Sample records for ammonium oxidation process

  1. [Achievement of Sulfate-Reducing Anaerobic Ammonium Oxidation Reactor Started with Nitrate-Reducting Anaerobic Ammonium Oxidation].

    PubMed

    Liu, Zheng-chuan; Yuan, Lin-jiang; Zhou, Guo-biao; Li, Jing

    2015-09-01

    The transformation of nitrite-reducing anaerobic ammonium oxidation to sulfate-reducing anaerobic ammonium oxidation in an UASB was performed and the changes in microbial community were studied. The result showed that the sulfate reducing anaerobic ammonium oxidation process was successfully accomplished after 177 days' operation. The removal rate of ammonium nitrogen and sulfate were up to 58. 9% and 15. 7%, the removing load of ammonium nitrogen and sulfate were 74. 3 mg.(L.d)-1 and 77. 5 mg.(L.d)-1 while concentration of ammonium nitrogen and sulfate of influent were 130 mg.(L.d)-1 and 500 mg.(L.d)-1, respectively. The lost nitrogen and sulphur was around 2 in molar ratio. The pH value of the effluent was lower than that of the influent. Instead of Candidatus brocadia in nitrite reducing anaerobic ammonium oxidation granular sludge, Bacillus benzoevorans became the dominant species in sulfate reducing anaerobic ammonium oxidation sludge. The dominant bacterium in the two kinds of anaerobic ammonium oxidation process is different. Our results imply that the two anaerobic ammonium oxidation processes are carried out by different kind of bacterium.

  2. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal.

    PubMed

    Liu, Sitong; Yang, Fenglin; Gong, Zheng; Meng, Fangang; Chen, Huihui; Xue, Yuan; Furukawa, Kenji

    2008-10-01

    The simultaneous ammonium and sulfate removal was detected in an anammox reactor, consisted of ammonium oxidization with sulfate deoxidization, and subsequently traditional anammox process, in via of middle medium nitrite with solid sulfur and N2 as the terminal products. The pure anammox bacteria offered a great biotechnological potential for the completely autotrophic reaction indicated by batch tests. Denaturing gradient gel electrophoresis (DGGE) analysis further revealed that a new organism belonging to Planctomycetales was strongly enriched in the defined niche: the redox of ammonium and sulfate. The new species "Anammoxoglobussulfate" was so considered as holding a critical role in the ammonium oxidization with sulfate deoxidization to nitrite. Afterwards, the Planctomyces existing in the bacteria community performed the anammox process together to achieve the complete nitrogen and sulfate removal. The potential use of sulfate as electron acceptor for ammonium oxidizing widens the usage of anammox bacteria.

  3. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters

    PubMed Central

    Bristow, Laura A.; Dalsgaard, Tage; Tiano, Laura; Mills, Daniel B.; Bertagnolli, Anthony D.; Wright, Jody J.; Hallam, Steven J.; Ulloa, Osvaldo; Canfield, Donald E.; Revsbech, Niels Peter; Thamdrup, Bo

    2016-01-01

    A major percentage of fixed nitrogen (N) loss in the oceans occurs within nitrite-rich oxygen minimum zones (OMZs) via denitrification and anammox. It remains unclear to what extent ammonium and nitrite oxidation co-occur, either supplying or competing for substrates involved in nitrogen loss in the OMZ core. Assessment of the oxygen (O2) sensitivity of these processes down to the O2 concentrations present in the OMZ core (<10 nmol⋅L−1) is therefore essential for understanding and modeling nitrogen loss in OMZs. We determined rates of ammonium and nitrite oxidation in the seasonal OMZ off Concepcion, Chile at manipulated O2 levels between 5 nmol⋅L−1 and 20 μmol⋅L−1. Rates of both processes were detectable in the low nanomolar range (5–33 nmol⋅L−1 O2), but demonstrated a strong dependence on O2 concentrations with apparent half-saturation constants (Kms) of 333 ± 130 nmol⋅L−1 O2 for ammonium oxidation and 778 ± 168 nmol⋅L−1 O2 for nitrite oxidation assuming one-component Michaelis–Menten kinetics. Nitrite oxidation rates, however, were better described with a two-component Michaelis–Menten model, indicating a high-affinity component with a Km of just a few nanomolar. As the communities of ammonium and nitrite oxidizers were similar to other OMZs, these kinetics should apply across OMZ systems. The high O2 affinities imply that ammonium and nitrite oxidation can occur within the OMZ core whenever O2 is supplied, for example, by episodic intrusions. These processes therefore compete with anammox and denitrification for ammonium and nitrite, thereby exerting an important control over nitrogen loss. PMID:27601665

  4. Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor

    NASA Astrophysics Data System (ADS)

    Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.

  5. Erratum to ;Coastal water column ammonium and nitrite oxidation are decoupled in summer;

    NASA Astrophysics Data System (ADS)

    Heiss, Elise M.; Fulweiler, Robinson W.

    2017-07-01

    Water column nitrification is a key process in the nitrogen cycle as it links reduced and oxidized forms of nitrogen and also provides the substrate (nitrate) needed for reactive nitrogen removal by denitrification. We measured potential water column ammonium and nitrite oxidation rates at four sites along an estuary to continental shelf gradient over two summers. In most cases, nitrite oxidation rates outpaced ammonium oxidation rates. Overall, ammonium and nitrite oxidation rates were higher outside of the estuary, and this trend was primarily driven by higher oxidation rates in deeper waters. Additionally, both ammonium and nitrite oxidation rates were impacted by different in situ variables. Ammonium oxidation rates throughout the water column as a whole were most positively correlated to depth and salinity and negatively correlated to dissolved oxygen, light, and temperature. In contrast, nitrite oxidation rates throughout the water column were negatively correlated with temperature, light and pH. Multivariate regression analysis revealed that surface (<20 m) ammonium oxidation rates were most strongly predicted by substrate (NH4+), salinity, and light, while deep (>20 m) rates were regulated by temperature, light, and [H+] (i.e. pH). In addition, surface (<20 m) nitrite oxidation rates were best explained by [H+] alone, while [H+], temperature, and dissolved oxygen all played a role in predicting deep (>20 m) nitrite oxidation rates. These results support the growing body of evidence that ammonium oxidation and nitrite oxidation are not always coupled, should be measured separately, and are influenced by different environmental conditions.

  6. Coupling between anammox and autotrophic denitrification for simultaneous removal of ammonium and sulfide by enriched marine sediments.

    PubMed

    Rios-Del Toro, E Emilia; Cervantes, Francisco J

    2016-06-01

    In the present study, the capacity of enrichments derived from marine sediments collected from different sites of the Mexican littoral to perform anaerobic ammonium oxidation (anammox) coupled to sulfide-dependent denitrification for simultaneous removal of ammonium and sulfide linked to nitrite reduction was evaluated. Sulfide-dependent denitrification out-competed anammox during the simultaneous oxidation of sulfide and ammonium. Significant accumulation of elemental sulfur (ca. 14-30 % of added sulfide) occurred during the coupling between the two respiratory processes, while ammonium was partly oxidized (31-47 %) due to nitrite limitation imposed in sediment incubations. Nevertheless, mass balances revealed up to 38 % more oxidation of the electron donors available (ammonium and sulfide) than that expected from stoichiometry. Recycling of nitrite, from nitrate produced through anammox, is proposed to contribute to extra oxidation of sulfide, while additional ammonium oxidation is suggested by sulfate-reducing anammox (SR-anammox). The complex interaction between nitrogenous and sulfurous compounds occurring through the concomitant presence of autotrophic denitrification, conventional anammox and SR-anammox may significantly drive the nitrogen and sulfur fluxes in marine environments.

  7. Treatment performance, nitrous oxide production and microbial community under low-ammonium wastewater in a CANON process.

    PubMed

    Mi, Weixing; Zhao, Jianqiang; Ding, Xiaoqian; Ge, Guanghuan; Zhao, Rixiang

    2017-12-01

    To investigate the characteristics of anaerobic ammonia oxidation for treating low-ammonium wastewater, a continuous-flow completely autotrophic nitrogen removal over nitrite (CANON) biofilm reactor was studied. At a temperature of 32 ± 1 °C and a pH between 7.5 and 8.2, two operational experiments were performed: the first one fixed the hydraulic retention time (HRT) at 10 h and gradually reduced the influent ammonium concentrations from 210 to 50 mg L -1 ; the second one fixed the influent ammonium concentration at 30 mg L -1 and gradually decreased the HRT from 10 to 3 h. The results revealed that the total nitrogen removal efficiency exceeded 80%, with a corresponding total nitrogen removal rate of 0.26 ± 0.01 kg N m -3 d -1 at the final low ammonium concentration of 30 mg L -1 . Small amounts of nitrous oxide (N 2 O) up to 0.015 ± 0.004 kg m -3 d -1 at the ammonium concentration of 210 mg L -1 were produced in the CANON process and decreased with the decrease in the influent ammonium loads. High-throughput pyrosequencing analysis indicated that the dominant functional bacteria 'Candidatus Kuenenia' under high influent ammonium levels were gradually succeeded by Armatimonadetes_gp5 under low influent ammonium levels.

  8. Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zhou, Ruipeng; Yang, Yuanming

    2017-05-01

    Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.

  9. Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water

    PubMed Central

    Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei

    2017-01-01

    An iron-manganese co-oxide filter film (MeOx) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeOx was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeOx was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6–8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeOx included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeOx was formed by abiotic ways and the main elements on the surface of MeOx were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeOx as both ammonia molecules and ammonium ions and the active species of O2 were possibly •O and O2−. PMID:28753939

  10. Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water.

    PubMed

    Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei

    2017-07-19

    An iron-manganese co-oxide filter film (MeO x ) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeO x was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeO x was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6-8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeO x included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeO x was formed by abiotic ways and the main elements on the surface of MeO x were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeO x as both ammonia molecules and ammonium ions and the active species of O₂ were possibly • O and O₂ - .

  11. Evaluation of autotrophic growth of ammonia-oxidizers associated with granular activated carbon used for drinking water purification by DNA-stable isotope probing.

    PubMed

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki

    2013-12-01

    Nitrification is an important biological function of granular activated carbon (GAC) used in advanced drinking water purification processes. Newly discovered ammonia-oxidizing archaea (AOA) have challenged the traditional understanding of ammonia oxidation, which considered ammonia-oxidizing bacteria (AOB) as the sole ammonia-oxidizers. Previous studies demonstrated the predominance of AOA on GAC, but the contributions of AOA and AOB to ammonia oxidation remain unclear. In the present study, DNA-stable isotope probing (DNA-SIP) was used to investigate the autotrophic growth of AOA and AOB associated with GAC at two different ammonium concentrations (0.14 mg N/L and 1.4 mg N/L). GAC samples collected from three full-scale drinking water purification plants in Tokyo, Japan, had different abundance of AOA and AOB. These samples were fed continuously with ammonium and (13)C-bicarbonate for 14 days. The DNA-SIP analysis demonstrated that only AOA assimilated (13)C-bicarbonate at low ammonium concentration, whereas AOA and AOB exhibited autotrophic growth at high ammonium concentration. This indicates that a lower ammonium concentration is preferable for AOA growth. Since AOA could not grow without ammonium, their autotrophic growth was coupled with ammonia oxidation. Overall, our results point towards an important role of AOA in nitrification in GAC filters treating low concentration of ammonium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Review of Options for Ammonia/Ammonium Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, C. A.

    This report is a review of literature supporting practical ammonia/ammonium destruction processes. Melter research supporting Hanford Low Activity Waste (LAW) glass production has shown that significant amounts of ammonia will be in the melter offgas condensate. Further work with secondary waste forms indicates the potential need to remove the ammonia, perhaps by an oxidative process. This review finds likely practical chemical methods to oxidize ammonia in aqueous solution at moderate temperatures and atmospheric pressure, using easily obtained reagents. Leading candidates include nitrite oxidation to produce nitrogen gas, various peroxide oxidative processes, and air stripping. This work reviews many other processesmore » and provides reasoning to not consider those processes further for this application.« less

  13. Insight into nitrous oxide production processes in the western North Pacific based on a marine ecosystem isotopomer model

    NASA Astrophysics Data System (ADS)

    Yoshikawa, C.; Sasai, Y.; Wakita, M.; Honda, M. C.; Fujiki, T.; Harada, N.; Makabe, A.; Matsushima, S.; Toyoda, S.; Yoshida, N.; Ogawa, N. O.; Suga, H.; Ohkouchi, N.

    2016-02-01

    Based on the observed inverse relationship between the dissolved oxygen and N2O concentrations in the ocean, previous models have indirectly predicted marine N2O emissions from the apparent oxygen utilization (AOU), In this study, a marine ecosystem model that incorporates nitrous oxide (N2O) production processes (i.e., ammonium oxidation during nitrification and nitrite reduction during nitrifier denitrification) was newly developed to estimate the sea-air N2O flux and to quantify N2O production processes. Site preference of 15N (SP) in N2O isotopomers (14N15N16O and 15N14N16O) and the average nitrogen isotope ratio (δ15N) were added to the model because they are useful tracers to distinguish between ammonium oxidation and nitrite reduction. This model was applied to two contrasting time series sites, a subarctic station (K2) and a subtropical station (S1) in the western North Pacific. The model was validated with observed nitrogen concentration and nitrogen isotopomer datasets, and successfully simulated the higher N2O concentrations, higher δ15N values, and higher site preference values for N2O at K2 compared with S1. The annual mean N2O emissions were estimated to be 34 mg N m-2 yr-1 at K2 and 2 mg N m-2 yr-1 at S1. Using this model, we conducted three case studies: 1) estimating the ratio of in-situ biological N2O production to nitrate (NO3-) production during nitrification, 2) estimating the ratio of N2O production by ammonium oxidation to that by nitrite reduction, and 3) estimating the ratio of AOA ammonium oxidation to AOB ammonium oxidation. The results of case studies estimated the ratios of in situ biological N2O production to nitrate production during nitrification to be 0.22% at K2 and 0.06% at S1. It is also suggested that N2O was mainly produced via ammonium oxidation at K2 but was produced via both ammonium oxidation and nitrite reduction at S1. It is also revealed that 80% of the ammonium oxidation at K2 was caused by archaea in the subsurface water. The results of isotope tracer incubation experiments using an archaeal activity inhibitor supported this hypothesis.

  14. Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil

    PubMed Central

    Daebeler, Anne; Bodelier, Paul LE; Yan, Zheng; Hefting, Mariet M; Jia, Zhongjun; Laanbroek, Hendrikus J

    2014-01-01

    Ammonium/ammonia is the sole energy substrate of ammonia oxidizers, and is also an essential nitrogen source for other microorganisms. Ammonia oxidizers therefore must compete with other soil microorganisms such as methane-oxidizing bacteria (MOB) in terrestrial ecosystems when ammonium concentrations are limiting. Here we report on the interactions between nitrifying communities dominated by ammonia-oxidizing archaea (AOA) and Nitrospira-like nitrite-oxidizing bacteria (NOB), and communities of MOB in controlled microcosm experiments with two levels of ammonium and methane availability. We observed strong stimulatory effects of elevated ammonium concentration on the processes of nitrification and methane oxidation as well as on the abundances of autotrophically growing nitrifiers. However, the key players in nitrification and methane oxidation, identified by stable-isotope labeling using 13CO2 and 13CH4, were the same under both ammonium levels, namely type 1.1a AOA, sublineage I and II Nitrospira-like NOB and Methylomicrobium-/Methylosarcina-like MOB, respectively. Ammonia-oxidizing bacteria were nearly absent, and ammonia oxidation could almost exclusively be attributed to AOA. Interestingly, although AOA functional gene abundance increased 10-fold during incubation, there was very limited evidence of autotrophic growth, suggesting a partly mixotrophic lifestyle. Furthermore, autotrophic growth of AOA and NOB was inhibited by active MOB at both ammonium levels. Our results suggest the existence of a previously overlooked competition for nitrogen between nitrifiers and methane oxidizers in soil, thus linking two of the most important biogeochemical cycles in nature. PMID:24858784

  15. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions

    NASA Astrophysics Data System (ADS)

    Huang, S.; Jaffé, P. R.

    2015-02-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron was measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454 pyrosequencing, and real-time quantitative PCR analysis. We be Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  16. Cultivation, detection, and ecophysiology of anaerobic ammonium-oxidizing bacteria.

    PubMed

    Kartal, Boran; Geerts, Wim; Jetten, Mike S M

    2011-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite under anoxic conditions. The anammox process is currently used to remove ammonium from wastewater and contributes significantly to the loss of fixed nitrogen from the oceans. In this chapter, we focus on the ecophysiology of anammox bacteria and describe new methodologies to grow these microorganisms. Now, it is possible to enrich anammox bacteria up to 95% with a membrane bioreactor that removes forces of selection for fast settling aggregates and facilitates the growth of planktonic cells. The biomass from this system has a high anaerobic ammonium oxidation rate (50 fmol NH(4)(+) · cell(-1) day(-1)) and is suitable for many ecophysiological and molecular experiments. A high throughput Percoll density gradient centrifugation protocol may be applied on this biomass for further enrichment (>99.5%) of anammox bacteria. Furthermore, we provide an up-to-date list of commonly used primers and introduce protocols for quantification and detection of functional genes of anammox bacteria in their natural environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Thermally Reduced Graphene Oxide Electrochemically Activated by Bis-Spiro Quaternary Alkyl Ammonium for Capacitors.

    PubMed

    He, Tieshi; Meng, Xiangling; Nie, Junping; Tong, Yujin; Cai, Kedi

    2016-06-08

    Thermally reduced graphene oxide (RGO) electrochemically activated by a quaternary alkyl ammonium-based organic electrolytes/activated carbon (AC) electrode asymmetric capacitor is proposed. The electrochemical activation process includes adsorption of anions into the pores of AC in the positive electrode and the interlayer intercalation of cations into RGO in the negative electrode under high potential (4.0 V). The EA process of RGO by quaternary alkyl ammonium was investigated by X-ray diffraction and electrochemical measurements, and the effects of cation size and structure were extensively evaluated. Intercalation by quaternary alkyl ammonium demonstrates a small degree of expansion of the whole crystal lattice (d002) and a large degree of expansion of the partial crystal lattice (d002) of RGO. RGO electrochemically activated by bis-spiro quaternary alkyl ammonium in propylene carbonate/AC asymmetric capacitor exhibits good activated efficiency, high specific capacity, and stable cyclability.

  18. Optimization of free ammonia concentration for nitrite accumulation in shortcut biological nitrogen removal process.

    PubMed

    Chung, Jinwook; Shim, Hojae; Park, Seong-Jun; Kim, Seung-Jin; Bae, Wookeun

    2006-03-01

    A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5-10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.

  19. Review on landfill leachate treatment by electrochemical oxidation: Drawbacks, challenges and future scope.

    PubMed

    Mandal, Pubali; Dubey, Brajesh K; Gupta, Ashok K

    2017-11-01

    Various studies on landfill leachate treatment by electrochemical oxidation have indicated that this process can effectively reduce two major pollutants present in landfill leachate; organic matter and ammonium nitrogen. In addition, the process is able to enhance the biodegradability index (BOD/COD) of landfill leachate, which make mature or stabilized landfill leachate suitable for biological treatment. The elevated concentration of ammonium nitrogen especially observed in bioreactor landfill leachate can also be reduced by electrochemical oxidation. The pollutant removal efficiency of the system depends upon the mechanism of oxidation (direct or indirect oxidation) which depends upon the property of anode material. Applied current density, pH, type and concentration of electrolyte, inter-electrode gap, mass transfer mode, total anode area to volume of effluent to be treated ratio, temperature, flow rate or flow velocity, reactor geometry, cathode material and lamp power during photoelectrochemical oxidation may also influence the system performance. In this review paper, past and present scenarios of landfill leachate treatment efficiencies and costs of various lab scale, pilot scale electrochemical oxidation studies asa standalone system or integrated with biological and physicochemical processes have been reviewed with the conclusion that electrochemical oxidation can be employed asa complementary treatment system with biological process for conventional landfill leachate treatment as well asa standalone system for ammonium nitrogen removal from bioreactor landfill leachate. Furthermore, present drawbacks of electrochemical oxidation process asa landfill leachate treatment system and relevance of incorporating life cycle assessment into the decision-making process besides process efficiency and cost, have been discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Electrochemical process for the preparation of nitrogen fertilizers

    DOEpatents

    Jiang, Junhua; Aulich, Ted R; Ignatchenko, Alexey V

    2015-04-14

    Methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia are disclosed. Embodiments include (1) ammonium nitrate produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source: (3) ammonia produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source.

  1. Microbial nitrogen transformation potential in surface run-off leachate from a tropical landfill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangimbulude, Jubhar C.; Straalen, Nico M. van; Roeling, Wilfred F.M., E-mail: wilfred.roling@falw.vu.nl

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Microbial nitrogen transformations can alleviate toxic ammonium discharge. Black-Right-Pointing-Pointer Aerobic ammonium oxidation was rate-limiting in Indonesian landfill leachate. Black-Right-Pointing-Pointer Organic nitrogen ammonification was most dominant. Black-Right-Pointing-Pointer Anaerobic nitrate reduction and ammonium oxidation potential were also high. Black-Right-Pointing-Pointer A two-stage aerobic-anaerobic nitrogen removal system needs to be implemented. - Abstract: Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L{sup -1}. The objective of this study was to determine seasonal variation in themore » potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential (<0.06 mg N L{sup -1} h{sup -1}) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a combination of nitrate reduction to nitrite and anammox. Such optimization of microbial nitrogen transformations can contribute to alleviating the ammonium discharge to surface water draining the landfill.« less

  2. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron reducing conditions

    NASA Astrophysics Data System (ADS)

    Huang, S.; Jaffé, P. R.

    2014-08-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron were measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454-pyrosequencing, and real-time quantitative PCR analysis. We believe that one of the dominant microbial species in our system (an uncultured Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  3. [Bacterial anaerobic ammonia oxidation (Anammox) in the marine nitrogen cycle--a review].

    PubMed

    Hong, Yiguo; Li, Meng; Gu, Jidong

    2009-03-01

    Anaerobic ammonium oxidation (Anammox) is a microbial oxidation process of ammonium, with nitrite as the electron acceptor and dinitrogen gas as the main product, and is performed by a clade of deeply branched Planctomycetes, which possess an intracytoplasmic membrane-bounded organelle, the anammoxosome, for the Anammox process. The wide distribution of Anammox bacteria in different natural environments has been greatly modified the traditional view of biogeochemical cycling of nitrogen, in which microbial denitrifier is considered as the only organism to respire nitrate and nitrite to produce nitric and nitrous oxides, and eventually nitrogen gas. More evidences indicate that Anammox is responsible for the production of more than 50% of oceanic N2 and plays an important role in global nitrogen cycling. Moreover, due to the close relationship between nitrogen and carbon cycling, it is anticipated that Anammox process might also affect the concentration of CO2 in the atmosphere, and influence the global climate change. In addition, the simultaneous transformation of nitrite and ammonium in wastewater treatment by Anammox would allow a 90% reduction in operational costs and provide a much more effective biotechnological process for wastewater treatment.

  4. Electrochemical process for the preparation of nitrogen fertilizers

    DOEpatents

    Aulich, Ted R.; Olson, Edwin S.; Jiang, Junhua

    2013-03-19

    The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.

  5. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene.

    PubMed

    Kaspar, H F; Tiedje, J M

    1981-03-01

    15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat.

  6. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (Oxidizers and Organic Peroxides), and Division 1.5 Materials § 176.410 Division 1.5 materials, ammonium...) Ammonium nitrate, Division 5.1 (oxidizer), UN1942. (3) Ammonium nitrate fertilizer, Division 5.1 (oxidizer), UN 2067. (b) This section does not apply to Ammonium nitrate fertilizer, Class 9, UN 2071 or to any...

  7. Dissimilatory nitrate reduction by Aspergillus terreus isolated from the seasonal oxygen minimum zone in the Arabian Sea

    PubMed Central

    2014-01-01

    Background A wealth of microbial eukaryotes is adapted to life in oxygen-deficient marine environments. Evidence is accumulating that some of these eukaryotes survive anoxia by employing dissimilatory nitrate reduction, a strategy that otherwise is widespread in prokaryotes. Here, we report on the anaerobic nitrate metabolism of the fungus Aspergillus terreus (isolate An-4) that was obtained from sediment in the seasonal oxygen minimum zone in the Arabian Sea, a globally important site of oceanic nitrogen loss and nitrous oxide emission. Results Axenic incubations of An-4 in the presence and absence of oxygen and nitrate revealed that this fungal isolate is capable of dissimilatory nitrate reduction to ammonium under anoxic conditions. A 15N-labeling experiment proved that An-4 produced and excreted ammonium through nitrate reduction at a rate of up to 175 nmol 15NH4+ g-1 protein h-1. The products of dissimilatory nitrate reduction were ammonium (83%), nitrous oxide (15.5%), and nitrite (1.5%), while dinitrogen production was not observed. The process led to substantial cellular ATP production and biomass growth and also occurred when ammonium was added to suppress nitrate assimilation, stressing the dissimilatory nature of nitrate reduction. Interestingly, An-4 used intracellular nitrate stores (up to 6–8 μmol NO3- g-1 protein) for dissimilatory nitrate reduction. Conclusions Our findings expand the short list of microbial eukaryotes that store nitrate intracellularly and carry out dissimilatory nitrate reduction when oxygen is absent. In the currently spreading oxygen-deficient zones in the ocean, an as yet unexplored diversity of fungi may recycle nitrate to ammonium and nitrite, the substrates of the major nitrogen loss process anaerobic ammonium oxidation, and the potent greenhouse gas nitrous oxide. PMID:24517718

  8. Dissimilatory nitrate reduction by Aspergillus terreus isolated from the seasonal oxygen minimum zone in the Arabian Sea.

    PubMed

    Stief, Peter; Fuchs-Ocklenburg, Silvia; Kamp, Anja; Manohar, Cathrine-Sumathi; Houbraken, Jos; Boekhout, Teun; de Beer, Dirk; Stoeck, Thorsten

    2014-02-11

    A wealth of microbial eukaryotes is adapted to life in oxygen-deficient marine environments. Evidence is accumulating that some of these eukaryotes survive anoxia by employing dissimilatory nitrate reduction, a strategy that otherwise is widespread in prokaryotes. Here, we report on the anaerobic nitrate metabolism of the fungus Aspergillus terreus (isolate An-4) that was obtained from sediment in the seasonal oxygen minimum zone in the Arabian Sea, a globally important site of oceanic nitrogen loss and nitrous oxide emission. Axenic incubations of An-4 in the presence and absence of oxygen and nitrate revealed that this fungal isolate is capable of dissimilatory nitrate reduction to ammonium under anoxic conditions. A ¹⁵N-labeling experiment proved that An-4 produced and excreted ammonium through nitrate reduction at a rate of up to 175 nmol ¹⁵NH₄⁺ g⁻¹ protein h⁻¹. The products of dissimilatory nitrate reduction were ammonium (83%), nitrous oxide (15.5%), and nitrite (1.5%), while dinitrogen production was not observed. The process led to substantial cellular ATP production and biomass growth and also occurred when ammonium was added to suppress nitrate assimilation, stressing the dissimilatory nature of nitrate reduction. Interestingly, An-4 used intracellular nitrate stores (up to 6-8 μmol NO₃⁻ g⁻¹ protein) for dissimilatory nitrate reduction. Our findings expand the short list of microbial eukaryotes that store nitrate intracellularly and carry out dissimilatory nitrate reduction when oxygen is absent. In the currently spreading oxygen-deficient zones in the ocean, an as yet unexplored diversity of fungi may recycle nitrate to ammonium and nitrite, the substrates of the major nitrogen loss process anaerobic ammonium oxidation, and the potent greenhouse gas nitrous oxide.

  9. Ammonium removal pathways and microbial community in GAC-sand dual media filter in drinking water treatment.

    PubMed

    Feng, Shuo; Xie, Shuguang; Zhang, Xiaojian; Yang, Zhiyu; Ding, Wei; Liao, Xiaobin; Liu, Yuanyuan; Chen, Chao

    2012-01-01

    A GAC-sand dual media filter (GSF) was devised as an alternative solution for drinking water treatment plant to tackle the raw water polluted by ammonium in place of expensive ozone-GAC processes or bio-pretreatments. The ammonium removal pathways and microbial community in the GSFs were investigated. The concentrations of ammonium, nitrite and nitrate nitrogen were monitored along the filter. Total inorganic nitrogen (TIN) loss occurred during the filtration. For 1 mg ammonium removal, the TIN loss was as high as 0.35 mg, DO consumption was 3.06 mg, and alkalinity consumption was 5.55 mg. It was assumed that both nitrification and denitrification processes occur in the filters to fit the TIN loss and low DO consumption. During the filtration, nitritation, nitrification and nitritation-anaerobic ammonium oxidation processes probably occur, while traditional nitrification and denitrification and simultaneous nitrification and denitrification processes may occur. In the GSFs, Nitrosomonas and Nitrospira are likely to be involved in nitrification processes, while Novosphingobium, Comamonadaceae and Oxalobacteraceae may be involved in denitrification processes.

  10. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 2. Application for the analysis of Loy Yang coal oxidation products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, K.; Okuwaki, A.; Verheyen, T.V.

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt was optimized using the solvent gradient method. This method was applied for the analysis of Loy Yang coal oxidation products. It was confirmed that the analytical data using this method were consistent with those determined using gas chromatography.

  11. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor.

    PubMed

    Yang, Zhiquan; Zhou, Shaoqi; Sun, Yanbo

    2009-09-30

    A laboratory testing of simultaneous removal of ammonium and sulfate (SRAS) was studied from an anammox process in an anaerobic bioreactor filled with granular activated carbon. Two different phases of experiment were investigated to start up the SRAS process, and final batch tests were performed to analyze the SRAS process. The experiment included an anammox process and an SRAS process. During the anammox process, the highest removal efficiency of ammonium and nitrite was up to 97 and 98%, respectively. After 160 days in the stationary phase of anammox process, the ratio of ammonium to nitrite consumption was approximately 1:1.15, which is much higher than 1:1.32 in the traditional anammox process. The extra electron acceptor, such as sulfate, was thought to react with ammonium by bacteria. Synthetic wastewater containing ammonium chlorine and sodium sulfate was used as the feed for the bioreactor in the second phase of experiment. During the SRAS process, the influent concentrations of ammonium and sulfate were controlled to be 50-60 and 210-240 mg L(-1) respectively. After start-up and acclimatization of this process for 60 days, the average effluent concentrations of ammonium and sulfate were 30 and 160 mg L(-1), respectively. The simultaneous ammonium and sulfate removal was detected in the reactor. In order to further validate the biochemical interaction between ammonium and sulfate, batch tests was carried out. Abiotic tests were carried out to demonstrate that the pure chemical action between ammonium and sulfate without microorganism was not possible. Biotic assays with different ammonium and sulfate concentrations were further investigated that high concentrations of ammonium and sulfate could promote simultaneous removal of ammonium and sulfate. And elemental sulfur and nitrogen gas as the products measured in the SRAS process helped to demonstrate the occurrence of new interaction between nitrogen and sulfur. The new process of SRAS in the inorganic condition, including simultaneous removal of ammonium and sulfate, and the appearance of elemental sulfur and nitrogen gas as the terminal products, widened the cycle approach between nitrogen and sulfur.

  12. The kinetics for ammonium and nitrite oxidation under the effect of hydroxylamine.

    PubMed

    Wan, Xinyu; Xiao, Pengying; Zhang, Daijun; Lu, Peili; Yao, Zongbao; He, Qiang

    2016-01-01

    The kinetics for ammonium (NH4(+)) oxidation and nitrite (NO2(-)) oxidation under the effect of hydroxylamine (NH2OH) were studied by respirometry using the nitrifying sludge from a laboratory-scale sequencing batch reactor. Modified models were used to estimate kinetics parameters of ammonia and nitrite oxidation under the effect of hydroxylamine. An inhibition effect of hydroxylamine on the ammonia oxidation was observed under different hydroxylamine concentration levels. The self-inhibition coefficient of hydroxylamine oxidation and noncompetitive inhibition coefficient of hydroxylamine for nitrite oxidation was estimated by simulating exogenous oxygen-uptake rate profiles, respectively. The inhibitive effect of NH2OH on nitrite-oxidizing bacteria was stronger than on ammonia-oxidizing bacteria. This work could provide fundamental data for the kinetic investigation of the nitrification process.

  13. [Species diversity and ecological distribution of anaerobic ammonium-oxidizing bacteria].

    PubMed

    Chen, Ting-Ting; Zheng, Ping; Hu, Bao-Lan

    2009-05-01

    Anaerobic ammonium oxidation (anammox) is an important discovery in microbiology and environmental sciences, which can simultaneously remove NH4(+) -N and NO3(-) -N, being valuable in environmental engineering. However, anaerobic ammonium oxidizers are extremely slow-growing, and their population's doubling time is longer than 11 days, which seriously restricts the application of anammox process. Therefore, the study of anammox bacteria is of significance. It has been proved that besides planctomycetes, the first recognized anammox bacteria, both nitrifying bacteria and denitrifying bacteria are also capable of anaerobic ammonium oxidation. These anammox bacteria have wide-spread habitats, which offered a chance to exploit new bacterial resources for anammox. Nitrifying bacteria and denitrifying bacteria have the function of anammox, and their metabolic diversity provides a basis to speed up the start-up of anammox reactor. It was revealed that anaerobic digestion sludge can present anammox activity, with sulphate as electron acceptor. The new bioreaction lays a foundation for the development of novel N-removal biotechnology, being conducive to the development and application of anammox to get more bacterial resources for anammox and to make clear the ecological distribution of anammox bacteria.

  14. Simultaneous oxidation of ammonium and p-cresol linked to nitrite reduction by denitrifying sludge.

    PubMed

    González-Blanco, G; Beristain-Cardoso, R; Cuervo-López, F; Cervantes, F J; Gómez, J

    2012-01-01

    The metabolic capability of denitrifying sludge to oxidize ammonium and p-cresol was evaluated in batch cultures. Ammonium oxidation was studied in presence of nitrite and/or p-cresol by 55 h. At 50 mg/L NH4+-N and 76 mg/L NO2--N, the substrates were consumed at 100% and 95%, respectively, being N2 the product. At 50 mg/L NH4+-N and 133 mg/L NO2--N, the consumption efficiencies decreased to 96% and 70%, respectively. The increase in nitrite concentration affected the ammonium oxidation rate. Nonetheless, the N2 production rate did not change. In organotrophic denitrification, the p-cresol oxidation rate was slower than ammonium oxidation. In litho-organotrophic cultures, the p-cresol and ammonium oxidation rates were affected at 133 mg/L NO2--N. Nonetheless, at 76 mg/L NO2--N the denitrifying sludge oxidized ammonium and p-cresol, but at different rate. Finally, this is the first work reporting the simultaneous oxidation of ammonium and p-cresol with the production of N2 from denitrifying sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene.

    PubMed Central

    Kaspar, H F; Tiedje, J M

    1981-01-01

    15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat. PMID:7224631

  16. Relevance of ammonium oxidation within biological soil crust communities

    USGS Publications Warehouse

    Johnson, S.L.; Budinoff, C.R.; Belnap, J.; Garcia-Pichel, F.

    2005-01-01

    Thin, vertically structured topsoil communities that become ecologically important in arid regions (biological soil crusts or BSCs) are responsible for much of the nitrogen inputs into pristine arid lands. We studied N2 fixation and ammonium oxidation (AO) at subcentimetre resolution within BSCs from the Colorado Plateau. Pools of dissolved porewater nitrate/ nitrite, ammonium and organic nitrogen in wetted BSCs were high in comparison with those typical of aridosoils. They remained stable during incubations, indicating that input and output processes were of similar magnitude. Areal N2 fixation rates (6.5-48 ??mol C2H2 m-2 h -1) were high, the vertical distribution of N2 fixation peaking close to the surface if populations of heterocystous cyanobacteria were present, but in the subsurface if they were absent. Areal AO rates (19-46 ??mol N m-2 h-1) were commensurate with N2 fixation inputs. When considering oxygen availability, AO activity invariably peaked 2-3 mm deep and was limited by oxygen (not ammonium) supply. Most probable number (MPN)-enumerated ammonia-oxidizing bacteria (6.7-7.9 ?? 103 cells g-1 on average) clearly peaked at 2-3 mm depth. Thus, AO (hence nitrification) is a spatially restricted but important process in the nitrogen cycling of BSC, turning much of the biologically fixed nitrogen into oxidized forms, the fate of which remains to be determined.

  17. Nitrogen isotope fractionation during archaeal ammonia oxidation: Coupled estimates from isotopic measurements of ammonium and nitrite

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Stieglmeier, Michaela; Bayer, Barbara; Jochum, Lara; Melcher, Michael; Wanek, Wolfgang

    2014-05-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous in marine and terrestrial environments and knowledge about the nitrogen (N) isotope effect associated with their ammonia oxidation activity will allow a better understanding of natural abundance isotope ratios, and therefore N transformation processes, in the environment. Here we examine the kinetic isotope effect for ammonia oxidation in a pure soil AOA culture (Ca. Nitrososphaera viennensis) and a marine AOA enrichment culture. We estimated the isotope effect from both isotopic signatures of ammonium and nitrite over the course of ammonia oxidation. Estimates of the isotope effect based on the change in the isotopic signature of ammonium give valuable insight, because these estimates are not subject to the same concerns (e.g., accumulation of an intermediate) as estimates based on isotopic measurements of nitrite. Our results show that both the pure soil AOA culture and a marine AOA enrichment culture have similar but substantial isotope effect during ammonia consumption (31-34 per mill; based on ammonium) and nitrite production (43-45 per mill; based on nitrite). The 15N fractionation factors of both cultures tested fell in the upper range of the reported isotope effects for archaeal and bacterial ammonia oxidation (10-41 per mill) or were even higher than those. The isotope fractionation for nitrite production was significantly larger than for ammonium consumption, indicating that (1) some intermediate (e.g., hydroxylamine) of ammonia oxidation accumulates, allowing for a second 15N fractionation step to be expressed, (2) a fraction of ammonia oxidized is lost via gaseous N forms (e.g., NO or N2O), which is 15N-enriched or (3) a fraction of ammonium is assimilated into AOA biomass, biomass becoming 15N-enriched. The significance of these mechanisms will be explored in more detail for the soil AOA culture, based on isotope modeling and isotopic measurements of biomass and N2O.

  18. Synthesis of tin (II) oxide from tin (II) oxohydroxide

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Svetlana; Lisitsa, Konstantin

    2017-11-01

    Sufficiently limited use of tin (II) oxide is associated with the difficulties of its preparation without impurities of tin (IV) oxide. Understanding the cause of the oxidation process will make it possible to develop methods for obtaining SnO without impurities. The influence of ammonium chloride concentration in the suspension on the oxide composition was investigated. The temperature of oxidation (400 °C) on the air and temperature decomposition in the argon (350 °C) of Sn6O4(OH)4 in the solid phase were determined by the thermal analysis method. The decomposition temperature of the oxyhydroxide in the suspension of ammonium chloride does not exceed 100 °C. An increase in the content of ammonium chloride in an aqueous solution leads to an increase i n the solubility of oxohydroxide and leads to an increase in pH. The suspensions of Sn6O4(OH)4 were subjected to heat treatment on a sand bath and under microwave irradiation. Samples of tin oxide were obtained. The quantitative composition of the mixture of tin oxides was determined. The research also highlights emphasizes that the oxidation of tin (II) to tin (IV) is associated with the dissolved oxygen content in the suspension.

