Sample records for ammonium chloride pdadmac

  1. 21 CFR 878.4015 - Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC) additive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ammonium chloride) (pDADMAC) additive. 878.4015 Section 878.4015 Food and Drugs FOOD AND DRUG...) additive. (a) Identification. A wound dressing with pDADMAC additive is intended for use as a primary... Dressing With Poly (Diallyl Dimethyl Ammonium Chloride) (pDADMAC) Additive.” See § 878.1(e) for...

  2. 21 CFR 878.4015 - Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC) additive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ammonium chloride) (pDADMAC) additive. 878.4015 Section 878.4015 Food and Drugs FOOD AND DRUG...) additive. (a) Identification. A wound dressing with pDADMAC additive is intended for use as a primary... Dressing With Poly (Diallyl Dimethyl Ammonium Chloride) (pDADMAC) Additive.” See § 878.1(e) for...

  3. 21 CFR 878.4015 - Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC) additive.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ammonium chloride) (pDADMAC) additive. 878.4015 Section 878.4015 Food and Drugs FOOD AND DRUG...) additive. (a) Identification. A wound dressing with pDADMAC additive is intended for use as a primary... Dressing With Poly (Diallyl Dimethyl Ammonium Chloride) (pDADMAC) Additive.” See § 878.1(e) for...

  4. 21 CFR 878.4015 - Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC) additive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ammonium chloride) (pDADMAC) additive. 878.4015 Section 878.4015 Food and Drugs FOOD AND DRUG...) additive. (a) Identification. A wound dressing with pDADMAC additive is intended for use as a primary... Dressing With Poly (Diallyl Dimethyl Ammonium Chloride) (pDADMAC) Additive.” See § 878.1(e) for...

  5. 21 CFR 878.4015 - Wound dressing with poly (diallyl dimethyl ammonium chloride) (pDADMAC) additive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ammonium chloride) (pDADMAC) additive. 878.4015 Section 878.4015 Food and Drugs FOOD AND DRUG...) additive. (a) Identification. A wound dressing with pDADMAC additive is intended for use as a primary... Dressing With Poly (Diallyl Dimethyl Ammonium Chloride) (pDADMAC) Additive.” See § 878.1(e) for...

  6. Segregation in like-charged polyelectrolyte-surfactant mixtures can be precisely tuned via manipulation of the surfactant mass ratio.

    PubMed

    Wills, Peter W; Lopez, Sonia G; Burr, Jocelyn; Taboada, Pablo; Yeates, Stephen G

    2013-04-09

    In this study, we consider segregative phase separation in aqueous mixtures of quaternary ammonium surfactants didecyldimethylammonium chloride (DDQ) and alkyl (C12, 70%; C14 30%) dimethyl benzyl ammonium chloride (BAC) upon the addition of poly(diallyldimethylammonium) chloride (pDADMAC) as a function of both concentration and molecular weight. The nature of the surfactant type is dominant in determining the concentration at which separation into an upper essentially surfactant-rich phase and lower polyelectrolyte-rich phase is observed. However, for high-molecular-weight pDADMAC there is a clear indication of an additional depletion flocculation effect. When the BAC/DDQ ratio is tuned, the segregative phase separation point can be precisely controlled. We propose a phase separation mechanism for like-charged quaternary ammonium polyelectrolyte/surfactant/water mixtures induced by a reduction in the ionic atmosphere around the surfactant headgroup and possible ion pair formation. An additional polyelectrolyte-induced depletion flocculation effect was also observed.

  7. Layer-by-Layer Self-Assembly of Plexcitonic Nanoparticles

    DTIC Science & Technology

    2013-08-12

    nitrate , trisodium citrate tribasic dihydrate, sodium poly(styrene sulfonate) (PSS, MW ~70,000), poly(diallyldimethyl ammonium chloride ) (PDADMAC...Abstract: Colloidal suspensions of multilayer nanoparticles composed of a silver core, a polyelectrolyte spacer layer (inner shell), and a J-aggregate...multilayer architecture served as a framework for examining the coupling of the localized surface plasmon resonance exhibited by the silver core with

  8. Optimization of structural and dielectric properties of CdSe loaded poly(diallyl dimethyl ammonium chloride) polymer in a desired frequency and temperature window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, Chetna, E-mail: ctyagi05@gmail.com; Sharma, Ambika, E-mail: ambikasharma2004@yahoo.com

    2016-01-07

    In the present paper, investigations of CdSe loaded poly(diallyl dimethyl ammonium chloride) (PDADMAC) nanocomposites and pure PDADMAC synthesized by wet chemical technique have been carried out. Fourier transform infrared and X-ray diffraction analysis have been performed to reveal the structural details of pure polymer and polymer nanocomposite (PNC). The dielectric behavior of pure polymer and PNC has been recorded, which results in higher value of the real and imaginary part of dielectric constant for PNC, as compared with pure PDADMAC. The increase is attributed to the addition of CdSe quantum dots to the pure polymer. The contribution of ionic andmore » electronic polarization has been observed at higher frequency. The theoretical fitting of Cole-Cole function to the experimental data of dielectric constant of PNC and pure PDADMAC results in the determination of relaxation time and conductivity of space charge carriers. The CdSe loaded polymer nanocomposite has been used as an electrolyte in the battery fabrication with configuration Al/PNC/Ag{sub 2}O. The ac conductivity measurements have been carried out for both samples in a frequency window of 1 kHz–5 MHz and at different temperatures varying from 298 K to 523 K. Activation energy (E{sub a}) has been determined for pure polymer as well as PNC and is found to be less for PNC, as compared with pure polymer. Further, impedance measurement at different temperatures results in two frequency ranges corresponding to ionic conduction and blocking electrode effect. The value of bulk resistance for pure polymer and PNC has been found to be 3660 Ω and 442 Ω, respectively, at 298 K temperature. Electric modulus has been determined and is observed to support the dielectric constant data; it further reveals the deviation from Debye behavior at a higher frequency.« less

  9. Immobilization of Superoxide Dismutase on Polyelectrolyte-Functionalized Titania Nanosheets.

    PubMed

    Rouster, Paul; Pavlovic, Marko; Szilagyi, Istvan

    2018-02-16

    The superoxide dismutase (SOD) enzyme was successfully immobilized on titania nanosheets (TNS) functionalized with the poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte. The TNS-PDADMAC solid support was prepared by hydrothermal synthesis followed by self-assembled polyelectrolyte layer formation. It was found that SOD strongly adsorbed onto oppositely charged TNS-PDADMAC through electrostatic and hydrophobic interactions. The TNS-PDADMAC-SOD material was characterized by light scattering and microscopy techniques. Colloidal stability studies revealed that the obtained nanocomposites possessed good resistance against salt-induced aggregation in aqueous suspensions. The enzyme kept its functional integrity upon immobilization; therefore, TNS-PDADMAC-SOD showed excellent superoxide radical anion scavenging activity. The developed system is a promising candidate for applications in which suspensions of antioxidant activity are required in the manufacturing processes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Interfacial electrostatics of poly(vinylamine hydrochloride), poly(diallyldimethylammonium chloride), poly-l-lysine, and poly-l-arginine interacting with lipid bilayers.

    PubMed

    McGeachy, A C; Dalchand, N; Caudill, E R; Li, T; Doğangün, M; Olenick, L L; Chang, H; Pedersen, J A; Geiger, F M

    2018-04-25

    Charge densities of cationic polymers adsorbed to lipid bilayers are estimated from second harmonic generation (SHG) spectroscopy and quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. The systems surveyed included poly(vinylamine hydrochloride) (PVAm), poly(diallyldimethylammonium chloride) (PDADMAC), poly-l-lysine (PLL), and poly-l-arginine (PLR), as well as polyalcohol controls. Upon accounting for the number of positive charges associated with each polyelectrolyte, the binding constants and apparent free energies of adsorption as estimated from SHG data are comparable despite differences in molecular masses and molecular structure, with ΔGads values of -61 ± 2, -58 ± 2, -57 ± 1, -52 ± 2, -52 ± 1 kJ mol-1 for PDADMAC400, PDADMAC100, PVAm, PLL, and PLR, respectively. Moreover, we find charge densities for polymer adlayers of approximately 0.3 C m-2 for poly(diallyldimethylammonium chloride) while those of poly(vinylamine) hydrochloride, poly-l-lysine, and poly-l-arginine are approximately 0.2 C m-2. Time-dependent studies indicate that polycation adsorption to supported lipid bilayers is only partially reversible for most of the polymers explored. Poly(diallyldimethylammonium chloride) does not demonstrate reversible binding even over long timescales (>8 hours).

  11. Improving the adsorption of lignocelluloses of prehydrolysis liquor on precipitated calcium carbonate.

    PubMed

    Fatehi, Pedram; Shen, Jing; Hamdan, Fadia C; Ni, Yonghao

    2013-02-15

    In this work, the adsorption of lignocelluloses of pre-hydrolysis liquor (PHL) on precipitated calcium carbonate (PCC) was studied in the presence of poly diallyldimethylammonium chloride (PDADMAC) or cationic polyacrylamide (CPAM). The results revealed that adding PCC to PHL and subsequently adding cationic polymers to PHL/PCC systems was more effective than adding cationic polymers to PHL and then adding PCC to the cationic polymer/PHL systems. At the same dosage applied, PDADMAC resulted in a higher adsorption of lignocelluloses on PCC than CPAM did due to its higher charge density. The adsorption of lignocelluloses on PCC reached its maximum in 3h, and a high temperature reduced the adsorption level as the adsorption was an exothermic process. The maximum adsorptions of 530 mg/g oligo-sugars, 203 mg/g lignin and 58 mg/g furfural on PCC were achieved via adding 0.8 mg/g PDADMAC2 (i.e. higher MW PDADMAC) to PCC/PHL system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Flocculation of high purity wheat straw soda lignin.

    PubMed

    Piazza, G J; Lora, J H; Garcia, R A

    2014-01-01

    In industrial process, acidification causes non-sulfonated lignin insolubility. The flocculants poly(diallyldimethylammonium chloride) (pDADMAC) and bovine blood (BB) also caused lignin insolubility while cationic polyacrylamide, chitosan, and soy protein PF 974 were ineffective. Turbidity determined optimal flocculant, but turbidity magnitude with BB was greater than expected. pDADMAC caused negative lignin Zeta potential to became positive, but BB-lignin Zeta potential was always negative. Insoluble lignin did not gravity sediment, and flocculant-lignin mixtures were centrifuged. Pellet and supernatant dry mass and corrected spectroscopic results were in good agreement for optimal pDADMAC and BB. Spectroscopy showed 87-92% loss of supernatant lignin. Nitrogen analysis showed BB concentrated in the pellet until the pellet became saturated with BB. Subtracting ash and BB mass from pellet and supernatant mass confirmed optimal BB. Low levels of alum caused increased lignin flocculation at lower levels of pDADMAC and BB, but alum did not affect optimal flocculant. Published by Elsevier Ltd.

  13. Low-temperature synthesis of allyl dimethylamine by selective heating under microwave irradiation used for water treatment

    NASA Astrophysics Data System (ADS)

    Tian, Binghui; Luan, Zhaokun; Li, Mingming

    2005-08-01

    Low-temperature synthesis of allyl dimethylamine (ADA) by selective heating under microwave irradiation (MI) used for water treatment is investigated. The effect of MI, ultrasound irradiation (UI) and conventional heating on yield of ADA, reaction time and the flocculation efficiency of polydiallyl dimethylammunion chloride (PDADMAC) prepared form ADA were studied. The results show that by selective heating at low temperature, MI not only increases yield of ADA and reduces reaction time, but also greatly enhances the flocculation efficiency of PDADMAC.

  14. PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies.

    PubMed

    McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine

    2015-01-01

    High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.

  15. PDADMAC flocculation of Chinese hamster ovary cells: Enabling a centrifuge-less harvest process for monoclonal antibodies

    PubMed Central

    McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine

    2015-01-01

    High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed. PMID:25706650

  16. Effect of humic acid on pyrene removal from water by polycation-clay mineral composites and activated carbon.

    PubMed

    Radian, Adi; Mishael, Yael

    2012-06-05

    Pyrene removal by polycation-montmorillonite (MMT) composites and granulated activated carbon (GAC) in the presence of humic acid (HA) was examined. Pyrene, HA, and sorbent interactions were characterized by FTIR, fluorescence and zeta measurements, adsorption, and column filtration experiments. Pyrene binding coefficients to the macromolecules were in the order of PVPcoS (poly-4-vinylpiridine-co-styrene) > HA > PDADMAC (poly diallyl-dimethyl-ammonium-chloride), correlating to pyrene-macromolecules compatibility. Electrostatic interactions explained the high adsorption of HA to both composites (∼100%), whereas HA adsorption by GAC was low. Pyrene removal by the composites, unlike GAC, was enhanced in the presence of HA; removal by PDADMAC-MMT increased from ∼50 (k(d) = 2.2 × 10(3) kg/L) to ∼70% (k(d) = 2.4 × 10(3) kg/L) in the presence of HA. This improvement was attributed to the adsorption of pyrene-HA complexes. PVPcoS-MMT was most efficient in removing pyrene (k(d) = 1.1 × 10(4) kg/L, >95% removal) which was explained in terms of specific π donor-π acceptor interactions. Pyrene uptake by column filters of GAC reached ∼50% and decreased to ∼30% in the presence of HA. Pyrene removal by the PVPcoS-MMT filter was significantly higher (100-85% removal), exhibiting only a small decrease in the presence of HA. The utilization of HA as an enhancing agent in pollutant removal is novel and of major importance in water treatment.

  17. Insight into the stability of poly(diallydimethylammoniumchloride) and polybrene poly cationic coatings in capillary electrophoresis.

    PubMed

    Pei, Lei; Lucy, Charles A

    2014-10-24

    Polycationic polymers are widely used in capillary electrophoresis (CE) as surface coatings to prevent protein adsorption and control electroosmotic flow (EOF). Such semi-permanent coatings are formed by flushing the capillary with a quaternary amine-based polymer such as poly(diallydimethylammonium chloride) (PDADMAC) or polybrene. Compared to covalent capillary coatings, the claimed advantages of adsorptive polycation coatings are their simple preparation and that they are not limited to the pH 2-8 range as are covalent coatings. However, while the latter is commonly claimed, few studies have demonstrated the stability of polycationic coatings at extreme pH. Herein PDADMAC and polybrene are studied as model cationic coatings. PDADMAC with higher molecular weight (M.W.) demonstrated higher EOF stability at pH 9.5, with PDADMAC of M.W. less than 200,000 being unstable at pH 9.5. X-ray photoelectron spectroscopy (XPS) shows that the quaternary amines of PDADMAC and polybrene were slowly converted to tertiary amines in alkaline solution and more rapidly when adsorbed on a silica surface. The degraded polycation deprotonated at pH >7, resulting in loss of polymer from the surface and diminishing EOF. Successive multiple ionic layer (SMIL) coatings show greater alkaline stability by distancing the polycation from the surface. Separations of inorganic anions at pH 9.5 illustrate the degradation behavior and enhanced stability of higher M.W. polycationic coatings. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Evidence of a two-step process and pathway dependency in the thermodynamics of poly(diallyldimethylammonium chloride)/poly(sodium acrylate) complexation.

    PubMed

    Vitorazi, L; Ould-Moussa, N; Sekar, S; Fresnais, J; Loh, W; Chapel, J-P; Berret, J-F

    2014-12-21

    Recent studies have pointed out the importance of polyelectrolyte assembly in the elaboration of innovative nanomaterials. Beyond their structures, many important questions on the thermodynamics of association remain unanswered. Here, we investigate the complexation between poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium acrylate) (PANa) chains using a combination of three techniques: isothermal titration calorimetry (ITC), static and dynamic light scattering and electrophoresis. Upon addition of PDADMAC to PANa or vice-versa, the results obtained by the different techniques agree well with each other, and reveal a two-step process. The primary process is the formation of highly charged polyelectrolyte complexes of size 100 nm. The secondary process is the transition towards a coacervate phase made of rich and poor polymer droplets. The binding isotherms measured are accounted for using a phenomenological model that provides the thermodynamic parameters for each reaction. Small positive enthalpies and large positive entropies consistent with a counterion release scenario are found throughout this study. Furthermore, this work stresses the importance of the underestimated formulation pathway or mixing order in polyelectrolyte complexation.

  19. pH-responsive ion transport in polyelectrolyte multilayers of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA) bearing strong- and weak anionic groups.

    PubMed

    Maza, Eliana; Tuninetti, Jimena S; Politakos, Nikolaos; Knoll, Wolfgang; Moya, Sergio; Azzaroni, Omar

    2015-11-28

    The layer-by-layer construction of interfacial architectures displaying stimuli-responsive control of mass transport is attracting increasing interest in materials science. In this work, we describe the creation of interfacial architectures displaying pH-dependent ionic transport properties which until now have not been observed in polyelectrolyte multilayers. We describe a novel approach to create pH-controlled ion-rectifying systems employing polyelectrolyte multilayers assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), alternately deposited with poly(diallyldimethylammonium chloride) (PDADMAC). The conceptual framework is based on the very contrasting and differential interactions of PSS and MA units with PDADMAC. In our setting, sulfonate groups play a structural role by conferring stability to the multilayer due to the strong electrostatic interactions with the polycations, while the weakly interacting MA groups remain "silent" within the film and then act as on-demand pH-responsive units. When these multilayers are combined with a strong cationic capping layer that repels the passage of cationic probes, a pH-gateable rectified transport of anions is observed. Concomitantly, we also observed that these functional properties are significantly affected when multilayers are subjected to extensive pH cycling as a consequence of irreversible morphological changes taking place in the film. We envision that the synergy derived from combining weak and strong interactions within the same multilayer will play a key role in the construction of new interfacial architectures displaying tailorable ion transport properties.

  20. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The...

  1. Principal component analysis to assess the efficiency and mechanism for enhanced coagulation of natural algae-laden water using a novel dual coagulant system.

    PubMed

    Ou, Hua-Se; Wei, Chao-Hai; Deng, Yang; Gao, Nai-Yun; Ren, Yuan; Hu, Yun

    2014-02-01

    A novel dual coagulant system of polyaluminum chloride sulfate (PACS) and polydiallyldimethylammonium chloride (PDADMAC) was used to treat natural algae-laden water from Meiliang Gulf, Lake Taihu. PACS (Aln(OH)mCl3n-m-2k(SO4)k) has a mass ratio of 10 %, a SO4 (2-)/Al3 (+) mole ratio of 0.0664, and an OH/Al mole ratio of 2. The PDADMAC ([C8H16NCl]m) has a MW which ranges from 5 × 10(5) to 20 × 10(5) Da. The variations of contaminants in water samples during treatments were estimated in the form of principal component analysis (PCA) factor scores and conventional variables (turbidity, DOC, etc.). Parallel factor analysis determined four chromophoric dissolved organic matters (CDOM) components, and PCA identified four integrated principle factors. PCA factor 1 had significant correlations with chlorophyll-a (r=0.718), protein-like CDOM C1 (0.689), and C2 (0.756). Factor 2 correlated with UV254 (0.672), humic-like CDOM component C3 (0.716), and C4 (0.758). Factors 3 and 4 had correlations with NH3-N (0.748) and T-P (0.769), respectively. The variations of PCA factors scores revealed that PACS contributed less aluminum dissolution than PAC to obtain equivalent removal efficiency of contaminants. This might be due to the high cationic charge and pre-hydrolyzation of PACS. Compared with PACS coagulation (20 mg L(-1)), the removal of PCA factors 1, 2, and 4 increased 45, 33, and 12 %, respectively, in combined PACS-PDADMAC treatment (0.8 mg L(-1) +20 mg L(-1)). Since PAC contained more Al (0.053 g/1 g) than PACS (0.028 g/1 g), the results indicated that PACS contributed less Al dissolution into the water to obtain equivalent removal efficiency.

  2. Equilibration of a polycation - anionic surfactant mixture at the water/vapor interface.

    PubMed

    Akanno, Andrew; Guzmán, Eduardo; Fernández-Peña, Laura; Llamas, Sara; Ortega, Francisco; Rubio, Ramon Gonzalez

    2018-06-01

    The adsorption of concentrated poly(diallyldimethylammonium chloride) (PDADMAC) - sodium lauryl ether sulfate (SLES) mixtures at the water / vapor interface has been studied by different surface tension techniques and dilational visco-elasticity measurements. This work tries to shed light on the way in which the formation of polyelectrolyte - surfactant complexes in the bulk affects to the interfacial properties of mixtures formed by a polycation and an oppositely charged surfactant. The results are discussed in terms of a two-step adsorption-equilibration of PDADMAC - SLES complexes at the interface, with the initial stages involving the diffusion of kinetically trapped aggregates formed in the bulk to the interface followed by the dissociation and spreading of such aggregates at the interface. This latter process becomes the main contribution to the surface tension decrease. This work helps on the understanding of the most fundamental bases of the physico-chemical behavior of concentrated polyelectrolyte - surfactant mixtures which present complex bulk and interfacial interactions with interest in both basic and applied sciences.

  3. 40 CFR 415.240 - Applicability; description of the ammonium chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... resulting from the production of ammonium chloride by the reaction of anhydrous ammonia with hydrogen... ammonium chloride production subcategory. 415.240 Section 415.240 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ammonium Chloride Production Subcategory § 415.240 Applicability; description of the...

  4. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Quaternary ammonium chloride combination. 172.165... HUMAN CONSUMPTION Food Preservatives § 172.165 Quaternary ammonium chloride combination. The food additive, quaternary ammonium chloride combination, may be safely used in food in accordance with the...

  5. 21 CFR 520.310 - Caramiphen ethanedisulfonate and ammonium chloride tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Caramiphen ethanedisulfonate and ammonium chloride... § 520.310 Caramiphen ethanedisulfonate and ammonium chloride tablets. (a) Specifications. Each tablet contains 10 milligrams of 5st caramiphen ethanedisulfonate and 80 milligrams of ammonium chloride.1 1 These...

  6. Method for the abatement of hydrogen chloride

    DOEpatents

    Winston, S.J.; Thomas, T.R.

    1975-11-14

    A method is described for reducing the amount of hydrogen chloride contained in a gas stream by reacting the hydrogen chloride with ammonia in the gas phase so as to produce ammonium chloride. The combined gas stream is passed into a condensation and collection vessel, and a cyclonic flow is created in the combined gas stream as it passes through the vessel. The temperature of the gas stream is reduced in the vessel to below the condensation temperature of ammonium chloride in order to crystallize the ammonium chloride on the walls of the vessel. The cyclonic flow creates a turbulence which breaks off the larger particles of ammonium chloride which are, in turn, driven to the bottom of the vessel where the solid ammonium chloride can be removed from the vessel. The gas stream exiting from the condensation and collection vessel is further cleaned and additional ammonium chloride is removed by passing through additional filters.

  7. Method for the abatement of hydrogen chloride

    DOEpatents

    Winston, Steven J.; Thomas, Thomas R.

    1977-01-01

    The present invention provides a method for reducing the amount of hydrogen chloride contained in a gas stream by reacting the hydrogen chloride with ammonia in the gas phase so as to produce ammonium chloride. The combined gas stream is passed into a condensation and collection vessel and a cyclonic flow is created in the combined gas stream as it passes through the vessel. The temperature of the gas stream is reduced in the vessel to below the condensation temperature of ammonium chloride in order to crystallize the ammonium chloride on the walls of the vessel. The cyclonic flow creates a turbulence which breaks off the larger particles of ammonium chloride which are, in turn, driven to the bottom of the vessel where the solid ammonium chloride can be removed from the vessel. The gas stream exiting from the condensation and collection vessel is further cleaned and additional ammonium chloride is removed by passing through additional filters.

  8. Characteristics of flocs formed by polymer-only coagulation in water treatment and their impacts on the performance of downstream membrane separation.

    PubMed

    Maeng, Sung Kyu; Timmes, Thomas C; Kim, Hyun-Chul

    2017-10-01

    Two different quaternary amine polymers were examined as primary coagulants for the removal of natural organic matter (NOM) and concurrent production of flocs favorable for downstream membrane separation. The primary issue explored was the relationship between various coagulation conditions on the floc characteristics and the subsequent performance of microfiltration when filtering coagulated NOM. The size distribution and morphological properties of flocs formed through the coagulation of NOM were characterized and the effects of polymer type and dose on these characteristics were also examined. Coagulation of NOM using polydiallyldimethyl-ammonium chloride (pDADMAC) produced looser and less settleable flocs compared to dosing the equivalent amount of epichlorohydrin/dimethylamine (epi/DMA). This was associated with the formation of a relatively denser cake layer on the top of the membrane for the filtration of NOM coagulated with epi/DMA. The charge neutralization coagulation condition with the polymers removed almost all of the fouling tendency that had occurred when filtering raw NOM. The median diameter and the fractal dimension of the flocs produced increased as the zeta potential approached zero, which resulted in the formation of a cake layer that was easily removed from the surface of the membrane.

  9. A preliminary study on the potency of nanofluids as the electro-active materials for nanoelectrofuel flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristiawan, B., E-mail: budi-k@uns.ac.id; Wijayanta, A. T., E-mail: agungtw@uns.ac.id; Juwana, W. E., E-mail: wibawa.ej@gmail.com

    2016-03-29

    This study presents a characterization of nanofluids as electroactive materials with dispersing metal oxide nanoparticles into aqueous polyelectrolytes of 20 wt.%, in particular, their electrochemical activites. The fundamental characterizations including X-ray diffraction, transmission electron microscopy, and Fourier ttransform iinfrared measurement were performed to ensure metal oxide component used in this work. Alumina (Al{sub 2}O{sub 3}) and copper oxide (CuO) nanoparticles of 0.5 vol.% in volume fraction were dispersed into Poly(diallyldimethylammonium chloride) solution (PDADMAC) and Poly(sodium 4-styrenesulfonate) (PSS), respectively. Alumina and copper oxide nanoparticles were dispersed into ionic solution with volume fraction of 0.5 vol.% by using two-step method. The generalmore » cyclic voltammetry measurement was used to analyze electrochemical behavior within three-electrode cell setup. The results show that PSS-based nanofluids demonstrate redox process. However, unclearly redox phenomenon was depicted PDADMAC-based nanofluids. Dispersing nanoparticles could shift pure ionic solution’s cyclic profile. It is clear that a significant impact on electrochemical behavior can be provided because of the existence metal oxide nanoparticles into polyelectrolyte solution.« less

  10. Effect of cationic surfactants on characteristics and colorimetric behavior of polydiacetylene/silica nanocomposite as time-temperature indicator

    NASA Astrophysics Data System (ADS)

    Nopwinyuwong, Atchareeya; Kitaoka, Takuya; Boonsupthip, Waraporn; Pechyen, Chiravoot; Suppakul, Panuwat

    2014-09-01

    Polydiacetylene (PDA)/silica nanocomposites were synthesized by self-assembly method using polymerizable amphiphilic diacetylene monomers, 10,12-pentacosadiynoic acid (PCDA). Addition of cationic surfactants (PDADMAC and CTAB) to PDA/SiO2 nanocomposites induced higher intermolecular force which affected their size, shape and color transition. Pure PDA, PDA/SiO2, PDA/SiO2/PDADMAC and PDA/SiO2/CTAB were investigated by particle size analysis, TEM, SEM, UV-vis spectroscopy and FT-IR. It was found that the PDA/SiO2 nanocomposites exhibited slightly larger particle sizes than those of other samples. The PDA/SiO2 nanocomposites with a core-shell structure were almost regarded as spherical-shaped particles. Cationic surfactants, especially CTAB, presumably affected the particle size and shape of PDA/SiO2 nanocomposites due to the disruption of hydrogen bonding between PDA head group and ammonium group. The colorimetric response of both PDA/SiO2/surfactant and surfactant-free PDA/SiO2 aqueous solutions directly changed in relation to time and temperature; thus they were expected to be applied as a new polymer-based time-temperature indicator (TTI).

  11. Injectable Ammonium Chloride Used Enterally for the Treatment of Persistent Metabolic Alkalosis in Three Pediatric Patients

    PubMed Central

    Mathew, Jennie T.; Bio, Laura L.

    2012-01-01

    Enteral administration of injectable ammonium chloride may offer an effective method for the treatment of persistent metabolic alkalosis, without the adverse effects associated with the intravenous route. This case series describes 3 pediatric patients who received ammonium chloride enterally for the treatment of persistent metabolic alkalosis. The patients were a 2-month-old female infant, a 6-week-old male infant, and a 3-year-old male toddler. Four to 18 doses of ammonium chloride were administered enterally (range, 3-144 mEq/dose). Two of the 3 patients achieved resolution of metabolic alkalosis with ammonium chloride, while 1 patient's condition was refractory to treatment. Resolution of metabolic alkalosis occurred at 4 and 8 days, which required a total weight-based dose of 10.7 mEq/kg and 18 mEq/kg, respectively. No adverse effects were recorded. The use of ammonium chloride injection administered enterally was a safe and effective option in 2 of the 3 pediatric patients with persistent metabolic alkalosis. PMID:23118664

  12. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    PubMed Central

    Rieger, Katrina A.; Porter, Michael; Schiffman, Jessica D.

    2016-01-01

    Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid) (PAA), chitosan (CS), and polydiallyldimethylammonium chloride (pDADMAC). The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm) of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%). Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process. PMID:28773422

  13. Vapour pressure of ammonium chloride aerosol: Effect of temperature and humidity

    NASA Astrophysics Data System (ADS)

    Pio, Casimiro A.; Harrison, Roy M.

    The effect of relative humidity (RH) on the constant for dissociation of ammonium chloride into gaseous HCl and NH 3 has been estimated for different temperatures, using thermodynamic data. At RH over 75-85% the ammonium chloride aerosol exists in the liquid phase, with the dissociation constant two orders of magnitude lower at 98% RH than for solid aerosol at the same temperature. It is predicted that ammonium chloride aqueous aerosol forms predominantly in fogwater and cloud droplets, and in regions where local emissions of NH 3 are important.

  14. Chemistry of alkali cation exchanged faujasite and mesoporous NaX using alkyl halides and phosphates

    NASA Astrophysics Data System (ADS)

    Lee, Min-Hong

    The purpose of this work was to increase the reactivity of Faujasite X (NaX) zeolite toward the reactive decontamination of materials subject to nucleophilic attack by means of zeolite cation optimization and by means of the synthesis of mesoporous Faujasite X. Primary alkyl halides and trialkyl phosphates have been the test materials on which the cation-optimized and mesoporous zeolites have been tested. In the alkali cation optimization work, reactions of methyl iodide and 1-chloropropane with alkali metal cation exchanged Faujasite zeolite X were investigated at room temperature. The reactivity of the framework and the product formation were shown to depend on zeolite framework counter-cation. A quantitative study of zeolite product formation has been carried out, primarily using solid-state NMR spectroscopy. Large alkali cations showed preference toward substitution chemistry. In contrast, alkyl halide exposed LiX and NaX zeolites underwent both substitution and elimination. Subsequently introduced water molecules led to hydrolysis of framework species that was sensitive to framework counter-cation. The mesoporous NaX zeolites work undertakes to test whether an improvement in surface chemical reactivity can be achieved by introducing mesopores into the already reactive nucleophilic microporous NaX zeolite. Incorporation of the polydiallyl dimethyl ammonium chloride (PDADMAC) template and the formation of mesopores in Faujasite X zeolite (NaX) were successful and well-characterized. The mesopores are proposed to have occurred from incorporation of the cationic PDADMAC polymer into the zeolite by compensating zeolite framework charge. Subsequent sodium cation exchange of calcined mesoporous NaX was shown to restore the chemical reactivity characteristic of as-synthesized NaX. Trialkyl organophosphorous compounds underwent substitution reactions. The reactivity of both microporous and mesoporous Faujasite zeolite X and the product formation was shown to depend on the length of the alkyl chain. Although introduced mesopores alleviated the limited reagent diffusion to reactive sites due to the microporosity of the NaX zeolites, no marked improvement in the product yields was achieved with either the 1-chloroalkanes or the trialkyl phosphates test compounds, regardless of alkyl chain length. The disappointing results have been attributed to lack of substantial net increase in the numbers of zeolite nucleophilic sites accompanying mesopore introduction.

  15. Electricity production coupled to ammonium in a microbial fuel cell.

    PubMed

    He, Zhen; Kan, Jinjun; Wang, Yanbing; Huang, Yuelong; Mansfeld, Florian; Nealson, Kenneth H

    2009-05-01

    The production of electricity from ammonium was examined using a rotating-cathode microbial fuel cell (MFC). The addition of ammonium chloride, ammonium sulfate, or ammonium phosphate (monobasic) resulted in electricity generation, while adding sodium chloride, nitrate, or nitrite did not cause any increase in current production. The peak current increased with increasing amount of ammonium addition up to 62.3 mM of ammonium chloride, suggesting that ammonium was involved in electricity generation either directly as the anodic fuel or indirectly as substrates for nitrifiers to produce organic compounds for heterotrophs. Adding nitrate or nitrite with ammonium increased current production compared to solely ammonium addition. Using 16S rRNA-linked molecular analyses, we found ammonium-oxidizing bacteria and denitrifying bacteria on both the anode and cathode electrodes, whereas no anammox bacteria were detected. The dominant ammonium-oxidizing bacteria were closely related to Nitrosomonas europaea. The present MFC achieved an ammonium removal efficiency of 49.2 +/- 5.9 or 69.7 +/- 3.6%, depending on hydraulic retention time, but exhibited a very low Coulombic efficiency.

  16. Kinetic Effect on the Freezing of Ammonium-Sodium-Carbonate-Chloride Brines and Implications for Origin of Ceres' Bright Spots

    NASA Astrophysics Data System (ADS)

    Hodyss, R. P.; Thomas, E. C.; Vu, T. H.; Johnson, P. V.; Choukroun, M.

    2017-12-01

    Subsurface brines on Ceres containing natrite (Na2CO3) and smaller amounts of NH4Cl or NH4HCO3 have been proposed to reach the dwarf planet's surface from an internal reservoir, where the brines freeze and result in bright spots across Ceres. Kinetically frozen solutions containing the likely constituents of Ceres' subsurface brines (ammonium, sodium, carbonate, and chloride ions) were studied via infrared and micro-Raman spectroscopy, where the flash-frozen mixtures were found to preferentially form ammonium chloride and ammonium bicarbonate, even in sodium-dominated solutions. Additionally, sodium chloride only formed when sodium or chloride (or both) were present in excess in the brine solutions. Raman spectroscopy was further employed to analyze the effect of vacuum exposure on these frozen brines over longer periods of time to simulate the surface conditions of Ceres.

  17. 40 CFR 415.242 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SOURCE CATEGORY Ammonium Chloride Production Subcategory § 415.242 Effluent limitations guidelines... point source subject to this subpart and reacting anhydrous ammonia with hydrogen chloride gas must...): Subpart X—Ammonium Chloride Solvay Process Pollutant or pollutant property BPT limitations Maximum for any...

  18. Effect of spray drying on the properties of amylose-hexadecylammonium chloride inclusion complexes

    USDA-ARS?s Scientific Manuscript database

    Water soluble amylose-hexadecyl ammonium chloride complexes were prepared from high amylose corn starch and hexadecyl ammonium chloride by excess steam jet cooking. Amylose inclusion complexes were spray dried to determine the viability of spray drying as a production method. The variables tested in...

  19. Occupational asthma due to soft corrosive soldering fluxes containing zinc chloride and ammonium chloride.

    PubMed Central

    Weir, D C; Robertson, A S; Jones, S; Burge, P S

    1989-01-01

    Two cases of occupational asthma due to soft corrosive soldering fluxes used in metal jointing are described in which the diagnosis was based on work related deterioration in daily peak expiratory flow rate and positive responses in bronchial provocation tests. Both fluxes contained ammonium chloride and zinc chloride. Occupational asthma provoked by these agents has not previously been reported. PMID:2705153

  20. 40 CFR 415.240 - Applicability; description of the ammonium chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT... resulting from the production of ammonium chloride by the reaction of anhydrous ammonia with hydrogen...

  1. Effects of low dietary cation-anion difference induced by ruminal ammonium chloride infusion on performance, serum, and urine metabolites of lactating dairy cows.

    PubMed

    Wang, Kun; Nan, Xuemei; Zhao, Puyi; Liu, Wei; Drackley, James K; Liu, Shijie; Zhang, Kaizhan; Bu, Dengpan

    2018-05-01

    The objective of the present study was to determine ammonium chloride tolerance of lactating dairy cows, by examining effects of negative dietary cation anion difference (DCAD) induced by ruminal ammonium chloride infusion on performance, serum and urine minerals, serum metabolites and enzymes of lactating dairy cows. Four primiparous lactating Chinese Holstein cows fitted with ruminal cannulas were infused with increasing amounts (0, 150, 300, or 450 g/d) of ammonium chloride in a crossover design. The DCAD of the base diet was 279 mEq/kg dry matter (DM) using the DCAD formula (Na + K - Cl - S)/kg of DM. Ammonium chloride infusion added the equivalent of 0, 128, 330, and 536 mEq/kg DM of Cl in treatments. According to the different dry matter intakes (DMI), the resulting actual DCAD of the four treatments was 279, 151, -51, and -257 mEq/kg DM, respectively. DMI decreased linearly as DCAD decreased. Yields of milk, 4% fat-corrected milk, energy-corrected milk, milk fat, and milk protein decreased linearly as DCAD decreased. Concentrations of milk protein and milk urea nitrogen increased linearly with decreasing DCAD. Concentration of Cl- in serum increased linearly and concentration of PO43- in serum increased quadratically as DCAD decreased. Urine pH decreased linearly and calculated urine volume increased linearly with decreasing DCAD. Linear increases in daily urinary excretion of Cl - , Ca 2+ , PO 4 3- , urea N, and ammonium were observed as DCAD decreased. Activities of alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transferase in serum and urea N concentration in serum increased linearly as DCAD decreased. In conclusion, negative DCAD induced by ruminal ammonium chloride infusion resulted in a metabolic acidosis, had a negative influence on performance, and increased serum enzymes indicating potential liver and kidney damage in lactating dairy cows. Daily ammonium chloride intake by lactating dairy cows should not exceed 300 g, and 150 g/d per cow may be better.

  2. Determination of the Optimum Conditions for Leaching of Zinc Cathode Melting Furnace Slag in Ammonium Chloride Media

    NASA Astrophysics Data System (ADS)

    Behnajady, Bahram; Babaeidehkordi, Amin; Moghaddam, Javad

    2014-04-01

    This research is part of a continuing effort to leach zinc from zinc cathode melting furnace slags (ZCMFSs) to produce zinc oxide. The slag with an assay of 68.05 pct Zn was used in ammonium chloride leaching for zinc extraction. In this paper, the effects of influential factors on extraction efficiency of Zn from a ZCMFS were investigated. The Taguchi's method based on orthogonal array (OA) design has been used to arrange the experimental runs in order to maximize zinc extraction from a slag. The softwares named Excel and Design-Expert 7 have been used to design experiments and subsequent analysis. OA L 25 (55) consisting of five parameters, each with five levels, was employed to evaluate the effects of reaction time ( t = 10, 30, 50, 70, 90 minutes), reaction temperature [ T = 313, 323, 333, 343, 353 (40, 50, 60, 70, 80) K (°C)], pulp density ( S/ L = 20, 40, 60, 80, 100 g/L), stirring speed ( R = 300, 400, 500, 600, 700 rpm), and ammonium chloride concentration ( C = 10, 15, 20, 25, 30 pctwt), on zinc extraction percent. Statistical analysis, ANOVA, was also employed to determine the relationship between experimental conditions and yield levels. The results showed that the significant parameters affecting leaching of slag were ammonium chloride concentration and pulp density, and increasing pulp density reduced leaching efficiency of zinc. However, increasing ammonium chloride concentration promoted the extraction of zinc. The optimum conditions for this study were found to be t 4: 70 minutes, T 5: 353 K (80 °C), ( S/ L)2: 40 g/L, R 3: 500 rpm, and C 4: 25 pctwt. Under these conditions, the dissolution percentage of Zn in ammonium chloride media was 94.61 pct.

  3. Direct comparison of the hygroscopic properties of ammonium sulfate and sodium chloride aerosol at relative humidities approaching saturation.

    PubMed

    Walker, Jim S; Wills, Jon B; Reid, Jonathan P; Wang, Liangyu; Topping, David O; Butler, Jason R; Zhang, Yun-Hong

    2010-12-09

    Holographic optical tweezers are used to make comparative measurements of the hygroscopic properties of single component aqueous aerosol containing sodium chloride and ammonium sulfate over a range of relative humidity from 84% to 96%. The change in RH over the course of the experiment is monitored precisely using a sodium chloride probe droplet with accuracy better than ±0.09%. The measurements are used to assess the accuracy of thermodynamic treatments of the relationship between water activity and solute mass fraction with particular attention focused on the dilute solute limit approaching saturation vapor pressure. The consistency of the frequently used Clegg-Brimblecombe-Wexler (CBW) treatment for predicting the hygroscopic properties of sodium chloride and ammonium sulfate aerosol is confirmed. Measurements of the equilibrium size of ammonium sulfate aerosol are found to agree with predictions to within an uncertainty of ±0.2%. Given the accuracy of treating equilibrium composition, the inconsistencies highlighted in recent calibration measurements of critical supersaturations of sodium chloride and ammonium sulfate aerosol cannot be attributed to uncertainties associated with the thermodynamic predictions and must have an alternative origin. It is concluded that the CBW treatment can allow the critical supersaturation to be estimated for sodium chloride and ammonium sulfate aerosol with an accuracy of better than ±0.002% in RH. This corresponds to an uncertainty of ≤1% in the critical supersaturation for typical supersaturations of 0.2% and above. This supports the view that these systems can be used to accurately calibrate instruments that measure cloud condensation nuclei concentrations at selected supersaturations. These measurements represent the first study in which the equilibrium properties of two particles of chemically distinct composition have been compared simultaneously and directly alongside each other in the same environment.

  4. Removal of inhibitors from pre-hydrolysis liquor of kraft-based dissolving pulp production process using adsorption and flocculation processes.

    PubMed

    Liu, Xin; Fatehi, Pedram; Ni, Yonghao

    2012-07-01

    A process for removing inhibitors from pre-hydrolysis liquor (PHL) of a kraft-based dissolving pulp production process by adsorption and flocculation, and the characteristics of this process were studied. In this process, industrially produced PHL was treated with unmodified and oxidized activated carbon as an absorbent and polydiallyldimethylammonium chloride (PDADMAC) as a flocculant. The overall removal of lignin and furfural in the developed process was 83.3% and 100%, respectively, while that of hemicelluloses was 32.7%. These results confirmed that the developed process can remove inhibitors from PHL prior to producing value-added products, e.g. ethanol and xylitol via fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Nickel-catalyzed amination of aryl chlorides with ammonia or ammonium salts.

    PubMed

    Green, Rebecca A; Hartwig, John F

    2015-03-16

    The nickel-catalyzed amination of aryl chlorides to form primary arylamines occurs with ammonia or ammonium sulfate and a well-defined single-component nickel(0) precatalyst containing a Josiphos ligand and an η(2)-bound benzonitrile ligand. This system also catalyzes the coupling of aryl chlorides with gaseous amines in the form of their hydrochloride salts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Polyelectrolyte-mediated assembly of copper-phthalocyanine tetrasulfonate multilayers and the subsequent production of nanoparticulate copper oxide thin films.

    PubMed

    Chickneyan, Zarui Sara; Briseno, Alejandro L; Shi, Xiangyang; Han, Shubo; Huang, Jiaxing; Zhou, Feimeng

    2004-07-01

    An approach to producing films of nanometer-sized copper oxide particulates, based on polyelectrolyte-mediated assembly of the precursor, copper(II)phthalocyanine tetrasulfonate (CPTS), is described. Multilayered CPTS and polydiallyldimethylammonium chloride (PDADMAC) were alternately assembled on different planar substrates via the layer-by-layer (LbL) procedure. The growth of CPTS multilayers was monitored by UV-visible spectrometry and quartz crystal microbalance (QCM) measurements. Both the UV-visible spectra and the QCM data showed that a fixed amount of CPTS could be attached to the substrate surface for a given adsorption cycle. Cyclic voltammograms at the CPTS/PDADMAC-covered gold electrode exhibited a decrease in peak currents with the layer number, indicating that the permeability of CPTS multilayers on the electrodes had diminished. When these CPTS multilayered films were calcined at elevated temperatures, uniform thin films composed of nanoparticulate copper oxide could be produced. Ellipsometry showed that the thickness of copper oxide nanoparticulate films could be precisely tailored by varying the thickness of CPTS multilayer films. The morphology and roughness of CPTS multilayer and copper oxide thin films were characterized by atomic force microscopy. X-ray diffraction (XRD) measurements indicated that these thin films contained both CuO and Cu2O nanoparticles. The preparation of such copper oxide thin films with the use of metal complex precursors represents a new route for the synthesis of inorganic oxide films with a controlled thickness.

  7. 21 CFR 520.310 - Caramiphen ethanedisulfonate and ammonium chloride tablets.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Caramiphen ethanedisulfonate and ammonium chloride tablets. 520.310 Section 520.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...

  8. 21 CFR 520.310 - Caramiphen ethanedisulfonate and ammonium chloride tablets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Caramiphen ethanedisulfonate and ammonium chloride tablets. 520.310 Section 520.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...

  9. 21 CFR 520.310 - Caramiphen ethanedisulfonate and ammonium chloride tablets.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Caramiphen ethanedisulfonate and ammonium chloride tablets. 520.310 Section 520.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...

  10. Effect of polyester blends in hydroentangled raw and bleached cotton nonwoven fabrics on the adsorption of alkyl-dimethyl-benzyl-ammonium chloride

    USDA-ARS?s Scientific Manuscript database

    The adsorption kinetics and isotherms of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on hydroentangled nonwoven fabrics (applicable for wipes) including raw cotton, bleached cotton, and their blends with polyester (PES) were stu...

  11. Algicidal Activity of a Surface-Bonded Organosilicon Quaternary Ammonium Chloride

    PubMed Central

    Walters, P. A.; Abbott, E. A.; Isquith, A. J.

    1973-01-01

    The hydrolysis product of a quaternary amine-containing organosilicon salt, 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride, was found to exhibit algicidal activity while chemically bonded to a variety of substrates. Six representative species of Chlorophyta, Cyanophyta, and Chrysophyta were used to evaluate the algicidal activity. Substrate-bonded 14C-labeled organosilicon quaternary ammonium salt when attached to nonwoven fibers was durable to repeated washings, and algicidal activity could not be attributed to slow release of the chemical. Images PMID:4632852

  12. Sodium and potassium content and their ratio in meatballs in tomato sauce produced with lower amounts of sodium

    NASA Astrophysics Data System (ADS)

    Lilić, S.; Nikolić, D.; Pejkovski, Z.; Velebit, B.; Lakićević, B.; Korićanac, V.; Vranić, D.

    2017-09-01

    The goal of this study was to examine the possibility of partial replacement of sodium chloride with potassium chloride and ammonium chloride, with the target of achieving less sodium content in meatballs and tomato sauce as well as achieving a better Na:K ratio. The trial consisted of five groups. In the control group of meatballs and sauce, only sodium chloride was added. In group 1, half of the sodium chloride was replaced with potassium chloride related to control group while in group 2 one third of the sodium chloride was replaced with potassium chloride. In group 3, one third of the sodium chloride was replaced with ammonium chloride, and in group 4, sodium chloride was reduced to half the amount in the control group, and 1 g (0.25%) of ammonium chloride was also added. All products were acceptable according to sensory analyses. The largest reductions of sodium content were 44.64%, achieved in meatballs from group 1 and 50.62% in tomato sauce from group 4 in relation to meatballs and tomato sauce from control group. The highest Na:K ratio was calculated in meatballs and tomato sauce from control group, 2.88 and 4.39, respectively. The best Na:K ratio was in meatballs and tomato sauce from group 1, 0.60 and 0.92, respectively, in which half of sodium chloride was replaced with potassium chloride. However, in meatballs and tomato sauce from group 4, with only half the amount of sodium chloride related to control group, the Na:K ratio was worse because in these products, potassium chloride was not added.

  13. Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins.

    PubMed

    Müller, Egbert; Josic, Djuro; Schröder, Tim; Moosmann, Anna

    2010-07-09

    Dynamic binding capacities and resolution of PEGylated lysozyme derivatives with varying molecular weights of poly (ethylene) glycol (PEG) with 5 kDa, 10 kDa and 30 kDa for HIC resins and columns are presented. To find the optimal range for the operating conditions, solubility studies were performed by high-throughput analyses in a 96-well plate format, and optimal salt concentrations and pH values were determined. The solubility of PEG-proteins was strongly influenced by the length of the PEG moiety. Large differences in the solubilities of PEGylated lysozymes in two different salts, ammonium sulfate and sodium chloride were found. Solubility of PEGylated lysozyme derivatives in ammonium sulfate decreases with increased length of attached PEG chains. In sodium chloride all PEGylated lysozyme derivatives are fully soluble in a concentration range between 0.1 mg protein/ml and 10 mg protein/ml. The binding capacities for PEGylated lysozyme to HIC resins are dependent on the salt type and molecular weight of the PEG polymer. In both salt solutions, ammonium sulfate and sodium chloride, the highest binding capacity of the resin was found for 5 kDa PEGylated lysozyme. For both native lysozyme and 30 kDa mono-PEGylated lysozyme the binding capacities were lower. In separation experiments on a TSKgel Butyl-NPR hydrophobic-interaction column with ammonium sulfate as mobile phase, the elution order was: native lysozyme, 5 kDa mono-PEGylated lysozyme and oligo-PEGylated lysozyme. This elution order was found to be reversed when sodium chloride was used. Furthermore, the resolution of the three mono-PEGylated forms was not possible with this column and ammonium sulfate as mobile phase. In 4 M sodium chloride a resolution of all PEGylated lysozyme forms was achieved. A tentative explanation for these phenomena can be the increased solvation of the PEG polymers in sodium chloride which changes the usual attractive hydrophobic forces in ammonium sulfate to more repulsive hydration forces in this hydrotrophic salt.

  14. Adsorption of lignocelluloses of model pre-hydrolysis liquor on activated carbon.

    PubMed

    Fatehi, Pedram; Ryan, Jennifer; Ni, Yonghao

    2013-03-01

    The main objective of this work was to study the adsorption behavior of various components dissolved in the pre-hydrolysis of kraft process on activated carbon. In this work, model prehydrolysis liquor (PHL) solutions (MPHL)s were prepared via mixing various commercially available monosugars, xylan, lignin and furfural; and their adsorption performance on activated carbon (AC) was investigated. In singular (one component) MPHL/AC systems, furfural had the maximum and xylose had the minimum adsorption, and the adsorption of monosugars was basically similar on AC. Also, polydiallyldimethylammonium chloride (PDADMAC) was added (0.5 g/l) to singular xylan or lignin MPHL/AC system, which increased the lignin and xylan adsorptions to 350 and 190 mg/g on AC, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Method and Apparatus for Preventing Biofouling of Surfaces

    DTIC Science & Technology

    2011-06-14

    ammonium compounds that are suitable for this purpose include benzalkonium chloride , benzethonium chloride , methylbenzethonium chloride , cetalkonium... chloride , cetylpyridinium chloride , cetrimonium, cetrimide, dofanium chloride , tetraethylammonium bromide, didecyldimethylammonium chloride and domiphen...upon layers of impermeable nano-particles cause diffusing molecules to follow a tortuous, 8 slow path that results in a huge reduction in

  16. 21 CFR 173.400 - Dimethyldialkylammonium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... acids to form amines that are subsequently reacted with methyl chloride to form the quaternary ammonium... then reacted with 2-ethylhexanal, reduced, methylated, and subsequently reacted with methyl chloride to...

  17. 21 CFR 173.400 - Dimethyldialkylammonium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... acids to form amines that are subsequently reacted with methyl chloride to form the quaternary ammonium... then reacted with 2-ethylhexanal, reduced, methylated, and subsequently reacted with methyl chloride to...

  18. Effects of dietary ammonium chloride and variations in calcium to phosphorus ratio on silica urolithiasis in sheep.

    PubMed

    Stewart, S R; Emerick, R J; Pritchard, R H

    1991-05-01

    Ammonium chloride was added to diets varying in Ca content to evaluate its potential in preventing silica urolith formation in sheep. A 2 x 2 factorial experiment involved wether lambs with ad libitum access to a diet of 50% grass hay and 50% ground oats plus supplement. The basal diet contained on a DM basis 3.3% SiO2, .31% Ca, .22% P, 11.6% CP, and 26% ADF. Treatments (38 to 39 lambs/treatment) consisted of a control (C), limestone to increase dietary calcium to .6% (L), 1% ammonium chloride (A), and L + A (LA). After a 118-d experimental period, siliceous kidney deposits were found only in C and L, with silica making up 93% to 95% of the urolithic ash. Urolith incidences were 13% (C) and 18% (L), respectively. The lack of urolith development in lambs fed A and LA (ammonium chloride effect, P less than .01) and a trend toward a lower urolith incidence in C vs L (P less than .02) support the hypothesis that acid-forming effects of the diet and a reduction in the dietary Ca to P ratio reduce silica urolith formation.

  19. Resistance of Pseudomonas to Quaternary Ammonium Compounds. I. Growth in Benzalkonium Chloride Solution

    PubMed Central

    Adair, Frank W.; Geftic, Sam G.; Gelzer, Justus

    1969-01-01

    Resistant cells of Pseudomonas aeruginosa and a waterborne Pseudomonas sp. (strain Z-R) were able to multiply in nitrogen-free minimal salts solution containing various concentrations of commercially prepared, ammonium acetate-buffered benzalkonium chloride (CBC), a potent antimicrobial agent. As the CBC concentration increased, growth increased until a point was reached at which the extent of growth leveled off or was completely depressed. Minimal salts solutions of pure benzalkonium chloride (PBC) containing no ammonium acetate did not support bacterial growth. When ammonium acetate was added to PBC solutions in the same concentrations found in CBC solutions, growth patterns developed that were comparable to those found with CBC. Likewise, (NH4)2SO4 added to PBC solutions supported growth of both organisms. P. aeruginosa was initially resistant to CBC levels of 0.02% and it was adapted to tolerate levels as high as 0.36%. Strain Z-R was naturally resistant to 0.4% CBC. Since ammonium acetate, carried over by the CBC used in drug formulations and disinfectant solutions, has the potential to support the growth of resistant bacteria and thus make possible the risk of serious infection, it is suggested that regulations allowing the presence of ammonium acetate in CBC solution be reconsidered. PMID:4984761

  20. 40 CFR Table 2 to Subpart B of... - MON Source Categories

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Butyral Production. Ammonium Sulfate Production-Caprolactam By-Product Plants. Quaternary Ammonium Compounds Production. Benzyltrimethylammonium Chloride Production. Carbonyl Sulfide Production. Chelating...

  1. 40 CFR Table 2 to Subpart B of... - MON Source Categories

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Butyral Production. Ammonium Sulfate Production-Caprolactam By-Product Plants. Quaternary Ammonium Compounds Production. Benzyltrimethylammonium Chloride Production. Carbonyl Sulfide Production. Chelating...

  2. 40 CFR Table 2 to Subpart B of... - MON Source Categories

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Butyral Production. Ammonium Sulfate Production-Caprolactam By-Product Plants. Quaternary Ammonium Compounds Production. Benzyltrimethylammonium Chloride Production. Carbonyl Sulfide Production. Chelating...

  3. 40 CFR Table 2 to Subpart B of... - MON Source Categories

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Butyral Production. Ammonium Sulfate Production-Caprolactam By-Product Plants. Quaternary Ammonium Compounds Production. Benzyltrimethylammonium Chloride Production. Carbonyl Sulfide Production. Chelating...

  4. 46 CFR Table 2 to Part 153 - Cargoes Not Regulated Under Subchapters D or O of This Chapter When Carried in Bulk on Non...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Category 2-Amino-2-hydroxymethyl-1,3-propanediol solution III Ammonium hydrogen phosphate solution D...) D Ammonium phosphate, Urea solution, see also Urea, Ammonium phosphate solution D Ammonium..., Magnesium nitrate, Potassium chloride solution III Caramel solutions III Chlorinated paraffins (C14-C17...

  5. Correlation of second virial coefficient with solubility for proteins in salt solutions.

    PubMed

    Mehta, Chirag M; White, Edward T; Litster, James D

    2012-01-01

    In this work, osmotic second virial coefficients (B(22)) were determined and correlated with the measured solubilities for the proteins, α-amylase, ovalbumin, and lysozyme. The B(22) values and solubilities were determined in similar solution conditions using two salts, sodium chloride and ammonium sulfate in an acidic pH range. An overall decrease in the solubility of the proteins (salting out) was observed at high concentrations of ammonium sulfate and sodium chloride solutions. However, for α-amylase, salting-in behavior was also observed in low concentration sodium chloride solutions. In ammonium sulfate solutions, the B(22) are small and close to zero below 2.4 M. As the ammonium sulfate concentrations were further increased, B(22) values decreased for all systems studied. The effect of sodium chloride on B(22) varies with concentration, solution pH, and the type of protein studied. Theoretical models show a reasonable fit to the experimental derived data of B(22) and solubility. B(22) is also directly proportional to the logarithm of the solubility values for individual proteins in salt solutions, so the log-linear empirical models developed in this work can also be used to rapidly predict solubility and B(22) values for given protein-salt systems. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  6. 40 CFR 721.10154 - Quaternary ammonium compounds, dicoco alkyldimethyl, chlorides, reaction products with silica.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alkyldimethyl, chlorides, reaction products with silica. 721.10154 Section 721.10154 Protection of Environment..., dicoco alkyldimethyl, chlorides, reaction products with silica. (a) Chemical substance and significant..., dicoco alkyldimethyl, chlorides, reaction products with silica (PMN P-08-157; CAS No. 956147-76-5) is...

  7. 40 CFR 721.10154 - Quaternary ammonium compounds, dicoco alkyldimethyl, chlorides, reaction products with silica.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alkyldimethyl, chlorides, reaction products with silica. 721.10154 Section 721.10154 Protection of Environment..., dicoco alkyldimethyl, chlorides, reaction products with silica. (a) Chemical substance and significant..., dicoco alkyldimethyl, chlorides, reaction products with silica (PMN P-08-157; CAS No. 956147-76-5) is...

  8. Preparation, Characterization and Utilization of Electrodes Coated with Polymeric Networks Formed by Gamma Radiation Crosslinking.

    DTIC Science & Technology

    1987-04-01

    polymers such as poly[ diallyl dimethyl ammonium chloride] , poly [vinylbenzyl trimethyl ammonium chloride], poly[styrene sulfonic acid , sodium salt] and...poly[acrylic acid ], which would ordinarily dissolve from the electrode surface in aqueous solution unless crosslinked into a network, and several...Irradiation on a Water-Soluble Polymer: DDAC 8 E. Electrochemistry of DDAC Networks on Platinum and Graphite 10 F. Poly [acrylic acid ] Films on Graphite

  9. Resolution Mechanism and Characterization of an Ammonium Chloride-Tolerant, High-Thermostable, and Salt-Tolerant Phenylalanine Dehydrogenase from Bacillus halodurans.

    PubMed

    Jiang, Wei; Wang, Ya-Li; Fang, Bai-Shan

    2018-05-09

    As phenylalanine dehydrogenase (PheDH) plays an important role in the synthesis of chiral drug intermediates and detection of phenylketonuria, it is significant to obtain a PheDH with specific and high activity. Here, a PheDH gene, pdh, encoding a novel BhPheDH with 61.0% similarity to the known PheDH from Microbacterium sp., was obtained. The BhPheDH showed optimal activity at 60 °C and pH 7.0, and it showed better stability in hot environment (40-70 °C) than the PheDH from Nocardia sp. And its activity and thermostability could be significantly increased by sodium salt. After incubation for 2 h in 3 M NaCl at 60 °C, the residual activity of the BhPheDH was found to be 1.8-fold higher than that of the control group (without NaCl). The BhPheDH could tolerate high concentration of ammonium chloride and its activity could be also enhanced by the high concentration of ammonium salts. These characteristics indicate that the BhPheDH possesses better thermostability, ammonium chloride tolerance, halophilic mechanism, and high salt activation. The mechanism of thermostability and high salt tolerance of the BhPheDH was analyzed by molecular dynamics simulation. These results provide useful information about the enzyme with high-temperature activity, thermostability, halophilic mechanism, tolerance to high concentration of ammonium chloride, higher salt activation and enantio-selectivity, and the application of molecular dynamics simulation in analyzing the mechanism of these distinctive characteristics.

  10. Mineralization of surfactants by the microbiota of submerged plant detritus.

    PubMed

    Federle, T W; Ventullo, R M

    1990-02-01

    In wetlands and canopied bodies of water, plant detritus is an important source of carbon and energy. Detrital materials possess a large surface area for sorption of dissolved organics and are colonized by a large and diverse microbiota. To examine the biodegradation of surfactants by these microorganisms, submerged oak leaves were obtained from a laundromat wastewater pond, its overflow, and a pristine control pond. Leaves were cut into disks and incubated in sterile water amended with 50 mug of C-labeled linear alkylbenzene sulfonate (LAS), linear alcohol ethoxylate, stearyltrimethyl ammonium chloride, distearyldimethyl ammonium chloride, benzoic acid, or mixed amino acids per liter. Sorption of the test compounds to the detritus and evolution of CO(2) were followed with time. All of the compounds sorbed to the detritus to various degrees, with LAS and stearyltrimethyl ammonium chloride the most sorptive and benzoic acid the least. All compounds were mineralized without a lag. With leaves from the laundromat wastewater pond, half-lives were 12.6 days for LAS, 8.4 days for linear alcohol ethoxylate, 14.2 days for stearyltrimethyl ammonium chloride, 1.0 days for benzoic acid, and 2.7 days for mixed amino acids. Mineralization of LAS and linear alcohol ethoxylate by control pond leaves was slower and exhibited an S-shaped rather than a typical first-order pattern. This study shows that detritus represents a significant site of surfactant removal in detritus-rich systems.

  11. Hydrolysis of cellulose catalyzed by quaternary ammonium perrhenates in 1-allyl-3-methylimidazolium chloride.

    PubMed

    Wang, Jingyun; Zhou, Mingdong; Yuan, Yuguo; Zhang, Quan; Fang, Xiangchen; Zang, Shuliang

    2015-12-01

    Quaternary ammonium perrhenates were applied as catalyst to promote the hydrolysis of cellulose in 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The quaternary ammonium perrhenates displayed good catalytic performance for cellulose hydrolysis. Water was also proven to be effective to promote cellulose hydrolysis. Accordingly, 97% of total reduced sugar (TRS) and 42% of glucose yields could be obtained under the condition of using 5mol% of tetramethyl ammonium perrhenate as catalyst, 70μL of water, ca. 0.6mmol of microcrystalline cellulose (MCC) and 2.0g of [Amim]Cl as solvent under microwave irradiation for 30min at 150°C (optimal conditions). The influence of quaternary ammonium cation on the efficiency of cellulose hydrolysis was examined based on different cation structures of perrhenates. The mechanism on perrhenate catalyzed cellulose hydrolysis is also discussed, whereas hydrogen bonding between ReO4 anion and hydroxyl groups of cellulose is assumed to be the key step for depolymerization of cellulose. Copyright © 2015. Published by Elsevier Ltd.

  12. Bacillus stearothermophilus sporulation response to different composition media.

    PubMed

    Penna, T C; Machoshvili, I A; Taqueda, M E; Ferraz, C A

    1998-01-01

    To evaluate the effectiveness of 11 commonly used ingredients to improve Bacillus stearothermophilus ATCC 7953 sporulation, with high spore yields in a short period of incubation, 32 composition media were set up by a fractional factorial 2IV11-6 design at two levels: D-glucose (0.018-0.25%), L-glutamic acid (0.040-0.10%), yeast extract (0.050-0.40%), peptone (0.30-0.50%), sodium chloride (0.001-1.0%), magnesium sulfate (0.001-0.20%), ammonium phosphate (0.010-0.035%), potassium phosphate monobasic (0.050-0.25%), calcium chloride (0.001-0.05%), ferrous sulfate (0.0003-0.002%), manganese sulfate (0.001-0.50%). The largest variation on Log10 CFU response took place due to sodium chloride main effect, by changing it from low to high levels. Magnesium sulfate, calcium chloride, and ferrous sulfate were split and exerted no detectable main effect influence on sporulation. Setting up two 16 runs for sodium chloride effect, in each of which the remainder levels were kept constant, other components contribution was studied. At low sodium chloride, best average 7.25 Log10 CFU yielded by fastening yeast extract and peptone at high level, and remainders at low level. Considering high level of sodium chloride, peptone, yeast extract and ammonium phosphate kept at high level and remainders at low level confirmed the best sporulation yield. Adjusted models evidenced a strong influence of joint yeast/peptone effect, associated to ammonium phosphate contributing positively. The reduced incubation period from 15 days to 3-6 days at 62 degrees C was attained for all 32 experimental runs.

  13. Acid soldering flux poisoning

    MedlinePlus

    Acid soldering flux is a chemical used to clean and protect the area where two pieces of metal are ... The harmful substances in soldering fluxes are called hydrocarbons. They include: Ammonium chloride Rosin Hydrochloric acid Zinc chloride

  14. On the kinetics of organic pollutant degradation with Co2+/peroxymonosulfate process: When ammonium meets chloride.

    PubMed

    Huang, Ying; Yang, Fei; Ai, Luoyan; Feng, Min; Wang, Chi; Wang, Zhaohui; Liu, Jianshe

    2017-07-01

    A large amount of chloride and ammonium ions were produced and released from industrial processes with non-biodegradable organic pollutants to affect efficiencies of advanced oxidation processes (AOPs). Here, the influences of chloride and ammonium ions on Co/peroxymonosulfate (Co/PMS) reaction system, a widely used AOPs to produce sulfate radicals, were investigated by examining the degradation efficiency of an azo dye (Acid Orange 7, AO7). The experimental results showed that a significant decrease in the degradation rate of AO7 was observed in the presence of NH 4 + , while a dual effect of chloride on AO7 bleaching appeared. The presence of NH 4 Cl was unfavorable for AO7 degradation at low concentration (<20 mM), whereas further addition of NH 4 Cl (>20 mM) apparently accelerated AO7 discoloration rate. The apparent effects of the two co-existing inorganic ions were determined by roles of the dominating ions at varied molar ratio of [NH 4 + ]/[Cl - ]. The present study may have technical implications for the treatment of industrial wastewater containing diverse ions in practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Biodegradation of rocket propellant waste, ammonium perchlorate

    NASA Technical Reports Server (NTRS)

    Naqvi, S. M. Z.; Latif, A.

    1975-01-01

    The short term effects of ammonium perchlorate on selected organisms were studied. A long term experiment was also designed to assess the changes incurred by ammonium perchlorate on the nitrogen and chloride contents of soil within a period of 3 years. In addition, an attempt was made to produce methane gas from anaerobic fermentation of the aquatic weed, Alternanthera philoxeroides.

  16. Exposure to common quaternary ammonium disinfectants decreases fertility in mice

    PubMed Central

    Melin, Vanessa E.; Potineni, Haritha; Hunt, Patricia; Griswold, Jodi; Siems, Bill; Werre, Stephen R.; Hrubec, Terry C.

    2014-01-01

    Quaternary ammonium compounds (QACs) are antimicrobial disinfectants commonly used in commercial and household settings. Extensive use of QACs results in ubiquitous human exposure, yet reproductive toxicity has not been evaluated. Decreased reproductive performance in laboratory mice coincided with the introduction of a disinfectant containing both alkyl dimethyl benzyl ammonium chloride (ADBAC) and didecyl dimethyl ammonium chloride (DDAC). QACs were detected in caging material over a period of several months following cessation of disinfectant use. Breeding pairs exposed for six months to a QAC disinfectant exhibited decreases in fertility and fecundity: increased time to first litter, longer pregnancy intervals, fewer pups per litter and fewer pregnancies. Significant morbidity in near term dams was also observed. In summary, exposure to a common QAC disinfectant mixture significantly impaired reproductive health in mice. This study illustrates the importance of assessing mixture toxicity of commonly used products whose components have only been evaluated individually. PMID:25483128

  17. Quaternary ammonium salt N-(dodecyloxycarboxymethyl)-N,N,N-trimethyl ammonium chloride induced alterations in Saccharomyces cerevisiae physiology.

    PubMed

    Oblak, Ewa; Piecuch, Agata; Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata

    2016-12-01

    We investigated the influence of the quaternary ammonium salt (QAS) called IM (N-(dodecyloxycarboxymethyl)- N,N,N-trimethyl ammonium chloride) on yeast cells of the parental strain and the IM-resistant mutant (EO25 IMR) growth. The phenotype of this mutant was pleiotropic. The IMR mutant exhibited resistance to ethanol, osmotic shock and oxidative stress, as well as increased sensitivity to UV. Moreover, it was noted that mutant EO25 appears to have an increased resistance to clotrimazole, ketoconazole, fluconazole, nystatin and cycloheximide. It also tolerated growth in the presence of crystal violet, DTT and metals (selenium, tin, arsenic). It was shown that the presence of IM decreased ergosterol level in mutant plasma membrane and increased its unsaturation. These results indicate changes in the cell lipid composition. Western blot analysis showed the induction of Pma1 level by IM. RT-PCR revealed an increased PMA1 expression after IM treatment.

  18. Mineralization of Surfactants by the Microbiota of Submerged Plant Detritus

    PubMed Central

    Federle, Thomas W.; Ventullo, Roy M.

    1990-01-01

    In wetlands and canopied bodies of water, plant detritus is an important source of carbon and energy. Detrital materials possess a large surface area for sorption of dissolved organics and are colonized by a large and diverse microbiota. To examine the biodegradation of surfactants by these microorganisms, submerged oak leaves were obtained from a laundromat wastewater pond, its overflow, and a pristine control pond. Leaves were cut into disks and incubated in sterile water amended with 50 μg of 14C-labeled linear alkylbenzene sulfonate (LAS), linear alcohol ethoxylate, stearyltrimethyl ammonium chloride, distearyldimethyl ammonium chloride, benzoic acid, or mixed amino acids per liter. Sorption of the test compounds to the detritus and evolution of 14CO2 were followed with time. All of the compounds sorbed to the detritus to various degrees, with LAS and stearyltrimethyl ammonium chloride the most sorptive and benzoic acid the least. All compounds were mineralized without a lag. With leaves from the laundromat wastewater pond, half-lives were 12.6 days for LAS, 8.4 days for linear alcohol ethoxylate, 14.2 days for stearyltrimethyl ammonium chloride, 1.0 days for benzoic acid, and 2.7 days for mixed amino acids. Mineralization of LAS and linear alcohol ethoxylate by control pond leaves was slower and exhibited an S-shaped rather than a typical first-order pattern. This study shows that detritus represents a significant site of surfactant removal in detritus-rich systems. Images PMID:16348111

  19. Microtitration of various anions with quaternary ammonium halides using solid-state electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selig, W.

    1980-01-01

    Many solid-state electrodes were found to respond as endpoint detectors in the potentiometric titration of large inorganic and organic anions with quaternary ammonium halides. The best response was obtained with the iodide and cyanide electrodes although practically any electrode can function as endpoint sensor. The titrants were hexadecylpyridinium chloride and hexadecyltrimethylammonium chloride; hexadecyltrimethylammonium bromide and Hyamine 1622 may also be used. Some inorganic anions thus titratable are perrhenate, persulfate, ferricyanide, hexafluorophosphate, and hexachloroplatinate. Examples of organic anions titratable are nitroform, tetraphenylborate, cyanotriphenylborate, picrate, long-chain sulfates and sulfonates, and some soaps. The reverse titration of quaternary ammonium halides vs dodecylsulfate ismore » also feasible. Some titrations are feasible in a partially nonaqueous medium.« less

  20. 40 CFR 415.242 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SOURCE CATEGORY Ammonium Chloride Production Subcategory § 415.242 Effluent limitations guidelines... point source subject to this subpart and reacting anhydrous ammonia with hydrogen chloride gas must...

  1. Effects of ammonium sulfate and sodium chloride concentration on PEG/protein liquid-liquid phase separation.

    PubMed

    Dumetz, André C; Lewus, Rachael A; Lenhoff, Abraham M; Kaler, Eric W

    2008-09-16

    When added to protein solutions, poly(ethylene glycol) (PEG) creates an effective attraction between protein molecules due to depletion forces. This effect has been widely used to crystallize proteins, and PEG is among the most successful crystallization agents in current use. However, PEG is almost always used in combination with a salt at either low or relatively high concentrations. Here the effects of sodium chloride and ammonium sulfate concentration on PEG 8000/ovalbumin liquid-liquid (L-L) phase separation are investigated. At low salt the L-L phase separation occurs at decreasing protein concentration with increasing salt concentration, presumably due to repulsive electrostatic interactions between proteins. At high salt concentration, the behavior depends on the nature of the salt. Sodium chloride has little effect on the L-L phase separation, but ammonium sulfate decreases the protein concentration at which the L-L phase separation occurs. This trend is attributed to the effects of critical fluctuations on depletion forces. The implications of these results for designing solution conditions optimal for protein crystallization are discussed.

  2. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    PubMed

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability of the co-ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity.

