Sample records for ammonium hydroxide solution

  1. Ammonium hydroxide poisoning

    MedlinePlus

    Ammonium hydroxide is a colorless liquid chemical solution. It is in a class of substances called caustics. Ammonium hydroxide forms when ammonia dissolves in water. This article discusses poisoning from ...

  2. Friction modifier using adherent metallic multilayered or mixed element layer conversion coatings

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F. (Inventor); Defalco, Frank G. (Inventor); Starks, Sr., Lloyd L. (Inventor)

    2012-01-01

    A process for creating conversion coatings and spin, drawing, and extrusion finishes for surfaces, wherein the conversion coatings and spin, drawing, and extrusion finishes contain potassium, phosphorus, nitrogen, silicon, and one or more non-alkaline metals. The process comprises forming a first aqueous solution of silicate, potassium hydroxide, and ammonium hydroxide; forming a second aqueous solution of water, phosphoric acid, ammonium hydroxide, an alkali metal hydroxide, and one or more non-alkaline metals, and then combining the first solution with the second solution to form a final solution. This final solution forms an anti-friction multi-layer conversion coating or a spin, drawing, and extrusion finish on a surface when applied to the surface, either directly or as an additive in lubricating fluids.

  3. Effect of ammonium hydroxide on ultrastructure and tenderness of buffalo meat.

    PubMed

    Naveena, B M; Kiran, M; Reddy, K Sudhakar; Ramakrishna, C; Vaithiyanathan, S; Devatkal, Suresh K

    2011-08-01

    This study was conducted with an objective to improve the tenderness of tough buffalo meat using ammonium hydroxide. Buffalo meat chunks from Biceps femoris muscle were marinated with distilled water (control), 0.1%, 0.5% and 1.0% solution of ammonium hydroxide for 48 h at 4±1 °C and subjected to various physico-chemical analysis and ultrastructural studies. Ammonium hydroxide increased (P<0.05) the pH, water holding capacity (WHC), collagen solubility, total and salt soluble protein extractability and cooking yield. Reduction (P<0.05) in Warner-Bratzler shear force values were observed in all ammonium hydroxide treated samples compared to non-treated control. Electrophoretic pattern of muscle proteins exhibited reduction in the intensity and number of certain protein bands for 0.1% and 0.5% ammonium hydroxide treated samples compared to control. Scanning and transmission electron microscopy also revealed breakdown of endothelium layers surrounding muscle fibers and weakening of Z-discs respectively, in treated samples compared to controls. These results suggest that ammonium hydroxide might be used to tenderize tough buffalo meat. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Aqueous Ammonia or Ammonium Hydroxide? Identifying a Base as Strong or Weak

    ERIC Educational Resources Information Center

    Sanger, Michael J.; Danner, Matthew

    2010-01-01

    When grocery stores sell solutions of ammonia, they are labeled "ammonia"; however, when the same solution is purchased from chemical supply stores, they are labeled "ammonium hydroxide". The goal of this experiment is for students to determine which name is more appropriate. In this experiment, students use several different experimental methods…

  5. Method for producing nuclear fuel

    DOEpatents

    Haas, Paul A.

    1983-01-01

    Nuclear fuel is made by contacting an aqueous solution containing an actinide salt with an aqueous solution containing ammonium hydroxide, ammonium oxalate, or oxalic acid in an amount that will react with a fraction of the actinide salt to form a precipitate consisting of the hydroxide or oxalate of the actinide. A slurry consisting of the precipitate and solution containing the unreacted actinide salt is formed into drops which are gelled, calcined, and pressed to form pellets.

  6. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Kilner, S.B.

    1959-12-29

    A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.

  7. Alkalinity of non-industrial cleaning products and the likelihood of producing significant esophageal burns.

    PubMed

    Howell, J M

    1991-11-01

    Alkaline cleaning products are a cause of serious esophageal injury. Over time, legislation has diminished the concentration of many such non-industrial solutions and solids; however several products presently do not list either the pH or relative concentrations of alkaline constituents. This study measures the pHs of several non-industrial cleaning products containing either ammonium chloride, sodium hydroxide, or potassium hydroxide. Three pH measurements were performed on each of 10 non-industrial alkaline cleaning products (eight liquid, two solid). Two 0.1% ammonium chloride solutions had pHs of 12.06 +/- 0.00 and 12.06 +/- 0.01, whereas a pH of 12.43 +/- 0.00 was recorded in a 0.2% ammonium chloride solution. Concentrations of sodium hydroxide and potassium hydroxide were listed on only one of five liquid cleaning product labels. The pHs for these five products varied between 12.83 +/- 0.009 and 13.5 +/- .0.2. The pHs of three sodium hydroxide solutions differed from values reported in Micromedex (Micromedex Inc, Denver CO) by up to 0.32 pH units. Ten percent (v/v) solutions of two solid lye products had pHs of 13.62 +/- 0.008 and 13.74 +/- 0.02. The investigator found that selected non-industrial cleaning products, including ammonia solutions, retain the ability to cause clinically important esophageal damage.

  8. METHOD FOR THE RECOVERY OF CESIUM VALUES

    DOEpatents

    Rimshaw, S.J.

    1960-02-16

    A method is given for recovering Cs/sup 137/ from radioactive waste solutions together with extraneous impurities. Ammonium alum is precipitated in the waste solution. The alum, which carries the cesium, is separated from the supernatant liquid and then dissolved in water. The resulting aqueous solution is then provided with a source of hydroxyl ions, which precipitates aluminum as the hydroxide, and the aluminum hydroxide is separated from the resulting liquid. This liquid, which contains anionic impurities together with ammonium and cesium, is passed through an anion exchange resin bed which removes the anionic impurities. The ammonium in the effluent is removed by destructive distiilation, leaving a substantiaily pure cesium salt in the effluent.

  9. Removal of Zn or Cd and cyanide from cyanide electroplating wastes

    DOEpatents

    Moore, Fletcher L.

    1977-05-31

    A method is described for the efficient stripping of stable complexes of a selected quaternary amine and a cyanide of Zn or Cd. An alkali metal hydroxide solution such as NaOH or KOH will quantitatively strip a pregnant extract of the quaternary ammonium complex of its metal and cyanide content and regenerate a quaternary ammonium hydroxide salt which can be used for extracting further metal cyanide values.

  10. PROCESS FOR THE RECOVERY AND PURIFICATION OF URANIUM DEPOSITS

    DOEpatents

    Carter, J.M.; Kamen, M.D.

    1958-10-14

    A process is presented for recovering uranium values from UCl/sub 4/ deposits formed on calutrons. Such deposits are removed from the calutron parts by an aqueous wash solution which then contains the uranium values in addition to the following impurities: Ni, Cu, Fe, and Cr. This impurity bearing wash solution is treated with an oxidizing agent, and the oxidized solution is then treated with ammonia in order to precipitate the uranium as ammonium diuranate. The metal impurities of iron and chromium, which form insoluble hydroxides, are precipitated along with the uranium values. The precipitate is separated from the solution, dissolved in acid, and the solution again treated with ammonia and ammonium carbonate, which results in the precipitation of the metal impurities as hydroxides while the uranium values remain in solution.

  11. Synthesis of three commercial products from Bayer electrofilter powders.

    PubMed

    Ayala, Julia; Fernández, Begoña; Sancho, José Pedro; García, Purificación

    2010-06-15

    Electrofilter powders, a by-product of the Bayer process for the production of alumina from bauxite, were leached with sulphuric acid to dissolve gibbsite and transition aluminas, thus obtaining a commercial aluminium sulphate solution and a solid residue. This residue is treated again under more drastic conditions with sulphuric acidic in a furnace at a higher temperature, is then leached with water and filtered, a small amount of solid remaining (alpha-alumina). The liquid is a highly acidic aluminium sulphate solution which does not fulfil commercial grade specifications; the liquor is accordingly treated with potassium hydroxide or ammonium hydroxide to obtain potassium or ammonium alum. Experimental tests were conducted to investigate the synthesis of alum by crystallization. The effects on alum formation of various operating conditions, including the amount of potassium or ammonium hydroxide, temperature and seed alum dosage, were examined. The crystallization process was found to be quite effective in obtaining alum. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Corrosion resistance of porous binary tantalum and titanium carbides of various composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artyunina, N.P.; Komratov, G.N.; Bolonova, E.A.

    1993-12-20

    Resistance of porous binary tantalum and titanium carbides in solutions of mineral acids and their mixtures, of several organic acids, and of ammonium and potassium hydroxide was studied. It has been shown that as the content of tantalum in a material increases its resistance in solutions of oxidizing acids is improved, but it is reduced in solutions of sulfuric and hydrofluoric acids and also in solutions of potassium hydroxide.

  13. PROCESS FOR RECOVERY OF URANIUM VALUES FROM IMPURE SOLUTIONS THEREOF

    DOEpatents

    Kilner, S.B.

    1959-11-01

    A process is presented for the recovery of uraninm values from impure solutions which are obtained, for example, by washing residual uranium salt or uranium metal deposits from stainless steel surfaces using an aqueous or certain acidic aqueous solutions. The solutions include uranyl and oxidized iron, chromium, nickel, and copper ions and may contain manganese, zinc, and silver ions. In accordance with one procedure. the uranyl ions are reduced to the uranous state, and the impurity ions are complexed with cyanide under acidic conditions. The solution is then treated with ammonium hydroxide or alkali metal hydroxide to precipitate uranous hydroxide away from the complexed impurity ions in the solution. Alternatively, an excess of alkali metal cyanide is added to the reduced solution until the solution becomes sufficiently alkaline for the uranons hydroxide to precipitate. An essential feature in operating the process is in maintaining the pH of the solution sufficiently acid during the complexing operation to prevent the precipitation of the impurity metal hydroxides.

  14. Spectrophotometric determination of copper in alkaline solutions and evaluation of some hydroxy-substituted 1,10-phenanthrolines as chromogenic reagents.

    PubMed

    Dunbar, W E; Schilt, A A

    1972-09-01

    Seven new hydroxy-substituted 1,10-phenanthroline derivatives have been evaluated as chromogenic reagents for the determination of copper in strongly alkaline solution. The most sensitive of these, 2,9-dimethyl-4,7-dihydroxy-1,10-phenanthroline, has proven to be highly effective in a simple, rapid procedure for determining trace amounts of copper in sodium hydroxide, potassium carbonate, sodium phosphate or ammonium hydroxide.

  15. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  16. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  17. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  18. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  19. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  20. 21 CFR 163.112 - Breakfast cocoa.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ingredients. Ammonium, potassium, or sodium bicarbonate, carbonate, or hydroxide, or magnesium carbonate or oxide, used as such, or in aqueous solution; (2) Neutralizing agents. Phosphoric acid, citric acid and L...

  1. Computer model of hydroponics nutrient solution pH control using ammonium.

    PubMed

    Pitts, M; Stutte, G

    1999-01-01

    A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.

  2. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS

    DOEpatents

    Nicholls, C.M.; Wells, I.; Spence, R.

    1959-10-13

    The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.

  3. Polarographic Analysis of Primers

    DTIC Science & Technology

    1945-03-30

    also in 0.5 M sodium acetate, ammonium acetate, aoetlc acid, sodium acetate plus acetic acid, and sodium tartrate plus tartaric &cid. In all these...potassium tartrate end potassium hydroxide (4 M pot as; ^ura hydroxide plus 2 11 potassium tartrate , the anodic sulfide tjave is well defined, but the...our experiments. Solutions of "synthetic" stibnite, formed by adding stoichinmetric amounts of potassium antimony! tartrate and sodium sulfide to

  4. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow...

  5. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow...

  6. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow...

  7. Increased water resistance of paper treated with amylose-fatty ammonium salt inclusion complexes

    USDA-ARS?s Scientific Manuscript database

    Amylose inclusion complexes were prepared from high amylose corn starch and the HCl salts of hexadecylamine and octadecylamine. Solutions of the complexes were applied to paper at concentrations of 2-4%. After the treated papers were dried, sodium hydroxide solution was applied to convert the adsorb...

  8. Determination of thorium and of rare earth elements in cerium earth minerals and ores

    USGS Publications Warehouse

    Carron, M.K.; Skinner, D.L.; Stevens, R.E.

    1955-01-01

    The conventional oxalate method for precipitating thorium and the rare earth elements in acid solution exhibits definite solubilities of these elements. The present work was undertaken to establish conditions overcoming these solubilities and to find optimum conditions for precipitating thorium and the rare earth elements as hydroxides and sebacates. The investigations resulted in a reliable procedure applicable to samples in which the cerium group elements predominate. The oxalate precipitations are made from homogeneous solution at pH 2 by adding a prepared solution of anhydrous oxalic acid in methanol instead of the more expensive crystalline methyl oxalate. Calcium is added as a carrier. Quantitative precipitation of thorium and the rare earth elements is ascertained by further small additions of calcium to the supernatant liquid, until the added calcium precipitates as oxalate within 2 minutes. Calcium is removed by precipitating the hydroxides of thorium and rare earths at room temperature by adding ammonium hydroxide to pH > 10. Thorium is separated as the sebacate at pH 2.5, and the rare earths are precipitated with ammonium sebacate at pH 9. Maximum errors for combined weights of thorium and rare earth oxides on synthetic mixtures are ??0.6 mg. Maximum error for separated thoria is ??0.5 mg.

  9. Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.

    PubMed

    Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly

    2013-01-01

    Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping.

  10. AMMONIUM DIURANATE PRECIPITATION WITH ANHYDROUS AMMONIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, L.C.; Grill, L.F.

    1959-03-01

    Ammonium diuranate has been precipitated from nitric acid solutions by the addition of anhydrpus ammonia on both laboratory and production scales. This process produced more dense and morc rapidly filtered precipitates than those formed by the addition of aqueous amonia or slurried calcium hydroxide. Thc filtrates from the anhydrous ammonia process were lower in uranium content than those obtained by the addition of the other reagents. Processing equipment and precipitate characteristics are discussed. (auth)

  11. Synthesis of high capacity cathodes for lithium-ion batteries by morphology-tailored hydroxide co-precipitation

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Belharouak, Ilias; Ortega, Luis H.; Zhang, Xiaofeng; Xu, Rui; Zhou, Dehua; Zhou, Guangwen; Amine, Khalil

    2015-01-01

    Nickel manganese hydroxide co-precipitation inside a continuous stirred tank reactor was studied with sodium hydroxide and ammonium hydroxide as the precipitation agents. The ammonium hydroxide concentration had an effect on the primary and secondary particle evolution. The two-step precipitation mechanism proposed earlier was experimentally confirmed. In cell tests, Li- and Mn-rich composite cathode materials based on the hydroxide precursors demonstrated good electrochemical performance in terms of cycle life over a wide range of lithium content.

  12. Photocatalysis of zinc oxide nanotip array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Lee, Bo-Wei; Kao, Chen-Yu

    2017-05-01

    A TiO2 film was prepared on indium tin oxide (ITO)/glass by aqueous solution deposition (ASD) with precursors of ammonium hexafluoro-titanate and boric acid at 40 °C. The photocatalysis of annealed TiO2 film increases with increasing growth time and decreases with increasing growth times longer than 60 min. A ZnO nanotip array was prepared on ZnO seed layer/TiO2 film/glass by aqueous solution deposition with precursors of zinc nitrate and ammonium hydroxide at 70 °C. The photocatalysis of ASD-ZnO/ASD-TiO2 film/ITO glass can be better than that of P25.

  13. Study of continuous precipitation of ADU for the implantation in the pilot installation at the Atomic Energy Institute, Brazil. Estudo de precipitacao continua de DUA para a implantacao na instalacao piloto CEQ-IEA (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo, Jose Adroalado de

    1974-05-15

    The paper deals with the ammonium diuranate continuous precipitation with a high chemical purity degree from uranyl nitrate solutions, using 1.2 and 2.4 ammonium hydroxide solutions and gaseous NH{sub 3} as a precipitating agent. The precipitations were carried out in a continuous procedure with one and two stages. The variables studied were the NH[sub 4}OH solutions concentration, ADU precipitation curve, the flow rate of reactants, the temperature of the precipitation, pH of the suspended ADU, and ammonium diuranate filtrability. The experimental work performed and the data obtained permitted the design of a chemical reactor for the continuous nuclear grade ADUmore » precipitation at the Chemical Engineering Department of the Atomic Energy Institute of Sao Paulo.« less

  14. Effects of surface chemical properties of activated carbon modified by amino-fluorination for electric double-layer capacitor.

    PubMed

    Jung, Min-Jung; Jeong, Euigyung; Cho, Seho; Yeo, Sang Young; Lee, Young-Seak

    2012-09-01

    The surface of phenol-based activated carbon (AC) was seriatim amino-fluorinated with solution of ammonium hydroxide and hydrofluoric acid in varying ratio to fabricate electrode materials for use in an electric double-layer capacitor (EDLC). The specific capacitance of the amino-fluorinated AC-based EDLC was measured in a 1 M H(2)SO(4) electrolyte, in which it was observed that the specific capacitances increased from 215 to 389 Fg(-1) and 119 and 250 Fg(-1) with the current densities of 0.1 and 1.0 Ag(-1), respectively, in comparison with those of an untreated AC-based EDLC when the amino-fluorination was optimized via seriatim mixed solution of 7.43 mol L(-1) ammonium hydroxide and 2.06 mol L(-1) hydrofluoric acid. This enhancement of capacitance was attributed to the synergistic effects of an increased electrochemical activity due to the formation of surface N- and F-functional groups and increased, specific surface area, and mesopore volumes, all of which resulted from the amino-fluorination of the electrode material. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

    PubMed Central

    Deshmukh, Ruchi; Mehra, Anurag

    2017-01-01

    Aggregation and self-assembly are influenced by molecular interactions. With precise control of molecular interactions, in this study, a wide range of nanostructures ranging from zero-dimensional nanospheres to hierarchical nanoplates and spindles have been successfully synthesized at ambient temperature in aqueous solution. The nanostructures reported here are formed by aggregation of spherical seed particles (monomers) in presence of quaternary ammonium salts. Hydroxide ions and a magnetic moment of the monomers are essential to induce shape anisotropy in the nanostructures. The cobalt nanoplates are studied in detail, and a growth mechanism based on collision, aggregation, and crystal consolidation is proposed based on a electron microscopy studies. The growth mechanism is generalized for rods, spindles, and nearly spherical nanostructures, obtained by varying the cation group in the quaternary ammonium hydroxides. Electron diffraction shows different predominant lattice planes on the edge and on the surface of a nanoplate. The study explains, hereto unaddressed, the temporal evolution of complex magnetic nanostructures. These ferromagnetic nanostructures represent an interesting combination of shape anisotropy and magnetic characteristics. PMID:28326240

  16. Protein loss in human hair from combination straightening and coloring treatments.

    PubMed

    França-Stefoni, Simone Aparecida; Dario, Michelli Ferrera; Sá-Dias, Tânia Cristina; Bedin, Valcinir; de Almeida, Adriano José; Baby, André Rolim; Velasco, Maria Valéria R

    2015-09-01

    Hair chemical treatments, such as dyeing and straightening products, are known to cause damage that can be assessed by protein loss. The aim of this study was to evaluate the hair protein loss caused by combined chemical treatments (dye and relaxer) using the validated bicinchoninic acid (BCA) method. Three kinds of straighteners, based on ammonium thioglycolate, guanidine hydroxide and sodium hydroxide, were evaluated and the least harmful combination indicated. Caucasian virgin dark brown hair tresses were treated with developed natural brown color oxidative hair dyeing and/or straightening commercial products based on ammonium thioglycolate, sodium hydroxide, or guanidine hydroxide. Protein loss quantification was assessed by the validated BCA method which has several advantages for quantifying protein loss in chemically treated hair. When both treatments (straightening and dyeing) were combined, a higher negative effect was observed, particularly for dyed hair treated with sodium hydroxide. In this case, a 356% increase in protein loss relative to virgin hair was observed and 208% in relation to only dyed hair. The combination of dying and relaxers based on ammonium thioglycolate or guanidine hydroxide caused a small increase in protein loss, suggesting that these straightening products could be the best alternatives for individuals wishing to combine both treatments. These results indicated that when application of both types of products is desired, ammonium thioglycolate or guanidine hydroxide should be chosen for the straightening process. © 2015 Wiley Periodicals, Inc.

  17. Low-temperature solution-processed zinc oxide field effect transistor by blending zinc hydroxide and zinc oxide nanoparticle in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shin, Hyeonwoo; Kang, Chan-mo; Baek, Kyu-Ha; Kim, Jun Young; Do, Lee-Mi; Lee, Changhee

    2018-05-01

    We present a novel methods of fabricating low-temperature (180 °C), solution-processed zinc oxide (ZnO) transistors using a ZnO precursor that is blended with zinc hydroxide [Zn(OH)2] and zinc oxide hydrate (ZnO • H2O) in an ammonium solution. By using the proposed method, we successfully improved the electrical performance of the transistor in terms of the mobility (μ), on/off current ratio (I on/I off), sub-threshold swing (SS), and operational stability. Our new approach to forming a ZnO film was systematically compared with previously proposed methods. An atomic forced microscopic (AFM) image and an X-ray photoelectron spectroscopy (XPS) analysis showed that our method increases the ZnO crystallite size with less OH‑ impurities. Thus, we attribute the improved electrical performance to the better ZnO film formation using the blending methods.

  18. Friction Modifier Using Adherent Metallic Multilayered or Mixed Element Layer Conversion Coatings

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F. (Inventor); Defalco, Francis G. (Inventor); Starks, Lloyd L., Sr. (Inventor)

    2013-01-01

    A process for creating conversion coatings and spin, drawing, and extrusion finishes for surfaces, wherein the conversion coatings and spin, drawing, and extrusion finishes contain potassium, phosphorus, nitrogen, and one or more non-alkaline metals and/or one or more metalloids. The process comprises forming an aqueous solution of water, phosphoric acid or sulfuric acid, ammonium hydroxide, an alkali metal hydroxide, and one or more non-alkaline metals and/or one or more metalloids. The aqueous solution forms an anti-friction multilayer conversion and/or mixed element coating or a spin, drawing, and extrusion finish on a surface when applied to the surface, either directly without the use of applied external electromotive force, or as an additive in lubricating fluids.

  19. Common stock solutions, buffers, and media.

    PubMed

    2001-05-01

    This collection of recipes describes the preparation of buffers and reagents used in Current Protocols in Pharmacology for cell culture, manipulation of neural tissue, molecular biological methods, and neurophysiological/neurochemical measurements. RECIPES: Acid, concentrated stock solutions Ammonium hydroxide, concentrated stock solution EDTA (ethylenediaminetetraacetic acid), 0.5 M (pH 8.0) Ethidium bromide staining solution Fetal bovine serum (FBS) Gel loading buffer, 6× LB medium (Luria broth) and LB plates Potassium phosphate buffer, 0.1 M Sodium phosphate buffer, 0.1 M TE (Tris/EDTA) buffer Tris⋅Cl, 1 M.

  20. Method for providing uranium articles with a corrosion resistant anodized coating

    DOEpatents

    Waldrop, Forrest B.; Washington, Charles A.

    1982-01-01

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75.degree. C. with a current flow of less than about 0.036 A/cm.sup.2 of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  1. URANIUM RECOVERY PROCESS

    DOEpatents

    Kaufman, D.

    1958-04-15

    A process of recovering uranium from very low-grade ore residues is described. These low-grade uraniumcontaining hydroxide precipitates, which also contain hydrated silica and iron and aluminum hydroxides, are subjected to multiple leachings with aqueous solutions of sodium carbonate at a pH of at least 9. This leaching serves to selectively extract the uranium from the precipitate, but to leave the greater part of the silica, iron, and aluminum with the residue. The uranium is then separated from the leach liquor by the addition of an acid in sufficient amount to destroy the carbonate followed by the addition of ammonia to precipitate uranium as ammonium diuranate.

  2. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN P-00...

  3. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN P-00...

  4. Method for providing uranium articles with a corrosion-resistant anodized coating

    DOEpatents

    Waldrop, F.B.; Washington, C.A.

    1981-01-07

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75/sup 0/C with a current flow of less than about 0.036 A/cm/sup 2/ of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  5. Effects of ammonium hydroxide on the structure and gas adsorption of nanosized Zr-MOFs (UiO-66).

    PubMed

    Abid, Hussein Rasool; Ang, Ha Ming; Wang, Shaobin

    2012-05-21

    Several zirconium-based metal-organic frameworks (Zr-MOFs) have been synthesized using ammonium hydroxide as an additive in the synthesis process. Their physicochemical properties have been characterized by N(2) adsorption/desorption, XRD, SEM, FTIR, and TGA, and their application in CO(2) adsorption was evaluated. It was found that addition of ammonium hydroxide produced some effects on the structure and adsorption behavior of Zr-MOFs. The pore size and pore volume of Zr-MOFs were enhanced with the additive, however, specific surface area of Zr-MOFs was reduced. Using an ammonium hydroxide additive, the crystal size of Zr-MOF was reduced with increasing amount of the additive. All the samples presented strong thermal stability. Adsorption tests showed that capacity of CO(2) adsorption on the Zr-MOFs under standard conditions was reduced due to decreased micropore fractions. However, modified Zr-MOFs had significantly lower adsorption heat. The adsorption capacity of carbon dioxide was increased at high pressure, reaching 8.63 mmol g(-1) at 987 kPa for Zr-MOF-NH(4)-2.

  6. Continuous Precipitation of Ceria Nanoparticles from a Continuous Flow Micromixer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, Chih Heng; Paul, Brian; Chang, Chih-hung

    2013-01-01

    Cerium oxide nanoparticles were continuously precipitated from a solution of cerium(III) nitrate and ammonium hydroxide using a micro-scale T-mixer. Findings show that the method of mixing is important in the ceria precipitation process. In batch mixing and deposition, disintegration and agglomeration dominates the deposited film. In T-mixing and deposition, more uniform nanorod particles are attainable. In addition, it was found that the micromixing approach reduced the exposure of the Ce(OH)3 precipates to oxygen, yielding hydroxide precipates in place of CeO2 precipitates. Advantages of the micro-scale T-mixing approach include shorter mixing times, better control of nanoparticle shape and less agglomeration.

  7. Production of cerium dioxide microspheres by an internal gelation sol–gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.

    An internal gelation sol-gel technique was used to prepare cerium dioxide microspheres with uniform diameters near 100 µm. In this process, chilled aqueous solutions containing cerium, hexamethylenetetramine (HMTA), and urea are transformed into a solid gel by heat addition and are subsequently washed, dried, and sintered to produce pure cerium dioxide. Cerous nitrate and ceric ammonium nitrate solutions were compared for their usefulness in microsphere production. Gelation experiments were performed with both cerous nitrate and ceric ammonium nitrate to determine desirable concentrations of cerium, HMTA, and urea in feed solutions as well as the necessary quantity of ammonium hydroxide addedmore » to cerium solutions. Analysis of the pH before and after sample gelation was found to provide a quantitative metric for optimal parameter selection along with subjective evaluations of gel qualities. The time necessary for chilled solutions to gel upon inserting into a hot water bath was determined for samples with a variety of parameters and also used to determine desirable formulations for microsphere production. A technique for choosing the optimal mixture of ceric ammonium nitrate, HMTA, and urea was determined using gelation experiments and used to produce microspheres by dispersion of the feed solution into heated silicone oil. Gelled spheres were washed to remove excess reactants and reaction products before being dried and sintered. X-ray diffraction of air-dried microspheres, sintered microspheres, and commercial CeO 2 powders indicated that air-dried and sintered spheres were pure CeO 2.« less

  8. Facile synthesis of nickel-cobalt double hydroxide nanosheets with high rate capability for application in supercapacitor

    NASA Astrophysics Data System (ADS)

    Wang, Minmin; Xue, Junying; Zhang, Fangming; Ma, Wenle; Cui, Hongtao

    2015-02-01

    In this work, nickel-cobalt double hydroxide nanosheets with high rate capability are prepared by a facile epoxide precipitation route. The synthetic procedure includes an oxidization step using ammonium persulfate as oxidant and a precipitation step using propylene oxide as precipitation agent. As shown in the results of electrochemical characterization, high specific capacitance of 2548 F g-1 for this material can be obtained at current density of 0.9 A g-1 in aqueous solution of 3 mol L-1 KOH. It is surprising to notice that the capacitance of material still remains 1587 F g-1 at high current density of 35.7 A g-1. These results demonstrate that the as-prepared nickel-cobalt double hydroxide nanosheets are promising electrode material for supercapacitor application as a primary power source.

  9. A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale.

    PubMed

    Barbaroux, R; Plasari, E; Mercier, G; Simonnot, M O; Morel, J L; Blais, J F

    2012-04-15

    The extraction of nickel (Ni) from ultramafic soils by phytomining can be achieved using Alyssum murale cultures. This study presents a new process for the valorization of Ni accumulated by this plant through the production of a Ni ammonium disulfate salt (Ni(NH(4))(2)(SO(4))(2).6H(2)O). The process comprises an initial leaching of the ashes of A. murale with a sulphuric acid solution (1.9 M H(2)SO(4), T=95 °C, t=240 min, TS=150 g ash L(-1)), producing a leachate rich in Ni (10.2 g Ni L(-1); 96% Ni solubilisation), Mg, P, K, Fe, Ca and Al. The pH of the acid leachate is increased to 5.0 with NaOH (5M), followed by an evaporation step which produced a purified solution rich in Ni (21.3 g NiL(-1)) and an iron hydroxide precipitate. The cold crystallization (T=2 °C, t=6h) of this solution by the stoichiometric addition (× 1.2) of ammonium sulfate generates a Ni ammonium disulfate salt, containing 13.2% Ni, that is potentially valuable to industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. METHOD OF CHEMICAL DECONTAMINATION OF STAINLESS STEEL NUCLEAR FACILITIES

    DOEpatents

    Pancer, G.P.; Zegger, J.L.

    1961-12-19

    A chemical method is given for removing activated corrosion products on the primary system surfaces of a pressurized water reactor. The corrosion product deposits are composed chiefly of magnetite (Fe/sub 3/O/sub 4/) with small amounts of nickel and chromium oxides. The corroded surfaces are first flushed with a caustic permanganate primary solution consisting of sodium hydroxide and potassium permanganate followed by a secondary rinse solution of ammonium citrate and citric acid containing the complexing agent Versene in small amounts. Demineralized water is used to clean out the primary and secondary solutions and a 60-minute drying period precedes the rinse solution. (AEC)

  11. Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto

    DOEpatents

    Lau, Ming Woei

    2015-12-08

    A method for producing a microbial growth stimulant (MGS) from a plant biomass is described. In one embodiment, an ammonium hydroxide solution is used to extract a solution of proteins and ammonia from the biomass. Some of the proteins and ammonia are separated from the extracted solution to provide the MGS solution. The removed ammonia can be recycled and the proteins are useful as animal feeds. In one embodiment, the method comprises extracting solubles from pretreated lignocellulosic biomass with a cellulase enzyme-producing growth medium (such T. reesei) in the presence of water and an aqueous extract.

  12. Dry cell battery poisoning

    MedlinePlus

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  13. PREPARATION OF UO$sub 2$ FOR NUCLEAR REACTOR FUEL PELLETS

    DOEpatents

    Googin, J.M.

    1962-06-01

    A method is given for preparing high-density UO/sub 2/ compacts. An aqueous uranyl fluoride solution is contacted with an aqueous ammonium hydroxide solution at an ammonium to-uranium ratio of 25: 1 to 30:1 to form a precipitate. The precipitate is separated from the- mother liquor, dried, and contacted with steam at a uniform temperature within the range of 400 to 650 deg C to produce U/ sub 3/O/sub 8/. The U/sub 3/O/sub 8/ is red uced to UO/sub 2/ with hydrogen at a uniform temperature within the range of 550 to 600 deg C. The UO/sub 2/ is then compressed into compacts and sintered. High-density compacts are fabricated to close tolerances without use of a binder and without machining or grinding. (AEC)

  14. Solution combustion synthesis and characterization of nanosized bismuth ferrite

    NASA Astrophysics Data System (ADS)

    Sai Kumar, V. Sesha; Rao, K. Venkateswara; Krishnaveni, T.; Kishore Goud, A. Shiva; Reddy, P. Ranjith

    2012-06-01

    The present paper describes a simple method of nanosized BiFeO3 by the solution combustion synthesis using bismuth and iron nitrates as oxidizers and the combination fuel of citric acid and ammonium hydroxide, with fuel to oxidizer ratio (Ψ = 1) one. The X-ray Diffraction results indicated rhombohedral phase (R3m) with JCPDS data card no: 72-2035. The ferroelectric transition of the sample at 8310C was detected by differential thermal analysis. Thermal analysis was done by Thermal gravimetric-Differential thermal analyzer and obtained results were presented in this paper.

  15. METHOD OF RECOVERING URANIUM COMPOUNDS

    DOEpatents

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  16. Preparation and Characterization of an Alkaline Anion Exchange Membrane from Chlorinated Poly(propylene) Aminated with Branched Poly(ethyleneimine)

    DTIC Science & Technology

    2013-01-01

    exchange resins and as membranes for water purification [1], Li–air batteries, and in polymer exchange membrane ( PEM ) fuel cells [2]. PEM Fuel cells show...SUBJECT TERMS Anion exchange membrane, Fuel Cell , Poly(ethyleneimine), Quaternary ammonium caton, Hydroxide Ashley M. Maes, Tara P. Pandey, Melissa...membrane Fuel cell Poly(ethyleneimine) Quaternary ammonium cation Hydroxide a b s t r a c t A new randomly crosslinked polymer is investigated

  17. Quantitative determination of famotidine in human maternal plasma, umbilical cord plasma and urine using high-performance liquid chromatography - mass spectrometry

    PubMed Central

    Wang, Xiaoming; Rytting, Erik; Abdelrahman, Doaa R.; Nanovskaya, Tatiana N.; Hankins, Gary D.V.; Ahmed, Mahmoud S.

    2013-01-01

    The liquid chromatography with electrospray ionization mass spectrometry for the quantitative determination of famotidine in human urine, maternal and umbilical cord plasma was developed and validated. The plasma samples were alkalized with ammonium hydroxide and extracted twice with ethyl acetate. The extraction recovery of famotidine in maternal and umbilical cord plasma ranged from 53% to 64% and 72% to 79%, respectively. Urine samples were directly diluted with the initial mobile phase then injected into the HPLC system. Chromatographic separation of famotidine was achieved by using a Phenomenex Synergi™ Hydro-RP™ column with a gradient elution of acetonitrile and 10 mM ammonium acetate aqueous solution (pH 8.3, adjusted with ammonium hydroxide). Mass Spectrometric detection of famotidine was set in the positive mode and used a selected ion monitoring method. Carbon-13-labeled famotidine was used as internal standard. The calibration curves were linear (r2> 0.99) in the concentration ranges of 0.631-252 ng/mL for umbilical and maternal plasma samples, and of 0.075-30.0 μg/mL for urine samples. The relative deviation of method was less than 14% for intra- and inter-day assays, and the accuracy ranged between 93% and 110%. The matrix effect of famotidine in human urine, maternal and umbilical cord plasma is less than 17%. PMID:23401067

  18. ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells

    DOEpatents

    Bhattacharya, Raghu N [Littleton, CO

    2009-11-03

    The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.

  19. Study of the morphology of ZnS thin films deposited on different substrates via chemical bath deposition.

    PubMed

    Gómez-Gutiérrez, Claudia M; Luque, P A; Castro-Beltran, A; Vilchis-Nestor, A R; Lugo-Medina, Eder; Carrillo-Castillo, A; Quevedo-Lopez, M A; Olivas, A

    2015-01-01

    In this work, the influence of substrate on the morphology of ZnS thin films by chemical bath deposition is studied. The materials used were zinc acetate, tri-sodium citrate, thiourea, and ammonium hydroxide/ammonium chloride solution. The growth of ZnS thin films on different substrates showed a large variation on the surface, presenting a poor growth on SiO2 and HfO2 substrates. The thin films on ITO substrate presented a uniform and compact growth without pinholes. The optical properties showed a transmittance of about 85% in the visible range of 300-800 nm with band gap of 3.7 eV. © Wiley Periodicals, Inc.

  20. CONTINUOUS PRECIPITATION METHOD FOR CONVERSION OF URANYL NITRATE TO URANIUM HEXAFLUORIDE

    DOEpatents

    Reinhart, G.M.; Collopy, T.J.

    1962-11-13

    A continuous precipitation process is given for converting a uranyl nitrate solution to uranium tetrafluoride. A stream of the uranyl nitrate solution and a stream of an aqueous ammonium hydroxide solution are continuously introduced into an agitated reaction zone maintained at a pH of 5.0 to 6.5. Flow rates are adjusted to provide a mean residence time of the resulting slurry in the reaction zone of at least 30 minutes. After a startup period of two hours the precipitate is recovered from the effluent stream by filtration and is converted to uranium tetrafluoride by reduction to uranium dioxide with hydrogen and reaction of the uranium dioxide with anhydrous hydrogen fluoride. (AEC)

  1. Preparation and characterization of polystyrene/neodymium hydroxide (PS/Nd(OH)3) nano-composites

    NASA Astrophysics Data System (ADS)

    Alsewailem, Fares D.; Bagabas, Abdulaziz A.; Binkhodor, Yazeed A.

    2018-03-01

    Composites of polystyrene and Neodymium hydroxide nanrods (PS/Nd(OH)3) were formulated and characterized in this study. Cetyl (1-hexadccyl) trimethyl ammonium bromide (CTAB) was used as dispersion agent for the Nd(OH)3 rods in the PS matrix. PS/Nd(OH)3 composites were prepared by solution and melt compounding. Morphological, thermal, and mechanical properties of the prepared composites were investigated. CTAB was found to be more effective as dispersion agent in composites prepared by solution compounding in comparison with those prepared by melt compounding, and that was due to the mild conditions used in solution compounding. Nonetheless, impact strength of the composite at 0.5 wt% Nd(OH)3 was drastically reduced in the absence of CTAB. Both tensile and impact strengths were found to greatly decreased at higher loading of Nd(OH)3, e.g. 5 wt%, even with the use of CTAB. Thermal stability of the PS/Nd(OH)3 composites was noticeably increased at relatively low loading of Nd(OH)3, e.g. 0.5 wt%.

  2. Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites.

    PubMed

    Ma, Renzhi; Sasaki, Takayoshi

    2010-12-01

    A wide variety of cation-exchangeable layered transition metal oxides and their relatively rare counterparts, anion-exchangeable layered hydroxides, have been exfoliated into individual host layers, i.e., nanosheets. Exfoliation is generally achieved via a high degree of swelling, typically driven either by intercalation of bulky organic ions (quaternary ammonium cations, propylammonium cations, etc.) for the layered oxides or by solvation with organic solvents (formamide, butanol, etc.) for the hydroxides. Ultimate two-dimensional (2D) anisotropy for the nanosheets, with thickness of around one nanometer versus lateral size ranging from submicrometer to several tens of micrometers, allows them to serve either as an ideal quantum system for fundamental study or as a basic building block for functional assembly. The charge-bearing inorganic macromolecule-like nanosheets can be assembled or organized through various solution-based processing techniques (e.g., flocculation, electrostatic sequential deposition, or the Langmuir-Blodgett method) to produce a range of nanocomposites, multilayer nanofilms, and core-shell nanoarchitectures, which have great potential for electronic, magnetic, optical, photochemical, and catalytic applications.

  3. PROCESS FOR SEPARATING IODINE-132 FROM FISSION PRODUCTS

    DOEpatents

    Greene, M.W.; Tucker, W.D.; Samos, G.

    1960-06-28

    A process is given for isolating I/sup 132/ in substantially pure form. Te/sup 132/, which is the radioactive parent of I/sup 132/, is adsorbed on a finely divided mass of a chromatographic grade of refractory metal oxide. i.e., alumina, zirconia, titania, and ceria. After a period of time is allowed for the Te/sup 132/ to decay, a 0.001 to 0.01 molar solution of ammonium hydroxide is passed over the finely divided oxides and the I/sup 132/ values are eluted.

  4. THE MONITORING OF EFFLUENT FOR ALPHA EMITTERS. PART II. METHODS FOR THE DETERMINATION OF URANIUM, POLONIUM AND OTHER ALPHA EMITTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smales, A.A.; Airey, L.; Woodward, J.

    1950-06-01

    Consideration has been given to the problem of separating and estimating uranium, polonium, and other alpha emitters (in order to provide analytical methods for their routine determination in conformily with the draft agreement on the Harwell effluent). Uranium may be ether extracted from solutions of ammonium nitrate as salting out agent at pHl with an efficiency of 98 to 99%. The deposition of polonium on silver foil is a specific method for this element and under prescribed conditions similar extraction efficiencies may be obtained. An adequate separation from all other alpha emitters'' is obtained and methods for the estimation ofmore » these are discussed. A comprehensive scheme involving a preliminary activity concentration step has been elaborated. Uranium, polonium, and the majority of the other alpha emitters'' are precipitated as their tannin complexes at pH8 using calcium hydroxide, the calcium-tannin complex acting as a carrier. That part of the activity remaining in solution is determined as in the total activity method, previously described. From the solution of the precipitate, polonium is first separated by electrodeposition, and then uranium by ether extraction in the presence of ammonium nitrate. The majority of the other alpha emitters'' still in the aqueous ammonium nitrate solution are collected on a second calcium-tannin precipitate, while the small part remaining in solution after this operation is obtained by direct evaporation. (auth)« less

  5. Strategy for pH control and pH feedback-controlled substrate feeding for high-level production of L-tryptophan by Escherichia coli.

    PubMed

    Cheng, Li-Kun; Wang, Jian; Xu, Qing-Yang; Zhao, Chun-Guang; Shen, Zhi-Qiang; Xie, Xi-Xian; Chen, Ning

    2013-05-01

    Optimum production of L-tryptophan by Escherichia coli depends on pH. Here, we established conditions for optimizing the production of L-tryptophan. The optimum pH range was 6.5-7.2, and pH was controlled using a three-stage strategy [pH 6.5 (0-12 h), pH 6.8 (12-24 h), and pH 7.2 (24-38 h)]. Specifically, ammonium hydroxide was used to adjust pH during the initial 24 h, and potassium hydroxide and ammonium hydroxide (1:2, v/v) were used to adjust pH during 24-38 h. Under these conditions, NH4 (+) and K(+) concentrations were kept below the threshold for inhibiting L-tryptophan production. Optimization was also accomplished using ratios (v/v) of glucose to alkali solutions equal to 4:1 (5-24 h) and 6:1 (24-38 h). The concentration of glucose and the pH were controlled by adjusting the pH automatically. Applying a pH-feedback feeding method, the steady-state concentration of glucose was maintained at approximately 0.2 ± 0.02 g/l, and acetic acid accumulated to a concentration of 1.15 ± 0.03 g/l, and the plasmid stability was 98 ± 0.5 %. The final, optimized concentration of L-tryptophan was 43.65 ± 0.29 g/l from 52.43 ± 0.38 g/l dry cell weight.

  6. TREATMENT FOR IMPROVING THE OPERATION OF STRONG BASE ANION EXCHANGE RESINS

    DOEpatents

    Stevenson, P.C.

    1960-11-29

    A process is offered for improving quaternary ammonium type strongly basic anion exchange resins so that centain zinc and cadmium residues, which normally stick to and "poison" this type of resin, can be removed by elution. Specifically, the resin as obtained commercially is treated with an aqueous solution of sodium hydroxide of about 1 to 4 M concentration by heating therein and periodically adding small amounts of oxidizing agent selected from hydrogen peroxide, sodium peroxide and hypochlorite. Zinc and cadmium values may then be adsorbed onto the resin from a 0.1 to 3 M HCl and thereafter eluted therefrom with very dilute HCl solutions.

  7. Investigation of melamine derived quaternary as ammonium salt potential shale inhibitor

    NASA Astrophysics Data System (ADS)

    Yu, Hongjiang; Hu, Weimin; Guo, Gang; Huang, Lei; Li, Lili; Gu, Xuefan; Zhang, Zhifang; Zhang, Jie; Chen, Gang

    2017-06-01

    Melamine, sodium chloroacetate and sodium hydroxide were used as raw materials to synthesize a kind of neutral quaternary ammonium salt (NQAS) as potential clay swelling inhibitor and water-based drilling fluid additive, and the reaction conditions were screened based on the linear expansion rate of bentonite. The inhibitive properties of NQASs were investigated by various methods, including montmorillonite (MMT) linear expansion test, mud ball immersing test, particle distribution measurement, thermogravimetric analysis and scanning electron microscopy etc. The results indicate that NQAS can inhibit expansion and dispersion of clay in water effectively. At the same condition, the bentonite linear expansion rate in NQAS-6 solution is much lower than those of others, and the hydration expansion degree of the mud ball in 0.5% NQAS-6 solution is appreciably weaker than the control test. The compatibility test indicates NQAS-6 could be compatible with the conventional additives in water-based drilling fluids, and the temperature resistance of modified starch was improved effectively. Meanwhile, the inhibitive mechanism was discussed through the particle distribution measurement.

  8. UV Catalysis, Cyanotype Photography, and Sunscreens

    NASA Astrophysics Data System (ADS)

    Lawrence, Glen D.; Fishelson, Stuart

    1999-09-01

    This laboratory experiment is intended for a chemistry course for non-science majors. The experiment utilizes one of the earliest photographic processes, the cyanotype process, to demonstrate UV catalysis of chemical reactions. In addition to making photographic prints from negatives, the process can be used to test the effectiveness of sunscreens and the relative efficacy of the SPF (sun protection factor) rating of sunscreens. This is an inexpensive process, requiring solutions of ammonium ferric citrate and potassium ferricyanide, with options to use hydrogen peroxide and ammonium hydroxide solutions. Students can prepare their own UV-sensitized paper with the indicated chemicals and watch the photographic image appear as it is exposed to sunlight or fluorescent UV lamps in a light box designed for use in this experiment. The laboratory experiment should stimulate discussion of UV catalysis, photographic processes and photochemistry, sunscreens, and UV damage to biological organisms. The chemicals used are relatively nontoxic, and the procedure is simple enough to be used by groups of diverse ages and abilities.

  9. Influence of ammonium hydroxide solution on LiMn2O4 nanostructures prepared by modified chemical bath method

    NASA Astrophysics Data System (ADS)

    Koao, Lehlohonolo F.; Motloung, Setumo V.; Motaung, Tshwafo E.; Kebede, Mesfin A.

    2018-04-01

    LiMn2O4 (LMO) powders were prepared by modified chemical bath deposition (CBD) method by varying ammonium hydroxide solution (AHS). The volume of the AHS was varied from 5 to 120 mL in order to determine the optimum volume that is needed for preparation of LMO powders. The effect of AHS volume on the structure, morphology, and electrochemical properties of LMO powders was investigated. The X-ray diffraction (XRD) patterns of the LMO powders correspond to the cubic spinel LMO phase. It was found that the XRD peaks increased in intensity with increasing volume of the AHS up to 20 mL. The estimated average grain sizes calculated using the XRD patterns were found to be in the order of 66 ± 1 nm. It was observed that the estimated average grain sizes increased up to 20 mL of AHS. The scanning electron microscopy (SEM) results revealed that the AHS volume does not influence the surface morphology of the prepared nano-powders. Elemental energy dispersive (EDS) analysis mapping conducted on the samples revealed homogeneous distribution of Mn and O for the sample synthesized with 120 mL of AHS. The UV-Vis spectra showed a red shift with an increase in AHS up 20 mL. The cyclic voltammetry and galvanostatic charge/discharge cycle testing confirmed that 20 mL of AHS has superior lithium ion kinetics and electrochemical performance.

  10. Synthesis and effectiveness of overbased magnesium and calcium petroleum sulfonates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fialkovskii, R.V.; Romanyutina, L.V.; Korbut, L.F.

    Overbased sulfonate additives are widely used to improve the service properties of motor oils. This paper describes the preparation of an overbased magnesium sulfonate additive from MSG-8 oil and an investigation of its functional properties. In experiments, the solution of ammonium sulfate, fat diluted with I-20A oil to a 38% concentration, was heated and stirred continuously in the presence of water and excess magnesium oxide for a period of 4 h at 80-120/degree/C while stripping out the liberated ammonia with nitrogen. The resulting oil solution of magnesium sulfonate was dissolved in toluene. The toluene solution after cleanup was held undermore » vacuum to remove the solvent; the residue was an oil solution of overbased magnesium sulfonate. Their properties are tabulated. Comparative data are shown in Table 1 for a calcium sulfonate additive synthesized from the same intermediate (ammonium sulfate), using calcium hydroxide as the base. Test results on M-11 oil containing 5% of the magnesium or calcium additive are listed. It is shown that the magnesium additive gave better results from the calcium additive at the same concentration in terms of oxidation stability, corrosion properties, detergency, and dispersancy. 9 refs.« less

  11. Development of mesoporous structures of composite silica particles with various organic functional groups in the presence and absence of ammonia catalyst

    NASA Astrophysics Data System (ADS)

    Park, Tae Jae; Jung, Gyu Il; Kim, Euk Hyun; Koo, Sang Man

    2017-06-01

    Development of mesoporous structures of composite silica particles with various organic functional groups was investigated by using a two-step process, consisting of one-pot sol-gel process in the presence and absence of ammonium hydroxide and a selective dissolution process with an ethanol-water mixture. Five different organosilanes, including methyltrimethoxysilane (MTMS), 3-mercaptopropyltrimethoxysilane (MPTMS), phenyltrimethoxysilane (PTMS), vinyltrimethoxysilane (VTMS), and 3-aminopropyltrimethoxysilane (APTMS) were employed. The mesoporous (organically modified silica) ORMOSIL particles were obtained even in the absence of ammonium hydroxide when the reaction mixture contained APTMS. The morphology of the particles, however, were different from those prepared with ammonia catalyst and the same organosilane mixtures, probably because the overall hydrolysis/condensation rates became slower. Co-existence of APTMS and VTMS was essential to prepare mesoporous particles from ternary organosilane mixtures. The work presented here demonstrates that organosilica particles with desired functionality and desired mesoporous structures can be obtained by selecting proper types of organosilane monomers and performing a facile and mild process either with or without ammonium hydroxide.

  12. PREPARATION OF HIGH DENSITY UO$sub 2$

    DOEpatents

    Googin, J.M.

    1959-09-29

    A method is presented for the preparation of highdensity UO/sub 2/ from UF/sub 6/. In accordance with the invention, UF/sub 6/ is reacted with water and concentrated ammonium hydroxide is added to the resulting aqueous solution of UO/ sub 2/F/sub 2/. The resulting precipitate is calcined to U/sub 3/O/sub 8/ an d the U/sub 3/O/sub 8/ is reduced to UO/sub 2/ with a gaseous mixture comprised of carbon monoxide and carbon dioxide at a temperature of from 1600 to 1900 deg C.

  13. Process for the synthesis of iron powder

    DOEpatents

    Not Available

    1982-03-06

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  14. Process for the synthesis of iron powder

    DOEpatents

    Welbon, William W.

    1983-01-01

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  15. Low temperature synthesis and characterization of carbonated hydroxyapatite nanocrystals

    NASA Astrophysics Data System (ADS)

    Anwar, Aneela; Asghar, Muhammad Nadeem; Kanwal, Qudsia; Kazmi, Mohsin; Sadiqa, Ayesha

    2016-08-01

    Carbonate substituted hydroxyapatite (CHA) nanorods were synthesized via coprecipitation method from aqueous solution of calcium nitrate tetrahydrate and diammonium hydrogen phosphate (with urea as carbonate ion source) in the presence of ammonium hydroxide solution at 70 °C at the conditions of pH 11. The obtained powders were physically characterized using transmission electron microscopy (TEM), X-ray powder diffraction analysis (XRD), and FTIR and Raman spectroscopy. The particle size was evaluated by Dynamic light scattering (DLS). The chemical structural analysis of as prepared sample was performed using X-ray photoelectron spectroscopy (XPS). After ageing for 12 h, and heat treatment at 1000 °C for 1 h, the product was obtained as highly crystalline nanorods of CHA.

  16. Engineering Design Handbook - Military Pyrotechnics Series. Part Four. Design of Ammunition for Pyrotechnic Effects

    DTIC Science & Technology

    1974-03-15

    Type 1) is a mixture of 88.5 percent gasoline and 11.5 percent napalm thickener. Napalm thickener is a granular base aluminum soap of naphthenic ...methacrylate polymer AE (IM) 5.0 5.0 2.0 3.0 3.0 3.0 3.0 Stearic acid 3.0 — — 1.0 4.0 3.0 4.5 Fatty acids - 2.5 3.0 - — — — Naphthenic acid - 2.5...3.0 3.0 — 1.0 0.5 Calcium oxide 2.0 — — 3.1 4.0 3.5 _ Caustic soda (40% solution) — 3.0 4.5 — — — — Ammonium hydroxide (27% solution

  17. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology.

    PubMed

    Zhang, Tao; Ding, Lili; Ren, Hongqiang; Xiong, Xiang

    2009-12-01

    Ammonium nitrogen removal from wastewater has been of considerable concern for several decades. In the present research, we examined chemical precipitation recycle technology (CPRT) for ammonium nitrogen removal from coking wastewater. The pyrolysate resulting from magnesium ammonium phosphate (MAP) pyrogenation in sodium hydroxide (NaOH) solution was recycled for ammonium nitrogen removal from coking wastewater. The objective of this study was to investigate the conditions for MAP pyrogenation and to characterize of MAP pyrolysate for its feasibility in recycling. Furthermore, MAP pyrolysate was characterized by scanning electron microscope (FESEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) as well as X-ray diffraction (XRD). The MAP pyrolysate could be produced at the optimal condition of a hydroxyl (OH(-)) to ammonium molar ratio of 2:1, a heating temperature of 110 degrees C, and a heating time of 3h. Surface characterization analysis indicated that the main component of the pyrolysate was amorphous magnesium sodium phosphate (MgNaPO(4)). The pyrolysate could be recycled as a magnesium and phosphate source at an optimum pH of 9.5. When the recycle times were increased, the ammonium nitrogen removal ratio gradually decreased if the pyrolysate was used without supplementation. When the recycle times were increased, the ammonium nitrogen removal efficiency was not decreased if the added pyrolysate was supplemented with MgCl(2).6H(2)O plus Na(2)HPO(4).12H(2)O during treatment. A high ammonium nitrogen removal ratio was obtained by using pre-formed MAP as seeding material.

  18. Optimization of Immobilized Gallium (III) Ion Affinity Chromatography for Selective Binding and Recovery of Phosphopeptides from Protein Digests

    PubMed Central

    Aryal, Uma K.; Olson, Douglas J.H.; Ross, Andrew R.S.

    2008-01-01

    Although widely used in proteomics research for the selective enrichment of phosphopeptides from protein digests, immobilized metal-ion affinity chromatography (IMAC) often suffers from low specificity and differential recovery of peptides carrying different numbers of phosphate groups. By systematically evaluating and optimizing different loading, washing, and elution conditions, we have developed an efficient and highly selective procedure for the enrichment of phosphopeptides using a commercially available gallium(III)-IMAC column (PhosphoProfile, Sigma). Phosphopeptide enrichment using the reagents supplied with the column is incomplete and biased toward the recovery and/or detection of smaller, singly phosphorylated peptides. In contrast, elution with base (0.4 M ammonium hydroxide) gives efficient and balanced recovery of both singly and multiply phosphorylated peptides, while loading peptides in a strong acidic solution (1% trifluoracetic acid) further increases selectivity toward phosphopeptides, with minimal carryover of nonphosphorylated peptides. 2,5-Dihydroxybenzoic acid, a matrix commonly used when analyzing phosphopeptides by matrix-assisted laser desorption/ionization mass spectrometry was also evaluated as an additive in loading and eluting solvents. Elution with 50% acetonitrile containing 20 mg/mL dihydroxybenzoic acid and 1% phosphoric acid gave results similar to those obtained using ammonium hydroxide as the eluent, although the latter showed the highest specificity for phosphorylated peptides. PMID:19183793

  19. Photoluminescent properties of spider silk coated with Eu-doped nanoceria

    NASA Astrophysics Data System (ADS)

    Dmitrović, Svetlana; Nikolić, Marko G.; Jelenković, Branislav; Prekajski, Marija; Rabasović, Mihailo; Zarubica, Aleksandra; Branković, Goran; Matović, Branko

    2017-02-01

    Spider dragline silk was coated with pure as well as Eu-doped ceria nanopowders at the room temperature. The treatment was done by immersion of the spider silk mesh into aqueous solutions of cerium nitrate (Ce(NO3)3) and ammonium hydroxide (NH4OH). Depending on the relationship between Ce3+ ion and ammonium hydroxide concentration, coated fibers exhibited a different thickness. Obtained materials were studied by means of FESEM. It was found that ceria nanoparticles of average size of 3 nm were coated along spider thread. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) confirmed crystal nature of nanoparticle coating of spider silk. By using Williamson-Hall plots, crystallite size and strain were estimated. EDS measurement confirmed the presence of Eu in spider-Eu-doped ceria composite, and according to FTIR analysis, the interaction between CeO2 and spider silk was proposed. The morphology of obtained composite was observed by TEM. The photoluminescence emission spectra of spider silk coated with Eu-doped ceria were measured with two different excitations of 385 and 466 nm. The two-photon excited auto-fluorescence of spider silk coated with Eu-doped ceria was detected using a nonlinear laser scanning microscope. Obtained composite has a potential as a fluorescent labeling material in diverse applications.

