFR 721.6070 - Alkyl phosphonate ammonium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl phosphonate ammonium salts. 721... Substances § 721.6070 Alkyl phosphonate ammonium salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl phosphonate...

  6. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION Food Preservatives § 172.165 Quaternary ammonium chloride combination. The food... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Quaternary ammonium chloride combination. 172.165 Section 172.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  7. 40 CFR 721.6070 - Alkyl phosphonate ammonium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl phosphonate ammonium salts. 721... Substances § 721.6070 Alkyl phosphonate ammonium salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl phosphonate...

  8. 40 CFR 180.473 - Glufosinate ammonium; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues of the herbicide glufosinate-ammonium (butanoic acid, 2-amino-4-(hydroxymethylphosphinyl...-propionic acid, expressed as 2-amino-4-(hydroxymethylphosphinyl)butanoic acid equivalents, in or on the... ammonium, butanoic acid, 2-amino-4-(hydroxymethylphosphinyl)-, monoammonium salt and its metabolite,...

  9. THE MASS ACCOMMODATION COEFFICIENT OF AMMONIUM NITRATE AEROSOL. (R823514)

    EPA Science Inventory

    The mass transfer rate of pure ammonium nitrate between the aerosol and gas phases was
    quantified experimentally by the use of the tandem differential mobility analyzer/scanning mobility
    particle sizer (TDMA/SMPS) technique. Ammonium nitrate particles 80-220 nm in diameter<...

  10. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN CONSUMPTION Food Preservatives § 172.165 Quaternary ammonium chloride combination. The food... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Quaternary ammonium chloride combination. 172.165 Section 172.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  11. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN CONSUMPTION Food Preservatives § 172.165 Quaternary ammonium chloride combination. The food... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Quaternary ammonium chloride combination. 172.165 Section 172.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  12. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN CONSUMPTION Food Preservatives § 172.165 Quaternary ammonium chloride combination. The food... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Quaternary ammonium chloride combination. 172.165 Section 172.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  13. 46 CFR 148.220 - Ammonium nitrate-phosphate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ammonium nitrate-phosphate fertilizers. 148.220 Section... § 148.220 Ammonium nitrate-phosphate fertilizers. (a) This section applies to the stowage and... nitrate and containing a maximum of 0.4 percent total added combustible material or containing a...

  14. 46 CFR 148.220 - Ammonium nitrate-phosphate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ammonium nitrate-phosphate fertilizers. 148.220 Section... § 148.220 Ammonium nitrate-phosphate fertilizers. (a) This section applies to the stowage and... nitrate and containing a maximum of 0.4 percent total added combustible material or containing a...

  15. 46 CFR 148.220 - Ammonium nitrate-phosphate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ammonium nitrate-phosphate fertilizers. 148.220 Section... § 148.220 Ammonium nitrate-phosphate fertilizers. (a) This section applies to the stowage and... nitrate and containing a maximum of 0.4 percent total added combustible material or containing a...

  16. Hybrid organic-inorganic crystals based on ammonium dihydrogen phosphate and ammonium salicylate

    NASA Astrophysics Data System (ADS)

    Voronov, A. P.; Salo, V. I.; Puzikov, V. M.; Babenko, G. N.; Roshal, A. D.; Tkachenko, V. F.

    2011-11-01

    ADP-NH 4Sal hybrid crystals are grown from aqueous solutions. The influence of the acidity of the mixed solution on the conditions of co-crystallization of the components is studied. The spectral and scintillation characteristics are determined. Co-crystallization of ammonium salicylate (NH 4Sal) and ammonium dihydrogen phosphate (ADP, NH 4H 2PO 4) is shown to be feasible, the structure of the doping addition being defined by the solution рН. In basic and weak acidic media the hybrid crystals ADP:NH 4Sal are formed in which salicylate anions are located in the interplanar space between the {110}-type planes in the lattice of ADP. The luminescence spectra contain an emission band maximum with λ max=360 nm. In acidic solutions there are ADP:HSal crystals in which salicylic acid molecules captured by the growth macrosteps are located in the interplanar space of the prismatic {100} and pyramidal {101} growth sectors. The luminescence band undergoes bathochromic shift to λmax=400 nm. The sensitivity of ADP:NH 4Sal scintillation crystals to fast neutrons depends on the concentration of ammonium salicylate in ADP matrix. The highest neutron sensitivity is characteristic of the co-doped ADP:NH 4Sal/Tl scintillation crystals.

  17. Assimilation of ammonium and nitrate nitrogen by bean plants

    SciTech Connect

    Volk, R.J. ); Chaillou, S.; Morot-Gaudry, J.F. ); Mariotti, A. )

    1989-04-01

    Enhanced growth is often observed in plants growing on combined ammonium and nitrate nutrition. The physiological basis for such enhancement was examined by exposing non-nodulated bean (Phaseolus vulgaris L.) plants to {sup 15}N-labeled, 1.0 mM N solutions containing 0, 33, 67 or 100% of the N as ammonium, the balance being nitrate. Maximal total N uptake and biomass production were attained by plants receiving 33% ammonium. A higher proportion of incoming ammonium than nitrate was incorporated into root protein. This was accompanied by increased partitioning of plant biomass to roots. It was concluded that as a consequence of greater N metabolism in the root under mixed ammonium and nitrate nutrition, the root became a more active sink for photosynthate. Concurrently, the augmented supply of N to the shoot enhanced net photosynthesis as reflected in increased plant biomass.

  18. The role of the anion in the reaction of reducing sugars with ammonium salts.

    PubMed

    Agyei-Aye, Kwasi; Chian, May X; Lauterbach, John H; Moldoveanu, Serban C

    2002-11-19

    Reactions of reducing sugars with ammonia and its compounds are important commercially, particularly in the preparation of flavors and caramel colors. However, such reactions generally produce a complex series of products ranging from simple molecules to complex polymeric materials, particularly since commercial systems generally involve mixtures of sugars as opposed to single sugars. This complexity has made understanding the mechanisms of such reactions difficult. Therefore, investigatory work has generally been focused on model systems. Herein we report one such study with model systems: the effects of the nature of the anion of the reactions of reducing sugars with ammonium salts. D-Glucose was reacted in aqueous solution with each of the following ammonium salts: acetate, bicarbonate, carbonate, chloride, citrate, formate, monohydrogenphosphate (DAP), sulfate, and sulfite. These reactions were carried out in a Parr bomb at 93 degrees C for 2.5 h. The initial pH of the reaction mixtures was adjusted to pH 8.0 at 25 degrees C. The resulting mixtures were analyzed by LC-MS, and the results were analyzed by comparing the product yields and distributions with those obtained with DAP. The major reaction product of interest was 2,6-deoxyfructosazine, as it had been shown to be a marker for the polymeric material formed from such reactions. It was found that ammonium salts of weak acids were much more effective in effecting the desired reactions than were those of strong acids; however, none was as effective as DAP. PMID:12433492

  19. Population of Nitrifying Bacteria and Nitrification in Ammonium Saturated Clinoptilolite

    NASA Technical Reports Server (NTRS)

    McGilloway, R. L.; Weaver, R. W.; Ming, Douglas W.; Gruener, J.

    1999-01-01

    As humans begin to spend longer periods of time in space, plants will be incorporated into life support systems. Ammonium saturated clinoptilolite is one plant growth substrate but a balance between ammonium and nitrate is needed. A laboratory study was conducted to determine effects of nitrifying bacteria on ammonium concentrations and kinetics of nitrification. Columns containing clinoptilolite substrate amended with nitrifying bacteria obtained from soil enrichment were analyzed weekly for a 90 day period. The enrichment culture initially contained 1 x 10(exp 5) ammonium oxidizing bacteria and 1 x 10(exp 2) nitrite oxidizing bacteria per gram of substrate. Populations of ammonium oxidizing bacteria increased to 1 x 10(exp 6) and nitrite oxidizing bacteria increased to 1 x 10(exp 3) per gram of substrate. The nitrification rate was approximately 0.25mg NO3(-)-N/kg.hr. Experiments were also conducted to enumerate nitrifying bacteria in a clinoptilolite substrate used to grow wheat (Triticum aestivum L.). Seventy days following the initial inoculation with an unknown number of commercial nitrifying bacteria, 1 x 10(exp 5) ammonium oxidizing bacteria per gram of substrate were present. The number of nitrite oxidizing bacteria was between 1 x 10(exp 3) to 10(exp 4) per gram of substrate as measured by the most probable number method. Nitrification rates were approximately 0.20mg NO3(-)-N/kg.hr. Clinoptilolite readily exchanged sufficient concentrations of ammonium to support nitrifying bacteria and they survived well in this medium.

  20. Acclimation and toxicity of high ammonium concentrations to unicellular algae.

    PubMed

    Collos, Yves; Harrison, Paul J

    2014-03-15

    A literature review on the effects of high ammonium concentrations on the growth of 6 classes of microalgae suggests the following rankings. Mean optimal ammonium concentrations were 7600, 2500, 1400, 340, 260, 100 μM for Chlorophyceae, Cyanophyceae, Prymnesiophyceae, Diatomophyceae, Raphidophyceae, and Dinophyceae respectively and their tolerance to high toxic ammonium levels was 39,000, 13,000, 2300, 3600, 2500, 1200 μM respectively. Field ammonium concentrations <100 μM would not likely reduce the growth rate of most microalgae. Chlorophytes were significantly more tolerant to high ammonium than diatoms, prymnesiophytes, dinoflagellates, and raphidophytes. Cyanophytes were significantly more tolerant than dinoflagellates which were the least tolerant. A smaller but more complete data set was used to estimate ammonium EC₅₀ values, and the ranking was: Chlorophyceae>Cyanophyceae, Dinophyceae, Diatomophyceae, and Raphidophyceae. Ammonia toxicity is mainly attributed to NH₃ at pHs >9 and at pHs <8, toxicity is likely associated with the ammonium ion rather than ammonia. PMID:24533997

  1. Combustion of ammonium and hydrazine azides

    SciTech Connect

    Fogelzang, A.E.; Egorshev, V.Y.; Sinditsky, V.P.; Kolesov, B.I. )

    1992-09-01

    This paper reports that steady-state combustion of ammonium azide (AA) and hydrazne azide (HA) was studied in a window constant-pressure bomb over a pressure range of 0.1-36 MPa. HA burns three to four times faster than AA over the whole pressure range. The temperature distribution in the combustion wave of AA and HA was measured using 5-{mu}m-thick {pi}-shaped tungsten-rhenium tape thermocouples. The combustion temperature of both compounds is 240-430 K higher than the temperature calculated for the thermodynamically equilibrium composition of the combustion products due to the presence of large amounts of ammonia (0.97 and 0.87 mol per AA and HA mole, respectively). The burning surface is formed via dissociation of the salts into hydrazoic acid HN{sub 3} and the parent base. The growth of the surface temperature with pressure is determined by the dissociation enthalpy of the slats. The burning rate of these compounds is determined by heat release in the gas phase.

  2. Quaternary Ammonium Biocides: Efficacy in Application

    PubMed Central

    2014-01-01

    Quaternary ammonium compounds (QACs) are among the most commonly used disinfectants. There has been concern that their widespread use will lead to the development of resistant organisms, and it has been suggested that limits should be place on their use. While increases in tolerance to QACs have been observed, there is no clear evidence to support the development of resistance to QACs. Since efflux pumps are believe to account for at least some of the increased tolerance found in bacteria, there has been concern that this will enhance the resistance of bacteria to certain antibiotics. QACs are membrane-active agents interacting with the cytoplasmic membrane of bacteria and lipids of viruses. The wide variety of chemical structures possible has seen an evolution in their effectiveness and expansion of applications over the last century, including non-lipid-containing viruses (i.e., noroviruses). Selection of formulations and methods of application have been shown to affect the efficacy of QACs. While numerous laboratory studies on the efficacy of QACs are available, relatively few studies have been conducted to assess their efficacy in practice. Better standardized tests for assessing and defining the differences between increases in tolerance versus resistance are needed. The ecological dynamics of microbial communities where QACs are a main line of defense against exposure to pathogens need to be better understood in terms of sublethal doses and antibiotic resistance. PMID:25362069

  3. Subcellular localization of ammonium transporters in Dictyostelium discoideum

    PubMed Central

    Kirsten, Janet H; Xiong, Yanhua; Davis, Carter T; Singleton, Charles K

    2008-01-01

    Background With the exception of vertebrates, most organisms have plasma membrane associated ammonium transporters which primarily serve to import a source of nitrogen for nutritional purposes. Dictyostelium discoideum has three ammonium transporters, Amts A, B and C. Our present work used fluorescent fusion proteins to determine the cellular localization of the Amts and tested the hypothesis that the transporters mediate removal of ammonia generated endogenously from the elevated protein catabolism common to many protists. Results Using RFP and YFP fusion constructs driven by the actin 15 promoter, we found that the three ammonium transporters were localized on the plasma membrane and on the membranes of subcellular organelles. AmtA and AmtB were localized on the membranes of endolysosomes and phagosomes, with AmtB further localized on the membranes of contractile vacuoles. AmtC also was localized on subcellular organelles when it was stabilized by coexpression with either the AmtA or AmtB fusion transporter. The three ammonium transporters exported ammonia linearly with regard to time during the first 18 hours of the developmental program as revealed by reduced export in the null strains. The fluorescently tagged transporters rescued export when expressed in the null strains, and thus they were functional transporters. Conclusion Unlike ammonium transporters in most organisms, which import NH3/NH4+ as a nitrogen source, those of Dictyostelium export ammonia/ammonium as a waste product from extensive catabolism of exogenously derived and endogenous proteins. Localization on proteolytic organelles and on the neutral contractile vacuole suggests that Dictyostelium ammonium transporters may have unique subcellular functions and play a role in the maintenance of intracellular ammonium distribution. A lack of correlation between the null strain phenotypes and ammonia excretion properties of the ammonium transporters suggests that it is not the excretion function that

  4. [A case of ammonium urate urinary stones with anorexia nervosa].

    PubMed

    Komori, K; Arai, H; Gotoh, T; Imazu, T; Honda, M; Fujioka, H

    2000-09-01

    A 27-year-old woman had been suffering from bulimia and habitual vomiting for about 7 years and was incidentally found to have right renal stones by computed tomography. She was referred to our hospital for the treatment of these caluculi. On admission, she presented with hypokalemia, hypochloremia and metabolic alkalosis and was diagnosed with anorexia nervosa. Following successful removal by percutaneous nephrolithotripsy and extracorporeal shockwave lithotripsy the stones were found to consist of pure ammonium urate. Since the urine of an anorexia nervosa patient tends to be rich in uric acid and ammonium, anorexia nervosa seems to be associated with ammonium urate urinary stones.

  5. Aerosol isotopic ammonium signatures over the remote Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Lin, C. T.; Jickells, T. D.; Baker, A. R.; Marca, A.; Johnson, M. T.

    2016-05-01

    We report aerosol ammonium 15N signatures for samples collected from research cruises on the South Atlantic and Caribbean using a new high sensitivity method. We confirm a pattern of isotopic signals from generally light (δ15N -5 to -10‰), for aerosols with very low (<2 nmol m-3) ammonium concentrations from the remote high latitude ocean, to generally heavier values (δ15N +5 to +10‰), for aerosols collected in temperate and tropical latitudes and with higher ammonium concentrations (>2 nmol m-3). We discuss whether this reflects a mixing of aerosols from two end-members (polluted continental and remote marine emissions), or isotopic fractionation during aerosol transport.

  6. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts

    PubMed Central

    Xue, Yan; Xiao, Huining; Zhang, Yi

    2015-01-01

    Polymeric materials containing quaternary ammonium and/or phosphonium salts have been extensively studied and applied to a variety of antimicrobial-relevant areas. With various architectures, polymeric quaternary ammonium/phosphonium salts were prepared using different approaches, exhibiting different antimicrobial activities and potential applications. This review focuses on the state of the art of antimicrobial polymers with quaternary ammonium/phosphonium salts. In particular, it discusses the structure and synthesis method, mechanisms of antimicrobial action, and the comparison of antimicrobial performance between these two kinds of polymers. PMID:25667977

  7. Root Respiration Associated with Ammonium and Nitrate Absorption and Assimilation by Barley 1

    PubMed Central

    Bloom, Arnold J.; Sukrapanna, Scott S.; Warner, Robert L.

    1992-01-01

    We examined nitrate assimilation and root gas fluxes in a wild-type barley (Hordeum vulgare L. cv Steptoe), a mutant (nar1a) deficient in NADH nitrate reductase, and a mutant (nar1a;nar7w) deficient in both NADH and NAD(P)H nitrate reductases. Estimates of in vivo nitrate assimilation from excised roots and whole plants indicated that the nar1a mutation influences assimilation only in the shoot and that exposure to NO3− induced shoot nitrate reduction more slowly than root nitrate reduction in all three genotypes. When plants that had been deprived of nitrogen for several days were exposed to ammonium, root carbon dioxide evolution and oxygen consumption increased markedly, but respiratory quotient—the ratio of carbon dioxide evolved to oxygen consumed—did not change. A shift from ammonium to nitrate nutrition stimulated root carbon dioxide evolution slightly and inhibited oxygen consumption in the wild type and nar1a mutant, but had negligible effects on root gas fluxes in the nar1a;nar7w mutant. These results indicate that, under NH4+ nutrition, 14% of root carbon catabolism is coupled to NH4+ absorption and assimilation and that, under NO3− nutrition, 5% of root carbon catabolism is coupled to NO3− absorption, 15% to NO3− assimilation, and 3% to NH4+ assimilation. The additional energy requirements of NO3− assimilation appear to diminish root mitochondrial electron transport. Thus, the energy requirements of NH4+ and NO3− absorption and assimilation constitute a significant portion of root respiration. PMID:16669035

  8. Methods to Stabilize and Destabilize Ammonium Borohydride

    SciTech Connect

    Nielsen, Thomas K.; Karkamkar, Abhijeet J.; Bowden, Mark E.; Besenbacher, Fleming; Jensen, Torben R.; Autrey, Thomas

    2013-01-21

    Ammonium borohydride, NH4BH4, has a high hydrogen content of ρm = 24.5 wt% H2 and releases 18 wt% H2 below T = 160 °C. However, the half-life of bulk NH4BH4 at ambient temperatures, ~6 h, is insufficient for practical applications. The decomposition of NH4BH4 (ABH2) was studied at variable hydrogen and argon back pressures to investigate possible pressure mediated stabilization effects. The hydrogen release rate from solid ABH2 at ambient temperatures is reduced by ~16 % upon increasing the hydrogen back pressure from 5 to 54 bar. Similar results were obtained using argon pressure and the observed stabilization may be explained by a positive volume of activation in the transition state leading to hydrogen release. Nanoconfinement in mesoporous silica, MCM-41, was investigated as alternative means to stabilize NH4BH4. However, other factors appear to significantly destabilize NH4BH4 and it rapidly decomposes at ambient temperatures into [(NH3)2BH2][BH4] (DADB) in accordance with the bulk reaction scheme. The hydrogen desorption kinetics from nanoconfined [(NH3)2BH2][BH4] is moderately enhanced as evidenced by a reduction in the DSC decomposition peak temperature of ΔT = -13 °C as compared to the bulk material. Finally, we note a surprising result, storage of DADB at temperature < -30 °C transformed, reversibly, the [(NH3)2BH2][BH4] into a new low temperature polymorph as revealed by both XRD and solid state MAS 11B MAS NMR. TA & AK are thankful for support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle.

  9. Formation of urea and guanidine by irradiation of ammonium cyanide.

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.

    1972-01-01

    Aqueous solutions of ammonium cyanide yield urea, cyanamide and guanidine when exposed to sunlight or an unfiltered 254 nm ultraviolet source. The prebiotic significance of these results is discussed.

  10. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... color additive ferric ammonium citrate consists of complex chelates prepared by the interaction of ferric hydroxide with citric acid in the presence of ammonia. The complex chelates occur in brown...

  11. 21 CFR 73.2298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the...

  12. 21 CFR 73.2298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the...

  13. 21 CFR 73.2298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the...

  14. 21 CFR 73.2298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the...

  15. 21 CFR 73.2298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the...

  16. Direct esterification of ammonium salts of carboxylic acids

    SciTech Connect

    Halpern, Yuval

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  17. Occurrence of Anaerobic Ammonium Oxidation in the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Hou, L.

    2013-12-01

    Over the past several decades, a large quantity of reactive nitrogen has been transported into the Yangtze estuarine and coastal water, due to intense human activities in the Yangtze River Basin. At present, it annually receives a high load of anthropogenic inorganic nitrogen (about 1.1 × 1011 mol N) from increased agricultural activities, fish farming, and domestic and industrial wastewater discharge in the Yangtze River Basin, consequently leading to severe eutrophication and frequent occurrences of harmful algal blooms in the estuary and adjacent coastal areas. Hence, the microbial nitrogen transformations are of major concern in the Yangtze Estuary. Anaerobic ammonium oxidation (anammox) has been reported to play a significant role in the removal of reactive nitrogen in aquatic ecosystems. In this study, the occurrences of anammox bacteria and associated activity in the Yangtze Estuary were evidenced with molecular and isotope-tracing techniques. It is observed that the anammox bacteria at the study area mainly consisted of Candidatus Scalindua, Brocadia, Kuenenia. Salinity was found to be a key environmental factor controlling distribution and diversity of the anammox bacterial community at the estuarine ecosystem. Also, temperature and organic carbon had significant influences on anammox bacterial biodiversity. Q-PCR assays of anammox bacteria indicated that their abundance had a range of 2.63 ×106 - 9.48 ×107 copies g-1 dry sediment, with high spatiotemporal heterogeneity. The potential anammox activities measured in the present work varied between 0.94 - 6.61nmol N g-1 dry sediment h-1, which were related to temperature, nitrite and anammox bacterial abundance. On the basis of the 15N tracing experiments, the anammox process was estimated to contribute 6.6 - 12.9 % to the total nitrogen loss whereas the remainder was attributed to denitrification.

  18. Inorganic nitrogen transformations in the treatment of landfill leachate with a high ammonium load: A case study.

    PubMed

    Parkes, Stephen D; Jolley, Dianne F; Wilson, Stephen R

    2007-01-01

    The inorganic nitrogen transformations occurring at a municipal waste leachate treatment facility were investigated. The treatment facility consisted of a collection well and an artificial wetland between two aeration ponds. The first aeration pond showed a decrease in ammonium (from 3480 (+/- 120) to 630(+/- 90) mg x L(-1)), a reduction in inorganic nitrogen load (3480 to 1680 mg N x L(-1)), and an accumulation of nitrite (< 1.3 mg-N x L(-1) in the collection well, to 1030 mg-N x L(-1)). Incomplete ammonium oxidation was presumably the result of the low concentration of carbonate alkalinity (approximately 2 mg x L(-1)), which may cause a limitation in the ammonium oxidation rate of nitrifiers. Low carbonate alkalinity levels may have been the result of stripping of CO(2) from the first aeration pond at the high aeration rates and low pH. Various chemodenitrification mechanisms are discussed as the reason for the reduction in the inorganic nitrogen load, including; the reduction of nitrite by iron (II) (producing various forms of gaseous nitrogen); and reactions involving nitrous acid. It is suggested that the accumulation of nitrite may be the result of inhibition of nitrite oxidizers by nitrous acid and low temperatures. Relative to the first aeration pond, the speciation and concentration of inorganic nitrogen was stable in the wetlands and 2nd aeration pond. The limited denitrification in the wetlands most probably occurred due to low concentrations of organic carbon, and short retention times.