  3. Hazard Assessment Computer System HACS/UIM Users’ Operation Manual. Volume II.

    DTIC Science & Technology

    1981-09-01

    AMMONIUM OXALATE FAS FERROUS AMMONIUM SULFATE FCL FERRIC CHLORIDE FCP FERRIC GLYCEROPHOSPHATE FEC FERROUS CHLORIDE FFA FURFURAL FFB FERROUS FLUOROBORATE...FAL FFA FFBi FMA FNS FSA FSL FXX BAK GAT SAY SCM GCR GCS SOC SOS SPL SRF GSR STA J-2 HAC HAI HAL HEIR HCC HCL HCN HDC HE’S HDZ HFA HFX HMD HMI HPA...ENP EOEI EOP EOT EPC ETA ETC ETD ETf3 ETI FAL FFA FFB FMA FMS VSL OCR GOS GIA MAC HAI HCL Ht’Z HFA HMD HMI HPA HPdkt HPO HSS HXG IAA IAC IAL IAN IBR

  4. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...

  5. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...

  6. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...

  7. Synthesis and antibacterial activity of bis-[2-hydroxy-3-(1,7,8,9,10-pentamethyl-3,5-dioxo-4-aza-tricyclo[5.2.1.0(2,6)]dec-8-en-4-yloxy)-propyl]-dimethyl-ammonium chloride.

    PubMed

    Struga, Marta; Kossakowski, Jerzy; Stefańska, Joanna; Zimniak, Andrzej; Koziol, Anna E

    2008-06-01

    A new quaternary ammonium compound, bis-[2-hydroxy-3-(1,7,8,9,10-pentamethyl-3,5-dioxo-4-aza-tricyclo[5.2.1.0(2,6)]dec-8-en-4-yloxy)-propyl]-dimethyl-ammonium chloride (4), was synthesized. The compound was investigated for antibacterial activity, including Gram-positive cocci and Gram-negative rods, and antifungal activity. Compound 4 showed significant inhibition against Staphylococcus aureus. Research was carried out over 4 standard strains and 40 hospital strains. Elementary analysis and/or MS, (1)H NMR and (13)C NMR spectra confirmed the identity of the products. The molecular structure of 3 was determined by an X-ray analysis.

  8. Urine Anion Gap to Predict Urine Ammonium and Related Outcomes in Kidney Disease.

    PubMed

    Raphael, Kalani L; Gilligan, Sarah; Ix, Joachim H

    2018-02-07

    Low urine ammonium excretion is associated with ESRD in CKD. Few laboratories measure urine ammonium, limiting clinical application. We determined correlations between urine ammonium, the standard urine anion gap, and a modified urine anion gap that includes sulfate and phosphate and compared risks of ESRD or death between these ammonium estimates and directly measured ammonium. We measured ammonium, sodium, potassium, chloride, phosphate, and sulfate from baseline 24-hour urine collections in 1044 African-American Study of Kidney Disease and Hypertension participants. We evaluated the cross-sectional correlations between urine ammonium, the standard urine anion gap (sodium + potassium - chloride), and a modified urine anion gap that includes urine phosphate and sulfate in the calculation. Multivariable-adjusted Cox models determined the associations of the standard urine anion gap and the modified urine anion gap with the composite end point of death or ESRD; these results were compared with results using urine ammonium as the predictor of interest. The standard urine anion gap had a weak and direct correlation with urine ammonium ( r =0.18), whereas the modified urine anion gap had a modest inverse relationship with urine ammonium ( r =-0.58). Compared with the highest tertile of urine ammonium, those in the lowest urine ammonium tertile had higher risk of ESRD or death (hazard ratio, 1.46; 95% confidence interval, 1.13 to 1.87) after adjusting for demographics, GFR, proteinuria, and other confounders. In comparison, participants in the corresponding standard urine anion gap tertile did not have higher risk of ESRD or death (hazard ratio, 0.82; 95% confidence interval, 0.64 to 1.07), whereas the risk for those in the corresponding modified urine anion gap tertile (hazard ratio, 1.32; 95% confidence interval, 1.03 to 1.68) approximated that of directly measured urine ammonium. Urine anion gap is a poor surrogate of urine ammonium in CKD unless phosphate and sulfate are included in the calculation. Because the modified urine anion gap merely estimates urine ammonium and requires five measurements, direct measurements of urine ammonium are preferable in CKD. Copyright © 2018 by the American Society of Nephrology.

  9. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  10. Synthesis of tin (II) oxide from tin (II) oxohydroxide

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Svetlana; Lisitsa, Konstantin

    2017-11-01

    Sufficiently limited use of tin (II) oxide is associated with the difficulties of its preparation without impurities of tin (IV) oxide. Understanding the cause of the oxidation process will make it possible to develop methods for obtaining SnO without impurities. The influence of ammonium chloride concentration in the suspension on the oxide composition was investigated. The temperature of oxidation (400 °C) on the air and temperature decomposition in the argon (350 °C) of Sn6O4(OH)4 in the solid phase were determined by the thermal analysis method. The decomposition temperature of the oxyhydroxide in the suspension of ammonium chloride does not exceed 100 °C. An increase in the content of ammonium chloride in an aqueous solution leads to an increase i n the solubility of oxohydroxide and leads to an increase in pH. The suspensions of Sn6O4(OH)4 were subjected to heat treatment on a sand bath and under microwave irradiation. Samples of tin oxide were obtained. The quantitative composition of the mixture of tin oxides was determined. The research also highlights emphasizes that the oxidation of tin (II) to tin (IV) is associated with the dissolved oxygen content in the suspension.

  11. Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier.

    PubMed

    Xu, Yongmei; Du, Yumin; Huang, Ronghua; Gao, Leping

    2003-12-01

    N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) is water-soluble derivative of chitosan (CS), synthesized by the reaction between glycidyl-trimethyl-ammonium chloride and CS. HTCC nanoparticles have been formed based on ionic gelation process of HTCC and sodium tripolyphosphate (TPP). Bovine serum albumin (BSA), as a model protein drug, was incorporated into the HTCC nanoparticles. HTCC nanoparticles were 110-180 nm in size, and their encapsulation efficiency was up to 90%. In vitro release studies showed a burst effect and a slow and continuous release followed. Encapsulation efficiency was obviously increased with increase of initial BSA concentration. Increasing TPP concentration from 0.5 to 0.7 mg/ml promoted encapsulation efficiency from 46.7% to 90%, and delayed release. As for modified HTCC nanoparticles, adding polyethylene glycol (PEG) or sodium alginate obviously decreased the burst effect of BSA from 42% to 18%. Encapsulation efficiency was significantly reduced from 47.6% to 2% with increase of PEG from 1.0 to 20.0 mg/ml. Encapsulation efficiency was increased from 14.5% to 25.4% with increase of alginate from 0.3 to 1.0 mg/ml.

  12. Determination of halonitromethanes and haloacetamides: an evaluation of sample preservation and analyte stability in drinking water.

    PubMed

    Liew, Deborah; Linge, Kathryn L; Joll, Cynthia A; Heitz, Anna; Charrois, Jeffrey W A

    2012-06-08

    Simultaneous quantitation of 6 halonitromethanes (HNMs) and 5 haloacetamides (HAAms) was achieved with a simplified liquid-liquid extraction (LLE) method, followed by gas chromatography-mass spectrometry. Stability tests showed that brominated tri-HNMs immediately degraded in the presence of ascorbic acid, sodium sulphite and sodium borohydride, and also reduced in samples treated with ammonium chloride, or with no preservation. Both ammonium chloride and ascorbic acid were suitable for the preservation of HAAms. Ammonium chloride was most suitable for preserving both HNMs and HAAms, although it is recommended that samples be analysed as soon as possible after collection. While groundwater samples exhibited a greater analytical bias compared to other waters, the good recoveries (>90%) of most analytes in tap water suggest that the method is very appropriate for determining these analytes in treated drinking waters. Application of the method to water from three drinking water treatment plants in Western Australia indicating N-DBP formation did occur, with increased detections after chlorination. The method is recommended for low-cost, rapid screening of both HNMs and HAAms in drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. AMBIENT AMMONIA AND AMMONIUM AEROSOL ACROSS A REGION OF VARIABLE AMMONIA EMISSION DENSITY

    EPA Science Inventory

    The paper presents one year of ambient ammonia (NH3), ammonium (NH4+), hydrochloric acid (HCI), chloride (CI¯), nitric acid (HNO3), nitrate (NO3¯), nitrous acid (HONO), sulfur dioxide (SO2), and sulfate (SO4

  14. CHLORIDEDETERMINATION IN HIGH IONIC STRENGTH SOLUTION OF AMMONIUM ACETATE USING NEGATIVE ION ELECTRON SPRAY IONIZATION (HPLC/MS)

    EPA Science Inventory

    A precise ion chromatography method has been developed for the determination of chloride in high ionic strength ammonium acetate solutions (10-5 M-5 M) using sodium carbonate/sodium bicarbonate as eluent. Negative ion electrospray ionization (ESI) mass spectrometry was used for q...

  15. 21 CFR 176.300 - Slimicides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... provided for under paragraph (d) of this section. (3) Slimicides are added to the process water used in the... substances Limitations Acrolein Alkenyl (C16-C18) dimethylethyl-ammonium bromide n-Alkyl (C12-C18) dimethyl benzyl ammonium chloride 1,2-Benzisothiazolin-3-one At a level of 0.06 pound per ton of dry weight fiber...

  16. Soft antimicrobial agents: synthesis and activity of labile environmentally friendly long chain quaternary ammonium compounds.

    PubMed

    Thorsteinsson, Thorsteinn; Másson, Már; Kristinsson, Karl G; Hjálmarsdóttir, Martha A; Hilmarsson, Hilmar; Loftsson, Thorsteinn

    2003-09-11

    A series of soft quaternary ammonium antimicrobial agents, which are analogues to currently used quaternary ammonium preservatives such as cetyl pyridinium chloride and benzalkonium chloride, were synthesized. These soft analogues consist of long alkyl chain connected to a polar headgroup via chemically labile spacer group. They are characterized by facile nonenzymatic and enzymatic degradation to form their original nontoxic building blocks. However, their chemical stability has to be adequate in order for them to have antimicrobial effects. Stability studies and antibacterial and antiviral activity measurements revealed relationship between activity, lipophilicity, and stability. Their minimum inhibitory concentration (MIC) was as low as 1 microg/mL, and their viral reduction was in some cases greater than 6.7 log. The structure-activity studies demonstrate that the bioactive compounds (i.e., MIC for Gram-positive bacteria of <10 microg/mL) have an alkyl chain length between 12 and 18 carbon atoms, with a polar headgroup preferably of a small quaternary ammonium group, and their acquired inactivation half-life must be greater than 3 h at 60 degrees C.

  17. Development and Testing of a Colorimetric 96 Well Plate Assay for the Determination of HD Hydrolysis Rate in Various Formulations

    DTIC Science & Technology

    2005-01-01

    Cold Foam 1% ethylene glycol 1% benzalkonium chloride 1% polyvinylpolypyrrolidone 1% Brij 58 1% Benzyldimethyl tetradecyl ammonium chloride dihydrate...described in this report was authorized by the Defense Threat Reduction Agency. This work was started in December 2003 and completed in March 2004. The...LITERA TURE CITED ..................................................................................... 15 5 FIGURES 1. Rates of Chloride Release in

  18. 21 CFR 173.400 - Dimethyldialkylammonium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Free Amine Value of Fatty Quaternary Ammonium Chlorides,” 2d printing including additions and revisions... Records Administration (NARA). For information on the availability of this material at NARA, call 202-741... Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to...

  19. 21 CFR 173.400 - Dimethyldialkylammonium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Free Amine Value of Fatty Quaternary Ammonium Chlorides,” 2d printing including additions and revisions... Records Administration (NARA). For information on the availability of this material at NARA, call 202-741... Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to...

  20. Antibacterial Effect of Silver Diamine Fluoride on Cariogenic Organisms.

    PubMed

    Lou, Yali; Darvell, Brain W; Botelho, Michael G

    2018-05-01

    To screen the possible antimicrobial activity of a range of clinically used, silver-based compounds on cariogenic organisms: silver diamine fluoride (SDF), silver fluoride, and silver nitrate. Preliminary screening disk-diffusion susceptibility tests were conducted on Mueller-Hinton agar plates inoculated with Streptococcus mutans, Lactobacillus acidophilus, and Actinomyces naeslundii, organisms known to be cariogenic. In order to identify which component of the silver compounds was responsible for any antibacterial (AB) effect, and to provide controls, the following were also investigated at high and low concentrations: sodium fluoride, ammonium fluoride, ammonium chloride, sodium fluoride, sodium chloride, and sodium nitrate, as well as deionized water as control. A volume of 10 pL of a test solution was dispensed onto a paper disk resting on the inoculated agar surface, and the plate incubated anaerobically at 37°C for 48 hours. The zones of inhibition were then measured. Silver diamine fluoride, silver fluoride, silver nitrate, and ammonium fluoride had significant AB effect (p < 0.05) on all three test organisms, although ammonium fluoride had no effect at low concentration; the remaining other compounds had no effect. Silver ions appear to be the principal AB agent at both high and low concentration; fluoride ions only have an AB effect at high concentration, while ammonium, nitrate, chloride and sodium ions have none. The anticaries effect of topical silver solutions appears restricted to that of the silver ions. Silver compounds, such as SDF, silver fluoride, and silver nitrate have AB effect against cariogenic organisms and these may have clinical impact in arresting or preventing dental decay. Sodium fluoride did not have AB effect under the conditions tested.

  1. The Influence of the Anionic Counter-Ion on the Activity of Ammonium Substituted Hoveyda-Type Olefin Metathesis Catalysts in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Gułajski, Łukasz; Grela, Karol

    Polar olefin metathesis catalysts, bearing an ammonium group are presented. The electron withdrawing ammonium group not only activates the catalysts electronically, but at the same time makes the catalysts more hydrophilic. Catalysts can be therefore efficiently used not only in traditional media, such as methylene chloride and toluene, but also in technical-grade alcohols, alcohol— water mixtures and in neat water. Finally, in this overview the influence of the anionic counter-ion on the activity of ammonium substituted Hoveyda-type olefin metathesis catalysts in aqueous media is presented.

  2. Effects of quaternary ammonium-methacrylates on the mechanical properties of unfilled resins.

    PubMed

    Hoshika, Tomohiro; Nishitani, Yoshihiro; Yoshiyama, Masahiro; Key, William O; Brantley, William; Agee, Kelli A; Breschi, Lorenzo; Cadenaro, Milena; Tay, Franklin R; Rueggeberg, Frederick; Pashley, David H

    2014-11-01

    Adding antimicrobial/anti-MMP quaternary ammonium methacrylates (QAMs) to comonomer blends should not weaken the mechanical properties of dental resins. This work evaluated the degree conversion and mechanical properties of BisGMA/TEGDMA/HEMA (60:30:10) containing 0-15 mass% QAMs A-E (A: 2-acryloxyethyltrimethyl ammonium chloride; B: [3-(methacryloylamino)propyl]trimethylammonium chloride; C: [2-(methacryloxy)ethyl] trimethyl ammonium chloride; D: diallyldimethyl ammonium chloride; E: 2-(methacryloyloxy) ethyltrimethyl ammonium methyl sulfate. Unfilled resins with and without QAM were placed on ATR-FTIR and light-polymerized for 20s in a thin film at 30°C. Unfilled resin beams were casted from square hollow glass tubings. Half of the beams were tested after 3 days of drying (control); the other half were tested wet after 3 days of water storage. Addition of QAMs in control resins significantly increased conversion 600 s after light termination, with the exception of 5% MAPTAC (p<0.05). Increase of QAM content within a formulation significantly increased conversion. Control beams gave dry Young's moduli of ∼700 MPa. Addition of 5, 10 or 15 mass% QAMs produced significant reductions in dry Young's moduli except for 5% B or C. 15 mass% A, B and C lowered the wet Young's moduli of the resin beams by more than 30%. The ultimate tensile stress (UTS) of control dry resin was 89±11 MPa. Addition of 5-10 mass% QAMs had no adverse effect on the dry UTS. After water storage, the UTS of all resin blends fell significantly (p<0.05), especially when 15 wt% QAMs was added. Control dry beams gave fracture toughness (KIC) values of 0.88±0.1 MPa m(1/2). Wet values were significantly higher at 1.02±0.06 (p<0.05). KIC of dry beams varied from 0.85±0.08 at 5% QAMs to 0.49±0.05 at 15% QAMs. Wet beams gave KIC values of 1.02±0.06 MPa m(1/2) that fell to 0.23±0.01 at 15% QAMs. Addition of 10% QAMs increased the degree of conversion of unfilled resins, but lowered wet toughness and UTS; addition of 15% QAMs lowered the mechanical properties of wet resins below acceptable levels. Copyright © 2014 Academy of Dental Materials. All rights reserved.

  3. Ammonium in aqueous fluids to 600 °C, 1.3 GPa: A spectroscopic study on the effects on fluid properties, silica solubility, and K-feldspar to muscovite reactions

    NASA Astrophysics Data System (ADS)

    Schmidt, Christian; Watenphul, Anke

    2010-12-01

    The behavior of ammonium, NH 4+, in aqueous systems was studied based on Raman spectroscopic experiments to 600 °C and about 1.3 GPa. Spectra obtained at ambient conditions revealed a strong reduction of the dynamic three-dimensional network of water with addition of ammonium chloride, particularly at small solute concentrations. The differential scattering cross section of the ν 1-NH 4+ Raman band in these solutions was found to be similar to that of salammoniac. The Raman band of silica monomers at ˜780 cm -1 was present in all spectra of the fluid at high temperatures in hydrothermal diamond-anvil cell experiments with H 2O ± NH 4Cl and quartz or the assemblage quartz + kyanite + K-feldspar ± muscovite/tobelite. However, these spectra indicated that dissolved silica is less polymerized in ammonium chloride solutions than in comparable experiments with water. Quantification based on the normalized integrated intensity of the H 4SiO 40 band showed that the silica solubility in experiments with H 2O + NH 4Cl was significantly lower than that in equimolal NaCl solutions. This suggests that ammonium causes a stronger decrease in the activity of water in chloridic solutions than sodium. The Raman spectra of the fluid also showed that a significant fraction of ammonium was converted to ammonia, NH 3, in all experiments at temperatures above 300 °C. This indicates a shift towards acidic conditions for experiments without a buffering mineral assemblage. The estimated pH of the fluid was ˜2 at 600 °C, 0.26 GPa, 6.6 m initial NH 4Cl, based on the ratio of the integrated ν 1-NH 3 and ν 1-NH 4+ intensities and the HCl 0 dissociation constant. The NH 3/NH 4+ ratio increased with temperature and decreased with pressure. This implies that more ammonium should be retained in K-bearing minerals coexisting with chloridic fluids upon high- P low- T metamorphism. At 500 °C, 0.73 GPa, ammonium partitions preferentially into the fluid, as constrained from infrared spectroscopy on the muscovite and from mass balance. The conversion of K-feldspar to muscovite proceeded much faster in experiments with NH 4Cl solutions than in comparable experiments with water. This is interpreted as being caused by enhancement of the rate-limiting alumina solubility, suggesting complexation of Al with NH 4. Nucleation and growth of mica at the expense of K-feldspar and NH 4+/K + exchange between fluid and K-feldspar occurred simultaneously, but incorporation of NH 4+ into K-feldspar was distinctly faster than K-feldspar consumption.

  4. Analysis of quaternary ammonium and phosphonium ionic liquids by reversed-phase high-performance liquid chromatography with charged aerosol detection and unified calibration.

    PubMed

    Stojanovic, Anja; Lämmerhofer, Michael; Kogelnig, Daniel; Schiesel, Simone; Sturm, Martin; Galanski, Markus; Krachler, Regina; Keppler, Bernhard K; Lindner, Wolfgang

    2008-10-31

    Several hydrophobic ionic liquids (ILs) based on long-chain aliphatic ammonium- and phosphonium cations and selected aromatic anions were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) employing trifluoroacetic acid as ion-pairing additive to the acetonitrile-containing mobile phase and adopting a step-gradient elution mode. The coupling of charged aerosol detection (CAD) for the non-chromophoric aliphatic cations with diode array detection (DAD) for the aromatic anions allowed their simultaneous analysis in a set of new ILs derived from either tricaprylmethylammonium chloride (Aliquat 336) and trihexyltetradecylphosphonium chloride as precursors. Aliquat 336 is a mix of ammonium cations with distinct aliphatic chain lengths. In the course of the studies it turned out that CAD generates an identical detection response for all the distinct aliphatic cations. Due to lack of single component standards of the individual Aliquat 336 cation species, a unified calibration function was established for the quantitative analysis of the quaternary ammonium cations of the ILs. The developed method was validated according to ICH guidelines, which confirmed the validity of the unified calibration. The application of the method revealed molar ratios of cation to anion close to 1 indicating a quantitative exchange of the chloride ions of the precursors by the various aromatic anions in the course of the synthesis of new ILs. Anomalies of CAD observed for the detection of some aromatic anions (thiosalicylate and benzoate) are discussed.

  5. Effect of an ntrC mutation on amino acid or urea utilization and on nitrogenase switch-off in Herbaspirillum seropedicae.

    PubMed

    Gusso, Claudio L; de Souza, Emanuel M; Rigo, Liu Un; de Oliveira Pedrosa, Fábio; Yates, M G; de M Rego, Fabiane G; Klassen, Giseli

    2008-03-01

    Herbaspirillum seropedicae is a nitrogen-fixing bacterium that grows well with ammonium chloride or sodium nitrate as alternative single nitrogen sources but that grows more slowly with L-alanine, L-serine, L-proline, or urea. The ntrC mutant strain DCP286A was able to utilize only ammonium or urea of these nitrogen sources. The addition of 1 mmol.L-1 ammonium chloride to the nitrogen-fixing wild-type strain inhibited nitrogenase activity rapidly and completely. Urea was a less effective inhibitor; approximately 20% of nitrogenase activity remained 40 min after the addition of 1 mmol x L-1 urea. The effect of the ntrC mutation on nitrogenase inhibition (switch-off) was studied in strain DCP286A containing the constitutively expressed gene nifA of H. seropedicae. In this strain, nitrogenase inhibition by ammonium was completely abolished, but the addition of urea produced a reduction in nitrogenase activity similar to that of the wild-type strain. The results suggest that the NtrC protein is required for assimilation of nitrate and the tested amino acids by H. seropedicae. Furthermore, NtrC is also necessary for ammonium-induced switch-off of nitrogenase but is not involved in the mechanism of nitrogenase switch-off by urea.

  6. Synthesis and structural characterization of polyaniline/cobalt chloride composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asha, E-mail: arana5752@gmail.com; Goyal, Sneh Lata; Kishore, Nawal

    2016-05-23

    Polyaniline (PANI) and PANI /cobalt chloride composites were synthesized by in situ chemical oxidative polymerization of aniline with CoCl{sub 2}.6H{sub 2}O using ammonium peroxidisulphate as an oxidant. These composites were characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD study reveals that both PANI and composites are amorphous. The XRD and SEM results confirm the presence of cobalt chloride in the composites.

  7. Self-assembly of 3,5-bis(ethoxycarbonyl)pyrazolate anions and ammonium cations of beta-phenylethylamine or homoveratrylamine into hetero-double-stranded helical structures.

    PubMed

    Reviriego, Felipe; Sanz, Ana; Navarro, Pilar; Latorre, Julio; García-España, Enrique; Liu-Gonzalez, Malva

    2009-08-21

    Hydrogen-bonded double-stranded hetero-helices are formed when reacting sodium 3,5-bis(ethoxycarbonyl)pyrazolate with beta-phenethylammonium or homoveratrylammonium chloride, in which one of the strands is defined by the ammonium cations and the other one by the pyrazolate anions.

  8. The adsorption of alkyl-dimethyl-benzyl-ammonium chloride onto cotton nonwoven hydroentangled substrates at the solid-liquid interface is minimized by additive chemistries

    USDA-ARS?s Scientific Manuscript database

    Quaternary ammonium compounds, commonly referred to as quats, are cationic surfactants widely used as the active biocide ingredient for disposable disinfecting wipes. The cationic nature of quats results in a strong ionic interaction and adsorption onto wipes materials that have an anionic surface ...

  9. Receptor model source attributions for Utah’s Salt Lake City airshed and the impacts of wintertime secondary ammonium nitrate and ammonium chloride aerosol.

    EPA Science Inventory

    Communities along Utah’s Wasatch Front are currently developing strategies to reduce daily average PM2.5 levels to below National Ambient Air Quality Standards during wintertime, persistent, multi-day stable atmospheric conditions or cold-air pools. Speciated PM2.5 data from the ...

  10. 40 CFR 180.920 - Inert ingredients used pre-harvest; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Defoamer γ-Butyrolactone Solvent C.I. Pigment Blue #15 (CAS Reg. No. 147-14-8; containing no more than 50... Surfactants, related adjuvants of surfactants Aluminum sulfate Safener adjuvant Ammonium chloride (CAS Reg. No... herbicides Ammonium polyphosphate (CAS Reg. No. 68333-79-9) Sequestrant, buffer, or surfactant Barium sulfate...

  11. A comparison of dissolved inorganic nitrogen, chloride and potassium loss in conventional and conservation tillage

    USDA-ARS?s Scientific Manuscript database

    Tillage impact on dissolved losses of ammonium (NH4-N) and nitrate nitrogen (NO3-N), chloride (Cl), and potassium (K) during rotational cotton and peanut production was evaluated. Tillage treatments were strip-tillage (ST) and conventional-tillage (CT). Winter cover crops were used in both tillage...

  12. Dissolved nitrogen, chloride, and potassium loss from fields in conventional and conservation tillage

    USDA-ARS?s Scientific Manuscript database

    Losses of soluble nutrients from cropland and their transport to surface and groundwater are a continuing water quality concern. In this study we evaluated tillage impact on dissolved losses of ammonium (NH4-N) and nitrate nitrogen (NO3-N), chloride (Cl), and potassium (K) during rotational cotton ...

  13. Sorption and leaching of benzalkonium chlorides in agricultural soils.

    PubMed

    Khan, Adnan Hossain; Macfie, Sheila M; Ray, Madhumita B

    2017-07-01

    The adsorption and leaching characteristics of two commonly used benzalkonium chlorides (BACs), benzyl dimethyl dodecyl ammonium chloride (BDDA) and benzyl dimethyl tetradecyl ammonium chloride (BDTA) using three agricultural soils with varied proportions of silt, sand, clay, and organic matter were determined. BACs are cationic surfactants used in large quantities for sanitary and personal care products and are abundant in environmental samples. Adsorption isotherm data (aqueous concentration in the range of 25-150 mg L -1 ) fitted the Langmuir model better than the Freundlich model. BDTA with a longer alkyl chain adsorbed more to soil compared to BDDA, and the soil with the highest percentage of clay adsorbed the most. Column tests conducted using soils amended with lime stabilised biosolids and artificial rain water at a flow rate of 0.2 mL min -1 indicate very low leaching of BACs. Less than 1% of the available BDDA leached through sandy loam soil column with a depth of 9 cm. Therefore, the possibility of BACs to become bioavailable through leaching is very low at environmentally relevant concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Electroplated Fe-Co-Ni films prepared in ammonium-chloride-based plating baths

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Koda, K.; Kaji, J.; Aramaki, H.; Eguchi, K.; Takashima, K.; Nakano, M.; Fukunaga, H.

    2018-05-01

    We electroplated Fe-Co-Ni films in ammonium-chloride-based plating baths, and investigated the effect of the Co content on the magnetic properties and the structural ones of the as-plated films. The coercivity increased abruptly when the Co content become more than 60 at.%. As the rough surfaces were observed in the high Co content region, we considered that degradation of the surface is a factor of the abrupt increase in the coercivity. From the XRD analysis, we found that another factor of the abrupt increase is fcc-bcc phase transformation, and concluded that we need to keep the fcc structure to obtain Fe-Co-Ni films with low coercivity.

  15. Novel selective kappa-opioid ligands.

    PubMed

    Peeters, O M; Jamroz, D; Blaton, N M; De Ranter, C J

    1999-03-15

    The single-crystal X-ray structures of (-)-dimethyl[(2S)-1-(5,6,7,8- tetrahydro-5-oxonaphthalene-2-acetyl)piperidin-2-ylmethyl ]ammonium chloride, C20H29N2O2+.Cl-(BRL-53001A), and (-)-ethylmethyl[(2S)-1-(5,6,7,8-tetrahydro-5-oxonaphthalene- 2- acetyl)piperidin-2-ylmethyl]-ammonium chloride dihydrate, C21H31N2O2+.Cl-.2H2O (BRL-53188A), have been determined. The two molecules have different conformations in the 1-tetralon-6-ylacetyl residue but the same conformation in the 1-acetyl-2-(dialkylaminomethyl)piperidine moiety. The conformations found are in agreement with the required chemical features for kappa affinity and antinociceptive potency.

  16. A solid phase honey-like channel method for synthesizing urea-ammonium chloride cocrystals on industrial scale

    NASA Astrophysics Data System (ADS)

    Xue, Bingchun; Mao, Meiling; Liu, Yanhong; Guo, Jinyu; Li, Jing; Liu, Erbao

    2016-05-01

    Unanticipated a new and simple urea-ammonium chloride cocrystal synthesis method on industrial scale was found during attempts to produce a kind of granulated compound fertilizer. The aggregation of fertilizer powder can make the interaction among particles from loose to close, which generate mechanical pressure and in turn act as the driving force to benefit cocrystal growth. Additionally, the honeycomb-like channels constructed by other coexisting compound make the water evaporates more moderate, which can help the formation of supersaturated solution at suitable rate, further promote the growth of cocrystal. This approach possibly opens a new route toward the developing methodologies for cocrystal synthesis.

  17. Differences in the ribosomes prepared from lactating and non-lactating bovine mammary gland

    PubMed Central

    Herrington, M. D.; Hawtrey, A. O.

    1971-01-01

    1. Ribosomes prepared from bovine lactating mammary gland are able to synthesize protein, whereas similar preparations from non-lactating glands are not. Washing the ribosome suspensions through a medium containing 0.5m-ammonium chloride enhanced their ability to incorporate phenylalanine into polyphenylalanine. 2. Ribosomes isolated from non-lactating bovine mammary gland, in contrast with those from rat liver and lactating mammary gland, contained significant amounts of extraneous nucleases. These enzymes could be removed by washing with a medium A buffer containing 0.5m-ammonium chloride. 3. Only those ribosomes from functionally active tissues were able to bind polyuridylic acid and phenylalanyl-tRNA. PMID:5165653

  18. Unsteady growth of ammonium chloride dendrites

    NASA Astrophysics Data System (ADS)

    Martyushev, L. M.; Terentiev, P. S.; Soboleva, A. S.

    2016-02-01

    Growth of ammonium chloride dendrites from aqueous solution is experimentally investigated. The growth rate υ and the radius ρ of curvature of branches are measured as a function of the relative supersaturation Δ for steady and unsteady growth conditions. It is shown that the experimental results are quantitatively described by the dependences ρ=a/Δ+b, υ=сΔ2, where the factors for primary branches are a=(1.3±0.2)·10-7 m, b=(2.5±0.4)·10-7 m, and c=(2.2±0.3)·10-4 m/s. The factor c is found to be approximately 7 times smaller for the side branches than that for the primary branches.

  19. Granular parakeratosis induced by benzalkonium chloride exposure from laundry rinse aids.

    PubMed

    Robinson, Aaron J; Foster, Rachael S; Halbert, Anne R; King, Emma; Orchard, David

    2017-08-01

    Benzalkonium chloride is a quaternary ammonium cationic detergent present in a number of household products, which can act as a major skin irritant. We present the case of six children who developed granular parakeratosis after exposure to benzalkonium chloride in laundry rinse aids, presenting as a brightly erythematous, tender but minimally pruritic, intertriginous eruption followed by superficial desquamation. The eruptions resolved over 3-4 weeks after cessation of exposure. © 2016 The Australasian College of Dermatologists.

  20. ELUTION OF URANIUM FROM RESIN

    DOEpatents

    McLEan, D.C.

    1959-03-10

    A method is described for eluting uranium from anion exchange resins so as to decrease vanadium and iron contamination and permit recycle of the major portion of the eluats after recovery of the uranium. Diminution of vanadium and iron contamination of the major portion of the uranium is accomplished by treating the anion exchange resin, which is saturated with uranium complex by adsorption from a sulfuric acid leach liquor from an ore bearing uranium, vanadium and iron, with one column volume of eluant prepared by passing chlorine into ammonium hydroxide until the chloride content is about 1 N and the pH is about 1. The resin is then eluted with 8 to 9 column volumes of 0.9 N ammonium chloride--0.1 N hydrochloric acid solution. The eluants are collected separately and treated with ammonia to precipitate ammonium diuranate which is filtered therefrom. The uranium salt from the first eluant is contaminated with the major portion of ths vanadium and iron and is reworked, while the uranium recovered from the second eluant is relatively free of the undesirable vanadium and irons. The filtrate from the first eluant portion is discarded. The filtrate from the second eluant portion may be recycled after adding hydrochloric acid to increase the chloride ion concentration and adjust the pH to about 1.

  1. Deliquescence and crystallization of ammonium sulfate-glutaric acid and sodium chloride-glutaric acid particles

    NASA Astrophysics Data System (ADS)

    Pant, Atul; Fok, Abel; Parsons, Matthew T.; Mak, Jackson; Bertram, Allan K.

    2004-06-01

    In the following, we report the deliquescence relative humidities (DRH) and crystallization relative humidities (CRH) of mixed inorganic-organic particles, specifically ammonium sulfate-glutaric acid and sodium chloride-glutaric acid particles. Knowledge of the DRH and CRH of mixed inorganic-organic particles is crucial for predicting the role of aerosol particles in the atmosphere. Our DRH results are in good agreement with previous measurements, but our CRH results are significantly lower than some of the previous measurements reported in the literature. Our studies show that the DRH and CRH of ammonium sulfate and sodium chloride only decreased slightly when the mole fraction of the acid was less than 0.4. If other organics in the atmosphere behave in a similar manner, then the DRH and CRH of mixed inorganic-organic atmospheric particles will only be slightly less than the DRH and CRH of pure inorganic particles when the organic mole fraction is less than 0.4. Our results also show that if the particles contain a significant amount of organics (mole fraction > 0.5) the crystallization relative humidity decreases significantly and the particles are more likely to remain in the liquid state. Further work is needed to determine if other organics species of atmospheric importance have a similar effect.

  2. Determination of protein phase diagrams by microbatch experiments: exploring the influence of precipitants and pH.

    PubMed

    Baumgartner, Kai; Galm, Lara; Nötzold, Juliane; Sigloch, Heike; Morgenstern, Josefine; Schleining, Kristina; Suhm, Susanna; Oelmeier, Stefan A; Hubbuch, Jürgen

    2015-02-01

    Knowledge of protein phase behavior is essential for downstream process design in the biopharmaceutical industry. Proteins can either be soluble, crystalline or precipitated. Additionally liquid-liquid phase separation, gelation and skin formation can occur. A method to generate phase diagrams in high throughput on an automated liquid handling station in microbatch scale was developed. For lysozyme from chicken egg white, human lysozyme, glucose oxidase and glucose isomerase phase diagrams were generated at four different pH values – pH 3, 5, 7 and 9. Sodium chloride, ammonium sulfate, polyethylene glycol 300 and polyethylene glycol 1000 were used as precipitants. Crystallizing conditions could be found for lysozyme from chicken egg white using sodium chloride, for human lysozyme using sodium chloride or ammonium sulfate and glucose isomerase using ammonium sulfate. PEG caused destabilization of human lysozyme and glucose oxidase solutions or a balance of stabilizing and destabilizing effects for glucose isomerase near the isoelectric point. This work presents a systematic generation and extensive study of phase diagrams of proteins. Thus, it adds to the general understanding of protein behavior in liquid formulation and presents a convenient methodology applicable to any protein solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Determination of Natural and Depleted Uranium in Urine at the ppt Level: An Interlaboratory Analytical Exercise

    DTIC Science & Technology

    2002-10-01

    but de cet exercice analytique 6tait d𔄀valuer toutes les techniques analytiques disponibles ayant la capacit6 de mesurer les rapports isotopiques...B Formulation. Step Component Amount added 1 2% v/v nitric acid 500 mL 2 Calcium chloride (CaCl2.2H 20) 12.6 g 3 2% v/v nitric acid Dilute to 1000 mL...chloride (KCI) 3.43 Sodium chloride (NaCl) 2.32 Creatinine (C4H7N30) 1.10 Ammonium chloride (NH 4Cl) 1.06 Hippuric acid (C9H9N03) 0.63 Calcium chloride

  4. The toxicity of ammonia/ammonium to the vermifiltration wastewater treatment process.

    PubMed

    Hughes, R J; Nair, J; Ho, G

    2008-01-01

    This study was undertaken to assess the toxicity of ammonia/ammonium to key species within the vermifiltration process. The key species, the earthworm Eisenia fetida, was subjected to a series of tests in solid phase mesocosms and full-scale units. The solid phase tests showed a relatively low toxicity to ammonium with ammonium chloride having an LC50 for ammonium of 1.49 g/kg. Ammonium sulfate did not show an effect on mortality at 2 g/kg ammonium. The full-scale units showed that ammonia hydroxide can change the pH and concentration of ammonia in wastewater and while it caused some mortality to the worms its overall affect on system functioning was minimal with no significant difference in terms of worm survival found between treatments. The affect on nitrifying bacteria was also minimal with no linear trend shown with ammonia concentration. IWA Publishing 2008.

  5. Fire performance and decay resistance of solid wood and plywood treated with quaternary ammonia compounds and common fire retardants

    Treesearch

    Evren Terzi; S. Nami Kartal; Robert White; Katsumi Shinoda; Yuji Imamura

    2010-01-01

    In this study, the fire performance and decay resistance of solid wood and plywood treated with quaternary ammonia compounds (didecyl dimethyl ammonium chloride (DDAC) and didecyl dimethyl ammonium tetrafluoroborate (DBF)) were compared with the performance of untreated control specimens and specimens treated with common fire retardants ((monoammonium phosphate (MAP),...

  6. Dry cell battery poisoning

    MedlinePlus

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  7. Optimization of Medium Composition for the Production of Neomycin by Streptomyces fradiae NCIM 2418 in Solid State Fermentation

    PubMed Central

    Vastrad, B. M.; Neelagund, S. E.

    2014-01-01

    Neomycin production of Streptomyces fradiae NCIM 2418 was optimized by using response surface methodology (RSM), which is powerful mathematical approach comprehensively applied in the optimization of solid state fermentation processes. In the first step of optimization, with Placket-Burman design, ammonium chloride, sodium nitrate, L-histidine, and ammonium nitrate were established to be the crucial nutritional factors affecting neomycin production significantly. In the second step, a 24 full factorial central composite design and RSM were applied to determine the optimal concentration of significant variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. The optimum values for the important nutrients for the maximum were obtained as follows: ammonium chloride 2.00%, sodium nitrate 1.50%, L-histidine 0.250%, and ammonium nitrate 0.250% with a predicted value of maximum neomycin production of 20,000 g kg−1 dry coconut oil cake. Under the optimal condition, the practical neomycin production was 19,642 g kg−1 dry coconut oil cake. The determination coefficient (R 2) was 0.9232, which ensures an acceptable admissibility of the model. PMID:25009746

  8. Structural effect of quaternary ammonium chitin derivatives on their bactericidal activity and specificity.

    PubMed

    Morkaew, Tirut; Pinyakong, Onruthai; Tachaboonyakiat, Wanpen

    2017-08-01

    The effect of the quaternary ammonium chitin structure on the bactericidal activity and specificity against Escherichia coli and Staphylococcus aureus was investigated. Quaternary ammonium chitins were synthesized by the separate acylation of chitin (CT) with carboxymethyl trimethylammonium chloride (CMA), 3-carboxypropyl trimethylammonium chloride (CPA) and N-dodecyl-N,N-(dimethylammonio)butyrate (DDMAB). The successful acylation was confirmed by newly formed ester linkage. All three derivatives had a higher surface charge than chitin due to the additional positively charged quaternary ammonium groups. The N-short alkyl substituent (methyl) of CTCMA and CTCPA increased the hydrophilicity whilst the N-long alkyl substituent (dodecyl) of CTDDMAB increased the hydrophobicity compared to chitin. Chitin did not exhibit any bactericidal activity, while CTCMA and CTCPA completely killed E. coli and S. aureus in 30 and 60min, respectively, and CTDDMAB completely killed S. aureus in 10min but did not kill E. coli after a 2-h exposure. Therefore, the N-short alkyl substituent was more effective for killing E. coli and the N-long alkyl substituent conferred specific bactericidal activity against S. aureus. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Furosemide/Fludrocortisone Test and Clinical Parameters to Diagnose Incomplete Distal Renal Tubular Acidosis in Kidney Stone Formers.

    PubMed

    Dhayat, Nasser A; Gradwell, Michael W; Pathare, Ganesh; Anderegg, Manuel; Schneider, Lisa; Luethi, David; Mattmann, Cedric; Moe, Orson W; Vogt, Bruno; Fuster, Daniel G

    2017-09-07

    Incomplete distal renal tubular acidosis is a well known cause of calcareous nephrolithiasis but the prevalence is unknown, mostly due to lack of accepted diagnostic tests and criteria. The ammonium chloride test is considered as gold standard for the diagnosis of incomplete distal renal tubular acidosis, but the furosemide/fludrocortisone test was recently proposed as an alternative. Because of the lack of rigorous comparative studies, the validity of the furosemide/fludrocortisone test in stone formers remains unknown. In addition, the performance of conventional, nonprovocative parameters in predicting incomplete distal renal tubular acidosis has not been studied. We conducted a prospective study in an unselected cohort of 170 stone formers that underwent sequential ammonium chloride and furosemide/fludrocortisone testing. Using the ammonium chloride test as gold standard, the prevalence of incomplete distal renal tubular acidosis was 8%. Sensitivity and specificity of the furosemide/fludrocortisone test were 77% and 85%, respectively, yielding a positive predictive value of 30% and a negative predictive value of 98%. Testing of several nonprovocative clinical parameters in the prediction of incomplete distal renal tubular acidosis revealed fasting morning urinary pH and plasma potassium as the most discriminative parameters. The combination of a fasting morning urinary threshold pH <5.3 with a plasma potassium threshold >3.8 mEq/L yielded a negative predictive value of 98% with a sensitivity of 85% and a specificity of 77% for the diagnosis of incomplete distal renal tubular acidosis. The furosemide/fludrocortisone test can be used for incomplete distal renal tubular acidosis screening in stone formers, but an abnormal furosemide/fludrocortisone test result needs confirmation by ammonium chloride testing. Our data furthermore indicate that incomplete distal renal tubular acidosis can reliably be excluded in stone formers by use of nonprovocative clinical parameters. Copyright © 2017 by the American Society of Nephrology.

  10. Synthesis and characterization of chitosan quaternary ammonium salt and its application as drug carrier for ribavirin.

    PubMed

    Li, Si-Dong; Li, Pu-Wang; Yang, Zi-Ming; Peng, Zheng; Quan, Wei-Yan; Yang, Xi-Hong; Yang, Lei; Dong, Jing-Jing

    2014-11-01

    N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) is hydro-soluble chitosan (CS) derivative, which can be obtained by the reaction between epoxypropyl trimethyl ammonium chloride (ETA) and CS. The preparation parameters for the synthesis of HTCC were optimized by orthogonal experimental design. ETA was successfully grafted into the free amino group of CS. Grafting of ETA with CS had great effect on the crystal structure of HTCC, which was confirmed by the XRD results. HTCC displayed higher capability to form nanoparticles by crosslinking with negatively charged sodium tripolyphosphate (TPP). Ribavrin- (RIV-) loaded HTCC nanoparticles were positively charged and were spherical in shape with average particle size of 200 nm. More efficient drug encapsulation efficiency and loading capacity were obtained for HTCC in comparison with CS, however, HTCC nanoparticles displayed faster release rate due to its hydro-soluble properties. The results suggest that HTCC is a promising CS derivative for the encapsulation of hydrophilic drugs in obtaining sustained release of drugs.

  11. Tailored adhesion behavior of polyelectrolyte thin films deposited on plasma-treated poly(dimethylsiloxane) for functionalized membranes

    NASA Astrophysics Data System (ADS)

    Bassil, Joelle; Alem, Halima; Henrion, Gérard; Roizard, Denis

    2016-04-01

    Completely homogenous films formed via the layer-by-layer assembly of poly(diallyldimethylammonium chloride) (PDADMAC) and the poly(styrene sulfonate) were successfully obtained on plasma-treated poly(dimethylsiloxane) (PDMS) substrates. To modify the hydrophobicity of the PDMS surface, a cold plasma treatment was previously applied to the membrane, which led to the creation of hydrophilic groups on the surface of the membrane. PDMS wettability and surface morphology were successfully correlated with the plasma parameters. A combination of contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis was used to demonstrate that homogeneous and hydrophilic surfaces could be achieved on PDMS cold-plasma-treated membranes. The stability of the assembled PEL layer on the PDMS was evaluated using a combination of pull-off testing and X-ray photoelectron spectroscopy (XPS), which confirmed the relevance of a plasma pre-treatment as the adhesion of the polyelectrolyte multilayers was greatly enhanced when the deposition was completed on an activated PDMS surface at 80 W for 5 min.

  12. Eutectic salt catalyzed environmentally benign and highly efficient Biginelli reaction.

    PubMed

    Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi

    2012-01-01

    A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications.

  13. Eutectic Salt Catalyzed Environmentally Benign and Highly Efficient Biginelli Reaction

    PubMed Central

    Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi

    2012-01-01

    A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications. PMID:22649326

  14. Determination of quaternary ammonium compounds in seawater samples by solid-phase extraction and liquid chromatography-mass spectrometry.

    PubMed

    Bassarab, P; Williams, D; Dean, J R; Ludkin, E; Perry, J J

    2011-02-04

    A method for the simultaneous determination of two biocidal quaternary ammonium compounds; didecyldimethylammonium chloride (didecyldimethyl quat) and dodecylbenzyldimethylammonium chloride (benzyl quat), in seawater by solid phase extraction (SPE) followed by liquid chromatography-mass spectrometry (LC-MS) was developed. The optimised procedure utilised off-line extraction of the analytes from seawater using polymeric (Strata-X) SPE cartridges. Recoveries ranged from 80 to 105%, with detection limits at the low parts-per-trillion (ng/l) level for both analytes. To demonstrate sensitivity, environmental concentrations were measured at three different locations along the North East coast of England with measured values in the range 120-270ng/l. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Fate of nanoparticles during alum and ferric coagulation monitored using single particle ICP-MS.

    PubMed

    Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan

    2018-03-01

    In this study, aluminum sulfate, ferric sulfate, ferric chloride, and poly(diallyldimethylammonium chloride) (pDADMAC) coagulation removal of citrate-stabilized silver and gold nanoparticles (NPs) and uncoated titanium dioxide, cerium dioxide, and zinc oxide NPs was investigated using a single particle (SP) ICP-MS direct monitoring technique. Zone 2 (charge neutralization) coagulation was performed in river water and more commonly used Zone 4 (sweep floc) coagulation was performed in both river and lake water with environmentally relevant concentrations of selected NPs added. SP-ICP-MS was used to detect NP and dissolved species, characterize the size distribution, and quantify particle concentration as well as dissolved species before and after treatments. Other parameters including pH, dissolved organic carbon, turbidity, and UV 254 absorbance were monitored to characterize treatment efficiency. Charge neutralization (Zone 2) coagulation resulted in 48-85% removal of citrate-stabilized NPs and 90-99% removal of uncoated NPs from river water. Sweep floc (Zone 4) coagulation in river water resulted in 36-94% removal of citrate-stabilized NPs and 91-99% removal of uncoated NPs both with and without polymer addition. Zone 4 coagulation conditions in lake water resulted in 77-98% removal of citrate-stabilized NPs and 59-96% removal of uncoated NPs without polymer. These results indicate that NP removal depends on NP surface and stability, the nature of the source water, and the coagulant type and approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Analysis of Trace Quaternary Ammonium Compounds (QACs) in Vegetables Using Ultrasonic-Assisted Extraction and Gas Chromatography-Mass Spectrometry.

    PubMed

    Xiang, Lei; Wang, Xiong-Ke; Li, Yan-Wen; Huang, Xian-Pei; Wu, Xiao-Lian; Zhao, Hai-Ming; Li, Hui; Cai, Quan-Ying; Mo, Ce-Hui

    2015-08-05

    A reliable, sensitive, and cost-effective method was developed for determining three quaternary ammonium compounds (QACs) including dodecyltrimethylammonium chloride, cetyltrimethylammonium chloride, and didodecyldimethylammonium chloride in various vegetables using ultrasonic-assisted extraction and gas chromatography-mass spectrometry. The variety and acidity of extraction solvents, extraction times, and cleanup efficiency of sorbents were estimated to obtain an optimized procedure for extraction of the QACs in nine vegetable matrices. Excellent linearities (R(2) > 0.992) were obtained for the analytes in the nine matrices. The limits of detection and quantitation were 0.7-6.0 and 2.3-20.0 μg/kg (dry weight, dw) in various matrices, respectively. The recoveries in the nine matrices ranged from 70.5% to 108.0% with relative standard deviations below 18.0%. The developed method was applied to determine the QACs in 27 vegetable samples collected from Guangzhou in southern China, showing very high detection frequency with a concentration of 23-180 μg/kg (dw).

  17. 75 FR 16111 - Antimicrobial Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... of sponges. Contact: Tracy Lantz, (703) 308-6415; [email protected] . 16. Registration Number/File... ingredient: 3-(trimethoxylsilyl) propyldimethyloctadecyl ammonium chloride. Proposed Uses: Sponge for...

  18. Effects of Benzalkonium Chloride on Planktonic Growth and Biofilm Formation by Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Shabanpour, Ziba; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Lotfalian, Sharareh; Khubani, Shahin

    2015-01-01

    Background: Resistance toward quaternary ammonium compounds (QACs) is widespread among a diverse range of microorganisms and is facilitated by several mechanisms such as biofilm formation. Objectives: In this study, the effects of benzalkonium chloride on planktonic growth and biofilm formation by some field isolates of animal bacterial pathogens were investigated. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus aureus and Streptococcus agalactiae (10 isolates of each) were examined for effects of benzalkonium chloride on biofilm formation and planktonic growth using microtiter plates. For all the examined strains in the presence of benzalkonium chloride, biofilm development and planktonic growth were affected at the same concentrations of disinfectant. Results: The means of strains growth increase after the minimal inhibitory concentration (MIC) were significant in all the bacteria (except for E. coli in 1/32 and S. agalactiae in of 1/8 MIC). Biofilm formation increased with decrease of antiseptics concentration; a significant increase was found in all the samples. The most turbidity related to S. aureus and the least to Salmonella. Conclusions: Bacterial resistance against quaternary ammonium compounds is increasing which can increase the bacterial biofilm formation. PMID:25793094

  19. Alkalinity of non-industrial cleaning products and the likelihood of producing significant esophageal burns.

    PubMed

    Howell, J M

    1991-11-01

    Alkaline cleaning products are a cause of serious esophageal injury. Over time, legislation has diminished the concentration of many such non-industrial solutions and solids; however several products presently do not list either the pH or relative concentrations of alkaline constituents. This study measures the pHs of several non-industrial cleaning products containing either ammonium chloride, sodium hydroxide, or potassium hydroxide. Three pH measurements were performed on each of 10 non-industrial alkaline cleaning products (eight liquid, two solid). Two 0.1% ammonium chloride solutions had pHs of 12.06 +/- 0.00 and 12.06 +/- 0.01, whereas a pH of 12.43 +/- 0.00 was recorded in a 0.2% ammonium chloride solution. Concentrations of sodium hydroxide and potassium hydroxide were listed on only one of five liquid cleaning product labels. The pHs for these five products varied between 12.83 +/- 0.009 and 13.5 +/- .0.2. The pHs of three sodium hydroxide solutions differed from values reported in Micromedex (Micromedex Inc, Denver CO) by up to 0.32 pH units. Ten percent (v/v) solutions of two solid lye products had pHs of 13.62 +/- 0.008 and 13.74 +/- 0.02. The investigator found that selected non-industrial cleaning products, including ammonia solutions, retain the ability to cause clinically important esophageal damage.

  20. Evaluation of nutrient quality-assurance data for Alexanders and Mount Rock Spring basins, Cumberland County, Pennsylvania

    USGS Publications Warehouse

    Witt, E. C.; Hippe, D.J.; Giovannitti, R.M.

    1992-01-01

    A total of 304 nutrient samples were collected from May 1990 through September 1991 to determine concentrations and loads of nutrients in water discharged from two spring basins in Cumberland County, Pa. Fifty-four percent of these nutrient samples were for the evaluation of (1) laboratory consistency, (2) container and preservative cleanliness, (3) maintenance of analyte representativeness as affected by three different preservation methods, and (4) comparison of analyte results with the "Most Probable Value" for Standard Reference Water Samples. Results of 37 duplicate analyses indicate that the Pennsylvania Department of Environmental Resources, Bureau of Laboratories (principal laboratory) remained within its ±10 percent goal for all but one analyte. Results of the blank analysis show that the sampling containers did not compromise the water quality. However, mercuric-chloride-preservation blanks apparently contained measurable ammonium in four of five samples and ammonium plus organic nitrogen in two of five samples. Interlaboratory results indicate substantial differences in the determination of nitrate and ammonium plus organic nitrogen between the principal laboratory and the U.S. Geological Survey National Water-Quality Laboratory. In comparison with the U.S. Environmental Protection Agency Quality-Control Samples, the principal laboratory was sufficiently accurate in its determination of nutrient anafytes. Analysis of replicate samples indicated that sulfuric-acid preservative best maintained the representativeness of the anafytes nitrate and ammonium plus organic nitrogen, whereas, mercuric chloride best maintained the representativeness of orthophosphate. Comparison of nutrient analyte determinations with the Most Probable Value for each preservation method shows that two of five analytes with no chemical preservative compare well, three of five with mercuric-chloride preservative compare well, and three of five with sulfuricacid preservative compare well.

  1. Rapid fixation of methylene chloride by a macrocyclic amine.

    PubMed

    Lee, Jung-Jae; Stanger, Keith J; Noll, Bruce C; Gonzalez, Carlos; Marquez, Manuel; Smith, Bradley D

    2005-03-30

    A simple macrocyclic amine is alkylated by methylene chloride to give a quaternary ammonium chloride salt. When methylene chloride is the solvent, the reaction exhibits pseudo-first-order kinetics, and the reaction half-life at 25.0 degrees C is 2.0 min. The reaction half-life for a structurally related, acyclic amine is approximately 50 000 times longer. Detailed calculations favor a mechanism where the methylene chloride associates with the macrocycle to form an activated prereaction complex. The macrocyclic nitrogen subsequently attacks the methylene chloride with a classic SN2 trajectory, and although the carbon-chlorine bond breaks, the chloride leaving group does not separate from the newly formed cationic macrocycle, such that the product is a tightly associated ion-pair. X-ray crystal structures of the starting amine and the product salt, as well as kinetic data, support this mechanism.

  2. Ion-pair hollow-fiber liquid-phase microextraction of the quaternary ammonium surfactant dicocodimethylammonium chloride.

    PubMed

    Hultgren, Sofie; Larsson, Niklas; Nilsson, Bo F; Jönsson, Jan Ake

    2009-02-01

    A two-phase hollow-fiber (HF) liquid-phase microextraction (LPME) method was developed for determination of a quaternary ammonium compound surfactant, dicocodimethylammonium chloride, in aqueous samples. The porous HF was fixed on a metal rod support and was impregnated with approximately 6.6 microL of organic extractant, which was immobilized in the HF pores. Surfactant extraction was facilitated by addition of carboxylic acid to the sample forming neutral ion pairs with the quaternary ammonium compound. After extraction, the analyte was transferred from the organic extractant in the fiber pores by dissolving the 1-octanol into 100 microL methanol. The methanol extract was analyzed by liquid chromatography-mass spectrometry. The method was optimized (with optimized parameters in brackets) with regard to type of organic extractant (1-octanol), fiber length (2 cm), choice and concentration of anionic carrier (600 microg L(-1) octanoate), procedure of transfer to methanol (15-min sonication), sample volume (250 mL), extraction time (17 h), pH (10), and ionic strength (50 mM carbonate). Aspects influencing repeatability in LPME of (quaternary ammonium) surfactants are discussed. The enrichment factor achieved in 250-mL carbonate buffer was around 400. Due to matrix effects, the enrichment factors achieved when industrial process water was analyzed were 120 or about 30% of that in carbonate buffer. Detection limits of 0.3 microg L(-1) in carbonate buffer and 0.9 microg L(-1) in industrial process water were obtained. If the studied compound is seen as a model substance representing quaternary dialkylated dimethylated ammonium surfactants in general, the developed method may be applied to other quaternary ammonium surfactants.

  3. Cold Water Cleaning and Sanitizing of Kitchenware in the Field

    DTIC Science & Technology

    1989-12-01

    product would not be expected Product may result in irritat tact dermatitis have been rep benzalkonium chloride compoun mists or vapors may result in...CONSERVATION COLD WATER 19. ABSTRACT {Continue on reverse if necessary and identify by block number) In emergency situations in the field, where reduction ...MATERIAL: <CAS#) ! % Bv Wt. I TLV I PEL n-Alkyl Dimethyl Benzyl Ammonium Chloride (68424-85-1) Octyl decy I dimethyl

  4. A simple and convenient method to synthesize N-[(2-hydroxyl)-propyl-3-trimethylammonium] chitosan chloride in an ionic liquid.

    PubMed

    Yang, Xiaodeng; Zhang, Chuanguang; Qiao, Congde; Mu, Xueli; Li, Tianduo; Xu, Jinku; Shi, Lei; Zhang, Dongju

    2015-10-05

    N-[(2-Hydroxyl)-propyl-3-trimethyl ammonium] chitosan chloride (HTCC) was synthesized through nucleophilic substitution of 2,3-epoxypropyltrimethyl ammonium chloride (EPTAC) onto chitosan using ionic liquid of 1-allyl-3-methylimidazole chloride (AmimCl) as a homogeneous and green reaction media. The chemical structure of HTCC was confirmed by FTIR, (1)H NMR and (13)C NMR. The FTIR peak intensity of amino group at 1595 cm(-1) decreased and that of [Formula: see text] at 1475 cm(-1) increased with the increase of reaction time, confirming the substitution of EPTAC on CS. The degree of substitutions (DS) were calculated from the integral area of (1)H NMR, and the optimum reaction condition was obtained, namely, reaction time of 8h, temperature of 80°C and [Formula: see text] of 3/1. The degree of crystallinity and thermal properties of HTCC were characterized by XRD, TG, DSC, and DMA methods. Data from XRD, TG, DSC and DMA show that the degree of crystallinity, thermal stability, as well as glass transition temperature of HTCC decreased with the increase of DS. The reaction mechanism of chitosan with EPTAC in AmimCl was elucidated by performing density functional theory (DFT) calculations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. [Screening, identification and phosphate-solubilizing characteristics of phosphate-solubilizing bacteria strain D2 (Pantoea sp.)in rhizosphere of Pinus tabuliformis in iron tailings yard.

    PubMed

    Wang, Jun Juan; Yan, Ai Hua; Wang, Wei; Li, Ji Quan; Li, Yu Ling

    2016-11-18

    Two strains of phosphate-solubilizing bacteria were isolated from the rhizosphere of Pinus tabuliformis in iron tailings vegetation restoration areas in Malan Town, Qianan City, Hebei Pro-vince. The bacterial strain D2 with strong phosphate-solubilizing capacity was obtained via screening with plate and shake flask. Based on the morphology, physiology and biochemistry, and the sequence analysis of 16S rDNA, the D2 was identified as a member of Pantoea sp. A fermentation experiment was conducted to investigate the effect of carbon and nitrogen sources on the phosphate-solubilizing capacity of the strain D2; under different nitrogen sources, the organic acids in liquid culture, as well as their types and contents were determined by high performance liquid chromatography. The results showed that the strain D2 was capable of efficiently solubilizing tricalcium phosphate, and the highest value of available phosphorus was up to 392.13 mg·L -1 in liquid culture. The strain D2 displayed the strongest phosphate-solubilizing capability when glucose and ammonium sulfate were used as carbon and nitrogen sources in the culture media, respectively. Under varied nitrogen sources, the resulting organic acids and their types and contents were different. When the nitrogen source in culture media was ammonium sulfate, ammonium chloride, potassium nitrate, sodium nitrate or ammonium nitrate, all four organic acids, including oxalic acid, formic acid, acetic acid and citric acid, were produced. In addition, malic acid was uniquely produced when ammonium sulfate, ammonium chloride or ammonium nitrate was used as the nitrogen source. By Pearson's correlation analysis, a significant positive correlation between the acetic acid content and the available phosphorus content was found (r=0.886, P<0.05), suggesting that acetic acid produced by strain D2 played an important role in promoting inorganic phosphorus dissolution, which was most likely to be one of the important phosphate-solubilizing mechanisms of the strain.

  6. Impaired cerebral microcirculation induced by ammonium chloride in rats is due to cortical adenosine release.

    PubMed

    Bjerring, Peter Nissen; Bjerrum, Esben Jannik; Larsen, Fin Stolze

    2018-06-01

    Liver failure results in hyperammonaemia, impaired regulation of cerebral microcirculation, encephalopathy, and death. However, the key mediator that alters cerebral microcirculation remains unidentified. In this study we show that topically applied ammonium significantly increases periarteriolar adenosine tone on the brain surface of healthy rats and is associated with a disturbed microcirculation. Cranial windows were prepared in anaesthetized Wistar rats. The flow velocities were measured by speckle contrast imaging and compared before and after 30 min of exposure to 10 mM ammonium chloride applied on the brain surface. These flow velocities were compared with those for control groups exposed to artificial cerebrospinal fluid or ammonium plus an adenosine receptor antagonist. A flow preservation curve was obtained by analysis of flow responses to a haemorrhagic hypotensive challenge and during stepwise exsanguination. The periarteriolar adenosine concentration was measured with enzymatic biosensors inserted in the cortex. After ammonium exposure the arteriolar flow velocity increased by a median (interquartile range) of 21.7% (23.4%) vs. 7.2% (10.2%) in controls (n = 10 and n = 6, respectively, p <0.05), and the arteriolar surface area increased. There was a profound rise in the periarteriolar adenosine concentration. During the hypotensive challenge the flow decreased by 27.8% (14.9%) vs. 9.2% (14.9%) in controls (p <0.05). The lower limit of flow preservation remained unaffected, 27.7 (3.9) mmHg vs. 27.6 (6.4) mmHg, whereas the autoregulatory index increased, 0.29 (0.33) flow units per millimetre of mercury vs. 0.03 (0.21) flow units per millimetre of mercury (p <0.05). When ammonium exposure was combined with topical application of an adenosine receptor antagonist, the autoregulatory index was normalized. Vasodilation of the cerebral microcirculation during exposure to ammonium chloride is associated with an increase in the adenosine tone. Application of a specific adenosine receptor antagonist restores the regulation of the microcirculation. This indicates that adenosine could be a key mediator of the brain dysfunction seen during hyperammonaemia and is a potential therapeutic target. In patients with liver failure, disturbances in brain function are caused in part by ammonium toxicity. In our project we studied how ammonia, through adenosine release, affects the blood flow in the brain of rats. In our experimental model we demonstrated that the detrimental effect of ammonia on blood flow regulation was counteracted by blocking the adenosine receptors in the brain. With this observation we identified a novel potential treatment target. If we can confirm our findings in a future clinical study, this might help patients with liver failure and the severe condition called hepatic encephalopathy. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  7. Forced-flow chromatographic determination of calcium and magnesium with continuous spectrophotometric detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arguello, M.D.

    1977-12-01

    Modifications to the forced-flow chromatograph include a flow-through pH monitor to continuously monitor the pH of the final effluent and an active low-pass filter to eliminate noise in the spectrophotometric detector. All separations are performed using partially sulfonated XAD-2 as the ion exchanger. Elution of calcium and magnesium is accomplished using ammonium chloride and ethylenediammonium chloride solutions. Calcium and magnesium are detected by means of Arsenazo I and PAR-ZnEDTA color-forming reagents. Other metal ions are detected by means of PAR and Chromazurol S color-forming reagents. Calcium and magnesium distribution coefficients on partially sulfonated XAD-2 as functions of ammonium chloride andmore » ethylenediammonium chloride concentration are given together with distribution coefficients of other metal ions. Methods for the selective elution of interfering metal ions prior to the elution of calcium and magnesium are described. Beryllium and aluminum are selectively eluted with sulfosalicylic acid. Those elements forming anionic chloride complexes are selectively eluted with HCl-acetone. Nickel is selectively eluted with HCl-acetone-dimethylglyoxime. Synthetic samples containing calcium and magnesium, both alone and in combination with alkali metals, strontium, barium, beryllium, aluminum, transition metals, and rare earths, are analyzed. Hard water samples are analyzed for calcium and magnesium and the results compared to those obtained by EDTA titration, atomic absorption spectroscopy, and plasma emission spectroscopy. Several clinical serum samples are analyzed for calcium and magnesium and the results compared to those obtained by atomic absorption spectroscopy.« less

  8. Ammonium detection by formation of colored zebra-bands in a detecting tube.

    PubMed

    Hori, Tatsuaki; Niki, Keizou; Kiso, Yoshiaki; Oguchi, Tatsuo; Kamimoto, Yuki; Yamada, Toshiro; Nagai, Masahiro

    2010-06-15

    Ammonium ion was colorized by means of a diazo coupling reaction with 2-phenylphenol, where the color development reaction was conducted within 3min by using boric acid as a catalyst. The resulting colored solution (0.5ml) was supplied by suction to a detecting tube consisting of a nonwoven fabric test strip (2mm wide, 1mm thick, 150mm long) impregnated with benzylcetyldimethylammonium chloride in a stripe pattern and enclosed in a heat-shrinkable tube. When the colored solution was supplied to the detecting tube, blue zebra-bands formed, and the ammonium concentration was determined by counting the number of zebra-bands. The detection range was 1-20mg-Nl(-1). Ammonium ion in actual domestic wastewater samples was successfully detected by means of this method.

  9. Distal renal tubular dysfunction: a common feature in calcium stone formers.

    PubMed

    Megevand, M; Favre, H

    1984-12-01

    Distal renal tubular acidosis has been reported as an uncommon cause of urinary calcium stone disease. However, this defect appears to be more frequent when appropriate tests are performed systematically. Twenty-nine patients with recurrent calcium stones have been separated into three groups: normocalciuric (group A), renal hypercalciuric (group B) and absorptive hypercalciuric (group C). Distal tubular functions were investigated by the (urine-blood) pCO2 gradient and by an ammonium chloride test. (Urine-blood) pCO2 gradient was (mean +/- SEM), 3.33 +/- 0.59 in group A, 2.95 +/- 0.34 in group B and 3.31 +/- 0.58 kPa in group C. All these values differ significantly from those observed in controls (4.11 +/- 0.28 kPa; P less than 0.05). After 3 days of ammonium chloride loading, ammonium excretion averaged 54.7 +/- 4.2 in group A, 54.4 +/- 4.3 in group B and 64.3 +/- 5.5 mumol min-1 in group C. Values obtained in the first two groups were significantly lower than that achieved by control subjects (76.4 +/- 14.9 mumol min-1). It is concluded that tubular dysfunctions defined as impairments in hydrogen ion secretion and ammonium excretion after an acid challenge are a common feature of the urinary calcium stone disease and play a contributory role in its pathogenesis.

  10. Regulation of tyramine oxidase synthesis in Klebsiella aerogenes.

    PubMed Central

    Okamura, H; Murooka, Y; Harada, T

    1976-01-01

    Tyramine oxidase in Klebsiella aerogenes is highly specific for tyramine, dopamine, octopamine, and norepinephrine, and its synthesis is induced specifically by these compounds. The enzyme is present in a membrane-bound form. The Km value for tyramine is 9 X 10(-4) M. Tyramine oxidase synthesis was subjected to catabolite repression by glucose in the presence of ammonium salts. Addition of cyclic adenosine 3',5'-monophosphate (cAMP) overcame the catabolite repression. A mutant strain, K711, which can produce a high level of beta-galactosidase in the presence of glucose and ammonium chloride, can also synthesize tyramine oxidase and histidase in the presence of inducer in glucose ammonium medium. Catabolite repression of tyramine oxidase synthesis was relieved when the cells were grown under conditions of nitrogen limitation, whereas beta-galactosidase was strongly repressed under these conditions. A cAMP-requiring mutant, MK54, synthesized tyramine oxidase rapidly when tyramine was used as the sole source of nitrogen in the absence of cAMP. However, a glutamine synthetase-constitutive mutant, MK94, failed to synthesize tyramine oxidase in the presence of glucose and ammonium chloride, although it synthesized histidase rapidly under these conditions. These results suggest that catabolite repression of tyramine oxidase synthesis in K. aerogenes is regulated by the intracellular level of cAMP and an unknown cytoplasmic factor that acts independently of cAMP and is formed under conditions of nitrogen limitation. PMID:179974

  11. Ambient and Dosed Exposure to Quaternary Ammonium Disinfectants Causes Neural Tube Defects in Rodents

    PubMed Central

    Hrubec, Terry C.; Melin, Vanessa E.; Shea, Caroline S.; Ferguson, Elizabeth E.; Garofola, Craig; Repine, Claire M.; Chapman, Tyler W.; Patel, Hiral R.; Razvi, Reza M.; Sugrue, Jesse E.; Potineni, Haritha; Magnin-Bissel, Geraldine; Hunt, Patricia A.

    2018-01-01

    Background Quaternary ammonium compounds are a large class of chemicals used for their antimicrobial and antistatic properties. Two common quaternary ammonium compounds, alkyldimethylbenzyl ammonium chloride (ADBAC) and didecyldimethyl ammonium chloride (DDAC), are combined in common cleaners and disinfectants. Introduction of a cleaner containing ADBAC+DDAC in the vivarium caused neural tube defects (NTDs) in mice and rats. Methods To further evaluate this finding, male and female mice were dosed in the feed at 60 or 120 mg/kg/day, or by oral gavage at 7.5, 15, or 30 mg/kg ADBAC+DDAC. Mice also received ambient exposure to ADBAC+DDAC from the disinfectant used in the mouse room. Embryos were evaluated on gestational day 10 for NTDs, and fetuses were evaluated on gestational day 18 for gross and skeletal malformations. Results We found increased NTDs with exposure to ADBAC+DDAC in both rats and mice. The NTDs persisted for two generations after cessation of exposure. Notably, male exposure alone was sufficient to cause NTDs. Equally significant, ambient exposure from disinfectant use in the vivarium, influenced the levels of NTDs to a greater extent than oral dosing. No gross or significant axial skeletal malformations were observed in late gestation fetuses. Placental abnormalities and late gestation fetal deaths were increased at 120 mg/kg/day, which might explain the lack of malformations observed in late gestation fetuses. Conclusion These results demonstrate that ADBAC+DDAC in combination are teratogenic to rodents. Given the increased use of these disinfectants, further evaluation of their safety in humans and their contribution to health and disease is essential. PMID:28618200

  12. Removal of ammonium from municipal landfill leachate using natural zeolites.

    PubMed

    Ye, Zhihong; Wang, Jiawen; Sun, Lingyu; Zhang, Daobin; Zhang, Hui

    2015-01-01

    Ammonium ion-exchange performance of the natural zeolite was investigated in both batch and column studies. The effects of zeolite dosage, contact time, stirring speed and pH on ammonium removal were investigated in batch experiments. The result showed that ammonium removal efficiency increased with an increase in zeolite dosage from 25 to 150 g/L, and an increase in stirring speed from 200 to 250 r/min. But further increase in zeolite dosage and stirring speed would result in an unpronounced increase of ammonium removal. The optimal pH for the removal of ammonium was found as 7.1. In the column studies, the effect of flow rate was investigated, and the total ammonium removal percentage during 180 min operation time decreased with the flow rate though the ion-exchange capacity varied to a very small extent with the flow rate ranging from 4 to 9 mL/min. The spent zeolite was regenerated by sodium chloride solution and the ammonia removal capacity of zeolite changed little or even increased after three regeneration cycles.

  13. Thermodynamic assessment of adsorptive fouling with the membranes modified via layer-by-layer self-assembly technique.

    PubMed

    Shen, Liguo; Cui, Xia; Yu, Genying; Li, Fengquan; Li, Liang; Feng, Shushu; Lin, Hongjun; Chen, Jianrong

    2017-05-15

    In this study, polyvinylidene fluoride (PVDF) microfiltration membrane was coated by dipping the membrane alternatingly in solutions of the polyelectrolytes (poly-diallyldimethylammonium chloride (PDADMAC) and polystyrenesulfonate (PSS)) via layer-by-layer (LBL) self-assembly technique to improve the membrane antifouling ability. Filtration experiments showed that, sludge cake layer on the coated membrane could be more easily washed off, and moreover, the remained flux ratio (RFR) of the coated membrane was obviously improved as compared with the control membrane. Characterization of the membranes showed that a polyelectrolyte layer was successfully coated on the membrane surfaces, and the hydrophilicity, surface charge and surface morphology of the coated membrane were changed. Based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) approaches, quantification of interfacial interactions between foulants and membranes in three different scenarios was achieved. It was revealed that there existed a repulsive energy barrier when a particle foulant adhered to membrane surface, and the enhanced electrostatic double layer (EL) interaction and energy barrier should be responsible for the improved antifouling ability of the coated membrane. This study provided a combined solution to membrane modification and interaction energy evaluation related with membrane fouling simultaneously. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Experimental investigation and DFT calculation of different amine/ammonium salts adsorption on kaolinite

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Min, Fan-fei; Liu, Lingyun; Liu, Chunfu; Lu, Fangqin

    2017-10-01

    The adsorption of four different amine/ammonium salts of DDA (Dodecyl amine), MDA (N-methyldodecyl amine), DMDA (N,N-dimethyldodecyl amine) and DTAC (Dodecyl trimethyl ammonium chloride) on kaolinite particles was investigated in the study through the measurement of contact angles, zeta potentials, aggregation observation, adsorption and sedimentation. The results show that different amine/ammonium salts can adsorb on the kaolinite surface to enhance the hydrophobicity and reduce the electronegativity of kaolinite particle surface, and thus induce a strong hydrophobic aggregation of kaolinite particles which promotes the settlement of kaolinite. To explore the adsorption mechanism of these four amine/ammonium salts on kaolinite surfaces, the adsorptions of DDA+, MDA+, DMDA+ and DTAC+ on kaolinite (001) surface and (00 1 bar) surface are calculated with DFT (Density functional theory). The DFT calculation results indicate that different amine/ammonium cations can strongly adsorbed on kaolinite (001) surface and (00 1 bar) surface by forming Nsbnd H⋯O strong hydrogen bonds or Csbnd H⋯O weak hydrogen bonds, and there are strongly electrostatic attractions between different amine/ammonium cations and kaolinite surfaces. The main adsorption mechanism of amine/ammonium cations on kaolinite is hydrogen-bond interaction and electrostatic attraction.