  20. Physical and Chemical Interactions between Mg:Al Layered Double Hydroxide and Hexacyanoferrate

    NASA Astrophysics Data System (ADS)

    Boclair, Joseph W.; Braterman, Paul S.; Brister, Brian D.; Wang, Zhiming; Yarberry, Faith

    2001-11-01

    The physical and chemical interactions of ferrocyanide (potassium and ammonium salts) and ferricyanide (potassium salt) with Mg:Al layered double hydroxides (LDH) (having Mg:Al ratios of 2 and 3) are investigated using powder XRD and FTIR spectroscopy. Physically, the potassium ferricyanide is shown to intercalate with a small local field deformation similar to that seen for hexacyanocobaltate (III) in similar materials. Chemically, the reduction of ferricyanide to ferrocyanide upon intercalation is confirmed. Physical interactions of ferrocyanide with 3:1 LDH are shown spectroscopically to include the possible generation of anions in differing environments. Chemically, ferrocyanide is shown to generate cubic ferrocyanides (of the type M2MgFe(CN)6, where M=K+ or NH+4) under conditions where free Mg2+ is likely present in solution, namely, solutions with a pH lower than ∼7.5. It is shown that the reported 2112-cm-1 band found in some chemically altered LDH ferrocyanide is indeed due to interlayer ferricyanide, but that the 2080 cm-1 band is due to the cubic material.

  1. The Purification and Concentration of Hog Cholera Virus*

    PubMed Central

    Cunliffe, H. R.; Rebers, P. A.

    1968-01-01

    Partial purification of hog cholera virus (HCV) using a simple batch-type chromatographic procedure with magnetic ferric oxide (MFO) is described. Infectious HCV was adsorbed from isotonic solutions to MFO and was eluted under conditions of low ionic strength and high pH. Aqueous solutions of 0.01 M sodium cyanide or 0.0003 M ammonium hydroxide effectively dissociated MFO-HCV complexes. The data indicate that 50 to 100% of the original HCV infectivity was recovered concomitant with a 90 to 95% reduction of extraneous organic nitrogen. MFO-purified HCV was concentrated by density gradient type centrifugations in buffered solutions of cesium chloride and sucrose. Prolonged isodensity centrifugations of concentrated MFO-purified HCV indicated a buoyant density of 1.14 to 1.15 gm/ml for the strain of virus used. PMID:15846899

  2. Process for the synthesis of iron powder

    DOEpatents

    Welbon, W.W.

    1983-11-08

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.

  3. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching.

    PubMed

    Ku, Heesuk; Jung, Yeojin; Jo, Minsang; Park, Sanghyuk; Kim, Sookyung; Yang, Donghyo; Rhee, Kangin; An, Eung-Mo; Sohn, Jeongsoo; Kwon, Kyungjung

    2016-08-05

    As the production and consumption of lithium ion batteries (LIBs) increase, the recycling of spent LIBs appears inevitable from an environmental, economic and health viewpoint. The leaching behavior of Ni, Mn, Co, Al and Cu from treated cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles, is investigated with ammoniacal leaching agents based on ammonia, ammonium carbonate and ammonium sulfite. Ammonium sulfite as a reductant is necessary to enhance leaching kinetics particularly in the ammoniacal leaching of Ni and Co. Ammonium carbonate can act as a pH buffer so that the pH of leaching solution changes little during leaching. Co and Cu can be fully leached out whereas Mn and Al are hardly leached and Ni shows a moderate leaching efficiency. It is confirmed that the cathode active materials are a composite of LiMn2O4, LiCoxMnyNizO2, Al2O3 and C while the leach residue is composed of LiNixMnyCozO2, LiMn2O4, Al2O3, MnCO3 and Mn oxides. Co recovery via the ammoniacal leaching is believed to gain a competitive edge on convenitonal acid leaching both by reducing the sodium hydroxide expense for increasing the pH of leaching solution and by removing the separation steps of Mn and Al. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The critical relation between chemical stability of cations and water in anion exchange membrane fuel cells environment

    NASA Astrophysics Data System (ADS)

    Dekel, Dario R.; Willdorf, Sapir; Ash, Uri; Amar, Michal; Pusara, Srdjan; Dhara, Shubhendu; Srebnik, Simcha; Diesendruck, Charles E.

    2018-01-01

    Anion exchange membrane fuel cells can potentially revolutionize energy storage and delivery; however, their commercial development is hampered by a significant technological impedance: the chemical decomposition of the anion exchange membranes during operation. The hydroxide anions, while transported from the cathode to the anode, attack the positively charged functional groups in the polymer membrane, neutralizing it and suppressing its anion-conducting capability. In recent years, several new quaternary ammonium salts have been proposed to address this challenge, but while they perform well in ex-situ chemical studies, their performance is very limited in real fuel cell studies. Here, we use experimental work, corroborated by molecular dynamics modeling to show that water concentration in the environment of the hydroxide anion, as well as temperature, significantly impact its reactivity. We compare different quaternary ammonium salts that have been previously studied and test their stabilities in the presence of relatively low hydroxide concentration in the presence of different amounts of solvating water molecules, as well as different temperatures. Remarkably, with the right amount of water and at low enough temperatures, even quaternary ammonium salts which are considered "unstable", present significantly improved lifetime.

  5. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric acid... 18.5 percent iron, approximately 9 percent ammonia, and 65 percent citric acid and occurs as reddish... composed of 14.5 to 16 percent iron, approximately 7.5 percent ammonia, and 75 percent citric acid and...

  6. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric acid... 18.5 percent iron, approximately 9 percent ammonia, and 65 percent citric acid and occurs as reddish... composed of 14.5 to 16 percent iron, approximately 7.5 percent ammonia, and 75 percent citric acid and...

  7. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... prepared by the reaction of ferric hydroxide with citric acid, followed by treatment with ammonium..., approximately 9 percent ammonia, and 65 percent citric acid and occurs as reddish brown or garnet red scales or..., approximately 7.5 percent ammonia, and 75 percent citric acid and occurs as thin transparent green scales, as...

  8. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric acid... 18.5 percent iron, approximately 9 percent ammonia, and 65 percent citric acid and occurs as reddish... composed of 14.5 to 16 percent iron, approximately 7.5 percent ammonia, and 75 percent citric acid and...

  9. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric acid... 18.5 percent iron, approximately 9 percent ammonia, and 65 percent citric acid and occurs as reddish... composed of 14.5 to 16 percent iron, approximately 7.5 percent ammonia, and 75 percent citric acid and...

  10. Magnesium-phosphate-glass cements with ceramic-type properties

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  11. Magnesium phosphate glass cements with ceramic-type properties

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  12. Determination of low (137)Cs concentration in seawater using ammonium 12-molybdophosphate adsorption and chemical separation method.

    PubMed

    Park, J H; Chang, B U; Kim, Y J; Seo, J S; Choi, S W; Yun, J Y

    2008-12-01

    A new method has been developed for analyzing (137)Cs in a small volume of seawater. Ammonium 12-molybdophosphate (AMP) was used two times during pretreatment procedure. The first step was to adsorb (137)Cs in seawater samples into AMP in order to reduce sample volume, and the second was to remove (87)Rb, interference nuclide for beta counting. The AMP adsorbing (137)Cs was dissolved by sodium hydroxide solution, and then (137)Cs was finally formed to be cesium chloroplatinate precipitate by adding 10% hexachloroplatinic acid. The beta rays emitted from (137)Cs were measured with a low background gas-proportional alpha/beta counter. This method was applied to several seawater samples taken in the East Sea of Korea. Compared to the routinely used gamma-spectrometry method, this new AMP method was reliable and suitable for analyzing (137)Cs in deep seawater.

  13. REVIEW OF CLEANING SOLUTIONS FOR USE ON COMPONENTS OF THE 9975 SHIPPING PACKAGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W.

    2013-09-30

    Several candidate cleaning products have been reviewed for use as a disinfectant on 9975 shipping package components which contain or have contacted mold. Following review of the compatibility of these products with each component, ammonia (ammonium hydroxide diluted to 1.5 wt% concentration) appears compatible with all package components that it might contact. Each of the other candidate products is incompatible with one or more package components. Accordingly, ammonia is recommended for this purpose. It is further recommended that all components which are disinfected be subsequently rinsed with di-ionized or distilled water.

  14. Augmenting Laboratory Rearing of Stable Fly (Diptera: Muscidae) Larvae With Ammoniacal Salts

    PubMed Central

    Friesen, Kristina; Berkebile, Dennis R.; Zhu, Jerry J.

    2017-01-01

    Stable flies are blood feeding parasites and serious pests of livestock. The immature stages develop in decaying materials which frequently have high ammonium content. We added various ammonium salts to our laboratory stable fly rearing medium and measured their effect on size and survival as well as the physical properties of the used media. The addition of ammonium hydroxide, ammonium phosphate and ammonium sulfate reduced larval survival. These compounds decreased pH and increased ammonium content of the used media. Ammonium bicarbonate had no effect on pH and marginally increased ammonium while increasing survival twofold. The optimal level of ammonium bicarbonate was 50 g (0.63 mol) per pan. Larval survival decreased when pH was outside the range of 8.5 to 9.0. PMID:28130462

  15. Methods of synthesizing hydroxyapatite powders and bulk materials

    DOEpatents

    Luo, Ping

    1999-01-12

    Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 .mu.m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogenous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided.

  16. Methods of synthesizing hydroxyapatite powders and bulk materials

    DOEpatents

    Luo, P.

    1999-01-12

    Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 {micro}m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogeneous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided. 26 figs.

  17. Separation and characterization of acetyl and non-acetyl hemicelluloses of Arundo donax by ammonium sulfate precipitation.

    PubMed

    Peng, Feng; Bian, Jing; Peng, Pai; Xiao, Huan; Ren, Jun-Li; Xu, Feng; Sun, Run-Cang

    2012-04-25

    Delignified Arundo donax was sequentially extracted with DMSO, saturated barium hydroxide, and 1.0 M aqueous NaOH solution. The yields of the soluble fractions were 10.2, 6.7, and 10.0% (w/w), respectively, of the dry Arundo donax materials. The DMSO-, Ba(OH)(2)- and NaOH-soluble hemicellulosic fractions were further fractionated into two subfractions by gradient 50% and 80% saturation ammonium sulfate precipitation, respectively. Monosaccharide, molecular weight, FT-IR, and 1D ((1)H and (13)C) and 2D (HSQC) NMR analysis revealed the differences in structural characteristics and physicochemical properties among the subfractions. The subfractions precipitated with 50% saturation ammonium sulfate had lower arabinose/xylose and glucuronic acid/xylose ratios but had higher molecular weight than those of the subfractions precipitated by 80% saturation ammonium sulfate. FT-IR and NMR analysis revealed that the highly acetylated DMSO-soluble hemicellulosic subfraction (H(D50)) could be precipitated with a relatively lower concentration of 50% saturated ammonium sulfate, and thus the gradient ammonium sulfate precipitation technique could discriminate acetyl and non-acetyl hemicelluloses. It was found that the DMSO-soluble subfraction H(D50) precipitated by 50% saturated ammonium sulfate mainly consisted of poorly substituted O-acetyl arabino-4-O-methylglucurono xylan with terminal units of arabinose linked on position 3 of xylose, 4-O-methylglucuronic acid residues linked on position 2 of the xylan bone, and the acetyl groups (degree of acetylation, 37%) linked on position 2 or 3. The DMSO-soluble subfraction H(D80) precipitated by 80% saturated ammonium sulfate was mainly composed of highly substituted arabino-4-O-methylglucurono xylan and β-d-glucan.

  18. On-column nitrosation of amines observed in liquid chromatography impurity separations employing ammonium hydroxide and acetonitrile as mobile phase.

    PubMed

    Myers, David P; Hetrick, Evan M; Liang, Zhongming; Hadden, Chad E; Bandy, Steven; Kemp, Craig A; Harris, Thomas M; Baertschi, Steven W

    2013-12-06

    The availability of high performance liquid chromatography (HPLC) columns capable of operation at pH values up to 12 has allowed a greater selectivity space to be explored for method development in pharmaceutical analysis. Ammonium hydroxide is of particular value in the mobile phase because it is compatible with direct interfacing to electrospray mass spectrometers. This paper reports an unexpected N-nitrosation reaction that occurs with analytes containing primary and secondary amines when ammonium hydroxide is used to achieve the high pH and acetonitrile is used as the organic modifier. The nitrosation reaction has generality. It has been observed on multiple columns from different vendors and with multiple amine-containing analytes. Ammonia was established to be the source of the nitroso nitrogen. The stainless steel column frit and metal ablated from the frit have been shown to be the sites of the reactions. The process is initiated by removal of the chromium oxide protective film from the stainless steel by acetonitrile. It is hypothesized that the highly active, freshly exposed metals catalyze room temperature oxidation of ammonia to NO but that the actual nitrosating agent is likely N(2)O(3). Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods

    NASA Astrophysics Data System (ADS)

    Reddy, L. Sivananda; Ko, Yeong Hwan; Yu, Jae Su

    2015-09-01

    Gallium oxide (Ga2O3) nanorods were facilely prepared by a simple hydrothermal synthesis, and their morphology and photocatalytic property were studied. The gallium oxide hydroxide (GaOOH) nanorods were formed in aqueous growth solution containing gallium nitrate and ammonium hydroxide at 95 °C of growth temperature. Through the calcination treatment at 500 and 1000 °C for 3 h, the GaOOH nanorods were converted into single crystalline α-Ga2O3 and β-Ga2O3 phases. From X-ray diffraction analysis, it could be confirmed that a high crystalline quality of β-Ga2O3 nanorods was achieved by calcinating at 1000 °C. The thermal behavior of the Ga2O3 nanorods was also investigated by differential thermal analysis, and their vibrational bands were identified by Fourier transform infrared spectroscopy. In order to examine the photocatalytic activity of samples, the photodegradation of Rhodamine B solution was observed under UV light irradiation. As a result, the α-Ga2O3 and β-Ga2O3 nanorods exhibited high photodegeneration efficiencies of 62 and 79 %, respectively, for 180 min of UV irradiation time.

  20. Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods.

    PubMed

    Reddy, L Sivananda; Ko, Yeong Hwan; Yu, Jae Su

    2015-12-01

    Gallium oxide (Ga2O3) nanorods were facilely prepared by a simple hydrothermal synthesis, and their morphology and photocatalytic property were studied. The gallium oxide hydroxide (GaOOH) nanorods were formed in aqueous growth solution containing gallium nitrate and ammonium hydroxide at 95 °C of growth temperature. Through the calcination treatment at 500 and 1000 °C for 3 h, the GaOOH nanorods were converted into single crystalline α-Ga2O3 and β-Ga2O3 phases. From X-ray diffraction analysis, it could be confirmed that a high crystalline quality of β-Ga2O3 nanorods was achieved by calcinating at 1000 °C. The thermal behavior of the Ga2O3 nanorods was also investigated by differential thermal analysis, and their vibrational bands were identified by Fourier transform infrared spectroscopy. In order to examine the photocatalytic activity of samples, the photodegradation of Rhodamine B solution was observed under UV light irradiation. As a result, the α-Ga2O3 and β-Ga2O3 nanorods exhibited high photodegeneration efficiencies of 62 and 79 %, respectively, for 180 min of UV irradiation time.

  1. Zwitterionic Hydrogel-Biopolymer Assembly towards Biomimetic Superlubricants

    NASA Astrophysics Data System (ADS)

    Seekell, Raymond; Zhu, Elaine

    2014-03-01

    One superlubricant in nature is the synovial fluid (SF), comprising of a high molecular weight polysaccharide, hyaluronic acid (HA), and a globule protein, lubricin. In this bio-inspired materials research, we have explored hydrogel particles to mimic lubricin as a ``ball-bearing'' and control their interaction with the viscoelastic HA matrix. Biocompatible poly(N-[2-(Methacyloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide) (PMSA) hydrogel particles are synthesized to examine the electrostatic induced assembly of PMSA-HA supramolecular complexes in aqueous solutions. Fluorescence microscopy and rheology experiments have characterized the tunable network structure and viscoelastic properties of PMSA-HA aggregates by HA concentration and ionic conditions in aqueous solution. When being grafted to a solid surface, the PMSA-HA composite thin film exhibits superior low biofouling and friction performance, suggesting great promises as artificial superlubricants.

  2. Stability and electrostatics of mercaptoundecanoic acid-capped gold nanoparticles with varying counterion size.

    PubMed

    Laaksonen, Timo; Ahonen, Päivi; Johans, Christoffer; Kontturi, Kyösti

    2006-10-13

    The solubility of charged nanoparticles is critically dependent on pH. However, the concentration range available with bases such as NaOH is quite narrow, since the particles precipitate due to compression of the electric double layer when the ionic strength is increased. The stability of mercaptoundecanoic acid-capped Au nanoparticles is studied at a set pH using the hydroxide as base and different cations of various sizes. The counterions used are sodium (Na(+)), tetramethylammonium (TMA(+)), tetraethylammonium (TEA(+)), and tetrabutylammonium (TBA(+)). The particles precipitate in the 70-90 mM range with Na(+) as the counterion, but with quaternary ammonium hydroxides the particles are stable even in concentrations exceeding 1 M. The change in solubility is linked to a strongly adsorbed layer on the surface of the ligand shell of the nanoparticles. The increased concentration range obtained with TEAOH is further used to facilitate thiol exchange which occurs at a greater extent than would be achieved in NaOH solution.

  3. Multi-component removal in flue gas by aqua ammonia

    DOEpatents

    Yeh, James T [Bethel Park, PA; Pennline, Henry W [Bethel Park, PA

    2007-08-14

    A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.

  4. Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration

    NASA Astrophysics Data System (ADS)

    Laconte, Jean; Flandre, D.; Raskin, Jean-Pierre

    Co-integration of sensors with their associated electronics on a single silicon chip may provide many significant benefits regarding performance, reliability, miniaturization and process simplicity without significantly increasing the total cost. Micromachined Thin-Film Sensors for SOI-CMOS Co-integration covers the challenges and interests and demonstrates the successful co-integration of gas flow sensors on dielectric membrane, with their associated electronics, in CMOS-SOI technology. We firstly investigate the extraction of residual stress in thin layers and in their stacking and the release, in post-processing, of a 1 μm-thick robust and flat dielectric multilayered membrane using Tetramethyl Ammonium Hydroxide (TMAH) silicon micromachining solution.

  5. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  6. Determination of low-molecular-weight amines and ammonium in saline waters by ion chromatography after their extraction by steam distillation.

    PubMed

    Ferreira, Fernanda Nunes; Afonso, Julio Carlos; Pontes, Fernanda Veronesi Marinho; Carneiro, Manuel Castro; Neto, Arnaldo Alcover; Tristão, Maria Luiza Bragança; Monteiro, Maria Inês Couto

    2016-04-01

    A new method was developed for the determination of ammonium ion, monomethylamine and monoethylamine in saline waters by ion chromatography. Steam distillation was used to eliminate matrix interferences. Variables such as distillation time, concentration of sodium hydroxide solution and analyte mass were optimized by using a full two-level factorial (2(3) ) design. The influence of steam distillation on the analytical curves prepared in different matrices was also investigated. Limits of detection of 0.03, 0.05 and 0.05 mg/L were obtained for ammoniumion, monomethylamine and monoethylamine, respectively. Saline water samples from the Brazilian oil industry, containing sodium and potassium concentrations between 2.0-5.2% w/v and 96-928 mg/L, respectively, were analyzed. Satisfactory recoveries (90-105%) of the analytes were obtained for all spiked samples, and the precision was ≤ 7% (n = 3). The proposed method is adequate for analyzing saline waters containing sodium to ammoniumion, monomethylamine and monoethylamine concentration ratios up to 28 000:1 and potassium to ammonium, monomethylamine and monoethylamine concentration ratios up to 12 000:1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Common buffers, media, and stock solutions.

    PubMed

    2001-05-01

    This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.

  8. Method of synthesizing silica nanofibers using sound waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Jaswinder K.; Datskos, Panos G.

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up tomore » an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.« less

  9. Method of synthesizing silica nanofibers using sound waves

    DOEpatents

    Sharma, Jaswinder K.; Datskos, Panos G.

    2015-09-15

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  10. The toxicity of ammonia/ammonium to the vermifiltration wastewater treatment process.

    PubMed

    Hughes, R J; Nair, J; Ho, G

    2008-01-01

    This study was undertaken to assess the toxicity of ammonia/ammonium to key species within the vermifiltration process. The key species, the earthworm Eisenia fetida, was subjected to a series of tests in solid phase mesocosms and full-scale units. The solid phase tests showed a relatively low toxicity to ammonium with ammonium chloride having an LC50 for ammonium of 1.49 g/kg. Ammonium sulfate did not show an effect on mortality at 2 g/kg ammonium. The full-scale units showed that ammonia hydroxide can change the pH and concentration of ammonia in wastewater and while it caused some mortality to the worms its overall affect on system functioning was minimal with no significant difference in terms of worm survival found between treatments. The affect on nitrifying bacteria was also minimal with no linear trend shown with ammonia concentration. IWA Publishing 2008.

  11. Augmenting Laboratory Rearing of Stable Fly (Diptera: Muscidae) Larvae With Ammoniacal Salts.

    PubMed

    Friesen, Kristina; Berkebile, Dennis R; Zhu, Jerry J; Taylor, David B

    2017-01-01

    Stable flies are blood feeding parasites and serious pests of livestock. The immature stages develop in decaying materials which frequently have high ammonium content. We added various ammonium salts to our laboratory stable fly rearing medium and measured their effect on size and survival as well as the physical properties of the used media. The addition of ammonium hydroxide, ammonium phosphate and ammonium sulfate reduced larval survival. These compounds decreased pH and increased ammonium content of the used media. Ammonium bicarbonate had no effect on pH and marginally increased ammonium while increasing survival twofold. The optimal level of ammonium bicarbonate was 50 g (0.63 mol) per pan. Larval survival decreased when pH was outside the range of 8.5 to 9.0. Published by Oxford University Press on behalf of the Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  12. Phosphate Adsorption from Membrane Bioreactor Effluent Using Dowex 21K XLT and Recovery as Struvite and Hydroxyapatite

    PubMed Central

    Nur, Tanjina; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2016-01-01

    Discharging phosphate through wastewaters into waterways poses a danger to the natural environment due to the serious risks of eutrophication and health of aquatic organisms. However, this phosphate, if economically recovered, can partly overcome the anticipated future scarcity of phosphorus (P) resulting from exhaustion of natural phosphate rock reserves. An experiment was conducted to determine the efficiency of removing phosphate from a membrane bioreactor effluent (pH 7.0–7.5, 20, 35 mg phosphate/L) produced in a water reclamation plant by adsorption onto Dowex 21K XLT ion exchange resin and recover the phosphate as fertilisers. The data satisfactorily fitted to Langmuir adsorption isotherm with a maximum adsorption capacity of 38.6 mg·P/g. The adsorbed phosphate was quantitatively desorbed by leaching the column with 0.1 M NaCl solution. The desorbed phosphate was recovered as struvite when ammonium and magnesium were added at the molar ratio of phosphate, ammonium and magnesium of 1:1:1 at pH 9.5. Phosphate was also recovered from the desorbed solution as hydroxyapatite precipitate by adding calcium hydroxide to the solution at a phosphate to calcium molar ratio of 1:2 at pH 7.0. The P contents of struvite and hydroxyapatite produced were close to those of the respective commercial phosphate fertilisers. PMID:26950136

  13. Electrothermal atomic absorption spectrometric determination of copper in nickel-base alloys with various chemical modifiers*1

    NASA Astrophysics Data System (ADS)

    Tsai, Suh-Jen Jane; Shiue, Chia-Chann; Chang, Shiow-Ing

    1997-07-01

    The analytical characteristics of copper in nickel-base alloys have been investigated with electrothermal atomic absorption spectrometry. Deuterium background correction was employed. The effects of various chemical modifiers on the analysis of copper were investigated. Organic modifiers which included 2-(5-bromo-2-pyridylazo)-5-(diethylamino-phenol) (Br-PADAP), ammonium citrate, 1-(2-pyridylazo)-naphthol, 4-(2-pyridylazo)resorcinol, ethylenediaminetetraacetic acid and Triton X-100 were studied. Inorganic modifiers palladium nitrate, magnesium nitrate, aluminum chloride, ammonium dihydrogen phosphate, hydrogen peroxide and potassium nitrate were also applied in this work. In addition, zirconium hydroxide and ammonium hydroxide precipitation methods have also been studied. Interference effects were effectively reduced with Br-PADAP modifier. Aqueous standards were used to construct the calibration curves. The detection limit was 1.9 pg. Standard reference materials of nickel-base alloys were used to evaluate the accuracy of the proposed method. The copper contents determined with the proposed method agreed closely with the certified values of the reference materials. The recoveries were within the range 90-100% with relative standard deviation of less than 10%. Good precision was obtained.

  14. Imparting in situ stability to displacing fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.C.

    1970-07-14

    An aqueous preslug containing electrolyte an/or isopropanol was injected before a micellar-polymer flood to inhibit the tendency of the formation to degrade the flood. Berea cores were saturated with water from Henry lease in Illinois (18,000 ppm TDS), flooded with Henry crude (7 cp viscosity at 72/sup 0/F, specific gravity 0.843), and waterflooded with Henry water. A recovery of 86.3 percent OIP was obtained with the following preslug, micellar slug, and polymer flood. The preslug contained water from the water reservoir in Palestine, Illinois (400 ppm TDS) and sodium hydroxide. Ammonium petroleum sulfonate, Henry crude, isopropanol, nonyl phenol, sodium hydroxide,more » and Palestine water were combined to form the water-external micellar slug. The polymer flood was composed of Pusher 530, Palestine water, isopropanol, and ammonium thiocyanide.« less

  15. Arabinoxylan from finger millet (Eleusine coracana, v. Indaf 15) bran: purification and characterization.

    PubMed

    Savitha Prashanth, M R; Muralikrishna, G

    2014-01-01

    Water unextractable portion from finger millet bran was sequentially extracted with saturated barium hydroxide (BE) and 1M potassium hydroxide (KE) solutions. They consisted preponderantly of arabinose and xylose in different ratios. Ferulic, caffeic, coumaric and vanillic acids were identified as major bound phenolic acids. BE and KE were purified on DEAE-cellulose column by eluting successively with different eluants. The major fractions (0.1 M ammonium carbonate) were resolved into one (BE) and two subfractions (KE1 and KE2) respectively on Sephacryl S-400 gel filtration chromatography and their homogeneity was ascertained by gel filtration, cellulose acetate membrane electrophoresis and capillary electrophoresis. The average molecular weight of BE, KE1 and KE2 were found to be 430, 1028 and 40 kDa respectively. The structural elucidation of the purified polysaccharides by (1)H and (13)C NMR analysis indicated the backbone to be 1,4-β-D-linked xylan with substitution mainly at O-2 or O-3 and/or both by α-l-arabinose residues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. ELUTION OF URANIUM FROM RESIN

    DOEpatents

    McLEan, D.C.

    1959-03-10

    A method is described for eluting uranium from anion exchange resins so as to decrease vanadium and iron contamination and permit recycle of the major portion of the eluats after recovery of the uranium. Diminution of vanadium and iron contamination of the major portion of the uranium is accomplished by treating the anion exchange resin, which is saturated with uranium complex by adsorption from a sulfuric acid leach liquor from an ore bearing uranium, vanadium and iron, with one column volume of eluant prepared by passing chlorine into ammonium hydroxide until the chloride content is about 1 N and the pH is about 1. The resin is then eluted with 8 to 9 column volumes of 0.9 N ammonium chloride--0.1 N hydrochloric acid solution. The eluants are collected separately and treated with ammonia to precipitate ammonium diuranate which is filtered therefrom. The uranium salt from the first eluant is contaminated with the major portion of ths vanadium and iron and is reworked, while the uranium recovered from the second eluant is relatively free of the undesirable vanadium and irons. The filtrate from the first eluant portion is discarded. The filtrate from the second eluant portion may be recycled after adding hydrochloric acid to increase the chloride ion concentration and adjust the pH to about 1.

  17. Dodecylbenzene sulfonate-coated magnetite nanoparticles as a new adsorbent for solid phase extraction-spectrophotometric determination of ultra trace amounts of ammonium in water samples.

    PubMed

    Eskandari, Habibollah; Shariati, Mohammad Reza

    2011-10-17

    A new method was proposed for the determination of ammonium based on the preconcentration with dodecylbenzene sulfonate modified magnetite nanoparticles. Ammonium was oxidized to nitrite by hypobromite and then the nitrite produced was determined spectrophotometrically, using sulfabenzamide and N-(1-naphthyl) ethylenediamine after solid phase extraction. The azo dye produced was desorbed by an appropriate small volume of sodium hydroxide prior to the absorbance measurement. The linear calibration graphs were obtained in the concentration range of 0.03-6.00 ng mL(-1) ammonium. The relative standard deviation and recovery percents were 1.0 and 99.0, respectively, for 1.0 ng mL(-1) ammonium, and the limit of detection was 3.2 ng L(-1) ammonium. The interfering effects of a large number of diverse ions on the determination of ammonium were studied. The method was applied to the determination of ammonium in various types of water resources. The results revealed a high efficiency for the recommended ammonium determination method. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Use of Chemical Fractionation and Proton Nuclear Magnetic Resonance to Probe the Physical Structure of the Primary Plant Cell Wall 1

    PubMed Central

    Taylor, Iain E. P.; Wallace, Julia C.; MacKay, Alex L.; Volke, Frank

    1990-01-01

    Proton magnetic resonance has been used to monitor the microscopic physical properties of etiolated hypocotyl cell walls from Phaseolus vulgaris L. at all stages in a series of chemical fractionations with ammonium oxalate and potassium hydroxide. Solid echo measurements indicate that 75% of the polymers in the intact cell wall, including the cellulose and most of the hemicelluloses, are arranged such that there is almost complete restraint of molecular motion. The chemical fractionations generally altered the physical structures of the remaining cell wall components. Digestion with 0.25% ammonium oxalate/oxalic acid solubilized the pectin and increased the mobility of the hemicellulose I component. Extraction with 4% potassium hydroxide removed the hemicellulose I component and loosened the hemicellulose II. Further extraction with 24% potassium hydroxide removed the hemicellulose II and loosened some of the cellulose. The cellulose crystallinity, as monitored by Jeener echo measurements decreased from 83% to 63% during these fractionations. We conclude that, while hemicellulose I is firmly attached to hemicellulose II, it is not in a closely packed structure. Hemicellulose II is strongly bound to cellulose and has a much more closely packed structure. PMID:16667683

  19. Removal of oil palm trunk lignin in ammonium hydroxide pretreatment

    NASA Astrophysics Data System (ADS)

    Az-Zahraa, Balqis; Zakaria, Sarani; Daud, Muhammad F. B.; Jaafar, Sharifah Nabihah Syed

    2018-04-01

    Alkaline pretreatment using ammonium hydroxide, NH4OH serves as one of a process to remove lignin from lignocellulosic biomass such as oil palm trunk fiber. In this study, the effect of NH4OH pretreatment on removal of oil palm trunk lignin was investigated. The oil palm trunk fiber was dissolved in NH4OH with different concentrations (6, 8 and 10 %), different duration (3, 5 and 7 h) and temperatures (60, 80 and 100 °C). The samples were analyzed by using UV-Vis to estimate the concentration of extracted lignin. The result indicates that the optimum conditions to gain maximum extracted lignin were 8% NH4OH, 100 °C and 5 h with concentration of 64 mgL-1 while the lowest was at 6% NH4OH, 100 °C and 5 h with concentration of 62.5 mgL-1.

  20. Chromatographic fingerprint analysis of yohimbe bark and related dietary supplements using UHPLC/UV/MS.

    PubMed

    Sun, Jianghao; Chen, Pei

    2012-03-05

    A practical ultra high-performance liquid chromatography (UHPLC) method was developed for fingerprint analysis of and determination of yohimbine in yohimbe barks and related dietary supplements. Good separation was achieved using a Waters Acquity BEH C(18) column with gradient elution using 0.1% (v/v) aqueous ammonium hydroxide and 0.1% ammonium hydroxide in methanol as the mobile phases. The study is the first reported chromatographic method that separates corynanthine from yohimbine in yohimbe bark extract. The chromatographic fingerprint analysis was applied to the analysis of 18 yohimbe commercial dietary supplement samples. Quantitation of yohimbine, the traditional method for analysis of yohimbe barks, were also performed to evaluate the results of the fingerprint analysis. Wide variability was observed in fingerprints and yohimbine content among yohimbe dietary supplement samples. For most of the dietary supplements, the yohimbine content was not consistent with the label claims. Copyright © 2011. Published by Elsevier B.V.

  1. Conversion coatings prepared or treated with calcium hydroxide solutions

    NASA Technical Reports Server (NTRS)

    Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor); Minevski, Zoran (Inventor); Clarke, Eric (Inventor)

    2002-01-01

    A conversion coating process that forms a stable and corrosion-resistant oxide layer on metal or metal oxide substrates or layers. Particularly, the conversion coating process involves contacting the metal or metal oxide substrate or layer with the aqueous calcium hydroxide solutions in order to convert the surface of the substrate to a stable metal oxide layer or coating. According to the present invention, the calcium hydroxide solution is prepared by removing carbon dioxide from water or an aqueous solution before introducing the calcium hydroxide. In this manner, formation of calcium carbonate particles is avoided and the porosity of the conversion coating produced by the calcium hydroxide solution is reduced to below about 1%.

  2. Key process parameters to modify the porosity of cerium dioxide microspheres formed in the internal gelation process

    DOE PAGES

    Hunt, Rodney Dale; Collins, Jack Lee; Reif, Tyler J.; ...

    2017-08-04

    Recently, an internal gelation study demonstrated that the use of heated urea and hexamethylenetetramine can have a pronounced impact on the porosity and sintering characteristics of cerium dioxide (CeO 2) microspheres. This effort has identified process variables that can significantly change the initial porosity of the CeO 2 microspheres with slight modifications. A relatively small difference in the sample preparation of cerium ammonium nitrate and ammonium hydroxide solution had a large reproducible impact on the porosity and slow pour density of the produced microspheres. Increases in the gelation temperature as small as 0.5 K also produced a noticeable increase inmore » the slow pour density. If the gelation temperature was increased too high, the use of the heated hexamethylenetetramine and urea was no longer observed to be effective in increasing the porosity of the CeO 2 microspheres. In conclusion, the final process variable was the amount of dispersing agent, Span™ 80, which can increase the slow pour density and produce significantly smaller microspheres.« less

  3. Key process parameters to modify the porosity of cerium dioxide microspheres formed in the internal gelation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Rodney Dale; Collins, Jack Lee; Reif, Tyler J.

    Recently, an internal gelation study demonstrated that the use of heated urea and hexamethylenetetramine can have a pronounced impact on the porosity and sintering characteristics of cerium dioxide (CeO 2) microspheres. This effort has identified process variables that can significantly change the initial porosity of the CeO 2 microspheres with slight modifications. A relatively small difference in the sample preparation of cerium ammonium nitrate and ammonium hydroxide solution had a large reproducible impact on the porosity and slow pour density of the produced microspheres. Increases in the gelation temperature as small as 0.5 K also produced a noticeable increase inmore » the slow pour density. If the gelation temperature was increased too high, the use of the heated hexamethylenetetramine and urea was no longer observed to be effective in increasing the porosity of the CeO 2 microspheres. In conclusion, the final process variable was the amount of dispersing agent, Span™ 80, which can increase the slow pour density and produce significantly smaller microspheres.« less

  4. Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles.

    PubMed

    Bhakta, Snehasis; Dixit, Chandra K; Bist, Itti; Jalil, Karim Abdel; Suib, Steven L; Rusling, James F

    2016-07-01

    Understanding of the synthesis kinetics and our ability to modulate medium conditions allowed us to generate nanoparticles via an ultra-fast process. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as precursor and 50% ethanol and sodium hydroxide catalyst. Synthesis is performed under gentle conditions at 20 °C for 20 min Long synthesis time and catalyst-associated drawbacks are most crucial in silica nanoparticle synthesis. We have addressed both these bottlenecks by replacing the conventional Stober catalyst, ammonium hydroxide, with sodium hydroxide. We have reduced the overall synthesis time from 20 to 1/3 h, ~60-fold decrease, and obtained highly monodispersed nanoparticles with 5-fold higher surface area than Stober particles. We have demonstrated that the developed NPs with ~3-fold higher silane can be used as efficient probes for biosensor applications.

  5. Gamma-radiolytic preparation of multi-component oxides

    NASA Astrophysics Data System (ADS)

    Procházková, Lenka; Bárta, Jan; Čuba, Václav; Ekberg, Christian; Tietze, Sabrina; Jakubec, Ivo

    2016-07-01

    The preparation of solid precursors to Zn1-xCdxO and (Lu,Y)3Al5O12:Ce induced by 60Co gamma-ray irradiation of aqueous solutions containing soluble metal salts and ammonium formate is presented. Due to the irradiation, crystalline zinc carbonate hydroxide Zn4(CO3)(OH)6·H2O or amorphous carbonates of Lu, Y and Al were formed in the solutions. After calcination at 500 °C, the agglomerated phase-pure Zn1-xCdxO with crystallite size about 50 nm was obtained if the Cd concentration in solutions remained below 16 M% (with respect to Zn) with x being up to 0.035. The solid precursors to garnets contained the intended concentration of all elements, according to X-ray fluorescence analysis. After calcination at 1200 °C in mild vacuum, the respective phase-pure garnets with crystallite size 100 nm or their solid solution were produced when the Ce dopation was kept below 2 M% (with respect to rare-earth metals). The Ce solubility in the garnet lattice was estimated as 1-2 M% at the calcination conditions used.

  6. Investigations of the ex situ ionic conductivities at 30 degrees C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities.

    PubMed

    Varcoe, John R

    2007-03-28

    This article presents the first systematic study of the effect of Relative Humidity (RH) on the water content and hydroxide ion conductivity of quaternary ammonium-based Alkaline Anion-Exchange Membranes (AAEMs). These AAEMs have been developed specifically for application in alkaline membrane fuel cells, where conductivities of >0.01 S cm(-1) are mandatory. When fully hydrated, an ETFE-based radiation-grafted AAEM exhibited a hydroxide ion conductivity of 0.030 +/- 0.005 S cm(-1) at 30 degrees C without additional incorporation of metal hydroxide salts; this is contrary to the previous wisdom that anion-exchange membranes are very low in ionic conductivity and represents a significant breakthrough for metal-cation-free alkaline ionomers. Desirably, this AAEM also showed increased dimensional stability on full hydration compared to a Nafion-115 proton-exchange membrane; this dimensional stability is further improved (with no concomitant reduction in ionic conductivity) with a commercial AAEM of similar density but containing additional cross-linking. However, all of the AAEMs evaluated in this study demonstrated unacceptably low conductivities when the humidity of the surrounding static atmospheres was reduced (RH = 33-91%); this highlights the requirement for continued AAEM development for operation in H(2)/air fuel cells with low humidity gas supplies. Preliminary investigations indicate that the activation energies for OH(-) conduction in these quaternary ammonium-based solid polymer electrolytes are typically 2-3 times higher than for H(+) conduction in acidic Nafion-115 at all humidities.

  7. A facile synthesis of highly stable multiblock poly(arylene ether)s based alkaline membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Jasti, Amaranadh; Shahi, Vinod K.

    2014-12-01

    Herein, we are disclosing simple route for the preparation of alkaline membranes (AMs) based on aminated multiblock poly(arylene ether)s (AMPEs) synthesized by nucleophilic substitution-poly condensation followed by quaternization and alkalization reactions. In this procedure, four quaternary ammonium groups are successfully introduced without use of carcinogenic reagents such as chloromethylmethyl ether (CMME). Hydrophilic/hydrophobic phase separation is responsible for their high hydroxide conductivity (∼150 mS cm-1 at 80 °C) due to development of interconnected ion transport pathway. AMs are exhibiting good alkaline stability due to the presence of two vicinal quaternary ammonium groups and avoid degradation such as Sommelet-Hauser rearrangement and Hofmann elimination. Vicinal quaternary ammonium groups also resist nucleophilic (OH-) attack and suppress the Stevens rearrangement as well as SN2 substitution reaction due to stearic hindrance. Optimized AM (AMPE-M20N15 (55% DCM)) exhibits about 0.95 V open circuit voltage (OCV) and 48.8 mW cm-2 power density at 65 °C in alkaline direct methanol fuel cell (ADMFC) operation. These results suggest promising begin for the preparation of stable and conductive AMs for ADMFC applications and useful for developing hydroxide conductive materials.

  8. Combined Hydrous Ferric Oxide and Quaternary Ammonium Surfactant Tailoring of Granular Activated Carbon for Concurrent Arsenate and Perchlorate Removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, M.; Cannon, F; Parette, R

    2009-01-01

    Activated carbon was tailored with both iron and quaternary ammonium surfactants so as to concurrently remove both arsenate and perchlorate from groundwater. The iron (hydr)oxide preferentially removed the arsenate oxyanion but not perchlorate; while the quaternary ammonium preferentially removed the perchlorate oxyanion, but not the arsenate. The co-sorption of two anionic oxyanions via distinct mechanisms has yielded intriguing phenomena. Rapid small-scale column tests (RSSCTs) with these dually prepared media employed synthetic waters that were concurrently spiked with arsenate and perchlorate; and these trial results showed that the quaternary ammonium surfactants enhanced arsenate removal bed life by 25-50% when compared tomore » activated carbon media that had been preloaded merely with iron (hydr)oxide; and the surfactant also enhanced the diffusion rate of arsenate per the Donnan effect. The authors also employed natural groundwater from Rutland, MA which contained 60 microg/L As and traces of silica, and sulfate; and the authors spiked this with 40 microg/L perchlorate. When processing this water, activated carbon that had been tailored with iron and cationic surfactant could treat 12,500 bed volumes before 10 microg/L arsenic breakthrough, and 4500 bed volumes before 6 microg/L perchlorate breakthrough. Although the quaternary ammonium surfactants exhibited only a slight capacity for removing arsenate, these surfactants did facilitate a more favorably positively charged avenue for the arsenate to diffuse through the media to the iron sorption site (i.e. via the Donnan effect).« less

  9. The Barium Hydroxide-Ammonium Thiocyanate Reaction: A Titrimetric Continuous Variations Experiment.

    ERIC Educational Resources Information Center

    Harris, Arlo D.

    1979-01-01

    Presents an experiment for inorganic, organic, or physical chemistry students utilizing acid-base titrimetry to study the stoichiometric of a solid state reaction. Time involved ranges from one to three, three-hour lab periods. (Author/SA)

  10. Precipitation of ammonium from concentrated industrial wastes as struvite: a search for the optimal reagents.

    PubMed

    Borojovich, Eitan J C; Münster, Meshulam; Rafailov, Gennady; Porat, Ze'ev

    2010-07-01

    Precipitation of struvite (MgNH4PO4) is a known process for purification of wastewater from high concentrations of ammonium. The optimal conditions for precipitation are basic pH (around 9) and sufficient concentrations of magnesium and phosphate ions. In this work, we accomplished efficient precipitation of ammonium from concentrated industrial waste stream by using magnesium oxide (MgO) both as a source of magnesium ions and as a base. Best results were obtained with technical-grade MgO, which provided 99% removal of ammonium. Moreover, ammonium removal occurred already at pH 7, and the residual ammonium concentration (50 mg/L) remained constant upon addition of more MgO without rising again, as occurs with sodium hydroxide (NaOH). This process may have two other advantages; it also can be relevant for the problem of uncontrolled precipitation of struvite in the supernatant of anaerobic sludge treatment plants, and the precipitate can be used as a fertilizer.

  11. ELECTROLYTIC REDUCTION OF NITRIC ACID SOLUTIONS

    DOEpatents

    Alter, H.W.; Barney, D.L.

    1958-09-30

    A process is presented for the treatment of radioactivc waste nitric acid solutions. The nitric acid solution is neutralized with an alkali metal hydroxide in an amount sufficient to precipitate insoluble hydroxides, and after separation of the precipitate the solution is electrolyzed to convert the alkali nitrate formed, to alkali hydroxide, gaseous ammonla and oxygen. The solution is then reusable after reducing the volume by evaporating the water and dissolved ammonia.

  12. PROCESS FOR SEPARATING PLUTONIUM BY REPEATED PRECIPITATION WITH AMPHOTERIC HYDROXIDE CARRIERS

    DOEpatents

    Faris, B.F.

    1960-04-01

    A multiple carrier precipitation method is described for separating and recovering plutonium from an aqueous solution. The hydroxide of an amphoteric metal is precipitated in an aqueous plutonium-containing solution. This precipitate, which carries plutonium, is then separated from the supernatant liquid and dissolved in an aqueous hydroxide solution, forming a second plutonium- containing solution. lons of an amphoteric metal which forms an insoluble hydroxide under the conditions existing in this second solution are added to the second solution. The precipitate which forms and which carries plutonium is separated from the supernatant liquid. Amphoteric metals which may be employed are aluminum, bibmuth, copper, cobalt, iron, lanthanum, nickel, and zirconium.

  13. The application of ultrasound in the enzymatic hydrolysis of switchgrass

    USDA-ARS?s Scientific Manuscript database

    In a series of experiments, untreated and ammonium hydroxide pretreated Klenow lowland variety switchgrasses are converted to reducing sugars using low frequency (20 kHz) ultrasound and commercially-available cellulase enzyme. Results from experiments using untreated and pretreated switchgrasses wit...

  14. 46 CFR Table 2 to Part 153 - Cargoes Not Regulated Under Subchapters D or O of This Chapter When Carried in Bulk on Non...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Category 2-Amino-2-hydroxymethyl-1,3-propanediol solution III Ammonium hydrogen phosphate solution D...) D Ammonium phosphate, Urea solution, see also Urea, Ammonium phosphate solution D Ammonium..., Magnesium nitrate, Potassium chloride solution III Caramel solutions III Chlorinated paraffins (C14-C17...

  15. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  16. Process for recovering uranium

    DOEpatents

    MacWood, G. E.; Wilder, C. D.; Altman, D.

    1959-03-24

    A process useful in recovering uranium from deposits on stainless steel liner surfaces of calutrons is presented. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickel, copper, and iron is treated with an excess of ammonium hydroxide to precipitnte the uranium, iron, and chromium and convert the nickel and copper to soluble ammonio complexions. The precipitated material is removed, dried and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/ sub 4/, UCl/sub 5/, FeCl/sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temperature of about 500 to 400 deg C.

  17. PROCESS FOR RECOVERING URANIUM

    DOEpatents

    MacWood, G.E.; Wilder, C.D.; Altman, D.

    1959-03-24

    A process is described for recovering uranium from deposits on stainless steel liner surfaces of calutrons. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickels copper, and iron is treated with excess of ammonium hydroxide to precipitatc the uranium, irons and chromium and convert thc nickel and copper to soluble ammonia complexions. The precipitated material is removed, dried, and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/sub 4/, UCl/sub 5/, FeCl/ sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temprrature of about 300 to400 deg C.

  18. Dissolution mechanism of aluminum hydroxides in acid media

    NASA Astrophysics Data System (ADS)

    Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.

    2008-08-01

    The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.

  19. Reaction catalysts of urea-formaldehyde resin, as related to strength properties of southern pine particleboard

    Treesearch

    C. -Y. Hse

    1974-01-01

    Twelve resins were formulated with factorial combinations of three alkaline catalysts (i.e., somdium hydroxide, hexamethylenetetramine, and triethanolamine) and four acidic catalysts (i.e., acetic acid, hydrochloric acid, ammonium chloride, and phosphoric acid). The resins were replicated.

  20. Waffle production: influence of batter ingredients on sticking of waffles at baking plates-Part II: effect of fat, leavening agent, and water.

    PubMed

    Huber, Regina; Schoenlechner, Regine

    2017-05-01

    Fresh egg waffles are continuously baked in tunnel baking ovens in industrial scale. Waffles that partly or fully stick to the baking plates cause significant product loss and increased costs. The aim of this study was, therefore, to investigate the effect of different recipe ingredients on the sticking behavior of waffles. In this second part, ingredients investigated were different leavening agents (sodium acid pyrophosphate, ammonium bicarbonate, magnesium hydroxide carbonate, or monocalcium phosphate), different fat sources (rapeseed oil, cocos fat, butter, or margarine), and different water sources (tap water 12°dH and distilled water). Within the different types of fats, solid fats with high amount of short-chain fatty acids (cocos fat or butter) decreased the number of sticking waffles compared to liquid oils (rapeseed oil). Regarding leavening agents, magnesium hydroxide carbonate and ammonium bicarbonate were superior to sodium acid pyrophosphate or monocalcium phosphate. Between the two water sources, effects were small.

  1. Highly efficient non-biofouling coating of zwitterionic polymers: poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide).

    PubMed

    Cho, Woo Kyung; Kong, Bokyung; Choi, Insung S

    2007-05-08

    This work describes the formation of highly efficient non-biofouling polymeric thin films of poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide), (poly(MPDSAH)). The poly(MPDSAH) films were generated from the self-assembled monolayers terminating in an initiator of atom transfer radical polymerization (ATRP) by the surface-initiated ATRP of MPDSAH. The poly(MPDSAH) films on a gold surface were characterized by ellipsometry, FT-IR spectroscopy, contact angle goniometery, and X-ray photoelectron spectroscopy. The copper complexes and unpolymerized monomers trapped inside the polymer brushes were completely washed out by soaking the poly(MPDSAH)-coated substrate in water at 40 degrees C for 4 days. The amount of proteins nonspecifically adsorbed onto the poly(MPDSAH) films was evaluated by surface plasmon resonance spectroscopy: the adsorption of proteins was <0.6 ng/cm(2) on the surfaces for all the model proteins. The ability of the poly(MPDSAH) films to resist the nonspecific adsorption of proteins was comparable to that of the best known systems.

  2. Urea controlled hydrothermal synthesis of ammonium aluminum carbonate hydroxide rods

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Zhu, Jianfeng; Liu, Hui

    2018-03-01

    In this study, ammonium aluminum carbonate hydroxide (AACH) rods were controllably prepared using the hydrothermal method by manipulating the amount of urea in the reaction system. The experimental results showed that AACH in rod shape was able to be gradually transformed from γ-AlOOH in cluster shape during the molar ratios of urea to Al in the reactants were ranged from 8 to 10, and the yield of AACH has increased accordingly. When the molar ratio of urea to Al reaches 11, pure AACH rods with a diameter of 500 nm and a length of 10 μm approximately was able to be produced. Due to the slow decomposition of urea during the hydrothermal reaction, the nucleation and growth of AACH crystal proceed step by step. Therefore, the crystal can fully grow on each crystal plane and eventually produce a highly crystalline rod-shaped product. The role of urea in controlling the morphology and yield of AACH was also discussed in this paper systematically.

  3. Quantitative study on the chemical solution deposition of zinc oxysulfide

    DOE PAGES

    Reinisch, Michael; Perkins, Craig L.; Steirer, K. Xerxes

    2015-11-21

    Zinc Oxysulfide (ZnOS) has demonstrated potential in the last decade to replace CdS as a buffer layer material since it is a wide-band-gap semiconductor with performance advantages over CdS (E g = 2.4 eV) in the near UV-range for solar energy conversion. However, questions remain on the growth mechanisms of chemical bath deposited ZnOS. In this study, a detailed model is employed to calculate solubility diagrams that describe simple conditions for complex speciation control using only ammonium hydroxide without additional base. For these conditions, ZnOS is deposited via aqueous solution deposition on a quartz crystal microbalance in a continuous flowmore » cell. Data is used to analyze the growth rate dependence on temperature and also to elucidate the effects of dimethylsulfoxide (DMSO) when used as a co-solvent. Activation energies (EA) of ZnOS are calculated for different flow rates and solution compositions. As a result, the measured EA relationships are affected by changes in the primary growth mechanism when DMSO is included.« less

  4. Non-enzymatic browning reaction of glucosamine at mild conditions: Relationship between colour formation, radical scavenging activity and α-dicarbonyl compounds production.

    PubMed

    Hong, Pui Khoon; Betti, Mirko

    2016-12-01

    Glucosamine (GlcN, 5% w/v) was incubated in either phosphate buffer or ammonium hydroxide solutions at 40 and 60°C for up to 48h in order to yield caramel solutions. Non-enzymatic browning was monitored via changes in absorption at 280, 320 and 420nm and the physico-chemical properties as well as the generation of short chain α-dicarbonyl compounds were evaluated. Accumulation of GlcN autocondensation products (280nm) proceeded in parallel with the development of pre-melanoidins (320nm) and melanoidins (420nm). The reactive α-dicarbonyls were detected at temperature as low as 40°C within 3h with a maximum level of diacetyl recorded at 6h. The caramel solutions showed a high efficacy in scavenging DPPH and ABTS radicals in accordance with the increasing browning intensity. The results suggest that GlcN browning can be modulated according to the specific desired properties to produce a multi-functional food ingredient that has health-promoting effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Diurnal shifts in co-distributions of sulfide and iron(II) and profiles of phosphate and ammonium in the rhizosphere of Zostera capricorni

    NASA Astrophysics Data System (ADS)

    Pagès, Anaïs; Welsh, David T.; Robertson, David; Panther, Jared G.; Schäfer, Jörg; Tomlinson, Rodger B.; Teasdale, Peter R.

    2012-12-01

    High resolution, two dimensional distributions of porewater iron(II) and sulfide were measured, using colourimetric DET (diffusive equilibration in a thin film) and DGT (diffusive gradients in a thin film) techniques, respectively, in Zostera capricorni colonised sediments under both light and dark conditions. Low resolution depth profiles of ammonium and phosphate were measured using conventional DET and DGT methods, respectively. Porewater iron(II) and sulfide distributions showed a high degree of spatial heterogeneity under both light and dark conditions, and distributions were characterised by a complex mosaic of sediment zones dominated by either iron(II) or sulfide. However, there was a clear shift in overall redox conditions between light and dark conditions. During light deployments, iron(II) and sulfide concentrations were generally low throughout the rhizosphere, apart from a few distinct "hotspots" of high concentration. Whereas during dark deployments, high concentrations of iron(II) were sometimes measured in the near surface sediments and sulfide depth distributions migrated towards the sediment surface. Profiles of porewater ammonium and phosphate demonstrated an increase in ammonium concentrations under dark compared to light conditions. Surprisingly, despite the large changes in iron(II) distributions between light and dark conditions, phosphate profiles remained similar, indicating that adsorption/release of phosphate by iron(III) hydr(oxide) mineral formation and reduction was not a major factor regulating porewater phosphate concentrations in these sediments or that phosphate uptake by the seagrass roots persisted during the dark period. Overall, the results demonstrate that the photosynthetic activity of the seagrass played a significant role in regulating sulfide, iron(II) and ammonium concentrations in the rhizosphere, due to rates of radial oxygen loss and ammonium uptake by the roots and rhizomes being lower under dark compared to light conditions. This cyclic production and reduction of iron(III) hydr(oxides) in the rhizosphere may act as a buffering system preventing sulfide accumulation.

  6. Preparation of Sulfobetaine-Grafted PVDF Hollow Fiber Membranes with a Stably Anti-Protein-Fouling Performance

    PubMed Central

    Li, Qian; Lin, Han-Han; Wang, Xiao-Lin

    2014-01-01

    Based on a two-step polymerization method, two sulfobetaine-based zwitterionic monomers, including 3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide (MPDSAH) and 2-(methacryloyloxyethyl) ethyl-dimethyl-(3-sulfopropyl) ammonium (MEDSA), were successfully grafted from poly(vinylidene fluoride) (PVDF) hollow fiber membrane surfaces in the presence of N,N′-methylene bisacrylamide (MBAA) as a cross-linking agent. The mechanical properties of the PVDF membrane were improved by the zwitterionic surface layers. The surface hydrophilicity of PVDF membranes was significantly enhanced and the polyMPDSAH-g-PVDF membrane showed a higher hydrophilicity due to the higher grafting amount. Compared to the polyMEDSA-g-PVDF membrane, the polyMPDSAH-g-PVDF membrane showed excellent significantly better anti-protein-fouling performance with a flux recovery ratio (RFR) higher than 90% during the cyclic filtration of a bovine serum albumin (BSA) solution. The polyMPDSAH-g-PVDF membrane showed an obvious electrolyte-responsive behavior and its protein-fouling-resistance performance was improved further during the filtration of the protein solution with 100 mmol/L of NaCl. After cleaned with a membrane cleaning solution for 16 days, the grafted MPDSAH layer on the PVDF membrane could be maintain without any chang; however, the polyMEDSA-g-PVDF membrane lost the grafted MEDSA layer after this treatment. Therefore, the amide group of sulfobetaine, which contributed significantly to the higher hydrophilicity and stability, was shown to be imperative in modifying the PVDF membrane for a stable anti-protein-fouling performance via the two-step polymerization method. PMID:24957171

  7. THE PREPARATION AND STABILITY OF CARRIER-FREE AMALGAMS. Annual Report, June 1960-July 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, M.; Hamester, H.L.