  19. Seasonal patterns of ammonium regeneration from size-fractionated microheterotrophs

    NASA Astrophysics Data System (ADS)

    Maguer, Jean-François; L'Helguen, Stéphane; Madec, Christian; Le Corre, Pierre

    1999-11-01

    Ammonium regeneration by size-fractionated plankton was measured for 1 year at a coastal station in the shallow well-mixed waters of the western English Channel. Rates of ammonium regeneration in the <200 μm fraction varied from 0.6 to 27 nmol N l -1 h -1. On the seasonal scale, these rates were relatively low (<7 nmol N l -1 h -1) in autumn and winter, increased steadily from March to attain a maximum (27 nmol N l -1 h -1) at the end of May and thereafter decreased steadily to the seasonal minimum in December. This pattern is distinctly different from that observed in deep well-mixed waters where the peak ammonium regeneration occurs in summer (Le Corre et al., 1996, Journal of Plankton Research, 18, 355-370). Total ammonium regenerated in a year by the microheterotrophs was 15 g N m -2, equivalent to about 60% of the total nitrogen uptake. Microplankton (200-15 μm) accounted for about 50% of the regeneration measured between early spring and late summer. Percent contribution of nanoplankton to total ammonium regeneration varied considerably between the seasons, from very high (83-88%) levels in winter to very low (2-13%) levels in summer. Contribution by picoplankton (<1 μm) was high (20-45%) in summer but was less than 20% in other seasons. Ammonium regeneration in micro- and nanoplankton fractions was mainly associated with ciliates and in the picoplankton fraction with bacteria. Macrozooplankton dynamics appears to regulate ammonium regeneration by ciliates and bacteria. Low macrozooplankton biomass in spring may favour a high growth of ciliates and an associated high in ammonium regeneration. In summer, the increase in macrozooplankton may exert a grazing pressure on ciliates. This, coupled with the fact that most of the flagellates are autotrophs, would, in turn, lower the grazing pressure on the bacteria, thus favouring their development and increasing the importance of their role in ammonium regeneration. This situation, where the macrozooplankton

  20. Thermal Decomposition Behavior of Ammonium Perchlorate and of an Ammonium-Perchlorate-Based Composite Propellant

    NASA Technical Reports Server (NTRS)

    Behrens, R.; Minier, L.

    1998-01-01

    The thermal decomposition of ammonium perchlorate (AP) and ammonium-perchlorate-based composite propellants is studied using the simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) technique. The main objective of the present work is to evaluate whether the STMBMS can provide new data on these materials that will have sufficient detail on the reaction mechanisms and associated reaction kinetics to permit creation of a detailed model of the thermal decomposition process. Such a model is a necessary ingredient to engineering models of ignition and slow-cookoff for these AP-based composite propellants. Results show that the decomposition of pure AP is controlled by two processes. One occurs at lower temperatures (240 to 270 C), produces mainly H2O, O2, Cl2, N2O and HCl, and is shown to occur in the solid phase within the AP particles. 200(micro) diameter AP particles undergo 25% decomposition in the solid phase, whereas 20(micro) diameter AP particles undergo only 13% decomposition. The second process is dissociative sublimation of AP to NH3 + HClO4 followed by the decomposition of, and reaction between, these two products in the gas phase. The dissociative sublimation process occurs over the entire temperature range of AP decomposition, but only becomes dominant at temperatures above those for the solid-phase decomposition. AP-based composite propellants are used extensively in both small tactical rocket motors and large strategic rocket systems.

  1. The thermal decomposition behavior of ammonium perchlorate and of an ammonium-perchlorate-based composite propellant

    SciTech Connect

    Behrens, R.; Minier, L.

    1998-03-24

    The thermal decomposition of ammonium perchlorate (AP) and ammonium-perchlorate-based composite propellants is studied using the simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) technique. The main objective of the present work is to evaluate whether the STMBMS can provide new data on these materials that will have sufficient detail on the reaction mechanisms and associated reaction kinetics to permit creation of a detailed model of the thermal decomposition process. Such a model is a necessary ingredient to engineering models of ignition and slow-cookoff for these AP-based composite propellants. Results show that the decomposition of pure AP is controlled by two processes. One occurs at lower temperatures (240 to 270 C), produces mainly H{sub 2}O, O{sub 2}, Cl{sub 2}, N{sub 2}O and HCl, and is shown to occur in the solid phase within the AP particles. 200{micro} diameter AP particles undergo 25% decomposition in the solid phase, whereas 20{micro} diameter AP particles undergo only 13% decomposition. The second process is dissociative sublimation of AP to NH{sub 3} + HClO{sub 4} followed by the decomposition of, and reaction between, these two products in the gas phase. The dissociative sublimation process occurs over the entire temperature range of AP decomposition, but only becomes dominant at temperatures above those for the solid-phase decomposition. AP-based composite propellants are used extensively in both small tactical rocket motors and large strategic rocket systems.

  2. Thermal storage in ammonium alum/ammonium nitrate eutectic for solar space heating applications

    SciTech Connect

    Jotshi, C.K.; Hsieh, C.K.; Goswami, D.Y.; Klausner, J.F.; Srinivasan, N.

    1998-02-01

    Ammonium alum and ammonium nitrate in the weight ratio of 1:1 form a eutectic that melts at 53 C and solidifies at 48 C. The thermophysical properties of this eutectic were measured in detail and the eutectic was found to have properties desirable for energy storage for solar space heating applications. The eutectic was encapsulated in 0.0254-m diameter high-density polyethylene (HDPE) balls and packed into a cylindrical bed in a scale model for testing its heat transfer characteristics when exposed to an air flow. Test results indicate that the thermal extraction efficiency of the model was 89% with an uncertainty of {+-} 8.0%. The packed bed had a Stanton number value in close agreement with that predicted with an empirical equation for sensible heat extraction from the eutectic in the solid phase. This Stanton number was increased by about 74% for sensible heat extraction from the eutectic in the liquid phase, a phenomenon not previously reported in the literature.

  3. Thermal storage in ammonium alum/ammonium nitrate eutectic for solar space heating

    SciTech Connect

    Goswami, D.Y.; Jotshi, C.K.; Klausner, J.F.; Hsieh, C.K.; Srinivasan, N.

    1995-10-01

    Ammonium alum and ammonium nitrate in the weight ratio of 1:1 forms a eutectic that melts at 53 C and crystallizes at 48 C. The latent heat of fusion of this eutectic was found to be 215 kJ/kg. Its enthalpy as measured by drop calorimetry was found to be 287 kJ/kg in the temperature range of 24--65 C, which is 1.67 times greater than water (172.2 kJ/kg) and 8.75 times greater than rock (32.8 kJ/kg). Upon several heating/cooling cycles, phase separation was observed. However, by adding 5% attapulgite clay to this eutectic mixture, phase separation was prevented. This eutectic was encapsulated in 0.0254m diameter HDPE hollow balls and subjected to about 1,100 heating/cooling cycles in the temperature range between 25 and 65 C. At the end of these cycles, the decrease in enthalpy was found to be 5%. A scale model of the heat storage unit was fabricated to investigate the heat transfer characteristics of this eutectic encapsulated in HDPE balls. The thermal extraction efficiency of the system was measured with the recirculation of hot air during charging and was found to be in the range of 85--98%.

  4. Heterogeneous reactivity of chlorine atoms with ammonium sulfate and ammonium nitrate particles.

    PubMed

    Ciuraru, Raluca; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2012-04-01

    In this laboratory study, model particles of ammonium sulfate (AS) and ammonium nitrate (AN) were exposed to chlorine atoms and uptake experiments were performed in a coated wall flow tube reactor coupled to a molecular beam mass spectrometer. The reactive surfaces were prepared by coating the inner surface of the reactor using two different methods: either by depositing size-selected particles on the halocarbon wax or by spray depositing thin films using a constant output atomizer. The observed uptake coefficients vary for (NH(4))(2)SO(4), ranging from γ(Cl)(AS)≈ 1 × 10(-3) for size-selected particles to γ(Cl)(AS)≈ 6 × 10(-2) for thin films prepared by spray. An uptake coefficient of γ(Cl)(AN)≈ 2.5 × 10(-3) of Cl˙ on size-selected NH(4)NO(3) particles was measured. A heterogeneous recombination of Cl atoms to from Cl(2) molecules was observed for the two surfaces. Furthermore, an ageing process was observed for AS particles, this phenomenon leading to the formation of new chlorine species on the solid substrate. PMID:22374517

  5. Stoichiometric analysis of ammonium nitrate and ammonium perchlorate with nanosecond laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sreedhar, S.; Rao, S. Venugopal; Kiran, P. Prem; Tewari, Surya P.; Kumar, G. Manoj

    2010-04-01

    We present our results on the stoichiometric analysis of ammonium nitrate (AN) and ammonium Perchlorate (AP) studied using laser induced breakdown spectroscopy (LIBS) with nanosecond pulses. The LIBS spectra collected for AP and AN, without any gating and using a high resolution spectrometer, exhibited characteristic lines corresponding to O, N, H, C, and K. The Oxygen line at 777.38 nm and three Nitrogen lines (N1, N2, N3) at 742.54 nm, 744.64 nm, 747.12 nm were used for evaluating the Oxygen/Nitrogen ratios. The intensities were calculated using area under the peaks and normalized to their respective transition probabilities and statistical weights. The O/N1 ratios estimated from the LIBS spectra were ~4.94 and ~5.11 for AP and O/N3 ratios were ~1.64 and ~1.47 for AN obtained from two independent measurements. The intensity ratios show good agreement with the actual stoichiometric ratios - four for AP and one for AN.

  6. Safety assessment of ammonium hectorites as used in cosmetics.

    PubMed

    Becker, Lillian C; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2013-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of 4 ammonium hectorite compounds used in cosmetics: disteardimonium hectorite, dihydrogenated tallow benzylmonium hectorite, stearalkonium hectorite, and quaternium-18 hectorite. These ingredients function in cosmetics mainly as nonsurfactant suspending agents. The Panel reviewed available animal and human data and concluded that these ammonium hectorite compounds were safe as cosmetic ingredients in the practices of use and concentration as given in this safety assessment.

  7. Removal of ammonium from municipal landfill leachate using natural zeolites.

    PubMed

    Ye, Zhihong; Wang, Jiawen; Sun, Lingyu; Zhang, Daobin; Zhang, Hui

    2015-01-01

    Ammonium ion-exchange performance of the natural zeolite was investigated in both batch and column studies. The effects of zeolite dosage, contact time, stirring speed and pH on ammonium removal were investigated in batch experiments. The result showed that ammonium removal efficiency increased with an increase in zeolite dosage from 25 to 150 g/L, and an increase in stirring speed from 200 to 250 r/min. But further increase in zeolite dosage and stirring speed would result in an unpronounced increase of ammonium removal. The optimal pH for the removal of ammonium was found as 7.1. In the column studies, the effect of flow rate was investigated, and the total ammonium removal percentage during 180 min operation time decreased with the flow rate though the ion-exchange capacity varied to a very small extent with the flow rate ranging from 4 to 9 mL/min. The spent zeolite was regenerated by sodium chloride solution and the ammonia removal capacity of zeolite changed little or even increased after three regeneration cycles.

  8. Removal of ammonium from municipal landfill leachate using natural zeolites.

    PubMed

    Ye, Zhihong; Wang, Jiawen; Sun, Lingyu; Zhang, Daobin; Zhang, Hui

    2015-01-01

    Ammonium ion-exchange performance of the natural zeolite was investigated in both batch and column studies. The effects of zeolite dosage, contact time, stirring speed and pH on ammonium removal were investigated in batch experiments. The result showed that ammonium removal efficiency increased with an increase in zeolite dosage from 25 to 150 g/L, and an increase in stirring speed from 200 to 250 r/min. But further increase in zeolite dosage and stirring speed would result in an unpronounced increase of ammonium removal. The optimal pH for the removal of ammonium was found as 7.1. In the column studies, the effect of flow rate was investigated, and the total ammonium removal percentage during 180 min operation time decreased with the flow rate though the ion-exchange capacity varied to a very small extent with the flow rate ranging from 4 to 9 mL/min. The spent zeolite was regenerated by sodium chloride solution and the ammonia removal capacity of zeolite changed little or even increased after three regeneration cycles. PMID:26510611

  9. Analysis of reversibility and reaction products of glyoxal uptake onto ammonium sulfate aerosol

    NASA Astrophysics Data System (ADS)

    Galloway, M. M.; Chhabra, P. S.; Chan, A. W.; Surratt, J. D.; Kwan, A. J.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.; Keutsch, F. N.

    2009-04-01

    Glyoxal, the smallest alpha-dicarbonyl, is an oxidation product of both biogenic and anthropogenic volatile organic compounds (Fu et al. JGR 113, D15303, 2008). Despite its low molecular weight, its role in secondary organic aerosol (SOA) formation has gained interest and a recent study suggested that it accounts for more than 15% of SOA in Mexico City (Volkamer et al. GRL 34, L19807, 2007). Despite numerous previous studies, questions remain regarding the processes controlling glyoxal uptake onto aerosol, including the role of acid catalysis, degree of reversibility, and identity of aerosol phase reaction products. We present results of chamber aerosol studies (Galloway et al. ACPD 8, 20799, 2008) and laboratory studies of bulk samples aimed at improving the understanding of these processes, in particular formation of oligomers and organosulfates of glyoxal, as well as the formation of imidazoles (carbon-nitrogen containing heterocyclic aromatic compounds) under dark and irradiated conditions. The relevance of these classes of reaction products extends beyond glyoxal, as evidence of oligomers and organosulfates other than those of glyoxal have been found in ambient aerosol (Surratt et al. JPCA 112, 8345, 2008; Denkenberger et al. Environ. Sci. Technol. 41, 5439, 2007). Experiments in which a chamber air mass was diluted after equilibration of glyoxal uptake onto ammonium sulfate seed aerosol (relative humidity 60% and glyoxal mixing ratios of 25-200 ppbv) shows that under these conditions uptake is reversible. The most important condensed phase products are hydrated oligomers of glyoxal, which are also formed reversibly under these conditions. Our studies show that organosulfates were not formed under dark conditions for neutral or acidified aerosol; similarly, Minerath et al. have recently shown that formation of a different class of organosulfates (alkyl sulfates) also proceeds very slowly even under acidic conditions (Environ. Sci. Technol. 42, 4410, 2008). The

  10. Lysosomotropic N,N- dimethyl alpha-aminoacid N-alkyl esters and their quaternary ammonium salts as plasma membrane and mitochondrial ATPases inhibitors.

    PubMed

    Obłak, Ewa; Lachowicz, Tadeusz M; Łuczyński, Jacek; Witek, Stanisław

    2002-01-01

    A set of n-alkyl esters of N,N-dimethylglycine (DMG-n) and their methobromides (DMGM-n) was synthesized, and their activities on yeast Saccharomyces cerevisiae were compared. The compounds differ in the number of carbon atoms in the aliphatic chain. Aminoesters with 12 carbon atoms appeared to be most active. Unlike quaternary ammonium salts previously tested, the activities of the compounds were not pH-dependent; the minimal inhibitory concentrations (MIC) were identical at pH 8 and at pH 6. In contrast to quaternary ammonium salts, aminoesters showed similar effects on respiratory sufficient (rho+) and respiratory deficient (rho0) mutants. When tested on glucose stimulated proton extrusion, aminoesters applied at MIC increased external pH. Aminoesters inhibited the plasma membrane H+-ATPase, whereas they were less inhibitory on the mitochondrial ATPase. In order to further compare the aminoesters and their corresponding quaternary ammonium salts, derivatives of N,N-dimethylalanine (DMAL-n and DMALM-n, respectively) were synthesized. The quaternary ammonium salts appeared to have a higher inhibitory potency than aminoesters, especially at pH 8, and alanine derivatives inhibited growth at a lower concentration than glycine derivatives. Both alanine derivatives of the aminoester and the quaternary ammonium salt inhibited the plasma membrane H+- ATPase at lower concentrations than glycine derivatives, but the alanine aminoester was without a detectable effect on the mitochondrial ATPase.

  11. A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium.

    PubMed

    Lei, Yu; Wang, Yangqing; Liu, Hongjie; Xi, Chuanwu; Song, Liyan

    2016-05-01

    A novel heterotrophic bacterium capable of heterotrophic nitrification and aerobic denitrification was isolated from ammonium contaminated landfill leachate and physiochemical and phylogenetically identified as Zobellella taiwanensis DN-7. DN-7 converted nitrate, nitrate, and ammonium to N2 as the primary end product. Single factor experiments suggested that the optimal conditions for ammonium removal were trisodium citrate as carbon source, C/N ratio 8, pH 8.0-10.0, salinity less than 3 %, temperature 30 °C, and rotation speed more than 150 rpm. Specifically, DN-7 could remove 1000.0 and 2000.0 mg/L NH4 (+)-N completely within 96 and 216 h, with maximum removal rates of 19.6 and 17.3 mg L(-1) h(-1), respectively. These results demonstrated that DN-7 is a promising candidate for application of high-strength ammonium wastewater treatments. PMID:26762390

  12. Theoretical studies on CO2 capture behavior of quaternary ammonium-based polymeric ionic liquids.

    PubMed

    Wang, Tao; Ge, Kun; Chen, Kexian; Hou, Chenglong; Fang, Mengxiang

    2016-05-14

    Quaternary ammonium-based polymeric ionic liquids (PILs) are novel CO2 sorbents as they have high capacity, high stability and high binding energy. Moreover, the binding energy of ionic pairs to CO2 is tunable by changing the hydration state so that the sorbent can be regenerated through humidity adjustment. In this study, theoretical calculations were conducted to reveal the mechanism of the humidity swing CO2 adsorption, based on model compounds of quaternary ammonium cation and carbonate anions. The electrostatic potential map demonstrates the anion, rather than the cation, is chemically preferential for CO2 adsorption. Further, the proton transfer process from water to carbonate at the sorbent interface is successfully depicted with an intermediate which has a higher energy state. By determining the CO2 adsorption energy and activation energy at different hydration states, it is discovered that water could promote CO2 adsorption by reducing the energy barrier of proton transfer. The adsorption/desorption equilibrium would shift to desorption by adding water, which constitutes the theoretical basis for humidity swing. By analyzing the hydrogen bonding and structure of the water molecules, it is interesting to find that the CO2 adsorption weakens the hydrophilicity of the sorbent and results in release of water. The requirement of latent heat for the phase change of water could significantly reduce the heat of adsorption. The special "self-cooling" effect during gas adsorption can lower the temperature of the sorbent and benefit the adsorption isotherms.

  13. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells.

    PubMed

    Di Domenico, Enea Gino; Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Di Palma, Luca; Ascenzioni, Fiorentina

    2015-01-01

    Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m(2). The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.

  14. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells.

    PubMed

    Di Domenico, Enea Gino; Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Di Palma, Luca; Ascenzioni, Fiorentina

    2015-01-01

    Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m(2). The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate. PMID:26273609

  15. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells

    PubMed Central

    Di Domenico, Enea Gino; Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Palma, Luca Di; Ascenzioni, Fiorentina

    2015-01-01

    Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate. PMID:26273609

  16. 40 CFR 418.40 - Applicability; description of the ammonium nitrate subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ammonium nitrate subcategory. 418.40 Section 418.40 Protection of Environment ENVIRONMENTAL PROTECTION... Ammonium Nitrate Subcategory § 418.40 Applicability; description of the ammonium nitrate subcategory. The provisions of this subpart are applicable to discharges resulting from the manufacture of ammonium...

  17. 40 CFR 418.40 - Applicability; description of the ammonium nitrate subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ammonium nitrate subcategory. 418.40 Section 418.40 Protection of Environment ENVIRONMENTAL PROTECTION... Ammonium Nitrate Subcategory § 418.40 Applicability; description of the ammonium nitrate subcategory. The provisions of this subpart are applicable to discharges resulting from the manufacture of ammonium...

  18. 40 CFR 418.40 - Applicability; description of the ammonium nitrate subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ammonium nitrate subcategory. 418.40 Section 418.40 Protection of Environment ENVIRONMENTAL PROTECTION... Ammonium Nitrate Subcategory § 418.40 Applicability; description of the ammonium nitrate subcategory. The provisions of this subpart are applicable to discharges resulting from the manufacture of ammonium...

  19. 40 CFR 418.40 - Applicability; description of the ammonium nitrate subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ammonium nitrate subcategory. 418.40 Section 418.40 Protection of Environment ENVIRONMENTAL PROTECTION... Ammonium Nitrate Subcategory § 418.40 Applicability; description of the ammonium nitrate subcategory. The provisions of this subpart are applicable to discharges resulting from the manufacture of ammonium...

  20. Early metabolic effects and mechanism of ammonium transport in yeast

    SciTech Connect

    Pena, A.; Pardo, J.P.; Ramirez, J.

    1987-03-01

    Studies were performed to define the effects and mechanism of NH+4 transport in yeast. The following results were obtained. Glucose was a better facilitator than ethanol-H/sub 2/O/sub 2/ for ammonium transport; low concentrations of uncouplers or respiratory inhibitors could inhibit the transport with ethanol as the substrate. With glucose, respiratory inhibitors showed only small inhibitory effects, and only high concentrations of azide or trifluoromethoxy carbonylcyanide phenylhydrazone could inhibit ammonium transport. Ammonium in the free state could be concentrated approximately 200-fold by the cells. Also, the addition of ammonium produced stimulation of both respiration and fermentation; an increased rate of H+ extrusion and an alkalinization of the interior of the cell; a decrease of the membrane potential, as monitored by fluorescent cyanine; an immediate decrease of the levels of ATP and an increase of ADP, which may account for the stimulation of both fermentation and respiration; and an increase of the levels of inorganic phosphate. Ammonium was found to inhibit 86Rb+ transport much less than K+. Also, while K+ produced a competitive type of inhibition, that produced by NH4+ was of the noncompetitive type. From the distribution ratio of ammonium and the pH gradient, an electrochemical potential gradient of around -180 mV was calculated. The results indicate that ammonium is transported in yeast by a mechanism similar to that of monovalent alkaline cations, driven by a membrane potential. The immediate metabolic effects of this cation seem to be due to an increased (H+)ATPase, to which its transport is coupled. However, the carriers seem to be different. The transport system studied in this work was that of low affinity.

  1. Pyrolysis of rice straw with ammonium dihydrogen phosphate: Properties and gaseous potassium release characteristics during combustion of the products.

    PubMed

    Li, Hui; Han, Kuihua; Wang, Qian; Lu, Chunmei

    2015-12-01

    The effect of ammonium dihydrogen phosphate (NH4H2PO4) on rice straw (RS) carbonization was evaluated at temperatures of 350-650°C. The carbonized products of RS with NH4H2PO4 show higher solid and energy yields, but lower higher heating values than the carbonized RS at every carbonization temperature. The optimum carbonization operation of RS with NH4H2PO4 which has a higher energy yield at a lower solid volume may be determined between 350 and 450°C, and RS with NH4H2PO4 carbonized at 450°C presents better pore properties than carbonized RS. The carbonized products of RS with NH4H2PO4 all have lower gaseous potassium release ratios than those of RS carbonized at the same temperature at combustion temperatures of 700-1000°C by retaining potassium in non-volatile phosphorus compounds with high melting points. It is an effective method for inhibiting the gaseous potassium release during combustion of the carbonized products.

  2. A maritime pine antimicrobial peptide involved in ammonium nutrition.

    PubMed

    Canales, Javier; Avila, Concepción; Cánovas, Francisco M

    2011-09-01

    A large family of small cysteine-rich antimicrobial peptides (AMPs) is involved in the innate defence of plants against pathogens. Recently, it has been shown that AMPs may also play important roles in plant growth and development. In previous work, we have identified a gene of the AMP β-barrelin family that was differentially regulated in the roots of maritime pine (Pinus pinaster Ait.) in response to changes in ammonium nutrition. Here, we present the molecular characterization of two AMP genes, PpAMP1 and PpAMP2, showing different molecular structure and physicochemical properties. PpAMP1 and PpAMP2 displayed different expression patterns in maritime pine seedlings and adult trees. Furthermore, our expression analyses indicate that PpAMP1 is the major form of AMP in the tree, and its relative abundance is regulated by ammonium availability. In contrast, PpAMP2 is expressed at much lower levels and it is not regulated by ammonium. To gain new insights into the function of PpAMP1, we over-expressed the recombinant protein in Escherichia coli and demonstrated that PpAMP1 strongly inhibited yeast growth, indicating that it exhibits antimicrobial activity. We have also found that PpAMP1 alters ammonium uptake, suggesting that it is involved in the regulation of ammonium ion flux into pine roots.

  3. Simultaneous removal of ammonium and suspended solids in multipurpose filters.

    PubMed

    Alkas, Deniz; Baykal, Bilsen Beler; Kinaci, Cumali

    2012-06-01

    A multipurpose filter in which sand and clinoptilolite are used together as filter material is suggested for the simultaneous removal of suspended solids and ammonium in one single unit. The capacity of the clinoptilolite used was determined as 10.4 mg/g for 20 mg/l initial ammonium concentration. In addition, a packed column ion exchanger with clinoptilolite and a classical sand filter were also investigated for comparison. Ammonium and suspended solids removal rates were observed and compared for all columns. The results of the column analysis have revealed that the ammonium removal rate, which was only 20% in the sand column, was increased to 100% by replacing 50% of the sand with clinoptilolite; similarly, the suspended solids removal, which was only 17% in the clinoptilolite column, was increased to 75% by replacing 50% of the clinoptilolite with sand. As such, when ion exchange and filtration processes were carried out in a multipurpose column, high removals for both parameters could be obtained simultaneously. Multipurpose columns could be an alternative both for the upgrading of existing treatment plants or for new plants for simultaneous removal of ammonium and suspended solids, giving considerable savings in terms of land requirements.