  15. Effect of didecyl dimethyl ammonium chloride on nitrate reduction in a mixed methanogenic culture.

    PubMed

    Tezel, U; Pierson, J A; Pavlostathis, S G

    2008-01-01

    The effect of the quaternary ammonium compound, didecyl dimethyl ammonium chloride (DDAC), on nitrate reduction was investigated at concentrations up to 100 mg/L in a batch assay using a mixed, mesophilic (35 degrees C) methanogenic culture. Glucose was used as the carbon and energy source and the initial nitrate concentration was 70 mg N/L. Dissimilatory nitrate reduction to ammonia (DNRA) and to dinitrogen (denitrification) were observed at DDAC concentrations up to 25 mg/L. At and above 50 mg DDAC/L, DNRA was inhibited and denitrification was incomplete resulting in accumulation of nitrous oxide. At DDAC concentrations above 10 mg/L, production of nitrous oxide, even transiently, resulted in complete, long-term inhibition of methanogenesis and accumulation of volatile fatty acids. Fermentation was inhibited at and above 75 mg DDAC/L. DDAC suppressed microbial growth and caused cell lysis at a concentration 50 mg/L or higher. Most of the added DDAC was adsorbed on the biomass. Over 96% of the added DDAC was recovered from all cultures at the end of the 100-days incubation period, indicating that DDAC did not degrade in the mixed methanogenic culture under the conditions of this study.

  16. Determination of selected quaternary ammonium compounds by liquid chromatography with mass spectrometry. Part II. Application to sediment and sludge samples in Austria.

    PubMed

    Martínez-Carballo, Elena; González-Barreiro, Carmen; Sitka, Andrea; Kreuzinger, Norbert; Scharf, Sigrid; Gans, Oliver

    2007-03-01

    Soxhlet extraction and high-performance liquid chromatography (HPLC) coupled to tandem mass spectrometry detection (MS/MS) was used for the determination of selected quaternary ammonium compounds (QACs) in solid samples. The method was applied for the determination of alkyl benzyl, dialkyl and trialkyl quaternary ammonium compounds in sediment and sludge samples in Austria. The overall method quantification limits range from 0.6 to 3 microg/kg for sediments and from 2 to 5 microg/kg for sewage sludges. Mean recoveries between 67% and 95% are achieved. In general sediments were especially contaminated by C12 chain benzalkonium chloride (BAC-C12) as well as by the long C-chain dialkyldimethylammonium chloride (DDAC-C18) with a maximum concentration of 3.6 mg/kg and 2.1mg/kg, respectively. Maxima of 27 mg/kg for DDAC-C10, 25 mg/kg for BAC-C12 and 23 mg/kg for BAC-C14 were determined for sludge samples. The sums of the 12 selected target compounds range from 22 mg/kg to 103 mg/kg in the sludge samples.

  17. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... this chapter, in raw sugar cane juice. It is added prior to clarification when further processing of the sugar cane juice must be delayed. (d) The additive is applied to the sugar juice in the following...

  18. Ion generation and CPC detection efficiency studies in sub 3-nm size range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kangasluoma, J.; Junninen, H.; Sipilae, M.

    2013-05-24

    We studied the chemical composition of commonly used condensation particle counter calibration ions with a mass spectrometer and found that in our calibration setup the negatively charged ammonium sulphate, sodium chloride and tungsten oxide are the least contaminated whereas silver on both positive and negative and the three mentioned earlier in positive mode are contaminated with organics. We report cut-off diameters for Airmodus Particle Size Magnifier (PSM) 1.1, 1.3, 1.4, 1.6 and 1.6-1.8 nm for negative sodium chloride, ammonium sulphate, tungsten oxide, silver and positive organics, respectively. To study the effect of sample relative humidity on detection efficiency of themore » PSM we used different humidities in the differential mobility analyzer sheath flow and found that with increasing relative humidity also the detection efficiency of the PSM increases.« less

  19. Preparation of Some Eco-friendly Corrosion Inhibitors Having Antibacterial Activity from Sea Food Waste.

    PubMed

    Hussein, Mohamed H M; El-Hady, Mohamed F; Shehata, Hassan A H; Hegazy, Mohammad A; Hefni, Hassan H H

    2013-03-01

    Chitosan is one of the important biopolymers and it is extracted from exoskeletons of crustaceans in sea food waste. It is a suitable eco-friendly carbon steel corrosion inhibitor in acid media; the deacetylation degree of prepared chitosan is more than 85.16 %, and the molecular weight average is 109 kDa. Chitosan was modified to 2-N,N-diethylbenzene ammonium chloride N-oxoethyl chitosan (compound I), and 12-ammonium chloride N-oxododecan chitosan (compound II) as soluble water derivatives. The corrosion inhibition efficiency for carbon steel of compound (I) in 1 M HCl at varying temperature is higher than for chitosan and compound (II). However, the antibacterial activity of chitosan for Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, and Candida albicans is higher than for its derivatives, and the minimum inhibition concentration and minimum bacterial concentration of chitosan and its derivatives were carried out with the same strain.

  20. Corrosion mitigation of N-(2-hydroxy-3-trimethyl ammonium)propyl chitosan chloride as inhibitor on mild steel.

    PubMed

    Sangeetha, Y; Meenakshi, S; SairamSundaram, C

    2015-01-01

    The biopolymer N-(2-hydroxy-3-trimethyl ammonium)propyl chitosan chloride (HTACC) was synthesised and its influence as a novel corrosion inhibitor on mild steel in 1M HCl was studied using gravimetric and electrochemical experiments. The compound obtained was characterised using FTIR and NMR studies. The inhibition efficiency increased with the increase in concentration and reached a maximum of 98.9% at 500 ppm concentration. Polarisation studies revealed that HTACC acts both as anodic and cathodic inhibitor. Electrochemical impedance studies confirmed that the inhibition is through adsorption on the metal surface. The extent of inhibition exhibits a negative trend with increase in temperature. Langmuir isotherm provides the best description on the adsorption nature of the inhibitor. SEM analysis indicated the presence of protective film formed by the inhibitor on the metal surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. [Effect of different N, P and K fertilizers on soil pH and available Cd under waterlogged conditions].

    PubMed

    Jia, Ka-La-Tie; Yu, Hua; Feng, Wen-Qiang; Qin, Yu-Sheng; Zhao, Jing; Liao, Ming-Lan; Wang, Chang-Quan; Tu, Shi-Hua

    2009-11-01

    In order to tackle the problem of Cd pollution in paddy soils and investigate soil available Cd as affected by different fertilizers, incubation experiments were carried out to study the effects of different N, P and K fertilizers and pH by adding acid or base on soil available Cd under waterlogged conditions. Results revealed that soil pH increased sharply after the soil was flooded, especially at the beginning of incubation, and gradually decreased with incubation time and finally tended to approach the neutral values. The patterns of soil pH change were just opposite to those of soil available Cd, a negative correlation observed between the two. Soil flooding made the soil available Cd drop by 58.2%-84.1%. There were significant differences between different fertilizer types/varieties on soil available Cd, being most complex with N fertilizers and followed by K and P fertilizers. Among the fertilizers studied, ammonium chloride showed the unique ability in reducing soil pH and enhancing soil available Cd, and urea, single super phosphate and potassium chloride also promoted to a less extent amounts of Cd extracted from the soil. Ammonium sulfate, potassium sulfate and mono-ammonium phosphate significantly decreased soil available Cd compared to the CK treatment. Whether or not the soil was flooded, soil available Cd was highly negatively correlated with soil pH after adding acid or base (R = - 0.994 without incubation and R = - 0.919 after incubation for 60 d). The results further suggest that in the Cd polluted paddy soil, use of ammonium chloride should be avoided, S bearing fertilizers in combination with alkaline materials can be adopted, and the rice field should be flooded all the time during growing season, all the these practices can effectively lower soil available Cd.

  2. Core filaments of the nuclear matrix

    PubMed Central

    1990-01-01

    The nuclear matrix is concealed by a much larger mass of chromatin, which can be removed selectively by digesting nuclei with DNase I followed by elution of chromatin with 0.25 M ammonium sulfate. This mild procedure removes chromatin almost completely and preserves nuclear matrix morphology. The complete nuclear matrix consists of a nuclear lamina with an interior matrix composed of thick, polymorphic fibers and large masses that resemble remnant nucleoli. Further extraction of the nuclear matrices of HeLa or MCF-7 cells with 2 M sodium chloride uncovered a network of core filaments. A few dark masses remained enmeshed in the filament network and may be remnants of the nuclear matrix thick fibers and nucleoli. The highly branched core filaments had diameters of 9 and 13 nm measured relative to the intermediate filaments. They may serve as the core structure around which the matrix is constructed. The core filaments retained 70% of nuclear RNA. This RNA consisted both of ribosomal RNA precursors and of very high molecular weight hnRNA with a modal size of 20 kb. Treatment with RNase A removed the core filaments. When 2 M sodium chloride was used directly to remove chromatin after DNase I digestion without a preceding 0.25 M ammonium sulfate extraction, the core filaments were not revealed. Instead, the nuclear interior was filled with amorphous masses that may cover the filaments. This reflected a requirement for a stepwise increase in ionic strength because gradual addition of sodium chloride to a final concentration of 2 M without an 0.25 M ammonium sulfate extraction uncovered core filaments. PMID:2307700

  3. Achieving significantly enhanced visible-light photocatalytic efficiency using a polyelectrolyte: the composites of exfoliated titania nanosheets, graphene, and poly(diallyl-dimethyl-ammonium chloride)

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; An, Qi; Luan, Xinglong; Huang, Hongwei; Li, Xiaowei; Meng, Zilin; Tong, Wangshu; Chen, Xiaodong; Chu, Paul K.; Zhang, Yihe

    2015-08-01

    A high-performance visible-light-active photocatalyst is prepared using the polyelectrolyte/exfoliated titania nanosheet/graphene oxide (GO) precursor by flocculation followed by calcination. The polyelectrolyte poly(diallyl-dimethyl-ammonium chloride) serves not only as an effective binder to precipitate GO and titania nanosheets, but also boosts the overall performance of the catalyst significantly. Unlike most titania nanosheet-based catalysts reported in the literature, the composite absorbs light in the UV-Vis-NIR range. Its decomposition rate of methylene blue is 98% under visible light. This novel strategy of using a polymer to enhance the catalytic performance of titania nanosheet-based catalysts affords immense potential in designing and fabricating next-generation photocatalysts with high efficiency.A high-performance visible-light-active photocatalyst is prepared using the polyelectrolyte/exfoliated titania nanosheet/graphene oxide (GO) precursor by flocculation followed by calcination. The polyelectrolyte poly(diallyl-dimethyl-ammonium chloride) serves not only as an effective binder to precipitate GO and titania nanosheets, but also boosts the overall performance of the catalyst significantly. Unlike most titania nanosheet-based catalysts reported in the literature, the composite absorbs light in the UV-Vis-NIR range. Its decomposition rate of methylene blue is 98% under visible light. This novel strategy of using a polymer to enhance the catalytic performance of titania nanosheet-based catalysts affords immense potential in designing and fabricating next-generation photocatalysts with high efficiency. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03256c

  4. Increased serum triglycerides and reduced HDL cholesterol in male rats after intake of ammonium chloride for 3 weeks

    PubMed Central

    2013-01-01

    Background Previous data suggested that intake of sodas and other acid beverages might be associated with increased levels of serum triglycerides, lowered HDL cholesterol, and increased formation of mono unsaturated fatty acids, which are the preferred ones for triglyceride synthesis. The present work is an extension of these studies. Methods Thirty male rats were divided into 3 groups. All groups were given the same food, but various beverages: water (W), ammonium chloride, 200 mmol/L (AC), or sodium bicarbonate, 200 mmol/L (SB). Serum triglycerides, HDL cholesterol, and the fatty acid distribution in total serum lipids were determined. Delta9-desaturase in serum lipids was estimated by the ratio of palmitoleic to palmitic acid, and by the oleic/stearic acid ratio. Correlation and ANOVA were used to study associations and group differences. Results After 3 weeks, the AC group had higher triglyceride concentration and higher Delta9 desaturase indexes, but lower serum HDL and body weight as compared with the SB and W groups. In each of the groups, the oleic acid/stearic acid ratio correlated positively with serum triglycerides; in the pooled group the correlation coefficient was r = 0.963, p<0.01. Conclusions Rats ingesting ammonium chloride as compared with sodium bicarbonate responded with increased desaturase indexes, increased serum triglycerides, and lowered HDL cholesterol concentration, thereby possibly contributing to explain the increased triglyceride concentration previously observed in subjects with a frequent intake of acid beverages, such as sodas containing carbonic acid, citric acid, and phosphoric acid. PMID:23800210

  5. Synthesis, spectroscopic and thermal studies of the copper(II) aspartame chloride complex

    NASA Astrophysics Data System (ADS)

    Çakır, S.; Coşkun, E.; Naumov, P.; Biçer, E.; Bulut, İ.; İçbudak, H.; Çakır, O.

    2002-08-01

    Aspartame adduct of copper(II) chloride Cu(Asp) 2Cl 2·2H 2O (Asp=aspartame) is synthesized and characterized by elemental analysis, FT IR, UV/vis, ESR spectroscopies, TG, DTG, DTA measurements and molecular mechanics calculations. Aqueous solution of the green solid absorbs strongly at 774 and 367 nm. According to the FT IR spectra, the aspartame moiety coordinates to the copper(II) ion via its carboxylate ends, whereas the ammonium terminal groups give rise to hydrogen bonding network with the water, the chloride ions or neighboring carboxylate groups. The results suggest tetragonally distorted octahedral environment of the copper ions.

  6. Acid Rain Investigations.

    ERIC Educational Resources Information Center

    Hugo, John C.

    1992-01-01

    Presents an activity in which students investigate the formation of solid ammonium chloride aerosol particles to help students better understand the concept of acid rain. Provides activity objectives, procedures, sample data, clean-up instructions, and questions and answers to help interpret the data. (MDH)

  7. Speciation of the major inorganic salts in atmospheric aerosols of Beijing, China: Measurements and comparison with model

    NASA Astrophysics Data System (ADS)

    Tang, Xiong; Zhang, Xiaoshan; Ci, Zhijia; Guo, Jia; Wang, Jiaqi

    2016-05-01

    In the winter and summer of 2013-2014, we used a sampling system, which consists of annular denuder, back-up filter and thermal desorption set-up, to measure the speciation of major inorganic salts in aerosols and the associated trace gases in Beijing. This sampling system can separate volatile ammonium salts (NH4NO3 and NH4Cl) from non-volatile ammonium salts ((NH4)2SO4), as well as the non-volatile nitrate and chloride. The measurement data was used as input of a thermodynamic equilibrium model (ISORROPIA II) to investigate the gas-aerosol equilibrium characteristics. Results show that (NH4)2SO4, NH4NO3 and NH4Cl were the major inorganic salts in aerosols and mainly existed in the fine particles. The sulfate, nitrate and chloride associated with crustal ions were also important in Beijing where mineral dust concentrations were high. About 19% of sulfate in winter and 11% of sulfate in summer were associated with crustal ions and originated from heterogeneous reactions or direct emissions. The non-volatile nitrate contributed about 33% and 15% of nitrate in winter and summer, respectively. Theoretical thermodynamic equilibrium calculations for NH4NO3 and NH4Cl suggest that the gaseous precursors were sufficient to form stable volatile ammonium salts in winter, whereas the internal mixing with sulfate and crustal species were important for the formation of volatile ammonium salts in summer. The results of the thermodynamic equilibrium model reasonably agreed with the measurements of aerosols and gases, but large discrepancy existed in predicting the speciation of inorganic ammonium salts. This indicates that the assumption on crustal species in the model was important for obtaining better understanding on gas-aerosol partitioning and improving the model prediction.

  8. Contribution of calcium oxalate to soil-exchangeable calcium

    USGS Publications Warehouse

    Dauer, Jenny M.; Perakis, Steven S.

    2013-01-01

    Acid deposition and repeated biomass harvest have decreased soil calcium (Ca) availability in many temperate forests worldwide, yet existing methods for assessing available soil Ca do not fully characterize soil Ca forms. To account for discrepancies in ecosystem Ca budgets, it has been hypothesized that the highly insoluble biomineral Ca oxalate might represent an additional soil Ca pool that is not detected in standard measures of soil-exchangeable Ca. We asked whether several standard method extractants for soil-exchangeable Ca could also access Ca held in Ca oxalate crystals using spike recovery tests in both pure solutions and soil extractions. In solutions of the extractants ammonium chloride, ammonium acetate, and barium chloride, we observed 2% to 104% dissolution of Ca oxalate crystals, with dissolution increasing with both solution molarity and ionic potential of cation extractant. In spike recovery tests using a low-Ca soil, we estimate that 1 M ammonium acetate extraction dissolved sufficient Ca oxalate to contribute an additional 52% to standard measurements of soil-exchangeable Ca. However, in a high-Ca soil, the amount of Ca oxalate spike that would dissolve in 1 M ammonium acetate extraction was difficult to detect against the large pool of exchangeable Ca. We conclude that Ca oxalate can contribute substantially to standard estimates of soil-exchangeable Ca in acid forest soils with low soil-exchangeable Ca. Consequently, measures of exchangeable Ca are unlikely to fully resolve discrepancies in ecosystem Ca mass balance unless the contribution of Ca oxalate to exchangeable Ca is also assessed.

  9. Formation of vinyl halides via a ruthenium-catalyzed three-component coupling.

    PubMed

    Trost, Barry M; Pinkerton, Anthony B

    2002-06-26

    The ruthenium-catalyzed three-component coupling of an alkyne, an enone, and halide ion to form E- or Z-vinyl halides has been investigated. Through systematic optimization experiments, the conditions effecting the olefin selectivity were examined. In general, more polar solvents such as DMF favored the formation of the E-isomer, and less polar solvents such as acetone favored formation of the Z-isomer. The optimized conditions for the formation of E-vinyl chlorides were found to be the use of cyclopentadienyl ruthenium (II) cyclooctadiene chloride, stannic chloride pentahydrate as a cocatalyst, and for a chloride source, either ammonium chloride in DMF/water mixtures or tetramethylammonium chloride in DMF. A range of several other ruthenium (II) catalysts was also shown to be effective. A wide variety of vinyl chlorides could be formed under these conditions. Substrates with tethered alcohols or ketones either five or six carbons from the alkyne portion gave instead diketone or cyclohexenone products. For formation of vinyl bromides, a catalyst system involving the use of cyclopentadienylruthenium (II) tris(acetonitrile) hexafluorophosphate with stannic bromide as a cocatalyst was found to be most effective. The use of ammonium bromide in DMF/acetone mixtures was optimal for the synthesis of E-vinyl bromides, and the use of lithium bromide in acetone was optimal for formation of the corresponding Z-isomer. Under either set of conditions, a wide range of vinyl bromides could be formed. When alkynes with propargylic substituents are used, enhanced selectivity for formation of the Z-isomer is observed. When aryl acetylenes are used as the coupling partners, complete selectivity for the Z-isomer is obtained. A mechanism involving a cis or trans halometalation is invoked to explain formation of the observed products. The vinyl halides have been shown to be precursors to alpha-hydroxy ketones and cyclopentenones, and as coupling partners in Suzuki-type reactions.

  10. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions

    NASA Astrophysics Data System (ADS)

    Huang, S.; Jaffé, P. R.

    2015-02-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron was measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454 pyrosequencing, and real-time quantitative PCR analysis. We be Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  11. Quartz crystal microbalance sensor using ionophore for ammonium ion detection.

    PubMed

    Kosaki, Yasuhiro; Takano, Kosuke; Citterio, Daniel; Suzuki, Koji; Shiratori, Seimei

    2012-01-01

    Ionophore-based quartz crystal microbalance (QCM) ammonium ion sensors with a detection limit for ammonium ion concentrations as low as 2.2 microM were fabricated. Ionophores are molecules, which selectively bind a particular ion. In this study, one of the known ionophores for ammonium, nonactin, was used to detect ammonium ions for environmental in-situ monitoring of aquarium water for the first time. To fabricate the sensing films, poly(vinyl chloride) was used as the matrix for the immobilization of nonactin. Furthermore, the anionic additive, tetrakis (4-chlorophenyl) borate potassium salt and the plasticizer dioctyl sebacate were used to enhance the sensor properties. The sensor allowed detecting ammonium ions not only in static solution, but also in flowing water. The sensor showed a nearly linear response with the increase of the ammonium ion concentration. The QCM resonance frequency increased with the increase of ammonium ion concentration, suggesting a decreasing weight of the sensing film. The detailed response mechanism could not be verified yet. However, from the results obtained when using a different plasticizer, nitrophenyl octyl ether, it is considered that this effect is caused by the release of water molecules. Consequently, the newly fabricated sensor detects ammonium ions by discharge of water. It shows high selectivity over potassium and sodium ions. We conclude that the newly fabricated sensor can be applied for detecting ammonium ions in aquarium water, since it allows measuring low ammonium ion concentrations. This sensor will be usable for water quality monitoring and controlling.

  12. 21 CFR 520.310 - Caramiphen ethanedisulfonate and ammonium chloride tablets.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... effectiveness data as specified by § 514.111 of this chapter, but may require bioequivalency and safety information. (b) Sponsor. See No. 000856 in § 510.600(c) of this chapter. (c) Conditions of use in dogs—(1...

  13. Nitrogen removal from wastewater through microbial electrolysis cells and cation exchange membrane.

    PubMed

    Haddadi, Sakineh; Nabi-Bidhendi, Gholamreza; Mehrdadi, Nasser

    2014-02-17

    Vulnerability of water resources to nutrients led to progressively stricter standards for wastewater effluents. Modification of the conventional procedures to meet the new standards is inevitable. New technologies should give a priority to nitrogen removal. In this paper, ammonium chloride and urine as nitrogen sources were used to investigate the capacity of a microbial electrolysis cell (MEC) configured by cation exchange membrane (CEM) for electrochemical removal of nitrogen over open-and closed-circuit potentials (OCP and CCP) during biodegradation of organic matter. Results obtained from this study indicated that CEM was permeable to both organic and ammonium nitrogen over OCP. Power substantially mediated ammonium migration from anodic wastewater to the cathode, as well. With a urine rich wastewater in the anode, the maximum rate of ammonium intake into the cathode varied from 34.2 to 40.6 mg/L.h over CCP compared to 10.5-14.9 mg/L.h over OCP. Ammonium separation over CCP was directly related to current. For 1.46-2.12 mmol electron produced, 20.5-29.7 mg-N ammonium was removed. Current also increased cathodic pH up to 12, a desirable pH for changing ammonium ion to ammonia gas. Results emphasized the potential for MEC in control of ammonium through ammonium separation and ammonia volatilization provided that membrane characteristic is considered in their development.

  14. Ring-opening polymerization of 19-electron [2]cobaltocenophanes: a route to high-molecular-weight, water-soluble polycobaltocenium polyelectrolytes.

    PubMed

    Mayer, Ulrich F J; Gilroy, Joe B; O'Hare, Dermot; Manners, Ian

    2009-08-05

    Water-soluble, high-molecular-weight polycobaltocenium polyelectrolytes have been prepared by ring-opening polymerization (ROP) techniques. Anionic polymerization of a strained 19-electron dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium chloride resulted in the formation of oligomers with up to nine repeat units. Thermal ROP of dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium nitrate resulted in the formation of high-molecular-weight polycobaltocenium nitrate, a redox-active cobalt-containing polyelectrolyte.

  15. Preparation and Characterization of Natural Rubber/Organophilic Clay Nanocomposites

    NASA Astrophysics Data System (ADS)

    Gonzales-Fernandes, M.; Esper, F. J.; Silva-Valenzuela, M. G.; Martín-Cortés, G. R.; Valenzuela-Diaz, F. R.; Wiebeck, H.

    Natural rubber/organophilic clay nanocomposites were prepared and characterized. A brown bentonite from Paraiba's State, Brazil was modified with a sodium salt and treated with quaternary ammonium salt hexadecyltrimethyl ammonium chloride. The clay in its natural state, after cation exchange with sodium and after organophilization was characterized by XRD, IR, SEM, thermal analysis. Nanocomposite samples were prepared containing 10 resin percent of organophilic clay. The vulcanized samples were analyzed by XRD, SEM. The nanocomposites obtained showed improvement in their mechanical properties in comparison with samples without clay.

  16. Commercial fertilizers 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, J.T.; Montgomery, M.H.

    1992-12-01

    Fertilizer consumption information in the USA for 1992 submitted by state regulatory officials is presented. This includes total sales or shipments for farm and non-farm use. Liming materials were excluded. Materials used for manufacture or blending of reported fertilizers or for use in other fertilizers are excluded to avoid double-counting. The consumption of multiple-nutrient and single-nutrient fertilizers is listed. Dry bulk, fluid, and bagged classes are given. Typical fertilizers include: anhydrous ammonia, aqua ammonia, nitrogen solutions, urea, ammonium nitrates, ammonium sulfates, phosphoric acid, superphosphates, potassium chlorides, and potassium sulfates.

  17. Iron and gallium increase iron uptake from transferrin by human melanoma cells: further examination of the ferric ammonium citrate-activated iron uptake process.

    PubMed

    Richardson, D R

    2001-04-30

    Previously we showed that preincubation of cells with ferric ammonium citrate (FAC) resulted in a marked increase in Fe uptake from both (59)Fe-transferrin (Tf) and (59)Fe-citrate (D.R. Richardson, E. Baker, J. Biol. Chem. 267 (1992) 13972-13979; D.R. Richardson, P. Ponka, Biochim. Biophys. Acta 1269 (1995) 105-114). This Fe uptake process was independent of the transferrin receptor and appeared to be activated by free radicals generated via the iron-catalysed Haber-Weiss reaction. To further understand this process, the present investigation was performed. In these experiments, cells were preincubated for 3 h at 37 degrees C with FAC or metal ion solutions and then labelled for 3 h at 37 degrees C with (59)Fe-Tf. Exposure of cells to FAC resulted in Fe uptake from (59)Fe-citrate that became saturated at an Fe concentration of 2.5 microM, while FAC-activated Fe uptake from Tf was not saturable up to 25 microM. In addition, the extent of FAC-activated Fe uptake from citrate was far greater than that from Tf. These results suggest a mechanism where FAC-activated Fe uptake from citrate may result from direct interaction with the transporter, while Fe uptake from Tf appears indirect and less efficient. Preincubation of cells with FAC at 4 degrees C instead of 37 degrees C prevented its effect at stimulating (59)Fe uptake from (59)Fe-Tf, suggesting that an active process was involved. Previous studies by others have shown that FAC can increase ferrireductase activity that may enhance (59)Fe uptake from (59)Fe-Tf. However, there was no difference in the ability of FAC-treated cells compared to controls to reduce ferricyanide to ferrocyanide, suggesting no change in oxidoreductase activity. To examine if activation of this Fe uptake mechanism could occur by incubation with a range of metal ions, cells were preincubated with either FAC, ferric chloride, ferrous sulphate, ferrous ammonium sulphate, gallium nitrate, copper chloride, zinc chloride, or cobalt chloride. Stimulation of (59)Fe uptake from Tf was shown (in order of potency) with ferric chloride, ferrous sulphate, ferrous ammonium sulphate, and gallium nitrate. The other metal ions examined decreased (59)Fe uptake from Tf. The fact that redox-active Cu(II) ion did not stimulate Fe uptake while redox-inactive Ga(III) did, suggests a mechanism of transporter activation not solely dependent on free radical generation. Indeed, the activation of Fe uptake appears dependent on the presence of the Fe atom itself or a metal ion with atomic similarities to Fe (e.g. Ga).

  18. 40 CFR 415.241 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... product shall mean ammonium chloride. (c) The term process wastewater means any water which, during... wastewater shall mean any water which, during manufacturing or processing, comes into incidental contact with...) rainfall runoff; (2) accidental spills; (3) accidental leaks caused by the failure of process equipment...

  19. Potential development of a new cotton-based antimicrobial wipe

    USDA-ARS?s Scientific Manuscript database

    The adsorption of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on greige and bleached nonwoven cotton fabrics was investigated using UV/visible spectroscopy. Initial results have shown that greige cotton adsorbs roughly three tim...

  20. USDA research enables total quat release from cotton nonwoven disinfecting wipes

    USDA-ARS?s Scientific Manuscript database

    The adsorption of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on various cotton, cotton-blend, and synthetic nonwoven fabrics was investigated at varying surfactant concentrations using UV-Vis absorption spectroscopy. Modifying ...

  1. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume

    USGS Publications Warehouse

    Lorah, M.M.; Cozzarelli, I.M.; Böhlke, J.K.

    2009-01-01

    The biogeochemistry at the interface between sediments in a seasonally ponded wetland (slough) and an alluvial aquifer contaminated with landfill leachate was investigated to evaluate factors that can effect natural attenuation of landfill leachate contaminants in areas of groundwater/surface-water interaction. The biogeochemistry at the wetland-alluvial aquifer interface differed greatly between dry and wet conditions. During dry conditions (low water table), vertically upward discharge was focused at the center of the slough from the fringe of a landfill-derived ammonium plume in the underlying aquifer, resulting in transport of relatively low concentrations of ammonium to the slough sediments with dilution and dispersion as the primary attenuation mechanism. In contrast, during wet conditions (high water table), leachate-contaminated groundwater discharged upward near the upgradient slough bank, where ammonium concentrations in the aquifer where high. Relatively high concentrations of ammonium and other leachate constituents also were transported laterally through the slough porewater to the downgradient bank in wet conditions. Concentrations of the leachate-associated constituents chloride, ammonium, non-volatile dissolved organic carbon, alkalinity, and ferrous iron more than doubled in the slough porewater on the upgradient bank during wet conditions. Chloride, non-volatile dissolved organic carbon (DOC), and bicarbonate acted conservatively during lateral transport in the aquifer and slough porewater, whereas ammonium and potassium were strongly attenuated. Nitrogen isotope variations in ammonium and the distribution of ammonium compared to other cations indicated that sorption was the primary attenuation mechanism for ammonium during lateral transport in the aquifer and the slough porewater. Ammonium attenuation was less efficient, however, in the slough porewater than in the aquifer and possibly occurred by a different sorption mechanism. A stoichiometrically balanced increase in magnesium concentration with decreasing ammonium and potassium concentrations indicated that cation exchange was the sorption mechanism in the slough porewater. Only a partial mass balance could be determined for cations exchanged for ammonium and potassium in the aquifer, indicating that some irreversible sorption may be occurring. Although wetlands commonly are expected to decrease fluxes of contaminants in riparian environments, enhanced attenuation of the leachate contaminants in the slough sediment porewater compared to the aquifer was not observed in this study. The lack of enhanced attenuation can be attributed to the fact that the anoxic plume, comprised largely of recalcitrant DOC and reduced inorganic constituents, interacted with anoxic slough sediments and porewaters, rather than encountering a change in redox conditions that could cause transformation reactions. Nevertheless, the attenuation processes in the narrow zone of groundwater/surface-water interaction were effective in reducing ammonium concentrations by a factor of about 3 during lateral transport across the slough and by a factor of 2 to 10 before release to the surface water. Slough porewater geochemistry also indicated that the slough could be a source of sulfate in dry conditions, potentially providing a terminal electron acceptor for natural attenuation of organic compounds in the leachate plume.

  2. Ion-pair in-tube solid-phase microextraction and capillary liquid chromatography using a titania-based column: application to the specific lauralkonium chloride determination in water.

    PubMed

    Prieto-Blanco, M C; Moliner-Martínez, Y; López-Mahía, P; Campíns-Falcó, P

    2012-07-27

    A quick, miniaturized and on-line method has been developed for the determination in water of the predominant homologue of benzalkonium chloride, dodecyl dimethyl benzyl ammonium chloride or lauralkonium chloride (C(12)-BAK). The method is based on the formation of an ion-pair in both in-tube solid-phase microextraction (IT-SPME) and capillary liquid chromatography. The IT-SPME optimization required the study of the length and nature of the stationary phase of capillary and the processed sample volume. Because to the surfactant character of the analyte both, the extracting and replacing solvents, have played a decisive role in the IT-SPME optimized procedure. Conditioning the capillary with the mobile phase which contains the counter ion (acetate), using an organic additive (tetrabutylammonium chloride) added to the sample and a mixture water/methanol as replacing solvent (processed just before the valve is switched to the inject position), allowed to obtain good precision of the retention time and a narrow peak for C(12)-BAK. A reversed-phase capillary based TiO(2) column and a mobile phase containing ammonium acetate at pH 5.0 for controlling the interactions of cationic surfactant with titania surface were proposed. The optimized procedure provided adequate linearity, accuracy and precision at the concentrations interval of 1.5-300 μg L(-1) .The limit of detection (LOD) was 0.5 μg L(-1) using diode array detection (DAD). The applicability of proposed IT-SPME-capillary LC method has been assessed in several water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Method and solvent composition for regenerating an ion exchange resin

    DOEpatents

    Even, William R.; Irvin, David J.; Irvin, Jennifer A.; Tarver, Edward E.; Brown, Gilbert M.; Wang, James C. F.

    2002-01-01

    A method and composition for removing perchlorate from a highly selective ion exchange resin is disclosed. The disclosed approach comprises treating the resin in a solution of super critical or liquid carbon dioxide and one or more quaternary ammonium chloride surfactant compounds.

  4. Reaction catalysts of urea-formaldehyde resin, as related to strength properties of southern pine particleboard

    Treesearch

    C. -Y. Hse

    1974-01-01

    Twelve resins were formulated with factorial combinations of three alkaline catalysts (i.e., somdium hydroxide, hexamethylenetetramine, and triethanolamine) and four acidic catalysts (i.e., acetic acid, hydrochloric acid, ammonium chloride, and phosphoric acid). The resins were replicated.

  5. Size distribution of ions in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Krivácsy, Z.; Molnár, Á.

    The aim of this paper is to present data about the concentration and size distribution of ions in atmospheric aerosol under slightly polluted urban conditions in Hungary. Concentration of inorganic cations (ammonium, sodium, potassium, calcium, magnesium), inorganic anions (sulfate, nitrate, chloride, carbonate) and organic acids (oxalic, malonic, succinic, formic and acetic acid) for 8 particle size range between 0.0625 and 16 μm were determined. As was the case for ammonium, sulfate and nitrate, the organic acids were mostly found in the fine particle size range. Potassium and chloride were rather uniformly distributed between fine and coarse particles. Sodium, calcium, magnesium and carbonate were practically observed in the coarse mode. The results obtained for the summer and the winter half-year were also compared. The mass concentrations were recalculated in equivalents, and the ion balance was found to be reasonable in most cases. Measurement of the pH of the aerosol extracts indicates that the aerosol is acidic in the fine mode, but alkaline in the coarse particle size range.

  6. Osmotic second virial cross-coefficient measurements for binary combination of lysozyme, ovalbumin, and α-amylase in salt solutions.

    PubMed

    Mehta, Chirag M; White, Edward T; Litster, James D

    2013-01-01

    Interactions measurement is a valuable tool to predict equilibrium phase separation of a desired protein in the presence of unwanted macromolecules. In this study, cross-interactions were measured as the osmotic second virial cross-coefficients (B23 ) for the three binary protein systems involving lysozyme, ovalbumin, and α-amylase in salt solutions (sodium chloride and ammonium sulfate). They were correlated with solubility for the binary protein mixtures. The cross-interaction behavior at different salt concentrations was interpreted by either electrostatic or hydrophobic interaction forces. At low salt concentrations, the protein surface charge dominates cross-interaction behavior as a function of pH. With added ovalbumin, the lysozyme solubility decreased linearly at low salt concentration in sodium chloride and increased at high salt concentration in ammonium sulfate. The B23 value was found to be proportional to the slope of the lysozyme solubility against ovalbumin concentration and the correlation was explained by preferential interaction theory. © 2013 American Institute of Chemical Engineers.

  7. Thermal and convection analyses of the dendrite remelting rocket experiment; Experiment 74-21 in the space processing rocket program

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Pond, J. E.; Spradley, J. W.; Johnson, M. H.

    1976-01-01

    The Dendrite Remelting Rocket Experiment was performed aboard a Black Brant VC Sounding Rocket during a period which gravity levels of approximately 0.00001 g prevailed. The experiment consisted of cooling an aqueous ammonium chloride solution in a manner such that crystallization of ammonium chloride crystals proceeded throughout a three minute period of zero-g. The crystallization process during flight was recorded on 35 mm panatomic-x film. A number of ground crystallizations were similarly recorded for comparison purposes. The convective and thermal conditions in aqueous and metallic liquid systems were assessed under conditions of the flight experiment to help establish the relevance of the rocket experiment to metals casting phenomena. The results indicate that aqueous or metallic convective velocities in the Dendrite Remelting Rocket Experiment cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the Rocket Experiment, therefore, may be indicative of how metals will solidify in low-g.

  8. Metal carboxylate formation during indoor atmospheric corrosion of Cu, Zn, and Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persson, D.; Leygraf, C.

    Chemical analyses of surface films and corrosion products formed on pure Cu, Zn, Ni, and Ag samples exposed up to 12 months in various mild indoor environments have been performed by infrared reflection-absorption spectroscopy (IRAS) and X-ray photoelectron spectroscopy. The analyses reveal metal carboxylates to be the main ingredients on the surface of Cu, Zn, and Ni. Other ions, such as sulfate, chloride, nitrate, and ammonium ions are also present but in smaller amounts.The surface region on Ag contains mainly silver sulfide with smaller amounts of sulfate, ammonium, and chloride ions. The growth of the carboxylate layers, as followed bymore » IRAS, exhibits an initial film formation with a thickness of a few nanometers for all exposure sites investigated. Subsequent growth to thicker layers was observed at sites with higher humidity levels. The unexpectedly high content of metal carboxylates found on Cu, Zn, and Ni may provide insight into possible processes involved in the atmospheric indoor corrosion of these metals.« less

  9. Chemistry of Urban Grime: Inorganic Ion Composition of Grime vs Particles in Leipzig, Germany.

    PubMed

    Baergen, Alyson M; Styler, Sarah A; van Pinxteren, Dominik; Müller, Konrad; Herrmann, Hartmut; Donaldson, D James

    2015-11-03

    Deposition of atmospheric constituents--either gas phase or particulate--onto urban impervious surfaces gives rise to a thin "urban grime" film. The area exposed by these impervious surfaces in a typical urban environment is comparable to, or greater than, that of particles present in the urban boundary layer; however, it is largely overlooked as a site for heterogeneous reactions. Here we present the results of a field campaign to determine and compare the chemical composition of urban grime and of particles collected simultaneously during the autumn of 2014 at an urban site in central Leipzig, Germany. We see dramatically reduced ammonium and nitrate levels in the film as compared to particles, suggesting a significant loss of ammonium nitrate, thus enhancing the mobility of these species in the environment. Nitrate levels are 10% lower for films exposed to sunlight compared to those that were shielded from direct sun, indicating a possible mechanism for recycling nitrate anion to reactive nitrogen species. Finally, chloride levels in the film suggest that urban grime could represent an unrecognized source of continental chloride available for ClNO2 production even in times of low particulate chloride. Such source and recycling processes could prove to be important to local and regional air quality.

  10. Selective removal and inactivation of bacteria by nanoparticle composites prepared by surface modification of montmorillonite with quaternary ammonium compounds.

    PubMed

    Khalil, Rowaida K S

    2013-10-01

    The purpose of the present study was to prepare new nanocomposites with antibacterial activities by surface modification of montmorillonite using quaternary ammonium compounds that are widely applied as disinfectants and antiseptics in food-processing environments. The intercalation of four quaternary ammonium compounds namely benzalkonium chloride, cetylpyridinium chloride monohydrate, hexadecyltrimethylammonium bromide, tetraethylammonium chloride hydrate into montmorillonite layers was confirmed by X-ray diffraction. The antibacterial influences of the modified clay variants against important foodborne pathogens differed based on modifiers quantities, microbial cell densities, and length of contact. Elution experiments through 0.1 g of the studied montmorillonite variants indicated that Staphylococcus aureus, Pseudomonas aeroginosa, and Listeria monocytogenes were the most sensitive strains. 1 g of hexadecyltrimethylammonium bromide intercalated montmorillonites demonstrated maximum inactivation of L. monocytogenes populations, with 4.5 log c.f.u./ml units of reduction. In adsorption experiments, 0.1 g of tetraethylammonium chloride hydrate montmorillonite variants significantly reduced the growth of Escherichia coli O157:H7, L. monocytogenes, and S. aureus populations by 5.77, 6.33, and 7.38 log units respectively. Growth of wide variety of microorganisms was strongly inhibited to undetectable levels (

  11. Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent.

    PubMed

    Huang, Haiming; Xiao, Xianming; Yan, Bo; Yang, Liping

    2010-03-15

    This paper presents a study of the removal of ammonium ion from aqueous solutions using natural Chinese (Chende) zeolite. A series of experiments was conducted to examine the effects of solution pH, particle size, contact time, adsorbent dosage, and the presence of other cation- and anion species on ammonium removal. The findings indicated that these parameters named had a significant effect on the removal of ammonium by the zeolite. The effect of other cations on the removal of ammonium followed the order of preference Na(+)>K(+)>Ca(2+)>Mg(2+) at identical mass concentrations, and the effect of the presence of individual anions followed the order of preference carbonate>chloride>sulfate>phosphate at identical mass concentrations of ammonium ions. Kinetic analysis showed that the adsorption of ammonium on zeolite at different ranges of particle size well followed the pseudo-second-order model and followed the intra-particle diffusion model only during the initial 60 min of the adsorption process. Equilibrium isotherm data was fitted to the linear Langmuir- and Freundlich models with the latter model providing the better description of the process (R(2)=0.991-0.997) compared to the former (R(2)=0.902-0.989). (c) 2009 Elsevier B.V. All rights reserved.

  12. Determination of polyhexamethylene biguanide hydrochloride using photometric colloidal titration with crystal violet as a color indicator.

    PubMed

    Masadome, Takashi; Miyanishi, Takaaki; Watanabe, Keita; Ueda, Hiroshi; Hattori, Toshiaki

    2011-01-01

    A solution of polyhexamethylene biguanide hydrochloride (PHMB-HCl) was titrated with a standard solution of potassium poly(vinyl sulfate) (PVSK) using crystal violet (CV) as an photometric indicator cation. The end point was detected by a sharp absorbance change due to an abrupt decrease in the concentration of CV. A linear relationship between the concentration of PHMB-HCl and the end-point volume of the titrant existed in the concentration range from 2 to 10 × 10(-6) eq mol L(-1). Back-titration was based on adding an excess amount of PVSK to a sample solution containing CV, which was titrated with a standard solution of poly(diallyldimethylammonium chloride) (PDADMAC). The calibration curve of the PHMB-HCl concentration to the end point volume of the titrant was also linear in the concentration range from 2 to 8 × 10(-6) eq mol L(-1). Both photometric titrations were applied to the determination of PHMB-HCl in a few contact-lens detergents. Back-titration showed a clear end point, but direct titration showed an unclear end point. The results of the back-titration of PHMB-HCl were compared with the content registered in its labels. 2011 © The Japan Society for Analytical Chemistry

  13. (2SR,3RS)-Benz­yl[4-chloro-1-(4-chloro­phen­yl)-1-methoxy­carbon­yl-2-but­yl]­ammonium chloride

    PubMed Central

    Kaupang, Åsmund; Bolsønes, Marianne; Gamadeku, Thywill; Hansen, Tore; Hennum, Martin Johanson; Görbitz, Carl Henrik

    2008-01-01

    In the racemic hydro­chloride salt of the title ester, C19H22Cl2NO2 +·Cl−, the penta­noic acid chain shows a mixture of trans and gauche orientations to give an overall helical conformation. The dihedral angle between the two aromatic rings is 26.11 (10)°. The charged secondary amine function participates in two N—H⋯Cl hydrogen bonds. PMID:21201230

  14. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron reducing conditions

    NASA Astrophysics Data System (ADS)

    Huang, S.; Jaffé, P. R.

    2014-08-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron were measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454-pyrosequencing, and real-time quantitative PCR analysis. We believe that one of the dominant microbial species in our system (an uncultured Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  15. Hydrolysis of p-nitrophenyl esters promoted by semifluorinated quaternary ammonium polymer latexes and films.

    PubMed

    Kaur, Baljinder; McBride, Sean P; Paul, Abhijit; Ford, Warren T

    2010-10-19

    Semifluorinated polymer latexes were prepared by emulsion polymerization of 2.5-25% of a fluoroalkyl methacrylate, 25% chloromethylstyrene, 1% styrylmethyl(trimethyl)ammonium chloride, and the remainder 2-ethylhexyl methacrylate under surfactant-free conditions. The chloromethylstyrene units were converted to quaternary ammonium ions with trimethylamine. In aqueous dispersions at particle concentrations of less than 1 mg mL(-1) the quaternary ammonium ion latexes promoted hydrolyses of p-nitrophenyl hexanoate (PNPH) in pH 9.4 borate buffer and of diethyl p-nitrophenyl phosphate (Paraoxon) in 0.1 M NaOH at 30 °C with half-lives of less than 10 min. Thin 0.7-2 μm films of the latexes on glass promoted fast hydrolysis of Paraoxon but not of PNPH under the same conditions. Even after annealing the quaternary ammonium ion polymer films at temperatures well above their glass transition temperatures, AFM images of the film surfaces had textures of particles. Contact angle measurements of the annealed films against water and against hexadecane showed that the surfaces were not highly fluorinated.

  16. Novel immobilization of a quaternary ammonium moiety on keratin fibers for medical applications.

    PubMed

    Yu, Dan; Cai, Jackie Y; Liu, Xin; Church, Jeffrey S; Wang, Lijing

    2014-09-01

    This paper introduces a new approach for immobilizing a quaternary ammonium moiety on a keratinous substrate for enhanced medical applications. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in the keratin, followed by reaction with [2-(acryloyloxy)ethyl]trimethylammonium chloride through thiol-ene click chemistry. The modified substrate was characterized with Raman and infrared spectroscopy, and assessed for its antibacterial efficacy and other performance changes. The results have demonstrated that the quaternary ammonium moiety has been effectively attached onto the keratin structure, and the resultant keratin substrate exhibits a multifunctional effect including antibacterial and antistatic properties, improved liquid moisture management property, improved dyeability and a non-leaching characteristic of the treated substrate. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  17. Secretion of acid phosphatase by axenic Entamoeba histolytica NIH-200 and properties of the extracellular enzyme.

    PubMed

    Agrawal, A; Pandey, V C; Kumar, S; Sagar, P

    1989-01-01

    Entamoeba histolytica (NIH-200) secreted large amounts of acid phosphatase in its external environment when grown axenically in modified TPS-II medium. Fractionation by DEAE-cellulose chromatography of the precipitate obtained from the cell-free medium at 60% ammonium sulfate saturation yielded 3 distinct peaks of enzyme activity. The enzyme in all the peaks showed resistance to tartrate but was inhibited by fluoride, cupric chloride, ethylene diamine-tetra acetic acid, ammonium molybdate and cysteine; however, enzyme associated with different peaks differed in its polyacrylamide gel electrophoretic profiles and behavior towards concanavalin A.

  18. Effects of phonon broadening on x-ray near-edge spectra in molecular crystals

    NASA Astrophysics Data System (ADS)

    Vinson, John; Jach, Terrence; Elam, Tim; Denlinger, Jonathon

    2014-03-01

    Calculations of near-edge x-ray spectra are often carried out using the average atomic coordinates from x-ray or neutron scattering experiments or from density functional theory (DFT) energy minimization. This neglects disorder from thermal and zero-point vibrations. Here we look at the nitrogen K-edge of ammonium chloride and ammonium nitrate, comparing Bethe-Salpeter calculations of absorption and fluorescence to experiment. We find that intra-molecular vibrational effects lead to significant, non-uniform broadening of the spectra, and that for some features zero-point motion is the primary source of the observed shape.

  19. Synthesis and characterization of poly (benzyl trimethyl ammonium chloride) ionic polymer

    NASA Astrophysics Data System (ADS)

    Mathew, Manjusha Elizabeth; Ahmad, Ishak; Thomas, Sabu; Daik, Rusli; Kassim, Muhammad

    2018-04-01

    Poly vinyl benzyl chloride (PVBC) was synthesized by free radical polymerization of 4-vinyl benzyl chloride (VBC) using benzoyl peroxide initiator at 80°C. Amine functionalised polymer prepared by treatment of PVBC with trimethyl amine in different solvents such as water, ethanol, tetra hydro furan(THF) and dimethyl formamide(DMF). The polymers characterized structurally by nuclear magnetic resonance and infrared spectroscopic techniques. The thermal decomposition of the polymer is studied by Thermo Gravimetric Analysis(TGA) and found that the polymer has stability up to 230°C. The nitrogen content of the aminated polymer determined by elemental analysis. The nitrogen content obtained from tetra hydro furan and dimethyl formamide solvents are 20.1% and 19.9% respectively.

  20. Headspace gas chromatography based methodology for the analysis of aromatic substituted quaternary ammonium salts.

    PubMed

    van Boxtel, Niels; Wolfs, Kris; Palacín, Marta Guillén; Van Schepdael, Ann; Adams, Erwin

    2016-12-09

    The analysis of quaternary ammonium salts (QAS) using GC is often performed by "in injector" pyrolysis to create volatile degradation products for quantification purposes. Besides the risk of severe system contamination, the application of this approach on aqueous samples is problematic. In this work, the sample is treated in a vial with 2,2-dimethoxypropane (DMP) under acidic catalysis. In addition to the removal of water and sample enrichment, the QAS are decomposed. As HS transfers only volatile compounds to the GC system, contamination is avoided. It was found that depending on the presence of benzyl, phenyl or methyl groups on the quaternary nitrogen; benzyl chloride, N,N-dimethylaniline or chloromethane are formed respectively in the sealed vial. All these can be used as an analytical target. A calibration curve for benzyl chloride could be derived from the pure compound. Chloromethane was generated from pure benzyldimethyldecylammonium chloride (BEDIDE), a pure QAS with benzyl and methyl groups, to construct a secondary calibration curve using a back analysis approach. It has been proven that by quantifying the formed analytical targets, the mass balance for the QAS under investigation was close to 100%. The presented procedure allows the quantification of any aromatic substituted QAS without the need for a matching reference, which is a major advantage over existing CE and LC methods The proposed methodology was validated for mouth sprays containing benzethonium chloride (BZTCl) or benzoxonium chloride (BZOCl) and for denatonium benzoate (DB) in ethylene glycol (EG) based cooling liquids. Results showed that the approach provided excellent linearity (R 2 ≥0.999) and limits of detection around 0.01μg/vial for benzyl chloride. It was found that the reaction product of DMP and glycerol which was also present in the mouthspray and some cooling liquids, caused chromatographic interference with benzyl chloride. Treating those samples in the vial with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) after the enrichment step removes the interference and leaves a possible pathway for the simultaneous determination of glycerol in those samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies.

    PubMed

    Boopathy, Ramasamy; Karthikeyan, Sekar; Mandal, Asit Baran; Sekaran, Ganesan

    2013-01-01

    Ammonium ions are one of the most encountered nitrogen species in polluted water bodies. High level of ammonium ion in aqueous solution imparts unpleasant taste and odor problems, which can interfere with the life of aquatics and human population when discharged. Many chemical methods are developed and being used for removal of ammonium ion from aqueous solution. Among various techniques, adsorption was found to be the most feasible and environmentally friendly with the use of natural-activated adsorbents. Hence, in this study, coconut shell-activated carbon (CSAC) was prepared and used for the removal of ammonium ion by adsorption techniques. Ammonium chloride (analytical grade) was purchased from Merck Chemicals for adsorption studies. The CSAC was used to adsorb ammonium ions under stirring at 100 rpm, using orbital shaker in batch experiments. The concentration of ammonium ion was estimated by ammonia distillate, using a Buchi distillation unit. The influence of process parameters such as pH, temperature, and contact time was studied for adsorption of ammonium ion, and kinetic, isotherm models were validated to understand the mechanism of adsorption of ammonium ion by CSAC. Thermodynamic properties such as ∆G, ∆H, and ∆S were determined for the ammonium adsorption, using van't Hoff equation. Further, the adsorption of ammonium ion was confirmed through instrumental analyses such as SEM, XRD, and FTIR. The optimum conditions for the effective adsorption of ammonium ion onto CSAC were found to be pH 9.0, temperature 283 K, and contact time 120 min. The experimental data was best followed by pseudosecond order equation, and the adsorption isotherm model obeyed the Freundlich isotherm. This explains the ammonium ion adsorption onto CSAC which was a multilayer adsorption with intraparticle diffusion. Negative enthalpy confirmed that this adsorption process was exothermic. The instrumental analyses confirmed the adsorption of ammonium ion onto CSAC.

  2. Phase equilibria in the lysozyme-ammonium sulfate-water system.

    PubMed

    Moretti, J J; Sandler, S I; Lenhoff, A M

    2000-12-05

    Ternary phase diagrams were measured for lysozyme in ammonium sulfate solutions at pH values of 4 and 8. Lysozyme, ammonium sulfate, and water mass fractions were assayed independently by UV spectroscopy, barium chloride titration, and lyophilization respectively, with mass balances satisfied to within 1%. Protein crystals, flocs, and gels were obtained in different regions of the phase diagrams, and in some cases growth of crystals from the gel phase or from the supernatant after floc removal was observed. These observations, as well as a discontinuity in protein solubility between amorphous floc precipitate and crystal phases, indicate that the crystal phase is the true equilibrium state. The ammonium sulfate was generally found to partition unequally between the supernatant and the dense phase, in disagreement with an assumption often made in protein phase equilibrium studies. The results demonstrate the potential richness of protein phase diagrams as well as the uncertainties resulting from slow equilibration. Copyright 2000 John Wiley & Sons, Inc.

  3. Renal Regulation of Acid-Base Balance: Ammonia Excretion.

    ERIC Educational Resources Information Center

    Tanner, George A.

    1984-01-01

    Describes an experiment which demonstrates changes in ammonia excretion and urine pH that occur in response to metabolic acidosis (induced by ammonium chloride ingestion) or metabolic alkalosis (produced by sodium bicarbonate ingestion). List of materials needed and background information are included. Typical results are provided and discussed.…

  4. The Ammonia Smoke Fountain: An Interesting Thermodynamic Adventure.

    ERIC Educational Resources Information Center

    Alexander, M. Dale

    1999-01-01

    Describes a new demonstration that uses an apparatus like the ammonia-fountain apparatus but with modifications designed to produce ammonium-chloride smoke. This demonstration is easy to perform, interesting to observe, and allows demonstration of the solubility of ammonia in water, the basic nature of ammonia, the acidic nature of hydrogen…

  5. MONITORING AMBIENT AMMONIA CHEMISTRY IN AN AGRICULTURAL REGION WITH A LOW DENSITY OF ANIMAL PRODUCTION

    EPA Science Inventory

    We present several years of ambient ammonia, ammonium, hydrochloric acid, chloride, nitric acid, nitrate, nitrous acid, sulfur dioxide, and sulfate concentrations at a rural site in the Coastal Plain region of North Carolina. Also, the air chemistry of Lewiston, NC and Clinton, N...

  6. Precipitation and streamwater chemistry in an undisturbed watershed in southeast Alaska.

    Treesearch

    John D. Stednick

    1981-01-01

    Water chemistry samples have been taken from streamflow since 1976 and precipitation since 1978 in Indian River, an undisturbed watershed on Chichagof Island in Southeast Alaska. Volume weighted concentrations of total nitrogen, ammonium nitrogen, nitrate nitrogen, total phosphorus, orthophosphate, sulfate sulfur, chloride, bicarbonate, silica, calcium, magnesium,...

  7. Copper and Quaternary Ammonium Cations Exert Synergistic Bactericidal and Antibiofilm Activity against Pseudomonas aeruginosa▿

    PubMed Central

    Harrison, Joe J.; Turner, Raymond J.; Joo, Daniel A.; Stan, Michelle A.; Chan, Catherine S.; Allan, Nick D.; Vrionis, Helen A.; Olson, Merle E.; Ceri, Howard

    2008-01-01

    Biofilms are slimy aggregates of microbes that are likely responsible for many chronic infections as well as for contamination of clinical and industrial environments. Pseudomonas aeruginosa is a prevalent hospital pathogen that is well known for its ability to form biofilms that are recalcitrant to many different antimicrobial treatments. We have devised a high-throughput method for testing combinations of antimicrobials for synergistic activity against biofilms, including those formed by P. aeruginosa. This approach was used to look for changes in biofilm susceptibility to various biocides when these agents were combined with metal ions. This process identified that Cu2+ works synergistically with quaternary ammonium compounds (QACs; specifically benzalkonium chloride, cetalkonium chloride, cetylpyridinium chloride, myristalkonium chloride, and Polycide) to kill P. aeruginosa biofilms. In some cases, adding Cu2+ to QACs resulted in a 128-fold decrease in the biofilm minimum bactericidal concentration compared to that for single-agent treatments. In combination, these agents retained broad-spectrum antimicrobial activity that also eradicated biofilms of Escherichia coli, Staphylococcus aureus, Salmonella enterica serovar Cholerasuis, and Pseudomonas fluorescens. To investigate the mechanism of action, isothermal titration calorimetry was used to show that Cu2+ and QACs do not interact in aqueous solutions, suggesting that each agent exerts microbiological toxicity through independent biochemical routes. Additionally, Cu2+ and QACs, both alone and in combination, reduced the activity of nitrate reductases, which are enzymes that are important for normal biofilm growth. Collectively, the results of this study indicate that Cu2+ and QACs are effective combinations of antimicrobials that may be used to kill bacterial biofilms. PMID:18519726

  8. Air and Surface Sampling Method for Assessing Exposures to Quaternary Ammonium Compounds Using Liquid Chromatography Tandem Mass Spectrometry.

    PubMed

    LeBouf, Ryan F; Virji, Mohammed Abbas; Ranpara, Anand; Stefaniak, Aleksandr B

    2017-07-01

    This method was designed for sampling select quaternary ammonium (quat) compounds in air or on surfaces followed by analysis using ultraperformance liquid chromatography tandem mass spectrometry. Target quats were benzethonium chloride, didecyldimethylammonium bromide, benzyldimethyldodecylammonium chloride, benzyldimethyltetradecylammonium chloride, and benzyldimethylhexadecylammonium chloride. For air sampling, polytetrafluoroethylene (PTFE) filters are recommended for 15-min to 24-hour sampling. For surface sampling, Pro-wipe® 880 (PW) media was chosen. Samples were extracted in 60:40 acetonitrile:0.1% formic acid for 1 hour on an orbital shaker. Method detection limits range from 0.3 to 2 ng/ml depending on media and analyte. Matrix effects of media are minimized through the use of multiple reaction monitoring versus selected ion recording. Upper confidence limits on accuracy meet the National Institute for Occupational Safety and Health 25% criterion for PTFE and PW media for all analytes. Using PTFE and PW analyzed with multiple reaction monitoring, the method quantifies levels among the different quats compounds with high precision (<10% relative standard deviation) and low bias (<11%). The method is sensitive enough with very low method detection limits to capture quats on air sampling filters with only a 15-min sample duration with a maximum assessed storage time of 103 days before sample extraction. This method will support future exposure assessment and quantitative epidemiologic studies to explore exposure-response relationships and establish levels of quats exposures associated with adverse health effects. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  9. Uptake and phytotoxic effect of benzalkonium chlorides in Lepidium sativum and Lactuca sativa.

    PubMed

    Khan, Adnan Hossain; Libby, Mark; Winnick, Daniel; Palmer, John; Sumarah, Mark; Ray, Madhumita B; Macfie, Sheila M

    2018-01-15

    Cationic surfactants such as benzalkonium chlorides (BACs) are used extensively as biocides in hospitals, food processing industries, and personal care products. BACs have the potential to reach the rooting zone of crop plants and BACs might thereby enter the food chain. The two most commonly used BACs, benzyl dimethyl dodecyl ammonium chloride (BDDA) and benzyl dimethyl tetradecyl ammonium chloride (BDTA), were tested in a hydroponic system to assess the uptake by and phytotoxicity to lettuce (Lactuca sativa L.) and garden cress (Lepidium sativum L.). Individually and in mixture, BACs at concentrations up to 100 mg L -1 did not affect germination; however, emergent seedlings were sensitive at 1 mg L -1 for lettuce and 5 mg L -1 for garden cress. After 12 d exposure to 0.25 mg L -1 BACs, plant dry weight was reduced by 68% for lettuce and 75% for garden cress, and symptoms of toxicity (necrosis, chlorosis, wilting, etc.) were visible. High performance liquid chromatography-mass spectroscopy analysis showed the presence of BACs in the roots and shoots of both plant species. Although no conclusive relationship was established between the concentrations of six macro- or six micro-nutrients, growth inhibition or BAC uptake, N and Mg concentrations in BAC-treated lettuce were 50% lower than that of control, indicating that BACs might induce nutrient deficiency. Although bioavailability of a compound in hydroponics is significantly higher than that in soil, these results confirm the potential of BACs to harm vascular plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Binding mechanisms for histamine and agmatine ligands in plasmid deoxyribonucleic acid purifications.

    PubMed

    Sousa, Ângela; Pereira, Patrícia; Sousa, Fani; Queiroz, João A

    2014-10-31

    Histamine and agmatine amino acid derivatives were immobilized into monolithic disks, in order to combine the specificity and selectivity of the ligand with the high mass transfer and binding capacity offered by monolithic supports, to purify potential plasmid DNA biopharmaceuticals. Different elution strategies were explored by changing the type and salt concentration, as well as the pH, in order to understand the retention pattern of different plasmids isoforms The pVAX1-LacZ supercoiled isoform was isolated from a mixture of pDNA isoforms by using NaCl increasing stepwise gradient and also by ammonium sulfate decreasing stepwise gradient, in both histamine and agmatine monoliths. Acidic pH in the binding buffer mainly strengthened ionic interactions with both ligands in the presence of sodium chloride. Otherwise, for histamine ligand, pH values higher than 7 intensified hydrophobic interactions in the presence of ammonium sulfate. In addition, circular dichroism spectroscopy studies revealed that the binding and elution chromatographic conditions, such as the combination of high ionic strength with extreme pH values can reversibly influence the structural stability of the target nucleic acid. Therefore, ascending sodium chloride gradients with pH manipulation can be preferable chromatographic conditions to be explored in the purification of plasmid DNA biopharmaceuticals, in order to avoid the environmental impact of ammonium sulfate. Copyright © 2014. Published by Elsevier B.V.

  11. Effect of Sodium Sulfate, Ammonium Chloride, Ammonium Nitrate, and Salt Mixtures on Aqueous Phase Partitioning of Organic Compounds.

    PubMed

    Wang, Chen; Lei, Ying Duan; Wania, Frank

    2016-12-06

    Dissolved inorganic salts influence the partitioning of organic compounds into the aqueous phase. This influence is especially significant in atmospheric aerosol, which usually contains large amounts of ions, including sodium, ammonium, chloride, sulfate, and nitrate. However, empirical data on this salt effect are very sparse. Here, the partitioning of numerous organic compounds into solutions of Na 2 SO 4 , NH 4 Cl, and NH 4 NO 3 was measured and compared with existing data for NaCl and (NH 4 ) 2 SO 4 . Salt mixtures were also tested to establish whether the salt effect is additive. In general, the salt effect showed a decreasing trend of Na 2 SO 4 > (NH) 2 SO 4 > NaCl > NH 4 Cl > NH 4 NO 3 for the studied organic compounds, implying the following relative strength of the salt effect of individual anions: SO 4 2- > Cl - > NO 3 - and of cations: Na + > NH 4 + . The salt effect of different salts is moderately correlated. Predictive models for the salt effect were developed based on the experimental data. The experimental data indicate that the salt effect of mixtures may not be entirely additive. However, the deviation from additivity, if it exists, is small. Data of very high quality are required to establish whether the effect of constituent ions or salts is additive or not.

  12. Sampling and analysis of quaternary ammonium compounds (QACs) traces in indoor atmosphere.

    PubMed

    Vincent, Guillaume; Kopferschmitt-Kubler, Marie Christine; Mirabel, Philippe; Pauli, Gabrielle; Millet, Maurice

    2007-10-01

    Quaternary Ammonium Compounds (QACs) are widely found in disinfectants used in hospitals. Benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC) predominate in the disinfecting formulations. These compounds are strong irritants and can play a role in the induction of Occupational Asthma among the professionals of health and cleaning. In order to evaluate the potential health effect of these quaternary ammonium compounds to hospital employers, the development of an analytical method for their quantification in indoor air was developed. DDAC aerosols are trapped by adsorption on XAD-2 resin SKC tube. The air in hospital buildings was sampled using a constant debit Gillian pump at a flow of 1.0 l/min (+/-5%). Ion Chromatography (IC) was chosen for the analysis of DDAC especially for its high sensitivity and specificity. The Limit of Detection (LOD) by IC for DDAC is 0.56 mug/ml. Therefore the LOD of atmospheric DDAC is 28 microg/m(3) with an air volume of 100 l and a desorption volume of 5 ml. All DDAC air samples were lower than the LOD of the analytical method by IC. Under the standard conditions of use of the disinfecting solutions (Surfanios, Ampholysine Plus and Amphospray 41), the insignificant volatility of DDAC would not seem to be able to contaminate the indoor hospital atmosphere during the disinfection process. However, the DDAC can contaminate working atmospheres if it is put in suspension by aerosolisation.

  13. Ion Homeostasis in Chloroplasts under Salinity and Mineral Deficiency 1

    PubMed Central

    Schröppel-Meier, Gabriele; Kaiser, Werner M.

    1988-01-01

    Spinach (Spinacia oleracea var “Yates”) plants in hydroponic culture were exposed to stepwise increased concentrations of NaCl or NaNO3 up to a final concentration of 300 millimoles per liter, at constant Ca2+-concentration. Leaf cell sap and extracts from aqueously isolated spinach chloroplasts were analyzed for mineral cations, anions, amino acids, sugars, and quarternary ammonium compounds. Total osmolality of leaf sap and photosynthetic capacity of leaves were also measured. For comparison, leaf sap from salt-treated pea plants was also analyzed. Spinach plants under NaCl or NaNO3 salinity took up large amounts of sodium (up to 400 millimoles per liter); nitrate as the accompanying anion was taken up less (up to 90 millimoles per liter) than chloride (up to 450 millimoles per liter). Under chloride salinity, nitrate content in leaves decreased drastically, but total amino acid concentrations remained constant. This response was much more pronounced (and occurred at lower salt concentrations) in leaves from the glycophyte (pea, Pisum sativum var “Kleine Rheinländerin”) than from moderately salt-tolerant spinach. In spinach, sodium chloride or nitrate taken up into leaves was largely sequestered in the vacuoles; both salts induced synthesis of quarternary ammonium compounds, which were accumulated mainly in chloroplasts (and cytosol). This prevented impairment of metabolism, as indicated by an unchanged photosynthetic capacity of leaves. PMID:16666232

  14. Polynuclear complexes of copper(I) halides: coordination chemistry and catalytic transformations of alkynes

    NASA Astrophysics Data System (ADS)

    Mykhalichko, B. M.; Temkin, Oleg N.; Mys'kiv, M. G.

    2000-11-01

    Characteristic features of the coordination chemistry of Cu(I) and mechanisms of catalytic conversions of alkynes in the CuCl-MCl-H2O-HC≡CR system (MCl is alkali metal or ammonium chloride or amine hydrochloride; R=H, CH2OH, CH=CH2, etc.) are analysed based on studies of the compositions and structures of copper(I) chloride (bromide) complexes, alkyne π-complexes and ethynyl organometallic polynuclear compounds formed in this system in solutions and in the crystalline state. The role of polynuclear complexes in various reactions of alkynes is discussed. The bibliography includes 149 references.

  15. Synthesis and Characterization of Tin(IV) Oxide Obtained by Chemical Vapor Deposition Method

    NASA Astrophysics Data System (ADS)

    Nagirnyak, Svitlana V.; Lutz, Victoriya A.; Dontsova, Tatiana A.; Astrelin, Igor M.

    2016-07-01

    The effect of precursors on the characteristics of tin oxide obtained by chemical vapor deposition (CVD) method was investigated. The synthesis of nanosized tin(IV) oxide was carried out with the use of two different precursors: tin(II) oxalate obtained using tin chloride(II) and oxalic acid; tin(II) oxalate obtained using tin chloride(II); and ammonium oxalate. The synthesized tin(IV) oxide samples were studied by electron microscopy, X-ray diffraction and optical spectra. The lattice parameters of tin(IV) oxide samples were defined, the bandgap of samples were calculated.

  16. Studies on Acetone Powder and Purified Rhus Laccase Immobilized on Zirconium Chloride for Oxidation of Phenols

    PubMed Central

    Lu, Rong; Miyakoshi, Tetsuo

    2012-01-01

    Rhus laccase was isolated and purified from acetone powder obtained from the exudates of Chinese lacquer trees (Rhus vernicifera) from the Jianshi region, Hubei province of China. There are two blue bands appearing on CM-sephadex C-50 chromatography column, and each band corresponding to Rhus laccase 1 and 2, the former being the major constituent, and each had an average molecular weight of approximately 110 kDa. The purified and crude Rhus laccases were immobilized on zirconium chloride in ammonium chloride solution, and the kinetic properties of free and immobilized Rhus laccase, such as activity, molecular weight, optimum pH, and thermostability, were examined. In addition, the behaviors on catalytic oxidation of phenols also were conducted. PMID:22545205

  17. Effect of zinc and benzalkonium chloride on Nitrosomonas communis and potential nitrification in soil.

    PubMed

    Frühling, W; Rönnpagel, K; Ahlf, W

    2001-10-01

    A bacterial contact assay is described which uses a chemoautotrophic microorganism, Nitrosomonas communis (strain Nm2) to evaluate the biological effect of contaminated soils. The effects of two toxicants on the ammonium oxidation activity of the autochthonous microbial population in the soil are compared with inhibition of the same biological response in the new monospecies bioassay. Experiments were performed using soil samples dosed with organic and inorganic contaminants (benzalkonium chloride and zinc) to demonstrate the mode of operation and the sensitivity of the bioassay. The EC50 values of zinc and benzalkonium chloride were calculated to be 171 and 221 mg kg-1 soil, respectively. The toxic response provided by the bioassay can thus predict the effect of soil pollutants on the autochthonous nitrifying bacteria.

  18. Zinc composite anode for batteries with solid electrolyte

    NASA Astrophysics Data System (ADS)

    Tedjar, F.; Melki, T.; Zerroual, L.

    A new negative composite anode for batteries with a solid electrolyte is studied. Using a complex of zinc ammonium chloride mixed with zinc metal powder, the advantage of the Zn/Zn 2+ electrode ( e = -760 mV) is kept while the energy density and the shelf-life of the battery are increased.

  19. EVALUATION OF THE CMAQ - AIM MODEL AGAINST SIZE AND CHEMICALLY-RESOLVED IMPACTOR DATA AT A COASTAL URBAN SITE

    EPA Science Inventory

    CMAQ-UCD (formerly known as CMAQ-AIM), is a fully dynamic, sectional aerosol model which has been coupled to the Community Multiscale Air Quality (CMAQ) host air quality model. Aerosol sulfate, nitrate, ammonium, sodium, and chloride model outputs are compared against MOUDI data...

  20. RAILCAR4 Toxic Industrial Chemical Source Characterization Program (Software User’s Manual)

    DTIC Science & Technology

    2011-08-01

    hydroxide (29%) boron trifluoride sulfur trioxide hydrogen chloride methyl bromide phosphine hydrochloric acid (39%) phosphoryl trichloride arsine...Data for Chlorine Trial 05-RC ...............................20 10 Nitric Acid Thermodynamic Properties...Table 1. TICs Available for RAILCAR Simulations chlorine hydrobromic acid (48%) acetylene tetrabromide ammonia OMPA o-anisidine ammonium

  1. Utilization of the wastes of vital activity

    NASA Technical Reports Server (NTRS)

    Gusarov, B. G.; Drigo, Y. A.; Novikov, V. M.; Samsonov, N. M.; Farafonov, N. S.; Chizhov, S. V.; Yazdovskiy, V. I.

    1979-01-01

    The recycling of wastes from the biological complex for use in life-support systems is discussed. Topics include laboratory equipment, heat treatment of waste materials, mineralization of waste products, methods for production of ammonium hydroxide and nitric acid, the extraction of sodium chloride from mineralized products, and the recovery of nutrient substances for plants from urine.