    1962-10-31

    Results of investigations concerning the preparation and properties of amalgams of 10.6-hour carrier-free Pb/sup 212/ and the radiocolloidal and adsorptive properties of carrierfree Ag/sup 110/ are reported. Data and discussion related to recovery of Pb/sup 212/ activity from active acetic acidhydroxylamine hydrochloride -potassium bitartrate electrolyte are presented along with similar information on stability and homogeneity of Pb/sup 212/ -Hg amalgams. In work on Ag/sup 110/ the rate of carrier-free Ag adsorption by glass, teflon, polyethylene, and precipitates, and the formation rate of carrier- free radiocolloids was initiated. Data are included on Ag adsorption from nitric acid solutions on pyrex atmore » 3l.8 deg C as a function of reagent concentration and time. Also included are data on adsorption of glass from water, ammonium hydroxide, and sodium carbonate, and from perchloric, hydrochloric, acetic, and sulfuric acid solutions. (J.R.D.)« less

  8. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  9. PROCESS OF SEPARATING PLUTONIUM FROM URANIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-09-01

    A process is presented for recovering plutonium values from aqueous solutions. It comprises forming a uranous hydroxide precipitate in such a plutonium bearing solution, at a pH of at least 5. The plutonium values are precipitated with and carried by the uranium hydroxide. The carrier precipitate is then redissolved in acid solution and the pH is adjusted to about 2.5, causing precipitation of the uranous hydroxide but leaving the still soluble plutonium values in solution.

  10. 40 CFR Appendix B to Subpart Nnn... - Free Formaldehyde Analysis of Insulation Resins by Hydroxylamine Hydrochloride

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.4Magnetic stirrer and stir bars. 3.5250-mL beaker... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... hydrochloric acid, and 0.1 N sodium hydroxide. 5.5Add 50 mL of the hydroxylamine hydrochloride solution...

  11. 40 CFR Appendix B to Subpart Nnn... - Free Formaldehyde Analysis of Insulation Resins by Hydroxylamine Hydrochloride

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.4Magnetic stirrer and stir bars. 3.5250-mL beaker... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... hydrochloric acid, and 0.1 N sodium hydroxide. 5.5Add 50 mL of the hydroxylamine hydrochloride solution...

  12. 21 CFR 74.101 - FD&C Blue No. 1.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES SUBJECT TO CERTIFICATION Foods § 74.101 FD&C Blue No. 1. (a) Identity. (1) The color additive FD&C...] (o-sulfobenzyl) ammonium hydroxide inner salt. (2) Color additive mixtures for food use (including...

  13. 21 CFR 74.101 - FD&C Blue No. 1.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES SUBJECT TO CERTIFICATION Foods § 74.101 FD&C Blue No. 1. (a) Identity. (1) The color additive FD&C...] (o-sulfobenzyl) ammonium hydroxide inner salt. (2) Color additive mixtures for food use (including...

  14. 21 CFR 74.101 - FD&C Blue No. 1.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES SUBJECT TO CERTIFICATION Foods § 74.101 FD&C Blue No. 1. (a) Identity. (1) The color additive FD&C...] (o-sulfobenzyl) ammonium hydroxide inner salt. (2) Color additive mixtures for food use (including...

  15. 21 CFR 184.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... this chapter; a surface-finishing agent as defined in § 170.3(o)(30) of this chapter; and as a boiler... additive at levels not to exceed current good manufacturing practice. (d) Prior sanctions for this... used in food with no limitation other than current good manufacturing practice. The affirmation of this...

  16. 21 CFR 184.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... this chapter; a surface-finishing agent as defined in § 170.3(o)(30) of this chapter; and as a boiler... additive at levels not to exceed current good manufacturing practice. (d) Prior sanctions for this... used in food with no limitation other than current good manufacturing practice. The affirmation of this...

  17. 21 CFR 184.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-finishing agent as defined in § 170.3(o)(30) of this chapter; and as a boiler water additive complying with... manufacturing practice. The ingredient may also be used as a boiler water additive at levels not to exceed... limitation other than current good manufacturing practice. The affirmation of this ingredient as generally...

  18. 21 CFR 184.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... this chapter; a surface-finishing agent as defined in § 170.3(o)(30) of this chapter; and as a boiler... additive at levels not to exceed current good manufacturing practice. (d) Prior sanctions for this... used in food with no limitation other than current good manufacturing practice. The affirmation of this...

  19. 21 CFR 184.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... this chapter; a surface-finishing agent as defined in § 170.3(o)(30) of this chapter; and as a boiler... additive at levels not to exceed current good manufacturing practice. (d) Prior sanctions for this... used in food with no limitation other than current good manufacturing practice. The affirmation of this...

  20. Efficient, environmentally acceptable method for waterproofing insulation material

    NASA Technical Reports Server (NTRS)

    Blohowiak, Kay Y. (Inventor); Krienke, Kenneth A. (Inventor); Olli, Larry K. (Inventor); Newquist, Charles W. (Inventor)

    2000-01-01

    A process of waterproofing alumina-rich or silica-rich fibrous thermal insulation material, the process including the steps of: (a) providing an alumina-rich or a silica-rich fibrous material; (b) providing a waterproofing solution including: (1) a carrier solvent selected from the group consisting of aliphatic alcohols having from 1C to 6C, water, and mixtures thereof; and (2) an alkoxysilane defined by the formula R.sub.4-x -Si-(O-R').sub.x where x is 1-3 and R is selected from the group consisting of alkyl groups having from 1C to 10C, hydrogen, or fluorocarbon groups having from 1F to 15F; and where O-R' is an alkoxy group having from 1C to 5C, or a mixture of alkoxysilanes defined by the above formula R.sub.4-x -Si-(O-R').sub.x ; and optionally (3) modifiers including acids, such as acetic acid or nitric acid, or bases, such as ammonium hydroxide, RNH.sub.2, R.sub.2 NH, or R.sub.3 N, or MOH, where R is selected from the group consisting of alkyl groups having from 1C to 10C or hydrogen, and where M=Na, Li, or K; (c) contacting the fibrous material with the waterproofing solution for a sufficient amount of time to waterproof the fibrous material; and (d) curing the coated fibrous material to render it sufficiently waterproof. A chemical solution for waterproofing alumina-rich or silica-rich fibrous thermal insulation materials, the solution including: (a) a carrier solvent selected from the group consisting of aliphatic alcohols having from 1C to 6C, water, and mixtures thereof; and (b) an alkoxysilane defined by the formula R.sub.4-x -Si-(O-R').sub.x where x is 1-3 and R is selected from the group consisting of alkyl groups having from 1C to 10C, hydrogen, or fluorocarbon groups having from 1F to 15F; and where O-R' is an alkoxy group having from 1C to 5C, or a mixture of alkoxysilanes defined by the above formula R.sub.4-x -Si-(O-R').sub.x ; and optionally (c) modifiers including acids, such as acetic acid or nitric acid, or bases, such as ammonium hydroxide, RNH.sub.2, R.sub.2 NH, or R.sub.3 N, or MOH, where R is selected from the group consisting of alkyl groups having from 1C to 10C or hydrogen, and where M=Na, Li, or K.

  1. METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE

    DOEpatents

    Faris, B.F.

    1961-04-25

    Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.

  2. Gas chromatographic-mass spectrometric determination of alkylphosphonic acids from aqueous samples by ion-pair solid-phase extraction on activated charcoal and methylation.

    PubMed

    Vijaya Saradhi, U V R; Prabhakar, S; Jagadeshwar Reddy, T; Murty, M R V S

    2007-07-20

    In the present paper, we report an improved ion-pair solid-phase extraction (IP-SPE) method for the analysis of alkylphosphonic acids, namely, methyl, ethyl and propylphosphonic acids, present in the aqueous sample. The aqueous sample was mixed with an ion-pair reagent, phenyltrimethylammonium hydroxide (PTMAH) and passed through activated charcoal SPE cartridge. The retained chemicals in the cartridge were extracted with methanol and analysed by gas chromatography-mass spectrometry (GC-MS) under the electron impact ionization (EI) mode. The analytes were converted to their methyl esters by pyrolytic methylation in the hot GC injection port. The recoveries of alkylphosphonic acids were above 95% and the minimum detection limits were as low as 10 ng/mL. The recovery of the test chemicals was tested with solvents, dichloromethane, n-hexane, ethyl acetate, acetone, acetonitrile and methanol. The chemicals could be efficiently extracted by the hydrophilic solvents. The method did not work at the highly acidic pH (when acidified with dilute HCl) but worked well from pH 4.0 to 14.0. The present method was also tested with other tetra-(methyl, ethyl, propyl and n-butyl)ammonium hydroxides. The test chemicals were not converted to their methyl and ethyl esters with tetramethyl and tetraethylammonium hydroxides, whereas they were converted to their corresponding propyl and n-butyl esters with tetrapropyl and tetra(n-butyl)ammonium hydroxides. The method was also applied to two highly cross-linked polymeric sorbents DSC-6S and Oasis HLB. The recovery of the chemicals on these sorbents was observed to be poor. Methylation using phenyltrimethylammonium hydroxide is non-hazardous and advantageous over methylation using diazomethane. The method was applied to the analysis of aqueous samples given in one of the official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons and all the spiked chemicals were identified as methyl esters.

  3. PEROXIDE-INHIBITED DECONTAMINATION SOLUTIONS FOR CARBON STEEL AND OTHER METALS IN THE GAS-COOLED REACTOR PROGRAM. Progress Report, November 1959-July 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meservey, A.B.

    1963-01-01

    A search for solutions suitable for dissolving uranium dioxide powder or lumps and yet noncorrosive enough to be used for decontaminating the carbon steel EGCR charge and service machines resulted in the development of buffered oxalate solutions of controlled temperature and pH, with hydrogen peroxide added to act as corrosion inhibitor, UO/sub 2/ oxidizer, and decontamination aid. Hydrogen peroxide acts either as a corrosion promoter or inhibitor, depending on factors such as its concentration, the ratio to other ingredients, acidity, temperature, the presence of complexing agents, and the ferric ion content of the solution. In general, oxalate-peroxide solutions for fissionmore » product decontamination from metal surfaces were superior to more conventional decontaminating solutions and had attractively low corrosion rates on carbon steel (less than 0.01 mil/hr), Solution instability, initially a serious drawback, was largely overcome. Of nearly a hundred formulations studied, the one having the best combination of long life, low corrosivity, high solvency for UO/sub 2/, decontamination power, safety, and ease of waste disposal was an aqueous solution of 0.4M oxalic acid, 0.18M ammonium citrate, and 0.34M H/sub 2/O/sub 2/, adjusted to pH 4.00 with ammonium hydroxide and used at 85 to 95 deg C. Similar solutions at lower pH, with increased H/sub 2/O/sub 2/ concentration to maintain noncorrosiveness, were successful decontaminants at 60 deg C when contact times were increased to several hours. Contaminated stainless steels heated to 500 deg C in helium resisted decontamination in noncorrosive reagents. Oxalate-peroxide soluttons are currently recommended as UO/sub 2/ solvents and as general decontaminants for mild steel and aluminum surfaces in the GCR program, and for stainless steels which were not strongly heated while contaminated. These solutions may also find application in the decontamination of metals used in the aqueous reprocessing of radioactive nuclear fuels. (auth)« less

  4. The effect of chemical treatment on reduction of aflatoxins and ochratoxin A in black and white pepper during washing.

    PubMed

    Jalili, M; Jinap, S; Son, R

    2011-04-01

    The effect of 18 different chemicals, which included acidic compounds (sulfuric acid, chloridric acid, phosphoric acid, benzoic acid, citric acid, acetic acid), alkaline compounds (ammonia, sodium bicarbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide), salts (acetate ammonium, sodium bisulfite, sodium hydrosulfite, sodium chloride, sodium sulfate) and oxidising agents (hydrogen peroxide, sodium hypochlorite), on the reduction of aflatoxins B(1), B(2), G(1) and G(2) and ochratoxin A (OTA) was investigated in black and white pepper. OTA and aflatoxins were determined using HPLC after immunoaffinity column clean-up. Almost all of the applied chemicals showed a significant degree of reduction on mycotoxins (p < 0.05). The lowest and highest reduction of aflatoxin B(1), which is the most dangerous aflatoxin, was 20.5% ± 2.7% using benzoic acid and 54.5% ± 2.7% using sodium hydroxide. There was no significant difference between black and white peppers (p < 0.05).

  5. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  6. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?

    PubMed

    Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-08-19

    Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.

  7. Kinetics of de-N-acetylation of the chitin disaccharide in aqueous sodium hydroxide solution.

    PubMed

    Khong, Thang Trung; Aachmann, Finn L; Vårum, Kjell M

    2012-05-01

    Chitosan is prepared from chitin, a process which is carried out at highly alkaline conditions, and that can be performed either on chitin in solution (homogeneous deacetylation) or heterogeneously with the chitin as a solid throughout the reaction. We report here a study of the de-N-acetylation reaction of the chitin dimer (GlcNAc-GlcNAc) in solution. The reaction was followed by (1)H NMR spectroscopy in deuterated aqueous sodium hydroxide solution as a function of time, sodium-hydroxide concentration and temperature. The (1)H NMR spectrum of GlcNAc-GlcNAc in 2.77 M deuterated aqueous sodium hydroxide solution was assigned. The interpretation of the (1)H NMR spectra allowed us to determine the rates of de-N-acetylation of the reducing and non-reducing ends, showing that the reaction rate at the reducing end is twice the rate at the non-reducing end. The total deacetylation reaction rate was determined as a function of the hydroxide ion concentration, showing for the first time that this de-N-acetylation reaction is second order with respect to hydroxide ion concentration. No significant difference in the deacetylation rates in deuterated water compared to water was observed. The activation energy for the reaction (26-54 °C) was determined to 114.4 and 98.6 kJ/mol at 2.77 and 5.5 M in deuterated aqueous sodium hydroxide solution, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. The effectiveness of sodium hydroxide (NaOH) and sodium carbonate (Na2CO3) on the impurities removal of saturated salt solution

    NASA Astrophysics Data System (ADS)

    Pujiastuti, C.; Ngatilah, Y.; Sumada, K.; Muljani, S.

    2018-01-01

    Increasing the quality of salt can be done through various methods such as washing (hydro-extraction), re-crystallization, ion exchange methods and others. In the process of salt quality improvement by re-crystallization method where salt product diluted with water to form saturated solution and re-crystallized through heating process. The quality of the salt produced is influenced by the quality of the dissolved salt and the crystallization mechanism applied. In this research is proposed a concept that before the saturated salt solution is recrystallized added a chemical for removal of the impurities such as magnesium ion (Mg), calcium (Ca), potassium (K) and sulfate (SO4) is contained in a saturated salt solution. The chemical reagents that used are sodium hydroxide (NaOH) 2 N and sodium carbonate (Na2CO3) 2 N. This research aims to study effectiveness of sodium hydroxide and sodium carbonate on the impurities removal of magnesium (Mg), calcium (Ca), potassium (K) and sulfate (SO4). The results showed that the addition of sodium hydroxide solution can be decreased the impurity ions of magnesium (Mg) 95.2%, calcium ion (Ca) 45%, while the addition of sodium carbonate solution can decreased magnesium ion (Mg) 66.67% and calcium ion (Ca) 77.5%, but both types of materials are not degradable sulfate ions (SO4). The sodium hydroxide solution more effective to decrease magnesium ion than sodium carbonate solution, and the sodium carbonate solution more effective to decrease calcium ion than sodium hydroxide solution.

  9. Testing Mechanisms of Mercury Retention in GFD Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beatty, W.L.; Schroeder, K.T.; Kairies, C.L.

    2007-07-01

    The natural mode of retention of Hg in FGD products is a key issue in the utilization of coal byproducts as environmentally acceptable resources. This is being investigated with a sequential extraction scheme that subjects FGD material to a series of phase-targeted reagents. Mineral phases with the greatest affinity for Hg and the form in which Hg is naturally immobilized can be discovered by observing the amount of Hg mobilized by each successive extracting solution. The extraction procedure consists of a prolonged water rinse in a continuously stirred tank extractor to dissolve CaSO4 followed by a series of batch extractions.more » These extraction include: a water rinse of the resulting residue to remove any remaining water soluble and loosely sorbed ions, 0.11M acetic acid to target carbonate minerals and exchangeable ions, 0.1 M hydroxylamine hydrochloride to dissolve manganese oxides and hydroxides, 0.25 M hydroxylamine hydrochloride in 0.25 M HCl to dissolve iron oxides and hydroxides, and hydrogen peroxide and 0.1 M ammonium acetate to oxidize organic matter and dissolve sulfide minerals. Analysis of the supernatant after each extraction step includes ICP-OES or ICP-MS for major and trace elemental composition and CVAF for mercury. Initial results indicate that Hg is associated with two distinct fractions of FGD materials. Although most of the solubilized Hg is extracted by the iron oxide and hydroxide dissolution reagent, ICP analysis suggests an association with clay minerals present in this fraction. The organic matter and sulfide minerals fraction typically yields lower but still significant amounts of Hg.« less

  10. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg. No. 1310-58-3) is also... powders. Potassium hydroxide is obtained commercially from the electrolysis of potassium chloride solution...

  11. RAILCAR4 Toxic Industrial Chemical Source Characterization Program (Software User’s Manual)

    DTIC Science & Technology

    2011-08-01

    hydroxide (29%) boron trifluoride sulfur trioxide hydrogen chloride methyl bromide phosphine hydrochloric acid (39%) phosphoryl trichloride arsine...Data for Chlorine Trial 05-RC ...............................20 10 Nitric Acid Thermodynamic Properties...Table 1. TICs Available for RAILCAR Simulations chlorine hydrobromic acid (48%) acetylene tetrabromide ammonia OMPA o-anisidine ammonium

  12. Catalytic coal liquefaction process

    DOEpatents

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  13. Catalytic coal liquefaction process

    DOEpatents

    Garg, Diwakar; Sunder, Swaminathan

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  14. Utilization of the wastes of vital activity

    NASA Technical Reports Server (NTRS)

    Gusarov, B. G.; Drigo, Y. A.; Novikov, V. M.; Samsonov, N. M.; Farafonov, N. S.; Chizhov, S. V.; Yazdovskiy, V. I.

    1979-01-01

    The recycling of wastes from the biological complex for use in life-support systems is discussed. Topics include laboratory equipment, heat treatment of waste materials, mineralization of waste products, methods for production of ammonium hydroxide and nitric acid, the extraction of sodium chloride from mineralized products, and the recovery of nutrient substances for plants from urine.

  15. Tetramethyl ammonium hydroxide production using the microbial electrolysis desalination and chemical-production cell with long anode.

    PubMed

    Ye, Bo; Lu, Yaobin; Luo, Haiping; Liu, Guangli; Zhang, Renduo

    2018-03-01

    The aim of this study was to investigate the feasibility to improve the tetramethyl ammonium hydroxide (TMAH) production in the microbial electrolysis desalination and chemical-production cell (MEDCC) with long anode of 48 cm. Different concentrations of tetramethylammonium chloride (0.3-0.7 M) and applied voltages (1.5-3.5 V) were tested in the MEDCC. With 0.6 M of tetramethylammonium chloride as the raw material and under the applied voltage of 3.5 V, the maximum TMAH production rate in the MEDCC reached 1.13 ± 0.12 mmol/h, which was 9.4 times higher than those previously reported in the MEDCCs. The maximum current density of 41.0 ± 4.0 A/m 2 in the MEDCC was obtained, which was the highest value in the bioelectrochemical systems using the carbon cloth or carbon brush as the anode so far. Our results should provide a promising method to improve the TMAH production and boost the MEDCC application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Enhancement of enzymatic hydrolysis and Klason lignin removal of corn stover using photocatalyst-assisted ammonia pretreatment.

    PubMed

    Yoo, Chang Geun; Wang, Chao; Yu, Chenxu; Kim, Tae Hyun

    2013-03-01

    Photocatalyst-assisted ammonia pretreatment was explored to improve lignin removal of the lignocellulosic biomass for effective sugar conversion. Corn stover was treated with 5.0-12.5 wt.% ammonium hydroxide, two different photocatalysts (TiO(2) and ZnO) in the presence of molecular oxygen in a batch reactor at 60 °C. Various solid-to-liquid ratios (1:20-1:50) were also tested. Ammonia pretreatment assisted by TiO(2)-catalyzed photo-degradation removed 70 % of Klason lignin under the optimum condition (12.5 % ammonium hydroxide, 60 °C, 24 h, solid/liquid=1:20, photocatalyst/biomass=1:10 with oxygen atmosphere). The enzymatic digestibilities of pretreated corn stover were 85 % for glucan and 75 % for xylan with NH(3)-TiO(2)-treated solid and 82 % for glucan and 77 % for xylan with NH(3)-ZnO-treated solid with 15 filter paper units/g-glucan of cellulase and 30 cellobiase units/g-glucan of β-glucosidase, a 2-13 % improvement over ammonia pretreatment alone.

  17. Ammonia fixation by humic substances: A nitrogen-15 and carbon-13 NMR study

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    1992-01-01

    The process of ammonia fixation has been studied in three well characterized and structurally diverse fulvic and humic acid samples. The Suwannee River fulvic acid, and the IHSS peat and leonardite humic acids, were reacted with 15N-labelled ammonium hydroxide, and analyzed by liquid phase 15N NMR spectrometry. Elemental analyses and liquid phase 13C NMR spectra also were recorded on the samples before and after reaction with ammonium hydroxide. The largest increase in percent nitrogen occurred with the Suwannee River fulvic acid, which had a nitrogen content of 0.88% before fixation and 3.17% after fixation. The 15N NMR spectra revealed that ammonia reacted similarly with all three samples, indicating that the functional groups which react with ammonia exist in structural configurations common to all three samples. The majority of nitrogcn incorporated into the samples appears to be in the form of indole and pyrrole nitrogen, followed by pyridine, pyrazine, amide and aminohydroquinone nitrogen. Chemical changes in the individual samples upon fixation could not be discerned from the 13C NMR spectra.

  18. Determination of Yohimbine in Yohimbe Bark and Related Dietary Supplements Using UHPLC-UV/MS: Single-Laboratory Validation.

    PubMed

    Chen, Pei; Bryden, Noella

    2015-01-01

    A single-laboratory validation was performed on a practical ultra-HPLC (UHPLC)-diode array detector (DAD)/tandem MS method for determination of yohimbine in yohimbe barks and related dietary supplements. Good separation was achieved using a Waters Acquity ethylene bridged hybrid C18 column with gradient elution using 0.1% (v/v) aqueous ammonium hydroxide and 0.1% ammonium hydroxide in methanol as the mobile phases. The method can separate corynanthine from yohimbine in yohimbe bark extract, which is critical for accurate quantitation of yohimbine in yohimbe bark and related dietary supplements. Accuracy of the method was demonstrated using standard addition methods. Both intraday and interday precisions of the method were good. The method can be used without MS since yohimbine concentration in yohimbe barks and related dietary supplements are usually high enough for DAD detection, which can make it an easy and economical method for routine analysis of yohimbe barks and related dietary supplements. On the other hand, the method can be used with MS if desired for more challenging work such as biological and/or clinical studies.

  19. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bortolaz de Oliveira, Henrique; Wypych, Fernando, E-mail: wypych@ufpr.br

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO{sub 4}{sup 2−}/g of material, respectively. Although the removal values obtained for Zn/NiHN andmore » Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO{sub 4}{sup 2−}/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.« less

  20. The effects of lithium hydroxide solution on alkali silica reaction gels created with opal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lyndon D.; Beaudoin, James J.; Grattan-Bellew, Patrick

    The reaction of Nevada opal with calcium hydroxide, potassium hydroxide and lithium hydroxide solutions was investigated. In addition, opal was exposed to a combined solution of these three hydroxides. The progress of the three reactions was followed using X-ray diffraction (XRD), {sup 29}Si nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The XRD results indicated the presence of a low-angle peak exclusive to the lithium-based reactions. The NMR results suggested a change in the silicate structure in the presence of lithium. These techniques indicated that the reaction of the alkali with the opal starting material is inhibited and perhapsmore » stopped in the presence of lithium hydroxide. SEM revealed that the morphology of the reaction products on the surface of the reacted opal grains is markedly different invariably. It was concluded that evidence to support the theory of a protective layer exists and that the nature of the layer varies with ion type.« less

  1. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    PubMed Central

    Nakayama, Hirokazu; Hayashi, Aki

    2014-01-01

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007

  2. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    PubMed

    Nakayama, Hirokazu; Hayashi, Aki

    2014-07-30

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  3. Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse.

    PubMed

    Chang, Menglei; Li, Denian; Wang, Wen; Chen, Dongchu; Zhang, Yuyuan; Hu, Huawen; Ye, Xiufang

    2017-11-01

    Sodium hydroxide (NaOH) and calcium hydroxide (Ca(OH) 2 ) respectively dissolved in water and 70% glycerol were applied to treat sugarcane bagasse (SCB) under the condition of 80°C for 2h. NaOH solutions could remove more lignin and obtain higher enzymatic hydrolysis efficiency of SCB than Ca(OH) 2 solutions. Compared with the alkali-water solutions, the enzymatic hydrolysis of SCB treated in NaOH-glycerol solution decreased, while that in Ca(OH) 2 -glycerol solution increased. The lignin in NaOH-water pretreatment liquor could be easily recovered by calcium chloride (CaCl 2 ) at room temperature, but that in Ca(OH) 2 -water pretreatment liquor couldn't. NaOH pretreatment is more suitable for facilitating enzymatic hydrolysis and lignin recovery of SCB than Ca(OH) 2 pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Quality characteristics of chunked and formed hams from pale, average and dark muscles were improved using an ammonium hydroxide curing solution.

    PubMed

    Everts, A J; Wulf, D M; Everts, A K R; Nath, T M; Jennings, T D; Weaver, A D

    2010-10-01

    Cooking yield, cooked pH, purge loss, moisture, lipid oxidation, external and internal color, break strength and elongation distance were assessed for pale (PALE), average (AVG) and dark (DARK) inside hams injected with either a control cure solution (CON) or BPI-processing technology cure solution (BPT). Following enhancement, muscles were chunked, vacuum tumbled, smoked and cooked to 66 degrees C. Cooked ham pH was 6.49 for DARK, 6.40 for AVG, and 6.30 for PALE, respectively (P<0.0001). Cooked pH was higher (P<.0001) for BPT than CON. Cooked ham moisture content was higher (P<0.0001) for BPT hams than CON hams (74.83 vs. 74.11%) but BPT did not significantly influence cooking yield or lipid oxidation. Consumers (n=150) of diverse demographics rated hams for appearance and taste. Results indicated that BPI-processing technology improved visual appearance of hams made from pale, average, and dark muscles and improved the eating quality of hams made from pale muscles. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  5. Recycling of an electric arc furnace flue dust to obtain high grade ZnO.

    PubMed

    Ruiz, Oscar; Clemente, Carmen; Alonso, Manuel; Alguacil, Francisco Jose

    2007-03-06

    The production of steel in electric arc furnace (EAF) generates a by-product called EAF dusts. These steelmaking flue dusts are classified in most industrialized countries as hazardous residues because the heavy metals contained in them, tend to leach under slightly acidic rainfall conditions. However, and at the same time they contain zinc species which can be used as a source to obtain valuable by-products. The present investigation shows results on the processing of an EAF flue dust using ammonium carbonate solutions. Once zinc is dissolved: ZnO + 4NH3 + H2O --> Zn(NH3)4(2+) + 2OH- with other impurities (i.e. cadmium and copper), these are eliminated from the zinc solution via cementation with metallic zinc. The purified zinc solution was evaporated (distilled) until precipitation of a zinc carbonate species, which then was calcined to yield a zinc oxide of a high grade. For the unattacked dust residue from the leaching operation, mainly composed of zinc ferrite, several options can be considered: back-recycling to the furnace, further treatment by sodium hydroxide processing or a more safely dumping due to its relatively inertness.

  6. DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR

    DOEpatents

    Swanson, J.L.

    1961-07-11

    The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.

  7. REMOVAL OF CESIUM BY SORPTION FROM AQUEOUS SOLUTIONS

    DOEpatents

    Ames, L.L.

    1962-01-16

    ABS>A process is given for selectively removing cesium from acid aqueous solutions containing cesium in microquantities and other cations in macroquantities by absorption on clinoptilolite. The cesium can be eluted from the clinoptilolite with a solution of ammonia, potassium hydroxide, or rubidium hydroxide. (AEC)

  8. Methods and systems for utilizing carbide lime or slag

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devenney, Martin; Fernandez, Miguel; Chen, Irvin

    Provided herein are methods comprising a) treating a slag solid or carbide lime suspension with an ammonium salt in water to produce an aqueous solution comprising calcium salt, ammonium salt, and solids; b) contacting the aqueous solution with carbon dioxide from an industrial process under one or more precipitation conditions to produce a precipitation material comprising calcium carbonate and a supernatant aqueous solution wherein the precipitation material and the supernatant aqueous solution comprise residual ammonium salt; and c) removing and optionally recovering ammonia and/or ammonium salt using one or more steps of (i) recovering a gas exhaust stream comprising ammoniamore » during the treating and/or the contacting step; (ii) recovering the residual ammonium salt from the supernatant aqueous solution; and (iii) removing and optionally recovering the residual ammonium salt from the precipitation material.« less

  9. Proteomic Analyses of Corneal Tissue Subjected to Alkali Exposure

    PubMed Central

    Parikh, Toral; Eisner, Natalie; Venugopalan, Praseeda; Yang, Qin; Lam, Byron L.

    2011-01-01

    Purpose. To determine whether exposure to alkaline chemicals results in predictable changes in corneal protein profile. To determine whether protein profile changes are indicative of severity and duration of alkali exposure. Methods. Enucleated bovine and porcine (n = 59 each) eyes were used for exposure to sodium, ammonium, and calcium hydroxide, respectively. Eyes were subjected to fluorescein staining, 5-bromo-2′-deoxy-uridine (BrdU) labeling. Excised cornea was subjected to protein extraction, spectrophotometric determination of protein amount, dynamic light scattering and SDS-PAGE profiling, mass spectrometric protein identification, and iTRAQ-labeled quantification. Select identified proteins were subjected to Western blot and immunohistochemical analyses. Results. Alkali exposure resulted in lower protein extractability from corneal tissue. Elevated aggregate formation was found with strong alkali exposure (sodium hydroxide>ammonium, calcium hydroxide), even with a short duration of exposure compared with controls. The protein yield after exposure varied as a function of postexposure time. Protein profiles changed because of alkali exposure. Concentration and strength of the alkali affected the profile change significantly. Mass spectrometry identified 15 proteins from different bands with relative quantification. Plexin D1 was identified for the first time in the cornea at a protein level that was further confirmed by Western blot and immunohistochemical analyses. Conclusions. Exposure to alkaline chemicals results in predictable and reproducible changes in corneal protein profile. Stronger alkali, longer durations, or both, of exposure resulted in lower yields and significant protein profile changes compared with controls. PMID:20861482

  10. In vitro antibacterial activity of a novel resin-based pulp capping material containing the quaternary ammonium salt MAE-DB and Portland cement.

    PubMed

    Yang, Yanwei; Huang, Li; Dong, Yan; Zhang, Hongchen; Zhou, Wei; Ban, Jinghao; Wei, Jingjing; Liu, Yan; Gao, Jing; Chen, Jihua

    2014-01-01

    Vital pulp preservation in the treatment of deep caries is challenging due to bacterial infection. The objectives of this study were to synthesize a novel, light-cured composite material containing bioactive calcium-silicate (Portland cement, PC) and the antimicrobial quaternary ammonium salt monomer 2-methacryloxylethyl dodecyl methyl ammonium bromide (MAE-DB) and to evaluate its effects on Streptococcus mutans growth in vitro. The experimental material was prepared from a 2 : 1 ratio of PC mixed with a resin of 2-hydroxyethylmethacrylate, bisphenol glycerolate dimethacrylate, and triethylene glycol dimethacrylate (4 : 3 : 1) containing 5 wt% MAE-DB. Cured resin containing 5% MAE-DB without PC served as the positive control material, and resin without MAE-DB or PC served as the negative control material. Mineral trioxide aggregate (MTA) and calcium hydroxide (Dycal) served as commercial controls. S. mutans biofilm formation on material surfaces and growth in the culture medium were tested according to colony-forming units (CFUs) and metabolic activity after 24 h incubation over freshly prepared samples or samples aged in water for 6 months. Biofilm formation was also assessed by Live/Dead staining and scanning electron microscopy. S. mutans biofilm formation on the experimental material was significantly inhibited, with CFU counts, metabolic activity, viability staining, and morphology similar to those of biofilms on the positive control material. None of the materials affected bacterial growth in solution. Contact-inhibition of biofilm formation was retained by the aged experimental material. Significant biofilm formation was observed on MTA and Dycal. The synthesized material containing HEMA-BisGMA-TEGDMA resin with MAE-DB as the antimicrobial agent and PC to support mineralized tissue formation inhibited S. mutans biofilm formation even after aging in water for 6 months, but had no inhibitory effect on bacteria in solution. Therefore, this material shows promise as a pulp capping material for vital pulp preservation in the treatment of deep caries.

  11. Ammonium hydroxide treatment of Aβ produces an aggregate free solution suitable for biophysical and cell culture characterization

    PubMed Central

    Ryan, Timothy M.; Caine, Joanne; Mertens, Haydyn D.T.; Kirby, Nigel; Nigro, Julie; Breheney, Kerry; Waddington, Lynne J.; Streltsov, Victor A.; Curtain, Cyril; Masters, Colin L.

    2013-01-01

    Alzheimer’s disease is the leading cause of dementia in the elderly. Pathologically it is characterized by the presence of amyloid plaques and neuronal loss within the brain tissue of affected individuals. It is now widely hypothesised that fibrillar structures represent an inert structure. Biophysical and toxicity assays attempting to characterize the formation of both the fibrillar and the intermediate oligomeric structures of Aβ typically involves preparing samples which are largely monomeric; the most common method by which this is achieved is to use the fluorinated organic solvent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). Recent evidence has suggested that this method is not 100% effective in producing an aggregate free solution. We show, using dynamic light scattering, size exclusion chromatography and small angle X-ray scattering that this is indeed the case, with HFIP pretreated Aβ peptide solutions displaying an increased proportion of oligomeric and aggregated material and an increased propensity to aggregate. Furthermore we show that an alternative technique, involving treatment with strong alkali results in a much more homogenous solution that is largely monomeric. These techniques for solubilising and controlling the oligomeric state of Aβ are valuable starting points for future biophysical and toxicity assays. PMID:23678397

  12. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties

    NASA Astrophysics Data System (ADS)

    Liu, Fanfan; Zhou, Aiguo; Chen, Jinfeng; Jia, Jin; Zhou, Weijia; Wang, Libo; Hu, Qianku

    2017-09-01

    Here we reported the preparation of Ti3C2 MXene and Ti2C MXene by etching Ti3AlC2 and Ti2AlC with various fluoride salts in hydrochloric acid (HCl), including lithium fluoride (LiF), sodium fluoride (NaF), potassium fluoride (KF), and ammonium fluoride (NH4F). As-prepared Ti2C was further delaminated by urea, dimethylsulfoxide or ammonium hydroxide. Based on theoretical calculation and XPS results, the type of positive ions (Li+, Na+, K+, or NH4+) in etchant solution affect the surface structure of prepared MXene, which, in turn, affects the methane adsorption properties of MXene. The highest methane adsorption capacity is 8.5 cm3/g for Ti3C2 and 11.6 cm3/g for Ti2C. MXenes made from LiF and NH4F can absorb methane under high pressure and can keep methane under normal pressure, these MXenes may have important application on capturing methane or other hazardous gas molecules. MXenes made from NaF and KF can absorb methane under high pressure and release methane under low pressure. They can have important application in the adsorb storage of nature gas.

  13. A practical method for measuring the ion exchange capacity decrease of hydroxide exchange membranes during intrinsic degradation

    NASA Astrophysics Data System (ADS)

    Kreuer, Klaus-Dieter; Jannasch, Patric

    2018-01-01

    In this work we present a practical thermogravimetric method for quantifying the IEC (ion exchange capacity) decrease of hydroxide exchange membranes (HEMs) during intrinsic degradation mainly occurring through nucleophilic attack of the anion exchanging group by hydroxide ions. The method involves measuring weight changes under controlled temperature and relative humidity. These conditions are close to these in a fuel cell, i.e. the measured degradation rate includes all effects originating from the polymeric structure, the consumption of hydroxide ions and the release of water. In particular, this approach involves no added solvents or base, thereby avoiding inaccuracies that may arise in other methods due to the presence of solvents (other than water) or co-ions (such as Na+ or K+). We demonstrate the method by characterizing the decomposition of membranes consisting of poly(2,6-dimethyl-1,4-phenylene oxide) functionalized with trimethyl-pentyl-ammonium side chains. The decomposition rate is found to depend on temperature, relative humidity RH (controlling the hydration number λ) and the total water content (controlled by the actual IEC and RH).

  14. Electrophoresis-chemiluminescence detection of phenols catalyzed by hemin.

    PubMed

    Shu, Lu; Zhu, Jinkun; Wang, Qingjiang; He, Pingang; Fang, Yuzhi

    2014-09-01

    Based on the catalytic activity of hemin, an efficient biocatalyst, an indirect capillary electrophoresis-chemiluminescence (CE-CL) detection method for phenols using a hemin-luminol-hydrogen peroxide system was developed. Through a series of static injection experiments, hemin was found to perform best in a neutral solution rather than an acidic or alkaline medium. Although halide ions such as Br(-) and F(-) could further enhance the CL signal catalyzed by hemin, it is difficult to apply these conditions to this CE-CL detection system because of the self-polymerization of hemin, as it hinders the CE process. The addition of concentrated ammonium hydroxide to an aqueous/dimethyl sulfoxide solution of hemin-luminol afforded a stable CE-CL baseline. The indirect CE-CL detection of five phenols using this method gave the following limits of detections: 4.8 × 10(-8) mol/L (o-sec-butylphenol), 4.9 × 10(-8) mol/L (o-cresol), 5.4 × 10(-8) mol/L (m-cresol), 5.3 × 10(-8) mol/L (2,4-dichlorophenol) and 7.1 × 10(-8) mol/L (phenol). Copyright © 2013 John Wiley & Sons, Ltd.

  15. Subcritical and supercritical water oxidation of CELSS model wastes

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Wydeven, T.; Koo, C.

    1989-01-01

    A mixture of ammonium hydroxide with acetic acid and a slurry of human feces, urine, and wipes were used as CELSS model wastes to be wet-oxidized at temperatures from 250 to 500 C, i.e. below and above the critical point of water (374 C and 218 kg/sq cm or 21.4 MPa). The effects of oxidation temperature ( 250-500 C) and residence time (0-120 mn) on carbon and nitrogen and on metal corrosion from the reactor material were studied. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 C, above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. A substantial amount of nitrogen remained in solution in the form of ammonia at temperatures ranging from 350 to 450 C suggesting that, around 400 C, organic carbon is completely oxidized and most of the nitrogen is retained in solution. The Hastelloy C-276 alloy reactor corroded during subcritical and supercritical water oxidation.

  16. Solubility of Nanocrystalline Cerium Dioxide: Experimental Data and Thermodynamic Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plakhova, Tatiana V.; Romanchuk, Anna Yu.; Yakunin, Sergey N.

    For this study, ultrafine 5 nm ceria isotropic nanoparticles were prepared using the rapid chemical precipitation approach from cerium(III) nitrate and ammonium hydroxide aqueous solutions. The as-prepared nanoparticles were shown to contain predominantly Ce(IV) species. The solubility of nanocrystalline CeO 2 at several pH values was determined using ICP-MS and radioactive tracer methods. Phase composition of the ceria samples remained unchanged upon partial dissolution, while the shape of the particles changed dramatically, yielding nanorods under neutral pH conditions. According to X-ray absorption spectroscopy investigation of the supernatant, Ce(III) was the main cerium species in solution at pH < 4. Basedmore » on the results obtained, a reductive dissolution model was used for data interpretation. According to this model, the solubility product for ceria nanoparticles was determined to be log K sp = -59.3 ± 0.3 in 0.01 M NaClO 4. Taken together, our results show that the pH dependence of ceria anti- and pro-oxidant activity can be related to the dissolution of CeO 2 in aqueous media.« less

  17. Solubility of Nanocrystalline Cerium Dioxide: Experimental Data and Thermodynamic Modeling

    DOE PAGES

    Plakhova, Tatiana V.; Romanchuk, Anna Yu.; Yakunin, Sergey N.; ...

    2016-09-12

    For this study, ultrafine 5 nm ceria isotropic nanoparticles were prepared using the rapid chemical precipitation approach from cerium(III) nitrate and ammonium hydroxide aqueous solutions. The as-prepared nanoparticles were shown to contain predominantly Ce(IV) species. The solubility of nanocrystalline CeO 2 at several pH values was determined using ICP-MS and radioactive tracer methods. Phase composition of the ceria samples remained unchanged upon partial dissolution, while the shape of the particles changed dramatically, yielding nanorods under neutral pH conditions. According to X-ray absorption spectroscopy investigation of the supernatant, Ce(III) was the main cerium species in solution at pH < 4. Basedmore » on the results obtained, a reductive dissolution model was used for data interpretation. According to this model, the solubility product for ceria nanoparticles was determined to be log K sp = -59.3 ± 0.3 in 0.01 M NaClO 4. Taken together, our results show that the pH dependence of ceria anti- and pro-oxidant activity can be related to the dissolution of CeO 2 in aqueous media.« less

  18. Electrodeposition of uranium and thorium onto small platinum electrodes

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Ito, Takashi; Ugorowski, Philip B.; Montag, Benjamin W.; Stevenson, Sarah R.; Nichols, Daniel M.; McGregor, Douglas S.

    2016-03-01

    Preparation of thin U- and Th-coated 0.3 mm diameter Pt working electrodes by the cyclic potential sweep method is described. Uranyl- and thorium hydroxide layers were electrodeposited from ethanol solutions containing 0.02 M natural uranyl and 0.02 M natural thorium nitrate, each with 3.6 M ammonium nitrate. The cell for electrodeposition was specially developed in order to accommodate the small working electrodes for this research by including a working electrode probe, 3-D translation stage, and microscope. The source material deposition was analyzed using digital microscopy and scanning electron microscopy, and confirmed using x-ray fluorescence measurements. The appropriate potential range for electrodeposition was determined to be -0.62 V to -0.64 V for a 0.3 mm diameter Pt working electrode placed 1 cm from the counter electrode. Smooth, uniform deposition was observed near the central region of the working electrode, while surface cracking and crystalline formations were found near the edge of the working electrode. The final procedure for sample substrate preparation, electrolytic solution preparation and electrodeposition are described.

  19. Hydroxide Degradation Pathways for Substituted Benzyltrimethyl Ammonium: A DFT Study

    DOE PAGES

    Long, Hai; Pivovar, Bryan S.

    2014-11-01

    The stability of cations used in the alkaline exchange membranes has been a major challenge. In this paper, degradation energy barriers were investigated by density functional theory for substituted benzyltrimethyl ammonium (BTMA+) cations. Findings show that electron-donating substituent groups at meta-position(s) of the benzyl ring could result in increased degradation barriers. However, after investigating more than thirty substituted BTMA+ cations, the largest improvement in degradation barrier found was only 6.7 kJ/mol. This suggests a modest (8×) improvement in stability for this type of approach may be possible, but for anything greater other approaches will need to be pursued.

  20. Enhancement in photovoltaic properties of silicon solar cells by surface plasmon effect of palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Atyaoui, Malek; Atyaoui, Atef; Khalifa, Marwen; Elyagoubi, Jalel; Dimassi, Wissem; Ezzaouia, Hatem

    2016-04-01

    This work presents the surface Plasmon effect of Palladium nanoparticles (Pd NPs) on the photovoltaic properties of silicon solar cells. Pd NPs were deposited on the p-type silicon base of the n+/p junction using a chemical deposition method in an aqueous solution containing Palladium (II) Nitrate (PdNO3)2 and Ammonium Hydroxide (NH4OH) followed by a thermal treatment at 500 °C under nitrogen atmosphere. Chemical composition and surface morphology of the treated silicon base were examined by energy dispersive X-ray (EDX) spectroscopy, scanning electronic microscopy (SEM) and Atomic Force Microscopy (AFM). The effect of the deposited Pd NPs on the electrical properties was evaluated by the internal quantum efficiency (IQE) and current-voltage (I-V) measurements. The results indicate that the formation of the Pd NPs is accompanied by an enhanced light absorption and improved photovoltaic parameters.

  1. Synthesis of microspheres of triuranium octaoxide by simultaneous water and nitrate extraction from ascorbate-uranyl sols.

    PubMed

    Brykala, M; Deptula, A; Rogowski, M; Lada, W; Olczak, T; Wawszczak, D; Smolinski, T; Wojtowicz, P; Modolo, G

    A new method for synthesis of uranium oxide microspheres (diameter <100 μm) has been developed. It is a variant of our patented Complex Sol-Gel Process, which has been used to synthesize high-quality powders of a wide variety of complex oxides. Starting uranyl-nitrate-ascorbate sols were prepared by addition of ascorbic acid to uranyl nitrate hexahydrate solution and alkalizing by aqueous ammonium hydroxide and then emulsified in 2-ethylhexanol-1 containing 1v/o SPAN-80. Drops of emulsion were firstly gelled by extraction of water by the solvent. Destruction of the microspheres during thermal treatment, owing to highly reactive components in the gels, requires modification of the gelation step by Double Extraction Process-simultaneously extraction of water and nitrates using Primene JMT, which completely eliminates these problem. Final step was calcination in air of obtained microspheres of gels to triuranium octaoxide.

  2. Determination of highly protein bound drugs in plasma using high-performance liquid chromatography and column switching, exemplified by the retinoids.

    PubMed

    Wyss, R; Bucheli, F

    1988-12-02

    During method development for the determination of either isotretinoin, tretinoin and their 4-oxo-metabolites, or etretinate, acitretin and 13-cis-acitretin in plasma using high-performance liquid chromatography and column switching, recovery problems arose, when undiluted plasma samples were injected directly onto the precolumn. These recovery problems may be due to the strong binding of the retinoids to different plasma proteins. Measures to overcome this strong protein binding, such as variation of the injection solution composition and the purge mobile phase, were systematically investigated. Best recoveries were obtained by diluting of plasma with 9 mM sodium hydroxide-acetonitrile (8:2, v/v) and protein precipitation with ethanol for the isotretinoin and etretinate series, respectively, in combination with the use of a purge mobile phase containing ammonium acetate and 10-20% acetonitrile. Less effective was the use of a longer precolumn or heating of the precolumn.

  3. Acceptor-type hydroxide graphite intercalation compounds electrochemically formed in high ionic strength solutions.

    PubMed

    Miyazaki, Kohei; Iizuka, Asuka; Mikata, Koji; Fukutsuka, Tomokazu; Abe, Takeshi

    2017-09-05

    The intercalation of hydroxide ions (OH - ) into graphite formed graphite intercalation compounds (GICs) in high ionic strength solutions. GICs of solvated OH - anions with two water molecules (OH - ·2H 2 O) in alkaline aqueous solutions and GICs of only OH - anions in a molten NaOH-KOH salt solution were electrochemically synthesized.

  4. Calcium leaching behavior of cementitious materials in hydrochloric acid solution.

    PubMed

    Yang, Huashan; Che, Yujun; Leng, Faguang

    2018-06-11

    The calcium leaching behavior of cement paste and silica fume modified calcium hydroxide paste, exposed to hydrochloric acid solution, is reported in this paper. The kinetic of degradation was assessed by the changes of pH of hydrochloric acid solution with time. The changes of compressive strength of specimens in hydrochloric acid with time were tested. Hydration products of leached specimens were also analyzed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric (TG), and atomic force microscope (AFM). Tests results show that there is a dynamic equilibrium in the supply and consumption of calcium hydroxide in hydrochloric acid solution, which govern the stability of hydration products such as calcium silicate hydrate (C-S-H). The decrease of compressive strength indicates that C-S-H are decomposed due to the lower concentration of calcium hydroxide in the pore solution than the equilibrium concentration of the hydration products. Furthermore, the hydration of unhydrated clinker delayed the decomposition of C-S-H in hydrochloric acid solution due to the increase of calcium hydroxide in pore solution of cementitious materials.

  5. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Calkins, G.D.

    1957-10-29

    A method is given for the pretreatment of monazite sand with sodium hydroxide. When momazite sand is reacted with sodium hydroxide, the thorium, uranium, and rare earths are converted to water-insoluble hydrous oxides; but in the case of uranium, the precipitate compound may at least partly consist of a slightly soluble uranate. According to the patent, monazite sand is treated with an excess of aqueous sodium hydroxide solution, and the insoluble compounds of thorium, uranium, and the rare earths are separated from the aqueous solution. This solution is then concentrated causing sodium phosphate to crystallize out. The crystals are removed from the remaining solution, and the solution is recycled for reaction with a mew supply of momazite sand.

  6. Differential chemosensory feeding behaviour by three co-occurring mysids (Crustacea, Mysidacea) from southeastern Tasmania.

    PubMed

    Metillo, Ephrime B; Ritz, David A

    2003-02-01

    Three mysid species showed differences in chemosensory feeding as judged from stereotyped food capturing responses to dissolved mixtures of feeding stimulant (either betaine-HCl or glycine) and suppressant (ammonium). The strongest responses were to 50:50 mixtures of both betaine-ammonium and glycine-ammonium solutions. In general, the response curve to the different mixtures tested was bell-shaped. Anisomysis mixta australis only showed the normal curve in response to the glycine-ammonium mixture. The platykurtic curve for Tenagomysis tasmaniae suggests a less optimal response to the betaine-HCl-ammonium solution. Paramesopodopsis rufa reacted more strongly to the betaine-ammonium than to the glycine-ammonium solutions, and more individuals of this species responded to both solutions than the other two species. It is suggested that these contrasting chemosensitivities of the three coexisting mysid species serve as a means of partitioning the feeding niche.

  7. Treatment of As(V) and As(III) by electrocoagulation using Al and Fe electrode.

    PubMed

    Kuan, W H; Hu, C Y; Chiang, M C

    2009-01-01

    A batch electrocoagulation (EC) process with bipolar electrode and potentiodynamic polarization tests with monopolar systems were investigated as methods to explore the effects of electrode materials and initial solution pH on the As(V) and As(III) removal. The results displayed that the system with Al electrode has higher reaction rate during the initial period from 0 to 25 minutes than that of Fe electrode for alkaline condition. The pH increased with the EC time because the As(V) and As(III) removal by either co-precipitation or adsorption resulted in that the OH positions in Al-hydroxide or Fe-hydroxide were substituted by As(V) and As(III). The pH in Fe electrode system elevate higher than that in Al electrode because the As(V) removal substitutes more OH position in Fe-hydroxide than that in Al-hydroxide. EC system with Fe electrode can successfully remove the As(III) but system with Al electrode cannot because As(III) can strongly bind to the surface of Fe-hydroxide with forming inner-sphere species but weakly adsorb to the Al-hydroxide surface with forming outer-sphere species. The acidic solution can destroy the deposited hydroxide passive film then allow the metallic ions liberate into the solution, therefore, the acidic initial solution can enhance the As(V) and As(III) removal. The over potential calculation and potentiodynamic polarization tests reveal that the Fe electrode systems possess higher over potential and pitting potential than that of Al electrode system due to the fast hydrolysis of and the occurrence of Fe-hydroxide passive film.

  8. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Aritra; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Tokmakoff, Andrei, E-mail: tokmakoff@uchicago.edu

    2015-11-21

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm{sup −1}. We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occursmore » in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions.« less

  9. Ammonium Ion Binding to DNA G-Quadruplexes: Do Electrospray Mass Spectra Faithfully Reflect the Solution-Phase Species?

    NASA Astrophysics Data System (ADS)

    Balthasart, Françoise; Plavec, Janez; Gabelica, Valérie

    2013-01-01

    G-quadruplex nucleic acids can bind ammonium ions in solution, and these complexes can be detected by electrospray mass spectrometry (ESI-MS). However, because ammonium ions are volatile, the extent to which ESI-MS quantitatively could provide an accurate reflection of such solution-phase equilibria is unclear. Here we studied five G-quadruplexes having known solution-phase structure and ammonium ion binding constants: the bimolecular G-quadruplexes (dG4T4G4)2, (dG4T3G4)2, and (dG3T4G4)2, and the intramolecular G-quadruplexes dG4(T4G4)3 and dG2T2G2TGTG2T2G2 (thrombin binding aptamer). We found that not all mass spectrometers are equally suited to reflect the solution phase species. Ion activation can occur in the electrospray source, or in a high-pressure traveling wave ion mobility cell. When the softest instrumental conditions are used, ammonium ions bound between G-quartets, but also additional ammonium ions bound at specific sites outside the external G-quartets, can be observed. However, even specifically bound ammonium ions are in some instances too labile to be fully retained in the gas phase structures, and although the ammonium ion distribution observed by ESI-MS shows biases at specific stoichiometries, the relative abundances in solution are not always faithfully reflected. Ion mobility spectrometry results show that all inter-quartet ammonium ions are necessary to preserve the G-quadruplex fold in the gas phase. Ion mobility experiments, therefore, help assign the number of inner ammonium ions in the solution phase structure.[Figure not available: see fulltext.

  10. 78 FR 3967 - Notice of Application for Special Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ...). transportation in Branchburg, NJ. commerce of PG II corrosive materials described as Potassium Hydroxide Solution, UN 1814 and Sodium Hydroxide Solution, UN 1824 in a UN 50G Fiberboard Large Packaging. (modes 1, 2, 3...

  11. An empirical model to estimate density of sodium hydroxide solution: An activator of geopolymer concretes

    NASA Astrophysics Data System (ADS)

    Rajamane, N. P.; Nataraja, M. C.; Jeyalakshmi, R.; Nithiyanantham, S.

    2016-02-01

    Geopolymer concrete is zero-Portland cement concrete containing alumino-silicate based inorganic polymer as binder. The polymer is obtained by chemical activation of alumina and silica bearing materials, blast furnace slag by highly alkaline solutions such as hydroxide and silicates of alkali metals. Sodium hydroxide solutions of different concentrations are commonly used in making GPC mixes. Often, it is seen that sodium hydroxide solution of very high concentration is diluted with water to obtain SHS of desired concentration. While doing so it was observed that the solute particles of NaOH in SHS tend to occupy lower volumes as the degree of dilution increases. This aspect is discussed in this paper. The observed phenomenon needs to be understood while formulating the GPC mixes since this influences considerably the relationship between concentration and density of SHS. This paper suggests an empirical formula to relate density of SHS directly to concentration expressed by w/w.

  12. TREATMENT OF AMMONIUM NITRATE SOLUTIONS

    DOEpatents

    Boyer, T.W.; MacHutchin, J.G.; Yaffe, L.

    1958-06-10

    The treatment of waste solutions obtained in the processing of neutron- irradiated uranium containing fission products and ammonium nitrate is described. The object of this process is to provide a method whereby the ammonium nitrate is destroyed and removed from the solution so as to permit subsequent concentration of the solution.. In accordance with the process the residual nitrate solutions are treated with an excess of alkyl acid anhydride, such as acetic anhydride. Preferably, the residual nitrate solution is added to an excess of the acetic anhydride at such a rate that external heat is not required. The result of this operation is that the ammonium nitrate and acetic anhydride react to form N/sub 2/ O and acetic acid.

  13. The thermal stability and catalytic application of manganese oxide-zirconium oxide powders

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang

    MnOx-ZrO2 mixed oxide is an active catalyst for combustion, oxidation, and oxygen storage applications. MnOx-ZrO 2 mixture also has large reversible adsorption capability for NO x, which makes it a promising candidate for NOx abatement in automobile emission control. However, MnOx-ZrO 2 mixed oxide has not been used extensively because the processing and the thermal stability of resulting powders have not been studied systematically. It is critical to have thermally stable catalytic material because the application temperature can reach as high as 1000°C during service. In this study, we focused on improving the thermal stability of oxide powders, such as MnO x, ZrO2, and MnOx-ZrO2, by controlling the processing methods and parameters. For pure MnOx made from the precipitation method using Mn(NO3)2 aqueous solution and ammonium hydroxide, we found that lower concentration of Mn(NO3) 2 solution and larger amount of ammonium hydroxide resulted in higher surface area powders. For pure ZrO2, we found curing hydrous zirconia in the mother liquid produced ZrO2 powders with larger pore volume and pore size. The specific surface area was also significantly enhanced by curing for the synthesized powders before calcination or after low temperature calcinations, and this improvement could be preserved to high temperatures if SiO2 was doped in ZrO2. A Monte Carlo simulation model examining the effect of primary particle packing on the specific surface area was used to explain the curing result. MnOx-ZrO2 mixtures had higher surface area than the single component oxide at 500 and 700°C because composite powders sintered less. The sintering behavior of composite powders at 900°C was opposite to that at 500°C and the specific surface area of MnOx-ZrO2 decreased drastically at 900°C. Curing ZrO2 first or using La dopant could significantly enhance the specific surface area of MnOx-ZrO2 at 900°C. Through the tests of the redox property and NO storage capability we found a close relationship between the enhanced thermal stability and better catalytic performance.

  14. Evaluation of sequential extraction procedures for soluble and insoluble hexavalent chromium compounds in workplace air samples.