  4. Modeling of alkyl quaternary ammonium cations intercalated into montmorillonite lattice

    SciTech Connect

    Daoudi, El Mehdi; Boughaleb, Yahia; El Gaini, Layla; Meghea, Irina; Bakasse, Mina

    2013-05-15

    Highlights: ► The modification of montmorillonites by three surfactants increases the basal spacing. ► The model proposed show a bilayer conformation for the surfactant ODTMA. ► The DODMA and TOMA surfactants adopt a paraffin type arrangement. ► Behavior of surfactants in interlayer space was confirmed by TGA and ATR analysis. - Abstract: The objective of this work was to study the conformation of the quaternary ammonium cations viz., octadecyl trimethyl ammonium (ODTMA), dioctadecyl dimethyl ammonium (DMDOA) and trioctadecyl methyl ammonium (TOMA) intercalated within montmorillonite. The modified montmorillonite was characterized by X-ray diffraction in small angle (SAXS), thermal analysis (TGA) and infrared spectroscopy of attenuated total reflection (ATR). The modification of organophilic montmorillonites by the three surfactants ODTMA, DMDOA and TOMA increases the basal spacing from their respective intercalated distances of 1.9 nm, 2.6 nm and 3.4 nm respectively. The increase in the spacing due to the basic organic modification was confirmed by the results of thermal analysis (TGA) and infrared spectroscopy (ATR), and also supported by theoretical calculations of longitudinal and transversal chain sizes of these alkyl quaternary ammonium cations.

  5. Prevalence of anaerobic ammonium-oxidizing bacteria in contaminated groundwater.

    PubMed

    Moore, Tara A; Xing, Yangping; Lazenby, Brent; Lynch, Michael D J; Schiff, Sherry; Robertson, William D; Timlin, Robert; Lanza, Sadia; Ryan, M Cathryn; Aravena, Ramon; Fortin, Danielle; Clark, Ian D; Neufeld, Josh D

    2011-09-01

    Anaerobic ammonium-oxidizing (anammox) bacteria perform an important step in the global nitrogen cycle: anaerobic oxidation of ammonium and reduction of nitrite to form dinitrogen gas (N(2)). Anammox organisms appear to be widely distributed in natural and artificial environments. However, their roles in groundwater ammonium attenuation remain unclear and only limited biomarker-based data confirmed their presence prior to this study. We used complementary molecular and isotope-based methods to assess anammox diversity and activity occurring at three ammonium-contaminated groundwater sites: quantitative PCR, denaturing gradient gel electrophoresis, sequencing of 16S rRNA genes, and (15)N-tracer incubations. Here we show that anammox performing organisms were abundant bacterial community members. Although all sites were dominated by Candidatus Brocadia-like sequences, the community at one site was particularly diverse, possessing four of five known genera of anammox bacteria. Isotope data showed that anammox produced up to 18 and 36% of N(2) at these sites. By combining molecular and isotopic results we have demonstrated the diversity, abundance, and activity of these autotrophic bacteria. Our results provide strong evidence for their important biogeochemical role in attenuating groundwater ammonium contamination.

  6. Loss of Fine Particle Ammonium from Denuded Nylon Filters

    SciTech Connect

    Yu, Xiao-Ying; Lee, Taehyoung; Ayres, Benjamin; Kreidenweis, Sonia M.; Malm, William C.; Collett, Jeffrey L.

    2006-08-01

    Ammonium is an important constituent of fine particulate mass in the atmosphere, but can be difficult to quantify due to possible sampling artifacts. Losses of semivolatile species such as NH4NO3 can be particularly problematic. In order to evaluate ammonium losses from aerosol particles collected on filters, a series of field experiments was conducted using denuded nylon and Teflon filters at Bondville, Illinois (February 2003), San Gorgonio, California (April 2003 and July 2004), Grand Canyon National Park, Arizona (May, 2003), Brigantine, New Jersey (November 2003), and Great Smoky Mountains National Park (NP), Tennessee (July–August 2004). Samples were collected over 24-hr periods. Losses from denuded nylon filters ranged from 10% (monthly average) in Bondville, Illinois to 28% in San Gorgonio, California in summer. Losses on individual sample days ranged from 1% to 65%. Losses tended to increase with increasing diurnal temperature and relative humidity changes and with the fraction of ambient total N(--III) (particulate NH4+ plus gaseous NH3) present as gaseous NH3. The amount of ammonium lost at most sites could be explained by the amount of NH4NO3 present in the sampled aerosol. Ammonium losses at Great Smoky Mountains NP, however, significantly exceeded the amount of NH4NO3 collected. Ammoniated organic salts are suggested as additional important contributors to observed ammonium loss at this location.

  7. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    NASA Astrophysics Data System (ADS)

    Kiko, Rainer; Hauss, Helena; Buchholz, Friedrich; Melzner, Frank

    2016-04-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2, and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply could fuel bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean considerably. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a down-regulation of ammonium excretion. We exposed calanoid copepods from the Eastern Tropical North Atlantic (ETNA; Undinula vulgaris and Pleuromamma abdominalis) and euphausiids from the Eastern Tropical South Pacific (ETSP; Euphausia mucronata) and the ETNA (Euphausia gibboides) to different temperatures, carbon dioxide and oxygen levels to study their survival, respiration and excretion rates at these conditions. An increase in temperature by 10 °C led to an approximately 2-fold increase of the respiration and excretion rates of U. vulgaris (Q10, respiration = 1.4; Q10, NH4-excretion = 1.6), P. abdominalis (Q10, respiration = 2.0; Q10, NH4-excretion = 2.4) and

  8. Novel approach for the ammonium removal by simultaneous heterotrophic nitrification and denitrification using a novel bacterial species co-culture.

    PubMed

    Angar, Yassmina; Kebbouche-Gana, Salima; Djelali, Nacer-Eddine; Khemili-Talbi, Souad

    2016-03-01

    Agricultural activities lead excessive emission of ammonia nitrogen in the environment and can profoundly interfere the equilibrium of the natural ecosystems leading to their contamination. Actually, the biological purification of wastewaters is the most adopted technique thanks to its several advantages such as high performance and low energy consumption. For this reason, two novel strains of Alcaligenes sp. S84S3 and Proteus sp. S19 genus were isolated from an activated sludge and applied in the treatment of ammonium and nitrite in aqueous solution. Under the optimum operating conditions of temperature (30 °C), pH (7), carbon substrate (2 g/L of glucose) and duration of incubation time (69 h), the strain Alcaligenes sp. S84S3 could oxidize 65% of the ammonium as high as 272.72 mg-NH4(+)/L. Moreover, during 48 h, the nitrate reduction rate performed by the strain Proteus S19 was about 99 % without production of nitrite intermediate (negligible concentration). Moreover, the coculture of the strains Alcaligenes sp. S84S3 and Proteus sp. S19 could eliminate 65.83% of the ammonium ions without production of toxic forms of nitrogen oxides during a short time of incubation (118 h) at the same operational conditions with providing the aeration in the first treatment phase. The coculture of our isolated strains is assumed to have a good potential for nitrification and denitrification reactions applied in the treatment of wastewater containing ammonium, nitrite and nitrate. As a result, we can consider that the mixed culture is a practical method in the treatment of high-strength ammonium wastewater with reducing of sludge production.

  9. Novel approach for the ammonium removal by simultaneous heterotrophic nitrification and denitrification using a novel bacterial species co-culture.

    PubMed

    Angar, Yassmina; Kebbouche-Gana, Salima; Djelali, Nacer-Eddine; Khemili-Talbi, Souad

    2016-03-01

    Agricultural activities lead excessive emission of ammonia nitrogen in the environment and can profoundly interfere the equilibrium of the natural ecosystems leading to their contamination. Actually, the biological purification of wastewaters is the most adopted technique thanks to its several advantages such as high performance and low energy consumption. For this reason, two novel strains of Alcaligenes sp. S84S3 and Proteus sp. S19 genus were isolated from an activated sludge and applied in the treatment of ammonium and nitrite in aqueous solution. Under the optimum operating conditions of temperature (30 °C), pH (7), carbon substrate (2 g/L of glucose) and duration of incubation time (69 h), the strain Alcaligenes sp. S84S3 could oxidize 65% of the ammonium as high as 272.72 mg-NH4(+)/L. Moreover, during 48 h, the nitrate reduction rate performed by the strain Proteus S19 was about 99 % without production of nitrite intermediate (negligible concentration). Moreover, the coculture of the strains Alcaligenes sp. S84S3 and Proteus sp. S19 could eliminate 65.83% of the ammonium ions without production of toxic forms of nitrogen oxides during a short time of incubation (118 h) at the same operational conditions with providing the aeration in the first treatment phase. The coculture of our isolated strains is assumed to have a good potential for nitrification and denitrification reactions applied in the treatment of wastewater containing ammonium, nitrite and nitrate. As a result, we can consider that the mixed culture is a practical method in the treatment of high-strength ammonium wastewater with reducing of sludge production. PMID:26867597

  10. Effect of temperature on ammonium removal in Scenedesmus sp.

    PubMed

    Ruiz-Martínez, A; Serralta, J; Seco, A; Ferrer, J

    2015-09-01

    The effect of temperature on microalgal ammonium uptake was investigated by carrying out four batch experiments in which a mixed culture of microalgae, composed mainly of Scenedesmus sp., was cultivated under different temperatures within the usual temperature working range in Mediterranean climate (15-34 °C). Ammonium removal rates increased with temperature up to 26 °C and stabilized thereafter. Ratkowsky and Cardinal temperatures models successfully reproduced the experimental data. Optimum (31.3 °C), minimum (8.8 °C) and maximum (46.1 °C) temperatures for ammonium removal by Scenedesmus sp. under the studied conditions were obtained as model parameters. These temperature-related parameters constitute very useful information for designing and operating wastewater treatment systems using these microalgae.

  11. Exposure to common quaternary ammonium disinfectants decreases fertility in mice.

    PubMed

    Melin, Vanessa E; Potineni, Haritha; Hunt, Patricia; Griswold, Jodi; Siems, Bill; Werre, Stephen R; Hrubec, Terry C

    2014-12-01

    Quaternary ammonium compounds (QACs) are antimicrobial disinfectants commonly used in commercial and household settings. Extensive use of QACs results in ubiquitous human exposure, yet reproductive toxicity has not been evaluated. Decreased reproductive performance in laboratory mice coincided with the introduction of a disinfectant containing both alkyl dimethyl benzyl ammonium chloride (ADBAC) and didecyl dimethyl ammonium chloride (DDAC). QACs were detected in caging material over a period of several months following cessation of disinfectant use. Breeding pairs exposed for six months to a QAC disinfectant exhibited decreases in fertility and fecundity: increased time to first litter, longer pregnancy intervals, fewer pups per litter and fewer pregnancies. Significant morbidity in near term dams was also observed. In summary, exposure to a common QAC disinfectant mixture significantly impaired reproductive health in mice. This study illustrates the importance of assessing mixture toxicity of commonly used products whose components have only been evaluated individually.

  12. Exposure to common quaternary ammonium disinfectants decreases fertility in mice

    PubMed Central

    Melin, Vanessa E.; Potineni, Haritha; Hunt, Patricia; Griswold, Jodi; Siems, Bill; Werre, Stephen R.; Hrubec, Terry C.

    2014-01-01

    Quaternary ammonium compounds (QACs) are antimicrobial disinfectants commonly used in commercial and household settings. Extensive use of QACs results in ubiquitous human exposure, yet reproductive toxicity has not been evaluated. Decreased reproductive performance in laboratory mice coincided with the introduction of a disinfectant containing both alkyl dimethyl benzyl ammonium chloride (ADBAC) and didecyl dimethyl ammonium chloride (DDAC). QACs were detected in caging material over a period of several months following cessation of disinfectant use. Breeding pairs exposed for six months to a QAC disinfectant exhibited decreases in fertility and fecundity: increased time to first litter, longer pregnancy intervals, fewer pups per litter and fewer pregnancies. Significant morbidity in near term dams was also observed. In summary, exposure to a common QAC disinfectant mixture significantly impaired reproductive health in mice. This study illustrates the importance of assessing mixture toxicity of commonly used products whose components have only been evaluated individually. PMID:25483128

  13. [The biological activity of quaternary ammonium salts (QASs)].

    PubMed

    Obłak, Ewa; Gamian, Andrzej

    2010-01-01

    Quaternary ammonium salts (QASs), especially those of cationic surfactant character, are applied as antibacterial and antifungal disinfectants. QASs affect lipid-enveloped viruses, including human immunodeficiency virus (HIV) and hepatitis B virus (HBV), but not non-enveloped viruses. These compounds are extensively used in domestic (as ingredients of shampoos, hair conditioners), agricultural (as fungicides, pesticides, insecticides), healthcare (as medications), and industrial applications (as biocides, fabric softeners, corrosion inhibitors). The extensive use of quaternary ammonium disinfectants in recent years has led to the development of resistance in microorganisms to these drugs. Thus Staphylococcus aureus strains contain the plasmid-carrying genes qacA and qacB encoding resistance to quaternary ammonium compounds and acriflavine. The membrane proteins QacA and QacB confer multidrug resistance by exporting the compound by the proton motive force which is generated by the transmembrane electrochemical proton gradient. PMID:20400784

  14. Handling of Ammonium Nitrate Mother-Liquid Radiochemical Production - 13089

    SciTech Connect

    Zherebtsov, Alexander; Dvoeglazov, Konstantine; Volk, Vladimir; Zagumenov, Vladimir; Zverev, Dmitriy; Tinin, Vasiliy; Kozyrev, Anatoly; Shamin, Dladimir; Tvilenev, Konstantin

    2013-07-01

    The aim of the work is to develop a basic technology of decomposition of ammonium nitrate stock solutions produced in radiochemical enterprises engaged in the reprocessing of irradiated nuclear fuel and fabrication of fresh fuel. It was necessary to work out how to conduct a one-step thermal decomposition of ammonium nitrate, select and test the catalysts for this process and to prepare proposals for recycling condensation. Necessary accessories were added to a laboratory equipment installation decomposition of ammonium nitrate. It is tested several types of reducing agents and two types of catalyst to neutralize the nitrogen oxides. It is conducted testing of modes of the process to produce condensation, suitable for use in the conversion of a new technological scheme of production. It is studied the structure of the catalysts before and after their use in a laboratory setting. It is tested the selected catalyst in the optimal range for 48 hours of continuous operation. (authors)

  15. Ammonium as a sustainable proton shuttle in bioelectrochemical systems.

    PubMed

    Cord-Ruwisch, Ralf; Law, Yingyu; Cheng, Ka Yu

    2011-10-01

    This work examines a pH control method using ammonium (NH(4)(+)) as a sustainable proton shuttle in a CEM-equipped BES. Current generation was sustained by adding NH(3) or ammonium hydroxide (NH(4)OH) to the anolyte, controlling its pH at 7. Ammonium ion migration maintained the catholyte pH at approximately 9.25. Such NH(4)(+)/NH(3) migration accounted for 90±10% of the ionic flux in the BES. Reintroducing the volatilized NH(3) from the cathode into the anolyte maintained a suitable anolyte pH for sustained microbial-driven current generation. Hence, NH(4)(+)/NH(3) acted as a proton shuttle that is not consumed in the process.

  16. Aerosol isotopic ammonium signatures over the remote Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Lin, C. T.; Jickells, T. D.; Baker, A. R.; Marca, A.; Johnson, M. T.

    2016-05-01

    We report aerosol ammonium 15N signatures for samples collected from research cruises on the South Atlantic and Caribbean using a new high sensitivity method. We confirm a pattern of isotopic signals from generally light (δ15N -5 to -10‰), for aerosols with very low (<2  nmol m-3) ammonium concentrations from the remote high latitude ocean, to generally heavier values (δ15N +5 to +10‰), for aerosols collected in temperate and tropical latitudes and with higher ammonium concentrations (>2  nmol m-3). We discuss whether this reflects a mixing of aerosols from two end-members (polluted continental and remote marine emissions), or isotopic fractionation during aerosol transport.

  17. Ammonium and nitrate tolerance in lichens.

    PubMed

    Hauck, Markus

    2010-05-01

    Since lichens lack roots and take up water, solutes and gases over the entire thallus surface, these organisms respond more sensitively to changes in atmospheric purity than vascular plants. After centuries where effects of sulphur dioxide and acidity were in the focus of research on atmospheric chemistry and lichens, recently the globally increased levels of ammonia and nitrate increasingly affect lichen vegetation and gave rise to intense research on the tolerance of lichens to nitrogen pollution. The present paper discusses the main findings on the uptake of ammonia and nitrate in the lichen symbiosis and to the tolerance of lichens to eutrophication. Ammonia and nitrate are both efficiently taken up under ambient conditions. The tolerance to high nitrogen levels depends, among others, on the capability of the photobiont to provide sufficient amounts of carbon skeletons for ammonia assimilation. Lowly productive lichens are apparently predisposed to be sensitive to excess nitrogen.

  18. Physiological characteristics of the anaerobic ammonium-oxidizing bacterium 'Candidatus Brocadia sinica'.

    PubMed

    Oshiki, Mamoru; Shimokawa, Masaki; Fujii, Naoki; Satoh, Hisashi; Okabe, Satoshi

    2011-06-01

    The present study investigated the phylogenetic affiliation and physiological characteristics of bacteria responsible for anaerobic ammonium oxidization (anammox); these bacteria were enriched in an anammox reactor with a nitrogen removal rate of 26.0 kg N m(-3) day(-1). The anammox bacteria were identified as representing 'Candidatus Brocadia sinica' on the basis of phylogenetic analysis of rRNA operon sequences. Physiological characteristics examined were growth rate, kinetics of ammonium oxidation and nitrite reduction, temperature, pH and inhibition of anammox. The maximum specific growth rate (μ(max)) was 0.0041 h(-1), corresponding to a doubling time of 7 days. The half-saturation constants (K(s)) for ammonium and nitrite of 'Ca. B. sinica' were 28±4 and 86±4 µM, respectively, higher than those of 'Candidatus Brocadia anammoxidans' and 'Candidatus Kuenenia stuttgartiensis'. The temperature and pH ranges of anammox activity were 25-45 °C and pH 6.5-8.8, respectively. Anammox activity was inhibited in the presence of nitrite (50 % inhibition at 16 mM), ethanol (91 % at 1 mM) and methanol (86 % at 1 mM). Anammox activities were 80 and 70 % of baseline in the presence of 20 mM phosphorus and 3 % salinity, respectively. The yield of biomass and dissolved organic carbon production in the culture supernatant were 0.062 and 0.005 mol C (mol NH (+)(-4))(-1), respectively. This study compared physiological differences between three anammox bacterial enrichment cultures to provide a better understanding of anammox niche specificity in natural and man-made ecosystems.

  19. Steady state growth of E. Coli in low ammonium environment

    NASA Astrophysics Data System (ADS)

    Kim, Minsu; Deris, Barret; Zhang, Zhongge; Hwa, Terry

    2011-03-01

    Ammonium is the preferred nitrogen source for many microorganisms. In medium with low ammonium concentrations, enteric bacteria turn on the nitrogen responsive (ntr) genes to assimilate ammonium. Two proteins in E. coli, Glutamine synthetase (GS) and the Ammonium/methylammonium transporter AmtB play crucial roles in this regard. GS is the major ammonium assimilation enzyme below 1mM of NH4 + . AmtB is an inner membrane protein that transports NH4 + across the cell membrane against a concentration gradient. In order to study ammonium uptake at low NH4 + concentration at neutral pH, we developed a microfluidic flow chamber that maintains a homogenous nutrient environment during the course of exponential cell growth, even at very low concentration of nutrients. Cell growth can be accurately monitored using time-lapse microscopy. We followed steady state growth down to micro-molar range of NH4 + for the wild type and Δ amtB strains. The wild type strain is able to maintain the growth rate from 10mM down to a few uM of NH4 + , while the mutant exhibited reduced growth below ~ 20 ~uM of NH4 + . Simultaneous characterization of the expression levels of GS and AmtB using fluorescence reporters reveals that AmtB is turned on already at 1mM, but contributes to function only below ~ 30 ~uM in the wild-type. Down to ~ 20 ~uM of NH4 + , E.~coli can compensate the loss of AmtB by GS alone.

  20. Mutagenic activity of quaternary ammonium salt derivatives of carbohydrates

    PubMed Central

    Sikora, Karol; Woziwodzka, Anna; Piosik, Jacek; Podgórska, Beata

    2016-01-01

    Summary This paper presents a study on a series of quaternary ammonium salt (QAS) derivatives of glucopyranosides with an elongated hydrophobic hydrocarbon chain. The new N-[6-(β-D-glucopyranosyloxy)hexyl]ammonium bromides and their O-acetyl derivatives were analyzed via 1H and 13C NMR spectroscopy. The mutagenic activity of the newly synthesized QAS was investigated using two different techniques: The Vibrio harveyi luminescence assay and the Ames test. The obtained results support previous findings contesting QAS safety and indicate that QAS, specifically pyridinium derivatives, might be mutagenic. PMID:27559394

  1. Treatment of nevus comedonicus with ammonium lactate lotion.

    PubMed

    Milton, G P; DiGiovanna, J J; Peck, G L

    1989-02-01

    A patient with an extensive nevus comedonicus, which is associated frequently with the development of large inflammatory cysts and abscesses within the nevus, responded dramatically within 1 month to a once-daily application of 12% ammonium lactate lotion. A marked beneficial effect on the comedonal component of the nevus was noted. One inflammatory cyst has developed in an area left untreated by the patient, but none have occurred in treated areas since therapy with ammonium lactate lotion was begun. Previous treatments, which were either ineffective or of minimal effectiveness, included oral isotretinoin, topical tretinoin, salicylic acid, lactic acid, and d-tartaric acid creams.

  2. Formation of Amino Acids from Reactor Irradiated Ammonium Acetate

    NASA Astrophysics Data System (ADS)

    Akaboshi, M.; Kawai, K.; Maki, H.; Kawamoto, K.; Honda, Y.

    1982-12-01

    Ammonium acetate in various conditions was irradiated in a reactor to examine the contributions of both the reactor radiations and recoiled14C nucleis to form the biologically interesting molecules. Present investigations demonstrated that several amino acids, glycine, alanine, β-alanine and GABA, and may-be aspartic acid, serine and valine by prolonged irradiation, were formed in the aqueous solutions of ammonium acetate.14C-radioactivities were also found distributed in these amino acids. However, no special relationship between14C-radioactivity and these amino acids formed was observed.

  3. Mutagenic activity of quaternary ammonium salt derivatives of carbohydrates.

    PubMed

    Dmochowska, Barbara; Sikora, Karol; Woziwodzka, Anna; Piosik, Jacek; Podgórska, Beata

    2016-01-01

    This paper presents a study on a series of quaternary ammonium salt (QAS) derivatives of glucopyranosides with an elongated hydrophobic hydrocarbon chain. The new N-[6-(β-D-glucopyranosyloxy)hexyl]ammonium bromides and their O-acetyl derivatives were analyzed via (1)H and (13)C NMR spectroscopy. The mutagenic activity of the newly synthesized QAS was investigated using two different techniques: The Vibrio harveyi luminescence assay and the Ames test. The obtained results support previous findings contesting QAS safety and indicate that QAS, specifically pyridinium derivatives, might be mutagenic. PMID:27559394

  4. Effect of ten quaternary ammonium cations on tetrachloromethane sorption to clay from water

    USGS Publications Warehouse

    Smith, J.A.

    1990-01-01

    The mineral surface of Wyoming bentonite (clay) was modified by replacing inorganic ions by each of 10 quaternary ammonium compounds, and tetrachloromethane sorption to the modified sorbents from water was studied. Tetrachloromethane sorption from solution to clay modified with tetramethyl-, tetraethyl-, benzyltrimethyl-, or benzyltriethylammonium cations generally is characterized by relatively high solute uptake, isotherm nonlinearity, and competitive sorption (with trichloroethene as the competing sorbate). For these sorbents, the ethyl functional groups yield reduced sorptive capacity relative to methyl groups, whereas the benzyl group appears to have a similar effect on sorbent capacity as the methyl group. Sorption of tetrachloromethane to clay modified with dodecyldimethyl(2-phenoxyethyl)-, dodecyltrimethyl-, tetradecyltrimethyl-, hexadecyltrimethyl-, or benzyldimethylhexadecylammonium bromide is characterized by relatively low solute uptake, isotherm linearity, and noncompetitive sorption. For these sorbents, an increase in the size of the nonpolar functional group(s) causes an increase in the organic carbon normalized sorption coefficient (Koc). No measurable uptake of tetrachloromethane sorption by the unmodified clay or clay modified by ammonium bromide was observed. ?? 1990 American Chemical Society.