  19. HONO (nitrous acid) emissions from acidic northern soils

    NASA Astrophysics Data System (ADS)

    Maljanen, Marja; Yli-Pirilä, Pasi; Joutsensaari, Jorma; Sulassaari, Sirkka; Martikainen, Pertti J.

    2014-05-01

    The photolysis of HONO (nitrous acid) is an important source of OH radical, the key oxidizing agent in the atmosphere, contributing also to removal of atmospheric methane (CH4), the second most important greenhouse gas after carbon dioxide (CO2). There are missing sources of HONO when considering the chemical reactions in the atmosphere. Soil could be such a missing source. Emissions of HONO from soils studied in laboratory incubations have been recently reported. The soil-derived HONO has been connected to soil nitrite (NO2-) and a study with an ammonium oxidizing bacterium has shown that HONO could be produced in ammonium oxidation. Our hypothesis was that boreal acidic soils with high nitrification activity could be important sources of HONO. We selected a range of dominant northern acidic soils and showed in microcosm experiments that soils which have the highest nitrous oxide (N2O) and nitric oxide (NO) emissions (drained peatlands) also have the highest HONO production rates. The emissions of HONO are thus linked to nitrogen cycle processes. In contrast to drained peatlands, natural peatlands with high water table and boreal coniferous forests on mineral soils with low nitrification capacity had low HONO emissions. It is known that in natural peatlands with high water table and in boreal coniferous forest soils, low nitrification activity (microbial production of nitrite and nitrate) limits their N2O production. Low nitrification rate and low availability of nitrite in these soils are the likely reasons for their low HONO production rates. We studied the origin of HONO in one drained peat soil by inhibiting nitrification with acetylene. Acetylene blocked NO emissions but did not affect HONO or N2O emissions, thus ammonium oxidation is not the direct mechanism for the HONO emission in this soil. It is still an open question if HONO originates directly from some microbial process like ammonium oxidation or chemically from nitrite produced in microbial processes.

  20. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria.

    PubMed

    Kartal, Boran; Rattray, Jayne; van Niftrik, Laura A; van de Vossenberg, Jack; Schmid, Markus C; Webb, Richard I; Schouten, Stefan; Fuerst, John A; Damsté, Jaap Sinninghe; Jetten, Mike S M; Strous, Marc

    2007-01-01

    The bacteria that mediate the anaerobic oxidation of ammonium (anammox) are detected worldwide in natural and man-made ecosystems, and contribute up to 50% to the loss of inorganic nitrogen in the oceans. Two different anammox species rarely live in a single habitat, suggesting that each species has a defined but yet unknown niche. Here we describe a new anaerobic ammonium oxidizing bacterium with a defined niche: the co-oxidation of propionate and ammonium. The new anammox species was enriched in a laboratory scale bioreactor in the presence of ammonium and propionate. Interestingly, this particular anammox species could out-compete other anammox bacteria and heterotrophic denitrifiers for the oxidation of propionate in the presence of ammonium, nitrite and nitrate. We provisionally named the new species Candidatus "Anammoxoglobus propionicus".

  1. 75 FR 59617 - Notification of Arrival in U.S. Ports; Certain Dangerous Cargoes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... only included residue quantities of bulk ammonium nitrate or ammonium nitrate fertilizer that remained... ammonium nitrate and propylene oxide cargoes transported on U.S. waters. After consultation with CTAC and...) Propylene oxide, alone or mixed with ethylene oxide. (9) The following bulk solids: (i) Ammonium nitrate...

  2. New concepts of microbial treatment processes for the nitrogen removal: effect of protein and amino acids degradation.

    PubMed

    González-Martínez, Alejandro; Calderón, Kadiya; González-López, Jesús

    2016-05-01

    High concentrations of proteins and amino acids can be found in wastewater and wastewater stream produced in anaerobic digesters, having shown that amino acids could persist over different managements for nitrogen removal affecting the nitrogen removal processes. Nitrogen removal is completely necessary because of their implications and the significant adverse environmental impact of ammonium such as eutrophication and toxicity to aquatic life on the receiving bodies. In the last decade, the treatment of effluents with high ammonium concentration through anammox-based bioprocesses has been enhanced because these biotechnologies are cheaper and more environmentally friendly than conventional technologies. However, it has been shown that the presence of important amounts of proteins and amino acids in the effluents seriously affects the microbial autotrophic consortia leading to important losses in terms of ammonium oxidation efficiency. Particularly the presence of sulfur amino acids such as methionine and cysteine has been reported to drastically decrease the autotrophic denitrification processes as well as affect the microbial community structure promoting the decline of ammonium oxidizing bacteria in favor of other phylotypes. In this context we discuss that new biotechnological processes that improve the degradation of protein and amino acids must be considered as a priority to increase the performance of the autotrophic denitrification biotechnologies.

  3. Oxidation of ammonium sulfite in aqueous solutions using ozone technology

    NASA Astrophysics Data System (ADS)

    Li, Yue; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    How to deal with unstable ammonium sulfite, the byproduct of flue gas desulfuration by ammonia absorption methods, has been a difficult problem in recent years. Oxidation of ammonium sulfite in aqueous solutions using ozone produced by a surface discharge system was investigated in the paper. The oxidation efficiency of ammonium sulfite by ozone and traditional air aeration were compared, and the factors including ozone concentration, gas flow rate, initial concentration of ammonium sulfite solution and reaction temperature were discussed. The results show that the oxidation efficiency of ammonium sulfite by ozone technology reached nearly 100% under the optimum conditions, which had a significant increase compared with that by air aeration.

  4. Rapid and sensitive Nitrosomonas europaea biosensor assay for quantification of bioavailable ammonium sensu strictu in soil.

    PubMed

    Nguyen, Minh Dong; Risgaard-Petersen, Nils; Sørensen, Jan; Brandt, Kristian K

    2011-02-01

    Knowledge on bioavailable ammonium sensu strictu (i.e., immediately available for cellular uptake) in soil is required to understand nutrient uptake processes in microorganisms and thus of vital importance for plant production. We here present a novel ammonium biosensor approach based on the lithoautotrophic ammonia-oxidizing bacterium Nitrosomonas europaea transformed with a luxAB sensor plasmid. Bioluminescence-based ammonium detection was achieved within 10 min with a quantification limit in liquid samples of ∼20 μM and a linear response range up to 400 μM. Biosensor and conventional chemical quantification of ammonium in soil solutions agreed well across a range of sample and assay conditions. The biosensor was subsequently applied for a solid phase-contact assay allowing for direct interaction of biosensor cells with soil particle-associated (i.e., exchangeable plus fixed) ammonium. The assay successfully quantified bioavailable ammonium even in unfertilized soil and demonstrated markedly higher ratios of bioavailable ammonium to water- or 2 M KCl-exchangeable ammonium in anoxic soil than in corresponding oxic soil. Particle-associated ammonium contributed by at least 74% and 93% of the total bioavailable pool in oxic and anoxic soil, respectively. The N. europaea biosensor should have broad relevance for environmental monitoring of bioavailable ammonium and processes depending on ammonium bioavailability.

  5. ANAMMOX-like performances for nitrogen removal from ammonium-sulfate-rich wastewater in an anaerobic sequencing batch reactor.

    PubMed

    Prachakittikul, Pensiri; Wantawin, Chalermraj; Noophan, Pongsak Lek; Boonapatcharoen, Nimaradee

    2016-01-01

    Ammonium removal by the ANaerobic AMonium OXidation (ANAMMOX) process was observed through the Sulfate-Reducing Ammonium Oxidation (SRAO) process. The same concentration of ammonium (100 mg N L(-1)) was applied to two anaerobic sequencing batch reactors (AnSBRs) that were inoculated with the same activated sludge from the Vermicelli wastewater treatment process, while nitrite was fed in ANAMMOX and sulfate in SRAO reactors. In SRAO-AnSBR, in substrates that were fed with a ratio of NH4(+)/SO4(2-) at 1:0.4 ± 0.03, a hydraulic retention time (HRT) of 48 h and without sludge draining, the Ammonium Removal Rate (ARR) was 0.02 ± 0.01 kg N m(-3).d(-1). Adding specific ANAMMOX substrates to SRAO-AnSBR sludge in batch tests results in specific ammonium and nitrite removal rates of 0.198 and 0.139 g N g(-1) VSS.d, respectively, indicating that the ANAMMOX activity contributes to the removal of ammonium in the SRAO process using the nitrite that is produced from SRAO. Nevertheless, the inability of ANAMMOX to utilize sulfate to oxidize ammonium was also investigated in batch tests by augmenting enriched ANAMMOX culture in SRAO-AnSBR sludge and without nitrite supply. The time course of sulfate in a 24-hour cycle of SRAO-AnSBR showed an increase in sulfate after 6 h. For enriched SRAO culture, the uptake molar ratio of NH4(+)/SO4(2-) at 8 hours in a batch test was 1:0.82 lower than the value of 1:0.20 ± 0.09 as obtained in an SRAO-AnSBR effluent, while the stoichiometric ratio of 1:0.5 that includes the ANAMMOX reaction was in this range. After a longer operation of more than 2 years without sludge draining, the accumulation of sulfate and the reduction of ammonium removal were observed, probably due to the gradual increase in the sulfur denitrification rate and the competitive use of nitrite with ANAMMOX. The 16S rRNA gene PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and PCR cloning analyses resulted in the detection of the ANAMMOX bacterium (Candidatus Brocadia sinica JPN1) Desulfacinum subterraneum belonging to the genus Desulfacinum and bacteria that are involved in sulfur metabolism (Pseudomonas aeruginosa strain SBTPe-001 and Paracoccus denitrificans strain IAM12479) in SRAO-AnSBR.

  6. Resuscitation of starved anaerobic ammonium oxidation sludge system: Impacts of repeated short-term starvation.

    PubMed

    Ye, Lihong; Li, Dong; Zhang, Jie; Zeng, Huiping

    2018-05-04

    Starvation of biomass is common during underloading of bioreactors or sludge storage in biological wastewater treatment industries. The aim of this work was to study the impact of starvation modes on the nitrogen removal capacity of anaerobic ammonium oxidation (anammox) process in sequencing batch reactor (SBR). The repeated short-term starvation and reactivation experiments were performed to evaluate the response of anammox sludge system in the condition of 27 ± 1.5 °C and 320 min HRT. Moreover, the nitrogen removal ability of the anammox process was reactivated rapidly in the low substrate condition, then the total nitrogen (TN) removal efficiency reached 82.5%, with the effluent TN of around 14.6 mgNL -1 . The repeated short-term starvation (1 day-4 days) and recovery mode could improve the tolerance and apparent activity of anammox sludge system. The dominant species of general anaerobic ammonium oxidation bacteria (AnAOB) was Candidatus Brocadia, which had better self-adaption to repeated starvation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Engineering application of anaerobic ammonium oxidation process in wastewater treatment.

    PubMed

    Mao, Nianjia; Ren, Hongqiang; Geng, Jinju; Ding, Lili; Xu, Ke

    2017-08-01

    Anaerobic ammonium oxidation (Anammox), a promising biological nitrogen removal process, has been verified as an efficient, sustainable and cost-effective alternative to conventional nitrification and denitrification processes. To date, more than 110 full-scale anammox plants have been installed and are in operation, treating industrial NH 4 + -rich wastewater worldwide, and anammox-based technologies are flourishing. This review the current state of the art for engineering applications of the anammox process, including various anammox-based technologies, reactor selection and attempts to apply it at different wastewater plants. Process control and implementation for stable performance are discussed as well as some remaining issues concerning engineering application are exposed, including the start-up period, process disturbances, greenhouse gas emissions and especially mainstream anammox applications. Finally, further development of the anammox engineering application is proposed in this review.

  8. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  9. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    DOEpatents

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-10-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  10. Electrochemical process for the preparation of nitrogen fertilizers

    DOEpatents

    Aulich, Ted R [Grand Forks, ND; Olson, Edwin S [Grand Forks, ND; Jiang, Junhua [Grand Forks, ND

    2012-04-10

    The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be aqueous, non-aqueous, or solid.

  11. A comparison study of the start-up of a MnOx filter for catalytic oxidative removal of ammonium from groundwater and surface water.

    PubMed

    Cheng, Ya; Li, Ye; Huang, Tinglin; Sun, Yuankui; Shi, Xinxin; Shao, Yuezong

    2018-03-01

    As an efficient method for ammonium (NH 4 + ) removal, contact catalytic oxidation technology has drawn much attention recently, due to its good low temperature resistance and short start-up period. Two identical filters were employed to compare the process for ammonium removal during the start-up period for ammonium removal in groundwater (Filter-N) and surface water (Filter-S) treatment. Two types of source water (groundwater and surface water) were used as the feed waters for the filtration trials. Although the same initiating method was used, Filter-N exhibited much better ammonium removal performance than Filter-S. The differences in catalytic activity among these two filters were probed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and compositional analysis. XRD results indicated that different manganese oxide species were formed in Filter-N and Filter-S. Furthermore, the Mn3p XPS spectra taken on the surface of the filter films revealed that the average manganese valence of the inactive manganese oxide film collected from Filter-S (FS-MnO x ) was higher than in the film collected from Filter-N (FN-MnO x ). Mn(IV) was identified as the predominant oxidation state in FS-MnO x and Mn(III) was identified as the predominant oxidation state in FN-MnO x . The results of compositional analyses suggested that polyaluminum ferric chloride (PAFC) used during the surface water treatment was an important factor in the mineralogy and reactivity of MnO x . This study provides the theoretical basis for promoting the wide application of the technology and has great practical significance. Copyright © 2017. Published by Elsevier B.V.

  12. Precipitation of ammonium from concentrated industrial wastes as struvite: a search for the optimal reagents.

    PubMed

    Borojovich, Eitan J C; Münster, Meshulam; Rafailov, Gennady; Porat, Ze'ev

    2010-07-01

    Precipitation of struvite (MgNH4PO4) is a known process for purification of wastewater from high concentrations of ammonium. The optimal conditions for precipitation are basic pH (around 9) and sufficient concentrations of magnesium and phosphate ions. In this work, we accomplished efficient precipitation of ammonium from concentrated industrial waste stream by using magnesium oxide (MgO) both as a source of magnesium ions and as a base. Best results were obtained with technical-grade MgO, which provided 99% removal of ammonium. Moreover, ammonium removal occurred already at pH 7, and the residual ammonium concentration (50 mg/L) remained constant upon addition of more MgO without rising again, as occurs with sodium hydroxide (NaOH). This process may have two other advantages; it also can be relevant for the problem of uncontrolled precipitation of struvite in the supernatant of anaerobic sludge treatment plants, and the precipitate can be used as a fertilizer.

  13. Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process.

    PubMed

    Fu, Liang; Ding, Jing; Lu, Yong-Ze; Ding, Zhao-Wei; Zeng, Raymond J

    2017-05-01

    The co-culture system of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) has a potential application in wastewater treatment plant. This study explored the effects of permutation and combination of nitrate, nitrite, and ammonium on the culture enrichment from freshwater sediments. The co-existence of NO 3 - , NO 2 - , and NH 4 + shortened the enrichment time from 75 to 30 days and achieved a total nitrogen removal rate of 106.5 mg/L/day on day 132. Even though ammonium addition led to Anammox bacteria increase and a higher nitrogen removal rate, DAMO bacteria still dominated in different reactors with the highest proportion of 64.7% and the maximum abundance was 3.07 ± 0.25 × 10 8 copies/L (increased by five orders of magnitude) in the nitrite reactor. DAMO bacteria showed greater diversity in the nitrate reactor, and one was similar to M. oxyfera; DAMO bacteria in the nitrite reactor were relatively unified and similar to M. sinica. Interestingly, no DAMO archaea were found in the nitrate reactor. This study will improve the understanding of the impact of nitrogen source on DAMO and Anammox co-culture enrichment.

  14. Implications of a More Comprehensive Nitrogen Cycle in a Global Biogeochemical Ocean Model

    NASA Astrophysics Data System (ADS)

    Six, K. D.; Ilyina, T.

    2016-02-01

    Nitrogen plays a crucial role for nearly all living organisms in the Earth system. Changes in the marine nitrogen cycle not only alter the marine biota, but will also have an impact on the marine carbon cycle and, in turn, on climate due to the close coupling of the carbon-nitrogen cycle. The understanding of processes and controls of the marine nitrogen cycle is therefore a prerequisite to reduce uncertainties in the prediction of future climate. Nevertheless, most ocean biogeochemical components of modern Earth system models have a rather simplistic representation of marine N-cycle mainly focusing on nitrate. Here we present results of the HAMburg Ocean Carbon Cycle model (HAMOCC) as part of the MPI-ESM which was extended by a prognostic representation of ammonium and nitrite to resolve important processes of the marine N-cycle such as nitrification and anaerobic ammonium oxidation (anammox). Additionally, we updated the production of nitrous oxide, an important greenhouse gas, allowing for two sources from oxidation of ammonium (nitrification) and from reduction of nitrite (nitrifier-denitrification) at low oxygen concentrations. Besides an extended model data comparison we discuss the following aspects of the N-cycle by model means: (1) contribution of anammox to the loss of fixed nitrogen, and (2) production and emission of marine nitrous oxide.

  15. Nitrous Oxide Production at a Fully Covered Wastewater Treatment Plant: Results of a Long-Term Online Monitoring Campaign.

    PubMed

    Kosonen, Heta; Heinonen, Mari; Mikola, Anna; Haimi, Henri; Mulas, Michela; Corona, Francesco; Vahala, Riku

    2016-06-07

    The nitrous oxide emissions of the Viikinmäki wastewater treatment plant were measured in a 12 month online monitoring campaign. The measurements, which were conducted with a continuous gas analyzer, covered all of the unit operations of the advanced wastewater-treatment process. The relation between the nitrous oxide emissions and certain process parameters, such as the wastewater temperature, influent biological oxygen demand, and ammonium nitrogen load, was investigated by applying online data obtained from the process-control system at 1 min intervals. Although seasonal variations in the measured nitrous oxide emissions were remarkable, the measurement data indicated no clear relationship between these emissions and seasonal changes in the wastewater temperature. The diurnal variations of the nitrous oxide emissions did, however, strongly correlate with the alternation of the influent biological oxygen demand and ammonium nitrogen load to the aerated zones of the activated sludge process. Overall, the annual nitrous oxide emissions of 168 g/PE/year and the emission factor of 1.9% of the influent nitrogen load are in the high range of values reported in the literature but in very good agreement with the results of other long-term online monitoring campaigns implemented at full-scale wastewater-treatment plants.

  16. Proposal to support the 4th international conference on nitrification and related processes (ICoN4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klotz, Martin Gunter

    The 4th International Conference on Nitrification and Related Processes (ICoN4) commencing between June 27 and July 1, 2015, at the University of Alberta in Edmonton, Alberta, Canada brings together an international collection of academic, government, and private sector researchers of the global biogeochemical nitrogen cycle to share their scientific discoveries, innovations and pertinent societal impacts. The classical understanding of “nitrification” describes the two-step transformation of ammonium to nitrite and nitrite to nitrate; however, we now know from the analysis genome sequences, the application of ‘omics technologies, microbial ecology, biogeochemistry, and microbial physiology that the transformation of ammonium is not performedmore » by a few particular groups of microorganisms nor is it confined to oxic environments. Past ICoN meetings have explored the interconnections between ammonium- and nitrite-consuming processes in all ecosystems, the emission of greenhouse gases by these processes and their control, and the intersection between intermediates of the nitrification process and other elemental cycles; this has generated tremendous progress in our understanding of the global nitrogen cycle and it has generated excitement in the next generation of N cycle researchers. Nitrification research has a long-standing connection to the Community Science Program of the DOE. Between 1999 and 2001, the JGI generated the first genome sequence of an ammonia-oxidizing bacterium, Nitrosomonas europaea ATCC 19718, and it has subsequently sequenced, or is in the process of sequencing over 50 additional genomes from ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and ammonia-oxidizing archaea. Autotrophic ammonia- and nitrite-transforming microorganisms play also a critical role in carbon cycling and sequestration in nearly all ecosystems. Not only do they control the concentration and speciation of biologically available N to plants and other microorganisms, nitrification is also the source of the various forms of nitrogen pollution. Nitrate pollution from over-fertilization of managed soils causes eutrophication and the reduction of nitrate and nitrate also results in emission of N2O, a denitrification process that leads to the accumulation of this major greenhouse gas in the atmosphere. Anaerobic ammonia oxidation (anammox) and nitrite-driven anaerobic methane oxidation (n-DAMO) are involved in the transformation of ammonium, nitrite, and nitrate to dinitrogen without N2O as an intermediate, acting as mitigating processes to nitrification. Along with the vast international participation in the ICoN conferences, encouragement and inclusion of early career investigators and graduate students is viewed as critical to the continued success of our discipline.« less

  17. Effects of dynamic operating conditions on nitrification in biological rapid sand filters for drinking water treatment.

    PubMed

    Lee, Carson O; Boe-Hansen, Rasmus; Musovic, Sanin; Smets, Barth; Albrechtsen, Hans-Jørgen; Binning, Philip

    2014-11-01

    Biological rapid sand filters are often used to remove ammonium from groundwater for drinking water supply. They often operate under dynamic substrate and hydraulic loading conditions, which can lead to increased levels of ammonium and nitrite in the effluent. To determine the maximum nitrification rates and safe operating windows of rapid sand filters, a pilot scale rapid sand filter was used to test short-term increased ammonium loads, set by varying either influent ammonium concentrations or hydraulic loading rates. Ammonium and iron (flock) removal were consistent between the pilot and the full-scale filter. Nitrification rates and ammonia-oxidizing bacteria and archaea were quantified throughout the depth of the filter. The ammonium removal capacity of the filter was determined to be 3.4 g NH4-N m(-3) h(-1), which was 5 times greater than the average ammonium loading rate under reference operating conditions. The ammonium removal rate of the filter was determined by the ammonium loading rate, but was independent of both the flow and influent ammonium concentration individually. Ammonia-oxidizing bacteria and archaea were almost equally abundant in the filter. Both ammonium removal and ammonia-oxidizing bacteria density were strongly stratified, with the highest removal and ammonia-oxidizing bacteria densities at the top of the filter. Cell specific ammonium oxidation rates were on average 0.6 × 10(2) ± 0.2 × 10(2) fg NH4-N h(-1) cell(-1). Our findings indicate that these rapid sand filters can safely remove both nitrite and ammonium over a larger range of loading rates than previously assumed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH.

    PubMed

    Wang, Bing; Lehmann, Johannes; Hanley, Kelly; Hestrin, Rachel; Enders, Akio

    2015-11-01

    The objective of this work was to investigate the retention mechanisms of ammonium in aqueous solution by using progressively oxidized maple wood biochar at different pH values. Hydrogen peroxide was used to oxidize the biochar to pH values ranging from 8.1 to 3.7, with one set being adjusted to a pH of 7 afterwards. Oxidizing the biochars at their lowered pH did not increase their ability to adsorb ammonium. However, neutralizing the oxygen-containing surface functional groups on oxidized biochar to pH 7 increased ammonia adsorption two to three-fold for biochars originally at pH 3.7-6, but did not change adsorption of biochars oxidized to pH 7 and above. The adsorption characteristics of ammonium are well described by the Freundlich equation. Adsorption was not fully reversible in water, and less than 27% ammonium was desorbed in water in two consecutive steps than previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 2M KCl increased from 34% to 99% of ammonium undesorbed by both preceding water extractions with increasing oxidation, largely irrespective of pH adjustment. Unrecovered ammonium in all extractions and residual biochar was negligible at high oxidation, but increased to 39% of initially adsorbed amounts at high pH, likely due to low amounts adsorbed and possible ammonia volatilization losses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Biological reduction of uranium coupled with oxidation of ammonium by Acidimicrobiaceae bacterium A6 under iron reducing conditions.

    PubMed

    Gilson, Emily R; Huang, Shan; Jaffé, Peter R

    2015-11-01

    This study investigated the possibility of links between the biological immobilization of uranium (U) and ammonium oxidation under iron (Fe) reducing conditions. The recently-identified Acidimicrobiaceae bacterium A6 (ATCC, PTA-122488) derives energy from ammonium oxidation coupled with Fe reduction. This bacterium has been found in various soil and wetland environments, including U-contaminated wetland sediments. Incubations of Acidimicrobiaceae bacteria A6 with nontronite, an Fe(III)-rich clay, and approximately 10 µM U indicate that these bacteria can use U(VI) in addition to Fe(III) as an electron acceptor in the presence of ammonium. Measurements of Fe(II) production and ammonium oxidation support this interpretation. Concentrations of approximately 100 µM U were found to entirely inhibit Acidimicrobiaceae bacteria A6 activity. These results suggest that natural sites of active ammonium oxidation under Fe reducing conditions by Acidimicrobiaceae bacteria A6 could be hotspots of U immobilization by bioreduction. This is the first report of biological U reduction that is not coupled to carbon oxidation.

  20. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.

    PubMed

    Samuelsson, M O

    1985-10-01

    The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sodium thioglycolate. When grown on tryptic soy broth, the production of nitrous oxide paralleled growth. In the same medium, but with sodium thioglycolate, nitrous oxide was first produced during growth and then consumed. Acetylene caused the nitrous oxide to accumulate. These results and the mass balance calculations for different nitrogen components indicate that P. putrefaciens has the capacity to dissimilate nitrate to ammonium as well as to dinitrogen gas and nitrous oxide (denitrification). The dissimilatory pathway to ammonium dominates except when sodium thioglycolate is added to the medium.

  1. Complete and simultaneous removal of ammonium and m-cresol in a nitrifying sequencing batch reactor.

    PubMed

    Zepeda, Alejandro; Ben-Youssef, Chérif; Rincón, Susana; Cuervo-López, Flor; Gómez, Jorge

    2013-06-01

    The kinetic behavior, oxidizing ability and tolerance to m-cresol of a nitrifying sludge exposed to different initial concentrations of m-cresol (0-150 mg C L(-1)) were evaluated in a sequencing batch reactor fed with 50 mg NH4 (+)-N L(-1) and operated during 4 months. Complete removal of ammonium and m-cresol was achieved independently of the initial concentration of aromatic compound in all the assays. Up to 25 mg m-cresol-C L(-1) (C/N ratio of 0.5), the nitrifying yield (Y-NO3 (-)) was 0.86 ± 0.05, indicating that the nitrate was the main product of the process; no biomass growth was detected. From 50 to 150 mg m-cresol-C L(-1) (1.0 ≤ C/N ≤ 3.0), simultaneous microbial growth and partial ammonium-to-nitrate conversion were obtained, reaching a maximum microbial total protein concentration of 0.763 g L(-1) (247 % of its initial value) and the lowest Y-NO3 (-) 0.53 ± 0.01 at 150 mg m-cresol-C L(-1). m-Cresol induced a significant decrease in the values of both specific rates of ammonium and nitrite oxidation, being the ammonium oxidation pathway the mainly inhibited. The nitrifying sludge was able to completely oxidize up to 150 mg m-cresol-C L(-1) by SBR cycle, reaching a maximum specific removal rate of 6.45 g m-cresol g(-1) microbial protein-N h(-1). The number of SBR cycles allowed a metabolic adaptation of the nitrifying consortium since nitrification inhibition decreased and faster oxidation of m-cresol took place throughout the cycles.

  2. Ammonium-tungstate-promoted growth of boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    E, Songfeng; Li, Chaowei; Li, Taotao; Geng, Renjie; Li, Qiulong; Lu, Weibang; Yao, Yagang

    2018-05-01

    Ammonium tungstate ((NH4)10W12O41 · xH2O) is a kind of oxygen-containing ammonium salt. The following study proves that it can be successfully used as a metal oxide alternative to produce boron oxide (B2O2) by oxidizing boron (B) in a traditional boron oxide chemical vapor deposition (BOCVD) process. This special oxidant promotes the simplistic fabrication of boron nitride nanotubes (BNNTs) in a conventional horizontal tube furnace, an outcome which may have resulted from its strong oxidizability. The experimental results demonstrate that the mole ratio of B and (NH4)10W12O41 · xH2O is a key parameter in determining the formation, quality and quantity of BNNTs when stainless steel is employed as a catalyst. We also found that Mg(NO3)2 and MgO nanoparticles (NPs) can be used as catalysts to grow BNNTs with the same precursor. The BNNTs obtained from the Mg(NO3)2 catalyst were straighter than those obtained from the MgO NP catalyst. This could have been due to the different physical forms of the catalysts that were used.

  3. Ammonium-tungstate-promoted growth of boron nitride nanotubes.

    PubMed

    E, Songfeng; Li, Chaowei; Li, Taotao; Geng, Renjie; Li, Qiulong; Lu, Weibang; Yao, Yagang

    2018-05-11

    Ammonium tungstate ((NH 4 ) 10 W 12 O 41  · xH 2 O) is a kind of oxygen-containing ammonium salt. The following study proves that it can be successfully used as a metal oxide alternative to produce boron oxide (B 2 O 2 ) by oxidizing boron (B) in a traditional boron oxide chemical vapor deposition (BOCVD) process. This special oxidant promotes the simplistic fabrication of boron nitride nanotubes (BNNTs) in a conventional horizontal tube furnace, an outcome which may have resulted from its strong oxidizability. The experimental results demonstrate that the mole ratio of B and (NH 4 ) 10 W 12 O 41  · xH 2 O is a key parameter in determining the formation, quality and quantity of BNNTs when stainless steel is employed as a catalyst. We also found that Mg(NO 3 ) 2 and MgO nanoparticles (NPs) can be used as catalysts to grow BNNTs with the same precursor. The BNNTs obtained from the Mg(NO 3 ) 2 catalyst were straighter than those obtained from the MgO NP catalyst. This could have been due to the different physical forms of the catalysts that were used.

  4. Stable isotope fractionation related to microbial nitrogen turnover in constructed wetlands treating contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Voloshchenko, O.; Knoeller, K.

    2013-12-01

    To improve the efficiency of ground- and wastewater treatment in constructed wetlands (CWs), better understanding of the occurring processes is necessary. This research explores N-isotope fractionations associated with the removal of ammonium from contaminated groundwater in pilot-scale CWs downstream of the chemical industrial area Leuna, Germany. The groundwater at the site is contaminated mainly by organic (BTEX, MTBE) and inorganic compounds (ammonium). We assume that the anaerobic ammonium oxidation (ANAMMOX) plays an important role in nitrogen removal in these CWs. However, to date, interactions between processes of aerobic and anaerobic ammonium oxidation in CWs still have not been well explored. Especially, the importance of the ANAMMOX process for the nitrogen removal is generally accepted, but its role in CWs is quite unknown. For this aim, three CWs were chosen: planted horizontal subsurface flow (HSSF); unplanted HSSF, and floating plant root mat (FPRM). Water samples were taken at the inflow and outflow as well as from the pore space at different distances (1, 2.5 and 4 m) from the inlet and at different depths (20, 30 and 40 cm in the HSSF-CWs, 30 cm in the FPRM). Samples were collected in a time interval of 1 to 6 weeks during 1 year with the exception of the winter season. Physicochemical parameters, nitrogen isotope signatures of ammonium, as well as nitrogen and oxygen isotope signatures of nitrate were analysed. Within the CWs, spatial concentration gradients of the nitrogen species (ammonium and nitrate) are observed. N-isotope variations of ammonium and nitrate are interpreted according to the prevailing processes of the N-transformations. Based on isotope mass-balance approach microbial processes such as nitrification, denitrification, and ANAMMOX are quantified. DNA from biofilms at roots and gravel was extracted using FastDNA Spin Kit For Soil (MP Biomedicals). PCR, quantitative PCR, cloning, and sequencing were applied with the purpose of getting information about the abundance and the community of key players of the N-cycle. Pyrosequencing and specific FISH probes in connection with confocal laser scanning microscopy will give information about structure and spatial distribution of the microbial nitrogen transforming community.

  5. Population of Nitrifying Bacteria and Nitrification in Ammonium Saturated Clinoptilolite

    NASA Technical Reports Server (NTRS)

    McGilloway, R. L.; Weaver, R. W.; Ming, Douglas W.; Gruener, J.

    1999-01-01

    As humans begin to spend longer periods of time in space, plants will be incorporated into life support systems. Ammonium saturated clinoptilolite is one plant growth substrate but a balance between ammonium and nitrate is needed. A laboratory study was conducted to determine effects of nitrifying bacteria on ammonium concentrations and kinetics of nitrification. Columns containing clinoptilolite substrate amended with nitrifying bacteria obtained from soil enrichment were analyzed weekly for a 90 day period. The enrichment culture initially contained 1 x 10(exp 5) ammonium oxidizing bacteria and 1 x 10(exp 2) nitrite oxidizing bacteria per gram of substrate. Populations of ammonium oxidizing bacteria increased to 1 x 10(exp 6) and nitrite oxidizing bacteria increased to 1 x 10(exp 3) per gram of substrate. The nitrification rate was approximately 0.25mg NO3(-)-N/kg.hr. Experiments were also conducted to enumerate nitrifying bacteria in a clinoptilolite substrate used to grow wheat (Triticum aestivum L.). Seventy days following the initial inoculation with an unknown number of commercial nitrifying bacteria, 1 x 10(exp 5) ammonium oxidizing bacteria per gram of substrate were present. The number of nitrite oxidizing bacteria was between 1 x 10(exp 3) to 10(exp 4) per gram of substrate as measured by the most probable number method. Nitrification rates were approximately 0.20mg NO3(-)-N/kg.hr. Clinoptilolite readily exchanged sufficient concentrations of ammonium to support nitrifying bacteria and they survived well in this medium.

  6. The hunt for the most-wanted chemolithoautotrophic spookmicrobes

    PubMed Central

    2018-01-01

    ABSTRACT Microorganisms are the drivers of biogeochemical methane and nitrogen cycles. Essential roles of chemolithoautotrophic microorganisms in these cycles were predicted long before their identification. Dedicated enrichment procedures, metagenomics surveys and single-cell technologies have enabled the identification of several new groups of most-wanted spookmicrobes, including novel methoxydotrophic methanogens that produce methane from methylated coal compounds and acetoclastic ‘Candidatus Methanothrix paradoxum’, which is active in oxic soils. The resultant energy-rich methane can be oxidized via a suite of electron acceptors. Recently, ‘Candidatus Methanoperedens nitroreducens’ ANME-2d archaea and ‘Candidatus Methylomirabilis oxyfera’ bacteria were enriched on nitrate and nitrite under anoxic conditions with methane as an electron donor. Although ‘Candidatus Methanoperedens nitroreducens’ and other ANME archaea can use iron citrate as an electron acceptor in batch experiments, the quest for anaerobic methane oxidizers that grow via iron reduction continues. In recent years, the nitrogen cycle has been expanded by the discovery of various ammonium-oxidizing prokaryotes, including ammonium-oxidizing archaea, versatile anaerobic ammonium-oxidizing (anammox) bacteria and complete ammonium-oxidizing (comammox) Nitrospira bacteria. Several biogeochemical studies have indicated that ammonium conversion occurs under iron-reducing conditions, but thus far no microorganism has been identified. Ultimately, iron-reducing and sulfate-dependent ammonium-oxidizing microorganisms await discovery. PMID:29873717

  7. A laboratory investigation of interactions between denitrifying anaerobic methane oxidation (DAMO) and anammox processes in anoxic environments

    PubMed Central

    Hu, Shihu; Zeng, Raymond J.; Haroon, Mohamed F.; Keller, Jurg; Lant, Paul A.; Tyson, Gene W.; Yuan, Zhiguo

    2015-01-01

    This study investigates interactions between recently identified denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (anammox) processes in controlled anoxic laboratory reactors. Two reactors were seeded with the same inocula containing DAMO organisms Candidatus Methanoperedens nitroreducens and Candidatus Methylomirabilis oxyfera, and anammox organism Candidatus Kuenenia stuttgartiensis. Both were fed with ammonium and methane, but one was also fed with nitrate and the other with nitrite, providing anoxic environments with different electron acceptors. After steady state reached in several months, the DAMO process became solely/primarily responsible for nitrate reduction while the anammox process became solely responsible for nitrite reduction in both reactors. 16S rRNA gene amplicon sequencing showed that the nitrate-driven DAMO organism M. nitroreducens dominated both the nitrate-fed (~70%) and the nitrite-fed (~26%) reactors, while the nitrite-driven DAMO organism M. oxyfera disappeared in both communities. The elimination of M. oxyfera from both reactors was likely the results of this organism being outcompeted by anammox bacteria for nitrite. K. stuttgartiensis was detected at relatively low levels (1–3%) in both reactors. PMID:25732131

  8. Simultaneous Nitrite-Dependent Anaerobic Methane and Ammonium Oxidation Processes▿

    PubMed Central

    Luesken, Francisca A.; Sánchez, Jaime; van Alen, Theo A.; Sanabria, Janeth; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Kartal, Boran

    2011-01-01

    Nitrite-dependent anaerobic oxidation of methane (n-damo) and ammonium (anammox) are two recently discovered processes in the nitrogen cycle that are catalyzed by n-damo bacteria, including “Candidatus Methylomirabilis oxyfera,” and anammox bacteria, respectively. The feasibility of coculturing anammox and n-damo bacteria is important for implementation in wastewater treatment systems that contain substantial amounts of both methane and ammonium. Here we tested this possible coexistence experimentally. To obtain such a coculture, ammonium was fed to a stable enrichment culture of n-damo bacteria that still contained some residual anammox bacteria. The ammonium supplied to the reactor was consumed rapidly and could be gradually increased from 1 to 20 mM/day. The enriched coculture was monitored by fluorescence in situ hybridization and 16S rRNA and pmoA gene clone libraries and activity measurements. After 161 days, a coculture with about equal amounts of n-damo and anammox bacteria was established that converted nitrite at a rate of 0.1 kg-N/m3/day (17.2 mmol day−1). This indicated that the application of such a coculture for nitrogen removal may be feasible in the near future. PMID:21841030

  9. Ammonia-limited conditions cause of Thaumarchaeal dominance in volcanic grassland soil.

    PubMed

    Daebeler, Anne; Bodelier, Paul L E; Hefting, Mariet M; Laanbroek, Hendrikus J

    2015-03-01

    The first step of nitrification is carried out by ammonia-oxidizing bacteria (AOB) and archaea (AOA). It is largely unknown, by which mechanisms these microbes are capable of coexistence and how their respective contribution to ammonia oxidation may differ with varying soil characteristics. To determine how different levels of ammonium availability influence the extent of archaeal and bacterial contributions to ammonia oxidation, microcosm incubations with controlled ammonium levels were conducted. Net nitrification was monitored and ammonia-oxidizer communities were quantified. Additionally, the nitrification inhibitor allylthiourea (ATU) was applied to discriminate between archaeal and bacterial contributions to soil ammonia oxidation. Thaumarchaeota, which were the only ammonia oxidizers detectable at the start of the incubation, grew in all microcosms, but AOB later became detectable in ammonium amended microcosms. Low and high additions of ammonium increasingly stimulated AOB growth, while AOA were only stimulated by the low addition. Treatment with ATU had no effect on net nitrification and sizes of ammonia-oxidizing communities suggesting that the effective concentration of ATU to discriminate between archaeal and bacterial ammonia oxidation is not the same in different soils. Our results support the niche-differentiating potential of ammonium concentration for AOA and AOB, and we conclude that ammonium limitation can be a major reason for absence of detectable AOB in soil. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Inhibition factors and Kinetic model for ammonium inhibition on the anammox process of the SNAD biofilm.