    PubMed

    Ashley, Kevin; Applegate, Gregory T; Marcy, A Dale; Drake, Pamela L; Pierce, Paul A; Carabin, Nathalie; Demange, Martine

    2009-02-01

    Because toxicities may differ for Cr(VI) compounds of varying solubility, some countries and organizations have promulgated different occupational exposure limits (OELs) for soluble and insoluble hexavalent chromium (Cr(VI)) compounds, and analytical methods are needed to determine these species in workplace air samples. To address this need, international standard methods ASTM D6832 and ISO 16740 have been published that describe sequential extraction techniques for soluble and insoluble Cr(VI) in samples collected from occupational settings. However, no published performance data were previously available for these Cr(VI) sequential extraction procedures. In this work, the sequential extraction methods outlined in the relevant international standards were investigated. The procedures tested involved the use of either deionized water or an ammonium sulfate/ammonium hydroxide buffer solution to target soluble Cr(VI) species. This was followed by extraction in a sodium carbonate/sodium hydroxide buffer solution to dissolve insoluble Cr(VI) compounds. Three-step sequential extraction with (1) water, (2) sulfate buffer and (3) carbonate buffer was also investigated. Sequential extractions were carried out on spiked samples of soluble, sparingly soluble and insoluble Cr(VI) compounds, and analyses were then generally carried out by using the diphenylcarbazide method. Similar experiments were performed on paint pigment samples and on airborne particulate filter samples collected from stainless steel welding. Potential interferences from soluble and insoluble Cr(III) compounds, as well as from Fe(II), were investigated. Interferences from Cr(III) species were generally absent, while the presence of Fe(II) resulted in low Cr(VI) recoveries. Two-step sequential extraction of spiked samples with (first) either water or sulfate buffer, and then carbonate buffer, yielded quantitative recoveries of soluble Cr(VI) and insoluble Cr(VI), respectively. Three-step sequential extraction gave excessively high recoveries of soluble Cr(VI), low recoveries of sparingly soluble Cr(VI), and quantitative recoveries of insoluble Cr(VI). Experiments on paint pigment samples using two-step extraction with water and carbonate buffer yielded varying percentages of relative fractions of soluble and insoluble Cr(VI). Sequential extractions of stainless steel welding fume air filter samples demonstrated the predominance of soluble Cr(VI) compounds in such samples. The performance data obtained in this work support the Cr(VI) sequential extraction procedures described in the international standards.

  15. Oxidation of ammonium sulfite in aqueous solutions using ozone technology

    NASA Astrophysics Data System (ADS)

    Li, Yue; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    How to deal with unstable ammonium sulfite, the byproduct of flue gas desulfuration by ammonia absorption methods, has been a difficult problem in recent years. Oxidation of ammonium sulfite in aqueous solutions using ozone produced by a surface discharge system was investigated in the paper. The oxidation efficiency of ammonium sulfite by ozone and traditional air aeration were compared, and the factors including ozone concentration, gas flow rate, initial concentration of ammonium sulfite solution and reaction temperature were discussed. The results show that the oxidation efficiency of ammonium sulfite by ozone technology reached nearly 100% under the optimum conditions, which had a significant increase compared with that by air aeration.

  16. Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

    NASA Astrophysics Data System (ADS)

    Hlaing, Nwe Ni; Vignesh, K.; Sreekantan, Srimala; Pung, Swee-Yong; Hinode, Hirofumi; Kurniawan, Winarto; Othman, Radzali; Thant, Aye Aye; Mohamed, Abdul Rahman; Salim, Chris

    2016-02-01

    Calcium hydroxide (Ca(OH)2) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)2 based adsorbents for carbon dioxide (CO2) capture. The effect of CTAB concentration (0.2-0.8 M) on the structure, morphology and CO2 adsorption performance of Ca(OH)2 was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG-DTA) techniques. The phase purity, crystallite size, Brunauer-Emmett-Teller (BET) surface area and CO2 adsorption performance of Ca(OH)2 precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH)2 phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH)2 precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.

  17. The development of an SC1 removable si-anti-reflective-coating

    NASA Astrophysics Data System (ADS)

    Yamada, Shintaro; Ke, Iou-Sheng; Cutler, Charlotte; Cui, Li; LaBeaume, Paul; Greene, Daniel; Popere, Bhooshan; Sullivan, Chris; Leonard, JoAnne; Coley, Suzanne; Wong, Sabrina; Ongayi, Owendi; Cameron, Jim; Clark, Michael B.; Fitzgibbons, Thomas C.

    2018-03-01

    A trilayer stack of spin-on-carbon (SOC), silicon anti-reflective coating (SiARC) and photoresist (PR) is often used to enable high resolution implant layers for integrated circuit manufacturing. Damage to substrates from SiARC removal using dry etching or aqueous hydrogen fluoride has increased the demand for innovative SiARC materials for implant lithography process. Wet strippable SiARCs (WS-SiARCs) capable of stripping under mild conditions such as SC1 (ammonium hydroxide/hydrogen peroxide/water) while maintaining key performance metrics of standard SiARCs is highly desirable. Minimizing the formation of Si-O-Si linkages by introducing organic crosslink sites was effective to impart SC1 solubility particularly after O2 dry etching. Incorporation of acidic groups onto the crosslinking site further improved SC1 solubility. A new siloxane polymer architecture that has SC1 active functionality in the polymer backbone was developed to further enhance SC1 solubility. A new SiARC formulation based on the new siloxane polymer achieved equivalent lithographic performances to a classic SiARC and SC1 strip rate >240Å/min under a relatively low concentration SC1 condition such as ammonium hydroxide/hydrogen peroxide/water=1/1/40.

  18. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    NASA Astrophysics Data System (ADS)

    de Oliveira, Henrique Bortolaz; Wypych, Fernando

    2016-11-01

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO42-/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO42-/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated.

  19. 40 CFR Appendix A to Subpart Ddd... - Free Formaldehyde Analysis of Insulation Resins by the Hydroxylamine Hydrochloride Method

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.4Magnetic stirrer and stir bars. 3.5250-mL beaker... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... prestandardized pH meter, 1.0 N hydrochloric acid, 0.1 N hydrochloric acid, and 0.1 N sodium hydroxide. 5.5Add 50...

  20. 40 CFR Appendix A to Subpart Ddd... - Free Formaldehyde Analysis of Insulation Resins by the Hydroxylamine Hydrochloride Method

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.4Magnetic stirrer and stir bars. 3.5250-mL beaker... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... prestandardized pH meter, 1.0 N hydrochloric acid, 0.1 N hydrochloric acid, and 0.1 N sodium hydroxide. 5.5Add 50...

  1. 40 CFR Appendix A to Subpart Ddd... - Free Formaldehyde Analysis of Insulation Resins by the Hydroxylamine Hydrochloride Method

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.4Magnetic stirrer and stir bars. 3.5250-mL beaker... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... prestandardized pH meter, 1.0 N hydrochloric acid, 0.1 N hydrochloric acid, and 0.1 N sodium hydroxide. 5.5Add 50...

  2. Assessing the influence of side-chain and main-chain aromatic benzyltrimethyl ammonium on anion exchange membranes.

    PubMed

    Li, Xiuhua; Nie, Guanghui; Tao, Jinxiong; Wu, Wenjun; Wang, Liuchan; Liao, Shijun

    2014-05-28

    3,3'-Di(4″-methyl-phenyl)-4,4'-difluorodiphenyl sulfone (DMPDFPS), a new monomer with two pendent benzyl groups, was easily prepared by Suzuki coupling reaction in high yield. A series of side-chain type ionomers (PAES-Qs) containing pendant side-chain benzyltrimethylammonium groups, which linked to the backbone by alkaline resisting conjugated C-C bonds, were synthesized via polycondensation, bromination, followed by quaternization and alkalization. To assess the influence of side-chain and main-chain aromatic benzyltrimethylammonium on anion exchange membranes (AEMs), the main-chain type ionomers (MPAES-Qs) with the same backbone were synthesized following the similar procedure. GPC and (1)H NMR results indicate that the bromination shows no reaction selectivity of polymer configurations and ionizations of the side-chain type polymers display higher conversions than that of the main-chain type ones do. These two kinds of AEMs were evaluated in terms of ion exchange capacity (IEC), water uptake, swelling ratio, λ, volumetric ion exchange capacity (IECVwet), hydroxide conductivity, mechanical and thermal properties, and chemical stability, respectively. The side-chain type structure endows AEMs with lower water uptake, swelling ratio and λ, higher IECVwet, much higher hydroxide conductivity, more robust dimensional stability, mechanical and thermal properties, and higher stability in hot alkaline solution. The side-chain type cationic groups containing molecular configurations have the distinction of being practical AEMs and membrane electrode assemblies of AEMFCs.

  3. LEACHING OF TITANIUM FROM MONOSODIUM TITANATE AND MODIFIED MST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, K.; Fondeur, F.; Fink, S.

    2012-08-01

    Analysis of a fouled coalescer and pre-filters from Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU) operations showed evidence of Ti containing solids. Based on these results a series of tests were planned to examine the extent of Ti leaching from monosodium titanate (MST) and modified monosodium titanate (mMST) in various solutions. The solutions tested included a series of salt solutions with varying free hydroxide concentrations, two sodium hydroxide concentrations, 9 wt % and 15 wt %, nitric and oxalic acid solutions. Overall, the amount of Ti leached from the MST and mMST was much greater in the acidmore » solutions compared to the sodium hydroxide or salt solutions, which is consistent with the expected trend. The leaching data also showed that increasing hydroxide concentration, whether pure NaOH solution used for filter cleaning in ARP or the waste salt solution, increased the amount of Ti leached from both the MST and mMST. For the respective nominal contact times with the MST solids - for filter cleaning or the normal filter operation, the dissolved Ti concentrations are comparable suggesting either cause may contribute to the increased Ti fouling on the MCU coalescers. Tests showed that Ti containing solids could be precipitated from solution after the addition of scrub acid and a decrease in temperature similar to expected in MCU operations. FTIR analysis of these solids showed some similarity to the solids observed on the fouled coalescer and pre-filters. Although only a cursory study, this information suggests that the practice of increasing free hydroxide in feed solutions to MCU as a mitigation to aluminosilicate formation may be offset by the impact of formation of Ti solids in the overall process. Additional consideration of this finding from MCU and SWPF operation is warranted.« less

  4. RECOVERY OF URANIUM AND THORIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Calkins, G.D.

    1958-06-10

    >A process is described for the recovery of uranium and thorium from monazite sand, which is frequently processed by treating it with a hot sodium hydroxide solution whereby a precipitate forms consisting mainly of oxides or hydroxides of the rare earths, thorium and uranium. The precipitate is dissolved in mineral acid, and the acid solution is then neutralized to a pH value of between 5.2 and 6.2 whereby both the uranium and thorium precipitate as the hydroxides, while substantially all the rare earth metal values present remain in the solution. The uranium and thoriunn can then be separated by dissolving the precipitate in a solution containing a mixture of alkali carbonate and alkali bicarbonate: and contacting the carbonate solution with a strong-base anion exchange resin whereby the uranium values are adsorbed on the resin while the thorium remains in solution.

  5. Solvent and process for recovery of hydroxide from aqueous mixtures

    DOEpatents

    Moyer, Bruce A.; Chambliss, C. Kevin; Bonnesen, Peter V.; Keever, Tamara J.

    2001-01-01

    Hydroxide values and associated alkali metal may be recovered from alkaline aqueous solutions using classes of fluorinated alcohols in a water immiscible solvent. The alcohols are characterized by fluorine substituents which are proximal to the acidic alcohol protons and are located to adjust the acidity of the extractant and the solubility of the extractant in the solvent. A method for stripping the extractant and solvent to regenerate the extractant and purified aqueous hydroxide solution is described.

  6. Resistance of Pseudomonas to Quaternary Ammonium Compounds. I. Growth in Benzalkonium Chloride Solution

    PubMed Central

    Adair, Frank W.; Geftic, Sam G.; Gelzer, Justus

    1969-01-01

    Resistant cells of Pseudomonas aeruginosa and a waterborne Pseudomonas sp. (strain Z-R) were able to multiply in nitrogen-free minimal salts solution containing various concentrations of commercially prepared, ammonium acetate-buffered benzalkonium chloride (CBC), a potent antimicrobial agent. As the CBC concentration increased, growth increased until a point was reached at which the extent of growth leveled off or was completely depressed. Minimal salts solutions of pure benzalkonium chloride (PBC) containing no ammonium acetate did not support bacterial growth. When ammonium acetate was added to PBC solutions in the same concentrations found in CBC solutions, growth patterns developed that were comparable to those found with CBC. Likewise, (NH4)2SO4 added to PBC solutions supported growth of both organisms. P. aeruginosa was initially resistant to CBC levels of 0.02% and it was adapted to tolerate levels as high as 0.36%. Strain Z-R was naturally resistant to 0.4% CBC. Since ammonium acetate, carried over by the CBC used in drug formulations and disinfectant solutions, has the potential to support the growth of resistant bacteria and thus make possible the risk of serious infection, it is suggested that regulations allowing the presence of ammonium acetate in CBC solution be reconsidered. PMID:4984761

  7. An experimental study on the preparation of tochilinite-originated intercalation compounds comprised of Fe 1-xS host layers and various kinds of guest layers

    NASA Astrophysics Data System (ADS)

    Peng, Yiya; Xi, Guangcheng; Zhong, Chang; Wang, Linping; Lu, Jun; Sun, Ximeng; Zhu, Lu; Han, Qikun; Chen, Lin; Shi, Lei; Sun, Mei; Li, Qianrong; Yu, Min; Yin, Mingwen

    2009-08-01

    Tochilinite represents a mineral group of ordered mixed-layer structures containing alternating Fe 1-xS layers with mackinawite-like structure and metal hydroxide layers with Mg(OH) 2-like structure. In this article, we report the preparation of a series of tochilinite-originated (or Fe 1-xS-based) intercalation compounds (ICs). According to their preparation procedures, these ICs can be divided into four kinds. The first kind of IC was sodium tochilinite (Na-tochilinite), which was prepared by the hydrothermal reaction of metallic Fe particles with concentrated Na 2S·9H 2O aqueous solutions. The hydroxide layer of the Na-tochilinite was a mixed hydroxide of Na + ions along with a certain amount of Fe 2+ ions. When the hydroxide layer of the Na-tochilinite completely dissolved in aqueous solutions, a Fe-deficient mackinawite-like phase Fe 1-xS was obtained, which was probably an electron-deficient p-type conductor. The second kind of ICs was prepared by 'low-temperature direct intercalation in aqueous solutions, using Na-tochilinite as a parental precursor. When the Na-tochilinite was ultrasonicated in aqueous solutions containing Lewis basic complexing agents (like NH 3, N 2H 4, 2,2'-bipyridine (bipy), and 1,10-phenanthroline (phen)), the Na + ions of the Na-tochilinite were removed and the Lewis basic complexing agents entered the hydroxide layer of the Na-tochilinite and became coordinated with the Fe 2+ ions, and the second kind of ICs was thus produced. The second kind of ICs includes NH 3 IC, N 2H 4 IC, N 2H 4-NH 3 IC, [Fe(bipy) 3] 2+-containing IC and [Fe(phen) 3] 2+-containing IC. The third kind of ICs, which includes NH 3 IC, N 2H 4-NH 3 IC and N 2H 4-LiOH (NaOH) IC, was prepared by the hydrothermal reaction of metallic Fe particles with (NH 4) 2S aqueous solution, S (elemental) + N 2H 4·H 2O aqueous solution, and S + N 2H 4·H 2O + LiOH (NaOH) aqueous solution, respectively. The third kind of ICs has a close relationship with the second kind of ICs both in composition and structure. The fourth kind of ICs was prepared by the oxidation and reduction of some of the N 2H 4-containing ICs mentioned above, which include N 2H 2 (diazene or diimide) IC, N 2 (dinitrogen) IC and NH 3 IC. The N 2H 2 IC was prepared by mild air oxidation of the N 2H 4-LiOH IC. The N 2 IC was prepared by strong air oxidation of the N 2H 4-LiOH IC, however, we have not been able to separate the pure phase N 2 IC. Hydrothermal reduction of the N 2H 4 IC made by the direct intercalation method in strong reducing environment by H 2S + Fe (metal) led to the production of the NH 3 IC of the fourth kind of ICs. The NH 3 ICs prepared by the three methods had similar compositions and structures. As almost all the ICs reported in this paper were extremely sensitive both to air and to the electron beam, they were mainly characterized by XRD. The properties and interrelationships (or mutual transformations) of the Fe 1-xS-based ICs revealed novel chemistry occurring in the sub-nanoscopic space between the micrometer- to nanometer-sized electron-deficient Fe 1-xS layers. An important finding of this novel chemistry was that the Fe 1-xS-based ICs tended to oxidize or reduce the intercalated species when the redox state of their environments varied. The results of our experiments potentially have many cosmochemical implications. The most important implication is that our experimental results, along with previous studies, strongly suggested that some of the ammonium salts, ammonia and carbonates existing in the matrix of the CM carbonaceous chondrites may have been formed by abiotic reactions employing molecular nitrogen as the nitrogen source and carbon monoxide as the carbon source and iron sulfide and/or iron hydroxide as catalysts.

  8. Struvite pyrolysate recycling combined with dry pyrolysis for ammonium removal from wastewater.

    PubMed

    Yu, Rongtai; Geng, Jinju; Ren, Hongqiang; Wang, Yanru; Xu, Ke

    2013-03-01

    The dry pyrolysis of magnesium ammonium phosphate (MAP) with NaOH powder for ammonium release was investigated, as well as the utility of MAP pyrolysate recycling. The identities of the MAP pyrolysate and its derivatives were experimentally validated. The results showed that the pyrolysate was amorphous magnesium hydrogen phosphate (MgHPO4) and magnesium pyrophosphate (Mg2P2O7). The best molar ratio of sodium hydroxide (NaOH) powder to ammonium was 1:1, at 110°C for 3h. The optimum pH for pyrolysate recycling was 9.5. The ammonia removal ratio could be maintained above 80% with MAP pyrolysate recycling. Seed crystal inoculation increased the rate of MAP crystallization by 20.86%, as well as the MAP grain size (2.08nm with seeding versus 1.72nm without). MAP particle size with NaOH treatment decreased: d(0.5)=19.34μm versus d(0.5)=30.35μm for direct pyrolysis. The results demonstrated that crystal growth was controlled by adding NaOH during MAP pyrolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Titration of Monoprotic Acids with Sodium Hydroxide Contaminated by Sodium Carbonate.

    ERIC Educational Resources Information Center

    Michalowski, Tadeusz

    1988-01-01

    Discusses the effects of using carbon dioxide contaminated sodium hydroxide solution as a titrant for a solution of a weak monoprotic acid and the resulting distortion of the titration curve in comparison to one obtained when an uncontaminated titrant is used. (CW)

  10. Simultaneous separation of copper, cadmium and cobalt from sea-water by co-flotation with octadecylamine and ferric hydroxide as collectors.

    PubMed

    Cabezon, L M; Caballero, M; Cela, R; Perez-Bustamante, J A

    1984-08-01

    A method is proposed for the simultaneous quantitative separation of traces ofCu(II), Cd(II) and Co(II) from sea-water samples by means of the co-flotation (adsorbing colloid flotation) technique with ferric hydroxide as co-precipitant and octadecylamine as collector. The experimental parameters have been studied and optimized. The drawbacks arising from the low solubility of octadecylamine and the corresponding sublates in water have been avoided by use of a 6M hydrochloric acid-MIBK-ethanol (1:2:2 v v ) mixture. The results obtained by means of the proposed method have been compared with those given by the usual ammonium pyrrolidine dithiocarbamate/MIBK extraction method.

  11. Formation and Characterization of Gold Nanoparticles

    DTIC Science & Technology

    2013-09-01

    nanowires are useful because they can be grown almost dislocation free, due to their nano dimension. The quality of crystalline materials is diminished by...real substrate temperature was obtained from the calibration based on the melting points of indium (In), selenium (Se), cadmium (Cd), and zinc (Zn...hydrogen fluoride In indium MBE molecular beam epitaxy NH3OH ammonium hydroxide RHEED reflection high-energy electron diffraction Se selenium SEM

  12. Mass spectrometry and tandem mass spectrometry of citrus limonoids.

    PubMed

    Tian, Qingguo; Schwartz, Steven J

    2003-10-15

    Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring structure. CAD of the adduct ion [M + H + NH3]+ of limonoid glucosides produced the aglycone moiety corresponding to each glucoside. The combination of mass spectrometry and tandem mass spectrometry provides a powerful technique for identification and characterization of citrus limonoids.

  13. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    DOEpatents

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  14. Calcium sulphate in ammonium sulphate solution

    USGS Publications Warehouse

    Sullivan, E.C.

    1905-01-01

    Calcium sulphate, at 25?? C., is two-thirds as soluble in dilute (o.i mol per liter) and twice as soluble in concentrated (3 mois per liter) ammonium sulphate solution as in water. The specific electric conductivity of concentrated ammonium sulphate solutions is lessened by saturating with calcium sulphate. Assuming that dissociation of ammonium sulphate takes place into 2NH4?? and SO4" and of calcium sulphate into Ca and SO4" only, and that the conductivity is a measure of such dissociation, the solubility of calcium sulphate in dilute ammonium sulphate solutions is greater than required by the mass-law. The conductivity of the dilute mixtures may be accurately calculated by means of Arrhenius' principle of isohydric solutions. In the data obtained in these calculations, the concentration of non-dissociated calcium sulphate decreases with increasing ammonium sulphate. The work as a whole is additional evidence of the fact that we are not yet in possession of all the factors necessary for reconciling the mass-law to the behavior of electrolytes. The measurements above described were made in the chemical laboratory of the University of Michigan.

  15. Method of preparing electrolyte for use in fuel cells

    DOEpatents

    Kinoshita, Kimio; Ackerman, John P.

    1978-01-01

    An electrolyte compact for fuel cells includes a particulate support material of lithium aluminate that contains a mixture of alkali metal compounds, such as carbonates or hydroxides, as the active electrolyte material. The porous lithium aluminate support structure is formed by mixing alumina particles with a solution of lithium hydroxide and another alkali metal hydroxide, evaporating the solvent from the solution and heating to a temperature sufficient to react the lithium hydroxide with alumina to form lithium aluminate. Carbonates are formed by reacting the alkali metal hydroxides with carbon dioxide gas in an exothermic reaction which may proceed simultaneously with the formation with the lithium aluminate. The mixture of lithium aluminate and alkali metal in an electrolyte active material is pressed or otherwise processed to form the electrolyte structure for assembly into a fuel cell.

  16. Ammonium addition (and aerosol pH) has a dramatic impact on the volatility and yield of glyoxal secondary organic aerosol.

    PubMed

    Ortiz-Montalvo, Diana L; Häkkinen, Silja A K; Schwier, Allison N; Lim, Yong B; McNeill, V Faye; Turpin, Barbara J

    2014-01-01

    Glyoxal is an important precursor to secondary organic aerosol (SOA) formed through aqueous chemistry in clouds, fogs, and wet aerosols, yet the gas-particle partitioning of the resulting mixture is not well understood. This work characterizes the volatility behavior of the glyoxal precursor/product mix formed after aqueous hydroxyl radical oxidation and droplet evaporation under cloud-relevant conditions for 10 min, thus aiding the prediction of SOA via this pathway (SOACld). This work uses kinetic modeling for droplet composition, droplet evaporation experiments and temperature-programmed desorption aerosol-chemical ionization mass spectrometer analysis of gas-particle partitioning. An effective vapor pressure (p'L,eff) of ∼10(-7) atm and an enthalpy of vaporization (ΔHvap,eff) of ∼70 kJ/mol were estimated for this mixture. These estimates are similar to those of oxalic acid, which is a major product. Addition of ammonium until the pH reached 7 (with ammonium hydroxide) reduced the p'L,eff to <10(-9) atm and increased the ΔHvap,eff to >80 kJ/mol, at least in part via the formation of ammonium oxalate. pH 7 samples behaved like ammonium oxalate, which has a vapor pressure of ∼10(-11) atm. We conclude that ammonium addition has a large effect on the gas-particle partitioning of the mixture, substantially enhancing the yield of SOACld from glyoxal.

  17. 9 CFR 96.10 - Uncertified casings; transportation for disinfection; original shipping containers; disposition...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... hydroxide (Lye) prepared in a fresh solution in the proportion of not less than 1 pound avoirdupois of... in case any of the sodium hydroxide solution should come in contact with the body. (2) This solution...) Dissolve the salt in the proportion of 90 pounds of salt to 100 gallons of water. Add 23/4 gallons of C. P...

  18. 9 CFR 96.10 - Uncertified casings; transportation for disinfection; original shipping containers; disposition...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... hydroxide (Lye) prepared in a fresh solution in the proportion of not less than 1 pound avoirdupois of... in case any of the sodium hydroxide solution should come in contact with the body. (2) This solution...) Dissolve the salt in the proportion of 90 pounds of salt to 100 gallons of water. Add 23/4 gallons of C. P...

  19. 9 CFR 96.10 - Uncertified casings; transportation for disinfection; original shipping containers; disposition...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... hydroxide (Lye) prepared in a fresh solution in the proportion of not less than 1 pound avoirdupois of... in case any of the sodium hydroxide solution should come in contact with the body. (2) This solution...) Dissolve the salt in the proportion of 90 pounds of salt to 100 gallons of water. Add 23/4 gallons of C. P...

  20. Comparative study of the synthesis of layered transition metal molybdates

    NASA Astrophysics Data System (ADS)

    Mitchell, S.; Gómez-Avilés, A.; Gardner, C.; Jones, W.

    2010-01-01

    Mixed metal oxides (MMOs) prepared by the mild thermal decomposition of layered double hydroxides (LDHs) differ in their reactivity on exposure to aqueous molybdate containing solutions. In this study, we investigate the reactivity of some T-Al containing MMOs ( T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates (LTMs) possessing the general formula AT2(OH)(MoO 4) 2·H 2O, where A=NH 4+, Na + or K +. The phase selectivity of the reaction was studied with respect to the source of molybdate, the ratio of T to Mo and the reaction pH. LTMs were obtained on reaction of Cu-Al and Zn-Al containing MMOs with aqueous solutions of ammonium heptamolybdate. Rehydration of these oxides in the presence of sodium or potassium molybdate yielded a rehydrated LDH phase as the only crystalline product. The LTM products obtained by the rehydration of MMO precursors were compared with LTMs prepared by direct precipitation from the metal salts in order to study the influence of preparative route on their chemical and physical properties. Differences were noted in the composition, morphology and thermal properties of the resulting products.

  1. Method of purifying isosaccharinate

    DOEpatents

    Rai, Dhanpat; Moore, Robert C.; Tucker, Mark D.

    2010-09-07

    A method of purifying isosaccharinate by mixing sodium carbonate, potassium carbonate, sodium hydroxide or potassium hydroxide with calcium isosaccharinate, removing the precipitated calcium carbonate and adjusting the pH to between approximately 4.5 to 5.0 thereby removing excess carbonate and hydroxide to provide an acidic solution containing isosaccharinate.

  2. Rapid determination of thiamine, riboflavin, niacinamide, pantothenic acid, pyridoxine, folic acid and ascorbic acid in Vitamins with Minerals Tablets by high-performance liquid chromatography with diode array detector.

    PubMed

    Jin, Pengfei; Xia, Lufeng; Li, Zheng; Che, Ning; Zou, Ding; Hu, Xin

    2012-11-01

    A simple, isocratic, and stability-indicating high-performance liquid chromatography (HPLC) method has been developed for the rapid determination of thiamine (VB(1)), niacinamide (VB(3)), pyridoxine (VB(6)), ascorbic acid (VC), pantothenic acid (VB(5)), riboflavin (VB(2)) and folic acid (VB(9)) in Vitamins with Minerals Tablets (VMT). An Alltima C(18) column (250 mm × 4.6 mm i.d., 5 μm) was used for the separation at ambient temperature, with 50mM ammonium dihydrogen phosphate (adjusting with phosphoric acid to pH 3.0) and acetonitrile as the mobile phase at the flow rate of 0.5 ml min(-1). VB(1), VB(3), VB(6), VC and VB(5) were extracted with a solution containing 0.05% phosphoric acid (v/v) and 0.3% sodium thiosulfate (w/v), and were then simultaneously analyzed by using the mobile phase of phosphate buffer-acetonitrile (95:5, v/v), while VB(2) and VB(9) were extracted with a solution containing 0.5% ammonium hydroxide solution (v/v), and were then simultaneously analyzed by using the mobile phase of phosphate buffer-acetonitrile (85:15, v/v). The detection wavelengths were 275 nm for VB(1), VB(3), VB(6), VC, 210 nm for VB(5), and 282 nm for VB(2) and VB(9). The method showed good system suitability, sensitivity, linearity, specificity, precision, stability and accuracy. All the seven water-soluble vitamins were well separated from other ingredients and degradation products. Method comparison indicated good concordance between the developed method and the USP method. The developed method was reliable and convenient for the rapid determination of VB(1), VB(3), VB(6), VC, VB(5), VB(2) and VB(9) in VMT. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Sodium to sodium carbonate conversion process

    DOEpatents

    Herrmann, Steven D.

    1997-01-01

    A method of converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO.sub.2 are introduced into a thin film evaporator with the CO.sub.2 present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and T1 can be converted into a low level non-hazardous waste using the thin film evaporator of the invention.

  4. Characterization of carbohydrates using highly fluorescent 2-aminobenzoic acid tag following gel electrophoresis of glycoproteins.

    PubMed

    Anumula, K R; Du, P

    1999-11-15

    Application of the most sensitive fluorescent label 2-aminobenzoic acid (anthranilic acid, AA) for characterization of carbohydrates from the glycoproteins ( approximately 15 pmol) separated by polyacrylamide gel electrophoresis is described. AA label is used for the determination of both monosaccharide composition and oligosaccharide map. For the monosaccharide determination, bands containing the glycoprotein of interest are excised from the polyvinylidene fluoride (PVDF) membrane blots, hydrolyzed in 20% trifluoroacetic acid, derivatized, and analyzed by C-18 reversed-phase high-performance liquid chromatography. For the oligosaccharide mapping, bands were digested with peptide N-glycosidase F (PNGase F) in order to release the N-linked oligosaccharides, derivatized, and analyzed by normal-phase anion-exchange chromatography. For convenience, the PNGase F digestion was performed in 1:100 diluted ammonium hydroxide overnight. The oligosaccharide yield from ammonium hydroxide-PNGase F digestion was better or equal to all the other reported procedures, and the presumed "oligosaccharide-amine" product formed in the reaction mixture did not interfere with labeling of the oligosaccharides under the conditions used for derivatization. Sequencing of oligosaccharides can be performed using the same mapping method following treatment with an array of glycosidases. In addition, the mapping method is useful for determining the relative and simultaneous distribution of sialic acid and fucose. Copyright 1999 Academic Press.

  5. Removal of ammonium from aqueous solutions with volcanic tuff.

    PubMed

    Marañón, E; Ulmanu, M; Fernández, Y; Anger, I; Castrillón, L

    2006-10-11

    This paper presents kinetic and equilibrium data concerning ammonium ion uptake from aqueous solutions using Romanian volcanic tuff. The influence of contact time, pH, ammonium concentration, presence of other cations and anion species is discussed. Equilibrium isotherms adequately fit the Langmuir and Freundlich models. The results showed a contact time of 3h to be sufficient to reach equilibrium and pH of 7 to be the optimum value. Adsorption capacities of 19 mg NH(4)(+)/g were obtained in multicomponent solutions (containing NH(4)(+), Zn(2+), Cd(2+), Ca(2+), Na(2+)). The presence of Zn and Cd at low concentrations did not decrease the ammonium adsorption capacity. Comparison of Romanian volcanic tuff with synthetic zeolites used for ammonium removal (5A, 13X and ZSM-5) was carried out. The removal efficiciency of ammonium by volcanic tuff were similar to those of zeolites 5A and 13X at low initial ammonium concentration, and much higher than those of zeolite ZSM-5.

  6. Desorption electrospray ionization mass spectrometry for the analysis of pharmaceuticals and metabolites.

    PubMed

    Kauppila, Tiina J; Wiseman, Justin M; Ketola, Raimo A; Kotiaho, Tapio; Cooks, R Graham; Kostiainen, Risto

    2006-01-01

    The performance of desorption electrospray ionization (DESI) in the analysis of a group of pharmaceuticals and their glucuronic acid conjugates is reported. The suitability of different sprayer solvents and different surfaces was examined. In the positive ion mode, water/methanol/trifluoroacetic acid performed best, whereas, in the negative ion mode, water/methanol/ammonium hydroxide was found to be the most suitable spray solvent. Of the surfaces investigated, polymethylmethacrylate (PMMA) was found to give the best performance in terms of sensitivity. Spray solution flow rate and the distance of the sprayer tip from the surface were also found to have significant effects on the signal intensity. Analytes with basic groups efficiently formed the corresponding protonated molecules in the positive ion mode, whereas acidic analytes, such as the glucuronic acid conjugates, formed intense signals due to the deprotonated molecules in the negative ion mode. Ionization of neutral compounds was less efficient and in many cases it was achieved through adduct formation with simple anions or cations. Copyright (c) 2005 John Wiley & Sons, Ltd.

  7. Chemical studies on the polysaccharides of Salicornia brachiata.

    PubMed

    Sanandiya, Naresh D; Siddhanta, A K

    2014-11-04

    A group of 12 polysaccharide extracts were prepared from the tips, stem and roots of an Indian halophyte Salicornia brachiata Roxb. obtained by sequential extractions with cold water (CW), hot water (HW), aqueous ammonium oxalate (OX) and aqueous sodium hydroxide (ALK) solutions. Monosaccharide composition analysis revealed that all the polysaccharide extract samples consisted primarily of rhamnose, arabinose, mannose, galactose, glucose, whereas ribose and xylose were present only in some of the extracts. All the extracts exhibited low apparent viscosity (1.47-2.02 cP) and sulphate and contained no prominent toxic metal ions. Fucose was detected only in OX extract of the roots. These polysaccharides were found to be heterogeneous and highly branched (glycoside linkage analysis, size-exclusion chromatography, (13)C-NMR, FT-IR, circular dichroism and optical rotation data). Physico-chemical analyses of these polysaccharides including uronic acid, sulphate and protein contents were also carried out. This constitutes the first report on the profiling of Salicornia polysaccharides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment.

    PubMed

    Chen, Cong; Boldor, Dorin; Aita, Giovanna; Walker, Michelle

    2012-04-01

    The efficiency of a batch microwave-assisted ammonia heating system was investigated as pretreatment for sweet sorghum bagasse and its effect on porosity, chemical composition, particle size, enzymatic hydrolysis and fermentation into ethanol evaluated. Sorghum bagasse, fractionated into three particle size groups (9.5-18, 4-6 and 1-2mm), was pretreated with ammonium hydroxide (28% v/v solution) and water at a ratio of 1:0.5:8 at 100, 115, 130, 145 and 160°C for 1h. Simon's stain method revealed an increase in the porosity of the biomass compared to untreated biomass. The most lignin removal (46%) was observed at 160°C. About 90% of the cellulose and 73% of the hemicellulose remained within the bagasse. The best glucose yields and ethanol yields (from glucose only) among all different pretreatment conditions averaged 42/100g dry biomass and 21/100g dry biomass, respectively with 1-2mm sorghum bagasse pretreated at 130°C for 1h. Published by Elsevier Ltd.

  9. Halogeno-substituted 2-aminobenzoic acid derivatives for negative ion fragmentation studies of N-linked carbohydrates.

    PubMed

    Harvey, David J

    2005-01-01

    Negative ion electrospray mass spectra of high-mannose N-linked glycans derivatised with 2-aminobenzoic acids and ionised from solutions containing ammonium hydroxide gave prominent [M-H](-) ions accompanied by weaker [M-2H](2-) ions. Fragmentation of both types of ions gave prominent singly charged glycosidic cleavage ions containing the derivatised reducing terminus and ions from the non-reducing terminus that appeared to be products of cross-ring cleavages. Differentiation of these two groups of ions was conveniently achieved in a single spectrum by use of chloro- or bromo-substituted benzoic acids in order to label ions containing the derivative with an atom with a distinctive isotope pattern. Fragmentation of the doubly charged ions gave more abundant fragments, both singly and doubly charged, than did fragmentation of the singly charged ions, but information of chain branching was masked by the appearance of prominent ions produced by internal cleavages. Copyright (c) 2005 John Wiley & Sons, Ltd.

  10. Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM.

    PubMed

    Habibi, Neda

    2014-10-15

    The preparation and characterization of magnetite-carboxymethyl cellulose nano-composite (M-CMC) material is described. Magnetite nano-particles were synthesized by a modified co-precipitation method using ferrous chloride tetrahydrate and ferric chloride hexahydrate in ammonium hydroxide solution. The M-CMC nano-composite particles were synthesized by embedding the magnetite nanoparticles inside carboxymethyl cellulose (CMC) using a freshly prepared mixture of Fe3O4 with CMC precursor. Morphology, particle size, and structural properties of magnetite-carboxymethyl cellulose nano-composite was accomplished using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. As a result, magnetite nano-particles with an average size of 35nm were obtained. The biocompatible Fe3O4-carboxymethyl cellulose nano-composite particles obtained from the natural CMC polymers have a potential range of application in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. [Determination of inorganic ions in explosive residues by capillary zone electrophoresis].

    PubMed

    Feng, Junhe; Guo, Baoyuan; Lin, Jin-Ming; Xu, Jianzhong; Zhou, Hong; Sun, Yuyou; Liu, Yao; Quan, Yangke; Lu, Xiaoming

    2008-11-01

    Five anions (chlorate, perchlorate, nitrate, nitrite, and sulfate) and two cations (ammonium and potassium) in explosive residues have been separated and determined by capillary zone electrophoresis (CZE) with indirect ultraviolet detection. The electrolyte buffer for the cation separation was 10 mmol/L pyridine (pH 4.5) -3 mmol/L 18-crown-6-ether. Ammonium and potassium ions were baseline separated in less than 2.6 min with the detection limits of 0.10 mg/L and 0.25 mg/L (S/N = 3), respectively. The electrolyte buffer for the anion separation consisted of 40 mmol/L boric acid-1.8 mmol/L potassium dichromate-2 mmol/L sodium tetraborate (pH 8.6), and tetramethyl ammonium hydroxide (TMAOH) was used as electroosmotic flow modifier. All five anions were well separated in less than 4.6 min with the detection limit range of 0.10 - 1.85 mg/L (S/N = 3). The method was successfully used in real sample investigations to confirm the type of explosives.

  12. Continuous-flow extraction system for elemental association study: a case of synthetic metal-doped iron hydroxide.

    PubMed

    Hinsin, Duangduean; Pdungsap, Laddawan; Shiowatana, Juwadee

    2002-12-06

    A continuous-flow extraction system originally developed for sequential extraction was applied to study elemental association of a synthetic metal-doped amorphous iron hydroxide phase. The homogeneity and metal association of the precipitates were evaluated by gradual leaching using the system. Leachate was collected in fractions for determination of elemental concentrations. The result obtained as extractograms indicated that the doped metals were adsorbed more on the outermost surface rather than homogeneously distributed in the precipitates. The continuous-flow extraction method was also used for effective removal of surface adsorbed metals to obtain a homogeneous metal-doped synthetic iron hydroxide by a sequential extraction using acetic acid and small volume of hydroxylamine hydrochloride solution. The system not only ensures complete washing, but the extent of metal immobilization in the synthetic iron hydroxide could be determined with high accuracy from the extractograms. The initial metal/iron mole ratio (M/Fe) in solution affected the M/Fe mole ratio in homogeneous doped iron hydroxide phase. The M/Fe mole ratio of metal incorporation was approximately 0.01-0.02 and 0.03-0.06, for initial solution M/Fe mole ratio of 0.025 and 0.100, respectively.

  13. Determination of cadmium in grains by isotope dilution ICP-MS and coprecipitation using sample constituents as carrier precipitants.

    PubMed

    Inagaki, Kazumi; Narukawa, Tomohiro; Yarita, Takashi; Takatsu, Akiko; Okamoto, Kensaku; Chiba, Koichi

    2007-10-01

    A coprecipitation method using sample constituents as carrier precipitants was developed that can remove molybdenum, which interferes with the determination of cadmium in grain samples via isotope dilution inductively coupled plasma mass spectrometry (ID-ICPMS). Samples were digested with HNO3, HF, and HClO4, and then purified 6 M sodium hydroxide solution was added to generate colloidal hydrolysis compounds, mainly magnesium hydroxide. Cadmium can be effectively separated from molybdenum because the cadmium forms hydroxides and adsorbs onto and/or is occluded in the colloid, while the molybdenum does not form hydroxides or adsorb onto the hydrolysis colloid. The colloid was separated by centrifugation and then dissolved with 0.2 M HNO3 solution to recover the cadmium. The recovery of Cd achieved using the coprecipitation was >97%, and the removal efficiency of Mo was approximately 99.9%. An extremely low procedural blank (below the detection limit of ICPMS) was achieved by purifying the 6 M sodium hydroxide solution via Mg coprecipitation using Mg(NO3)2 solution. The proposed method was applied to two certified reference materials (NIST SRM 1567a wheat flour and SRM 1568a rice flour) and CCQM-P64 soybean powder. Good analytical results with small uncertainties were obtained for all samples. This method is simple and reliable for the determination of Cd in grain samples by ID-ICPMS.

  14. Ion Association versus Ion Interaction Models in Examining Electrolyte Solutions: Application to Calcium Hydroxide Solubility Equilibrium

    ERIC Educational Resources Information Center

    Menéndez, M. Isabel; Borge, Javier

    2014-01-01

    The heterogeneous equilibrium of the solubility of calcium hydroxide in water is used to predict both its solubility product from solubility and solubility values from solubility product when inert salts, in any concentration, are present. Accepting the necessity of including activity coefficients to treat the saturated solution of calcium…

  15. Simple flow injection colorimetric system for determination of paraquat in natural water.

    PubMed

    Chuntib, Prakit; Jakmunee, Jaroon

    2015-11-01

    A simple and low cost flow injection colorimetric system has been developed for determination of paraquat in natural water. The developed method is based on the reduction of paraquat by using sodium dithionite as a reducing agent in an alkaline medium to produce a blue free radical ion that can be detected by a simple light emitting diode-light dependent resistor (LED-LDR) colorimeter. The standard or sample solution was injected via a set of 3-way solenoid valves into a water carrier stream and flowed to merge with reagent to generate a colored product which is proportional to the concentration of paraquat ion in the solution. Under the optimum condition of the system, i.e., mixing coil length 30 cm, flow rate 2.0 mL min(-1), sample volume 100 μL, concentrations of dithionite 0.1% (w/v) and sodium hydroxide 0.06 mol L(-1), a linear calibration graph in the range of 0.2-10.0 mg L(-1) with a correlation coefficient of 0.9996, and a limit of detection of 0.15 mg L(-1) were achieved. Relative standard deviation for 9 replicate injections of 1 mg L(-1) paraquat is 3.7%. A sample throughput of 40 injections h(-1) was achieved. The limit of detection can be improved by off-line preconcentration of paraquat employing a column packed with Dowex 50WX8-100 (H) cation exchange resin and eluted with 10% (w/v) ammonium chloride in ammonium buffer solution pH 10. The eluting solution was then injected into the FI system for paraquat determination. The proposed system did not suffer from interferences of some possible ions in natural water and other herbicides. Recoveries obtained by spiking 0.5 and 5.0 mg L(-1) paraquat standard into water samples were in the range of 104-110% and 101-105%, respectively. The developed system can be conveniently applied for screening of paraquat contaminated in natural water. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Process for the treatment of lignocellulosic biomass

    DOEpatents

    Dale, Bruce E.

    2014-07-08

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  17. Process for the treatment of lignocellulosic biomass

    DOEpatents

    Dale, Bruce E.; Lynd, Lee R.; Laser, Mark

    2013-03-12

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  18. 21 CFR 184.1135 - Ammonium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium bicarbonate. 184.1135 Section 184.1135... Listing of Specific Substances Affirmed as GRAS § 184.1135 Ammonium bicarbonate. (a) Ammonium bicarbonate.... Crystals of ammonium bicarbonate are precipitated from solution and subsequently washed and dried. (b) The...

  19. 21 CFR 184.1135 - Ammonium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium bicarbonate. 184.1135 Section 184.1135... Listing of Specific Substances Affirmed as GRAS § 184.1135 Ammonium bicarbonate. (a) Ammonium bicarbonate.... Crystals of ammonium bicarbonate are precipitated from solution and subsequently washed and dried. (b) The...

  20. 21 CFR 184.1135 - Ammonium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium bicarbonate. 184.1135 Section 184.1135... Listing of Specific Substances Affirmed as GRAS § 184.1135 Ammonium bicarbonate. (a) Ammonium bicarbonate.... Crystals of ammonium bicarbonate are precipitated from solution and subsequently washed and dried. (b) The...

  1. A wet chemical method for the estimation of carbon in uranium carbides.

    PubMed

    Chandramouli, V; Yadav, R B; Rao, P R

    1987-09-01

    A wet chemical method for the estimation of carbon in uranium carbides has been developed, based on oxidation with a saturated solution of sodium dichromate in 9M sulphuric acid, absorption of the evolved carbon dioxide in a known excess of barium hydroxide solution, and titration of the excess of barium hydroxide with standard potassium hydrogen phthalate solution. The carbon content obtained is in good agreement with that obtained by combustion and titration.

  2. Sodium to sodium carbonate conversion process

    DOEpatents

    Herrmann, S.D.

    1997-10-14

    A method is described for converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO{sub 2} are introduced into a thin film evaporator with the CO{sub 2} present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and Tl can be converted into a low level non-hazardous waste using the thin film evaporator of the invention. 3 figs.

  3. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  4. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1993-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  5. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1992-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  6. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, M.T.; Scott, T.C.; Byers, C.H.

    1992-06-16

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

  7. Recovery of urinary nanovesicles from ultracentrifugation supernatants.

    PubMed

    Musante, Luca; Saraswat, Mayank; Ravidà, Alessandra; Byrne, Barry; Holthofer, Harry

    2013-06-01

    Urinary vesicles represent a newly established source of biological material, widely considered to faithfully represent pathological events in the kidneys and the urogenital epithelium. The majority of currently applied isolation protocols involve cumbersome centrifugation steps to enrich vesicles from urine. To date, the efficiency of these approaches has not been investigated with respect to performing quantitative and qualitative analyses of vesicle populations in the pellet and supernatant (SN) fractions. After the series of differential centrifugations, the final SN was reduced to one-twentieth of the original volume by ammonium sulphate precipitation, with the precipitate pellet subjected to another round of differential centrifugations. Electron microscopy, dynamic light scattering and western blot analysis were used to characterize the vesicles present in individual fractions of interest. Pellets obtained after the second set of centrifugations at 200 000 g revealed the presence of vesicles which share a common marker profile, but with distinct differences from those seen in the initial 200 000 g pellet used as the reference. This suggests an enrichment of previously uncharacterized urinary vesicles still in solution after the initial centrifugation steps. Analysis of protein yields recovered post-ultracentrifugation revealed an additional 40% of vesicles retained from the SN. Moreover, these structures showed a formidable resistance to harsh treatments (e.g. 95% ammonium sulphate saturation, hypotonic dialysis, 0.3 M sodium hydroxide). Methods which employ differential centrifugations of native urine are remarkably ineffective and may lose a substantial population of biologically important vesicle species.

  8. An effective and novel pore sealing agent to enhance the corrosion resistance performance of Al coating in artificial ocean water

    NASA Astrophysics Data System (ADS)

    Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.

    2017-02-01

    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.

  9. A Re-evaluation of the Ferrozine Method for Dissolved Iron: The Effect of Organic Interferences

    NASA Astrophysics Data System (ADS)

    Balind, K.; Barber, A.; Gelinas, Y.

    2016-12-01

    Among the most commonly used analytical methods in geochemistry is the ferrozine method for determining dissolved iron concentration in water (1). This cheap and easy-to-use spectrophotometric method involves a complexing agent (ferrozine), a reducing agent (hydroxylamine-HCl) and buffer (ammonium acetate with ammonium hydroxide). Previous studies have demonstrated that complex organic matter (OM) originating from the Suwannee River did not lead to a significantly underestimation of the measured iron content in OM amended iron solutions (2). The authors concluded that this method could be used even in organic rich (i.e., 25 mg/L) waters. Here we compare the concentration of Fe measured using this spectrophotometric method to the total Fe as measured by ICP-MS in the presence/absence of specific organic molecules to ascertain if they interfere with the ferrozine method. We show that certain molecules with hydroxyl and carboxyl functional groups as well as multi-dentate chelating species have a significant effect on the measured iron concentrations. Two possible mechanisms likely are responsible for the inefficiency of this method in the presence of specific organic molecules; 1) incomplete reduction of Fe(III) bound to organic molecules, or 2) competition between the OM and ferrozine for the available iron. We address these possibilities separately by varying the experimental conditions. These methodological artifacts may have far reaching implications due to the extensive use of this method. Stookey, L. L., Anal. Chem., 42, 779 (1970). Viollier, E., et al., Applied Geochem., 15, 785 (2000).

  10. An effective and novel pore sealing agent to enhance the corrosion resistance performance of Al coating in artificial ocean water

    PubMed Central

    Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.

    2017-01-01

    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance. PMID:28157233

  11. Method of treating inflammatory diseases using a radiolabeled ferric hydroxide calloid

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1992-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  12. Evaluation of effectiveness of various irrigating solutions on removal of calcium hydroxide mixed with 2% chlorhexidine gel and detection of orange-brown precipitate after removal.

    PubMed

    Arslan, Hakan; Gok, Tuba; Saygili, Gokhan; Altintop, Hülya; Akçay, Merve; Çapar, Ismail Davut

    2014-11-01

    The aims of the present study were to evaluate the effect of various irrigating solutions on the removal of calcium hydroxide mixed with 2% chlorhexidine gel from an artificial groove created in a root canal and the generation of orange-brown precipitate in the remaining calcium hydroxide mixed with 2% chlorhexidine gel after irrigation with the various irrigating solutions. The root canals of 48 mandibular premolars were prepared using ProTaper Universal Rotary instruments (Dentsply Maillefer, Ballaigues, Switzerland) up to size F4. The roots were split longitudinally, and a standardized groove was prepared in the apical part of 1 segment. The root halves were reassembled, and calcium hydroxide mixed with 2% chlorhexidine gel medicament was placed into the grooves. The roots were randomly divided into 4 experimental groups specified by the irrigation solution used: 1% NaOCl, 17% EDTA, 7% maleic acid, and 10% citric acid (n = 12). The amount of remaining medicament was evaluated under a stereomicroscope using a 4-grade scoring system. After irrigation, the specimens were also evaluated for the presence/absence of orange-brown precipitate. The effects of the different irrigation solutions on medicament removal were statistically evaluated using the Kruskal-Wallis and Mann-Whitney U tests with Bonferroni correction at a 95% confidence level (P = .0083). Solutions of 7% maleic acid and 10% citric acid were superior to solutions of 1% NaOCl and 17% EDTA in removing calcium hydroxide mixed with 2% chlorhexidine gel (P < .0083). There were no significant differences among the other groups (P > .0083). Orange-brown precipitate was observed in all specimens of the NaOCl group but in no specimens in the other groups. Irrigation solutions of 7% maleic acid and 10% citric acid were more effective in the removal of calcium hydroxide mixed with 2% chlorhexidine gel than those of 1% NaOCl and 17% EDTA. Orange-brown precipitate was found in all specimens of the NaOCl-irrigated groups. However, the precipitate was not observed in specimens in the groups irrigated with 17% EDTA, 7% maleic acid, and 10% citric acid. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Recovery of ammonia from domestic wastewater effluents as liquid fertilizers by integration of natural zeolites and hollow fibre membrane contactors.

    PubMed

    Sancho, I; Licon, E; Valderrama, C; de Arespacochaga, N; López-Palau, S; Cortina, J L

    2017-04-15

    The integration of up-concentration processes to increase the efficiency of primary sedimentation, as a solution to achieve energy neutral wastewater treatment plants, requires further post-treatment due to the missing ammonium removal stage. This study evaluated the use of zeolites as a post-treatment step, an alternative to the biological removal process. A natural granular clinoptilolite zeolite was evaluated as a sorbent media to remove low levels (up to 100mg-N/L) of ammonium from treated wastewater using batch and fixed bed columns. After being activated to the Na-form (Z-Na), the granular zeolite shown an ammonium exchange capacity of 29±0.8mgN-NH 4 + /g in single ammonium solutions and 23±0.8mgN-NH 4 + /g in treated wastewater simulating up-concentration effluent at pH=8. The equilibrium removal data were well described by the Langmuir isotherm. The ammonium adsorption into zeolites is a very fast process when compared with polymeric materials (zeolite particle diffusion coefficient around 3×10 -12 m 2 /s). Column experiments with solutions containing 100mgN-NH 4 + /L provide effective sorption and elution rates with concentration factors between 20 and 30 in consecutive operation cycles. The loaded zeolite was regenerated using 2g NaOH/L solution and the rich ammonium/ammonia concentrates 2-3g/L in NaOH were used in a liquid-liquid membrane contactor system in a closed-loop configuration with nitric and phosphoric acid as stripping solutions. The ammonia recovery ratio exceeded 98%. Ammonia nitrate and di-ammonium phosphate concentrated solutions reached up to 2-5% wt. of N. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. EFFECTS OF AMMONIUM AND NITRATE ON NUTRIENT UPTAKE AND ACTIVITY OF NITROGEN ASSIMILATING ENZYMES IN WESTERN HEMLOCK

    EPA Science Inventory

    Western hemlock seedlings were grown in nutrient solutions with ammonium, nitrate or ammonium plus nitrate as nitrogen sources. he objectives were to examine (1) possible selectivity for ammonium or nitrate as an N source, (2) the maintenance of charge balance during ammonium and...

  15. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The...

  16. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies.

    PubMed

    Boopathy, Ramasamy; Karthikeyan, Sekar; Mandal, Asit Baran; Sekaran, Ganesan

    2013-01-01

    Ammonium ions are one of the most encountered nitrogen species in polluted water bodies. High level of ammonium ion in aqueous solution imparts unpleasant taste and odor problems, which can interfere with the life of aquatics and human population when discharged. Many chemical methods are developed and being used for removal of ammonium ion from aqueous solution. Among various techniques, adsorption was found to be the most feasible and environmentally friendly with the use of natural-activated adsorbents. Hence, in this study, coconut shell-activated carbon (CSAC) was prepared and used for the removal of ammonium ion by adsorption techniques. Ammonium chloride (analytical grade) was purchased from Merck Chemicals for adsorption studies. The CSAC was used to adsorb ammonium ions under stirring at 100 rpm, using orbital shaker in batch experiments. The concentration of ammonium ion was estimated by ammonia distillate, using a Buchi distillation unit. The influence of process parameters such as pH, temperature, and contact time was studied for adsorption of ammonium ion, and kinetic, isotherm models were validated to understand the mechanism of adsorption of ammonium ion by CSAC. Thermodynamic properties such as ∆G, ∆H, and ∆S were determined for the ammonium adsorption, using van't Hoff equation. Further, the adsorption of ammonium ion was confirmed through instrumental analyses such as SEM, XRD, and FTIR. The optimum conditions for the effective adsorption of ammonium ion onto CSAC were found to be pH 9.0, temperature 283 K, and contact time 120 min. The experimental data was best followed by pseudosecond order equation, and the adsorption isotherm model obeyed the Freundlich isotherm. This explains the ammonium ion adsorption onto CSAC which was a multilayer adsorption with intraparticle diffusion. Negative enthalpy confirmed that this adsorption process was exothermic. The instrumental analyses confirmed the adsorption of ammonium ion onto CSAC.

  17. An improved method for total organic iodine in drinking water.

    PubMed

    Sayess, Rassil; Reckhow, David A

    2017-01-01

    A concise, rapid, and sensitive method is developed to measure organically-bound iodine in water. Total organic iodine (TOI) is used as an integrative surrogate that reflects the amount of iodinated organics in a water sample and is quantified using a refined method that builds on previous adsorption and detection approaches. The proposed method combines adsorption, combustion, and trapping of combustion products, with an offline inductively coupled plasma/mass spectrometer (ICP-MS) for iodide detection. During method development, three analytical variables (factors) were varied across two levels each in order to optimize the method for iodine recovery: 1) the sample pH prior to adsorption on the granular activated carbon (GAC); 2) the amount of base addition to the trap solution; and 3) composition of the ICP-MS wash solution. These factors were tested with solutions of eight iodinated model organic compounds, two iodinated inorganic compounds, and field water samples using a full factorial experimental design. An analysis of variance (ANOVA) and related statistical methods were deployed to identify the best combination of conditions (i.e., treatment) that results in the most complete recovery of iodine from the model compounds and the highest rejection of inorganic iodine. The chosen treatment for TOI measurement incorporates a sample pH of less than 1 prior to adsorption onto the GAC, a solution of 2% (v/v) tetramethyl ammonium hydroxide (TMAH) for trapping of combustion products, and a TMAH wash solution of 0.1% (v/v) for the ICP-MS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Determination of acetylsalicylic acid in commercial tablets by SERS using silver nanoparticle-coated filter paper

    NASA Astrophysics Data System (ADS)

    Sallum, Loriz Francisco; Soares, Frederico Luis Felipe; Ardila, Jorge Armando; Carneiro, Renato Lajarim

    2014-12-01

    In this work, filter paper was used as a low cost substrate for silver nanoparticles in order to perform the detection and quantification of acetylsalicylic acid by SERS in a commercial tablet. The reaction conditions were 150 mM of ammonium hydroxide, 50 mM of silver nitrate, 500 mM of glucose, 12 min of the reaction time, 45 °C temperature, pretreatment with ammonium hydroxide and quantitative filter paper (1-2 μm). The average size of silver nanoparticles deposited on the paper substrate was 180 nm. Adsorption time of acetylsalicylic acid on the surface of the silver-coated filter paper was studied and an adsorption time of 80 min was used to build the analytical curve. It was possible to obtain a calibration curve with good precision with a coefficient of determination of 0.933. The method proposed in this work was capable to quantify acetylsalicylic acid in commercial tablets, at low concentration levels, with relative error of 2.06% compared to the HPLC. The preparation of filter paper coated with silver nanoparticles using Tollen's reagent presents several advantages such as low cost of synthesis, support and reagents; minimum amount of residuals, which are easily treated, despite the SERS spectroscopy presenting fast analysis, with low sample preparation and low amount of reactants as in HPLC analysis.