  5. Association with an Ammonium-Excreting Bacterium Allows Diazotrophic Culture of Oil-Rich Eukaryotic Microalgae

    PubMed Central

    Ortiz-Marquez, Juan Cesar Federico; Do Nascimento, Mauro; Dublan, Maria de los Angeles

    2012-01-01

    Concerns regarding the depletion of the world's reserves of oil and global climate change have promoted an intensification of research and development toward the production of biofuels and other alternative sources of energy during the last years. There is currently much interest in developing the technology for third-generation biofuels from microalgal biomass mainly because of its potential for high yields and reduced land use changes in comparison with biofuels derived from plant feedstocks. Regardless of the nature of the feedstock, the use of fertilizers, especially nitrogen, entails a potential economic and environmental drawback for the sustainability of biofuel production. In this work, we have studied the possibility of nitrogen biofertilization by diazotrophic bacteria applied to cultured microalgae as a promising feedstock for next-generation biofuels. We have obtained an Azotobacter vinelandii mutant strain that accumulates several times more ammonium in culture medium than wild-type cells. The ammonium excreted by the mutant cells is bioavailable to promote the growth of nondiazotrophic microalgae. Moreover, this synthetic symbiosis was able to produce an oil-rich microalgal biomass using both carbon and nitrogen from the air. This work provides a proof of concept that artificial symbiosis may be considered an alternative strategy for the low-N-intensive cultivation of microalgae for the sustainable production of next-generation biofuels and other bioproducts. PMID:22267660

  6. Quaternary ammonium salts with tetrafluoroborate anion: Phytotoxicity and oxidative stress in terrestrial plants.

    PubMed

    Biczak, Robert

    2016-03-01

    This paper discusses the impact of four quaternary ammonium salts (QAS) such as tetraethylammonium tetrafluoroborate [TEA][BF4], tetrabutylammonium tetrafluoroborate [TBA][BF4], tetrahexylammonium tetrafluoroborate [THA][BF4], and tetraoctylammonium tetrafluoroborate [TOA][BF4] on the growth and development of spring barley and common radish. Analogous tests were performed with the inorganic salt ammonium tetrafluoroborate [A][BF4] for comparison purposes. Results indicated that the phytotoxicity of the QAS applied is dependent on the concentration of the substance and their number of carbon atoms. The most toxic compound was [TBA][BF4], causing the greatest drop in fresh weight of both study plants, similar to the phytotoxic effects of [A][BF4]. All the tested compounds caused oxidative stress in spring barley and common radish seedlings due to a drop in the chlorophyll content. Stress was also observed in plants, which was indicated by the increased level of ROS (reactive oxygen species) such as H2O2 and lipid peroxidation of MDA (malondialdehyde). Due to the stress, both plants displayed changes in the activity of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). Based on the results of the study, it was concluded that changes in chlorophyll levels and peroxidase activity are the best biomarkers to determine oxidative stress in plants. PMID:26551221

  7. Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification-aerobic denitrification.

    PubMed

    Chen, Qian; Ni, Jinren

    2012-05-01

    Characteristics of ammonium removal by a newly isolated heterotrophic nitrification-aerobic denitrification bacterium Agrobacterium sp. LAD9 were systematically investigated. Succinate and acetate were found to be the most favorable carbon sources for LAD9. Response surface methodology (RSM) analysis demonstrated that maximum removal of ammonium occurred under the conditions with an initial pH of 8.46, C/N ratio of 8.28, temperature of 27.9°C and shaking speed of 150rpm, where temperature and shaking speed produced the largest effect. Further nitrogen balance analysis revealed that 50.1% of nitrogen was removed as gas products and 40.8% was converted to the biomass. Moreover, the occurrence of aerobic denitrification was evidenced by the utilization of nitrite and nitrate as nitrogen sources, and the successful amplifications of membrane bound nitrate reductase and cytochrome cd(1) nitrite reductase genes from strain LAD9. Thus, the nitrogen removal in strain LAD9 was speculated to comply with the mechanism of heterotrophic nitrification coupled with aerobic denitrification (NH(4)(+)-NH(2)OH-NO(2)(-)-N(2)O-N(2)), in which also accompanied with the mutual transformation of nitrite and nitrate. The findings can help in applying appropriate controls over operational parameters in systems involving the use of this kind of strain.

  8. Association with an ammonium-excreting bacterium allows diazotrophic culture of oil-rich eukaryotic microalgae.

    PubMed

    Ortiz-Marquez, Juan Cesar Federico; Do Nascimento, Mauro; Dublan, Maria de Los Angeles; Curatti, Leonardo

    2012-04-01

    Concerns regarding the depletion of the world's reserves of oil and global climate change have promoted an intensification of research and development toward the production of biofuels and other alternative sources of energy during the last years. There is currently much interest in developing the technology for third-generation biofuels from microalgal biomass mainly because of its potential for high yields and reduced land use changes in comparison with biofuels derived from plant feedstocks. Regardless of the nature of the feedstock, the use of fertilizers, especially nitrogen, entails a potential economic and environmental drawback for the sustainability of biofuel production. In this work, we have studied the possibility of nitrogen biofertilization by diazotrophic bacteria applied to cultured microalgae as a promising feedstock for next-generation biofuels. We have obtained an Azotobacter vinelandii mutant strain that accumulates several times more ammonium in culture medium than wild-type cells. The ammonium excreted by the mutant cells is bioavailable to promote the growth of nondiazotrophic microalgae. Moreover, this synthetic symbiosis was able to produce an oil-rich microalgal biomass using both carbon and nitrogen from the air. This work provides a proof of concept that artificial symbiosis may be considered an alternative strategy for the low-N-intensive cultivation of microalgae for the sustainable production of next-generation biofuels and other bioproducts. PMID:22267660

  9. Ammonium carbamates as highly active transdermal permeation enhancers with a dual mechanism of action.

    PubMed

    Novotný, Michal; Klimentová, Jana; Janůšová, Barbora; Palát, Karel; Hrabálek, Alexandr; Vávrová, Kateřina

    2011-03-10

    Transdermal permeation enhancers are compounds that temporarily increase drug flux through the skin by interacting with constituents of the stratum corneum. Transkarbam 12 (T12) is a highly active, broad-spectrum, biodegradable enhancer with low toxicity and low dermal irritation. We show here that T12 acts by a dual mechanism of action. The first part of this activity is associated with its ammonium carbamate polar head as shown by its pH-dependent effects on the permeation of two model drugs. Once this ammonium carbamate penetrates into the stratum corneum intercellular lipids, it rapidly decomposes releasing two molecules of protonated dodecyl 6-aminohexanoate (DDEAC) and carbon dioxide. This was observed by thermogravimetric analysis and infrared spectroscopy. This step of T12 action influences drug permeation through lipidic pathways, not through the aqueous pores (polar pathway) as shown by its effects on various model drugs and electrical impedance. Consequently, protonated DDEAC released in the stratum corneum is also an active enhancer. It broadens the scope of T12 action since it is also able to increase permeation of hydrophilic drugs that prefer the pore pathway. Thus, this dual effect of T12 is likely responsible for its favorable properties, which make it a good candidate for prospective clinical use.

  10. Simultaneous field estimates of urea hydrolysis rates and ammonium retardation factors in a fractured rock aquifer

    NASA Astrophysics Data System (ADS)

    Smith, R. W.; Taylor, J. L.; Fujita, Y.

    2005-12-01

    Knowledge of the rates of in situ biogeochemical processes is critical to the design and implementation of active and passive environmental remediation strategies. However, often rate determinations require the collection of samples in the field followed by laboratory studies that may occur days or weeks later. Artificial laboratory conditions as well as sample storage effects can lead to erroneous conclusions regarding kinetic processes in nature. We have been investigating in field and laboratory studies the microbial hydrolysis of urea as a method to facilitate calcium carbonate precipitation and co-precipitation of divalent metal and radionuclide contaminants (such as 90Sr). In conjunction with a single well "push-pull" test conducted in a fractured basalt aquifer near the Idaho National Laboratory, in situ rates of urea hydrolysis were estimated by tracking the disappearance of urea and a conservative tracer and measuring the increase in ammonium concentration. The analysis of rates was complicated by cation exchange reactions of ammonium with the aquifer matrix. However, we were able to derive and parameterize a rate law that explicitly included a retardation factor. With this approach, we are able to characterize in situ ureolysis kinetics without resorting to laboratory studies.

  11. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... product is filtered, washed, and dried. The pigment consists principally of ferric ammonium ferrocyanide... manufacturing practice: Oxalic acid or its salts, not more than 0.1 percent. Water soluble matter, not more than 3 percent. Water soluble cyanide, not more than 10 parts per million. Volatile matter, not more...

  12. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... product is filtered, washed, and dried. The pigment consists principally of ferric ammonium ferrocyanide... manufacturing practice: Oxalic acid or its salts, not more than 0.1 percent. Water soluble matter, not more than 3 percent. Water soluble cyanide, not more than 10 parts per million. Volatile matter, not more...

  13. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... product is filtered, washed, and dried. The pigment consists principally of ferric ammonium ferrocyanide... manufacturing practice: Oxalic acid or its salts, not more than 0.1 percent. Water soluble matter, not more than 3 percent. Water soluble cyanide, not more than 10 parts per million. Volatile matter, not more...

  14. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... product is filtered, washed, and dried. The pigment consists principally of ferric ammonium ferrocyanide... manufacturing practice: Oxalic acid or its salts, not more than 0.1 percent. Water soluble matter, not more than 3 percent. Water soluble cyanide, not more than 10 parts per million. Volatile matter, not more...

  15. On the Presence of Fixed Ammonium in Rocks.

    PubMed

    Stevenson, F J

    1959-07-24

    From one-fourth to one-half of the nitrogen in some granite rocks, and up to two-thirds of that in some paleozoic shales, occurred as ammonium ions held within the lattice structure of silicate minerals. The results provide greater insight into the origin of the earth's atmosphere.

  16. Quaternary Ammonium Disinfectant Issues Encountered in an Environmental Services Department.

    PubMed

    Boyce, John M; Sullivan, Linda; Booker, Arica; Baker, James

    2016-03-01

    We identified several factors affecting the use of quaternary ammonium-based (Quat) disinfectant in our facility. Microfiber wipers, cotton towels, and 1 of 2 types of disposable wipes soaked in a Quat disinfectant revealed significant binding of the disinfectant. Concentrations of Quat delivered by automated disinfectant dispensers varied widely.

  17. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric acid... 18.5 percent iron, approximately 9 percent ammonia, and 65 percent citric acid and occurs as reddish... composed of 14.5 to 16 percent iron, approximately 7.5 percent ammonia, and 75 percent citric acid...

  18. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... for drug use made with ferric ammonium ferrocyanide may contain only those diluents listed in this subpart as safe and suitable for use in color additive mixtures for coloring drugs. (b) Specifications... manufacturing practice: Oxalic acid or its salts, not more than 0.1 percent. Water soluble matter, not more...

  19. Residual Particle Sizes of Evaporating Droplets: Ammonium Sulfate and Aldehydes

    NASA Astrophysics Data System (ADS)

    Sedehi, N.; Galloway, M. M.; De Haan, D. O.

    2012-12-01

    The reactions of carbonyls like glyoxal, methylglyoxal, and glycolaldehyde, with ammonium salts have been proposed as significant sources of atmospheric organic aerosol. Aerosol containing these compounds was generated in the laboratory using the Vibrating Orifice Aerosol Generator (VOAG). The particles were completely dried before they were measured using a SMPS system. The nonvolatile fraction of the resulting aerosol was measured. The drying times were varied between two and twenty minutes, and for ammonium sulfate and glyoxal reactions, minimum residual particle sizes were reached after 3.5 minutes. Reactions of glyoxal, glycolaldehyde, and methylglyoxal with ammonium sulfate appeared to have lower non-volatile fractions remaining at higher starting concentrations, suggesting that a constant 'excess volume,' likely water, was present in the residual particles that could not be evaporated even after 20 minutes of drying. These excess volumes were not observed in our previous experiments with aldehydes but no ammonium sulfate present. At the highest concentrations tested (100 uM), non-volatile fractions of aldehydes present in residual particles were 16 (±17) %, 41 (±28) %, and 17(±32) % for glyoxal, glycolaldehyde, and methylglyoxal, respectively.

  20. Glufosinate and Ammonium Sulfate Inhibits Atrazine Degradation in Adapted Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The co-application of glufosinate with nitrogen fertilizers may alter atrazine co-metabolism, thereby extending the herbicide’s residual weed control in adapted soils. The objective of this study was to assess the effects of glufosinate, ammonium sulfate, and the combination of glufosinate and ammo...

  1. Destruction of 2,4,6-trinitrotoluene using ammonium peroxydisulfate

    SciTech Connect

    Cooper, J.F.; Wang, F.; Shell, T.; King, K.

    1996-07-01

    TNT was destroyed in a small batch reactor, using uncatalyzed 4 N ammonium peroxydisulfate at 95 {degrees}C. The material was destroyed below limit of detection in less that 15 minutes, indicating a formal order rate constant of 0.06 min{sup -1}. A crude estimate of scaleup rates indicates a throughput of 1 tonne/m{sup 3}-day.

  2. 21 CFR 184.1140 - Ammonium citrate, dibasic.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... intended use. (c) In accordance with § 184.1(b)(1), the ingredient is used in food with no limitation other... safe (GRAS) as a direct human food ingredient is based upon the following current good manufacturing... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium citrate, dibasic. 184.1140 Section...

  3. 21 CFR 184.1140 - Ammonium citrate, dibasic.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... intended use. (c) In accordance with § 184.1(b)(1), the ingredient is used in food with no limitation other... safe (GRAS) as a direct human food ingredient is based upon the following current good manufacturing... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium citrate, dibasic. 184.1140 Section...

  4. 21 CFR 184.1140 - Ammonium citrate, dibasic.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... intended use. (c) In accordance with § 184.1(b)(1), the ingredient is used in food with no limitation other... safe (GRAS) as a direct human food ingredient is based upon the following current good manufacturing... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ammonium citrate, dibasic. 184.1140 Section...

  5. 21 CFR 184.1140 - Ammonium citrate, dibasic.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... accordance with § 184.1(b)(1), the ingredient is used in food with no limitation other than current good... human food ingredient is based upon the following current good manufacturing practice conditions of use... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ammonium citrate, dibasic. 184.1140 Section...

  6. Electrodeposition of Californium Using Isobutanol and Aqueous Ammonium Acetate

    NASA Astrophysics Data System (ADS)

    Matoš, Milan; Boll, Rose A.; Phelps, Clarice E.; Torrico, Matthew N.; van Cleve, Shelley M.; Lewis, Benjamin E.

    2013-10-01

    Californium sources and targets are used in many applications in research and industry. Molecular deposition (commonly referred to as electrodeposition) is an experimental technique suitable for production of californium thin films. We are investigating molecular depositions using isobutanol and aqueous ammonium acetate solvents at various conditions to optimize for the best deposition efficiency and repeatability. Results of those tests will be presented.

  7. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric ammonium citrate. 184.1296 Section 184.1296 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed...

  8. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric ammonium citrate. 184.1296 Section 184.1296 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS...

  9. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric ammonium citrate. 184.1296 Section 184.1296 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS...

  10. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Quaternary ammonium chloride combination. 172.165 Section 172.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food...

  11. 46 CFR 148.220 - Ammonium nitrate-phosphate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ammonium nitrate-phosphate fertilizers. 148.220 Section 148.220 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE...-sustaining decomposition. (2) (c) No fertilizer covered by this section may be transported in bulk if,...

  12. Recycle use of magnesium ammonium phosphate to remove ammonium nitrogen from rare-earth wastewater.

    PubMed

    Huang, H M; Xiao, X M; Yan, B

    2009-01-01

    This paper presents a recycle MAP process (magnesium ammonium phosphate) to remove NH4-N from a typical rare-earth wastewater. The optimum conditions for the MAP precipitation and recycle use of the MAP with a newly-designed process were investigated in laboratory. The results showed that the pH value and dosages of P (phosphate) and Mg reagents have a significant influence on NH4-N removal, with a maximum removal efficiency of 99.4% at the conditions of pH=9 and Mg:N:P molar ratio=1.2:1:1.2. In the process of recycle use of the MAP, adding some HCl to dissolve MAP decomposition residues could effectively enhance NH4-N removal. The NH4-N removal efficiency reached 99.6% by adding an HCl amount of H+:OH- molar ratio=0.8 into the reused MAP decomposition residues, whereas the NH4-N removal efficiency without addition of HCl was only 96.4%. Moreover, the residual PO4-P from the end of reaction was recovered and the optimum recovery efficiency was achieved at a Mg:P molar ratio=6 and pH=10. Under these optimum conditions, the residual NH4-N and PO4-P concentrations in the treated wastewater, through 6 times of the recycling, were less than 15 mg/L and 1 mg/L, respectively. On the basis of this, an economic evaluation of the recycling MAP was made, and this recycle process could save 48.6% cost used in the chemicals for treating per cubic meter of the rare-earth wastewater, compared to the conventional MAP process.

  13. Terahertz time domain spectroscopy of hydrothermally synthesized boehmite and ammonium dawsonite nanostructures

    NASA Astrophysics Data System (ADS)

    Mehboob, Shoaib; Mehmood, Mazhar; Ahmed, Mushtaq; Ahmad, Jamil; Tanvir, Muhammad Tauseef; Ahmad, Izhar

    2016-09-01

    The frequency dependent optical and dielectric properties of boehmite (AlOOH) and ammonium aluminum carbonate hydroxide (AACH) nanostructures, prepared at different temperatures via hydrothermal synthesis, were studied by using terahertz time domain spectroscopy (THz-TDS). The complex refractive indices, absorption coefficients and complex dielectric constants were determined and compared for different synthesis temperatures. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were also performed to confirm the formation of boehmite and AACH. Scanning electron microscopy (SEM) was performed to study the morphology of nanostructures. The study reveals the formation of AACH at higher temperatures and decrease in refractive index with increasing synthesis temperature. The higher absorption coefficient and lower refractive index and dielectric constant were observed for AACH than for boehmite.

  14. Low Temperature Double-Layer Capacitors Using Asymmetric and Spiro-Type Quaternary Ammonium Salts

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J. (Inventor); Smart, Marshall C. (Inventor); West, William C. (Inventor)

    2014-01-01

    Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as -80.degree. C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. A quaternary ammonium salt including at least one of triethylmethylammonium tetrafluoroborate (TEMATFB) and spiro-(1,1')-bipyrrolidium tetrafluoroborate (SBPBF.sub.4), is used in an optimized concentration (e.g., 0.10 M to 0.75 M), dissolved into the electrolyte solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.

  15. Effects of Niobium Ammonium Oxalate and Benzotriazole on the Corrosion Resistance of Zinc Phosphate Layer

    NASA Astrophysics Data System (ADS)

    Banczek, E. P.; Terada, M.; Rodrigues, P. R. P.; Costa, I.

    2013-11-01

    In this study, the viability of nickel replacement in zinc phosphate baths by niobium ammonium oxalate (Ox) and benzotriazole (BTAH) was studied. Samples of carbon steel (SAE 1010) were phosphated in two zinc phosphate baths, one containing nickel (PZn+Ni) and another containing Ox and BTAH (PZn+Ox+BTAH). The corrosion resistance of the phosphated samples was analyzed in a NaCl 0.5 mol/L solution using open circuit potential measurements, anodic and cathodic polarization curves, and electrochemical impedance spectroscopy. Surface analysis was carried out by scanning electron microscopy and energy dispersive spectroscopy. The results showed that the PZn+Ni layer presented a needle-like morphology and that the crystals of PZn+Ox+BTAH showed granular morphology. The electrochemical results showed that the highest corrosion resistance was associated to the PZn+Ox+BTAH layer.

  16. Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions

    NASA Astrophysics Data System (ADS)

    Galloway, M. M.; Chhabra, P. S.; Chan, A. W. H.; Surratt, J. D.; Flagan, R. C.; Seinfeld, J. H.; Keutsch, F. N.

    2008-12-01

    Chamber studies of glyoxal uptake onto neutral ammonium sulphate aerosol were performed under dark and irradiated conditions to gain further insight into processes controlling glyoxal uptake onto ambient aerosol. Organic fragments from glyoxal dimers and trimers were observed within the aerosol under dark and irradiated conditions; glyoxal oligomer formation and overall organic growth were found to be reversible under dark conditions. Analysis of high-resolution time-of-flight aerosol mass spectra provides evidence for irreversible formation of carbon-nitrogen (C-N) compounds in the aerosol. These compounds are likely to be imidazoles formed by reaction of glyoxal with the ammonium sulphate seed. To the authors' knowledge, this is the first time C-N compounds resulting from condensed phase reactions with ammonium sulphate seed have been detected in aerosol. Organosulphates were not detected under dark conditions. However, active oxidative photochemistry, similar to that found in cloud processing, was found to occur within aerosol during irradiated experiments. Organosulphates, carboxylic acids, and organic esters were identified within the aerosol. Our study suggests that both C-N compound formation and photochemical processes should be considered in models of secondary organic aerosol formation via glyoxal.

  17. 40 CFR 415.240 - Applicability; description of the ammonium chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... resulting from the production of ammonium chloride by the reaction of anhydrous ammonia with hydrogen... ammonium chloride production subcategory. 415.240 Section 415.240 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ammonium Chloride Production Subcategory § 415.240 Applicability; description of...

  18. 40 CFR 415.240 - Applicability; description of the ammonium chloride production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... resulting from the production of ammonium chloride by the reaction of anhydrous ammonia with hydrogen... ammonium chloride production subcategory. 415.240 Section 415.240 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ammonium Chloride Production Subcategory § 415.240 Applicability; description of...

  19. 40 CFR 415.240 - Applicability; description of the ammonium chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... resulting from the production of ammonium chloride by the reaction of anhydrous ammonia with hydrogen... ammonium chloride production subcategory. 415.240 Section 415.240 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ammonium Chloride Production Subcategory § 415.240 Applicability; description of...

  20. 40 CFR 415.240 - Applicability; description of the ammonium chloride production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... resulting from the production of ammonium chloride by the reaction of anhydrous ammonia with hydrogen... ammonium chloride production subcategory. 415.240 Section 415.240 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ammonium Chloride Production Subcategory § 415.240 Applicability; description of...

  1. 40 CFR 415.240 - Applicability; description of the ammonium chloride production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... resulting from the production of ammonium chloride by the reaction of anhydrous ammonia with hydrogen... ammonium chloride production subcategory. 415.240 Section 415.240 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ammonium Chloride Production Subcategory § 415.240 Applicability; description of...

  2. 40 CFR 721.10170 - Polyoxyethylene polyalkylarylphenylether sulfate ammonium salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyalkylarylphenylether sulfate ammonium salt (generic). 721.10170 Section 721.10170 Protection of Environment... polyalkylarylphenylether sulfate ammonium salt (generic). (a) Chemical substance and significant new uses subject to... sulfate ammonium salt (PMN P-03-197) is subject to reporting under this section for the significant...

  3. 40 CFR 721.10170 - Polyoxyethylene polyalkylarylphenylether sulfate ammonium salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyalkylarylphenylether sulfate ammonium salt (generic). 721.10170 Section 721.10170 Protection of Environment... polyalkylarylphenylether sulfate ammonium salt (generic). (a) Chemical substance and significant new uses subject to... sulfate ammonium salt (PMN P-03-197) is subject to reporting under this section for the significant...

  4. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances § 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  5. 40 CFR 721.10170 - Polyoxyethylene polyalkylarylphenylether sulfate ammonium salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyalkylarylphenylether sulfate ammonium salt (generic). 721.10170 Section 721.10170 Protection of Environment... polyalkylarylphenylether sulfate ammonium salt (generic). (a) Chemical substance and significant new uses subject to... sulfate ammonium salt (PMN P-03-197) is subject to reporting under this section for the significant...

  6. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances § 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  7. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances § 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  8. 40 CFR 721.10170 - Polyoxyethylene polyalkylarylphenylether sulfate ammonium salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyalkylarylphenylether sulfate ammonium salt (generic). 721.10170 Section 721.10170 Protection of Environment... polyalkylarylphenylether sulfate ammonium salt (generic). (a) Chemical substance and significant new uses subject to... sulfate ammonium salt (PMN P-03-197) is subject to reporting under this section for the significant...