  2. 77 FR 47291 - Residues of Didecyl Dimethyl Ammonium Chloride; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... production (NAICS code 111). Animal production (NAICS code 112). Food manufacturing (NAICS code 311... Federal Food, Drug, and Cosmetic Act (FFDCA) requesting an exemption from the requirement of a tolerance...? You may be potentially affected by this action if you are an agricultural producer, food manufacturer...

  3. Clearcutting affects stream chemistry in the White Mountains of New Hampshire

    Treesearch

    C. Wayne Martin; Robert S. Pierce; Gene E. Likens; F. Herbert Bormann; F. Herbert Bormann

    1986-01-01

    Commercial clearcutting of northern hardwood forests changed the chemistry of the streams that drained from them. By the second year after cutting, specific conductance doubled, nitrate increased tenfold, calcium tripled, and sodium, magnesium, and potassium doubled. Chloride and ammonium did not change; sulfate decreased. Concentrations of most ions returned to...

  4. Tetramethyl ammonium hydroxide production using the microbial electrolysis desalination and chemical-production cell with long anode.

    PubMed

    Ye, Bo; Lu, Yaobin; Luo, Haiping; Liu, Guangli; Zhang, Renduo

    2018-03-01

    The aim of this study was to investigate the feasibility to improve the tetramethyl ammonium hydroxide (TMAH) production in the microbial electrolysis desalination and chemical-production cell (MEDCC) with long anode of 48 cm. Different concentrations of tetramethylammonium chloride (0.3-0.7 M) and applied voltages (1.5-3.5 V) were tested in the MEDCC. With 0.6 M of tetramethylammonium chloride as the raw material and under the applied voltage of 3.5 V, the maximum TMAH production rate in the MEDCC reached 1.13 ± 0.12 mmol/h, which was 9.4 times higher than those previously reported in the MEDCCs. The maximum current density of 41.0 ± 4.0 A/m 2 in the MEDCC was obtained, which was the highest value in the bioelectrochemical systems using the carbon cloth or carbon brush as the anode so far. Our results should provide a promising method to improve the TMAH production and boost the MEDCC application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Response surface optimization of the critical medium components for pullulan production by Aureobasidium pullulans FB-1.

    PubMed

    Singh, Ram Sarup; Singh, Harpreet; Saini, Gaganpreet Kaur

    2009-01-01

    Culture conditions for pullulan production by Aureobasidium pullulans were optimized using response surface methodology at shake flask level without pH control. In the present investigation, a five-level with five-factor central composite rotatable design of experiments was employed to optimize the levels of five factors significantly affecting the pullulan production, biomass production, and sugar utilization in submerged cultivation. The selected factors included concentration of sucrose, ammonium sulphate, yeast extract, dipotassium hydrogen phosphate, and sodium chloride. Using this methodology, the optimal values for concentration of sucrose, ammonium sulphate, yeast extract, dipotassium hydrogen phosphate, and sodium chloride were 5.31%, 0.11%, 0.07%, 0.05%, and 0.15% (w/v), respectively. This optimized medium has projected a theoretically production of pullulan of 4.44%, biomass yield of 1.03%, and sugar utilization of 97.12%. The multiple correlation coefficient 'R' was 0.9976, 0.9761 and 0.9919 for pullulan production, biomass production, and sugar utilization, respectively. The value of R being very close to one justifies an excellent correlation between the predicted and the experimental data.

  6. Characterization of un-plasticized and propylene carbonate plasticized carboxymethyl cellulose doped ammonium chloride solid biopolymer electrolytes.

    PubMed

    Ahmad, N H; Isa, M I N

    2016-02-10

    Two solid biopolymer electrolytes (SBEs) systems of carboxymethyl cellulose doped ammonium chloride (CMC-AC) and propylene carbonate plasticized (CMC-AC-PC) were prepared via solution casting technique. The ionic conductivity of SBEs were analyzed using electrical impedance spectroscopy (EIS) in the frequency range of 50 Hz-1 MHz at ambient temperature (303K). The highest ionic conductivity of CMC-AC SBE is 1.43 × 10(-3)S/cm for 16 wt.% of AC while the highest conductivity of plasticized SBE system is 1.01 × 10(-2)S/cm when added with 8 wt.% of PC. TGA/DSC showed that the addition of PC had increased the decomposition temperature compared of CMC-AC SBE. Fourier transform infrared (FTIR) spectra showed the occurrence of complexation between the SBE components and it is proved successfully executed by Gaussian software. X-ray diffraction (XRD) indicated that amorphous nature of SBEs. It is believed that the PC is one of the most promising plasticizer to enhance the ionic conductivity and performance for SBE system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide.

    PubMed

    You, Borwen; Lu, Ja-Yu

    2016-08-08

    The feasibility of remote chemical detection is experimentally demonstrated by using a Teflon pipe as a scanning arm in a continuous-terahertz wave sensing and imaging system. Different tablets with distinct mixed ratios of aluminum and polyethylene powders are well distinguished by measuring the power reflectivities of 0.4 THz wave associated with their distinct terahertz refractive indices. Given its refractive index sensitivity and fast response, the reflective terahertz sensing system can be used to real-time trace and quantitatively analyze the ammonium-chloride aerosols produced by the chemical reaction between hydrochloric acid and ammonia vapors. With a tightly focusing terahertz beam spot, the spatial and concentration distributions of the generated chemical product are successfully mapped out by the 1D scan of the flexible pipe probe. In consideration of the responsitivity, power stability, and focused spot size of the system, its detection limit for the ammonium-chloride aerosol is estimated to be approximately 165 nmol/mm2. The reliable and compact terahertz pipe scan system is potentially suitable for practical applications, such as biomedical or industrial fiber endoscopy.

  8. Effect of chitosan, O-carboxymethyl chitosan, and N-[(2-hydroxy-3-N,N-dimethylhexadecyl ammonium)propyl] chitosan chloride on overweight and insulin resistance in a murine diet-induced obesity.

    PubMed

    Liu, Xiaofei; Zhi, Xiaona; Liu, Yunfei; Wu, Bo; Sun, Zhong; Shen, Jun

    2012-04-04

    Two water-soluble chitosan derivatives, O-carboxymethyl chitosan (O-CM-chitosan) and N-[(2-hydroxy-3-N,N-dimethylhexadecyl ammonium)propyl] chitosan chloride (N-CQ-chitosan), were prepared, and the therapeutic effects of chitosan, O-CM-chitosan, and N-CQ-chitosan on insulin resistance were simultaneously evaluated by rats fed on a high-fat diet. The parameters of high-fat diet-induced rats indicated that chitosan and its two derivatives not only have low cytotoxicity but can control overnutrition by fat and achieve insulin resistance therapy. However, the results in experiment in vivo showed that the therapeutic degree varied by the molecular weight and surface charge of chitosan, O-CM-chitosan, and N-CQ-chitosan. N-CQ-chitosan with a MW of 5 × 10(4) decreased body weight, the ratio of fat to body weight, triglyceride, fasting plasma glucose, fasting plasma insulin, free fatty acid, and leptin by 11, 17, 44, 46, 44, 87, and 64% and increased fecal lipid by 95%, respectively.

  9. Synthesis and characterization of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride for potential application in gene delivery.

    PubMed

    Xiao, Bo; Wan, Ying; Wang, Xiaoyu; Zha, Qichen; Liu, Haoming; Qiu, Zhiye; Zhang, Shengmin

    2012-03-01

    A series of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride (HTCC) samples with various degrees of quaternization ranging from 12.4 to 43.7% was synthesized. The structures and properties of HTCC were investigated by FT-IR, (1)H NMR, conductometric titration and XRD analysis. It was found that HTCC had a more amorphous structure than chitosan. HTCC samples showed significantly lower cytotoxicity than polyethyleneimine in HepG2 and HeLa cell lines. The samples spontaneously formed complexes with pGL3 luciferase plasmid. These complexes had desirable particle sizes (160-300 nm) and zeta potentials (10.8-18.7 mV) when the weight ratios of HTCC to plasmid altered in the range of 3:1-20:1. In vitro gene transfection results indicated that HTCC had significantly high transfection efficiency compared with chitosan for delivering pGL3 luciferase plasmid to HeLa cells. The results suggest that HTCC could be a promising non-viral vector for safe and efficient DNA delivery. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Extraction of fleshing oil from waste limed fleshings and biodiesel production.

    PubMed

    Sandhya, K V; Abinandan, S; Vedaraman, N; Velappan, K C

    2016-02-01

    The aim of the study was focused on extraction of fleshing oil from limed fleshings with different neutralization process by ammonium chloride (NH4Cl) and hydrochloric acid (HCl) followed by solvent extraction. The production of fatty acid methyl esters (FAMEs) from limed fleshing oil by two stage process has also been investigated. The central composite design (CCD) was used to study the effect of process variables viz., amount of flesh, particle size and time of fleshing oil extraction. The maximum yield of fleshing oil from limed fleshings post neutralization by ammonium chloride (NH4Cl) and hydrochloric acid (HCl) was 26.32g and 12.43g obtained at 200g of flesh, with a particle size of 3.90mm in the time period of 2h. Gas chromatography analysis reveals that the biodiesel (FAME) obtained from limed fleshings is rich in oleic and palmitic acids with weight percentages 46.6 and 32.2 respectively. The resulting biodiesel was characterized for its physio-chemical properties of diesel as per international standards (EN14214). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Purification and properties of rennin-like enzyme from Aspergillus ochraceus.

    PubMed

    Ismail, A A; Foda, M S; Khorshid, M A

    1978-01-01

    An active milk-clotting enzyme was purified some 40-fold from culture supernatant of Aspergillus ochraceus. The purification steps included ammonium sulfate precipitation, G-100 Sephadex gel filtration, and ion exchange chromatography, using DEAE Cellulose column. The enzyme exhibited milk-clotting activity and proteolytic behaviour, an optimum at pH 6.0 and in the range of 7--8.5, respectively. The purified enzyme was actively proteolytic against casein, haemoglobin, and bovine serum albumin at pH 8. The milk-clotting activity was greatly enhanced by manganous ions and by increasing concentrations of calcium chloride. Copper, zinc, and ammonium ions were potent inhibitors of the milk-curdling activity of the purified enzyme. Significant inhibition was also noted with sodium chloride at concentrations of 3% or more. Under the specified reaction condition, maximum rate of proteolysis against casein was obtained at 0.4% substrate concentration, whereas the milk-clotting time was linear proportional to dry skim milk concentration in the range of 8 to 24%. The results are discussed in comparison with other microbial milk-clotting enzymes, and limitations of applicability are also presented.

  12. Simulation of Groundwater Contaminant Transport at a Decommissioned Landfill Site—A Case Study, Tainan City, Taiwan

    PubMed Central

    Chen, Chao-Shi; Tu, Chia-Huei; Chen, Shih-Jen; Chen, Cheng-Chung

    2016-01-01

    Contaminant transport in subsurface water is the major pathway for contamination spread from contaminated sites to groundwater supplies, to remediate a contaminated site. The aim of this paper was to set up the groundwater contaminant transport model for the Wang-Tien landfill site, in southwestern Taiwan, which exhibits high contamination of soil and groundwater and therefore represents a potential threat for the adjacent Hsu-Hsian Creek. Groundwater Modeling System software, which is the most sophisticated groundwater modeling tool available today, was used to numerically model groundwater flow and contaminant transport. In the simulation, the total mass of pollutants in the aquifer increased by an average of 72% (65% for ammonium nitrogen and 79% for chloride) after 10 years. The simulation produced a plume of contaminated groundwater that extends 80 m in length and 20 m in depth northeastward from the landfill site. Although the results show that the concentrations of ammonium nitrogen and chlorides in most parts are low, they are 3.84 and 467 mg/L, respectively, in the adjacent Hsu-Hsian Creek. PMID:27153078

  13. Dynamics of polyelectrolyte adsorption on surfaces: Applications in the detection of iron in water

    NASA Astrophysics Data System (ADS)

    Gammana, Madhira N.

    Layer by layer (LbL) self assembly is a simple multilayer thin (nanometer scale) film fabricating technique. The mechanism of film growth remains a topic of much controversy. For example, several models have been proposed to explain the origin of linear and exponential film growth that are attributed to differences in the dynamic processes that occur at the molecular level during film formation. The problem is that there are no methods that directly measure the dynamics of polymer formation during LbL film formation. In this thesis, I describe the essential elements of an ATR-IR spectroscopic method that was developed to enable measurement of the dynamics of the mass adsorbed and polyelectrolyte conformation during the formation of PEM's. In particular, I followed the sequential adsorption of Sodium polyacrylate (NaPA) and Poly (diallyldimethylammonium) chloride (PDADMAC) from deionized (DI) water and as a function of ionic strength to show that polymer diffusion occurs between layers when adsorbed from DI water. In contrast, a denser layer occurs with no polymer interdiffusion for deposition from 0.02M ionic strength solutions of NaPA and PDADMAC. While the mass deposited increased with ionic strength, linear multilayer growth in films were observed in all cases. This finding disputes a common viewpoint that interdiffusion of polymer layers is a key feature of exponential film growth. The theme of polymer layer adsorption was used in the detection of Fe 3+ in seawater. A new approach, developed previously in Tripp's group, utilized "vertical amplification" in which a block copolymer assembled on membranes provided multiple anchoring points extending from the surface for attaching a siderophore, desferrioxamine B (DFB). The Fe3+ chelates with the siderophore producing a red color that can be quantified by visible spectroscopy. However, the rate of Fe3+ uptake was found to be dependent on flow rate. The origin of this flow rate dependence was identified by the work presented in this thesis. It was found that the amount and rate of Fe3+ uptake was dependent on the relative size of each block in the polymer and the degree of reaction of DFB with the adsorbed layer. In particular, higher amounts and higher rates were obtained when the density of DFB was lowered. This shows that the DFB was sterically hindered from forming a hexacoordinate complex with Fe3+ by the presence of neighboring DFB molecules. This is a key factor that needs to be considered in developing Fe3+ detection systems based on siderophores anchored to surfaces.

  14. Thermodynamics and kinetics of pack aluminide coating formation on IN-100

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Caves, R. M.

    1973-01-01

    An investigation of the effects of pack variables on the formation of aluminide coatings on nickel-base superalloy IN-100 was conducted. Also, the thermodynamics and kinetics of coating formation were analyzed. Observed coating weights were in good agreement with predictions made from the analysis. Pack temperature rather than pack aluminum activity controls the principal coating phase formed. In 1 weight percent aluminum packs, aluminum weight gains were related to the halide pack activator. Solid-state nickel diffusion controlled coating formation from sodium fluoride and chloride and ammonium fluoride activated packs. In other ammonium and sodium halide activated 1 weight percent aluminum packs, gaseous diffusion controlled coating formation.

  15. Evaluation of 2 Purification Methods for Isolation of Human Adipose-Derived Stem Cells Based on Red Blood Cell Lysis With Ammonium Chloride and Hypotonic Sodium Chloride Solution.

    PubMed

    Li, Sheng-Hong; Liao, Xuan; Zhou, Tian-En; Xiao, Li-Ling; Chen, Yuan-Wen; Wu, Fan; Wang, Jing-Ru; Cheng, Biao; Song, Jian-Xing; Liu, Hong-Wei

    2017-01-01

    The present study was conducted to compare 2 purification methods for isolation of human adipose-derived stromal vascular fraction or stem cells (ADSCs) based on red blood cell (RBC) lysis with 155 mM ammonium chloride (NH4Cl) and hypotonic sodium chloride (NaCl) solution, and try to develop a safe, convenient, and cost-effective purification method for clinical applications. Adipose-derived stem cells and RBC were harvested from the fatty and fluid portions of liposuction aspirates, respectively. The suitable concentration of hypotonic NaCl solution on RBC lysis for purification of ADSCs was developed by RBC osmotic fragility test and flow cytometry analysis. The effects of 155 mM NH4Cl or 0.3% NaCl solution on ADSCs proliferation and RBC lysis efficiency were examined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide assay and lysis efficiency test, respectively. In addition, the adipogenic and osteogenic capabilities, phenotype and genetic stability of ADSCs were evaluated by oil red staining, alkaline phosphatase activity measurement, flow cytometry, and karyotype analysis, respectively. Sodium chloride solution in 0.3% concentration effectively removed RBCs and did not influence the survival of ADSCs in the 10-minute incubation time. The lysis efficiency did not differ significantly between 0.3% NaCl and 155 mM NH4Cl. Moreover, the adipogenic and osteogenic capabilities, surface marker expression and karyotype of the ADSCs were not affected by lysis solutions or by lysis per se. However, the proliferation capacity in the 0.3% NaCl group was superior to that in 155 mM NH4Cl group. Our data suggest that 0.3% NaCl solution is useful for isolating ADSCs from liposuction aspirate for clinical applications with safety, convenience, and cost-effect.

  16. Impact of wildfires on size-resolved aerosol composition at a coastal California site

    NASA Astrophysics Data System (ADS)

    Maudlin, L. C.; Wang, Z.; Jonsson, H. H.; Sorooshian, A.

    2015-10-01

    Size-resolved aerosol composition measurements were conducted at a coastal site in central California during the Nucleation in California Experiment (NiCE) between July and August of 2013. The site is just east of ship and marine emission sources and is also influenced by continental pollution and wildfires, such as those near the California-Oregon border which occurred near the end of NiCE. Two micro-orifice uniform deposit impactors (MOUDIs) were used, and water-soluble and elemental compositions were measured. The five most abundant water-soluble species (in decreasing order) were chloride, sodium, non-sea salt (nss) sulfate, ammonium, and nitrate. During wildfire periods, nss K mass concentrations were not enhanced as strongly as other species in the sub-micrometer stages and even decreased in the super-micrometer stages; species other than nss K are more reliable tracers for biomass burning in this region. Chloride levels were reduced in the fire sets likely due to chloride depletion by inorganic and organic acids that exhibited elevated levels in transported plumes. During wildfire periods, the mass size distribution of most dicarboxylic acids changed from unimodal to bimodal with peaks in the 0.32 μm and 1.0-1.8 μm stages. Furthermore, sulfate's peak concentration shifted from the 0.32 μm to 0.56 μm stage, and nitrate also shifted to larger sizes (1.0 μm to 1.8-3.2 μm stages). Mass concentrations of numerous soil tracer species (e.g., Si, Fe) were strongly enhanced in samples influenced by wildfires, especially in the sub-micrometer range. Airborne cloud water data confirm that soil species were associated with fire plumes transported south along the coast. In the absence of biomass burning, cloud condensation nuclei (CCN) composition is dominated by nss sulfate and ammonium, and the water-soluble organic fraction is dominated by methanesulfonate, whereas for the samples influenced by wildfires, ammonium becomes the dominant overall species, and oxalate is the most abundant organic species.

  17. Ammonium salt corrosion in hydrotreating unit stripper column overhead systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shargay, C.A.; Jacobs, G.E.; Price, M.D.

    In the past, the presence of ammonium bisulfide (NH{sub 4}HS) or ammonium chloride (NH{sub 4}Cl) in hydrotreater stripper overheads was relatively rare. However, designs of newer units and revamps to older units, are resulting in corrosive levels of NH{sub 4}HS or NH{sub 4}Cl in overhead systems. This is primarily due to the addition of a hot high pressure separator (HHPS) with the bottoms going directly (or through another separator) to the stripper. This paper presents data on one corrosion case history in detail, a summary of another case history reported in Retln-Cor 3.0 and the results of a brief surveymore » targeted to units with HHPS designs. Some correlations of the process conditions to the severity of corrosion are made based on the survey results, and recommended materials selection and other corrosion control methods to minimize the risk of this problem are given.« less

  18. Antimicrobial cotton containing N-halamine and quaternary ammonium groups by grafting copolymerization

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Liu, Yin; Ren, Xuehong; Huang, T. S.

    2014-03-01

    The monomer (3-acrylamidopropyl)trimethylammonium chloride (APTMAC) was used to treat cotton fibers by grafting copolymerization. The grafted cotton fabrics were characterized by SEM image and FTIR spectra. The treated samples with quaternary ammonium groups could decrease 96.08% of Staphylococcus aureus and 48.74% of Escherichia coli O157:H7 within 30 min. After chlorination with dilute sodium hypochlorite, the treated cotton fabrics containing both N-halamine and quaternary ammonium groups effectively inactivated 100% (log reduction 5.82) of S. aureus and 100% (log reduction 6.26) of E. coli O157:H7 within 5 min of contact time. The grafting process of cotton fabric has small effect on the thermal stability and tensile strength, which favors the practical application. Compared to the traditional pad-dry-cure method to produce antibacterial materials, the radical grafting copolymerization method occurred in water without any organic solvents involved in the whole treatment.

  19. Comparative toxicity of ammonium and nitrate compounds to Pacific treefrog and African clawed frog tadpoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuytema, G.S.; Nebeker, A.V.

    1999-10-01

    The effects of ammonium nitrate, ammonium chloride, ammonium sulfate, and sodium nitrate on survival and growth of Pacific treefrog (Pseudacris regilla [Baird and Girard]) and African clawed frog (Xenopus laevis [Daudin]) tadpoles were determined in static-renewal tests. The 10-d ammonium nitrate and ammonium sulfate LC50s for P. regilla were 55.2 and 89.7 mg/L NH{sub 4}-N, respectively. The 10-d LC50s for X. laevis for the three ammonium compounds ranged from 45 to 64 mg/L NH{sub 4}-N. The 10-d sodium nitrate LC50s were 266.2 mg/L NO{sub 3}-N for P. regilla and 1,236.2 mg/L NO{sub 3}-N for X. laevis. The lowest observed adversemore » effect level (LOAEL) of ammonium compound based on reduced length or weight was 24.6 mg/L NH{sub 4}-N for P. regilla and 99.5 mg/L NH{sub 4}-N for X. laevis. The lowest sodium nitrate LOAELs based on reduced length or weight were {lt}30.1 mg/L NO{sub 3}-N for P. regilla and 126.3 mg/L NO{sub 3}-N for X. laevis. Calculated un-ionized NH{sub 3} comprised 0.3 to 1.0% of measured NH{sub 4}-N concentrations. Potential harm to amphibians could occur if sensitive life stages were impacted by NH{sub 4}-N and NO{sub 3}-N in agricultural runoff or drainage for a sufficiently long period.« less

  20. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Böhlke, John Karl; Masoner, Jason R.; Breit, George N.; Lorah, Michelle M.; Tuttle, Michele L.W.; Jaeschke, Jeanne B.

    2011-01-01

    Leachate from municipal landfills can create groundwater contaminant plumes that may last for decades to centuries. The fate of reactive contaminants in leachate-affected aquifers depends on the sustainability of biogeochemical processes affecting contaminant transport. Temporal variations in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade. The leachate plume contained elevated concentrations of nonvolatile dissolved organic carbon (NVDOC) (up to 300 mg/L), methane (16 mg/L), ammonium (650 mg/L as N), iron (23 mg/L), chloride (1030 mg/L), and bicarbonate (4270 mg/L). Chemical and isotopic investigations along a 2D plume transect revealed consumption of solid and aqueous electron acceptors in the aquifer, depleting the natural attenuation capacity. Despite the relative recalcitrance of NVDOC to biodegradation, the center of the plume was depleted in sulfate, which reduces the long-term oxidation capacity of the leachate-affected aquifer. Ammonium and methane were attenuated in the aquifer relative to chloride by different processes: ammonium transport was retarded mainly by physical interaction with aquifer solids, whereas the methane plume was truncated largely by oxidation. Studies near plume boundaries revealed temporal variability in constituent concentrations related in part to hydrologic changes at various time scales. The upper boundary of the plume was a particularly active location where redox reactions responded to recharge events and seasonal water-table fluctuations. Accurately describing the biogeochemical processes that affect the transport of contaminants in this landfill-leachate-affected aquifer required understanding the aquifer's geologic and hydrodynamic framework.

  1. Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4(+)).

    PubMed

    Nozière, Barbara; Dziedzic, Pawel; Córdova, Armando

    2009-01-08

    Glyoxal, a common atmospheric gas, has been reported to be depleted in some regions of the atmosphere. The corresponding sink could be accounted for by reactions in or at the surface of atmospheric particles, but these reactions were not identified. Recently, we showed that inorganic ammonium ions, NH(4)(+), are efficient catalysts for reactions of carbonyl compounds, including glyoxal, in the liquid phase. To determine whether ammonium-catalyzed reactions can contribute to depletion of glyoxal in the atmosphere, the reactivity of this compound in aqueous solutions containing ammonium salts (ammonium sulfate, chloride, fluoride, and phosphate) at 298 K has been studied. The products identified by LC-HRMS and UV absorption revealed a mechanism involving two distinct pathways: a Bronsted acid pathway and an iminium pathway. The kinetics of the iminium pathway was studied by monitoring formation of a specific product. This pathway was second order in glyoxal in most of the solutions studied and should therefore be second order in most ammonium-containing aerosols in the atmosphere. The corresponding rate constant, k(II) (M(-1) s(-1)), increased strongly with ammonium ion activity, a(NH(4)(+)), and pH: k(II) (M(-1) s(-1)) = (2 +/- 1) x 10(-10) exp((1.5 +/- 0.8)aNH(4)(+)) exp((2.5 +/- 0.2)pH). This iminium pathway is a lower limit for the ammonium-catalyzed consumption of glyoxal, but the contribution of the acid pathway is expected to be small in tropospheric aerosols. With these results the reactive uptake of glyoxal on ammonium-containing aerosols was estimated and shown to be a possible explanation for depletion of this compound in Mexico City.

  2. Cadmium Removal from Contaminated Water Using Polyelectrolyte-Coated Industrial Waste Fly Ash

    PubMed Central

    Olabemiwo, Fatai A.; Oyehan, Tajudeen A.; Khaled, Mazen

    2017-01-01

    Fly ash (FA) is a major industrial waste generated from power stations that add extra cost for proper disposal. Recent research efforts have consequently focused on developing ways to make use of FA in environmentally sound applications. This study, therefore, investigates the potential ability of raw fly ash (RFA) and polyelectrolyte-coated fly ash (PEFA) to remove cadmium (Cd) from polluted water. Using layer-by-layer approach, functionalized fly ash was coated with 20 layers from 0.03% (v/v) of cationic poly(diallyldimethylammonium chloride) (PDADMAC) and anionic polystyrene sulfonate (PSS) solutions. Both surface morphology and chemical composition of the adsorbent (PEFA) were characterized using Field-Emission Scanning Electron Microscope (FE-SEM), X-Ray Diffraction (XRD), Fourier-Transform Infrared (FTIR), and X-Ray Fluorescence (XRF) techniques. The effects of pH, adsorbent dosage, contact time, initial contaminant concentration, and mixing rate of the adsorption of Cd were also studied in batch mode experiments. Results of the study revealed that a 4.0 g/L dosage of PEFA removed around 99% of 2.0 mg/L of Cd in 15 min at 150 rpm compared to only 27% Cd removal achieved by RFA under the same conditions. Results also showed that adsorption by PEFA followed both Langmuir and Freundlich models with correlation coefficients of 98% and 99%, respectively. PMID:28680373

  3. Fourteen-year survival of Pseudomonas cepacia in a salts solution preserved with benzalkonium chloride.

    PubMed Central

    Geftic, S G; Heymann, H; Adair, F W

    1979-01-01

    A strain of Pseudomonas cepacia that survived for 14 years (1963 to 1977) as a contaminant in an inorganic salt solution which contained commercial 0.05% benzalkonium chloride (CBC) as an antimicrobial preservative, was compared to a recent clinical isolate of P. cepacia. Ammonium acetate was present in the concentrated stock CBC solution, and served as a carbon and nitrogen source for growth when carried over into the salts solution with the CBC. The isolate's resistance to pure benzalkonium chloride was increased step-wise to a concentration of 16%. Plate counts showed 4 x 10(3) colony-forming units per ml in the salts solution. Comparison of growth rates, mouse virulence, antibiotics resistance spectra, and substrate requirements disclosed no differences between the contaminant and a recently isolated clinical strain of P. cepacia. The results indicate that it is critical that pharmaceutical solutions containing benzalkonium chloride as an antimicrobial preservative be formulated without extraneous carbon and nitrogen sources or be preserved with additional antimicrobial agents. PMID:453827

  4. An Electronic Tongue Designed to Detect Ammonium Nitrate in Aqueous Solutions

    PubMed Central

    Campos, Inmaculada; Pascual, Lluis; Soto, Juan; Gil-Sánchez, Luis; Martínez-Máñez, Ramón

    2013-01-01

    An electronic tongue has been developed to monitor the presence of ammonium nitrate in water. It is based on pulse voltammetry and consists of an array of eight working electrodes (Au; Pt; Rh; Ir; Cu; Co; Ag and Ni) encapsulated in a stainless steel cylinder. In a first step the electrochemical response of the different electrodes was studied in the presence of ammonium nitrate in water in order to further design the wave form used in the voltammetric tongue. The response of the electronic tongue was then tested in the presence of a set of 15 common inorganic salts; i.e.; NH4NO3; MgSO4; NH4Cl; NaCl; Na2CO3; (NH4)2SO4; MgCl2; Na3PO4; K2SO4; K2CO3; CaCl2; NaH2PO4; KCl; NaNO3; K2HPO4. A PCA plot showed a fairly good discrimination between ammonium nitrate and the remaining salts studied. In addition Fuzzy Art map analyses determined that the best classification was obtained using the Pt; Co; Cu and Ni electrodes. Moreover; PLS regression allowed the creation of a model to correlate the voltammetric response of the electrodes with concentrations of ammonium nitrate in the presence of potential interferents such as ammonium chloride and sodium nitrate. PMID:24145916

  5. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... antimicrobial agent, as defined in § 170.3(o)(2) of this chapter, in raw sugar cane juice. It is added prior to clarification when further processing of the sugar cane juice must be delayed. (d) The additive is applied to the sugar juice in the following quantities, based on the weight of the raw cane: Component Parts per...

  6. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... antimicrobial agent, as defined in § 170.3(o)(2) of this chapter, in raw sugar cane juice. It is added prior to clarification when further processing of the sugar cane juice must be delayed. (d) The additive is applied to the sugar juice in the following quantities, based on the weight of the raw cane: Component Parts per...

  7. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... antimicrobial agent, as defined in § 170.3(o)(2) of this chapter, in raw sugar cane juice. It is added prior to clarification when further processing of the sugar cane juice must be delayed. (d) The additive is applied to the sugar juice in the following quantities, based on the weight of the raw cane: Component Parts per...

  8. Photogrammetric Measurement of Recession Rates of Low Temperature Ablators Subjected to High Speed Flow

    DTIC Science & Technology

    2011-06-01

    recession rate prediction of carbon based, camphor and dry ice at hypersonic velocities...paradichlorobenzene, naphthalene, camphor , and ammonium chloride (Kohlman & Richardson, 1969). Except for dry ice, these materials require stagnation temperatures... Camphor , for example, sublimates at ~170C. With the reestablished interest in expendable ablative heat shields, these past experiences have

  9. Hexadecyl ammonium chloride amylose inclusion complex to emulsify cedarwood oil and treat wood against termites and wood-decay fungi

    USDA-ARS?s Scientific Manuscript database

    Cedarwood oil (CWO) has a wide range of bioactivities, including insect repellency and toxicity as well as conferring resistance against termites and wood-rot fungi. In previous pressure treatment work, ethanol was used as the diluent/carrier for CWO. However, it is preferable to use a water-based ...

  10. Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs).

    PubMed

    Lü, Hongying; Li, Pengcheng; Deng, Changliang; Ren, Wanzhong; Wang, Shunan; Liu, Pan; Zhang, Han

    2015-07-07

    An oxalate-based DES with a tetrabutyl ammonium chloride and oxalate acid molar ratio of 1/2 (TBO1 : 2) exhibited high activity in oxidative desulfurization (ODS) of dibenzothiophene (DBT) under mild reaction conditions. It is potentially a promising and highly environmentally friendly approach for desulfurization of fuels.

  11. Method for the production of high-purity triaminotrinitrobenzene

    DOEpatents

    Benziger, Theodore M.

    1977-01-01

    Triaminotrinitrobenzene is readily formed by the nitration of 1,3,5-trichlorobenzene to 1,3,5-trichloro-2,4,6-trinitrobenzene followed by amination to triaminotrinitrobenzene. The purity of the triaminotrinitrobenzene is significantly improved if, during the amination step, sufficient water is present that the byproduct ammonium chloride formed during the amination is rendered at least semideliquescent.

  12. ELUTION OF URANIUM VALUES FROM ION EXCHANGE RESINS

    DOEpatents

    Kennedy, R.H.

    1959-11-24

    A process is described for eluting complex uranium ions absorbed on ion exchange resins. The resin is subjected to the action of an aqueous eluting solution contuining sulfuric acid and an alkali metal, ammonium, or magnesium chloride or nitrate, the elution being carried out until the desired amount of the uranium is removed from the resin.

  13. Spectrophotometric studies and applications for the determination of Ni2+ in zinc-nickel alloy electrolyte

    NASA Astrophysics Data System (ADS)

    Qiao, Xiaoping; Li, Helin; Zhao, Wenzhen; Li, Dejun

    The absorption properties of zinc-nickel alloy electrolyte were studied by visible spectrophotometer. The results show that the relationship between the absorbance of the zinc-nickel alloy electrolyte and Ni2+ concentration in the electrolyte obeys Beer's law at 660 nm. In addition, other components except Ni2+ in the zinc-nickel alloy electrolyte such as zinc chloride, ammonium chloride, potassium chloride and boric acid have no obvious effect on the absorbance of zinc-nickel alloy electrolyte. Based on these properties, a new method is developed to determine Ni2+ concentration in zinc-nickel alloy electrolyte. Comparing with other methods, this method is simple, direct and accurate. Moreover, the whole testing process does not consume any reagent and dilution, and after testing, the electrolyte samples can be reused without any pollution to the environment.

  14. A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Vertelov, G. K.; Krutyakov, Yu A.; Efremenkova, O. V.; Olenin, A. Yu; Lisichkin, G. V.

    2008-09-01

    Silver nanoparticles stabilized by a well-known antibacterial surfactant benzyldimethyl[3-(myristoylamino)propyl]ammonium chloride (Myramistin®) were produced for the first time by borohydride reduction of silver chloride sol in water. Stable aqueous dispersions of silver nanoparticles without evident precipitation for several months could be obtained. In vitro bactericidal tests showed that Myramistin® capped silver NPs exhibited notable activity against six different microorganisms—gram-positive and gram-negative bacteria, yeasts and fungi. The activity was up to 20 times higher (against E. coli) compared to Myramistin® at the same concentrations and on average 2 times higher if compared with citrate-stabilized NPs.

  15. Ammonium chloride salting out extraction/cleanup for trace-level quantitative analysis in food and biological matrices by flow injection tandem mass spectrometry.

    PubMed

    Nanita, Sergio C; Padivitage, Nilusha L T

    2013-03-20

    A sample extraction and purification procedure that uses ammonium-salt-induced acetonitrile/water phase separation was developed and demonstrated to be compatible with the recently reported method for pesticide residue analysis based on fast extraction and dilution flow injection mass spectrometry (FED-FI-MS). The ammonium salts evaluated were chloride, acetate, formate, carbonate, and sulfate. A mixture of NaCl and MgSO4, salts used in the well-known QuEChERS method, was also tested for comparison. With thermal decomposition/evaporation temperature of <350°C, ammonium salts resulted in negligible ion source residual under typical electrospray conditions, leading to consistent method performance and less instrument cleaning. Although all ammonium salts tested induced acetonitrile/water phase separation, NH4Cl yielded the best performance, thus it was the preferred salting out agent. The NH4Cl salting out method was successfully coupled with FI/MS/MS and tested for fourteen pesticide active ingredients: chlorantraniliprole, cyantraniliprole, chlorimuron ethyl, oxamyl, methomyl, sulfometuron methyl, chlorsulfuron, triflusulfuron methyl, azimsulfuron, flupyrsulfuron methyl, aminocyclopyrachlor, aminocyclopyrachlor methyl, diuron and hexazinone. A validation study was conducted with nine complex matrices: sorghum, rice, grapefruit, canola, milk, eggs, beef, urine and blood plasma. The method is applicable to all analytes, except aminocyclopyrachlor. The method was deemed appropriate for quantitative analysis in 114 out of 126 analyte/matrix cases tested (applicability rate=0.90). The NH4Cl salting out extraction/cleanup allowed expansion of FI/MS/MS for analysis in food of plant and animal origin, and body fluids with increased ruggedness and sensitivity, while maintaining high-throughput (run time=30s/sample). Limits of quantitation (LOQs) of 0.01mgkg(-1) (ppm), the 'well-accepted standard' in pesticide residue analysis, were achieved in >80% of cases tested; while limits of detection (LODs) were typically in the range of 0.001-0.01mgkg(-1) (ppm). A comparison to a well-established HPLC/MS/MS method was also conducted, yielding comparable results, thus confirming the suitability of NH4Cl salting out FI/MS/MS for pesticide residue analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Effects of a Quaternary Ammonium Compound on Escherichia coli1

    PubMed Central

    Ceglowski, W. S.; Lear, S. A.

    1962-01-01

    Increasing amounts of tetradecyldimethylbenzyl ammonium chloride (TAC) were lethal to an increasing proportion of an actively growing culture of Escherichia coli. The loss of nucleic acid material by actively growing E. coli did not appear to play a major role in the lethal effect. It was found that lag-phase cells were more sensitive than logarithmic-phase cells to the lethal effect of TAC. The effect of TAC on the lysozyme sensitivity of the test organism was compared with that obtained using disodium dihydrogen ethylenediaminetetraacetate (EDTA). Although TAC was found to render the test organism susceptible to lysozyme, the degree of lysis never reached that attained with EDTA. PMID:14019586

  17. Efficacy of didecyl dimethyl ammonium chloride (DDAC), disodium octaborate tetrahydrate (DOT), and chlorothalonil (CTL) against common mold fungi

    Treesearch

    Jessie A. Micales-Glaeser; Jeffrey D. Lloyd; Thomas L. Woods

    2004-01-01

    The fungitoxic properties of four fungicides, alone and in combination, against four different mold fungi commonly associated with indoor air quality problems were evaluated on two different wood species and sheetrock. The fungicides were chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile) (CTL) in a 40.4% aqueous dispersion, disodium octaborate tetrahydrate (DOT) in...

  18. IRON COATED URANIUM AND ITS PRODUCTION

    DOEpatents

    Gray, A.G.

    1960-03-15

    A method of applying a protective coating to a metallic uranium article is given. The method comprises etching the surface of the article with an etchant solution containlng chloride ions, such as a solution of phosphoric acid and hydrochloric acid, cleaning the etched surface, electroplating iron thereon from a ferrous ammonium sulfate electroplating bath, and soldering an aluminum sheath to the resultant iron layer.

  19. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells

    PubMed Central

    Rong, Yaoguang; Hou, Xiaomeng; Hu, Yue; Mei, Anyi; Liu, Linfeng; Wang, Ping; Han, Hongwei

    2017-01-01

    Organometal lead halide perovskites have been widely used as the light harvester for high-performance solar cells. However, typical perovskites of methylammonium lead halides (CH3NH3PbX3, X=Cl, Br, I) are usually sensitive to moisture in ambient air, and thus require an inert atmosphere to process. Here we demonstrate a moisture-induced transformation of perovskite crystals in a triple-layer scaffold of TiO2/ZrO2/Carbon to fabricate printable mesoscopic solar cells. An additive of ammonium chloride (NH4Cl) is employed to assist the crystallization of perovskite, wherein the formation and transition of intermediate CH3NH3X·NH4PbX3(H2O)2 (X=I or Cl) enables high-quality perovskite CH3NH3PbI3 crystals with preferential growth orientation. Correspondingly, the intrinsic perovskite devices based on CH3NH3PbI3 achieve an efficiency of 15.6% and a lifetime of over 130 days in ambient condition with 30% relative humidity. This ambient-processed printable perovskite solar cell provides a promising prospect for mass production, and will promote the development of perovskite-based photovoltaics. PMID:28240286

  20. Oxidation of pyrimidine nucleosides and nucleotides by osmium tetroxide

    PubMed Central

    Burton, K.

    1967-01-01

    1. Pyrimidine nucleosides such as thymidine, uridine or cytidine are oxidized readily at 0° by osmium tetroxide in ammonium chloride buffer. There is virtually no oxidation in bicarbonate buffer of similar pH. Oxidation of 1-methyluracil yields 5,6-dihydro-4,5,6-trihydroxy-1-methyl-2-pyrimidone. 2. Osmium tetroxide and ammonia react reversibly in aqueous solution to form a yellow 1:1 complex, probably OsO3NH. A second molecule of ammonia must be involved in the oxidation of UMP since the rate of this reaction is approximately proportional to the square of the concentration of unprotonated ammonia. 3. 4-Thiouridine reacts with osmium tetroxide much more rapidly than does uridine. The changes of absorption spectra are different in sodium bicarbonate buffer and in ammonium chloride buffer. They occur faster in the latter buffer and, under suitable conditions, cytidine is a major product. 4. Polyuridylic acid is oxidized readily by ammoniacal osmium tetroxide, but its oxidation is inhibited by polyadenylic acid. Pyrimidines of yeast amino acid-transfer RNA are oxidized more slowly than the corresponding mononucleosides, especially the thymine residues. Appreciable oxidation can occur without change of sedimentation coefficient. PMID:6048808

  1. Synthesis and Utilization of Trialkylammonium-Substituted Cyclodextrins as Water-Soluble Chiral NMR Solvating Agents for Anionic Compounds.

    PubMed

    Dowey, Alison E; Puentes, Cira Mollings; Carey-Hatch, Mira; Sandridge, Keyana L; Krishna, Nikhil B; Wenzel, Thomas J

    2016-04-01

    Cationic trialkylammonium-substituted α-, β-, and γ-cyclodextrins containing trimethyl-, triethyl-, and tri-n-propylammonium substituent groups were synthesized and analyzed for utility as water-soluble chiral nuclear magnetic resonance (NMR) solvating agents. Racemic and enantiomerically pure (3-chloro-2-hydroxypropyl)trimethyl-, triethyl-, and tri-n-propyl ammonium chloride were synthesized from the corresponding trialkyl amine hydrochloride and either racemic or enantiomerically pure epichlorohydrin. The ammonium salts were then reacted with α-, β-, and γ-cyclodextrins at basic pH to provide the corresponding randomly substituted cationic cyclodextrins. The (1) H NMR spectra of a range of anionic, aromatic compounds was recorded with the cationic cyclodextrins. Cyclodextrins with a single stereochemistry at the hydroxy group on the (2-hydroxypropyl)trialkylammonium chloride substituent were often but not always more effective than the corresponding cyclodextrin in which the C-2 position was racemic. In several cases, the larger triethyl or tri-n-propyl derivatives were more effective than the corresponding trimethyl derivative at causing enantiomeric differentiation. None of the cyclodextrin derivatives were consistently the most effective for all of the anionic compounds studied. © 2016 Wiley Periodicals, Inc.

  2. Oxidation of pyrimidine nucleosides and nucleotides by osmium tetroxide.

    PubMed

    Burton, K

    1967-08-01

    1. Pyrimidine nucleosides such as thymidine, uridine or cytidine are oxidized readily at 0 degrees by osmium tetroxide in ammonium chloride buffer. There is virtually no oxidation in bicarbonate buffer of similar pH. Oxidation of 1-methyluracil yields 5,6-dihydro-4,5,6-trihydroxy-1-methyl-2-pyrimidone. 2. Osmium tetroxide and ammonia react reversibly in aqueous solution to form a yellow 1:1 complex, probably OsO(3)NH. A second molecule of ammonia must be involved in the oxidation of UMP since the rate of this reaction is approximately proportional to the square of the concentration of unprotonated ammonia. 3. 4-Thiouridine reacts with osmium tetroxide much more rapidly than does uridine. The changes of absorption spectra are different in sodium bicarbonate buffer and in ammonium chloride buffer. They occur faster in the latter buffer and, under suitable conditions, cytidine is a major product. 4. Polyuridylic acid is oxidized readily by ammoniacal osmium tetroxide, but its oxidation is inhibited by polyadenylic acid. Pyrimidines of yeast amino acid-transfer RNA are oxidized more slowly than the corresponding mononucleosides, especially the thymine residues. Appreciable oxidation can occur without change of sedimentation coefficient.

  3. Ammonium chloride catalyzed synthesis of novel Schiff bases from spiro[indoline-3,4'-pyran]-3'-carbonitriles and evaluation of their antimicrobial and anti-breast cancer activities.

    PubMed

    Al-Shareef, Hossa F; Elhady, Heba A; Aboellil, Amany H; Hussein, Essam M

    2016-01-01

    Indolinone and spiro-indoline derivatives have been employed in the preparation of different important therapeutic compounds required for treatment of anticonvulsants, antibacterial, Antitubercular, and anticancer activities. Schiff bases have been found to possess various pharmacological activities such as antitubercular, plant growth inhibiting, insecticsidal, central nerve system depressant, antibacterial, anticancer, anti-inflammatory, and antimicrobial. Mannich bases have a variety of biological activities such as antibacterial and antifungal activities. In this study, a green, rapid and efficient protocol for the synthesis of a new series of Schiff bases from spiro[indoline-3,4'-pyran]-3'-carbonitrile derivatives using ammonium chloride as a very inexpensive and readily available reagent. The prepared compounds were assessed in vitro for their antimicrobial activity. Also, the cytotoxic activity of the prepared compounds was assessed in vitro against human cells line MCF7 breast cancer. Good activity was distinguished for Schiff bases from spiro[indoline-3,4'-pyran]-3'-carbonitriles, with some members recorded higher antimicrobial and anti-breast cancer activities.Graphical abstractNovel Schiff bases from spiro[indoline-3,4'-pyran]-3'-carbonitriles.

  4. Quaternary ammonium cationic surfactants increase bioactivity of indoxacarb on pests and toxicological risk to Daphnia magna.

    PubMed

    Li, Beixing; Li, Hua; Pang, Xiuyu; Cui, Kaidi; Lin, Jin; Liu, Feng; Mu, Wei

    2018-03-01

    Agricultural researchers have always been pursuing synergistic technique for pest control. To evaluate the combined effects of quaternary ammonium compounds (QACs) and indoxacarb, their independent and joint toxicities to two insects, Spodoptera exigua and Agrotis ipsilon, and the aquatic organism, Daphnia magna, were determined. Results showed that all of five tested QACs increased the toxicity of indoxacarb to S. exigua and A. ipsilon. Both of benzyldimethyltetradecylammonium chloride (TDBAC) and benzododecinium chloride (DDBAC) exhibited significantly increased toxicities to S. exigua with synergic ratios of 11.59 and 6.55, while that to A. ipsilon were 2.60 and 3.45, respectively. When exposed to binary mixtures of QACs and indoxacarb, there was synergism on D. magna when using additive index and concentration addition methods, but only TDBAC, STAC and ODDAC showed synergistic effect in the equivalent curve method. The results indicate that the surfactants can be used as the synergists of indoxacarb in the control of Lepidoptera pests. However, their environmental risks should not be neglected owing to the high toxicity of all mixtures of indoxacarb and five QACs to D. magna. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Removal of hazardous metals from MSW fly ash--an evaluation of ash leaching methods.

    PubMed

    Fedje, Karin Karlfeldt; Ekberg, Christian; Skarnemark, Gunnar; Steenari, Britt-Marie

    2010-01-15

    Incineration is a commonly applied management method for municipal solid waste (MSW). However, significant amounts of potentially hazardous metal species are present in the resulting ash, and these may be leached into the environment. A common idea for cleaning the ash is to use enhanced leaching with strong mineral acids. However, due to the alkalinity of the ash, large amounts of acid are needed and this is a drawback. Therefore, this work was undertaken in order to investigate some alternative leaching media (EDTA, ammonium nitrate, ammonium chloride and a number of organic acids) and to compare them with the usual mineral acids and water. All leaching methods gave a significant increase in ash specific surface area due to removal of soluble bulk (matrix) compounds, such as CaCO(3) and alkali metal chlorides. The use of mineral acids and EDTA mobilised many elements, especially Cu, Zn and Pb, whereas the organic acids generally were not very effective as leaching agents for metals. Leaching using NH(4)NO(3) was especially effective for the release of Cu. The results show that washing of MSW filter ash with alternative leaching agents is a possible way to remove hazardous metals from MSW fly ash.

  6. The composition of bulk precipitation on a coastal island with agriculture compared to an urban region

    NASA Astrophysics Data System (ADS)

    Weijers, E. P.; Vugts, H. F.

    Results of chemical analyses of monthly bulk samples from Schiermonnikoog, one of the islands in the northern part of The Netherlands, are interpreted. The continuous record covers a period of more than 15 years. A comparison (10 years) is made with Ouderkerk, a village near Amsterdam. Non-sea salt contributions, relations between ion species, long-time trends, annual cycles and meteorological influence are discussed. The study reveals enhanced levels of ammonium in the Schiermonnikoog samples with respect to Ouderkerk. Also, concentrations of sulfate and nitrate were higher. The high concentrations of ammonium are ascribed to dry-deposited NH 3 caused by cattle breeding, the only economical activity on the island. A significant positive trend reflects its intensifying nature. Annual cycles and statistical computations indicate prior combination of parts of ammonium and excess sulfate as ammonium sulfate. The nitrate content appears to be strongly related to ammonium ( r = 079). In the Ouderkerk dataset this correspondence is much weaker (0.37), whereas its pH values are systematically lower. It is therefore believed that on Schiermonnikoog concentrations of nitrate are increased by nitrification of ammonium in the collector. Annual cycles of sodium, magnesium and chloride, and to a lesser extent potassium, are very similar (maximum concentrations in November, December and January, and a relative maximum in April). The other annual patterns peak in the first half of the year: maximum concentrations are found in February (ammonium, excess sulfate), June (nitrate), January (potassium) and in April (excess calcium). A combination of frequently occurring offshore winds and low precipitation amounts will account for this behavior.

  7. In vitro evaluation of the disinfection efficacy on Eimeria tenella unsporulated oocysts isolated from broilers.

    PubMed

    Guimarães, José S; Bogado, Alexey L Gomel; da Cunha, Thiago Cezar B; Garcia, João Luis

    2007-01-01

    The objective of this study was to evaluate in vitro the action of eight chemical principles by disinfection efficacy (DE) of Eimeria tenella oocysts. Disinfection efficacy was evaluated by either destruction or sporulation inhibition of the oocysts. Eight treatments were performed: T1 (Glutaraldehyde 42.5 g + Benzalkonium Chloride 7.5 g); T2 (Benzalkonium chloride + quaternary ammonium salt); T3 (formol 37% + Sodium Dodecylbenzene Sulfonate 12%); T4 (sodium hypochlorite 2%); T5 (Orthodichlorobenzene 60% + Xylene 30%); T6 (Polyoctyl polyamino ethyl glycine + Polyoxyethylene alkylphenol ether + Sodium Chloride); T7 (Chloramine T) and finally T8 (free iodine 2.25% + Phosphoric acid 15 g). The control test was carried out with distilled water (T9). The best DE were observed, respectively, in T3 (79.49%), T5 (75.60%) and T4 (65.56%) treatments.

  8. [Benzalkonium chloride: unacceptable to sterilize or disinfect medical or dental instruments].

    PubMed

    Acosta-Gío, E; Herrero-Farías, A; Mata-Portuguez, V H

    2001-01-01

    To compare the sporicidal activity of benzalkonium chloride (BKC) with that of glutaraldehyde. A comparative study was conducted at the microbiology laboratory of Facultad de Odontología, Universidad Nacional Autónoma de México. Bacillus subtilis ATCC 9372 spores were exposed to these germicides (1 spore x mL) on a 0.22 mm filter. After completing the contact time the spores were washed and the filters were incubated on nutrient agar for 72 h at 37 degrees C. BKC did not eliminate B. subtilis spores at the concentration used, not even after increasing contact time to 15 h (900-fold the recommended time). Two percent glutaraldehyde destroyed spores only after 10 h of contact. Urea and sodium chloride showed no sporicidal activity. The results confirm that BKC lacks sporicidal activity and confirm that this quaternary ammonium compound is not able to "sterilize" or "disinfect" medical and dental instruments.

  9. Origins of extreme broadening mechanisms in near-edge x-ray spectra of nitrogen compounds

    NASA Astrophysics Data System (ADS)

    Vinson, John; Jach, Terrence; Elam, W. T.; Denlinger, J. D.

    2014-11-01

    We demonstrate the observation of many-body lifetime effects in valence-band x-ray emission. A comparison of the N K α emission of crystalline ammonium nitrate to molecular-orbital calculations revealed an unexpected, extreme broadening of the NO σ recombination—so extensively as to virtually disappear. GW calculations establish that this disappearance is due to a large imaginary component of the self-energy associated with the NO σ orbitals. Building upon density-functional theory, we have calculated radiative transitions from the nitrogen 1 s level of ammonium nitrate and ammonium chloride using a Bethe-Salpeter method to include electron-hole interactions. The absorption and emission spectra of both crystals evince large, orbital-dependent sensitivity to molecular dynamics. We demonstrate that many-body effects as well as thermal and zero-point motion are vital for understanding observed spectra. A computational approach using average atomic positions and uniform broadening to account for lifetime and phonon effects is unsatisfactory.

  10. Low Sensitivity of Listeria monocytogenes to Quaternary Ammonium Compounds

    PubMed Central

    Mereghetti, L.; Quentin, R.; Marquet-Van Der Mee, N.; Audurier, A.

    2000-01-01

    Ninety-seven epidemiologically unrelated strains of Listeria monocytogenes were investigated for their sensitivities to quaternary ammonium compounds (benzalkonium chloride and cetrimide). The MICs for seven serogroup 1/2 strains were high. Three came from the environment and four came from food; none were isolated from human or animal samples. All 97 strains carried the mdrL gene, which encodes a multidrug efflux pump, and the orfA gene, a putative transcriptional repressor of mdrL. The absence of plasmids in four of the seven resistant strains and the conservation of resistance after plasmid curing suggested that the resistance genes are not plasmid borne. Moreover, PCR amplification and Southern blot hybridization experiments failed to find genes phylogenetically related to the qacA and smr genes, encoding multidrug efflux systems previously described for the genus Staphylococcus. The high association between nontypeability by phages and the loss of sensitivity to quaternary ammonium compounds are suggestive of an intrinsic resistance due to modifications in the cell wall. PMID:11055967

  11. External quality-assurance results for the national atmospheric deposition program/national trends network, 2000-2001

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Latysh, Natalie E.; Gordon, John D.

    2004-01-01

    Five external quality-assurance programs were operated by the U.S. Geological Survey for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) from 2000 through 2001 (study period): the intersite-comparison program, the blind-audit program, the field-audit program, the interlaboratory-comparison program, and the collocated-sampler program. Each program is designed to measure specific components of the total error inherent in NADP/NTN wet-deposition measurements. The intersite-comparison program assesses the variability and bias of pH and specific-conductance determinations made by NADP/NTN site operators with respect to accuracy goals. The accuracy goals are statistically based using the median of all of the measurements obtained for each of four intersite-comparison studies. The percentage of site operators responding on time that met the pH accuracy goals ranged from 84.2 to 90.5 percent. In these same four intersite-comparison studies, 88.9 to 99.0 percent of the site operators met the accuracy goals for specific conductance. The blind-audit program evaluates the effects of routine sample handling, processing, and shipping on the chemistry of weekly precipitation samples. The blind-audit data for the study period indicate that sample handling introduced a small amount of sulfate contamination and slight changes to hydrogen-ion content of the precipitation samples. The magnitudes of the paired differences are not environmentally significant to NADP/NTN data users. The field-audit program (also known as the 'field-blank program') was designed to measure the effects of field exposure, handling, and processing on the chemistry of NADP/NTN precipitation samples. The results indicate potential low-level contamination of NADP/NTN samples with calcium, ammonium, chloride, and nitrate. Less sodium contamination was detected by the field-audit data than in previous years. Statistical analysis of the paired differences shows that contaminant ions are entrained into the solutions from the field-exposed buckets, but the positive bias that results from the minor amount of contamination appears to affect the analytical results by less than 6 percent. An interlaboratory-comparison program is used to estimate the analytical variability and bias of participating laboratories, especially the NADP Central Analytical Laboratory (CAL). Statistical comparison of the analytical results of participating laboratories implies that analytical data from the various monitoring networks can be compared. Bias was identified in the CAL data for ammonium, chloride, nitrate, sulfate, hydrogen-ion, and specific-conductance measurements, but the absolute value of the bias was less than analytical minimum reporting limits for all constituents except ammonium and sulfate. Control charts show brief time periods when the CAL's analytical precision for sodium, ammonium, and chloride was not within the control limits. Data for the analysis of ultrapure deionized-water samples indicated that the laboratories are maintaining good control of laboratory contamination. Estimated analytical precision among the laboratories indicates that the magnitudes of chemical-analysis errors are not environmentally significant to NADP data users. Overall precision of the precipitation-monitoring system used by the NADP/NTN was estimated by evaluation of samples from collocated monitoring sites at CA99, CO08, and NH02. Precision defined by the median of the absolute percent difference (MAE) was estimated to be approximately 10 percent or less for calcium, magnesium, sodium, chloride, nitrate, sulfate, specific conductance, and sample volume. The MAE values for ammonium and hydrogen-ion concentrations were estimated to be less than 10 percent for CA99 and NH02 but nearly 20 percent for ammonium concentration and about 17 percent for hydrogen-ion concentration for CO08. As in past years, the variability in the collocated-site data for sam

  12. Laboratory and field studies of stratospheric aerosols: Phase changes under high supersaturation

    NASA Technical Reports Server (NTRS)

    Hallet, John

    1991-01-01

    It is well known that water in the form of isolated small droplets supercool as much as 40 C below their equilibrium melting point. Solutions similarly supercool (with respect to water) and supersaturate (with respect of the solute). Experiments are described in which bulk solutions typical of atmospheric aerosols (nitric acid, sulfuric acid, and hydrates; ammonium sulfate; ammonium bisulfate; sodium chloride) are supercooled and/or supersaturated and nucleated to initiate crystal growth. Supersaturation of 300 percent is readily attainable, with linear growth of crystals increasing roughly as (supercooling/supersaturation)sup 2. The implication of the experiments is that the situation of metastability in polar stratosphere clouds is very likely, with nucleation only occuring under a high degree of supercooling or supersaturation.

  13. The optical constants of several atmospheric aerosol species - Ammonium sulfate, aluminum oxide, and sodium chloride

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.; Khare, B. N.

    1976-01-01

    An investigation is conducted of problems which are related to a use of measured optical constants in the simulation of the optical constants of real atmospheric aerosols. The techniques of measuring optical constants are discussed, taking into account transmission measurements through homogeneous and inhomogeneous materials, the immersion of a material in a liquid of a known refractive index, the consideration of the minimum deviation angle of prism measurement, the interference of multiply reflected light, reflectivity measurements, and aspects of mathematical analysis. Graphs show the real and the imaginary part of the refractive index as a function of wavelength for aluminum oxide, NaCl, and ammonium sulfate. Tables are provided for the dispersion parameters and the optical constants.

  14. Study of the morphology of ZnS thin films deposited on different substrates via chemical bath deposition.

    PubMed

    Gómez-Gutiérrez, Claudia M; Luque, P A; Castro-Beltran, A; Vilchis-Nestor, A R; Lugo-Medina, Eder; Carrillo-Castillo, A; Quevedo-Lopez, M A; Olivas, A

    2015-01-01

    In this work, the influence of substrate on the morphology of ZnS thin films by chemical bath deposition is studied. The materials used were zinc acetate, tri-sodium citrate, thiourea, and ammonium hydroxide/ammonium chloride solution. The growth of ZnS thin films on different substrates showed a large variation on the surface, presenting a poor growth on SiO2 and HfO2 substrates. The thin films on ITO substrate presented a uniform and compact growth without pinholes. The optical properties showed a transmittance of about 85% in the visible range of 300-800 nm with band gap of 3.7 eV. © Wiley Periodicals, Inc.

  15. Determination of quaternary ammonium compounds in oranges and cucumbers using QuEChERS extraction and ultra-performance liquid chromatography/tandem mass spectrometry.

    PubMed

    Arrebola-Liébanas, Francisco Javier; Abdo, María Angeles Herrera; Moreno, José Luis Fernandez; Martínez-Vidal, José L; Frenich, Antonia Garrido

    2014-01-01

    A simple and fast method has been developed for determining relevant quaternary ammonium compounds in cucumber and orange samples. The target compounds were benzoalkonium chloride (BAC-10, BAC-12, BAC-14, and BAC-16), didecyldimethylammonium chloride, and benzethonium chloride, all frequently used biocides in the agrifood industry. An extraction based on the buffered Quick, Easy, Cheap, Effective, Rugged, and Safe method and determination by ultra-performance LC/MS/MS that eluted the biocides in less than 5 min were used. The method was fully validated and implemented in a UNE-EN-ISO/IEC 17025 accredited laboratory for its application to the analysis of real samples. Performance characteristics of the method are reported, including an estimation of measurement uncertainty. Calibration curves were set between 0.01 and 0.150 mg/kg, LOD values were always between 0.4 and 1.0 microg/kg, LOQ values were in the range 1-4 microg/kg, recovery was between 81 and 115%, intraday and interday precision were always lower than 17% (expressed as RSD), and expanded uncertainty was always lower than 40%. The validation was accomplished for the two studied matrixes at spiking concentrations of 0.011 and 0.050 mg/kg. The method has been applied to the analysis of 30 cucumber and orange samples that were found to contain concentrations of BAC-12 that ranged between 0.015 and 0.210 mg/kg and of BAC-14 between 0.018 and 0.081 mg/kg.

  16. Common buffers, media, and stock solutions.

    PubMed

    2001-05-01

    This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.

  17. Evaluation of starch-based flocculants for the flocculation of dissolved organic matter from textile dyeing secondary wastewater.

    PubMed

    Wu, Hu; Liu, Zhouzhou; Li, Aimin; Yang, Hu

    2017-05-01

    China is a major textile manufacturer in the world; as a result, large quantities of dyeing effluents are generated every year in the country. In this study, the performances of two cationic starch-based flocculants with different chain architectures, i.e., starch-graft-poly[(2-methacryloyloxyethyl) trimethyl ammonium chloride] (STC-g-PDMC) and starch-3-chloro-2-hydroxypropyl trimethyl ammonium chloride (STC-CTA), in flocculating dissolved organic matter (DOM) in dyeing secondary effluents were investigated and compared with that of polyaluminum chloride (PAC). In the exploration of the flocculation mechanisms, humic acid (HA) and bovine serum albumin (BSA) were selected as main representatives of DOM in textile dyeing secondary effluents, which were humic/fulvic acid-like and protein-like extracellular matters according to the studied wastewater's characteristics based on its three-dimensional excitation-emission matrix spectrum. According to experimental results of the flocculation of both the real and synthetic wastewaters, STC-g-PDMC with cationic branches had remarkable advantages over STC-CTA and PAC because of the more efficient charge neutralization and bridging flocculation effects of STC-g-PDMC. Another interesting finding in this study was the reaggregation phenomenon after restabilization at an overdose during the flocculation of BSA effluents by STC-g-PDMC at a very narrow pH range under a nearly neutral condition. This phenomenon might be ascribed to the formation of STC-g-PDMC/BSA complexes induced by some local charge interactions between starch-based flocculant and the amino acid fragments of protein due to charge patch effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Functionalized β-cyclodextrin based potentiometric sensor for naproxen determination.

    PubMed

    Lenik, Joanna; Łyszczek, Renata

    2016-04-01

    Potentiometric sensors based on neutral β-cyclodextrins: (2-hydroxypropyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin and anionic β-cyclodextrin: (2-hydroxy-3-N,N,N-trimethylamino)propyl-β-cyclodextrin chloride for naproxen are described. Inclusion complexes of naproxen with the above-mentioned cyclodextrins were studied using IR spectroscopy. The electrode surface was made from PVC membranes doped with the appropriate β-cyclodextrin as ionophores and quaternary ammonium chlorides as positive charge additives that were dispersed in plasticizers. The optimum membrane contains heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin, o-nitrophenyloctyl ether and tetraoctyl ammonium chloride as a lipophilic salt. The electrode is characterized by a Nernstian response slope of -59.0 ± 0.5 mV decade(-1) over the linear range of 5.0 × 10(-5)-1.0 × 10(-2) mol L(-1) and the detection limit 1.0 × 10(-5) mol L(-1), as well as the response time 10s. It can be used in the pH range 6.2-8.5 for 10 months without any considerable deterioration. Incorporation of β-cyclodextrins improved the electrode selectivity towards naproxen ions from several inorganic and organic interferents and some common drug excipients due to concovalent interactions (host molecule-guest molecule). The notable advantages of the naproxen-selective electrode include its high sensitivity, high selectivity, cost-effectiveness as well as accurate and comfortable application in drug analysis and milk samples. Copyright © 2015. Published by Elsevier B.V.

  19. (Methyldiphenyl­phospho­ranylidene)­ammonium chloride

    PubMed Central

    Valerio-Cárdenas, Cintya; Ortiz-Frade, Luis; Grévy M., Jean-Michel

    2009-01-01

    The title compound, C13H15NP+·Cl−, was obtained by hydrolysis of the N-trimethysilyl derivative of methydiphenyl­imino­phosphine. The dihedral angle between the phenyl rings in the cation is 61.5 (3)°. In the crystal structure, inter­molecular N—H⋯Cl hydrogen bonds links the two components, forming a centrosymmetric 2 + 2 aggregate. PMID:21582794

  20. Curing and Characterization of Siloxanecarbonate Polymers

    DTIC Science & Technology

    1980-01-01

    to 93 percent yields of p-bromophenol-Z-tetrahydropyranyl ether. The Grignard reagent made from the protected phenol in tetrahydrofuran was added to...iodomethane and heating. When all of the magnesium appeared to have been consumed, the resulting Grignard reagent was added via a double-tipped needle...7-dichlorooctamethyltetrasiloxane via the Grignard reaction. Workup of the reaction product with aqueous ammonium chloride solution kept the molecule

  1. Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction.

    PubMed

    Wang, Jianxu; Xia, Jicheng; Feng, Xinbin

    2017-01-15

    Screening of optimal chelating ligands which not only have high capacities to enhance plant uptake of mercury (Hg) from soil but also can decrease bioavailable Hg concentration in soil is necessary to establish a viable chemically-assisted phytoextraction. Therefore, Brassica juncea was exposed to historically Hg-contaminated soil (total Hg, 90 mg kg -1 ) to investigate the efficiency of seven chelating agents [ammonium thiosulphate, sodium thiosulphate, ammonium sulfate, ammonium chloride, sodium nitrate, ethylenediaminetetraacetic acid (EDTA), and sodium sulfite] at enhancing Hg phytoextraction; the leaching of bioavailable Hg caused by these chelating agents was also investigated. The Hg concentration in control (treated with double-distilled water) plant tissues was below 1 mg kg -1 . The remarkably higher Hg concentration was found in plants receiving ammonium thiosulphate and sodium sulfite treatments. The bioaccumulation factors and translocation factors of ammonium thiosulphate and sodium sulfite treatments were significantly higher than those of the other treatments. The more efficient uptake of Hg by plants upon treatment with ammonium thiosulphate and sodium sulfite compared to the other treatments might be explained by the formation of special Hg-thiosulphate complexes that could be preferentially taken up by the roots and transported in plant tissues. The application of sulfite significantly increased bioavailable Hg concentration in soil compared with that in initial soil and control soil, whereas ammonium thiosulphate significantly decreased bioavailable Hg concentration. The apparent decrease of bioavailable Hg in ammonium thiosulphate-treated soil compared with that in sodium sulfite-treated soil might be attributable to the unstable Hg-thiosulphate complexes formed between thiosulphate and Hg; they could react to produce less bioavailable Hg in the soil. The results of this study indicate that ammonium thiosulphate may be an optimal chelating ligand for phytoextraction due to its great potential to enhance Hg accumulation in plants while decreasing bioavailable Hg concentration in the soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Åmand, Lars-Erik; Kassman, Håkan, E-mail: hakan.kassman@vattenfall.com

    2013-08-15

    Highlights: • Two strategies to reduce PCDD/F formation when co-firing solid recovered fuel (SRF) and biomass. • They were co-combustion with municipal sewage sludge (MSS) and addition of ammonium sulphate. • PCDD/Fs were significantly reduced for a biomass rich in chlorine when adding ammonium sulphate. • MSS had a suppressing effect on PCDD/F formation during co-combustion with SRF. • A link is presented between gaseous alkali chlorides, chlorine in deposits and PCDD/F formation. - Abstract: Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are formed during waste incineration and in waste-to-energy boilers. Incomplete combustion, too short residence times at low combustionmore » temperatures (<700 °C), incineration of electronic waste and plastic waste containing chlorine are all factors influencing the formation of PCDD/Fs in boilers. The impact of chlorine and catalysing metals (such as copper and iron) in the fuel on PCDD/F formation was studied in a 12 MW{sub th} circulating fluidised bed (CFB) boiler. The PCDD/F concentrations in the raw gas after the convection pass of the boiler and in the fly ashes were compared. The fuel types were a so-called clean biomass with low content of chlorine, biomass with enhanced content of chlorine from supply of PVC, and solid recovered fuel (SRF) which is a waste fuel containing higher concentrations of both chlorine, and catalysing metals. The PCDD/F formation increased for the biomass with enhanced chlorine content and it was significantly reduced in the raw gas as well as in the fly ashes by injection of ammonium sulphate. A link, the alkali chloride track, is demonstrated between the level of alkali chlorides in the gas phase, the chlorine content in the deposits in the convection pass and finally the PCDD/F formation. The formation of PCDD/Fs was also significantly reduced during co-combustion of SRF with municipal sewage sludge (MSS) compared to when SRF was fired without MSS as additional fuel.« less

  3. Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater.

    PubMed

    Li, Ya; Shi, Shaoyuan; Cao, Hongbin; Wu, Xinmin; Zhao, Zhijuan; Wang, Liying

    2016-02-01

    Simulated ammonium chloride wastewater was treated by a lab-scale bipolar membrane electrodialysis for the generation of HCl and NH3·H2O and desalination. The influence of initial concentration of NH4Cl, current density, salt solution volume, initial concentration of acid and base and membrane stack structure on the yields of HCl and NH3·H2O was investigated. The current efficiency and energy consumption were also examined under different conditions. The results showed that, at the current density of 48 mA/cm(2), the highest concentration of HCl and NH3·H2O with initial concentration of 110 g/L NH4Cl was 57.67 g/L and 45.85 g/L, respectively. Higher initial concentration of NH4Cl was favor to reduce unit energy consumption and increase current efficiency of the BMED system. The membrane stack voltage of BMED increased quickly under constant current when the concentration of NH4Cl contained in the solution of salt compartment was depleted below the "inflection point concentration" about 8000 mg/L. It means that the concentration of NH4Cl below 8000 mg/L was no longer suitable for BMED because of higher energy consumption. The HCl and NH3·H2O concentration increased more quickly following the increase of current density. When increasing the volume of NH4Cl, the concentration of HCl and NH3·H2O also increased. The high initial concentration of acid and base could improve the final concentration of them, while the growth rate was decreased. Compared with the BMED system with three compartments, the growth rate of HCl concentration with the two compartments was higher and its unit energy consumption was lower. It meant that the performance of the BMED system could be improved by optimizing operation conditions. The application feasibility of the generation of HCl and NH3·H2O and desalination of ammonium chloride wastewater by BMED was proved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The structure of melting mushy zones, with implications for Earth's inner core (Invited)

    NASA Astrophysics Data System (ADS)

    Bergman, M. I.; Huguet, L.; Alboussiere, T.

    2013-12-01

    Seismologists have inferred hemispherical differences in the isotropic wavespeed, the elastic anisotropy, the attenuation, and the attenuation anisotropy of Earth's inner core. One hypothesis for these hemispherical differences involves an east-west translation of the inner core, with enhanced solidification on one side and melting on the other. Another hypothesis is that long term mantle control over outer core convection can lead to hemispherical variations in solidification that could even result in melting in some regions of the inner core boundary. It has also been hypothesized that the inner core is growing dendritically, resulting in an inner core that has the structure of a mushy zone (albeit one with a high solid fraction). It would therefore be helpful to understand how the structure of a melting mushy zone might look in comparison with one that is solidifying, in an effort to help interpret the seismic inferences. We have carried out experiments on the solidification of ammonium chloride from an aqueous solution, yielding a mushy zone. The experiments run in a centrifuge, in order to reach a more realistic ratio of convective velocity to phase change rate, expected to be very large at the boundary of the inner core. Hypergravity thus increases the experimental solid fraction of the mush. So far the maximum gravity we have achieved is 200 g. A Peltier cell provides cooling at one end of the cell, and after the mushy zone has grown we turn on a heater at the other end. Probes monitor the temperature along the height of the cell. As ammonium chloride in the mushy zone melts it produces more dense fluid, which results in convection in the mushy zone, a greater ammonium chloride concentration deeper in the mushy zone, and hence enhanced solidification there. This thus changes the solid fraction profile from that during solidification, which may be observable in the lab experiments using ultrasonic transducers and post-mortem under a microscope. The melting may also change the propagation of chimney convection. It remains unclear whether these changes will be observable seismically.

  5. Comparison of Quinn's Advantage fertilization medium and tissue culture medium 199 for in vitro maturation of oocytes.