  19. Formation of hydrotalcite in aqueous solutions and intercalation of ATP by anion exchange.

    PubMed

    Tamura, Hiroki; Chiba, Jun; Ito, Masahiro; Takeda, Takashi; Kikkawa, Shinichi; Mawatari, Yasuteru; Tabata, Masayoshi

    2006-08-15

    The formation reaction and the intercalation of adenosine triphosphate (ATP) were studied for hydrotalcite (HT), a layered double hydroxide (LDH) of magnesium and aluminum. Hydrotalcite with nitrate ions in the interlayer (HT-NO(3)) was formed (A) by dropwise addition of a solution of magnesium and aluminum nitrates (pH ca. 3) to a sodium hydroxide solution (pH ca. 14) until the pH decreased from 14 to 10 and (B) by dropwise addition of the NaOH solution to the solution of magnesium and aluminum nitrates with pH increasing from 3 to 10. The precipitate obtained with method B was contaminated with aluminum hydroxide and the crystallinity of the product was low, possibly because aluminum hydroxide precipitates at pH 4 or 5 and remains even after HT-NO(3) forms at pH above 8. With method A, however, the precipitate was pure HT-NO(3) with increased crystallinity, since the solubility of aluminum hydroxide at pH above and around 10 is high as dissolved aluminate anions are stable in this high pH region, and there was no aluminum hydroxide contamination. The formed HT-NO(3) had a composition of [Mg(0.71)Al(0.29)(OH)(2)](NO(3))(0.29).0.58H(2)O. To intercalate ATP anions into the HT-NO(3), HT-NO(3) was dispersed in an ATP solution at pH 7. It was found that the interlayer nitrate ions were completely exchanged with ATP anions by ion exchange, and the interlayer distance expanded almost twice with a free space distance of 1.2 nm. The composition of HT-ATP was established as [Mg(0.68)Al(0.32)(OH)(2)](ATP)(0.080)0.88H(2)O. The increased distance could be explained with a calculated molecular configuration of the ATP as follows: An ATP molecule is bound to an interlayer surface with the triphosphate group, the adenosine group bends owing to its bond angles and projects into the interlayer to a height of 1 nm, and the adenosine groups aligned in the interlayer support the interlayer distance.

  20. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xiaorui, E-mail: gxr_1320@sina.com; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189; Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and amore » diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.« less

  1. Inhibition of Protein Carbamylation in Urea Solution Using Ammonium Containing Buffers

    PubMed Central

    Sun, Shisheng; Zhou, Jian-Ying; Yang, Weiming; Zhang, Hui

    2013-01-01

    Urea solution is one of the most commonly employed protein denaturants for protease digestion in proteomic studies. However, it has long been recognized that urea solution can cause carbamylation at the N-termini of proteins/peptides and at the side chain amino groups of lysine and arginine residues. Protein/peptide carbamylation blocks protease digestion and affects protein identification and quantification in mass spectrometry analysis by blocking peptide amino groups from isotopic/isobaric labeling and changing peptide charge states, retention times and masses. In addition, protein carbamylation during sample preparation makes it difficult to study in vivo protein carbamylation. In this study, we compared the peptide carbamylation in urea solutions of different buffers and found that ammonium containing buffers were the most effective buffers to inhibit protein carbamylation in urea solution. The possible mechanism of carbamylation inhibition by ammonium containing buffers is discussed, and a revised procedure for the protease digestion of proteins in urea and ammonium containing buffers was developed to facilitate its application in proteomic research. PMID:24161613

  2. Synthesis and characterization of Fe3O4-SiO2-AgCl photocatalyst

    NASA Astrophysics Data System (ADS)

    Husni, H. N.; Mahmed, N.; Ngee, H. L.

    2016-07-01

    Magnetite-silica-silver chloride (Fe3O4-SiO2-AgCl) coreshell particles with AgCl crystallite size of 117 nm was prepared by a wet chemistry method at ambient temperature. The magnetite-core was synthesized by using iron (II) sulfate heptahydrate (FeSO4•7H2O) and iron (III) sulfate hydrate (Fe2(SO4)3) with ammonium hydroxide (NH4OH) as the precipitating agent. The silica-shell was synthesized by using a modified Stöber process. The silver ions (Ag+) was adsorbed onto the silica surface after Söber process, followed by the addition of Cl- and polyvinylpyrrolidone (PVP) for the formation of Fe3O4-SiO2-AgCl coreshell particles. The effectiveness of the synthesized photocatalyst was investigated by monitoring the degradation of the methylene blue (MB) under sunlight for five cycles. About 90 % of the MB solution can be degraded after 2 hours. The degradation of MB solution by the Fe3O4-SiO2-AgCl particles is highly efficient for first three cycles according to the MB concentration recorded by the UV-Visible spectroscopy (UV-Vis). Nevertheless, the synthesized particles could be a promising material for photocatalytic applications.

  3. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantifymore » the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.« less

  4. A mini-type hydrogen generator from aluminum for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Er-Dong; Shi, Peng-Fei; Du, Chun-Yu; Wang, Xiao-Rui

    A safe and simple hydrogen generator, which produced hydrogen by chemical reaction of aluminum and sodium hydroxide solution, was proposed for proton exchange membrane fuel cells. The effects of concentration, dropping rate and initial temperature of sodium hydroxide solution on hydrogen generation rate were investigated. The results showed that about 38 ml min -1 of hydrogen generation rate was obtained with 25 wt.% concentration and 0.01 ml s -1 dropping rate of sodium hydroxide solution. The cell fueled by hydrogen from the generator exhibited performance improvement at low current densities, which was mainly due to the humidified hydrogen reduced the protonic resistivity of the proton exchange membrane. The hydrogen generator could stably operate a single cell under 500 mA for nearly 5 h with about 77% hydrogen utilization ratio.

  5. Recycling positive-electrode material of a lithium-ion battery

    DOEpatents

    Sloop, Steven E.

    2017-11-21

    Examples are disclosed of methods to recycle positive-electrode material of a lithium-ion battery. In one example, the positive-electrode material is heated under pressure in a concentrated lithium hydroxide solution. After heating, the positive-electrode material is separated from the concentrated lithium hydroxide solution. After separating, the positive electrode material is rinsed in a basic liquid. After rinsing, the positive-electrode material is dried and sintered.

  6. Praseodymium hydroxide and oxide nanorods and Au/Pr6O11 nanorod catalysts for CO oxidation.

    PubMed

    Huang, P X; Wu, F; Zhu, B L; Li, G R; Wang, Y L; Gao, X P; Zhu, H Y; Yan, T Y; Huang, W P; Zhang, S M; Song, D Y

    2006-02-02

    Praseodymium hydroxide nanorods were synthesized by a two-step approach: First, metallic praseodymium was used to form praseodymium chloride, which reacted subsequently with KOH solution to produce praseodymium hydroxide. In the second step the hydroxide was treated with a concentrated alkaline solution at 180 degrees C for 45 h, yielding nanorods as shown by the scanning and transmission electron microscopy images. The results of X-ray diffraction and energy-dispersive X-ray spectroscopy experiments indicate that these nanorods are pure praseodymium hydroxide with a hexagonal structure, which can be converted into praseodymium oxide (Pr6O11) nanorods of a face-centered cubic structure after calcination at 600 degrees C for 2 h in air. Gold was loaded on the praseodymium oxide nanorods using HAuCl4 as the gold source, and NaBH4 was used to reduce the gold species to metallic nanoparticles with sizes of 8-12 nm on the nanorod surface. These Au/Pr6O11 nanorods exhibit superior catalytic activity for CO oxidation.

  7. Sequestration of phosphorus by acid mine drainage floc

    USGS Publications Warehouse

    Adler, P.R.; Sibrell, P.L.

    2003-01-01

    Solubilization and transport of phosphorus (P) to the water environment is a critical environmental issue. Flocs resulting from neutralizing acid mine drainage (AMD) were tested as a possible lowcost amendment to reduce the loss of soluble P from agricultural fields and animal wastewater. Flocs were prepared by neutralizing natural and synthetic solutions of AMD with limestone, lime, ammonium hydroxide, and sodium hydroxide. Phosphorus sequestration was tested in three distinct environments: water, soil, and manure storage basins. In water, flocs prepared from AMD adsorbed 10 to 20 g P kg-1 dry floc in equilibrium with 1 mg L-1 soluble P. Similar results were observed for both Fe-based and A1-based synthetic flocs. A local soil sample adsorbed about 0.1 g P kg-1, about two orders of magnitude less. The AMD-derived flocs were mixed with a highP soil at 5 to 80 g floc kg-1 soil, followed by water and acid (Mehlich1) extractions. All flocs performed similarly. About 70% of the waterextractable P was sequestered by the floc when applied at a rate of 20 g floc kg-1 soil, whereas plant-available P only decreased by about 30%. Under anaerobic conditions simulating manure storage basins, all AMD flocs reduced soluble P by greater than 95% at a rate of 0.2 g floc g-1 rainbow trout (Oncorhynchus mykiss) manure. These findings indicate that AMD flocs could be an effective agent for preventing soluble P losses from soil and manure to the water environment, while at the same time decreasing the costs associated with AMD treatment.

  8. Morphometric and microscopic evaluation of the effect of a solution of alendronate as an intracanal therapeutic agent in rat teeth submitted to late reimplantation.

    PubMed

    Mori, Graziela Garrido; Garcia, Roberto Brandão; Gomes de Moraes, Ivaldo; Bramante, Clóvis Monteiro; Bernardineli, Norberti

    2007-08-01

    The use of substances that inhibit root resorption may be an alternative for cases of unsuccessful reimplants. Hence, the purpose of this study was to test a solution of alendronate, a resorption inhibitor, as an intracanal therapeutic agent for teeth submitted to late reimplantation. Thirty rat maxillary right central incisors were avulsed and kept dry for 30 min. The teeth were instrumented, and the root surfaces treated with 1% hypochlorite solution followed by application of 2% sodium fluoride. Thereafter, the teeth were divided in two groups according to the intracanal dressing: (i) group I, solution of alendronate and (ii) group II, calcium hydroxide paste. Teeth were then reimplanted in their respective sockets. The animals were killed at 15, 30 and 60 days after reimplantation and the samples processed for morphometric and microscopic analysis. The results demonstrated that the solution of alendronate and the calcium hydroxide paste limited the root resorption, yet did not impair its occurrence. It may be concluded that alendronate and calcium hydroxide paste demonstrated similar behavior.

  9. Effects of inorganic substances on water splitting in ion-exchange membranes; II. Optimal contents of inorganic substances in preparing bipolar membranes.

    PubMed

    Kang, Moon-Sung; Choi, Yong-Jin; Moon, Seung-Hyeon

    2004-05-15

    An approach to enhancing the water-splitting performance of bipolar membranes (BPMs) is introducing an inorganic substance at the bipolar (BP) junction. In this study, the immobilization of inorganic matters (i.e., iron hydroxides and silicon compounds) at the BP junction and the optimum concentration have been investigated. To immobilize these inorganic matters, novel methods (i.e., electrodeposition of the iron hydroxide and processing of the sol-gel to introduce silicon groups at the BP junction) were suggested. At optimal concentrations, the immobilized inorganic matters significantly enhanced the water-splitting fluxes, indicating that they provide alternative paths for water dissociation, but on the other hand possibly reduce the polarization of water molecules between the sulfonic acid and quaternary ammonium groups at high contents. Consequently, the amount of inorganic substances introduced should be optimized to obtain the maximum water splitting in the BPM.

  10. Ammonia induced precipitation of cobalt hydroxide: observation of turbostratic disorder

    NASA Astrophysics Data System (ADS)

    Ramesh, T. N.; Rajamathi, Michael; Kamath, P. Vishnu

    2003-05-01

    Cobalt hydroxide freshly precipitated from aqueous solutions of Co salts using ammonia, is a layered phase having a 9.17 Å interlayer spacing. DIFFaX simulations of the PXRD pattern reveal that it is turbostratically disordered.

  11. Behavior of GaSb (100) and InSb (100) surfaces in the presence of H2O2 in acidic and basic cleaning solutions

    NASA Astrophysics Data System (ADS)

    Seo, Dongwan; Na, Jihoon; Lee, Seunghyo; Lim, Sangwoo

    2017-03-01

    Gallium antimonide (GaSb) and indium antimonide (InSb) have attracted strong attention as new channel materials for transistors due to their excellent electrical properties and lattice matches with various group III-V compound semiconductors. In this study, the surface behavior of GaSb (100) and InSb (100) was investigated and compared in hydrochloric acid/hydrogen peroxide mixture (HPM) and ammonium hydroxide/hydrogen peroxide mixture (APM) solutions. In the acidic HPM solution, surface oxidation was greater and the etching rates of the GaSb and InSb surfaces increased when the solution is concentrated, which indicates that H2O2 plays a key role in the surface oxidation of GaSb and InSb in acidic HPM solution. However, the GaSb and InSb surfaces were hardly oxidized in basic APM solution in the presence of H2O2 because gallium and indium are in the thermodynamically stable forms of H2GaO3- and InO2-, respectively. When the APM solution was diluted, however, the Ga on the GaSb surface was oxidized by H2O, increasing the etching rate. However, the effect of dilution of the APM solution on the oxidation of the InSb surface was minimal; thus, the InSb surface was less oxidized than the GaSb surface and the change in the etching rate of InSb with dilution of the APM solution was not significant. Additionally, the oxidation behavior of gallium and indium was more sensitive to the composition of the HPM and APM solutions than that of antimony. Therefore, the surface properties and etching characteristics of GaSb and InSb in HPM and APM solutions are mainly dependent on the behavior of the group III elements rather than the group V elements.

  12. Stabilization of a Recombinant Ricin Toxin A Subunit Vaccine through Lyophilization

    PubMed Central

    Hassett, Kimberly J.; Cousins, Megan C.; Rabia, Lilia A.; Chadwick, Chrystal M.; O’Hara, Joanne M.; Nandi, Pradyot; Brey, Robert N.; Mantis, Nicholas J.; Carpenter, John F.; Randolph, Theodore W.

    2013-01-01

    Lyophilization was used to prepare dry, glassy solid vaccine formulations of recombinant ricin toxin A-chain containing suspensions of colloidal aluminum hydroxide adjuvant. Four lyophilized formulations were prepared by using combinations of rapid or slow cooling during lyophilization and one of two buffers, histidine or ammonium acetate. Trehalose was used as the stabilizing excipient. Aggregation of the colloidal aluminum hydroxide suspension was reduced in formulations processed with a rapid cooling rate. Aluminum hydroxide particle size distributions, glass transition temperatures, water contents, and immunogenicities of lyophilized vaccines were independent of incubation time at 40°C for up to 15 weeks. Mice immunized with reconstituted ricin toxin subunit A (RTA) vaccines produced RTA-specific antibodies and toxin-neutralizing antibodies (TNA) regardless of the length of high temperature vaccine storage or the degree of aluminum adjuvant aggregation that occurred during lyophilization. In murine studies, lyophilized formulations of vaccines conferred protection against exposure to lethal doses of ricin, even after the lyophilized formulations had been stored at 40°C for 4 weeks. A corresponding liquid formulation of vaccine stored at 40°C elicited RTA-specific antibody titers but failed to confer immunity during a ricin challenge. PMID:23583494

  13. Stabilization of a recombinant ricin toxin A subunit vaccine through lyophilization.

    PubMed

    Hassett, Kimberly J; Cousins, Megan C; Rabia, Lilia A; Chadwick, Chrystal M; O'Hara, Joanne M; Nandi, Pradyot; Brey, Robert N; Mantis, Nicholas J; Carpenter, John F; Randolph, Theodore W

    2013-10-01

    Lyophilization was used to prepare dry, glassy solid vaccine formulations of recombinant ricin toxin A-chain containing suspensions of colloidal aluminum hydroxide adjuvant. Four lyophilized formulations were prepared by using combinations of rapid or slow cooling during lyophilization and one of two buffers, histidine or ammonium acetate. Trehalose was used as the stabilizing excipient. Aggregation of the colloidal aluminum hydroxide suspension was reduced in formulations processed with a rapid cooling rate. Aluminum hydroxide particle size distributions, glass transition temperatures, water contents, and immunogenicities of lyophilized vaccines were independent of incubation time at 40 °C for up to 15 weeks. Mice immunized with reconstituted ricin toxin subunit A (RTA) vaccines produced RTA-specific antibodies and toxin-neutralizing antibodies (TNAs) regardless of the length of high temperature vaccine storage or the degree of aluminum adjuvant aggregation that occurred during lyophilization. In murine studies, lyophilized formulations of vaccines conferred protection against exposure to lethal doses of ricin, even after the lyophilized formulations had been stored at 40 °C for 4 weeks. A corresponding liquid formulation of vaccine stored at 40 °C elicited RTA-specific antibody titers but failed to confer immunity during a ricin challenge. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration-A Long Term Field Test Conducted in West Bengal.

    PubMed

    Otter, Philipp; Malakar, Pradyut; Jana, Bana Bihari; Grischek, Thomas; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-10-02

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus ® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved-without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  15. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    PubMed Central

    Malakar, Pradyut; Jana, Bana Bihari; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-01-01

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas. PMID:28974053

  16. Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.

    1999-01-01

    Solutions containing di- and trivalent metal chlorides [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+; M(III) = Al3+, Fe3+] were titrated with NaOH to yield hydrotalcite-like layered double hydroxides (LDH), [[M(II)]1-x[M(III)]x(OH)2][Cl]x yH2O, by way of M(III) hydroxide/hydrous oxide intermediates. Analysis of the resultant titration curves yields nominal solubility constants for the LDH. The corresponding LDH stabilities are in the order Mg < Mn < Co approximately Ni < Zn for M(II) and Al < Fe for M(III). The stability of LDH relative to the separate metal hydroxides/hydrous oxides is discussed.

  17. Alkaline/peracetic acid as a pretreatment of lignocellulosic biomass for ethanol fuel production

    NASA Astrophysics Data System (ADS)

    Teixeira, Lincoln Cambraia

    Peracetic acid is a lignin oxidation pretreatment with low energy input by which biomass can be treated in a silo type system for improving enzymatic digestibility of lignocellulosic materials for ethanol production. Experimentally, ground hybrid poplar wood and sugar cane bagasse are placed in plastic bags and a peracetic acid solution is added to the biomass in different concentrations based on oven-dry biomass. The ratio of solution to biomass is 6:1; after initial mixing of the resulting paste, a seven-day storage period at about 20°C is used in this study. As a complementary method, a series of pre-pretreatments using stoichiometric amounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetyl content in the biomass is been performed before addition of peracetic acid. The alkaline solutions are added to the biomass in a ratio of 14:1 solution to biomass; the slurry is mixed for 24 hours at ambient temperature. The above procedures give high xylan content substrates. Consequently, xylanase/beta-glucosidase combinations are more effective than cellulase preparations in hydrolyzing these materials. The pretreatment effectiveness is evaluated using standard enzymatic hydrolysis and simultaneous saccharification and cofermentation (SSCF) procedures. Hybrid poplar wood pretreated with 15 and 21% peracetic acid based on oven-dry weight of wood gives glucan conversion yields of 76.5 and 98.3%, respectively. Sugar cane bagasse pretreated with the same loadings gives corresponding yields of 85.9 and 93.1%. Raw wood and raw bagasse give corresponding yields of 6.8 and 28.8%, respectively. The combined 6% NaOH/15% peracetic acid pretreatments increase the glucan conversion yields from 76.5 to 100.0% for hybrid poplar wood and from 85.9 to 97.6% for sugar cane bagasse. Respective ethanol yields of 92.8 and 91.9% are obtained from 6% NaOH/15% peracetic acid pretreated materials using recombinant Zymomonas mobilis CP4/pZB5. Peracetic acid pretreatment improves enzymatic digestibility of hybrid poplar wood and sugar cane bagasse. Based on reduction of acetyl groups in the two lignocellulosic materials, alkaline pre-pretreatments are helpful in reducing peracetic acid requirements in the pretreatment and consequently diminishing growth inhibition of the bacteria that was observed using higher peracetic acid loadings.

  18. Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent.

    PubMed

    Huang, Haiming; Xiao, Xianming; Yan, Bo; Yang, Liping

    2010-03-15

    This paper presents a study of the removal of ammonium ion from aqueous solutions using natural Chinese (Chende) zeolite. A series of experiments was conducted to examine the effects of solution pH, particle size, contact time, adsorbent dosage, and the presence of other cation- and anion species on ammonium removal. The findings indicated that these parameters named had a significant effect on the removal of ammonium by the zeolite. The effect of other cations on the removal of ammonium followed the order of preference Na(+)>K(+)>Ca(2+)>Mg(2+) at identical mass concentrations, and the effect of the presence of individual anions followed the order of preference carbonate>chloride>sulfate>phosphate at identical mass concentrations of ammonium ions. Kinetic analysis showed that the adsorption of ammonium on zeolite at different ranges of particle size well followed the pseudo-second-order model and followed the intra-particle diffusion model only during the initial 60 min of the adsorption process. Equilibrium isotherm data was fitted to the linear Langmuir- and Freundlich models with the latter model providing the better description of the process (R(2)=0.991-0.997) compared to the former (R(2)=0.902-0.989). (c) 2009 Elsevier B.V. All rights reserved.

  19. Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries

    DOEpatents

    Kong, Peter C [Idaho Falls, ID; Pink, Robert J [Pocatello, ID; Nelson, Lee O [Idaho Falls, ID

    2005-01-04

    The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O.sub.2 gas wherein the O.sub.2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.

  20. CONCENTRATION OF Pu USING AN IODATE PRECIPITATE

    DOEpatents

    Fries, B.A.

    1960-02-23

    A method is given for separating plutonium from lanthanum in a lanthanum fluoride carrier precipitation process for the recovery of plutonium values from an aqueous solution. The carrier precipitation process includes the steps of forming a lanthanum fluoride precipi- . tate, thereby carrying plutonium out of solution, metathesizing the fluoride precipitate to a hydroxide precipitate, and then dissolving the hydroxide precipitate in nitric acid. In accordance with the invention, the nitric acid solution, which contains plutonium and lanthanum, is made 0.05 to 0.15 molar in potassium iodate. thereby precipitating plutonium as plutonous iodate and the plutonous iodate is separated from the lanthanum- containing supernatant solution.

  1. Control of crystallite and particle size in the synthesis of layered double hydroxides: Macromolecular insights and a complementary modeling tool.

    PubMed

    Galvão, Tiago L P; Neves, Cristina S; Caetano, Ana P F; Maia, Frederico; Mata, Diogo; Malheiro, Eliana; Ferreira, Maria J; Bastos, Alexandre C; Salak, Andrei N; Gomes, José R B; Tedim, João; Ferreira, Mário G S

    2016-04-15

    Zinc-aluminum layered double hydroxides with nitrate intercalated (Zn(n)Al-NO3, n=Zn/Al) is an intermediate material for the intercalation of different functional molecules used in a wide range of industrial applications. The synthesis of Zn(2)Al-NO3 was investigated considering the time and temperature of hydrothermal treatment. By examining the crystallite size in two different directions, hydrodynamic particle size, morphology, crystal structure and chemical species in solution, it was possible to understand the crystallization and dissolution processes involved in the mechanisms of crystallite and particle growth. In addition, hydrogeochemical modeling rendered insights on the speciation of different metal cations in solution. Therefore, this tool can be a promising solution to model and optimize the synthesis of layered double hydroxide-based materials for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Removal of Lead Hydroxides Complexes from Solutions Formed in Silver/Gold: Cyanidation Process

    NASA Astrophysics Data System (ADS)

    Parga, José R.; Martinez, Raul Flores; Moreno, Hector; Gomes, Andrew Jewel; Cocke, David L.

    2014-04-01

    The presence of lead hydroxides in "pregnant cyanide solution" decreases the quality of the Dore obtained in the recovery processes of gold and silver, so it is convenient to remove them. The adsorbent capacity of the low cost cow bone powder was investigated for the removal of lead ions from a solution of lead hydroxide complexes at different initial metal ion concentrations (10 to 50 mg/L), and reaction time. Experiments were carried out in batches. The maximum sorption capacity of lead determined by the Langmuir model was found to be 126.58 mg/g, and the separation factor R L was between 0 and 1, indicating a significant affinity of bone for lead. Experimental data follow pseudo-second order kinetics suggesting chemisorption. It is concluded that cow bone powder can be successfully used for the removal of lead ions, and improves the quality of the silver-gold cyanides precipitate.

  3. The structure of aqueous sodium hydroxide solutions: a combined solution x-ray diffraction and simulation study.

    PubMed

    Megyes, Tünde; Bálint, Szabolcs; Grósz, Tamás; Radnai, Tamás; Bakó, Imre; Sipos, Pál

    2008-01-28

    To determine the structure of aqueous sodium hydroxide solutions, results obtained from x-ray diffraction and computer simulation (molecular dynamics and Car-Parrinello) have been compared. The capabilities and limitations of the methods in describing the solution structure are discussed. For the solutions studied, diffraction methods were found to perform very well in describing the hydration spheres of the sodium ion and yield structural information on the anion's hydration structure. Classical molecular dynamics simulations were not able to correctly describe the bulk structure of these solutions. However, Car-Parrinello simulation proved to be a suitable tool in the detailed interpretation of the hydration sphere of ions and bulk structure of solutions. The results of Car-Parrinello simulations were compared with the findings of diffraction experiments.

  4. Effects of Leaching Behavior of Calcium Ions on Compression and Durability of Cement-Based Materials with Mineral Admixtures

    PubMed Central

    Cheng, An; Chao, Sao-Jeng; Lin, Wei-Ting

    2013-01-01

    Leaching of calcium ions increases the porosity of cement-based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing reinforcing steel corrosion. This study investigates the effects of leaching behavior of calcium ions on the compression and durability of cement-based materials. Since the parameters influencing the leaching behavior of cement-based materials are unclear and diverse, this paper focuses on the influence of added mineral admixtures (fly ash, slag and silica fume) on the leaching behavior of calcium ions regarding compression and durability of cemented-based materials. Ammonium nitrate solution was used to accelerate the leaching process in this study. Scanning electron microscopy, X-ray diffraction analysis, and thermogravimetric analysis were employed to analyze and compare the cement-based material compositions prior to and after calcium ion leaching. The experimental results show that the mineral admixtures reduce calcium hydroxide quantity and refine pore structure through pozzolanic reaction, thus enhancing the compressive strength and durability of cement-based materials. PMID:28809247

  5. Peptide adsorption to cyanine dye aggregates revealed by cryo-transmission electron microscopy.

    PubMed

    von Berlepsch, Hans; Brandenburg, Enrico; Koksch, Beate; Böttcher, Christoph

    2010-07-06

    The binding interaction between aggregates of the 5-chloro-2-[[5-chloro-3-(3-sulfopropyl)-3H-benzothiazol-2-ylidene]methyl]-3-(3-sulfopropyl)benzothiazolium hydroxide inner salt ammonium salt (CD-1) and alpha-helix, as well as beta-sheet forming de novo designed peptides, was investigated by absorption spectroscopy, circular dichroism spectroscopy, and cryogenic transmission electron microscopy. Both pure dye and pure peptides self-assembled into well-defined supramolecular assemblies in acetate buffer at pH = 4. The dye formed sheetlike and tubular H- and J-aggregates and the peptides alpha-helical coiled-coil assemblies or beta-sheet rich fibrils. After mixing dye and peptide solutions, tubular aggregates with an unusual ultrastructure were found, most likely due to the decoration of dye tubes with monolayers of peptide assemblies based on the strong electrostatic attraction between the oppositely charged species. There was neither indication of a transfer of chirality from the peptides to the dye aggregates nor the opposite effect of a structural transfer from dye aggregates onto the peptides secondary structure.

  6. Nano SnO 2-Al 2O 3 mixed oxide and SnO 2-Al 2O 3-carbon composite oxides as new and novel electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, M.; Venugopal, N.; Raja, K. Phani; Rao, M. Mohan

    New nano-materials like SnO 2-Al 2O 3 and SnO 2-Al 2O 3-carbon were synthesized by a single step hydrothermal method in searching for novel mixed oxides with high electrochemical double layer capacitance. A SnO 2-Al 2O 3-carbon sample was calcined at 600 °C and tested for its performance. The source of carbon was tetrapropyl ammonium hydroxide. The capacitive behavior of SnO 2 was compared to the performance of SnO 2-Al 2O 3, SnO 2-Al 2O 3-carbon and calcined SnO 2-Al 2O 3-carbon using the techniques of cyclic voltammetry, double potential step, chronopotentiometry and E-log I polarization. In 0.1 M NaCl solutions, SnO 2-Al 2O 3 gave the best performance with a value of 119 Fg -1 and cycled 1000 times. The nano-material mixed oxides were characterized by TEM, XRD, ICP-AES and SEM-EDAX.

  7. Multiresidue Screening Method for Detection of Benzimidazoles and their Metabolites in Liver and Muscle by High-Performance Liquid Chromatography: Method Development and Validation According to Commission Decision 2002/657/EC

    PubMed Central

    Prearo, Marino; Stella, Paola; Ostorero, Federica; Abete, Maria Cesarina

    2014-01-01

    The use of veterinary drugs may cause the presence of residues in food of animal origin if appropriate withdrawal periods are not respected. A high-performance liquid chromatography (HPLC) method has been developed for the simultaneous detection of 11 benzimidazole residues, including metabolites – albendazole, albendazole sulphoxide, albendazole sulphone, fenbendazole, fenbendazole sulphoxide (oxfendazole), fenbendazole sulphone, flubendazole, mebendazole, oxibendazole, thiabendazole, 5-hydroxythiabendazole – in bovine, ovine, equine, swine, rabbit and poultry liver and in bovine, swine and fish muscle. After extraction with a dicloromethane/acetonitrile solution (35/65 v/v) containing 5% ammonium hydroxide, the solvent was evaporated to dryness, the residue was dissolved in HCl 0.1 M, defatted with hexane, purified on a strong cation exchange solid-phase extraction cartridge and analysed in HPLC with diode array and fluorescence detectors. The method was validated as screening qualitative method evaluating, according to Commission Decision 2002/657/EC criteria, specificity, CCβ and β error at cut off level of 25 μg/kg and ruggedness. PMID:27800310

  8. Hydrothermal growth of ZnO nanowires on flexible fabric substrates

    NASA Astrophysics Data System (ADS)

    Hong, Gwang-Wook; Yun, Sang-Ho; Kim, Joo-Hyung

    2016-04-01

    ZnO nanowires (NWs) would provide significant enhancement in sensitivity due to high surface to volume ratio. We investigated the first methodical study on the quantitative relationship between the process parameters of solution concentration ratio, structure, and physical and properties of ZnO NWs grown on different flexible fabric surfaces. To develop a fundamental following concerning various substrates, we controlled the growth speed of ZnO NWs and nanowires on cotton surface with easy and moderate cost fabrication method. Using ammonium hydroxide as the reactant with zinc nitrate hexahydrate, ZnO NWs layer have been grown on metal layers, instead of seed layer. ZnO NWs fabrication was done on different fabric substrates such as wool, nylon and polypropylene (PP). After the ZnO NWs grown to each substrates, we coated insulating layer with polyurethane (PU) and ethyl cellulose for prevent external intervention. Detailed electrical characterization was subsequently performed to reveal the working characteristics of the hybrid fabric. For electrical verification of fabricated ZnO NWs, we implemented measurement impact test and material properties with FFT analyzer and LCR meter.

  9. Inhibition of protein carbamylation in urea solution using ammonium-containing buffers.

    PubMed

    Sun, Shisheng; Zhou, Jian-Ying; Yang, Weiming; Zhang, Hui

    2014-02-01

    Urea solution is one of the most commonly employed protein denaturants for protease digestion in proteomic studies. However, it has long been recognized that urea solution can cause carbamylation at the N termini of proteins/peptides and at the side chain amino groups of lysine and arginine residues. Protein/peptide carbamylation blocks protease digestion and affects protein identification and quantification in mass spectrometry analysis by blocking peptide amino groups from isotopic/isobaric labeling and changing peptide charge states, retention times, and masses. In addition, protein carbamylation during sample preparation makes it difficult to study in vivo protein carbamylation. In this study, we compared the peptide carbamylation in urea solutions of different buffers and found that ammonium-containing buffers were the most effective buffers to inhibit protein carbamylation in urea solution. The possible mechanism of carbamylation inhibition by ammonium-containing buffers is discussed, and a revised procedure for the protease digestion of proteins in urea and ammonium-containing buffers was developed to facilitate its application in proteomic research. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Immunoaffinity centrifugal precipitation chromatography.

    PubMed

    Qi, Lin; Ito, Yoichiro

    2007-06-01

    Purification of proteins based on immunoaffinity has been performed using a solid support coated with antibody against the target proteins. The method requires immobilizing the antibody onto the solid support using protein A or G, and has a risk of adsorptive loss of target proteins onto the solid support. Centrifugal precipitation chromatography has been successfully used to purify enzymes, such as ketosteroid isomerase and hyaluronidase without the use of solid support. The purpose of this study is to demonstrate that immunoaffinity centrifugal precipitation chromatography is capable of isolating an antigen by exploiting antigen-antibody binding. The separation was initiated by filling both channels with 40% saturated ammonium sulfate (AS) of pH 4-4.5 followed by loading 20 microl of human plasma (National Institutes of Health blood bank) mixed with 2 mg of rabbit anti-HSA (human serum protein) antibody (Sigma). Then, the sample channel was eluted with water at 0.03 ml/min and AS channel with 40% AS solution of pH 4-4.5 at 1 ml/min until all non-binding components were eluted. Then, the releasing reagent (50% AS solution containing 0.5 M glycine and 10% ammonium hydroxide at pH 10) was introduced through the AS channel to release the target protein (HSA). The retained antibody was recovered by eluting the sample channel with water at 1 ml/min. A hollow fiber membrane device at the outlet (MicroKros, Spectrum, New Brunswick, NJ, USA) was provided on-line dialysis of the eluent before fractions were collected, so that the fractions could be analyzed by SDS-PAGE (sodium dodecyl sulfate - polyacrylamide gel electrophoresis) without further dialysis. The current method does not require immobilizing the antibody onto a matrix, which is used by the conventional immunoaffinity chromatography. This method ensures full recovery of the antigen and antibody, and it may be applied to purification of other proteins.

  11. PHYSICAL SOLUTIONS FOR ACID MINE DRAINAGE AT REMOTE MINE SITES

    EPA Science Inventory

    After completing extensive bench-scale testing to determine optimum treatment approaches, the technology has been taken to the field. Preliminary results show that calcium hydroxide precipitates the bulk of the arsenic and zinc; the granular ferric hydroxide removes the rest of ...

  12. Synthesis of porous sheet-like Co{sub 3}O{sub 4} microstructure by precipitation method and its potential applications in the thermal decomposition of ammonium perchlorate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Shanshan; Jing Xiaoyan; Liu Jingyuan

    2013-01-15

    Porous sheet-like cobalt oxide (Co{sub 3}O{sub 4}) were successfully synthesized by precipitation method combined with calcination of cobalt hydroxide precursors. The structure, morphology and porosity properties of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption measurement. The as-prepared sheet-like microstructures were approximately 2-3 {mu}m in average diameter, and the morphology of the cobalt hydroxide precursors was retained after the calcination process. However, it appeared a large number of uniform pores in the sheets after calcination. In order to calculate the potential catalytic activity, the thermal decomposition of ammoniummore » perchlorate (AP) has been analyzed, in which cobalt oxide played a role of an additive and the porous sheet-like Co{sub 3}O{sub 4} microstructures exhibited high catalytic performance and considerable decrease in the thermal decomposition temperature of AP. Moreover, a formation mechanism for the sheet-like microstructures has been discussed. - Graphical abstract: Porous sheet-like Co{sub 3}O{sub 4} were synthesized by facile precipitation method combined with calcination of {beta}-Co(OH){sub 2} precursors. Thermogravimetric-differential scanning calorimetric analysis indicates potential catalytic activity in the thermal decomposition of ammonium perchlorate. Highlights: Black-Right-Pointing-Pointer Synthesis of sheet-like {beta}-Co(OH){sub 2} precursors by precipitation method. Black-Right-Pointing-Pointer Porous sheet-like Co{sub 3}O{sub 4} were obtained by calcining {beta}-Co(OH){sub 2} precursors. Black-Right-Pointing-Pointer The possible formation mechanism of porous sheet-like Co{sub 3}O{sub 4} has been discussed. Black-Right-Pointing-Pointer Porous sheet-like Co{sub 3}O{sub 4} decrease the thermal decomposition temperature of ammonium perchlorate.« less

  13. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.

    PubMed

    Gong, Ming; Li, Yanguang; Wang, Hailiang; Liang, Yongye; Wu, Justin Z; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie

    2013-06-12

    Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.

  14. A case study for removal of sulphur-di-oxide from exhaust flue gases at thermal power plant, Rajasthan (India).

    PubMed

    Sharma, Rashmi; Acharya, Shveta; Sharma, Arun Kumar

    2011-01-01

    The aim of this study is to reduce the percent SO2 in environment and to produce a byproduct with SO2, to control air pollution. The present work envisages a situation that compares the efficiency of three different reagents, viz. sodium hydroxide, calcium hydroxide and waste product of water treatment plant containing CaO in removal of SO2 that would be generated in this situation. Various parameters were also observed with variation involving percent concentration of reactants, pH of the solution, time for reaction , temperature of solution and flow of flue gas in impingers. Pet coke with lime stone is being used for power generation in power plant during the experiment, the pet coke having 6% sulphur resulting in emission of SO2. Hence experiments have been conducted to trap these gases to produce sulphates. Waste product of water treatment plant, calcium hydroxide, and sodium hydroxide in various permutation and combination have been used with control flow by SO2 monitoring kit for preparation of calcium sulphate and sodium sulphate. Thus sodium hydroxide turned out to be better as compared to calcium hydroxide and sludge. It is also concluded that pH of the solution should be alkaline for good absorption of SO2 and maximum absorption of SO2 found in direct passing of SO2 in impinger as compared to indirect passing of SO2 in impingers. Good absorption of SO2 found at temperature range between 20-25 degrees C and it seems to be optimum. Maximum recovery of SO2 was obtained when the reaction took place for long time period.

  15. Pretreatment of aqueous ammonia on oil palm empty fruit fiber (OPEFB) in production of sugar

    NASA Astrophysics Data System (ADS)

    Zulkiple, Nursyafiqah; Maskat, Mohamad Yusof; Hassan, Osman

    2015-09-01

    Oil Palm Empty Fruit Bunch (OPEFB) is an agricultural residue that has the potential to become a good source for renewable feedstock for production of sugar. This work evaluated the effectiveness of aqueous ammonia as pretreatment at low (soaking, SAA) and elevated temperature (pressurized chamber) to deconstruct the lignocellulosic feedstock, prior to enzymatic hydrolysis. The ammonia pretreatments were compared against the standard NaOH method. The best tested pressurized chamber method conditions were at 100°C with 3 hour retention time, 12.5% ammonium hydroxide and 1:30 solid loading. The digestibility of the feedstock is determined with enzymatic hydrolysis using Cellic Ctech2 and Cellic Htech2. The sugars produced by pressurized chamber method within 24 hour of enzyme hydrolysis are similar to that produced by NaOH method which is 439.90 mg/ml and 351.61 mg/ml, respectively. Compared with optimum SAA method (24 hour, 6.25% of ammonium hydroxide at room temperature), pressurized chamber method was capable of producing enhanced delignification and higher production of sugar upon hydrolysis. These findings were supported by the disappearance peak at 1732, 1512 and 1243 on Fourier Transform Infrared (FTIR spectrum) of treated OPEFB by pressurized chamber method. XRD determination showed reduced crystallinity of OPEFB (37.23%) after treatment by pressurized chamber, suggesting higher accessibility toward enzyme hydrolysis. The data obtained suggest that the pressurized chamber pre-treatment method are suitable for OPEFB deconstruction to produce high yield of sugar.

  16. PLUTONIUM SEPARATION METHOD

    DOEpatents

    Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.

    1958-11-18

    The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.

  17. Lysergic acid amide as chemical marker for the total ergot alkaloids in rye flour - Determination by high-performance thin-layer chromatography-fluorescence detection.

    PubMed

    Oellig, Claudia

    2017-07-21

    Ergot alkaloids are generally determined by high-performance liquid chromatography (HPLC) coupled to fluorescence detection (FLD) or mass selective detection, analyzing the individual compounds. However, fast and easy screening methods for the determination of the total ergot alkaloid content are more suitable, since for monitoring only the sum of the alkaloids is relevant. The herein presented screening uses lysergic acid amide (LSA) as chemical marker, formed from ergopeptine alkaloids, and ergometrine for the determination of the total ergot alkaloids in rye with high-performance thin-layer chromatography-fluorescence detection (HPTLC-FLD). An ammonium acetate buffered extraction step was followed by liquid-liquid partition for clean-up before the ergopeptine alkaloids were selectively transformed to LSA and analyzed by HPTLC-FLD on silica gel with isopropyl acetate/methanol/water/25% ammonium hydroxide solution (80:10:3.8:1.1, v/v/v/v) as the mobile phase. The enhanced native fluorescence of LSA and unaffected ergometrine was used for quantitation without any interfering matrix. Limits of detection and quantitation were 8 and 26μg LSA/kg rye, which enables the determination of the total ergot alkaloids far below the applied quality criterion limit for rye. Close to 100% recoveries for different rye flours at relevant spiking levels were obtained. Thus, reliable results were guaranteed, and the fast and efficient screening for the total ergot alkaloids in rye offers a rapid alternative to the HPLC analysis of the individual compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Correlation of second virial coefficient with solubility for proteins in salt solutions.

    PubMed

    Mehta, Chirag M; White, Edward T; Litster, James D

    2012-01-01

    In this work, osmotic second virial coefficients (B(22)) were determined and correlated with the measured solubilities for the proteins, α-amylase, ovalbumin, and lysozyme. The B(22) values and solubilities were determined in similar solution conditions using two salts, sodium chloride and ammonium sulfate in an acidic pH range. An overall decrease in the solubility of the proteins (salting out) was observed at high concentrations of ammonium sulfate and sodium chloride solutions. However, for α-amylase, salting-in behavior was also observed in low concentration sodium chloride solutions. In ammonium sulfate solutions, the B(22) are small and close to zero below 2.4 M. As the ammonium sulfate concentrations were further increased, B(22) values decreased for all systems studied. The effect of sodium chloride on B(22) varies with concentration, solution pH, and the type of protein studied. Theoretical models show a reasonable fit to the experimental derived data of B(22) and solubility. B(22) is also directly proportional to the logarithm of the solubility values for individual proteins in salt solutions, so the log-linear empirical models developed in this work can also be used to rapidly predict solubility and B(22) values for given protein-salt systems. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  19. PROCESSING OF MONAZITE SAND

    DOEpatents

    Calkins, G.D.; Bohlmann, E.G.

    1957-12-01

    A process for the recovery of thorium, uranium, and rare earths from monazite sands is presented. The sands are first digested and dissolved in concentrated NaOH, and the solution is then diluted causing precipitation of uranium, thorium and rare earth hydroxides. The precipitate is collected and dissolved in HCl, and the pH of this solution is adjusted to about 6, precipitating the hydroxides of thorium and uranium but leaving the rare earths in solution. The rare earths are then separated from the solution by precipitation at a still higher pH. The thorium and uranium containing precipitate is redissolved in HNO/sub 3/ and the two elements are separated by extraction into tributyl phosphate and back extraction with a weakly acidic solution to remove the thorium.

  20. [Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES].

    PubMed

    Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang

    2008-11-01

    Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).

  1. Layered zinc hydroxide nanocones: synthesis, facile morphological and structural modification, and properties

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Ma, Renzhi; Liang, Jianbo; Wang, Chengxiang; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2014-10-01

    Layered zinc hydroxide nanocones intercalated with DS- have been synthesized for the first time via a convenient synthetic approach, using homogeneous precipitation in the presence of urea and sodium dodecyl sulfate (SDS). SDS plays a significant role in controlling the morphologies of as-synthesized samples. Conical samples intercalated with various anions were transformed through an anion-exchange route in ethanol solution, and the original conical structure was perfectly maintained. Additionally, these DS--inserted nanocones can be transformed into square-like nanoplates in aqueous solution at room temperature, fulfilling the need for different morphology-dependent properties. Corresponding ZnO nanocones and nanoplates have been further obtained through the thermal calcination of NO3--intercalating zinc hydroxide nanocones/nanoplates. These ZnO nanostructures with different morphologies exhibit promising photocatalytic properties.Layered zinc hydroxide nanocones intercalated with DS- have been synthesized for the first time via a convenient synthetic approach, using homogeneous precipitation in the presence of urea and sodium dodecyl sulfate (SDS). SDS plays a significant role in controlling the morphologies of as-synthesized samples. Conical samples intercalated with various anions were transformed through an anion-exchange route in ethanol solution, and the original conical structure was perfectly maintained. Additionally, these DS--inserted nanocones can be transformed into square-like nanoplates in aqueous solution at room temperature, fulfilling the need for different morphology-dependent properties. Corresponding ZnO nanocones and nanoplates have been further obtained through the thermal calcination of NO3--intercalating zinc hydroxide nanocones/nanoplates. These ZnO nanostructures with different morphologies exhibit promising photocatalytic properties. Electronic supplementary information (ESI) available: Typical SEM images, TGA curves and XRD patterns of as-prepared samples. See DOI: 10.1039/c4nr04166f

  2. Controlled drug release by polymer dissolution. II: Enzyme-mediated delivery device.

    PubMed

    Heller, J; Trescony, P V

    1979-07-01

    A novel, closed-loop drug delivery system was developed where the presence or absence of an external compound controls drug delivery from a bioerodible polymer. In the described delivery system, hydrocortisone was incorporated into a n-hexyl half-ester of a methyl vinyl ehter-maleic anhydride copolymer, and the polymer-drug mixture was fabricated into disks. These disks were then coated with a hydrogel containing immobilized urease. In a medium of constant pH and in the absence of external urea, the hydrocortisone release was that normally expected for that polymer at the given pH. With external urea, ammonium bicarbonate and ammonium hydroxide were generated within the hydrogel, which accelerated polymer erosion and drug release. The drug delivery rate increase was proportional to the amount of external urea and was reversible; that is, when external urea was removed, the drug release rate gradually returned to its original value.

  3. Method for recovery of petroleum oil from confining structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, R.H.

    1969-09-02

    Injected ammonia spontaneously reacts with the acid content of heavy crude petroleum oil to produce ammonium soaps in situ. The soaps cause an oil-in-water emulsion to be formed in the presence of reservoir (or flood) water, reducing the effective viscosity of the crude oil. If the ammonia slug is followed by steam, an advancing emulsion barrier is created by the thermal decomposition of part of the emulsion, freeing ammonia which can then react with additional crude in advance of the emulsion. Packs of 20-30 mesh Ottawa sand were saturated with water, flooded with Tulare crude oil from North Midway fieldmore » in California (high specific gravity), and waterflooded. A slug of 5.71 percent PV of 17 N ammonium hydroxide followed by water gave a total oil recovery of about 90 percent of the original oil.« less

  4. Effects of ammonium on uranium partitioning and kaolinite mineral dissolution.

    PubMed

    Emerson, Hilary P; Di Pietro, Silvina; Katsenovich, Yelena; Szecsody, Jim

    2017-02-01

    Ammonia gas injection is a promising technique for the remediation of uranium within the vadose zone. It can be used to manipulate the pH of a system and cause co-precipitation processes that are expected to remove uranium from the aqueous phase and decrease leaching from the solid phase. The work presented in this paper explores the effects of ammonium and sodium hydroxide on the partitioning of uranium and dissolution of the kaolinite mineral in simplified synthetic groundwaters using equilibrium batch sorption and sequential extraction experiments. It shows that there is a significant increase in uranium removal in systems with divalent cations present in the aqueous phase but not in sodium chloride synthetic groundwaters. Further, the initial conditions of the aqueous phase do not affect the dissolution of kaolinite. However, the type of base treatment does have an effect on mineral dissolution. Published by Elsevier Ltd.

  5. Use of water-external micellar dispersions in oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.C.

    1970-04-14

    A water-external micellar dispersion followed by a mobility buffer and a water drive were used for enhanced oil recovery. Field Berea sandstone cores (19.6 percent porosity, 387 md permeability) were saturated with brine (16,500 ppM sodium chloride), flooded with crude oil from the Henry lease in Illinois (viscosity of 5.9 cp at 72/sup 0/F, specific gravity of 0.833), and waterflooded with water from Henry lease (17,210 ppM TDS). The micellar dispersion followed by the mobility buffer produced 99.6 percent of the oil in the core. The micellar slug contained ammonium petroleum sulfonate (MW 450), Henry crude oil, isopropanol, nonyl phenol,more » sodium hydroxide, and water from the Palestine water reservoir in Palestine, Illinois (412 ppM TDS). No. 530 Pusher, ammonium thiocyanate, isopropanol, and Palestine water were in the mobility buffer.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales, Ivana; Chung, Hoon Taek; Kim, Yu Seung

    Slow hydrogen oxidation reaction (HOR) kinetics on Pt under alkaline conditions is a significant technical barrier for the development of high-performance hydroxide exchange membrane fuel cells. Here we report that benzene adsorption on Pt is a major factor responsible for the sluggish HOR. Furthermore, we demonstrate that bimetallic catalysts, such as PtMo/C, PtNi/C, and PtRu/C, can reduce the adsorption of benzene and thereby improve HOR activity. In particular, the HOR voltammogram of PtRu/C in 0.1 M benzyl ammonium showed minimal benzene adsorption. Density functional theory calculations indicate that the adsorption of benzyl ammonium on the bimetallic PtRu is endergonic formore » all four possible orientations of the cation, which explains the significantly better HOR activity observed for the bimetallic catalysts. In conclusion, the new HOR inhibition mechanism described here provides insights for the design of future polymer electrolytes and electrocatalysts for better-performing polymer membrane-based fuel cells.« less

  7. PHYSICAL SOLUTIONS FOR ACID MINE DRAINAGE AT REMOTE MINE SITES (SLIDES)

    EPA Science Inventory

    After completing extensive bench-scale testing to determine optimum treatment approaches, the technology has been taken to the field. Preliminary results show that calcium hydroxide precipitates the bulk of the arsenic and zinc; the granular ferric hydroxide removes the rest of ...

  8. A surface-enhanced infrared absorption spectroscopic study of pH dependent water adsorption on Au

    NASA Astrophysics Data System (ADS)

    Dunwell, Marco; Yan, Yushan; Xu, Bingjun

    2016-08-01

    The potential dependent behavior of near-surface water on Au film electrodes in acidic and alkaline solutions is studied using a combination of attenuated total reflectance surface enhanced infrared spectroscopy and chronoamperometry. In acid, sharp νOH peaks appear at 3583 cm- 1 at high potentials attributed to non-H-bonded water coadsorbed in the hydration sphere of perchlorate near the electrode surface. Adsorbed hydronium bending mode at near 1680 cm- 1 is observed at low potentials in low pH solutions (1.4, 4.0, 6.8). At high pH (10.0, 12.3), a potential-dependent OH stretching band assigned to adsorbed hydroxide emerges from 3400-3506 cm- 1. The observation of adsorbed hydroxide, even on a weakly oxophilic metal such as Au, provides the framework for further studies of hydroxide adsorption on other electrodes to determine the role of adsorbed hydroxide on important reactions such as the hydrogen oxidation reaction.

  9. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  10. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS.

    PubMed

    Brdicka, R

    1936-07-20

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.

  11. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lihua; He, Xiaoman; Qu, Jun

    Al(OH){sub 3} and Ca(OH){sub 2} powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kineticsmore » with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C{sub 3}A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C{sub 3}A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO{sub 4} LDH product. Ca-Al-CrO{sub 4} LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.« less

  12. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, R.W.; Hines, J.J.

    1990-11-13

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings

  13. Method of making colloid labeled with radionuclide

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1991-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  14. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1990-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  15. 40 CFR Appendix B to Subpart Nnn... - Free Formaldehyde Analysis of Insulation Resins by Hydroxylamine Hydrochloride

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.... 3.8Timer. 4. Reagents 4.1Standardized 1.0 N sodium hydroxide solution. 4.2Hydroxylamine.... Start the timer. 5.6Stir for 5 minutes. Titrate to pH 4.0 with standardized 1.0 N sodium hydroxide...

  16. Gas chromatographic quantitation of underivatized amines in the determination of their octanol-0.1 M sodium hydroxide partition coefficients by the shake-flask method.

    PubMed

    Grunewald, G L; Pleiss, M A; Gatchell, C L; Pazhenchevsky, R; Rafferty, M F

    1984-06-01

    The use of gas chromatography (GC) for the determination of 0.1 M sodium hydroxide-octanol partition coefficients (log P) for a wide variety of ethylamines is demonstrated. The conventional shake-flask procedure (SFP) is utilized, with the addition of an internal reference, which is cleanly separated from the desired solute and solvents on a 10% Apiezon L, 2% potassium hydroxide on 80-100 mesh Chromosorb W AW column. The partitioned solute is extracted from the aqueous phase with chloroform and analyzed by GC. The method provides an accurate and highly reproducible means of determining log P values, as demonstrated by the low relative standard errors. The technique is both rapid and extremely versatile. The use of the internal standard method of analysis introduces consistency, since variables like the exact weight of solute are not necessary (unlike the traditional SFP) and the volume of sample injected is not critical. The technique is readily accessible to microgram quantities of solutes, making it ideal for a wide range of volatile, amine-bearing compounds.

  17. Kinetic Effect on the Freezing of Ammonium-Sodium-Carbonate-Chloride Brines and Implications for Origin of Ceres' Bright Spots

    NASA Astrophysics Data System (ADS)

    Hodyss, R. P.; Thomas, E. C.; Vu, T. H.; Johnson, P. V.; Choukroun, M.

    2017-12-01

    Subsurface brines on Ceres containing natrite (Na2CO3) and smaller amounts of NH4Cl or NH4HCO3 have been proposed to reach the dwarf planet's surface from an internal reservoir, where the brines freeze and result in bright spots across Ceres. Kinetically frozen solutions containing the likely constituents of Ceres' subsurface brines (ammonium, sodium, carbonate, and chloride ions) were studied via infrared and micro-Raman spectroscopy, where the flash-frozen mixtures were found to preferentially form ammonium chloride and ammonium bicarbonate, even in sodium-dominated solutions. Additionally, sodium chloride only formed when sodium or chloride (or both) were present in excess in the brine solutions. Raman spectroscopy was further employed to analyze the effect of vacuum exposure on these frozen brines over longer periods of time to simulate the surface conditions of Ceres.

  18. Protein Precipitation Using Ammonium Sulfate.

    PubMed

    2016-04-01

    The basic theory of protein precipitation by addition of ammonium sulfate is presented, and the most common applications are listed. Tables are provided for calculating the appropriate amount of ammonium sulfate to add to a particular protein solution. Copyright © 2016 John Wiley & Sons, Inc.

  19. Ether bond effects in quaternary ammonium and phosphonium ionic liquid-propanol solutions

    NASA Astrophysics Data System (ADS)

    Kishimura, Hiroaki; Kohki, Erica; Nakada, Ayumu; Tamatani, Kentaro; Abe, Hiroshi

    2018-03-01

    The liquid-liquid equilibria (LLE) of quaternary ammonium and phosphonium ionic liquid (IL)-propanol solutions were examined. The ILs contained cations with or without ether bonds; the anion in all the ILs was bis(trifluoromethanesulfonyl)imide (TFSI-). The cations without ether groups are tributylmethyl ammonium (N4441+), triethylpentyl phosphonium (P2225+), triethyloctyl phosphonium (P2228+), and tributylmethyl phosphonium (P4441+). The cations containing ether groups are N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium, (N122(2O1)+), triethyl(methoxymethyl) phosphonium (P222(1O1)+), and triethyl(2-methoxyethyl) phosphonium, (P222(2O1)+). Propanol isomer effect was observed to affect the LLEs, reflecting the geometrical factors and hydrophobicities of 1-propanol and 2-propanol. According to Raman spectroscopy, the TFSI- anion conformers in the mixtures were altered in the presence of ether bonds in the cations. The universal quasichemical (UNIQUAC) interaction parameters are consistent with significant factors affecting IL-propanol solutions, such as the type of cation (ammonium or phosphonium), ether bonds, TFSI- conformers, and propanol isomer effects.

  20. Preparation and the influencing factors of timozolomide liposomes.

    PubMed

    Kong, Bin; Sun, Yong; Li, Yongjian; Hu, Dejian

    2009-01-01

    To prepare timozolomide liposomes for administration through nasal mucous membrane, we studied the factors of the preparation of the liposomes. The timozolomide liposomes were prepared by the ammonium sulphate gradient method; electroscopy and laser particle analyzer were utilized to determine the conformation, size and distribution of timozolomide liposomes; high performance liquid chromatography (HPLC) was applied to determine the entrapping efficiency of timozolomide liposomes; then we studied the influences of the concentration of ammonium sulphate solution, temperature, and the drug-to-lipid ratio on the entrapping efficiency. The average size of timozolomide liposomes was 185 nm; the entrapping efficiency was 90.3%. The entrapping efficiency was enhanced with the increasing of the concentration of ammonium sulphate solution and the rising of temperature, and decreased with the increasing of the drug-to-lipid ratio. The timozolomide liposomes with high entrapping efficiency, small and even particle sizes could be prepared by the simple and convenient ammonium sulphate gradient method. The primary influencing factors on the entrapping efficiency of timozolomide liposomes were the concentration of ammonium sulphate solution, the temperature, and the drug-to-lipid ratio.