  9. 40 CFR 721.10443 - Ethoxylated alkylphenol sulfate, ammonium salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., ammonium salt (generic). 721.10443 Section 721.10443 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10443 Ethoxylated alkylphenol sulfate, ammonium salt... identified generically as ethoxylated alkylphenol sulfate, ammonium salt (PMN P-01-470) is subject...

  10. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances § 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  11. 40 CFR 721.10170 - Polyoxyethylene polyalkylarylphenylether sulfate ammonium salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyalkylarylphenylether sulfate ammonium salt (generic). 721.10170 Section 721.10170 Protection of Environment... polyalkylarylphenylether sulfate ammonium salt (generic). (a) Chemical substance and significant new uses subject to... sulfate ammonium salt (PMN P-03-197) is subject to reporting under this section for the significant...

  12. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances § 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  13. 21 CFR 520.310 - Caramiphen ethanedisulfonate and ammonium chloride tablets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Caramiphen ethanedisulfonate and ammonium chloride... § 520.310 Caramiphen ethanedisulfonate and ammonium chloride tablets. (a) Specifications. Each tablet contains 10 milligrams of 5st caramiphen ethanedisulfonate and 80 milligrams of ammonium chloride.1 1...

  14. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports

    PubMed Central

    Białecki, Jacek; Czarnocki, Stefan J; Żukowska, Karolina

    2016-01-01

    Summary An ammonium-tagged ruthenium complex, 8, was deposited on several widely available commercial solid materials such as silica gel, alumina, cotton, filter paper, iron powder or palladium on carbon. The resulting catalysts were tested in toluene or ethyl acetate, and found to afford metathesis products in high yield and with extremely low ruthenium contamination. Depending on the support used, immobilised catalyst 8 shows also additional traits, such as the possibility of being magnetically separated or the use for metathesis and subsequent reduction of the obtained double bond in one pot. PMID:26877803

  15. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports.

    PubMed

    Skowerski, Krzysztof; Białecki, Jacek; Czarnocki, Stefan J; Żukowska, Karolina; Grela, Karol

    2016-01-01

    An ammonium-tagged ruthenium complex, 8, was deposited on several widely available commercial solid materials such as silica gel, alumina, cotton, filter paper, iron powder or palladium on carbon. The resulting catalysts were tested in toluene or ethyl acetate, and found to afford metathesis products in high yield and with extremely low ruthenium contamination. Depending on the support used, immobilised catalyst 8 shows also additional traits, such as the possibility of being magnetically separated or the use for metathesis and subsequent reduction of the obtained double bond in one pot. PMID:26877803

  16. Mechanistic studies of carbonate macrocyclization: Rates of carbonate bond formation

    SciTech Connect

    Aquino, E.; Brittain, W.J.; Brunelle, D.J.

    1993-12-31

    High yields of cyclic oligomeric carbonates can be prepared using an amine-catalyzed reaction of bisphenol A-bischloroformate. The authors have studied the kinetics of this carbonate macrocyclization by the isolated study of key chemical events. Using stopped-flow FT-IR spectroscopy, it was found that the rate of carbonate formation between the intermediate acyl ammonium salt (1) and 4-isopropylphenol (4-IPP) is the same for tributylamine, triethylamine and diethylmethylamine. Previously, it was found that conversion of 1 to urethane was also insensitive to amine structure while the formation of 1 is profoundly dependent on amine structure.

  17. [A case of ammonium urate urolithiasis with Crohn's disease].

    PubMed

    Fujii, Takahiro; Shiba, Masahiro; Takatera, Hiroshi

    2003-10-01

    A 28-year-old woman suffering from Crohn's disease since 15 years of age presented with left back pain. She had undergone a colectomy when she was 20 years old and an ileostomy when she was 25 years old. She had been treated with mesalazine and pernasal nutrition (Elental) Ultrasonography showed left side hydronephrosis and a renal stone in the left renal pelvis. Computed x-ray tomography revealed a stone measuring 1.5 x 1.0 cm2 at the ureteropelvic junction, which was radiolucent on an abdominal radiograph. The renal stone was successfully treated with 10 exposures of extracorporeal shockwave lithotripsy. Ninety eight percent of the passed stone was composed of ammonium urate. Crohn's disease-related poor nutrition and dehydration are presumed to have been possible induction factors in the forming of the ammonium urate stone in this case.

  18. The Measurement of Hot-Spots in Granulated Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Proud, W. G.

    2002-07-01

    Ammonium Nitrate (AN) is one of the components of the most widely used explosive in the world namely, ammonium nitrate: fuel oil mixtures (ANFO). By itself, it is an oxygen positive explosive with a large critical diameter. Hot-spots are produced in explosives by various means including gas space collapse, localised shear or friction. If these hot-spots reach critical conditions of size, temperature and duration reaction can grow. This deflagration stage may eventually transition to detonation. This paper describes high-speed image-intensified photography study in which the number and growth of hot spots in granular AN are monitored for a range of different impact pressures. The results can be used in detonation codes to provide a more accurate and realistic description of the initiation process.

  19. The Measurement of Hot-spots in Granulated Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Proud, William; Field, John

    2001-06-01

    Ammonium Nitrate (AN) is one of the components of the most widely used explosive in the world ammonium nitrate: fuel oil mixtures (ANFO). By itself, it is an oxygen negative explosive with a large critical diameter. Hot-spots are produced in explosives by various means including gas space collapse, localised shear or friction. If these hot-spots reach critical conditions of size, temperature and duration size reaction can grow. This deflagration stage may eventually transition to detonation. This paper describes a system and presents results where high-speed image intensified photography is used to monitor the number and growth of hot spots in granular AN under a range of different impact pressures. The results can be used in detonation codes to provide a more accurate and realistic description of the initiation process.

  20. Reverse osmosis separation of radiocontaminants from ammonium diuranate effluents

    SciTech Connect

    Prabhakar, S.; Misra, B.M.; Roy, S.B.; Meghal, A.M.; Mukherjee, T.K. )

    1994-05-01

    A reverse osmosis process has been found to be effective for the separation of radiocontaminants from ammonium diuranate effluents in a uranium metal plant. Pilot-plant-scale experiments were conducted using cellulosic membranes in a plate module system and actual plant effluents containing more than about 40,000 ppm of ammonium and nitrate species and having radiocontaminants corresponding to specific activities of about 10[sup [minus]3] Ci/m[sup 3] beta/gamma emitters. The results indicated that more than 95% by volume of the treated effluents were within disposal limits, while the remaining contained the concentrate, which can be treated for possible containment. 6 refs., 2 figs., 5 tabs.

  1. Ammonium sulfate co-precipitation of SSB and interacting proteins.

    PubMed

    Marceau, Aimee H

    2012-01-01

    Bacterial single-strand DNA-binding protein (SSB) interacts with many proteins involved in the diverse process of genome maintenance. The interactions are mediated by the essential and conserved amphipathic C-terminus (SSB-Ct). SSB plays a critical role in localizing and stimulating the activity of a wide variety of DNA-processing proteins. The interaction partners have been identified and studied using a variety of methods, one of which, ammonium sulfate co-precipitation, is described here.

  2. Nitrogen-15 spin-rotation relaxation in ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Harnden, Anne M. C.; Hunter, Brian K.; Brown, R. Julian C.

    The spin-lattice relaxation time has been measured for 15N in ammonium perchlorate in the temperature range 240 to 292 K. The temperature dependence of T, suggests that spin-rotation is the dominant relaxation mechanism, and this is confirmed by calculation and by nuclear Overhauser effect measurements. The spin-rotation coupling constant for 15NH 4+ is estimated to be 11.1 ± 0.2 kHz.

  3. Nanomodified vermiculite NMV - a new material for recycling ammonium nitrogen

    NASA Astrophysics Data System (ADS)

    Rama, Miradije; Laiho, Taina; Eklund, Olav; Lehto, Kirsi; Shebanov, Alex; Smått, Jan-Henrik

    2016-04-01

    Vermiculites ((Mg,Fe,Al)3(Al,Si)4O10(OH)24H2O) are naturally occurring minerals from hydromica group with a high cation exchange capacity and large surface area. Since vermiculite is a hydrated mineral, its structure can be changed with heat. In this study vermiculite samples were heated in an oven until the interlayer distance of them diminished from 14 Å to 11.7 Å. This method for improving vermiculites intake of ammonium ions by heating, is an invention made at the University of Turku. Nanomodified vermiculite (NMV) is able to absorb up to 4.7 wt% of ammonium. NMV can be used as an efficient filter and immobilizer of ammonium in different environments. NMV has been efficiently tested on waste water from a biogas plant, human urine, combustion experiments, industrial chimneys, excrements from farms etc. Ammonium doped vermiculite (ADV) is further developed for fertilizer use. Performed experiments have testified the usability of ADV as a fertilizer. At first step the NMV was processed with the reject water from a biogas plant, were it absorbed NH4+ into the lattice. At second, the ADV was used as nutrient source for garden plants. Geraniums and begonias were used as test plants of the work. Plant growth rate was evaluated based on plant weight. Results showed that significant increase of the growth of geraniums and of begonias were observed when comparing to those cultivations where plants have got normal fertilization. Moreover, ADV has been tested as a fertilizer in greenhouse experiments with spruces and pines. After five months, the weight of the plants that had grown in a substrate containing ADV was 10 times the weight of plants growing in the reference substrate.

  4. Nitrogen addition regulates soil nematode community composition through ammonium suppression.

    PubMed

    Wei, Cunzheng; Zheng, Huifen; Li, Qi; Lü, Xiaotao; Yu, Qiang; Zhang, Haiyang; Chen, Quansheng; He, Nianpeng; Kardol, Paul; Liang, Wenju; Han, Xingguo

    2012-01-01

    Nitrogen (N) enrichment resulting from anthropogenic activities has greatly changed the composition and functioning of soil communities. Nematodes are one of the most abundant and diverse groups of soil organisms, and they occupy key trophic positions in the soil detritus food web. Nematodes have therefore been proposed as useful indicators for shifts in soil ecosystem functioning under N enrichment. Here, we monitored temporal dynamics of the soil nematode community using a multi-level N addition experiment in an Inner Mongolia grassland. Measurements were made three years after the start of the experiment. We used structural equation modeling (SEM) to explore the mechanisms regulating nematode responses to N enrichment. Across the N enrichment gradient, significant reductions in total nematode abundance, diversity (H' and taxonomic richness), maturity index (MI), and the abundance of root herbivores, fungivores and omnivores-predators were found in August. Root herbivores recovered in September, contributing to the temporal variation of total nematode abundance across the N gradient. Bacterivores showed a hump-shaped relationship with N addition rate, both in August and September. Ammonium concentration was negatively correlated with the abundance of total and herbivorous nematodes in August, but not in September. Ammonium suppression explained 61% of the variation in nematode richness and 43% of the variation in nematode trophic group composition. Ammonium toxicity may occur when herbivorous nematodes feed on root fluid, providing a possible explanation for the negative relationship between herbivorous nematodes and ammonium concentration in August. We found a significantly positive relationship between fungivores and fungal phospholipid fatty acids (PLFA), suggesting bottom-up control of fungivores. No such relationship was found between bacterivorous nematodes and bacterial PLFA. Our findings contribute to the understanding of effects of N enrichment in

  5. Structural basis for Mep2 ammonium transceptor activation by phosphorylation.

    PubMed

    van den Berg, Bert; Chembath, Anupama; Jefferies, Damien; Basle, Arnaud; Khalid, Syma; Rutherford, Julian C

    2016-04-18

    Mep2 proteins are fungal transceptors that play an important role as ammonium sensors in fungal development. Mep2 activity is tightly regulated by phosphorylation, but how this is achieved at the molecular level is not clear. Here we report X-ray crystal structures of the Mep2 orthologues from Saccharomyces cerevisiae and Candida albicans and show that under nitrogen-sufficient conditions the transporters are not phosphorylated and present in closed, inactive conformations. Relative to the open bacterial ammonium transporters, non-phosphorylated Mep2 exhibits shifts in cytoplasmic loops and the C-terminal region (CTR) to occlude the cytoplasmic exit of the channel and to interact with His2 of the twin-His motif. The phosphorylation site in the CTR is solvent accessible and located in a negatively charged pocket ∼30 Å away from the channel exit. The crystal structure of phosphorylation-mimicking Mep2 variants from C. albicans show large conformational changes in a conserved and functionally important region of the CTR. The results allow us to propose a model for regulation of eukaryotic ammonium transport by phosphorylation.

  6. [Ammonium Adsorption Characteristics in Aqueous Solution by Dairy Manure Biochar].

    PubMed

    Ma, Feng-feng; Zhao, Bao-wei; Diao, Jing-ru; Zhong, Jin-kui; Li, An-bang

    2015-05-01

    The adsorption characteristics of ammonium from aqueous solution onto biochar derived from dairy manure were investigated as a function of parameters such as solution pH, particle size, adsorbent dosage, temperature and competitive cations. The results indicated that the effects of other cations on the adsorption of ammonium followed the order of preference Na > Ca2+ at identical mass concentrations. It was observed that pH played an important role in the ammonium adsorption and the optimal pH values ranged between 5 and 8. The kinetic data fitted the pseudo-second-order model (R2 = 0.967 3) but showed very poor fits for the pseudo-first-order model (R2 = 0.765 9) and the Elovich model (R2 = 0.724 9). The results from the Intra-particle model also showed that there were two separate stages in sorption process, which were external diffusion and the diffusion of inter-particle. Adsorption isotherms for dairy manure biochar were fitted the Freundlich model (R2 = 0.976 2) more effectively than other models. Thermodynamics parameters such as free energy (ΔGθ), enthalpy (ΔHθ), and entropy (ΔSθ) were also determined, which indicated that the adsorption was a spontaneous and endothermic process. PMID:26314116

  7. Preparation of nanodispersed titania using stabilized ammonium nitrate melts

    SciTech Connect

    Raciulete, Monica; Kachina, Anna; Puzenat, Eric; Afanasiev, Pavel

    2010-10-15

    An expedite one-step approach using simple precursors has been proposed to obtain metallic oxide compounds and exemplified by preparation of highly dispersed TiO{sub 2}. The technique consists in heating to 400-500 {sup o}C of molten ammonium nitrate stabilized with an organic nitrogen-containing compound (urea, melamine, ammonium oxalate) and containing dissolved metal salt precursor (TiOCl{sub 2}). The crystallites of the resulting TiO{sub 2} demonstrated variable size and shape as a function of stabilizer used. Their activity in photocatalytic oxidation of formic acid also depends on the nature of the stabilizer. The catalysts as-prepared showed high photocatalytic performance, superior to that of the Degussa P25 reference. Nitrogen containing stabilizers play a double role of increasing the process safety and modifying the properties of the solid products. - Graphical abstract: Ammonium nitrate melts stabilized by nitrogen-containing organic molecules can be applied for expedite one-step preparation of highly dispersed oxides, as exemplified by synthesis of titania photocatalysts.

  8. Relevance of ammonium oxidation within biological soil crust communities

    USGS Publications Warehouse

    Johnson, S.L.; Budinoff, C.R.; Belnap, J.; Garcia-Pichel, F.

    2005-01-01

    Thin, vertically structured topsoil communities that become ecologically important in arid regions (biological soil crusts or BSCs) are responsible for much of the nitrogen inputs into pristine arid lands. We studied N2 fixation and ammonium oxidation (AO) at subcentimetre resolution within BSCs from the Colorado Plateau. Pools of dissolved porewater nitrate/ nitrite, ammonium and organic nitrogen in wetted BSCs were high in comparison with those typical of aridosoils. They remained stable during incubations, indicating that input and output processes were of similar magnitude. Areal N2 fixation rates (6.5-48 ??mol C2H2 m-2 h -1) were high, the vertical distribution of N2 fixation peaking close to the surface if populations of heterocystous cyanobacteria were present, but in the subsurface if they were absent. Areal AO rates (19-46 ??mol N m-2 h-1) were commensurate with N2 fixation inputs. When considering oxygen availability, AO activity invariably peaked 2-3 mm deep and was limited by oxygen (not ammonium) supply. Most probable number (MPN)-enumerated ammonia-oxidizing bacteria (6.7-7.9 ?? 103 cells g-1 on average) clearly peaked at 2-3 mm depth. Thus, AO (hence nitrification) is a spatially restricted but important process in the nitrogen cycling of BSC, turning much of the biologically fixed nitrogen into oxidized forms, the fate of which remains to be determined.

  9. Preferential uptake of ammonium ions by zinc ferrocyanide

    NASA Technical Reports Server (NTRS)

    Braterman, P. S.; Arrhenius, G.; Hui, S.; Paplawsky, W.; Miller, S. L. (Principal Investigator)

    1995-01-01

    The concentration of ammonia from dilute aqueous solution could have facilitated many prebiotic reactions. This may be especially true if this concentration involves incorporation into an organized medium. We have shown that (unlike iron(III) ferrocyanide) zinc ferrocyanide,Zn2Fe(CN)6 xH2O, preferentially takes up ammonium ions from 0.01 M NH4Cl to give the known material Zn3(NH4)2[Fe(CN)6]2 xH2O, even in the presence of 0.01 M KCl. KCl alone gave Zn3K2[Fe(CN)6]2 xH2O. Products were characterized by elemental (CHN) analysis and powder X-ray diffraction (XRD). We attribute the remarkable specificity for the ammonium ion to the open framework of the product, which offers enough space for hydrogen-bonded ammonium ions, and infer that other inorganic materials with internal spaces rich in water may show a similar preference.

  10. Airborne ammonia and ammonium within the Northern Adriatic area, Croatia.

    PubMed

    Alebic-Juretic, Ana

    2008-08-01

    Determination of airborne ammonia started in the early 1980s, as a part of air pollution monitoring of industrial plants. Due to high emissions, the city of Rijeka was one of the most polluted in Croatia in the mid-1980s. Considerable reductions in SO2 and NO(x) emissions led to lower airborne levels of these pollutants in the mid 1990s. In spite of the coke plant closure in 1994, there was only a weak decline in airborne ammonia over the period 1980--2005, with annual means in the range of 12-20 microg m(-3) at urban Site 1 and 6-28 microg m(-3) at suburban Site 2. Similar behaviour has been observed with ammonium in bulk rainwater samples since 1996. Higher and approximately equal deposition of nitrogen as ammonium (N-NH4+) were obtained for the urban Site 1 and the mountainous Site 4, but with different causative facts. Ammonium's contribution to total nitrogen (NO3(-)+NH4+) deposition is approximately two thirds, even for a remote Site 3.

  11. Structural basis for Mep2 ammonium transceptor activation by phosphorylation

    PubMed Central

    van den Berg, Bert; Chembath, Anupama; Jefferies, Damien; Basle, Arnaud; Khalid, Syma; Rutherford, Julian C.

    2016-01-01

    Mep2 proteins are fungal transceptors that play an important role as ammonium sensors in fungal development. Mep2 activity is tightly regulated by phosphorylation, but how this is achieved at the molecular level is not clear. Here we report X-ray crystal structures of the Mep2 orthologues from Saccharomyces cerevisiae and Candida albicans and show that under nitrogen-sufficient conditions the transporters are not phosphorylated and present in closed, inactive conformations. Relative to the open bacterial ammonium transporters, non-phosphorylated Mep2 exhibits shifts in cytoplasmic loops and the C-terminal region (CTR) to occlude the cytoplasmic exit of the channel and to interact with His2 of the twin-His motif. The phosphorylation site in the CTR is solvent accessible and located in a negatively charged pocket ∼30 Å away from the channel exit. The crystal structure of phosphorylation-mimicking Mep2 variants from C. albicans show large conformational changes in a conserved and functionally important region of the CTR. The results allow us to propose a model for regulation of eukaryotic ammonium transport by phosphorylation. PMID:27088325

  12. Structural basis for Mep2 ammonium transceptor activation by phosphorylation.

    PubMed

    van den Berg, Bert; Chembath, Anupama; Jefferies, Damien; Basle, Arnaud; Khalid, Syma; Rutherford, Julian C

    2016-01-01

    Mep2 proteins are fungal transceptors that play an important role as ammonium sensors in fungal development. Mep2 activity is tightly regulated by phosphorylation, but how this is achieved at the molecular level is not clear. Here we report X-ray crystal structures of the Mep2 orthologues from Saccharomyces cerevisiae and Candida albicans and show that under nitrogen-sufficient conditions the transporters are not phosphorylated and present in closed, inactive conformations. Relative to the open bacterial ammonium transporters, non-phosphorylated Mep2 exhibits shifts in cytoplasmic loops and the C-terminal region (CTR) to occlude the cytoplasmic exit of the channel and to interact with His2 of the twin-His motif. The phosphorylation site in the CTR is solvent accessible and located in a negatively charged pocket ∼30 Å away from the channel exit. The crystal structure of phosphorylation-mimicking Mep2 variants from C. albicans show large conformational changes in a conserved and functionally important region of the CTR. The results allow us to propose a model for regulation of eukaryotic ammonium transport by phosphorylation. PMID:27088325

  13. Nitrate reduction by mixed iron(II-III) hydroxycarbonate green rust in the presence of phosphate anions: the key parameters influencing the ammonium selectivity.

    PubMed

    Etique, Marjorie; Zegeye, Asfaw; Grégoire, Brian; Carteret, Cédric; Ruby, Christian

    2014-10-01

    The reduction of nitrate anions by a mixed Fe(II)-Fe(III) carbonated green rust (GR) in aqueous medium is studied as a function of the initial pH and the initial concentrations of iron, phosphate and nitrate. The influence of these parameters on the fraction of nitrate removed and the production of ammonium is investigated by the help of statistical experimental designs. The goal is to determine experimental conditions that maximize the fraction of NO3(-) removed and concomitantly minimize the production of NH4(+). Increasing the phosphate concentration relatively to the initial Fe(II) concentration inhibits the reduction of nitrate probably due to a surface saturation of the lateral sites of the GR crystals. The kinetics of the reaction is greatly enhanced by increasing the initial pH at 10.5, however it leads to a global increase of the NH4(+) production. A partial saturation of the surface sites by phosphate leads to a global decrease of selectivity of the reaction towards ammonium. The evolution of the ratio of the NH4(+) concentration to the Fe(II) concentration confirms that the NO3(-) species are only partially transformed into ammonium. Interestingly at an initial pH of 7.5, the selectivity of the reaction towards NH4(+) is often lower than ∼30%. The reduction of nitrate by carbonated GR differs from the behavior of other GRs incorporating Cl(-), F(-) and SO4(2-) anions that fully transform nitrate into ammonium. Finally, if GR is intended to be used during a passive water denitrification process, complementary dephosphatation and ammonium treatments should be considered.

  14. Nitrate reduction by mixed iron(II-III) hydroxycarbonate green rust in the presence of phosphate anions: the key parameters influencing the ammonium selectivity.

    PubMed

    Etique, Marjorie; Zegeye, Asfaw; Grégoire, Brian; Carteret, Cédric; Ruby, Christian

    2014-10-01

    The reduction of nitrate anions by a mixed Fe(II)-Fe(III) carbonated green rust (GR) in aqueous medium is studied as a function of the initial pH and the initial concentrations of iron, phosphate and nitrate. The influence of these parameters on the fraction of nitrate removed and the production of ammonium is investigated by the help of statistical experimental designs. The goal is to determine experimental conditions that maximize the fraction of NO3(-) removed and concomitantly minimize the production of NH4(+). Increasing the phosphate concentration relatively to the initial Fe(II) concentration inhibits the reduction of nitrate probably due to a surface saturation of the lateral sites of the GR crystals. The kinetics of the reaction is greatly enhanced by increasing the initial pH at 10.5, however it leads to a global increase of the NH4(+) production. A partial saturation of the surface sites by phosphate leads to a global decrease of selectivity of the reaction towards ammonium. The evolution of the ratio of the NH4(+) concentration to the Fe(II) concentration confirms that the NO3(-) species are only partially transformed into ammonium. Interestingly at an initial pH of 7.5, the selectivity of the reaction towards NH4(+) is often lower than ∼30%. The reduction of nitrate by carbonated GR differs from the behavior of other GRs incorporating Cl(-), F(-) and SO4(2-) anions that fully transform nitrate into ammonium. Finally, if GR is intended to be used during a passive water denitrification process, complementary dephosphatation and ammonium treatments should be considered. PMID:24934322

  15. Concurrence of Anaerobic Ammonium Oxidation and Organotrophic Denitrification in Presence of p-Cresol.

    PubMed

    González-Blanco, G; Cervantes, F J; Beristain-Cardoso, R; Gómez, J

    2015-08-01

    This study was carried out to evaluate the capacity of anaerobic granular sludge for oxidizing ammonium and p-cresol with nitrate as terminal electron acceptor. Kinetics for the anaerobic oxidation of ammonium and p-cresol is described in this paper. The phenolic compound was very efficiently consumed, achieving 65 % of mineralization. Ammonium and nitrate were also consumed at 83 and 92 %, respectively, being the main product N2. Anaerobic ammonium oxidation was promoted owing to accumulation of nitrite, and it allowed the synergy of anaerobic ammonium oxidation and organotrophic denitrification for the simultaneous removal of ammonium, nitrate, and p-cresol. A carbonaceous intermediate partially identified was transiently accumulated, and it transitorily truncated the respiratory process of denitrification. These experimental results might be considered for defining strategies in order to remove nitrate, ammonium, and phenolic compounds from wastewaters. PMID:26062920

  16. Dissolution of Spent Nuclear Fuel in Carbonate-Peroxide Solution

    SciTech Connect

    Soderquist, Chuck Z.; Hanson, Brady D.