    PubMed

    Zheng, Zhaoming; Li, Jun; Ma, Jing; Du, Jia; Wang, Fan; Bian, Wei; Zhang, Yanzhuo; Zhao, Baihang

    2017-03-01

    The aim of the present work was to evaluate the anaerobic ammonium oxidation (anammox) activity of simultaneous partial nitrification, anammox and denitrification (SNAD) biofilm with different substrate concentrations and pH values. Kaldnes rings taken from the SNAD biofilm reactor were incubated in batch tests to determine the anammox activity. Haldane model was applied to investigate the ammonium inhibition on anammox process. As for nitrite inhibition, the NH 4 + -N removal rate of anammox process remained 87.4% of the maximum rate with the NO 2 - -N concentration of 100mg/L. Based on the results of Haldane model, no obvious difference in kinetic coefficients was observed under high or low free ammonia (FA) conditions, indicating that ammonium rather than FA was the true inhibitor for anammox process of SNAD biofilm. With the pH value of 7.0, the r max , Ks and K I of ammonium were 0.209kg NO 2 - -N/kg VSS/day, 9.5mg/L and 422mg/L, respectively. The suitable pH ranges for anammox process were 5.0 to 9.0. These results indicate that the SNAD biofilm performs excellent tolerance to adverse conditions. Copyright © 2016. Published by Elsevier B.V.

  11. Development of anaerobic ammonium oxidation (anammox) for biological nitrogen removal in domestic wastewater treatment (Case study: Surabaya City, Indonesia)

    NASA Astrophysics Data System (ADS)

    Wijaya, I. Made Wahyu; Soedjono, Eddy Setiadi; Fitriani, Nurina

    2017-11-01

    Domestic wastewater effluent is the main contributor to diverse water pollution problems. The contaminants contained in the wastewater lead the low quality of water. The presence of ammonium and nitrate along with phosphorus are potentially cause eutrophication and endanger aquatic life. Excess nutrients, mostly N and P is the main cause of eutrophication which is result in oxygen depletion, biodiversity reduction, fish kills, odor and increased toxicity. Most of the domestic wastewater in Surabaya City still contains nitrogen that exceeded the threshold. The range of ammonium and orthophosphate concentration in the domestic wastewater is between 6.29 mg/L - 38.91 mg/L and 0.44 mg/L - 1.86 mg/L, respectively. An advance biological nitrogen removal process called anammox is a sustainable and cost effective alternative to the basic method of nitrogen removal, such as nitrification and denitrification. Many research have been conducted through anammox and resulted promisingly way to remove nitrogen. In this process, ammonium will be oxidized with nitrite as an electron acceptor to produce nitrogen gas and low nitrate in anoxic condition. Anammox requires less oxygen demand, no needs external carbon source, and low operational cost. Based on its advantages, anammox is possible to apply in domestic wastewater treatment in Surabaya with many further studies.

  12. PROCESS FOR THE RECOVERY AND PURIFICATION OF URANIUM DEPOSITS

    DOEpatents

    Carter, J.M.; Kamen, M.D.

    1958-10-14

    A process is presented for recovering uranium values from UCl/sub 4/ deposits formed on calutrons. Such deposits are removed from the calutron parts by an aqueous wash solution which then contains the uranium values in addition to the following impurities: Ni, Cu, Fe, and Cr. This impurity bearing wash solution is treated with an oxidizing agent, and the oxidized solution is then treated with ammonia in order to precipitate the uranium as ammonium diuranate. The metal impurities of iron and chromium, which form insoluble hydroxides, are precipitated along with the uranium values. The precipitate is separated from the solution, dissolved in acid, and the solution again treated with ammonia and ammonium carbonate, which results in the precipitation of the metal impurities as hydroxides while the uranium values remain in solution.

  13. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone.

    PubMed

    Ding, Bangjing; Li, Zhengkui; Qin, Yunbin

    2017-12-01

    Anaerobic ammonium oxidation coupled to iron(III) reduction (termed Feammox) is a recently discovered pathway of nitrogen cycling. However, little is known about the pathways of N transformation via Feammox process in riparian zones. In this study, evidence for Feammox in riparian zones with or without vegetation cover was demonstrated using isotope tracing technique and high-throughput sequencing technology. The results showed that Feammox could occur in riparian zones, and demonstrated that N 2 directly from Feammox was dominant Feammox pathway. The Feammox rates in vegetated soil samples was 0.32-0.37 mg N kg -1 d -1 , which is higher than that in un-vegetated soil samples (0.20 mg N kg -1 d -1 ). Moreover, the growth of vegetation led to a 4.99-6.41% increase in the abundance of iron reducing bacteria (Anaeromyxobacter, Pseudomonas and Geobacter) and iron reducing bacteria play an essential role in Feammox process. An estimated loss of 23.7-43.9 kg N ha -1 year -1 was associated with Feammox in the examined riparian zone. Overall, the co-occurrence of ammonium oxidation and iron reduction suggest that Feammox can play an essential role in the pathway of nitrogen removal in riparian zones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands

    NASA Astrophysics Data System (ADS)

    Hou, Lijun; Zheng, Yanling; Liu, Min; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Deng, Fengyu; Chen, Fei; Jiang, Xiaofen

    2015-10-01

    Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China’s coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China’s coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8-10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China’s coastal wetland ecosystems.

  15. Anaerobic Ammonium Oxidation and its Contribution to Nitrogen Removal in China's Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Hou, L., Sr.

    2016-02-01

    Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China's coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China's coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8-10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China's coastal wetland ecosystems.

  16. Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands

    PubMed Central

    Hou, Lijun; Zheng, Yanling; Liu, Min; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Deng, Fengyu; Chen, Fei; Jiang, Xiaofen

    2015-01-01

    Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China’s coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China’s coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8–10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China’s coastal wetland ecosystems. PMID:26494435

  17. 33 CFR 160.204 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (ii) Ammonium nitrate based fertilizer listed as a Division 5.1 (oxidizing) material in 49 CFR 172.101... following: (1) Ammonium nitrate in bulk or ammonium nitrate based fertilizer in bulk remaining after all....7: (i) Ammonia, anhydrous; (ii) Chlorine; (iii) Ethane; (iv) Ethylene oxide; (v) Methane (LNG); (vi...

  18. 33 CFR 160.204 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (ii) Ammonium nitrate based fertilizer listed as a Division 5.1 (oxidizing) material in 49 CFR 172.101... following: (1) Ammonium nitrate in bulk or ammonium nitrate based fertilizer in bulk remaining after all....7: (i) Ammonia, anhydrous; (ii) Chlorine; (iii) Ethane; (iv) Ethylene oxide; (v) Methane (LNG); (vi...

  19. 33 CFR 160.204 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (ii) Ammonium nitrate based fertilizer listed as a Division 5.1 (oxidizing) material in 49 CFR 172.101... following: (1) Ammonium nitrate in bulk or ammonium nitrate based fertilizer in bulk remaining after all....7: (i) Ammonia, anhydrous; (ii) Chlorine; (iii) Ethane; (iv) Ethylene oxide; (v) Methane (LNG); (vi...

  20. Coating Methods for Surface Modification of Ammonium Nitrate: A Mini-Review

    PubMed Central

    Elzaki, Baha I.; Zhang, Yue Jun

    2016-01-01

    Using ammonium nitrate (AN) as a propellant oxidizer is limited due to its hygroscopicity. This review consolidated the available information of various issues pertaining to the coating methods of the surface modification of ammonium nitrate for reducing its hygroscopicity. Moreover this review summarizes the recent advances and issues involved in ammonium nitrate surface modification by physical, chemical and encapsulation coating methods to reduce the hygroscopicity. Furthermore, coating materials, process conditions, and the hygroscopicity test conditions are extensively discussed along, with summaries of the advantages and disadvantages of each coating method. Our findings indicated that the investigation and development of anti-hygroscopicity of AN, and the mechanisms of surface modification by coating urgently require further research in order to further reduce the hygroscopicity. Therefore, this review is useful to researchers concerned with the improvement of ammonium salts’ anti-hygroscopicity. PMID:28773625

  1. Interpreting Precambrian δ15N: lessons from a new modern analogue, the volcanic crater lake Dziani Dzaha

    NASA Astrophysics Data System (ADS)

    Ader, M.; Cadeau, P.; Jezequel, D.; Chaduteau, C.; Fouilland, E.; Bernard, C.; Leboulanger, C.

    2017-12-01

    Precambrian nitrogen biogeochemistry models rely on δ15N signatures in sedimentary rocks, but some of the underlying assumptions still need to be more robustly established. Especially when measured δ15N values are above 3‰. Several processes have been proposed to explain these values: non-quantitative reduction of nitrate to N2O/N2 (denitrification), non-quantitative oxidation of ammonium to N2O/N2, or ammonia degassing to the atmosphere. The denitrification hypothesis implies oxygenation of part the water column, allowing nitrate to accumulate. The ammonium oxidation hypothesis implies a largely anoxic water column, where ammonium can accumulates, with limited oxygenation of surface waters. This hypothesis is currently lacking modern analogues to be supported. We propose here that the volcanic crater lake Dziani Dzaha (Mayotte, Indian Ocean) might be one of them, on the basis of several analogies including: permanently anoxic conditions at depth in spite of seasonal mixing; nitrate content below detection limit in the oxic surface waters; accumulation of ammonium at depth during the stratified season; primary productivity massively dominated by cyanobacteria. One aspect may restrict the analogy: the pH value of 9-9.5. In this lake, δ15N values of primary producers and ammonium range from 6 to 9‰ and are recorded with a positive offset in the sediments (9<δ15N<13‰). Because N-sources to the system present more negative δ15N values, such positive values can only be achieved if 14N-enriched N is lost from the lake. Although NH3 degassing might play a small role, the main pathway envisaged for this N-loss is NH4+ oxidation to N2O/N2. If confirmed, this would provide strong support for the hypothesis that positive δ15N values in Precambrian rocks may indicate dominantly anoxic oceans, devoid of nitrate, in which ammonium was partly oxidized to N2O/N2.

  2. Ubiquitous anaerobic ammonium oxidation in inland waters of China: an overlooked nitrous oxide mitigation process

    PubMed Central

    Zhu, Guibing; Wang, Shanyun; Zhou, Leiliu; Wang, Yu; Zhao, Siyan; Xia, Chao; Wang, Weidong; Zhou, Rong; Wang, Chaoxu; Jetten, Mike S. M.; Hefting, Mariet M.; Yin, Chengqing; Qu, Jiuhui

    2015-01-01

    Denitrification has long been regarded as the only pathway for terrestrial nitrogen (N) loss to the atmosphere. Here we demonstrate that large-scale anaerobic ammonium oxidation (anammox), an overlooked N loss process alternative to denitrification which bypasses nitrous oxide (N2O), is ubiquitous in inland waters of China and contributes significantly to N loss. Anammox rates in aquatic systems show different levels (1.0–975.9 μmol N m−2 h−1, n = 256) with hotspots occurring at oxic-anoxic interfaces and harboring distinct biogeochemical and biogeographical features. Extrapolation of these results to the China-national level shows that anammox could contribute about 2.0 Tg N yr−1, which equals averagely 11.4% of the total N loss from China’s inland waters. Our results indicate that a significant amount of the nitrogen lost from inland waters bypasses denitrification, which is important for constructing more accurate climate models and may significantly reduce potential N2O emission risk at a large scale. PMID:26610807

  3. Monitoring the nitrification and identifying the endpoint of ammonium oxidation by using a novel system of titrimetry.

    PubMed

    Zhang, Xin; Zhang, Daijun; Lu, Peili; Bai, Cui; Xiao, Pengying

    2011-01-01

    Based on the structure of the hybrid respirometer previously developed in our group, a novel implementation for titrimetry was developed, in which two pH electrodes were installed at the inlet and outlet of the measuring cell. The software capable of digital filtering and titration time delay correction was developed in LabVIEW. The hardware and software of the titrimeter and the respirometer were integrated to construct a novel system of respirometry-titrimetry. The system was applied to monitor a batch nitrification process. The obtained profiles of oxygen uptake rate (OUR) and hydrogen ion production rate (HPR) are consistent with each other and agree with the principle of the biological nitrification reaction. According to the OUR and HPR measurements, the oxidized ammonium concentrations were estimated accurately. Furthermore, the endpoint of ammonium oxidation was identified with much higher sensitivity by the HPR measurement. The system could be potentially used for on-line monitoring of biochemical reactions occurring in any kind of bioreactors because its measuring cell is completely independent of the bioreactor.

  4. Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria.

    PubMed

    Li, Meng; Gu, Ji-Dong

    2011-05-01

    Anaerobic ammonium oxidation (anammox), the biochemical process oxidizing ammonium into dinitrogen gas using nitrite as an electron acceptor, has only been recognized for its significant role in the global nitrogen cycle not long ago, and its ubiquitous distribution in a wide range of environments has changed our knowledge about the contributors to the global nitrogen cycle. Currently, several groups of methods are used in detection of anammox bacteria based on their physiological and biochemical characteristics, cellular chemical composition, and both 16S rRNA gene and selective functional genes as biomarkers, including hydrazine oxidoreductase and nitrite reductase encoding genes hzo and nirS, respectively. Results from these methods coupling with advances in quantitative PCR, reverse transcription of mRNA genes and stable isotope labeling have improved our understanding on the distribution, diversity, and activity of anammox bacteria in different environments both natural and engineered ones. In this review, we summarize these methods used in detection of anammox bacteria from various environments, highlight the strengths and weakness of these methods, and also discuss the new development potentials on the existing and new techniques in the future.

  5. Process for the synthesis of iron powder

    DOEpatents

    Not Available

    1982-03-06

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  6. Process for the synthesis of iron powder

    DOEpatents

    Welbon, William W.

    1983-01-01

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  7. Evaluation of the impact of organic material on the anaerobic methane and ammonium removal in a membrane aerated biofilm reactor (MABR) based on the multispecies biofilm modeling.

    PubMed

    Wu, Jun; Zhang, Yue

    2017-01-01

    The simultaneous nitrogen and methane removal by the combined nitritation, anaerobic ammonium oxidation (anammox), and nitrite dependent anaerobic methane oxidation (n-damo) processes in the membrane aerated biofilm reactor (MABR) offers clear advantages in term of energy saving and greenhouse gas emission mitigation. The rejected water from sludge digestion usually contained high ammonium, COD, and dissolved methane. The impact of influent COD on the anaerobic methane and ammonium removal in an MABR was evaluated in the model based study. The results indicated that the influent COD did not reduce the methane and ammonium removal efficiency at C/N ratio (influent COD/NH 4 + -N) less than 0.1. At high C/N ratio, the oxygen transfer coefficient needed to be increased to achieve high methane and nitrogen removal. Substrate flux analysis indicated that heterotrophic denitrification in the outside layer of biofilm reduced the impact of influent COD. Heterotrophic growth needed to be limited at the outside layer by using NO 3 - as electron acceptor; otherwise, the heterotrophic bacteria would compete NO 2 - and space with anammox and n-damo bacteria in the inner layers and reduce the nitrogen and methane removal efficiency.

  8. Electricity production coupled to ammonium in a microbial fuel cell.

    PubMed

    He, Zhen; Kan, Jinjun; Wang, Yanbing; Huang, Yuelong; Mansfeld, Florian; Nealson, Kenneth H

    2009-05-01

    The production of electricity from ammonium was examined using a rotating-cathode microbial fuel cell (MFC). The addition of ammonium chloride, ammonium sulfate, or ammonium phosphate (monobasic) resulted in electricity generation, while adding sodium chloride, nitrate, or nitrite did not cause any increase in current production. The peak current increased with increasing amount of ammonium addition up to 62.3 mM of ammonium chloride, suggesting that ammonium was involved in electricity generation either directly as the anodic fuel or indirectly as substrates for nitrifiers to produce organic compounds for heterotrophs. Adding nitrate or nitrite with ammonium increased current production compared to solely ammonium addition. Using 16S rRNA-linked molecular analyses, we found ammonium-oxidizing bacteria and denitrifying bacteria on both the anode and cathode electrodes, whereas no anammox bacteria were detected. The dominant ammonium-oxidizing bacteria were closely related to Nitrosomonas europaea. The present MFC achieved an ammonium removal efficiency of 49.2 +/- 5.9 or 69.7 +/- 3.6%, depending on hydraulic retention time, but exhibited a very low Coulombic efficiency.

  9. Abundance of ammonia oxidizing bacteria and archaea under long-term maize cropping systems.

    USDA-ARS?s Scientific Manuscript database

    Nitrification involves the oxidation of ammonium and is an important component of the overall N cycle. Nitrification occurs in two steps; first by oxidizing ammonium to nitrite, and then to nitrate. The first step is often the rate limiting step. Until recently ammonia-oxidizing bacteria were though...

  10. [A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented residue].

    PubMed

    Khramenkov, S V; Kozlov, M N; Krevbona, M V; Drofeev, A G; Kazakova, E A; Grachev, V A; Kuznetsov, B B; Poliakov, D Iu; Nikolaev, Iu A

    2013-01-01

    A new genus and species of bacteria capable of ammonium oxidation under anaerobic conditions in the presence of nitrite is described. The enrichment culture was obtained from the Moscow River silt by sequential cultivation in reactors with selective conditions for anaerobic ammonium oxidation. Bacterial cells were coccoid, -0.4 x 0.7 mm, with the intracellular membrane structures typical of bacteria capable of anaerobic ammonium oxidation (anammoxosome and paryphoplasm). The cells formed aggregates 5-25 μm in diameter (10 μm on average). They were readily adhered to solid surfaces. The cells were morphologically labile, they easily lost their content and changed their morphology during fixation for electron microscopy. The organism was capable of ammonium oxidation with nitrite. The semisaturation constants Ks for nitrite and ammonium were 0.38 mg N-NO2/L and 0.41 mg N-NH4/L, respectively. The maximal nitrite concentrations for growth were 90 and 75 mg N-NO2/L for single and continuous application, respectively. The doubling time was 32 days, μ(max) = 0.022 day(-1), the optimal temperature and pH were 20 degrees C and 7.8-8.3, respectively. According to the 16S rRNA gene sequencing, the bacterium was assigned to a new genus and species within the phylum Planctomycetes. The proposed name for the new bacterium is Candidatus Anammoximicrobium moscowii gen. nov., sp. nov. (a microorganisms carrying out anaerobia ammonium oxidation, isolated in the Moscow region).

  11. Comparison of nitrogen removal rates and nitrous oxide production from enriched anaerobic ammonium oxidizing bacteria in suspended and attached growth reactors.

    PubMed

    Panwivia, Supaporn; Sirvithayapakorn, Sanya; Wantawin, Chalermraj; Noophan, Pongsak Lek; Munakata-Marr, Junko

    2014-01-01

    Attached growth-systems for the anaerobic ammonium oxidation (anammox) process have been postulated for implementation in the field. However, information about the anammox process in attached growth-systems is limited. This study compared nitrogen removal rates and nitrous oxide (N2O) production of enriched anammox cultures in both suspended and attached growth sequencing batch reactors (SBRs). Suspended growth reactors (SBR-S) and attached growth reactors using polystyrene sponge as a medium (SBR-A) were used in these experiments. After inoculation with an enriched anammox culture, significant nitrogen removals of ammonium (NH4 (+)) and nitrite (NO2 (-)) were observed under NH4 (+):NO2 (-) ratios ranging from 1:1 to 1:2 in both types of SBRs. The specific rates of total nitrogen removal in SBR-S and SBR-A were 0.52 mg N/mg VSS-d and 0.44 mg N/mg VSS-d, respectively, at an NH4 (+):NO2 (-) ratio of 1:2. N2O production by the enriched anammox culture in both SBR-S and SBR-A was significantly higher at NH4 (+):NO2 (-) ratio of 1:2 than at NH4 (+):NO2 (-) ratios of 1:1 and 1:1.32. In addition, N2O production was higher at a pH of 6.8 than at pH 7.3, 7.8, and 8.3 in both SBR-S and SBR-A. The results of this investigation demonstrate that the anammox process may avoid N2O emission by maintaining an NH4 (+):NO2 (-) ratio of less than 1:2 and pH higher than 6.8.

  12. Process for the synthesis of iron powder

    DOEpatents

    Welbon, W.W.

    1983-11-08

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.

  13. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    USDA-ARS?s Scientific Manuscript database

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted ‘hot spots’ and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and...

  14. Nitrification and Autotrophic Nitrifying Bacteria in a Hydrocarbon-Polluted Soil

    PubMed Central

    Deni, Jamal; Penninckx, Michel J.

    1999-01-01

    In vitro ammonia-oxidizing bacteria are capable of oxidizing hydrocarbons incompletely. This transformation is accompanied by competitive inhibition of ammonia monooxygenase, the first key enzyme in nitrification. The effect of hydrocarbon pollution on soil nitrification was examined in situ. In a microcosm study, adding diesel fuel hydrocarbon to an uncontaminated soil (agricultural unfertilized soil) treated with ammonium sulfate dramatically reduced the amount of KCl-extractable nitrate but stimulated ammonium consumption. In a soil with long history of pollution that was treated with ammonium sulfate, 90% of the ammonium was transformed into nitrate after 3 weeks of incubation. Nitrate production was twofold higher in the contaminated soil than in the agricultural soil to which hydrocarbon was not added. To assess if ammonia-oxidizing bacteria acquired resistance to inhibition by hydrocarbon, the contaminated soil was reexposed to diesel fuel. Ammonium consumption was not affected, but nitrate production was 30% lower than nitrate production in the absence of hydrocarbon. The apparent reduction in nitrification resulted from immobilization of ammonium by hydrocarbon-stimulated microbial activity. These results indicated that the hydrocarbon inhibited nitrification in the noncontaminated soil (agricultural soil) and that ammonia-oxidizing bacteria in the polluted soil acquired resistance to inhibition by the hydrocarbon, possibly by increasing the affinity of nitrifying bacteria for ammonium in the soil. PMID:10473409

  15. Combined Hydrous Ferric Oxide and Quaternary Ammonium Surfactant Tailoring of Granular Activated Carbon for Concurrent Arsenate and Perchlorate Removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, M.; Cannon, F; Parette, R

    2009-01-01

    Activated carbon was tailored with both iron and quaternary ammonium surfactants so as to concurrently remove both arsenate and perchlorate from groundwater. The iron (hydr)oxide preferentially removed the arsenate oxyanion but not perchlorate; while the quaternary ammonium preferentially removed the perchlorate oxyanion, but not the arsenate. The co-sorption of two anionic oxyanions via distinct mechanisms has yielded intriguing phenomena. Rapid small-scale column tests (RSSCTs) with these dually prepared media employed synthetic waters that were concurrently spiked with arsenate and perchlorate; and these trial results showed that the quaternary ammonium surfactants enhanced arsenate removal bed life by 25-50% when compared tomore » activated carbon media that had been preloaded merely with iron (hydr)oxide; and the surfactant also enhanced the diffusion rate of arsenate per the Donnan effect. The authors also employed natural groundwater from Rutland, MA which contained 60 microg/L As and traces of silica, and sulfate; and the authors spiked this with 40 microg/L perchlorate. When processing this water, activated carbon that had been tailored with iron and cationic surfactant could treat 12,500 bed volumes before 10 microg/L arsenic breakthrough, and 4500 bed volumes before 6 microg/L perchlorate breakthrough. Although the quaternary ammonium surfactants exhibited only a slight capacity for removing arsenate, these surfactants did facilitate a more favorably positively charged avenue for the arsenate to diffuse through the media to the iron sorption site (i.e. via the Donnan effect).« less

  16. The nitrogen cycle in anaerobic methanotrophic mats of the Black Sea is linked to sulfate reduction and biomass decomposition.

    PubMed

    Siegert, Michael; Taubert, Martin; Seifert, Jana; von Bergen-Tomm, Martin; Basen, Mirko; Bastida, Felipe; Gehre, Matthias; Richnow, Hans-Hermann; Krüger, Martin

    2013-11-01

    Anaerobic methanotrophic (ANME) mats host methane-oxidizing archaea and sulfate-reducing prokaryotes. Little is known about the nitrogen cycle in these communities. Here, we link the anaerobic oxidation of methane (AOM) to the nitrogen cycle in microbial mats of the Black Sea by using stable isotope probing. We used four different (15)N-labeled sources of nitrogen: dinitrogen, nitrate, nitrite and ammonium. We estimated the nitrogen incorporation rates into the total biomass and the methyl coenzyme M reductase (MCR). Dinitrogen played an insignificant role as nitrogen source. Assimilatory and dissimilatory nitrate reduction occurred. High rates of nitrate reduction to dinitrogen were stimulated by methane and sulfate, suggesting that oxidation of reduced sulfur compounds such as sulfides was necessary for AOM with nitrate as electron acceptor. Nitrate reduction to dinitrogen occurred also in the absence of methane as electron donor but at six times slower rates. Dissimilatory nitrate reduction to ammonium was independent of AOM. Ammonium was used for biomass synthesis under all conditions. The pivotal enzyme in AOM coupled to sulfate reduction, MCR, was synthesized from nitrate and ammonium. Results show that AOM coupled to sulfate reduction along with biomass decomposition drive the nitrogen cycle in the ANME mats of the Black Sea and that MCR enzymes are involved in this process. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Cost-performance analysis of nutrient removal in a full-scale oxidation ditch process based on kinetic modeling.

    PubMed

    Li, Zheng; Qi, Rong; Wang, Bo; Zou, Zhe; Wei, Guohong; Yang, Min

    2013-01-01

    A full-scale oxidation ditch process for treating sewage was simulated with the ASM2d model and optimized for minimal cost with acceptable performance in terms of ammonium and phosphorus removal. A unified index was introduced by integrating operational costs (aeration energy and sludge production) with effluent violations for performance evaluation. Scenario analysis showed that, in comparison with the baseline (all of the 9 aerators activated), the strategy of activating 5 aerators could save aeration energy significantly with an ammonium violation below 10%. Sludge discharge scenario analysis showed that a sludge discharge flow of 250-300 m3/day (solid retention time (SRT), 13-15 days) was appropriate for the enhancement of phosphorus removal without excessive sludge production. The proposed optimal control strategy was: activating 5 rotating disks operated with a mode of "111100100" ("1" represents activation and "0" represents inactivation) for aeration and sludge discharge flow of 200 m3/day (SRT, 19 days). Compared with the baseline, this strategy could achieve ammonium violation below 10% and TP violation below 30% with substantial reduction of aeration energy cost (46%) and minimal increment of sludge production (< 2%). This study provides a useful approach for the optimization of process operation and control.

  18. Biodegradability of fluoxetine, mefenamic acid, and metoprolol using different microbial consortiums.

    PubMed

    Velázquez, Yolanda Flores; Nacheva, Petia Mijaylova

    2017-03-01

    The biodegradation of fluoxetine, mefenamic acid, and metoprolol using ammonium-nitrite-oxidizing consortium, nitrite-oxidizing consortium, and heterotrophic biomass was evaluated in batch tests applying different retention times. The ammonium-nitrite-oxidizing consortium presented the highest biodegradation percentages for mefenamic acid and metoprolol, of 85 and 64% respectively. This consortium was also capable to biodegrade 79% of fluoxetine. The heterotrophic consortium showed the highest ability to biodegrade fluoxetine reaching 85%, and it also had a high potential for biodegrading mefenamic acid and metoprolol, of 66 and 58% respectively. The nitrite-oxidizing consortium presented the lowest biodegradation of the three pharmaceuticals, of less than 48%. The determination of the selected pharmaceuticals in the dissolved phase and in the biomass indicated that biodegradation was the major removal mechanism of the three compounds. Based on the obtained results, the biodegradation kinetics was adjusted to pseudo-first-order for the three pharmaceuticals. The values of k biol for fluoxetine, mefenamic acid, and metoprolol determined with the three consortiums indicated that ammonium-nitrite-oxidizing and heterotrophic biomass allow a partial biodegradation of the compounds, while no substantial biodegradation can be expected using nitrite-oxidizing consortium. Metoprolol was the less biodegradable compound. The sorption of fluoxetine and mefenamic acid onto biomass had a significant contribution for their removal (6-14%). The lowest sorption coefficients were obtained for metoprolol indicating that the sorption onto biomass is poor (3-4%), and the contribution of this process to the global removal can be neglected.

  19. Vanadium Oxide Thin Film Formation on Graphene Oxide by Microexplosive Decomposition of Ammonium Peroxovanadate and Its Application as a Sodium Ion Battery Anode.

    PubMed

    Mikhaylov, Alexey A; Medvedev, Alexander G; Grishanov, Dmitry A; Sladkevich, Sergey; Gun, Jenny; Prikhodchenko, Petr V; Xu, Zhichuan J; Nagasubramanian, Arun; Srinivasan, Madhavi; Lev, Ovadia

    2018-02-27

    Formation of vanadium oxide nanofilm-coated graphene oxide (GO) is achieved by thermally induced explosive disintegration of a microcrystalline ammonium peroxovanadate-GO composite. GO sheets isolate the microcrystalline grains and capture and contain the microexplosion products, resulting in the deposition of the nanoscale products on the GO. Thermal treatment of the supported nanofilm yields a sequence of nanocrystalline phases of vanadium oxide (V 3 O 7 , VO 2 ) as a function of temperature. This is the first demonstration of microexplosive disintegration of a crystalline peroxo compound to yield a nanocoating. The large number of recently reported peroxide-rich crystalline materials suggests that the process can be a useful general route for nanofilm formation. The V 3 O 7 @GO composite product was tested as a sodium ion battery anode and showed high charge capacity at high rate charge-discharge cycling (150 mAh g -1 at 3000 mA g -1 vs 300 mAh g -1 at 100 mA g -1 ) due to the nanomorphology of the vanadium oxide.

  20. Application of inorganic oxidants to the spectrophotometric determination of ribavirin in bulk and capsules.

    PubMed

    Darwish, Ibrahim A; Khedr, Alaa S; Askal, Hassan F; Mohamed, Ramadan M

    2006-01-01

    Eight spectrophotometric methods for determination of ribavirin have been developed and validated. These methods were based on the oxidation of the drug by different inorganic oxidants: ceric ammonium sulfate, potassium permanganate, ammonium molybdate, ammonium metavanidate, chromium trioxide, potassium dichromate, potassium iodate, and potassium periodate. The oxidation reactions were performed in perchloric acid medium for ceric ammonium sulfate and in sulfuric acid medium for the other reagents. With ceric ammonium sulfate and potassium permanganate, the concentration of ribavirin in its samples was determined by measuring the decrease in the absorption intensity of the colored reagents at 315 and 525 nm, respectively. With the other reagents, the concentration of ribavirin was determined by measuring the intensity of the developed colored reaction products at the wavelengths of maximum absorbance: 675, 780, 595, 595, 475, and 475 nm for reactions with ammonium molybdate, ammonium metavanidate, chromium trioxide, potassium dichromate, potassium iodate, and potassium periodate, respectively. Different variables affecting the reaction conditions were carefully studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9984-0.9998) were found between the absorbance readings and the concentrations of ribavirin in the range of 4-1400 microg/mL. The molar absorptivities were correlated with the oxidation potential of the oxidants used. The precision of the methods were satisfactory; the values of relative standard deviation did not exceed 1.64%. The proposed methods were successfully applied to the analysis of ribavirin in pure drug material and capsules with good accuracy and precision; the recovery values were 99.2-101.2 +/- 0.48-1.30%. The results obtained using the proposed spectrophotometric methods were comparable with those obtained with the official method stated in the United States Pharmacopeia.

  1. Effect of arsenic on nitrification of simulated mining water.

    PubMed

    Papirio, S; Zou, G; Ylinen, A; Di Capua, F; Pirozzi, F; Puhakka, J A

    2014-07-01

    Mining and mineral processing of gold-bearing ores often release arsenic to the environment. Ammonium is released when N-based explosives or cyanide are used. Nitrification of simulated As-rich mining waters was investigated in batch bioassays using nitrifying cultures enriched in a fluidized-bed reactor (FBR). Nitrification was maintained at 100mg AsTOT/L. In batch assays, ammonium was totally oxidized by the FBR enrichment in 48 h. As(III) oxidation to As(V) occurred during the first 3h attenuating arsenic toxicity to nitrification. At 150 and 200mg AsTOT/L, nitrification was inhibited by 25%. Candidatus Nitrospira defluvii and other nitrifying species mainly colonized the FBR. In conclusion, the FBR enriched cultures of municipal activated sludge origins tolerated high As concentrations making nitrification a potent process for mining water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Fast start-up of the CANON process with a SABF and the effects of pH and temperature on nitrogen removal and microbial activity.

    PubMed

    Yue, Xiu; Yu, Guangping; Liu, Zhuhan; Tang, Jiali; Liu, Jian

    2018-04-01

    The long start-up time of the completely autotrophic nitrogen removal over nitrite (CANON) process is one of the main disadvantages of this system. In this paper, the CANON process with a submerged aerated biological filter (SABF) was rapidly started up within 26 days. It gave an average ammonium nitrogen removal rate (ANR) and a total nitrogen removal rate (TNR) of 94.2% and 81.3%, respectively. The phyla Proteobacteria and Planctomycetes were confirmed as the ammonia oxidizing bacteria (AOB) and anaerobic ammonium oxidation bacteria (AnAOB). The genus Candidatus Brocadia was the major contributor of nitrogen removal. pH and temperature affect the performance of the CANON process. This experimental results showed that the optimum pH and temperature were 8.0 and 30 °C, respectively, which gave the highest average ANR and TNR values of 94.6% and 85.1%, respectively. This research could promote the nitrogen removal ability of CANON process in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Recovery of gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate.

    PubMed

    Alzate, Andrea; López, Maria Esperanza; Serna, Claudia

    2016-11-01

    This paper presents a novel methodology to recover gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate ((NH 4 ) 2 S 2 O 8 ). Gold was recovered as a fine coating using substrate oxidation without shredding or grinding process. The WEEE sample was characterized giving values of Au: 1.05g/kg, Fe: 86.00g/kg, Ni: 73.64g/kg, Cu: 26.65g/kg. The effect of (NH 4 ) 2 S 2 O 8 concentration (0.22-1.10M), oxygen (0.0-1.4L/min) and L/S ratio (10-30mL/g) on the main responses (substrate oxidation and Au recovery) was investigated implementing response surface methodology with numerical optimization. A quadratic model was developed and quantities greater than 98% of Au were recovered. The findings presented suggest that, optimized quantities of ammonium persulfate in aqueous highly oxygenated media could be used to extract superficial gold from WEEE. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Enhancing the Process of Anaerobic Ammonium Oxidation Coupled to Iron Reduction in Constructed Wetland Mesocosms with Supplementation of Ferric Iron Hydroxides

    NASA Astrophysics Data System (ADS)

    Shuai, W.; Jaffe, P. R.

    2017-12-01

    Effective ammonium (NH4+) removal has been a challenge in wastewater treatment processes. Aeration, which is required for the conventional NH4+ removal approach by ammonium oxidizing bacteria, is an energy intensive process during the operation of wastewater treatment plant. The efficiency of NH4+ oxidation in natural systems is also limited by oxygen transfer in water and sediments. The objective of this study is to enhance NH4+ removal by applying a novel microbial process, anaerobic NH4+ oxidation coupled to iron (Fe) reduction (also known as Feammox), in constructed wetlands (CW). Our studies have shown that an Acidimicrobiaceae bacterium named A6 can carry out the Feammox process using ferric Fe (Fe(III)) minerals like ferrihydrite as their electron acceptor. To investigate the properties of the Feammox process in CW as well as the influence of electrodes, Feammox bacterium A6 was inoculated in planted CW mesocosms with electrodes installed at multiple depths. CW mesocosms were operated using high NH4+ nutrient solution as inflow under high or low sediment Fe(III) level. During the operation, NH4+ and ferrous Fe concentration, pore water pH, voltages between electrodes, oxidation reduction potential and dissolved oxygen were measured. At the end of the experiment, CW sediment samples at different depths were taken, DNAs were extracted and quantitative polymerase chain reaction and pyrosequencing were performed to analyze the microbial communities. The results show that the high Fe level CW mesocosm has much higher NH4+ removal ability than the low Fe level CW mesocosm after Fe-reducing conditions are developed. This indicates the enhanced NH4+ removal can be attributed to elevated Feammox activity in high Fe level CW mesocosm. The microbial community structures are different in high or low Fe level CW mesocosms and on or away from the installed electrodes. The voltages between cathode and anode increased after the injection of A6 enrichment culture in low Fe level CW mesocosm but remained stable in high Fe level CW mesocosm, indicating A6 may use electrodes as their electron acceptor in the scarcity of Fe(III). The application of Feammox process in Fe-rich CW is promising in providing a cost and energy effective NH4+ removal approach, and the electrogenesis of A6 may also be useful in enhancing the Feammox process.

  5. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    PubMed Central

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  6. Stimulating ammonia oxidizing bacteria (AOB) activity drives the ammonium oxidation rate in a constructed wetland (CW).

    PubMed

    Su, Yu; Wang, Weidong; Wu, Di; Huang, Wei; Wang, Mengzi; Zhu, Guibing

    2018-05-15

    An integrated approach to document high ammonium oxidation rate in Guanjinggang constructed wetland (GJG-CW) was performed and the results showed that the substantial ammonium oxidation rate could be obtained by enhancing Ammonia Oxidizing Bacteria (AOB) activity rather than Ammonia Oxidizing Archaea (AOA) activity. In the plant-bed/ditch system, ditch center and plant-bed fringe were two active zones for NH 4 + -N removal with ammonium oxidation rate peaking at 2.98±0.04 and 2.15±0.02mgNkg -1 d -1 , respectively. The enhanced AOB activity were achieved by increasing water level fluctuations, extending hydraulic retention time (HRT) and stimulating substrate availability, which subsequently enhanced NH 4 + -N removal by 34.06% in GJG-CW. However, the high AOB activity was not correlated with high AOB abundance, but was instead mostly determined by specific AOB taxa, particularly Nitrosomonas, which dominated in the active AOB. The increased cell-specific AOA activity and high AOA diversity were also achieved using those engineering measures. Although the AOA activity decreased overall with extended HRT and increased NH 4 + -N contents in GJG-CW, AOA still played a major role on ammonium oxidation in plant-bed soil. The study illustrated that artificially enhancing AOB activity and certain species in anthropogenically polluted water ecosystems would be an effective strategy to improve NH 4 + -N removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... Solids), Class 5 (Oxidizers and Organic Peroxides), and Division 1.5 Materials § 176.415 Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as...

  8. Determination of the external mass transfer coefficient and influence of mixing intensity in moving bed biofilm reactors for wastewater treatment.

    PubMed

    Nogueira, Bruno L; Pérez, Julio; van Loosdrecht, Mark C M; Secchi, Argimiro R; Dezotti, Márcia; Biscaia, Evaristo C

    2015-09-01

    In moving bed biofilm reactors (MBBR), the removal of pollutants from wastewater is due to the substrate consumption by bacteria attached on suspended carriers. As a biofilm process, the substrates are transported from the bulk phase to the biofilm passing through a mass transfer resistance layer. This study proposes a methodology to determine the external mass transfer coefficient and identify the influence of the mixing intensity on the conversion process in-situ in MBBR systems. The method allows the determination of the external mass transfer coefficient in the reactor, which is a major advantage when compared to the previous methods that require mimicking hydrodynamics of the reactor in a flow chamber or in a separate vessel. The proposed methodology was evaluated in an aerobic lab-scale system operating with COD removal and nitrification. The impact of the mixing intensity on the conversion rates for ammonium and COD was tested individually. When comparing the effect of mixing intensity on the removal rates of COD and ammonium, a higher apparent external mass transfer resistance was found for ammonium. For the used aeration intensities, the external mass transfer coefficient for ammonium oxidation was ranging from 0.68 to 13.50 m d(-1) and for COD removal 2.9 to 22.4 m d(-1). The lower coefficient range for ammonium oxidation is likely related to the location of nitrifiers deeper in the biofilm. The measurement of external mass transfer rates in MBBR will help in better design and evaluation of MBBR system-based technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. PROCESS FOR SEPARATING IODINE-132 FROM FISSION PRODUCTS

    DOEpatents

    Greene, M.W.; Tucker, W.D.; Samos, G.