    PubMed

    Lin, Yu-Hung; Hwang, Jiann-Loung; Huang, Lee-Wen; Seow, Kok-Min; Hsieh, Bih-Chwen; Tzeng, Chii-Ruey

    2014-03-01

    The purpose of the study was to compare the Quinn's Advantage fertilization medium (Q1) and the tissue culture medium 199 (TCM199) for in vitro maturation (IVM) of oocytes and ammonium production during IVM. The immature murine oocytes were randomly added into Q1 and TCM199. Ammonium concentrations were measured at the start and after 18 hours of IVM, and the mature oocytes were fertilized and cultured into blastocysts. The blastocysts were then stained for inner cell mass (ICM) and trophectoderm. The maturation rate was higher in Q1 than in TCM199 (85.7% vs. 76.6%, p = 0.024). The fertilization and blastocyst rates were slightly higher in Q1, but not significant. Differential staining of the blastocysts showed slightly higher ICM ratio in the blastocysts derived from Q1. Mean ammonium concentrations in Q1 and TCM199 at Time 0 were 184.9 and 339.2 μg/dL, respectively (p = 0.05), and after 18 hours of IVM were 268.7 and 443.6 μg/dL, respectively (p = 0.045). Addition of ammonium chloride into Q1 adversely affects IVM. Q1 is superior to TCM199 in terms of oocyte maturation, which may be due to lower ammonium concentration. Copyright © 2014. Published by Elsevier B.V.

  6. Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters: environmental implications.

    PubMed

    Harkness, Jennifer S; Dwyer, Gary S; Warner, Nathaniel R; Parker, Kimberly M; Mitch, William A; Vengosh, Avner

    2015-02-03

    The expansion of unconventional shale gas and hydraulic fracturing has increased the volume of the oil and gas wastewater (OGW) generated in the U.S. Here we demonstrate that OGW from Marcellus and Fayetteville hydraulic fracturing flowback fluids and Appalachian conventional produced waters is characterized by high chloride, bromide, iodide (up to 56 mg/L), and ammonium (up to 420 mg/L). Br/Cl ratios were consistent for all Appalachian brines, which reflect an origin from a common parent brine, while the I/Cl and NH4/Cl ratios varied among brines from different geological formations, reflecting geogenic processes. There were no differences in halides and ammonium concentrations between OGW originating from hydraulic fracturing and conventional oil and gas operations. Analysis of discharged effluents from three brine treatment sites in Pennsylvania and a spill site in West Virginia show elevated levels of halides (iodide up to 28 mg/L) and ammonium (12 to 106 mg/L) that mimic the composition of OGW and mix conservatively in downstream surface waters. Bromide, iodide, and ammonium in surface waters can impact stream ecosystems and promote the formation of toxic brominated-, iodinated-, and nitrogen disinfection byproducts during chlorination at downstream drinking water treatment plants. Our findings indicate that discharge and accidental spills of OGW to waterways pose risks to both human health and the environment.

  7. Specific and total N-nitrosamines formation potentials of nitrogenous micropollutants during chloramination.

    PubMed

    Piazzoli, Andrea; Breider, Florian; Aquillon, Caroline Gachet; Antonelli, Manuela; von Gunten, Urs

    2018-05-15

    N-nitrosamines are a group of potent human carcinogens that can be formed during oxidative treatment of drinking water and wastewater. Many tertiary and quaternary amines present in consumer products (e.g., pharmaceuticals, personal care and household products) are known to be N-nitrosodimethylamine (NDMA) precursors during chloramination, but the formation of other N-nitrosamines has been rarely studied. This study investigates the specific and total N-nitrosamine (TONO) formation potential (FP) of various precursors from nitrogen-containing micropollutants (chlorhexidine, metformin, benzalkonium chloride and cetyltrimethylammonium chloride) and tertiary and quaternary model amines (trimethyl amine, N,N-dimethylbutyl amine, N,N-dimethylbenzyl amine and tetramethyl ammonium). All the studied nitrogenous micropollutants displayed quantifiable TONO FP, with molar yields in the range 0.04-11.92%. However, the observed TONO pools constituted mostly of uncharacterized species, not included in US-EPA 8270 N-nitrosamines standard mix. Only the quaternary ammonium compound benzalkonium chloride showed quantifiable NDMA FP (0.56% molar yield), however, explaining only a minor fraction of the observed TONO FP. The studied model amines showed molar NDMA yields from 0.10% (trimethyl amine) to 5.05% (N,N-dimethylbenzyl amine), very similar to the molar TONO yields. The comparison of the FPs of micropollutants and model compounds showed that the presence of electron donating functional groups (such as a benzyl group) in tertiary and quaternary amine precursors leads to a higher formation of NDMA and uncharacterized N-nitrosamines, respectively. LC-qTOF screening of a list of proposed N-nitrosamine structures has enabled to identify a novel N-nitrosamine (N-nitroso-N-methyldodecylamine) from the chloramination of benzalkonium chloride. This finding supports the hypothesis that different functional groups in quaternary amines can act as leaving groups during chloramination and form differing N-nitrosamine structures at significant yield. Molar TONO yields determined for micropollutants were finally validated under experimental conditions closer to real water matrices, confirming their representativeness also for lower concentration ranges. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Identification and functional analysis of an ammonium transporter in Streptococcus mutans.

    PubMed

    Ardin, Arifah Chieko; Fujita, Kazuyo; Nagayama, Kayoko; Takashima, Yukiko; Nomura, Ryota; Nakano, Kazuhiko; Ooshima, Takashi; Matsumoto-Nakano, Michiyo

    2014-01-01

    Streptococcus mutans, a Gram-positive bacterium, is considered to be a major etiologic agent of human dental caries and reported to form biofilms known as dental plaque on tooth surfaces. This organism is also known to possess a large number of transport proteins in the cell membrane for export and import of molecules. Nitrogen is an essential nutrient for Gram-positive bacteria, though alternative sources such as ammonium can also be utilized. In order to obtain nitrogen for macromolecular synthesis, nitrogen-containing compounds must be transported into the cell. However, the ammonium transporter in S. mutans remains to be characterized. The present study focused on characterizing the ammonium transporter gene of S. mutans and its operon, while related regulatory genes were also analyzed. The SMU.1658 gene corresponding to nrgA in S. mutans is homologous to the ammonium transporter gene in Bacillus subtilis and SMU.1657, located upstream of the nrgA gene and predicted to be glnB, is a member of the PII protein family. Using a nrgA-deficient mutant strain (NRGD), we examined bacterial growth in the presence of ammonium, calcium chloride, and manganese sulfate. Fluorescent efflux assays were also performed to reveal export molecules associated with the ammonium transporter. The growth rate of NRGD was lower, while its fluorescent intensity was much higher as compared to the parental strain. In addition, confocal laser scanning microscopy revealed that the structure of biofilms formed by NRGD was drastically different than that of the parental strain. Furthermore, transcriptional analysis showed that the nrgA gene was co-transcribed with the glnB gene. These results suggest that the nrgA gene in S. mutans is essential for export of molecules and biofilm formation.

  9. Identification and Functional Analysis of an Ammonium Transporter in Streptococcus mutans

    PubMed Central

    Ardin, Arifah Chieko; Fujita, Kazuyo; Nagayama, Kayoko; Takashima, Yukiko; Nomura, Ryota; Nakano, Kazuhiko; Ooshima, Takashi; Matsumoto-Nakano, Michiyo

    2014-01-01

    Streptococcus mutans, a Gram-positive bacterium, is considered to be a major etiologic agent of human dental caries and reported to form biofilms known as dental plaque on tooth surfaces. This organism is also known to possess a large number of transport proteins in the cell membrane for export and import of molecules. Nitrogen is an essential nutrient for Gram-positive bacteria, though alternative sources such as ammonium can also be utilized. In order to obtain nitrogen for macromolecular synthesis, nitrogen-containing compounds must be transported into the cell. However, the ammonium transporter in S. mutans remains to be characterized. The present study focused on characterizing the ammonium transporter gene of S. mutans and its operon, while related regulatory genes were also analyzed. The SMU.1658 gene corresponding to nrgA in S. mutans is homologous to the ammonium transporter gene in Bacillus subtilis and SMU.1657, located upstream of the nrgA gene and predicted to be glnB, is a member of the PII protein family. Using a nrgA-deficient mutant strain (NRGD), we examined bacterial growth in the presence of ammonium, calcium chloride, and manganese sulfate. Fluorescent efflux assays were also performed to reveal export molecules associated with the ammonium transporter. The growth rate of NRGD was lower, while its fluorescent intensity was much higher as compared to the parental strain. In addition, confocal laser scanning microscopy revealed that the structure of biofilms formed by NRGD was drastically different than that of the parental strain. Furthermore, transcriptional analysis showed that the nrgA gene was co-transcribed with the glnB gene. These results suggest that the nrgA gene in S. mutans is essential for export of molecules and biofilm formation. PMID:25229891

  10. Laboratory Evaluation of the Effects of 3-Chloride Compounds on the Geotechnical Properties of an Expansive Subgrade Soil

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, G.; Anjan Kumar, M.; Raju, G. V. R. Prasada

    2017-12-01

    Expansive soils are known to be problematic due to their nature and behavior. These soils show volume changes due to changes in moisture content, which cause distortions to structures constructed on them. Relentless efforts are being made all over the world to find solution to the problems of expansive soils. In the case of flexible pavements, unless the subgrade is appropriately treated during the construction stage, the maintenance cost will increase substantially due to deterioration. There are many methods of stabilising expansive subgrade soils. Chemical stabilisation is one such technique employed in improving the engineering properties of the expansive soil. Investigations on chemical stabilization of expansive soils revealed that conventionally used lime could be replaced by the chloride compound chemicals because of their ready dissolvability in water, ease of mixing with soil and supply of sufficient cations for ready cation exchange. The main objective of this work is to study the effectiveness of three chloride compound chemicals, ammonium chloride (NH4Cl), magnesium chloride (MgCl2) and aluminum chloride (AlCl3) on the geotechnical properties of an expansive soil. The chemicals content up to 2% were added to the soil and its effect on the index limits, swell pressure, compaction characteristics as well as California bearing ratio are studied. It was observed that aluminum chloride chemical content has a significantly higher influence than the other two chemicals and it could be recognized as an effective chemical stabilizer.

  11. Hexadecyl ammonium chloride amylose inclusion complex to emulsify cedarwood oil and treat wood against termites and wood-decay fungi

    Treesearch

    F.J. Eller; W.T. Hay; G.T. Kirker; M.E. Mankowski; G.W. Sellling

    2018-01-01

    Cedarwood oil (CWO) has a wide range of bioactivities, including insect repellency and toxicity, as well as conferring resistance against termites and wood-decay fungi. In previous work examining pressure treatment of wood, ethanol was used as the diluent/carrier for CWO. However, it is preferable to use a water-based carrier for environmental, safety and cost...

  12. Enhanced production of medicinal polysaccharide by submerged fermentation of Lingzhi or Reishi medicinal mushroom Ganoderma lucidium (W.Curt.:Fr.) P. Karst. Using statistical and evolutionary optimization methods.

    PubMed

    Baskar, Gurunathan; Sathya, Shree Rajesh K

    2011-01-01

    Statistical and evolutionary optimization of media composition was employed for the production of medicinal exopolysaccharide (EPS) by Lingzhi or Reishi medicinal mushroom Ganoderma lucidium MTCC 1039 using soya bean meal flour as low-cost substrate. Soya bean meal flour, ammonium chloride, glucose, and pH were identified as the most important variables for EPS yield using the two-level Plackett-Burman design and further optimized using the central composite design (CCD) and the artificial neural network (ANN)-linked genetic algorithm (GA). The high value of coefficient of determination of ANN (R² = 0.982) indicates that the ANN model was more accurate than the second-order polynomial model of CCD (R² = 0.91) for representing the effect of media composition on EPS yield. The predicted optimum media composition using ANN-linked GA was soybean meal flour 2.98%, glucose 3.26%, ammonium chloride 0.25%, and initial pH 7.5 for the maximum predicted EPS yield of 1005.55 mg/L. The experimental EPS yield obtained using the predicted optimum media composition was 1012.36 mg/L, which validates the high degree of accuracy of evolutionary optimization for enhanced production of EPS by submerged fermentation of G. lucidium.

  13. Plasma-initiated polymerization of chitosan-based CS-g-P(AM-DMDAAC) flocculant for the enhanced flocculation of low-algal-turbidity water.

    PubMed

    Sun, Yongjun; Zhu, Chengyu; Sun, Wenquan; Xu, Yanhua; Xiao, Xuefeng; Zheng, Huaili; Wu, Huifang; Liu, Cuiyun

    2017-05-15

    In this work, a highly efficient and environmentally friendly chitosan-based graft flocculant, namely, acrylamide- and dimethyl diallyl ammonium chloride-grafted chitosan [CS-g-P(AM-DMDAAC)], was prepared successfully through plasma initiation. FTIR results confirmed the successful polymerization of CS-g-P(AM-DMDAAC) and P(AM-DMDAAC). P(AM-DMDAAC) was the copolymer of acrylamide- and dimethyl diallyl ammonium chloride. SEM results revealed that a densely cross-linked network structure formed on the surface. XRD results verified that the ordered crystal structure of chitosan in CS-g-P(AM-DMDAAC) was changed into an amorphous structure after plasma-induced polymerization. The flocculation results of low-algal-turbidity water further showed the optimal flocculation efficiency of turbidity removal rate, COD removal rate, and Chl-a removal rate were 99.02%, 96.11%, and 92.20%, respectively. The flocculation efficiency of CS-g-P(AM-DMDAAC) were significantly higher than those obtained by cationic polyacrylamide (CPAM) and Polymeric aluminum and iron (PAFC). This work provided a valuable basis for the design of eco-friendly naturally modified polymeric flocculants to enhance the flocculation of low-algal-turbidity water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Antagonistic effect of nano-ZnO and cetyltrimethyl ammonium chloride on the growth of Chlorella vulgaris: Dissolution and accumulation of nano-ZnO.

    PubMed

    Liu, Na; Wang, Yipeng; Ge, Fei; Liu, Shixiang; Xiao, Huaixian

    2018-04-01

    The interaction of nanoparticles with coexisting chemicals affects the fate and transport of nanoparticles, as well as their combined effects on aquatic organisms. Here, we evaluated the joint effect of ZnO nanoparticle (nano-ZnO) and cetyltrimethyl ammonium chloride (CTAC) on the growth of Chlorella vulgaris and explored the possible mechanism. Results showed that an antagonistic effect of nano-ZnO and CTAC (0.1, 0.2 and 0.3 mg L -1 ) was found because CTAC stop nano-ZnO being broken down into solution zinc ions (Zn 2+ ). In the presence of CTAC, the zinc (including nano-ZnO and released Zn 2+ ) showed a higher adsorption on bound extracellular polymeric substances (B-EPS) but lower accumulation in the algal cells. Moreover, we directly demonstrated that nano-ZnO was adsorbed on the algal B-EPS and entered into the algal cells by transmission electron microscope coupled with energy dispersive X-ray (TEM-EDX). Hence, these results suggested that the combined system of nano-ZnO and CTAC exhibited an antagonistic effect due to the inhibition of CTAC on dissolution of nano-ZnO and accumulation of the zinc in the algal cells. Copyright © 2017. Published by Elsevier Ltd.

  15. Determination of volatile bases in seafood using the ammonia ion selective electrode: collaborative study.

    PubMed

    Ellis, P C; Pivarnik, L F; Thiam, M; Ellis, P C; Pivarnik, L F; Thiam, M

    2000-01-01

    Nine collaborating laboratories tested a combination of 23 seafood samples for volatile bases using an ammonia ion selective electrode. Results were reported as mg NH3/100 g fish, but the method reflected levels of both ammonia and trimethylamine, which permeated the ammonia membrane. The 23 samples were broken down into 8 blind duplicate pairs, 2 Youden matched pairs, and 3 single samples covering fresh to spoiled product ranging from 8 to 82 mg NH3/100 g. Seven species were evaluated: Atlantic cod, squid, Atlantic halibut, gray sole, monkfish, dogfish, and Atlantic mackerel. The ammonia electrode assay was performed on an aqueous homogenate consisting of 95 mL distilled water and 5.0 g sample tissue. Alkaline ion strength adjusting solution (2 mL) was added to the homogenate to liberate ammonia that was sensed by the ion specific electrode and measured on a precalibrated portable meter. Repeatability standard deviations (RSDr) ranged from 4.2 to 17%; reproducibility standard deviations (RSDR) ranged from 8.8 to 21%. A standard ammonium chloride solution was provided to all laboratories to spike 3 different samples at 10 mg NH3/100 g. Recoveries of added ammonia as ammonium chloride for fresh, borderline, and spoiled samples were 88.6, 107, and 128%, respectively.

  16. Dimethyl diallyl ammonium chloride and diallylamin Co-polymer modified bio-film derived from palm dates for the adsorption of dyes.

    PubMed

    Jabli, Mahjoub; Saleh, Tawfik A; Sebeia, Nouha; Tka, Najeh; Khiari, Ramzi

    2017-10-31

    For the first time, co-polymer of dimethyl diallyl ammonium chloride and diallylamin (PDDACD) was used to modify the films derived from the waste of palm date fruits, which were then investigated by the purification of colored aqueous solutions. The physico-chemical characteristics were identified using data color, FT-IR spectroscopy, and SEM features. The modified films were evaluated as adsorbents of Methylene Blue (MB), Direct Yellow 50 (DY50), Reactive Blue 198 (RB198) and Naphtol Blue Black (NBB). High retention capacities were achieved in the following order: The equilibrium da DY50 (14 mg g -1 ) < RB198 (16 mg g -1 ) < NBB (63.9 mg g -1 ) < MB (150 mg g -1 ). The kinetic modeling of the data revealed that the adsorption data follows the pseudo second order model. It was fitted to the Langmuir, Freundlich, Temkin, and Dubinin-Redushkevich equations, and the data best fit the Freundlich model indicating that the adsorption might occur in the heterogeneous adsorption sites. These results reveal that PDDACD modified films are valuable materials for the treatment of industrial wastewater. Moreover, the as-prepared adsorbent is economically viable and easily controllable for pollutant adsorption.

  17. Algicidal and Sanitizing Properties of Armazide1

    PubMed Central

    Antonides, H. J.; Tanner, W. S.

    1961-01-01

    Algicidal and sanitizing properties of Armazide, a new swimming pool additive, consisting of 12% w/v each of dodecylamine hydrochloride, trimethyl alkyl ammonium chloride, and methyl alkyl dipolyoxypropylene ammonium methyl sulfate in solution, were evaluated by laboratory techniques against algae and sewage. Results indicated it to be highly effective in low concentrations especially in conjunction with low concentrations of chlorine. Swimming pool field tests were found to confirm the laboratory findings. Various treatment levels and methods are described for swimming pools using treatments based upon the actual condition of the pool and water. The use of the product permitted a reduction in chlorine residual in pools resulting in greatly reduced requirements for chlorinating chemicals along with absence of irritation, odor, and other undesirable results usually associated with standard pool chlorination methods. PMID:13861802

  18. Ammonium sensing in aqueous solutions with plastic optical fiber modified by molecular imprinting

    NASA Astrophysics Data System (ADS)

    Sequeira, F.; Duarte, D.; Rudnitskaya, A.; Gomes, M. T. S. R.; Nogueira, R.; Bilro, L.

    2016-05-01

    We report the development of a low cost plastic optical fibre (POF) sensor for ammonium detection using molecularly imprinted polymers (MIP's). The cladding of a 1 mm diameter PMMA fiber is removed, in which is grafted a molecular imprinted polymer (MIP), by radical polymerization with thermal initiation, that act as a selective sensing layer. For the polymerization, 2,2'-Azobis(2-methylpropionamidine)dihydrochloride (AAPH) is used as initiator, methacrylic acid (MAA) as a monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linker, ammonium chloride (NH4Cl) as a template and 30% of ethanol in water as a solvent. The sensing method consists of an intensity based scheme. The response to different concentrations of ammonium solutions in water has been evaluated at room temperature. Solutions with (0 - 0.6) M concentration, with the corresponding refractive indexes varying between 1.3325 - 1.3387, at 25°C were used. The response of the fiber with the original cladding, and after cladding removal has been monitored and compared to the response given by the developed sensor. The response is very fast, less than 1 minute and reversible, which allows the continuum use of the sensor. Further developments are focused in optimization of MIP grafting procedure and sensor performance, in order to increase sensitivity.

  19. Observational and modeling studies of chemical species concentrations as a function of raindrop size

    NASA Astrophysics Data System (ADS)

    Wai, K. M.; Tam, C. W. F.; Tanner, P. A.

    The Guttalgor method has been used to determine the chemical species concentrations in size-selected raindrops in nine rain events at Hong Kong from 1999 to 2001. The curve (concentration against raindrop radius) patterns for all the species are similar but depend on the starting time of sampling within a rain event. In these plots, the maximum concentration occurs at the same range of droplet radius, irrespective of the species, and this indicates the importance of coalescence and breakup processes. The maximum is located at a smaller droplet radius than was found in previous studies in Germany. All results show almost constant concentrations with size for large raindrops, and these indicate the in-cloud contributions. The pH of raindrops of similar size is linearly correlated with a function of the sulfate, nitrate, acetate, formate, calcium and ammonium ion species concentrations. Within a single raindrop, chloride depletion is not significant, and sulfate, ammonium and hydrogen ions are found in ratios compatible with the precursor solid-phase mixture of ammonium sulfate and ammonium bisulphate. When simulated by a below-cloud model, good agreement between the modeled and measured sodium and sulfate concentrations has been found. Below-cloud sulfur dioxide scavenging contributes at most 60% of the sulfate concentration in a single raindrop.

  20. Interactions of aerosols (ammonium sulfate, ammonium nitrate and ammonium chloride) and of gases (HCl, HNO 3) with fogwater

    NASA Astrophysics Data System (ADS)

    Ruprecht, Heidi; Sigg, Laura

    The concentrations of aerosols (NH 4NO 3, (NH 4) 2SO 4 and NH 4Cl) and of gases (HCl (g), HNO 3(g), NH 3(g) were determined by denuder methods under different conditions (in the absence of fog, before, during and after fog events). At this site situated in an urban region, high concentrations of the gaseous strong acids HCl (g) and HNO 3(g) are observed. NH 4Cl and NH 4NO 3 aerosols represent a major fraction of the Cl - and NO 3- aerosols (<2.4 μm)collected by denuders. During a fog event, very high concentrations of SO 42- were found in small aerosols, which are attributed to the aqueous phase oxidation of SO 2 under the influence of high pH due to the presence of NH 3. Differences in SO 42- concentrations measured in aerosols (<2.4 μm) and in fog droplets were probably due to mass-transport limitations of the SO 2 oxidation. Ammonium sulfate aerosols represent in some cases a significant fraction of the total S present (SO 2(g) + SO 42-. Soluble aerosols and gases contribute to the composition of fogwater and are released again after fog dissipation.

  1. Flocculation and antimicrobial properties of a cationized starch.

    PubMed

    Liu, Zhouzhou; Huang, Mu; Li, Aimin; Yang, Hu

    2017-08-01

    In this study, a series of cationized starch-based flocculants (starch-3-chloro-2-hydroxypropyl triethyl ammonium chloride, St-CTA) containing various quaternary ammonium salt groups on the starch backbone were prepared using a simple etherification reaction. All of the prepared starch-based flocculants show effective performance for the flocculation of kaolin suspension, two bacterial (Escherichia coli and Staphylococcus aureus) suspensions, and two contaminant mixtures (kaolin and each bacterium) under most pH conditions. St-CTA with a high substitution degree of CTA demonstrates improved contaminant removal efficiency because of the strong cationic nature of the grafted quaternary ammonium salt groups and the charge naturalization flocculation effect. The antibacterial effects of St-CTA were also evaluated, considering that many quaternary ammonium salt compounds elicit bactericidal effects. Three-dimensional excitation-emission matrix spectra and direct cell morphological observation under scanning electron microscopy reveal that the starch-based flocculants exhibit better antibacterial effects on the Gram-negative bacterium E. coli than on the Gram-positive bacterium S. aureus. The thicker cell wall due to the presence of abundant peptidoglycan and teichoic acids of S. aureus than E. coli explains the uneasy breakage of S. aureus cell wall after being attacked by the cationized starch-based flocculants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Formation of low charge state ions of synthetic polymers using quaternary ammonium compounds.

    PubMed

    Nasioudis, Andreas; Joyce, William F; van Velde, Jan W; Heeren, Ron M A; van den Brink, Oscar F

    2010-07-01

    Factors such as high polymer dispersity and variation in elemental composition (of copolymers) often complicate the electrospray ionization mass spectrometry (ESI-MS) analysis of synthetic polymers with high molar mass. In the experiments described in this study, quaternary ammonium compounds were observed to facilitate the production of low charge state pseudomolecular ions when added to the spray solution for ESI-MS. This approach was then used for the ESI time-of-flight mass spectrometry (TOF-MS) analysis of synthetic polymers. Hexadecyltrimethylammonium chloride permitted the successful analysis of poly(ethylene glycol) of 2-40 kDa, poly(propylene glycol) and poly(tetramethylene glycol) oligomers. Increasing the quaternary ammonium compounds' concentration results in the production of low charge state pseudomolecular ions. A comparison of structurally different quaternary ammonium compounds showed that the best performance is expected from large molecules with specific charge localization, which leaves the charge available for interactions. The applicability of the method for the MS analysis of other polymeric systems was also studied. In the case of poly(tetramethylene glycol), the method not only shifted the distributions to higher m/z values but also allowed the detection of high molecular weight material that was not observed without addition of the modifier to the spray solution.

  3. High-Throughput Chemical Screening Identifies Compounds that Inhibit Different Stages of the Phytophthora agathidicida and Phytophthora cinnamomi Life Cycles.

    PubMed

    Lawrence, Scott A; Armstrong, Charlotte B; Patrick, Wayne M; Gerth, Monica L

    2017-01-01

    Oomycetes in the genus Phytophthora are among the most damaging plant pathogens worldwide. Two important species are Phytophthora cinnamomi , which causes root rot in thousands of native and agricultural plants, and Phytophthora agathidicida , which causes kauri dieback disease in New Zealand. As is the case for other Phytophthora species, management options for these two pathogens are limited. Here, we have screened over 100 compounds for their anti-oomycete activity, as a potential first step toward identifying new control strategies. Our screening identified eight compounds that showed activity against both Phytophthora species. These included five antibiotics, two copper compounds and a quaternary ammonium cation. These compounds were tested for their inhibitory action against three stages of the Phytophthora life cycle: mycelial growth, zoospore germination, and zoospore motility. The inhibitory effects of the compounds were broadly similar between the two Phytophthora species, but their effectiveness varied widely among life cycle stages. Mycelial growth was most successfully inhibited by the antibiotics chlortetracycline and paromomycin, and the quaternary ammonium salt benzethonium chloride. Copper chloride and copper sulfate were most effective at inhibiting zoospore germination and motility, whereas the five antibiotics showed relatively poor zoospore inhibition. Benzethonium chloride was identified as a promising antimicrobial, as it is effective across all three life cycle stages. While further testing is required to determine their efficacy and potential phytotoxicity in planta , we have provided new data on those agents that are, and those that are not, effective against P. agathidicida and P. cinnamomi . Additionally, we present here the first published protocol for producing zoospores from P. agathidicida , which will aid in the further study of this emerging pathogen.

  4. Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed

    USGS Publications Warehouse

    Schilling, K.E.; Helmers, M.

    2008-01-01

    The similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes. ?? 2007 Elsevier B.V. All rights reserved.

  5. Electrothermal atomic absorption spectrometric determination of copper in nickel-base alloys with various chemical modifiers*1

    NASA Astrophysics Data System (ADS)

    Tsai, Suh-Jen Jane; Shiue, Chia-Chann; Chang, Shiow-Ing

    1997-07-01

    The analytical characteristics of copper in nickel-base alloys have been investigated with electrothermal atomic absorption spectrometry. Deuterium background correction was employed. The effects of various chemical modifiers on the analysis of copper were investigated. Organic modifiers which included 2-(5-bromo-2-pyridylazo)-5-(diethylamino-phenol) (Br-PADAP), ammonium citrate, 1-(2-pyridylazo)-naphthol, 4-(2-pyridylazo)resorcinol, ethylenediaminetetraacetic acid and Triton X-100 were studied. Inorganic modifiers palladium nitrate, magnesium nitrate, aluminum chloride, ammonium dihydrogen phosphate, hydrogen peroxide and potassium nitrate were also applied in this work. In addition, zirconium hydroxide and ammonium hydroxide precipitation methods have also been studied. Interference effects were effectively reduced with Br-PADAP modifier. Aqueous standards were used to construct the calibration curves. The detection limit was 1.9 pg. Standard reference materials of nickel-base alloys were used to evaluate the accuracy of the proposed method. The copper contents determined with the proposed method agreed closely with the certified values of the reference materials. The recoveries were within the range 90-100% with relative standard deviation of less than 10%. Good precision was obtained.

  6. Microspherules from Sugars in the Absence of Nitrogen

    NASA Astrophysics Data System (ADS)

    Rand, Danielle; Belenky, Marina; Herzfeld, Judith

    2011-02-01

    Reactions of short sugars under mild, plausibly prebiotic conditions yield organic microspherules that may have played a role in prebiotic chemistry as primitive reaction vessels. It has been widely thought that nitrogen chemistry, in particular Amadori rearrangement, is central to this process, Here we show that microspherules form in the absence of any nitrogen compounds if the pH is sufficiently low. In particular, while the microspherule formation induced by ammonium acetate (pH 7) is not reproduced by ammonium chloride (pH 5), it is reproduced by oxalic acid and by hydrochloric acid (pH 1). The formation of microspherules in the presence of oxalic acid is similar to that in the presence of ammonium acetate: aqueous reactions of D-erythrose, D-ribose, 2-deoxy-D-ribose and D-fructose in the presence of oxalic acid produce microspherules ranging in size from approximately 1-5 μm after eight weeks incubation at 65°C, while the aldohexoses D-glucose, D-galactose and D-mannose do not. This pattern correlates with the occurrence of furanose forms in these sugars.

  7. Limnological characterization of freshwater systems of the Thomas Point Oasis (Admiralty Bay, King George Island, West Antarctica)

    NASA Astrophysics Data System (ADS)

    Nędzarek, Arkadiusz; Pociecha, Agnieszka

    2010-12-01

    Hydrochemical research into the small, shallow water bodies and wetland areas around the Henryk Arctowski Polish Antarctic Station (King George Island) is presented. Concentrations of nitrite, nitrate, ammonium, and total nitrogen in these waters were determined, as were those of reactive and total phosphorous, inorganic carbon, organic carbon, total carbon, silicate, and chloride and sulfate ions. Conductivity and pH were also measured. Average concentrations ranged widely, e.g., total nitrogen 0.176-29.21 mg L -1, total phosphorus 0.022-18.35 mg L -1, total carbon 1.38-26.90 mg L -1, Cl - 30.17-850 mg L -1, and SO 42- 2.11-236 mg L -1. The trophic status was influenced by influxes of nitrogen and phosphorus from penguin rookeries. Selected water bodies supported 31 taxa of algae and 11 invertebrate taxa, with Euglenophyta dominating in waters with high concentrations of ammonium-nitrogen, whereas diatoms characterized Lake Wujka, with low ammonium concentrations. All water bodies studied had rotifers, but crustaceans were only represented in Lake Wujka.

  8. Variability of Ambient Aerosol in the Mexico City Metropolian Area

    NASA Astrophysics Data System (ADS)

    Onasch, T. B.; Worsnop, D. R.; Canagaratna, M.; Jayne, J. T.; Herndon, S.; Mortimer, P.; Kolb, C. E.; Rogers, T.; Knighton, B.; Dunlea, E.; Marr, L.; de Foy, B.; Molina, M.; Molina, L.; Salcedo, D.; Dzepina, K.; Jimenez, J. L.

    2004-12-01

    The spatial and temporal variations of the ambient aerosol in the Mexico City Metropolitan area was characterized during the springs of 2002 and 2003 using a mobile laboratory equipped with gas and particulate measurement instrumentation. The laboratory was operated at various fixed sites locations in and at the edge of the metropolitan area (Xalostoc, Merced, Cenica, Pedregal, and Santa Ana). Size-resolved aerosol mass and chemical composition was measured with an aerosol mass spectrometer and selected trace gas species (low mass organic compounds, NO, NO2, NOy, O3, SO2, CH2O, NH3, CO2) were measured using a proton transfer reaction mass spectrometer and various optical systems. The aerosol was predominantly organic in composition with lesser amounts of ammonium nitrate, sulfate, and chloride. The organic component was composed of mixed primary and secondary organic compounds. The mass loading and chemical composition of the aerosol was influenced by local and regional air pollution sources and the meteorology in Mexico City. Most urban sites were influenced by a strong diurnal particulate mass trend indicative of primary organic emissions from traffic during early morning and subsequently oxidized/processed organics and ammonium nitrate particles starting in the mid-morning (~9 AM) and continuing throughout the day. Morning traffic-related primary organic emissions were strongest at La Merced (center of Mexico City, located near a busy food market), more subdued at other fixed sites further from the city center, and varied depending upon the day of week and holiday schedules. Particle-bound polycyclic aromatic hydrocarbons were observed within Mexico City fixed sites and were correlated with traffic organic PM emissions. Oxidized organic and ammonium nitrate events occurred during mid-morning at all city sites and were well correlated with gas phase photochemical activity. The daily ammonium nitrate aerosol event occurred later at sites near the city limits, likely due to transported emissions from the city center. The sulfate particulate mass measured throughout most of the Mexico City area did not show a consistent diurnal pattern, characteristic of aged regional aerosol. Local refuse burns were observed to be a source of inorganic particulate chloride.

  9. Aqueous origins of bright salt deposits on Ceres

    NASA Astrophysics Data System (ADS)

    Zolotov, Mikhail Yu.

    2017-11-01

    Bright materials have been reported in association with impact craters on Ceres. The abundant Na2CO3 and some ammonium salts, NH4HCO3 and/or NH4Cl, were detected in bright deposits within Occator crater with Dawn near infrared spectroscopy. The composition and appearance of the salts suggest their aqueous mobilization and emplacement after formation of the crater. Here we consider origins of the bright deposits through calculation of speciation in the H-C-N-O-Na-Cl water-salt type system constrained by the mass balance of observed salts. Calculations of chemical equilibria show that initial solutions had the pH of ∼10. The temperature and salinity of solutions could have not exceeded ∼273 K and ∼100 g per kg H2O, respectively. Freezing models reveal an early precipitation of Na2CO3·10H2O followed by minor NaHCO3. Ammonium salts precipitate near eutectic from brines enriched in NH4+, Cl- and Na+. A late-stage precipitation of NaCl·2H2O is modeled for solution compositions with added NaCl. Calculated eutectics are above 247 K. The apparently unabundant ammonium and chloride salts in Occator's deposits imply a rapid emplacement without a compositional evolution of solution. Salty ice grains could have deposited from post-impact ballistic plumes formed through low-pressure boiling of subsurface solutions. Hydrated and ammonium salts are unstable at maximum temperatures of Ceres' surface and could decompose through space weathering. Occator's ice-free salt deposits formed through a post-depositional sublimation of ice followed by dehydration of Na2CO3·10H2O and NaHCO3 to Na2CO3. In other regions, excavated and exposed bright materials could be salts initially deposited from plumes and accumulated at depth via post-impact boiling. The lack of detection of sulfates and an elevated carbonate/chloride ratio in Ceres' materials suggest an involvement of compounds abundant in the outer solar system.

  10. Impact of Wildfire Emissions on Chloride and Bromide Depletion in Marine Aerosol Particles.

    PubMed

    Braun, Rachel A; Dadashazar, Hossein; MacDonald, Alexander B; Aldhaif, Abdulamonam M; Maudlin, Lindsay C; Crosbie, Ewan; Aghdam, Mojtaba Azadi; Hossein Mardi, Ali; Sorooshian, Armin

    2017-08-15

    This work examines particulate chloride (Cl - ) and bromide (Br - ) depletion in marine aerosol particles influenced by wildfires at a coastal California site in the summers of 2013 and 2016. Chloride exhibited a dominant coarse mode due to sea salt influence, with substantially diminished concentrations during fire periods as compared to nonfire periods. Bromide exhibited a peak in the submicrometer range during fire and nonfire periods, with an additional supermicrometer peak in the latter periods. Chloride and Br - depletions were enhanced during fire periods as compared to nonfire periods. The highest observed %Cl - depletion occurred in the submicrometer range, with maximum values of 98.9% (0.32-0.56 μm) and 85.6% (0.56-1 μm) during fire and nonfire periods, respectively. The highest %Br - depletion occurred in the supermicrometer range during fire and nonfire periods with peak depletion between 1.8-3.2 μm (78.8% and 58.6%, respectively). When accounting for the neutralization of sulfate by ammonium, organic acid particles showed the greatest influence on Cl - depletion in the submicrometer range. These results have implications for aerosol hygroscopicity and radiative forcing in areas with wildfire influence owing to depletion effects on composition.

  11. Analysis of residual products in triethylbenzylammonium chloride by HPLC. Study of the retention mechanism.

    PubMed

    Prieto-Blanco, M C; López-Mahía, P; Prada-Rodríguez, D

    2006-04-01

    The control of industrial products for minimization of their impact on the environment and human health requires the development of specific analysis methods. Information provided by these methods about toxic components, by-products, and other derivatives may also be useful to reduce the possible impact of industrial products. The studied compound in this paper, triethylbenzylammonium chloride (TEBA), is mainly used in industrial synthesis. This quaternary compound and its residual products coming from quaternization reaction (benzyl chloride, benzaldehyde, and benzyl alcohol) are analyzed by HPLC. The separation is based on control of the silanophilic contribution to TEBA retention because of the quaternary nature of this compound. The effect of the three buffers (sodium acetate, ammonium acetate, and sodium formate) and their concentrations in the chromatographic behavior of the quaternary compound is examined. The buffer cation and anion regulate TEBA retention. Also, the concentration of the quaternary compound is another parameter that had influence in some aspects of its chromatographic behavior (e.g., retention and symmetry). The proposed method is applied to TEBA synthesis along, with the formation and removal of impurities with the results compared with those obtained for the quaternary compound benzalkonium chloride.

  12. Ion chromatography in the manufacture of multilayer circuit boards

    NASA Astrophysics Data System (ADS)

    Smith, R. E.

    1987-10-01

    Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. IC provides results on ions not expected in the production solutions. Thus, solution contamination and breakdown products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet blasting to roughen up the surface, 20 mu in. of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 in. of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for total fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.

  13. Ion chromatography in the manufacture of multilayer circuit boards

    NASA Astrophysics Data System (ADS)

    Smith, Robert E.

    1990-01-01

    Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. Unlike other chemical quantification techniques, IC provides results on ions not expected in the production solutions. Thus, solution contamination and break-down products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet-blasting to roughen up the surface, 20 microinches of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 inches of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.

  14. Selections From Kung-Jen JIH-PAO (Source Span: 9 May-30 June 1961) Number 7 -Communist China.

    DTIC Science & Technology

    1961-08-17

    sulphate Ammonium hydrogen carbonate Sodium borate Titaniüm-iron powder Sodium fluoride Silicon dioxide Barium chloride beryllium carbonate ...Vinzenstrasse, 22a :■ P. 0. Box 3521 Aachen, Germany Washington 7> B.C. , Institute de Sociologie Solvay Rue du Chatelain, k9 Brussels, Belgium State... Sodium nitrite Specifications Pure n industrial Boric Acid " A^ua ammonia " Magnesium sulphate Industrial Manganese tedroxide Pure

  15. Preliminary Testing of Mycoleptodiscus terrestris Formulations

    DTIC Science & Technology

    2009-03-01

    Colletotrichum truncatum (Schw.) Andrus and Moore for management of hemp sesbania, Jackson (1997) found that carbon concentration in the medium...dry overnight. When the moisture content was between 5 and 10 percent, the granules were vacuum packed into plastic bags and stored at 4º C until...amended with ammonium chloride (0.5 g/L) and Esmigran (1.7 g/L). Four plastic cups (0.95 L) filled three-fourths with amended lake sediment were planted

  16. Examining the impact of nitryl chloride chemistry on summertime air quality

    NASA Astrophysics Data System (ADS)

    Sarwar, G.; Simon, H. A.; Bhave, P.; Hutzell, W. T.

    2011-12-01

    Results of recent field campaigns suggest that heterogeneous reactions can form nitryl chloride (ClNO2) at night. ClNO2 photodissociates into nitrogen dioxide and chlorine radicals during the day. Subsequent photolysis of nitrogen dioxide and reactions of chlorine radicals with volatile organic compounds increase ozone production. Thus, the presence of ClNO2 in the atmosphere can enhance ozone. In this study, the impact of the heterogeneous production of ClNO2 on summertime air quality in the United States is examined by using the Community Multiscale Air Quality (CMAQ) model. Laboratory chamber experimental studies have parameterized the yield of ClNO2 and the heterogeneous uptake of dinitrogen pentoxide on aerosols. We implement these parameterizations into the CMAQ model. In addition to the typical emissions, the model also includes emissions of sea-salt, anthropogenic particulate chloride, anthropogenic hydrochloric acid and molecular chlorine from the National Emissions Inventory. Model simulations are conducted without and with the heterogeneous ClNO2 formation reaction for September 1-10, 2006. The results of the study suggest that the heterogeneous reaction produces ClNO2 in many coastal areas as well as inland locations in the United States. The ClNO2 increase in coastal areas is caused by chloride emissions from sea-salt and in inland-areas by chloride emissions from fire and anthropogenic sources. Predicted ClNO2 levels reach nighttime peaks of up to 4.0 ppb in the Los Angeles area and up to 1.2 ppb near Houston, similar to the measured values reported in the literature. The ClNO2 chemistry decreases nitric acid as well as particulate nitrate by a large margin; consequently it changes composition of NOz. It increases hourly and daily maximum 8-hr ozone by up to 9 ppbv and 6 ppbv, respectively. It increases aerosol sulfate while decreasing aerosol nitrate and ammonium. The accompanying presentation identifies predicted spatial patterns of ClNO2 concentrations across the United States and describes the detailed impact of the ClNO2 chemistry on ozone, nitric acid, sulfate, particulate nitrate, ammonium, and particulate chloride. To evaluate the impact of the ClNO2 chemistry on an ozone control strategy, two additional model simulations were conducted with reduced NOx emissions. Relative response factors were determined without and with the ClNO2 chemistry; the accompanying presentation discusses the impact on ozone control strategy.

  17. Development and validation of a rapid ultra-high performance liquid chromatography method for the assay of benzalkonium chloride using a quality-by-design approach.

    PubMed

    Mallik, Rangan; Raman, Srividya; Liang, Xiaoli; Grobin, Adam W; Choudhury, Dilip

    2015-09-25

    A rapid robust reversed-phase UHPLC method has been developed for the analysis of total benzalkonium chloride in preserved drug formulation. A systematic Quality-by-Design (QbD) method development approach using commercial, off the shelf software (Fusion AE(®)) has been used to optimize the column, mobile phases, gradient time, and other HPLC conditions. Total benzalkonium chloride analysis involves simple sample preparation. The method uses gradient elution from an ACE Excel 2 C18-AR column (50mm×2.1mm, 2.0μm particle size), ammonium phosphate buffer (pH 3.3; 10mM) as aqueous mobile phase and methanol/acetonitrile (85/15, v/v) as the organic mobile phase with UV detection at 214nm. Using these conditions, major homologs of the benzalkonium chloride (C12 and C14) have been separated in less than 2.0min. The validation results confirmed that the method is precise, accurate and linear at concentrations ranging from 0.025mg/mL to 0.075mg/mL for total benzalkonium chloride. The recoveries ranged from 99% to 103% at concentrations from 0.025mg/mL to 0.075mg/mL for total benzalkonium chloride. The validation results also confirmed the robustness of the method as predicted by Fusion AE(®). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Analysis of residual products in benzyl chloride used for the industrial synthesis of quaternary compounds by liquid chromatography with diode-array detection.

    PubMed

    Prieto-Blanco, M C; López-Mahía, P; Prada-Rodríguez, D

    2009-02-01

    In industrial and pharmaceutical processes, the study of residual products becomes essential to guarantee the quality of compounds and to eliminate or minimize toxic residual products. Knowledge about the origin of impurities (raw materials, processes, the contamination of industrial plants, etc.) is necessary in preventive treatment and in the control of a product's lifecycle. Benzyl chloride is used as raw material to synthesize several quaternary ammonium compounds, such as benzalkonium chloride, which may have pharmaceutical applications. Benzaldehyde, benzyl alcohol, toluene, chloro derivatives of toluene, and dibenzyl ether are compounds that may be found as impurities in technical benzyl chloride. We proposed a high-performance liquid chromatography method for the separation of these compounds, testing two stationary phases with different dimensions and particle sizes, with the application of photodiode array-detection. The linearity for four possible impurities (benzaldehyde, toluene, alpha,alpha-dichlorotoluene, and 2-chlorotoluene) ranged from 0.1 to 10 microg/mL, limits of detection from 11 to 34 ng/mL, and repeatability from 1% to 2.9% for a 0.3-1.2 microg/mL concentration range. The method was applied to samples of technical benzyl chloride, and alpha,alpha-dichlorotoluene and benzaldehyde were identified by spectral analysis and quantitated. The selection of benzyl chloride with lower levels of impurities is important to guarantee the reduction of residual products in further syntheses.

  19. [Determination of lead in edible salt with solid-phase extraction and GFAAS].

    PubMed

    Zhao, Xin; Zhou, Shuang; Ma, Lan; Yang, Dajin

    2013-01-01

    Establishing a method for determination of lead in salt with solid-phase extraction and GFAAS. Salt sample was diluted to a certain volume directly with ammonium acetate, then the sample solution was filtered through the solid phase extraction column which has been pre-activated. Lead ions were retained, and the sodium chloride matrix was removed. After elution, the collected lead ions was determined by graphite furnace atomic absorption spectrometry in 257.4 nm. This method can be used effectively to wipe off the sodium chloride in matrix. The limit of detection was 0.7 microg/kg and the limit of quantification was 2 microg/kg. Solid phase extraction technique can be used effectively to reduce the interference in matrix and improves the accuracy and reproducibility of detection.

  20. Geohydrology of, and nitrogen and chloride in, the glacial aquifer, Milford-Matamoras area, Pike County, Pennsylvania

    USGS Publications Warehouse

    Senior, L.A.

    1994-01-01

    The glacial aquifer that underlies the Routes 209 and 6 corridor between Milford and Matamoras, Pa., is one of the most productive in Pike County. The aquifer is comprised of unconsolidated glacial outwash and kame-terrace deposits that lie within a glacially carved valley now occupied by the Delaware River. Most businesses and residences along this narrow, 7-mile-long corridor rely on individual wells for water supply and septic systems for waste-water disposal. A study of nutrients and chloride in ground water in the glacial aquifer was conducted to determine the effect of these constituents contributed from septic systems and road runoff on ground-water quality. Sources of nutrients and chloride in the recharge zone upgradient of the aquifer include road and parking-lot runoff, septic systems, and precipitation. Nitrate and chloride from these sources can infiltrate and move in the direction of ground-water flow in the saturated zone of the aquifer. A water-table map based on 29 water levels measured in August 1991 indicates that the direction of ground-water flow is from the edges of the valley toward t he Delaware River but is nearly parallel to the Delaware River in the central area of the valley. The average concentrations of nitrogen and chloride in recharge and total annual loads of nitrogen and chloride to ground water were estimated for six areas with different population densities. These estimates assumed a recharge rate to the glacial aquifer of 20 inches per year and a 15 percent loss of chloride and nitrogen in the atmospheric precipitation to surface runoff. The estimated average concentration of nitrogen in recharge ranged from 2.5 to 10 mg/L (milligrams per liter), which corresponds to a total annual load of nitrogen as ammonium released from septic tanks and present in precipitation was oxidized to nitrate as the dominant nitrogen species in ground water. Contributions of nitrogen from septic tanks were greater than contributions from runoff. Observed concentrations of nitrate, which was the most abundant nitrogen species in ground water in t he glacial aquifer, ranged from less than 0.05 to 5.1 mg/L as nitrogen, with a median of 1.1 mg/L as nitrogen. Concentrations of nitrogen measured in ground water were lower than estimated concentrations for recharge suggesting that dissolved nitrogen species may not be conservative in ground water. Nitrate is unstable in anoxic ground water and can be removed by denitrification. Ammonium can be sorbed onto the aquifer materials. Evidence for reducing conditions included a positive correlation between low concentrations of dissolved oxygen and low concentrations of nitrate. The estimated concentration of chloride in recharge ranged from 6.7 to 21 mg/L, and total annual load of chloride to ground water ranged from 19.4 to 50.6 x 10(3) lb/mi2. Chloride is considered to be a chemically conservative ion in ground water. Contributions of chloride to ground water from road salting were greater than contributions from septic tanks. Observed concentrations of chloride in 18 ground-water samples from the glacial aquifer ranged from 2.1 to 32 mg/L, with a median of 17.5 mg/L. Local contamination is indicated by the elevated concentrations of chloride (up to 680 mg/L) detected in four wells located downgradient of an abandoned industry that may have released salts in processing waste. Chloride concentrations in ground water appeared to be greater near major roads and in areas of relatively greater septic-system density than in areas upgradient of roads, farther downgradient from roads, or with less densely spaced septic systems.

  1. Synthesis and Antibacterial Activity of Quaternary Ammonium 4-Deoxypyridoxine Derivatives

    PubMed Central

    Shtyrlin, Nikita V.; Sapozhnikov, Sergey V.; Galiullina, Albina S.; Kayumov, Airat R.; Bondar, Oksana V.; Mirchink, Elena P.; Isakova, Elena B.; Firsov, Alexander A.; Balakin, Konstantin V.

    2016-01-01

    A series of novel quaternary ammonium 4-deoxypyridoxine derivatives was synthesized. Two compounds demonstrated excellent activity against a panel of Gram-positive methicillin-resistant S. aureus strains with MICs in the range of 0.5–2 μg/mL, exceeding the activity of miramistin. At the same time, both compounds were inactive against the Gram-negative E. coli and P. aeruginosa strains. Cytotoxicity studies on human skin fibroblasts and embryonic kidney cells demonstrated that the active compounds possessed similar toxicity with benzalkonium chloride but were slightly more toxic than miramistin. SOS-chromotest in S. typhimurium showed the lack of DNA-damage activity of both compounds; meanwhile, one compound showed some mutagenic potential in the Ames test. The obtained results make the described chemotype a promising starting point for the development of new antibacterial therapies. PMID:27800491

  2. Salt taste inhibition by cathodal current.

    PubMed

    Hettinger, Thomas P; Frank, Marion E

    2009-09-28

    Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of -40 microA to -80 microA were applied to human subjects' tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium sulfate, sodium saccharin, sodium acetate and sodium benzoate, which taken together encompass salty, bitter, sour and sweet taste qualities. The taste of NaCl, the salty and bitter tastes of the other chloride salts and the taste of NaNO(3) was inhibited, suggesting the current displaced stimulatory cations from salty and bitter receptors. However, bitter tastes of non-halide sodium salts were not inhibited, likely because other bitter receptors respond to anions. A discharge current at cathode-off ubiquitously evoked a metallic taste reminiscent of anodal taste used in clinical electrogustometry. Analogous effects on ambient NaCl responses were recorded from the hamster chorda tympani nerve. Increases in tastes of the saccharin and benzoate anions were not evoked during current flow, suggesting that cathodal current does not carry stimulatory anions to sweet receptors. Cathodal current may selectively inhibit salty and bitter-salty tastes for which proximal stimuli are cations.

  3. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets.

    PubMed

    Prod'hom, Guy; Bizzini, Alain; Durussel, Christian; Bille, Jacques; Greub, Gilbert

    2010-04-01

    An ammonium chloride erythrocyte-lysing procedure was used to prepare a bacterial pellet from positive blood cultures for direct matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry analysis. Identification was obtained for 78.7% of the pellets tested. Moreover, 99% of the MALDI-TOF identifications were congruent at the species level when considering valid scores. This fast and accurate method is promising.

  4. Biobased Carbon Fibers and High-Performance Thermosetting Resins for Use in U.S. Department of Defense Applications

    DTIC Science & Technology

    2012-06-01

    water on the synthesis . bHMF (20.5 g), epichlorohydrin (59.2 g), DMF (30 mL) and benzyl trimethyl ammonium chloride (1.18 g) were mixed and heated up...107  5.2.3  Synthesis of Methacrylated Lignin Model Compounds ..................................108  5.2.4  Monomer and...145  6.2.2  Synthesis of Vanillin-Based Resin ..................................................................146  6.2.3  Resin

  5. Electrostatic Functionalization and Passivation of Water-Exfoliated Few-Layer Black Phosphorus by Poly Dimethyldiallyl Ammonium Chloride and Its Ultrafast Laser Application.

    PubMed

    Feng, Qingliang; Liu, Hongyan; Zhu, Meijie; Shang, Jing; Liu, Dan; Cui, Xiaoqi; Shen, Diqin; Kou, Liangzhi; Mao, Dong; Zheng, Jianbang; Li, Chun; Zhang, Jin; Xu, Hua; Zhao, Jianlin

    2018-03-21

    Few-layer black phosphorus (BP) which exhibits excellent optical and electronic properties, has great potential applications in nanodevices. However, BP inevitably suffers from the rapid degradation in ambient air because of the high reactivity of P atoms with oxygen and water, which greatly hinders its wide applications. Herein, we demonstrate the electrostatic functionalization as an effective way to simultaneously enhance the stability and dispersity of aqueous phase exfoliated few-layer BP. The poly dimethyldiallyl ammonium chloride (PDDA) is selected to spontaneously and uniformly adsorb on the surface of few-layer BP via electrostatic interaction. The positive charge-center of the N atom of PDDA, which passivates the lone-pair electrons of P, plays a critical role in stabilizing the BP. Meanwhile, the PDDA could serve as hydrophilic ligands to improve the dispersity of exfoliated BP in water. The thinner PDDA-BP nanosheets can stabilize in both air and water even after 15 days of exposure. Finally, the uniform PDDA-BP-polymer film was used as a saturable absorber to realize passive mode-locking operations in a fiber laser, delivering a train of ultrafast pulses with the duration of 1.2 ps at 1557.8 nm. This work provides a new way to obtain highly stable few-layer BP, which shows great promise in ultrafast optics application.

  6. Evaluation of the bioremoval of Cr(VI) and TOC in biofilters under continuous operation using response surface methodology.

    PubMed

    Leles, Daniela M A; Lemos, Diego A; Filho, Ubirajara C; Romanielo, Lucienne L; de Resende, Miriam M; Cardoso, Vicelma L

    2012-06-01

    In the present study, the bioremoval of Cr(VI) and the removal of total organic carbon (TOC) were achieved with a system composed by an anaerobic filter and a submerged biofilter with intermittent aeration using a mixed culture of microorganisms originating from contaminated sludge. In the aforementioned biofilters, the concentrations of chromium, carbon, and nitrogen were optimized according to response surface methodology. The initial concentration of Cr(VI) was 137.35 mg l(-1), and a bioremoval of 85.23% was attained. The optimal conditions for the removal of TOC were 4 to 8 g l(-1) of sodium acetate, >0.8 g l(-1) of ammonium chloride and 60 to 100 mg l(-1) of Cr(VI). The results revealed that ammonium chloride had the strongest effect on the TOC removal, and 120 mg l(-1) of Cr(VI) could be removed after 156 h of operation. Moreover, 100% of the Cr(VI) and the total chromium content of the aerobic reactor output were removed, and TOC removals of 80 and 87% were attained after operating the anaerobic and aerobic reactors for 130 and 142 h, respectively. The concentrations of cells in both reactors remained nearly constant over time. The residence time distribution was obtained to evaluate the flow through the bioreactors.

  7. The kidney of chicken adapts to chronic metabolic acidosis: in vivo and in vitro studies.

    PubMed

    Craan, A G; Lemieux, G; Vinay, P; Gougoux, A

    1982-08-01

    Renal adaptation to chronic metabolic acidosis was studies in Arbor Acre hens receiving ammonium chloride by stomach tube 0.75 g/kg/day during 6 days. During a 14-day study, it was shown that the animals could excrete as much as 60% of the acid load during ammonium chloride administration. At the same time urate excretion fell markedly but the renal contribution to urate excretion (14%) did not change. During acidosis, blood glutamine increased twofold and the tissue concentration of glutamine rose in both liver and kidney. Infusion of L-glutamine led to increased ammonia excretion and more so in acidotic animals. Glutaminase I, glutamate dehydrogenase, alanine aminotransferase (GPT), and malic enzyme activities increased in the kidney during acidosis but phosphoenolpyruvate carboxykinase (PEPCK) activity did not change. Glutaminase I was not found in the liver, but hepatic glutamine synthetase rose markedly during acidosis. Glutamine synthetase was not found in the kidney. Renal tubules incubated with glutamine and alanine were ammoniagenic and gluconeogenic to the same degree as rat tubules with the same increments in acidosis. Lactate was gluconeogenic without increment during acidosis. The present study indicates that the avian kidney adapts to chronic metabolic acidosis with similarities and differences when compared to dog and rat. Glutamine originating from the liver appears to be the major ammoniagenic substrate. Our data also support the hypothesis that hepatic urate synthesis is decreased during acidosis.

  8. Early Acidification of Phagosomes Containing Brucella suis Is Essential for Intracellular Survival in Murine Macrophages

    PubMed Central

    Porte, Françoise; Liautard, Jean-Pierre; Köhler, Stephan

    1999-01-01

    Brucella suis is a facultative intracellular pathogen of mammals, residing in macrophage vacuoles. In this work, we studied the phagosomal environment of these bacteria in order to better understand the mechanisms allowing survival and multiplication of B. suis. Intraphagosomal pH in murine J774 cells was determined by measuring the fluorescence intensity of opsonized, carboxyfluorescein-rhodamine- and Oregon Green 488-rhodamine-labeled bacteria. Compartments containing live B. suis acidified to a pH of about 4.0 to 4.5 within 60 min. Acidification of B. suis-containing phagosomes in the early phase of infection was abolished by treatment of host cells with 100 nM bafilomycin A1, a specific inhibitor of vacuolar proton-ATPases. This neutralization at 1 h postinfection resulted in a 2- to 34-fold reduction of opsonized and nonopsonized viable intracellular bacteria at 4 and 6 h postinfection, respectively. Ammonium chloride and monensin, other pH-neutralizing reagents, led to comparable loss of intracellular viability. Addition of ammonium chloride at 7 h after the beginning of infection, however, did not affect intracellular multiplication of B. suis, in contrast to treatment at 1 h postinfection, where bacteria were completely eradicated within 48 h. Thus, we conclude that phagosomes with B. suis acidify rapidly after infection, and that this early acidification is essential for replication of the bacteria within the macrophage. PMID:10417172

  9. Efficacy of alkyl dimethyl benzyl ammonium chloride on suppression of Physalospora vaccinii in laboratory assays.

    PubMed

    Tubajika, K M

    2006-10-01

    Growth of Physalospora vaccinii on inoculated agar growth medium and cranberries treated with 0.1, 1, 10, 100, and 1,000 ppm of alkyl dimethyl benzyl ammonium chloride (ADBAC) was investigated in the laboratory. In vitro growth assays, the colony diameter, and mycelial dry weight of P. vaccinii was reduced at 1,000 ppm ADBAC. Mild or no reduction of fungal growth and mycelial dry weight was observed at concentrations less than 100 ppm when compared with the nonamended control. Growth of P. vaccinii on inoculated cranberries was inhibited by treatment with 10 and 100 ppm ADBAC. Complete inhibition of fungus growth was also achieved at 1,000 ppm ADBAC. Area under the disease progress curve values in wounded fruits were 75, 77, and 100% at 10, 100, and 1,000 ppm ADBAC, respectively, whereas area under the disease progress curve values in fruits immersed in ADBAC and pathogen were reduced 47 to 100% compared with the untreated fruits used as controls. No P. vaccinii or other fungi were detected on the control fruits inoculated with sterile distilled water. This is the first report on the use of ADBAC to control a field and storage rotting fungus, P. vaccinii. ADBAC is likely to be an important component to any integrated approach for reducing the risks associated with the presence of pathogenic microorganisms in or on foods.

  10. Surface chemical study on the covalent attachment of hydroxypropyltrimethyl ammonium chloride chitosan to titanium surfaces

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofen; Wang, Ling; Guo, Shengrong; Lei, Lei; Tang, Tingting

    2011-10-01

    An anti-microbial and bioactive coating could not only reduce the probability of infection related to titanium implants but also support the growth of surrounding osteogenic cells. Our previous study has showed that hydroxypropyltrimethyl ammonium chloride chitosan (HACC) with a DS (degrees of substitution) of 18% had improved solubility and significantly higher antibacterial activities against three bacteria which were usually associated with infections in orthopaedics. In the current study, HACC with a DS of 18% coating was bonded to titanium surface by a three-step process. The titanium surface after each individual reaction step was analyzed by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection (ATR) of Fourier-transformed infrared (FT-IR) spectroscopy. The XPS results demonstrated that there were great changes in the atomic ratios of C/Ti, O/Ti, and N/Ti after each reaction step. The XPS high resolution and corresponding devolution spectra of carbon, oxygen, nitrogen, and titanium were also in good coordination with the anticipated reaction steps. Additionally, the absorption bands around 3365 cm -1 (-OH vibration), 1664 cm -1 (Amide I), 1165 cm -1 ( νas, C-O-C bridge), and the broad absorption bands between 958 cm -1 and 1155 cm -1 (skeletal vibrations involving the C-O stretching of saccharide structure of HACC) verified that HACC was successfully attached to titanium surface.

  11. Rotenone Upregulates Alpha-Synuclein and Myocyte Enhancer Factor 2D Independently from Lysosomal Degradation Inhibition

    PubMed Central

    Stefanoni, Giovanni; Melchionda, Laura; Riva, Chiara; Brighina, Laura

    2013-01-01

    Dysfunctions of chaperone-mediated autophagy (CMA), the main catabolic pathway for alpha-synuclein, have been linked to the pathogenesis of Parkinson's disease (PD). Since till now there is limited information on how PD-related toxins may affect CMA, in this study we explored the effect of mitochondrial complex I inhibitor rotenone on CMA substrates, alpha-synuclein and MEF2D, and effectors, lamp2A and hsc70, in a human dopaminergic neuroblastoma SH-SY5Y cell line. Rotenone induced an upregulation of alpha-synuclein and MEF2D protein levels through the stimulation of their de novo synthesis rather than through a reduction of their CMA-mediated degradation. Moreover, increased MEF2D transcription resulted in higher nuclear protein levels that exert a protective role against mitochondrial dysfunction and oxidative stress. These results were compared with those obtained after lysosome inhibition with ammonium chloride. As expected, this toxin induced the cytosolic accumulation of both alpha-synuclein and MEF2D proteins, as the result of the inhibition of their lysosome-mediated degradation, while, differently from rotenone, ammonium chloride decreased MEF2D nuclear levels through the downregulation of its transcription, thus reducing its protective function. These results highlight that rotenone affects alpha-synuclein and MEF2D protein levels through a mechanism independent from lysosomal degradation inhibition. PMID:23984410

  12. Alginate-cellulose sulphate-oligocation microcapsules: optimization of mass transport and mechanical properties.

    PubMed

    Schuldt, U; Hunkeler, D

    2007-02-01

    Microcapsules based on polyelectrolyte complexation, where the inner phase involves a blend of alginate and sodium cellulose sulphate (SCS), have mechanical and transport properties which are relatively insensitive to the chemical composition of the rigid polyanion. Specifically, the bursting force of 400- and 1000 microm microcapsules increase slightly with the degree of substitution of the SCS, though the molar mass of the SCS appears to influence the transport properties more strongly than its composition. The concentration of the sodium chloride in the gelling batch can be varied rather extensively, with optimum properties at approximately half (i.e. 0.5 M) the level typically employed for the formation of cell-containing microcapsules. This indicates that the microcapsule properties can be tuned for biocompatability, without concern that changes to the polymer microstructure or reaction process conditions would adversely influence the bursting force or molar mass cut-off of the capsules. The alginate-SCS blend, which is typical equimass, can be slightly increased in favour of the SCS (to 55 wt%) if one seeks to mechanically optimize the system. The substitution of the oligocation polymethylene-co-guanidine with pDADMAC seems strongly undesirable. Similarly, the replacement of SCS with sulphoethylcellulose, while possible, offers no important advantages. The overall optimum conditions appear to be for a SCS with a DS of 2, prepared at 1.2 wt% of total cation with alginate. The ideal ratio, for mechanical and transport properties, of SCS to alginate is 55:45 (wt:wt), which represents a subtle modification from the classical formulation with very good biocompatability.

  13. Solid state production of polygalacturonase and xylanase by Trichoderma species using cantaloupe and watermelon rinds.

    PubMed

    Mohamed, Saleh A; Al-Malki, Abdulrahman L; Khan, Jalaluddin A; Kabli, Saleh A; Al-Garni, Saleh M

    2013-10-01

    Different solid state fermentation (SSF) sources were tested such as cantaloupe and watermelon rinds, orange and banana peels, for the production of polygalacturonase (PG) and xylanase (Xyl) by Trichoderma harzianum and Trichoderma virens. The maximum production of both PG and Xyl were obtained by T. harzianum and T. virnes grown on cantaloupe and watermelon rinds, respectively. Time course, moisture content, temperature, pH, supplementation with carbon and nitrogen sources were optimized to achieve the maximum production of both PG and Xyl of T. harzianum and T. virens using cantaloupe and watermelon rinds, respectively. The maximum production of PG and Xyl of T. harzianum and T. virens was recorded at 4-5 days of incubation, 50-66% moisture, temperature 28-35°C and pH 6-7. The influence of supplementary carbon and nitrogen sources was studied. For T. harzianum, lactose enhanced PG activity from 87 to 120 units/g solid, where starch and maltose enhanced Xyl activity from 40 to 55-60 units/g solid for T. virnes. Among the nitrogen sources, ammonium sulphate, ammonium nitrate, yeast extract and urea increased PG activity from 90 to 110-113 units/g solid for T. harzianum. Similarly, ammonium chloride, ammonium sulphate and yeast extract increased Xyl activity from 45 to 55-70 units/g solid for T. virens.

  14. Quaternary ammonium-functionalized MCM-48 mesoporous silica as a sorbent for the dispersive solid-phase extraction of endocrine disrupting compounds in water.

    PubMed

    Zhang, Shijuan; Lu, Fengli; Ma, Xiaoyun; Yue, Mingbo; Li, Yanxin; Liu, Jiammin; You, Jinmao

    2018-07-06

    MCM-48 mesoporous silica was functionalized with dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride, a quaternary ammonium salt with a long hydrophobic chain, to prepare a new sorbent for the dispersive solid-phase extraction (DSPE) of seven endocrine disrupting compounds (EDCs) including 4-hexylphenol, 4-octylphenol, 4-nonylphenol, bisphenol A, estrone, 17β-estradiol and estriol in water. A series of differently functionalized MCM-48 materials were also synthesized, and they served as reference materials to study the mechanism. The developed DSPE method was combined with HPLC with fluorescence detection to evaluate the adsorption performance. The results indicated that the quaternary ammonium-functionalized MCM-48 mesoporous silica can be used as ideal sorbent for EDCs in water with recoveries of higher than 95% due to the electrostatic interactions and hydrophobic effect. Hydrogen bonding and π-π interactions in other synthesized materials could lead to about 25-30% increase in recoveries, but the results for polyhydroxy compounds were still not satisfying. The quaternary ammonium-functionalized MCM-48 mesoporous silica was successfully applied to the DSPE of EDCs in real water samples. The optimum extraction conditions were sorbent amount, 15 mg; desorption time; 5 min; elution volume, 0.8 mL; sample pH 3.0; and salt addition, 5 g/L. The limits of detection were in the range of 1.2-2.6 ng/L, while the limits of quantitation were in the range of 4.3-8.3 ng/L. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Prevalence of IgE against neuromuscular blocking agents in hairdressers and bakers.

    PubMed

    Dong, S; Acouetey, D S; Guéant-Rodriguez, R-M; Zmirou-Navier, D; Rémen, T; Blanca, M; Mertes, P M; Guéant, J-L

    2013-11-01

    Allergic IgE-mediated reactions to neuromuscular blocking agents (NMBAs) are the main cause of immediate hypersensitivity reactions in anaesthesia; their predominant occurrence in the absence of previous exposure to NMBAs suggests a risk related to environmental exposure. To investigate the prevalence of specific IgE to quaternary ammonium ions in two populations professionally exposed to quaternary ammonium compounds, in the north-eastern France. The study had a retrospective follow-up design whereby apprentices were assessed after their 2-year training period as apprentices. The professionally exposed hairdresser populations (n = 128) were compared with baker/pastry makers (n = 108) and 'non-exposed' matched control subjects (n = 379). We observed a 4.6-fold higher frequency of positive IgE against quaternary ammonium ions in hairdressers (HD), compared with baker/pastry makers (BP) and control (C) groups. The competitive inhibition of quaternary ammonium Sepharose radioimmunoassay (QAS-IgE RIA) with succinylcholine was significantly higher in HD, compared with BP and C groups, with inhibition percentage of 66.2 ± 7.4, 39.7 ± 6.0 and 43.8 ± 9.9, respectively (P < 0.001). The specific IgE against quaternary ammonium ions recognized also two compounds widely used by hairdressers, benzalkonium chloride and polyquaternium-10, in competitive inhibition of IgE RIA. When considering the whole study population, hairdresser professional exposure and total IgE > 100 kU/L were the two significant predictors of IgE-sensitization against quaternary ammonium ions in the multivariate analysis of a model that included age, sex, professional exposure, increased concentration of total IgE (IgE > 100 kU/L) and positive IgE against prevalent allergens (Phadiatop(®) ; P = 0.019 and P = 0.001, respectively). The exposure to hairdressing professional occupational factors increases IgE-sensitization to NMBAs and quaternary ammonium ion compounds used in hairdressing. Besides the pholcodine hypothesis, our study suggests that repetitive exposure to quaternary ammonium compounds used in hairdressing is a risk factor for NMBAs sensitization. © 2013 John Wiley & Sons Ltd.

  16. Amination with Pd-NHC complexes: rate and computational studies involving substituted aniline substrates.

    PubMed

    Hoi, Ka Hou; Çalimsiz, Selçuk; Froese, Robert D J; Hopkinson, Alan C; Organ, Michael G

    2012-01-02

    The amination of aryl chlorides with various aniline derivatives using the N-heterocyclic carbene-based Pd complexes Pd-PEPPSI-IPr and Pd-PEPPSI-IPent (PEPPSI=pyridine, enhanced precatalyst, preparation, stabilization, and initiation; IPr=diisopropylphenylimidazolium derivative; IPent= diisopentylphenylimidazolium derivative) has been studied. Rate studies have shown a reliance on the aryl chloride to be electron poor, although oxidative addition is not rate limiting. Anilines couple best when they are electron rich, which would seem to discount deprotonation of the intermediate metal ammonium complex as being rate limiting in favour of reductive elimination. In previous studies with secondary amines using PEPPSI complexes, deprotonation was proposed to be the slow step in the cycle. These experimental findings relating to mechanism were corroborated by computation. Pd-PEPPSI-IPr and the more hindered Pd-PEPPSI-IPent catalysts were used to couple deactivated aryl chlorides with electron poor anilines; while the IPr catalysis was sluggish, the IPent catalyst performed extremely well, again showing the high reactivity of this broadly useful catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Treatment of aging oily wastewater by demulsification/flocculation.

    PubMed

    Yang, Jing Y; Yan, Liang; Li, Shao P; Xu, Xin R

    2016-08-23

    The aging oily wastewater (AOW) from Tarim oilfield in China was treated by demulsification/flocculation. A novel sewage treatment agent (YL-7) was developed using a cationic surfactant (LY) and flocculants (polydimethyl diallyl ammonium chloride (PDMDAAC)/polyaluminum chloride (PAC)). At an YL-7 dosage of 320 mg L(-1) at 323 K for 90 min, the oil content of AOW was reduced from 728.8 mg L(-1) to 23.7 mg L(-1), and oil removal efficiency reached 96.7%. Microorganism flocs (extracted from AOW) with high negative zeta potential enhanced the stability of oil/water emulsion. LY and PDMDAAC neutralized the negative charge on the oil droplet surface. PDMDAAC and PAC mainly bridged and swept flocs during the flocculation process. YL-7 was found to be a suitable sewage treatment agent in removing oil from AOW.

  18. Ionic liquids coated Fe3O4 based inorganic-organic hybrid materials and their application in the simultaneous determination of DNA bases.

    PubMed

    Kaur, Balwinder; Srivastava, Rajendra

    2014-06-01

    Ionic liquids (ILs) coated Fe3O4 based inorganic-organic hybrid materials (represented as Fe3O4/ILs) were synthesized. ILs such as methylimidazolium chloride ([Hmim][Cl]) and 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) were investigated. For comparative study, quaternary ammonium salts such as choline chloride, cetyltrimethylammonium bromide [C16H33N(CH3)3][Br], and trimethylstearylammonium chloride [C18H37N(CH3)3][Cl] were also investigated. Materials were characterized by X-ray diffraction, nitrogen sorption, Fourier transform infrared and scanning/transmission electron microscopy. Electrochemical sensors based on Fe3O4/ILs modified glassy carbon electrodes were fabricated for the simultaneous determination of all four DNA bases. The electrochemical behavior of DNA bases was investigated in detail. Various reaction parameters such as effect of scan rate, number of electrons involved in the rate determining step, electron transfer coefficient, surface adsorbed concentration, and the electrode reaction standard rate constant were investigated. Catalytic activity obtained at various Fe3O4/ILs modified electrodes was explained using DFT calculation. The analytical performance of the sensor was demonstrated in the simultaneous determination of guanine, adenine, thymine, and cytosine in calf thymus DNA sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effects of ammonium on uranium partitioning and kaolinite mineral dissolution.