    2010-01-31

    This study shows that spent UO2 fuel can be completely dissolved in a carbonate-peroxide solution apparently without attacking the metallic Mo-Tc-Ru-Rh-Pd fission product phase. Samples of spent nuclear fuel were pulverized and sieved to a uniform size, then duplicate aliquots were weighed into beakers for analysis. One set was dissolved in near-boiling 10M nitric acid, and the other set was dissolved in a solution of ammonium carbonate and hydrogen peroxide at room temperature. All the resulting fuel solutions were then analyzed for Sr-90, Tc-99, Cs-137, plutonium, and Am-241. For all the samples, the concentrations of Cs-137, Sr-90, plutonium, and Am-241 were the same for both the nitric acid dissolution and the ammonium carbonate-hydrogen peroxide dissolution, but the technetium concentration of the ammonium carbonate-hydrogen peroxide fuel solution was only about 25% of the same fuels dissolved in hot nitric acid.

  17. Deliquescence, efflorescence, and phase miscibility of mixed particles of ammonium sulfate and isoprene-derived secondary organic material

    NASA Astrophysics Data System (ADS)

    Smith, M. L.; Bertram, A. K.; Martin, S. T.

    2012-10-01

    The hygroscopic phase transitions of ammonium sulfate mixed with isoprene-derived secondary organic material were investigated in aerosol experiments. The organic material was produced by isoprene photo-oxidation at 40% and 60% relative humidity. The low volatility fraction of the photo-oxidation products condensed onto ammonium sulfate particles. The particle-phase organic material had oxygen-to-carbon ratios of 0.67 to 0.74 (±0.2) for mass concentrations of 20 to 30 μg m-3. The deliquescence, efflorescence, and phase miscibility of the mixed particles were investigated using a dual arm tandem differential mobility analyzer. The isoprene photo-oxidation products induced deviations in behavior relative to pure ammonium sulfate. Compared to an efflorescence relative humidity (ERH) of 30 to 35% for pure ammonium sulfate, efflorescence was eliminated for aqueous particles having organic volume fractions ϵ of 0.6 and greater. Compared to a deliquescence relative humidity (DRH) of 80% for pure ammonium sulfate, the DRH steadily decreased with increasing ϵ, approaching a DRH of 40% for ϵ of 0.9. Parameterizations of the DRH(ϵ) and ERH(ϵ) curves were as follows: DRH(ϵ)= ∑i ci,d ϵi valid for 0 ≤ ϵ ≤0.86 and ERH(ϵ)= ∑ i ci,e ϵi valid for 0 ≤ ϵ ≤ 0.55 for the coefficients c0,d= 80.67, c0,e = 28.35, c1,d = -11.45, c1,e = -13.66, c2,d = 0, c2,e = 0, c3,d = 57.99, c3,e = -83.80, c4,d = -106.80, and c4,e = 0. The molecular description that is thermodynamically implied by these strongly sloped DRH(ϵ) and ERH(ϵ) curves is that the organic isoprene photo-oxidation products, the inorganic ammonium sulfate, and water form a miscible liquid phase even at low relative humidity. This phase miscibility is in contrast to the liquid-liquid separation that occurs for some other types of secondary organic material. These differences

  18. Variability in Nitrate and Ammonium Distributions and Associated Processes at the Groundwater/Surface-water Interface in a Groundwater Flow-through Pond

    NASA Astrophysics Data System (ADS)

    Hyun, S.; Koh, D. C.; Moon, H.; Ha, K.; Bohlke, J. K.; Conaway, C. H.; LeBlanc, D. R.; McCobb, T. D.; Repert, D. A.; Smith, R. L.; Song, B. K.; Stoliker, D.; Thomas, R. B.; Kent, D. B.

    2013-12-01

    approximately half that observed in the sediments from the nitrate hot spot. Aerobic incubations showed significant nitrification activity (2.2 nmol N/g sediment/hr). On the recharge side of the pond, groundwater 0.15 m below the pond bottom was oxic with 5 μM nitrate and no ammonium. The groundwater had approximately 70 μM lower dissolved oxygen and 70 μM higher total dissolved carbon dioxide concentrations than pond water collected just above the pond bottom, suggesting active aerobic respiration during recharge across the pond bottom. Anaerobic incubations using sediments from this location amended with 100 μM nitrate revealed denitrification activity, with a rate similar to that from the nitrate hot spot. Aerobic incubations amended with 100 μM ammonium showed the fastest nitrification rate. Our results suggest significant microbial activity and processing of N-compounds near the groundwater-surface-water interface.

  19. Solubility of ammonium acid urate nephroliths from bottlenose dolphins (Tursiops truncatus).

    PubMed

    Argade, Sulabha; Smith, Cynthia R; Shaw, Timothy; Zupkas, Paul; Schmitt, Todd L; Venn-Watson, Stephanie; Sur, Roger L

    2013-12-01

    Nephrolithiasis has been identified in managed populations of bottlenose dolphins (Tursiops truncatus); most of these nephroliths are composed of 100% ammonium acid urate (AAU). Several therapies are being investigated to treat and prevent nephrolithiasis in dolphins including the alkalization of urine for dissolution of nephroliths. This study evaluates the solubility of AAU nephroliths in a phosphate buffer, pH range 6.0-8.0, and in a carbonate-bicarbonate buffer, pH range 9.0-10.8. AAU nephroliths were obtained from six dolphins and solubility studies were conducted using reverse-phase high performance liquid chromatography with ultraviolet detection at 290 nm. AAU nephroliths were much more soluble in a carbonate-bicarbonate buffer, pH range 9.0-10.8 compared to phosphate buffer pH range 6.0-8.0. In the pH range 6.0-8.0, the solubility was 45% lower in potassium phosphate buffer compared to sodium phosphate buffer. When citrate was used along with phosphate in the same pH range, the solubility was improved by 13%. At pH 7 and pH 8, 150 mM ionic strength buffer was optimum for dissolution. In summary, adjustment of urinary pH alone does not appear to be a useful way to treat AAU stones in bottlenose dolphins. Better understanding of the pathophysiology of AAU nephrolithiasis in dolphins is needed to optimize kidney stone prevention and treatment. PMID:24450043

  20. Evaluation of granular anaerobic ammonium oxidation process for the disposal of pre-treated swine manure.

    PubMed

    Ni, Shou-Qing; Yang, Ning

    2014-01-01

    With rising environmental concerns on potable water safety and eutrophication, increased media attention and tighter environmental regulations, managing animal waste in an environmentally responsible and economically feasible way can be a challenge. In this study, the possibility of using granular anammox process for ammonia removal from swine waste treatment water was investigated. A rapid decrease of NO2 (-)-N and NH4 (+)-N was observed during incubation with wastewater from an activated sludge deodorization reactor and anaerobic digestion-partial oxidation treatment process treating swine manure and its corresponding control artificial wastewaters. Ammonium removal dropped from 98.0 ± 0.6% to 66.9 ± 2.7% and nearly absent when the organic load in the feeding increased from 232 mg COD/L to 1160 mg COD/L and 2320 mg COD/L. The presence of organic carbon had limited effect on nitrite and total nitrogen removal. At a COD to N ratio of 0.9, COD inhibitory organic load threshold concentration was 727 mg COD/L. Mass balance indicated that denitrifiers played an important role in nitrite, nitrate and organic carbon removal. These results demonstrated that anammox system had the potential to effectively treat swine manure that can achieve high nitrogen standards at reduced costs. PMID:24765570

  1. Evaluation of granular anaerobic ammonium oxidation process for the disposal of pre-treated swine manure

    PubMed Central

    Yang, Ning

    2014-01-01

    With rising environmental concerns on potable water safety and eutrophication, increased media attention and tighter environmental regulations, managing animal waste in an environmentally responsible and economically feasible way can be a challenge. In this study, the possibility of using granular anammox process for ammonia removal from swine waste treatment water was investigated. A rapid decrease of NO2−–N and NH4+–N was observed during incubation with wastewater from an activated sludge deodorization reactor and anaerobic digestion-partial oxidation treatment process treating swine manure and its corresponding control artificial wastewaters. Ammonium removal dropped from 98.0 ± 0.6% to 66.9 ± 2.7% and nearly absent when the organic load in the feeding increased from 232 mg COD/L to 1160 mg COD/L and 2320 mg COD/L. The presence of organic carbon had limited effect on nitrite and total nitrogen removal. At a COD to N ratio of 0.9, COD inhibitory organic load threshold concentration was 727 mg COD/L. Mass balance indicated that denitrifiers played an important role in nitrite, nitrate and organic carbon removal. These results demonstrated that anammox system had the potential to effectively treat swine manure that can achieve high nitrogen standards at reduced costs. PMID:24765570

  2. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater.

    PubMed

    Mouser, Paula J; N'Guessan, A Lucie; Elifantz, Hila; Holmes, Dawn E; Williams, Kenneth H; Wilkins, Michael J; Long, Philip E; Lovley, Derek R

    2009-06-15

    The influence of ammonium availability on bacterial community structure and the physiological status of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by 2 orders of magnitude (< 4 to 400 microM) across th study site. Analysis of 16S rRNA sequences suggested that ammonium may have been one factor influencing the community composition prior to acetate amendment with Rhodoferax species predominating over Geobacter species with higher ammonium and Dechloromonas species dominating at the site with lowest ammonium. However, once acetate was added and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to acetate concentrations rather than ammonium levels. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium transporter gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during uranium reduction. The abundance of amtB was inversely correlated to ammonium levels, whereas nifD transcript levels were similar across all sites examined. These results suggest that nifD and amtB expression are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB transcript expression appears to be a useful approach for monitoring the nitrogen-related physiological status of subsurface Geobacter species. This study also emphasizes the need for more detailed analysis of geochemical and physiological interactions at the field scale in order to adequately model subsurface microbial processes during bioremediation.

  3. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    SciTech Connect

    Mouser, P.J.; N'Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J.; Long, P.E.; Lovley, D.R.

    2009-04-01

    The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological status of Geobacter species in subsurface environments during bioremediation. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes.

  4. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    SciTech Connect

    Mouser, Paula; N'guessan, Lucie A.; Elifantz, H.; Holmes, Dawn; Williams, Kenneth H.; Wilkins, Michael J.; Long, Philip E.; Lovley, Derek R.

    2009-06-15

    The influence of ammonium availability on bacterial community structure and the physiological status of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by two orders of magnitude (<4 to 400 μM) across the study site. Analysis of 16S rRNA sequences suggested that ammonium may have been one factor influencing the community composition prior to acetate amendment with Rhodoferax species predominating over Geobacter species with higher ammonium and Dechloromonas species dominating at the site with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI)-reduction appeared to be more related to acetate concentrations rather than ammonium levels. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium transporter gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during uranium reduction. The abundance of amtB was inversely correlated to ammonium levels whereas nifD transcript levels were similar across all sites examined. These results suggest that nifD and amtB expression are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB transcript expression appears to be a useful approach for monitoring the nitrogen-related physiological status of subsurface Geobacter species and. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes during bioremediation.

  5. Physiological, biomass elemental composition and proteomic analyses of Escherichia coli ammonium-limited chemostat growth, and comparison with iron- and glucose-limited chemostat growth

    PubMed Central

    Folsom, James Patrick

    2015-01-01

    Escherichia coli physiological, biomass elemental composition and proteome acclimations to ammonium-limited chemostat growth were measured at four levels of nutrient scarcity controlled via chemostat dilution rate. These data were compared with published iron- and glucose-limited growth data collected from the same strain and at the same dilution rates to quantify general and nutrient-specific responses. Severe nutrient scarcity resulted in an overflow metabolism with differing organic byproduct profiles based on limiting nutrient and dilution rate. Ammonium-limited cultures secreted up to 35  % of the metabolized glucose carbon as organic byproducts with acetate representing the largest fraction; in comparison, iron-limited cultures secreted up to 70  % of the metabolized glucose carbon as lactate, and glucose-limited cultures secreted up to 4  % of the metabolized glucose carbon as formate. Biomass elemental composition differed with nutrient limitation; biomass from ammonium-limited cultures had a lower nitrogen content than biomass from either iron- or glucose-limited cultures. Proteomic analysis of central metabolism enzymes revealed that ammonium- and iron-limited cultures had a lower abundance of key tricarboxylic acid (TCA) cycle enzymes and higher abundance of key glycolysis enzymes compared with glucose-limited cultures. The overall results are largely consistent with cellular economics concepts, including metabolic tradeoff theory where the limiting nutrient is invested into essential pathways such as glycolysis instead of higher ATP-yielding, but non-essential, pathways such as the TCA cycle. The data provide a detailed insight into ecologically competitive metabolic strategies selected by evolution, templates for controlling metabolism for bioprocesses and a comprehensive dataset for validating in silico representations of metabolism. PMID:26018546

  6. Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean.

    PubMed

    Smith, Jason M; Chavez, Francisco P; Francis, Christopher A

    2014-01-01

    Nitrification, the microbial oxidation of ammonium to nitrate, is a central part of the nitrogen cycle. In the ocean's surface layer, the process alters the distribution of inorganic nitrogen species available to phytoplankton and produces nitrous oxide. A widely held idea among oceanographers is that nitrification is inhibited by light in the ocean. However, recent evidence that the primary organisms involved in nitrification, the ammonia-oxidizing archaea (AOA), are present and active throughout the surface ocean has challenged this idea. Here we show, through field experiments coupling molecular genetic and biogeochemical approaches, that competition for ammonium with phytoplankton is the strongest regulator of nitrification in the photic zone. During multiday experiments at high irradiance a single ecotype of AOA remained active in the presence of rapidly growing phytoplankton. Over the course of this three day experiment, variability in the intensity of competition with phytoplankton caused nitrification rates to decline from those typical of the lower photic zone (60 nmol L-1 d-1) to those in well-lit layers (<1 nmol L-1 d-1). During another set of experiments, nitrification rates exhibited a diel periodicity throughout much of the photic zone, with the highest rates occurring at night when competition with phytoplankton is lowest. Together, the results of our experiments indicate that nitrification rates in the photic zone are more strongly regulated by competition with phytoplankton for ammonium than they are by light itself. This finding advances our ability to model the impact of nitrification on estimates of new primary production, and emphasizes the need to more strongly consider the effects of organismal interactions on nutrient standing stocks and biogeochemical cycling in the surface of the ocean.

  7. Bis(benzyl­ammonium) di­hydrogen diphosphate

    PubMed Central

    Saad, Ahlem Ben; Elboulali, Adel; Ratel-Ramond, Nicolas; Mohamed, Rzaigui; Toumi, Samah Akriche

    2014-01-01

    The asymmetric unit of the title salt, 2C6H5CH2NH3 +·H2P2O7 2−, contains two independent benzyl­ammonium cations and a di­hydrogen diphosphate dianion. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the cations and anions, forming a two-dimensional network parallel to (010). Within this network, weak C—H⋯O hydrogen bonds are observed. PMID:24526977

  8. Fish gelatin and ammonium dichromate as photosensitive film

    NASA Astrophysics Data System (ADS)

    Orozco-Muñoz, Rosa Elena; Ortiz-Gutiérrez, Mauricio; Salgado-Verduzco, Marco Antonio; Ibarra-Torres, Juan Carlos; Olivares-Pérez, Arturo; Toxqui-López, Santa; Pérez-Cortés, Mario

    2014-02-01

    In this work we propose a phase material based on fish gelatin from Norland Productsmixed with ammonium dichromate deposited on a glass substrate. The photosensitive film has 110 mm thickness. In this material we record low frequency (264 lines/mm) holographic gratings using a λ=532 nm from an Ar laser and reconstruct the image with λ=594 nm from a He-Ne laser. The diffraction efficiency is approximately15% for the first order. The material no requires developing process and is very easy to make. Experimental results are shown.

  9. Hydroxide Degradation Pathways for Substituted Benzyltrimethyl Ammonium: A DFT Study

    SciTech Connect

    Long, Hai; Pivovar, Bryan S.

    2014-11-01

    The stability of cations used in the alkaline exchange membranes has been a major challenge. In this paper, degradation energy barriers were investigated by density functional theory for substituted benzyltrimethyl ammonium (BTMA+) cations. Findings show that electron-donating substituent groups at meta-position(s) of the benzyl ring could result in increased degradation barriers. However, after investigating more than thirty substituted BTMA+ cations, the largest improvement in degradation barrier found was only 6.7 kJ/mol. This suggests a modest (8×) improvement in stability for this type of approach may be possible, but for anything greater other approaches will need to be pursued.

  10. The Properties of Ammonium Dinitramine (ADN): Part 2: Melt Casting

    NASA Astrophysics Data System (ADS)

    Hahma, A.; Edvinsson, H.; Östmark, H.

    2010-04-01

    A melt casting technique for ammonium dinitramine (ADN) and ADN/aluminum was developed. ADN proved relatively easy to cast, when 1% of magnesium oxide was used as a stabilizer and crystallization kernels. Densities of ADN/MgO 99/1 were 92 to 97% of theoretical mean density (TMD) and those of ADN/Al/MgO 64/35/1 were between 95 and 99% of TMD. Sedimentation of Al in the melt was prevented and the particle wetting was ensured by selecting a suitable particle size for Al. No gelling agents or other additives were used. The casting process and factors influencing it are discussed.

  11. Experimental study of the detonation of technical grade ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Presles, Henri-Noël; Vidal, Pierre; Khasainov, Boris

    2009-11-01

    The detonation of technical grade ammonium nitrate at the density ρ=0.666 g/cm confined in PVC and steel tubes was experimentally studied. The results show that the detonation is self-sustained and steady in steel tubes with diameter as small as 12 mm. Critical detonation diameter lies between 8 and 12 mm in 2 mm thick steel tubes and between 55 and 81 mm in PVC tubes. These values testify a strong detonation sensitivity of this product. To cite this article: H.-N. Presles et al., C. R. Mecanique 337 (2009).

  12. The contribution of exopolysaccharides induced struvites accumulation to ammonium adsorption in aerobic granular sludge.

    PubMed

    Lin, Y M; Bassin, J P; van Loosdrecht, M C M

    2012-03-15

    Aerobic granular sludge from a lab-scale reactor with simultaneous nitrification/denitrification and enhanced biological phosphorus removal processes exhibited significant amount of ammonium adsorption (1.5 mg NH4+-N/g TSS at an ammonium concentration of 30 mg N/L). Potassium release accompanied ammonium adsorption, indicating an ion exchange process. The existence of potassium magnesium phosphate (K-struvite) as one of potassium sources in the granular sludge was studied by X-ray diffraction analysis (XRD). Artificially prepared K-struvite was indeed shown to adsorb ammonium. Alginate-like exopolysaccharides were isolated and their inducement for struvite formation was investigated as well. Potassium magnesium phosphate proved to be a major factor for ammonium adsorption on the granular sludge. Struvites (potassium/ammonium magnesium phosphate) accumulate in aerobic granular sludge due to inducing of precipitation by alginate-like exopolysaccharides.

  13. Molecular recognition of organic ammonium ions in solution using synthetic receptors

    PubMed Central

    Späth, Andreas

    2010-01-01

    Summary Ammonium ions are ubiquitous in chemistry and molecular biology. Considerable efforts have been undertaken to develop synthetic receptors for their selective molecular recognition. The type of host compounds for organic ammonium ion binding span a wide range from crown ethers to calixarenes to metal complexes. Typical intermolecular interactions are hydrogen bonds, electrostatic and cation–π interactions, hydrophobic interactions or reversible covalent bond formation. In this review we discuss the different classes of synthetic receptors for organic ammonium ion recognition and illustrate the scope and limitations of each class with selected examples from the recent literature. The molecular recognition of ammonium ions in amino acids is included and the enantioselective binding of chiral ammonium ions by synthetic receptors is also covered. In our conclusion we compare the strengths and weaknesses of the different types of ammonium ion receptors which may help to select the best approach for specific applications. PMID:20502608

  14. Ober Phaseniibergange von Ammonium-Alkali-Jodiden und verwandten Halogeniden / Phase Transitions of Ammonium-alkali Iodides and Related Halides

    NASA Astrophysics Data System (ADS)

    Brauer, Peter

    1981-03-01

    The investigation of the order-disorder transitions of the ammonium-chlorides and -bromides, in which some of the NH4+ are replaced by Cs+, Rb+ or K+, is extended to the corresponding iodides using birefringence and differential thermal analysis. As the temperature range of the martensitic transition (Pm 3 m↔Fm 3 m) is now overlapping the temperature range of the orderdisorder transitions, the former must be included in the measurements. The results allowing an overlook are discussed using the work of Garland, Lushington, and Leung [5

  15. Release of Ammonium and Mercury from NOx Controlled Fly Ash

    SciTech Connect

    Schroeder, K.T.; Cardone, C.R.; Kim, A.G

    2007-07-01

    One of the goals of the Department of Energy is to increase the reuse of coal utilization byproducts (CUB) to 50% by 2010. This will require both developing new markets and maintaining traditional ones such as the use of fly ash in concrete. However, the addition of pollution control devices can introduce side-effects that affect the marketability of the CUB. Such can be the case when NOx control is achieved using selective catalytic or non-catalytic reduction (SCR or SNCR). Depending on site-specific details, the ammonia slip can cause elevated levels of NH3 in the fly ash. Disposal of ammoniated fly ash can present environmental concerns related to the amount of ammonia that might be released, the amount of water that might become contaminated, and the extent to which metals might be mobilized by the presence of the ammonia. Ammonia retained in fly ash appears to be present as either an ammonium salt or as a chemisorbed species. Mercury in the leachates correlated to neither the amount of leachable ammonium nor to the total amount of Hg in the ash. The strongest correlation was between the decreases in the amount of Hg leached with increased LOI.

  16. Shock Initiation and Equation of State of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Robbins, David; Sheffield, Steve; Dattelbaum, Dana; Chellappa, Raja; Velisavljevic, Nenad

    2013-06-01

    Ammonium nitrate (AN) is a widely used fertilizer and mining explosive commonly found in ammonium nitrate-fuel oil. Neat AN is a non-ideal explosive with measured detonation velocities approaching 4 km/s. Previously, we reported a thermodynamically-complete equation of state for AN based on its maximum density, and showed that near-full density AN did not initiate when subjected to shock input conditions up to 22 GPa. In this work, we extend these initial results, by presenting new Hugoniot data for intermediate density neat AN obtained from gas gun-driven plate impact experiments. AN at densities from 1.8 to 1.5 g/cm3 were impacted into LiF windows using a two-stage light gas gun. Dual VISARs were used to measure the interfacial particle velocity wave profile as a function of time following impact. The new Hugoniot data, in addition to updates to thermodynamic parameters derived from structural analysis and vibrational spectroscopy measurements in high pressure diamond anvil cell experiments, are used to refine the unreacted EOS for AN. Furthermore, shock initiation of neat AN was observed as the initial porosity increased (density decreased). Insights into the relationship(s) between initial density and shock initiation sensitivity are also presented, from evidence of shock initiation in the particle velocity profiles obtained for the lower density AN samples.

  17. Thermophysical properties of sulfonium- and ammonium-based ionic liquids

    PubMed Central

    Bhattacharjee, Arijit; Luís, Andreia; Lopes-da-Silva, José A.; Freire, Mara G.; Carvalho, Pedro J.; Coutinho, João A. P.