    1960-06-28

    A process is given for isolating I/sup 132/ in substantially pure form. Te/sup 132/, which is the radioactive parent of I/sup 132/, is adsorbed on a finely divided mass of a chromatographic grade of refractory metal oxide. i.e., alumina, zirconia, titania, and ceria. After a period of time is allowed for the Te/sup 132/ to decay, a 0.001 to 0.01 molar solution of ammonium hydroxide is passed over the finely divided oxides and the I/sup 132/ values are eluted.

  10. Effects of Sodium Citrate on the Ammonium Sulfate Recycled Leaching of Low-Grade Zinc Oxide Ores

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Li, Shi-wei; Zhang, Li-bo; Peng, Jin-hui; Ma, Ai-yuan; Wang, Bao-bao

    2016-03-01

    The effects of sodium citrate on ammonium sulfate recycled leaching of low-grade zinc oxide ores were studied. By applying various kinds of detection and analysis techniques such as chemical composition analysis, chemical phase method, scanning electron microscopy and energy dispersive spectrum (SEM/EDS), X-ray diffraction (XRD) and Fourier-transforming infrared spectrum (FT-IR), zinc raw ore, its leaching slag and the functional mechanism of sodium citrate were investigated. Based on a comprehensive analysis, it can be concluded that in contrast to hemimorphite (Zn4Si2O7(OH)2 · H2O), amorphous smithsonite (ZnCO3) and zinc silicate (Zn2SiO4) prove to be refractory phases under ammonium sulfate leaching, while sodium citrate has a better chelating action with the refractory phases, resulting in a higher zinc leaching rate. Under conditions of [NH3]/[NH3]T molar ratio being 0.5, [NH3]T being 7.5 mol/L, [Na3C6H5O7] being 0.2 mol/L, S/L ratio being 1:5, temperature being 303 K, holding time being 1 h in each of the two stages, and stirring rate being 300 rpm, the leaching rate of zinc reached 93.4%. In this article, sulfate ammonium recycled technology also reveals its unique advantage in processing low-grade zinc oxide ores accompanied by high silicon and high alkaline gangue.

  11. Catalytic coal liquefaction process

    DOEpatents

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  12. Catalytic coal liquefaction process

    DOEpatents

    Garg, Diwakar; Sunder, Swaminathan

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  13. Characterization of bacterial structures in two-stage moving-bed biofilm reactor (MBBR) during nitrification of the landfill leachate.

    PubMed

    Ciesielski, Slawomir; Kulikowska, Dorota; Kaczowka, Ewelina; Kowal, Przemysław

    2010-07-01

    Differences in DNA banding patterns, obtained by ribosomal intergenic spacer analysis (RISA), and nitrification were followed in a moving-bed biofilm reactor (MBBR) receiving municipal landfill leachate. Complete nitrification (> 99%) to nitrate was obtained in the two-stage MBBR system with an ammonium load of 1.09 g N-NH(4)/m(2).d. Increasing the ammonium load to 2.03 g N-NH(4)/m(2).d or more caused a decline in process efficiency to 70-86%. Moreover, at the highest ammonium load (3.76 g N-NH(4)/m(2).d), nitrite was the predominant product of nitrification. Community succession was evident in both compartments in response to changes in ammonium load. Non-metric multidimensional scaling (NMDS) supported by similarity analysis (ANOSIM) showed that microbial biofilm communities differed between compartments. The microbial biofilm was composed mainly of ammonia-oxidizing bacteria (AOB), with Nitrosomonas europeae and N. eutropha being most abundant. These results suggest that high ammonium concentrations select for particular AOB strains.

  14. Processes for making dense, spherical active materials for lithium-ion cells

    DOEpatents

    Kang, Sun-Ho [Naperville, IL; Amine, Khalil [Downers Grove, IL

    2011-11-22

    Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

  15. Nanostructured manganese oxide on silica aerogel: a new catalyst toward water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Salimi, Saeideh; Madadkhani, Sepideh; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2016-12-01

    Herein we report on the synthesis and characterization of nano-sized Mn oxide/silica aerogel with low density as a good catalyst toward water oxidation. The composite was synthesized by a simple and low-cost hydrothermal procedure. In the next step, we studied the composite in the presence of cerium(IV) ammonium nitrate and photo-produced Ru(bpy) 3 3+ as a water-oxidizing catalyst. The low-density composite is a good Mn-based catalyst with turnover frequencies of ~0.3 and 0.5 (mmol O 2 /(mol Mn·s)) in the presence of Ru(bpy) 3 3+ and cerium(IV) ammonium nitrate, respectively. In addition to the water-oxidizing activities of the composite under different conditions, its self-healing reaction in the presence of cerium(IV) ammonium nitrate was also studied.

  16. Examination of Treatment Methods for Cyanide Wastes.

    DTIC Science & Technology

    1979-05-15

    industry,is alkaline chlorination. This process oxidizes cyanide to cyanate followed by complete decomposition yielding carbon dioxide and nitrogen or...decomposition yielding carbon dioxide and nitrogen, or ammonium salts depending on final treatment methods. The major oxidizing agents that have been...2H20 (X represents a cation.) 29 NADC-78198-60 This liberates carbon dioxide and nitrogen gas as end products. Possible acid hydrolysis has been

  17. The content of trace element iron is a key factor for competition between anaerobic ammonium oxidation and methane-dependent denitrification processes.

    PubMed

    Lu, Yong-Ze; Fu, Liang; Li, Na; Ding, Jing; Bai, Ya-Nan; Samaras, Petros; Zeng, Raymond Jianxiong

    2018-05-01

    Coupling of anaerobic ammonium oxidation (Anammox) with denitrifying anaerobic methane oxidation (DAMO) is a sustainable pathway for nitrogen removal and reducing methane emissions from wastewater treatment processes. However, studies on the competitive relation between Anammox bacteria and DAMO bacteria are limited. Here, we investigated the effects of variations in the contents of trace element iron on Anammox and DAMO microorganisms. The short-term results indicated that optimal concentrations of iron, which obviously stimulated the activity of Amammox bacteria, DAMO bacteria and DAMO archaea, were 80, 20, and 80 μM, respectively. The activity of Amammox bacteria increased more significant than DAMO bacteria with increasing contents of trace element iron. After long-term incubation with high content of trace element iron of 160 μM in the medium, Candidatus Brocadia (Amammox bacteria) outcompeted Candidatus Methylomirabilis oxyfera (DAMO bacteria), and ANME-2d (DAMO archaea) remarkably increased in number and dominated the co-culture systems (64.5%). Meanwhile, with further addition of iron, the removal rate of ammonium and nitrate increased by 13.6 and 9.2 times, respectively, when compared with that noted in the control. As far as we know, this study is the first to explore the important role of trace element iron contents in the competition between Anammox bacteria and DAMO bacteria and further enrichment of DAMO archaea by regulating the contents of trace element iron. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. On the Complex Coupling Between the Production of Ozone and Secondary Organic Aerosol in Polluted Urban Regions

    NASA Astrophysics Data System (ADS)

    Stewart, D. R.; Stockwell, W. R.; Morris, V. R.; Fitzgerald, R. M.

    2016-12-01

    The major photochemical processes that produce ozone and aerosols are coupled together strongly in the polluted urban atmosphere. Aerosols are either directly emitted or formed through the same kind of chemistry that leads to the production of ozone. The aerosols produced through atmospheric chemistry are known as secondary aerosols and they may be composed of inorganic (nitrates, sulfates) or organic compounds. Wind blown dust and soot are two examples of primary aerosols. The component of secondary inorganic aerosols includes compounds such as ammonium nitrate, ammonium bisulfate and ammonium sulfate. Secondary organic aerosols are a very important component of PM with strong implications for health. The formation of secondary organic aerosol is linked with ozone photochemistry through the reactions of volatile organic compounds (VOC). The oxidation of VOC produces radicals that convert nitric oxide to nitrogen dioxide that photolyze to produce ozone. Larger VOC (those with more carbon atoms) undergo a number of oxidation cycles that add oxygen atoms to large organic molecules. The vapor pressure of many of these highly oxidized compounds is sufficiently low that they condense to produce secondary organic aerosols. The Community Multi-scale Air Quality model (CMAQ) and other chemical simulations have been made to quantify the relationship between varying emissions of VOC and NOx and the production of inorganic and secondary organic aerosols. The results from this analysis will be presented.

  19. Nitrogen Cycling in Seagrass Beds Dominated by Thalassia testudinum and Halodule wrightii: the Role of Nitrogen Fixation and Ammonium Oxidation in Regulating Ammonium Availability

    NASA Astrophysics Data System (ADS)

    Capps, R.; Caffrey, J. M.; Hester, C.

    2016-02-01

    Seagrass meadows provide key ecosystem services including nursery and foraging grounds, storm and erosion buffers, biodiversity enhancers and global carbon and nutrient cycling. Nitrogen concentrations are often very low in coastal waters and sediments, which may limit primary productivity. Biological nitrogen fixation is a microbial process that converts dinitrogen to ammonium, which is readily taken up by seagrasses. In the oxygenated rhizospheres, diazotrophs provide the plant with ammonium and use root exudates as an energy source. Nitrogen fixation rates and nutrient concentrations differ between seagrass species and substrate types. Thalassia testudinum has a higher biomass and is a climax species than Halodule wrightii, which is a pioneer species. Nitrogen fixation rates are relatively consistent in Thalassia testudinum dominated sediments. However, it is relatively variable in sediments occupied by Halodule wrightii. Nitrogen fixation rates are higher in bare substrate compared to areas with Thalassia testudinum, which may be due to T. testudinum's greater efficiency in nutrient retention because it is a climax species. We hypothesize that seasonal shifts in nitrogen fixation will coincide with seasonal shifts in seagrass biomass due to higher nutrient requirements during peak growth and lower requirements during senescence and dormancy. The ratio of porewater ammonium to phosphate suggests that seagrass growth may be nitrogen limited as does nitrogen demand, estimated from gross primary productivity. Significant rates of ammonium oxidation in both surface and rhizosphere sediments contribute to this imbalance. Thus, nitrogen fixation may be critical in supporting plant growth.

  20. Quantitative detection of RO2 radicals and other products from cyclohexene ozonolysis with ammonium-CI3-TOF and acetate-CI-API-TOF

    NASA Astrophysics Data System (ADS)

    Hansel, A.; Scholz, W.; Mentler, B.; Fischer, L.; Berndt, T.

    2017-12-01

    The performance of the novel ammonium-CI3-TOF utilizing NH4+ adduct ion chemistry to measure quantitatively first generation oxidized product molecules (OMs) as well as highly oxidized organic molecules (HOMs) was investigated for the first time. The gas-phase ozonolysis of cyclohexene served as a test system in order to evaluate the capability of the detection systems. Experiments have been carried out in the TROPOS free-jet flow system at close to atmospheric conditions. Product ion signals were simultaneously observed by the ammonium-CI3-TOF and the acetate-CI-API-TOF. Both instruments are in remarkable good agreement within a factor of two for HOMs. For OMs not containing an OOH group the acetate technique can considerably underestimate OM concentrations by 2-3 orders of magnitude. First steps of cyclohexene ozonolysis generate ten different (m/z product peaks) main products comprising 92% of observed OMs. The remaining 8% are distributed over several (m/z peaks) minor products that can be attributed to HOMs, predominately to highly oxidized RO2 radicals. Summing up, observed ammonium-CI3-TOF products yield 4.9 x 109 molecules cm-³ in excellent agreement with the amount of reacted cyclohexene of 5.0 x 109 molecules cm-³ for reactant concentrations of [O3] = 2.25 x 1012 molecules cm-³ and [cyclohexene] = 2.0 x 1012 molecules cm-³ and a reaction time of 7.9 s. NH4+ adduct ion chemistry based CIMS techniques offer a unique opportunity for complete detection of the whole product distribution, and consequently, for a much better understanding of atmospheric oxidation processes.

  1. Sulfate-reducing anaerobic ammonium oxidation as a potential treatment method for high nitrogen-content wastewater.

    PubMed

    Rikmann, Ergo; Zekker, Ivar; Tomingas, Martin; Tenno, Taavo; Menert, Anne; Loorits, Liis; Tenno, Toomas

    2012-07-01

    After sulfate-reducing ammonium oxidation (SRAO) was first assumed in 2001, several works have been published describing this process in laboratory-scale bioreactors or occurring in the nature. In this paper, the SRAO process was performed using reject water as a substrate for microorganisms and a source of NH(4) (+), with SO(4) (2-) being added as an electron acceptor. At a moderate temperature of 20°C in a moving bed biofilm reactor (MBBR) sulfate reduction along with ammonium oxidation were established. In an upflow anaerobic sludge blanket reactor (UASBR) the SRAO process took place at 36°C. Average volumetric TN removal rates of 0.03 kg-N/m³/day in the MBBR and 0.04 kg-N/m³/day in the UASBR were achieved, with long-term moderate average removal efficiencies, respectively. Uncultured bacteria clone P4 and uncultured planctomycete clone Amx-PAn30 were detected from the biofilm of the MBBR, from sludge of the UASBR uncultured Verrucomicrobiales bacterium clone De2102 and Uncultured bacterium clone ATB-KS-1929 were found also. The stoichiometrical ratio of NH(4) (+) removal was significantly higher than could be expected from the extent of SO(4) (2-) reduction. This phenomenon can primarily be attributed to complex interactions between nitrogen and sulfur compounds and organic matter present in the wastewater. The high NH(4) (+) removal ratio can be attributed to sulfur-utilizing denitrification/denitritation providing the evidence that SRAO is occurring independently and is not a result of sulfate reduction and anammox. HCO(3) (-) concentrations exceeding 1,000 mg/l were found to have an inhibiting effect on the SRAO process. Small amounts of hydrazine were naturally present in the reaction medium, indicating occurrence of the anammox process. Injections of anammox intermediates, hydrazine and hydroxylamine, had a positive effect on SRAO process performance, particularly in the case of the UASBR.

  2. Environmental Factors Affecting Ammonium Oxidation Under Iron Reducing Conditions

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Huang, S.; Ruiz-Urigüen, M.

    2014-12-01

    Ammonium (NH4+) oxidation coupled to iron (Fe) reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) has been reported by several investigators and referred to as Feammox. Feammox is a biological reaction, where Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+ is the electron donor, which is oxidized to NO2-. Through a 180-day anaerobic incubation experiment, and using PCR-DGGE, 454-pyosequecing and qPCR analysis, we have shown that an Acidimicrobiaceae bacterium A6, a previously unreported species in the Acidimicrobiaceae family, might be either responsible or plays a key role in the Feammox process, We have enriched these Feammox bacteria (65.8% in terms of cell numbers) in a membrane reactor, and isolated the pure Acidimicrobiaceae bacterium A6 strain in an autotrophic medium. In samples collected and then incubated from a series of local wetland-, upland-, as well as storm-water detention pond-sediments, Feammox activity was only detected in acidic soil environments that contain Fe oxides. Using primers we developed for this purpose, Acidimicrobiaceae bacterium A6 was detected in all incubations where Feammox was observed. Anaerobic incubations of Feammox enrichment cultures adjusted to different pH, revealed that the optimal pH for Feammox is 4 ~ 5, and the reaction does not proceed when pH > 7. Feammox was still proceeding at pH as low as 2. In Feammox culture amended with different Fe(III) sources, Feammox reaction proceeded only when Fe oxides (ferrihydrite or goethite ) were supplied, whereas samples incubated with ferric chloride or ferric citrate showed no measurable NH4+ oxidation. Furthermore, we have also determined from incubation experiments conducted with a temperature gradient (10 ~ 35℃), that the Feammox process was active when the temperature is above 15℃, and the optimal temperature is 20℃. Incubations of enrichment culture with 79% Feammox bacteria appeared to remove circa 8% more NH4+ at 20ºC than at 35ºC. This is in contrast to anammox, another anaerobic ammonium oxidation pathway, for which optimal NH4+ oxidation is at temperatures ~ 30ºC. Hence, a Feammox-based process is an attractive candidate for wastewater treatment that could result in further energy savings, by requiring no aeration or heating of the wastewater in temperate climates.

  3. Alternate propellant program, phase 1

    NASA Technical Reports Server (NTRS)

    Anderson, F. A.; West, W. R.

    1979-01-01

    Candidate propellant systems for the shuttle booster solid rocket motor (SRM), which would eliminate, or greatly reduce, the amount of HCl produced in the exhaust of the shuttle SRM were investigated. Ammonium nitrate was selected for consideration as the main oxidizer, with ammonium perchlorate and the nitramine, cyclo-tetramethylene-tetranitramine as secondary oxidizers. The amount of ammonium perchlorate used was limited to an amount which would produce an exhaust containing no more than 3% HCl.

  4. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  5. Unraveling the potential of a combined nitritation-anammox biomass towards the biodegradation of pharmaceutically active compounds.

    PubMed

    Kassotaki, Elissavet; Pijuan, Maite; Joss, Adriano; Borrego, Carles M; Rodriguez-Roda, Ignasi; Buttiglieri, Gianluigi

    2018-05-15

    In the past few years, anaerobic ammonium oxidation-based processes have attracted a lot of attention for their implementation at the mainstream line of wastewater treatment plants, due to the possibility of leading to energy autarky if combined with anaerobic digestion. However, little is known about the potential degradation of micropollutants by the microbial groups responsible of these processes and the few results available are inconclusive. This study aimed to assess the degradation capability of biomass withdrawn from a combined nitritation/anaerobic ammonium oxidation (combined N/A) pilot plant towards five pharmaceutically active compounds (ibuprofen, sulfamethoxazole, metoprolol, venlafaxine and carbamazepine). Batch experiments were performed under different conditions by selectively activating or inhibiting different microbial groups: i) regular combined N/A operation, ii) aerobic (optimal for nitrifying bacteria), iii) aerobic with allylthiourea (an inhibitor of ammonia monooxygenase, enzyme of ammonia oxidizing bacteria), iv) anoxic (optimal for anaerobic ammonium oxidizing bacteria), v) aerobic with acetate (optimal for heterotrophic bacteria) and vi) anoxic with acetate (optimal for heterotrophic denitrifying bacteria). Ibuprofen was the most biodegradable compound being significantly degraded (49-100%) under any condition except heterotrophic denitrification. Sulfamethoxazole, exhibited the highest removal (70%) under optimal conditions for nitrifying bacteria but in the rest of the experiments anoxic conditions were found to be slightly more favorable (up to 58%). For metoprolol the highest performance was obtained under anoxic conditions favoring anammox bacteria (62%). Finally, carbamazepine and venlafaxine were hardly removed (≤10% in the majority of cases). Taken together, these results suggest the specificity of different microbial groups that in combination with alternating operational parameters can lead to enhanced removal of some micropollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Enhanced ammonia removal at room temperature by pH controlled partial nitrification and subsequent anaerobic ammonium oxidation.

    PubMed

    Durán, U; del Val Río, A; Campos, J L; Mosquera-Corral, A; Méndez, R

    2014-01-01

    The Anammox-based processes are suitable for the treatment of wastewaters characterized by a low carbon to nitrogen (C/N) ratio. The application of the Anammox process requires the availability of an effluent with a NO2- -N/NH4+ -N ratio composition around 1 g g-1, which involves the necessity of a previous step where the partial nitrification is performed. In this step, the inhibition of the nitrite-oxidizing bacteria (NOB) is crucial. In the present work, a combined partial nitrification-ANaerobic AMmonia OXidation (Anammox) two-units system operated at room temperature (20 degreeC) has been tested for the nitrogen removal of pre-treated pig slurry. To achieve the successful partial nitrification and inhibit the NOB activity, different ammonium/inorganic carbon (NH4+/IC) ratios were assayed from 1.19 to 0.82g NH4+-Ng-1 HCO3-C. This procedure provoked a decrease of the pH value to 6.0 to regulate the inhibitory effect over ammonia-oxidizing bacteria caused by free ammonia. Simultaneously, the NOB experienced the inhibitory effect of free nitrous acid which avoided the presence of nitrate in the effluent. The NH4+/IC ratio which allowed the obtaining of the desired effluent composition (50% of both ammonium and nitrite) was 0.82 +/- 0.02 g NH4+-N g-1 HCO3- -C. The Anammox reactor was fed with the effluent of the partial nitrification unit containing a NO2 -N/NH4+ -N ratio of 1 g g-1' where a nitrogen loading rate of 0.1 g N L-1 d-1 was efficiently removed.

  7. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferric ammonium ferrocyanide. 73.1298 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1298 Ferric ammonium ferrocyanide. (a) Identity. (1) The color additive ferric ammonium ferrocyanide is the blue pigment obtained by oxidizing...

  8. Impact of aerobic acclimation on the nitrification performance and microbial community of landfill leachate sludge.

    PubMed

    Hira, Daisuke; Aiko, Nobuyuki; Yabuki, Yoshinori; Fujii, Takao

    2018-03-01

    Nitrogenous pollution of water is regarded as a global environmental problem, and nitrogen removal has become an important issue in wastewater treatment processes. Landfill leachate is a typical large source of nitrogenous wastewater. Although the characteristics of leachate vary according to the age of the landfill, leachates of mature landfill have high concentrations of nitrogenous compounds. Most nitrogen in these leachates is in the form of ammonium nitrogen. In this study, we investigated the bacterial community of sludge from a landfill leachate lagoon by pyrosequencing of the bacterial 16S rRNA gene. The sludge was acclimated in a laboratory-scale reactor with aeration using a mechanical stirrer to promote nitrification. On 149 days, nitrification was achieved and then the bacterial community was also analyzed. The bacterial community was also analyzed after nitrification was achieved. Pyrosequencing analyses revealed that the abundances of ammonia-oxidizing and nitrite-oxidizing bacteria were increased by acclimation and their total proportions increased to >15% of total biomass. Changes in the sulfate-reducing and sulfur-oxidizing bacteria were also observed during the acclimation process. The aerobic acclimation process enriched a nitrifying microbial community from the landfill leachate sludge. These results suggested that the aerobic acclimation is a processing method for the nitrification ammonium oxidizing throw the enrichment of nitrifiers. Improvement of this acclimation method would allow nitrogen removal from leachate by nitrification and sulfur denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mimicking the oxygen minimum zones: stimulating interaction of aerobic archaeal and anaerobic bacterial ammonia oxidizers in a laboratory-scale model system

    PubMed Central

    Yan, Jia; Haaijer, Suzanne C M; Op den Camp, Huub J M; Niftrik, Laura; Stahl, David A; Könneke, Martin; Rush, Darci; Sinninghe Damsté, Jaap S; Hu, Yong Y; Jetten, Mike S M

    2012-01-01

    In marine oxygen minimum zones (OMZs), ammonia-oxidizing archaea (AOA) rather than marine ammonia-oxidizing bacteria (AOB) may provide nitrite to anaerobic ammonium-oxidizing (anammox) bacteria. Here we demonstrate the cooperation between marine anammox bacteria and nitrifiers in a laboratory-scale model system under oxygen limitation. A bioreactor containing ‘Candidatus Scalindua profunda’ marine anammox bacteria was supplemented with AOA (Nitrosopumilus maritimus strain SCM1) cells and limited amounts of oxygen. In this way a stable mixed culture of AOA, and anammox bacteria was established within 200 days while also a substantial amount of endogenous AOB were enriched. ‘Ca. Scalindua profunda’ and putative AOB and AOA morphologies were visualized by transmission electron microscopy and a C18 anammox [3]-ladderane fatty acid was highly abundant in the oxygen-limited culture. The rapid oxygen consumption by AOA and AOB ensured that anammox activity was not affected. High expression of AOA, AOB and anammox genes encoding for ammonium transport proteins was observed, likely caused by the increased competition for ammonium. The competition between AOA and AOB was found to be strongly related to the residual ammonium concentration based on amoA gene copy numbers. The abundance of archaeal amoA copy numbers increased markedly when the ammonium concentration was below 30 μM finally resulting in almost equal abundance of AOA and AOB amoA copy numbers. Massive parallel sequencing of mRNA and activity analyses further corroborated equal abundance of AOA and AOB. PTIO addition, inhibiting AOA activity, was employed to determine the relative contribution of AOB versus AOA to ammonium oxidation. The present study provides the first direct evidence for cooperation of archaeal ammonia oxidation with anammox bacteria by provision of nitrite and consumption of oxygen. PMID:23057688

  10. In situ measurements of microbially-catalyzed nitrification and nitrate reduction rates in an ephemeral drainage channel receiving water from coalbed natural gas discharge, Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Harris, S.H.; Smith, R.L.

    2009-01-01

    Nitrification and nitrate reduction were examined in an ephemeral drainage channel receiving discharge from coalbed natural gas (CBNG) production wells in the Powder River Basin, Wyoming. CBNG co-produced water typically contains dissolved inorganic nitrogen (DIN), primarily as ammonium. In this study, a substantial portion of discharged ammonium was oxidized within 50??m of downstream transport, but speciation was markedly influenced by diel fluctuations in dissolved oxygen (> 300????M). After 300??m of transport, 60% of the initial DIN load had been removed. The effect of benthic nitrogen-cycling processes on stream water chemistry was assessed at 2 locations within the stream channel using acrylic chambers to conduct short-term (2-6??h), in-stream incubations. The highest ambient DIN removal rates (2103????mol N m- 2 h- 1) were found at a location where ammonium concentrations > 350????M. This occurred during light incubations when oxygen concentrations were highest. Nitrification was occurring at the site, however, net accumulation of nitrate and nitrite accounted for < 12% of the ammonium consumed, indicating that other ammonium-consuming processes were also occurring. In dark incubations, nitrite and nitrate consumption were dominant processes, while ammonium was produced rather than consumed. At a downstream location nitrification was not a factor and changes in DIN removal rates were controlled by nitrate reduction, diel fluctuations in oxygen concentration, and availability of electron donor. This study indicates that short-term adaptation of stream channel processes can be effective for removing CBNG DIN loads given sufficient travel distances, but the long-term potential for nitrogen remobilization and nitrogen saturation remain to be determined.

  11. Acid-catalyzed oxidation of 2,4-dichlorophenoxyacetic acid by ammonium nitrate in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leavitt, D.D.; Abraham, M.A.

    1990-04-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) was oxidized to CO{sub 2} and water by homogeneous, liquid-phase reaction with ammonium nitrate at temperatures between 250 and 450{degree}F and pressures below 100 psi. N{sub 2} and N{sub 2}O were produced from the thermal decomposition of the ammonium nitrate oxidant. An unexpected maximum in conversion was observed at an intermediate reaction temperature, which was consistent with rapid thermal decomposition of the NH{sub 4}NO{sub 3} oxidant. Postulated reaction pathways consisting of simultaneous oxidation of 2,4-D and decomposition of the oxidant allowed estimation of kinetic constants from best-fit analysis of the data. The proposed reaction model provided amore » mathematical description of 2,4-D conversion, which allowed extrapolation of the results to reaction conditions and reactor configurations that were not experimentally investigated.« less

  12. Ammonium Nitrate as an Oxidant for Composite Propellants. Part 1. Preliminary Considerations

    DTIC Science & Technology

    1954-09-01

    obtainable with a sirple amonium nitrate / fucl mixture is about 223 sec. The advantage of using oxygenated fuels is calculated for cases where, because of...Propulsion Laboratory have used ammonium nitrate and mixtures of arnonium nitrate and ammonium perchloratc as the oxidant /in COi IDE ,T )kL/ D ISCRT&T...previously considered are giver and also a curve for amnonium nitrate / polyvinyl alcohol mixtures. Amonium pcrchlorate/polyisobutenc is inclu£cd for

  13. Metallized solid rocket propellants based on AN/AP and PSAN/AP for access to space

    NASA Astrophysics Data System (ADS)

    Levi, S.; Signoriello, D.; Gabardi, A.; Molinari, M.; Galfetti, L.; Deluca, L. T.; Cianfanelli, S.; Klyakin, G. F.

    2009-09-01

    Solid rocket propellants based on dual mixes of inorganic crystalline oxidizers (ammonium nitrate (AN) and ammonium perchlorate (AP)) with binder and a mixture of micrometric-nanometric aluminum were investigated. Ammonium nitrate is a low-cost oxidizer, producing environment friendly combustion products but with lower specific impulse compared to AP. The better performance obtained with AP and the low quantity of toxic emissions obtained by using AN have suggested an interesting compromise based on a dual mixture of the two oxidizers. To improve the thermal response of raw AN, different types of phase stabilized AN (PSAN) and AN/AP co-crystals were investigated.

  14. Population Ecology of Nitrifiers in a Stream Receiving Geothermal Inputs of Ammonium

    PubMed Central

    Cooper, A. Bryce

    1983-01-01

    The distribution, activity, and generic diversity of nitrifying bacteria in a stream receiving geothermal inputs of ammonium were studied. The high estimated rates of benthic nitrate flux (33 to 75 mg of N · m−2 · h−1) were a result of the activity of nitrifiers located in the sediment. Nitrifying potentials and ammonium oxidizer most probable numbers in the sediments were at least one order of magnitude higher than those in the waters. Nitrifiers in the oxygenated surface (0 to 2 cm) sediments were limited by suboptimal temperature, pH, and substrate level. Nitrifiers in deep (nonsurface) oxygenated sediments did not contribute significantly to the changes measured in the levels of inorganic nitrogen species in the overlying waters and presumably derived their ammonium supply from ammonification within the sediment. Ammonium-oxidizing isolates obtained by a most-probable number nonenrichment procedure were species of either Nitrosospira or Nitrosomonas, whereas all those obtained by an enrichment procedure (i.e., selective culture) were Nitrosomonas spp. The efficiency of the most-probable-number method for enumerating ammonium oxidizers was calculated to be between 0.05 and 2.0%, suggesting that measurements of nitrifying potentials provide a better estimate of nitrifying populations. PMID:16346261

  15. Difficulties in maintaining long-term partial nitritation of ammonium-rich sludge digester liquids in a moving-bed biofilm reactor (MBBR).

    PubMed

    Fux, C; Huang, D; Monti, A; Siegrist, H

    2004-01-01

    Nitrogen can be eliminated effectively from sludge digester effluents by anaerobic ammonium oxidation (anammox), but 55-60% of the ammonium must first be oxidized to nitrite. Although a continuous flow stirred tank reactor (CSTR) with suspended biomass could be used, its hydraulic dilution rate is limited to 0.8-1 d(-1) (30 degrees C). Higher specific nitrite production rates can be achieved by sludge retention, as shown here for a moving-bed biofilm reactor (MBBR) with Kaldnes carriers on laboratory and pilot scales. The maximum nitrite production rate amounted to 2.7 gNO2-Nm(-2)d(-1) (3 gO2m(-3)d(-1), 30.5 degrees C), thus doubling the dilution rate compared to CSTR operation with suspended biomass for a supernatant with 700 gNH4-Nm(-3). Whenever the available alkalinity was fully consumed, an optimal amount of nitrite was produced. However, a significant amount of nitrate was produced after 11 months of operation, making the effluent unsuitable for anaerobic ammonium oxidation. Because the sludge retention time (SRT) is relatively long in biofilm systems, slow growth of nitrite oxidizers occurs. None of the selection criteria applied - a high ammonium loading rate, high free ammonia or low oxygen concentration - led to selective suppression of nitrite oxidation. A CSTR or SBR with suspended biomass is consequently recommended for full-scale operation.

  16. Relations of ammonium minerals at several hydrothermal systems in the western U.S.

    USGS Publications Warehouse

    Krohn, M.D.; Kendall, C.; Evans, J.R.; Fries, T.L.

    1993-01-01

    Ammonium bound to silicate and sulfate minerals has recently been located at several major hydrothermal systems in the western U.S. utilizing newly-discovered near-infrared spectral properties. Knowledge of the origin and mineralogic relations of ammonium minerals at known hydrothermal systems is critical for the proper interpretation of remote sensing data and for testing of possible links to mineralization. Submicroscopic analysis of ammonium minerals from two mercury- and gold-bearing hot-springs deposits at Ivanhoe, Nevada and McLaughlin, California shows that the ammonium feldspar, buddingtonite, occurs as fine-grained euhedral crystals coating larger sulfide and quartz crystals. Ammonium feldspar seems to precipitate relatively late in the crystallization sequence and shows evidence for replacement of NH4+ by K+ or other monovalent cations. Some buddingtonite is observed in close association with mercury, but not with gold. Ammonioalunite is found in a variety of isolated crystal forms at both deposits. Nitrogen isotopic values for ammonium-bearing minerals show a 14??? range in composition, precluding assignment of a specific provenance to the nitrogen. The correlations of nitrogen isotopic values with depth and ammonium content suggest some loss of nitrogen in the oxidizing supergene environment, possibly as a metastable mineral. The high ammonium content in these hydrothermal systems, the close association to mercury, and the small crystal size of the ammonium-bearing minerals all suggest that ammonium may be transported in a late-stage vapor phase or as an organic volatile. Such a process could lead to the formation of a non-carbonaceous organic aureole above a buried geothermal source. The discovery of a 10-km outcrop of ammonium minerals confirms that significant substitution of ammonium in minerals is possible over an extensive area and that remote sensing is a feasible means to detect such aureoles. ?? 1993.

  17. PROCESS OF MAKING SHAPED FUEL FOR NUCLEAR REACTORS

    DOEpatents

    O'Leary, W.J.; Fisher, E.A.

    1964-02-11

    A process for making uranium dioxide fuel of great strength, density, and thermal conductivity by mixing it with 0.1 to 1% of a densifier oxide (tin, aluminum, zirconium, ferric, zinc, chromium, molybdenum, titanium, or niobium oxide) and with a plasticizer (0.5 to 3% of bentonite and 0.05 to 2% of methylcellulose, propylene glycol alginate, or ammonium alginate), compacting the mixture obtained, and sintering the bodies in an atmosphere of carbon monoxide or carbon dioxide, with or without hydrogen, or of a nitrogen-hydrogen mixture is described. (AEC)

  18. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    PubMed

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.

  19. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    PubMed Central

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K.; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A.; Graco, Michelle I.; Kuypers, Marcel M. M.

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein. PMID:26192623

  20. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil.

    PubMed

    Okano, Yutaka; Hristova, Krassimira R; Leutenegger, Christian M; Jackson, Louise E; Denison, R Ford; Gebreyesus, Binyam; Lebauer, David; Scow, Kate M

    2004-02-01

    Ammonium oxidation by autotrophic ammonia-oxidizing bacteria (AOB) is a key process in agricultural and natural ecosystems and has a large global impact. In the past, the ecology and physiology of AOB were not well understood because these organisms are notoriously difficult to culture. Recent applications of molecular techniques have advanced our knowledge of AOB, but the necessity of using PCR-based techniques has made quantitative measurements difficult. A quantitative real-time PCR assay targeting part of the ammonia-monooxygenase gene (amoA) was developed to estimate AOB population size in soil. This assay has a detection limit of 1.3 x 10(5) cells/g of dry soil. The effect of the ammonium concentration on AOB population density was measured in soil microcosms by applying 0, 1.5, or 7.5 mM ammonium sulfate. AOB population size and ammonium and nitrate concentrations were monitored for 28 days after (NH4)2SO4 application. AOB populations in amended treatments increased from an initial density of approximately 4 x 10(6) cells/g of dry soil to peak values (day 7) of 35 x 10(6) and 66 x 10(6) cells/g of dry soil in the 1.5 and 7.5 mM treatments, respectively. The population size of total bacteria (quantified by real-time PCR with a universal bacterial probe) remained between 0.7 x 10(9) and 2.2 x 10(9) cells/g of soil, regardless of the ammonia concentration. A fertilization experiment was conducted in a tomato field plot to test whether the changes in AOB density observed in microcosms could also be detected in the field. AOB population size increased from 8.9 x 10(6) to 38.0 x 10(6) cells/g of soil by day 39. Generation times were 28 and 52 h in the 1.5 and 7.5 mM treatments, respectively, in the microcosm experiment and 373 h in the ammonium treatment in the field study. Estimated oxidation rates per cell ranged initially from 0.5 to 25.0 fmol of NH4+ h(-1) cell(-1) and decreased with time in both microcosms and the field. Growth yields were 5.6 x 10(6), 17.5 x 10(6), and 1.7 x 10(6) cells/mol of NH4+ in the 1.5 and 7.5 mM microcosm treatments and the field study, respectively. In a second field experiment, AOB population size was significantly greater in annually fertilized versus unfertilized soil, even though the last ammonium application occurred 8 months prior to measurement, suggesting a long-term effect of ammonium fertilization on AOB population size.

  1. Analysis of the Hazardous Material Reutilization Facilities at SUBASE Bangor and NS San Diego

    DTIC Science & Technology

    1990-12-01

    soprene * styrene methyl acrylate methyl methacrylate *turpentine? varnish 9 GROUP IV: OXIDES AND PEROXIDE -rORKING COMPOUNDS a) Gases b) Liquids...lead fluorine GROUP XV: POISON a GROUP XVI: OXIDIZERS .a) Solid a) Solid phosphorus red ammonium nitrate phosphorus white/, ammonium perchlorate yellow

  2. Process for removing cadmium from scrap metal

    DOEpatents

    Kronberg, J.W.

    1995-04-11

    A process is described for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to expose additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal. 2 figures.

  3. Process for removing cadmium from scrap metal

    DOEpatents

    Kronberg, J.W.

    1994-01-01

    A process for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to exposure additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal.

  4. Process for removing cadmium from scrap metal

    DOEpatents

    Kronberg, James W.

    1995-01-01

    A process for the recovery of a metal, in particular, cadmium contained in scrap, in a stable form. The process comprises the steps of mixing the cadmium-containing scrap with an ammonium carbonate solution, preferably at least a stoichiometric amount of ammonium carbonate, and/or free ammonia, and an oxidizing agent to form a first mixture so that the cadmium will react with the ammonium carbonate to form a water-soluble ammine complex; evaporating the first mixture so that ammine complex dissociates from the first mixture leaving carbonate ions to react with the cadmium and form a second mixture that includes cadmium carbonate; optionally adding water to the second mixture to form a third mixture; adjusting the pH of the third mixture to the acid range whereby the cadmium carbonate will dissolve; and adding at least a stoichiometric amount of sulfide, preferably in the form of hydrogen sulfide or an aqueous ammonium sulfide solution, to the third mixture to precipitate cadmium sulfide. This mixture of sulfide is then preferably digested by heating to facilitate precipitation of large particles of cadmium sulfide. The scrap may be divided by shredding or breaking up to expose additional surface area. Finally, the precipitated cadmium sulfide can be mixed with glass formers and vitrified for permanent disposal.

  5. Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems.