  1. Suppression on plant-parasitic nematodes using a soil fumigation strategy based on ammonium bicarbonate and its effects on the nematode community

    PubMed Central

    Su, Lanxi; Ruan, Yunze; Yang, Xiujuan; Wang, Kang; Li, Rong; Shen, Qirong

    2015-01-01

    Banana production is severely hindered by plant-parasitic nematodes in acidic, sandy soil. This study investigated the possibility of applying a novel fumigation agent based on ammonium bicarbonate as a strategy for controlling plant-parasitic nematodes under sealed conditions. Moreover, its effects on the nematode community in pot and field experiments were also measured using morphology and feeding-habit based classification and the PCR-DGGE method. Results showed that a mixture (LAB) of lime (L) and ammonium bicarbonate (AB) in suitable additive amounts (0.857 g kg−1 of L and 0.428 g kg−1 of AB) showed stronger nematicidal ability than did the use of AB alone or the use of ammonium hydroxide (AH) and calcium cyanamide (CC) with an equal nitrogen amount. The nematode community was altered by the different fumigants, and LAB showed an excellent plant-parasitic nematicidal ability, especially for Meloidogyne and Rotylenchulus, as revealed by morphology and feeding-habit based classification, and for Meloidogyne, as revealed by the PCR-DGGE method. Fungivores and omnivore-predators were more sensitive to the direct effects of the chemicals than bacterivores. This study explored a novel fumigation agent for controlling plant-parasitic nematodes based on LAB and provides a potential strategy to ensure the worldwide development of the banana industry. PMID:26621630

  2. On copper peroxide

    NASA Technical Reports Server (NTRS)

    Moser, L.

    1988-01-01

    The action of hydrogen superoxide on copper salts in alcoholic solutions is studied. The action of hydrogen peroxide on copper hydroxide in alcoholic suspensions, and the action of ethereal hydrogen peroxide on copper hydroxide are discussed. It is concluded that using the procedure proposed excludes almost entirely the harmful effect of hydrolysis.

  3. Aluminum Coprecipitates with Fe (hydr)oxides: Does Isomorphous Substitution of Al3plus for Fe3plus in Goethite Occur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Bazilevskaya; D Archibald; M Aryanpour

    2011-12-31

    Iron (hydr)oxides are common in natural environments and typically contain large amounts of impurities, presumably the result of coprecipitation processes. Coprecipitation of Al with Fe (hydr)oxides occurs, for example, during alternating reduction-oxidation cycles that promote dissolution of Fe from Fe-containing phases and its re-precipitation as Fe-Al (hydr)oxides. We used chemical and spectroscopic analyses to study the formation and transformation of Al coprecipitates with Fe (hydr)oxides. In addition, periodic density functional theory (DFT) computations were performed to assess the structural and energetic effects of isolated or clustered Al atoms at 8 and 25 mol% Al substitution in the goethite structure. Coprecipitatesmore » were synthesized by raising the pH of dilute homogeneous solutions containing a range of Fe and Al concentrations (100% Fe to 100% Al) to 5. The formation of ferrihydrite in initial suspensions with {<=}20 mol% Al, and of ferrihydrite and gibbsite in initial suspensions with {>=}25 mol% Al was confirmed by infrared spectroscopic and synchrotron-based X-ray diffraction analyses. While base titrations showed a buffer region that corresponded to the hydrolysis of Fe in initial solutions with {<=}25 mol% Al, all of the Al present in these solutions was retained by the solid phases at pH 5, thus indicating Al coprecipitation with the primary Fe hydroxide precipitate. In contrast, two buffer regions were observed in solutions with 30 mol% Al (at pH {approx}2.25 for Fe{sup 3+} and at pH {approx}4 for Al{sup 3+}), suggesting the formation of Fe and Al (hydr)oxides as two separate phases. The Al content of initial coprecipitates influenced the extent of ferrihydrite transformation and of its transformation products as indicated by the presence of goethite, hematite and/or ferrihydrite in aged suspensions. DFT experiments showed that: (i) optimized unit cell parameters for Al-substituted goethites (8 and 25 Mol% Al) in clustered arrangement (i.e., the formation of diaspore-like clusters) were in good agreement with available experimental data whereas optimized unit cell parameters for isolated Al atoms were not, and (ii) Al-substituted goethites with Al in diaspore-like clusters resulted in more energetically favored structures. Combined experimental and DFT results are consistent with the coprecipitation of Al with Fe (hydr)oxides and with the formation of diaspore-like clusters, whereas DFT results suggest isomorphous Al for Fe substitution within goethite is unlike at 8 mol% Al substitution.« less

  4. Molecular dynamics simulation study of the early stages of nucleation of iron oxyhydroxide nanoparticles in aqueous solutions

    DOE PAGES

    Zhang, Hengzhong; Waychunas, Glenn A.; Banfield, Jillian F.

    2015-07-29

    Nucleation is a fundamental step in crystal growth. Of environmental and materials relevance are reactions that lead to nucleation of iron oxyhydroxides in aqueous solutions. These reactions are difficult to study experimentally due to their rapid kinetics. Here, we used classical molecular dynamics simulations to investigate nucleation of iron hydroxide/oxyhydroxide nanoparticles in aqueous solutions. Results show that in a solution containing ferric ions and hydroxyl groups, iron–hydroxyl molecular clusters form by merging ferric monomers, dimers, and other oligomers, driven by strong affinity of ferric ions to hydroxyls. When deprotonation reactions are not considered in the simulations, these clusters aggregate tomore » form small iron hydroxide nanocrystals with a six-membered ring-like layered structure allomeric to gibbsite. By comparison, in a solution containing iron chloride and sodium hydroxide, the presence of chlorine drives cluster assembly along a different direction to form long molecular chains (rather than rings) composed of Fe–O octahedra linked by edge sharing. Further, in chlorine-free solutions, when deprotonation reactions are considered, the simulations predict ultimate formation of amorphous iron oxyhydroxide nanoparticles with local atomic structure similar to that of ferrihydrite nanoparticles. Overall, our simulation results reveal that nucleation of iron oxyhydroxide nanoparticles proceeds via a cluster aggregation-based nonclassical pathway.« less

  5. Scanning electron microscopic and X-ray micro analysis on tooth enamel exposed to alkaline agents.

    PubMed

    Taubee, Fabian; Steiniger, Frank; Nietzsche, Sandor; Norén, Jörgen G

    2010-01-01

    The background of this study comprises two clinical cases, where patients exposed to aerosols of an alkaline and surface active cleaning agent developed loss of enamel substance on their teeth, further resulting in loss of teeth and partially destroyed soft tissues. The alkaline cleaning agent consisted of potassium hydroxide and various surfactants. The purpose of this study was to investigate possible changes in morphology and composition in human teeth enamel exposed to alkaline solutions, by means of X-ray micro analysis (XRMA), FTIR-spectroscopic analyses and scanning electron microscopy (SEM). Extracted premolars, exposed to potassium hydroxide solutions and alkaline cleaning solution,were analyzed by means of XRMA and SEM. Enamel powder, exposed to cleaning solution, was analyzed by means of FTIR. The SEM analysis revealed an increased porosity of the enamel surface and partially loss of enamel substance after exposure to alkaline solutions. The XRMA analyses revealed a decrease in carbon concentration while phosphorous and calcium showed no marked changes. The FTIR analyses showed no significant changes in peak heights or peak positions for phosphate, carbonate or hydroxide. It was concluded that human teeth enamel exposed to alkaline solutions showed loss of organic substance, marked pores in enamel surface and loss of substance in the enamel surface.

  6. Seasonal dynamics of nitrate and ammonium ion concentrations in soil solutions collected using MacroRhizon suction cups.

    PubMed

    Kabala, Cezary; Karczewska, Anna; Gałka, Bernard; Cuske, Mateusz; Sowiński, Józef

    2017-07-01

    The aims of the study were to analyse the concentration of nitrate and ammonium ions in soil solutions obtained using MacroRhizon miniaturized composite suction cups under field conditions and to determine potential nitrogen leaching from soil fertilized with three types of fertilizers (standard urea, slow-release urea, and ammonium nitrate) at the doses of 90 and 180 kg ha -1 , applied once or divided into two rates. During a 3-year growing experiment with sugar sorghum, the concentration of nitrate and ammonium ions in soil solutions was the highest with standard urea fertilization and the lowest in variants fertilized with slow-release urea for most of the months of the growing season. Higher concentrations of both nitrogen forms were noted at the fertilizer dose of 180 kg ha -1 . One-time fertilization, at both doses, resulted in higher nitrate concentrations in June and July, while dividing the dose into two rates resulted in higher nitrate concentrations between August and November. The highest potential for nitrate leaching during the growing season was in July. The tests confirmed that the miniaturized suction cups MacroRhizon are highly useful for routine monitoring the concentration of nitrate and ammonium ions in soil solutions under field conditions.

  7. PROCESS FOR THE PRODUCTION OF AMMONIUM URANIUM FLUORIDE

    DOEpatents

    Ellis, A.S.; Mooney, R.B.

    1953-08-25

    This patent relates to the preparation of ammonium uranium fluoride. The process comprises adding a water soluble fluoride to an aqueous solution of a uranous compound containing an ammonium salt, and isolating the resulting precipitate. This patent relates to the manufacture of uranium tetnafluoride from ammonium uranium fluoride, NH/sub 4/UF/sub 5/. Uranium tetrafluoride is prepared by heating the ammonium uranium fluoride to a temperature at which dissociation occurs with liberation of ammonium fluoride. Preferably the process is carried out under reduced pressure, or in a current of an inert gas.

  8. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater.more » The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous-flow natural seawater at the Pacific Northwest National Laboratory (PNNL). Fourier Transform Infrared (FTIR) spectroscopy, Nuclear Magnetic Resonance (NMR) spectroscopy, Scanning Electron Microscopy (SEM), and elemental analysis were used to characterize the adsorbent at different stages of adsorbent preparation and treatment. The study can be divided into two parts: (A) investigation of optimal parameters for KOH adsorbent conditioning and (B) investigation of other possible agents for alkali conditioning, including cost analysis on the basis of uranium production. In the first part of the study, tests with simulated seawater containing 8 ppm uranium showed that the uranium adsorption capacity increased with an increase in the KOH concentration and conditioning time and temperature at each of the KOH concentrations used. FTIR and solid state NMR studies indicated that KOH conditioning converts the amidoxime functional groups into more hydrophilic carboxylate. The longer the KOH conditioning time, up to three hours, the higher was the loading capacity from the simulated seawater solution which is composed of only uranyl, sodium, chloride, and carbonate ions. Marine testing with natural seawater, on the other hand, showed that the uranium adsorption capacity of the adsorbent increased with KOH conditioning temperature, and gradually decreased with increasing KOH conditioning time from one hour to three hours at 80 C. This behavior is due to the conversion of amidoxime to carboxylate. The carboxylate groups are needed to increase the hydrophilicity of the adsorbent; however, conversion of a significant amount of amidoxime to carboxylate leads to loss in selectivity toward uranyl ions. Thus, there is an optimum KOH conditioning time for each temperature at which an optimum ratio between amidoxime and carboxylate is reached. For the case of base conditioning with 0.44 M KOH at 80 C, the optimal conditioning time is 1 hour, with respect to the highest uranium loading capacity from natural seawater. Uptake of other metal ions such as V, Fe, and Cu follows the same trend as that of uranium. Also, the uptake of Ca, Mg, and Zn ions increased with increasing KOH conditioning time, probably due to formation of more carboxylates, which leads to conversion of uranium-selective binding sites to less selective sites. In the second part of the study, inorganic based reagents such as sodium hydroxide (NaOH), sodium carbonate (Na 2CO 3), cesium hydroxide (CsOH), as well as organic based reagents such as ammonium hydroxide (AOH), tetramethylammonium hydroxide (TMAOH), tetraethylammonium hydroxide (TEAOH), triethylmethylammonium hydroxide (TEMAOH), tetrapropylammonium hydroxide (TPAOH) and tetrabutylammonium hydroxide (TBAOH), in addition to KOH, were used for alkaline conditioning. NaOH has emerged as a better reagent for alkaline conditioning of amidoxime-based adsorbent because of higher uranium uptake capacity, higher uranium uptake selectivity ...« less

  9. Land-use impact on selected forms of arsenic and phosphorus in soils of different functions

    NASA Astrophysics Data System (ADS)

    Plak, Andrzej; Bartmiński, Piotr; Dębicki, Ryszard

    2017-10-01

    The aim of the study was to assess the impact of technosols and geomechanically unchanged soils of the Lublin agglomeration on the concentrations of arsenic and phosphorus, and on selected forms of these elements. Arsenic and phosphorus concentrations were determined in the urban soils of Lublin (Poland), and the relationship between their degree of contamination and different types of land use was estimated. The samples collected were subjected to sequential analysis, using ammonium sulphate, acid ammonium phosphate, oxalate buffer (also with ascorbic acid) and aqua regia for arsenic, and ammonium chloride, sodium hydroxide, hydrochloric acid and aqua regia for phosphorus. The influence of the land use forms was observed in the study. The greatest amount of arsenic (19.62 mg kg-1) was found in the industrial soils of Lublin, while the greatest amount of phosphorus (580.4 mg kg-1) was observed in non-anthropogenic soils (mainly due to the natural accumulation processes of this element). Fractions of arsenic and phosphorus obtained during analysis showed strong differentiation. Amorphic and crystalline fractions of arsenic, bound with iron oxides, proved to have the highest share in the total arsenic pool. The same situation was noted for phosphorus.

  10. Complex electronic waste treatment - An effective process to selectively recover copper with solutions containing different ammonium salts.

    PubMed

    Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y

    2016-11-01

    Recovery of valuable metals from electronic waste has been highlighted by the EU directives. The difficulties for recycling are induced by the high complexity of such waste. In this research, copper could be selectively recovered using an ammonia-based process, from industrially processed information and communication technology (ICT) waste with high complexity. A detailed understanding on the role of ammonium salt was focused during both stages of leaching copper into a solution and the subsequent step for copper recovery from the solution. By comparing the reactivity of the leaching solution with different ammonium salts, their physiochemical behaviour as well as the leaching efficiency could be identified. The copper recovery rate could reach 95% with ammonium carbonate as the leaching salt. In the stage of copper recovery from the solution, electrodeposition was introduced without an additional solvent extraction step and the electrochemical behaviour of the solution was figured out. With a careful control of the electrodeposition conditions, the current efficiency could be improved to be 80-90% depending on the ammonia salts and high purity copper (99.9wt.%). This research provides basis for improving the recyclability and efficiency of copper recovery from such electronic waste and the whole process design for copper recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    DOEpatents

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  12. Role of lauric acid-potassium hydroxide concentration on bacterial contamination of spray washed broiler carcasses

    USDA-ARS?s Scientific Manuscript database

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed in a spray cabinet with various concentrations of lauric acid (LA)-potassium hydroxide (KOH) solutions. Fifty eviscerated carcasses and 5 ceca were obtained from the processing line of...

  13. Amended Ballistic Sand Studies to Provide Low Maintenance Lead Containment at Active Small Arms Firing Range Systems

    DTIC Science & Technology

    2007-09-01

    Pb2+. Under alkaline conditions, elemental lead will oxidize under most circumstances to form a lead hydroxide complex Pb(OH)53-. Lead that exists...lead hydroxide [Pb(OH)2], lead carbonate [PbCO3, cerrusite], or basic lead carbonate [Pb3(OH)2 (CO3)2, hydrocerrusite]. The overall lead solubility...in a natural system is fundamentally determined by the concentrations of the anions in solution (e.g., the hydroxide and carbonate ions) and by the

  14. Determination of soluble bromine in an extra-high-pressure mercury discharge lamp by sodium hydroxide decomposition-suppressed ion chromatography.

    PubMed

    Mitsumata, Hiroshi; Mori, Toshio; Maeda, Tatsuo; Kita, Yoshiyuki; Kohatsu, Osamu

    2006-02-01

    We have established a simple method for assaying the quantity of soluble bromine in the discharge tubes of an extra-high-pressure mercury discharge lamp. Each discharge tube is destroyed in 5 ml of 10 mM sodium hydroxide, and the recovered sodium hydroxide solution is analyzed by suppressed-ion chromatography using gradient elution. We have clarified that this method can assay less than 1 microg of soluble bromine in a discharge tube.

  15. Microwave-assisted Facile and Ultrafast Growth of ZnO Nanostructures and Proposition of Alternative Microwave-assisted Methods to Address Growth Stoppage

    NASA Astrophysics Data System (ADS)

    Rana, Abu Ul Hassan Sarwar; Kang, Mingi; Kim, Hyun-Seok

    2016-04-01

    The time constraint in the growth of ZnO nanostructures when using a hydrothermal method is of paramount importance in contemporary research, where a long fabrication time rots the very essence of the research on ZnO nanostructures. In this study, we present the facile and ultrafast growth of ZnO nanostructures in a domestic microwave oven within a pressurized environment in just a few minutes. This method is preferred for the conventional solution-based method because of the ultrafast supersaturation of zinc salts and the fabrication of high-quality nanostructures. The study of the effect of seed layer density, growth time, and the solution’s molar concentration on the morphology, alignment, density, and aspect ratio of ZnO nanorods (ZNRs) is explored. It is found in a microwave-assisted direct growth method that ~5 mins is the optimum time beyond which homogeneous nucleation supersedes heterogeneous nucleation, which results in the growth stoppage of ZNRs. To deal with this issue, we propound different methods such as microwave-assisted solution-replacement, preheating, and PEI-based growth methods, where growth stoppage is addressed and ZNRs with a high aspect ratio can be grown. Furthermore, high-quality ZnO nanoflowers and ZnO nanowalls are fabricated via ammonium hydroxide treatment in a very short time.

  16. CHLORIDEDETERMINATION IN HIGH IONIC STRENGTH SOLUTION OF AMMONIUM ACETATE USING NEGATIVE ION ELECTRON SPRAY IONIZATION (HPLC/MS)

    EPA Science Inventory

    A precise ion chromatography method has been developed for the determination of chloride in high ionic strength ammonium acetate solutions (10-5 M-5 M) using sodium carbonate/sodium bicarbonate as eluent. Negative ion electrospray ionization (ESI) mass spectrometry was used for q...

  17. Quaternary ammonium promoted ultra selective and sensitive fluorescence detection of fluoride ion in water and living cells.

    PubMed

    Li, Long; Ji, Yuzhuo; Tang, Xinjing

    2014-10-21

    Highly selective and sensitive fluorescent probes with a quaternary ammonium moiety have been rationally designed and developed for fast and sensitive fluorescence detection of fluoride ion (F(-) from NaF, not TBAF) in aqueous solution and living cells. With the sequestration effect of quaternary ammonium, the detection time was less than 2 min and the detection limit of fluoride ion was as low as 0.57 ppm that is among the lowest detection limits in aqueous solutions of many fluoride fluorescence probes in the literature.

  18. Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form

    PubMed Central

    Palacios, Anabel; De Gracia, Alvaro

    2018-01-01

    The implementation of organic phase change materials (PCMs) in several applications such as heating and cooling or building comfort is an important target in thermal energy storage (TES). However, one of the major drawbacks of organic PCMs implementation is flammability. The addition of flame retardants to PCMs or shape-stabilized PCMs is one of the approaches to address this problem and improve their final deployment in the building material sector. In this study, the most common organic PCM, Paraffin RT-21, and fatty acids mixtures of capric acid (CA), myristic acid (MA), and palmitic acid (PA) in bulk, were tested to improve their fire reaction. Several flame retardants, such as ammonium phosphate, melamine phosphate, hydromagnesite, magnesium hydroxide, and aluminum hydroxide, were tested. The properties of the improved PCM with flame retardants were characterized by thermogravimetric analyses (TGA), the dripping test, and differential scanning calorimetry (DSC). The results for the dripping test show that fire retardancy was considerably enhanced by the addition of hydromagnesite (50 wt %) and magnesium hydroxide (50 wt %) in fatty acids mixtures. This will help the final implementation of these enhanced PCMs in building sector. The influence of the addition of flame retardants on the melting enthalpy and temperatures of PCMs has been evaluated. PMID:29329212

  19. Production of spent mushroom substrate hydrolysates useful for cultivation of Lactococcus lactis by dilute sulfuric acid, cellulase and xylanase treatment.

    PubMed

    Qiao, Jian-Jun; Zhang, Yan-Fei; Sun, Li-Fan; Liu, Wei-Wei; Zhu, Hong-Ji; Zhang, Zhijun

    2011-09-01

    Spent mushroom substrate (SMS) was treated with dilute sulfuric acid followed by cellulase and xylanase treatment to produce hydrolysates that could be used as the basis for media for the production of value added products. A L9 (3(4)) orthogonal experiment was performed to optimize the acid treatment process. Pretreatment with 6% (w/w) dilute sulfuric acid at 120°C for 120 min provided the highest reducing sugar yield of 267.57 g/kg SMS. No furfural was detected in the hydrolysates. Exposure to 20PFU of cellulase and 200 XU of xylanase per gram of pretreated SMS at 40°C resulted in the release of 79.85 g/kg or reducing sugars per kg acid pretreated SMS. The dilute sulfuric acid could be recycled to process fresh SMS four times. SMS hydrolysates neutralized with ammonium hydroxide, sodium hydroxide, or calcium hydroxide could be used as the carbon source for cultivation of Lactococcus lactis subsp. lactis W28 and a cell density of 2.9×10(11)CFU/mL could be obtained. The results provide a foundation for the development of value-added products based on SMS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS

    PubMed Central

    Brdička, R.

    1936-01-01

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions. PMID:19872968

  1. Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules.

    PubMed

    Miao, Yuqing; Ouyang, Lei; Zhou, Shilin; Xu, Lina; Yang, Zhuoyuan; Xiao, Mingshu; Ouyang, Ruizhuo

    2014-03-15

    The electrocatalysis toward small molecules, especially small organic compounds, is of importance in a variety of areas. Nickel based materials such as nickel, its oxides, hydroxides as well as oxyhydroxides exhibit excellent electrocatalysis performances toward many small molecules, which are widely used for fuel cells, energy storage, organic synthesis, wastewater treatment, and electrochemical sensors for pharmaceutical, medical, food or environmental analysis. Their electrocatalytic mechanisms are proposed from three aspects such as Ni(OH)2/NiOOH mediated electrolysis, direct electrocatalysis of Ni(OH)2 or NiOOH. Under exposure to air or aqueous solution, two distinct layers form on the Ni surface with a Ni hydroxide layer at the air-oxide interface and an oxide layer between the metal substrate and the outer hydroxide layer. The transformation from nickel or its oxides to hydroxides or oxyhydroxides could be further speeded up in the strong alkaline solution under the cyclic scanning at relatively high positive potential. The redox transition between Ni(OH)2 and NiOOH is also contributed to the electrocatalytic oxidation of Ni and its oxides toward small molecules in alkaline media. In addition, nickel based materials or nanomaterials, their preparations and applications are also overviewed here. © 2013 Elsevier B.V. All rights reserved.

  2. Plasma graft-polymerization for synthesis of highly stable hydroxide exchange membrane

    NASA Astrophysics Data System (ADS)

    Hu, Jue; Zhang, Chengxu; Jiang, Lin; Fang, Shidong; Zhang, Xiaodong; Wang, Xiangke; Meng, Yuedong

    2014-02-01

    A novel plasma graft-polymerization approach is adopted to prepare hydroxide exchange membranes (HEMs) using cardo polyetherketone powders (PEK-C) and vinylbenzyl chloride. The benzylic chloromethyl groups can be successfully introduced into the PEK-C polymer matrix via plasma graft-polymerization. This approach enables a well preservation in the structure of functional groups and formation of a highly cross-linked structure in the membrane, leading to an improvement on the stability and performance of HEMs. The chemical stabilities, including alkaline and oxidative stability, are evaluated under severe conditions by measuring hydroxide conductivity and weight changes during aging. The obtained PGP-NOH membrane retains 86% of the initial hydroxide conductivity in 6 mol L-1 KOH solution at 60 °C for 120 h, and 94% of the initial weight in 3 wt% H2O2 solution at 60 °C for 262 h. The PGP-NOH membrane also possesses excellent thermal stability (safely used below 120 °C), alcohol resistance (ethanol permeability of 6.6 × 10-11 m2 s-1 and diffusion coefficient of 3.7 × 10-13 m2 s-1), and an acceptable hydroxide conductivity (8.3 mS cm-1 at 20 °C in deionized water), suggesting a good candidate of PGP-NOH membrane for HEMFC applications.

  3. Alkaline hydrolysis of ethylene phosphate: an ab initio study by supermolecule model and polarizable continuum approach.

    PubMed

    Xia, Futing; Zhu, Hua

    2011-09-01

    The alkaline hydrolysis reaction of ethylene phosphate (EP) has been investigated using a supermolecule model, in which several explicit water molecules are included. The structures and single-point energies for all of the stationary points are calculated in the gas phase and in solution at the B3LYP/6-31++G(df,p) and MP2/6-311++G(df,2p) levels. The effect of water bulk solvent is introduced by the polarizable continuum model (PCM). Water attack and hydroxide attack pathways are taken into account for the alkaline hydrolysis of EP. An associative mechanism is observed for both of the two pathways with a kinetically insignificant intermediate. The water attack pathway involves a water molecule attacking and a proton transfer from the attacking water to the hydroxide in the first step, followed by an endocyclic bond cleavage to the leaving group. While in the first step of the hydroxide attack pathway the nucleophile is the hydroxide anion. The calculated barriers in aqueous solution for the water attack and hydroxide attack pathways are all about 22 kcal/mol. The excellent agreement between the calculated and observed values demonstrates that both of the two pathways are possible for the alkaline hydrolysis of EP. Copyright © 2011 Wiley Periodicals, Inc.

  4. Evaluation of Military Field-Water Quality. Volume 3. Opportunity Poisons

    DTIC Science & Technology

    1987-12-01

    Acidic chemical cleaners fluoric acid, nitric acid, perchloric Spent acid acid, sulfuric acid Alkalies Miscellaneous caustic products Ammonia, lime...calcium oxide), potassium Alkaline battery fluid hydroxide, sodium hydroxide, sodium Caustic wastewater silicate Cleaning solutions Lye Nonhalogenated...Laboratory chemicals chloride, polychlorinated biphenyls, zinc Paint and varnish removers naphthenate , copper naphthenate , dichloro- Capacitors and

  5. In Situ Clay Formation: Evaluation of a Proposed New Technology for Stable Containment Barriers

    DTIC Science & Technology

    2004-03-01

    situ layered double hydroxide precipitation........... 23 4.2.1 Solution preparation and column mixing...22 Table 4.2 Summary of in situ precipitation of layered double hydroxide (LDH...effect on permeability for the smallest volume precipitated is sheet silicates or layered -clay phases (hereafter called “clays”). In natural

  6. Room temperature synthesis of free-standing HKUST-1 membranes from copper hydroxide nanostrands for gas separation.

    PubMed

    Mao, Yiyin; shi, Li; Huang, Hubiao; Cao, Wei; Li, Junwei; Sun, Luwei; Jin, Xianda; Peng, Xinsheng

    2013-06-25

    Large scale, robust, well intergrown free-standing HKUST-1 membranes were converted from copper hydroxide nanostrand free-standing films in 1,3,5-benzenetricarboxylic acid water-ethanol solution at room temperature, and explored for gas separation. The truncated crystals are controllable and favorable for the dense intergrowth.

  7. Influence of washing time on residual contamination of carcasses sprayed with lauric acid-potassium hydroxide.

    USDA-ARS?s Scientific Manuscript database

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed for various times in a spray cabinet with a 2% lauric acid (LA)-1% potassium hydroxide (KOH) (w/v) solution. Forty eviscerated carcasses and 5 ceca were obtained from the processing l...

  8. 49 CFR 176.84 - Other requirements for stowage and segregation for cargo vessels and passenger vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...” flammable liquids. 29 Stow “away from” ammonium compounds. 30 Stow “away from” animal or vegetable oils. 31... vegetable oils. 55 Stow “separated from” ammonia. 56 Stow “separated from” ammonium compounds. 57 Stow... hexahydrate solution, uranium metal hexahydrate solution, uranium metal pyrophoric and thorium metal...

  9. 49 CFR 176.84 - Other requirements for stowage and segregation for cargo vessels and passenger vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...” flammable liquids. 29 Stow “away from” ammonium compounds. 30 Stow “away from” animal or vegetable oils. 31... vegetable oils. 55 Stow “separated from” ammonia. 56 Stow “separated from” ammonium compounds. 57 Stow... hexahydrate solution, uranium metal hexahydrate solution, uranium metal pyrophoric and thorium metal...

  10. Tailoring transition-metal hydroxides and oxides by photon-induced reactions

    DOE PAGES

    Niu, Kai -Yang; Fang, Liang; Ye, Rong; ...

    2016-10-18

    Controlled synthesis of transition-metal hydroxides and oxides with earth-abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition-metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni 2+, Mn 2+, and Co 2+ ion-containing aqueous solution undergoes photo-induced reactions and produces hollow metal-oxide nanospheres (Ni 0.18Mn 0.45Co 0.37O x) or core–shell metal hydroxide nanoflowers ([Ni 0.15Mnmore » 0.15Co 0.7(OH) 2](NO 3) 0.2•H 2O), depending on the laser wavelengths. We propose two reaction pathways, either by photo-induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. As a result, the study of photon-induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities.« less

  11. Long-Term Experimental Determination of Solubilities of Micro-Crystalline Nd(III) Hydroxide in High Ionic Strength Solutions: Applications to Nuclear Waste Management [A Pitzer Model for Am(III)/Nd(III) hydroxide solubility in NaCl-H 2O at 298.15 K to high ionic strengths: Experimental validation and model applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yongliang; Kirkes, Leslie Dawn; Marrs, Cassandra

    In this paper, the experimental results from long-term solubility experiments on micro crystalline neodymium hydroxide, Nd(OH) 3(micro cr), in high ionic strength solutions at 298.15 K under well-constrained conditions are presented. The starting material was synthesized according to a well-established method in the literature. In contrast with the previous studies in which hydrogen ion concentrations in experiments were adjusted with addition of either an acid or a base, the hydrogen ion concentrations in our experiments are controlled by the dissolution of Nd(OH) 3(micro cr), avoiding the possibility of phase change.

  12. Long-Term Experimental Determination of Solubilities of Micro-Crystalline Nd(III) Hydroxide in High Ionic Strength Solutions: Applications to Nuclear Waste Management [A Pitzer Model for Am(III)/Nd(III) hydroxide solubility in NaCl-H 2O at 298.15 K to high ionic strengths: Experimental validation and model applications

    DOE PAGES

    Xiong, Yongliang; Kirkes, Leslie Dawn; Marrs, Cassandra

    2017-12-01

    In this paper, the experimental results from long-term solubility experiments on micro crystalline neodymium hydroxide, Nd(OH) 3(micro cr), in high ionic strength solutions at 298.15 K under well-constrained conditions are presented. The starting material was synthesized according to a well-established method in the literature. In contrast with the previous studies in which hydrogen ion concentrations in experiments were adjusted with addition of either an acid or a base, the hydrogen ion concentrations in our experiments are controlled by the dissolution of Nd(OH) 3(micro cr), avoiding the possibility of phase change.

  13. Exterior Weathering Durability of Some Leach-Resistant Fire-Retardant Treatments for Wood Shingles: A Five-Year Report.

    DTIC Science & Technology

    1981-07-01

    phos. Code 29 impregnation phonium chloride (90%. in water) 12.5.5%, sodium hydroxide 150%. in water) 2.16%, urea 2.06/%, a liquid melamine 4.35...1.08%.. dicyandlamide 4.54%. (9) impregnation formaldehyde (37%) 4.32%. phosphoric acid 7.06%. water $3.0%. UOFP_2 Pressure Treating solution: Urea 1.44...sodium hydroxide (500o in water) 0.8710, urea 0.800o. a liquid melamine 1.74°o, water 91.570 o. 29 Pressure impregnation Treating solution: Tetrakis

  14. The effect of retreatment procedure on the pH changes at the surface of root dentin using two different calcium hydroxide pastes

    PubMed Central

    Kazemipoor, Maryam; Tabrizizadeh, Mehdi; Dastani, Milad; Hakimian, Roqayeh

    2012-01-01

    Aim: To compare pH changes at the cervical, middle and apical surfaces of root dentin in retreated and non- retreated teeth, after canal obturation with two different calcium hydroxide pastes. Materials and Methods: After instrumentation of 55 extracted teeth, three cavities with 0.75 mm depth and 1.5 mm in diameter were drilled at buccal root surface. The teeth were randomly divided into five groups. Canals in the first two groups were filled with either mixture of calcium hydroxide and saline solution and calcium hydroxide and 2% chlorhexidine (CHX). In the third and fourth groups canals were first obturated with gutta-percha and AH26 sealer, and then materials were removed. After 2 days canals were filled with two different calcium hydroxide pastes similar to the first and the second groups. The pH was measured in the prepared cavities at 1, 3, 7 and 14 days. Results: In the non-retreated groups, pH at the surface of the roots was significantly higher in comparison to the retreated ones (P value < 0.001). pH values were significantly higher in the non-retreated teeth filling with calcium hydroxide and saline solution (P value < 0.001). Conclusion: Regarding to the little pH changes at the surface of dentin in retreated teeth, the hydroxyl ions cannot penetrate into the dentinal tubules. Thus, to achieve higher pH at the root surface in retreated teeth, it is clinically advisable to remove more dentin from the inner walls and to use normal saline as a vehicle for calcium hydroxide rather than acidic pH materials. PMID:23112482

  15. The effect of retreatment procedure on the pH changes at the surface of root dentin using two different calcium hydroxide pastes.

    PubMed

    Kazemipoor, Maryam; Tabrizizadeh, Mehdi; Dastani, Milad; Hakimian, Roqayeh

    2012-10-01

    To compare pH changes at the cervical, middle and apical surfaces of root dentin in retreated and non- retreated teeth, after canal obturation with two different calcium hydroxide pastes. After instrumentation of 55 extracted teeth, three cavities with 0.75 mm depth and 1.5 mm in diameter were drilled at buccal root surface. The teeth were randomly divided into five groups. Canals in the first two groups were filled with either mixture of calcium hydroxide and saline solution and calcium hydroxide and 2% chlorhexidine (CHX). In the third and fourth groups canals were first obturated with gutta-percha and AH26 sealer, and then materials were removed. After 2 days canals were filled with two different calcium hydroxide pastes similar to the first and the second groups. The pH was measured in the prepared cavities at 1, 3, 7 and 14 days. In the non-retreated groups, pH at the surface of the roots was significantly higher in comparison to the retreated ones (P value < 0.001). pH values were significantly higher in the non-retreated teeth filling with calcium hydroxide and saline solution (P value < 0.001). Regarding to the little pH changes at the surface of dentin in retreated teeth, the hydroxyl ions cannot penetrate into the dentinal tubules. Thus, to achieve higher pH at the root surface in retreated teeth, it is clinically advisable to remove more dentin from the inner walls and to use normal saline as a vehicle for calcium hydroxide rather than acidic pH materials.

  16. Effects of N precursor on the agglomeration and visible light photocatalytic activity of N-doped TiO2 nanocrystalline powder.

    PubMed

    Hu, Yulong; Liu, Hongfang; Rao, Qiuhua; Kong, Xiaodong; Sun, Wei; Guo, Xingpeng

    2011-04-01

    N-doped TiO2 nanocrystalline powders were prepared by the sol-gel method using various N precursors, including triethylamine, hydrazine hydrate, ethylenediamine, ammonium hydroxide, and urea. The samples were characterized by X-ray diffraction, N2 adsorption isotherms, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic activities of as-prepared samples under irradiation of visible light (lambda > 405 nm) were evaluated by photodecomposition of methyl orange. The alkalinity of N precursor was found to play a key role in the gel process. The N precursor with moderate alkalinity causes TiO2 nanoparticles to be sol-transformed into a loosely agglomerated gel. This transformation facilitates the preparation of an N-doped TiO2 powder with small nanocrystal size, large specific surface area, and high N doping level and results in high visible light photocatalytic activity. The N in TiO2 with N is binding energy at 399-400 eV may be assigned to the N-H species located in interstitial sites of TiO2 lattice which is the active N species responsible for the visible light photocatalytic activity. The N species of N 1s peak at 402 and 405 eV are ineffective to the visible light photocatalytic activity and may inhibit the photocatalytic activity. Moreover, a TiO2 nanoparticle powder with large specific area can be achieved by using urea as a template and then by using ammonium hydroxide to transform the sol into gel.

  17. Assessment of the Influence of Soil Characteristics and Hydrocarbon Fuel Cocontamination on the Solvent Extraction of Perfluoroalkyl and Polyfluoroalkyl Substances.

    PubMed

    Mejia-Avendaño, Sandra; Munoz, Gabriel; Sauvé, Sébastien; Liu, Jinxia

    2017-02-21

    Sites impacted by the use of aqueous film-forming foams (AFFFs) present elevated concentrations of perfluoroalkyl and polyfluoroalkyl substances (PFAS). The characterization of the PFAS contamination at such sites may be greatly complicated by the presence of hydrocarbon cocontaminants and by the large variety of PFAS potentially present in AFFFs. In order to further a more comprehensive characterization of AFFF-contaminated soils, the solvent extraction of PFAS from soil was studied under different conditions. Specifically, the impact of soil properties (textural class, organic matter content) and the presence of hydrocarbon contamination (supplemented in the form of either diesel or crude oil) on PFAS recovery performance was evaluated for two extraction methods [methanol/sodium hydroxide (MeOH/NaOH) and methanol/ammonium hydroxide (MeOH/NH 4 OH)]. While both methods performed satisfactorily for perfluoroalkyl acids and fluorotelomer sulfonates, the extraction of newly identified surfactants with functionalities such as betaine and quaternary ammonium was improved with the MeOH/NaOH based method. The main factors that were found to influence the extraction efficiency were the soil properties; a high organic matter or clay content was observed to negatively affect the recovery of the newly identified compounds. While the MeOH/NaOH solvent yielded more efficient recovery rates overall, it also entailed the disadvantage of presenting higher detection limits and substantial matrix effects at the instrumental analysis stage, requiring matrix-matched calibration curves. The results discussed herein bear important implications for a more comprehensive and reliable environmental monitoring of PFAS components at AFFF-impacted sites.

  18. The effect of calcium hydroxide, alkali dilution and calcium concentration in mitigating the alkali silica reaction using palm oil fuel ash

    NASA Astrophysics Data System (ADS)

    Asrah, Hidayati; Mirasa, Abdul Karim; Bolong, Nurmin

    2018-02-01

    This study investigated the mechanism of how POFA mitigated the ASR expansion. Two types of POFA; the UPOFA and GPOFA with different fineness were used to replace the cement at 20% and 40% and their effects on the mortar bar expansion, calcium hydroxide, alkali dilution, and calcium concentration were investigated. The results showed that UPOFA has a significant ability to mitigate the ASR, even at a lower level of replacement (20%) compared to GPOFA. The mechanism of UPOFA in mitigating the ASR expansion was through a reduction in the calcium hydroxide content, which produced low calcium concentration within the mortar pore solution. Low pore solution alkalinity signified that UPOFA had good alkali dilution effect. Meanwhile, a higher dosage of GPOFA was required to mitigate the ASR expansion. An increase in the pore solution alkalinity of GPOFA mortar indicated higher penetration of alkalis from the NaOH solution, which reduced the alkali dilution effect. However, this was compensated by the increase in the cement dilution effect at higher GPOFA replacement, which controlled the mortar bar expansion below the ASTM limit.

  19. Analysis of an explosion accident of nitrogen trichloride in a waste liquid containing ammonium ion and platinum black.

    PubMed

    Okada, Ken; Akiyoshi, Miyako; Ishizaki, Keiko; Sato, Hiroyasu; Matsunaga, Takehiro

    2014-08-15

    Five liters of sodium hypochlorite aqueous solution (12 mass%) was poured into 300 L of liquid waste containing ammonium ion of about 1.8 mol/L in a 500 L tank in a plant area; then, two minutes later the solution exploded with a flash on March 30th, 2005. The tank cover, the fluorescent lamp and the air duct were broken by the blast wave. Thus, we have conducted 40 runs of laboratory-scale explosion tests under various conditions (solution concentrations of (NH4)2SO4 and NaClO, temperatures, Pt catalysts, pH, etc.) to investigate the causes for such an explosion. When solutions of ammonium sulfate and sodium hypochlorite are mixed in the presence of platinum black, explosions result. This is ascribable to the formation of explosive nitrogen trichloride (NCl3). In the case where it is necessary to mix these 2 solutions (ammonium sulfate and sodium hypochlorite) in the presence of platinum black, the following conditions would reduce a probability of explosion; the initial concentration of NH4(+) should be less than 3 mol/L and the pH should be higher than 6. The hypochlorite solution (in 1/10 in volume) to be added at room temperature is recommended to be less than 0.6 mol/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Optical constants of ammonium sulfate in the infrared. [stratospheric aerosol refractive and absorption indices

    NASA Technical Reports Server (NTRS)

    Downing, H. D.; Pinkley, L. W.; Sethna, P. P.; Williams, D.

    1977-01-01

    The infrared spectral reflectance at near normal incidence has been measured for 3.2 M, 2.4 M, and 1.6 M solutions of ammonium sulfate, an aerosol abundant in the stratosphere and also present in the troposphere. Kramers-Kronig analysis was used to determine values of the refractive and absorption indices from the measured spectral reflectance. A synthetic spectrum of crystalline ammonium sulfate was obtained by extrapolation of the absorption index obtained for the solution to the absorber number densities of the NH4 and SO4 ions characteristic of the crystal.

  1. Studies on Thorium Adsorption Characteristics upon Activated Titanium Hydroxide Prepared from Rosetta Ilmenite Concentrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gado, M, E-mail: parq28@yahoo.com; Zaki, S

    2016-01-01

    The titanium hydroxide prepared from Rosetta ilmenite concentrate has been applied for Th (IV) adsorption from its acid aqueous solutions. The prepared hydroxide is first characterized by both Fourier transform infrared (FT-IR) spectrum and thermogravimetric analysis. The relevant factors affecting the adsorption process have been studied. The obtained equilibrium data fits well with the Langmuir isotherm rather than Freundlich isotherm, while the adsorption kinetic data follow the pseudo-second order model. The different thermodynamic parameters have also been calculated and indicate that the adsorption process is spontaneous.

  2. Fly ash/Kaolin based geopolymer green concretes and their mechanical properties

    PubMed Central

    Okoye, F.N.; Durgaprasad, J.; Singh, N.B.

    2015-01-01

    Geopolymer concrete mixes were cast using fly ash, kaolin, sodium hydroxide, potassium hydroxide, sodium silicate and aggregates. Portland cement concrete (M30) was used as a reference sample. The effect of silica fume, temperature (40 °C, 60 °C, 80 °C, 100 °C and 120 °C), sodium and potassium hydroxides and different superplasticizers on the compressive strength are reported [1]. Maximum strength was found at 100 °C and 14 M alkali solution [1]. PMID:26693505

  3. Fly ash/Kaolin based geopolymer green concretes and their mechanical properties.

    PubMed

    Okoye, F N; Durgaprasad, J; Singh, N B

    2015-12-01

    Geopolymer concrete mixes were cast using fly ash, kaolin, sodium hydroxide, potassium hydroxide, sodium silicate and aggregates. Portland cement concrete (M30) was used as a reference sample. The effect of silica fume, temperature (40 °C, 60 °C, 80 °C, 100 °C and 120 °C), sodium and potassium hydroxides and different superplasticizers on the compressive strength are reported [1]. Maximum strength was found at 100 °C and 14 M alkali solution [1].

  4. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  5. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Sutton, J.B.

    1958-02-18

    This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.

  6. Negative cerium anomalies in manganese (hydr)oxide precipitates due to cerium oxidation in the presence of dissolved siderophores

    NASA Astrophysics Data System (ADS)

    Kraemer, Dennis; Tepe, Nathalie; Pourret, Olivier; Bau, Michael

    2017-01-01

    We present experimental results on the sorption behavior of rare earth elements and yttrium (REY) on precipitating manganese (hydr)oxide in the presence of the biogenic siderophore desferrioxamine B (DFOB). In marked contrast to inorganic systems, where preferential adsorption of HREY and depletion of LREY is commonly observed in manganese (hydr)oxide precipitates, sorption of REY in presence of the DFOB siderophore leads to HREY-depleted and LREY-enriched patterns in the precipitates. Moreover, our data indicate that surface oxidation of Ce(III) to Ce(IV) during sorption onto manganese (hydr)oxides and the resulting development of a positive Ce anomaly, which are commonly observed in inorganic experiments, are prevented in the presence of DFOB. Instead, Ce(III) is oxidized to Ce(IV) but associated with the dissolved desferrioxamine B which forms complexes with Ce(IV), that are at least twenty orders of magnitude more stable than those with Ce(III) and REY(III). The overall result is the formation of a positive Ce anomaly in the solution and a negative Ce anomaly in the Mn (hydr)oxides. The distribution of the strictly trivalent REY and Eu(III) between the manganese (hydr)oxide phase and the remaining ambient solution mimics the distribution of published stability constants for complexes of REY(III) with DFOB, i.e. the heavy REY form more stable complexes with the ligand and hence are better shielded from sorption than the LREY. Surface complexation modeling corroborates our experimental results. Negative Ce anomalies in Mn precipitates have been described from biogenic Mn oxides. Our results provide experimental evidence for the development of negative Ce anomalies in abiogenic Mn (hydr)oxide precipitates and show that the presence of the widespread siderophore desferrioxamine B during mineral precipitation results in HREY-depleted Mn (hydr)oxides with negative Ce anomalies.

  7. Ammonium detection by formation of colored zebra-bands in a detecting tube.

    PubMed

    Hori, Tatsuaki; Niki, Keizou; Kiso, Yoshiaki; Oguchi, Tatsuo; Kamimoto, Yuki; Yamada, Toshiro; Nagai, Masahiro

    2010-06-15

    Ammonium ion was colorized by means of a diazo coupling reaction with 2-phenylphenol, where the color development reaction was conducted within 3min by using boric acid as a catalyst. The resulting colored solution (0.5ml) was supplied by suction to a detecting tube consisting of a nonwoven fabric test strip (2mm wide, 1mm thick, 150mm long) impregnated with benzylcetyldimethylammonium chloride in a stripe pattern and enclosed in a heat-shrinkable tube. When the colored solution was supplied to the detecting tube, blue zebra-bands formed, and the ammonium concentration was determined by counting the number of zebra-bands. The detection range was 1-20mg-Nl(-1). Ammonium ion in actual domestic wastewater samples was successfully detected by means of this method.

  8. Field effects in graphene in an interface contact with aqueous solutions of acetic acid and potassium hydroxide

    NASA Astrophysics Data System (ADS)

    Butko, A. V.; Butko, V. Yu.; Lebedev, S. P.; Lebedev, A. A.; Kumzerov, Yu. A.

    2017-10-01

    For the creation of new promising chemical sensors, it is very important to study the influence of the interface between graphene and aqueous solutions of acids and alkalis on the transistor characteristics of graphene. Transistor structures on the basis of graphene grown by thermal decomposition of silicon carbide were created and studied. For the interface of graphene with aqueous solutions of acetic acid and potassium hydroxide in the transistor geometry, with a variation in the gate-to-source voltage, the field effect corresponding to the hole type of charge carriers in graphene was observed. It is established that an increase in the concentration of molecular ions in these solutions leads to an increase in the dependence of the resistance of the transistor on the gate voltage.

  9. Fate of arsenic, phosphate and ammonium plumes in a coastal aquifer affected by saltwater intrusion.

    PubMed

    Colombani, N; Mastrocicco, M; Prommer, H; Sbarbati, C; Petitta, M

    2015-08-01

    A severe groundwater contamination with extensive plumes of arsenic, phosphate and ammonium was found in a coastal aquifer beneath a former fertilizer production plant. The implementation of an active groundwater remediation strategy, based on a comprehensive pump and treat scheme, now prevents the migration of the dissolved contaminants into the marine environment. However, due to the site's proximity to the coastline, a seawater wedge was induced by the pumping scheme. Additionally the groundwater flow and salinity patterns were also strongly affected by leakage from the site's sewer system and from a seawater-fed cooling canal. The objective of this study was to elucidate the fate of arsenic and its co-contaminants over the site's history under the complex, coupled hydrodynamic and geochemical conditions that prevail at the site. A detailed geochemical characterisation of samples from sediment cores and hydrochemical data provided valuable high-resolution information. The obtained data were used to develop various conceptual models and to constrain the development and calibration of a reactive transport model. The reactive transport simulations were performed for a sub-domain (two-dimensional transect) of an earlier developed three-dimensional flow and variable density solute transport model. The results suggest that in the upper sub-oxic zone the influx of oxygenated water promoted As attenuation via co-precipitation with Al and Fe oxides and copper hydroxides. In contrast, in the deeper aquifer zone, iron reduction, associated with the release of adsorbed As and the dissolution of As bearing phases, provided and still provides to date a persistent source for groundwater pollution. The presented monitoring and modelling approach could be broadly applied to coastal polluted sites by complex contaminant mixture containing As. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Magnetoconductive maghemite core/polyaniline shell nanoparticles: Physico-chemical and biological assessment.

    PubMed

    Anna, Zasońska Beata; Patrycja, Bober; Petr, Jošt; Petrovský, Eduard; Pavel, Boštík; Daniel, Horák

    2016-05-01

    Nanoparticles of various compositions are increasingly being used in many areas of medicine. The aim of this study was to develop nanoparticles, which would possess both magnetic and conductive properties and, thus improve their suitability for a wider range of biomedical applications. Namely, it would enable both the particle manipulation and imaging using their magnetic properties and simultaneous stimulation of electro-sensitive cell types using their magnetic properties, which can be used in tissue therapy, engineering and as biosensors. Maghemite (γ-Fe2O3) particles were prepared by the co-precipitation of Fe(2+) and Fe(3+) salts with ammonium hydroxide, followed by the controlled oxidation with NaOCl. The polyaniline (PANI) shell on the γ-Fe2O3 nanoparticles was obtained by the polymerization of aniline hydrochloride with ammonium peroxydisulfate in an aqueous solution of poly(N-vinylpyrrolidone) at two reaction temperatures (0 and 25 °C). The resulting γ-Fe2O3&PANI particles were characterized by both the light and transmission electron microscopies, dynamic light scattering, magnetic measurements, UV-vis and energy dispersive X-ray (EDAX) spectroscopy. The size of the starting γ-Fe2O3 particles was 11 nm, that increased to 25 nm after the modification with PANI. The incubation of both the γ-Fe2O3 and γ-Fe2O3&PANI nanoparticles with the human neuroblastoma derived SH-SY5Y cells for 8 days showed neither significant decrease in the cell viability, nor detectable changes in the cell morphology. This indicates, that the particles have no detectable cytotoxicity in cell culture and represent a promising tool for further use in biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Molecular insights into shellac film coats from different aqueous shellac salt solutions and effect on disintegration of enteric-coated soft gelatin capsules.

    PubMed

    Al-Gousous, J; Penning, M; Langguth, P

    2015-04-30

    The purpose of this investigation was to study the effect of using different salts of shellac on the disintegration properties of shellac-based enteric coatings. In the last two decades, shellac has been increasingly used as an aqueous solution for enteric coating purposes, with the ammonium salt being the form typically used. Little investigation has been performed on using other salts, and therefore, this was the focus of our work. Enteric coatings, based on different shellac salts (ammonium, sodium, potassium and composite ammonium-sodium), were applied onto soft gelatin capsules. Disintegration testing of the coated soft gelatin capsules showed that alkali metal salts promote faster disintegration than ammonium salts. In order to determine the causes behind these differences, the solubility, thermal and spectroscopic properties of films cast from the different salts were investigated. The results show that films cast from ammonium-based salts of shellac are, unlike those cast from alkali metal-based salts, water-insoluble. Spectroscopic evidence suggests that this might be due to partial salt dissociation resulting in loss of ammonium as ammonia and reduced degree of shellac ionization during drying. In addition, oxidation of shellac aldehyde groups of the ammonium-based shellac salts could also play a role. And possible higher extent of shellac hydrolysis during the preparation of alkali metal salts might also be a factor. Therefore, the nature of the shellac salt used in the preparation of shellac-based aqueous coating solutions is a significant formulation factor affecting product performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system.

    PubMed

    Qin, Mohan; Molitor, Hannah; Brazil, Brian; Novak, John T; He, Zhen

    2016-01-01

    A microbial electrolysis cell (MEC)-forward osmosis (FO) system was previously reported for recovering ammonium and water from synthetic solutions, and here it has been advanced with treating landfill leachate. In the MEC, 65.7±9.1% of ammonium could be recovered in the presence of cathode aeration. Without aeration, the MEC could remove 54.1±10.9% of ammonium from the leachate, but little ammonia was recovered. With 2M NH4HCO3 as the draw solution, the FO process achieved 51% water recovery from the MEC anode effluent in 3.5-h operation, higher than that from the raw leachate. The recovered ammonia was used as a draw solute in the FO for successful water recovery from the treated leachate. Despite the challenges with treating returning solution from the FO, this MEC-FO system has demonstrated the potential for resource recovery from wastes, and provide a new solution for sustainable leachate management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Why can a gold salt react as a base?

    PubMed

    Anania, Mariarosa; Jašíková, Lucie; Jašík, Juraj; Roithová, Jana

    2017-09-26

    This study shows that gold salts [(L)AuX] (L = PMe 3 , PPh 3 , JohnPhos, IPr; X = SbF 6 , PF 6 , BF 4 , TfO, Tf 2 N) act as bases in aqueous solutions and can transform acetone to digold acetonyl complexes [(L) 2 Au 2 (CH 2 COCH 3 )] + without any additional base present in solution. The key step is the formation of digold hydroxide complexes [(L) 2 Au 2 (OH)] + . The kinetics of the formation of the digold complexes and their mutual transformation is studied by electrospray ionization mass spectrometry and the delayed reactant labelling method. We show that the formation of digold hydroxide is the essential first step towards the formation of the digold acetonyl complex, the reaction is favoured by more polar solvents, and the effect of counter ions is negligible. DFT calculations suggest that digold hydroxide and digold acetonyl complexes can exist in solution only due to the stabilization by the interaction with two gold atoms. The reaction between the digold hydroxide and acetone proceeds towards the dimer {[(L)Au(OH)]·[(L)Au(CH 3 COCH 3 )] + }. The monomeric units interact at the gold atoms in the perpendicular arrangement typical of the gold clusters bound by the aurophilic interaction. The hydrogen is transferred within the dimer and the reaction continues towards the digold acetonyl complex and water.

  14. Thermoelectrochemical system and method

    DOEpatents

    Ludwig, F.A.; Townsend, C.W.; Eliash, B.M.

    1995-11-28

    A thermal electrochemical system is described in which an electrical current is generated between a cathode immersed in a concentrated aqueous solution of phosphoric acid and an anode immersed in a molten salt solution of ammonium phosphate and monohydric ammonium phosphate. Reactants consumed at the electrodes during the electrochemical reaction are thermochemically regenerated and recycled to the electrodes to provide continuous operation of the system. 5 figs.

  15. Solute-Solvent Charge-Transfer Excitations and Optical Absorption of Hydrated Hydroxide from Time-Dependent Density-Functional Theory.

    PubMed

    Opalka, Daniel; Sprik, Michiel

    2014-06-10

    The electronic structure of simple hydrated ions represents one of the most challenging problems in electronic-structure theory. Spectroscopic experiments identified the lowest excited state of the solvated hydroxide as a charge-transfer-to-solvent (CTTS) state. In the present work we report computations of the absorption spectrum of the solvated hydroxide ion, treating both solvent and solute strictly at the same level of theory. The average absorption spectrum up to 25 eV has been computed for samples taken from periodic ab initio molecular dynamics simulations. The experimentally observed CTTS state near the onset of the absorption threshold has been analyzed at the generalized-gradient approximation (GGA) and with a hybrid density-functional. Based on results for the lowest excitation energies computed with the HSE hybrid functional and a Davidson diagonalization scheme, the CTTS transition has been found 0.6 eV below the first absorption band of liquid water. The transfer of an electron to the solvent can be assigned to an excitation from the solute 2pπ orbitals, which are subject to a small energetic splitting due to the asymmetric solvent environment, to the significantly delocalized lowest unoccupied orbital of the solvent. The distribution of the centers of the excited state shows that CTTS along the OH(-) axis of the hydroxide ion is avoided. Furthermore, our simulations indicate that the systematic error arising in the calculated spectrum at the GGA originates from a poor description of the valence band energies in the solution.