    2014-01-01

    Experimental data for the density, viscosity, refractive index and surface tension of four sulfonium- and ammonium-based Ionic Liquids (ILs) with the common bis(trifluoromethylsulfonyl)imide anion were measured in the temperature range between 288.15 and 353.15 K and at atmospheric pressure. The ILs considered include butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [N4111][NTf2], tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N4441][NTf2], diethylmethylsulfonium bis(trifluoromethylsulfonyl)imide, [S221][NTf2], and triethylsulfonium bis(trifluoromethylsulfonyl)imide, [S222][NTf2]. Based on the gathered results and on data taken from literature, the impact of the cation isomerism and of the size of the aliphatic tails, as well as the effect resulting from the substitution of a nitrogen by a sulfur atom as the cation central atom, on the thermophysical properties of sulfonium- and ammonium-based ILs is here discussed. Remarkably, more symmetric cations present a lower viscosity for the same, and sometimes even for higher, alkyl chain lengths at the cation. Additional derivative properties, such as the isobaric thermal expansion coefficient, the surface thermodynamic properties and the critical temperature for the investigated ILs were also estimated and are presented and discussed. PMID:25516634

  18. Ammonium nitrate as an oxidizer in solid composite propellants

    NASA Astrophysics Data System (ADS)

    Manelis, G. B.; Lempert, D. B.

    2009-09-01

    Despite the fact that ammonium nitrate (AN) has the highest hydrogen content and fairly high oxygen balance (compared to other oxidizers), its extremely low formation enthalpy and relatively low density makes it one of the worst power oxidizers in solid composite propellants (SCP). Nevertheless, AN has certain advantages - the combustion of the compositions containing AN is virtually safe, its combustion products are ecologically clean, it is very accessible and cheap, and also very thermostable (far more stable than ammonium dinitramide (ADN)). Besides, its low density stops being a disadvantage if the propellant has to be used in deep space and therefore, must be carried there with other rocket carriers. The low cost of AN may also become a serious advantage in the AN application even in lower stages of multistage space launchers as well as in one-stage space launchers with low mass fraction of the propellant. The main specific features relevant to the creation of AN-based SCPs with the optimal energetic characteristics are discussed. The use of metals and their hydrides and proper fuel-binders as well as the recent successes in phase stabilization of AN are described.

  19. Molecular dynamics simulation of secondary sorption behavior of montmorillonite modified by single chain quaternary ammonium cations.

    PubMed

    Zhao, Qian; Burns, Susan E

    2012-04-01

    Organoclays synthesized from single chain quaternary ammonium cations (QAC) ((CH(3))(3)NR(+)) exhibit different mechanisms for the sorption of nonpolar organic compounds as the length of the carbon chain is increased. The interaction between a nonpolar sorbate and an organoclay intercalated with small QACs has been demonstrated to be surface adsorption, while partitioning is the dominant mechanism in clays intercalated with long chain surfactants. This study presents the results of a molecular dynamics (MD) simulation performed to examine the sorption mechanisms of benzene in the interlayer of three organoclays with chain lengths ranging from 1 to 16 carbons: tetramethylammonium (TMA) clay; decyltrimethylammonium (DTMA) clay; and hexadecyltrimethylammonium (HDTMA) clay. The basis of the overall simulation was a combined force field of ClayFF and CVFF. In the simulations, organic cations were intercalated and benzene molecules were introduced to the interlayer, followed by whole system NPT and NVT time integration. Trajectories of all the species were recorded after the system reached equilibrium and subsequently analyzed. Simulation results confirmed that the arrangement of the surfactants controlled the sorption mechanism of organoclays. Benzene molecules were observed to interact directly with the clay surface in the presence of TMA cations, but tended to interact with the aliphatic chain of the HDTMA cation in the interlayer. The simulation provided insight into the nature of the adsorption/partitioning mechanisms in organoclays, and explained experimental observations of decreased versus increased uptake capacities as a function of increasing total organic carbon (TOC) for TMA clay and HDTMA clay, respectively. The transition of sorption mechanisms was also quantified with simulation of DTMA clay, with a chain length between that of TMA and HDTMA. Furthermore, this study suggested that at the molecular level, the controlling factor for the ultimate sorption

  20. Relations of ammonium minerals at several hydrothermal systems in the western U.S.

    USGS Publications Warehouse

    Krohn, M.D.; Kendall, C.; Evans, J.R.; Fries, T.L.

    1993-01-01

    Ammonium bound to silicate and sulfate minerals has recently been located at several major hydrothermal systems in the western U.S. utilizing newly-discovered near-infrared spectral properties. Knowledge of the origin and mineralogic relations of ammonium minerals at known hydrothermal systems is critical for the proper interpretation of remote sensing data and for testing of possible links to mineralization. Submicroscopic analysis of ammonium minerals from two mercury- and gold-bearing hot-springs deposits at Ivanhoe, Nevada and McLaughlin, California shows that the ammonium feldspar, buddingtonite, occurs as fine-grained euhedral crystals coating larger sulfide and quartz crystals. Ammonium feldspar seems to precipitate relatively late in the crystallization sequence and shows evidence for replacement of NH4+ by K+ or other monovalent cations. Some buddingtonite is observed in close association with mercury, but not with gold. Ammonioalunite is found in a variety of isolated crystal forms at both deposits. Nitrogen isotopic values for ammonium-bearing minerals show a 14??? range in composition, precluding assignment of a specific provenance to the nitrogen. The correlations of nitrogen isotopic values with depth and ammonium content suggest some loss of nitrogen in the oxidizing supergene environment, possibly as a metastable mineral. The high ammonium content in these hydrothermal systems, the close association to mercury, and the small crystal size of the ammonium-bearing minerals all suggest that ammonium may be transported in a late-stage vapor phase or as an organic volatile. Such a process could lead to the formation of a non-carbonaceous organic aureole above a buried geothermal source. The discovery of a 10-km outcrop of ammonium minerals confirms that significant substitution of ammonium in minerals is possible over an extensive area and that remote sensing is a feasible means to detect such aureoles. ?? 1993.

  1. Nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria with C2/C3 fatty acid in upflow anaerobic sludge blanket reactors.

    PubMed

    Liang, Yuhai; Li, Dong; Zhang, Xiaojing; Zeng, Huiping; Yang, Yin; Zhang, Jie

    2015-10-01

    In anaerobic ammonium oxidation (Anammox) process, a harsh ratio of nitrite to ammonia in influent was demanded, and the max nitrogen removal efficiency could only achieve to 89%, both of which limited the development of Anammox. The aim of this work was to study the nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria (AAOB) with C2/C3 fatty acid in upflow anaerobic sludge blanket (UASB) reactors. In this study, organotrophic AAOB was successfully enriched by adding acetate and propionate with the total organic carbon to nitrogen (TOC/N) ratio of 0.1. In the condition of low substrate, the TN removal efficiency reached 90%, with the effluent TN of around 11.8 mg L(-1). After the addition of acetate and propionate, the predominant species in Anammox granular sludge transformed to Candidatus Jettenia that belonging to organotrophic AAOB from the Candidatus Kuenenia relating to general AAOB. PMID:26151852

  2. Study on the Effect of Synthesis Temperature on the Structural, Surface Morphological and Optical Properties of Methyl Ammonium Lead Iodide Nanoparticles by Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Benazeera Beegum, K. A.; Paulose, Maria; Peter, V. J.; Raphael, Rakhy; Sreeja, V. G.; Anila, E. I.

    2016-09-01

    Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiency. The quality and stability of perovskite films are critical for solar cells. We report the synthesis of methyl ammonium lead iodide (MAPbKI3) nanoparticles from methyl amine, hydroiodic acid and lead iodide by sol-gel method. Three powder samples of Methyl ammonium Lead Iodide were prepared at 50 °C, 90 °C, and 100 °C. The powder samples were characterised by X-ray diffraction (XRD), Diffuse reflectance spectroscopy (DRS), Scanning Electron Microscopy (SEM), Energy Dispersive Analysis of X- rays (EDAX) and Photoluminescence (PL). The presence of carbon, hydrogen and nitrogen were examined through CHN studies. The surface morphology, band gap, and elemental contents changes with temperature. The XRD pattern exhibited major reflections from (110), (220), (310), (224) and (314) planes in agreement with JCPDS file No: 00-021-1276, revealing tetragonal structure.

  3. Simultaneous and Real-time Measurement of Gaseous Ammonia and Particulate Ammonium

    NASA Astrophysics Data System (ADS)

    Kang, E.; Lee, J. H.

    2001-05-01

    Gaseous ammonia reacts with acidic gaseous species to neutralize atmospheric acidity and forms ammonium salts. In this neutralization reaction, ammonia is converted to ammonium ion in the particles. It plays an important role as CCN (cloud condensation nuclei) in the cloud formation. Moreover it plays a role on the cooling effect resulting from the reflection of solar radiation back to the space. Therefore, an improved simultaneous and real-time measurement technique for gaseous ammonia/particulate ammonium is needed to study the formation mechanism of CCN. Dual channel system for simultaneous and ream-time measurement of gaseous ammonia/particulate ammonium is described. In the 1st channel both gaseous ammonia/particulate ammonium is collected through a glass coil sampling system without citric acid coated denuder. In the 2nd channel gaseous ammonia is removed from the citric acid coated denuder and only particulate ammonium is collected through a glass coil sampling system. Using continuous flow injection system, collected ammonia (ammonium) reacts with sodium sulfite and o-phthaldialdehyde producing fluorescent product, which is detected by the fluorescence detector. The 1st channel signal represents the sum of gaseous ammonia and particulate ammonium, and the 2nd channel signal with the citric acid coated denuder represents only particulate ammonium. The difference in signal between two channels represents gaseous ammonia. This system shows each signal every second, and the baseline is recorded every 3 or 4 hours. Collection efficiency for gaseous ammonia was determined using consecutive two glass coil samplers. For the 2nd channel, collection efficiency of particulate ammonium is tested adapting consecutive two coil samplers. Gaseous ammonia and particulate ammonium were measured in Kwangju, South Korea at real time by using improved dual channel measurement system, and the detailed results and discussion will be presented in the presentation.

  4. Quantitative remote sensing of ammonium minerals, Cedar Mountains, Esmeralda County, Nevada

    NASA Technical Reports Server (NTRS)

    Baugh, William M.; Kruse, Fred A.

    1995-01-01

    Mineral-bound ammonium (NH4+) was discovered by the U.S. Geological Survey in the southern Cedar Mountains of Esmeralda County, Nevada in 1989. At 10 km in length, this site is 100 times larger than any previously known occurrence in volcanic rocks. The ammonium occurs in two hydrothermally altered, crystal-rich rhyolitic tuff units of Oligocene age, and is both structurally and stratigraphically controlled. This research uses Advanced Visible/Infrared Imaging Spectrometer (AVIRIS) data to quantitatively map the mineral-bound ammonium (buddingtonite) concentration in the altered volcanic rocks. Naturally occurring mineral-bound ammonium is fairly rare; however, it has been found to occur in gold-bearing hydrothermal deposits. Because of this association, it is thought that ammonium may be a useful too in exploration for gold and other metal deposits. Mineral-bound ammonium is produced when an ammonium ion (NH4+) replaces the alkali cation site (usually K+) in the crystal structure of silicate minerals such as feldspars, micas and clays. Buddingtonite is an ammonium feldspar. The ammonium originates in buried organic plant matter and is transported to the host rock by hydrothermal fluids. Ammonium alteration does not produce visible changes in the rock, and it is barely detectable with standard x-ray diffraction methods. It is clearly identified, however, by absorption features in short wave-infrared (SWIR) wavelengths (2.0 - 2.5 micrometers). The ammonium absorption features are believed to be caused by N-H vibrational modes and are analogous to hydroxyl (O-H) vibrational modes, only shifted slightly in wavelength. Buddingtonite absorption features in the near- and SWIR lie at 1.56, 2.02 and 2.12 micrometers. The feature at 2.12 micrometer is the strongest of the three and is the only one used in this study. The southern Cedar Mountains are sparsely vegetated and are an ideal site for a remote sensing study.

  5. Flux Analysis of the Metabolism of Clostridium cellulolyticum Grown in Cellulose-Fed Continuous Culture on a Chemically Defined Medium under Ammonium-Limited Conditions

    PubMed Central

    Desvaux, Mickaël; Petitdemange, Henri

    2001-01-01

    An investigation of cellulose degradation by the nonruminal, cellulolytic, mesophilic bacterium Clostridium cellulolyticum was performed in cellulose-fed chemostat cultures with ammonium as the growth-limiting nutrient. At any dilution rate (D), acetate was always the main product of the catabolism, with a yield of product from substrate ranging between 37.7 and 51.5 g per mol of hexose equivalent fermented and an acetate/ethanol ratio always higher than 1. As D rose, the acetyl coenzyme A was rerouted in favor of ethanol pathways, and ethanol production could represent up to 17.7% of the carbon consumed. Lactate was significantly produced, but with increasing D, the specific lactate production rate declined, as did the specific rate of production of extracellular pyruvate. The proportion of the original carbon directed towards phosphoglucomutase remained constant, and the carbon surplus was balanced mainly by exopolysaccharide and glycogen biosyntheses at high D values, while cellodextrin excretion occurred mainly at lower ones. With increasing D, the specific rate of carbon flowing down catabolites increased as well, but when expressed as a percentage of carbon it declined, while the percentage of carbon directed through biosynthesis pathways was enhanced. The maximum growth and energetic yields were lower than those obtained in cellulose-limited chemostats and were related to an uncoupling between catabolism and anabolism leading to an excess of energy. Compared to growth on cellobiose in ammonium-limited chemostats (E. Guedon, M. Desvaux, and H. Petitdemange, J. Bacteriol. 182:2010–2017, 2000), (i) a specific consumption rate of carbon of as high as 26.72 mmol of hexose equivalent g of cells−1 h−1 could not be reached and (ii) the proportions of carbon directed towards cellodextrin, glycogen, and exopolysaccharide pathways were not as high as first determined on cellobiose. While the use of cellobiose allows highlighting of metabolic limitation and

  6. Polymerization and photochromism of ammonium molybdate in porous glass

    NASA Astrophysics Data System (ADS)

    Pak, V. N.; Borisov, A. N.

    2016-08-01

    Modification of porous glass (PG) plates is carried out by impregnation with aqueous solutions of ammonium molybdate (NH4)2MoO4 with subsequent removal of water at 120°C. A long-wavelength shift of absorption spectra upon accumulation of the salt in PG indicates polymerization of MoO 4 2- anions at low concentrations of the encapsulated salt. Photochromism manifests itself as the anionic forms in PG become larger. UV irradiation of the modified plates causes enhancement of continuous absorption in the visible range. The proposed mechanism of photoreduction of the polianions in PG involves the removal of oxygen atoms from the bridging-Mo-O-Mo-bonds and stabilization of the colored forms by means of conjugation of the electrons released from the 4 d-levels of pentavalent molybdenum.

  7. Large electrocaloric effects in single-crystal ammonium sulfate.

    PubMed

    Crossley, S; Li, W; Moya, X; Mathur, N D

    2016-08-13

    Electrocaloric (EC) effects are typically studied near phase transitions in ceramic and polymer materials. Here, we investigate EC effects in an inorganic salt, namely ammonium sulfate (NH4)2SO4, with an order-disorder transition whose onset occurs at 223 K on cooling. For a single crystal thinned to 50 μm, we use a Maxwell relation to find a large isothermal entropy change of 30 J K(-1) kg(-1) in response to a field change of 400 kV cm(-1) The Clausius-Clapeyron equation implies a corresponding adiabatic temperature change of 4.5 K.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. PMID:27402930

  8. Evaluation of ammonium lactate in the treatment of seborrheic keratoses.

    PubMed

    Klaus, M V; Wehr, R F; Rogers, R S; Russell, T J; Krochmal, L

    1990-02-01

    A double-blind, paired comparison study was used to evaluate treatment effects of 12% ammonium lactate lotion (Lac-Hydrin) against its vehicle on seborrheic keratoses. Fifty-eight volunteer patients, 37 to 82 years of age, were studied for 16 weeks. The patients had a minimum of two seborrheic keratoses at least 10 cm apart. They applied the medication twice daily. The lesions were evaluated for height, surface characteristics, color, and length with the use of 7X calibrated loupe, a template, skin replicas, and scanning electron microscopy. Lac-Hydrin 12% lotion significantly reduced the height (elevation) of seborrheic keratoses, and two seborrheic keratoses cleared completely; however, there was no statistically significant difference in the length, color, and surface characteristics between the study group and the control group. Skin replicas and scanning electron microscopy can be used to evaluate lesion surface characteristics, dimensions, and therapeutic effects.

  9. Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate.

    PubMed

    Lloveras, P; Stern-Taulats, E; Barrio, M; Tamarit, J-Ll; Crossley, S; Li, W; Pomjakushin, V; Planes, A; Mañosa, Ll; Mathur, N D; Moya, X

    2015-11-26

    Caloric effects are currently under intense study due to the prospect of environment-friendly cooling applications. Most of the research is centred on large magnetocaloric effects and large electrocaloric effects, but the former require large magnetic fields that are challenging to generate economically and the latter require large electric fields that can only be applied without breakdown in thin samples. Here we use small changes in hydrostatic pressure to drive giant inverse barocaloric effects near the ferrielectric phase transition in ammonium sulphate. We find barocaloric effects and strengths that exceed those previously observed near magnetostructural phase transitions in magnetic materials. Our findings should therefore inspire the discovery of giant barocaloric effects in a wide range of unexplored ferroelectric materials, ultimately leading to barocaloric cooling devices.

  10. Polishing of quartz by rapid etching in ammonium bifluoride.

    PubMed

    Vallin, Orjan; Danielsson, Rolf; Lindberg, Ulf; Thornell, Greger

    2007-07-01

    The etch rate and surface roughness of polished and lapped AT-cut quartz subjected to hot (90, 110, and 130 degrees C), concentrated (50, 65, 80 wt %) ammonium bi-fluoride have been investigated. Having used principal component analysis to verify experimental solidity and analyze data, we claim with confidence that this parameter space does not, as elsewhere stated, allow for a polishing effect or even a preserving setting. Etch rates were found to correlate well, and possibly logarithmically, with temperature except for the hottest etching applied to lapped material. Roughness as a function of temperature and concentration behaved well for the lapped material, but lacked systematic variation in the case of the polished material. At the lowest temperature, concentration had no effect on etch rate or roughness. Future efforts are targeted at temperatures and concentrations closer to the solubility limit.

  11. Salting out of proteins using ammonium sulfate precipitation.

    PubMed

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2014-01-01

    Protein solubility is affected by ions. At low ion concentrations (<0.5 M), protein solubility increases along with ionic strength. Ions in the solution shield protein molecules from the charge of other protein molecules in what is known as 'salting-in'. At a very high ionic strength, protein solubility decreases as ionic strength increases in the process known as 'salting-out'. Thus, salting out can be used to separate proteins based on their solubility in the presence of a high concentration of salt. In this protocol, ammonium sulfate will be added incrementally to an E. coli cell lysate to isolate a recombinantly over-expressed protein of 20 kDa containing no cysteine residues or tags.

  12. Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate.

    PubMed

    Lloveras, P; Stern-Taulats, E; Barrio, M; Tamarit, J-Ll; Crossley, S; Li, W; Pomjakushin, V; Planes, A; Mañosa, Ll; Mathur, N D; Moya, X

    2015-01-01

    Caloric effects are currently under intense study due to the prospect of environment-friendly cooling applications. Most of the research is centred on large magnetocaloric effects and large electrocaloric effects, but the former require large magnetic fields that are challenging to generate economically and the latter require large electric fields that can only be applied without breakdown in thin samples. Here we use small changes in hydrostatic pressure to drive giant inverse barocaloric effects near the ferrielectric phase transition in ammonium sulphate. We find barocaloric effects and strengths that exceed those previously observed near magnetostructural phase transitions in magnetic materials. Our findings should therefore inspire the discovery of giant barocaloric effects in a wide range of unexplored ferroelectric materials, ultimately leading to barocaloric cooling devices. PMID:26607989

  13. The Use of Quaternary Ammonium to Combat Dental Caries

    PubMed Central

    Ge, Yang; Wang, Suping; Zhou, Xuedong; Wang, Haohao; Xu, Hockin H. K.; Cheng, Lei

    2015-01-01

    Resin composites and adhesives are increasingly popular in dental restorations, but secondary caries is one of the main reasons for restoration failure. Quaternary ammonium monomers (QAMs) have an anti-microbial effect and are widely used in many fields. Since the concept of the immobilized antibacterial effect was put forward, dental restorations containing QAMs have been studied to reduce secondary caries. Previous studies have been struggling to develop novel anti-caries materials which might have triple benefits: good mechanical properties, antibacterial effects and remineralization potentials. Different kinds of QAMs have been proven to be effective in inhibiting the growth and metabolism of biofilms. Combination of QAMs and other nanoparticles in resin composites and adhesives could enhance their anti-caries capability. Therefore, QAMs are promising to show significant impact on the future of restorative and preventive dentistry. PMID:26635932

  14. Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate

    PubMed Central

    Lloveras, P.; Stern-Taulats, E.; Barrio, M.; Tamarit, J.-Ll.; Crossley, S.; Li, W.; Pomjakushin, V.; Planes, A.; Mañosa, Ll.; Mathur, N. D.; Moya, X.

    2015-01-01

    Caloric effects are currently under intense study due to the prospect of environment-friendly cooling applications. Most of the research is centred on large magnetocaloric effects and large electrocaloric effects, but the former require large magnetic fields that are challenging to generate economically and the latter require large electric fields that can only be applied without breakdown in thin samples. Here we use small changes in hydrostatic pressure to drive giant inverse barocaloric effects near the ferrielectric phase transition in ammonium sulphate. We find barocaloric effects and strengths that exceed those previously observed near magnetostructural phase transitions in magnetic materials. Our findings should therefore inspire the discovery of giant barocaloric effects in a wide range of unexplored ferroelectric materials, ultimately leading to barocaloric cooling devices. PMID:26607989

  15. Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate

    NASA Astrophysics Data System (ADS)

    Lloveras, P.; Stern-Taulats, E.; Barrio, M.; Tamarit, J.-Ll.; Crossley, S.; Li, W.; Pomjakushin, V.; Planes, A.; Mañosa, Ll.; Mathur, N. D.; Moya, X.

    2015-11-01

    Caloric effects are currently under intense study due to the prospect of environment-friendly cooling applications. Most of the research is centred on large magnetocaloric effects and large electrocaloric effects, but the former require large magnetic fields that are challenging to generate economically and the latter require large electric fields that can only be applied without breakdown in thin samples. Here we use small changes in hydrostatic pressure to drive giant inverse barocaloric effects near the ferrielectric phase transition in ammonium sulphate. We find barocaloric effects and strengths that exceed those previously observed near magnetostructural phase transitions in magnetic materials. Our findings should therefore inspire the discovery of giant barocaloric effects in a wide range of unexplored ferroelectric materials, ultimately leading to barocaloric cooling devices.

  16. Thermophysical properties of two ammonium-based protic ionic liquids

    PubMed Central

    Bhattacharjee, Arijit; Coutinho, João A. P.; Freire, Mara G.; Carvalho, Pedro J.

    2015-01-01

    Experimental data for density, viscosity, refractive index and surface tension are reported, for the first time, in the temperature range between 288.15 K and 353.15 K and at atmospheric pressure for two protic ionic liquids, namely 2-(dimethylamino)-N,N-dimethylethan-1-ammonium acetate, [N11{2(N11)}H][CH3CO2], and N-ethyl-N,N-dimethylammonium phenylacetate, [N112H][C7H7CO2]. The effect of the anion aromaticity and the cation’s aliphatic tails on the studied properties is discussed. From the measured properties temperature dependency the derived properties, such as the isobaric thermal expansion coefficient, the surface entropy and enthalpy, and the critical temperature, were estimated. PMID:26435554

  17. Synthesis and Antibacterial Activity of Quaternary Ammonium 4-Deoxypyridoxine Derivatives

    PubMed Central

    Shtyrlin, Nikita V.; Sapozhnikov, Sergey V.; Galiullina, Albina S.; Kayumov, Airat R.; Bondar, Oksana V.; Mirchink, Elena P.; Isakova, Elena B.; Firsov, Alexander A.; Balakin, Konstantin V.

    2016-01-01

    A series of novel quaternary ammonium 4-deoxypyridoxine derivatives was synthesized. Two compounds demonstrated excellent activity against a panel of Gram-positive methicillin-resistant S. aureus strains with MICs in the range of 0.5–2 μg/mL, exceeding the activity of miramistin. At the same time, both compounds were inactive against the Gram-negative E. coli and P. aeruginosa strains. Cytotoxicity studies on human skin fibroblasts and embryonic kidney cells demonstrated that the active compounds possessed similar toxicity with benzalkonium chloride but were slightly more toxic than miramistin. SOS-chromotest in S. typhimurium showed the lack of DNA-damage activity of both compounds; meanwhile, one compound showed some mutagenic potential in the Ames test. The obtained results make the described chemotype a promising starting point for the development of new antibacterial therapies. PMID:27800491

  18. Integrated Data Collection Analysis (IDCA) Program — Ammonium Nitrate

    SciTech Connect

    Sandstrom, Mary M.; Brown, Geoffrey W.; Preston, Daniel N.; Pollard, Colin J.; Warner, Kirstin F.; Sorensen, Daniel N.; Remmers, Daniel L.; Phillips, Jason J.; Shelley, Timothy J.; Reyes, Jose A.; Hsu, Peter C.; Reynolds, John G.