    PubMed

    Zhu, Guibing; Jetten, Mike S M; Kuschk, Peter; Ettwig, Katharina F; Yin, Chengqing

    2010-04-01

    Anaerobic ammonium oxidation (anammox) and anaerobic methane oxidation (ANME coupled to denitrification) with nitrite as electron acceptor are two of the most recent discoveries in the microbial nitrogen cycle. Currently the anammox process has been relatively well investigated in a number of natural and man-made ecosystems, while ANME coupled to denitrification has only been observed in a limited number of freshwater ecosystems. The ubiquitous presence of anammox bacteria in marine ecosystems has changed our knowledge of the global nitrogen cycle. Up to 50% of N(2) production in marine sediments and oxygen-depleted zones may be attributed to anammox bacteria. However, there are only few indications of anammox in natural and constructed freshwater wetlands. In this paper, the potential role of anammox and denitrifying methanotrophic bacteria in natural and artificial wetlands is discussed in relation to global warming. The focus of the review is to explore and analyze if suitable environmental conditions exist for anammox and denitrifying methanotrophic bacteria in nitrogen-rich freshwater wetlands.

  6. Analysis of reversibility and reaction products of glyoxal uptake onto ammonium sulfate aerosol

    NASA Astrophysics Data System (ADS)

    Galloway, M. M.; Chhabra, P. S.; Chan, A. W.; Surratt, J. D.; Kwan, A. J.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.; Keutsch, F. N.

    2009-04-01

    Glyoxal, the smallest alpha-dicarbonyl, is an oxidation product of both biogenic and anthropogenic volatile organic compounds (Fu et al. JGR 113, D15303, 2008). Despite its low molecular weight, its role in secondary organic aerosol (SOA) formation has gained interest and a recent study suggested that it accounts for more than 15% of SOA in Mexico City (Volkamer et al. GRL 34, L19807, 2007). Despite numerous previous studies, questions remain regarding the processes controlling glyoxal uptake onto aerosol, including the role of acid catalysis, degree of reversibility, and identity of aerosol phase reaction products. We present results of chamber aerosol studies (Galloway et al. ACPD 8, 20799, 2008) and laboratory studies of bulk samples aimed at improving the understanding of these processes, in particular formation of oligomers and organosulfates of glyoxal, as well as the formation of imidazoles (carbon-nitrogen containing heterocyclic aromatic compounds) under dark and irradiated conditions. The relevance of these classes of reaction products extends beyond glyoxal, as evidence of oligomers and organosulfates other than those of glyoxal have been found in ambient aerosol (Surratt et al. JPCA 112, 8345, 2008; Denkenberger et al. Environ. Sci. Technol. 41, 5439, 2007). Experiments in which a chamber air mass was diluted after equilibration of glyoxal uptake onto ammonium sulfate seed aerosol (relative humidity 60% and glyoxal mixing ratios of 25-200 ppbv) shows that under these conditions uptake is reversible. The most important condensed phase products are hydrated oligomers of glyoxal, which are also formed reversibly under these conditions. Our studies show that organosulfates were not formed under dark conditions for neutral or acidified aerosol; similarly, Minerath et al. have recently shown that formation of a different class of organosulfates (alkyl sulfates) also proceeds very slowly even under acidic conditions (Environ. Sci. Technol. 42, 4410, 2008). The masses assigned to sulfate esters in previous work (Liggio et al. Environ. Sci. Technol. 39, 1532, 2005) via low resolution AMS studies were assigned as glyoxal oligomers in our study via high resolution AMS spectra. However, organosulfates were identified under irradiated conditions, and we present attempts to identify the specific species via comparison with lab synthesized organosulfates. The influence of irradiation on organosulfate formation is still under investigation. Under irradiated conditions we see clear evidence for active oxidative photochemistry. The aerosol phase becomes increasingly oxidized and oxidation products, such as organic acids, similar to those observed in studies using bulk samples by Carlton et al. (Atmos. Environ. 41, 7588, 2007) are formed. Overall uptake is reduced under our experimental conditions, likely due to increasing temperature and decreasing relative humidity. We also report observation of imidazoles (carbon-nitrogen containing aromatic heterocycles) resulting from reaction of glyoxal with the nitrogen component of the ammonium sulfate seed aerosol. The imidazoles form irreversibly under dark and irradiated conditions, in ammonium sulfate and acidified ammonium sulfate (pH~1) aerosol. The molecular framework of imidazoles is very stable as a result of the aromaticity. The primary imidazole product, which has a low vapor pressure estimated at 0.0014 Torr, is predicted to be present as a (protonated) cation, owing to its basicity (pKB = 7). It is thus likely not a candidate for repartitioning to the gas phase. Evidence for participation of ammonium in reactions with glyoxal using bulk samples has recently been reported by Noziere et al. (JPCA 113, 231, 2008; ACPD 9, 1, 2009). This study reveals the complex chemistry occurring within ammonium sulfate seed aerosol even for systems with greatly reduced complexity compared to atmospheric aerosol. The results increase our understanding of the contribution of glyoxal to SOA formation processes. More specifically, these results provide valuable insights into important aerosol processes, such as organosulfate and oligomer formation, as well as the formation of aromatic nitrogen containing heterocycles from reaction of a carbonyl with ammonium sulfate aerosol.

  7. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Böhlke, John Karl; Masoner, Jason R.; Breit, George N.; Lorah, Michelle M.; Tuttle, Michele L.W.; Jaeschke, Jeanne B.

    2011-01-01

    Leachate from municipal landfills can create groundwater contaminant plumes that may last for decades to centuries. The fate of reactive contaminants in leachate-affected aquifers depends on the sustainability of biogeochemical processes affecting contaminant transport. Temporal variations in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade. The leachate plume contained elevated concentrations of nonvolatile dissolved organic carbon (NVDOC) (up to 300 mg/L), methane (16 mg/L), ammonium (650 mg/L as N), iron (23 mg/L), chloride (1030 mg/L), and bicarbonate (4270 mg/L). Chemical and isotopic investigations along a 2D plume transect revealed consumption of solid and aqueous electron acceptors in the aquifer, depleting the natural attenuation capacity. Despite the relative recalcitrance of NVDOC to biodegradation, the center of the plume was depleted in sulfate, which reduces the long-term oxidation capacity of the leachate-affected aquifer. Ammonium and methane were attenuated in the aquifer relative to chloride by different processes: ammonium transport was retarded mainly by physical interaction with aquifer solids, whereas the methane plume was truncated largely by oxidation. Studies near plume boundaries revealed temporal variability in constituent concentrations related in part to hydrologic changes at various time scales. The upper boundary of the plume was a particularly active location where redox reactions responded to recharge events and seasonal water-table fluctuations. Accurately describing the biogeochemical processes that affect the transport of contaminants in this landfill-leachate-affected aquifer required understanding the aquifer's geologic and hydrodynamic framework.

  8. Effect of carbon source on nitrogen removal in anaerobic ammonium oxidation (anammox) process.

    PubMed

    Zhu, Weiqiang; Zhang, Peiyu; Dong, Huiyu; Li, Jin

    2017-04-01

    Anaerobic ammonium oxidation (anammox) has been regarded as an efficient process to treat high-strength wastewater without organic carbon source. To investigate nitrogen removal performance of anammox in presence of organic carbon source can broaden its application on organic wastewater treatment. In this work, effect of carbon source on anammox process was explored. Operating temperature was set at 35 ± 1°C. Influent pH and hydraulic retention time were 7.5 and 6 h, respectively. Effluent [Formula: see text] was affected little with COD no more than 480 mg/L. Independent of carbon source content, nitrite removal rate was around 99%. The variation of [Formula: see text] lagged behind [Formula: see text] at high COD content, and pH could be used as an indicator for [Formula: see text] removal. Specific anammox activity dropped from 0.39 to 0.19  [Formula: see text] at COD=720 mg/L. The remodified logistic model was quite appropriate for describing the nitrogen removal kinetics and predicting the performance of anammox process in presence of carbon source. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Nitrification and CO2 fixation in hot springs in the presence and absence of a nitrification inhibitor

    NASA Astrophysics Data System (ADS)

    Hungate, B. A.; Dijkstra, P.; Brown, J.; Mau, R. L.; Thomas, S.; Dodsworth, J. A.; Hedlund, B. P.; Boyd, E. S.; de la Torre, J. R.; Jewell, T.

    2012-12-01

    Ammonium oxidation occurs in terrestrial and aquatic ecosystems, and from temperatures approaching freezing to close to 80 °C. This reaction is catalyzed by ammonium oxidase associated with both Bacteria and Archaea, although those associated with Archaea appear dominant at temperatures above ~ 60°C. For bacteria, this process is coupled to active CO2 uptake, although whether Archaea use this reaction in situ to drive C fixation has yet to be definitively established. For some hot spring communities, the Thaumarcheota (specifically close relatives of Nitrosocaldus yellowstonii) represent a substantial proportion of the microbial community. We conducted gross nitrification and CO2 fixation measurements to determine 1- the upper in situ temperature limit for nitrification and 2- the contribution of ammonium oxidizers to the community C fixation by inhibiting nitrification using allylthiourea (ATU). We used 15NO3- pool dilution to determine nitrification in sediment slurries and incubated sediment with 14C-labeled bicarbonate to measure C fixation. Sediment samples were collected from the Great Boiling Spring near Gerlach, Nevada. The water temperature ranged between 83 and 50°C depending on the location in the main pool. We collected samples at 82, 72, 59, and 51 °C. The sediment was homogenized, 15NO3- was added. The nitrification inhibitor ATU was added before adding the 15N label. One sample was immediately stored cold, while another was incubated overnight at the collection temperature. In parallel experiments, 14C bicarbonate was added to the headspace and likewise incubated in situ for several hours in the presence and absence of ATU. We observed significant nitrification at temperatures from 51-72 °C, but not at 82 °C. This nitrification was blocked by ATU. We also observed significant CO2 fixation at 51 and 59 °C, but not at higher temperature. CO2 fixation was not blocked by the nitrification inhibitor. We conclude that 1- ammonium oxidizers are responsible for at most a small proportion of the community CO2 fixation, and 2- at the highest temperature assessed, nitrification is negligible even though the organism capable of ammonium oxidization is still present.

  10. Nitrogen removal in Northern peatlands treating mine wastewaters

    NASA Astrophysics Data System (ADS)

    Palmer, Katharina; Karlsson, Teemu; Turunen, Kaisa; Liisa Räisänen, Marja; Backnäs, Soile

    2015-04-01

    Natural peatlands can be used as passive purification systems for mine wastewaters. These treatment peatlands are well-suited for passive water treatment as they delay the flow of water, and provide a large filtration network with many adsorptive surfaces on plant roots or soil particles. They have been shown to remove efficiently harmful metals and metalloids from mine waters due to variety of chemical, physical and biological processes such as adsorption, precipitation, sedimentation, oxidation and reduction reactions, as well as plant uptake. Many factors affect the removal efficiency such as inflow water quality, wetland hydrology, system pH, redox potential and temperature, the nature of the predominating purification processes, and the presence of other components such as salts. However, less attention has been paid to nitrogen (N) removal in peatlands. Thus, this study aimed to assess the efficiency of N removal and seasonal variation in the removal rate in two treatment peatlands treating mine dewatering waters and process effluent waters. Water sampling from treatment peatland inflow and outflow waters as well as pore waters in peatland were conducted multiple times during 2012-2014. Water samples were analysed for total N, nitrate-N and ammonium-N. Additionally, an YSI EXO2 device was used for continuous nitrate monitoring of waters discharged from treatment peatlands to the recipient river during summer 2014. The results showed that the oxic conditions in upper peat layer and microbial activity in treatment peatlands allowed the efficient oxidation of ammonium-N to nitrite-N and further to nitrate-N during summer time. However, the slow denitrification rate restricts the N removal as not all of the nitrate produced during nitrification is denitrified. In summer time, the removal rate of total N varied between 30-99 % being highest in late summer. N removal was clearly higher for treatment peatland treating process effluent waters than for peatland treating dewatering waters probably due to more oxidizing conditions. During winter time there is not enough microbial activity to maintain oxidation of ammonium-N to nitrate-N. However, almost 20 % of N may be removed during winter season due to nitrate denitrification.

  11. Oxidative Pressure Leaching of Silver from Flotation Concentrates with Ammonium Thiocyanate Solution

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Hai; Yang, Jian-Guang; Liu, Wei; Chen, Geng-Tao; Tang, Mo-Tang; Qiu, Guan-Zhou

    2010-02-01

    The thermodynamics and technologies of the selective pressure leaching of silver from flotation concentrates were investigated in an ammonium thiocyanate medium. Thermodynamic analyses, which include silver solubility in NH4SCN solution and Eh-pH diagrams of the Me-MeS-NH4SCN-H2O system at 25 °C, were discussed. The effects of several factors, such as temperature, leaching time, oxidant, pH value, flotation concentrates concentration, surfactant concentration, and so on, on the extraction percentages of silver and zinc were investigated. The following optimal leaching conditions were obtained: NH4SCN concentration 1.5 M, lignin concentration 0.5 g/L, Fe3+ concentration 2 g/L, flotation concentrates addition 200 g/L, and oxygen pressure 1.2 MPa at 130 °C for 3 hours. Under these optimum conditions, the average extraction percentage of silver exceeded 94 pct, whereas the average extraction percentage of zinc was less than 3 pct. Only 7 pct of ammonium thiocyanate was consumed after 4 cycles, which indicated that ammonium thiocyanate hardly was oxidized under these oxidative pressure leaching conditions.

  12. Synthesis, Evaluation, and Formulation Studies on New Oxidizers as Alternatives to Ammonium Perchlorate in DoD Missile Propulsion Applications

    DTIC Science & Technology

    2007-04-23

    7 oxamide (4)..................................................................................13 Figure 5—5. Direct Nitration Efforts...5—8. Acylations of FOX-7 Potassium Salt. ............................................................16 Figure 5—9. Nitration of FOX-7 Salts...Dinitramide ADNA – Ammonium di(nitramido) amine ADNDNE – diammonium di(nitramido) dinitoethylene AN – Ammonium Nitrate AP – Ammonium Perchlorate ATK

  13. Sulfide-Induced Dissimilatory Nitrate Reduction to Ammonium Supports Anaerobic Ammonium Oxidation (Anammox) in an Open-Water Unit Process Wetland

    PubMed Central

    Jones, Zackary L.; Jasper, Justin T.; Sedlak, David L.

    2017-01-01

    ABSTRACT Open-water unit process wetlands host a benthic diatomaceous and bacterial assemblage capable of nitrate removal from treated municipal wastewater with unexpected contributions from anammox processes. In exploring mechanistic drivers of anammox, 16S rRNA gene sequencing profiles of the biomat revealed significant microbial community shifts along the flow path and with depth. Notably, there was an increasing abundance of sulfate reducers (Desulfococcus and other Deltaproteobacteria) and anammox microorganisms (Brocadiaceae) with depth. Pore water profiles demonstrated that nitrate and sulfate concentrations exhibited a commensurate decrease with biomat depth accompanied by the accumulation of ammonium. Quantitative PCR targeting the anammox hydrazine synthase gene, hzsA, revealed a 3-fold increase in abundance with biomat depth as well as a 2-fold increase in the sulfate reductase gene, dsrA. These microbial and geochemical trends were most pronounced in proximity to the influent region of the wetland where the biomat was thickest and influent nitrate concentrations were highest. While direct genetic queries for dissimilatory nitrate reduction to ammonium (DNRA) microorganisms proved unsuccessful, an increasing depth-dependent dominance of Gammaproteobacteria and diatoms that have previously been functionally linked to DNRA was observed. To further explore this potential, a series of microcosms containing field-derived biomat material confirmed the ability of the community to produce sulfide and reduce nitrate; however, significant ammonium production was observed only in the presence of hydrogen sulfide. Collectively, these results suggest that biogenic sulfide induces DNRA, which in turn can explain the requisite coproduction of ammonium and nitrite from nitrified effluent necessary to sustain the anammox community. IMPORTANCE This study aims to increase understanding of why and how anammox is occurring in an engineered wetland with limited exogenous contributions of ammonium and nitrite. In doing so, the study has implications for how geochemical parameters could potentially be leveraged to impact nutrient cycling and attenuation during the operation of treatment wetlands. The work also contributes to ongoing discussions about biogeochemical signatures surrounding anammox processes and enhances our understanding of the contributions of anammox processes in freshwater environments. PMID:28526796

  14. Use It or Lose It: Advances in Our Understanding of Terrestrial Nitrogen Retention and Loss (Invited)

    NASA Astrophysics Data System (ADS)

    Silver, W. L.; Yang, W. H.

    2013-12-01

    Understanding of the terrestrial nitrogen (N) cycle has grown over the last decade to include a variety of pathways that have the potential to either retain N in the ecosystem or result in losses to the atmosphere or groundwater. Early work has described the mechanics of these N transformations, but the relevance of these processes to ecosystem, regional, or global scale N cycling has not been well quantified. In this study, we review advances in our understanding of the terrestrial N cycle, and focus on three pathways with particular relevance to N retention and loss: dissimilatory nitrate and nitrite reduction to ammonium (DNRA), anaerobic ammonium oxidation (annamox), and anaerobic ammonium oxidation coupled to iron reduction (Feammox). We discuss the role of these processes in the microbial N economy (sensu Burgin et al. 2011) of the terrestrial N cycle, the environmental and ecological constraints, and relationships with other key biogeochemical cycles. We also discuss recent advances in analytical approaches that have improved our ability to detect these and related N fluxes in terrestrial ecosystems. Finally, we present a scaling exercise that identifies the potential importance of these pathways for N retention and loss across a range of spatial and temporal scales, and discuss their significance in terms of N limitation to net primary productivity, N leaching to groundwater, and the release of reactive N gases to the atmosphere.

  15. Ammonium Uptake by Phytoplankton Regulates Nitrification in the Sunlit Ocean

    PubMed Central

    Smith, Jason M.; Chavez, Francisco P.; Francis, Christopher A.

    2014-01-01

    Nitrification, the microbial oxidation of ammonium to nitrate, is a central part of the nitrogen cycle. In the ocean’s surface layer, the process alters the distribution of inorganic nitrogen species available to phytoplankton and produces nitrous oxide. A widely held idea among oceanographers is that nitrification is inhibited by light in the ocean. However, recent evidence that the primary organisms involved in nitrification, the ammonia-oxidizing archaea (AOA), are present and active throughout the surface ocean has challenged this idea. Here we show, through field experiments coupling molecular genetic and biogeochemical approaches, that competition for ammonium with phytoplankton is the strongest regulator of nitrification in the photic zone. During multiday experiments at high irradiance a single ecotype of AOA remained active in the presence of rapidly growing phytoplankton. Over the course of this three day experiment, variability in the intensity of competition with phytoplankton caused nitrification rates to decline from those typical of the lower photic zone (60 nmol L−1 d−1) to those in well-lit layers (<1 nmol L−1 d−1). During another set of experiments, nitrification rates exhibited a diel periodicity throughout much of the photic zone, with the highest rates occurring at night when competition with phytoplankton is lowest. Together, the results of our experiments indicate that nitrification rates in the photic zone are more strongly regulated by competition with phytoplankton for ammonium than they are by light itself. This finding advances our ability to model the impact of nitrification on estimates of new primary production, and emphasizes the need to more strongly consider the effects of organismal interactions on nutrient standing stocks and biogeochemical cycling in the surface of the ocean. PMID:25251022

  16. Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean.

    PubMed

    Smith, Jason M; Chavez, Francisco P; Francis, Christopher A

    2014-01-01

    Nitrification, the microbial oxidation of ammonium to nitrate, is a central part of the nitrogen cycle. In the ocean's surface layer, the process alters the distribution of inorganic nitrogen species available to phytoplankton and produces nitrous oxide. A widely held idea among oceanographers is that nitrification is inhibited by light in the ocean. However, recent evidence that the primary organisms involved in nitrification, the ammonia-oxidizing archaea (AOA), are present and active throughout the surface ocean has challenged this idea. Here we show, through field experiments coupling molecular genetic and biogeochemical approaches, that competition for ammonium with phytoplankton is the strongest regulator of nitrification in the photic zone. During multiday experiments at high irradiance a single ecotype of AOA remained active in the presence of rapidly growing phytoplankton. Over the course of this three day experiment, variability in the intensity of competition with phytoplankton caused nitrification rates to decline from those typical of the lower photic zone (60 nmol L-1 d-1) to those in well-lit layers (<1 nmol L-1 d-1). During another set of experiments, nitrification rates exhibited a diel periodicity throughout much of the photic zone, with the highest rates occurring at night when competition with phytoplankton is lowest. Together, the results of our experiments indicate that nitrification rates in the photic zone are more strongly regulated by competition with phytoplankton for ammonium than they are by light itself. This finding advances our ability to model the impact of nitrification on estimates of new primary production, and emphasizes the need to more strongly consider the effects of organismal interactions on nutrient standing stocks and biogeochemical cycling in the surface of the ocean.

  17. [Effect of monovalent cations on glutamate metabolism in rat brain].

    PubMed

    Nilova, N S

    1976-10-01

    Glutamate oxidation in vitro via deamination and transamination during gramicidin C-induced transport of K+ and Na+ in rat nervous tissue mitochondria was studied. An increase in ammonium production, i.e. in glutamate oxidation due to deamination, was shown to occur with maximal increase of oxygen consumption in the presence of cations. It was found that 1.5 mM Na+ activate oxygen consumption by 15% and accelerate ammonium production from glutamate (by 17%). No changes in aspartate production were observed. 15 mM K+ increase oxygen consumption by 29% and ammonium production by 11% during a decrease in aspartate production as compared to glutamate oxidation in the presence of a lower (10 mM) concentration of K+ in the samples.

  18. Electrochemical method applicable to treatment of wastewater from nitrotriazolone production.

    PubMed

    Wallace, Lynne; Cronin, Michael P; Day, Anthony I; Buck, Damian P

    2009-03-15

    Laboratory studies show that electrochemical oxidation of acidic nitrotriazolone (NTO) solutions results in complete mineralization, with ammonium nitrate as the only solution product Other products (carbon dioxide, carbon monoxide, and nitrous oxide) are eliminated as gases from the working electrode. No additional chemical loading is required for the process, and electricity isthe only input The process maytherefore represent a cost-effective and environmentally friendly method of remediation for wastewater from NTO manufacture. Electrolyses were carried out at different applied voltages and at NTO concentrations of 0.01 and 0.05 mol/L, and the results indicate that a higher oxidation rate results in a greater charge passed per mole of NTO oxidized and increased production of nitrous oxide. Mechanisms are proposed on the basis of competing oxidative pathways that account for all products formed and the total charge passed during the reaction.

  19. Quantifying manganese and nitrogen cycle coupling in manganese-rich, organic carbon-starved marine sediments: Examples from the Clarion-Clipperton fracture zone

    NASA Astrophysics Data System (ADS)

    Mogollón, José M.; Mewes, Konstantin; Kasten, Sabine

    2016-07-01

    Extensive deep-sea sedimentary areas are characterized by low organic carbon contents and thus harbor suboxic sedimentary environments where secondary (autotrophic) redox cycling becomes important for microbial metabolic processes. Simulation results for three stations in the Eastern Equatorial Pacific with low organic carbon content (<0.5 dry wt %) and low sedimentation rates (10-1-100 mm ky-1) show that ammonium generated during organic matter degradation may act as a reducing agent for manganese oxides below the oxic zone. Likewise, at these sedimentary depths, dissolved reduced manganese may act as a reducing agent for oxidized nitrogen species. These manganese-coupled transformations provide a suboxic conversion pathway of ammonium and nitrate to dinitrogen. These manganese-nitrogen interactions further explain the presence and production of dissolved reduced manganese (up to tens of μM concentration) in sediments with high nitrate (>20 μM) concentrations.

  20. Dissimilatory nitrogen reduction in intertidal sediments of a temperate estuary: small scale heterogeneity and novel nitrate-to-ammonium reducers.

    PubMed

    Decleyre, Helen; Heylen, Kim; Van Colen, Carl; Willems, Anne

    2015-01-01

    The estuarine nitrogen cycle can be substantially altered due to anthropogenic activities resulting in increased amounts of inorganic nitrogen (mainly nitrate). In the past, denitrification was considered to be the main ecosystem process removing reactive nitrogen from the estuarine ecosystem. However, recent reports on the contribution of dissimilatory nitrate reduction to ammonium (DNRA) to nitrogen removal in these systems indicated a similar or higher importance, although the ratio between both processes remains ambiguous. Compared to denitrification, DNRA has been underexplored for the last decades and the key organisms carrying out the process in marine environments are largely unknown. Hence, as a first step to better understand the interplay between denitrification, DNRA and reduction of nitrate to nitrite in estuarine sediments, nitrogen reduction potentials were determined in sediments of the Paulina polder mudflat (Westerschelde estuary). We observed high variability in dominant nitrogen removing processes over a short distance (1.6 m), with nitrous oxide, ammonium and nitrite production rates differing significantly between all sampling sites. Denitrification occurred at all sites, DNRA was either the dominant process (two out of five sites) or absent, while nitrate reduction to nitrite was observed in most sites but never dominant. In addition, novel nitrate-to-ammonium reducers assigned to Thalassospira, Celeribacter, and Halomonas, for which DNRA was thus far unreported, were isolated, with DNRA phenotype reconfirmed through nrfA gene amplification. This study demonstrates high small scale heterogeneity among dissimilatory nitrate reduction processes in estuarine sediments and provides novel marine DNRA organisms that represent valuable alternatives to the current model organisms.

  1. Dissimilatory nitrogen reduction in intertidal sediments of a temperate estuary: small scale heterogeneity and novel nitrate-to-ammonium reducers

    PubMed Central

    Decleyre, Helen; Heylen, Kim; Van Colen, Carl; Willems, Anne

    2015-01-01

    The estuarine nitrogen cycle can be substantially altered due to anthropogenic activities resulting in increased amounts of inorganic nitrogen (mainly nitrate). In the past, denitrification was considered to be the main ecosystem process removing reactive nitrogen from the estuarine ecosystem. However, recent reports on the contribution of dissimilatory nitrate reduction to ammonium (DNRA) to nitrogen removal in these systems indicated a similar or higher importance, although the ratio between both processes remains ambiguous. Compared to denitrification, DNRA has been underexplored for the last decades and the key organisms carrying out the process in marine environments are largely unknown. Hence, as a first step to better understand the interplay between denitrification, DNRA and reduction of nitrate to nitrite in estuarine sediments, nitrogen reduction potentials were determined in sediments of the Paulina polder mudflat (Westerschelde estuary). We observed high variability in dominant nitrogen removing processes over a short distance (1.6 m), with nitrous oxide, ammonium and nitrite production rates differing significantly between all sampling sites. Denitrification occurred at all sites, DNRA was either the dominant process (two out of five sites) or absent, while nitrate reduction to nitrite was observed in most sites but never dominant. In addition, novel nitrate-to-ammonium reducers assigned to Thalassospira, Celeribacter, and Halomonas, for which DNRA was thus far unreported, were isolated, with DNRA phenotype reconfirmed through nrfA gene amplification. This study demonstrates high small scale heterogeneity among dissimilatory nitrate reduction processes in estuarine sediments and provides novel marine DNRA organisms that represent valuable alternatives to the current model organisms. PMID:26528270

  2. Biotransformation of acyclovir by an enriched nitrifying culture.

    PubMed

    Xu, Yifeng; Yuan, Zhiguo; Ni, Bing-Jie

    2017-03-01

    This work evaluates the biodegradation of the antiviral drug acyclovir by an enriched nitrifying culture during ammonia oxidation and without the addition of ammonium. The study on kinetics was accompanied with the structural elucidation of biotransformation products through batch biodegradation experiments at two different initial levels of acyclovir (15 mg L -1 and 15 μg L -1 ). The pseudo first order kinetic studies of acyclovir in the presence of ammonium indicated the higher degradation rates under higher ammonia oxidation rates than those constant degradation rates in the absence of ammonium. The positive correlation was found between acyclovir degradation rate and ammonia oxidation rate, confirming the cometabolism of acyclovir by the enriched nitrifying culture in the presence of ammonium. Formation of the product carboxy-acyclovir (P239) indicated the main biotransformation pathway was aerobic oxidation of the terminal hydroxyl group, which was independent on the metabolic type (i.e. cometabolism or metabolism). This enzyme-linked reaction might be catalyzed by monooxygenase from ammonia oxidizing bacteria or heterotrophs. The formation of carboxy-acyclovir was demonstrated to be irrelevant to the acyclovir concentrations applied, indicating the revealed biotransformation pathway might be the dominant removal pathway of acyclovir in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile.

    PubMed

    Höfferle, Špela; Nicol, Graeme W; Pal, Levin; Hacin, Janez; Prosser, James I; Mandić-Mulec, Ines

    2010-11-01

    Oxidation of ammonia, the first step in nitrification, is carried out in soil by bacterial and archaeal ammonia oxidizers and recent studies suggest possible selection for the latter in low-ammonium environments. In this study, we investigated the selection of ammonia-oxidizing archaea and bacteria in wetland soil vertical profiles at two sites differing in terms of the ammonium supply rate, but not significantly in terms of the groundwater level. One site received ammonium through decomposition of organic matter, while the second, polluted site received a greater supply, through constant leakage of an underground septic tank. Soil nitrification potential was significantly greater at the polluted site. Quantification of amoA genes demonstrated greater abundance of bacterial than archaeal amoA genes throughout the soil profile at the polluted site, whereas bacterial amoA genes at the unpolluted site were below the detection limit. At both sites, archaeal, but not the bacterial community structure was clearly stratified with depth, with regard to the soil redox potential imposed by groundwater level. However, depth-related changes in the archaeal community structure may also be associated with physiological functions other than ammonia oxidation. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Removal of PPCPs from the sludge supernatant in a one stage nitritation/anammox process.

    PubMed

    Alvarino, T; Suarez, S; Katsou, E; Vazquez-Padin, J; Lema, J M; Omil, F

    2015-01-01

    Pharmaceutical and personal care products (PPCPs) are extensively used and can therefore find their way into surface, groundwater and municipal and industrial effluents. In this work, the occurrence, fate and removal mechanisms of 19 selected PPCPs was investigated in an 'ELiminación Autótrofa de Nitrógeno' (ELAN) reactor of 200 L. In this configuration, ammonium oxidation to nitrite and the anoxic ammonium oxidation (anammox)processes occur simultaneously in a single-stage reactor under oxygen limited conditions. The ELAN process achieved high removal (>80%) of the studied hormones, naproxen, ibuprofen, bisphenol A and celestolide, while it was not effective in the removal of carbamazepine (<7%), diazepam (<7%) and fluoxetine (<30%). Biodegradation was the dominant removal mechanism, while sorption was only observed for musk fragrances, fluoxetine and triclosan. The sorption was strongly dependent on the granule size, with smaller granules facilitating the sorption of the target compounds. Increased hydraulic retention time enhanced the intramolecular diffusion of the PPCPs into the granules, and thus increased the solid phase concentration. The increase of nitritation rate favored the removal of ibuprofen, bisphenol A and triclosan, while the removal of erythromycin was strongly correlated to the anammox reaction rate.

  5. Multi-component removal in flue gas by aqua ammonia

    DOEpatents

    Yeh, James T [Bethel Park, PA; Pennline, Henry W [Bethel Park, PA

    2007-08-14

    A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.

  6. PROCESSES FOR SEPARATING AND RECOVERING CONSTITUENTS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Connick, R.E.; Gofman, J.W.; Pimentel, G.C.

    1959-11-10

    Processes are described for preparing plutonium, particularly processes of separating plutonium from uranium and fission products in neutron-irradiated uraniumcontaining matter. Specifically, plutonium solutions containing uranium, fission products and other impurities are contacted with reducing agents such as sulfur dioxide, uranous ion, hydroxyl ammonium chloride, hydrogen peroxide, and ferrous ion whereby the plutoninm is reduced to its fluoride-insoluble state. The reduced plutonium is then carried out of solution by precipitating niobic oxide therein. Uranium and certain fission products remain behind in the solution. Certain other fission products precipitate along with the plutonium. Subsequently, the plutonium and fission product precipitates are redissolved, and the solution is oxidized with oxidizing agents such as chlorine, peroxydisulfate ion in the presence of silver ion, permanganate ion, dichromate ion, ceric ion, and a bromate ion, whereby plutonium is oxidized to the fluoride-soluble state. The oxidized solution is once again treated with niobic oxide, thus precipitating the contamirant fission products along with the niobic oxide while the oxidized plutonium remains in solution. Plutonium is then recovered from the decontaminated solution.

  7. Potential coupling effects of ammonia-oxidizing and anaerobic ammonium-oxidizing bacteria on completely autotrophic nitrogen removal over nitrite biofilm formation induced by the second messenger cyclic diguanylate.

    PubMed

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhao, Chuanqi; Yang, Fenglin; Wang, Dong

    2017-05-01

    The objective of this study was to investigate the influence of extracellular polymeric substance (EPS) on the coupling effects between ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) bacteria for the completely autotrophic nitrogen removal over nitrite (CANON) biofilm formation in a moving bed biofilm reactor (MBBR). Analysis of the quantity of EPS and cyclic diguanylate (c-di-GMP) confirmed that the contents of polysaccharides and c-di-GMP were correlated in the AOB sludge, anammox sludge, and CANON biofilm. The anammox sludge secreted more EPS (especially polysaccharides) than AOB with a markedly higher c-di-GMP content, which could be used by the bacteria to regulate the synthesis of exopolysaccharides that are ultimately used as a fixation matrix, for the adhesion of biomass. Indeed, increased intracellular c-di-GMP concentrations in the anammox sludge enhanced the regulation of polysaccharides to promote the adhesion of AOB and formation of the CANON biofilm. Overall, the results of this study provide new comprehensive information regarding the coupling effects of AOB and anammox bacteria for the nitrogen removal process.

  8. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: a model-based study.

    PubMed

    Pérez, Julio; Lotti, Tommaso; Kleerebezem, Robbert; Picioreanu, Cristian; van Loosdrecht, Mark C M

    2014-12-01

    This model-based study investigated the mechanisms and operational window for efficient repression of nitrite oxidizing bacteria (NOB) in an autotrophic nitrogen removal process. The operation of a continuous single-stage granular sludge process was simulated for nitrogen removal from pretreated sewage at 10 °C. The effects of the residual ammonium concentration were explicitly analyzed with the model. Competition for oxygen between ammonia-oxidizing bacteria (AOB) and NOB was found to be essential for NOB repression even when the suppression of nitrite oxidation is assisted by nitrite reduction by anammox (AMX). The nitrite half-saturation coefficient of NOB and AMX proved non-sensitive for the model output. The maximum specific growth rate of AMX bacteria proved a sensitive process parameter, because higher rates would provide a competitive advantage for AMX. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors.

    PubMed

    Su, Qingxian; Ma, Chun; Domingo-Félez, Carlos; Kiil, Anne Sofie; Thamdrup, Bo; Jensen, Marlene Mark; Smets, Barth F

    2017-10-15

    Nitrous oxide (N 2 O) production from autotrophic nitrogen conversion processes, especially nitritation systems, can be significant, requires understanding and calls for mitigation. In this study, the rates and pathways of N 2 O production were quantified in two lab-scale sequencing batch reactors operated with intermittent feeding and demonstrating long-term and high-rate nitritation. The resulting reactor biomass was highly enriched in ammonia-oxidizing bacteria, and converted ∼93 ± 14% of the oxidized ammonium to nitrite. The low DO set-point combined with intermittent feeding was sufficient to maintain high nitritation efficiency and high nitritation rates at 20-26 °C over a period of ∼300 days. Even at the high nitritation efficiencies, net N 2 O production was low (∼2% of the oxidized ammonium). Net N 2 O production rates transiently increased with a rise in pH after each feeding, suggesting a potential effect of pH on N 2 O production. In situ application of 15 N labeled substrates revealed nitrifier denitrification as the dominant pathway of N 2 O production. Our study highlights operational conditions that minimize N 2 O emission from two-stage autotrophic nitrogen removal systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates

    PubMed Central

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-01-01

    Colonies of N2-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. 15N-isotope labelling experiments and nutrient analyses revealed that N2 fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N2 were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (<1 to ⩾0.1 mm) may only arise in low-oxygenated waters (⩽25 μM). We propose that the net effect of aggregates on nitrogen loss is negligible in NO3−-depleted, fully oxygenated (surface) waters. In NO3−-enriched (>1.5 μM), O2-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes. PMID:25575306

  11. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates.

    PubMed

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-06-01

    Colonies of N(2)-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. (15)N-isotope labelling experiments and nutrient analyses revealed that N(2) fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N(2) were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (<1 to ⩾0.1 mm) may only arise in low-oxygenated waters (⩽25 μM). We propose that the net effect of aggregates on nitrogen loss is negligible in NO(3)(-)-depleted, fully oxygenated (surface) waters. In NO(3)(-)-enriched (>1.5 μM), O(2)-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes.

  12. Manganese oxide helices, rings, strands, and films, and methods for their preparation

    DOEpatents

    Suib, Steven L.; Giraldo, Oscar; Marquez, Manuel; Brock, Stephanie

    2003-01-07

    Methods for the preparation of mixed-valence manganese oxide compositions with quaternary ammonium ions are described. The compositions self-assemble into helices, rings, and strands without any imposed concentration gradient. These helices, rings, and strands, as well as films having the same composition, undergo rapid ion exchange to replace the quaternary ammonium ions with various metal ions. And the metal-ion-containing manganese oxide compositions so formed can be heat treated to form semi-conducting materials with high surface areas.

  13. UV-Vis spectrophotometric studies of self-oxidation/dissociation of quaternary ammonium permanganates (QAP) - impact of solvent polarity

    NASA Astrophysics Data System (ADS)

    Bank, Suraj Prakash; Guru, Partha Sarathi; Dash, Sukalyan

    2015-05-01

    Self-oxidation/dissociation of some quaternary ammonium permanganates (QAPs), such as cetyltrimethylammonium permanganate (CTAP) and tetrabutylammonium permanganate (TBAP), have been studied spectrophotometrically in six different organic solvent media of different polarities wherein the compounds show good solubility and stability. The optical densities of the substrates at zero time (ODo) and first-order rate constants of dissociation (k1) have been determined from their successive scanning for 40 min. At comparable experimental conditions, absorption capabilities of the substrates are compared from the ODo values in various organic media; the stability of the solutions is compared from the successive scan spectra in those media. The ODo values and the k1 values have been plotted against some solvent parameters to understand their effects on the absorbance and reactivity of the QAPs. These data are also subjected to multiple regression analysis to explain the influence of various solvent parameters on the ion-pairing properties of the substrates, thus elucidating their effects on the process of self-oxidation/dissociation of the substrates.

  14. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers.

    PubMed

    Avrahami, Sharon; Liesack, Werner; Conrad, Ralf

    2003-08-01

    We investigated the effect of temperature on the activity of soil ammonia oxidizers caused by changes in the availability of ammonium and in the microbial community structure. Both short (5 days) and long (6.5, 16 and 20 weeks) incubation of an agricultural soil resulted in a decrease in ammonium concentration that was more pronounced at temperatures between 10 and 25 degrees C than at either 4 degrees C or 30-37 degrees C. Consistently, potential nitrification was higher between 10 and 25 degrees C than at either 4 degrees C or 37 degrees C. However, as long as ammonium was not limiting, release rates of N2O increased monotonously between 4 and 37 degrees C after short-term temperature adaptation, with nitrification accounting for about 35-50% of the N2O production between 4 and 25 degrees C. In order to see whether temperature may also affect the community structure of ammonia oxidizers, we studied moist soil during long incubation at low and high concentrations of commercial fertilizer. The soil was also incubated in buffered (pH 7) slurry amended with urea. Communities of ammonia oxidizers were assayed by denaturant gradient gel electrophoresis (DGGE) of the amoA gene coding for the alpha subunit of ammonia monooxygenase. We found that a polymerase chain reaction (PCR) system using a non-degenerated reverse primer (amoAR1) gave the best results. Community shifts occurred in all soil treatments after 16 weeks of incubation. The community shifts were obviously influenced by the different fertilizer treatments, indicating that ammonium was a selective factor for different ammonia oxidizer populations. Temperature was also a selective factor, in particular as community shifts were also observed in the soil slurries, in which ammonium concentrations and pH were better controlled. Cloning and sequencing of selected DGGE bands indicated that amoA sequences belonging to Nitrosospira cluster 1 were dominant at low temperatures (4-10 degrees C), but were absent after long incubation at low fertilizer treatment. Sequences of Nitrosospira cluster 9 could only be detected at low ammonium concentrations, whereas those of Nitrosospira cluster 3 were found at most ammonium concentrations and temperatures, although individual clones of this cluster exhibited trends with temperature. Obviously, ammonia oxidizers are able to adapt to soil conditions by changes in the community structure if sufficient time (several weeks) is available.