  16. Improvement of a sample preparation procedure for multi-elemental determination in Brazil nuts by ICP-OES.

    PubMed

    Welna, Maja; Szymczycha-Madeja, Anna

    2014-04-01

    Various sample preparation procedures, such as common wet digestions and alternatives based on solubilisation in aqua regia or tetramethyl ammonium hydroxide, were compared for the determination of the total Ba, Ca, Cr, Cd, Cu, Fe, Mg, Mn, Ni, P, Pb, Se, Sr and Zn contents in Brazil nuts using inductively coupled plasma optical emission spectrometry (ICP-OES). For measurement of Se, a hydride generation technique was used. The performance of these procedures was measured in terms of precision, accuracy and limits of detection of the elements. It was found that solubilisation in aqua regia gave the best results, i.e. limits of detection from 0.60 to 41.9 ng ml(-1), precision of 1.0-3.9% and accuracy better than 5%. External calibration with simple standard solutions could be applied for the analysis. The proposed procedure is simple, reduces sample handling, and minimises the time and reagent consumption. Thus, this can be a vital alternative to traditional sample treatment approaches based on the total digestion with concentrated reagents. A phenomenon resulting from levels of Ba, Se and Sr in Brazil nuts was also discussed.

  17. Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)

    DOE PAGES

    Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis; ...

    2017-02-01

    The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effectsmore » of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (<19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.« less

  18. Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis

    The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effectsmore » of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (<19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.« less

  19. 76 FR 82316 - Final Determination Regarding Petition To Reconcile Inconsistent Customs Decisions Concerning the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... Schedule of the United States (``HTSUS'') of a certain CN-9 solution, a hydrated ammonium calcium nitrate..., a hydrated ammonium calcium nitrate double salt that is primarily used as a fertilizer but is also... calcium nitrate and ammonium nitrate.'' Citing Legal Note 2(a)(v) to Chapter 31, HTSUS,\\2\\ the Port of...

  20. The effects of temperature and aeration on the corrosion of A508III low alloy steel in boric acid solutions at 25-95 °C

    NASA Astrophysics Data System (ADS)

    Xiao, Qian; Lu, Zhanpeng; Chen, Junjie; Yao, Meiyi; Chen, Zhen; Ejaz, Ahsan

    2016-11-01

    The effects of temperature, solution composition and dissolved oxygen on the corrosion rate and electrochemical behavior of an A508III low alloy steel in boric acid solution with lithium hydroxide at 25-95 °C are investigated. In aerated solutions, increasing the boric acid concentration increases the corrosion rate and the anodic current density. The corrosion rate in deaerated solutions increases with increasing temperature. A corrosion rate peak value is found at approximately 75 °C in aerated solutions. Increasing temperature increases the oxygen diffusion coefficient, decreases the dissolved oxygen concentration, accelerates the hydrogen evolution reaction, and accelerates both the active dissolution and the film forming reactions. Increasing dissolved oxygen concentration does not significantly affect the corrosion rate at 50 and 60 °C, increases the corrosion rate at 70 and 80 °C, and decreases the corrosion rate at 87.5 and 95 °C in a high concentration boric acid solution with lithium hydroxide.

  1. Transparent 'solution' of ultrathin magnesium hydroxide nanocrystals for flexible and transparent nanocomposite films.

    PubMed

    Wang, Jie-Xin; Sun, Qian; Chen, Bo; Wu, Xi; Zeng, Xiao-Fei; Zhang, Cong; Zou, Hai-Kui; Chen, Jian-Feng

    2015-05-15

    Transparent solutions of nanocrystals exhibit many unique properties, and are thus attractive materials for numerous applications. However, the synthesis of transparent nanocrystal solutions of magnesium hydroxide (MH) with wide applications is yet to be realized. Here, we report a facile two-step process, which includes a direct reactive precipitation in alcohol phase instead of aqueous phase combined with a successive surface modification, to prepare transparent alcohol solutions containing lamellar MH nanocrystals with an average size of 52 nm and an ultrathin thickness of 1-2 nm, which is the thinnest MH nanoplatelet reported in the literatures. Further, highly flexible and transparent nanocomposite films are fabricated with a solution mixing method by adding the transparent MH nanocrystal solutions into PVB solution. Considering the simplicity of the fabrication process, high transparency and good flexibility, this MH/polymer nanocomposite film is promising for flame-resistant applications in plastic electronics and optical devices with high transparency, such as flexible displays, optical filters, and flexible solar cells.

  2. Electrochemical and spectroscopic study of interfacial interactions between chalcopyrite and typical flotation process reagents

    NASA Astrophysics Data System (ADS)

    Urbano, Gustavo; Lázaro, Isabel; Rodríguez, Israel; Reyes, Juan Luis; Larios, Roxana; Cruz, Roel

    2016-02-01

    Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between chalcopyrite (CuFeS2) and n-isopropyl xanthate (X) in the presence of ammonium bisulfite/39wt% SO2 and caustic starch at different pH values. Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, and microflotation tests were used to establish the type and extent of xanthate adsorption as well as the species involved under different mineral surface conditions in this study. The results demonstrate that the species that favor a greater hydrophobicity of chalcopyrite are primarily CuX and S0, whereas oxides and hydroxides of Cu and Fe as well as an excess of starch decrease the hydrophobicity. A conditioning of the mineral surface with ammonium bisulfite/39wt% SO2 at pH 6 promotes the activation of surface and enhances the xanthate adsorption. However, this effect is diminished at pH ≥ 8, when an excess of starch is added during the preconditioning step.

  3. Fungicidal effect of 15 disinfectants against 25 fungal contaminants commonly found in bread and cheese manufacturing.

    PubMed

    Bundgaard-Nielsen, K; Nielsen, P V

    1996-03-01

    Resistance of 19 mold and 6 yeast species to 15 commercial disinfectants was investigated by using a suspension method in which the fungicidal effect and germination time were determined at 20 degrees C. Disinfectants containing 0.5% dodecyldiethylentriaminacetic acid, 10 g of chloramine-T per 1, 2.0% formaldehyde, 0.1% potassium hydroxide, 3.0% hydrogen peroxide, or 0.3% peracetic acid were ineffective as fungicides. The fungicidal effect of quaternary ammonium compounds and chlorine compounds showed great variability between species and among the six isolates of Penicillium roqueforti var. roqueforti tested. The isolates of P roqueforti var. carneum, P. discolor, Aspergillus versicolor, and Eurotium repens examined were resistant to different quaternary ammonium compounds. Conidia and vegetative cells were killed by alcohols, whereas ascospores were resistant. Resistance of ascospores to 70% ethanol increased with age. Both P. roqueforti var. roqueforti and E. repens showed great variability of resistance within isolates of each species.

  4. Benzene Adsorption - A Significant Inhibitor for the Hydrogen Oxidation Reaction in Alkaline Conditions

    DOE PAGES

    Gonzales, Ivana; Chung, Hoon Taek; Kim, Yu Seung

    2017-09-25

    Slow hydrogen oxidation reaction (HOR) kinetics on Pt under alkaline conditions is a significant technical barrier for the development of high-performance hydroxide exchange membrane fuel cells. Here we report that benzene adsorption on Pt is a major factor responsible for the sluggish HOR. Furthermore, we demonstrate that bimetallic catalysts, such as PtMo/C, PtNi/C, and PtRu/C, can reduce the adsorption of benzene and thereby improve HOR activity. In particular, the HOR voltammogram of PtRu/C in 0.1 M benzyl ammonium showed minimal benzene adsorption. Density functional theory calculations indicate that the adsorption of benzyl ammonium on the bimetallic PtRu is endergonic formore » all four possible orientations of the cation, which explains the significantly better HOR activity observed for the bimetallic catalysts. In conclusion, the new HOR inhibition mechanism described here provides insights for the design of future polymer electrolytes and electrocatalysts for better-performing polymer membrane-based fuel cells.« less

  5. LC-MS/MS signal suppression effects in the analysis of pesticides in complex environmental matrices.

    PubMed

    Choi, B K; Hercules, D M; Gusev, A I

    2001-02-01

    The application of LC separation and mobile phase additives in addressing LC-MS/MS matrix signal suppression effects for the analysis of pesticides in a complex environmental matrix was investigated. It was shown that signal suppression is most significant for analytes eluting early in the LC-MS analysis. Introduction of different buffers (e.g. ammonium formate, ammonium hydroxide, formic acid) into the LC mobile phase was effective in improving signal correlation between the matrix and standard samples. The signal improvement is dependent on buffer concentration as well as LC separation of the matrix components. The application of LC separation alone was not effective in addressing suppression effects when characterizing complex matrix samples. Overloading of the LC column by matrix components was found to significantly contribute to analyte-matrix co-elution and suppression of signal. This signal suppression effect can be efficiently compensated by 2D LC (LC-LC) separation techniques. The effectiveness of buffers and LC separation in improving signal correlation between standard and matrix samples is discussed.

  6. Stability of a secondary-type recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.C.

    1970-04-21

    To provide good mobility control and to protect the components of the micellar dispersion displacing fluid from ''leaching'' into the drive fluid (water), the front portion of the drive fluid contained a mobility reducing agent, an electrolyte, and a semipolar organic compound. Berea sandstone cores (20.2 percent porosity, 336 md permeability) were saturated with water from Henry lease in Illinois (18,000 ppM TDS), flooded with sweet black crude oil (7 cp at 72/sup 0/F) from the Henry lease, and waterflooded with Henry lease water. A recovery of 93.9 percent of original oil in place was obtained by a micellar dispersionmore » followed by the mobility buffer. The micellar dispersion contained ammonium petroleum sulfonate, crude column overhead (a heavy naptha), isopropanol, p-nonyl phenol, water and sodium hydroxide. No. 530 Pusher, water from the Palestine water reservoir in Palestine, Illinois (450 ppM TDS), 50 ppM ammonium thiocyanate, n-butanol, and isopropyl alcohol (to facilitate the solubilization of the polymer) were in the mobility buffer.« less

  7. Stability of a secondary-type recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.C.

    1970-07-14

    To provide good mobility control and to protect the components of the micellar dispersion displacing fluid from ''leaching'' into the drive fluid (water), the front portion of the drive fluid contained a mobility reducing agent, an electrolyte, and a semipolar organic compound. Berea sandstone cores (20.2 percent porosity, 336 md permeability) were saturated with water from Henry lease in Illinois (18,000 ppM TDS), flooded with sweet black crude oil (7 cp at 72/sup 0/F) from the Henry lease, and waterflooded with Henry lease water. A recovery of 93.9 percent of original oil in place was obtained by a micellar dispersionmore » followed by the mobility buffer. The micellar dispersion contained ammonium petroleum sulfonate, crude column overhead (a heavy naptha), isopropanol, p-nonyl phenol, water and sodium hydroxide. No. 530 Pusher, water from the Palestine water reservoir in Palestine, Illinois (450 ppM TDS), 50 ppM ammonium thiocyanate, n-butanol, and isopropyl alcohol (to facilitate the solubilization of the polymer) were in the mobility buffer.« less

  8. The Solubility of Microcrystalline Cellulose in Sodium Hydroxide Solution Is Inconsistent with International Specifications.

    PubMed

    Kodama, Hanayo; Tamura, Yoshinaga; Kamei, Ichiro; Sato, Kyoko; Akiyama, Hiroshi

    2017-01-01

    Microcrystalline cellulose (MCC) is used globally as an inactive ingredient in food and nutraceutical products and is commonly used as a food additive. To confirm the conformity of MCC to the solubility requirements stipulated in international specifications, the solubilities of commercially available MCC products were tested in sodium hydroxide (NaOH) solution. All of the samples were insoluble in NaOH solution, which is inconsistent with the descriptions provided in international specifications. We also prepared celluloses with different degree of polymerization (DP) values by acid hydrolysis. Celluloses with lower DP were prepared using a three-step process, and their solubilities were tested in NaOH solution. These celluloses were found to be insoluble, which is inconsistent with the descriptions provided in international specifications. The present study suggests that the descriptions of the solubility of the celluloses in NaOH solution found in the current international specifications should be revised.

  9. Fabrication and RF characterization of zinc oxide based Film Bulk Acoustic Resonator

    NASA Astrophysics Data System (ADS)

    Patel, Raju; Bansal, Deepak; Agrawal, Vimal Kumar; Rangra, Kamaljit; Boolchandani, Dharmendar

    2018-06-01

    This work reports fabrication and characterization of Film Bulk Acoustic Resonator (FBAR) to improve the performance characteristics for RF filter and sensing application. Zinc oxide as a piezoelectric (PZE) material was deposited on an aluminum bottom electrode using an RF magnetron sputtering, at room temperature, and gold as top electrode for the resonator. Tetramethyl ammonium hydroxide (TMAH) setup was used for bulk silicon etching to make back side cavity to confine the acoustic signals. The transmission characteristics show that the FBARs have a central frequency at 1.77 GHz with a return loss of -10.7 dB.

  10. Effects of anhydrous ammonia on a forest ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, E.E. Jr.

    1976-01-01

    A forest ecosystem covering 26 square miles was exposed to anhydrous ammonia following a pipeline rupture in June, 1971. Initial effects included death or defoliation of vegetation and high nitrate accumulations in plant tissues, soils, and natural waters. Deciduous trees and herbaceous species had recovered one year after exposure and soil and water conditions were near normal, but Pinus echinata and Juniperous virginiana showed loss of needles, abnormal twig growth and low cone production after three years. Ammonia or ammonium hydroxide entered plants primarily through stomates and caused injury by desiccation, nutritional imbalances, and other alterations in cell conditions.

  11. Solid-phase synthesis of oligo-2-pyrimidinone-2'-deoxyribonucleotides and oligo-2-pyrimidinone-2'-deoxyriboside methylphosphonates.

    PubMed Central

    Zhou, Y; Ts'o, P O

    1996-01-01

    A synthetic method was developed for the synthesis of oligodeoxyribonucleotides and oligodeoxyribonucleoside methylphosphonates comprised exclusively of the fluorescent 2-pyrimidinone base for the first time. The method utilized the solid-phase 2-cyanoethylphosphoramidite and methylphosphonamidite chemistry for internucleotide couplings and a baselabile oxalyl linkage to anchor the oligomers onto the CPG support. Cleavage of the oligomers from the support was effected by a short treatment of the support with 5% ammonium hydroxide in methanol at room temperature, without any degradation of the base-sensitive 2-pyrimidinone residues or the base-sensitive methylphosphonate backbone. PMID:8758991

  12. Formation of urea and guanidine by irradiation of ammonium cyanide.

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.

    1972-01-01

    Aqueous solutions of ammonium cyanide yield urea, cyanamide and guanidine when exposed to sunlight or an unfiltered 254 nm ultraviolet source. The prebiotic significance of these results is discussed.

  13. Dissolution of Gold and Silver with Ammonium Thiosulfate from Mangano-Argentiferous Ores Treated in Acid-Reductive Conditions

    NASA Astrophysics Data System (ADS)

    Tiburcio Munive, G.; Encinas Romero, M. A.; Vazquez, V. M.; Valenzuela García, J. L.; Valenzuela Soto, A.; Coronado Lopez, J. H.

    2017-10-01

    A novel process was studied to extract economic metals from refractory ores that are difficult to leach with cyanide and ammonium thiosulfate, such as the well-known mangano argentiferous minerals, which are minerals of manganese, iron, and silver. The mineral under consideration originates from the tailings of the Monte del Favor, Hostotipaquillo Jalisco, Mexico. The sample was characterized by x-ray diffractometry, atomic absorption spectroscopy, scanning electron microscopy, and microanalysis by energy-dispersive x-ray spectroscopy. First, the material was passed through a 100-mesh screen, and then it was subjected to reductive leaching by varying the liquid-solid ( L/ S) ratio from 2:1 to 10:1 (observations were carried out at a ratio of 5:1, which yielded higher extraction of manganese). With H2SO4 and Na2SO3 as the reducing agents, manganese extraction of up to 96.05% was achieved during the first 3 h with a mineral head of manganese 3.58%, acid consumption of 90.74 g/L, and sulfite consumption of 25.8 g/L. The mineral was then filtered and proceeded to neutralize the acidity, reaching a pH of 8 with calcium hydroxide. Then, the material was subjected to a new leaching of gold and silver values with ammonium thiosulfate. The L/ S ratio was varied (1:1, 2:1, 3:1, 4:1), and the contact time and the concentration of ammonium thiosulfate was investigated, while controlling the pH using Ca(OH)2 and NH4Cl. An L/ S ratio of 2:1 showed the best extraction of silver (97.06%) and gold (86.66%), and the thiosulfate consumption was 10.36 g/L. The mineral head of gold and silver was 0.30 g/ton and 310 g/ton, respectively. The pH was maintained between 9.8 and 8.4, such that ammonium thiosulfate stabilized with lime, and ammonium chloride did not suffer any decomposition.

  14. Favorable Effects of Weak Acids on Negative-Ion Electrospray Ionization Mass Spectrometry

    PubMed Central

    Wu, Zengru; Gao, Wenqing; Phelps, Mitch A.; Wu, Di; Miller, Duane D.; Dalton, James T.

    2007-01-01

    Despite widespread use in pharmacokinetic, drug metabolism, and pesticide residue studies, little is known about the factors governing response during reversed-phase liquid chromatography coupled with negative-ion electrospray ionization (ESI−) mass spectrometry. We examined the effects of various mobile-phase modifiers on the ESI− response of four selective androgen receptor modulators using a postcolumn infusion system. Acetic, propionic, and butyric acid improved the ESI− responses of analytes to varying extents at low concentrations. Formic acid suppressed ionization, as did neutral salts (ammonium formate, ammonium acetate) and bases (ammonium hydroxide, triethylamine) under most conditions. Two modifiers (2,2,2-trifluoroethanol, formaldehyde) that produce anions with high gas-phase proton affinity increased ESI− responses. However, the concentrations of these modifiers required to enhance ESI− response were higher than that of acidic modifiers, which is a phenomenon likely related to their low pKa values. 2,2,2-Trifluoroethanol increased response of more hydrophobic compounds but decreased response of a more hydrophilic compound. Formaldehyde improved response of all the compounds, especially the hydrophilic compound with lower surface activity. In summary, these results suggest that an ideal ESI− modifier should provide cations that can be easily electrochemically reduced and produce anions with small molecular volume and high gas-phase proton affinity. PMID:14750883

  15. Leaching of silicon from ferronickel (FeNi) smelting slag with sodium hydroxide solution at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Mufakhir, F. R.; Mubarok, M. Z.; Ichlas, Z. T.

    2018-01-01

    The present paper reports the leaching behavior of silicon from ferronickel slag under atmospheric pressure using sodium hydroxide solution. The effect of several experimental variables, namely concentration of leaching agent, operating temperature, stirring speed, and slurry density was investigated. The leaching kinetic was also investigated by using shrinking core model. It was determined that leaching of silicon from the slag was controlled by diffusion through product layer, although the activation energy was found to be 85.84 kJ/mol, which was unusually high for such a diffusion-controlled process.

  16. Synthetic carbonaceous fuels and feedstocks

    DOEpatents

    Steinberg, Meyer

    1980-01-01

    This invention relates to the use of a three compartment electrolytic cell in the production of synthetic carbonaceous fuels and chemical feedstocks such as gasoline, methane and methanol by electrolyzing an aqueous sodium carbonate/bicarbonate solution, obtained from scrubbing atmospheric carbon dioxide with an aqueous sodium hydroxide solution, whereby the hydrogen generated at the cathode and the carbon dioxide liberated in the center compartment are combined thermocatalytically into methanol and gasoline blends. The oxygen generated at the anode is preferably vented into the atmosphere, and the regenerated sodium hydroxide produced at the cathode is reused for scrubbing the CO.sub.2 from the atmosphere.

  17. Investigation of new hypergol scrubber technology

    NASA Technical Reports Server (NTRS)

    Glasscock, Barbara H.

    1994-01-01

    The ultimate goal of this work is to minimize the liquid waste generated from the scrubbing of hypergolic vent gases. In particular, nitrogen tetroxide, a strong oxidizer used in hypergolic propellant systems, is currently scrubbed with a sodium hydroxide solution resulting in a hazardous liquid waste. This study investigated the use of a solution of potassium hydroxide and hydrogen peroxide for the nitrogen textroxide vent scrubber system. The potassium nitrate formed would be potentially usable as a fertilizer. The hydrogen peroxide is added to convert the potassium nitrite that is formed into more potassium nitrate. Smallscale laboratory tests were conducted to establish the stability of hydrogen peroxide in the proposed scrubbing solution and to evaluate the effectiveness of hydrogen peroxide in converting nitrite to nitrate.

  18. An improved method for analysis of hydroxide and carbonate in alkaline electrolytes containing zinc

    NASA Technical Reports Server (NTRS)

    Reid, M. A.

    1978-01-01

    A simplified method for titration of carbonate and hydroxide in alkaline battery electrolyte is presented involving a saturated KSCN solution as a complexing agent for zinc. Both hydroxide and carbonate can be determined in one titration, and the complexing reagent is readily prepared. Since the pH at the end point is shifted from 8.3 to 7.9-8.0, m-cresol purple or phenol red are used as indicators rather than phenolphthalein. Bromcresol green is recommended for determination of the second end point of a pH of 4.3 to 4.4.

  19. An improved method for analysis of hydroxide and carbonate in alkaline electrolytes containing zinc

    NASA Technical Reports Server (NTRS)

    Reid, M. A.

    1978-01-01

    A simplified method for titration of carbonate and hydroxide in alkaline battery electrolyte is presented involving a saturated KSCN solution as a complexing agent for zinc. Both hydroxide and carbonate can be determined in one titration, and the complexing reagent is readily prepared. Since the pH at the end point is shifted from 8.3 to 7.9 - 8.0, m-cresol purple or phenol red are used as indicators rather than phenolphthalein. Bromcresol green is recommended for determination of the second end point of a pH of 4.3 to 4.4.

  20. Studies on the behavior of ammonia and ammonium salts in the atmosphere (1) - Fractional collection of ammonia gas and particulate ammonium

    NASA Technical Reports Server (NTRS)

    Kiin, K.; Fujimura, M.; Hashimoto, Y.

    1981-01-01

    Methods for the fractional collection of trace amounts of atmospheric ammonia gas and ammonium particles on a two staged glass fiber filter are summarized. A standard glass fiber filter washed with distilled water and dried at 120 to 130 C was used. A second filter was impregnated with a mixture of 3% boric acid and 25% glycerin solution. The blank of glass fiber filters impregnated with a mixture of the above solution was very low for ammonia, i.e. 0.06 micrograms in a filter of 47 mm in diameter. The mean concentrations of ammonia and ammonium in air at Kawasaki, a polluted area, were 7.6 and 2.3 micrograms cu m, and those at Sanriku, an unpolluted area 0.9 and 0.2 micrograms cu m, respectively. Ratios of concentration levels of ammonium to total ammonia in the atmosphere were 0.3 and 0.2 for the polluted and unpolluted areas, respectively. Ammonium salts in air at both areas were not correlated with relative humidity. Variations in time of ammonia concentrations and sources in surrounding areas are also considered.

  1. Aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference.

    PubMed

    Zhao, Xue Qiang; Guo, Shi Wei; Shinmachi, Fumie; Sunairi, Michio; Noguchi, Akira; Hasegawa, Isao; Shen, Ren Fang

    2013-01-01

    Acidic soils are dominated chemically by more ammonium and more available, so more potentially toxic, aluminium compared with neutral to calcareous soils, which are characterized by more nitrate and less available, so less toxic, aluminium. However, it is not known whether aluminium tolerance and nitrogen source preference are linked in plants. This question was investigated by comparing the responses of 30 rice (Oryza sativa) varieties (15 subsp. japonica cultivars and 15 subsp. indica cultivars) to aluminium, various ammonium/nitrate ratios and their combinations under acidic solution conditions. indica rice plants were generally found to be aluminium-sensitive and nitrate-preferring, while japonica cultivars were aluminium-tolerant and relatively ammonium-preferring. Aluminium tolerance of different rice varieties was significantly negatively correlated with their nitrate preference. Furthermore, aluminium enhanced ammonium-fed rice growth but inhibited nitrate-fed rice growth. The results suggest that aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference under acidic solution conditions. A schematic diagram summarizing the interactions of aluminium and nitrogen in soil-plant ecosystems is presented and provides a new basis for the integrated management of acidic soils.

  2. Hydrolysis kinetics of astaxanthin esters and stability of astaxanthin of Haematococcus pluvialis during saponification.

    PubMed

    Yuan, J P; Chen, F

    1999-01-01

    The reaction kinetics for the hydrolysis of astaxanthin esters and the degradation of astaxanthin during saponification of the pigment extract from the microalga Haematococcus pluvialis were investigated. Different concentrations of sodium hydroxide in methanol were used for the saponification under nitrogen in darkness at ambient temperature (22 degrees C) followed by the analysis of astaxanthins and other carotenoids using an HPLC method. The concentration of methanolic NaOH solution was important for promoting the hydrolysis of astaxanthin esters and minimizing the degradation of astaxanthin during saponification. With a higher concentration of methanolic NaOH solution, the reaction rate of hydrolysis was high, but the degradation of astaxanthin occurred significantly. The rate constants of the hydrolysis reaction (first order) of astaxanthin esters and the degradation reaction (zero-order) of astaxanthin were directly proportional to the concentration of sodium hydroxide in the saponified solution. Although the concentration of sodium hydroxide in the saponified solution was 0.018 M, complete hydrolysis of astaxanthin esters was achieved in 6 h for different concentrations (10-100 mg/L) of pigment extracts. Results also indicated that a higher temperature should be avoided to minimize the degradation of astaxanthin. In addition, during saponification, no loss of lutein, beta-carotene, and canthaxanthin was found.

  3. The Synthesis of Calcium Salt from Brine Water by Partial Evaporation and Chemical Precipitation

    NASA Astrophysics Data System (ADS)

    Lalasari, L. H.; Widowati, M. K.; Natasha, N. C.; Sulistiyono, E.; Prasetyo, A. B.

    2017-02-01

    In this study would be investigated the effects of partial evaporation and chemical precipitation in the formation of calcium salt from brine water resources. The chemical reagents used in the study was oxalate acid (C2H2O4), ammonium carbonate (NH4)2CO3) and ammonium hydroxide (NH4OH) with reagent concentration of 2 N, respectively. The procedure was 10 liters brine water evaporated until 20% volume and continued with filtration process to separate brine water filtrate from residue (salt). Salt resulted from evaporation process was characterized by Scanning Electron Microscopy (SEM), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) techniques. Filtrate then was reacted with C2H2O4, (NH4)2CO3 and NH4OH reagents to get salt products in atmospheric condition and variation ratio volume brine water/chemicals (v/v) [10/1; 10/5; 10/10; 10/20; 10/30; 10:50; 20/1; 20/5; 20/10; 20/20; 20/30; 20:50]. The salt product than were filtered, dried, measured weights and finally characterized by SEM/EDS and XRD techniques. The result of experiment showed the chemical composition of brine water from Tirta Sanita, Bogor was 28.87% Na, 9.17% Mg, 2.94% Ca, 22.33% O, 0.71% Sr, 30.02% Cl, 1.51% Si, 1.23% K, 0.55% S, 1.31% Al. The chemical composition of salt resulted by partial evaporation was 53.02% Ca, 28.93%O, 9.50% Na, 2.10% Mg, 1.53% Sr, 1.20% Cl, 1.10% Si, 0.63% K, 0.40% S, 0.39% Al. The salt resulted by total evaporation was indicated namely as NaCl. Whereas salt resulted by partial evaporation was CaCO3 with a purity of 90 % from High Score Plus analysis. In the experiment by chemical precipitation was reported that the reagents of ammonium carbonate were more reactive for synthesizing calcium salt from brine water compared to reagents of oxalate acid and ammonium hydroxide. The salts precipitated by NH4OH, (NH4)2CO3, and H2C2O4 reagents were indicated as NaCl, CaCO3 and CaC2O4.H2O, respectively. The techniques of partial evaporation until 20% volume sample of brine water and chemical precipitation using (NH4)2CO3 reagent are recommended in the synthesis of calcium salts from brine water because are simple, flexible and economical.

  4. Biogeochemical toxicity and phytotoxicity of nitrogenous compounds in a variety of arctic soils.

    PubMed

    Anaka, Alison; Wickstrom, Mark; Siciliano, Steven D

    2008-08-01

    Ammonium nitrate (NH(4)NO(3)) is a common water pollutant associated with many industrial and municipal activities. One solution to reduce exposure of sensitive aquatic systems to nitrogenous compounds is to atomize (atmospherically disperse in fine particles) contaminated water over the Arctic tundra, which will reduce nitrogen loading to surface water. The toxicity of ammonium nitrate to Arctic soils, however, is poorly understood. In the present study, we characterized the biogeochemical toxicity and phytotoxicity of ammonium nitrate solutions in four different Arctic soils and in a temperate soil. Soil was exposed to a range of ammonium nitrate concentrations over a 90-d period. Dose responses of carbon mineralization, nitrification, and phytotoxicity endpoints were estimated. In addition to direct toxicity, the effect of ammonium nitrate on ecosystem resilience was investigated by dosing nitrogen-impacted soils with boric acid. Ammonium nitrate had no effect on carbon mineralization activity and only affected nitrification in one soil, a polar desert soil from Cornwallis Island, Northwest Territories, Canada. In contrast, ammonium nitrate applications (43 mmol N/L soil water) significantly impaired seedling emergence, root length, and shoot length of northern wheatgrass (Elymus lanceolatus). Concentrations of ammonium nitrate in soil water that inhibited plant parameters by 20% varied between 43 and 280 mmol N/L soil water, which corresponds to 2,100 to 15,801 mg/L of ammonium nitrate in the application water. Arctic soils were more resistant to ammonium nitrate toxicity compared with the temperate soil under these study conditions. It is not clear, however, if this represents a general trend for all polar soils, and because nitrogen is an essential macronutrient, nitrogenous toxicity likely should be considered as a special case for soil toxicity.

  5. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity.

    PubMed

    Yin, Huajie; Zhao, Shenlong; Zhao, Kun; Muqsit, Abdul; Tang, Hongjie; Chang, Lin; Zhao, Huijun; Gao, Yan; Tang, Zhiyong

    2015-03-02

    Design and synthesis of effective electrocatalysts for hydrogen evolution reaction in alkaline environments is critical to reduce energy losses in alkaline water electrolysis. Here we report a hybrid nanomaterial comprising of one-dimensional ultrathin platinum nanowires grown on two-dimensional single-layered nickel hydroxide. Judicious surface chemistry to generate the fully exfoliated nickel hydroxide single layers is explored to be the key for controllable growth of ultrathin platinum nanowires with diameters of about 1.8 nm. Impressively, this hybrid nanomaterial exhibits superior electrocatalytic activity for hydrogen evolution reaction in alkaline solution, which outperforms currently reported catalysts, and the obviously improved catalytic stability. We believe that this work may lead towards the development of single-layered metal hydroxide-based hybrid materials for applications in catalysis and energy conversion.

  6. The stability of chlorinated, brominated, and iodinated haloacetamides in drinking water.

    PubMed

    Ding, Shunke; Chu, Wenhai; Krasner, Stuart W; Yu, Yun; Fang, Chao; Xu, Bin; Gao, Naiyun

    2018-06-13

    Haloacetamides (HAMs), a group of nitrogenous disinfection byproducts (N-DBPs), can decompose to form corresponding intermediate products and other DBPs. The stability of ten different HAMs, including two chlorinated, five brominated, and three iodinated species was investigated with and without the presence of chlorine, chloramines, and reactive solutes such as quenching agents. The HAM basic hydrolysis and chlorination kinetics were well described by a second-order kinetics model, including first-order in HAM and hydroxide and first-order in HAM and hypochlorite, respectively, whereas the HAM neutral hydrolysis kinetic was first-order in HAM. Furthermore, HAMs decompose instantaneously when exposed to hypochlorite, which was almost two and nine orders of magnitude faster than HAM basic and neutral hydrolysis, respectively. In general, HAM hydrolysis and chlorination rates both increased with increasing pH and the number of halogens substituted on the methyl group. Moreover, chlorinated HAMs are more unstable than their brominated analogs, followed by the iodinated ones, due to the decrease in the electron-withdrawing inductive effect from chlorine to iodine atom. During hydrolysis, HAMs mainly directly decompose into the corresponding haloacetic acids (HAAs) via a nucleophilic reaction between the carbonyl carbon and hydroxide. For HAM chlorination reactions, hypochlorite reacts with HAMs to form the N-chloro-HAMs (N-Cl-HAMs) via Cl + transfer from chlorine to the amide nitrogen. N-Cl-HAMs can further degrade to form HAAs via hypochlorous acid addition. In contrast, the reactions between chloramines and HAMs were found to be insignificant. Additionally, four common quenching agents, including sodium sulfite, sodium thiosulfate, ascorbic acid, and ammonium chloride, were demonstrated to expedite HAM degradation, whereas ammonium chloride was the least influential among the four. Taft linear free energy relationships were established for both HAM hydrolysis and chlorination reactions, based on which the hydrolysis and chlorination rate constants for three monohaloacetamides were estimated. The hydrolysis and chlorination rates of 13 HAMs decreased in the following order: TCAM > BDCAM > DBCAM > TBAM > DCAM > BCAM > DBAM > CIAM > BIAM > DIAM > MCAM > MBAM > MIAM (where C = chloro, B = bromo, I = iodo, T = tri, D = di, M = mono). Lastly, using the HAM kinetic model established in this study, HAM half-lifes in drinking water distribution systems can be predicted on the basis of pH and residual chlorine concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Recovery of boric acid from ion exchangers

    DOEpatents

    Pollock, Charles W.

    1976-01-01

    The recovery of boric acid from an anion exchange resin is improved by eluting the boric acid with an aqueous solution of ammonium bicarbonate. The boric acid can be readily purified and concentrated by distilling off the water and ammonium bicarbonate. This process is especially useful for the recovery of boric acid containing a high percentage of .sup.10 B which may be found in some nuclear reactor coolant solutions.

  8. Ammonium in aqueous fluids to 600 °C, 1.3 GPa: A spectroscopic study on the effects on fluid properties, silica solubility, and K-feldspar to muscovite reactions

    NASA Astrophysics Data System (ADS)

    Schmidt, Christian; Watenphul, Anke

    2010-12-01

    The behavior of ammonium, NH 4+, in aqueous systems was studied based on Raman spectroscopic experiments to 600 °C and about 1.3 GPa. Spectra obtained at ambient conditions revealed a strong reduction of the dynamic three-dimensional network of water with addition of ammonium chloride, particularly at small solute concentrations. The differential scattering cross section of the ν 1-NH 4+ Raman band in these solutions was found to be similar to that of salammoniac. The Raman band of silica monomers at ˜780 cm -1 was present in all spectra of the fluid at high temperatures in hydrothermal diamond-anvil cell experiments with H 2O ± NH 4Cl and quartz or the assemblage quartz + kyanite + K-feldspar ± muscovite/tobelite. However, these spectra indicated that dissolved silica is less polymerized in ammonium chloride solutions than in comparable experiments with water. Quantification based on the normalized integrated intensity of the H 4SiO 40 band showed that the silica solubility in experiments with H 2O + NH 4Cl was significantly lower than that in equimolal NaCl solutions. This suggests that ammonium causes a stronger decrease in the activity of water in chloridic solutions than sodium. The Raman spectra of the fluid also showed that a significant fraction of ammonium was converted to ammonia, NH 3, in all experiments at temperatures above 300 °C. This indicates a shift towards acidic conditions for experiments without a buffering mineral assemblage. The estimated pH of the fluid was ˜2 at 600 °C, 0.26 GPa, 6.6 m initial NH 4Cl, based on the ratio of the integrated ν 1-NH 3 and ν 1-NH 4+ intensities and the HCl 0 dissociation constant. The NH 3/NH 4+ ratio increased with temperature and decreased with pressure. This implies that more ammonium should be retained in K-bearing minerals coexisting with chloridic fluids upon high- P low- T metamorphism. At 500 °C, 0.73 GPa, ammonium partitions preferentially into the fluid, as constrained from infrared spectroscopy on the muscovite and from mass balance. The conversion of K-feldspar to muscovite proceeded much faster in experiments with NH 4Cl solutions than in comparable experiments with water. This is interpreted as being caused by enhancement of the rate-limiting alumina solubility, suggesting complexation of Al with NH 4. Nucleation and growth of mica at the expense of K-feldspar and NH 4+/K + exchange between fluid and K-feldspar occurred simultaneously, but incorporation of NH 4+ into K-feldspar was distinctly faster than K-feldspar consumption.

  9. Glyoxal in aqueous ammonium sulfate solutions: products, kinetics and hydration effects.

    PubMed

    Yu, Ge; Bayer, Amanda R; Galloway, Melissa M; Korshavn, Kyle J; Fry, Charles G; Keutsch, Frank N

    2011-08-01

    Reactions and interactions between glyoxal and salts in aqueous solution were studied. Glyoxal was found to react with ammonium to form imidazole, imidazole-2-carboxaldehyde, formic acid, N-glyoxal substituted imidazole, and minor products at very low concentrations. Overall reaction orders and rates for each major product were measured. Sulfate ions have a strong and specific interaction with glyoxal in aqueous solution, which shifts the hydration equilibria of glyoxal from the unhydrated carbonyl form to the hydrated form. This ion-specific effect contributes to the observed enhancement of the effective Henry's law coefficient for glyoxal in sulfate-containing solutions. The results of UV-vis absorption and NMR spectroscopy studies of solutions of glyoxal with ammonium, methylamine, and dimethylamine salts reveal that light absorbing compounds require the formation of nitrogen containing molecules. These findings have implications on the role of glyoxal in the atmosphere, both in models of the contribution of glyoxal to form secondary organic aerosol (SOA), the role of nitrogen containing species for aerosol optical properties and in predictions of the behavior of other carbonyls or dicarbonyls in the atmosphere.

  10. Preparation of porous yttrium oxide microparticles by gelation of ammonium alginate in aqueous solution containing yttrium ions.

    PubMed

    Kawashita, Masakazu; Matsui, Naoko; Li, Zhixia; Miyazaki, Toshiki

    2010-06-01

    Porous Y2O3 microparticles 500 microm in size were obtained, when 1 wt%-ammonium alginate aqueous solution was dropped into 0.5 M-YCl3 aqueous solution by a Pasteur pipette and the resultant gel microparticles were heat-treated at 1100 degrees C. Small pores less than 1 microm were formed in the microparticles by the heat treatment. The bulk density of the heat-treated microparticle was as low as 0.66 g cm(-3). The chemical durability of the heat-treated microparticles in simulated body fluid at pH = 6 and 7 was high enough for clinical application of in situ radiotherapy. Although the size of the microparticles should be decreased to around 25 microm using atomizing device such as spray gun for clinical application, we found that the porous Y2O3 microparticles with high chemical durability and low density can be obtained by utilizing gelation of ammonium alginate in YCl3 aqueous solution in this study.

  11. Ammonium hydroxide enhancing electrospray response and boosting sensitivity of bisphenol A and its analogs.

    PubMed

    Tan, Dongqin; Jin, Jing; Wang, Longxing; Zhao, Xueqin; Guo, Cuicui; Sun, Xiaoli; Dhanjai; Lu, Xianbo; Chen, Jiping

    2018-05-15

    As one of the most important analytical techniques for accurate quantification of bisphenol compounds, liquid chromatography coupled to online electrospray ionization (ESI) tandem mass spectrometry exhibits relative weak ESI response in negative mode, which greatly reduces their sensitivity and limits their detection at trace levels, especially in complex samples such as blood. Based on the facilitated deprotonation of bisphenol molecule under alkaline condition, post-column injection of ammonium hydroxide (NH 3 ·H 2 O) to mass spectrometer was explored to enhance the ionization efficiency of BPA and its eight analogs and improve their analytical sensitivity. Parameters effecting response intensity and stability were investigated, including mass concentration and flow rate of NH 3 ·H 2 O. Under the optimal conditions with the addition of 2% (w/w) of NH 3 ·H 2 O at 4 μL min -1 , the instrument detection limits for bisphenol compounds were greatly lowered to 0.001-0.04 ng mL -1 , which were 2-28.6 times lower than the result obtained without injecting NH 3 ·H 2 O, except TBBPA (0.03 ng mL -1 in either case). The relative standard deviations (RSDs) for instrument repeatability of BPA and its analogs at three different concentration levels were in a range of 1.2-20%. Furthermore, a decreased matrix effects (90-111%) for bisphenols (except TBBPA) analysis in serum extracts were found compared with the result obtained without NH 3 ·H 2 O injection (43-111%). The results demonstrated that the improved instrumental method coupled with suitable pretreatment techniques is more feasible to analyze bisphenol compounds in complex bio-samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. An evaluation of liquid ammonia (ammonium hydroxide) as a candidate piscicide

    USGS Publications Warehouse

    Ward, David L.; Morton-Starner, R.; Hedwall, Shaula J.

    2013-01-01

    Eradication of populations of nonnative aquatic species for the purpose of reintroducing native fish is often difficult because very few effective tools are available for removing aquatic organisms. This creates the need to evaluate new chemicals that could be used as management tools for native fish conservation. Ammonia is a natural product of fish metabolism and is naturally present in the environment at low levels, yet is known to be toxic to most aquatic species. Our objective was to determine the feasibility of using liquid ammonia as a fisheries management tool by evaluating its effectiveness at killing undesirable aquatic species and its persistence in a pond environment. A suite of invasive aquatic species commonly found in the southwestern USA were introduced into two experimental outdoor ponds located at the Rocky Mountain Research Station in Flagstaff, Arizona. Each pond was treated with ammonium hydroxide (29%) at 38 ppm. This target concentration was chosen because previous studies using anhydrous ammonia reported incomplete fish kills in ponds at concentrations less than 30 ppm. Water quality was monitored for 49 d to determine how quickly the natural bacteria in the environment converted the ammonia to nitrate. Ammonia levels remained above 8 ppm for 24 and 18 d, respectively, in ponds 1 and 2. Nitrite levels in each pond began to rise approximately 14 d after dosing with ammonia and stayed above 5 ppm for an additional 21 d in pond 1 and 18 d in pond 2. After 49 d all water in both ponds was drained and no fish, crayfish, or tadpoles were found to have survived the treatment, but aquatic turtles remained alive and appeared unaffected. Liquid ammonia appears to be an effective tool for removing many problematic invasive aquatic species and may warrant further investigation as a piscicide.

  13. Biofiltration of air polluted with methane at concentration levels similar to swine slurry emissions: influence of ammonium concentration.

    PubMed

    Veillette, Marc; Avalos Ramirez, Antonio; Heitz, Michèle

    2012-01-01

    An evaluation of the effect of ammonium on the performance of two up-flow inorganic packed bed biofilters treating methane was conducted. The air flow rate was set to 3.0 L min(-1) for an empty bed residence time of 6.0 min. The biofilter was fed with a methane concentration of 0.30% (v/v). The ammonium concentration in the nutrient solution was increased by small increments (from 0.01 to 0.025 gN-NH(4) (+) L(-1)) for one biofilter and by large increments of 0.05 gN-NH(4) (+) L(-1) in the other biofilter. The total concentration of nitrogen was kept constant at 0.5 gN-NH(4) (+) L(-1) throughout the experiment by balancing ammonium with nitrate. For both biofilters, the methane elimination capacity, carbon dioxide production, nitrogen bed retention and biomass content decreased with the ammonium concentration in the nutrient solution. The biofilter with smaller ammonium increments featured a higher elimination capacity and carbon dioxide production rate, which varied from 4.9 to 14.3 g m(-3) h(-1) and from 11.5 to 30 g m(-3) h(-1), respectively. Denitrification was observed as some values of the nitrate production rate were negative for ammonium concentrations below 0.2 gN-NH(4) (+) L(-1). A Michalelis-Menten-type model fitted the ammonium elimination rate and the nitrate production rate.

  14. A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion.

    PubMed

    Liu, Xian-Hao; Luo, Xiao-Hong; Lu, Shu-Xia; Zhang, Jing-Chang; Cao, Wei-Liang

    2007-03-01

    A novel cetyltrimethyl ammonium silver bromide (CTASB) complex has been prepared simply through the reaction of silver nitrate with cetyltrimethyl ammonium bromide (CTAB) in aqueous solution at room temperature by controlling the concentration of CTAB and the molar ratio of CTAB to silver nitrate in the reaction solution, in which halogen in CTAB is used as surfactant counterion. The structure and thermal behavior of cetyltrimethyl ammonium silver bromide have been investigated by using X-ray diffraction (XRD), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), UV/vis spectroscopy, thermal analysis (TG-DTA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results show that the complex possesses a metastable layered structure. Upon heating the CTASB aqueous dispersion to above 80 degrees C, the structure change of the complex took place and CTAB-capped nanosized silver bromide particles further formed.

  15. Hydroxide Solvation and Transport in Anion Exchange Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E.

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationicmore » groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.« less

  16. Hydroxide Solvation and Transport in Anion Exchange Membranes.

    PubMed

    Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E; Knight, Chris; Voth, Gregory A

    2016-01-27

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.

  17. Study on improving the heat storage property of Ba(OH)2·8H2O with paraffin

    NASA Astrophysics Data System (ADS)

    Cui, Kaixuan; Liu, Liqiang; Sun, Mingjie

    2017-12-01

    Barium hydroxide octahydrate is the crystalline hydration salt with the highest latent heat density within the phase change temperature interval of 0-120 °C and it has a broad application prospect as a phase-change material (PCM). Firstly, red copper test tube was used for the melting—solidification heat cycle experiment in this paper, which was verified by the corrosion experiment of barium hydroxide solution. After the thermogravimetric analysis, it is found that paraffin can effectively reduce the evaporation escape of barium hydroxide octahydrate crystal water within 100 °C. Repeated heat cycle experiments indicated that the paraffin with larger coverage mass fraction can reduce the inhibiting effect of barium hydroxide octahydrate crystal water more obviously. X-ray diffraction analysis indicated that the phase composition of the barium hydroxide octahydrate sample covered with 50 wt% paraffin nearly had no change, while the sample not covered with paraffin has the weight loss ratio of 34.67% and reacted with CO2 in the air, generating BaCO3. In summary, paraffin can not only inhibit the evaporation of crystal water, but also effectively isolate the air to prevent barium hydroxide octahydrate from denaturation. This greatly improved the practicability of barium hydroxide octahydrate as a PCM, laying a good foundation for the further application of barium hydroxide octahydrate.

  18. Osmotic pressures and second virial coefficients for aqueous saline solutions of lysozyme

    DOE PAGES

    Moon, Y. U.; Anderson, C. O.; Blanch, H. W.; ...

    2000-03-27

    Experimental data at 25 °C are reported for osmotic pressures of aqueous solutions containing lysozyme and any one of the following salts: ammonium sulfate, ammonium oxalate and ammonium phosphate at ionic strength 1 or 3M. Data were obtained using a Wescor Colloid Membrane Osmometer at lysozyme concentrations from about 4 to 20 grams per liter at pH 4, 7 or 8. Osmotic second virial coefficients for lysozyme were calculated from the osmotic-pressure data. All coefficients were negative, increasing in magnitude with ionic strength. Furthermore, tesults are insensitive to the nature of the anion, but rise slightly in magnitude as themore » size of the anion increases.« less

  19. Optimum mix for fly ash geopolymer binder based on workability and compressive strength

    NASA Astrophysics Data System (ADS)

    Arafa, S. A.; Ali, A. Z. M.; Awal, A. S. M. A.; Loon, L. Y.

    2018-04-01

    The request of concrete is increasing every day for sustaining the necessity of development of structure. The production of OPC not only consumes big amount of natural resources and energy, but also emit significant quantity of CO2 to the atmosphere. Therefore, it is necessary to find alternatives like Geopolymer to make the concrete environment friendly. Geopolymer is an inorganic alumino-silicate compound, produced from fly ash. This paper describes the experimental work conducted by casting 40 geopolymer paste mixes, and was cured at 80°C for 24 h to evaluate the effect of various parameters affecting the workability and compressive strength. Alkaline solution to fly ash ratio and sodium hydroxide (NaOH) concentration were chosen as the key parameters of strength and workability. Laboratory investigation with different percentage of sodium hydroxide concentration and different alkaline liquid to fly ash ratio reveals that the optimum ratios are 10 M, AL/FA=0.5. It has generally been found that the workability decreased and the compressive strength increased with an increase in the concentration of sodium hydroxide solution. However, workability was increased and the compressive strength was decreased with the increase in the ratio of fly ash to alkaline solution.

  20. Ammonium Removal from Aqueous Solutions by Clinoptilolite: Determination of Isotherm and Thermodynamic Parameters and Comparison of Kinetics by the Double Exponential Model and Conventional Kinetic Models

    PubMed Central

    Tosun, İsmail

    2012-01-01

    The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R2) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients. PMID:22690177

  1. Ammonium removal from aqueous solutions by clinoptilolite: determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models.

    PubMed

    Tosun, Ismail

    2012-03-01

    The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.

  2. Methods of making metal oxide nanostructures and methods of controlling morphology of same

    DOEpatents

    Wong, Stanislaus S; Hongjun, Zhou

    2012-11-27

    The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.

  3. Phosphate recovery through struvite precipitation by CO2 removal: effect of magnesium, phosphate and ammonium concentrations.

    PubMed

    Korchef, Atef; Saidou, Hassidou; Ben Amor, Mohamed

    2011-02-15

    In the present study, the precipitation of struvite (MgNH(4)PO(4)·6H(2)O) using the CO(2) degasification technique is investigated. The precipitation of struvite was done from supersaturated solutions in which precipitation was induced by the increase of the solution supersaturation concomitant with the removal of dissolved carbon dioxide. The effect of magnesium, phosphate and ammonium concentrations on the kinetics and the efficiency of struvite precipitation was measured monitoring the respective concentrations in solution. In all cases struvite precipitated exclusively and the solid was characterized by powder XRD and FTIR. The morphology of the precipitated crystals was examined by scanning electronic microscopy and it was found that it exhibited the typical prismatic pattern of the struvite crystals with sizes in the range between 100 and 300 μm. The increase of magnesium concentration in the supersaturated solutions, resulted for all phosphate concentration tested, in significantly higher phosphate removal efficiency. Moreover, it is interesting to note that in this case the adhesion of the suspended struvite crystals to the reactor walls was reduced suggesting changes in the particle characteristics. The increase of phosphate concentration in the supersaturated solutions, for the magnesium concentrations tested resulted to the reduction of struvite suppression which reached complete suppression of the precipitate formation. Excess of ammonium in solution was found favour struvite precipitation. Contrary to the results found with increasing the magnesium concentration in solution, higher ammonium concentrations resulted to higher adhesion of the precipitated crystallites to the reactor walls. The results of the present work showed that it is possible to recover phosphorus in the form of struvite from wastewater reducing water pollution and at the same time saving valuable resources. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. [Endodontic microbiology: antimicrobial canal medications].

    PubMed

    Seltzer, S; Farber, P A

    1989-06-01

    Medicaments used for reducing or eliminating microorganisms from infected root canals include: irrigating solutions, such as sodium hypochlorite, urea peroxide and hydrogen peroxide, chloramine, iodine-potassium-iodide solution, and chlorhexidine solution. In addition, various intracanal drugs, such as calcium hydroxide and antibiotics, are in use. The characteristics of these drugs are discussed.

  5. Controlled release formulation of an anti-depression drug based on a L-phenylalanate-zinc layered hydroxide intercalation compound

    NASA Astrophysics Data System (ADS)

    Hashim, Norhayati; Sharif, Sharifah Norain Mohd; Isa, Illyas Md; Hamid, Shahidah Abdul; Hussein, Mohd Zobir; Bakar, Suriani Abu; Mamat, Mazidah

    2017-06-01

    The intercalation of L-phenylalanate (LP) into the interlayer gallery of zinc layered hydroxide (ZLH) has been successfully executed using a simple direct reaction method. The synthesised intercalation compound, zinc layered hydroxide-L-phenylalanate (ZLH-LP), was characterised using PXRD, FTIR, CHNS, ICP-OES, TGA/DTG, FESEM and TEM. The PXRD patterns of the intercalation compound demonstrate an intense and symmetrical peak, indicating a well-ordered crystalline layered structure. The appearance of an intercalation peak at a low angle of 2θ with a basal spacing of 16.3 Å, signifies the successful intercalation of the L-phenylalanate anion into the interlayer gallery of the host. The intercalation is also validated by FTIR spectroscopy and CHNS elemental analysis. Thermogravimetric analysis confirms that the ZLH-LP intercalation compound has higher thermal stability than the pristine L-phenylalanine. The observed percentage of L-phenylalanate accumulated release varies in each release media, with 84.5%, 79.8%, 63.8% and 61.8% release in phosphate buffer saline (PBS) solution at pH 4.8, deionised water, PBS solution at pH 7.4 and NaCl solution, respectively. The release behaviour of LP from its intercalation compounds in deionised water and PBS solution at pH 4.8 follows pseudo second order, whereas in NaCl solution and PBS solution at pH 7.4, it follows the parabolic diffusion model. This study shows that the synthesised ZLH-LP intercalation compound can be used for the formation of a new generation of materials for targeted drug release with controlled release properties.

  6. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  7. TRANSURANIC ELEMENT, COMPOSITION THEREOF, AND METHODS FOR PRODUCING SEPARATING AND PURIFYING SAME

    DOEpatents

    Wahl, A.C.

    1961-09-19

    A process of separating plutonium from fission products contained in an aqueous solution is described. Plutonium, in the tri- or tetravalent state, and the fission products are coprecipitated on lanthanum fluoride, lanthanum oxalate, cerous fluoride, cerous phosphate, ceric iodate, zirconyl phosphate, thorium iodate, or thorium fluoride. The precipitate is dissolved in acid, and the plutonium is oxidized to the hexavalent state. The fission products are selectively precipitated on a carrier of the above group but different from that used for the coprecipitation. The plutonium in the solution, after removal of the fission product precipitate, is reduced to at least the tetravalent state and precipitated on lanthanum fluoride, lanthanum phosphate, lanthanum oxalate, lanthanum hydroxide, cerous fluoride, cerous phosphate, cerous oxalate, cerous hydroxide, ceric iodate, zirconyl phosphate, zirconyl iodate, zirconium hydroxide, thorium fluoride, thorium oxalate, thorium iodate, thorium peroxide, uranium iodate, uranium oxalate, or uranium peroxide, again using a different carrier than that used for the precipitation of the fission products.

  8. Effect of temperature on hydration kinetics and polymerization of tricalcium silicate in stirred suspensions of CaO-saturated solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Steven A.; Boitnott, Ginger E.; Korhonen, Charles J.

    2006-04-15

    Tricalcium silicate was hydrated at 274, 278, 283, 298, and 313 K in stirred suspensions of saturated CaO solutions under a nitrogen-gas atmosphere until the end of deceleratory period. The suspension conductivities and energy flows were measured continuously. The individual reaction rates for tricalcium silicate dissolution, calcium silicate hydrate precipitation, and calcium hydroxide precipitation were calculated from these measurements. The results suggest that the proportion of tricalcium silicate dissolved was determined by the rate of tricalcium silicate dissolution and the time to very rapid calcium hydroxide precipitation. The time to very rapid calcium hydroxide precipitation was more sensitive to changesmore » in temperature than was the rate of tricalcium silicate dissolution, so that the proportion of tricalcium silicate hydration dissolved by the deceleratory period increased with decreasing temperature. The average chain length of the calcium silicate hydrate ascertained by magic-angle spinning nuclear magnetic resonance spectroscopy increased with increasing temperature.« less

  9. Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4(+)).

    PubMed

    Nozière, Barbara; Dziedzic, Pawel; Córdova, Armando

    2009-01-08

    Glyoxal, a common atmospheric gas, has been reported to be depleted in some regions of the atmosphere. The corresponding sink could be accounted for by reactions in or at the surface of atmospheric particles, but these reactions were not identified. Recently, we showed that inorganic ammonium ions, NH(4)(+), are efficient catalysts for reactions of carbonyl compounds, including glyoxal, in the liquid phase. To determine whether ammonium-catalyzed reactions can contribute to depletion of glyoxal in the atmosphere, the reactivity of this compound in aqueous solutions containing ammonium salts (ammonium sulfate, chloride, fluoride, and phosphate) at 298 K has been studied. The products identified by LC-HRMS and UV absorption revealed a mechanism involving two distinct pathways: a Bronsted acid pathway and an iminium pathway. The kinetics of the iminium pathway was studied by monitoring formation of a specific product. This pathway was second order in glyoxal in most of the solutions studied and should therefore be second order in most ammonium-containing aerosols in the atmosphere. The corresponding rate constant, k(II) (M(-1) s(-1)), increased strongly with ammonium ion activity, a(NH(4)(+)), and pH: k(II) (M(-1) s(-1)) = (2 +/- 1) x 10(-10) exp((1.5 +/- 0.8)aNH(4)(+)) exp((2.5 +/- 0.2)pH). This iminium pathway is a lower limit for the ammonium-catalyzed consumption of glyoxal, but the contribution of the acid pathway is expected to be small in tropospheric aerosols. With these results the reactive uptake of glyoxal on ammonium-containing aerosols was estimated and shown to be a possible explanation for depletion of this compound in Mexico City.

  10. Effect of CTAB on structural and optical properties of CuO nanoparticles prepared by coprecipitation route

    NASA Astrophysics Data System (ADS)

    Varghese, Donna; Tom, Catherine; Krishna Chandar, N.

    2017-11-01

    CuO (Copper Oxide) nanoparticles were synthesized by a simple coprecipitation route by using copper acetate, sodium hydroxide as precursors and cetyltrimethyl ammonium bromide (CTAB) as surfactant. For the purpose of the study, the surfactant-CTAB treated and non-treated samples were synthesized separately. Both the synthesized samples were studied to understand their structural and optical properties. The formation of CuO and its crystallinity was confirmed by XRD. Further, the optical studies showed a defined blue shift in CTAB treated sample which is clear evidence that the particles undergo confinement when they are nano-regime.