    PubMed

    Emerson, Hilary P; Di Pietro, Silvina; Katsenovich, Yelena; Szecsody, Jim

    2017-02-01

    Ammonia gas injection is a promising technique for the remediation of uranium within the vadose zone. It can be used to manipulate the pH of a system and cause co-precipitation processes that are expected to remove uranium from the aqueous phase and decrease leaching from the solid phase. The work presented in this paper explores the effects of ammonium and sodium hydroxide on the partitioning of uranium and dissolution of the kaolinite mineral in simplified synthetic groundwaters using equilibrium batch sorption and sequential extraction experiments. It shows that there is a significant increase in uranium removal in systems with divalent cations present in the aqueous phase but not in sodium chloride synthetic groundwaters. Further, the initial conditions of the aqueous phase do not affect the dissolution of kaolinite. However, the type of base treatment does have an effect on mineral dissolution. Published by Elsevier Ltd.

  20. A simplified methylcoenzyme M methylreductase assay with artificial electron donors and different preparations of component C from Methanobacterium thermoautotrophicum delta H.

    PubMed Central

    Hartzell, P L; Escalante-Semerena, J C; Bobik, T A; Wolfe, R S

    1988-01-01

    Different preparations of the methylreductase were tested in a simplified methylcoenzyme M methylreductase assay with artificial electron donors under a nitrogen atmosphere. ATP and Mg2+ stimulated the reaction. Tris(2,2'-bipyridine)ruthenium (II), chromous chloride, chromous acetate, titanium III citrate, 2,8-diaminoacridine, formamidinesulfinic acid, cob(I)alamin (B12s), and dithiothreitol were tested as electron donors; the most effective donor was titanium III citrate. Methylreductase (component C) was prepared by 80% ammonium sulfate precipitation, 70% ammonium sulfate precipitation, phenyl-Sepharose chromatography, Mono Q column chromatography, DEAE-cellulose column chromatography, or tetrahydromethanopterin affinity column chromatography. Methylreductase preparations which were able to catalyze methanogenesis in the simplified reaction mixture contained contaminating proteins. Homogeneous component C obtained from a tetrahydromethanopterin affinity column was not active in the simplified assay but was active in a methylreductase assay that contained additional protein components. Images PMID:3372480

  1. Use of water-external micellar dispersions in oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.C.

    1970-04-14

    A water-external micellar dispersion followed by a mobility buffer and a water drive were used for enhanced oil recovery. Field Berea sandstone cores (19.6 percent porosity, 387 md permeability) were saturated with brine (16,500 ppM sodium chloride), flooded with crude oil from the Henry lease in Illinois (viscosity of 5.9 cp at 72/sup 0/F, specific gravity of 0.833), and waterflooded with water from Henry lease (17,210 ppM TDS). The micellar dispersion followed by the mobility buffer produced 99.6 percent of the oil in the core. The micellar slug contained ammonium petroleum sulfonate (MW 450), Henry crude oil, isopropanol, nonyl phenol,more » sodium hydroxide, and water from the Palestine water reservoir in Palestine, Illinois (412 ppM TDS). No. 530 Pusher, ammonium thiocyanate, isopropanol, and Palestine water were in the mobility buffer.« less

  2. Regional Monitoring of Acidic Lakes and Streams

    EPA Pesticide Factsheets

    This asset provides data on the acid-base status of lakes and streams. Key chemical indicators measured include: sulfate, nitrate, ammonium, chloride, Acid Neutralizing Capacity (ANC), pH, base cations, dissolved organic carbon (DOC), total aluminum. TIME and LTM are part of EPA's Environmental Monitoring and Assessment Program (EMAP). Long-term monitoring of the acid-base status (pH, ANC, SO4, NO3, NH4, DOC, base cations, Al) in lakes and streams. Monitoring is conducted in acid sensitive regions of the Eastern U.S.

  3. Differential Requirement for the Translocation of Clostridial Binary Toxins: Iota Toxin Requires a Membrane Potential Gradient

    DTIC Science & Technology

    2007-02-28

    be inter- changed to form biologically-active, hybrid toxins. Thereby, Ib can internalize the enzymatic components from either C. spiroforme or C...since chloro- quine, monensin, nigericin, or ammonium chloride did not in- hibit its activity (Fig. 2A). C. spiroforme toxin, which is very highly...ER [50]. These results are in agreement with a recent report [15], and an earlier finding [45] that there was no effect of C. spiroforme toxin when

  4. Revegetation Study of Adobe Dam, Phoenix, Arizona. Task 5 and 7. Seeding Success on Topsoiled and Nontopsoiled Slopes at Adobe Dam.

    DTIC Science & Technology

    1983-08-18

    cations (ammonium acetate procedure) and exchangable amonium -nitrogen (Black 1965). Nitrate -nitrogen was determined by potassium chloride extraction and...Justification Duncan T. Patten By and Distrib-_t i cn/ Avai1"il lit- Codes Timothy L. Righetti lAvn. il/or D Dist ]Special I Center for Environmental...seeded earlier. Significant vegetation-soil correlations demonstrated relationships of species densities and both nitrate -nitrogen and total nitrogen

  5. Synthesis and characterization of poly(vinyl alcohol) membranes with quaternary ammonium groups for wound dressing.

    PubMed

    Chen, Kuo-Yu; Lin, Yu-Sheng; Yao, Chun-Hsu; Li, Ming-Hsien; Lin, Jui-Che

    2010-01-01

    2-[(acryloyloxy)ethyl]Trimethylammonium chloride (AETMAC) was grafted onto poly(vinyl alcohol) (PVA) using ceric ammonium nitrate (CAN) as a redox initiator. A series of graft co-polymer (PVA-g-PAETMAC) membranes with different contents of AETMAC were prepared with a casting method. The incorporation of AETMAC into PVA chains was confirmed by element analysis and Fourier transform infrared spectroscopy. The effects of grafting on the thermal properties, water take, water vapor transmission rate (WVTR), contact angle, antibacterial activity and cytotoxicity of PVA-g-PAETMAC membranes were investigated. The experiment results showed that PVA-g-PAETMAC membrane has a higher equilibrium swelling ratio, surface hydrophilicity and WVTR than pure PVA membrane. Moreover, the higher the content of AETMAC, the higher were equilibrium swelling ratio, surface hydrophilicity and WVTR. In vitro bacterial adhesion study demonstrated a significantly reduced number of Staphylococcus aureus and Escherichia coli on PVA-g-PAETMAC surfaces when compared to PVA surface. In addition, no significant difference in the in vitro cytotoxicity was observed between PVA and PVA-g-PAETMAC membranes. The presence of quaternary ammonium groups did not reduce L929 cell growth. Therefore, the PVA-g-PAETMAC membranes have the potential for wound-dressing application.

  6. Land-use impact on selected forms of arsenic and phosphorus in soils of different functions

    NASA Astrophysics Data System (ADS)

    Plak, Andrzej; Bartmiński, Piotr; Dębicki, Ryszard

    2017-10-01

    The aim of the study was to assess the impact of technosols and geomechanically unchanged soils of the Lublin agglomeration on the concentrations of arsenic and phosphorus, and on selected forms of these elements. Arsenic and phosphorus concentrations were determined in the urban soils of Lublin (Poland), and the relationship between their degree of contamination and different types of land use was estimated. The samples collected were subjected to sequential analysis, using ammonium sulphate, acid ammonium phosphate, oxalate buffer (also with ascorbic acid) and aqua regia for arsenic, and ammonium chloride, sodium hydroxide, hydrochloric acid and aqua regia for phosphorus. The influence of the land use forms was observed in the study. The greatest amount of arsenic (19.62 mg kg-1) was found in the industrial soils of Lublin, while the greatest amount of phosphorus (580.4 mg kg-1) was observed in non-anthropogenic soils (mainly due to the natural accumulation processes of this element). Fractions of arsenic and phosphorus obtained during analysis showed strong differentiation. Amorphic and crystalline fractions of arsenic, bound with iron oxides, proved to have the highest share in the total arsenic pool. The same situation was noted for phosphorus.

  7. Controlled release and long-term antibacterial activity of reduced graphene oxide/quaternary ammonium salt nanocomposites prepared by non-covalent modification.

    PubMed

    Ye, Xiaoli; Feng, Jin; Zhang, Jingxian; Yang, Xiujiang; Liao, Xiaoyan; Shi, Qingshan; Tan, Shaozao

    2017-01-01

    In order to control the long-term antibacterial property of quaternary ammonium salts, dodecyl dimethyl benzyl ammonium chloride (rGO-1227) and rGO-bromohexadecyl pyridine (rGO-CPB) were self-assembled on surfaces of reduced graphene oxide (rGO) via π-π interactions. The obtained rGO-1227 and rGO-CPB nanocompounds were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM).The antibacterial activities were evaluated on Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Both rGO-CPB and rGO-1227 reduced the cytotoxicity of the pure antimicrobial agents and presented strong antimicrobial properties. Especially, CPB could be loaded efficiently on the surface of rGO via π-π conjugate effect, which resulted in a nanocomposite presenting a long-term antibacterial capability due to the more important quantity of free π electrons compared to that of 1227. When comparing the advantages of both prepared nanocomposites, rGO-CPB displayed a better specific-targeting capability and a longer-term antibacterial property. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Protective effect of Urtica dioica methanol extract against experimentally induced urinary calculi in rats.

    PubMed

    Zhang, Haiying; Li, Ning; Li, Kun; Li, Peng

    2014-12-01

    Renal calculi formation is one of the most common urological disorders. Urinary stone disease is a common disease, which affects 10‑12% of the population in industrialized countries. In males, the highest prevalence of the disease occurs between the age of 20 and 40 years, while in females, the highest incidence of the disease occurs later. Previous studies have shown that long‑term exposure to oxalate is toxic to renal epithelial cells and results in oxidative stress. In the present study, a methanolic extract of aerial parts of Urtica dioica was screened for antiurolithiatic activity against ethylene glycol and ammonium chloride‑induced calcium oxalate renal stones in male rats. In the control rats, ethylene glycol and ammonium chloride administration was observed to cause an increase in urinary calcium, oxalate and creatinine levels, as well as an increase in renal calcium and oxalate deposition. Histopathological observations revealed calcium oxalate microcrystal deposits in the kidney sections of the rats treated with ethylene glycol and ammonium chloride, indicating the induction of lithiasis. In the test rats, treatment with the methanolic extract of Urtica dioica was found to decrease the elevated levels of urinary calcium, oxalate and creatinine, and significantly decrease the renal deposition of calcium and oxalate. Furthermore, renal histological observations revealed a significant reduction in calcium oxalate crystal deposition in the test rats. Phytochemical analysis of the Urtica dioica extract was also performed using liquid chromatography‑electrospray ionization tandem mass spectrometry and high-performance liquid chromatography with photodiode array detection, to determine the chemical composition of the extract. The eight chemical constituents identified in the extract were protocatechuic acid, salicylic acid, luteolin, gossypetin, rutin, kaempferol‑3‑O‑rutinoside, kaempferol‑3‑O‑glucoside and chlorogenic acid. In conclusion, the results of the present study suggest that Urtica dioica has strong antiurolithiatic activity and may have potential as a natural therapeutic agent for various urological disorders.

  9. The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and pH: implications for nematode biocontrol.

    PubMed

    Ward, Elaine; Kerry, Brian R; Manzanilla-López, Rosa H; Mutua, Gerald; Devonshire, Jean; Kimenju, John; Hirsch, Penny R

    2012-01-01

    The alkaline serine protease VCP1 of the fungus Pochonia chlamydosporia belongs to a family of subtilisin-like enzymes that are involved in infection of nematode and insect hosts. It is involved early in the infection process, removing the outer proteinaceous vitelline membrane of nematode eggs. Little is known about the regulation of this gene, even though an understanding of how nutrients and other factors affect its expression is critical for ensuring its efficacy as a biocontrol agent. This paper provides new information on the regulation of vcp1 expression. Sequence analysis of the upstream regulatory region of this gene in 30 isolates revealed that it was highly conserved and contained sequence motifs characteristic of genes that are subject to carbon, nitrogen and pH-regulation. Expression studies, monitoring enzyme activity and mRNA, confirmed that these factors affect VCP1 production. As expected, glucose reduced VCP1 expression and for a few hours so did ammonium chloride. Surprisingly, however, by 24 h VCP1 levels were increased in the presence of ammonium chloride for most isolates. Ambient pH also regulated VCP1 expression, with most isolates producing more VCP1 under alkaline conditions. There were some differences in the response of one isolate with a distinctive upstream sequence including a variant regulatory-motif profile. Cryo-scanning electron microscopy studies indicated that the presence of nematode eggs stimulates VCP1 production by P. chlamydosporia, but only where the two are in close contact. Overall, the results indicate that readily-metabolisable carbon sources and unfavourable pH in the rhizosphere/egg-mass environment may compromise nematode parasitism by P. chlamydosporia. However, contrary to previous indications using other nematophagous and entomopathogenic fungi, ammonium nitrate (e.g. from fertilizers) may enhance biocontrol potential in some circumstances.

  10. Liquid chromatography-tandem mass spectrometry multiresidue method for the analysis of quaternary ammonium compounds in cheese and milk products: Development and validation using the total error approach.

    PubMed

    Slimani, Kahina; Féret, Aurélie; Pirotais, Yvette; Maris, Pierre; Abjean, Jean-Pierre; Hurtaud-Pessel, Dominique

    2017-09-29

    Quaternary ammonium compounds (QACs) are both cationic surfactants and biocidal substances widely used as disinfectants in the food industry. A sensitive and reliable method for the analysis of benzalkonium chlorides (BACs) and dialkyldimethylammonium chlorides (DDACs) has been developed that enables the simultaneous quantitative determination of ten quaternary ammonium residues in dairy products below the provisional maximum residue level (MRL), set at 0.1mgkg -1 . To the best of our knowledge, this method could be the one applicable to milk and to three major processed milk products selected, namely processed or hard pressed cheeses, and whole milk powder. The method comprises solvent extraction using a mixture of acetonitrile and ethyl acetate, without any further clean-up. Analyses were performed by liquid chromatography coupled with electrospray tandem mass spectrometry detection (LC-ESI-MS/MS) operating in positive mode. A C18 analytical column was used for chromatographic separation, with a mobile phase composed of acetonitrile and water both containing 0.3% formic acid; and methanol in the gradient mode. Five deuterated internal standards were added to obtain the most accurate quantification. Extraction recoveries were satisfactory and no matrix effects were observed. The method was validated using the total error approach in accordance with the NF V03-110 standard in order to characterize the trueness, repeatability, intermediate precision and analytical limits within the range of 5-150μgkg -1 for all matrices. These performance criteria, calculated by e.noval ® 3.0 software, were satisfactory and in full accordance with the proposed provisional MRL and with the recommendations in the European Union SANTE/11945/2015 regulatory guidelines. The limit of detection (LOD) was low (<1.9μgkg -1 ) and the limit of quantification (LOQ) ranged from 5μgkg -1 to 35μgkg -1 for all matrices depending on the analytes. The validation results proved that the method is suitable for quantifying quaternary ammoniums in foodstuffs from dairy industries at residue levels, and could be used for biocide residues monitoring plans and to measure the exposition consumer to biocides products. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effect of the nature of the counterion on the properties of anionic surfactants. 5. Self-association behavior and micellar properties of ammonium dodecyl sulfate.

    PubMed

    Tcacenco, Celize M; Zana, Raoul; Bales, Barney L

    2005-08-25

    Micelles formed in water from ammonium dodecyl sulfate (AmDS) are characterized using time-resolved fluorescence quenching (TRFQ), electron paramagnetic resonance (EPR), conductivity, Krafft temperature, and density measurements. TRFQ was used to measure the aggregation number, N, and the quenching rate constant of pyrene by dodecylpyridinium chloride, k(Q). N depends only on the concentration (C(aq)) of ammonium ions in the aqueous phase whether these counterions are derived from the surfactant alone or from the surfactant plus added ammonium chloride as follows: N = N0(C(aq)/cmc0)(gamma), where N0 is the aggregation number at the critical micelle concentration in the absence of added salt, cmc0, and is equal to 77, 70, and 61 at 16, 25, and 35 degrees C, respectively. The exponent gamma = 0.22 is independent of temperature in the range 16 to 35 degrees C. The fact that N depends only on C(aq) permits the determination of the micelle ionization degree (alpha) by employing various experimental approaches to exploit a recent suggestion (J. Phys. Chem. B 2001, 105, 6798) that N depends only on C(aq). Utilizing various combinations of salt and surfactant, values of alpha were obtained by finding common curves as a function of C(aq) of the following experimental results: the Krafft temperature, N, k(Q), the microviscosity of the Stern layer determined from the rotational correlation time of a spin probe, 5-doxyl stearic acid methyl ester, and the spin-probe sensed hydration of the micelle surface. The values of alpha, determined from applying the aggregation number-based definition of alpha to all of these quantities, were within experimental uncertainty of the values alpha = 0.19, 0.20, and 0.21 derived from conductivity measurements at 16, 25, and 35 degrees C, respectively. The volume fraction of the Stern layer occupied by water decreases as N increases. For AmDS micelles, both the hydration and its decrease are predicted by a simple theory of micelle hydration by fixing the parameters of the theory for sodium dodecyl sulfate and employing no further adjustable parameters. For a given value of N, the hydration decreases as the temperature increases.

  12. A comparison study of the start-up of a MnOx filter for catalytic oxidative removal of ammonium from groundwater and surface water.

    PubMed

    Cheng, Ya; Li, Ye; Huang, Tinglin; Sun, Yuankui; Shi, Xinxin; Shao, Yuezong

    2018-03-01

    As an efficient method for ammonium (NH 4 + ) removal, contact catalytic oxidation technology has drawn much attention recently, due to its good low temperature resistance and short start-up period. Two identical filters were employed to compare the process for ammonium removal during the start-up period for ammonium removal in groundwater (Filter-N) and surface water (Filter-S) treatment. Two types of source water (groundwater and surface water) were used as the feed waters for the filtration trials. Although the same initiating method was used, Filter-N exhibited much better ammonium removal performance than Filter-S. The differences in catalytic activity among these two filters were probed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and compositional analysis. XRD results indicated that different manganese oxide species were formed in Filter-N and Filter-S. Furthermore, the Mn3p XPS spectra taken on the surface of the filter films revealed that the average manganese valence of the inactive manganese oxide film collected from Filter-S (FS-MnO x ) was higher than in the film collected from Filter-N (FN-MnO x ). Mn(IV) was identified as the predominant oxidation state in FS-MnO x and Mn(III) was identified as the predominant oxidation state in FN-MnO x . The results of compositional analyses suggested that polyaluminum ferric chloride (PAFC) used during the surface water treatment was an important factor in the mineralogy and reactivity of MnO x . This study provides the theoretical basis for promoting the wide application of the technology and has great practical significance. Copyright © 2017. Published by Elsevier B.V.

  13. Radiation Fog in the US Mid-Atlantic Region: Chemical Composition, Trends, and Gas-Liquid Partitioning

    NASA Astrophysics Data System (ADS)

    Straub, D.

    2016-12-01

    The chemical composition of radiation fog has been studied at a rural site in central Pennsylvania over an eight year period extending through 2015. Bulk fog samples were collected with an automated Caltech Heated Rod Cloud Collector (CHRCC) and analyzed for pH, inorganic ions, organic acids, total organic carbon (TOC), and total nitrogen (TN). Over the duration of the project, 146 samples were collected and used to document chemical composition, evaluate changes over time, and to investigate partitioning between the gas and aqueous phases. Ammonium, sulfate, calcium, and nitrate were the most abundant inorganic ions while acetate and formate were the dominant organic acids. Organic acids contributed about 15% to TOC. Inorganic nitrogen accounted for the majority of TN, with only 18% of TN attributed to organic nitrogen. Overall, organic matter contributed 52% to the total mass loading of the fog samples, a value that is higher than reported for other radiation fog studies. Statistically significant decreasing trends were observed for sulfate, ammonium, chloride, nitrate, and pH. These trends coincide with reductions in emissions from fossil fuel combustion that have been documented over this time period. Seasonal trends were also detected for nitrate, ammonium, potassium, phosphate, acetate and formate which appear to be related to the agricultural growing season. Based on simultaneous measurements of gas phase ammonia and ammonium in the fog samples, significant deviations from equilibrium were found. In low pH samples, ammonium concentrations were much lower than equilibrium predicts, while the opposite occurred in high pH samples. Modeling suggested that mass transfer limitations contributed to the departure from equilibrium. Similarly, predictions of bicarbonate concentrations based on equilibrium with gas phase carbon dioxide appears to underestimate the actual amount of bicarbonate present in samples collected during this study.

  14. Tailoring the synthesis of supported Pd catalysts towards desired structure and size of metal particles.

    PubMed

    Suresh, Gatla; Radnik, Jörg; Kalevaru, Venkata Narayana; Pohl, Marga-Martina; Schneider, Matthias; Lücke, Bernhard; Martin, Andreas; Madaan, Neetika; Brückner, Angelika

    2010-05-14

    In a systematic study, the influence of different preparation parameters on phase composition and size of metal crystallites and particles in Pd-Cu/TiO(2) and Pd-Sb/TiO(2) catalyst materials has been explored. Temperature and atmosphere of thermal pretreatment (pure He or 10% H(2)/He), nature of metal precursors (chlorides, nitrates or acetates) as well as of ammonium additives (ammonium sulfate, nitrate, carbonate) and urea were varied with the aim of tailoring the synthesis procedure for the preferential formation of metal particles with similar size and structure as observed recently in active catalysts after long-term equilibration under catalytic reaction conditions in acetoxylation of toluene to benzylacetate. Among the metal precursors and additives, the chloride metal precursors and (NH(4))(2)SO(4) were most suitable. Upon thermal pretreatment of Pd-Sb or Pd-Cu precursors, chloroamine complexes of Pd and Cu are formed, which decompose above 220 degrees C to metallic phases independent of the atmosphere. In He, metallic Pd particles were formed with both the co-components. In H(2)/He flow, Pd-Cu precursors were converted to core-shell particles with a Cu shell and a Pd core, while Sb(1)Pd(1) and Sb(7)Pd(20) alloy phases were formed in the presence of Sb. Metal crystallites of about 40 nm agglomerate to particles of up to 150 nm in He and to even larger size in H(2)/He.

  15. Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride).

    PubMed

    Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi

    2013-01-02

    Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively.

  16. Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride)

    PubMed Central

    Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi

    2012-01-01

    Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively. PMID:24958543

  17. Hepatitis E virus capsid protein assembles in 4M urea in the presence of salts.

    PubMed

    Yang, Chunyan; Pan, Huirong; Wei, Minxi; Zhang, Xiao; Wang, Nan; Gu, Ying; Du, Hailian; Zhang, Jun; Li, Shaowei; Xia, Ningshao

    2013-03-01

    The hepatitis E virus (HEV) capsid protein has been demonstrated to be able to assemble into particles in vitro. However, this process and the mechanism of protein-protein interactions during particle assembly remain unclear. In this study, we investigated the assembly mechanism of HEV structural protein subunits, the capsid protein p239 (aa368-606), using analytical ultracentrifugation. It was the first to observe that the p239 can form particles in 4M urea as a result of supplementation with salt, including ammonium sulfate [(NH₄)₂SO₄], sodium sulfate (Na₂SO₄), sodium chloride (NaCl), and ammonium chloride (NH₄Cl). Interestingly, it is the ionic strength that determines the efficiency of promoting particle assembly. The assembly rate was affected by temperature and salt concentration. When (NH₄)₂SO₄ was used, assembling intermediates of p239 with sedimentation coefficient values of approximately 5 S, which were mostly dodecamers, were identified for the first time. A highly conserved 28-aa region (aa368-395) of p239 was found to be critical for particle assembly, and the hydrophobic residues Leu³⁷², Leu³⁷⁵, and Leu³⁹⁵ of p239 was found to be critical for particle assembly, which was revealed by site-directed mutagenesis. This study provides new insights into the assembly mechanism of native HEV, and contributes a valuable basis for further investigations of protein assembly by hydrophobic interactions under denaturing conditions. Copyright © 2012 The Protein Society.

  18. Characterization of films formed by the aluminizing of T91 steel

    NASA Astrophysics Data System (ADS)

    Sanabria Cala, J. A.; Conde Rodríguez, G. R.; Y Peña Ballesteros, D.; Laverde Cataño, D.; Quintero Rangel, L. S.

    2017-12-01

    The aluminizing of a T91 martensitic ferritic steel was carried out by a novel modification to the traditional technique of packed cementation, with the objective of producing a diffusion coating of aluminum in a shorter time and operating cost, from a technique that allows the reuse of powder packaging and which the coating of metal parts with complex shapes can be secured. As an aluminum source, commercial foil is used to wrap the piece to be coated, while the powder packaging contains aluminum oxide Al2O3 and an activating salt, ammonium chloride NH4Cl. During the deposition process of the coating, the NH4Cl is decomposed by reacting with foil, and thus, aluminum halides can be transferred to the metallic substrate, which deposit aluminum on the T91 steel surface while Al2O3 can be recycled for subsequent processes. The results of the diffractograms and micrographs indicated the strong influence of temperature, exposure time and ammonium chloride concentration in the formation and growth evolution of a stable coating of iron-aluminum and iron-aluminum-nickel on the T91 steel surface, which was effectively deposited at a temperature of 700°C and an exposure period of 9 hours. The coating formed on the T91 steel surface could play a protective role towards the material by acting as a physical barrier between the alloy and other corrosive species in high temperature operated systems.

  19. Dissolution of Gold and Silver with Ammonium Thiosulfate from Mangano-Argentiferous Ores Treated in Acid-Reductive Conditions

    NASA Astrophysics Data System (ADS)

    Tiburcio Munive, G.; Encinas Romero, M. A.; Vazquez, V. M.; Valenzuela García, J. L.; Valenzuela Soto, A.; Coronado Lopez, J. H.

    2017-10-01

    A novel process was studied to extract economic metals from refractory ores that are difficult to leach with cyanide and ammonium thiosulfate, such as the well-known mangano argentiferous minerals, which are minerals of manganese, iron, and silver. The mineral under consideration originates from the tailings of the Monte del Favor, Hostotipaquillo Jalisco, Mexico. The sample was characterized by x-ray diffractometry, atomic absorption spectroscopy, scanning electron microscopy, and microanalysis by energy-dispersive x-ray spectroscopy. First, the material was passed through a 100-mesh screen, and then it was subjected to reductive leaching by varying the liquid-solid ( L/ S) ratio from 2:1 to 10:1 (observations were carried out at a ratio of 5:1, which yielded higher extraction of manganese). With H2SO4 and Na2SO3 as the reducing agents, manganese extraction of up to 96.05% was achieved during the first 3 h with a mineral head of manganese 3.58%, acid consumption of 90.74 g/L, and sulfite consumption of 25.8 g/L. The mineral was then filtered and proceeded to neutralize the acidity, reaching a pH of 8 with calcium hydroxide. Then, the material was subjected to a new leaching of gold and silver values with ammonium thiosulfate. The L/ S ratio was varied (1:1, 2:1, 3:1, 4:1), and the contact time and the concentration of ammonium thiosulfate was investigated, while controlling the pH using Ca(OH)2 and NH4Cl. An L/ S ratio of 2:1 showed the best extraction of silver (97.06%) and gold (86.66%), and the thiosulfate consumption was 10.36 g/L. The mineral head of gold and silver was 0.30 g/ton and 310 g/ton, respectively. The pH was maintained between 9.8 and 8.4, such that ammonium thiosulfate stabilized with lime, and ammonium chloride did not suffer any decomposition.

  20. Stability of embossed PEI-(PSS-PDADMAC) 20 multilayer films versus storage time and versus a change in ionic strength

    NASA Astrophysics Data System (ADS)

    Ladhari, Nadia; Hemmerlé, Joseph; Haikel, Youssef; Voegel, Jean-Claude; Schaaf, Pierre; Ball, Vincent

    2008-12-01

    The use of microstructured films increased markedly in many areas of science and technology, notably in the design of microfluidic channels and in the design of parallel biosensing arrays. The concept of imprinting polyelectrolyte multilayer films (PEMs) has been introduced recently [C. Gao, B. Wang, J. Feng, J. Shen, Macromolecules 37 (2004) 8836]. These irreversibly imprinted films, obtained by plastic deformation, have to keep their size and shape after contact with fluids having physicochemical properties comparable to those of biological fluids in order to be used as microfluidic channels. We demonstrate herein that PEI-(PSS-PDADMAC) 20 PEMs built-up by the spray deposition from NaCl 1 M solutions and subsequently imprinted with polydimethylsiloxane stamps keep their morphology over time (up to 9 months) when stored in the dry state. In addition the depth of the imprinted channels does not change over this time duration. When the embossed films are immersed in NaCl 0.15 M solutions, mimicking biological fluids, the depth of the imprinted channels also does not significantly change. But, when the imprinted films prepared in the presence of 1 M NaCl are subsequently dipped in a 4 M NaCl solution, partial film loss and subsequent disappearance of the imprinted channels are observed. An explanation for these findings is furnished by means of FTIR spectroscopy in the attenuated total reflection mode (ATR-FTIR). These observations should offer large opportunities for the use of the imprinted multilayer films as microfluidic channels.

  1. Respiratory monitoring by porphyrin modified quartz crystal microbalance sensors.

    PubMed

    Selyanchyn, Roman; Korposh, Serhiy; Wakamatsu, Shunichi; Lee, Seung-Woo

    2011-01-01

    A respiratory monitoring system based on a quartz crystal microbalance (QCM) sensor with a functional film was designed and investigated. Porphyrins 5,10,15,20-tetrakis-(4-sulfophenyl)-21H,23H-porphine (TSPP) and 5,10,15,20-tetrakis-(4-sulfophenyl)-21H, 23H-porphine manganese (III) chloride (MnTSPP) used as sensitive elements were assembled with a poly(diallyldimethyl ammonium chloride) (PDDA). Films were deposited on the QCM resonators using layer-by-layer method in order to develop the sensor. The developed system, in which the sensor response reflects lung movements, was able to track human respiration providing respiratory rate (RR) and respiratory pattern (RP). The sensor system was tested on healthy volunteers to compare RPs and calculate RRs. The operation principle of the proposed system is based on the fast adsorption/desorption behavior of water originated from human breath into the sensor films deposited on the QCM electrode.

  2. Electrochemical wastewater treatment: influence of the type of carbon and of nitrogen on the organic load removal.

    PubMed

    Fernandes, Annabel; Coelho, João; Ciríaco, Lurdes; Pacheco, Maria José; Lopes, Ana

    2016-12-01

    Boron-doped diamond (BDD) and Ti/Pt/PbO 2 anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid. The presence of carbonate in solution enhances the nitrogen removal, whereas it hinders the oxidation of the organic compounds. When organic nitrogen is present, it is converted to NH 4 + , which in turn is oxidized to nitrate and to volatile nitrogen compounds. Hydroxyl radicals are more prone to oxidize the organic nitrogen than the ammonium nitrogen. The presence of chloride enhances the organic matter and nitrogen removal rates, BDD being the anode material that yields the highest removals.

  3. Respiratory Monitoring by Porphyrin Modified Quartz Crystal Microbalance Sensors

    PubMed Central

    Selyanchyn, Roman; Korposh, Serhiy; Wakamatsu, Shunichi; Lee, Seung-Woo

    2011-01-01

    A respiratory monitoring system based on a quartz crystal microbalance (QCM) sensor with a functional film was designed and investigated. Porphyrins 5,10,15,20-tetrakis-(4-sulfophenyl)-21H,23H-porphine (TSPP) and 5,10,15,20-tetrakis-(4-sulfophenyl)-21H, 23H-porphine manganese (III) chloride (MnTSPP) used as sensitive elements were assembled with a poly(diallyldimethyl ammonium chloride) (PDDA). Films were deposited on the QCM resonators using layer-by-layer method in order to develop the sensor. The developed system, in which the sensor response reflects lung movements, was able to track human respiration providing respiratory rate (RR) and respiratory pattern (RP). The sensor system was tested on healthy volunteers to compare RPs and calculate RRs. The operation principle of the proposed system is based on the fast adsorption/desorption behavior of water originated from human breath into the sensor films deposited on the QCM electrode. PMID:22346621

  4. Aliphatic long chain quaternary ammonium compounds analysis by ion-pair chromatography coupled with suppressed conductivity and UV detection in lysing reagents for blood cell analysers.

    PubMed

    Giovannelli, D; Abballe, F

    2005-08-26

    A method has been developed which allows simultaneous determination of three linear alkyl trimethylammonium salts. Dodecyltrimethylammonium chloride, tetradecyltrimethylammonium bromide and hexadecyltrimethylammonium chloride are widely used as main active ingredients of lysing reagents for blood cell analyzers which perform white blood cells differential determination into two or more sub-populations by impedance analysis. The ion-pair on styrene-divinyl benzene chromatographic phase looks like a suitable, reliable and long term stable tool for separation of such quaternary compounds. The detection based on suppressed conductivity was chosen because of the lack of significance chromophores. A micromembrane suppressor device compatible with high solvent concentration (up to 80%) was used in order to minimize the conductivity background before the detection. In the present work we show how the chemical post column derivatization makes the alkyl chain detectable also by UV direct detection at 210 nm.

  5. Growth and behavior of chondrocytes on nano engineered surfaces and construction of micropatterned co-culture platforms using layer-by-layer platforms using layer-by-layer assembly lift-off method

    NASA Astrophysics Data System (ADS)

    Shaik, Jameel

    Several approaches such as self-assembled monolayers and layer-by-layer assembled multilayer films are being used as tools to study the interactions of cells with biomaterials in vitro. In this study, the layer-by-layer assembly approach was used to create monolayer, bilayer, trilayer, five, ten and twenty-bilayer beds of eleven different biomaterials. The various biomaterials used were poly(styrene-sulfonate), fibronectin, poly-L-lysine, poly-D-lysine, laminin, bovine serum albumin, chondroitin sulfate, poly(ethyleneimine), polyethylene glycol amine, collagen and poly(dimethyldiallyl-ammonium chloride) with unmodified tissue-culture polystyrene as standard control. Three different cell lines---primary bovine articular chondrocytes, and two secondary cell lines, human chondrosarcoma cells and canine chondrocytes were used in these studies. Chondrocyte morphology and attachment, viability, proliferation, and functionality were determined using bright field microscopy, the Live/Dead viability assay, MTT assay, and immunocytochemistry, respectively. Atomic force microscopy of the nanofilms indicated an increase in surface roughness with increasing number of layers. The most important observations from the studies on primary bovine articular chondrocytes were that these cells exhibited increasing viability and cell metabolic activity with increasing number of bilayers. The increase in viability was more pronounced than the increase in cell metabolic activity. Also, bovine chondrocytes on bilayers of poly(dimethyldiallyl-ammonium chloride, poly-L-lysine, poly(styrene-sulfonate), and bovine serum albumin were substantially bigger in size and well-attached when compared to the cells grown on monolayer and trilayers. Lactate dehydrogenase assay performed on chondrosarcoma cells grown on 5- and 10-bilayer multilayer beds indicated that the 10-bilayer beds had reduced cytotoxicity compared to the 5-bilayer beds. MTT assay performed on canine chondrocytes grown on 5-, 10-, and 20-bilayer nanofilm beds revealed increasing cell metabolic activity for BSA with increasing bilayers. Micropatterned multilayer beds having poly-L-lysine, poly-D-lysine, laminin poly(dimethyldiallyl-ammonium chloride) and poly(ethyleneimine) as the terminating layers were fabricated using the Layer-by-layer Lift-off (LbL-LO) method that combines photolithography and LbL self-assembly. Most importantly, micropatterned co-culture platforms consisting of anti-CD 44 rat monoclonal and anti-rat osteopontin (MPIIIB101) antibodies were constructed using the LbL-LO method for the first time. These co-culture platforms have several applications especially for studies of stem and progenitor cells. Co-culture platforms exhibiting spatiotempora-based differentiation can be built with LbL-LO for the differentiation of stem cells into the desired cell lineage.

  6. The metabolic role of isoleucine in detoxification of ammonia in cultured mouse neurons and astrocytes.

    PubMed

    Johansen, Maja L; Bak, Lasse K; Schousboe, Arne; Iversen, Peter; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Gjedde, Albert; Ott, Peter; Waagepetersen, Helle S

    2007-06-01

    Cerebral hyperammonemia is a hallmark of hepatic encephalopathy, a debilitating condition arising secondary to liver disease. Pyruvate oxidation including tricarboxylic acid (TCA) cycle metabolism has been suggested to be inhibited by hyperammonemia at the pyruvate and alpha-ketoglutarate dehydrogenase steps. Catabolism of the branched-chain amino acid isoleucine provides both acetyl-CoA and succinyl-CoA, thus by-passing both the pyruvate dehydrogenase and the alpha-ketoglutarate dehydrogenase steps. Potentially, this will enable the TCA cycle to work in the face of ammonium-induced inhibition. In addition, this will provide the alpha-ketoglutarate carbon skeleton for glutamate and glutamine synthesis by glutamate dehydrogenase and glutamine synthetase (astrocytes only), respectively, both reactions fixing ammonium. Cultured cerebellar neurons (primarily glutamatergic) or astrocytes were incubated in the presence of either [U-13C]glucose (2.5 mM) and isoleucine (1 mM) or [U-13C]isoleucine and glucose. Cell cultures were treated with an acute ammonium chloride load of 2 (astrocytes) or 5 mM (neurons and astrocytes) and incorporation of 13C-label into glutamate, aspartate, glutamine and alanine was determined employing mass spectrometry. Labeling from [U-13C]glucose in glutamate and aspartate increased as a result of ammonium-treatment in both neurons and astrocytes, suggesting that the TCA cycle was not inhibited. Labeling in alanine increased in neurons but not in astrocytes, indicating elevated glycolysis in neurons. For both neurons and astrocytes, labeling from [U-13C]isoleucine entered glutamate and aspartate albeit to a lower extent than from [U-13C]glucose. Labeling in glutamate and aspartate from [U-13C]isoleucine was decreased by ammonium treatment in neurons but not in astrocytes, the former probably reflecting increased metabolism of unlabeled glucose. In astrocytes, ammonia treatment resulted in glutamine production and release to the medium, partially supported by catabolism of [U-13C]isoleucine. In conclusion, i) neuronal and astrocytic TCA cycle metabolism was not inhibited by ammonium and ii) isoleucine may provide the carbon skeleton for synthesis of glutamate/glutamine in the detoxification of ammonium.

  7. Quality-Assurance Data for Routine Water Analyses by the U.S. Geological Survey Laboratory in Troy, New York-July 1997 through June 1999

    USGS Publications Warehouse

    Lincoln, Tricia A.; Horan-Ross, Debra A.; McHale, Michael R.; Lawrence, Gregory B.

    2006-01-01

    The laboratory for analysis of low-ionic-strength water at the U.S. Geological Survey (USGS) Water Science Center in Troy, N.Y., analyzes samples collected by USGS projects throughout the Northeast. The laboratory's quality-assurance program is based on internal and interlaboratory quality-assurance samples and quality-control procedures that were developed to ensure proper sample collection, processing, and analysis. The quality-assurance/quality-control data for the time period addressed in this report were stored in the laboratory's SAS data-management system, which provides efficient review, compilation, and plotting of data. This report presents and discusses results of quality-assurance and quality- control samples analyzed from July 1997 through June 1999. Results for the quality-control samples for 18 analytical procedures were evaluated for bias and precision. Control charts indicate that data for eight of the analytical procedures were occasionally biased for either high-concentration and (or) low-concentration samples but were within control limits; these procedures were: acid-neutralizing capacity, total monomeric aluminum, total aluminum, ammonium, calcium, chloride, specific conductance, and sulfate. The data from the potassium and sodium analytical procedures are insufficient for evaluation. Results from the filter-blank and analytical-blank analyses indicate that the procedures for 11 of 13 analytes were within control limits, although the concentrations for blanks were occasionally outside the control limits. Blank analysis results for chloride showed that 22 percent of blanks did not meet data-quality objectives and results for dissolved organic carbon showed that 31 percent of the blanks did not meet data-quality objectives. Sampling and analysis precision are evaluated herein in terms of the coefficient of variation obtained for triplicate samples in the procedures for 14 of the 18 analytes. At least 90 percent of the samples met data-quality objectives for all analytes except total aluminum (70 percent of samples met objectives) and potassium (83 percent of samples met objectives). Results of the USGS interlaboratory Standard Reference Sample (SRS) Project indicated good data quality for most constituents over the time period. The P-sample (low-ionic-strength constituents) analysis had good ratings in two of these studies and a satisfactory rating in the third. The results of the T-sample (trace constituents) analysis indicated high data quality with good ratings in all three studies. The N-sample (nutrient constituents) studies had one each of excellent, good, and satisfactory ratings. Results of Environment Canada's National Water Research Institute (NWRI) program indicated that at least 80 percent of the samples met data-quality objectives for 9 of the 13 analytes; the exceptions were dissolved organic carbon, ammonium, chloride, and specific conductance. Data-quality objectives were not met for dissolved organic carbon in two NWRI studies, but all of the samples were within control limits for the last study. Data-quality objectives were not met in 41 percent of samples analyzed for ammonium, 25 percent of samples analyzed for chloride, and 30 percent of samples analyzed for specific conductance. Results from blind reference-sample analyses indicated that data-quality objectives were met by at least 84 percent of the samples analyzed for calcium, chloride, magnesium, pH, and potassium. Data-quality objectives were met by 73 percent of those analyzed for sulfate. The data-quality objective was not met for sodium. The data are insufficient for evaluation of the specific conductance results.

  8. Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers

    PubMed Central

    Mattox, Vernon R.; Litwiller, Robert D.; Goodrich, June E.

    1972-01-01

    A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, β-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange. PMID:5075264

  9. Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment.

    PubMed

    Cho, Kangwoo; Qu, Yan; Kwon, Daejung; Zhang, Hao; Cid, Clément A; Aryanfar, Asghar; Hoffmann, Michael R

    2014-02-18

    We have investigated electrochemical treatment of real domestic wastewater coupled with simultaneous production of molecular H2 as useful byproduct. The electrolysis cells employ multilayer semiconductor anodes with electroactive bismuth-doped TiO2 functionalities and stainless steel cathodes. DC-powered laboratory-scale electrolysis experiments were performed under static anodic potentials (+2.2 or +3.0 V NHE) using domestic wastewater samples, with added chloride ion in variable concentrations. Greater than 95% reductions in chemical oxygen demand (COD) and ammonium ion were achieved within 6 h. In addition, we experimentally determined a decreasing overall reactivity of reactive chlorine species toward COD with an increasing chloride ion concentration under chlorine radicals (Cl·, Cl2(-)·) generation at +3.0 V NHE. The current efficiency for COD removal was 12% with the lowest specific energy consumption of 96 kWh kgCOD(-1) at the cell voltage of near 4 V in 50 mM chloride. The current efficiency and energy efficiency for H2 generation were calculated to range from 34 to 84% and 14 to 26%, respectively. The hydrogen comprised 35 to 60% by volume of evolved gases. The efficacy of our electrolysis cell was further demonstrated by a 20 L prototype reactor totally powered by a photovoltaic (PV) panel, which was shown to eliminate COD and total coliform bacteria in less than 4 h of treatment.

  10. Listeria monocytogenes Strains Selected on Ciprofloxacin or the Disinfectant Benzalkonium Chloride Exhibit Reduced Susceptibility to Ciprofloxacin, Gentamicin, Benzalkonium Chloride, and Other Toxic Compounds▿

    PubMed Central

    Rakic-Martinez, Mira; Drevets, Douglas A.; Dutta, Vikrant; Katic, Vera; Kathariou, Sophia

    2011-01-01

    Listeria monocytogenes is a leading agent for severe food-borne illness and death in the United States and other nations. Even though drug resistance has not yet threatened therapeutic interventions for listeriosis, selective pressure associated with exposure to antibiotics and disinfectants may result in reduced susceptibility to these agents. In this study, selection of several L. monocytogenes strains on either ciprofloxacin (2 μg/ml) or the quaternary ammonium disinfectant benzalkonium chloride (BC; 10 μg/ml) led to derivatives with increased MICs not only to these agents but also to several other toxic compounds, including gentamicin, the dye ethidium bromide, and the chemotherapeutic drug tetraphenylphosphonium chloride. The spectrum of compounds to which these derivatives exhibited reduced susceptibility was the same regardless of whether they were selected on ciprofloxacin or on BC. Inclusion of strains harboring the large plasmid pLM80 revealed that MICs to ciprofloxacin and gentamicin did not differ between the parental and plasmid-cured strains. However, ciprofloxacin-selected derivatives of pLM80-harboring strains had higher MICs than those derived from the plasmid-cured strains. Susceptibility to the antimicrobials was partially restored in the presence of the potent efflux inhibitor reserpine. Taken together, these data suggest that mutations in efflux systems are responsible for the multidrug resistance phenotype of strains selected on ciprofloxacin or BC. PMID:22003016

  11. [Effects of a supplementation on sodium chloride or ammonium chloride on urolithic potential in the rabbit].

    PubMed

    Rückert, Cornelia; Siener, Roswitha; Ganter, Martin; Coenen, Manfred; Vervuert, Ingrid

    2016-08-17

    Reduction of urolithic potential by means of increased water intake and urine dilution through supplementation of sodium chloride (NaCl) or decrease of urine pH by supplementation of ammonium chloride (NH4Cl) in rabbits. Sixteen female, 6-month-old dwarf rabbits received the following three feeding regimens in a random order: complete feed without supplements = control; complete feed + 10 g NaCl/kg feed = NaCl; complete feed + 2.5 g NH4Cl/kg feed = NH4Cl. The diets were fed ad libitum over a period of 27 days without roughage. Water was provided ad libitum by a drinker. A 14-day wash-out-period (hay feeding) was performed between the different diets. Blood, faeces, and urine were collected at the beginning of each feeding period, after 21-day adaptation to the respective diet, and after the 3-day collection period. The following parameters were analysed: water and food intake as well as acid-base balance and mineral content in blood, urine, and faeces. NaCl supplementation numerically increased the daily water intake from 40.5 ± 14.4 ml/kg body weight (BW) (control) up to 49.5 ± 14.3 ml/kg BW and significantly increased the daily urine volume from 16.9 ± 7.8 ml/kg BW (control group) to 21.1 ± 7.4 ml/kg BW. The specific gravity of urine samples from NaCl supplementation decreased from 1.060 ± 0.008 to 1.044 ± 0.008. NH4Cl supplementation did not induce significant changes in urine pH, blood acid-base parameters, or calcium retention. Relative supersaturations (RSS) for calcium oxalate and calcium phosphate showed no significant changes after treatment. RSS for struvite increased from 360 ± 735 (after hay feeding) to 3312 ± 6188 on control feeding, 2910 ± 4913 with NaCl supplementation, and 3022 ± 6635 with NH4Cl supplementation (p < 0.05). NaCl supplementation significantly increased the urine volume and decreased its specific gravity. Therefore, NaCl supplementation might be an additional dietary treatment to increase the elimination of urine crystals in rabbits. NH4Cl supplementation did not induce acidification of the urine.

  12. Stannosis in Hearth Tinners

    PubMed Central

    Cole, C. W. D.; Davies, J. V. S. A.; Kipling, M. D.; Ritchie, G. L.

    1964-01-01

    There have been no published reports of stannosis in tinners. In this paper its occurrence in hearth tinners is described. In hearth tinning molten tin is poured into heated iron hollow-ware and smoothed over the internal surface with a cork bat. Ammonium chloride powder is used as a flux. It is considered that fumes arising in the process from the reaction of the flux and the tin caused a concentration of tin compounds in the atmosphere, and this was the mechanism by which stannosis was produced. The literature on stannosis and tinning is reviewed. Images PMID:14180484

  13. The unique kinetic behavior of the very large NAD-dependent glutamate dehydrogenase from Janthinobacterium lividum.

    PubMed

    Kawakami, Ryushi; Oyama, Masaki; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2010-01-01

    The kinetics of a very large NAD-dependent glutamate dehydrogenase from Janthinobacterium lividum showed positive cooperativity toward alpha-ketoglutarate and NADH, and the Michaelis-Menten type toward ammonium chloride in the absence of the catalytic activator, L-aspartate. An increase in the maximum activity accompanied the decrease in the S(0.5) values for alpha-ketoglutarate and NADH with the addition of L-aspartate, and the kinetic response for alpha-ketoglutarate changed completely to a typical Michaelis-Menten type in the presence of 10 mM L-aspartate.

  14. Evaluating the Potential of Adipose Tissue-Derived MSCs as Anticancer Gene Delivery Vehicles to Bone-Metastasized Prostate Cancer

    DTIC Science & Technology

    2012-10-01

    pellet was resuspended and incubated for 2 min in a 2 ml lysis solution (0.15 M Ammonium chloride, 10mM Potassium bicarbonate and 0.1 mM EDTA) and...converting enzyme inhibit human prostate tumor growth. Mol Ther. 2010 Jan;18(1):223-31. PMID: 19844197. 3: Matuskova M , Hlubinova K, Pastorakova A ...potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy. 2009;11(3):289-98. PMID:19308770. 5: Zhao M , Sachs PC, Wang

  15. Energy Distributions of Neutrons Scattered from Graphite, Light and Heavy Water, Ice, Zirconium Hydride, Lithium Hydride, Sodium Hydride and Ammonium Chloride by the Beryllium Detector Method

    DOE R&D Accomplishments Database

    Woods, A. D. B.; Brockhouse, Bertram N.; Sakamoto, M.; Sinclair, R. N.

    1960-09-12

    Energy distributions of neutrons scattered from various moderators and from several hydrogenous substances were measured at energy transfers of 0.02 to 0.24 ev. Results from experiments on graphite, light and heavy water, ice, ZrH, LiH, NaH, and NH4Cl are included. It is noted that the results are of a preliminary character; however, they are probably the most accurate measurements of high-energy transfers yet made. (J.R.D.)

  16. Data on snow chemistry of the Cascade-Sierra Nevada Mountains

    USGS Publications Warehouse

    Laird, L.B.; Taylor, Howard E.; Lombard, R.E.

    1986-01-01

    Snow chemistry data were measured for solutes found in snow core samples collected from the Cascade-Sierra Nevada Mountains from late February to mid-March 1983. The data are part of a study to assess geographic variations in atmospheric deposition in Washington, Oregon, and California. The constituents and properties include pH and concentrations of hydrogen ion, calcium, magnesium, sodium, potassium, chloride, sulfate, nitrate, fluoride, phosphate, ammonium, iron, aluminum, manganese, copper, cadmium, lead, and dissolved organic carbon. Concentrations of arsenic and bromide were below the detection limit. (USGS)

  17. Influence of hydronium, sulfate, chloride and other non-carbonate ions on hydrogen generation by anaerobic corrosion of granular cast iron.

    PubMed

    Ruhl, Aki S; Jekel, Martin

    2013-10-15

    Permeable reactive barriers are successfully applied for the removal of various contaminants. The concomitant reduction of hydrogen ions and the subsequent formation of hydrogen gas by anaerobic corrosion lead to decreased pore volume filled with water and thus residence times, so called gas clogging. Long term column experiments were conducted to elucidate the impact of ubiquitous water constituents on the formation of hydrogen gas and potential passivation due to corrosion products. The collected gas volumes revealed a relation to the hydronium concentration (pH) but were only slightly increased in the presence of chloride and sulfate and not significantly influenced in the presence of phosphate, silicate, humic acid and ammonium compared to deionized water. Significant gas volumes within the reactive filling were verified by gravimetry. The presence of nitrate completely eliminated hydrogen formation by competition for electrons. Solid phase analyses revealed that neither chloride nor sulfate was incorporated in corrosion products in concentrations above 0.1 weight percent, and they did not alter the formation of mainly magnetite in comparison to deionized water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effects of single and repeated exposure to biocidal active substances on the barrier function of the skin in vitro.

    PubMed

    Buist, Harrie E; van de Sandt, Johannes J M; van Burgsteden, Johan A; de Heer, Cees

    2005-10-01

    The dermal route of exposure is important in worker exposure to biocidal products. Many biocidal active substances which are used on a daily basis may decrease the barrier function of the skin to a larger extent than current risk assessment practice addresses, due to possible skin effects of repeated exposure. The influence of repeated and single exposure to representative biocidal active substances on the skin barrier was investigated in vitro. The biocidal active substances selected were alkyldimethylbenzylammonium chloride (ADBAC), boric acid, deltamethrin, dimethyldidecylammonium chloride (DDAC), formaldehyde, permethrin, piperonyl butoxide, sodium bromide, and tebuconazole. Of these nine compounds, only the quaternary ammonium chlorides ADBAC and DDAC had a clear and consistent influence on skin permeability of the marker compounds tritiated water and [(14)C]propoxur. For these compounds, repeated exposure increased skin permeability more than single exposure. At high concentrations the difference between single and repeated exposure was quantitatively significant: repeated exposure to 300 mg/L ADBAC increased skin permeability two to threefold in comparison to single exposure. Therefore, single and repeated exposure to specific biocidal products may significantly increase skin permeability, especially when used undiluted.

  19. Recovery of phosphorous from industrial waste water by oxidation and precipitation.

    PubMed

    Ylmén, Rikard; Gustafsson, Anna M K; Camerani-Pinzani, Caterina; Steenari, Britt-Marie

    2017-07-03

    This paper describes the development of a method for recovery of phosphorous from one of the waste waters at an Akzo Nobel chemical plant in Ale close to Göteborg. It was found that it is possible to transform the phosphorous in the waste water to a saleable product, i.e. a slowly dissolving fertilizer. The developed process includes oxidation of phosphite to phosphate with hydrogen peroxide and heat. The phosphate is then precipitated as crystalline struvite (ammonium magnesium phosphate) by the addition of magnesium chloride. The environmental impacts of the new method were compared with those of the current method using life cycle assessment. It was found that the methodology developed in this project was an improvement compared with the current practice regarding element resource depletion and eutrophication. However, the effect on global warming would be greater with the new method. There could however be several ways to decrease the global warming effect. Since most of the carbon dioxide emissions come from the production of magnesium chloride from carbonates, changing to utilization of a magnesium chloride from desalination of seawater or from recycling of PVC would decrease the carbon footprint significantly.

  20. Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug.

    PubMed

    Song, Weixing; He, Qiang; Möhwald, Helmuth; Yang, Yang; Li, Junbai

    2009-10-15

    Heat treatment is introduced as a simple method for the encapsulation of low molecular weight water-soluble drugs within layer-by-layer assembled microcapsules. A water-soluble drug, procainamide hydrochloride, could thus be encapsulated in large amount and enriched by more than 2 orders of magnitude in the assembled PDADMAC/PSS capsules. The shrunk capsules could control the unloading rate of drugs, and the drugs could be easily unloaded using ultrasonic treatment. The encapsulated amount could be quantitatively controlled via the drug concentration in the bulk. We also found that smaller capsules possess higher encapsulation capability.

  1. Microwave-assisted preparation of nitrogen-doped biochars by ammonium acetate activation for adsorption of acid red 18

    NASA Astrophysics Data System (ADS)

    Wang, Li; Yan, Wei; He, Chi; Wen, Hang; Cai, Zhang; Wang, Zixuan; Chen, Zhengzheng; Liu, Weifeng

    2018-03-01

    Nitrogen-doped biochars derived from Phragmites australis (PA) were prepared using ammonium chloride (AC) and ammonium acetate (AA) as nitrogen sources by phosphoric acid activation via microwave assisted treatment. Their physicochemical properties, acid red 18 (AR18) adsorption performance and possible mechanisms were systematically evaluated. Nitrogen was successfully doped onto the biochar's surface in the formation of pyrrole-N, pyridine-N and oxidized-N with pyridine-N being the major component (64%). The pHiep and basic foundational groups of the biochars increased consequently however their surface areas slightly decreased. The adsorption kinetic data were best fit to the pseudo-second order model and the equilibrium data were well simulated by Freundlich model for all biochars, indicating the important role of chemical interactions. The maximum AR18 adsorption capacities of PAB-AA and PAB-AC were 1.41 and 1.18 times higher compared with the non N-doped biochar, which were mainly attributed to the π-π EDA interaction between the pyridine-N and AR18 as revealed by the comparison of XPS analyses before and after AR18 adsorption. Meanwhile, other mechanisms such as pore filling effect, Lewis acid-base interaction, electrostatic attraction and hydrogen bonding also existed as demonstrated by BET, XPS and FTIR analyses.

  2. [Quaternary ammonium cytotoxicity in a human conjunctival cell line].

    PubMed

    Debbasch, C; de Saint Jean, M; Pisella, P J; Rat, P; Warnet, J M; Baudouin, C

    1999-11-01

    Ophthalmic preparations can induce conjunctival toxicity, often caused by preservatives. The aim of this study was to evaluate in vitro cytotoxicity of quaternary ammonium. Cytotoxicity tests were done on a continuous human conjunctival cell line using microplate cold light cytofluorimetry. Membrane integrity (neutral red test), DNA condensation (Hoechst 33342 test) and reactive oxygen species (ROS) production (dichlorofluorescein diacetate and hydroethidine tests) were evaluated on living cells treated with different concentrations of benzalkonium chloride, benzododecinium bromide and cetrimide (0.00001 to 0.01%) after 15 minutes of treatment or 15 minutes and 24 hours of cell recovery. All the compounds tested showed similar in vitro effects. Using the neutral red test, we observed a decrease in membrane integrity even at 0.005% and 0.01% (p < 0.001) and after a short time (15 minutes). A stimulation of ROS production (H2O2 and O2) was observed at 0.00001% and above (p < 0.001), associated with a chromatine condensation due to an apoptotic phenomenon. A necrotic phenomenon is suggested at high concentrations of quaternary ammonium preservatives whereas an apoptotic mechanism exists for lower concentrations. This toxicity observed in vitro can explain some of the ocular surface damage caused by long-term use of preserved eye-drops.

  3. Separation of the isomers of benzene poly(carboxylic acid)s by quaternary ammonium salt via formation of deep eutectic solvents.

    PubMed

    Hou, Yucui; Li, Jian; Ren, Shuhang; Niu, Muge; Wu, Weize

    2014-11-26

    Because of similar properties and very low volatility, isomers of benzene poly(carboxylic acid)s (BPCAs) are very difficult to separate. In this work, we found that isomers of BPCAs could be separated efficiently by quaternary ammonium salts (QASs) via formation of deep eutectic solvents (DESs). Three kinds of QASs were used to separate the isomers of BPCAs, including the isomers of benzene tricarboxylic acids (trimellitic acid, trimesic acid, and hemimellitic acid) and the isomers of benzene dicarboxylic acids (phthalic acid and isophthalic acid). Among the QASs, tetraethylammonium chloride was found to have the best performance, which could completely separate BPCA isomers in methyl ethyl ketone solutions. It was found that the hydrogen bond forming between QAS and BPCA results in the selective separation of BPCA isomers. QAS in DES was regenerated effectively by the antisolvent method, and the regenerated QAS was reused four times with the same high efficiency.

  4. [Study on the extraction technology and hypoglycemic activity of lectin from Trichosanthes kirilowi].

    PubMed

    Li, Qiong; Ye, Xiao-Li; Zeng, Hong; Chen, Xin; Li, Xue-Gang

    2012-03-01

    To extract lectins from Trichosanthes kirilowi and study their hypoglycemic activity. The optimal extraction process included the following parameters were conformed by optimization analysis,lectins extracted from Trichosanthes kirilowi was achieved by ammonium sulfate precipitation; The agglutinate activity was determined by using the agglutination test with 5% human blood cells. Human hepatocarcinoma cell HepG2 and the alloxan-induced diabetic mice model were used to assess hypoglycemic activity of Lectin in Trichosanthes kirilowi. The agglutination indexes of lectins extraction buffer were 32; The cell and mice tests indicated that the lectins exhibited hypoglycemic activity in the 70% saturation. The optimum extraction technology is as follows: extraction with PBS, the material-water ratio is 1:30, the extraction time is 24 h, while the concentration of sodium chloride is 0 mol/L and pH is 7.2. Precipitate lectins by ammonium sulfate in the 70% saturation, centrifugal speed is 10 000 tracted from Trichosanthes kirilowi exposes proper hypoglycemic activity.

  5. Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media.

    PubMed

    Lacasa, Engracia; Cañizares, Pablo; Llanos, Javier; Rodrigo, Manuel A

    2012-04-30

    In this work, the effect of the cathode material (conductive diamond, stainless steel, silicon carbide, graphite or lead) and the current density (150-1400 A m(-2)) on the removal of nitrates from aqueous solutions is studied by electrolysis in non-divided electrochemical cells equipped with conductive diamond anodes, using sodium sulphate as the electrolyte. The results show that the cathode material very strongly influences both the process performance and the product distribution. The main products obtained are gaseous nitrogen (NO, N(2)O and NO(2)) and ammonium ions. Nitrate removal follows first order kinetics, which indicates that the electrolysis process is controlled by mass transfer. Furthermore, the stainless steel and graphite cathodes show a great selectivity towards the production of ammonium ions, whereas the silicon carbide cathode leads to the highest formation of gaseous nitrogen, which production is promoted at low current densities. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A solid phase extraction-ion chromatography with conductivity detection procedure for determining cationic surfactants in surface water samples.

    PubMed

    Olkowska, Ewa; Polkowska, Żaneta; Namieśnik, Jacek

    2013-11-15

    A new analytical procedure for the simultaneous determination of individual cationic surfactants (alkyl benzyl dimethyl ammonium chlorides) in surface water samples has been developed. We describe this methodology for the first time: it involves the application of solid phase extraction (SPE-for sample preparation) coupled with ion chromatography-conductivity detection (IC-CD-for the final determination). Mean recoveries of analytes between 79% and 93%, and overall method quantification limits in the range from 0.0018 to 0.038 μg/mL for surface water and CRM samples were achieved. The methodology was applied to the determination of individual alkyl benzyl quaternary ammonium compounds in environmental samples (reservoir water) and enables their presence in such types of waters to be confirmed. In addition, it is a simpler, less time-consuming, labour-intensive, avoiding use of toxic chloroform and significantly less expensive methodology than previously described approaches (liquid-liquid extraction coupled with liquid chromatography-mass spectrometry). Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan.

    PubMed

    Chen, Yuxiang; Li, Jianna; Li, Qingqing; Shen, Yuanyuan; Ge, Zaochuan; Zhang, Wenwen; Chen, Shiguo

    2016-06-05

    Chitosan (CS) has attracted much attention due to its good antibacterial activity and biocompatibility. However, CS is insoluble in neutral and alkaline aqueous solution, limiting its biomedical application to some extent. To circumvent this drawback, we have synthesized a novel N-quaternary ammonium-O-sulfobetaine-chitosan (Q3BCS) by introducing quaternary ammonium compound (QAC) and sulfobetaine, and its water-solubility, antibacterial activity and biocompatibility were evaluated compare to N-quaternary ammonium chitosan and native CS. The results showed that by introducing QAC, antibacterial activities and water-solubilities increase with degrees of substitution. The largest diameter zone of inhibition (DIZ) was improved from 0 (CS) to 15mm (N-Q3CS). And the water solution became completely transparent from pH 6.5 to pH 11; the maximal waters-solubility was improved from almost 0% (CS) to 113% at pH 7 (N-Q3CS). More importantly, by further introducing sulfobetaine, cell survival rate of Q3BCS increased from 30% (N-Q3CS) to 85% at 2000μg/ml, which is even greater than that of native CS. Furthermore, hemolysis of Q3BCS was dropped sharply from 4.07% (N-Q3CS) to 0.06%, while the water-solution and antibacterial activity were further improved significantly. This work proposes an efficient strategy to prepare CS derivatives with enhanced antibacterial activity, biocompatibility and water-solubility. Additionally, these properties can be finely tailored by changing the feed ratio of CS, glycidyl trimethylammonium chloride and NCO-sulfobetaine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Evidence that two alkyl ester quaternary ammonium compounds lack substantial human skin-sensitizing potential.

    PubMed

    Jowsey, Ian R; Kligman, Albert M; White, Ian R; Goossens, An; Basketter, David A

    2007-03-01

    Alkyl ester quaternary ammonium compounds (ester quats) are used extensively in fabric rinse conditioners. It is important to document in the literature the outcome of historical studies that were performed to assess the risk of adverse skin effects associated with their use. (1) To document the outcomes of historical studies performed to evaluate the skin sensitizing potential of two ester quats (the di-[hardened tallow fatty acid] ester of 2,3-dihydroxypropyl-trimethyl ammonium chloride [HEQ] and the dialkyl ester of triethanol ammonium methyl sulfate [TEA-Quat]) and (2) to demonstrate that these ester quats lack marked skin-sensitizing potential in humans, such that they do not present a risk of contact allergy for consumers who use fabric rinse conditioners. Each material was assessed in the human maximization test in a panel of 25 volunteers. Diagnostic patch testing was also performed with each material in a population of 239 patients undergoing routine patch testing for suspected allergic contact dermatitis. These data are also considered in the context of an exposure-based quantitative risk assessment. Neither HEQ nor TEA-Quat was found to cause skin sensitization under the conditions of the human maximization test. No evidence of contact allergy to the materials was found among the relatively small population assessed by diagnostic patch testing. This study provides evidence that HEQ and TEA-Quat lack substantial skin-sensitizing potential in humans. Taken together with similar data for other ester quats, it suggests that compounds in this class are unlikely to be significant human contact allergens.

  9. Investigating hygroscopic behavior and phase separation of organic/inorganic mixed phase aerosol particles with FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Cziczo, D. J.

    2013-12-01

    Atmospheric aerosol particles can be composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have very well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. For example, the deliquescence relative humidity of pure ammonium sulfate is about 80% and its efflorescence point is about 35%. This behavior of ammonium sulfate is important to atmospheric chemistry because some reactions, such as the hydrolysis of nitrogen pentoxide, occur on aqueous but not crystalline surfaces. Deliquescence and efflorescence of simple inorganic salt particles have been investigated by a variety of methods, such as IR spectroscopy, tandem mobility analysis and electrodynamic balance. Field measurements have shown that atmospheric aerosol are not typically a single inorganic salt, instead they often contain organic as well as inorganic species. Mixed inorganic/organic aerosol particles, while abundant in the atmosphere, have not been studied as extensively. Many recent studies have focused on microscopy techniques that require deposition of the aerosol on a glass slide, possibly changing its surface properties. This project investigates the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O:C ratios, including glycerol, 1,2,6-hexanetriol, 1,4-butanediol and 1,5-pentanediol have been investigated. This project aims to study gas-phase exchange in these aerosol systems to determine if exchange is impacted when phase separation occurs.

  10. Reporter-free potentiometric sensing of boronic acids and their reactions by using quaternary ammonium salt-functionalized polymeric liquid membranes.

    PubMed

    Wang, Xuewei; Yue, Dengfeng; Lv, Enguang; Wu, Lei; Qin, Wei

    2014-02-18

    The tremendous applications of boronic acids (BAs) in chemical sensing, medical chemistry, molecular assembly, and organic synthesis lead to an urgent demand for developing effective sensing methods for BAs. This paper reports a facile and sensitive potentiometric sensor scheme for heterogeneous detection of BAs based on their unexpected potential responses on quaternary ammonium salt-doped polymeric liquid membranes. (11)B NMR data reveal that a quaternary ammonium chloride can trigger the hydrolysis of an electrically neutral BA in an aprotic solvent. Using the quaternary ammonium salt as the receptor, the BA molecules can be extracted from the sample solution into the polymeric membrane phase and undergo the concomitant hydrolysis. Such salt-triggered hydrolysis generates H(+) ions, which can be coejected into the aqueous phase with the counterions (e.g., Cl(-)) owing to their high hydrophilicities. The perturbation on the ionic partition at the sample-membrane interface changes the phase boundary potential and thus enables the potentiometric sensing of BAs. In contrast to other transduction methods for BAs, for which labeled or separate reporters are exclusively required, the present heterogeneous sensing scheme allows the direct detection of BAs without using any reporter molecules. This technique shows superior detection limits for BAs (e.g., 1.0 × 10(-6) M for phenylboronic acid) as compared to previously reported methods based on colorimetry, fluorimetry, and mass spectrometry. The proposed sensing strategy has also been successfully applied to potentiometric indication of the BA reactions with hydrogen peroxide and saccharides, which allows indirect and sensitive detection of these important species.

  11. Migration of inorganic ions from the leachate of the Rio das Ostras landfill: a comparison of three different configurations of protective barriers.

    PubMed

    Lacerda, Cláudia Virgínia; Ritter, Elisabeth; Pires, João Antônio da Costa; de Castro, José Adilson

    2014-11-01

    Batch tests and diffusion tests were performed to analyze the efficiency of a protective barrier in a landfill consisting of compacted soil with 10% bentonite compared to the results obtained for only compacted soil and for compacted soil covered with a 1-mm-thick HDPE geomembrane; the soil and leachate were collected from the Rio das Ostras Landfill in Rio de Janeiro, Brazil. The diffusion tests were performed for periods of 3, 10 and 60 days. After the test period, the soil pore water was analyzed and the profiles for chloride, potassium and ammonium were determined along a 6-cm soil depth. The results of the batch tests performed to define sorption parameters were used to adjust the profiles obtained in the diffusion cell experiment by applying an ion transfer model between the interstitial solution and the soil particles. The MPHMTP model (Multi Phase Heat and Mass Transfer Program), which is based upon the solution of the transport equations of the ionic contaminants, was used to solve the inverse problem of simultaneously determining the effective diffusion coefficients. The results of the experimental tests and of the model simulation confirmed that the compacted soil with 10% bentonite was moderately efficient in the retention of chloride, potassium and ammonium ions compared to the configurations of compacted soil with a geomembrane and compacted soil alone, representing a solution that is technically feasible and requires potentially lower costs for implementation in landfills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Biological evaluation of N-2-hydroxypropyl trimethyl ammonium chloride chitosan as a carrier for the delivery of live Newcastle disease vaccine.

    PubMed

    Zhao, Kai; Sun, Yanwei; Chen, Gang; Rong, Guangyu; Kang, Hong; Jin, Zheng; Wang, Xiaohua

    2016-09-20

    Mucosal immune system plays a very important role in antiviral immune response. We prepared Newcastle disease viruses (NDV) encapsulated in N-2-hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) nanoparticles (NDV/La Sota-N-2-HACC-NPs) by an ionic cross linking method, and assessed the potential of N-2-HACC-NPs as a mucosal immune delivery carrier. The properties of the nanoparticles were determined by transmission electron microscopy, Zeta potential and particle size analysis, encapsulation efficiency and loading capacity. NDV/La Sota-N-2-HACC-NPs have regular spherical morphologies and high stability; with 303.88±49.8nm mean diameter, 45.77±0.75mV Zeta potential, 94.26±0.42% encapsulation efficiency and 54.06±0.21% loading capacity. In vitro release assay indicated that the release of NDV from NDV/La Sota-N-2-HACC-NPs is slow. The NDV/La Sota-N-2-HACC-NPs have good biological characteristics, very low toxicity and high level of safety. Additionally, specific pathogen-free chickens immunized with NDV/La Sota-N-2-HACC-NPs showed much stronger cellular, humoral and mucosal immune responses than commercial attenuated live Newcastle disease vaccine, and NDV/La Sota-N-2-HACC-NPs reached the sustainable release effect. Our study here provides a foundation for the further development of mucosal vaccines and drugs, and the N-2-HACC-NPs should be a potential drug delivery carrier with immense potential in medical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Tolerance of Clostridium perfringens biofilms to disinfectants commonly used in the food industry.

    PubMed

    Charlebois, Audrey; Jacques, Mario; Boulianne, Martine; Archambault, Marie

    2017-04-01

    Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxemia in animal species. Recently, it was shown to form mono-species biofilms, a structured community of bacterial cells enclosed in a self-produced extracellular matrix. Biofilms have been associated with tolerance to antibiotics, disinfectants, and physical and environmental stresses. Very little is known about the tolerance of C. perfringens biofilm toward disinfectants. In the present study, susceptibilities of C. perfringens biofilms to five types of commonly used disinfectants on farms and in food processing environments were analysed. In this paper, we show that C. perfringens mono-species biofilms can protect the bacterial cells from the action of potassium monopersulfate, quaternary ammonium chloride, hydrogen peroxide and glutaraldehyde solutions. However, sodium hypochlorite solution was shown to be effective on C. perfringens biofilms. Our investigation of dual-species biofilms of C. perfringens with the addition of Staphylococcus aureus or Escherichia coli demonstrated that overall, the mono-species biofilm of C. perfringens was more tolerant to all disinfectants than the dual-species biofilms. For the anaerobic grown biofilms, the mono-species biofilm of C. perfringens was more tolerant to sodium hypochlorite and quaternary ammonium chloride than the dual-species biofilms of C. perfringens with S. aureus or E. coli. This study demonstrates that C. perfringens biofilm is an effective protection mechanism to disinfectants commonly used on farms and in food processing environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. MALDI-MS/MS with Traveling Wave Ion Mobility for the Structural Analysis of N-Linked Glycans

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Scarff, Charlotte A.; Crispin, Max; Scanlan, Christopher N.; Bonomelli, Camille; Scrivens, James H.