  15. Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate

    PubMed Central

    Sun, Faqian; Su, Xiaomei; Kang, Tingting; Wu, Songwei; Yuan, Mengdong; Zhu, Jing; Zhang, Xiayun; Xu, Fang; Wu, Weixiang

    2016-01-01

    A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g−1 COD and methane percentages of 53–76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L−1) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg−1 N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L−1 d−1 was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68–95 fmol N cell−1 d−1, which finally led to the stable operation of the system. PMID:27279481

  16. Sustainable nitrogen removal by denitrifying anammox applied for anaerobic pre-treated potato wastewater.

    PubMed

    Mulder, A; Versprille, A I; van Braak, D

    2012-01-01

    The feasibility of sustainable nitrogen removal was investigated in a two stage biofilm configuration consisting of a MBBR (Moving Bed Biofilm Reactor) and a Deamox reactor (Biobed-EGSB). The MBBR is used for nitrification and the denitrifying ammonium oxidation (Deamox) is aimed at a nitrogen removal process in which part of the required nitrite for the typical anammox reaction originated from nitrate. Anaerobic pre-treated potato wastewater was supplied to a MBBR and Deamox reactor operated in series with a bypass flow of 30%. The MBBR showed stable nitrite production at ammonium-loading rates of 0.9-1.0 kg NH₄-N/m³ d with ammonium conversion rates of 0.80-0.85 kg NH₄-N/m³ d. The nitrogen-loading rate and conversion rate of the Deamox reactor were 1.6-1.8 and 1.6 kg N/m³ d. The maximum ammonium removal capacity in the Deamox reactor was 0.6 kg NH₄-N/m³ d. The removal efficiency of soluble total nitrogen reached 90%. The Deamox process performance was found to be negatively affected during decline of the operating temperature from 33 to 22 °C and by organic loading rates with a chemical oxygen demand (COD)/NO₂-N ratio >1.

  17. Photo-oxygenation for nitritation and the effect of dissolved oxygen concentrations on anaerobic ammonium oxidation.

    PubMed

    Mukarunyana, Brigitte; van de Vossenberg, Jack; van Lier, Jules B; van der Steen, Peter

    2018-04-10

    Removal of nitrogen from wastewater without using electricity consuming aerators was previously observed in photo-bioreactors with a mixed algal-bacterial biomass. Algammox is the particular process based on algae, ammonium oxidizing organisms and anammox bacteria. In this research the activity of anammox bacteria in such an oxygen-producing environment was tested, as well as the effect of short-duration increase in dissolved oxygen (DO) to values potentially inhibiting anammox activity. Sequencing batch photo-bioreactors were fed with settled domestic wastewater enriched with ammonium (200mgNH 4 + -N/L) and exposed to light within the photosynthetic active range with intensity of about 500μmol/m 2 ·s. Each cycle consisted of 12h illumination and 12h darkness. A well-settling biomass (10days solids retention time) developed that carried out nitritation, nitrification and anammox. Ammonium removal rate during the light period was 4.5mgN-NH 4 + /L·h, equal to 858mgN-NH 4 + /m 2 ·h or 477mgN-NH 4 + /(mol photons). When the reactors were aerated for 3h to temporarily increase the DO, anammox was inhibited at bulk DO values larger than 0.4-1.0mg/L. For almost oxygen saturated conditions, recovery time was about 9days. Algammox photo-bioreactors are therefore able to overcome short periods of oxygen stress, provided they occur only occasionally. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. On the kinetics of organic pollutant degradation with Co2+/peroxymonosulfate process: When ammonium meets chloride.

    PubMed

    Huang, Ying; Yang, Fei; Ai, Luoyan; Feng, Min; Wang, Chi; Wang, Zhaohui; Liu, Jianshe

    2017-07-01

    A large amount of chloride and ammonium ions were produced and released from industrial processes with non-biodegradable organic pollutants to affect efficiencies of advanced oxidation processes (AOPs). Here, the influences of chloride and ammonium ions on Co/peroxymonosulfate (Co/PMS) reaction system, a widely used AOPs to produce sulfate radicals, were investigated by examining the degradation efficiency of an azo dye (Acid Orange 7, AO7). The experimental results showed that a significant decrease in the degradation rate of AO7 was observed in the presence of NH 4 + , while a dual effect of chloride on AO7 bleaching appeared. The presence of NH 4 Cl was unfavorable for AO7 degradation at low concentration (<20 mM), whereas further addition of NH 4 Cl (>20 mM) apparently accelerated AO7 discoloration rate. The apparent effects of the two co-existing inorganic ions were determined by roles of the dominating ions at varied molar ratio of [NH 4 + ]/[Cl - ]. The present study may have technical implications for the treatment of industrial wastewater containing diverse ions in practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Development of a novel hydroxyl ammonium nitrate based liquid propellant for air-independent propulsion

    NASA Astrophysics Data System (ADS)

    Fontaine, Joseph Henry

    The focus of this dissertation is the development of an Unmanned Undersea Vehicle (UUV) liquid propellant employing Hydroxyl Ammonium Nitrate (HAN) as the oxidizer. Hydroxyl Ammonium Nitrate is a highly acidic aqueous based liquid oxidizer. Therefore, in order to achieve efficient combustion of a propellant using this oxidizer, the fuel must be highly water soluble and compatible with the oxidizer to prevent a premature ignition prior to being heated within the combustion chamber. An extensive search of the fuel to be used with this oxidizer was conducted. Propylene glycol was chosen as the fuel for this propellant, and the propellant given the name RF-402. The propellant development process will first evaluate the propellants thermal stability and kinetic parameters using a Differential Scanning Calorimeter (DSC). The purpose of the thermal stability analysis is to determine the temperature at which the propellant decomposition begins for the future safe handling of the propellant and the optimization of the combustion chamber. Additionally, the thermogram results will provide information regarding any undesirable endotherms prior to the decomposition and whether or not the decomposition process is a multi-step process. The Arrhenius type kinetic parameters will be determined using the ASTM method for thermally unstable materials. The activation energy and pre-exponential factor of the propellant will be determined by evaluating the decomposition peak temperature over a temperature scan rate ranging from 1°C per minute to 10°C per minute. The kinetic parameters of the propellant will be compared to those of 81 wt% HAN to determine if the HAN decomposition is controlling the overall decomposition of the propellant RF-402. The lifetime of individual droplets will be analyzed using both experimental and theoretical techniques. The theoretical technique will involve modeling the lifetime of an individual droplet in a combustion chamber like operating environment. The experimental technique will consist of subjecting droplets suspended from a fine gauge thermocouple to an instantaneous hot gas source and recording its temperature response while imaging it using a high power video microscope to determine the physical response of the droplet. This analysis will be the foundation for all future efforts in developing a propulsion system employing the use of RF-402.

  20. Direct preparation of a graphene oxide modified monolith in a glass syringe as a solid-phase extraction cartridge for the extraction of quaternary ammonium alkaloids from Chinese patent medicine.

    PubMed

    Liang, Xiaojing; Wang, Licheng; Wang, Shuai; Li, Yijing; Guo, Yong

    2017-11-01

    Packed cartridges have been widely used in solid-phase extraction. However, there are still some drawbacks, such as they are blocked easily and the method is time-consuming. In view of the advantages of monoliths, a monolithic extraction material has been directly synthesized in a glass syringe without any gap between the monolith and syringe inner wall. The monolithic syringe was modified with graphene oxide by loading graphene oxide dispersion onto it. The content of graphene oxide and the surface topography of the monolith have been evaluated by elemental analysis and scanning electron microscopy, respectively, which confirmed the successful modification. This prepared graphene oxide-modified monolithic syringe was directly used as a traditional solid-phase extraction cartridge. As expected, it shows good permeability and excellent capability for the extraction of quaternary ammonium alkaloids. The sample loading velocity (1-6 mL/min) does not affect the recovery. Under the optimal conditions, good linearities (R = 0.9992-0.9998) were obtained for five quaternary ammonium alkaloids, and the limits of detection and quantification were 0.5-1 and 1-2 μg/L, respectively. The proposed method was successfully applied for the analysis of quaternary ammonium alkaloids in Chinese patent medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Sulfide and ammonium oxidation, acetate mineralization by denitrification in a multipurpose UASB reactor.

    PubMed

    Beristain-Cardoso, Ricardo; Gómez, Jorge; Méndez-Pampín, Ramón

    2011-02-01

    The physiological and kinetic behavior of a denitrifying granular sludge exposed to different sulfide loading rates (55-295 mg/L d) were evaluated in a UASB reactor fed with acetate, ammonium and nitrate. At any sulfide loading rates, the consumption efficiencies of sulfide, acetate and ammonium were above 95%, while nitrate consumption efficiencies were around 62-72%. At the highest sulfide loading rate the ammonium was used as electron donor for N(2) production. The increase of sulfide loading rate also affected the fate of sulfide oxidation, since elemental sulfur was the main end product instead of sulfate. However, the lithotrophic denitrifying kinetic was not affected. FISH oligonucleotide probes for Thiobacillus denitrificans, Thiomiscropira denitrificans, genus Paracoccus and Pseudomonas spp. were used to follow the microbial ecology. The results of this work have shown that four pollutants could simultaneously be removed, namely, sulfide, ammonium, acetate and nitrate under well defined denitrifying conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Remediation of incomplete nitrification and capacity increase of biofilters at different drinking water treatment plants through copper dosing.

    PubMed

    Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen

    2018-04-01

    Drinking water treatment plants based on groundwater may suffer from incomplete ammonium removal, which deteriorates drinking water quality and constrains water utilities in the operation of their plants. Ammonium is normally removed through nitrification in biological granular media filters, and recent studies have demonstrated that dosing of copper can stimulate the removal of ammonium. Here, we investigated if copper dosing could generically improve ammonium removal of biofilters, at treatment plants with different characteristics. Copper was dosed at ≤1.5 μg Cu/L to biofilters at 10 groundwater treatment plants, all of which had displayed several years of incomplete nitrification. Plants exceeded the Danish national water quality standard of 0.05 mg NH 4 + /L by a factor of 2-12. Within only 2-3 weeks of dosing, ammonium removal rates increased significantly (up to 150%). Nitrification was fully established, with ammonium effluent concentrations of <0.01 mg NH 4 + -N/L at most plants, regardless of the differences in raw water chemistry, ammonium loading rates, filter design and operation, or treatment plant configuration. However, for filters without primary filtration, it took longer time to reach complete ammonium removal than for filters receiving prefiltered water, likely due to sorption of copper to iron oxides, at plants without prefiltration. With complete ammonium removal, we subjected two plants to short-term loading rate upshifts, to examine the filters' ability to cope with loading rate variations. After 2 months of dosing and an average loading rate of 1.0 g NH 4 + -N/m 3 filter material/h, the loading rate was upshifted by 50%. Yet, a filter managed to completely remove all the influent ammonium, showing that with copper dosing the filter had extra capacity to remove ammonium even beyond its normal loading rates. Depth sampling revealed that the ammonium removal rate of the filter's upper 10 cm increased more than 7-fold from 0.67 to 4.90 g NH 4 + -N/m 3 /h, and that nitrite produced from increased ammonium oxidation was completely oxidized further to nitrate. Hence, no problems with nitrite accumulation or breakthrough occurred. Overall, copper dosing generically enhanced nitrification efficiency and allowed a range of quite different plants to meet water quality standards, even at increased loading rates. The capacity increase is highly relevant in practice, as it makes filters more robust towards sudden ammonium loading rate variations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Ammonium nitrate explosive systems

    DOEpatents

    Stinecipher, Mary M.; Coburn, Michael D.

    1981-01-01

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  4. Factors Affecting Oxidation of Thiosalts by Thiobacilli

    PubMed Central

    Silver, M.; Dinardo, O.

    1981-01-01

    The effects of temperature, initial pH, and the concentrations of ammonium, phosphate, and heavy metals on the oxidation of thiosalts by an authentic strain of Thiobacillus thiooxidans (ATCC 8085) and by a mixed culture isolated from a base metal-processing mill effluent pond were studied. The optimum temperature was 30°C and the optimum initial pH was 3.75 for both cultures using thiosulfate and for the mixed culture using tetrathionate. T. thiooxidans ATCC 8085 did not oxidize tetrathionate. For a thiosalt concentration of 2,000 ppm (2,000 mg/liter), maximal rates of destruction occurred at concentrations of ammonium ion above 2 mg/liter and in the presence of 1 mg of phosphate per liter. Under optimal conditions, the rate of thiosulfate oxidation by the pure culture was 55 ± 3 mg/liter per h; the mixed culture oxidized thiosulfate at the rate of 40 ± 1 mg/liter per h and tetrathionate at the rate of 50 ± 2 mg/liter per h. Metal ions caused normal inhibition kinetics in the oxidation of thiosulfate by T. thiooxidans ATCC 8085. Ki values were calculated for cadmium (16 mg/liter), copper (0.46 mg/liter), lead (2 mg/liter), silver (3.1 mg/liter), and zinc (33 mg/liter). Only a slight additive effect was apparent in the presence of all of these metal ions. The mixed culture of thiosalt-oxidizing bacteria was less sensitive to heavy metal inhibition; the order of inhibition of thiosulfate oxidation was Cd < Zn < Pb < Ag < Cu, and that of tetrathionate oxidation was Zn < Cd < Pb < Ag < Cu. PMID:16345785

  5. Salt Marsh sediment 15N/13C "Push-Pull" assays reveal coupled sulfur, nitrogen, and carbon cycling

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Tucker, J.; Thomas, F.; Sievert, S. M.; Cardon, Z. G.; Giblin, A. E.

    2016-12-01

    Salt marshes are extraordinarily productive ecosystems found in estuaries worldwide, hosting intensive sulfur, nitrogen, and carbon cycling. Although it has been hypothesized that in this environment sulfur oxidation may be important for energy flow, there is little direct data. At the heart of these hypothesized interactions are sulfur oxidizing microbes. Sulfur oxidizers can catalyze sulfide (re-)oxidation with nitrate as the electron acceptor under anaerobic conditions, producing ammonium (via DNRA) or dinitrogen gas (via denitrification). The form of sulfur present in marsh systems influences whether autotrophic or heterotrophic processes transform nitrate either to dinitrogen gas or ammonium through DNRA. To examine the fate of nitrate and interactions with sulfur, we conducted a series of "push-pull" experiments in marsh sediment at the Plum Island Ecosystems Long-Term Ecological Research site in Massachusetts. Porewater was extracted anoxically and amended with isotopically labeled nitrate (15N) and bicarbonate (13C). Porewater was pumped back into the sediment and then withdrawn at intervals of several hours. Dissolved inorganic nitrogen, sulfur, and carbon were measured as well as isotopes of nitrogen gas and ammonium. These push-pull experiments were conducted at several times during the growing season, to coincide with salt marsh grass initial growth (May), maximum growth (July), flowering (August), and senescence (October). Porewater sulfides were very low to non-detectable in May (time of initial plant growth) and increased to a maximum of 3 mM in October (time of plant senescence). Combined rates of denitrification and DNRA also varied seasonally: rates were higher in May (0.16 - 17.5 nmoles N/cm3/hr) and much lower in October (0 - 0.03 nmoles N/cm3/hr). Interestingly, DNRA rates were always higher than denitrification rates, often by an order of magnitude or more.

  6. Safety Testing of Ammonium Nitrate Based Mixtures

    NASA Astrophysics Data System (ADS)

    Phillips, Jason; Lappo, Karmen; Phelan, James; Peterson, Nathan; Gilbert, Don

    2013-06-01

    Ammonium nitrate (AN)/ammonium nitrate based explosives have a lengthy documented history of use by adversaries in acts of terror. While historical research has been conducted on AN-based explosive mixtures, it has primarily focused on detonation performance while varying the oxygen balance between the oxidizer and fuel components. Similarly, historical safety data on these materials is often lacking in pertinent details such as specific fuel type, particle size parameters, oxidizer form, etc. A variety of AN-based fuel-oxidizer mixtures were tested for small-scale sensitivity in preparation for large-scale testing. Current efforts focus on maintaining a zero oxygen-balance (a stoichiometric ratio for active chemical participants) while varying factors such as charge geometry, oxidizer form, particle size, and inert diluent ratios. Small-scale safety testing was conducted on various mixtures and fuels. It was found that ESD sensitivity is significantly affected by particle size, while this is less so for impact and friction. Thermal testing is in progress to evaluate hazards that may be experienced during large-scale testing.

  7. On-column nitrosation of amines observed in liquid chromatography impurity separations employing ammonium hydroxide and acetonitrile as mobile phase.

    PubMed

    Myers, David P; Hetrick, Evan M; Liang, Zhongming; Hadden, Chad E; Bandy, Steven; Kemp, Craig A; Harris, Thomas M; Baertschi, Steven W

    2013-12-06

    The availability of high performance liquid chromatography (HPLC) columns capable of operation at pH values up to 12 has allowed a greater selectivity space to be explored for method development in pharmaceutical analysis. Ammonium hydroxide is of particular value in the mobile phase because it is compatible with direct interfacing to electrospray mass spectrometers. This paper reports an unexpected N-nitrosation reaction that occurs with analytes containing primary and secondary amines when ammonium hydroxide is used to achieve the high pH and acetonitrile is used as the organic modifier. The nitrosation reaction has generality. It has been observed on multiple columns from different vendors and with multiple amine-containing analytes. Ammonia was established to be the source of the nitroso nitrogen. The stainless steel column frit and metal ablated from the frit have been shown to be the sites of the reactions. The process is initiated by removal of the chromium oxide protective film from the stainless steel by acetonitrile. It is hypothesized that the highly active, freshly exposed metals catalyze room temperature oxidation of ammonia to NO but that the actual nitrosating agent is likely N(2)O(3). Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Novel two stage bio-oxidation and chlorination process for high strength hazardous coal carbonization effluent.

    PubMed

    Manekar, Pravin; Biswas, Rima; Karthik, Manikavasagam; Nandy, Tapas

    2011-05-15

    Effluent generated from coal carbonization to coke was characterized with high organic content, phenols, ammonium nitrogen, and cyanides. A full scale effluent treatment plant (ETP) working on the principle of single stage carbon-nitrogen bio-oxidation process (SSCNBP) revealed competition between heterotrophic and autotrophic bacteria in the bio-degradation and nitrification process. The effluent was pretreated in a stripper and further combined with other streams to treat in the SSCNBP. Laboratory studies were carried on process and stripped effluents in a bench scale model of ammonia stripper and a two stage bio-oxidation process. The free ammonia removal efficiency of stripper was in the range 70-89%. Bench scale studies of the two stage bio-oxidation process achieved a carbon-nitrogen reduction at 6 days hydraulic retention time (HRT) operating in an extended aeration mode. This paper addresses the studies on selection of a treatment process for removal of organic matter, phenols, cyanide and ammonia nitrogen. The treatment scheme comprising ammonia stripping (pretreatment) followed by the two stage bio-oxidation and chlorination process met the Indian Standards for discharge into Inland Surface Waters. This treatment process package offers a techno-economically viable treatment scheme to neuter hazardous effluent generated from coal carbonization process. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Physico-Chemical Characterization of Fine and Ultrafine Particles Emitted during Diesel Particulate Filter Active Regeneration of Euro5 Diesel Vehicles.

    PubMed

    R'Mili, Badr; Boréave, Antoinette; Meme, Aurelie; Vernoux, Philippe; Leblanc, Mickael; Noël, Ludovic; Raux, Stephane; D'Anna, Barbara

    2018-03-06

    Diesel particulate filters (DPFs) are commonly employed in modern passenger cars to comply with current particulate matter (PM) emission standards. DPFs requires periodic regeneration to remove the accumulated matter. During the process, high-concentration particles, in both nucleation and accumulation modes, are emitted. Here, we report new information on particle morphology and chemical composition of fine (FPs) and ultrafine particles (UFPs) measured downstream of the DPF during active regeneration of two Euro 5 passenger cars. The first vehicle was equipped with a close-coupled diesel oxidation catalyst (DOC) and noncatalyzed DPF combined with fuel borne catalyst and the second one with DOC and a catalyzed-diesel particle filter (CDPF). Differences in PM emission profiles of the two vehicles were related to different after treatment design, regeneration strategies, and vehicle characteristics and mileage. Particles in the nucleation mode consisted of ammonium bisulfate, sulfate and sulfuric acid, suggesting that the catalyst desulfation is the key process in the formation of UFPs. Larger particles and agglomerates, ranging from 90 to 600 nm, consisted of carbonaceous material (soot and soot aggregates) coated by condensable material including organics, ammonium bisulfate and sulfuric acid. Particle emission in the accumulation mode was due to the reduced filtration efficiency (soot cake oxidation) throughout the regeneration process.

  10. Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis.

    PubMed

    Sun, Yihua; De Vos, Paul; Heylen, Kim

    2016-01-19

    Firmicutes have the capacity to remove excess nitrate from the environment via either denitrification, dissimilatory nitrate reduction to ammonium or both. The recent renewed interest in their nitrogen metabolism has revealed many interesting features, the most striking being their wide variety of dissimilatory nitrate reduction pathways. In the present study, nitrous oxide production from Bacillus licheniformis, a ubiquitous Gram-positive, spore-forming species with many industrial applications, is investigated. B. licheniformis has long been considered a denitrifier but physiological experiments on three different strains demonstrated that nitrous oxide is not produced from nitrate in stoichiometric amounts, rather ammonium is the most important end-product, produced during fermentation. Significant strain dependency in end-product ratios, attributed to nitrite and ammonium, and medium dependency in nitrous oxide production were also observed. Genome analyses confirmed the lack of a nitrite reductase to nitric oxide, the key enzyme of denitrification. Based on the gene inventory and building on knowledge from other non-denitrifying nitrous oxide emitters, hypothetical pathways for nitrous oxide production, involving NarG, NirB, qNor and Hmp, are proposed. In addition, all publically available genomes of B. licheniformis demonstrated similar gene inventories, with specific duplications of the nar operon, narK and hmp genes as well as NarG phylogeny supporting the evolutionary separation of previously described distinct BALI1 and BALI2 lineages. Using physiological and genomic data we have demonstrated that the common soil bacterium B. licheniformis does not denitrify but is capable of fermentative dissimilatory nitrate/nitrite reduction to ammonium (DNRA) with concomitant production of N2O. Considering its ubiquitous nature and non-fastidious growth in the lab, B. licheniformis is a suitable candidate for further exploration of the actual mechanism of N2O production in DNRA bacteria and its relevance in situ.

  11. Method and apparatus for nitrogen oxide determination

    DOEpatents

    Hohorst, Frederick A.

    1990-01-01

    Method and apparatus for determining nitrogen oxide content in a high temperature process gas, which involves withdrawing a sample portion of a high temperature gas containing nitrogen oxide from a source to be analyzed. The sample portion is passed through a restrictive flow conduit, which may be a capillary or a restriction orifice. The restrictive flow conduit is heated to a temperature sufficient to maintain the flowing sample portion at an elevated temperature at least as great as the temperature of the high temperature gas source, to thereby provide that deposition of ammonium nitrate within the restrictive flow conduit cannot occur. The sample portion is then drawn into an aspirator device. A heated motive gas is passed to the aspirator device at a temperature at least as great as the temperature of the high temperature gas source. The motive gas is passed through the nozzle of the aspirator device under conditions sufficient to aspirate the heated sample portion through the restrictive flow conduit and produce a mixture of the sample portion in the motive gas at a dilution of the sample portion sufficient to provide that deposition of ammonium nitrate from the mixture cannot occur at reduced temperature. A portion of the cooled dilute mixture is then passed to analytical means capable of detecting nitric oxide.

  12. Functionalized white graphene - Copper oxide nanocomposite: Synthesis, characterization and application as catalyst for thermal decomposition of ammonium perchlorate.

    PubMed

    Paulose, Sanoop; Raghavan, Rajeev; George, Benny K

    2017-05-15

    Reactivity is of great importance for metal oxide nanoparticles (MONP) used as catalysts and advanced materials, but seeking for higher reactivity seems to be conflict with high chemical stability required for MONP. There is direct balance between reactivity and stability of these MONP. This could be acheived for metal oxide by dispersing them in a substrate. Here, we report a simple, efficient and high-yield process for the production of copper oxide (CuO) nanoparticles dispersed on a chemically inert material, few-layer hexagonal boron nitride (h-BN) with a thickness around 1.7nm and lateral dimensions mostly below 200nm. The mechano-chemical reaction which take place at atmospheric pressure and room temperature involves a urea assisted exfoliation of pristine boron nitride. Copper oxide nanoparticles dispersed on the surface of these few layered h-BN reduced its tendency for aggregation. The optimum concentration of CuO:h-BN was found to be 2:1 which shows highest catalytic activity for the thermal decomposition of ammonium perchlorate. The high catalytic activity of the in situ synthesized CuO-h-BN composite may be attributed to uniform distribution of CuO nanoparticles on the few layered h-BN which in turn provide a number of active sites on the surface due to non aggregation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. [Distribution and Diversity of Ammonium-oxidizing Archaea and Ammonium-oxidizing Bacteria in Surface Sediments of Oujiang River].

    PubMed

    Li, Hu; Huang, Fu-yi; Su, Jian-qiang; Hong, You-wei; Yu, Shen

    2015-12-01

    Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) play important roles in the biogeochemical nitrogen cycle. Rivers are important ecosystems containing a large number of functional microbes in nitrogen cycle. In this study, denaturing gradient gel electrophoresis (DGGE ) and real-time quantitative PCR (qPCR) technology were used to analyze the distribution and diversity of AOA and AOB in sediments from Oujiang. The results showed that the AOA community structure was similar among various sites, while the AOB community structure was significantly different, in which all detected AOB sequences were classified into Nitrosospira and Nitrosomonas, and 90% affiliated to Nitrosospira. The community composition of AOA was influenced by NH₄⁺ and TS, in addition, the AOB composition was affected by NH₄⁺, EC, pH, NO₃⁻, TC and TN. Total sulfur (TS) and electrical conductivity (EC) were the major factors influencing the diversity of AOA and AOB, respectively. AOA abundance was significantly higher than that of AOB. EC, NH₄⁺-N and NO₃⁻-N were the main environmental factors affecting the abundance of AOA and AOB. This study indicated that the community composition and diversity of AOA and AOB were significantly influenced by environmental factors, and AOA might be dominant drivers in the ammonia oxidation process in Oujiang surface sediment.

  14. 21 CFR 184.1545 - Nitrous oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Nitrous oxide is manufactured by the thermal decomposition of ammonium nitrate. Higher oxides of nitrogen... manufacturing practice. (d) Prior sanctions for this ingredient different from the uses established in this...

  15. Integral approaches to wastewater treatment plant upgrading for odor prevention: Activated Sludge and Oxidized Ammonium Recycling.

    PubMed

    Estrada, José M; Kraakman, N J R; Lebrero, R; Muñoz, R

    2015-11-01

    Traditional physical/chemical end-of-the-pipe technologies for odor abatement are relatively expensive and present high environmental impacts. On the other hand, biotechnologies have recently emerged as cost-effective and environmentally friendly alternatives but are still limited by their investment costs and land requirements. A more desirable approach to odor control is the prevention of odorant formation before being released to the atmosphere, but limited information is available beyond good design and operational practices of the wastewater treatment process. The present paper reviews two widely applicable and economic alternatives for odor control, Activated Sludge Recycling (ASR) and Oxidized Ammonium Recycling (OAR), by discussing their fundamentals, key operating parameters and experience from the available pilot and field studies. Both technologies present high application potential using readily available plant by-products with a minimum plant upgrading, and low investment and operating costs, contributing to the sustainability and economic efficiency of odor control at wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Perchlorate as an environmental contaminant.

    PubMed

    Urbansky, Edward Todd

    2002-01-01

    Perchlorate anion (ClO4-) has been found in drinking water supplies throughout the southwestern United States. It is primarily associated with releases of ammonium perchlorate by defense contractors, military operations, and aerospace programs. Ammonium perchlorate is used as a solid oxidant in missile and rocket propulsion systems. Traces of perchlorate are found in Chile saltpeter, but the use of such fertilizer has not been associated with large scale contamination. Although it is a strong oxidant, perchlorate anion is very persistent in the environment due to the high activation energy associated with its reduction. At high enough concentrations, perchlorate can affect thyroid gland functions, where it is mistakenly taken up in place of iodide. A safe daily exposure has not yet been set, but is expected to be released in 2002. Perchlorate is measured in environmental samples primarily by ion chromatography. It can be removed by anion exchange or membrane filtration. It is destroyed by some biological and chemical processes. The environmental occurrence, toxicity, analytical chemistry, and remediative approaches are discussed.

  17. Analysis of key microbial community during the start-up of anaerobic ammonium oxidation process with paddy soil as inoculated sludge.

    PubMed

    Xu, Xianglong; Liu, Guohua; Wang, Yuanyuan; Zhang, Yuankai; Wang, Hao; Qi, Lu; Wang, Hongchen

    2018-02-01

    A sequencing batch reactor (SBR)-anaerobic ammonium oxidation (anammox) system was started up with the paddy soil as inoculated sludge. The key microbial community structure in the system along with the enrichment time was investigated by using molecular biology methods (e.g., high-throughput 16S rRNA gene sequencing and quantitative PCR). Meanwhile, the influent and effluent water quality was continuously monitored during the whole start-up stage. The results showed that the microbial diversity decreased as the operation time initially and increased afterwards, and the microbial niches in the system were redistributed. The anammox bacterial community structure in the SBR-anammox system shifted during the enrichment, the most dominant anammox bacteria were CandidatusJettenia. The maximum biomass of anammox bacteria achieved 1.68×10 9 copies/g dry sludge during the enrichment period, and the highest removal rate of TN achieved around 75%. Copyright © 2017. Published by Elsevier B.V.

  18. [Treatment of cetyltrimethyl ammonium bromide wastewater by potassium ferrate].

    PubMed

    Yang, Wei-hua; Wang, Hong-hui; Zeng, Xiao-xu; Huang, Ting-ting

    2009-08-15

    A novel oxidant potassium ferrate (K2FeO4) was used to remove cetyltrimethyl ammonium bromide (CTAB) at room temperature. The effects of various conditions on the removal ratio, such as reaction time, dosing quantity of K2FeO4 and initial pH, were investigated. The experiments results show that the removal ratio reaches 79.4% when the reaction time is 30 min, the dosing quantity of K2FeO4 to CTAB is 1:1, the initial pH of the solution is 7. In the reaction progress, the oxidation of K2FeO4 and the flocculation of the reduction product have synergistic effect on the removal of CTAB. In addition, infrared spectra of CTAB before and after being treated with K2FeO4 were further studied. The results indicate that the degradation process involves the interruption of chain and the subsequent mineralization to inorganic molecules. Furthermore, the reaction of K2FeO4 and CTAB follows second order kinetics law.

  19. Low-temperature solution-processed zinc oxide field effect transistor by blending zinc hydroxide and zinc oxide nanoparticle in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shin, Hyeonwoo; Kang, Chan-mo; Baek, Kyu-Ha; Kim, Jun Young; Do, Lee-Mi; Lee, Changhee

    2018-05-01

    We present a novel methods of fabricating low-temperature (180 °C), solution-processed zinc oxide (ZnO) transistors using a ZnO precursor that is blended with zinc hydroxide [Zn(OH)2] and zinc oxide hydrate (ZnO • H2O) in an ammonium solution. By using the proposed method, we successfully improved the electrical performance of the transistor in terms of the mobility (μ), on/off current ratio (I on/I off), sub-threshold swing (SS), and operational stability. Our new approach to forming a ZnO film was systematically compared with previously proposed methods. An atomic forced microscopic (AFM) image and an X-ray photoelectron spectroscopy (XPS) analysis showed that our method increases the ZnO crystallite size with less OH‑ impurities. Thus, we attribute the improved electrical performance to the better ZnO film formation using the blending methods.

  20. Electrochemical wastewater treatment: influence of the type of carbon and of nitrogen on the organic load removal.

    PubMed

    Fernandes, Annabel; Coelho, João; Ciríaco, Lurdes; Pacheco, Maria José; Lopes, Ana

    2016-12-01

    Boron-doped diamond (BDD) and Ti/Pt/PbO 2 anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid. The presence of carbonate in solution enhances the nitrogen removal, whereas it hinders the oxidation of the organic compounds. When organic nitrogen is present, it is converted to NH 4 + , which in turn is oxidized to nitrate and to volatile nitrogen compounds. Hydroxyl radicals are more prone to oxidize the organic nitrogen than the ammonium nitrogen. The presence of chloride enhances the organic matter and nitrogen removal rates, BDD being the anode material that yields the highest removals.

  1. [Study on the start-up of anaerobic ammonium oxidation process in biological activated carbon reactor].

    PubMed

    Lai, Wei-Yi; Zhou, Wei-Li; He, Sheng-Bing

    2013-08-01

    In order to shorten the start-up time of anaerobic ammonium oxidation (ANAMMOX) reactor, biological activated cabon reactor was applied. Three lab scale UASB reactors were seeded with anaerobic sludge, fed with synthetic wastewater containing ammonia and nitrite, and supplemented with granular activated carbon on day 0, 33 and 56, respectively. The nitrogen removal performance of the first reactor, into which GAC was added on day 0, showed no significant improvement in 90 days. After being suspended for about one month, the secondary start-up of this reactor succeeded in another 33 days (totally 123 days). 49 d and 85 d were taken for the other two reactors started up by the addition of GAC on day 33 and 56, respectively. After the reactors were started up, the average removal rates of total nitrogen were 89.8%, 86.7% and 86.7%, respectively. The start-up process could be divided into four stages, namely, the bacterial autolysis phase, the lag phase, the improve phase and the stationary phase, and the best time for adding GAC carrier was right after the start of the lag phase.

  2. Tracking and quantification of nitrifying bacteria in biofilm and mixed liquor of a partial nitrification MBBR pilot plant using fluorescence in situ hybridization.

    PubMed

    Abzazou, Tarik; Araujo, Rosa M; Auset, María; Salvadó, Humbert

    2016-01-15

    A moving bead biofilm reactor (MBBR) pilot plant was implemented as a partial nitrification process for pre-treatment of ammonium-rich liquors (676 ± 195 mg L(-1)), and studied for 479 days under variations in hydraulic retention time. The main purpose of this work, was the study of dynamics abundance of total bacteria and single-cells nitrifying bacteria belonging to ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in biofilms and mixed liquor of the plant. The microbial monitoring was successfully achieved using fluorescence in situ hybridization combined with flocs disaggregation protocol as a useful microbial monitoring tool. A partial nitrification process with a N-NH4(+) removal rate of about 38.6 ± 14.8% was successfully achieved at 211 days after start-up, with a clear dominance of AOB, which accounted for 11.3 ± 17.0% of total bacterial cells compared with only 2.1 ± 4.0% of NOB. The effluent obtained was subsequently supplied to an Anammox reactor for complete ammonium treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Organic cloud condensation nuclei: the effect of phase, surface tension, trace soluble species, and oxidative processing on particle activation.

    NASA Astrophysics Data System (ADS)

    Broekhuizen, K. E.; Thornberry, T.; Abbatt, J. P.

    2003-12-01

    The ability of organic aerosols to act as cloud condensation nuclei (CCN) will be discussed. A variety of laboratory experiments will be presented which address several key questions concerning organic particle activation. Does the particle phase impact activation? How does surface tension play a role and can a trace amount of a surface active species impact activation? Does a trace amount of a highly soluble species impact the activation of organic particles of moderate to low solubility? Can the activation properties of organic aerosols be enhanced through oxidative processing? To systematically address these issues, the CCN activity of various diacids such as oxalic, malonic, succinic, adipic and azelaic acid have been studied, as well as the addition of trace amounts of nonanoic acid and ammonium sulfate to examine the roles of surface active and soluble species, respectively. The first examination of the role of oxidative processing on CCN activity has involved investigating the effect of ozone oxidation on the activity of oleic acid particles.

  4. Volatility of methylglyoxal cloud SOA formed through OH radical oxidation and droplet evaporation

    NASA Astrophysics Data System (ADS)

    Ortiz-Montalvo, Diana L.; Schwier, Allison N.; Lim, Yong B.; McNeill, V. Faye; Turpin, Barbara J.

    2016-04-01

    The volatility of secondary organic aerosol (SOA) formed through cloud processing (aqueous hydroxyl radical (radOH) oxidation and droplet evaporation) of methylglyoxal (MGly) was studied. Effective vapor pressure and effective enthalpy of vaporization (ΔHvap,eff) were determined using 1) droplets containing MGly and its oxidation products, 2) a Vibrating Orifice Aerosol Generator (VOAG) system, and 3) Temperature Programmed Desorption Aerosol-Chemical Ionization Mass Spectrometry (TPD Aerosol-CIMS). Simulated in-cloud MGly oxidation (for 10-30 min) produces an organic mixture of higher and lower volatility components with an overall effective vapor pressure of (4 ± 7) × 10-7 atm at pH 3. The effective vapor pressure decreases by a factor of 2 with addition of ammonium hydroxide (pH 7). The fraction of organic material remaining in the particle-phase after drying was smaller than for similar experiments with glycolaldehyde and glyoxal SOA. The ΔHvap,eff of pyruvic acid and oxalic acid + methylglyoxal in the mixture (from TPD Aerosol-CIMS) were smaller than the theoretical enthalpies of the pure compounds and smaller than that estimated for the entire precursor/product mix after droplet evaporation. After 10-30 min of aqueous oxidation (one cloud cycle) the majority of the MGly + radOH precursor/product mix (even neutralized) will volatilize during droplet evaporation; neutralization and at least 80 min of oxidation at 10-12 M radOH (or >12 h at 10-14 M) is needed before low volatility ammonium oxalate exceeds pyruvate.

  5. Quaternary ammonium oxidative demethylation: X-ray crystallographic, resonance Raman, and UV-visible spectroscopic analysis of a Rieske-type demethylase.

    PubMed

    Daughtry, Kelly D; Xiao, Youli; Stoner-Ma, Deborah; Cho, Eunsun; Orville, Allen M; Liu, Pinghua; Allen, Karen N

    2012-02-08

    Herein, the structure resulting from in situ turnover in a chemically challenging quaternary ammonium oxidative demethylation reaction was captured via crystallographic analysis and analyzed via single-crystal spectroscopy. Crystal structures were determined for the Rieske-type monooxygenase, stachydrine demethylase, in the unliganded state (at 1.6 Å resolution) and in the product complex (at 2.2 Å resolution). The ligand complex was obtained from enzyme aerobically cocrystallized with the substrate stachydrine (N,N-dimethylproline). The ligand electron density in the complex was interpreted as proline, generated within the active site at 100 K by the absorption of X-ray photon energy and two consecutive demethylation cycles. The oxidation state of the Rieske iron-sulfur cluster was characterized by UV-visible spectroscopy throughout X-ray data collection in conjunction with resonance Raman spectra collected before and after diffraction data. Shifts in the absorption band wavelength and intensity as a function of absorbed X-ray dose demonstrated that the Rieske center was reduced by solvated electrons generated by X-ray photons; the kinetics of the reduction process differed dramatically for the liganded complex compared to unliganded demethylase, which may correspond to the observed turnover in the crystal.