  11. Wolframite Conversion in Treating a Mixed Wolframite-Scheelite Concentrate by Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka

    2017-12-01

    Complete wolframite conversion in sulfuric acid is significant for expanding the applicability of the sulfuric acid method for producing ammonium paratungstate. In this paper, the conversion of wolframite in treating a mixed wolframite-scheelite concentrate by sulfuric acid was studied systematically. The results show that the conversion of wolframite in sulfuric acid is more difficult than that of scheelite, requiring rigorous reaction conditions. A solid H2WO4 layer forms on the surfaces of the wolframite particles and becomes denser with increasing H2SO4 concentration, thus hindering the conversion. Furthermore, the difficulty in wolframite conversion can be mainly attributed to the accumulation of Fe2+ (and/or Mn2+) in the H2SO4 solution, which can be solved by reducing Fe2+ (and/or Mn2+) concentration through oxidization and/or a two-stage process. Additionally, the solid converted product of the mixed wolframite-scheelite concentrate has an excellent leachability of tungsten in an aqueous ammonium carbonate solution at ambient temperature, with approximately 99% WO3 recovery. This work presents a route for manufacturing ammonium paratungstate by treating the mixed concentrate in sulfuric acid followed by leaching in ammonium carbonate solution.

  12. Wolframite Conversion in Treating a Mixed Wolframite-Scheelite Concentrate by Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka

    2018-02-01

    Complete wolframite conversion in sulfuric acid is significant for expanding the applicability of the sulfuric acid method for producing ammonium paratungstate. In this paper, the conversion of wolframite in treating a mixed wolframite-scheelite concentrate by sulfuric acid was studied systematically. The results show that the conversion of wolframite in sulfuric acid is more difficult than that of scheelite, requiring rigorous reaction conditions. A solid H2WO4 layer forms on the surfaces of the wolframite particles and becomes denser with increasing H2SO4 concentration, thus hindering the conversion. Furthermore, the difficulty in wolframite conversion can be mainly attributed to the accumulation of Fe2+ (and/or Mn2+) in the H2SO4 solution, which can be solved by reducing Fe2+ (and/or Mn2+) concentration through oxidization and/or a two-stage process. Additionally, the solid converted product of the mixed wolframite-scheelite concentrate has an excellent leachability of tungsten in an aqueous ammonium carbonate solution at ambient temperature, with approximately 99% WO3 recovery. This work presents a route for manufacturing ammonium paratungstate by treating the mixed concentrate in sulfuric acid followed by leaching in ammonium carbonate solution.

  13. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson [Castro Valley, CA

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  14. Index of refraction, density, and solubility of ammonium iodide solutions at high pressure.

    PubMed

    Lamelas, F J

    2013-03-07

    An asymmetric moissanite anvil cell is used to study aqueous solutions of ammonium iodide at pressures up to 10 kbar. The index of refraction is measured using the rotating Fabry-Perot technique, with an accuracy of approximately 1%. The mass density and molar volume of the solutions are estimated using the measured index values, and the molar volume is used to predict the pressure dependence of the solubility. The solubility derived from the index of refraction measurements is shown to agree with that which is determined by direct observation of the onset of crystallization.

  15. Effect of the Association of Nonsteroidal Anti-inflammatory and Antibiotic Drugs on Antibiofilm Activity and pH of Calcium Hydroxide Pastes.

    PubMed

    de Freitas, Rafaela Pignatti; Greatti, Vanessa Raquel; Alcalde, Murilo Priori; Cavenago, Bruno Cavalini; Vivan, Rodrigo Ricci; Duarte, Marco Antonio Hungaro; Weckwerth, Ana Carolina Villas Bôas; Weckwerth, Paulo Henrique

    2017-01-01

    The objective of the present study was to evaluate the in vitro antibiofilm activity and pH of calcium hydroxide associated with different nonsteroidal anti-inflammatory drugs (NSAIDs). The groups analyzed were as follows: group 1, calcium hydroxide paste with propylene glycol; group 2, calcium hydroxide paste with propylene glycol + 5% diclofenac sodium; group 3, calcium hydroxide paste with propylene glycol + 5% ibuprofen; group 4, calcium hydroxide paste with propylene glycol + 5% ciprofloxacin; and group 6, positive control (without medication). For analysis of the pH, the pastes were inserted into tubes and immersed in flasks containing ultrapure water. At the time intervals of 3, 24, 72, and 168 hours, the pH was measured with a calibrated pH meter. For microbial analysis, biofilm was induced in 30 bovine dentin blocks for 21 days. Subsequently, the pastes were placed on the blocks with biofilm for 7 days. Afterward, the pastes were removed by irrigation with sterile water, and the specimens were analyzed with a laser scanning confocal microscope with the 50 μL Live/Dead BacLight Bacterial Viability solution L7012 Kit (Molecular Probes, Inc, Eugene, OR). Data were subjected to statistical analysis at a significance level of 5%. The highest pH values were found for calcium hydroxide associated with ciprofloxacin in all periods analyzed. With the exception of pure calcium hydroxide paste, the other groups showed statistically significant differences (P < .05) in comparison with the positive control. The association of NSAIDs or antibiotic did not interfere with the pH of calcium hydroxide paste and increased the antimicrobial action of calcium hydroxide paste against Enterococcus faecalis biofilm formation. Published by Elsevier Inc.

  16. Electrocoagulation mechanism of perfluorooctanoate (PFOA) on a zinc anode: Influence of cathodes and anions.

    PubMed

    Wang, Yujuan; Lin, Hui; Jin, Fangyuan; Niu, Junfeng; Zhao, Jinbo; Bi, Ying; Li, Ying

    2016-07-01

    Batch experiments were conducted to investigate the effects of cathode materials and anions (Cl(-), SO4(2-), NO3(-), and CO3(2-)/HCO3(-)) on perfluorooctanoate (PFOA) removal in electrocoagulation process using zinc anode. The results indicated that the hydroxide flocs generated in-situ in the electrocoagulation process using the stainless steel rod as cathode were more effective than those using aluminum rod as cathode for the removal of PFOA after 20min of electrocoagulation at a current density of 0.5mAcm(-2). Hydroxide flocs generated in-situ in the electrocoagulation in the presence of Cl(-)/NO3(-) could effectively remove PFOA from aqueous solution with the removal ratios of 99.7%/98.1% and 98.9%/97.3% using stainless steel rod and aluminum rod as cathode, respectively. However, the PFOA removal ratios were 96.2%/4.1% and 7.4%/4.6% using stainless steel rod and aluminum rod as cathode, respectively, in the presence of SO4(2-) and CO3(2-)/HCO3(-). The different removal ratios of PFOA during the electrocoagulation process were primarily due to the fact that the hydroxide flocs generated in-situ were different in the presence of diverse cathodes and anions. We firstly demonstrated that Zn0.70Al0.30(OH)2(CO3)0.15·xH2O and ZnO generated in-situ in the electrocoagulation process (except for CO3(2-)/HCO3(-)) using zinc anode and aluminum/stainless steel rod cathode governed the sorption of PFOA. The adsorbent hydroxide flocs in-situ generated in the presence of Cl(-) could effectively remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion at the initial hydroxide flocs concentration of 2000mgL(-1). These results provided an effective and alternative method to remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Influence of different desapping agents on the incidence of sapburn, ripening behaviour and quality of mango.

    PubMed

    Barman, Kalyan; Asrey, Ram; Pal, R K; Jha, S K; Sharma, Swati

    2015-01-01

    Sapburn injury in mango is regarded as the most serious problem as it reduces the aesthetic appeal and downgrade the fruit quality with considerable economic losses. For the control of sapburn injury, physiologically mature mango fruits of cv. Chausa were harvested along with 5-8 cm stalk attached. Immediately after harvesting, fruits were de-stemmed and treated with different desapping agent solutions [calcium hydroxide (1 %), sodium hydroxide (1 %), alum (0.5 and 1 %)] by dipping them for 5 min. In control fruits, the pedicels were removed and sap was allowed to spread freely over the fruit surface. After treatment application, fruits were air-dried and stored at ambient condition (30 ± 2 °C) for 12 days. Among the treatments, fruits desapped with sodium hydroxide (1 %) showed significantly lower (7.6-fold) sapburn injury followed by alum (0.5 %) treatment than control. Respiration and ethylene evolution rates were also significantly suppressed and delayed with sodium hydroxide (1 %) treatment. Fruit firmness and functional properties like, antioxidant capacity, total carotenoids and total phenolics content were also found higher in sodium hydroxide (1 %) treated fruits. Pectin methyl esterase and polygalacturonase enzyme activity were recorded higher in fruits of control and calcium hydroxide treatment however; it was suppressed by sodium hydroxide and alum treatments. Fruit quality parameters like color, total soluble solids, titratable acidity and total sugars content were found higher in calcium hydroxide and sodium hydroxide treated fruits than control and alum treated fruits.

  18. Molecular recognition of organic ammonium ions in solution using synthetic receptors

    PubMed Central

    Späth, Andreas

    2010-01-01

    Summary Ammonium ions are ubiquitous in chemistry and molecular biology. Considerable efforts have been undertaken to develop synthetic receptors for their selective molecular recognition. The type of host compounds for organic ammonium ion binding span a wide range from crown ethers to calixarenes to metal complexes. Typical intermolecular interactions are hydrogen bonds, electrostatic and cation–π interactions, hydrophobic interactions or reversible covalent bond formation. In this review we discuss the different classes of synthetic receptors for organic ammonium ion recognition and illustrate the scope and limitations of each class with selected examples from the recent literature. The molecular recognition of ammonium ions in amino acids is included and the enantioselective binding of chiral ammonium ions by synthetic receptors is also covered. In our conclusion we compare the strengths and weaknesses of the different types of ammonium ion receptors which may help to select the best approach for specific applications. PMID:20502608

  19. Synthesis and theoretical studies on nitrogen-rich salts of bis[4-nitraminofurazanyl-3-azoxy]azofurazan (ADNAAF).

    PubMed

    Zheng, Chunmei; Chu, Yuting; Xu, Liwen; Lei, Wu; Wang, Fengyun; Xia, Mingzhu

    2017-01-01

    Multi-furazan compounds bis[4-nitramino- furazanyl-3-azoxy]azofurazan (ADNAAF) and its derivatives were first synthesized by our research group, and their structures were characterized by IR, 1 H-NMR, 13 C-NMR spectrums, and element analysis. ADNAAF was synthesized by nitration reaction of bis[4-aminofurazanyl-3-azoxy]azofurazan (ADAAF), and then reacted with ammonium hydroxide, hydrazine hydrate, and guanidine nitrate to obtain three salts marked as salt 1, 2, and 3, respectively. The thermal stabilities of the three salts were supported by the results of DSC analysis, which shows the decomposition temperatures are all above 190 °C. Their densities, enthalpies of formation, and detonation properties were studied by density functional theory (DFT) method. Salt 1 has the best detonation pressure (P), 37.42 GPa, and detonation velocity (D), 8.88 km/s, while salt 2 has the best nitrogen content and heat of detonation (Q), 1.27 kcal mol -1 . The detonation properties of salt 1 is similar to that of 1,3,5-trinitro-1,3,5-triazineane (RDX). It means that the ammonium cation can provide the better D and P than the cation of hydrazine and guanidine. The three cations offer the enthalpies of formations in the order of hydrazinium > guanidinium > ammonium. Graphical Abstract Nitrogen-rich salts of bis[4-nitraminofurazanyl-3-azoxy]azofurazan(ADNAAF).

  20. Solubility of glucose isomerase in ammonium sulphate solutions

    NASA Astrophysics Data System (ADS)

    Chayen, N.; Akins, J.; Campbell-Smith, S.; Blow, D. M.

    1988-07-01

    In order to quantify protein crystallization techniques, a method for measuring protein solubility in high salt concentration has been developed. It is based on a sensitive protein concentration assay, using binding to Coomassie blue dye. The protein concentration in a supernatant from which glucose isomerase is crystallising has been studied as a function of time. Equilibrium is established in 3-5 weeks, and the protein concentration remaining in solution is defined as the solubility of the protein. The solubility of glucose isomerase has been determined as a function of ammonium sulphate concentration; its variation with pH in 1.50M ammonium sulphate has also been studied. A remarkable dependence on pH over the range of 5.5 to 6.5 has been observed.

  1. SURFACE TREATMENT OF MOLYBDENUM METAL

    DOEpatents

    Coffer, C.O.

    1961-12-01

    A process of descaling molybdenum articles comprises first immersing them in an aqueous sodium hydroxide-potassium permanganate solution of between 60 and 85 deg C, rinsing, and then immersing them in an aqueous solution containing a mixture of sulfuric, hydrochloric, and chromic acids.

  2. Comparison of plasma generated nitrogen fertilizer to conventional fertilizers ammonium nitrate and sodium nitrate for pre-emergent and seedling growth

    NASA Astrophysics Data System (ADS)

    Andhavarapu, A.; King, W.; Lindsay, A.; Byrns, B.; Knappe, D.; Fonteno, W.; Shannon, S.

    2014-10-01

    Plasma source generated nitrogen fertilizer is compared to conventional nitrogen fertilizers in water for plant growth. Root, shoot sizes, and weights are used to examine differences between plant treatment groups. With a simple coaxial structure creating a large-volume atmospheric glow discharge, a 162 MHz generator drives the air plasma. The VHF plasma source emits a steady state glow; the high drive frequency is believed to inhibit the glow-to-arc transition for non-thermal discharge generation. To create the plasma activated water (PAW) solutions used for plant treatment, the discharge is held over distilled water until a 100 ppm nitrate aqueous concentration is achieved. The discharge is used to incorporate nitrogen species into aqueous solution, which is used to fertilize radishes, marigolds, and tomatoes. In a four week experiment, these plants are watered with four different solutions: tap water, dissolved ammonium nitrate DI water, dissolved sodium nitrate DI water, and PAW. Ammonium nitrate solution has the same amount of total nitrogen as PAW; sodium nitrate solution has the same amount of nitrate as PAW. T-tests are used to determine statistical significance in plant group growth differences. PAW fertilization chemical mechanisms are presented.

  3. Chemical analysis of bleach and hydroxide-based solutions after decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX).

    PubMed

    Hopkins, F B; Gravett, M R; Self, A J; Wang, M; Chua, Hoe-Chee; Hoe-Chee, C; Lee, H S Nancy; Sim, N Lee Hoi; Jones, J T A; Timperley, C M; Riches, J R

    2014-08-01

    Detailed chemical analysis of solutions used to decontaminate chemical warfare agents can be used to support verification and forensic attribution. Decontamination solutions are amongst the most difficult matrices for chemical analysis because of their corrosive and potentially emulsion-based nature. Consequently, there are relatively few publications that report their detailed chemical analysis. This paper describes the application of modern analytical techniques to the analysis of decontamination solutions following decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). We confirm the formation of N,N-diisopropylformamide and N,N-diisopropylamine following decontamination of VX with hypochlorite-based solution, whereas they were not detected in extracts of hydroxide-based decontamination solutions by nuclear magnetic resonance (NMR) spectroscopy or gas chromatography-mass spectrometry. We report the electron ionisation and chemical ionisation mass spectroscopic details, retention indices, and NMR spectra of N,N-diisopropylformamide and N,N-diisopropylamine, as well as analytical methods suitable for their analysis and identification in solvent extracts and decontamination residues.

  4. Ammonium Nitrogen Removal from Urea Fertilizer Plant Wastewater via Struvite Crystal Production

    NASA Astrophysics Data System (ADS)

    Machdar, I.; Depari, S. D.; Ulfa, R.; Muhammad, S.; Hisbullah, A. B.; Safrul, W.

    2018-05-01

    Elimination of ammonium concentration from urea fertilizer plant wastewater through struvite crystal (NH4MgPO4.6H2O) formation by adding MgCl2, KH2PO4, and KOH were studied. This method of elimination has two benefits, namely, reducing ammonium nitrogen content in the wastewater, as well as production of a valuable material (struvite crystal). Struvite is known as a slow-release fertilizer and less soluble. This report presents the ammonium removal efficiencies during struvite formation. The growth of struvite production under different molar ratios of Mg2+:NH4 +:PO4 3- and solution pH is also discussed. To find the efficiencies and measure the growth rates, lab-scale experiments were conducted in a batch crystallizer-reactor. SEM, XRD, and FTIR observation were also applied to investigate the characteristics of struvite. The reactant molar ratios of Mg2+:NH4 +:PO4 3- of 1.2:1:1, 1:1:1.2, and 1:1:1 were evaluated. Each of the molar ratios was treated at the solution pH of 8, 9, and 10. It was found that, the highest ammonium removal efficiency was 94.7% at the molar ratio of 1.2:1:1 and pH of 9. Primarily, the growth rate of struvite formation complied with a first-order kinetic model. The rate constants (k1) were calculated to be 2.6, 4.3, and 5.0 h-1 for solution pH of 8, 9, and 10, respectively. The findings of the study provide suggestion for an alternative sustainable recovery of ammonium nitrogen content in a urea fertilizer plant effluent.

  5. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    PubMed

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability of the co-ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity.

  6. Production of high specific activity silicon-32

    DOEpatents

    Phillips, Dennis R.; Brzezinski, Mark A.

    1994-01-01

    A process for preparation of silicon-32 is provide and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  7. High specific activity silicon-32

    DOEpatents

    Phillips, Dennis R.; Brzezinski, Mark A.

    1996-01-01

    A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  8. High specific activity silicon-32

    DOEpatents

    Phillips, D.R.; Brzezinski, M.A.

    1996-06-11

    A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidation state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  9. Determination of Triazine Herbicides in Drinking Water by Dispersive Micro Solid Phase Extraction with Ultrahigh-Performance Liquid Chromatography-High-Resolution Mass Spectrometric Detection.

    PubMed

    Chen, Dawei; Zhang, Yiping; Miao, Hong; Zhao, Yunfeng; Wu, Yongning

    2015-11-11

    A novel dispersive micro solid phase extraction (DMSPE) method based on a polymer cation exchange material (PCX) was applied to the simultaneous determination of the 30 triazine herbicides in drinking water with ultrahigh-performance liquid chromatography-high-resolution mass spectrometric detection. Drinking water samples were acidified with formic acid, and then triazines were adsorbed by the PCX sorbent. Subsequently, the analytes were eluted with ammonium hydroxide/acetonitrile. The chromatographic separation was performed on an HSS T3 column using water (4 mM ammonium formate and 0.1% formic acid) and acetonitrile (0.1% formic acid) as the mobile phase. The method achieved LODs of 0.2-30.0 ng/L for the 30 triazines, with recoveries in the range of 70.5-112.1%, and the precision of the method was better than 12.7%. These results indicated that the proposed method had the advantages of convenience and high efficiency when applied to the analysis of the 30 triazines in drinking water.

  10. A Cation-containing Polymer Anion Exchange Membrane based on Poly(norbornene)

    NASA Astrophysics Data System (ADS)

    Beyer, Frederick; Price, Samuel; Ren, Xiaoming; Savage, Alice

    Cation-containing polymers are being studied widely for use as anion exchange membranes (AEMs) in alkaline fuel cells (AFCs) because AEMs offer a number of potential benefits including allowing a solid state device and elimination of the carbonate poisoning problem. The successful AEM will combine high performance from several orthogonal properties, having robust mechanical strength even when wet, high hydroxide conductivity, and the high chemical stability required for long device lifetimes. In this study, we have synthesized a model cationic polymer that combines three of the key advantages of Nafion. The polymer backbone based on semicrystalline atactic poly(norbornene) offers good mechanical properties. A flexible, ether-based tether between the backbone and fixed cation charged species (quaternary ammonium) should provide the low-Tg, hydrophilic environment required to facilitate OH- transport. Finally, methyl groups have been added at the beta position relative to the quaternary ammonium cation to prevent Hoffman elimination, one mechanism by which AEMs are neutralized in a high pH environment. In this poster, we will present our findings on mechanical properties, morphology, charge transport, and chemical stability of this material.

  11. Effects of high temperature and disinfectants on the viability of Sarcocystis neurona sporocysts.

    PubMed

    Dubey, J P; Saville, W J; Sreekumar, C; Shen, S K; Lindsay, O S; Pena, H F; Vianna, M C; Gennari, S M; Reed, S M

    2002-12-01

    The effect of moist heat and several disinfectants on Sarcocystis neurona sporocysts was investigated. Sporocysts (4 million) were suspended in water and heated to 50, 55, 60, 65, and 70 C for various times and were then bioassayed in interferon gamma gene knockout (KO) mice. Sporocysts heated to 50 C for 60 min and 55 C for 5 min were infective to KO mice, whereas sporocysts heated to 55 C for 15 min and 60 C or more for 1 min were rendered noninfective to mice. Treatment with bleach (10, 20, and 100%), 2% chlorhexidine, 1% betadine, 5% o-benzyl-p-chlorophenol, 12.56% phenol, 6% benzyl ammonium chloride, and 10% formalin was not effective in killing sporocysts. Treatment with undiluted ammonium hydroxide (29.5% ammonia) for 1 hr killed sporocysts, but treatment with a 10-fold dilution (2.95% ammonia) for 6 hr did not kill sporocysts. These data indicate that heat treatment is the most effective means of killing S. neurona sporocysts in the horse feed or in the environment.

  12. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Park, Eun Joo; Capuano, Christopher B.; Ayers, Katherine E.; Bae, Chulsung

    2018-01-01

    Generation of high purity hydrogen using electrochemical splitting of water is one of the most promising methods for sustainable fuel production. The materials to be used as solid-state electrolytes for alkaline water electrolyzer require high thermochemical stability against hydroxide ion attack in alkaline environment during the operation of electrolysis. In this study, two quaternary ammonium-tethered aromatic polymers were synthesized and investigated for anion exchange membrane (AEM)-based alkaline water electrolyzer. The membranes properties including ion exchange capacity (IEC), water uptake, swelling degree, and anion conductivity were studied. The membranes composed of all C-C bond polymer backbones and flexible side chain terminated by cation head groups exhibited remarkably good chemical stability by maintaining structural integrity in 1 M NaOH solution at 95 °C for 60 days. Initial electrochemical performance and steady-state operation performance were evaluated, and both membranes showed a good stabilization of the cell voltage during the steady-state operation at the constant current density at 200 mA/cm2. Although both membranes in current form require improvement in mechanical stability to afford better durability in electrolysis operation, the next generation AEMs based on this report could lead to potentially viable AEM candidates which can provide high electrolysis performance under alkaline operating condition.

  13. Determination of guaifenesin in human serum by capillary gas chromatography and electron capture detection.

    PubMed

    Sharaf, Maged H M; Stiff, Dwight D

    2004-06-29

    A method for the quantitation of guaifenesin in human serum has been developed and validated. The procedure involves liquid-liquid extraction of the serum sample in the presence of mephenesin as an internal standard, followed by derivatization and analysis using capillary gas chromatography (GC) and electron capture detection (ECD). Different solvents were tested for extraction of guaifenesin from serum. n-Hexane/dichloromethane (1:1, v/v) gave the highest recovery and the lowest background and was chosen as the extraction solvent. After extraction, the residue of guaifenesin was derivatized at 60 degrees C for 30 min, with trifluoroacetic acid anhydride (TFAA) in toluene in the presence of pyridine. Excess trifluoroacetic acid anhydride was removed using dilute solution of ammonium hydroxide. The method proved to be linear over the range of 25.0-1000 ng/ml. Recovery of guaifenesin from spiked samples was consistent, averaging 75.5% at 50.0 ng/ml with a range of 72.0-80.0% (N = 8 determinations) and averaging 78% at 800 ng/ml with a range of 76.0-81.0% (N = 8 determinations). The internal standard recovery was also consistent averaging 72.8% with a range of 67.0-76.0% (N = 16 determinations). Copyright 2004 Elsevier B.V.

  14. Determination of iodine and molybdenum in milk by quadrupole ICP-MS.

    PubMed

    Reid, Helen J; Bashammakh, Abdul A; Goodall, Phillip S; Landon, Mark R; O'Connor, Ciaran; Sharp, Barry L

    2008-03-15

    A reliable method for the determination of iodine and molybdenum in milk samples, using alkaline digestion with tetramethylammonium hydroxide and hydrogen peroxide, followed by quadrupole ICP-MS analysis, has been developed and tested using certified reference materials. The use of He+O2 (1.0 ml min(-1) and 0.6 ml min(-1)) in the collision-reaction cell of the mass spectrometer to remove (129)Xe+-- initially to enable the determination of low levels of 129I--also resulted in the quantitative conversion of Mo(+) to MoO2+ which enabled the molybdenum in the milk to be determined at similar mass to the iodine with the use of Sb as a common internal standard. In order to separate and pre-concentrate iodine at sub microg l(-1) concentrations, a novel method was developed using a cation-exchange column loaded with Pd2+ and Ca2+ ions to selectively retain iodide followed by elution with a small volume of ammonium thiosulfate. This method showed excellent results for aqueous iodide solutions, although the complex milk digest matrix made the method unsuitable for such samples. An investigation of the iodine species formed during oxidation and extraction of milk sample digests was carried out with a view to controlling the iodine chemistry.

  15. Recyclable cross-linked anion exchange membrane for alkaline fuel cell application

    NASA Astrophysics Data System (ADS)

    Hou, Jianqiu; Liu, Yazhi; Ge, Qianqian; Yang, Zhengjin; Wu, Liang; Xu, Tongwen

    2018-01-01

    Cross-linking can effectively solve the conductivity-swelling dilemma in anion exchange membranes (AEMs) but will generate solid wastes. To address this, we developed an AEM cross-linked via disulfide bonds, bearing quaternary ammonium groups, which can be easily recycled. The membrane (RC-QPPO) with IEC of 1.78 mmol g-1, when cross-linked, showed enhanced mechanical properties and good hydroxide conductivity (24.6 mS cm-1 at 30 °C). Even at higher IEC value (2.13 mmol g-1), it still has low water uptake, low swelling ratio and delivers a peak power density of 150 mW cm-2 at 65 °C. Exploiting the formation of disulfide bonds from -SH groups, the membrane can be readily cross-linked in alkaline condition and recycled by reversibly breaking disulfide bonds with dithiothreitol (DTT). The recycled membrane solution can be directly utilized to cast a brand-new AEM. By washing away the residual DTT with water and exposure to air, it can be cross-linked again and this process is repeatable. During the recycling and cross-linking processes, the membrane showed a slight IEC decrease of 5% due to functional group degradation. The strategy presented here is promising in enhancing AEM properties and reducing the impact of artificial polymers on the environment.

  16. Lignin-based hydrogels with "super-swelling" capacities for dye removal.

    PubMed

    Domínguez-Robles, Juan; Peresin, María Soledad; Tamminen, Tarja; Rodríguez, Alejandro; Larrañeta, Eneko; Jääskeläinen, Anna-Stiina

    2018-04-12

    Lignin is a complex natural polymer and it is one of the main constituent of the lignocellulosic biomass. Moreover, it is a bio-renewable material and it is available in large amounts as by-product from the forest industry. Lignin-based hydrogels with high swelling capabilities were prepared by crosslinking poly (methyl vinyl ether co-maleic acid) and different technical lignins in ammonium and sodium hydroxide solutions. The produced hydrogels showed a wide range of water absorption capacities varying from 13 to 130 g of water per 1 g of sample. It was observed that the higher the water uptake the poorer mechanical performance, as evaluated in terms of storage and loss modulus (G' and G″, respectively) of the materials. Methylene blue (MB) was used as a model dye to evaluate the adsorption and release capabilities of the lignin hydrogels. Results suggested that these hydrogels showed a high MB removal efficiency, which ranged from 12 to 96%. On the contrary, the percentages of MB released depended on the negative surface charge of the hydrogels, showing values which ranged from 0.06 to 0.35%. Thus, these materials have potential to be used as adsorbents for the removal of organic dyes from waste water. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The viability of MCM-41 as separator in secondary alkaline cells

    NASA Astrophysics Data System (ADS)

    Meskon, S. R.; Othman, R.; Ani, M. H.

    2018-01-01

    The viability of MCM-41 membrane as a separator material in secondary alkaline cell is investigated. The inorganic membrane was employed in an alkaline nickel-zinc system. MCM-41 mesoporous material consists of arrays of hexagonal nano-pore channels. The membrane was synthesized using sol-gel route from parent solution comprising of quarternary ammonium surfactant, cethyltrimethylammonium bromide C16H33(CH3)3NBr (CTAB), hydrochloric acid (HCl), deionized water (H2O), ethanol (C2H5OH), and tetraethylortosilicate (TEOS). Both the anodic zinc/zinc oxide and cathodic nickel hydroxide electrodeposited film were coated with MCM-41 membrane. The Ni/MCM-41/Zn alkaline cell was then subjected to 100-cycle durability test and the structural stability of MCM-41 separator throughout the progression of the charge-discharge cycles is studied. X-ray diffraction (XRD) analysis on the dismantled cell shows that MCM-41 began to transform to lamellar MCM-50 on the 5th cycle and transformed almost completely on the 25th cycle. The phase transformation of MCM-41 hexagonal structure into gel-like MCM-50 prevents the mesoporous cell separator from diminished in the caustic alkaline surround. This work has hence demonstrated MCM-41 membrane is viable to be employed in secondary alkaline cells.

  18. Kinetics and equilibria of lysozyme precipitation and crystallization in concentrated ammonium sulfate solutions.

    PubMed

    Cheng, Yu-Chia; Lobo, Raul F; Sandler, Stanley I; Lenhoff, Abraham M

    2006-05-05

    The kinetics and thermodynamics of lysozyme precipitation in ammonium sulfate solutions at pH 4 and 8 and room temperature were studied. X-ray powder diffraction (XRD) was used to characterize the structure of lysozyme precipitates. It was found that, if sufficient time was allowed, microcrystals developed following an induction period after initial lysozyme precipitation, even up to ionic strengths of 8 m and at acidic pH, where lysozyme is refractory to crystallization in ammonium sulfate. The full set of precipitation and crystallization data allowed construction of a phase diagram of lysozyme, showing the ammonium sulfate dependence. It suggests that precipitation may reflect a frustrated metastable liquid-liquid phase separation, which would allow this process to be understood within the framework of the generic phase diagram for proteins. The results also demonstrate that XRD, more frequently used for characterizing inorganic and organic polycrystalline materials, is useful both in characterizing the presence of crystals in the dense phase and in verifying the crystal form of proteins.

  19. A multi-commuted flow injection system with a multi-channel propulsion unit placed before detection: Spectrophotometric determination of ammonium.

    PubMed

    Oliveira, Sara M; Lopes, Teresa I M S; Tóth, Ildikó V; Rangel, António O S S

    2007-09-26

    A flow system with a multi-channel peristaltic pump placed before the solenoid valves is proposed to overcome some limitations attributed to multi-commuted flow injection systems: the negative pressure can lead to the formation of unwanted air bubbles and limits the use of devices for separation processes (gas diffusion, dialysis or ion-exchange). The proposed approach was applied to the colorimetric determination of ammonium nitrogen. In alkaline medium, ammonium is converted into ammonia, which diffuses over the membrane, causing a pH change and subsequently a colour change in the acceptor stream (bromothymol blue solution). The system allowed the re-circulation of the acceptor solution and was applied to ammonium determination in surface and tap water, providing relative standard deviations lower than 1.5%. A stopped flow approach in the acceptor stream was adopted to attain a low quantification limit (42 microgL(-1)) and a linear dynamic range of 50-1000 microgL(-1) with a determination rate of 20 h(-1).

  20. Condensation Reactions and Formation of Amides, Esters, and Nitriles Under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Rushdi, Ahmed I.; Simoneit, Bernd R. T.

    2004-06-01

    Hydrothermal pyrolysis experiments were performed to assess condensation (dehydration) reactions to amide, ester, and nitrile functionalities from lipid precursors. Beside product formation, organic compound alteration and stability were also evaluated. Mixtures of nonadecanoic acid, hexadecanedioic acid, or hexadecanamide with water, ammonium bicarbonate, and oxalic acid were heated at 300°C for 72 h. In addition, mixtures of ammonium bicarbonate and oxalic acid solutions were used to test the abiotic formation of organic nitrogen compounds at the same temperature. The resulting products were condensation compounds such as amides, nitriles, and minor quantities of N-methylalkyl amides, alkanols, and esters. Mixtures of alkyl amide in water or oxalic acid yielded mainly hydrolysis and dehydration products, and with ammonium bicarbonate and oxalic acid the yield of condensation products was enhanced. The synthesis experiments with oxalic acid and ammonium bicarbonate solutions yielded homologous series of alkyl amides, alkyl amines, alkanes, and alkanoic acids, all with no carbon number predominances. These organic nitrogen compounds are stable and survive under the elevated temperatures of hydrothermal fluids.

  1. Rapid and sensitive Nitrosomonas europaea biosensor assay for quantification of bioavailable ammonium sensu strictu in soil.

    PubMed

    Nguyen, Minh Dong; Risgaard-Petersen, Nils; Sørensen, Jan; Brandt, Kristian K

    2011-02-01

    Knowledge on bioavailable ammonium sensu strictu (i.e., immediately available for cellular uptake) in soil is required to understand nutrient uptake processes in microorganisms and thus of vital importance for plant production. We here present a novel ammonium biosensor approach based on the lithoautotrophic ammonia-oxidizing bacterium Nitrosomonas europaea transformed with a luxAB sensor plasmid. Bioluminescence-based ammonium detection was achieved within 10 min with a quantification limit in liquid samples of ∼20 μM and a linear response range up to 400 μM. Biosensor and conventional chemical quantification of ammonium in soil solutions agreed well across a range of sample and assay conditions. The biosensor was subsequently applied for a solid phase-contact assay allowing for direct interaction of biosensor cells with soil particle-associated (i.e., exchangeable plus fixed) ammonium. The assay successfully quantified bioavailable ammonium even in unfertilized soil and demonstrated markedly higher ratios of bioavailable ammonium to water- or 2 M KCl-exchangeable ammonium in anoxic soil than in corresponding oxic soil. Particle-associated ammonium contributed by at least 74% and 93% of the total bioavailable pool in oxic and anoxic soil, respectively. The N. europaea biosensor should have broad relevance for environmental monitoring of bioavailable ammonium and processes depending on ammonium bioavailability.

  2. Method for hot pressing beryllium oxide articles

    DOEpatents

    Ballard, Ambrose H.; Godfrey, Jr., Thomas G.; Mowery, Erb H.

    1988-01-01

    The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

  3. Diffusion, Viscosity and Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Myerson, Allan S.

    1996-01-01

    The diffusivity of TriGlycine Sulfate (TGS), Potassium Dihydrogen Phosphate (KDP), Ammonium Dihydrogen Phosphate (ADF) and other compounds of interest to microgravity crystal growth, in supersaturated solutions as a function of solution concentration, 'age' and 'history was studied experimentally. The factors that affect the growth of crystals from water solutions in microgravity have been examined. Three non-linear optical materials have been studied, potassium dihydrogen phosphate (KDP), ammonium dihydrogen phosphate (ADP) and triglycine sulfate (TGC). The diffusion coefficient and viscosity of supersaturated water solutions were measured. Also theoretical model of diffusivity and viscosity in a metastable state, model of crystal growth from solution including non-linear time dependent diffusivity and viscosity effect and computer simulation of the crystal growth process which allows simulation of the microgravity crystal growth were developed.

  4. Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies.

    PubMed

    Basu, Ankan; Schreiber, Madeline E

    2013-11-15

    At a former As mine site, arsenopyrite oxidation has resulted in formation of scorodite and As-bearing iron hydroxide, both in host rock and mine tailings. Electron microprobe analysis documents that arsenopyrite weathers along two pathways: one that involves formation of sulfur, and one that does not. In both pathways, arsenopyrite oxidizes to form scorodite, which dissolves incongruently to form As-bearing iron hydroxides. From a mass balance perspective, arsenopyrite oxidation to scorodite conserves As, but as scorodite dissolves incongruently to iron hydroxides, As is released to solution, resulting in elevated As concentrations in the headwater stream adjacent to the site. The As-bearing iron hydroxide is the dominant solid phase reservoir of As in mine tailings and stream sediment, as suggested by sequential extraction. This As-bearing iron hydroxide is stable under the aerobic and pH 4-6 conditions at the site; however, changes in biogeochemical conditions resulting from sediment burial or future remedial efforts, which could promote As release from this reservoir due to reductive dissolution, should be avoided. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Atomic hydrogen in. gamma. -irradiated hydroxides of alkaline-earth elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spitsyn, V.I.; Yurik, T.K.; Barsova, L.I.

    1982-04-01

    Atomic hydrogen is an important intermediate product formed in the radiolysis of compounds containing X-H bonds. H atoms have been detected in irradiated matrices of H/sub 2/ and inert gases at 4/sup 0/K, in irradiated ice and frozen solutions of acids in irradiated salts and in other systems. Here results are presented from a study of the ESR spectra of H atoms generated in polycrystalline hydroxides of alkaline-earth elements that have been ..gamma..-irradiated at 77/sup 0/K, after preliminary treatment at various temperatures. For the first time stabilization of atomic hydrogen in ..gamma..-irradiated polycrystalline alkaline-earth element hydroxides has been detected. Dependingmore » on the degree of dehydroxylation, several types of hydrogen atoms may be stabilized in the hydroxides, these hydrogen atoms having different radiospectroscopic parameters. In the magnesium-calcium-strontium-barium hydroxide series, a regular decrease has been found in the hfi constants for H atoms with the cations in the immediate surroundings. A direct proportionality has been found between the parameters ..delta..A/A/sub 0/ and the polarizability of the cation.« less

  6. Characterization of dissolved organic matter during reactive transport: A column experiment with spectroscopic detection

    NASA Astrophysics Data System (ADS)

    Vazquez, A.; Hernández, S.; Rasmussen, C.; Chorover, J.

    2010-12-01

    Al and Fe oxy-hydroxide minerals have been implicated in dissolved organic matter (DOM) stabilization. DOM solutions from a Pinus ponderosa forest floor (PPDOM) were used to irrigate polypropylene columns, 3.2 cm long by 0.9 cm diameter (total volume 2.0 cm3), that were packed with quartz sand (QS), gibbsite-quartz sand (Al-QS), and goethite-quartz sand (Fe-QS) mixtures. To investigate the mobilization and fractionation of DOM during reactive transport, effluent solutions were characterized by UV-Vis absorbance and excitation-emission matrix (EEM) fluorescence spectroscopies. Magnitude of PPDOM sorption followed the trend Al-QS > Fe-QS > QS during the initial transport. Effluent pH values suggest that ligand exchange is a primary mechanism for PPDOM sorption onto oxy-hydroxide minerals. Low molar absorptivity values were observed in effluent solutions of early pore volumes, indicating preferential mobilization of compounds with low aromatic character. Compounds traditionally characterized by EEM spectroscopy as being more highly humified were favorably absorbed onto the gibbsite and goethite surfaces. Humification index values (HIX) were also correlated with DOM aromaticity. HIX results suggest that the presence of low mass fractions of oxy-hydroxide minerals affect the preferential uptake of high molar mass constituents of PPDOM during reactive transport.

  7. Nickel-Aluminum Layered Double Hydroxide Coating on the Surface of Conductive Substrates by Liquid Phase Deposition.

    PubMed

    Maki, Hideshi; Takigawa, Masashi; Mizuhata, Minoru

    2015-08-12

    The direct synthesis of the adhered Ni-Al LDH thin film onto the surface of electrically conductive substrates by the liquid phase deposition (LPD) reaction is carried out for the development of the positive electrode. The complexation and solution equilibria of the dissolved species in the LPD reaction have been clarified by a theoretical approach, and the LPD reaction conditions for the Ni-Al LDH depositions are shown to be optimized by controlling the fluoride ion concentration and the pH of the LPD reaction solutions. The yields of metal oxides and hydroxides by the LPD method are very sensitive to the supersaturation state of the hydroxide in the reaction solution. The surfaces of conductive substrates are completely covered by the minute mesh-like Ni-Al LDH thin film; furthermore, there is no gap between the surfaces of conductive substrates and the deposited Ni-Al LDH thin film. The active material layer thickness was able to be controlled within the range from 100 nm to 1 μm by the LPD reaction time. The high-crystallinity and the arbitrary-thickness thin films on the conductive substrate surface will be beneficial for the interface control of charge transfer reaction fields and the internal resistance reduction of various secondary batteries.

  8. Preparation of immunoglobulin Y from egg yolk using ammonium sulfate precipitation and ion exchange chromatography.

    PubMed

    Ko, K Y; Ahn, D U

    2007-02-01

    The objective of this study was to develop an economical, simple, and large-scale separation method for IgY from egg yolk. Egg yolk diluted with 9 volumes of cold water was centrifuged after adjusting the pH to 5.0. The supernatant was added with 0.01% charcoal or 0.01% carrageenan and centrifuged at 2,800 x g for 30 min. The supernatant was filtered through a Whatman no. 1 filter paper and then the filtrate was concentrated to 20% original volume using ultrafiltration. The concentrated solution was further purified using either cation exchange chromatography or ammonium sulfate precipitation. For the cation exchange chromatography method, the concentrated sample was loaded onto a column equilibrated with 20 mM citrate-phosphate buffer at pH 4.8 and eluted with 200 mM citrate-phosphate buffer at pH 6.4. For the ammonium sulfate precipitation method, the concentrated sample was twice precipitated with 40% ammonium sulfate solution at pH 9.0. The yield and purity of IgY were determined by ELISA and electrophoresis. The yield of IgY from the cation exchange chromatography method was 30 to 40%, whereas that of the ammonium sulfate precipitation was 70 to 80%. The purity of IgY from the ammonium sulfate method was higher than that of the cation exchange chromatography. The cation exchange chromatography could handle only a small amount of samples, whereas the ammonium sulfate precipitation could handle a large volume of samples. This suggests that ammonium sulfate precipitation was a more efficient and useful purification method than cation exchange chromatography for the large-scale preparation of IgY from egg yolk.

  9. CONCENTRATION AND DECONTAMINATION OF SOLUTIONS CONTAINING PLUTONIUM VALUES BY BISMUTH PHOSPHATE CARRIER PRECIPITATION METHODS

    DOEpatents

    Seaborg, G.T.; Thompson, S.G.

    1960-08-23

    A process is given for isolating plutonium present in the tetravalent state in an aqueous solution together with fission products. First, the plutonium and fission products are coprecipitated on a bismuth phosphate carrier. The precipitate obtained is dissolved, and the plutonium in the solution is oxidized to the hexavalent state (with ceric nitrate, potassium dichromate, Pb/ sub 3/O/sub 4/, sodium bismuthate and/or potassium dichromate). Thereafter a carrier for fission products is added (bismuth phosphate, lanthanum fluoride, ceric phosphate, bismuth oxalate, thorium iodate, or thorium oxalate), and the fission-product precipitation can be repeated with one other of these carriers. After removal of the fission-product-containing precipitate or precipitates. the plutonium in the supernatant is reduced to the tetravalent state (with sulfur dioxide, hydrogen peroxide. or sodium nitrate), and a carrier for tetravalent plutonium is added (lanthanum fluoride, lanthanum hydroxide, lanthanum phosphate, ceric phosphate, thorium iodate, thorium oxalate, bismuth oxalate, or niobium pentoxide). The plutonium-containing precipitate is then dissolved in a relatively small volume of liquid so as to obtain a concentrated solution. Prior to dissolution, the bismuth phosphate precipitates first formed can be metathesized with a mixture of sodium hydroxide and potassium carbonate and plutonium-containing lanthanum fluorides with alkali-metal hydroxide. In the solutions formed from a plutonium-containing lanthanum fluoride carrier the plutonium can be selectively precipitated with a peroxide after the pH was adjusted preferably to a value of between 1 and 2. Various combinations of second, third, and fourth carriers are discussed.

  10. Extracting lignins from mill wastes

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.

    1977-01-01

    Addition of quaternary ammonium compound and activated charcoal to pulp and mill wastes precipitates lignins in sludge mixture. Methanol dissolves lignins for separation from resulting slurry. Mineral acid reprecipitates lignins in filtered solution. Quaternary ammonium compound, activated charcoal, as well as water may be recovered and recycled from this process.

  11. The high-pressure phase transitions of hydroxides

    NASA Astrophysics Data System (ADS)

    Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Tsuchiya, T.; Irifune, T.

    2017-12-01

    The discovery of new high-pressure hydrous minerals has important implications for understanding the structure, dynamics, and evolution of the Earth, since hydrogen significantly affects the physical properties and stabilities of Earth's constituent minerals. Whereas hydrous minerals commonly dehydrate under pressures of around a few tens of gigapascals (GPa) and at temperature around 1,500 K, those with CaCl2-type crystal structure, MgSiO4H2 phase H, δ-AlOOH and ɛ-FeOOH, are known to be stable at pressures corresponding to the lower mantle. However, although the CaCl2-type hydroxides were suggested to form a solid solution owing to their similar crystal structure, there are few experimental studies on the stability of the hydroxide in such multicomponent. Moreover, ab initio calculations have predicted that some CaCl2-type hydroxides transform to pyrite-type structure at higher pressures. Here, we conducted high pressure-temperature experiments on pure AlOOH, FeOOH, and their solid solutions, with the aid of these first-principles predictions. We use in situ X-ray measurements in conjunction with a multi-anvil apparatus to study the high-pressure behaviour of hydroxides in the multicomponent system under middle lower mantle conditions. Solid solutions in wide compositional ranges between CaCl2-type δ-AlOOH and ɛ-FeOOH were recognized from X-ray diffraction patterns. Also, unit cell volume of FeOOH and (Al,Fe)OOH significantly decreased accompanied with the spin transition of iron at 50 GPa. Thus, the wide compositional ranges in CaCl2-type hydroxide are maintained beyond the depth of the middle lower mantle, where the spin transition of iron occurs. We used a laser-heated diamond anvil cell in order to study the stability of AlOOH and FeOOH at higher pressures above 70 GPa. We observed that ɛ-FeOOH transforms to the pyrite-type structure at above 80 GPa, which is consistent with the theoretical prediction. At conditions above 190 GPa and 2,500 K, we observed the phase transition of δ-AlOOH to its higher pressure phase at above 170 GPa although further experimental study should be required to determine the precise structure. Based on these experimental and theoretical results, the stability and phase transitions of hydrous phases in the lower mantle will be discussed.

  12. Electrochemical reduction of nitrate and nitrite in concentrated sodium hydroxide at platinum and nickel electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Lin Li; Robertson, D.H.; Chambers, J.Q.

    1996-10-01

    This work describes the electrochemical reduction of nitrate in alkaline solutions. Conditions which maximize the current efficiency for the production of dinitrogen and/or ammonia gases could be very important for the treatment of radioactive waste solutions.

  13. The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms.

    PubMed

    Kühn, Susanne; van Werven, Bernike; van Oyen, Albert; Meijboom, André; Bravo Rebolledo, Elisa L; van Franeker, Jan A

    2017-02-15

    In studies of plastic ingestion by marine wildlife, visual separation of plastic particles from gastrointestinal tracts or their dietary content can be challenging. Earlier studies have used solutions to dissolve organic materials leaving synthetic particles unaffected. However, insufficient tests have been conducted to ensure that different categories of consumer products partly degraded in the environment and/or in gastrointestinal tracts were not affected. In this study 63 synthetic materials and 11 other dietary items and non-plastic marine debris were tested. Irrespective of shape or preceding environmental history, most polymers resisted potassium hydroxide (KOH) solution, with the exceptions of cellulose acetate from cigarette filters, some biodegradable plastics and a single polyethylene sheet. Exposure of hard diet components and other marine debris showed variable results. In conclusion, the results confirm that usage of KOH solutions can be a useful approach in general quantitative studies of plastic ingestion by marine wildlife. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Ammonium sensing in aqueous solutions with plastic optical fiber modified by molecular imprinting

    NASA Astrophysics Data System (ADS)

    Sequeira, F.; Duarte, D.; Rudnitskaya, A.; Gomes, M. T. S. R.; Nogueira, R.; Bilro, L.

    2016-05-01

    We report the development of a low cost plastic optical fibre (POF) sensor for ammonium detection using molecularly imprinted polymers (MIP's). The cladding of a 1 mm diameter PMMA fiber is removed, in which is grafted a molecular imprinted polymer (MIP), by radical polymerization with thermal initiation, that act as a selective sensing layer. For the polymerization, 2,2'-Azobis(2-methylpropionamidine)dihydrochloride (AAPH) is used as initiator, methacrylic acid (MAA) as a monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linker, ammonium chloride (NH4Cl) as a template and 30% of ethanol in water as a solvent. The sensing method consists of an intensity based scheme. The response to different concentrations of ammonium solutions in water has been evaluated at room temperature. Solutions with (0 - 0.6) M concentration, with the corresponding refractive indexes varying between 1.3325 - 1.3387, at 25°C were used. The response of the fiber with the original cladding, and after cladding removal has been monitored and compared to the response given by the developed sensor. The response is very fast, less than 1 minute and reversible, which allows the continuum use of the sensor. Further developments are focused in optimization of MIP grafting procedure and sensor performance, in order to increase sensitivity.

  15. Tellurium Mobility Through Mine Environments

    NASA Astrophysics Data System (ADS)

    Dorsk, M.

    2015-12-01

    Tellurium is a rare metalloid that has received minimal research regarding environmental mobility. Observations of Tellurium mobility are mainly based on observations of related metalloids such as selenium and beryllium; yet little research has been done on specific Tellurium behavior. This laboratory work established the environmental controls that influence Tellurium mobility and chemical speciation in aqueous driven systems. Theoretical simulations show possible mobility of Te as Te(OH)3[+] at highly oxidizing and acidic conditions. Movement as TeO3[2-] under more basic conditions may also be possible in elevated Eh conditions. Mobility in reducing environments is theoretically not as likely. For a practical approach to investigate mobility conditions for Te, a site with known Tellurium content was chosen in Colorado. Composite samples were selected from the top, center and bottom of a tailings pile for elution experiments. These samples were disintegrated using a rock crusher and pulverized with an automated mortar and pestle. The material was then classified to 70 microns. A 10g sample split was digested in concentrated HNO3 and HF and analyzed by Atomic Absorption Spectroscopy to determine initial Te concentrations. Additional 10g splits from each location were subjected to elution in 100 mL of each of the following solutions; nitric acid to a pH of 1.0, sulfuric acid to a pH of 2.0, sodium hydroxide to a pH of 12, ammonium hydroxide to a pH of 10, a pine needle/soil tea from material within the vicinity of the collection site to a pH of 3.5 and lastly distilled water to serve as control with a pH of 7. Sulfuric acid was purposefully chosen to simulate acid mine drainage from the decomposition of pyrite within the mine tailings. Sample sub sets were also inundated with 10mL of a 3% hydrogen peroxide solution to induce oxidizing conditions. All collected eluates were then analyzed by atomic absorption spectroscopy (AAS) to measure Tellurium concentrations in each sample. The results provide a comparison of possible environmental Te mobility factors. While the process of bioavailability is not specifically addressed, preliminary data indicate a reference to perhaps assess impact to the local community and livestock relying on the San Miguel River, which is effected by run-off from the mine site.

  16. PLUTONIUM CARRIER METATHESIS WITH ORGANIC REAGENT

    DOEpatents

    Thompson, S.G.

    1958-07-01

    A method is described for converting a plutonium containing bismuth phosphate carrier precipitate Into a compositton more readily soluble in acid. The method consists of dissolving the bismuth phosphate precipitate in an aqueous solution of alkali metal hydroxide, and adding one of a certaia group of organic compounds, e.g., polyhydric alcohols or a-hydrorycarboxylic acids. The mixture is then heated causiing formation of a bismuth hydroxide precipitate containing plutonium which may be readily dissolved in nitric acid for further processing.

  17. In situ fabrication of Ni-Co (oxy)hydroxide nanowire-supported nanoflake arrays and their application in supercapacitors.

    PubMed

    Zheng, Xiaoyu; Quan, Honglin; Li, Xiaoxin; He, Hai; Ye, Qinglan; Xu, Xuetang; Wang, Fan

    2016-09-29

    Three-dimensional (3D) hybrid nanostructured arrays grown on a flexible substrate have recently attracted great attention owing to their potential application as supercapacitor electrodes in portable and wearable electronic devices. Here, we report an in situ conversion of Ni-Co active electrode materials for the fabrication of high-performance electrodes. Ni-Co carbonate hydroxide nanowire arrays on carbon cloth were initially synthesized via a hydrothermal method, and they were gradually converted to Ni-Co (oxy)hydroxide nanowire-supported nanoflake arrays after soaking in an alkaline solution. The evolution of the supercapacitor performance of the soaked electrode was investigated in detail. The areal capacitance increases from 281 mF cm -2 at 1 mA cm -2 to 3710 and 3900 mF cm -2 after soaking for 36 h and 48 h, respectively. More interestingly, the electrode also shows an increased capacitance with charge/discharge cycles due to the long-time soaking in KOH solution, suggesting novel cycling durability. The enhancement in capacitive performance should be related to the formation of a unique nanowire-supported nanoflake array architecture, which controls the agglomeration of nanoflakes, making them fully activated. As a result, the facile in situ fabrication of the hybrid architectural design in this study provides a new approach to fabricate high-performance Ni/Co based hydroxide nanostructure arrays for next-generation energy storage devices.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xi; Blue Sky Technology Corporation, Beijing 100083; Ma, Hongwen, E-mail: mahw@cugb.edu.cn

    Highlights: • We use the anti-drop precipitation method for synthesis of magnesium hydroxide. • Boron mud which is solid waste from a borax factory is used as the magnesium source. • The magnesium hydroxide nanoflowers are prepared in a short time. • The as-prepared magnesium hydroxide can be used as an effective flame retardant. - Abstract: Using boron mud as the starting material, the flower-like magnesium hydroxide (MH) has been successfully prepared via anti-drop precipitation method. The effect of NH{sub 3}·H{sub 2}O concentration, aging time, and surfactant on the morphology of MH was investigated. The optimum precipitation conditions are droppingmore » MgSO{sub 4} solution in 5% NH{sub 3}·H{sub 2}O solution, with 3% polyethylene glycol as surfactant, aging for 30 min. XRD, SEM, FI-IR, and TG/DTA have been employed to characterize the as-prepared samples. XRD reveals that MH with high purity has the brucite structure. SEM images show that the flower-like MH exists in the form of mono-disperse well uniform spherical aggregation with diameter of 3–5 μm. TG/DTA shows a total percentage of weight loss 33.6% with a well-defined endothermic peak near 381.3 °C corresponding to the decomposition of MH. Furthermore, it reports that the extremely fast primary nucleation is of significance for crystal growth of MH.« less

  19. Biogenic uraninite precipitation and its reoxidation by iron(III) (hydr)oxides: A reaction modeling approach

    NASA Astrophysics Data System (ADS)

    Spycher, Nicolas F.; Issarangkun, Montarat; Stewart, Brandy D.; Sevinç Şengör, S.; Belding, Eileen; Ginn, Tim R.; Peyton, Brent M.; Sani, Rajesh K.

    2011-08-01

    One option for immobilizing uranium present in subsurface contaminated groundwater is in situ bioremediation, whereby dissimilatory metal-reducing bacteria and/or sulfate-reducing bacteria are stimulated to catalyze the reduction of soluble U(VI) and precipitate it as uraninite (UO 2). This is typically accomplished by amending groundwater with an organic electron donor. It has been shown, however, that once the electron donor is entirely consumed, Fe(III) (hydr)oxides can reoxidize biogenically produced UO 2, thus potentially impeding cleanup efforts. On the basis of published experiments showing that such reoxidation takes place even under highly reducing conditions (e.g., sulfate-reducing conditions), thermodynamic and kinetic constraints affecting this reoxidation are examined using multicomponent biogeochemical simulations, with particular focus on the role of sulfide and Fe(II) in solution. The solubility of UO 2 and Fe(III) (hydr)oxides are presented, and the effect of nanoscale particle size on stability is discussed. Thermodynamically, sulfide is preferentially oxidized by Fe(III) (hydr)oxides, compared to biogenic UO 2, and for this reason the relative rates of sulfide and UO 2 oxidation play a key role on whether or not UO 2 reoxidizes. The amount of Fe(II) in solution is another important factor, with the precipitation of Fe(II) minerals lowering the Fe +2 activity in solution and increasing the potential for both sulfide and UO 2 reoxidation. The greater (and unintuitive) UO 2 reoxidation by hematite compared to ferrihydrite previously reported in some experiments can be explained by the exhaustion of this mineral from reaction with sulfide. Simulations also confirm previous studies suggesting that carbonate produced by the degradation of organic electron donors used for bioreduction may significantly increase the potential for UO 2 reoxidation through formation of uranyl carbonate aqueous complexes.

  20. Geopolymer lightweight bricks manufactured from fly ash and foaming agent

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wan Mastura Wan; Hussin, Kamarudin; Abdullah, Mohd Mustafa Al Bakri; Kadir, Aeslina Abdul

    2017-04-01

    This paper deals with the development of lightweight geopolymer bricks by using foaming agent and fly ash. The mix parameters analysed through a laboratory experiment with fix ratio of sodium silicate/sodium hydroxide solution mass ratio 2.5, fly ash/alkaline activator solution mass ratio 2.0, foaming agent/paste mass ratio 1:2 and molarity of sodium hydroxide solution used was 12M. Different curing temperature (Room Temperature, 60, 80) and foaming agent/water mass ratio (1:10 and 1:20) were studied. Compressive strength, density analysis, and water absorption has been investigated. The results show that the foamed geopolymer bricks with a lower foam/water mass ratio (1:10)and high curing temperature (80°C) leading to a better properties. Mixtures with a low density of around 1420 kg/m3 and a compressive strength of around 10 MPa were achieved.

Top