    2012-11-01

    The preference for singly charged ion formation by MALDI makes it a better choice than electrospray ionization for profiling mixtures of N-glycans. For structural analysis, fragmentation of negative ions often yields more informative spectra than fragmentation of positive ones but such ions are more difficult to produce from neutral glycans under MALDI conditions. This work investigates conditions for the formation of both positive and negative ions by MALDI from N-linked glycans released from glycoproteins and their subsequent MS/MS and ion mobility behaviour. 2,4,6-Trihydroxyacetophenone (THAP) doped with ammonium nitrate was found to give optimal ion yields in negative ion mode. Ammonium chloride or phosphate also yielded prominent adducts but anionic carbohydrates such as sulfated N-glycans tended to ionize preferentially. Carbohydrates adducted with all three adducts (phosphate, chloride, and nitrate) produced good negative ion CID spectra but those adducted with iodide and sulfate did not yield fragment ions although they gave stronger signals. Fragmentation paralleled that seen following electrospray ionization providing superior spectra than could be obtained by PSD on MALDI-TOF instruments or with ion traps. In addition, ion mobility drift times of the adducted glycans and the ability of this technique to separate isomers also mirrored those obtained following ESI sample introduction. Ion mobility also allowed profiles to be obtained from samples whose MALDI spectra showed no evidence of such ions allowing the technique to be used in conditions where sample amounts were limiting. The method was applied to N-glycans released from the recombinant human immunodeficiency virus glycoprotein, gp120.

  15. Frequency and Pathophysiology of Acute Liver Failure in Ornithine Transcarbamylase Deficiency (OTCD)

    PubMed Central

    Laemmle, Alexander; Gallagher, Renata C.; Keogh, Adrian; Stricker, Tamar; Gautschi, Matthias; Nuoffer, Jean-Marc; Baumgartner, Matthias R.; Häberle, Johannes

    2016-01-01

    Background Acute liver failure (ALF) has been reported in ornithine transcarbamylase deficiency (OTCD) and other urea cycle disorders (UCD). The frequency of ALF in OTCD is not well-defined and the pathogenesis is not known. Aim To evaluate the prevalence of ALF in OTCD, we analyzed the Swiss patient cohort. Laboratory data from 37 individuals, 27 females and 10 males, diagnosed between 12/1991 and 03/2015, were reviewed for evidence of ALF. In parallel, we performed cell culture studies using human primary hepatocytes from a single patient treated with ammonium chloride in order to investigate the inhibitory potential of ammonia on hepatic protein synthesis. Results More than 50% of Swiss patients with OTCD had liver involvement with ALF at least once in the course of disease. Elevated levels of ammonia often correlated with (laboratory) coagulopathy as reflected by increased values for international normalized ratio (INR) and low levels of hepatic coagulation factors which did not respond to vitamin K. In contrast, liver transaminases remained normal in several cases despite massive hyperammonemia and liver involvement as assessed by pathological INR values. In our in vitro studies, treatment of human primary hepatocytes with ammonium chloride for 48 hours resulted in a reduction of albumin synthesis and secretion by approximately 40%. Conclusion In conclusion, ALF is a common complication of OTCD, which may not always lead to severe symptoms and may therefore be underdiagnosed. Cell culture experiments suggest an ammonia-induced inhibition of hepatic protein synthesis, thus providing a possible pathophysiological explanation for hyperammonemia-associated ALF. PMID:27070778

  16. Radiation hardening of low condensation products containing amino group (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, S.; Hayashi, K.; Kaetsu, I.

    1967-11-01

    An initial condensation product is prepared by condensing a monomer selected from the group of urea, thiourea, melanine, aniline and acidamide with formalin. 0ne or more of the initial condensation product is then mixed with a substance which forms an acid or base by irradiation with an ionizing radiation in the presence or absence of the initial condensation product, except for halogenated hydrocarbon. The mixture is hardened by irradiation of the ionizing radiation to form a resinous substance. Formamide, acetamide, oxalic diamide, succinic diamide, acrylamide, etc. can be used as the acidamide monomer. Phosphonitrile chloride, cyanuric chloride, chloral hydrate, trichloroaceticmore » acid, monochloroacetic acid, ammonium chloride, aluminium chloride, gaseous chlorine, sullurous acid gas, sodium sulfite, aluminium sulfate, potassium hydrogensulfate, sodium pyrophosphate, potassium pyrophosphate, potassium phosphate, ammonia, bromine, bromal, bromal hydrate, dibromoacetic acid, sulfonated benzene, sulfonated toluene, etc. can be used as the acid- or base- forming substance. To the initial condensation product may be added 0.5-20%, in certain cases 20-50%, by weight of the said substances. The ionizing radiation can be electron beams. In an example, 2% chloral hydrate was homogeneously dissolved in the initial urea-formalin condensation product having a degree of condensation of 3--5. The solution was then irradiated by gamma rays at the dose rate of 4 x 10/sup 4/ r/hour from a /sup 60/Co source with a dose 5.0 x 10/sup 6/ roentgens. A white resinous composition was obtained. (JA)« less

  17. Water-quality data of soil water from three watersheds, Shenandoah National Park, Virginia, 1999-2000

    USGS Publications Warehouse

    Rice, Karen C.; Maben, Suzanne W.; Webb, James R.

    2001-01-01

    Data on the chemical composition of soil-water samples were collected quarterly from three watersheds in Shenandoah National Park, Virginia, from September 1999 through July 2000. The soil-water samples were analyzed for specific conductance and concentrations of sodium, potassium, calcium, magnesium, ammonium, chloride, nitrate, sulfate, acid-neutralizing capacity, silica, and total monomeric aluminum. The soil-water data presented in this report can be used to support water-quality modeling of the response of streams to episodic acidification. Laboratory analytical data as well as laboratory quality-assurance information also are presented.

  18. Frequency doubling crystals

    DOEpatents

    Wang, Francis; Velsko, Stephan P.

    1989-01-01

    A systematic approach to the production of frequency conversion crystals is described in which a chiral molecule has attached to it a "harmonic generating unit" which contributes to the noncentrosymmetry of the molecule. Certain preferred embodiments of such harmonic generating units include carboxylate, guanadyly and imidazolyl units. Certain preferred crystals include L-arginine fluoride, deuterated L-arginine fluoride, L-arginine chloride monohydrate, L-arginine acetate, dithallium tartrate, ammonium N-acetyl valine, N-acetyl tyrosine and N-acetyl hydroxyproline. Chemical modifications of the chiral molecule, such as deuteration, halogenation and controlled counterion substitution are available to adapt the dispersive properties of a crystal in a particular wavelength region.

  19. Interferometric measurements of a dendritic growth front solutal diffusion layer

    NASA Technical Reports Server (NTRS)

    Hopkins, John A.; Mccay, T. D.; Mccay, Mary H.

    1991-01-01

    An experimental study was undertaken to measure solutal distributions in the diffusion layer produced during the vertical directional solidification (VDS) of an ammonium chloride - water (NH4Cl-H2O) solution. Interferometry was used to obtain concentration measurements in the 1-2 millimeter region defining the diffusion layer. These measurements were fitted to an exponential form to extract the characteristic diffusion parameter for various times after the start of solidification. The diffusion parameters are within the limits predicted by steady state theory and suggest that the effective solutal diffusivity is increasing as solidification progresses.

  20. Dense Energetic Compounds of C, H, N, and O Atoms. III. 5-(4-Nitro-(1,2, 5)oxadiazolyl)-5H-(1,2,3)triazolo(4,5-c)(1,2,5)oxadiazole

    DTIC Science & Technology

    1993-07-21

    1,2,5)oxadiazolyl]-5H- [1,2,3]triazolo[4,5-c] [1,2,5]oxadiazole 1. The azide 5 was con- verted to a phosphinimine 9 in a reaction with triphenylphosphine ...and led instead to an intractable mixture in which neither a primary amine nor triphenylphosphine oxide were de- tected. ACKNOWLEDGEMENTS Financial...coi-responding amine 13 was obtained from the azide 5 by reduction with stannous chloride and was oxidized by ammonium persulfate to 5-[4- nitro

  1. Surface tension measurements of aqueous ammonium chloride (NH4Cl) in air

    NASA Technical Reports Server (NTRS)

    Lowry, S. A.; Mccay, M. H.; Mccay, T. D.; Gray, P. A.

    1989-01-01

    Aqueous NH4Cl's solidification is often used to model metal alloy solidification processes. The present determinations of the magnitude of the variation of aqueous NH4Cl's surface tension as a function of both temperature and solutal concentration were conducted at 3, 24, and 40 C over the 72-100 wt pct water solutal range. In general, the surface tension increases 0.31 dyn/cm per percent decrease in wt pct of water, and decreases 0.13 dyn/cm for each increase in deg C. Attention is given to the experimental apparatus employed.

  2. Corrosion resistant properties of polyaniline acrylic coating on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Sathiyanarayanan, S.; Azim, S. Syed; Venkatachari, G.

    2006-12-01

    The performance of the paint coating based on acrylic-polyaniline on magnesium alloy ZM 21 has been studied by electrochemical impedance spectroscopy in 0.5% NaCl solution. The polyaniline was prepared by chemical oxidative method of aniline with ammonium persulphate in phosphoric acid medium. The phosphate-doped polyaniline was characterized by FTIR and XRD methods. Acrylic paint containing the phosphate-doped polyaniline was prepared and coated on magnesium ZM 21 alloy. The coating was able to protect the magnesium alloy and no base metal dissolution was noted even after 75 days exposure to sodium chloride solution.

  3. Sorption of dodecyltrimethylammonium chloride (DTAC) to agricultural soils.

    PubMed

    Xiang, Lei; Sun, Teng-Fei; Zheng, Mei-Jie; Li, Yan-Wen; Li, Hui; Wong, Ming-Hung; Cai, Quan-Ying; Mo, Ce-Hui

    2016-08-01

    Quaternary ammonium compounds (QACs) used as cationic surfactants are intensively released into environment to be pollutants receiving more and more concerns. Sorption of dodecyltrimethylammonium chloride (DTAC), one of commonly used alkyl QACs, to five types of agricultural soils at low concentrations (1-50mg/L) was investigated using batch experiments. DTAC sorption followed pseudo-second-order kinetics and reached reaction equilibrium within 120min. Both Freundlich model and Langmuir model fitted well with DTAC isotherm data with the latter better. DTAC sorption was spontaneous and favorable, presenting a physical sorption dominated by ion exchanges. Sorption distribution coefficient and sorption affinity demonstrated that soil clay contents acted as a predominant phase of DTAC sorption. DTAC could display a higher mobility and potential accumulation in crops in the soils with lower clay contents and lower pH values. Sorption of DTAC was heavily affected by ions in solution with anion promotion and cation inhibition. Copyright © 2016. Published by Elsevier B.V.

  4. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  5. A hybridization approach to efficient TiO2 photodegradation of aqueous benzalkonium chloride.

    PubMed

    Suchithra, Padmajan Sasikala; Carleer, Robert; Ananthakumar, Solaippan; Yperman, Jan

    2015-08-15

    TiO2 get positively charged upon UV-irradiation and repel the cationic pollutants away from the surface. Hybridization of AC onto TiO2 (ACT) tends catalyst surface negatively charged besides providing highly favorable adsorptions sites for cationic pollutants. The photodegradation of benzalkonium chloride (BKC), a quaternary ammonium surfactant and a pharmaceutical, is investigated with ACT. The surface charge of the catalyst in surfactant and non-surfactant aqueous dispersion under UV-irradiation is investigated and explained. The anomalous increase in COD values at the beginning of BKC-photodegradation is explained. The intermediate products formed are identified in both solution and solid phase. Trace amount of dodecane remained adsorbed on the catalyst surface after 1h UV-irradiation, but complete mineralization of BKC is achieved with 2h UV-irradiation. We propose that BKC photodegradation starts by central fission of benzyl CN bond followed by dealkylation, and demethylation steps. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Growth and photocatalytic properties of Sb-doped ZnO nanoneedles by hydrothermal process

    NASA Astrophysics Data System (ADS)

    Abaker, M.; Umar, Ahmad; Al-Sayari, S. A.; Dar, G. N.; Faisal, M.; Kim, S. H.; Hwang, S. W.

    2011-10-01

    This paper reports a facile hydrothermal synthesis of Sb-doped ZnO nanoneedles by using aqueous mixtures of zinc chloride, antimony (Sb) chloride, hexamethylenetetramine (HMTA) and ammonium hydroxide at low temperature of 110 °C. The morphological characterizations of as-synthesized nanoneedles were done by field emission scanning electron microscopy (FESEM) which reveals that the nanoneedles are grown in large-quantity and arranged in such a special manner that they made flower-like morphologies. The structural characterization of as-synthesized nanoneedles was investigated by X-ray diffraction (XRD) pattern which confirm the well-crystalline and wurtzite hexagonal phase of as-synthesized products. The compositional characterization of as-synthesized nanoneedles was characterized by energy dispersive spectroscopy (EDS), which verify that the synthesized nanoneedles are composed of zinc, Sb and oxygen. For application point of view, the synthesized nanoneedles were used as photocatalyst for photocatalytic degradation of methylene blue (MBB) and it was found that it exhibit good photocatalytic properties towards the photocatalytic degradation of methylene blue.

  7. Some environmental considerations relating to the interaction of the solid rocket motor exhaust with the atmosphere: Predicted chemical composition of exhaust species and predicted conditions for the formation of HCl aerosol

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.

    1973-01-01

    The exhaust products of a solid rocket motor using as propellant 14% binder, 16% aluminum, and 70% (wt) ammonium perchlorate consist of hydrogen chloride, water, alumina, and other compounds. The equilibrium and some frozen compositions of the chemical species upon interaction with the atmosphere were computed. The conditions under which hydrogen chloride interacts with the water vapor in humid air to form an aerosol containing hydrochloric acid were computed for various weight ratios of air/exhaust products. These computations were also performed for the case of a combined SRM and hydrogen-oxygen rocket engine. Regimes of temperature and relative humidity where this aerosol is expected were identified. Within these regimes, the concentration of HCL in the aerosol and weight fraction of aerosol to gas phase were plotted. Hydrochloric acid aerosol formation was found to be particularly likely in cool humid weather.

  8. Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM.

    PubMed

    Habibi, Neda

    2014-10-15

    The preparation and characterization of magnetite-carboxymethyl cellulose nano-composite (M-CMC) material is described. Magnetite nano-particles were synthesized by a modified co-precipitation method using ferrous chloride tetrahydrate and ferric chloride hexahydrate in ammonium hydroxide solution. The M-CMC nano-composite particles were synthesized by embedding the magnetite nanoparticles inside carboxymethyl cellulose (CMC) using a freshly prepared mixture of Fe3O4 with CMC precursor. Morphology, particle size, and structural properties of magnetite-carboxymethyl cellulose nano-composite was accomplished using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. As a result, magnetite nano-particles with an average size of 35nm were obtained. The biocompatible Fe3O4-carboxymethyl cellulose nano-composite particles obtained from the natural CMC polymers have a potential range of application in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Kinetic and crystallographic studies of Escherichia coli UDP-N-acetylmuramate:L-alanine ligase.

    PubMed Central

    Emanuele, J. J.; Jin, H.; Jacobson, B. L.; Chang, C. Y.; Einspahr, H. M.; Villafranca, J. J.

    1996-01-01

    Uridine diphosphate-N-acetylmuramate:L-alanine ligase (EC 6.3.2.8, UNAM:L-Ala ligase or MurC gene product) catalyzes the ATP-dependent ligation of the first amino acid to the sugar moiety of the peptidoglycan precursor. This is an essential step in cell wall biosynthesis for both gram-positive and gram-negative bacteria. Optimal assay conditions for initial velocity studies have been established. Steady-state assays were carried out to determine the effect of various parameters on enzyme activity. Factors studies included: cation specificity, ionic strength, buffer composition and pH. At 37 degrees C and pH 8.0, kcat was equal to 980 +/- 40 min-1, while K(m) values for ATP, UNAM, and L-alanine were, 130 +/- 10, 44 +/- 3, and 48 +/- 6 microM, respectively. Of the metals tested only Mn, Mg, and Co were able to support activity. Sodium chloride, potassium chloride, ammonium chloride, and ammonium sulfate had no effect on activity up to 75 mM levels. The enzyme, in appropriate buffer, was stable enough to be assayed over the pH range of 5.6 to 10.1. pH profiles of Vmax/K(m) for the three substrates and of Vmax were obtained. Crystallization experiments with the enzyme produced two crystal forms. One of these has been characterized by X-ray diffraction as monoclinic, space group C2, with cell dimensions a = 189.6, b = 92.1, c = 75.2 A, beta = 105 degrees, and two 54 kDa molecules per asymmetric unit. It was discovered that the enzyme will hydrolyze ATP in the absence of L-alanine. This L-alanine independent activity is dependent upon the concentrations of both ATP and UNAM; kcat for this activity is less than 4% of the biosynthetic activity measured in the presence of saturating levels of L-alanine. Numerous L-alanine analogs tested were shown to stimulate ATP hydrolysis. A number of these L-alanine analogs produced novel products as accessed by HPLC and mass spectral analysis. All of the L-alanine analogs tested as inhibitors were competitive versus L-alanine. PMID:8976565

  10. Phase-transfer catalysis and ultrasonic waves II: saponification of vegetable oil.

    PubMed

    Entezari, M H; Keshavarzi, A

    2001-07-01

    Saponification of oils which is a commercially important heterogeneous reaction, can be speeded up by the application of ultrasound in the presence of phase-transfer catalyst (PTC). This paper focuses on the ability of ultrasound to cause efficient mixing of this liquid-liquid heterogeneous reaction. Castor oil was taken as a model oil and the kinetic of the reaction was followed by the extent of saponification. The hydrolysis of castor oil was carried out with different PTC such as cetyl trimethyl ammonium bromide (CTAB), benzyl triethyl ammonium chloride (BTAC) and tetrabutyl ammonium bromide (TBAB) in aqueous alkaline solution. As hydroxyl anion moves very slowly from aqueous to oil phase, the presence of a PTC is of prime importance. For this purpose, cationic surfactants are selected. The sonication of biphasic system were performed by 20 kHz (simple horn and cup horn) and 900 kHz. It was found that CTAB was better than the two others and this could be related to the molecular structure of the PTCs. The effect of temperature was also studied on the saponification process. By increasing the temperature, the yield was also increased and this could be explained by intermolecular forces, interfacial tension and mass transfer. Saponification of three different vegetable oils shows that the almond oil is saponified easier than the two others and this could be related to their properties such as surface tension, viscosity and density.

  11. Long-term nitrogen behavior under treated wastewater infiltration basins in a soil-aquifer treatment (SAT) system.

    PubMed

    Mienis, Omer; Arye, Gilboa

    2018-05-01

    The long term behavior of total nitrogen and its components was investigated in a soil aquifer treatment system of the Dan Region Reclamation Project (Shafdan), Tel-Aviv, Israel. Use is made of the previous 40 years' secondary data for the main nitrogen components (ammonium, nitrate and organic nitrogen) in recharged effluent and observation wells located inside an infiltration basin. The wells were drilled to 106 and 67 m, both in a similar position within the basin. The transport characteristics of each nitrogen component were evaluated based on chloride travel-time, calculated by a cross-correlation between its concentration in the recharge effluent and the observation wells. Changes in the source of recharge effluent, wastewater treatment technology and recharge regime were found to be the main factors affecting turnover in total nitrogen and its components. During aerobic operation of the infiltration basins, most organic nitrogen and ammonium will be converted to nitrate. Total nitrogen removal in the upper part of the aquifer was found to be 47-63% by denitrification and absorption, and overall removal, including the lower part of the aquifer, was 49-83%. To maintain the aerobic operation of the infiltration fields, the total nitrogen load should remain below 10 mg/L. Above this limit, ammonium and organic nitrogen will be displaced into the aquifer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Characterization of Staphylococcus epidermidis strains isolated from industrial cleanrooms under regular routine disinfection.

    PubMed

    Ribič, U; Klančnik, A; Jeršek, B

    2017-05-01

    The purpose of this study was the genotypic and phenotypic characterization of 57 strains of Staphylococcus epidermidis isolated from cleanroom environments, based on their biofilm formation and antimicrobial resistance profiles. Biofilm formation was investigated using real-time PCR (icaA, aap, bhp genes), the Congo red agar method and the crystal violet assay. The majority of the strains (59·7%; 34/57) did not form biofilms according to the crystal violet assay, although the biofilm-associated genes were present in 94·7% (54/57) of the strains. Of the biofilm formers (40·4%; 23/57), 39·1% (9/23) have been identified as strong biofilm formers (>4× crystal violet absorbance cut-off). Resistance to a commercial disinfectant and its quaternary ammonium active component, didecyl-dimethyl-ammonium chloride (DDAC), was determined according to minimum inhibitory concentrations (MICs) and the presence of the qac (quaternary ammonium compound) genes. More than 95% (55/57) of the Staph. epidermidis strains had the qacA/B and qacC genes, but not the other qac genes. The MICs for the disinfectant and DDAC varied among the Staph. epidermidis strains, although none were resistant. Although 59·6% of the Staph. epidermidis strains did not form biofilms and none were resistant to DDAC, more than 94% had the genetic basis for development of resistance to quaternary ammonium compounds, and among them at least 14·0% (8/57) might represent a high risk to cleanroom hygiene as strong biofim formers with qacA/B and qacC genes. To assure controlled cleanroom environments, bacterial strains isolated from cleanroom environments need to be characterized regularly using several investigative methods. © 2017 The Society for Applied Microbiology.

  13. Gauze Impregnated With Quaternary Ammonium Salt Reduces Bacterial Colonization of Surgical Drains After Breast Reconstruction.

    PubMed

    Strong, Amy L; Wolfe, Emily T; Shank, Nina; Chaffin, Abigail E; Jansen, David A

    2018-06-01

    Surgical site infection after breast reconstruction is associated with increased length of hospital stay, readmission rates, cost, morbidity, and mortality. Identifying methods to reduce surgical site infection without the use of antibiotics may be beneficial at reducing antimicrobial resistance, reserving the use of antibiotics for more severe cases. Quaternary ammonium salts have previously been shown to be a safe and effective antimicrobial agent in the setting of in vitro and in vivo animal experiments. A retrospective study was conducted to investigate the antimicrobial properties of a quaternary ammonium salt, 3-trimethoxysilyl propyldimethyloctadecyl ammonium chloride (QAS-3PAC; Bio-spear), at reducing surgical drain site colonization and infection after breast reconstruction (deep inferior epigastric perforator flap reconstruction or tissue expander placement). Twenty patients were enrolled, with 14 surgical drains covered with nonimpregnated gauze and 17 surgical drains covered with QAS-3PAC impregnated gauze, for the purposes of investigating bacterial colonization. Antibiotic sensitivity analysis was also conducted when bacterial cultures were positive. The overall incidence of bacterial colonization of surgical drains was lower in the treatment group compared with the control group (17.6% vs 64.3%, respectively; P = 0.008). QAS-3PAC impregnated gauze reduced the incidence of bacterial colonization of surgical drains during the first (0.0% vs 33.3%) and second (33.3% vs 87.5%; P = 0.04) postoperative week. Furthermore, no enhanced antibiotic resistance was noted on drains treated with QAS-3PAC impregnated gauze. The results of this study suggest that QAS-3PAC impregnated gauze applied over surgical drains may be an effective method for reducing the incidence of bacterial colonization.

  14. Relationship between intracellular pH and proton mobility in rat and guinea-pig ventricular myocytes.

    PubMed

    Swietach, Pawel; Vaughan-Jones, Richard D

    2005-08-01

    Intracellular H+ ion mobility in eukaryotic cells is low because of intracellular buffering. We have investigated whether Hi+ mobility varies with pHi. A dual microperfusion apparatus was used to expose guinea-pig or rat myocytes to small localized doses (3-5 mm) of ammonium chloride (applied in Hepes-buffered solution). Intracellular pH (pHi) was monitored confocally using the fluorescent dye, carboxy-SNARF-1. Local ammonium exposure produced a stable, longitudinal pHi gradient. Its size was fed into a look-up table (LUT) to give an estimate of the apparent intracellular proton diffusion coefficient (D(app)H). LUTs were generated using a diffusion-reaction model of Hi+ mobility based on intracellular buffer diffusion. To examine the pHi sensitivity of D(app)H, whole-cell pHi was initially displaced using a whole-cell ammonium or acetate prepulse, before locally applying the low dose of ammonium. In both rat and guinea-pig, D(app)H decreased with pHi over the range 7.5-6.5. In separate pipette-loading experiments, the intracellular diffusion coefficient for carboxy-SNARF-1 (a mobile-buffer analogue) exhibited no significant pHi dependence. The pHi sensitivity of D(app)H is thus likely to be governed by the mobile fraction of intrinsic buffering capacity. These results reinforce the buffer hypothesis of Hi+ mobility. The pHi dependence of D(app)H was used to characterize the mobile and fixed buffer components, and to estimate D(mob) (the average diffusion coefficient for intracellular mobile buffer). One consequence of a decline in Hi+ mobility at low pHi is that it will predispose the myocardium to pHi nonuniformity. The physiological relevance of this is discussed.

  15. Use of ammonium formate in QuEChERS for high-throughput analysis of pesticides in food by fast, low-pressure gas chromatography and liquid chromatography tandem mass spectrometry.

    PubMed

    González-Curbelo, Miguel Ángel; Lehotay, Steven J; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Ángel

    2014-09-05

    The "quick, easy, cheap, effective, rugged, and safe" (QuEChERS) approach to sample preparation is widely applied in pesticide residue analysis, but the use of magnesium sulfate and other nonvolatile compounds for salting out in the method is not ideal for mass spectrometry. In this study, we developed and evaluated three new different versions of the QuEChERS method using more volatile salts (ammonium chloride and ammonium formate and acetate buffers) to induce phase separation and extraction of 43 representative pesticide analytes of different classes. Fast low-pressure gas chromatography tandem mass spectrometry (LPGC-MS/MS) and liquid chromatography (LC)-MS/MS were used for analysis. The QuEChERS AOAC Official Method 2007.01 was also tested for comparison purposes. Of the studied methods, formate buffering using 7.5g of ammonium formate and 15mL of 5% (v/v) formic acid in acetonitrile for the extraction of 15g of sample (5g for wheat grain) provided the best performance and practical considerations. Method validation was carried out with and without the use of dispersive solid-phase extraction for cleanup, and no significant differences were observed for the majority of pesticides. The method was demonstrated in quantitative analysis for GC- and LC-amenable pesticides in 4 representative food matrices (apple, lemon, lettuce, and wheat grain). With the typical exceptions of certain pH-dependent and labile pesticides, 90-110% recoveries and <10% RSD were obtained. Detection limits were mostly <5ng/g, which met the general need to determine pesticide concentrations as low as 10ng/g for monitoring purposes in food applications. Published by Elsevier B.V.

  16. Wintertime water-soluble aerosol composition and particle water content in Fresno, California

    NASA Astrophysics Data System (ADS)

    Parworth, Caroline L.; Young, Dominique E.; Kim, Hwajin; Zhang, Xiaolu; Cappa, Christopher D.; Collier, Sonya; Zhang, Qi

    2017-03-01

    The composition and concentrations of water-soluble gases and ionic aerosol components were measured from January to February 2013 in Fresno, CA, with a particle-into-liquid sampler with ion chromatography and annular denuders. The average (±1σ) ionic aerosol mass concentration was 15.0 (±9.4) µg m-3, and dominated by nitrate (61%), followed by ammonium, sulfate, chloride, potassium, nitrite, and sodium. Aerosol-phase organic acids, including formate and glycolate, and amines including methylaminium, triethanolaminium, ethanolaminium, dimethylaminium, and ethylaminium were also detected. Although the dominant species all came from secondary aerosol formation, there were primary sources of ionic aerosols as well, including biomass burning for potassium and glycolate, sea spray for sodium, chloride, and dimethylamine, and vehicles for formate. Particulate methanesulfonic acid was also detected and mainly associated with terrestrial sources. On average, the molar concentration of ammonia was 49 times greater than nitric acid, indicating that ammonium nitrate formation was limited by nitric acid availability. Particle water was calculated based on the Extended Aerosol Inorganics Model (E-AIM) thermodynamic prediction of inorganic particle water and κ-Köhler theory approximation of organic particle water. The average (±1σ) particle water concentration was 19.2 (±18.6) µg m-3, of which 90% was attributed to inorganic species. The fractional contribution of particle water to total fine particle mass averaged at 36% during this study and was greatest during early morning and night and least during the day. Based on aqueous-phase concentrations of ions calculated by using E-AIM, the average (±1σ) pH of particles in Fresno during the winter was estimated to be 4.2 (±0.2).

  17. Interlaboratory comparability, bias, and precision for four laboratories measuring analytes in wet deposition, October 1983-December 1984

    USGS Publications Warehouse

    Brooks, Myron H.; Schroder, LeRoy J.; Willoughby, Timothy C.

    1987-01-01

    Four laboratories involved in the routine analysis of wet-deposition samples participated in an interlaboratory comparison program managed by the U.S. Geological Survey. The four participants were: Illinois State Water Survey central analytical laboratory in Champaign, Illinois; U.S. Geological Survey national water-quality laboratories in Atlanta, Georgia, and Denver, Colorado; and Inland Waters Directorate national water-quality laboratory in Burlington, Ontario, Canada. Analyses of interlaboratory samples performed by the four laboratories from October 1983 through December 1984 were compared.Participating laboratories analyzed three types of interlaboratory samples--natural wet deposition, simulated wet deposition, and deionized water--for pH and specific conductance, and for dissolved calcium, magnesium, sodium, sodium, potassium, chloride, sulfate, nitrate, ammonium, and orthophosphate. Natural wet-deposition samples were aliquots of actual wet-deposition samples. Analyses of these samples by the four laboratories were compared using analysis of variance. Test results indicated that pH, calcium, nitrate, and ammonium results were not directly comparable among the four laboratories. Statistically significant differences between laboratory results probably only were meaningful for analyses of dissolved calcium. Simulated wet-deposition samples with known analyte concentrations were used to test each laboratory for analyte bias. Laboratory analyses of calcium, magnesium, sodium, potassium, chloride, sulfate, and nitrate were not significantly different from the known concentrations of these analytes when tested using analysis of variance. Deionized-water samples were used to test each laboratory for reporting of false positive values. The Illinois State Water Survey Laboratory reported the smallest percentage of false positive values for most analytes. Analyte precision was estimated for each laboratory from results of replicate measurements. In general, the Illinois State Water Survey laboratory achieved the greatest precision, whereas the U.S. Geological Survey laboratories achieved the least precision.

  18. Deposition measurement of particulate matter in connection with corrosion studies.

    PubMed

    Ferm, Martin; Watt, John; O'Hanlon, Samantha; De Santis, Franco; Varotsos, Costas

    2006-03-01

    A new passive particle collector (inert surrogate surface) that collects particles from all directions has been developed. It was used to measure particle deposition at 35 test sites as part of a project that examined corrosion of materials in order that variation in particulate material could be used in development of dose-response functions in a modern multi-pollutant environment. The project, MULTI-ASSESS, was funded by the EU to examine the effects of air pollution on cultural heritage. Passive samplers were mounted rain-protected, and both in wind-protected and wind-exposed positions, to match the exposure of the samples for corrosion studies. The particle mass and its chemical content (nitrate, ammonium, sulfate, calcium, sodium, chloride, magnesium and potassium) were analysed. The loss of light reflectance on the surrogate surface was also measured. Very little ammonium and potassium was found, and one or more anions are missing in the ion balance. There were many strong correlations between the analysed species. The mass of analysed water-soluble ions was fairly constant at 24% of the total mass. The particle mass deposited to the samplers in the wind-protected position was about 25% of the particles deposited to an openly exposed sampler. The Cl-/Na+ ratios indicate a reaction between HNO(3) and NaCl. The deposited nitrate flux corresponds to the missing chloride. The Ca2+ deposition equals the SO4(2-) deposition and the anion deficiency. The SO4(2-) deposition most likely originates from SO2 that has reacted with basic calcium-containing particles either before or after they were deposited. The particle depositions at the urban sites were much higher than in nearby rural sites. The deposited mass correlated surprisingly well with the PM(10) concentration, except at sites very close to traffic.

  19. Evaluation of the irritancy and hypersensitivity potential following topical application of didecyldimethylammonium chloride

    PubMed Central

    Anderson, Stacey E.; Shane, Hillary; Long, Carrie; Lukomska, Ewa; Meade, B. Jean; Marshall, Nikki B.

    2016-01-01

    Didecyldimethylammonium chloride (DDAC) is a dialkyl-quaternary ammonium compound that is used in numerous products for its bactericidal, virucidal and fungicidal properties. There have been clinical reports of immediate and delayed hypersensitivity reactions in exposed individuals; however, the sensitization potential of DDAC has not been thoroughly investigated. The purpose of these studies was to evaluate the irritancy and sensitization potential of DDAC following dermal exposure in a murine model. DDAC induced significant irritancy (0.5 and 1%), evaluated by ear swelling in female Balb/c mice. Initial evaluation of the sensitization potential was conducted using the local lymph node assay (LLNA) at concentrations ranging from 0.0625–1%. A concentration-dependent increase in lymphocyte proliferation was observed with a calculated EC3 value of 0.17%. Dermal exposure to DDAC did not induce increased production of IgE as evaluated by phenotypic analysis of draining lymph node B-cells (IgE+B220+) and measurement of total serum IgE levels. Additional phenotypic analyses revealed significant and dose-responsive increases in the absolute number of B-cells, CD4+ T-cells, CD8+ T-cells and dendritic cells in the draining lymph nodes, along with significant increases in the percentage of B-cells (0.25% and 1% DDAC) at Day 10 following 4 days of dermal exposure. There was also a significant and dose-responsive increase in the number of activated CD44 + CD4 + and CD8+ T-cells and CD86+ B-cells and dendritic cells following exposure to all concentrations of DDAC. These results demonstrate the potential for development of irritation and hypersensitivity responses to DDAC following dermal exposure and raise concerns about the use of this chemical and other quaternary ammonium compounds that may elicit similar effects. PMID:27216637

  20. N-Chlorotaurine Exhibits Fungicidal Activity against Therapy-Refractory Scedosporium Species and Lomentospora prolificans.

    PubMed

    Lackner, Michaela; Binder, Ulrike; Reindl, Martin; Gönül, Beyhan; Fankhauser, Hannes; Mair, Christian; Nagl, Markus

    2015-10-01

    N-Chlorotaurine (NCT), a well-tolerated endogenous long-lived oxidant that can be applied topically as an antiseptic, was tested on its fungicidal activity against Scedosporium and Lomentospora, opportunistic fungi that cause severe infections with limited treatment options, mainly in immunocompromised patients. In quantitative killing assays, both hyphae and conidia of Scedosporium apiospermum, Scedosporium boydii, and Lomentospora prolificans (formerly Scedosporium prolificans) were killed by 55 mM (1.0%) NCT at pH 7.1 and 37°C, with a 1- to 4-log10 reduction in CFU after 4 h and a 4- to >6-log10 reduction after 24 h. The addition of ammonium chloride to NCT markedly increased this activity. LIVE/DEAD staining of conidia treated with 1.0% NCT for 0.5 to 3 h increased the permeability of the cell wall and membrane. Preincubation of the test fungi in 1.0% NCT for 10 to 60 min delayed the time to germination of conidia by 2 h to >12 h and reduced their germination rate by 10.0 to 100.0%. Larvae of Galleria mellonella infected with 1.0 × 10(7) conidia of S. apiospermum and S. boydii died at a rate of 90.0 to 100% after 8 to 12 days. The mortality rate was reduced to 20 to 50.0% if conidia were preincubated in 1.0% NCT for 0.5 h or if heat-inactivated conidia were used. Our study demonstrates the fungicidal activity of NCT against different Scedosporium and Lomentospora species. A postantifungal effect connected with a loss of virulence occurs after sublethal incubation times. The augmenting effect of ammonium chloride can be explained by the formation of monochloramine. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. N-Chlorotaurine Exhibits Fungicidal Activity against Therapy-Refractory Scedosporium Species and Lomentospora prolificans

    PubMed Central

    Lackner, Michaela; Binder, Ulrike; Reindl, Martin; Gönül, Beyhan; Fankhauser, Hannes; Mair, Christian

    2015-01-01

    N-Chlorotaurine (NCT), a well-tolerated endogenous long-lived oxidant that can be applied topically as an antiseptic, was tested on its fungicidal activity against Scedosporium and Lomentospora, opportunistic fungi that cause severe infections with limited treatment options, mainly in immunocompromised patients. In quantitative killing assays, both hyphae and conidia of Scedosporium apiospermum, Scedosporium boydii, and Lomentospora prolificans (formerly Scedosporium prolificans) were killed by 55 mM (1.0%) NCT at pH 7.1 and 37°C, with a 1- to 4-log10 reduction in CFU after 4 h and a 4- to >6-log10 reduction after 24 h. The addition of ammonium chloride to NCT markedly increased this activity. LIVE/DEAD staining of conidia treated with 1.0% NCT for 0.5 to 3 h increased the permeability of the cell wall and membrane. Preincubation of the test fungi in 1.0% NCT for 10 to 60 min delayed the time to germination of conidia by 2 h to >12 h and reduced their germination rate by 10.0 to 100.0%. Larvae of Galleria mellonella infected with 1.0 × 107 conidia of S. apiospermum and S. boydii died at a rate of 90.0 to 100% after 8 to 12 days. The mortality rate was reduced to 20 to 50.0% if conidia were preincubated in 1.0% NCT for 0.5 h or if heat-inactivated conidia were used. Our study demonstrates the fungicidal activity of NCT against different Scedosporium and Lomentospora species. A postantifungal effect connected with a loss of virulence occurs after sublethal incubation times. The augmenting effect of ammonium chloride can be explained by the formation of monochloramine. PMID:26239996

  2. Comparative thermodynamic studies of aqueous glutaric acid, ammonium sulfate and sodium chloride aerosol at high humidity.

    PubMed

    Hanford, Kate L; Mitchem, Laura; Reid, Jonathan P; Clegg, Simon L; Topping, David O; McFiggans, Gordon B

    2008-10-02

    Aerosol optical tweezers are used to simultaneously characterize and compare the hygroscopic properties of two aerosol droplets, one containing inorganic and organic solutes and the second, referred to as the control droplet, containing a single inorganic salt. The inorganic solute is either sodium chloride or ammonium sulfate and the organic component is glutaric acid. The time variation in the size of each droplet (3-7 microm in radius) is recorded with 1 s time resolution and with nanometre accuracy. The size of the control droplet is used to estimate the relative humidity with an accuracy of better than +/-0.09%. Thus, the Kohler curve of the multicomponent inorganic/organic droplet, which characterizes the variation in equilibrium droplet size with relative humidity, can be determined directly. The measurements presented here focus on high relative humidities, above 97%, in the limit of dilute solutes. The experimental data are compared with theoretical treatments that, while ignoring the interactions between the inorganic and organic components, are based upon accurate representations of the activity-concentration relationships of aqueous solutions of the individual salts. The organic component is treated by a parametrized fit to experimental data or by the UNIFAC model and the water activity of the equilibrium solution droplet is calculated using the approach suggested by Clegg, Seinfeld and Brimblecombe or the Zdanovskii-Stokes-Robinson approximation. It is shown that such an experimental strategy, comparing directly droplets of different composition, enables highly accurate measurements of the hygroscopic properties, allowing the theoretical treatments to be rigorously tested. Typical deviations of the experimental measurements from theoretical predictions are shown to be around 1% in equilibrium size, comparable to the variation between the theoretical frameworks considered.

  3. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro.

    PubMed

    Christen, Verena; Rusconi, Manuel; Crettaz, Pierre; Fent, Karl

    2017-06-15

    The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor and different concentrations of biocides for 5days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The interaction of ammonia and xenon with the imidazole glycerol phosphate synthase from Thermotoga maritima as detected by NMR spectroscopy

    PubMed Central

    Liebold, Christoph; List, Felix; Kalbitzer, Hans Robert; Sterner, Reinhard; Brunner, Eike

    2010-01-01

    The imidazole glycerol phosphate (ImGP) synthase from the hyperthermophilic bacterium Thermotoga maritima is a 1:1 complex of the glutaminase subunit HisH and the cyclase subunit HisF. It has been proposed that ammonia generated by HisH is transported through a channel to the active site of HisF, which generates intermediates of histidine (ImGP) and de novo biosynthesis of 5-aminoimidazole-4-carboxamideribotide. Solution NMR spectroscopy of ammonium chloride-titrated samples was used to study the interaction of NH3 with amino acids inside this channel. Although numerous residues showed 15N chemical shift changes, most of these changes were caused by nonspecific ionic strength effects. However, several interactions appeared to be specific. Remarkably, the amino acid residue Thr 78—which is located in the central channel—shows a large chemical shift change upon titration with ammonium chloride. This result and the reduced catalytic activity of the Thr78Met mutant indicate a special role of this residue in ammonia channeling. To detect and further characterize internal cavities in HisF, which might for example contribute to ammonia channeling, the interaction of HisF with the noble gas xenon was analyzed by solution NMR spectroscopy using 1H-15N HSQC experiments. The results indicate that HisF contains three distinct internal cavities, which could be identified by xenon-induced chemical shift changes of the neighboring amino acid residues. Two of these cavities are located at the active site at opposite ends of the substrate N′-[(5′-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) binding groove. The third cavity is located in the interior of the central β-barrel of HisF and overlaps with the putative ammonia transport channel. PMID:20665694

  5. Differential role of ethylene and hydrogen peroxide in dark-induced stomatal closure.

    PubMed

    Kar, R K; Parvin, N; Laha, D

    2013-12-15

    Regulation of stomatal aperture is crucial in terrestrial plants for controlling water loss and gaseous exchange with environment. While much is known of signaling for stomatal opening induced by blue light and the role of hormones, little is known about the regulation of stomatal closing in darkness. The present study was aimed to verify their role in stomatal regulation in darkness. Epidermal peelings from the leaves of Commelina benghalensis were incubated in a defined medium in darkness for 1 h followed by a 1 h incubation in different test solutions [H2O2, propyl gallate, ethrel (ethylene), AgNO3, sodium orthovanadate, tetraethyl ammonium chloride, CaCl2, LaCl3, separately and in combination] before stomatal apertures were measured under the microscope. In the dark stomata remained closed under treatments with ethylene and propyl gallate but opened widely in the presence of H2O2 and AgNO3. The opening effect was largely unaffected by supplementing the treatment with Na-vanadate (PM H+ ATPase inhibitor) and tetraethyl ammonium chloride (K(+)-channel inhibitor) except that opening was significantly inhibited by the latter in presence of H2O2. On the other hand, H2O2 could not override the closing effect of ethylene at any concentrations while a marginal opening of stomata was found when Ag NO3 treatment was given together with propyl gallate. CaCl2 treatment opened stomata in the darkness while LaCl3 maintained stomata closed. A combination of LaCl3 and propyl gallate strongly promoted stomatal opening. A probable action of ethylene in closing stomata of Commelina benghalensis in dark has been proposed.

  6. Urea cycle pathway targeted therapeutic action of naringin against ammonium chloride induced hyperammonemic rats.

    PubMed

    Ramakrishnan, Arumugam; Vijayakumar, Natesan

    2017-10-01

    Ammonia is a well-known neurotoxin that causes liver disease and urea cycle disorder. Excessive ammonia content in the blood leads to hyperammonemic condition and affects both excitatory and inhibitory neurotransmission including brain edema and coma. Naringin, a plant bioflavonoid present in various citrus fruits and mainly extracted from the grape fruit. This study was designed to assess the protective effect of naringin on ammonium chloride (NH 4 Cl) induced hyperammonemic rats. Experimental hyperammonemia was induced by intraperitoneal injections (i.p) of NH 4 Cl (100mg/kg body weight (b.w.)) thrice a week for 8 consecutive weeks. Hyperammonemic rats were treated with naringin (80mg/kg b.w.) via oral gavage. Naringin administration significantly augmented the level of blood ammonia and plasma urea. Naringin also upregulate the expression of urea cycle enzymes such as carbamoyl phosphate synthase I (CPS I) and ornithine transcarbamylase (OTC), arininosuccinate synthase (ASS), argininosuccinate lyase (ASL) and arginase I (ARG) and metabotropic glutamate receptors (mGluRs) such as mGluRs I and mGluRs V and down regulate the expression of inflammatory markers like tumor necrosis factor (TNF-α), nuclear factor kappa B (NF-kB), Interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS). In addition, to this, the protective effect of naringin was also revealed through the immunohistochemical changes in tissues. Thus our present study result suggest that naringin modulates the expression of proteins involved in urea cycle pathway and suppresses the expression of inflammatory markers and acts as a potential agent to treat condition in rats. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Overexpression, crystallization and preliminary X-ray crystallographic analysis of erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa.

    PubMed

    Ha, Jun Yong; Lee, Ji Hyun; Kim, Kyoung Hoon; Kim, Do Jin; Lee, Hyung Ho; Kim, Hye-Kyung; Yoon, Hye-Jin; Suh, Se Won

    2006-02-01

    The enzyme erythronate-4-phosphate dehydrogenase catalyses the conversion of erythronate-4-phosphate to 3-hydroxy-4-phospho-hydroxy-alpha-ketobutyrate. It belongs to the D-isomer-specific 2-hydroxyacid dehydrogenase family. It is essential for de novo biosynthesis of vitamin B6 (pyridoxine). Erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa, a homodimeric enzyme consisting of two identical 380-residue subunits, has been overexpressed in Escherichia coli with a C-terminal purification tag and crystallized at 297 K using 0.7 M ammonium dihydrogen phosphate, 0.4 M ammonium tartrate, 0.1 M sodium citrate pH 5.6 and 10 mM cupric chloride. X-ray diffraction data were collected to 2.20 A from a crystal grown in the presence of NADH. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 84.77, b = 101.28, c = 142.58 A. A dimeric molecule is present in the asymmetric unit, giving a crystal volume per protein weight (VM) of 3.64 A3 Da(-1) and a solvent content of 66%.

  8. Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate.

    PubMed

    Guzik, Maciej W; Kenny, Shane T; Duane, Gearoid F; Casey, Eoin; Woods, Trevor; Babu, Ramesh P; Nikodinovic-Runic, Jasmina; Murray, Michael; O'Connor, Kevin E

    2014-05-01

    A process for the conversion of post consumer (agricultural) polyethylene (PE) waste to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) is reported here. The thermal treatment of PE in the absence of air (pyrolysis) generated a complex mixture of low molecular weight paraffins with carbon chain lengths from C8 to C32 (PE pyrolysis wax). Several bacterial strains were able to grow and produce PHA from this PE pyrolysis wax. The addition of biosurfactant (rhamnolipids) allowed for greater bacterial growth and PHA accumulation of the tested strains. Some strains were only capable of growth and PHA accumulation in the presence of the biosurfactant. Pseudomonas aeruginosa PAO-1 accumulated the highest level of PHA with almost 25 % of the cell dry weight as PHA when supplied with the PE pyrolysis wax in the presence of rhamnolipids. The change of nitrogen source from ammonium chloride to ammonium nitrate resulted in faster bacterial growth and the earlier onset of PHA accumulation. To our knowledge, this is the first report where PE is used as a starting material for production of a biodegradable polymer.

  9. Measurement of atmospheric dry deposition at Emerald Lake in Sequoia National Park. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bytnerowicz, A.; Olszyk, D.

    1988-04-11

    The primary objective of the study was to evaluate atmospheric dry deposition of major anions and cations to trees in the Emerald Lake area of Sequoia National Park. The field work was performed between July 15 and September 10, 1987. Teflon-coated and non-coated branches of native lodgepole pine (Pinus concorta) and western white pine (P. monticola), and potted seedlings of Coulter pine (P. coulteri) were rinsed using deionized-distilled water. Nylon and paper filters were exposed along with the vegetation, and were extracted in deionized-distilled water. The rinses and extracts were analyzed for concentrations of nitrate, sulfate, phosphate, chloride, fluoride, ammonium,more » and metallic cations. The deposition of nitrate to paper filters and to Coulter pine branches was significantly higher than deposition to the native conifers. Deposition of nitrate was significantly greater than deposition of sulfate, supporting earlier studies of chapparal in the South Coast Air Basin. Ammonium deposition was also quite high, suggesting that transport from the valley may be a significant source of dry deposition in the Sierra.« less

  10. Particle emission from heavy-duty engine fuelled with blended diesel and biodiesel.

    PubMed

    Martins, Leila Droprinchinski; da Silva Júnior, Carlos Roberto; Solci, Maria Cristina; Pinto, Jurandir Pereira; Souza, Davi Zacarias; Vasconcellos, Pérola; Guarieiro, Aline Lefol Nani; Guarieiro, Lílian Lefol Nani; Sousa, Eliane Teixeira; de Andrade, Jailson B

    2012-05-01

    In this study, particulate matter (PM) were characterized from a place impacted by heavy-duty vehicles (Bus Station) fuelled with diesel/biodiesel fuel blend (B3) in the city of Londrina, Brazil. Sixteen priority polycyclic aromatic hydrocarbons (PAH) concentrations were analyzed in the samples by their association with atmospheric PM, mass size distributions and major ions (fluorite, chloride, bromide, nitrate, phosphate, sulfate, nitrite, oxalate; fumarate, formate, succinate and acetate; lithium, sodium, potassium, magnesium, calcium and ammonium). Results indicate that major ions represented 21.2% particulate matter mass. Nitrate, sulfate, and ammonium, respectively, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. Dibenzo[a,h]anthracene and indeno[1,2,3,-cd]pyrene were the main PAH found, and a higher fraction of PAH particles was found in diameters lower than 0.25 μm in Londrina bus station. The fine and ultrafine particles were dominant among the PM evaluated, suggesting that biodiesel decreases the total PAH emission. However, it does also increase the fraction of fine and ultrafine particles when compared to diesel.

  11. Synthesis, characterization and antibacterial properties of dihydroxy quaternary ammonium salts with long chain alkyl bromides.

    PubMed

    Liu, Wen-Shuai; Wang, Chun-Hua; Sun, Ju-Feng; Hou, Gui-Ge; Wang, Yu-Peng; Qu, Rong-Jun

    2015-01-01

    Five N-methyl-N-R-N,N-bis(2-hydroxyethyl) ammonium bromides (R = -benzyl (chloride, BNQAS), -dodecyl (C12QAS), -tetradecyl (C14QAS), -hexadecyl (C16QAS), -octadecyl (C18QAS)) were prepared based on N-methyldiethanolamine (MDEA) and halohydrocarbon. Five QAS were characterized by FTIR, NMR, and MS. BNQAS, C12QAS, C14QAS, and C16QAS were confirmed by X-ray single-crystal diffraction. Their antibacterial properties indicated good antibacterial abilities against E. coli, S. aureus, B. subtilis, especially C12QAS with the best antibacterial ability (100% to E. coli, 95.65% to S. aureus, and 91.41% to B. subtilis). In addition, C12QAS also displayed the best antifungal activities than BNQAS and C18QAS against Cytospora mandshurica, Botryosphaeria ribis, Physalospora piricola, and Glomerella cingulata with the ratio of full marks. The strategy provides a facile way to design and develop new types of antibacterial drugs for application in preventing the fruit rot, especially apple. © 2014 John Wiley & Sons A/S.

  12. A Laboratory Study on the Phase Transition for Polar Stratospheric Cloud Particles

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.

    1997-01-01

    The nucleation and growth of different phases of simulated polar stratospheric cloud (PSC) particles were investigated in the laboratory. Solutions and mixtures of solutions at concentrations 1 to 5 m (molality) of ammonium sulfate, ammonium bisulfate, sodium chloride, sulfuric acid, and nitric acid were supercooled to prescribed temperatures below their equilibrium melting point. These solutions were contained in small diameter glass tubing of volumes ranging from 2.6 to 0.04 ml. Samples were nucleated by insertion of an ice crystal, or in some cases by a liquid nitrogen cooled wire. Crystallization velocities were determined by timing the crystal growth front passages along the glass tubing. Solution mixtures containing aircraft exhaust (soot) were also examined. Crystallization rates increased as deltaT2, where deltaT is the supercooling for weak solutions (2 m or less). The higher concentrated solutions (greater than 3 m) showed rates significantly less than deltaT2. This reduced rate suggested an onset of a glass phase. Results were applied to the nucleation of highly concentrated solutions at various stages of polar stratospheric cloud development within the polar stratosphere.

  13. Synthesis, characterization, and antibacterial activity of N,O-quaternary ammonium chitosan.

    PubMed

    Xu, Tao; Xin, Meihua; Li, Mingchun; Huang, Huili; Zhou, Shengquan; Liu, Juezhao

    2011-11-08

    N,N,N-Trimethyl O-(2-hydroxy-3-trimethylammonium propyl) chitosans (TMHTMAPC) with different degrees of O-substitution were synthesized by reacting O-methyl-free N,N,N-trimethyl chitosan (TMC) with 3-chloro-2-hydroxy-propyl trimethyl ammonium chloride (CHPTMAC). The products were characterized by (1)H NMR, FTIR and TGA, and investigated for antibacterial activity against Staphylococcus aureus and Escherichia coli under weakly acidic (pH 5.5) and weakly basic (pH 7.2) conditions. TMHTMAPC exhibited enhanced antibacterial activity compared with TMC, and the activity of TMHTMAPC increased with an increase in the degree of substitution. Divalent cations (Ba(2+) and Ca(2+)) strongly reduced the antibacterial activity of chitosan, O-carboxymethyl chitosan and N,N,N-trimethyl-O-carboxymethyl chitosan, but the repression on the antibacterial activity of TMC and TMHTMAPC was weaker. This indicates that the free amino group on chitosan backbone is the main functional group interacting with divalent cations. The existence of 100 mM Na(+) slightly reduced the antibacterial activity of both chitosan and its derivatives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Measuring the remineralization potential of different agents with quantitative light-induced fluorescence digital Biluminator.

    PubMed

    Kucukyilmaz, Ebru; Savas, Selcuk

    2017-01-26

    The aim of this study was to investigate the effectiveness of different remineralization agents by quantitative light-induced fluorescence digital BiluminatorTM (QLF-D). Artificial caries lesions were created, and the teeth were divided according to the tested materials: (i) distilled water, (ii) acidulated phosphate fluoride (APF), (iii) Curodont Repair (CR), (iv) ammonium hexafluorosilicate (SiF) and (v) ammonium hexafluorosilicate plus cetylpyridinium chloride (SiF + CPC). After treatment procedures, each of the samples was placed in artificial saliva. After demineralization and 1 and 4 weeks of remineralization procedures, fluorescence loss and lesion areas were measured with QLF-D. Data were statistically analyzed (α = 0.05). The fluorescence values of the demineralized enamel specimens treated with the various agents differed significantly compared with pretreatment values for both 1 and 4 weeks (p<0.05). At 4 weeks, the highest fluorescence gain was calculated in the CR, APF and SiF groups compared with the control (p<0.05). APF, SiF and CR groups yielded greater remineralization ability than SiF + CPC and control groups.

  15. Evaluating Battery-like Reactions to Harvest Energy from Salinity Differences using Ammonium Bicarbonate Salt Solutions.

    PubMed

    Kim, Taeyoung; Rahimi, Mohammad; Logan, Bruce E; Gorski, Christopher A

    2016-05-10

    Mixing entropy batteries (MEBs) are a new approach to generate electricity from salinity differences between two aqueous solutions. To date, MEBs have only been prepared from solutions containing chloride salts, owing to their relevance in natural salinity gradients created from seawater and freshwater. We hypothesized that MEBs could capture energy using ammonium bicarbonate (AmB), a thermolytic salt that can be used to convert waste heat into salinity gradients. We examined six battery electrode materials. Several of the electrodes were unstable in AmB solutions or failed to produce expected voltages. Of the electrode materials tested, a cell containing a manganese oxide electrode and a metallic lead electrode produced the highest power density (6.3 mW m(-2) ). However, this power density is still low relative to previously reported NaCl-based MEBs and heat recovery systems. This proof-of-concept study demonstrated that MEBs could indeed be used to generate electricity from AmB salinity gradients. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 1988 Wet deposition temporal and spatial patterns in North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-yearmore » (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen's median trend estimate and Kendall's seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.« less

  17. Effects of high temperature and disinfectants on the viability of Sarcocystis neurona sporocysts.

    PubMed

    Dubey, J P; Saville, W J; Sreekumar, C; Shen, S K; Lindsay, O S; Pena, H F; Vianna, M C; Gennari, S M; Reed, S M

    2002-12-01

    The effect of moist heat and several disinfectants on Sarcocystis neurona sporocysts was investigated. Sporocysts (4 million) were suspended in water and heated to 50, 55, 60, 65, and 70 C for various times and were then bioassayed in interferon gamma gene knockout (KO) mice. Sporocysts heated to 50 C for 60 min and 55 C for 5 min were infective to KO mice, whereas sporocysts heated to 55 C for 15 min and 60 C or more for 1 min were rendered noninfective to mice. Treatment with bleach (10, 20, and 100%), 2% chlorhexidine, 1% betadine, 5% o-benzyl-p-chlorophenol, 12.56% phenol, 6% benzyl ammonium chloride, and 10% formalin was not effective in killing sporocysts. Treatment with undiluted ammonium hydroxide (29.5% ammonia) for 1 hr killed sporocysts, but treatment with a 10-fold dilution (2.95% ammonia) for 6 hr did not kill sporocysts. These data indicate that heat treatment is the most effective means of killing S. neurona sporocysts in the horse feed or in the environment.

  18. Tracing and separating plasma components causing matrix effects in hydrophilic interaction chromatography-electrospray ionization mass spectrometry.

    PubMed

    Ekdahl, Anja; Johansson, Maria C; Ahnoff, Martin

    2013-04-01

    Matrix effects on electrospray ionization were investigated for plasma samples analysed by hydrophilic interaction chromatography (HILIC) in gradient elution mode, and HILIC columns of different chemistries were tested for separation of plasma components and model analytes. By combining mass spectral data with post-column infusion traces, the following components of protein-precipitated plasma were identified and found to have significant effect on ionization: urea, creatinine, phosphocholine, lysophosphocholine, sphingomyelin, sodium ion, chloride ion, choline and proline betaine. The observed effect on ionization was both matrix-component and analyte dependent. The separation of identified plasma components and model analytes on eight columns was compared, using pair-wise linear correlation analysis and principal component analysis (PCA). Large changes in selectivity could be obtained by change of column, while smaller changes were seen when the mobile phase buffer was changed from ammonium formate pH 3.0 to ammonium acetate pH 4.5. While results from PCA and linear correlation analysis were largely in accord, linear correlation analysis was judged to be more straight-forward in terms of conduction and interpretation.

  19. Understanding the ice nucleation characteristics of feldspars suspended in solution

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2017-04-01

    Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Zobrist et al. (2008) Arizona test dust, silver iodide, nonadecanol and silicon dioxide suspensions in various solutes showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust particles at a microphysical scale. To improve our understanding how solute and mineral dust particle surface interaction, we run freezing experiments using a differential scanning calorimeter (DSC) with microcline, sanidine, plagioclase, kaolinite and quartz particles suspended in pure water and solutions containing ammonia, ammonium bisulfate, ammonium sulfate, ammonium chloride, ammonium nitrate, potassium chloride, potassium sulfate, sodium sulfate and sulfuric acid. Methodology Suspensions of mineral dust samples (2 - 5 wt%) are prepared in water with varying solute concentrations (0 - 15 wt%). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich Chemical) and 5 wt% lanolin (Fluka Chemical) is emulsified with a rotor-stator homogenizer for 40 s at a rotation frequency of 7000 rpm. 4 - 10 mg of this mixture is pipetted in an aluminum pan (closed hermetically), placed in the DSC and subjected to three freezing cycles. The first and the third freezing cycles are executed at a cooling rate of 10 K/min to control the stability of the sample. The second freezing cycle is executed at a 1 K/min cooling rate and is used for evaluation. Freezing temperatures are obtained by evaluating the onset of the freezing signal in the DSC curve and plotted against water activity. Results Based on Koop et al. (2000), a general decreasing trend in ice nucleation efficiency of the mineral samples with increasing solute concentrations is expected. Interestingly, feldspars (microcline, sanidine, plagioclase) in very dilute solutions of ammonia and ammonium salts (water activity close to one) show an increase in ice nucleation efficiency of 4 to 6 K compared to that in pure water. Similar trends but less pronounced are observed for kaolinite while quartz shows barely any effect. Therefore, there seem to be specific interactions between the feldspar surface and ammonia and/or ammonium ions which result in an increase in freezing temperatures at low solute concentrations. The surface ion exchange seems to be secondary for this effect since it is also present in ammonia solution. We hypothesize that ammonia adsorbs on the aluminol/silanol groups present on feldspar (viz. aluminosilicate surface) surfaces (Nash and Marshall, 1957; Belchinskaya et al., 2013). Hence allowing one of the N-H bonds to stick outwards from the surface, facing towards the bulk water and providing a favorable template for ice to grow. The current study gives an insight into the ice nucleation behavior of aluminosilicate minerals when present in conjunction with chemical species, eg. ammonium/sulfates, which is of high atmospheric relevance. References Koop et al., (2000), doi:10.1038/35020537. Zobrist et al., (2008). J. Phys. Chem., 112:3965-3975. Nash and Marshall (1957). Proceedings Soil Sci. Society, 21:149-153. Belchinskaya et al., (2013). J. Applied Chemistry, doi:10.1155/2013/789410

  20. Field studies of the effect of chemical fertilizers on the quality of ground- and drainage waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratas, A.R.

    1988-01-01

    This article describes a field study of the effect of a variety of fertilizers--superphosphates, potassium chlorides, and ammonium nitrates--used in the cultivation of corn on the ground and runoff waters comprising a regional water resource. The experiment establishes that the fertilizers have a substantial effect on runoff waters--the formation of their chemical composition and mineralization--and a lesser effect on ground water. The study accounts for meteorological factors as well as dispersion behavior of the water in the soil and its eventual transport to the water resource and supply system. Conservation measures are indicated based on the results.

  1. Source Apportionment of the Size-Fractionated Urban Aerosols in and around Kolkata, India

    NASA Astrophysics Data System (ADS)

    Sarkar, Ujjaini; Haque, Monirul; Roy, Rajdeep; Chakraborty, Sanjoy

    Our main objective was to estimate the heavy metals like the Lead, Mercury, Cadmium, Sodium, Potassium, Calcium, Aluminium, and Iron, in addition to ammonium, chloride, nitrate, and sulphate ions, by Atomic Absorption Spectrophotometry and Ion Chromatography and apportion the most probable sources using the Chemical Mass Balance Model. The three urban locations of Behala Chowrasta, Rabindra Sadan, and Shyam Bazaar Five Points were chosen within the city of Kolkata. One rural location was chosen at the Indian Institute of Technology campus, Kharagpur, a rural site in the Midnapur District of the state of West Bengal, India. The results look quite encouraging.

  2. Ion exchange purification of scandium

    DOEpatents

    Herchenroeder, Laurie A.; Burkholder, Harvey R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity.

  3. Ion exchange purification of scandium

    DOEpatents

    Herchenroeder, L.A.; Burkholder, H.R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity. 2 figs.

  4. Frabicating hydroxyapatite nanorods using a biomacromolecule template

    NASA Astrophysics Data System (ADS)

    Zhu, Aiping; Lu, Yan; Si, Yunfeng; Dai, Sheng

    2011-02-01

    Rod-like hydroxyapatite (HAp) nanoparticles with various aspect ratios are synthesized by means of low-temperature hydrothermal method in the presence of a N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (HTCC) template. The synthesized HAps were examined by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR) and transmission electron microscopy (TEM) techniques. The results reveal that HAps are rod-like monocrystals, where the size and morphology can be tailored by varying synthesis conditions, such as pH, hydrothermal synthesis temperature and the ratio of PO43- to the quaternary ammonium in HTCC. The mechanism of HTCC template on HAp nanorod preparation is analyzed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, Mukta; Agrawal, V. V.; Chandran, Achu

    A unique cholesterol oxidase (ChOx) liquid crystal (LC) biosensor, based on the disruption of orientation in LCs, is developed for cholesterol detection. A self-assembled monolayer (SAM) of Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP) and (3-Aminopropyl)trimethoxy-silane (APTMS) is prepared on a glass plate by adsorption. The enzyme (ChOx) is immobilized on SAM surface for 12 h before utilizing the film for biosensing purpose. LC based biosensing study is conducted on SAM/ChOx/LC (5CB) cells for cholesterol concentrations ranging from 10 mg/dl to 250 mg/dl. The sensing mechanism has been verified through polarizing optical microscopy, scanning electron microscopy, and spectrometric techniques.

  6. In situ AFM investigation of electrochemically induced surface-initiated atom-transfer radical polymerization.

    PubMed

    Li, Bin; Yu, Bo; Zhou, Feng

    2013-02-12

    Electrochemically induced surface-initiated atom-transfer radical polymerization is traced by in situ AFM technology for the first time, which allows visualization of the polymer growth process. It affords a fundamental insight into the surface morphology and growth mechanism simultaneously. Using this technique, the polymerization kinetics of two model monomers were studied, namely the anionic 3-sulfopropyl methacrylate potassium salt (SPMA) and the cationic 2-(metharyloyloxy)ethyltrimethylammonium chloride (METAC). The growth of METAC is significantly improved by screening the ammonium cations by the addition of ionic liquid electrolyte in aqueous solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument

    NASA Astrophysics Data System (ADS)

    Stockwell, Chelsea E.; Kupc, Agnieszka; Witkowski, Bartłomiej; Talukdar, Ranajit K.; Liu, Yong; Selimovic, Vanessa; Zarzana, Kyle J.; Sekimoto, Kanako; Warneke, Carsten; Washenfelder, Rebecca A.; Yokelson, Robert J.; Middlebrook, Ann M.; Roberts, James M.

    2018-05-01

    The chemical composition of aerosol particles is a key aspect in determining their impact on the environment. For example, nitrogen-containing particles impact atmospheric chemistry, air quality, and ecological N deposition. Instruments that measure total reactive nitrogen (Nr = all nitrogen compounds except for N2 and N2O) focus on gas-phase nitrogen and very few studies directly discuss the instrument capacity to measure the mass of Nr-containing particles. Here, we investigate the mass quantification of particle-bound nitrogen using a custom Nr system that involves total conversion to nitric oxide (NO) across platinum and molybdenum catalysts followed by NO-O3 chemiluminescence detection. We evaluate the particle conversion of the Nr instrument by comparing to mass-derived concentrations of size-selected and counted ammonium sulfate ((NH4)2SO4), ammonium nitrate (NH4NO3), ammonium chloride (NH4Cl), sodium nitrate (NaNO3), and ammonium oxalate ((NH4)2C2O4) particles determined using instruments that measure particle number and size. These measurements demonstrate Nr-particle conversion across the Nr catalysts that is independent of particle size with 98 ± 10 % efficiency for 100-600 nm particle diameters. We also show efficient conversion of particle-phase organic carbon species to CO2 across the instrument's platinum catalyst followed by a nondispersive infrared (NDIR) CO2 detector. However, the application of this method to the atmosphere presents a challenge due to the small signal above background at high ambient levels of common gas-phase carbon compounds (e.g., CO2). We show the Nr system is an accurate particle mass measurement method and demonstrate its ability to calibrate particle mass measurement instrumentation using single-component, laboratory-generated, Nr-containing particles below 2.5 µm in size. In addition we show agreement with mass measurements of an independently calibrated online particle-into-liquid sampler directly coupled to the electrospray ionization source of a quadrupole mass spectrometer (PILS-ESI/MS) sampling in the negative-ion mode. We obtain excellent correlations (R2 = 0.99) of particle mass measured as Nr with PILS-ESI/MS measurements converted to the corresponding particle anion mass (e.g., nitrate, sulfate, and chloride). The Nr and PILS-ESI/MS are shown to agree to within ˜ 6 % for particle mass loadings of up to 120 µg m-3. Consideration of all the sources of error in the PILS-ESI/MS technique yields an overall uncertainty of ±20 % for these single-component particle streams. These results demonstrate the Nr system is a reliable direct particle mass measurement technique that differs from other particle instrument calibration techniques that rely on knowledge of particle size, shape, density, and refractive index.

  8. Evaluation of Antimicrobial Efficiency of New Polymers Comprised by Covalently Attached and/or Electrostatically Bound Bacteriostatic Species, Based on Quaternary Ammonium Compounds.

    PubMed

    Kougia, Efstathia; Tselepi, Maria; Vasilopoulos, Gavriil; Lainioti, Georgia Ch; Koromilas, Nikos D; Druvari, Denisa; Bokias, Georgios; Vantarakis, Apostolos; Kallitsis, Joannis K

    2015-12-01

    In the present work a detailed study of new bacteriostatic copolymers with quaternized ammonium groups introduced in the polymer chain through covalent attachment or electrostatic interaction, was performed. Different copolymers have been considered since beside the active species, the hydrophobic/hydrophilic nature of the co-monomer was also evaluated in the case of covalently attached bacteriostatic groups, aiming at achieving permanent antibacterial activity. Homopolymers with quaternized ammonium/phosphonium groups were also tested for comparison reasons. The antimicrobial activity of the synthesized polymers after 3 and 24 h of exposure at 4 and 22 °C was investigated on cultures of Gram-negative (P. aeruginosa, E. coli) and Gram-positive (S. aureus, E. faecalis) bacteria. It was found that the combination of the hydrophilic monomer acrylic acid (AA), at low contents, with the covalently attached bacteriostatic group vinyl benzyl dimethylhexadecylammonium chloride (VBCHAM) in the copolymer P(AA-co-VBCHAM88), resulted in a high bacteriostatic activity against P. aeruginosa and E. faecalis (6 log reduction in certain cases). Moreover, the combination of covalently attached VBCHAM units with electrostatically bound cetyltrimethylammonium 4-styrene sulfonate (SSAmC16) units in the P(SSAmC16-co-VBCHAMx) copolymers led to efficient antimicrobial materials, especially against Gram-positive bacteria, where a log reduction between 4.9 and 6.2 was verified. These materials remain remarkably efficient even when they are incorporated in polysulfone membranes.

  9. Resistance to phenicol compounds following adaptation to quaternary ammonium compounds in Escherichia coli.

    PubMed

    Soumet, C; Fourreau, E; Legrandois, P; Maris, P

    2012-07-06

    Bacterial adaptation to quaternary ammonium compounds (QACs) is mainly documented for benzalkonium chloride (BC) and few data are available for other QACs. The aim of this study was to assess the effects of repeated exposure to different quaternary ammonium compounds (QACs) on the susceptibility and/or resistance of bacteria to other QACs and antibiotics. Escherichia coli strains (n=10) were adapted by daily exposure to increasingly sub-inhibitory concentrations of a QAC for 7 days. Three QACs were studied. Following adaptation, we found similar levels of reduction in susceptibility to QACs with a mean 3-fold increase in the minimum inhibitory concentration (MIC) compared to initial MIC values, whatever the QAC used during adaptation. No significant differences in antibiotic susceptibility were observed between the tested QACs. Antibiotic susceptibility was reduced from 3.5- to 7.5-fold for phenicol compounds, β lactams, and quinolones. Increased MIC was associated with a shift in phenotype from susceptible to resistant for phenicol compounds (florfenicol and chloramphenicol) in 90% of E. coli strains. Regardless of the QAC used for adaptation, exposure to gradually increasing concentrations of this type of disinfectant results in reduced susceptibility to QACs and antibiotics as well as cross-resistance to phenicol compounds in E. coli strains. Extensive use of QACs at sub-inhibitory concentrations may lead to the emergence of antibiotic-resistant bacteria and may represent a public health risk. Published by Elsevier B.V.

  10. Chemical composition of the atmospheric aerosol in the troposphere over the Hudson Bay lowlands and Quebec-Labrador regions of Canada

    NASA Technical Reports Server (NTRS)

    Gorzelska, K.; Talbot, R. W.; Klemm, K.; Lefer, B.; Klemm, O.; Gregory, G. L.; Anderson, B.; Barrie, L. A.

    1994-01-01

    Atmospheric aerosols were collected in the boundary layer and free troposphere over continental and coastal subarctic regions of Canada during the July - August 1990 joint U.S.-Canadian Arctic Boundary Layer Expedition (ABLE) 3B/Northern Wetlands Study (NOWES). The samples were analyzed for the following water soluble species: sulfate, nitrate, ammonium, potassium, sodium, chloride, oxalate, methylsulfonate, and total amine nitrogen. Ammonium and sulfate were the major water soluble components of these aerosols. The nearly neutral (overall) chemical composition of summertime aerosol particles contrasts their strongly acidic wintertime composition. Aerosol samples were separated into several air mass categories and characterized in terms of chemical composition, associated mixing ratios of gaseous compounds, and meteorological parameters. The fundamental category represented particles associated with 'background' air masses. The summertime atmospheric aerosols in background air over the North American subarctic and Arctic regions were characterized by relatively small and spatially uniform mixing ratios of the measured species. These aerosol particles were aged to the extent that they had lost their primary source signature. The chemical profile of the background air aerosols was frequently modified by additions from biomass fire plumes, aged tropical marine air, and intrusions of upper tropospheric/lower stratospheric air. Aerosols in boundary layer background air over the boreal forest region of Quebec-Labrador had significantly larger mixing ratios of ammonium and sulfate relative to the Hudson Bay region. This may reflect infiltration of anthropogenic pollution or be due to natural emissions from this region.

  11. Morphological deformities in Chironomus spp. (Diptera: Chironomidae) larvae as a tool for impact assessment of anthropogenic and environmental stresses on three rivers in the Juru river system, Penang, Malaysia.