  6. Electro-oxidation of the dye azure B: kinetics, mechanism, and by-products.

    PubMed

    Olvera-Vargas, Hugo; Oturan, Nihal; Aravindakumar, C T; Paul, M M Sunil; Sharma, Virender K; Oturan, Mehmet A

    2014-01-01

    In this work, the electrochemical degradation of the dye azure B in aqueous solutions was studied by electrochemical advanced oxidation processes (EAOPs), electro-Fenton, and anodic oxidation processes, using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with H₂O₂ electrogeneration. The higher oxidation power of the electro-Fenton (EF) process using BDD anode was demonstrated. The oxidative degradation of azure B by the electrochemically generated hydroxyl radicals ((•)OH) follows a pseudo-first-order kinetics. The apparent rate constants of the oxidation of azure B by (•)OH were measured according to pseudo-first-order kinetic model. The absolute rate constant of azure B hydroxylation reaction was determined by competition kinetics method and found to be 1.19 × 10(9) M(-1) s(-1). It was found that the electrochemical degradation of the dye leads to the formation of aromatic by-products which are then oxidized to aliphatic carboxylic acids before their almost mineralization to CO₂ and inorganic ions (sulfate, nitrate, and ammonium). The evolution of the TOC removal and time course of short-chain carboxylic acids during treatment were also investigated.

  7. Nitrification and its influence on biogeochemical cycles from the equatorial Pacific to the Arctic Ocean

    PubMed Central

    Shiozaki, Takuhei; Ijichi, Minoru; Isobe, Kazuo; Hashihama, Fuminori; Nakamura, Ken-ichi; Ehama, Makoto; Hayashizaki, Ken-ichi; Takahashi, Kazutaka; Hamasaki, Koji; Furuya, Ken

    2016-01-01

    We examined nitrification in the euphotic zone, its impact on the nitrogen cycles, and the controlling factors along a 7500 km transect from the equatorial Pacific Ocean to the Arctic Ocean. Ammonia oxidation occurred in the euphotic zone at most of the stations. The gene and transcript abundances for ammonia oxidation indicated that the shallow clade archaea were the major ammonia oxidizers throughout the study regions. Ammonia oxidation accounted for up to 87.4% (average 55.6%) of the rate of nitrate assimilation in the subtropical oligotrophic region. However, in the shallow Bering and Chukchi sea shelves (bottom ⩽67 m), the percentage was small (0–4.74%) because ammonia oxidation and the abundance of ammonia oxidizers were low, the light environment being one possible explanation for the low activity. With the exception of the shallow bottom stations, depth-integrated ammonia oxidation was positively correlated with depth-integrated primary production. Ammonia oxidation was low in the high-nutrient low-chlorophyll subarctic region and high in the Bering Sea Green Belt, and primary production in both was influenced by micronutrient supply. An ammonium kinetics experiment demonstrated that ammonia oxidation did not increase significantly with the addition of 31–1560 nm ammonium at most stations except in the Bering Sea Green Belt. Thus, the relationship between ammonia oxidation and primary production does not simply indicate that ammonia oxidation increased with ammonium supply through decomposition of organic matter produced by primary production but that ammonia oxidation might also be controlled by micronutrient availability as with primary production. PMID:26918664

  8. Microbial community compositions in different functional zones of Carrousel oxidation ditch system for domestic wastewater treatment.

    PubMed

    Xu, Dong; Liu, Sitong; Chen, Qian; Ni, Jinren

    2017-12-01

    The microbial community diversity in anaerobic-, anoxic- and oxic-biological zones of a conventional Carrousel oxidation ditch system for domestic wastewater treatment was systematically investigated. The monitored results of the activated sludge sampled from six full-scale WWTPs indicated that Proteobacteria, Chloroflexi, Bacteroidetes, Actinobacteria, Verrucomicrobia, Acidobacteria and Nitrospirae were dominant phyla, and Nitrospira was the most abundant and ubiquitous genus across the three biological zones. The anaerobic-, anoxic- and oxic-zones shared approximately similar percentages across the 50 most abundant genera, and three genera (i.e. uncultured bacterium PeM15, Methanosaeta and Bellilinea) presented statistically significantly differential abundance in the anoxic-zone. Illumina high-throughput sequences related to ammonium oxidizer organisms and denitrifiers with top50 abundance in all samples were Nitrospira, uncultured Nitrosomonadaceae, Dechloromonas, Thauera, Denitratisoma, Rhodocyclaceae (norank) and Comamonadaceae (norank). Moreover, environmental variables such as water temperature, water volume, influent ammonium nitrogen, influent chemical oxygen demand (COD) and effluent COD exhibited significant correlation to the microbial community according to the Monte Carlo permutation test analysis (p < 0.05). The abundance of Nitrospira, uncultured Nitrosomonadaceae and Denitratisoma presented strong positive correlations with the influent/effluent concentration of COD and ammonium nitrogen, while Dechloromonas, Thauera, Rhodocyclaceae (norank) and Comamonadaceae (norank) showed positive correlations with water volume and temperature. The established relationship between microbial community and environmental variables in different biologically functional zones of the six representative WWTPs at different geographical locations made the present work of potential use for evaluation of practical wastewater treatment processes.

  9. Chemoautotrophic carbon fixation rates and active bacterial communities in intertidal marine sediments.

    PubMed

    Boschker, Henricus T S; Vasquez-Cardenas, Diana; Bolhuis, Henk; Moerdijk-Poortvliet, Tanja W C; Moodley, Leon

    2014-01-01

    Chemoautotrophy has been little studied in typical coastal marine sediments, but may be an important component of carbon recycling as intense anaerobic mineralization processes in these sediments lead to accumulation of high amounts of reduced compounds, such as sulfides and ammonium. We studied chemoautotrophy by measuring dark-fixation of 13C-bicarbonate into phospholipid derived fatty acid (PLFA) biomarkers at two coastal sediment sites with contrasting sulfur chemistry in the Eastern Scheldt estuary, The Netherlands. At one site where free sulfide accumulated in the pore water right to the top of the sediment, PLFA labeling was restricted to compounds typically found in sulfur and ammonium oxidizing bacteria. At the other site, with no detectable free sulfide in the pore water, a very different PLFA labeling pattern was found with high amounts of label in branched i- and a-PLFA besides the typical compounds for sulfur and ammonium oxidizing bacteria. This suggests that other types of chemoautotrophic bacteria were also active, most likely Deltaproteobacteria related to sulfate reducers. Maximum rates of chemoautotrophy were detected in first 1 to 2 centimeters of both sediments and chemosynthetic biomass production was high ranging from 3 to 36 mmol C m(-2) d(-1). Average dark carbon fixation to sediment oxygen uptake ratios were 0.22±0.07 mol C (mol O2)(-1), which is in the range of the maximum growth yields reported for sulfur oxidizing bacteria indicating highly efficient growth. Chemoautotrophic biomass production was similar to carbon mineralization rates in the top of the free sulfide site, suggesting that chemoautotrophic bacteria could play a crucial role in the microbial food web and labeling in eukaryotic poly-unsaturated PLFA was indeed detectable. Our study shows that dark carbon fixation by chemoautotrophic bacteria is a major process in the carbon cycle of coastal sediments, and should therefore receive more attention in future studies on sediment biogeochemistry and microbial ecology.

  10. Responses of soil ammonia-oxidizing microorganisms to repeated exposure of single-walled and multi-walled carbon nanotubes.

    PubMed

    Chen, Qinglin; Wang, Hui; Yang, Baoshan; He, Fei; Han, Xuemei; Song, Ziheng

    2015-02-01

    The impacts of carbon nanotubes (CNTs) including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) on soil microbial biomass and microbial community composition (especially on ammonium oxidizing microorganisms) have been evaluated. The first exposure of CNTs lowered the microbial biomass immediately, but the values recovered to the level of the control at the end of the experiment despite the repeated addition of CNTs. The abundance and diversity of ammonium-oxidizing archaea (AOA) were higher than that of ammonium-oxidizing bacteria (AOB) under the exposure of CNTs. The addition of CNTs decreased Shannon-Wiener diversity index of AOB and AOA. Two-way ANOVA analysis showed that CNTs had significant effects on the abundance and diversity of AOB and AOA. Dominant terminal restriction fragments (TRFs) of AOB exhibited a positive relationship with NH4(+), while AOA was on the contrary. It implied that AOB prefer for high-NH4(+) soils whereas AOA is favored in low NH4(+) soils in the CNT-contaminated soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Electrodes as Terminal Electron Acceptors in Anaerobic Ammonium Oxidation

    NASA Astrophysics Data System (ADS)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2017-12-01

    Anaerobic ammonium (NH4+) oxidation under iron (Fe) reducing conditions is a microbial- mediated process known as Feammox. This is a novel pathway in the nitrogen cycle, and a key process for alleviating NH4+ accumulation in anoxic soils, wetlands, and wastewater. Acidimicrobiaceae-bacterium A6, phylum Actinobacteria, are one type of autotrophic bacteria linked to this process. The Feammox-bacteria obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, iron oxides are the TEAs. However, in this study we show that electrodes in Microbial Electrolysis Cells (MECs) or electrodes set in the field can be used as TEAs by Feammox-bacteria. The potential difference between electrodes is the driving force for electron transfer, making the reaction energetically feasible. Our results show that MECs containing Feammox cultures can remove NH4+ up to 3.5 mg/L in less than 4 hours, compared to an average of 9 mg/L in 2 weeks when cultured under traditional conditions. Concomitantly, MECs produce an average current of 30.5 A/m3 whilst dead bacteria produced low (<2.7 A/m3) or no current. Furthermore, we have measured that A6 biomass increased from 5E4 cells/ml to 9.77E5 cells/ml in 2 weeks of operation, indicating the feasibility of growing A6 in MECs. Results from the electrodes in the field show higher percentage of electrogenic bacteria, including Acidimicrobiaceae-bacterium, on the more reducing electrode, compared to the more oxidized one. Our initial results also suggest that electrodes contained more Actinobacteria when compared to bulk soil. Electrodes as TEAs enhance electrogenic bacteria recovery and culturing. The use of MECs for the productions of Feammox-bacteria eliminates the dependence of Fe, a finite electron acceptor, therefore, allowing for continuous NH4+ removal. Finally, Fe-free Feammox-bacteria can be applied to reduce other metals of environmental concern; therefore, opening the range of possible application of Feammox-bacteria.

  12. Wolframite Conversion in Treating a Mixed Wolframite-Scheelite Concentrate by Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka

    2017-12-01

    Complete wolframite conversion in sulfuric acid is significant for expanding the applicability of the sulfuric acid method for producing ammonium paratungstate. In this paper, the conversion of wolframite in treating a mixed wolframite-scheelite concentrate by sulfuric acid was studied systematically. The results show that the conversion of wolframite in sulfuric acid is more difficult than that of scheelite, requiring rigorous reaction conditions. A solid H2WO4 layer forms on the surfaces of the wolframite particles and becomes denser with increasing H2SO4 concentration, thus hindering the conversion. Furthermore, the difficulty in wolframite conversion can be mainly attributed to the accumulation of Fe2+ (and/or Mn2+) in the H2SO4 solution, which can be solved by reducing Fe2+ (and/or Mn2+) concentration through oxidization and/or a two-stage process. Additionally, the solid converted product of the mixed wolframite-scheelite concentrate has an excellent leachability of tungsten in an aqueous ammonium carbonate solution at ambient temperature, with approximately 99% WO3 recovery. This work presents a route for manufacturing ammonium paratungstate by treating the mixed concentrate in sulfuric acid followed by leaching in ammonium carbonate solution.

  13. Wolframite Conversion in Treating a Mixed Wolframite-Scheelite Concentrate by Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka

    2018-02-01

    Complete wolframite conversion in sulfuric acid is significant for expanding the applicability of the sulfuric acid method for producing ammonium paratungstate. In this paper, the conversion of wolframite in treating a mixed wolframite-scheelite concentrate by sulfuric acid was studied systematically. The results show that the conversion of wolframite in sulfuric acid is more difficult than that of scheelite, requiring rigorous reaction conditions. A solid H2WO4 layer forms on the surfaces of the wolframite particles and becomes denser with increasing H2SO4 concentration, thus hindering the conversion. Furthermore, the difficulty in wolframite conversion can be mainly attributed to the accumulation of Fe2+ (and/or Mn2+) in the H2SO4 solution, which can be solved by reducing Fe2+ (and/or Mn2+) concentration through oxidization and/or a two-stage process. Additionally, the solid converted product of the mixed wolframite-scheelite concentrate has an excellent leachability of tungsten in an aqueous ammonium carbonate solution at ambient temperature, with approximately 99% WO3 recovery. This work presents a route for manufacturing ammonium paratungstate by treating the mixed concentrate in sulfuric acid followed by leaching in ammonium carbonate solution.

  14. [Rapid startup and nitrogen removal characteristic of anaerobic ammonium oxidation reactor in packed bed biofilm reactor with suspended carrier].

    PubMed

    Chen, Sheng; Sun, De-zhi; Yu, Guang-lu

    2010-03-01

    Packed bed biofilm reactor with suspended carrier was used to cultivate ANAMMOX bacteria with sludge inoculums from WWTP secondary settler. The startup of ANAMMOX reactor was comparatively studied using high nitrogen loading method and low nitrogen loading method with aerobically biofilmed on the carrier, and the nitrogen removal characteristic was further investigated. The results showed that the reactor could be started up successfully within 90 days using low nitrogen loading method, the removal efficiencies of ammonium and nitrite were nearly 100% and the TN removal efficiencywas over 75% , however, the high nitrogen loading method was proved unsuccessfully for startup of ANAMMOX reactor probably because of the inhibition effect of high concentration of ammonium and nitrite. The pH value of effluent was slightly higher than the influent and the pH value can be used as an indicator for the process of ANAMMOX reaction. The packed bed ANAMMOX reactor with suspended carrier showed good characteristics of high nitrogen loading and high removal efficiency, 100% of removal efficiency could be achieved when the influent ammonium and nitrite concentration was lower than 800 mg/L.

  15. Recovery of valuable metals from waste diamond cutters through ammonia-ammonium sulfate leaching

    NASA Astrophysics Data System (ADS)

    Xue, Ping; Li, Guang-qiang; Yang, Yong-xiang; Qin, Qin-wei; Wei, Ming-xing

    2017-12-01

    Copper and zinc were recovered from waste diamond cutters through leaching with an ammonia-ammonium sulfate system and air as an oxidant. The effects of experimental parameters on the leaching process were investigated, and the potential-pH ( E-pH) diagrams of Cu-NH3-SO4 2--H2O and Zn-NH3-SO4 2--H2O at 25°C were drawn. Results showed that the optimal parameters for the leaching reaction are as follows: reaction temperature, 45°C; leaching duration, 3 h; liquid-to-solid ratio, 50:1 (mL/g); stirring speed, 200 r/min; ammonia concentration, 4.0 mol/L; ammonium sulfate concentration, 1.0 mol/L; and air flow rate, 0.2 L/min. The results of the kinetics study indicated that the leaching is controlled by the surface chemical reaction at temperatures below 35°C, and the leaching is controlled by diffusion through the product layer at temperatures above 35°C.

  16. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 1. Separation behavior of aromatic carboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, K.; Okuwaki, A.; Verheyen, T.

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid.more » Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.« less

  17. Kinetic models for nitrogen inhibition in ANAMMOX and nitrification process on deammonification system at room temperature.

    PubMed

    De Prá, Marina C; Kunz, Airton; Bortoli, Marcelo; Scussiato, Lucas A; Coldebella, Arlei; Vanotti, Matias; Soares, Hugo M

    2016-02-01

    In this study were fitted the best kinetic model for nitrogen removal inhibition by ammonium and/or nitrite in three different nitrogen removal systems operated at 25 °C: a nitrifying system (NF) containing only ammonia oxidizing bacteria (AOB), an ANAMMOX system (AMX) containing only ANAMMOX bacteria, and a deammonification system (DMX) containing both AOB and ANAMMOX bacteria. NF system showed inhibition by ammonium and was best described by Andrews model. The AMX system showed a strong inhibition by nitrite and Edwards model presented a best system representation. For DMX system, the increased substrate concentration (until 1060 mg NH3-N/L) tested was not limiting for the ammonia consumption rate and the Monod model was the best model to describe this process. The AOB and ANAMMOX sludges combined in the DMX system displayed a better activity, substrate affinity and excellent substrate tolerance than in nitrifying and ANAMMOX process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Wastewater and Saltwater: Studying the Biogeochemistry and Microbial Activity Associated with Wastewater Inputs to San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Challenor, T.; Menendez, A. D.; Damashek, J.; Francis, C. A.; Casciotti, K. L.

    2014-12-01

    Nitrification is the process of converting ammonium (NH­­4+) into nitrate (NO3-), and is a crucial step in removing nitrogen (N) from aquatic ecosystems. This process is governed by ammonia-oxidizing bacteria (AOB) and archaea (AOA) that utilize the ammonia monooxygenase gene (amoA). Studying the rates of nitrification and the abundances of ammonia-oxidizing microorganisms in south San Francisco Bay's Artesian Slough, which receives treated effluent from the massive San Jose-Santa Clara Regional Wastewater Facility, are important for understanding the cycling of nutrients in this small but complex estuary. Wastewater inputs can have negative environmental impacts, such as the release of nitrous oxide, a byproduct of nitrification and a powerful greenhouse gas. Nutrient inputs can also increase productivity and sometimes lead to oxygen depletion. Assessing the relative abundance and diversity of AOA and AOB, along with measuring nitrification rates gives vital information about the biology and biogeochemistry of this important N-cycling process. To calculate nitrification rates, water samples were spiked with 15N-labeled ammonium and incubated in triplicate for 24 hours. Four time-points were extracted across the incubation and the "denitrifier" method was used to measure the isotopic ratio of nitrate in the samples over time. In order to determine relative ratios of AOB to AOA, DNA was extracted from water samples and used in clade-specific amoA PCR assays. Nitrification rates were detectable in all locations sampled and were higher than in other regions of the bay, as were concentrations of nitrate and ammonium. Rates were highest in the regions of Artesian Slough most directly affected by wastewater effluent. AOB vastly outnumbered AOA, which is consistent with other studies showing that AOB prefer high nutrient environments. AOB diversity includes clades of Nitrosospira and Nitrosomonas prevalent in estuarine settings. Many of the sequenced genes are related to estuarine sediment found at other sites in the San Francisco Bay as well as the Chesapeake Bay, China East Sea, and Pearl River Estuary. Our data provide evidence for the path that N takes once entering the estuary and also further characterize the behavior of nitrifying microorganisms in extremely high-nutrient aquatic environments.

  19. Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor.

    PubMed

    Chen, Xueming; Guo, Jianhua; Shi, Ying; Hu, Shihu; Yuan, Zhiguo; Ni, Bing-Jie

    2014-08-19

    Nitrogen removal by using the synergy of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) microorganisms in a membrane biofilm reactor (MBfR) has previously been demonstrated experimentally. In this work, a mathematical model is developed to describe the simultaneous anaerobic methane and ammonium oxidation by DAMO and Anammox microorganisms in an MBfR for the first time. In this model, DAMO archaea convert nitrate, both externally fed and/or produced by Anammox, to nitrite, with methane as the electron donor. Anammox and DAMO bacteria jointly remove the nitrite fed/produced, with ammonium and methane as the electron donor, respectively. The model is successfully calibrated and validated using the long-term (over 400 days) dynamic experimental data from the MBfR, as well as two independent batch tests at different operational stages of the MBfR. The model satisfactorily describes the methane oxidation and nitrogen conversion data from the system. Modeling results show the concentration gradients of methane and nitrogen would cause stratification of the biofilm, where Anammox bacteria mainly grow in the biofilm layer close to the bulk liquid and DAMO organisms attach close to the membrane surface. The low surface methane loadings result in a low fraction of DAMO microorganisms, but the high surface methane loadings would lead to overgrowth of DAMO bacteria, which would compete with Anammox for nitrite and decrease the fraction of Anammox bacteria. The results suggest an optimal methane supply under the given condition should be applied not only to benefit the nitrogen removal but also to avoid potential methane emissions.

  20. Dynamics of ammonia-oxidizing communities in barley-planted bulk soil and rhizosphere following nitrate and ammonium fertilizer amendment.

    PubMed

    Glaser, Katrin; Hackl, Evelyn; Inselsbacher, Erich; Strauss, Joseph; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Sessitsch, Angela

    2010-12-01

    Oxidation of ammonia by nitrifying microorganisms is a major pathway that fertilizer nitrogen (N) may take upon application to agricultural soils, but the relative roles of bacterial (AOB) vs. archaeal (AOA) ammonia oxidizers are controversial. We explored the effects of various forms of mineral N fertilizer on the AOB and AOA community dynamics in two different soils planted with barley. Ammonia oxidizers were monitored via real-time PCR and terminal restriction fragment length polymorphism analysis of bacterial and archaeal amoA genes following the addition of either [NH₄]₂SO₄, NH₄NO₃ or KNO₃. AOB and AOA communities were also studied specifically in the rhizospheres of two different barley varieties upon [NH₄]₂SO₄ vs. KNO₃ addition. AOB changed in community composition and increased in abundance upon ammonium amendment in bulk soil and rhizosphere, with changes in bacterial amoA copy numbers lagging behind relative to changes in soil ammonium. In both soils, only T-RFs corresponding to phylotypes related to Nitrosospira clade 3a underwent significant community changes. Increases in AOB abundance were generally stronger in the bulk soil than in the rhizosphere, implying significant ammonia uptake by plant roots. AOA underwent shifts in the community composition over time and fluctuated in abundance in all treatments irrespective of ammonia availability. AOB were thus considered as the main agents responsible for fertilizer ammonium oxidation, while the functions of AOA in soil N cycling remain unresolved. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Connection between nitrogen and manganese cycles revealed by transcriptomic analysis in Shewanella algae C6G3

    NASA Astrophysics Data System (ADS)

    Michotey, V.; Aigle, A.; Armougom, F.; Mejean, V.; Guasco, S.; Bonin, P.

    2016-02-01

    In sedimentary systems, the repartition of terminal electron-accepting molecules is often stratified on a permanent or seasonal basis. Just below to oxic zone, the suboxic one is characterized by high concentrations of oxidized inorganic compounds such as nitrate, manganese oxides (MnIII/IV) and iron oxides that are in close vicinity. Several studies have reported unexpected anaerobic nitrite/nitrate production at the expense of ammonium mediated by MnIII/IV, however this transient processes is difficult to discern and poorly understood. In the frame of this study, genes organization of nitrate and MnIII/IV respiration was investigated in S.algae. Additional genes were identified in S. algae compare to S. oneidensis: genes coding for nitrate and nitrite reductase (napA-a and nrfA-2) and an OMC protein (mtrH). In contrast to S. oneidensis, an anaerobic transitory nitrite accumulation at the expense of ammonium was observed in S. algae during growth with MnIII/IV, concomitantly with expression of nitrate/nitrite reductase genes (napA, nrfA, nrfA-2). Among the hypothesis explaining this data, the potential putative expression of unidentified gene able to perform ammonium oxidation was not observed on the global transcriptional level, however several signs of oxidative stress were detected and the existence of a secondary reaction generated by a putative oxidative s could not be excluded. Another option could be the action of reverse reaction by an enzyme such as NrfA or NrfA-2 due to the electron flow equilibrium. Whatever the electron acceptor (Nitrate/ MnIII/IV), the unexpected expression level of of omcA, mtrF, mtrH, mtrC was observed and peaked at the end of the exponential phase. Different expression patterns of the omc genes were observed depending on electron acceptor and growth phase. Only mtrF-2 gene was specifically expressed in Mn(III/IV) condition. Nitrate and Mn(III/IV) respirations seem connected at physiological as well as at transcriptional level

  2. CONCENTRATION OF Pu USING OXALATE TYPE CARRIER

    DOEpatents

    Ritter, D.M.; Black, R.P.S.

    1960-04-19

    A method is given for dissolving and reprecipitating an oxalate carrier precipitate in a carrier precipitation process for separating and recovering plutonium from an aqueous solution. Uranous oxalate, together with plutonium being carried thereby, is dissolved in an aqueous alkaline solution. Suitable alkaline reagents are the carbonates and oxulates of the alkali metals and ammonium. An oxidizing agent selected from hydroxylamine and hydrogen peroxide is then added to the alkaline solution, thereby oxidizing uranium to the hexavalent state. The resulting solution is then acidified and a source of uranous ions provided in the acidified solution, thereby forming a second plutoniumcarrying uranous oxalate precipitate.

  3. Ambient Ammonium Contribution to total Nitrogen Deposition

    EPA Science Inventory

    There has been a wealth of evidence over the last decade illustrating the rising importance of reduced inorganic nitrogen (NHx = ammonia gas, NH3, plus particulate ammonium, p-NH4) in the overall atmospheric mass balance and deposition of nitrogen as emissions of oxidized nitrog...

  4. Effect of process parameters and operational mode on nitrous oxide emissions from a nitritation reactor treating reject wastewater.

    PubMed

    Pijuan, Maite; Torà, Josep; Rodríguez-Caballero, Adrián; César, Elvira; Carrera, Julián; Pérez, Julio

    2014-02-01

    Nitrous oxide (N2O) and methane emissions were monitored in a continuous granular airlift nitritation reactor from ammonium-rich wastewater (reject wastewater). N2O emissions were found to be dependent on dissolved oxygen (DO) concentration in the range of 1-4.5 mg O2/L, increasing within this range when reducing the DO values. At higher DO concentrations, N2O emissions remained constant at 2.2% of the N oxidized to nitrite, suggesting two different mechanisms behind N2O production, one dependent and one independent of DO concentration. Changes on ammonium, nitrite, free ammonia and free nitrous acid concentrations did not have an effect on N2O emissions within the concentration range tested. When operating the reactor in a sequencing batch mode under high DO concentration (>5 mg O2/L), N2O emissions increased one order of magnitude reaching values of 19.3 ± 7.5% of the N oxidized. Moreover, CH4 emissions detected were due to the stripping of the soluble CH4 that remained dissolved in the reject wastewater after anaerobic digestion. Finally, an economical and carbon footprint assessment of a theoretical scaled up of the pilot plant was conducted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Biologically tunable reactivity of energetic nanomaterials using protein cages.

    PubMed

    Slocik, Joseph M; Crouse, Christopher A; Spowart, Jonathan E; Naik, Rajesh R

    2013-06-12

    The performance of aluminum nanomaterial based energetic formulations is dependent on the mass transport, diffusion distance, and stability of reactive components. Here we use a biologically inspired approach to direct the assembly of oxidizer loaded protein cages onto the surface of aluminum nanoparticles to improve reaction kinetics by reducing the diffusion distance between the reactants. Ferritin protein cages were loaded with ammonium perchlorate (AP) or iron oxide and assembled with nAl to create an oxidation-reduction based energetic reaction and the first demonstration of a nanoscale biobased thermite material. Both materials showed enhanced exothermic behavior in comparison to nanothermite mixtures of bulk free AP or synthesized iron oxide nanopowders prepared without the use of ferritin. In addition, by utilizing a layer-by-layer (LbL) process to build multiple layers of protein cages containing iron oxide and iron oxide/AP on nAl, stoichiometric conditions and energetic performance can be optimized.

  6. Anaerobic ammonium-oxidizing bacteria gain antibiotic resistance during long-term acclimatization.

    PubMed

    Zhang, Zheng-Zhe; Zhang, Qian-Qian; Guo, Qiong; Chen, Qian-Qian; Jiang, Xiao-Yan; Jin, Ren-Cun

    2015-09-01

    Three broad-spectrum antibiotics, amoxicillin (AMX), florfenicol (FF) and sulfamethazine (SMZ), that inhibit bacteria via different target sites, were selected to evaluate the acute toxicity and long-term effects on anaerobic ammonium oxidation (anammox) granules. The specific anammox activity (SAA) levels reduced by approximately half within the first 3 days in the presence of antibiotics but no nitrite accumulation was observed in continuous-flow experiments. However, the SAA levels and heme c content gradually recovered as the antibiotic concentrations increased. Extracellular polymeric substances (EPS) analysis suggested that anaerobic ammonium-oxidizing bacteria gradually developed a better survival strategy during long-term acclimatization, which reduced the antibiotic stress via increased EPS secretion that provided a protective 'cocoon.' In terms of nitrogen removal efficiency, anammox granules could resist 60 mg-AMX L(-1), 10 mg-FF L(-1) and 100 mg-SMZ L(-1). This study supported the feasibility of using anammox granules to treat antibiotic-containing wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Bioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulfate as energy sources: a comparative study.

    PubMed

    Pathak, Ashish; Dastidar, M G; Sreekrishnan, T R

    2009-11-15

    The potential of indigenous iron-oxidizing microorganisms enriched at initial neutral pH of the sewage sludge for bioleaching of heavy metals was investigated at initial neutral pH of the sludge using ammonium ferrous sulfate (FAS) and ferrous sulfate (FS) as an energy sources in two different sets of experiments. After 16 days of bioleaching, 56% Cu, 48% Ni, 68% Zn and 42% C were removed from the sludge using ammonium ferrous sulfate as an energy source. On the other hand, 64% Cu, 58% Ni, 76% Zn and 52% Cr were removed using ferrous sulfate. Further, 32% nitrogen and 24% phosphorus were leached from the sludge using ferrous sulfate, whereas only 22% nitrogen and 17% phosphorus were removed using ammonium ferrous sulfate. The BCR sequential extraction study on speciation of metals showed that using ammonium ferrous sulfate and ferrous sulfate, all the metals remained in bioleached sludge as stable form (F4 fraction). The results of the present study indicate that the bioleached sludge would be safer for land application. Also, the fertilizing property was largely conserved in the bioleached sludge using both the substrates.

  8. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations.

    PubMed

    Fux, C; Siegrist, H

    2004-01-01

    In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.

  9. A study on recovery of uranium in the anode basket residues delivered from the pyrochemical process of used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Kim, T. J.; Jang, J. H.; Kim, G. Y.; Park, S. B.; Yoon, D. S.; Kim, S. H.; Paek, S. W.; Lee, S. J.

    2018-04-01

    In this study, the chlorination of uranium oxide (UO2) using ammonium chloride and zirconium as chemical agents was conducted to recover the uranium in the anode basket residues from the pyrochemical process of used nuclear fuel. The chlorination of UO2 was predicted using thermodynamic equilibrium calculations. The experimental conditions for the chlorination were determined using a chlorination test with cerium oxide (CeO2). In the chlorination test, it was confirmed that UO2 was chlorinated into UCl3 at 320 °C, some UO2 remained without changes in the chemical form, and ZrO2, Zr2O, and ZrCl2 were generated as byproducts.

  10. Fabrication of Aligned Polyaniline Nanofiber Array via a Facile Wet Chemical Process.

    PubMed

    Sun, Qunhui; Bi, Wu; Fuller, Thomas F; Ding, Yong; Deng, Yulin

    2009-06-17

    In this work, we demonstrate for the first time a template free approach to synthesize aligned polyaniline nanofiber (PN) array on a passivated gold (Au) substrate via a facile wet chemical process. The Au surface was first modified using 4-aminothiophenol (4-ATP) to afford the surface functionality, followed subsequently by an oxidation polymerization of aniline (AN) monomer in an aqueous medium using ammonium persulfate as the oxidant and tartaric acid as the doping agent. The results show that a vertically aligned PANI nanofiber array with individual fiber diameters of ca. 100 nm, heights of ca. 600 nm and a packing density of ca. 40 pieces·µm(-2) , was synthesized. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Niobium oxide synthesized via etching agent - assisted hydrothermal process: A films with low reflectance properties

    NASA Astrophysics Data System (ADS)

    Rani, Rozina Abdul; Zoolfakar, Ahmad Sabirin; Alrokayan, Salman; Khan, Haseeb; Rusop, M.

    2018-05-01

    In this paper, synthesis of the hydrothermal based etching process of niobium oxide (Nb2O5) films and their reflectance properties are presented. The concentration of etching agent, which is ammonium fluoride (NH4F) in the hydrothermal solution as well as the grain size and the annealing condition have significantly affected the reflectance properties of Nb2O5 films. Films that synthesized in 1.65M of NH4F solution showed the lowest percentage of reflectance value of 3.22% at 222 nm. The obtained reflectance results have shown that this kind of Nb2O5 films is very suitable for anti-reflective coating layer and UV sensor application.

  12. Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign

    NASA Astrophysics Data System (ADS)

    Hecobian, A.; Liu, Z.; Hennigan, C. J.; Huey, L. G.; Jimenez, J. L.; Cubison, M. J.; Vay, S.; Diskin, G. S.; Sachse, G. W.; Wisthaler, A.; Mikoviny, T.; Weinheimer, A. J.; Liao, J.; Knapp, D. J.; Wennberg, P. O.; Kürten, A.; Crounse, J. D.; St. Clair, J.; Wang, Y.; Weber, R. J.

    2011-12-01

    This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska, USA (3 April to 19 April 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008); and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008). Approximately 500 smoke plumes from biomass burning emissions that varied in age from minutes to days were segregated by fire source region and urban emission influences. The normalized excess mixing ratios (NEMR) of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen and ozone) and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon) of these plumes were compared. A detailed statistical analysis of the different plume categories for different gaseous and aerosol species is presented in this paper. The comparison of NEMR values showed that CH4 concentrations were higher in air-masses that were influenced by urban emissions. Fresh biomass burning plumes mixed with urban emissions showed a higher degree of oxidative processing in comparison with fresh biomass burning only plumes. This was evident in higher concentrations of inorganic aerosol components such as sulfate, nitrate and ammonium, but not reflected in the organic components. Lower NOx NEMRs combined with high sulfate, nitrate and ammonium NEMRs in aerosols of plumes subject to long-range transport, when comparing all plume categories, provided evidence of advanced processing of these plumes.

  13. Pyrosequencing analysis of microbial communities in hollow fiber-membrane biofilm reactors system for treating high-strength nitrogen wastewater.

    PubMed

    Park, Jung-Hun; Choi, Okkyoung; Lee, Tae-Ho; Kim, Hyunook; Sang, Byoung-In

    2016-11-01

    Wastewaters from swine farms, nitrogen-dealing industries or side-stream processes of a wastewater treatment plant (e.g., anaerobic digesters, sludge thickening processes, etc.) are characterized by low C/N ratios and not easily treatable. In this study, a hollow fiber-membrane biofilm reactors (HF-MBfR) system consisting of an O2-based HF-MBfR and an H2-based HF-MBfR was applied for treating high-strength wastewater. The reactors were continuously operated with low supply of O2 and H2 and without any supply of organic carbon for 250 d. Gradual increase of ammonium and nitrate concentration in the influent showed stable and high nitrogen removal efficiency, and the maximum ammonium and nitrate removal rates were 0.48 kg NH4(+)-N m(-3) d(-1) and 0.55 kg NO3(-)-N m(-3) d(-1), respectively. The analysis of the microbial communities using pyrosequencing analysis indicated that Nitrosospira multiformis, ammonium-oxidizing bacteria, and Nitrobacter winogradskyi and Nitrobacter vulgaris, nitrite-oxidizing bacteria were highly enriched in the O2-based HF-MBfR. In the H2-based HF-MBfR, hydrogenotrophic denitrifying bacteria belonging to the family of Thiobacillus and Comamonadaceae were initially dominant, but were replaced to heterotrophic denitrifiers belonging to Rhodocyclaceae and Rhodobacteraceae utilizing by-products induced from autotrophic denitrifying bacteria. The pyrosequencing analysis of microbial communities indicates that the autotrophic HF-MBfRs system well developed autotrophic nitrifying and denitrifying bacteria within a relatively short period to accomplish almost complete nitrogen removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Influence of preservation temperature on the characteristics of anaerobic ammonium oxidation (anammox) granular sludge.

    PubMed

    Xing, Bao-Shan; Guo, Qiong; Jiang, Xiao-Yan; Chen, Qian-Qian; Li, Peng; Ni, Wei-Min; Jin, Ren-Cun

    2016-05-01

    Preserving active anaerobic ammonium oxidation (anammox) biomass is a potential method for securing sufficient seeding biomass for the rapid start-up of full-scale anammox processes. In this study, anammox granules were cultured in an upflow anaerobic sludge blanket (UASB) reactor (R0), and then the enriched anammox granules were preserved at 35, 20, 4, and -30 °C. The subsequent reactivation characteristics of the granules were evaluated in four UASB reactors (denoted R1, R2, R3, and R4, respectively) to investigate the effect of preservation temperature on the characteristics of anammox granules and their reactivation performance. The results demonstrated that 4 °C was the optimal preservation temperature for maintaining the biomass, activity, settleability, and integrity of the anammox granules and their cellular structures. During the preservation period, a first-order exponential decay model may be used to simulate the decay of anammox biomass and activity. The protein-to-polysaccharide ratio in the extracellular polymeric substances and the heme c content could not effectively indicate the changes in settleability and activity of the anammox granules, respectively, and a loss of bioactivity was positively associated with the degree of anaerobic ammonium-oxidizing bacteria cell lysis. After 42 days of storage, the anammox granules preserved at 4 °C (R3) exhibited a better recovery performance than those preserved at 20 °C (R2), -30 °C (R4), and 35 °C (R1). The comprehensive comparison indicated that 4 °C is the optimal storage temperature for anammox granular sludge because it promotes improved maintenance and recovery performance properties.

  15. Simultaneous absorption of NO and SO2 into hexamminecobalt(II)/iodide solution.

    PubMed

    Long, Xiang-Li; Xiao, Wen-De; Yuan, Wei-kang

    2005-05-01

    An innovative catalyst system has been developed to simultaneously remove NO and SO2 from combustion flue gas. Such catalyst system may be introduced to the scrubbing solution using ammonia solution to accomplish sequential absorption and catalytic oxidation of both NO and SO2 in the same reactor. When the catalyst system is utilized for removing NO and SO2 from the flue gas, Co(NH3)(6)2+ ions act as the catalyst and I- as the co-catalyst. Dissolved oxygen, in equilibrium with the residual oxygen in the flue gas, is the oxidant. The overall removal process is further enhanced by UV irradiation at 365 nm. More than 95% of NO is removed at a feed concentration of 250-900 ppm, and nearly 100% of SO2 is removed at a feed concentration of 800-2500 ppm. The sulfur dioxide co-existing in the flue gas is beneficial to NO absorption into hexamminecobalt(II)/iodide solution. NO and SO2 can be converted to ammonium sulfate and ammonium nitrate that can be used as fertilizer materials. The process described here demonstrates the feasibility of removing SO2 and NO simultaneously only by retrofitting the existing wet ammonia flue-gas-desulfurization (FGD) scrubbers.

  16. Suppression of External NADPH Dehydrogenase—NDB1 in Arabidopsis thaliana Confers Improved Tolerance to Ammonium Toxicity via Efficient Glutathione/Redox Metabolism

    PubMed Central

    Podgórska, Anna; Borysiuk, Klaudia; Tarnowska, Agata; Jakubiak, Monika; Burian, Maria; Rasmusson, Allan G.