    2013-05-17

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of ammonium nitrate (AN). AN was tested, in most cases, as both received from manufacturer and dried/sieved. The participants found the AN to be: 1) insensitive in Type 12A impact testing (although with a wide range of values), 2) completely insensitive in BAM friction testing, 3) less sensitive than the RDX standard in ABL friction testing, 4) less sensitive than RDX in ABL ESD testing, and 5) less sensitive than RDX and PETN in DSC thermal analyses.

  19. Crystal structure of tris­(hydroxyl­ammonium) orthophosphate

    PubMed Central

    Leinemann, Malte; Jess, Inke; Boeckmann, Jan; Näther, Christian

    2015-01-01

    The crystal structure of the title salt, ([H3NOH]+)3·[PO4]3−, consists of discrete hydroxyl­ammonium cations and ortho­phos­phate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phospho­rus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional network. Altogether, one very strong O—H⋯O, two N—H⋯O hydrogen bonds of medium strength and two weaker bifurcated N—H⋯O inter­actions are observed. PMID:26594525

  20. DNA bending by hexamethylene-tethered ammonium ions.

    PubMed Central

    Strauss, J K; Roberts, C; Nelson, M G; Switzer, C; Maher, L J

    1996-01-01

    DNA is bent when complexed with certain proteins. We are exploring the hypothesis that asymmetric neutralization of phosphate charges will cause the DNA double helix to collapse toward the neutralized face. We have previously shown that DNA spontaneously bends toward one face of the double helix when it is partially substituted with neutral methylphosphonate linkages. We have now synthesized DNA duplexes in which cations are tethered by hexamethylene chains near specific phosphates. Electrophoretic phasing experiments demonstrate that tethering six ammonium ions on one helical face causes DNA to bend by approximately 5 degrees toward that face, in qualitative agreement with predictions. Ion pairing between tethered cations and DNA phosphates provides a new model for simulating the electrostatic consequences of phosphate neutralization by proteins. Images Fig. 4 Fig. 7 PMID:8790362

  1. Computational Modeling of Degradation of Substituted Benzyltrimethyl Ammonium: Preprint

    SciTech Connect

    Long, H.; Pivovar, B. S.

    2014-09-01

    The degradation of cations on the alkaline exchange membranes is the major challenge for alkaline membrane fuel cells. In this paper, we investigated the degradation barriers by density functional theory for substituted benzyltrimethyl ammonium (BTMA+) cations, which is one of the most commonly used cations for alkaline exchange membranes. We found that substituted cations with electron-releasing substituent groups at meta-position of the benzyl ring could result in improved degradation barriers. However, after investigating more than thirty substituted BTMA+ cations with ten different substituent groups, the largest improvement of degradation barriers is only 1.6 kcal/mol. This implies that the lifetime of alkaline membrane fuel cells could increase from a few months to a few years by using substituted BTMA+ cations, an encouraging but still limited improvement for real-world applications.

  2. Hibiscus sabdariffa Affects Ammonium Chloride-Induced Hyperammonemic Rats

    PubMed Central

    Essa, M. Mohamed

    2007-01-01

    Hibiscus sabdariffa (HS) is an edible medicinal plant, indigenous to India, China and Thailand and is used in Ayurveda and traditional medicine. Alcoholic extract of HS leaves (HSEt) was studied for its anti-hyperammonemic and antioxidant effects in brain tissues of ammonium chloride-induced hyperammonemic rats. Oral administration of HSEt (250 mg kg−1 body weight) significantly normalizes the levels of ammonia, urea, uric acid, creatinine and non-protein nitrogen in the blood. HSEt significantly reduced brain levels of lipid peroxidation products such as thiobarbituric acid and reactive substances (TBARS) and hydroperoxides (HP). However, the administered extract significantly increased the levels of antioxidants such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and reduced glutathione (GSH) in brain tissues of hyperammonemic rats. This investigation demonstrates significant anti-hyperammonemic and antioxidant activity of HS. PMID:17965762

  3. Benzyl­ammonium hexa­noate

    PubMed Central

    Wood, Mary H.; Clarke, Stuart M.

    2012-01-01

    A binary mixture of benzyl­amine and hexa­noic acid has been reacted to form the title salt, C7H10N+·C6H11O2 −. This crystal has a 1:1 stoichiometry of acid- and amine-derived species which contrasts with other related species which can have a number of other integer ratios of acid and amine components. The diffraction data indicate complete transfer of a proton from the acid to the amine to give the salt, comprising a cation and anion combination, with the formation of three hydrogen bonds around each ammonium group. This contrasts with other related species. PMID:23125776

  4. Large electrocaloric effects in single-crystal ammonium sulfate.

    PubMed

    Crossley, S; Li, W; Moya, X; Mathur, N D

    2016-08-13

    Electrocaloric (EC) effects are typically studied near phase transitions in ceramic and polymer materials. Here, we investigate EC effects in an inorganic salt, namely ammonium sulfate (NH4)2SO4, with an order-disorder transition whose onset occurs at 223 K on cooling. For a single crystal thinned to 50 μm, we use a Maxwell relation to find a large isothermal entropy change of 30 J K(-1) kg(-1) in response to a field change of 400 kV cm(-1) The Clausius-Clapeyron equation implies a corresponding adiabatic temperature change of 4.5 K.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  5. Effect of impurities on crystal growth rate of ammonium pentaborate

    NASA Astrophysics Data System (ADS)

    Şahin, Ö.; Özdemir, M.; Genli, N.

    2004-01-01

    The effect of sodium chloride, borax and boric acid of different concentrations on the growth rate of ammonium pentaborate octahydrate crystals (APBO) was measured and was found to depend on supersaturation in a fluidized bed crystallizer. The presence of impurities in APBO solution increases the growth rate compared with growth from pure solution. It was found that the presence of sodium chloride, borax and boric acid decreases the reaction rate constant kr, while it increases the mass-transfer coefficient, K, of APBO crystals. In pure aqueous solution, the crystal growth rate of APBO is mainly controlled by diffusion. However, both diffusion and integration steps affect the growth rate of APBO crystals in the presence of sodium chloride, borax and boric acid. The mass-transfer coefficient, K, reaction rate constant, kr and reaction order, r were calculated from general mass-transfer equation by using genetic algorithm method making no assumption.

  6. Slow strain rate fracture of high-strength steel at controlled electrochemical potentials in ammonium chloride, potassium chloride, and ammonium nitrate solutions

    SciTech Connect

    Nguyen, D.T.; Nichols, D.E.; Daniels, R.D.

    1992-08-15

    Slow strain rate testing has been undertaken to determine the effects of individual chemical species on the fracture process of high-strength 4340 steel. Test environments included potassium chloride, ammonium nitrate, and ammonium chloride at concentrations from 0.001 to 1.0 mole por liter at ambient temperature. Tests were performed at cathodic and anodic controlled potentials, as well as at the open-circuit potential, to delineate the stress corrosion cracking range.

  7. Tetracalcium phosphate composite containing quaternary ammonium dimethacrylate with antibacterial properties.

    PubMed

    Cheng, Lei; Weir, Michael D; Limkangwalmongkol, Penwadee; Hack, Gary D; Xu, Hockin H K; Chen, Qianming; Zhou, Xuedong

    2012-04-01

    Tooth caries is a carbohydrate-modified bacterial infectious disease, and recurrent caries is a frequent reason for restoration failure. The objective of this study was to develop a novel antibacterial composite using tetracalcium phosphate (TTCP) fillers and bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, which is a quaternary ammonium dimethacrylate (QADM). QADM was synthesized using 2-(N,N-dimethylamino)ethyl methacrylate and 2-bromoethyl methacrylate and incorporated into a resin. The resin was filled with 40% TTCP and 30% glass particles. The following QADM mass fractions in the composite were tested: 0%, 6%, 12%, and 18%. Streptococcus mutans biofilms were formed on the composites and the colony-forming units (CFUs), metabolic activity, and lactic acid production were measured. The TTCP-QADM composite had flexural strength and elastic modulus similar to those of two commercial composites (p > 0.1). Increasing the QADM content in TTCP composite greatly decreased the bacteria growth and biofilm matrix production. There were significantly more dead bacteria with increasing QADM content. TTCP composite containing 18% QADM had biofilm CFU, metabolic activity, and acid production about half of those without QADM. Inversely linear relationships were established between QADM mass fraction and S. mutans biofilm CFU, metabolic activity, and acid production, with correlation coefficients R(2) ≥ 0.98. In conclusion, TTCP-QADM composites were developed and the effect of QADM mass fraction on the antibacterial properties of the composite was determined for the first time. The novel TTCP-QADM composites possessing a strong antibacterial capability, together with calcium phosphate ion release and good mechanical properties, are promising for dental restorations to reduce biofilm growth and recurrent caries.

  8. Tetracalcium phosphate composite containing quaternary ammonium dimethacrylate with antibacterial properties

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Limkangwalmongkol, Penwadee; Hack, Gary D.; Xu, Hockin H. K.; Chen, Qianming; Zhou, Xuedong

    2012-01-01

    Tooth caries is a carbohydrate-modified bacterial infectious disease, and recurrent caries is a frequent reason for restoration failure. The objective of this study was to develop a novel antibacterial composite using tetracalcium phosphate (TTCP) fillers and bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, which is a quaternary ammonium dimethacrylate (QADM). QADM was synthesized using 2-(N,N-dimethylamino)ethyl methacrylate and 2-bromoethyl methacrylate and incorporated into a resin. The resin was filled with 40% TTCP and 30% glass particles. The following QADM mass fractions in the composite were tested: 0%, 6%, 12%, and 18%. Streptococcus mutans biofilms were formed on the composites and the colony-forming units (CFUs), metabolic activity, and lactic acid production were measured. The TTCP-QADM composite had flexural strength and elastic modulus similar to those of two commercial composites (p > 0.1). Increasing the QADM content in TTCP composite greatly decreased the bacteria growth and biofilm matrix production. There were significantly more dead bacteria with increasing QADM content. TTCP composite containing 18% QADM had biofilm CFU, metabolic activity, and acid production about half of those without QADM. Inversely linear relationships were established between QADM mass fraction and S. mutans biofilm CFU, metabolic activity, and acid production, with correlation coefficients R2 ≥ 0.98. In conclusion, TTCP-QADM composites were developed and the effect of QADM mass fraction on the antibacterial properties of the composite was determined for the first time. The novel TTCP-QADM composites possessing a strong antibacterial capability, together with calcium phosphate ion release and good mechanical properties, are promising for dental restorations to reduce biofilm growth and recurrent caries. PMID:22190356

  9. PCDD/Fs' suppression by sulfur-amine/ammonium compounds.

    PubMed

    Fu, Jian-Ying; Li, Xiao-Dong; Chen, Tong; Lin, Xiao-Qing; Buekens, Alfons; Lu, Sheng-Yong; Yan, Jian-Hua; Cen, Ke-Fa

    2015-03-01

    Three distinct -S and -NH2 or NH4(+) containing compounds, including ammonium thiosulfate, aminosulfonic acid and thiourea, were studied as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) inhibitors. All these three -S and -N containing compounds tested show strong suppression of PCDD/Fs formation, especially for thiourea which has not been studied before. With a (S+N)/Cl molar ratio of only 0.47, thiourea could inhibit 97.3% of PCDD/Fs and even 99.8% of I-TEQ. At an unusually high de novo test temperature (650 °C), the PCDD/Fs' formation was still very low but also the inhibition capacity of thiourea was weak, with an efficiency of 59% for PCDD/Fs when with a (S+N)/Cl molar ratio of 1.40. The results also revealed that the inhibition capability of the combined -S/-NH2 or -S/NH4(+) suppressant was strongly influenced by both the nature of the functional group of nitrogen and the value of the molar ratio (S+N)/Cl. The amine functional group -NH2 tends to be more efficient than ammonium NH4(+) and within a certain range a higher (S+N)/Cl value leads to a higher inhibition efficiency. Moreover, the emission of gases was continuously monitored: the Gasmet results revealed that SO2, HCN and NH3 were the most important decomposition products of thiourea. Thiourea is non-toxic, environment-friendly and can be sprayed into the post-combustion zone in form of powder or aqueous solution. The cost of thiourea at least can be partially compensated by its high inhibition efficiency. Therefore, the application of thiourea in a full-scale incinerator system is promising and encouraging. PMID:25481352

  10. Cold Case: Radar investigation of ammonium sulfate cryovolcanism on Titan

    NASA Astrophysics Data System (ADS)

    Thomann, C.; Hayes, A. G.; Hofgartner, J.; Lunine, J. I.; Le Gall, A.

    2012-12-01

    The detection of a large tidal k2 value from Cassini [1] constitutes very strong evi-dence for a subcrustal ocean, most plausibly dominated by water. However, the secondary constituents are not known. One interesting possibility that has received scant attention in analysis of surface data sets is that the ocean contain aqueous ammonium sulfates, which erupted on the surface in the past to create vast, smooth plains [2]. We adopt the hypothesis that the undifferentiated plains—the "bland-lands" in the mid-latitudes of Titan—are these deposits, and test it using radiometry with SAR data. Lopez et al (this conference) investigate the global distribution and possible origin of this type of unit. We extracted SAR and radiometry-during-SAR data sets from the PDS, and pro-duced maps of brightness temperatures. The SAR imagery was used to identify locations where crossovers exist -some of which are in the undifferentiated plains--and hence where brightness temperatures at different incidence angles are available. We derived emissivities from the data using a simple radiometric model [3] to ac-count for the brightness temperature differences as a function of surface roughness, volume scattering and emissivity. We test the hypothesis by assessing whether the derived emissivities and volume scattering in the bland-lands are consistent with the model cryoclastic ash of ice and ammonium sulfate proposed in [2], distinct from that in other terrains. [1] L. Iess, R.A. Jacobson, M. Ducci, D.J. Stevenson, J.I. Lunine, J.W. Armstrong, S.W. Asmar, P. Racioppa, N.J. Rappaport, P. Tortora, Science, 337, 457 (2012). [2] A.D. Fortes, P.M. Grinrod, S.K. Trickett, L. Vocadlo. Icarus, 188, 139 (2007). [3] T.L. White and J.R. Cogdell. The Moon, 6, 235 (1973).

  11. Hierarchical One-Dimensional Ammonium Nickel Phosphate Microrods for High-Performance Pseudocapacitors.

    PubMed

    Raju, Kumar; Ozoemena, Kenneth I

    2015-01-01

    High-performance electrochemical capacitors will drive the next-generation portable, flexible and wearable electronics. Unlike the conventional all-carbon supercapacitors (electric double layer capacitors, EDLC) with high power but poor energy density, pseudocapacitors capitalize the high energy density inherent to reversible redox reactions and provide a facile means to enhancing the energy ratings of supercapacitors. The high length-to-diameter ratio and anisotropic character of 1-D architecture makes them suitable for use in energy storage. For the first time, we report 1-D microrod structures (~ 36 nm width) of ammonium nickel phosphate hydrate (ANPmr) as a pseudocapacitor with high energy rating and power handling. To confirm the data, the ANPmr-based pseudocapacitor was subjected to various configurations (i.e., half-cell, symmetric, asymmetric, and flexible all-solid-state) and in each case it gave excellent values compared to any accessible literature to date. We clearly demonstrate that a flexible all-solid-state ANPmr-based pseudocapacitor achieved high areal capacitance of 66 mF cm(-2) with extra-ordinary energy (21.2 mWh cm(-2)) and power (12.7 mW cm(-2)) densities. This work opens doors for a facile, robust and scalable preparation strategy for low-cost, earth-abundant electrode materials for high-performance pseudocapacitors. PMID:26631578

  12. Use of ammonium bicarbonate DTPA soil test to evaluate elemental availability and toxicity

    SciTech Connect

    Soltanpour, P.N.

    1985-01-01

    The literature published on the use of the Soltanpour and Schwab Ammonium Bicarbonate-DTPA (AB-DTPA) soil test shows that it can be used to determine availability and toxicity indices for many elements. It has been shown to be an effective test for measuring the availability indices of P, K, Zn, Fe, Mn, Mo, Pb, Ni, Cd and Se. Theoretically, it can also be used to determine the availability indices for S, Cu and As. The AB-DTPA test can predict toxicity of B as well as the standard hot water test, although within the non-toxic range of B, it is not as effective as the hot water test. The hot water test alone predicts B availability well, but the AB-DTPA B test result requires inclusion of soil water pH, organic matter and clay contents in a regression equation for predicting B availability. This test is not suitable for determination of exchangeable plus soluble Ca and Mg (high levels), as these precipitate as carbonates during extraction. The AB-DTPA test procedure with analysis by an inductively-coupled plasma spectrometer for simultaneous determination of elements, makes soil and overburden testing very efficient.

  13. Preparation and characterization of new low melting ammonium-based ionic liquids with ether functionality

    NASA Astrophysics Data System (ADS)

    Kärnä, Minna; Lahtinen, Manu; Valkonen, Jussi

    2009-03-01

    Eighteen new and three previously known but insufficiently characterized RŔ 3N +A - and R 2Ŕ 2N +A - type ( R = 2-ethoxyethyl or 4-methoxybenzyl, Ŕ = methyl, ethyl, n-propyl, n-butyl, n-pentyl or n-hexyl, A = Br, BF 4 or PF 6) quaternary ammonium (QA) salts were synthesized and characterized by using 1H and 13C NMR techniques, mass spectroscopy and elemental analysis. The bromide salts were synthesized either by treating dimethyl formamide with an ether functionalized alkyl bromide in the presence of potassium carbonate or by treating a tertiary amine with an ether functionalized alkyl bromide. The QA tetrafluoroborates and hexafluorophosphates were synthesized by metathesis reaction between a prepared QA bromide and HBF 4 or KPF 6. The crystal structures of four compounds were determined by X-ray single crystal diffraction and powder diffraction was used to study the crystallinity of the solid compounds and to compare the structural similarities between the single crystals and the microcrystalline bulk form. Thermal properties of all compounds were studied by using TG/DTA and DSC methods. The anion exchange had a clear lowering effect on the melting points and enhanced the thermal stability of the BF4- and PF6- salts compared to the analogous bromides. Most of the compounds melted clearly below 100 °C, of which four are liquid at room temperature.

  14. Hierarchical One-Dimensional Ammonium Nickel Phosphate Microrods for High-Performance Pseudocapacitors.

    PubMed

    Raju, Kumar; Ozoemena, Kenneth I

    2015-12-03

    High-performance electrochemical capacitors will drive the next-generation portable, flexible and wearable electronics. Unlike the conventional all-carbon supercapacitors (electric double layer capacitors, EDLC) with high power but poor energy density, pseudocapacitors capitalize the high energy density inherent to reversible redox reactions and provide a facile means to enhancing the energy ratings of supercapacitors. The high length-to-diameter ratio and anisotropic character of 1-D architecture makes them suitable for use in energy storage. For the first time, we report 1-D microrod structures (~ 36 nm width) of ammonium nickel phosphate hydrate (ANPmr) as a pseudocapacitor with high energy rating and power handling. To confirm the data, the ANPmr-based pseudocapacitor was subjected to various configurations (i.e., half-cell, symmetric, asymmetric, and flexible all-solid-state) and in each case it gave excellent values compared to any accessible literature to date. We clearly demonstrate that a flexible all-solid-state ANPmr-based pseudocapacitor achieved high areal capacitance of 66 mF cm(-2) with extra-ordinary energy (21.2 mWh cm(-2)) and power (12.7 mW cm(-2)) densities. This work opens doors for a facile, robust and scalable preparation strategy for low-cost, earth-abundant electrode materials for high-performance pseudocapacitors.

  15. Hierarchical One-Dimensional Ammonium Nickel Phosphate Microrods for High-Performance Pseudocapacitors

    NASA Astrophysics Data System (ADS)

    Raju, Kumar; Ozoemena, Kenneth I.

    2015-12-01

    High-performance electrochemical capacitors will drive the next-generation portable, flexible and wearable electronics. Unlike the conventional all-carbon supercapacitors (electric double layer capacitors, EDLC) with high power but poor energy density, pseudocapacitors capitalize the high energy density inherent to reversible redox reactions and provide a facile means to enhancing the energy ratings of supercapacitors. The high length-to-diameter ratio and anisotropic character of 1-D architecture makes them suitable for use in energy storage. For the first time, we report 1-D microrod structures (~ 36 nm width) of ammonium nickel phosphate hydrate (ANPmr) as a pseudocapacitor with high energy rating and power handling. To confirm the data, the ANPmr-based pseudocapacitor was subjected to various configurations (i.e., half-cell, symmetric, asymmetric, and flexible all-solid-state) and in each case it gave excellent values compared to any accessible literature to date. We clearly demonstrate that a flexible all-solid-state ANPmr-based pseudocapacitor achieved high areal capacitance of 66 mF cm-2 with extra-ordinary energy (21.2 mWh cm-2) and power (12.7 mW cm-2) densities. This work opens doors for a facile, robust and scalable preparation strategy for low-cost, earth-abundant electrode materials for high-performance pseudocapacitors.

  16. Hierarchical One-Dimensional Ammonium Nickel Phosphate Microrods for High-Performance Pseudocapacitors

    PubMed Central

    Raju, Kumar; Ozoemena, Kenneth I.

    2015-01-01

    High-performance electrochemical capacitors will drive the next-generation portable, flexible and wearable electronics. Unlike the conventional all-carbon supercapacitors (electric double layer capacitors, EDLC) with high power but poor energy density, pseudocapacitors capitalize the high energy density inherent to reversible redox reactions and provide a facile means to enhancing the energy ratings of supercapacitors. The high length-to-diameter ratio and anisotropic character of 1-D architecture makes them suitable for use in energy storage. For the first time, we report 1-D microrod structures (~ 36 nm width) of ammonium nickel phosphate hydrate (ANPmr) as a pseudocapacitor with high energy rating and power handling. To confirm the data, the ANPmr-based pseudocapacitor was subjected to various configurations (i.e., half-cell, symmetric, asymmetric, and flexible all-solid-state) and in each case it gave excellent values compared to any accessible literature to date. We clearly demonstrate that a flexible all-solid-state ANPmr-based pseudocapacitor achieved high areal capacitance of 66 mF cm−2 with extra-ordinary energy (21.2 mWh cm−2) and power (12.7 mW cm−2) densities. This work opens doors for a facile, robust and scalable preparation strategy for low-cost, earth-abundant electrode materials for high-performance pseudocapacitors. PMID:26631578

  17. 76 FR 23569 - Termination of the Suspension Agreement on Solid Fertilizer Grade Ammonium Nitrate From the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... Antidumping Duty Investigation: Solid Fertilizer Grade Ammonium Nitrate from the Russian Federation, 64 FR... Less Than Fair Value: Solid Fertilizer Grade Ammonium Nitrate from the Russian Federation, 65 FR 1139..., Investigation No. 731-TA-856 (Preliminary), 64 FR 50103 (September 15, 1999)). On January 7, 2000,...

  18. Irritant contact dermatitis due to ammonium bifluoride in two infant twins.

    PubMed

    Toledo, Fernando; Silvestre, Juan Francisco; Cuesta, Laura; Bañuls, José

    2013-01-01

    Ammonium bifluoride is one of the most corrosive acids that may produce severe chemical burns when in contact with skin. This hazardous chemical is widely used in household products. We report two pediatric cases of irritant contact dermatitis after exposure to a rust remover, which contained ammonium bifluoride.

  19. Suppression of interference in the AAS determination of chromium by use of ammonium bifluoride.

    PubMed

    Purushottam, A; Naidu, P P; Lal, S S

    1973-07-01

    Addition of 1% of ammonium bifluoride successfully suppresses interference by diverse ions in the atomic-absorption determination of chromium(VI). If the sample solutions also contain chromium(III) addition of 1% of ammonium bifluoride and 0.2% of sodium sulphate is recommended for the suppression.

  20. Irritant contact dermatitis due to ammonium bifluoride in two infant twins.

    PubMed

    Toledo, Fernando; Silvestre, Juan Francisco; Cuesta, Laura; Bañuls, José

    2013-01-01

    Ammonium bifluoride is one of the most corrosive acids that may produce severe chemical burns when in contact with skin. This hazardous chemical is widely used in household products. We report two pediatric cases of irritant contact dermatitis after exposure to a rust remover, which contained ammonium bifluoride. PMID:22211467