    PubMed

    Al-Shami, Salman; Rawi, Che Salmah M; Nor, Siti Azizah M; Ahmad, Abu Hassan; Ali, Arshad

    2010-02-01

    Morphological deformities in parts of the head capsule of Chironomus spp. larvae inhabiting three polluted rivers (Permatang Rawa [PRR], Pasir [PR], and Kilang Ubi [KUR]) in the Juru River Basin, northeastern peninsular Malaysia, were studied. Samples of the fourth-instar larvae at one location in each river were collected monthly from November 2007 to March 2008 and examined for deformities of the mentum, antenna, mandible, and epipharyngis. At each sample location, in situ measurements of water depth, river width, water pH, dissolved oxygen, and water temperature were made. Samples of river water and benthic sediments were also collected monthly from each larval sample location in each river and taken to the laboratory for appropriate analysis. Total suspended solids (TSSs), ammonium-N, nitrate-N, phosphate-P, chloride, sulfate, and aluminum content in water were analyzed. Total organic matter and nonresidual metals in the sediment samples were also analyzed. Among the three rivers, the highest mean deformity (47.17%) was recorded in larvae collected from KUR that received industrial discharges from surrounding garment and rubber factories, followed by PRR (33.71%) receiving primarily residues of fertilizers and pesticides from adjacent rice fields, and PR (30.34%) contaminated primarily by anthropogenic wastes from the surrounding residential areas. Among the various head capsule structures, deformity of the mentum was strongly reflective of environmental stress and amounted to 27.9, 20.87, and 30.19% in the PRR, PR, and KUR, respectively. Calculated Lenat's toxic score index satisfactorily explained the influence of prevailing environmental variables on the severity of mentum deformities. Redundancy analysis and forward selection selected TSSs, sediment Zn, Mn, Cu, and Ni, and water pH, dissolved oxygen, water temperature, total organic matter, nitrate-N, chloride, phosphate-P, ammonium-N, sulfate, and aluminum as parameters that significantly affected some proportion of deformities. The total deformities correlated closely with deformities of mentum but only weakly with deformities in other parts of head. The total deformity incidence was strongly correlated with high contents of sediment Mn and Ni. The mentum and epipharyngis deformities incidence was highly correlated with an increase of TSSs, total aluminum, and ammonium-N and a decrease in pH and dissolved oxygen.

  12. Reduction of quaternary ammonium-induced ocular surface toxicity by emulsions: an in vivo study in rabbits

    PubMed Central

    Liang, H.; Brignole-Baudouin, F.; Rabinovich-Guilatt, L.; Mao, Z.; Riancho, L.; Faure, M.O.; Warnet, J.M.; Lambert, G.

    2008-01-01

    Purpose To evaluate and compare the toxicological profiles of two quaternary ammonium compounds (QAC), benzalkonium chloride (BAK), and cetalkonium chloride (CKC), in standard solution or cationic emulsion formulations in rabbit eyes using newly developed in vivo and ex vivo experimental approaches. Methods Seventy eyes of 35 adult male New Zealand albino rabbits were used in this study. They were randomly divided into five groups: 50 µl of phosphate-buffered saline (PBS), PBS containing 0.02% BAK or 0.002% CKC (BAK Sol and CKC Sol, respectively), and emulsion containing 0.02% BAK or 0.002% CKC (BAK Em and CKC Em, respectively) were applied to rabbit eyes 15 times at 5-min intervals. The ocular surface changes induced by these eye drops were investigated using slit-lamp examination, flow cytometry (FCM), impression cytology (IC) on conjunctiva, and corneal in vivo confocal microscopy (IVCM). Standard immunohistology in cryosections was also examined for cluster of differentiation (CD) 45+ infiltrating and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL)+ apoptotic cells. Results Clinical observations and IVCM showed that the highest toxicity was induced by BAK Sol, characterized by damaged corneal epithelium and a high level of inflammatory infiltration. BAK Em and CKC Sol presented moderate effects, and CKC Em showed the lowest toxicity with results similar to those of PBS. Conjunctival imprints analyzed by FCM showed a higher expression of RLA-DR and TNFR1 markers in BAK Sol-instilled eyes than in all other groups, especially at 4 h. Immunohistology was correlated with in vivo and ex vivo findings and confirmed this toxicity profile. A high level of infiltration of CD45+ inflammatory cells and TUNEL+ apoptotic cells was observed in limbus and conjunctiva, especially in QAC solution-receiving eyes compared to QAC emulsion-instilled eyes. Conclusions The acute administration of 15 instillations at 5 min intervals was a rapid and efficient model to assess quaternary ammonium toxicity profiles. This model showed the highest toxicity, induced by the BAK solution, and the lowest level of toxicity, induced by the CKC emulsion. These in vivo and ex vivo experimental approaches demonstrated that ocular surface toxicity was reduced by using an emulsion instead of a traditional solution and that a CKC emulsion was safe for future ocular administration. PMID:18347566

  13. Reduction of quaternary ammonium-induced ocular surface toxicity by emulsions: an in vivo study in rabbits.

    PubMed

    Liang, H; Brignole-Baudouin, F; Rabinovich-Guilatt, L; Mao, Z; Riancho, L; Faure, M O; Warnet, J M; Lambert, G; Baudouin, C

    2008-01-31

    To evaluate and compare the toxicological profiles of two quaternary ammonium compounds (QAC), benzalkonium chloride (BAK), and cetalkonium chloride (CKC), in standard solution or cationic emulsion formulations in rabbit eyes using newly developed in vivo and ex vivo experimental approaches. Seventy eyes of 35 adult male New Zealand albino rabbits were used in this study. They were randomly divided into five groups: 50 microl of phosphate-buffered saline (PBS), PBS containing 0.02% BAK or 0.002% CKC (BAK Sol and CKC Sol, respectively), and emulsion containing 0.02% BAK or 0.002% CKC (BAK Em and CKC Em, respectively) were applied to rabbit eyes 15 times at 5-min intervals. The ocular surface changes induced by these eye drops were investigated using slit-lamp examination, flow cytometry (FCM), impression cytology (IC) on conjunctiva, and corneal in vivo confocal microscopy (IVCM). Standard immunohistology in cryosections was also examined for cluster of differentiation (CD) 45+ infiltrating and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL)+ apoptotic cells. Clinical observations and IVCM showed that the highest toxicity was induced by BAK Sol, characterized by damaged corneal epithelium and a high level of inflammatory infiltration. BAK Em and CKC Sol presented moderate effects, and CKC Em showed the lowest toxicity with results similar to those of PBS. Conjunctival imprints analyzed by FCM showed a higher expression of RLA-DR and TNFR1 markers in BAK Sol-instilled eyes than in all other groups, especially at 4 h. Immunohistology was correlated with in vivo and ex vivo findings and confirmed this toxicity profile. A high level of infiltration of CD45+ inflammatory cells and TUNEL+ apoptotic cells was observed in limbus and conjunctiva, especially in QAC solution-receiving eyes compared to QAC emulsion-instilled eyes. The acute administration of 15 instillations at 5 min intervals was a rapid and efficient model to assess quaternary ammonium toxicity profiles. This model showed the highest toxicity, induced by the BAK solution, and the lowest level of toxicity, induced by the CKC emulsion. These in vivo and ex vivo experimental approaches demonstrated that ocular surface toxicity was reduced by using an emulsion instead of a traditional solution and that a CKC emulsion was safe for future ocular administration.

  14. Microscale chemistry-based design of eco-friendly, reagent-saving and efficient pharmaceutical analysis: a miniaturized Volhard's titration for the assay of sodium chloride.

    PubMed

    Rojanarata, Theerasak; Sumran, Krissadecha; Nateetaweewat, Paksupang; Winotapun, Weerapath; Sukpisit, Sirarat; Opanasopit, Praneet; Ngawhirunpat, Tanasait

    2011-09-15

    This work demonstrates the extended application of microscale chemistry which has been used in the educational discipline to the real analytical purposes. Using Volhard's titration for the determination of sodium chloride as a paradigm, the reaction was downscaled to less than 2 mL conducted in commercially available microcentrifuge tubes and using micropipettes for the measurement and transfer of reagents. The equivalence point was determined spectrophotometrically on the microplates which quickened the multi-sample measurements. After the validation and evaluation with bulk and dosage forms, the downsized method showed good accuracy comparable to the British Pharmacopeial macroscale method and gave satisfactory precision (intra-day, inter-day, inter-analyst and inter-equipment) with the relative standard deviation of less than 0.5%. Interestingly, the amount of nitric acid, silver nitrate, ferric alum and ammonium thiocyanate consumed in the miniaturized titration was reduced by the factors of 25, 50, 50 and 215 times, respectively. The use of environmentally dangerous dibutyl phthalate was absolutely eliminated in the proposed method. Furthermore, the release of solid waste silver chloride was drastically reduced by about 25 folds. Therefore, microscale chemistry is an attractive, facile and powerful green strategy for the development of eco-friendly, safe, and cost-effective analytical methods suitable for a sustainable environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Poly-N-acetylglucosamine matrix polysaccharide impedes fluid convection and transport of the cationic surfactant cetylpyridinium chloride through bacterial biofilms.

    PubMed

    Ganeshnarayan, Krishnaraj; Shah, Suhagi M; Libera, Matthew R; Santostefano, Anthony; Kaplan, Jeffrey B

    2009-03-01

    Biofilms are composed of bacterial cells encased in a self-synthesized, extracellular polymeric matrix. Poly-beta(1,6)-N-acetyl-d-glucosamine (PNAG) is a major biofilm matrix component in phylogenetically diverse bacteria. In this study we investigated the physical and chemical properties of the PNAG matrix in biofilms produced in vitro by the gram-negative porcine respiratory pathogen Actinobacillus pleuropneumoniae and the gram-positive device-associated pathogen Staphylococcus epidermidis. The effect of PNAG on bulk fluid flow was determined by measuring the rate of fluid convection through biofilms cultured in centrifugal filter devices. The rate of fluid convection was significantly higher in biofilms cultured in the presence of the PNAG-degrading enzyme dispersin B than in biofilms cultured without the enzyme, indicating that PNAG decreases bulk fluid flow. PNAG also blocked transport of the quaternary ammonium compound cetylpyridinium chloride (CPC) through the biofilms. Binding of CPC to biofilms further impeded fluid convection and blocked transport of the azo dye Allura red. Bioactive CPC was efficiently eluted from biofilms by treatment with 1 M sodium chloride. Taken together, these findings suggest that CPC reacts directly with the PNAG matrix and alters its physical and chemical properties. Our results indicate that PNAG plays an important role in controlling the physiological state of biofilms and may contribute to additional biofilm-associated processes such as biocide resistance.

  16. Liquid Phase Plasma Synthesis of Iron Oxide Nanoparticles on Nitrogen-Doped Activated Carbon Resulting in Nanocomposite for Supercapacitor Applications.

    PubMed

    Lee, Heon; Lee, Won-June; Park, Young-Kwon; Ki, Seo Jin; Kim, Byung-Joo; Jung, Sang-Chul

    2018-03-25

    Iron oxide nanoparticles supported on nitrogen-doped activated carbon powder were synthesized using an innovative plasma-in-liquid method, called the liquid phase plasma (LPP) method. Nitrogen-doped carbon (NC) was prepared by a primary LPP reaction using an ammonium chloride reactant solution, and an iron oxide/NC composite (IONCC) was prepared by a secondary LPP reaction using an iron chloride reactant solution. The nitrogen component at 3.77 at. % formed uniformly over the activated carbon (AC) surface after a 1 h LPP reaction. Iron oxide nanoparticles, 40~100 nm in size, were impregnated homogeneously over the NC surface after the LPP reaction, and were identified as Fe₃O₄ by X-ray photoelectron spectroscopy and X-ray diffraction. NC and IONCCs exhibited pseudo-capacitive characteristics, and their specific capacitance and cycling stability were superior to those of bare AC. The nitrogen content on the NC surface increased the compatibility and charge transfer rate, and the composites containing iron oxide exhibited a lower equivalent series resistance.

  17. Prolonged exposure of mixed aerobic cultures to low temperature and benzalkonium chloride affect the rate and extent of nitrification.

    PubMed

    Yang, Jeongwoo; Tezel, Ulas; Li, Kexun; Pavlostathis, Spyros G

    2015-03-01

    The combined effect of benzalkonium chloride (BAC) and prolonged exposure to low temperature on nitrification was investigated. Ammonia oxidation at 22-24°C by an enriched nitrifying culture was inhibited at increasing BAC concentrations and ceased at 15 mg BAC/L. The non-competitive inhibition coefficient was 1.5±0.9 mg BAC/L. Nitrification tests were conducted without and with BAC at 5mg/L using an aerobic, mixed heterotrophic/nitrifying culture maintained at a temperature range of 24-10°C. Maintaining this culture at 10°C for over one month in the absence of BAC, resulted in slower nitrification kinetics compared to those measured when the culture was first exposed to 10°C. BAC was degraded by the heterotrophic population, but its degradation rate decreased significantly as the culture temperature decreased to 10°C. These results confirm the negative impact of quaternary ammonium compounds on the nitrification process, which is further exacerbated by prolonged, low temperature conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Yan; Lin, Zuoxian; Xia, Menghang

    Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependentmore » inhibitions of HERG channel currents with IC{sub 50} values of 4 nM and 17 nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I–V curves in a hyperpolarized direction for 10–15 mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I–V curve in a hyperpolarized direction for 24.4 mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners. - Highlights: ► Tetra-n-octylammonium and benzethonium are potent HERG channel inhibitors. ► Channel activation and inactivation processes are accelerated by the two compounds. ► Both compounds are the open-channel blockers to HERG channels. ► HERG channel inhibition by both compounds is use-, voltage- and state dependent. ► The in vivo risk of QT prolongation needs to be studied for the two compounds.« less

  19. The role of algal organic matter in the separation of algae and cyanobacteria using the novel "Posi" - Dissolved air flotation process.

    PubMed

    Hanumanth Rao, Narasinga Rao; Yap, Russell; Whittaker, Michael; Stuetz, Richard M; Jefferson, Bruce; Peirson, William L; Granville, Anthony M; Henderson, Rita K

    2018-03-01

    Algae and cyanobacteria frequently require separation from liquid media in both water treatment and algae culturing for biotechnology applications. The effectiveness of cell separation using a novel dissolved air flotation process that incorporates positively charged bubbles (PosiDAF) has recently been of interest but has been shown to be dependent on the algae or cyanobacteria species tested. Previously, it was hypothesised that algal organic matter (AOM) could be impacting the separation efficiency. Hence, this study investigates the influence of AOM on cell separation using PosiDAF, in which bubbles are modified using a commercially available cationic polyelectrolyte poly(N, N-diallyl-N,N-dimethylammonium chloride) (PDADMAC). The separation of Chlorella vulgaris CS-42/7, Mychonastes homosphaera CS-556/01 and two strains of Microcystis aeruginosa (CS-564/01 and CS-555/1), all of which have similar cell morphology but different AOM character, was investigated. By testing the cell separation in the presence and absence of AOM, it was determined that AOM enhanced cell separation for all the strains but to different extents depending on the quantity and composition of carbohydrates and proteins in the AOM. By extracting AOM from the strain for which optimal separation was observed and adding it to the others, cell separation improved from <55% to >90%. This was attributed to elevated levels of acidic carbohydrates as well as glycoprotein-carbohydrate conjugations, which in turn were related to the nature and quantity of proteins and carbohydrates present in the AOM. Therefore, it was concluded that process optimisation requires an in-depth understanding of the AOM and its components. If culturing algae for biotechnology applications, this indicates that strain selection is not only important with respect to high value product content, but also for cell separation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. 3-Ethyl-2-methyl-5-methyl­ene-6,7-di­hydroindol-4(5H)-one

    PubMed Central

    Sonar, Vijayakumar N.; Parkin, Sean; Crooks, Peter A.

    2008-01-01

    The title compound, C12H15NO, a degradation product of molindone hydro­chloride, was prepared by the reaction of molindone with methyl iodide and subsequent reaction of the resulting quaternary ammonium salt with 2N aqueous sodium hydroxide. The newly formed double bond is exocyclic in nature and the carbonyl group is conjugated with the π-electrons of the pyrrole ring. The six-membered ring is in the half-chair conformation. The H atom attached to the N atom is involved in an inter­molecular hydrogen bond with the O atom of a screw-related mol­ecule, thus forming a continuous chain. PMID:21200723

  1. Crystallization and X-ray diffraction analysis of 6-­aminohexanoate-dimer hydrolase from Arthrobacter sp. KI72

    PubMed Central

    Ohki, Taku; Mizuno, Nobuhiro; Shibata, Naoki; Takeo, Masahiro; Negoro, Seiji; Higuchi, Yoshiki

    2005-01-01

    To investigate the structure–function relationship between 6-aminohexanoate-dimer hydrolase (EII) from Arthrobacter sp. and a cryptic protein (EII′) which shows 88% sequence identity to EII, a hybrid protein (named Hyb-24) of EII and EII′ was overexpressed, purified and crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant in MES buffer pH 6.5. The crystal belongs to space group P3121 or P3221, with unit-cell parameters a = b = 96.37, c = 113.09 Å. Diffraction data were collected from native and methylmercuric chloride derivative crystals to resolutions of 1.75 and 1.80 Å, respectively. PMID:16511198

  2. Analytical Method for the Detection of Residual Active Ingredients Found in Neutralized Suspensions of Antimicrobial Products.

    PubMed

    Kamel, Alaa; Tomasino, Stephen F

    2017-03-01

    An analytical method for determining the presence and levels of residual active ingredients found in neutralized suspensions of phenolic and quaternary ammonium salt-based antimicrobial products was developed using solid-phase extraction in combination with LC-tandem MS. A single-laboratory validation of the method was performed at three concentration levels for the quaternary ammonium compounds (also referred to as benzalkonium chlorides or BACs) and the phenols in the presence of letheen broth neutralizer at 2.5 and 2.75 μg/mL, respectively, as well as at dilutions of 1:10 and 1:100 in those concentrations. The method's lowest LODs were 0.005 μg/g for BACs and 0.006 μg/g for phenols. The average recovery of the fortified samples for both active ingredients ranged between 80 and 124%, and RSDs were generally <20%. In a related study, the effectiveness of letheen broth with and without sodium thiosulfate was evaluated as a neutralizer for sodium hypochlorite. The results showed that letheen broth without sodium thiosulfate neutralizes chlorine concentrations up to 60 ppm, and that 200 μg sodium thiosulfate are required to neutralize a 72 ppm concentrated chlorine solution in letheen broth.

  3. Overexpression, crystallization and preliminary X-­ray crystallographic analysis of erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa

    PubMed Central

    Ha, Jun Yong; Lee, Ji Hyun; Kim, Kyoung Hoon; Kim, Do Jin; Lee, Hyung Ho; Kim, Hye-Kyung; Yoon, Hye-Jin; Suh, Se Won

    2006-01-01

    The enzyme erythronate-4-phosphate dehydrogenase catalyses the conversion of erythronate-4-phosphate to 3-hydroxy-4-phospho-hydroxy-α-ketobutyrate. It belongs to the d-isomer-specific 2-hydroxyacid dehydrogenase family. It is essential for de novo biosynthesis of vitamin B6 (pyridoxine). Erythronate-4-­phosphate dehydrogenase from Pseudomonas aeruginosa, a homodimeric enzyme consisting of two identical 380-residue subunits, has been overexpressed in Escherichia coli with a C-terminal purification tag and crystallized at 297 K using 0.7 M ammonium dihydrogen phosphate, 0.4 M ammonium tartrate, 0.1 M sodium citrate pH 5.6 and 10 mM cupric chloride. X-ray diffraction data were collected to 2.20 Å from a crystal grown in the presence of NADH. The crystals belong to the orthorhombic space group P212121, with unit-cell parameters a = 84.77, b = 101.28, c = 142.58 Å. A dimeric molecule is present in the asymmetric unit, giving a crystal volume per protein weight (V M) of 3.64 Å3 Da−1 and a solvent content of 66%. PMID:16511285

  4. Adsorption of peroxidase on Celite 545 directly from ammonium sulfate fractionated white radish (Raphanus sativus) proteins.

    PubMed

    Satar, Rukhsana; Husain, Qayyum

    2009-03-01

    This paper demonstrates the direct immobilization of peroxidase from ammonium sulfate fractionated white radish proteins on an inorganic support, Celite 545. The adsorbed peroxidase was crosslinked by using glutaraldehyde. The activity yield for white radish peroxidase was adsorbed on Celite 545 was 70% and this activity was decreased and remained 60% of the initial activity after crosslinking by glutaraldehyde. The pH and temperature-optima for both soluble and immobilized peroxidase was at pH 5.5 and 40 degrees C. Immobilized peroxidase retained higher stability against heat and water-miscible organic solvents. In the presence of 5.0 mM mercuric chloride, immobilized white radish peroxidase retained 41% of its initial activity while the free enzyme lost 93% activity. Soluble enzyme lost 61% of its initial activity while immobilized peroxidase retained 86% of the original activity when exposed to 0.02 mM sodium azide for 1 h. The K(m) values were 0.056 and 0.07 mM for free and immobilized enzyme, respectively. Immobilized white radish peroxidase exhibited lower V(max) as compared to the soluble enzyme. Immobilized peroxidase preparation showed better storage stability as compared to its soluble counterpart.

  5. Adherence of staphylococcus aureus to catheter tubing inhibition by quaternary ammonium compounds

    PubMed Central

    Iyamba, Jean-Marie Liesse; Okombe, Daniel Tassa; Zakanda, Francis Nsimba; Malongo, Trésor Kimbeni; Unya, Joseph Welo; Lukukula, Cyprien Mbundu; Kikuni, Ntondo za Balega Takaisi

    2016-01-01

    Introduction S. aureus is a Gram positive bacterium which is responsible for a wide range of infections. This pathogen has also the ability to adhere to biotic or abiotic surface such as central venous catheter (CVC) and to produce a biofilm. The aim of this study was to evaluate the effect of hexadecyltrimethyl ammonium bromide (HTAB) and Hexadecylbetainate chloride (HBC) on Staphylococcus aureus adherence to the catheter tubing and on bacteria growth. Methods Broth microdilution method was used to determine the Minimal Inhibitory Concentration (MIC). The detection of slime production was done by Congo Red Agar method, and the adherence of bacteria to the catheter tubing was evaluated by the enumeration of bacteria on plate counts. Results The results of this study showed that the MICs of HTAB were ranged from 0.125 to 0.5 µg/mL, and those of HBC fluctuated between 2 to 8 µg/mL. HTAB and HBC inhibited bacteria adhesion on the surface of the catheter tubing. Conclusion This study showed that HTAB and HBC can prevent the adherence of S. aureus strains to the surface of catheter tubing, suggesting that they could be used to prevent the risk of catheter related bloodstream infections. PMID:28250874

  6. Performance properties and antibacterial activity of crosslinked films of quaternary ammonium modified starch and poly(vinyl alcohol).

    PubMed

    Sekhavat Pour, Zahra; Makvandi, Pooyan; Ghaemy, Mousa

    2015-09-01

    There has been a growing interest in developing antibacterial polymeric materials. In the present work, novel antibacterial cross-linked blend films were prepared based on polyvinyl alcohol (PVA) and quaternary ammonium starch (ST-GTMAC) using citric acid (CA) as plasticizer and glutaraldehyde (GA) as cross-linker. The ST-GTMAC was successfully synthesized from reaction between water-soluble oxidized starch and glycidyltrimethylammonium chloride (GTMAC). The effect of ST-GTMAC, CA and GA contents on the swelling, solubility, mechanical and thermal properties of the films was investigated. It was found that incorporation of ST-GTMAC reduced UV-transmittance and provided antibacterial properties, increasing GA content increased tensile strength and decreased solubility and swelling degree of the films, while CA acted as plasticizer when its concentration was above 10 wt%. The results showed that ST-GTMAC/PVA/CA/GA film has fair antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. These results suggest that the prepared film might be used as potential antibacterial material in medical and packaging applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Synthesis of a novel amphiphilic quaternized chitosan and its distribution in rats.

    PubMed

    Liu, Xiaofei; Zeng, Anrong; Li, Lin; Yang, Fan; Wang, Qi; Sun, Zhong; Shen, Jun

    2011-01-01

    A novel amphiphilic chitosan derivative, N-[(2-hydroxy-3-N,N-dimethylhexadecyl ammonium)propyl]chitosan chloride (N-CQCs), was prepared with a degree of substitution (DS) of 15.58%. N-CQCs was positively charged and its zeta potential was +28.4 mV. The introduction of a long carbon chain with a quaternary ammonium salt group into the chitosan backbone enabled N-CQCs to be lipotropic and hydrophilic. According to the hypothesis of the hypocholesterolemic effect of N-CQCs, its organ distribution in rats was investigated 48 h after administration via gavage using fluorescein isothiocyanate labeling. N-CQCs showed lower cytotoxicity. The plasma half-life of N-CQCs in rats was 48 h and the plasma AUC0-48 h (P) was 371.70 μg/ml per h, suggesting that N-CQCs remained in body for a long time. The results also showed that the accumulation in adipose tissue and gastrointestinal tract was higher than in thymus, kidney, liver and spleen at 48 h after administration. It could be presumed that N-CQCs play an important part in the metabolic process of body fat. Adipose tissue and gastrointestinal tract were the probable interaction sites of N-CQCs and body fat.

  8. 1988 Wet deposition temporal and spatial patterns in North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-yearmore » (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen`s median trend estimate and Kendall`s seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.« less

  9. Adherence of staphylococcus aureus to catheter tubing inhibition by quaternary ammonium compounds.

    PubMed

    Iyamba, Jean-Marie Liesse; Okombe, Daniel Tassa; Zakanda, Francis Nsimba; Malongo, Trésor Kimbeni; Unya, Joseph Welo; Lukukula, Cyprien Mbundu; Kikuni, Ntondo Za Balega Takaisi

    2016-01-01

    S. aureus is a Gram positive bacterium which is responsible for a wide range of infections. This pathogen has also the ability to adhere to biotic or abiotic surface such as central venous catheter (CVC) and to produce a biofilm. The aim of this study was to evaluate the effect of hexadecyltrimethyl ammonium bromide (HTAB) and Hexadecylbetainate chloride (HBC) on Staphylococcus aureus adherence to the catheter tubing and on bacteria growth. Broth microdilution method was used to determine the Minimal Inhibitory Concentration (MIC). The detection of slime production was done by Congo Red Agar method, and the adherence of bacteria to the catheter tubing was evaluated by the enumeration of bacteria on plate counts. The results of this study showed that the MICs of HTAB were ranged from 0.125 to 0.5 µg/mL, and those of HBC fluctuated between 2 to 8 µg/mL. HTAB and HBC inhibited bacteria adhesion on the surface of the catheter tubing. This study showed that HTAB and HBC can prevent the adherence of S. aureus strains to the surface of catheter tubing, suggesting that they could be used to prevent the risk of catheter related bloodstream infections.

  10. Comparison of Chemical Extraction Methods for Determination of Soil Potassium in Different Soil Types

    NASA Astrophysics Data System (ADS)

    Zebec, V.; Rastija, D.; Lončarić, Z.; Bensa, A.; Popović, B.; Ivezić, V.

    2017-12-01

    Determining potassium supply of soil plays an important role in intensive crop production, since it is the basis for balancing nutrients and issuing fertilizer recommendations for achieving high and stable yields within economic feasibility. The aim of this study was to compare the different extraction methods of soil potassium from arable horizon of different types of soils with ammonium lactate method (KAL), which is frequently used as analytical method for determining the accessibility of nutrients and it is a common method used for issuing fertilizer recommendations in many Europe countries. In addition to the ammonium lactate method (KAL, pH 3.75), potassium was extracted with ammonium acetate (KAA, pH 7), ammonium acetate ethylenediaminetetraacetic acid (KAAEDTA, pH 4.6), Bray (KBRAY, pH 2.6) and with barium chloride (K_{BaCl_2 }, pH 8.1). The analyzed soils were extremely heterogeneous with a wide range of determined values. Soil pH reaction ( {pH_{H_2 O} } ) ranged from 4.77 to 8.75, organic matter content ranged from 1.87 to 4.94% and clay content from 8.03 to 37.07%. In relation to KAL method as the standard method, K_{BaCl_2 } method extracts 12.9% more on average of soil potassium, while in relation to standard method, on average KAA extracts 5.3%, KAAEDTA 10.3%, and KBRAY 27.5% less of potassium. Comparison of analyzed extraction methods of potassium from the soil is of high precision, and most reliable comparison was KAL method with KAAEDTA, followed by a: KAA, K_{BaCl_2 } and KBRAY method. Extremely significant statistical correlation between different extractive methods for determining potassium in the soil indicates that any of the methods can be used to accurately predict the concentration of potassium in the soil, and that carried out research can be used to create prediction model for concentration of potassium based on different methods of extraction.

  11. Crystallization of Chicken Egg White Lysozyme from Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    1998-01-01

    It has been "known" that chicken egg white lysozyme does not crystallize from sulfate, particularly ammonium sulfate, salts, but instead gives amorphous precipitates. This has been the basis of several studies using lysozyme comparing macromolecule crystal nucleation and amorphous precipitation. Recently Ries-Kautt et al (Acta Cryst D50, (1994) 366) have shown that purified isoionic CEWL could be crystallized from low concentrations of sulfate at basic pH, and we subsequently showed that in fact CEWL could be purified in both the tetragonal and orthorhombic forms using ammonium sulfate over the pH range 4.0 to 7.8 (Acta Cryst D53, (1997) 795). We have now extended these observations to include a range of common sulfate salts, specifically sodium, potassium, rubidium, magnesium, and manganese sulfates. In all cases but the manganese sulfates both the familiar tetragonal and orthorhombic forms were obtained, with unit cell dimensions close to those known for the "classic" sodium chloride crystallized forms. Manganese sulfate has only yielded orthorhombic crystals to date. All crystallizations were carried out using low (typically less than or equal to 6 M) salt and high (greater than approximately 90 mg/ml) protein concentrations. As with ammonium sulfate, the tetragonal - orthorhombic phase shift appears to be a function of both the temperature and the protein concentration, with higher temperatures and concentrations favoring the orthorhombic and lower the tetragonal form. The phase change range is somewhat reduced for the sulfate salts, depending upon conditions being typically between approximately 15 - 20 C. Both the magnesium and manganese sulfates gave crystals at salt concentrations over 0.6 M as well, with magnesium sulfate giving a very slowly nucleating and growing hexagonal form. A triclinic crystal form, characterized by aggressively small crystals (typically 0.1 mm in size) has been occasionally obtained from ammonium sulfate. Finally, preliminary spot solubility determinations have suggested that in some cases the solubility increases with increasing salt concentrations.

  12. Impact of Tile Drainage on the Distribution of Concentration and Age of Inorganic Soil Nitrogen.

    NASA Astrophysics Data System (ADS)

    Woo, D.; Kumar, P.

    2017-12-01

    Extensive network of tile drainage network across the Midwestern United States, northern Europe and other regions of the world have enhanced agricultural productivity. Because of its impact on sub-surface flow patterns and moisture and temperature dynamics, it controls the nitrogen cycle in agricultural systems, and its influence on nitrogen dynamics plays a key role in determining the short- and long-term evolution of soil inorganic nitrogen concentration and age. The spatial mapping of nitrogen concentration and age under tile-drained fields has, therefore, the potential to open up novel solution to the vexing challenge of reducing environmental impacts while at the same time maintaining agricultural productivity. The objective of this study is to explore the impacts of tile drains on the age dynamics of nitrate, immobile ammonium, mobile ammonia/um, and non-reactive tracer (such as chloride) by implementing two mobile interacting pore domains to capture matrix and preferential flow paths in a coupled ecohydrology and biogeochemistry model, Dhara. We applied this model to an agricultural farm supporting a corn-soybean rotation in the Midwestern United States. It should be expected that the installation of tile drains decrease the age of soil nutrient due to nutrient losses through tile drainage. However, an increase in the age of mobile ammonia/um is observed in contrast to the cases for nitrate, immobile ammonium, and non-reactive tracer. These results arise because the depletion of mobile ammonia/um due to tile drainage causes a high mobility flux from immobile ammonium to mobile ammonia/um, which also carries a considerable amount of relatively old age of immobile ammonium to mobile ammonia/um. In addition, the ages of nitrate and mobile ammonia/um in tile drainage range from 1 to 3 years, and less than a year, respectively, implying that not considering age transformations between nitrogen species would result in substantial underestimation of nitrogen ages, possibly leading to an erroneous conclusion.

  13. Inactivation of viruses using novel protein A wash buffers.

    PubMed

    Bolton, Glen R; Selvitelli, Keith R; Iliescu, Ionela; Cecchini, Douglas J

    2015-01-01

    Low pH viral inactivation is typically performed in the eluate pool following the protein A capture step during the manufacturing of monoclonal antibodies and Fc-fusion proteins. However, exposure to low pH has the potential to alter protein quality. To avoid these difficulties, novel wash buffers capable of inactivating viruses while antibodies or Fc-fusion proteins were bound to protein A or mixed mode resins were developed. By equilibrating the column in high salt buffer (2 M ammonium sulfate or 3 M sodium chloride) after loading, the hydrophobic interactions between antibodies and protein A ligands were increased enough to prevent elution at pH 3. The ammonium sulfate was also found to cause binding of an antibody to a mixed mode cation exchange and a mixed mode anion exchange resin at pH values that caused elution in conventional cation and anion exchange resins (pH 3.5 for Capto Adhere and pH 8.0 for Capto MMC), indicating that retention was due to enhanced hydrophobic interactions. The potential of the 2 M ammonium sulfate pH 3 buffer, a 1 M arginine buffer, and a buffer containing the detergent LDAO to inactivate XMuLV virus when used as protein A wash buffers with a 1 hour contact time were studied. The high salt and detergent containing wash buffers provided about five logs of removal, determined using PCR, and complete combined removal and inactivation (> 6 logs), determined by measuring infectivity. The novel protein A washes could provide more rapid, automated viral inactivation steps with lower pool conductivities. © 2014 American Institute of Chemical Engineers.

  14. FORMATE—PYRUVATE EXCHANGE REACTION IN STREPTOCOCCUS FAECALIS II.

    PubMed Central

    Oster, M. O.; Wood, N. P.

    1964-01-01

    Oster, M. O. (A. & M. College of Texas, College Station), and N. P. Wood. Formate-pyruvate exchange reaction in Streptococcus faecalis. II. Reaction conditions for cell extracts. J. Bacteriol. 87:104–113. 1964.—In contrast to intact cells of Streptococcus faecalis, no stimulation of the formate-pyruvate exchange reaction was observed in cell extracts when yeast extract was added to the reaction mixture. A heated extract of Micrococcus lactilyticus, vitamin K5, ferrous sulfate, and ferrous ammonium sulfate stimulated an active exchange by protecting the system from oxygen. Tetrahydrofolate, 2,3-dimercaptopropanol, and sodium sulfide provided partial protection, whereas ascorbate, glutathione, sodium hydrosulfite, ammonium sulfide, and sodium bisulfite gave insufficient protection or were inhibitory. Oxidation-reduction (O-R) indicators were not inhibitory and were used to estimate the O-R potentials of reaction mixtures. A potential at least as negative as −125 mv was estimated to be necessary to preserve or initiate formate-pyruvate exchange activity. The reaction operated over a narrow pH range when strict anaerobic conditions were not maintained but, when the system was suitably poised, the pH range was broader. The influence of high phosphate concentrations was less under strictly anaerobic conditions, and orthophosphate could be replaced by small amounts of pyrophosphate. Effect of temperature, time, and amount of extract is presented. Addition of reduced benzyl viologen and hydrogen-saturated palladium in the buffer during 8 hr of dialysis prevented inactivation of extracts. Recovery of activity could be obtained after ammonium sulfate treatment when a combination of palladium chloride, neutral red, and hydrogen bubbling were used. PMID:14102842

  15. Hygroscopic and phase separation properties of ammonium sulfate/organics/water ternary solutions

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Proud, S. R.; Seppalainen, S. S.; Cziczo, D. J.

    2015-08-01

    Atmospheric aerosol particles are often partially or completely composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. Field measurements have shown that atmospheric aerosols are not typically pure inorganic salt, instead, they often also contain organic species. There is ample evidence from laboratory studies that suggests that mixed particles exist in a phase-separated state, with an aqueous inorganic core and organic shell. Although phase separation has not been measured in situ, there is no reason it would not also take place in the atmosphere. Here, we investigate the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR (Fourier transform infrared) spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O : C ratios, including 1,4-butanediol, glycerol, 1,2,6-hexanetriol, 1,2-hexanediol, and 1,5-pentanediol have been investigated. Those constituents correspond to materials found in the atmosphere in great abundance and, therefore, particles prepared in this study should mimic atmospheric mixed-phase aerosol particles. Some results of this study tend to be in agreement with previous microscopy experiments, but others, such as phase separation properties of 1,2,6-hexanetriol, do not agree with previous work. Because the particles studied in this experiment are of a smaller size than those used in microscopy studies, the discrepancies found could be a size-related effect.

  16. Evaluation of on-line desalter-inductively coupled plasma-mass spectrometry system for determination of Cr(III), Cr(VI), and total chromium concentrations in natural water and urine samples

    NASA Astrophysics Data System (ADS)

    Sun, Y. C.; Lin, C. Y.; Wu, S. F.; Chung, Y. T.

    2006-02-01

    We have developed a simple and convenient method for the determination of Cr(III), Cr(VI), and the total chromium concentrations in natural water and urine samples that use a flow injection on-line desalter-inductively coupled plasma-mass spectrometry system. When using aqueous ammonium chloride (pH 8) as the stripping solution, the severe interference from sodium in the matrix can be eliminated prior to inductively coupled plasma-mass spectrometry measurement, and the Cr(VI) level can be determined directly. To determine the total concentration of Cr in natural water and urine samples, we used H 2O 2 or HNO 3 to decompose the organic matter and convert all chromium species into the Cr(VI) oxidation state. To overcome the spectral interference caused by the matrix chloride ion in the resulting solutions, we employed cool plasma to successfully suppress chloride-based molecular ion interference during the inductively coupled plasma-mass spectrometry measurement. By significantly eliminating interference from the cationic and anionic components in the matrices prior to the inductively coupled plasma-mass spectrometry measurement, we found that the detection limit reached 0.18 μg L - 1 (based on 3 sigma). We validated this method through the analysis of the total chromium content in two reference materials (NIST 1643c and 2670E) and through measuring the recovery in spiked samples.

  17. Myeloperoxidase-hydrogen peroxide-chloride antimicrobial system: effect of exogenous amines on antibacterial action against Escherichia coli.

    PubMed

    Thomas, E L

    1979-07-01

    Exogenous ammonium ions (NH(4) (+)) and amine compounds had a profound influence on the antibacterial activity of the myeloperoxidase-hydrogen peroxide-chloride system against Escherichia coli. The rate of killing increased in the presence of NH(4) (+) and certain guanidino compounds and decreased in the presence of alpha-amino acids, polylysine, taurine, or tris (hydroxymethyl) aminomethane. Myeloperoxidase catalyzed the oxidation of chloride to hypochlorous acid, which reacted either with bacterial amine or amide components or both or with the exogenous compounds to yield chloramine or chloramide derivatives or both. These nitrogen-chlorine derivatives could oxidize bacterial components. Killing was correlated with oxidation of bacterial components. The rate of oxidation of bacterial sulfhydryls increased in the presence of the compounds that increased the rate of killing and decreased in the presence of the other compounds. The reaction of HOCl with NH(4) (+) yielded monochloramine (NH(2)Cl), which could be extracted into organic solvents. The N-Cl derivatives of bacterial components or of polylysine, taurine, or tris(hydroxymethyl)aminomethane could not be extracted. The effect of NH(4) (+) on killing is attributed to the ability of NH(2)Cl to penetrate the hydrophobic cell membrane and thus to oxidize intracellular components. Polylysine, taurine, and tris(hydroxymethyl)aminomethane formed high-molecular-weight, charged, or polar N-Cl derivatives that would be unable to penetrate the cell membrane. These results suggest an important role for leukocyte amine components in myeloperoxidase-catalyzed antimicrobial activity in vivo.

  18. Production of polyhydroxybutyrate by the marine photosynthetic bacterium Rhodovulum sulfidophilum P5

    NASA Astrophysics Data System (ADS)

    Cai, Jinling; Wei, Ying; Zhao, Yupeng; Pan, Guanghua; Wang, Guangce

    2012-07-01

    The effects of different NaCl concentrations, nitrogen sources, carbon sources, and carbon to nitrogen molar ratios on biomass accumulation and polyhydroxybutyrate (PHB) production were studied in batch cultures of the marine photosynthetic bacterium Rhodovulum sulfidophilum P5 under aerobic-dark conditions. The results show that the accumulation of PHB in strain P5 is a growth-associated process. Strain P5 had maximum biomass and PHB accumulation at 2%-3% NaCl, suggesting that the bacterium can maintain growth and potentially produce PHB at natural seawater salinity. In the nitrogen source test, the maximum biomass accumulation (8.10±0.09 g/L) and PHB production (1.11±0.13 g/L and 14.62%±2.2 of the cell dry weight) were observed when peptone and ammonium chloride were used as the sole nitrogen source. NH{4/+}-N was better for PHB production than other nitrogen sources. In the carbon source test, the maximum biomass concentration (7.65±0.05 g/L) was obtained with malic acid as the sole carbon source, whereas the maximum yield of PHB (5.03±0.18 g/L and 66.93%±1.69% of the cell dry weight) was obtained with sodium pyruvate as the sole carbon source. In the carbon to nitrogen ratios test, sodium pyruvate and ammonium chloride were selected as the carbon and nitrogen sources, respectively. The best carbon to nitrogen molar ratio for biomass accumulation (8.77±0.58 g/L) and PHB production (6.07±0.25 g/L and 69.25%±2.05% of the cell dry weight) was 25. The results provide valuable data on the production of PHB by R. sulfidophilum P5 and further studies are on-going for best cell growth and PHB yield.

  19. Influence of mixed electrolytes and pH on adsorption of bovine serum albumin in hydrophobic interaction chromatography.

    PubMed

    Hackemann, Eva; Hasse, Hans

    2017-10-27

    Using salt mixtures instead of single salts can be beneficial for hydrophobic interaction chromatography (HIC). The effect of electrolytes on the adsorption of proteins, however, depends on the pH. Little is known on that dependence for mixed electrolytes. Therefore, the effect of the pH on protein adsorption from aqueous solutions containing mixed salts is systematically studied in the present work for a model system: the adsorption of bovine serum albumin (BSA) on the mildly hydrophobic resin Toyopearl PPG-600M. The pH is adjusted to 4.0, 4.7 or 7.0 using 25mM sodium phosphate or sodium citrate buffer. Binary and ternary salt mixtures of sodium chloride, ammonium chloride, sodium sulfate and ammonium sulfate as well as the pure salts are used at overall ionic strengths between 1500 and 4200mM. The temperature is always 25°C. The influence of the mixed electrolytes on the adsorption behavior of BSA changes completely with varying pH. Positive as well as negative cooperative effects of the mixed electrolytes are observed. The results are analyzed using a mathematical model which was recently introduced by our group. In that model the influence of the electrolytes is described by a Taylor series expansion in the individual ion molarities. After suitable parametrization using a subset of the data determined in the present work, the model successfully predicts the influence of mixed electrolytes on the protein adsorption. Furthermore, results for BSA from the present study are compared to literature data for lysozyme, which are available for the same adsorbent, temperature and salts. By calculating the ratio of the loading of the adsorbent for both proteins particularly favorable separation conditions can be selected. Hence, a model-based optimization of solvents for protein separation is possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cells for bioartificial liver devices: the human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia.

    PubMed

    Mavri-Damelin, Demetra; Damelin, Leonard H; Eaton, Simon; Rees, Myrddin; Selden, Clare; Hodgson, Humphrey J F

    2008-02-15

    Extrahepatic bioartificial liver devices should provide an intact urea cycle to detoxify ammonia. The C3A cell line, a subclone of the hepatoma-derived HepG2 cell line, is currently used in this context as it produces urea, and this has been assumed to be reflective of ammonia detoxification via a functional urea cycle. However, based on our previous findings of perturbed urea-cycle function in the non-urea producing HepG2 cell line, we hypothesized that the urea produced by C3A cells was via a urea cycle-independent mechanism, namely, due to arginase II activity, and therefore would not detoxify ammonia. Urea was quantified using (15)N-ammonium chloride metabolic labelling with gas chromatography-mass spectrometry. Gene expression was determined by real-time reverse transcriptase-PCR, protein expression by western blotting, and functional activities with radiolabelling enzyme assays. Arginase inhibition studies used N(omega)-hydroxy-nor-L-arginine. Urea was detected in C3A conditioned medium; however, (15)N-ammonium chloride-labelling indicated that (15)N-ammonia was not incorporated into (15)N-labelled urea. Further, gene expression of two urea cycle genes, ornithine transcarbamylase and arginase I, were completely absent. In contrast, arginase II mRNA and protein was expressed at high levels in C3A cells and was inhibited by N(omega)-hydroxy-nor-L-arginine, which prevented urea production, thereby indicating a urea cycle-independent pathway. The urea cycle is non-functional in C3A cells, and their urea production is solely due to the presence of arginase II, which therefore cannot provide ammonia detoxification in a bioartificial liver system. This emphasizes the continued requirement for developing a component capable of a full repertoire of liver function. (c) 2007 Wiley Periodicals, Inc.

  1. Indoor air quality during renovation actions: a case study.

    PubMed

    Abdel Hameed, A A; Yasser, I H; Khoder, I M

    2004-09-01

    A temporary renovation activity releases considerably high concentrations of particulate matter, viable and non-viable, into air. These pollutants are a potential contributor to unacceptable indoor air quality (IAQ). Particulate matter and its constituents lead, sulfate, nitrate, chloride, ammonium and fungi as well as fungal spores in air were evaluated in a building during renovation action. Suspended dust was recorded at a mean value of 6.1 mg m(-3) which exceeded the Egyptian limit values for indoor air (0.15 mg m(-3)) and occupational environments (5 mg m(-3)). The highest particle frequency (23%) of aerodynamic diameter (dae) was 1.7 microm. Particulate sulfate (SO(4)(2-)), nitrate (NO(3)(-)), chloride (Cl(-)), ammonium (NH(4)(+)) and lead components of suspended dust averaged 2960, 28, 1350, 100 and 13.3 microg m(-3), respectively. Viable fungi associated with suspended dust and that in air averaged 1.11 x 10(6) colony forming unit per gram (cfu g(-1)) and 92 colony forming unit per plate per hour (cfu p(-1) h(-1)), respectively. Cladosporium(33%), Aspergillus(25.6%), Alternaria(11.2%) and Penicillium(6.6%) were the most frequent fungal genera in air, whereas Aspergillus(56.8%), Penicillium(10.3%) and Eurotium(10.3%) were the most common fungal genera associated with suspended dust. The detection of Aureobasidium, Epicoccum, Exophiala, Paecilomyces, Scopulariopsis, Ulocladium and Trichoderma is an indication of moisture-damaged building materials. Alternaria, Aureobasidium, Cladosporium, Scopulariopsis and Nigrospora have dae > 5 microm whereas Aspergillus, Penicillium and Verticillium have dae < 5 microm which are suited to penetrate deeply into lungs. Particulate matter from the working area infiltrates the occupied zones if precautionary measures are inadequate. This may cause deterioration of IAQ, discomfort and acute health problems. Renovation should be carefully designed and managed, in order to minimize degradation of the indoor and outdoor air quality.

  2. Component Release and Mechanical Properties of Endodontic Sealers following Incorporation of Antimicrobial Agents.

    PubMed

    Gjorgievska, Elizabeta S; Nicholson, John W; Coleman, Nichola J; Booth, Samantha; Dimkov, Aleksandar; Hurt, Andrew

    2017-01-01

    Root canal sealers with antimicrobial activity are highly beneficial; therefore, their antimicrobial properties could be improved by incorporation of antimicrobial agents. In the present study, the release of the quaternary ammonium compounds from endodontic sealers admixed with either benzalkonium chloride (BC) or cetylpyridinium chloride (CPC) at loadings of 2% wt was monitored. The effect of these additives on the compressive strengths and their release from the sealers was determined after 1 and 4 weeks. All of the materials studied were found to be capable of releasing antimicrobial additive in useful quantities. The release of CPC occurred to a statistically significant greater extent than BC for all materials. The addition of both BC and CPC generally decreased the compressive strength of all the endodontic sealers, with the exception of CPC in AH Plus, where the compressive strength was significantly increased. This suggests that, for these endodontic sealers, the antimicrobial additives alter the setting chemistry. AH Plus is an epoxy-based material cured with an amine, and in this case the increase in compressive strength with CPC is attributed to an enhanced cure reaction with this system. In all other cases, the additive inhibited the cure reaction to a greater or lesser extent.

  3. Responsive copolymers for enhanced petroleum recovery. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, C.; Hester, R.

    1994-08-01

    A coordinated research program involving synthesis, characterization, and rheology has been undertaken to develop advanced polymer system which should be significantly more efficient than polymers presently used for mobility control and conformance. Unlike the relatively inefficient, traditional EOR polymers, these advanced polymer systems possess microstructural features responsive to temperature, electrolyte concentration, and shear conditions. Contents of this report include the following chapters. (1) First annual report responsive copolymers for enhanced oil recovery. (2) Copolymers of acrylamide and sodium 3-acrylamido-3-methylbutanoate. (3) Terpolymers of NaAMB, Am, and n-decylacrylamide. (4) Synthesis and characterization of electrolyte responsive terpolymers of acrylamide, N-(4-butyl)phenylacrylamide, and sodium acrylate,more » sodium-2-acrylamido-2-methylpropanesulphonate or sodium-3-acrylamido-3-methylbutanoate. (5) Synthesis and solution properties of associative acrylamido copolymers with pyrensulfonamide fluorescence labels. (6) Photophysical studies of the solution behavior of associative pyrenesulfonamide-labeled polyacrylamides. (7) Ampholytic copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate with [2-(acrylamido)-2-methypropyl]trimethylammonium chloride. (8) Ampholytic terpolymers of acrylamide with sodium 2-acrylamido-2-methylpropanesulphoante and 2-acrylamido-2-methylpropanetrimethyl-ammonium chloride and (9) Polymer solution extensional behavior in porous media.« less

  4. Long-term exposure to benzalkonium chloride disinfectants results in change of microbial community structure and increased antimicrobial resistance.

    PubMed

    Tandukar, Madan; Oh, Seungdae; Tezel, Ulas; Konstantinidis, Konstantinos T; Pavlostathis, Spyros G

    2013-09-03

    The effect of benzalkonium chlorides (BACs), a widely used class of quaternary ammonium disinfectants, on microbial community structure and antimicrobial resistance was investigated using three aerobic microbial communities: BACs-unexposed (DP, fed a mixture of dextrin/peptone), BACs-exposed (DPB, fed a mixture of dextrin/peptone and BACs), and BACs-enriched (B, fed only BACs). Long-term exposure to BACs reduced community diversity and resulted in the enrichment of BAC-resistant species, predominantly Pseudomonas species. Exposure of the two microbial communities to BACs significantly decreased their susceptibility to BACs as well as three clinically relevant antibiotics (penicillin G, tetracycline, ciprofloxacin). Increased resistance to BACs and penicillin G of the two BACs-exposed communities is predominantly attributed to degradation or transformation of these compounds, whereas resistance to tetracycline and ciprofloxacin is largely due to the activity of efflux pumps. Quantification of several key multidrug resistance genes showed a much higher number of copies of these genes in the DPB and B microbial communities compared to the DP community. Collectively, our findings indicate that exposure of a microbial community to BACs results in increased antibiotic resistance, which has important implications for both human and environmental health.

  5. Ion composition of coarse and fine particles in Iasi, north-eastern Romania: Implications for aerosols chemistry in the area

    NASA Astrophysics Data System (ADS)

    Arsene, Cecilia; Olariu, Romeo Iulian; Zarmpas, Pavlos; Kanakidou, Maria; Mihalopoulos, Nikolaos

    2011-02-01

    Atmospheric loadings of the aerosols coarse (particles of AED > 1.5 μm) and fine fractions (particles of AED < 1.5 μm) were determined in Iasi, north-eastern Romania from January 2007 to March 2008. Concentrations of water soluble ions (SO 42-, NO 3-, Cl -, C 2O 42-, NH 4+, K +, Na +, Ca 2+ and Mg 2+) were measured using ion chromatography (IC). In the coarse particles, calcium and carbonate are the main ionic constituents (˜65%), whereas in the fine particles SO 42-, NO 3-, Cl - and NH 4+ are the most abundant. Temperature and relative humidity (RH) associated with increased concentrations of specific ions might be the main factors controlling the aerosol chemistry at the investigated site. From August 2007 to March 2008 high RH (as high as 80% for about 82% of the investigated period) was prevailing in Iasi and the collected particles were expected to have deliquesced and form an internal mixture. We found that in fine particles ammonium nitrate (NH 4NO 3) is important especially under conditions of NH 4+/SO 42- ratio higher than 1.5 and high RH (RH above deliquescence of NH 4Cl, NH 4NO 3 and (NH 4) 2SO 4). At the investigated site large ammonium artifacts may occur due to inter-particle interaction especially under favorable meteorological conditions. A methodology for estimating the artifact free ambient ammonium concentration is proposed for filter pack sampling data of deliquesced particles. Nitrate and sulfate ions in coarse particles are probably formed via reactions of nitric and sulfuric acid with calcium carbonate and sodium chloride which during specific seasons are abundant at the investigated site. In the fine mode sulfate concentration maximized during summer (due to enhanced photochemistry) and winter (due to high concentration of SO 2 emitted from coal burning). Natural contributions, dust or sea-salt related, prevail mainly in the coarse particles. From May 2007 to August 2007, when air masses originated mainly from Black Sea, in the coarse particles an nss-Cl/Na ratio of 1.11 was measured. Elevated levels of chloride in fine particles have been attributed to waste burning in the proximity of the investigated site or to NaCl salt widely spread on roads during winter. Considering the importance of atmospheric aerosols, this study may constitute a reference point for Eastern Europe.

  6. A study on recovery of uranium in the anode basket residues delivered from the pyrochemical process of used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Kim, T. J.; Jang, J. H.; Kim, G. Y.; Park, S. B.; Yoon, D. S.; Kim, S. H.; Paek, S. W.; Lee, S. J.

    2018-04-01

    In this study, the chlorination of uranium oxide (UO2) using ammonium chloride and zirconium as chemical agents was conducted to recover the uranium in the anode basket residues from the pyrochemical process of used nuclear fuel. The chlorination of UO2 was predicted using thermodynamic equilibrium calculations. The experimental conditions for the chlorination were determined using a chlorination test with cerium oxide (CeO2). In the chlorination test, it was confirmed that UO2 was chlorinated into UCl3 at 320 °C, some UO2 remained without changes in the chemical form, and ZrO2, Zr2O, and ZrCl2 were generated as byproducts.

  7. Growth and defects of explosives crystals

    NASA Astrophysics Data System (ADS)

    Cady, H. H.

    Large single crystals of PETN, RDX, and TNT can be grown easily from evaporating ethyl acetate solutions. The crystals all share a similar type of defect that may not be commonly recognized. The defect generates conical faces, ideally mosaic crystals, and may account for the 'polymorphs' of TNT and detonator grades of PETN. TATB crystals manufactured by the amination of trichlorotrinitrobenzene in dry toluene entrain two forms of ammonium chloride. One of these forms causes 'worm holes' in the TATB crystals that may be the reason for its unusually low failure diameters. Strained HMX crystals form mechanical twins that can spontaneously revert back to the untwinned form when the straining force is removed. Large strains or temperatures above 100 C lock in the mechanical twins.

  8. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  9. Weak-link capacitor

    DOEpatents

    Dirk, Shawn M [Albuquerque, NM; Johnson, Ross S [Albuquerque, NM; Wheeler, David R [Albuquerque, NM; Bogart, Gregory R [Corrales, NM

    2011-06-07

    A process for making a dielectric material where a precursor polymer selected from poly(phenylene vinylene) polyacetylene, poly(p-phenylene), poly(thienylene vinylene), poly(1,4-naphthylene vinylene), and poly(p-pyridine vinylene) is energized said by exposure by radiation or increase in temperature to a level sufficient to eliminate said leaving groups contained within the precursor polymer, thereby transforming the dielectric material into a conductive polymer. The leaving group in the precursor polymer can be a chloride, a bromide, an iodide, a fluoride, an ester, an xanthate, a nitrile, an amine, a nitro group, a carbonate, a dithiocarbamate, a sulfonium group, an oxonium group, an iodonium group, a pyridinium group, an ammonium group, a borate group, a borane group, a sulphinyl group, or a sulfonyl group.

  10. Weak-link capacitor

    DOEpatents

    Dirk, Shawn M.; Johnson, Ross S.; Wheeler, David R.; Bogart, Gregory R.

    2013-04-23

    A process for making a dielectric material where a precursor polymer selected from poly(phenylene vinylene)polyacetylene, poly(p-phenylene), poly(thienylene vinylene), poly(1,4-naphthylene vinylene), and poly(p-pyridine vinylene) is energized said by exposure by radiation or increase in temperature to a level sufficient to eliminate said leaving groups contained within the precursor polymer, thereby transforming the dielectric material into a conductive polymer. The leaving group in the precursor polymer can be a chloride, a bromide, an iodide, a fluoride, an ester, an xanthate, a nitrile, an amine, a nitro group, a carbonate, a dithiocarbamate, a sulfonium group, an oxonium group, an iodonium group, a pyridinium group, an ammonium group, a borate group, a borane group, a sulphinyl group, or a sulfonyl group.

  11. Electrical Conductivity Response of Poly(Phenylene-vinylene)/Zeolite Composites Exposed to Ammonium Nitrate

    PubMed Central

    Kamonsawas, Jirarat; Sirivat, Anuvat; Niamlang, Sumonman; Hormnirun, Pimpa; Prissanaroon-Ouajai, Walaiporn

    2010-01-01

    Poly(p-phenylenevinylene) (PPV) was chemically synthesized via the polymerization of p-xylene-bis(tetrahydrothiophenium chloride) monomer and doped with H2SO4. To improve the electrical conductivity sensitivity of the conductive polymer, Zeolites Y (Si/Al = 5.1, 30, 60, 80) were added into the conductive polymer matrix. All composite samples show definite positive responses towards NH4NO3. The electrical conductivity sensitivities of the composite sensors increase linearly with increasing Si/Al ratio: with values of 0.201, 1.37, 2.80 and 3.18, respectively. The interactions between NH4NO3 molecules and the PPV/zeolite composites with respect to the electrical conductivity sensitivity were investigated through the infrared spectroscopy. PMID:22219677

  12. A rapid method for measuring intracellular pH using BCECF-AM.

    PubMed

    Ozkan, Pinar; Mutharasan, Raj

    2002-08-15

    A rapid intracellular pH (pH(i)) measurement method based on initial rate of increase of fluorescence ratio of 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein upon dye addition to a cell suspension in growth medium is reported. A dye transport model that describes dye concentration and fluorescence values in intracellular and extracellular spaces provides the mathematical basis for the approach. Experimental results of ammonium chloride challenge response of the two suspension cells, Spodoptera frugiperda and Chinese hamster ovary (CHO) cells, successfully compared with results obtained using traditional perfusion method. Since the cell suspension does not require any preparation, measurement of pH(i) can be completed in about 1 min minimizing any potential errors due to dye leakage.

  13. Thermal and solutal conditions at the tips of a directional dendritic growth front

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Mccay, Mary H.; Hopkins, John A.

    1991-01-01

    The line-of-sight averaged, time-dependent dendrite tip concentrations for the diffusion dominated vertical directional solidification of a metal model (ammonium chloride and water) were obtained by extrapolating exponentially fit diffusion layer profiles measured using a laser interferometer. The tip concentrations were shown to increase linearly with time throughout the diffusion dominated growth process for an initially stagnant dendritic array. The process was terminated for the cases chosen by convective breakdown suffered when the conditionally stable diffusion layer exceeded the critical Rayleigh criteria. The transient tip concentrations were determined to significantly exceed the values predicted for steady state, thus producing much larger constitutional undercoolings. This has ramifications for growth speeds, arm spacings and the dendritic structure itself.

  14. Quality-assurance data for routine water analyses by the U.S. Geological Survey laboratory in Troy, New York - July 2003 through June 2005

    USGS Publications Warehouse

    Lincoln, Tricia A.; Horan-Ross, Debra A.; McHale, Michael R.; Lawrence, Gregory B.

    2009-01-01

    The laboratory for analysis of low-ionic-strength water at the U.S. Geological Survey (USGS) Water Science Center in Troy, N.Y., analyzes samples collected by USGS projects throughout the Northeast. The laboratory's quality-assurance program is based on internal and interlaboratory quality-assurance samples and quality-control procedures that were developed to ensure proper sample collection, processing, and analysis. The quality-assurance and quality-control data were stored in the laboratory's Lab Master data-management system, which provides efficient review, compilation, and plotting of data. This report presents and discusses results of quality-assurance and quality control samples analyzed from July 2003 through June 2005. Results for the quality-control samples for 20 analytical procedures were evaluated for bias and precision. Control charts indicate that data for five of the analytical procedures were occasionally biased for either high-concentration or low-concentration samples but were within control limits; these procedures were: acid-neutralizing capacity, total monomeric aluminum, pH, silicon, and sodium. Seven of the analytical procedures were biased throughout the analysis period for the high-concentration sample, but were within control limits; these procedures were: dissolved organic carbon, chloride, nitrate (ion chromatograph), nitrite, silicon, sodium, and sulfate. The calcium and magnesium procedures were biased throughout the analysis period for the low-concentration sample, but were within control limits. The total aluminum and specific conductance procedures were biased for the high-concentration and low-concentration samples, but were within control limits. Results from the filter-blank and analytical-blank analyses indicate that the procedures for 17 of 18 analytes were within control limits, although the concentrations for blanks were occasionally outside the control limits. The data-quality objective was not met for dissolved organic carbon. Sampling and analysis precision are evaluated herein in terms of the coefficient of variation obtained for triplicate samples in the procedures for 18 of the 22 analytes. At least 85 percent of the samples met data-quality objectives for all analytes except total monomeric aluminum (82 percent of samples met objectives), total aluminum (77 percent of samples met objectives), chloride (80 percent of samples met objectives), fluoride (76 percent of samples met objectives), and nitrate (ion chromatograph) (79 percent of samples met objectives). The ammonium and total dissolved nitrogen did not meet the data-quality objectives. Results of the USGS interlaboratory Standard Reference Sample (SRS) Project indicated good data quality over the time period, with ratings for each sample in the satisfactory, good, and excellent ranges or less than 10 percent error. The P-sample (low-ionic-strength constituents) analysis had one marginal and two unsatisfactory ratings for the chloride procedure. The T-sample (trace constituents)analysis had two unsatisfactory ratings and one high range percent error for the aluminum procedure. The N-sample (nutrient constituents) analysis had one marginal rating for the nitrate procedure. Results of Environment Canada's National Water Research Institute (NWRI) program indicated that at least 84 percent of the samples met data-quality objectives for 11 of the 14 analytes; the exceptions were ammonium, total aluminum, and acid-neutralizing capacity. The ammonium procedure did not meet data quality objectives in all studies. Data-quality objectives were not met in 23 percent of samples analyzed for total aluminum and 45 percent of samples analyzed acid-neutralizing capacity. Results from blind reference-sample analyses indicated that data-quality objectives were met by at least 86 percent of the samples analyzed for calcium, chloride, fluoride, magnesium, pH, potassium, sodium, and sulfate. Data-quality objectives were not met by samples analyzed for fluoride. 

  15. Effects of anions and cations on the resting membrane potential of internally perfused barnacle muscle fibres

    PubMed Central

    Lakshminarayanaiah, N.; Rojas, E.

    1973-01-01

    1. Single barnacle muscle fibres from Megabalanus psittacus (Darwin) were internally perfused with a number of K salt solutions (200 mM) which were made isotonic to the barnacle saline with sucrose. 2. 200 mM-K acetate solution, in general, was found to be more effective than other solutions of K salts in generating and maintaining stable resting membrane potential of -56·0 ± 0·7 mV (all potentials are referred to the external solutions as ground). The various K salts, on the basis of the magnitude of the resting potential they generated in the muscle fibres, followed the sequence, acetate > isethionate > aspartate > glutamate > fluoride > monohydrogen phosphate > succinate > citrate > sulphate > oxalate > iodobenzoate > ferrocyanide > chlorate > nitrate > chloride > thiocyanate > iodide > bromide > cyanide. 3. The resting potential in muscle fibres perfused with solutions of acetate, aspartate and glutamate increased linearly with the logarithm of the K concentration (slope = 30·4 mV for K acetate and 27·4 for K aspartate and glutamate) when the ionic strength of the solutions was progressively increased from 50 to 650 mM. On the other hand, similar increase of ionic strength beyond 200 mM of solutions of K isethionate, fluoride, monohydrogen phosphate, succinate and citrate depolarized the muscle fibres. 4. Perfusion of acetate solutions of other alkali metal ions gave low values for the resting potential and followed the sequence K > Na > Rb > Li > Cs. Also NH4 and Tris ions gave low values for the resting potential which underwent oscillations associated with the twitching of the fibre and occasionally became positive in value (action potential). 5. Addition of tetraethyl ammonium chloride (TEA-Cl), 20-100 mM, to K acetate solutions (200 mM) depolarized the fibre membrane and the consequent reduction of resting potential varied linearly with the logarithm of TEA concentration. 6. Replacement of chloride ion by acetate or isethionate in the external solution did not change significantly the resting potential although the values were consistently lower by about 2 mV. 7. Complete elimination of K in the external solution and reduction of its ionic strength using sucrose depolarized the muscle fibres by about 27 mV when Na was changed from 475 to 1 mM. Under these conditions, external solutions completely in acetate form gave resting potentials which were more positive than those observed in completely chloride solutions by 6-8 mV. 8. Replacement of Na by Li, Tris, choline, tetramethyl or tetraethyl ammonium ion in the external solution made the values of the resting potential more positive (depolarization). Similarly increasing the concentration of K (or Cs or Rb in place of K) by correspondingly decreasing the concentration of Na in the outside solution depolarized the fibres and the resting potential became zero at a concentration of 280 mM (or 308 or 1500 mM for Rb or Cs, respectively) on extrapolation. PMID:4754874

  16. Chemical Composition and Source Apportionment of high temporal resolution PM1 data for January-August 2017 in Delhi, India

    NASA Astrophysics Data System (ADS)

    Bhandari, S.; Wang, D. S.; Gani, S.; Seraj, S.; Arub, Z.; Habib, G.; Apte, J.; Hildebrandt Ruiz, L.

    2017-12-01

    Exposure to fine particulate matter (PM) poses significant health risks, especially to residents in heavily populated areas. The current understanding of the sources and dynamics of PM pollution in developing countries like India is limited. Delhi, India is the second most populated city in the world that has extremely high winter PM concentrations and frequent severe pollution episodes. This study reports on composition measurements of submicron aerosol at 1 minute time resolution from January to August of 2017, collected at the Indian Institute of Technology Delhi using an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) and black carbon (BC) measurements using an Aethalometer. Source apportionment was conducted on organic and inorganic mass spectra measured by the ACSM and black carbon data measured using Positive Matrix Factorization (PMF). High concentrations of particulate matter were observed with total PM1 at times exceeding 200 µg m-3 in winter. A significant drop in PM1 concentrations was observed in the winter-spring transition. As observed elsewhere, organic species dominated the submicron mass, contributing 60% of the total mass over the duration of the campaign. However, this fractional contribution varied substantially over the day: from 48% early in the morning to 73% late at night. Along with diurnal variation in total PM1 mass loadings, particulate chloride levels also exhibited a strong diurnal cycle, with concentrations as high as 50 µg m-3 observed in the early mornings of January 2017. Literature review on identification of winter chloride sources in Delhi points to local and regional sources such as biomass/open-waste burning and coal combustion. PMF receptor modeling identified several factors with distinct diurnal patterns. While hydrocarbon-like organic aerosol (HOA) factor has the largest mass fraction contribution, PMF results consistently suggest chloride presence as attributable to ammonium chloride. Interestingly, aerosol neutralization characterization shows an apparent acidity of aerosols. These results point to substantial differences in aerosol composition in Indian cities in comparison to cities around the world, especially with regards to the abundance of particulate chloride, and provide insights into the sources of PM1 measured in Delhi.

  17. Projection of landfill stabilization period by time series analysis of leachate quality and transformation trends of VOCs.

    PubMed

    Sizirici, Banu; Tansel, Berrin

    2010-01-01

    The purpose of this study was to evaluate suitability of using the time series analysis for selected leachate quantity and quality parameters to forecast the duration of post closure period of a closed landfill. Selected leachate quality parameters (i.e., sodium, chloride, iron, bicarbonate, total dissolved solids (TDS), and ammonium as N) and volatile organic compounds (VOCs) (i.e., vinyl chloride, 1,4-dichlorobenzene, chlorobenzene, benzene, toluene, ethyl benzene, xylenes, total BTEX) were analyzed by the time series multiplicative decomposition model to estimate the projected levels of the parameters. These parameters were selected based on their detection levels and consistency of detection in leachate samples. In addition, VOCs detected in leachate and their chemical transformations were considered in view of the decomposition stage of the landfill. Projected leachate quality trends were analyzed and compared with the maximum contaminant level (MCL) for the respective parameters. Conditions that lead to specific trends (i.e., increasing, decreasing, or steady) and interactions of leachate quality parameters were evaluated. Decreasing trends were projected for leachate quantity, concentrations of sodium, chloride, TDS, ammonia as N, vinyl chloride, 1,4-dichlorobenzene, benzene, toluene, ethyl benzene, xylenes, and total BTEX. Increasing trends were projected for concentrations of iron, bicarbonate, and chlorobenzene. Anaerobic conditions in landfill provide favorable conditions for corrosion of iron resulting in higher concentrations over time. Bicarbonate formation as a byproduct of bacterial respiration during waste decomposition and the lime rock cap system of the landfill contribute to the increasing levels of bicarbonate in leachate. Chlorobenzene is produced during anaerobic biodegradation of 1,4-dichlorobenzene, hence, the increasing trend of chlorobenzene may be due to the declining trend of 1,4-dichlorobenzene. The time series multiplicative decomposition model in general provides an adequate forecast for future planning purposes for the parameters monitored in leachate. The model projections for 1,4-dichlorobenzene were relatively less accurate in comparison to the projections for vinyl chloride and chlorobenzene. Based on the trends observed, future monitoring needs for the selected leachate parameters were identified.

  18. In vitro evaluation of antibacterial effect of AH Plus incorporated with quaternary ammonium epoxy silicate against Enterococcus faecalis.

    PubMed

    Gong, Shi-Qiang; Huang, Zhi-Bin; Shi, Wei; Ma, Bo; Tay, Franklin R; Zhou, Bin

    2014-10-01

    The purpose of this study was to evaluate the in vitro antibacterial effect of AH Plus (Dentsply, DeTrey, Konstanz, Germany) incorporated with quaternary ammonium epoxy silicate (QAES) against Enterococcus faecalis. QAES particles were synthesized by the cocondensation of tetraethoxysilane with 2 trialkoxysilanes (3-[trimethoxysilyl]propyldimethyloctadecyl ammonium chloride and 3-glycidyloxypropyltrimethoxysilane) through a 1-pot sol-gel route. Dried QAES particles were then characterized by attenuated total reflection Fourier transform infrared spectroscopy and scanning electron microscopy. AH Plus sealers incorporated with 0-8 wt% QAES were tested after 4 weeks of water aging to assess the in vitro antibacterial activity against E. faecalis by the direct contact test (DCT) and 3-dimensional image analysis of live/dead-stained E. faecalis biofilms using confocal laser scanning microscopy. The Fourier transform infrared spectroscopy spectrum of QAES particles revealed the coexistence of the characteristic absorbance band of the siloxane backbone (Si-O-Si) from 1,000-1,100 cm(-1), epoxide band peaking at ∼916 cm(-1), and C-N stretching vibration peaking at 1,373 cm(-1). The scanning electron microscopic image showed the spherical morphology of QAES particles with ∼120 nm in diameter and a rough surface. DCT results revealed that AH Plus alone (0 wt% QAES) after 4 weeks of water aging had no inhibitory effect on E. faecalis growth (P = .569). AH Plus incorporated with QAES (2-8 wt%) showed antibacterial activity against E. faecalis as shown in DCT and biofilm viability results (P < .001). The incorporation of QAES into epoxy resin-based AH Plus may be a promising approach for controlling endodontic infection at the time of canal filling and preventing subsequent reinfection. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Reduction of Mo(VI) by the bacterium Serratia sp. strain DRY5.

    PubMed

    Rahman, M F A; Shukor, M Y; Suhaili, Z; Mustafa, S; Shamaan, N A; Syed, M A

    2009-01-01

    The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.

  20. Hygroscopic and phase separation properties of ammonium sulfate/organic/water ternary solutions

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Proud, S. R.; Seppalainen, S. S.; Cziczo, D. J.

    2015-03-01

    Atmospheric aerosol particles are often partially or completely composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. Deliquescence and efflorescence of simple inorganic salt particles have been investigated by a variety of methods, such as IR spectroscopy, tandem mobility analysis and electrodynamic balance. Field measurements have shown that atmospheric aerosols are not typically pure inorganic salt, instead they often also contain organic species. There is ample evidence from laboratory studies that suggests that mixed particles exist in a phase-separated state, with an aqueous inorganic core and organic shell. Although phase separation has not been measured in situ, there is no reason it would not also take place in the atmosphere. Many recent studies have focused on microscopy techniques that require deposition of the aerosol on a glass slide, possibly changing its surface properties. Here, we investigate the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O : C ratios, including 1,4-butanediol, glycerol, 1,2,6-hexanetriol, 1,2-hexanediol, and 1,5-pentanediol have been investigated. Those constituents correspond to materials found in the atmosphere in great abundance, and therefore, particles prepared in this study should mimic atmospheric mixed phase aerosol particles. The results of this study tend to be in agreement with previous microscopy experiments, with several key differences, which possibly reveal a size-dependent effect on phase separation in organic/inorganic aerosol particles.

Top