    2018-01-01

    Environmental stresses, including ammonium (NH4+) nourishment, can damage key mitochondrial components through the production of surplus reactive oxygen species (ROS) in the mitochondrial electron transport chain. However, alternative electron pathways are significant for efficient reductant dissipation in mitochondria during ammonium nutrition. The aim of this study was to define the role of external NADPH-dehydrogenase (NDB1) during oxidative metabolism of NH4+-fed plants. Most plant species grown with NH4+ as the sole nitrogen source experience a condition known as “ammonium toxicity syndrome”. Surprisingly, transgenic Arabidopsis thaliana plants suppressing NDB1 were more resistant to NH4+ treatment. The NDB1 knock-down line was characterized by milder oxidative stress symptoms in plant tissues when supplied with NH4+. Mitochondrial ROS accumulation, in particular, was attenuated in the NDB1 knock-down plants during NH4+ treatment. Enhanced antioxidant defense, primarily concerning the glutathione pool, may prevent ROS accumulation in NH4+-grown NDB1-suppressing plants. We found that induction of glutathione peroxidase-like enzymes and peroxiredoxins in the NDB1-surpressing line contributed to lower ammonium-toxicity stress. The major conclusion of this study was that NDB1 suppression in plants confers tolerance to changes in redox homeostasis that occur in response to prolonged ammonium nutrition, causing cross tolerance among plants. PMID:29747392

  17. Effect of ammonium nitrogen concentration on the ammonia-oxidizing bacteria community in a membrane bioreactor for the treatment of anaerobically digested swine wastewater.

    PubMed

    Sui, Qianwen; Liu, Chong; Dong, Hongmin; Zhu, Zhiping

    2014-09-01

    A membrane bioreactor (MBR) was developed for the treatment of anaerobically digested swine wastewater and to investigate the effect of ammonium nitrogen concentration on biological nitrogen removal and ammonia-oxidizing bacteria (AOB) community structures. The MBR achieved a high NH4(+)-N removal efficiency of 0.08 kgNMLSS(-1)d(-1) and removed 95% of the influent NH4(+)-N. The TN removal rate was highest of 82.62% at COD/TN and BOD5/TN ratios of 8.76 ± 0.30 and 3.02 ± 0.09, respectively. With the decrease in ammonium nitrogen concentrations, the diversity of the AOB community declined and showed a simple pattern of DGGE. However, the AOB population size remained high, with abundance of 10(7)-10(9) copies mL(-1). With the decrease of ammonium nitrogen concentrations, Nitrosomonas eutropha gradually disappeared, whereas Nitrosomonas sp. OZK11 showed constant adaptability to survive during each treatment stage. The selective effect of ammonium concentration on AOB species could be due to the affinity for NH4(+)-N. In this study, the changes of ammonium nitrogen concentrations in digested swine wastewater were found to have selective effects on the composition of AOB community, and biological nitrogen removal was improved by optimising the influencing parameters. Copyright © 2014. Published by Elsevier B.V.

  18. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    NASA Astrophysics Data System (ADS)

    Kiko, R.; Hauss, H.; Buchholz, F.; Melzner, F.

    2015-10-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2 and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply considerably fuels bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a downregulation of ammonium excretion. Here we show that exposure to OMZ conditions can result in strong depression of respiration and ammonium excretion in calanoid copepods and euphausiids from the Eastern Tropical North Atlantic and the Eastern Tropical South Pacific. These physiological responses need to be taken into account when estimating DVM-mediated fluxes of carbon and nitrogen into OMZs.

  19. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate.

    PubMed

    Thorup, Casper; Schramm, Andreas; Findlay, Alyssa J; Finster, Kai W; Schreiber, Lars

    2017-07-18

    This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. IMPORTANCE Sulfide oxidation and sulfate reduction, the two major branches of the sulfur cycle, are usually ascribed to distinct sets of microbes with distinct diagnostic genes. Here we show a more complex picture, as D. alkaliphilus , with the genomic setup of a sulfate reducer, grows by sulfide oxidation. The high expression of genes typically involved in the sulfate reduction pathway suggests that these genes, including the reductive-type dissimilatory bisulfite reductases, are also involved in as-yet-unresolved sulfide oxidation pathways. Finally, D. alkaliphilus is closely related to cable bacteria, which grow by electrogenic sulfide oxidation. Since there are no pure cultures of cable bacteria, D. alkaliphilus may represent an exciting model organism in which to study the physiology of this process. Copyright © 2017 Thorup et al.

  20. Nitrogen removal performance of anaerobic ammonia oxidation (ANAMMOX) in presence of organic matter.

    PubMed

    Zhu, Weiqiang; Zhang, Peiyu; Yu, Deshuang; Dong, Huiyu; Li, Jin

    2017-06-01

    A sequencing batch reactor (SBR) was used to test the nitrogen removal performance of anaerobic ammonium oxidation (ANAMMOX) in presence of organic matter. Mesophilic operation (30 ± 0.5 °C) was performed with influent pH 7.5. The results showed, independent of organic matter species, ANAMMOX reaction was promoted when COD was lower than 80 mg/L. However, specific ANAMMOX activity decreased with increasing organic matter content. Ammonium removal efficiency decreased to 80% when COD of sodium succinate, sodium potassium tartrate, peptone and lactose were 192.5, 210, 225 and 325 mg/L, respectively. The stoichiometry ratio resulting from different OM differed largely and R 1 could be as an indicator for OM inhibition. When COD concentration was 240 mg/L, the loss of SAA resulting from lactose, peptone, sodium potassium tartrate and sodium succinate were 28, 36, 50 and 55%, respectively. Sodium succinate had the highest inhibitory effect on SAA. When ANAMMOX process was used to treat wastewater containing OM, the modified Logistic model could be employed to predict the NRE max .

  1. Stoichiometry and kinetics of the anaerobic ammonium oxidation (Anammox) with trace hydrazine addition.

    PubMed

    Yao, Zongbao; Lu, Peili; Zhang, Daijun; Wan, Xinyu; Li, Yulian; Peng, Shuchan

    2015-12-01

    Purpose of this study is to investigate the stoichiometry and kinetics of anaerobic ammonium oxidation (Anammox) with trace hydrazine addition. The stoichiometry was established based on the electron balance of Anammox process with trace N2H4 addition. The stoichiometric coefficients were determined by the proton consumption and the changes in substrates and products. It was found that trace N2H4 addition can increase the yield of Anammox bacteria (AnAOB) and reduce NO3(-) yield, which enhances the Anammox. Subsequently, kinetic model of Anammox with trace N2H4 addition was developed, and the parameters of the anaerobic degradation model of N2H4 were obtained for the first time. The maximum specific substrate utilization rate, half-saturation constant and inhibition constant of N2H4 were 25.09mgN/g VSS/d, 10.42mgN/L and 1393.88mgN/L, respectively. These kinetic parameters might provide important information for the engineering applications of Anammox with trace N2H4 addition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Temporal and Spatial Dynamics of Sediment Anaerobic Ammonium Oxidation (Anammox) Bacteria in Freshwater Lakes.

    PubMed

    Yang, Yuyin; Dai, Yu; Li, Ningning; Li, Bingxin; Xie, Shuguang; Liu, Yong

    2017-02-01

    Anaerobic ammonium-oxidizing (anammox) process can play an important role in freshwater nitrogen cycle. However, the distribution of anammox bacteria in freshwater lake and the associated environmental factors remain essentially unclear. The present study investigated the temporal and spatial dynamics of sediment anammox bacterial populations in eutrotrophic Dianchi Lake and mesotrophic Erhai Lake on the Yunnan Plateau (southwestern China). The remarkable spatial change of anammox bacterial abundance was found in Dianchi Lake, while the relatively slight spatial shift occurred in Erhai Lake. Dianchi Lake had greater anammox bacterial abundance than Erhai Lake. In both Dianchi Lake and Erhai Lake, anammox bacteria were much more abundant in summer than in spring. Anammox bacterial community richness, diversity, and structure in these two freshwater lakes were subjected to temporal and spatial variations. Sediment anammox bacterial communities in Dianchi Lake and Erhai Lake were dominated by Candidatus Brocadia and a novel phylotype followed by Candidatus Kuenenia; however, these two lakes had distinct anammox bacterial community structure. In addition, trophic status determined sediment anammox bacterial community structure.

  3. Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium Kuenenia stuttgartiensis.

    PubMed

    Neumann, Sarah; Wessels, Hans J C T; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S; Kartal, Boran; Jetten, Mike S M; van Niftrik, Laura

    2014-11-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost-effective and environment-friendly nitrogen removal system from wastewater. Anammox bacteria have a compartmentalized cell plan that consists of three separate compartments. Here we report the fractionation of the anammox bacterium Kuenenia stuttgartiensis in order to isolate and analyze the innermost cell compartment called the anammoxosome. The subcellular fractions were microscopically characterized and all membranes in the anammox cell were shown to contain ladderane lipids which are unique for anammox bacteria. Proteome analyses and activity assays with the isolated anammoxosomes showed that these organelles harbor the energy metabolism in anammox cells. Together the experimental data provide the first thorough characterization of a respiratory cell organelle from a bacterium and demonstrate the essential role of the anammoxosome in the production of a major portion of the nitrogen gas in our atmosphere. © 2014 John Wiley & Sons Ltd.

  4. Exploring the Denitrification Proteome of Paracoccus denitrificans PD1222

    PubMed Central

    Olaya-Abril, Alfonso; Hidalgo-Carrillo, Jesús; Luque-Almagro, Víctor M.; Fuentes-Almagro, Carlos; Urbano, Francisco J.; Moreno-Vivián, Conrado; Richardson, David J.; Roldán, María D.

    2018-01-01

    Denitrification is a respiratory process that produces nitrous oxide as an intermediate, which may escape to the atmosphere before its reduction to dinitrogen through the nitrous oxide reductase NosZ. In this work, the denitrification process carried out by Paracoccus denitrificans PD1222 has been explored through a quantitative proteomic analysis. Under anaerobic conditions, with nitrate as sole nitrogen source, the synthesis of all the enzymes involved in denitrification, the respiratory nitrate, nitrite, nitric oxide, and nitrous oxide reductases, was increased. However, the periplasmic and assimilatory nitrate reductases decreased. Synthesis of transporters for alcohols, D-methionine, sulfate and copper, most of the enzymes involved in the tricarboxylic acid cycle, and proteins involved in other metabolic processes like lysine catabolism, fatty acids degradation and acetyl-CoA synthesis, was increased during denitrification in P. denitrificans PD1222. As consequence, an enhanced production of the central metabolite acetyl-CoA was observed. After establishing the key features of the denitrification proteome, its changes by the influence of a competitive electron acceptor, oxygen, or competitive nitrogen source, ammonium, were evaluated. PMID:29896187

  5. Exploring the Denitrification Proteome of Paracoccus denitrificans PD1222.

    PubMed

    Olaya-Abril, Alfonso; Hidalgo-Carrillo, Jesús; Luque-Almagro, Víctor M; Fuentes-Almagro, Carlos; Urbano, Francisco J; Moreno-Vivián, Conrado; Richardson, David J; Roldán, María D

    2018-01-01

    Denitrification is a respiratory process that produces nitrous oxide as an intermediate, which may escape to the atmosphere before its reduction to dinitrogen through the nitrous oxide reductase NosZ. In this work, the denitrification process carried out by Paracoccus denitrificans PD1222 has been explored through a quantitative proteomic analysis. Under anaerobic conditions, with nitrate as sole nitrogen source, the synthesis of all the enzymes involved in denitrification, the respiratory nitrate, nitrite, nitric oxide, and nitrous oxide reductases, was increased. However, the periplasmic and assimilatory nitrate reductases decreased. Synthesis of transporters for alcohols, D-methionine, sulfate and copper, most of the enzymes involved in the tricarboxylic acid cycle, and proteins involved in other metabolic processes like lysine catabolism, fatty acids degradation and acetyl-CoA synthesis, was increased during denitrification in P. denitrificans PD1222. As consequence, an enhanced production of the central metabolite acetyl-CoA was observed. After establishing the key features of the denitrification proteome, its changes by the influence of a competitive electron acceptor, oxygen, or competitive nitrogen source, ammonium, were evaluated.

  6. Growth of tungsten oxide nanostructures by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Jin, L. H.; Bai, Y.; Li, C. S.; Wang, Y.; Feng, J. Q.; Lei, L.; Zhao, G. Y.; Zhang, P. X.

    2018-05-01

    Tungsten oxide nanostructures were fabricated on LaAlO3 (00l) substrates by a simple chemical solution deposition. The decomposition behavior and phase formation of ammonium tungstate precursor were characterized by thermal analysis and X-ray diffraction. Moreover, the morphology and chemical state of nanostructures were analyzed by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectra. The effects of crystallization temperature on the formation of nanodots and nanowires were investigated. The results indicated that the change of nanostructures had close relationship with the crystallization temperature during the chemical solution deposition process. Under higher crystallization temperature, the square-like dots transformed into the dome-like nanodots and nanowires. Moreover high density well-ordered nanodots could be obtained on the substrate with the further increase of crystallization temperature. It also suggested that this simple chemical solution process could be used to adjust the nanostructures of tungsten oxide compounds on substrate.

  7. Dodecylbenzene sulfonate-coated magnetite nanoparticles as a new adsorbent for solid phase extraction-spectrophotometric determination of ultra trace amounts of ammonium in water samples.

    PubMed

    Eskandari, Habibollah; Shariati, Mohammad Reza

    2011-10-17

    A new method was proposed for the determination of ammonium based on the preconcentration with dodecylbenzene sulfonate modified magnetite nanoparticles. Ammonium was oxidized to nitrite by hypobromite and then the nitrite produced was determined spectrophotometrically, using sulfabenzamide and N-(1-naphthyl) ethylenediamine after solid phase extraction. The azo dye produced was desorbed by an appropriate small volume of sodium hydroxide prior to the absorbance measurement. The linear calibration graphs were obtained in the concentration range of 0.03-6.00 ng mL(-1) ammonium. The relative standard deviation and recovery percents were 1.0 and 99.0, respectively, for 1.0 ng mL(-1) ammonium, and the limit of detection was 3.2 ng L(-1) ammonium. The interfering effects of a large number of diverse ions on the determination of ammonium were studied. The method was applied to the determination of ammonium in various types of water resources. The results revealed a high efficiency for the recommended ammonium determination method. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. [Anoxic bioremediation of urban polluted river water with biofilm].

    PubMed

    Zhang, Yong-Ming; Hu, Yi-Zhen; Yan, Rong; Liu, Fang

    2009-07-15

    Reactor like oxidation ditch was used for anaerobic bioremediation of urban river water, in which biofilm formed on ceramic honeycomb carrier was used instated of activated sludge. The dissolved oxygen in the wastewater was controlled under 0.5 mg/L for anoxic oxidation, and ammonia nitrogen was removed 40 to 60 percent, and total nitrogen removed 40 to 45 percent, that is ammonia nitrogen and total nitrogen were removed at the same time, also, nitrite was not any accumulated during the process. The biofilm was taken into flask to culture under anoxic oxidation condition in order to prove if anaerobic ammonium oxidation (ANAMMOX) occurred in the process, and ammonia and nitrite nitrogen were also removed at the same time in the experiment, which suggested that nitrification-denitrification and ANAMMOX occurred in bioremediation of urban surface water with low ratio of carbon and nitrogen at the same time. The anammox bacteria were existed in the biofilm according to molecular biological analysis. The experiment will be significant for bioremediation of eutrophication water body.

  9. Reversible formation of ammonium persulfate/sulfuric acid graphite intercalation compounds and their peculiar Raman spectra.

    PubMed

    Dimiev, Ayrat M; Bachilo, Sergei M; Saito, Riichiro; Tour, James M

    2012-09-25

    Graphite intercalation compounds (GICs) can be considered stacks of individual doped graphene layers. Here we demonstrate a reversible formation of sulfuric acid-based GICs using ammonium persulfate as the chemical oxidizing agent. No covalent chemical oxidation leading to the formation of graphite oxide occurs, which inevitably happens when other compounds such as potassium permanganate are used to charge carbon layers. The resulting acid/persulfate-induced stage-1 and stage-2 GICs are characterized by suppression of the 2D band in the Raman spectra and by unusually strong enhancement of the G band. The G band is selectively enhanced at different doping levels with different excitations. These observations are in line with recent reports for chemically doped and gate-modulated graphene and support newly proposed theories of Raman processes. At the same time GICs have some advantageous differences over graphene, which are demonstrated in this report. Our experimental observations, along with earlier reported data, suggest that at high doping levels the G band cannot be used as the reference peak for normalizing Raman spectra, which is a commonly used practice today. A Fermi energy shift of 1.20-1.25 eV and ∼1.0 eV was estimated for the stage-1 and stage-2 GICs, respectively, from the Raman and optical spectroscopy data.

  10. Close association of active nitrifiers with Beggiatoa mats covering deep-sea hydrothermal sediments.

    PubMed

    Winkel, Matthias; de Beer, Dirk; Lavik, Gaute; Peplies, Jörg; Mußmann, Marc

    2014-06-01

    Hydrothermal sediments in the Guaymas Basin are covered by microbial mats that are dominated by nitrate-respiring and sulphide-oxidizing Beggiatoa. The presence of these mats strongly correlates with sulphide- and ammonium-rich fluids venting from the subsurface. Because ammonium and oxygen form opposed gradients at the sediment surface, we hypothesized that nitrification is an active process in these Beggiatoa mats. Using biogeochemical and molecular methods, we measured nitrification and determined the diversity and abundance of nitrifiers. Nitrification rates ranged from 74 to 605 μmol N l(-1)  mat day(-1), which exceeded those previously measured in hydrothermal plumes and other deep-sea habitats. Diversity and abundance analyses of archaeal and bacterial ammonia monooxygenase subunit A genes, archaeal 16S ribosomal RNA pyrotags and fluorescence in situ hybridization confirmed that ammonia- and nitrite-oxidizing microorganisms were associated with Beggiatoa mats. Intriguingly, we observed cells of bacterial and potential thaumarchaeotal ammonia oxidizers attached to narrow, Beggiatoa-like filaments. Such a close spatial coupling of nitrification and nitrate respiration in mats of large sulphur bacteria is novel and may facilitate mat-internal cycling of nitrogen, thereby reducing loss of bioavailable nitrogen in deep-sea sediments. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Aging Effects on the Properties of Imidazolium-, Quaternary Ammonium-, Pyridinium-, and Pyrrolidinium-Based Ionic Liquids Used in Fuel and Energy Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Elise B.; Smith, L. Taylor; Williamson, Tyler K.

    2013-11-21

    Ionic liquids (ILs) are often cited for their excellent thermal stability, a key property for their use as solvents and in the chemical processing of biofuels. However, there has been little supporting data on the long-term aging effect of the temperature on these materials. Imizadolium-, quaternary ammonium-, pyridinium-, and pyrrolidnium-based ILs with the bis(trifluoromethylsulfonyl)imide and bis(perfluoroethylsulfonyl)imide anions were aged for 2520 h (15 weeks) at 200 °C in air to determine the effects of an oxidizing environment on their chemical structure and thermal stability over time. Finally, it was found that the minor changes in the cation chemistry could greatlymore » affect the properties of the ILs over time.« less

  12. PROCESS FOR THE PRODUCTION OF AMMONIUM URANIUM FLUORIDE

    DOEpatents

    Ellis, A.S.; Mooney, R.B.

    1953-08-25

    This patent relates to the preparation of ammonium uranium fluoride. The process comprises adding a water soluble fluoride to an aqueous solution of a uranous compound containing an ammonium salt, and isolating the resulting precipitate. This patent relates to the manufacture of uranium tetnafluoride from ammonium uranium fluoride, NH/sub 4/UF/sub 5/. Uranium tetrafluoride is prepared by heating the ammonium uranium fluoride to a temperature at which dissociation occurs with liberation of ammonium fluoride. Preferably the process is carried out under reduced pressure, or in a current of an inert gas.

  13. Nitrification and Microbial Activity in Response to Wastewater Effluent in the Sacramento/San Joaquin River Delta

    NASA Astrophysics Data System (ADS)

    Challenor, T.; Damashek, J.; Tolar, B. B.; Francis, C.; Casciotti, K. L.

    2016-12-01

    Nitrification, the oxidation of ammonium (NH4+) to nitrate (NO3-) by a coterie of ammonia-oxidizing bacteria (AOB) and archaea (AOA), is a crucial step in removing nitrogen from marine ecosystems. The Sacramento/San Joaquin River delta receives ammonium-laden effluent from the Sacramento Regional Wastewater Treatment Plant (SRWTP) and nitrate from agriculture runoff. The system provides freshwater to irrigate the Central Valley and drinking water for many millions of people. In recent years, however, this environment has experienced ecological turmoil - the Pelagic Organism Decline (POD) refers to a die-out of fish and other species over the course of three decades. One explanation implicated excessive ammonium input, claiming it limited primary productivity and hurt pelagic fish down the line. A new hypothesis, however, posits that the ecosystem may soon face the opposite problem: over-productivity and hypoxia due to increased light availability and reduced turbidity. Studying the rate of nitrification and the makeup of the microbial community will further elucidate how nutrient loading has impacted this ecosystem. Nitrification rates were calculated from water samples collected in the Sacramento River starting at the SRWTP and moving downstream. Samples were spiked with 15N-labeled ammonium and incubated for 24 hours in triplicate. Four time-points were extracted and the "denitrifier" method was used to measure the isotopic ratio of N over time. DNA and RNA were extracted from filtered water at each site and PCR and qPCR assays were used targeting the amoA gene, which encodes the α-subunit of ammonia monooxygenase, responsible for oxidizing ammonium to nitrite (NO2-). Consistent with previous nitrification data, rates were highest in the lower river downstream of the SRWTP, where nitrate concentrations were correspondingly elevated. AOB predominated in the ammonia oxidizing community, and some clades were unique to this ecosystem. Nitrifying microbes provide an ecological service in reducing ammonium availability, a goal of wastewater regulation. Monitoring the activity of the Sacramento River's nitrifying community will be important for analyzing how this ecosystem responds to future changes that will impact populations of fish and people living in California.

  14. Photocatalysis of zinc oxide nanotip array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Lee, Bo-Wei; Kao, Chen-Yu

    2017-05-01

    A TiO2 film was prepared on indium tin oxide (ITO)/glass by aqueous solution deposition (ASD) with precursors of ammonium hexafluoro-titanate and boric acid at 40 °C. The photocatalysis of annealed TiO2 film increases with increasing growth time and decreases with increasing growth times longer than 60 min. A ZnO nanotip array was prepared on ZnO seed layer/TiO2 film/glass by aqueous solution deposition with precursors of zinc nitrate and ammonium hydroxide at 70 °C. The photocatalysis of ASD-ZnO/ASD-TiO2 film/ITO glass can be better than that of P25.

  15. Synthesis of Diopside by Solution Combustion Process Using Glycine Fuel

    NASA Astrophysics Data System (ADS)

    Sherikar, Baburao N.; Umarji, A. M.

    Nano ceramic Diopside (CaMgSi2O6) powders are synthesized by Solution Combustion Process(SCS) using Calcium nitrate, Magnesium nitrate as oxidizer and glycine as fuel, fumed silica as silica source. Ammonium nitrate (AN) is used as extra oxidizer. Effect of AN on Diopside phase formation is investigated. The adiabatic flame temperatures are calculated theoretically for varying amount of AN according to thermodynamic concept and correlated with the observed flame temperatures. A “Multi channel thermocouple setup connected to computer interfaced Keithley multi voltmeter 2700” is used to monitor the thermal events during the process. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various AN compositions has been proposed for the nature of combustion and its correlation with the characteristics of as synthesized powder. These powders are characterized by XRD, SEM showing that the powders are composed of polycrystalline oxides with crystallite size of 58nm to 74nm.

  16. Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils.

    PubMed

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Cheng, Hai-xiang; Li, Ji; Liu, Xu; Ren, Qian-qi

    2016-04-01

    Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20% soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland.

  17. Ring-opening polymerization of 19-electron [2]cobaltocenophanes: a route to high-molecular-weight, water-soluble polycobaltocenium polyelectrolytes.

    PubMed

    Mayer, Ulrich F J; Gilroy, Joe B; O'Hare, Dermot; Manners, Ian

    2009-08-05

    Water-soluble, high-molecular-weight polycobaltocenium polyelectrolytes have been prepared by ring-opening polymerization (ROP) techniques. Anionic polymerization of a strained 19-electron dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium chloride resulted in the formation of oligomers with up to nine repeat units. Thermal ROP of dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium nitrate resulted in the formation of high-molecular-weight polycobaltocenium nitrate, a redox-active cobalt-containing polyelectrolyte.

  18. Base-Free Photoredox/Nickel Dual-Catalytic Cross-Coupling of Ammonium Alkylsilicates.

    PubMed

    Jouffroy, Matthieu; Primer, David N; Molander, Gary A

    2016-01-20

    Single-electron transmetalation is recognized as an enabling technology for the mild transfer of alkyl groups to transition metal catalysts in cross-coupling reactions. Hypercoordinate silicates represent a new and improved class of radical precursors because of their low oxidation potentials and the innocuous byproducts generated upon oxidation. Herein, we report the cross-coupling of secondary and primary ammonium alkylsilicates with (hetero)aryl bromides in good to excellent yields. The base-free conditions have exceptional protic group tolerance on both partners, permitting the cross-coupling of unprotected primary and secondary amines.

  19. An Efficient Composition for Bengal Lights

    NASA Astrophysics Data System (ADS)

    Comet, M.; Schreyeck, L.; Fuzellier, H.

    2002-01-01

    Fuel-oxidizer mixtures based on potassium chlorate or sodium chlorate are well known. These mixtures have interesting properties of deflagration and are often used in propellants. Drastic reactivity of alkaline chlorates with ammonium salts due to the formation of ammonium chlorate NH4ClO3, a very unstable salt, is famous. By analogy, we tested the reactivity of different molecules containing nitrogen atoms, and we found an efficient fuel-oxidizer composed of potassium chlorate and thiocarbamide. Impressive bengal lights of various colors can easily be achieved using this basic composition.

  20. Effects of Inhibition Conditions on Anammox process

    NASA Astrophysics Data System (ADS)

    Xie, Haitao; Ji, Dandan; Zang, Lihua

    2017-12-01

    Anaerobic ammonium oxidation (Anammox) is a very suitable process for the treatment of nitrogen-rich wastewater, which is a promising new biological nitrogen removal process, and has a good application prospects. However, the Anammox process is inhibited by many factors, which hinders the process improvement and the application of the Anammox process. Such as organic,temperature,salts,heavy metals, phosphates, sulfides, pH and other inhibitors are usually present in practical applications. We have reviewed the previous researches on the inhibition of Anammox processes. The effect of the substrate on the anaerobic oxide is mainly caused by free ammonia or nitrite nitrogen. Most heavy metals inhibit Anammox growth and activity. The inhibition of organic matter depends on the content of organic matter and species. High salinity inhibits Anammox activity. Dissolved oxygen allows the flora to be in a balanced state. The optimum pH and temperature, as well as other factors, can provide a good growth environment for Anammox. The knowledge of inhibition on Anammox will help prevent the application and improvement of the Anammox process.

  1. In-situ and self-distributed: A new understanding on catalyzed thermal decomposition process of ammonium perchlorate over Nd{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Min, E-mail: zoumin3362765@163.com; Wang, Xin, E-mail: wangx@mail.njust.edu.cn; Jiang, Xiaohong, E-mail: jxh0668@sina.com

    2014-05-01

    Catalyzed thermal decomposition process of ammonium perchlorate (AP) over neodymium oxide (Nd{sub 2}O{sub 3}) was investigated. Catalytic performances of nanometer-sized Nd{sub 2}O{sub 3} and micrometer-sized Nd{sub 2}O{sub 3} were evaluated by differential scanning calorimetry (DSC). In contrast to universal concepts, catalysts in different sizes have nearly similar catalytic activities. Based on structural and morphological variation of the catalysts during the reaction, combined with mass spectrum analyses and studies of unmixed style, a new understanding of this catalytic process was proposed. We believed that the newly formed chloride neodymium oxide (NdOCl) was the real catalytic species in the overall thermal decompositionmore » of AP over Nd{sub 2}O{sub 3}. Meanwhile, it was the “self-distributed” procedure which occurred within the reaction that also worked for the improvement of overall catalytic activities. This work is of great value in understanding the roles of micrometer-sized catalysts used in heterogeneous reactions, especially the solid–solid reactions which could generate a large quantity of gaseous species. - Graphical abstract: In-situ and self-distributed reaction process in thermal decomposition of AP catalyzed by Nd{sub 2}O{sub 3}. - Highlights: • Micro- and nano-Nd{sub 2}O{sub 3} for catalytic thermal decomposition of AP. • No essential differences on their catalytic performances. • Structural and morphological variation of catalysts digs out catalytic mechanism. • This catalytic process is “in-situ and self-distributed” one.« less

  2. Smart operation of nitritation/denitritation virtually abolishes nitrous oxide emission during treatment of co-digested pig slurry centrate.

    PubMed

    Peng, Lai; Carvajal-Arroyo, José M; Seuntjens, Dries; Prat, Delphine; Colica, Giovanni; Pintucci, Cristina; Vlaeminck, Siegfried E

    2017-12-15

    The implementation of nitritation/denitritation (Nit/DNit) as alternative to nitrification/denitrification (N/DN) is driven by operational cost savings, e.g. 1.0-1.8 EUR/ton slurry treated. However, as for any biological nitrogen removal process, Nit/DNit can emit the potent greenhouse gas nitrous oxide (N 2 O). Challenges remain in understanding formation mechanisms and in mitigating the emissions, particularly at a low ratio of organic carbon consumption to nitrogen removal (COD rem /N rem ). In this study, the centrate (centrifuge supernatant) from anaerobic co-digestion of pig slurry was treated in a sequencing batch reactor. The process removed approximately 100% of ammonium a satisfactory nitrogen loading rate (0.4 g N/L/d), with minimum nitrite and nitrate in the effluent. Substantial N 2 O emission (around 17% of the ammonium nitrogen loading) was observed at the baseline operational condition (dissolved oxygen, DO, levels averaged at 0.85 mg O 2 /L; COD rem /N rem of 2.8) with ∼68% of the total emission contributed by nitritation. Emissions increased with higher nitrite accumulation and lower organic carbon to nitrogen ratio. Yet, higher DO levels (∼2.2 mg O 2 /L) lowered the aerobic N 2 O emission and weakened the dependency on nitrite concentration, suggesting a shift in N 2 O production pathway. The most effective N 2 O mitigation strategy combined intermittent patterns of aeration, anoxic feeding and anoxic carbon dosage, decreasing emission by over 99% (down to ∼0.12% of the ammonium nitrogen loading). Without anaerobic digestion, mitigated Nit/DNit decreases the operational carbon footprint with about 80% compared to N/DN. With anaerobic digestion included, about 4 times more carbon is sequestered. In conclusion, the low COD rem /N rem feature of Nit/DNit no longer offsets its environmental sustainability provided the process is smartly operated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Nitrate-Dependent Ferrous Iron Oxidation by Anaerobic Ammonium Oxidation (Anammox) Bacteria

    PubMed Central

    Oshiki, M.; Ishii, S.; Yoshida, K.; Fujii, N.; Ishiguro, M.; Satoh, H.

    2013-01-01

    We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3− to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3− by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3− ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3− reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2− to consumed NH4+ (ΔNO2−/ΔNH4+) and produced NO3− to consumed NH4+ (ΔNO3−/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment. PMID:23624480

  4. Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle

    PubMed Central

    Smirnov, Alexander; Hausner, Douglas; Laffers, Richard; Strongin, Daniel R; Schoonen, Martin AA

    2008-01-01

    Experiments with dinitrogen-, nitrite-, nitrate-containing solutions were conducted without headspace in Ti reactors (200°C), borosilicate septum bottles (70°C) and HDPE tubes (22°C) in the presence of Fe and Ni metal, awaruite (Ni80Fe20) and tetrataenite (Ni50Fe50). In general, metals used in this investigation were more reactive than alloys toward all investigated nitrogen species. Nitrite and nitrate were converted to ammonium more rapidly than dinitrogen, and the reduction process had a strong temperature dependence. We concluded from our experimental observations that Hadean submarine hydrothermal systems could have supplied significant quantities of ammonium for reactions that are generally associated with prebiotic synthesis, especially in localized environments. Several natural meteorites (octahedrites) were found to contain up to 22 ppm Ntot. While the oxidation state of N in the octahedrites was not determined, XPS analysis of metals and alloys used in the study shows that N is likely present as nitride (N3-). This observation may have implications toward the Hadean environment, since, terrestrial (e.g., oceanic) ammonium production may have been supplemented by reduced nitrogen delivered by metal-rich meteorites. This notion is based on the fact that nitrogen dissolves into metallic melts. PMID:18489746

  5. Novel process of bio-chemical ammonia removal from air streams using a water reflux system and zeolite as filter media.

    PubMed

    Vitzthum von Eckstaedt, Sebastian; Charles, Wipa; Ho, Goen; Cord-Ruwisch, Ralf

    2016-02-01

    A novel biofilter that removes ammonia from air streams and converts it to nitrogen gas has been developed and operated continuously for 300 days. The ammonia from the incoming up-flow air stream is first absorbed into water and the carrier material, zeolite. A continuous gravity reflux of condensed water from the exit of the biofilter provides moisture for nitrifying bacteria to develop and convert dissolved ammonia (ammonium) to nitrite/nitrate. The down-flow of the condensed water reflux washes down nitrite/nitrate preventing ammonium and nitrite/nitrate accumulation at the top region of the biofilter. The evaporation caused by the inflow air leads to the accumulation of nitrite to extremely high concentrations in the bottom of the biofilter. The high nitrite concentrations favour the spontaneous chemical oxidation of ammonium by nitrite to nitrogen (N2). Tests showed that this chemical reaction was catalysed by the zeolite filter medium and allowed it to take place at room temperature. This study shows that ammonia can be removed from air streams and converted to N2 in a fully aerated single step biofilter. The process also overcomes the problem of microorganism-inhibition and resulted in zero leachate production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Mathematical modeling of nitrous oxide production in an anaerobic/oxic/anoxic process.

    PubMed

    Ding, Xiaoqian; Zhao, Jianqiang; Hu, Bo; Chen, Ying; Ge, Guanghuan; Li, Xiaoling; Wang, Sha; Gao, Kun; Tian, Xiaolei

    2016-12-01

    This study incorporates three currently known nitrous oxide (N 2 O) production pathways: ammonium-oxidizing bacteria (AOB) denitrification, incomplete hydroxylamine (NH 2 OH) oxidation, and heterotrophic denitrification on intracellular polymers, into a mathematical model to describe N 2 O production in an anaerobic/oxic/anoxic (AOA) process for the first time. The developed model was calibrated and validated by four experimental cases, then evaluated by two independent anaerobic/aerobic (AO) studies from literature. The modeling results displayed good agreement with the measured data. N 2 O was primarily generated in the aerobic stage by AOB denitrification (67.84-81.64%) in the AOA system. Smaller amounts of N 2 O were produced via incomplete NH 2 OH oxidation (15.61-32.17%) and heterotrophic denitrification on intracellular polymers (0-12.47%). The high nitrite inhibition on N 2 O reductase led to the increased N 2 O accumulation in heterotrophic denitrification on intracellular polymers. The new model was capable of modeling nitrification-denitrification dynamics and heterotrophic denitrification on intracellular polymers in the AOA system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Small molecules as tracers in atmospheric secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Yu, Ge

    Secondary organic aerosol (SOA), formed from in-air oxidation of volatile organic compounds, greatly affects human health and climate. Although substantial research has been devoted to SOA formation and evolution, the modeled and lab-generated SOA are still low in mass and degree of oxidation compared to ambient measurements. In order to compensate for these discrepancies, the aqueous processing pathway has been brought to attention. The atmospheric waters serve as aqueous reaction media for dissolved organics to undergo further oxidation, oligomerization, or other functionalization reactions, which decreases the vapor pressure while increasing the oxidation state of carbon atoms. Field evidence for aqueous processing requires the identification of tracer products such as organosulfates. We synthesized the standards for two organosulfates, glycolic acid sulfate and lactic acid sulfate, in order to measure their aerosol-state concentration from five distinct locations via filter samples. The water-extracted filter samples were analyzed by LC-MS. Lactic acid sulfate and glycolic acid sulfate were detected in urban locations in the United States, Mexico City, and Pakistan with varied concentrations, indicating their potential as tracers. We studied the aqueous processing reaction between glyoxal and nitrogen-containing species such as ammonium and amines exclusively by NMR spectrometry. The reaction products formic acid and several imidazoles along with the quantified kinetics were reported. The brown carbon generated from these reactions were quantified optically by UV-Vis spectroscopy. The organic-phase reaction between oxygen molecule and alkenes photosensitized by alpha-dicarbonyls were studied in the same manner. We observed the fast kinetics transferring alkenes to epoxides under simulated sunlight. Statistical estimations indicate a very effective conversion of aerosol-phase alkenes to epoxides, potentially forming organosulfates in a deliquescence event and increasing aerosol mass. Finally, we built a containerless apparatus to study aqueous processing reactions using an acoustic levitator paired with a mass spectrometer. The levitator is capable of trapping droplets with the size of 80-500 mum in diameter for over eight hours. The apparatus is also capable of drying and wetting the droplet in a controllable manner. We performed am example reaction between glyoxal and ammonium sulfate using this instrument, and showed that it could qualitatively monitor aqueous processing reactions.

  8. Metatranscriptomic Analysis of Groundwater Reveals an Active Anammox Bacterial Population

    NASA Astrophysics Data System (ADS)

    Jewell, T. N. M.; Karaoz, U.; Thomas, B. C.; Banfield, J. F.; Brodie, E.; Williams, K. H.; Beller, H. R.

    2014-12-01

    Groundwater is a major natural resource, yet little is known about the contribution of microbial anaerobic ammonium oxidation (anammox) activity to subsurface nitrogen cycling. During anammox, energy is generated as ammonium is oxidized under anaerobic conditions to dinitrogen gas, using nitrite as the final electron acceptor. This process is a global sink for fixed nitrogen. Only a narrow range of monophyletic bacteria within the Planctomycetes carries out anammox, and the full extent of their metabolism, and subsequent impact on nitrogen cycling and microbial community structure, is still unknown. Here, we employ a metatranscriptomic analysis on enriched mRNA to identify the abundance and activity of a population of anammox bacteria within an aquifer at Rifle, CO. Planktonic biomass was collected over a two-month period after injection of up to 1.5 mM nitrate. Illumina-generated sequences were mapped to a phylogenetically binned Rifle metagenome database. We identified transcripts for genes with high protein sequence identities (81-98%) to those of anammox strain KSU-1 and to two of the five anammox bacteria genera, Brocadia and Kuenenia, suggesting an active, if not diverse, anammox population. Many of the most abundant anammox transcripts mapped to a single scaffold, indicative of a single dominant anammox species. Transcripts of the genes necessary for the anammox pathway were present, including an ammonium transporter (amtB), nitrite/formate transporter, nitrite reductase (nirK), and hydrazine oxidoreductase (hzoB). The form of nitrite reductase encoded by anammox is species-dependent, and we only identified nirK, with no evidence of anammox nirS. In addition to the anammox pathway we saw evidence of the anammox bacterial dissimilatory nitrate reduction to ammonium pathway (narH, putative nrfA, and nrfB), which provides an alternate means of generating substrates for anammox from nitrate, rather than relying on an external pool. Transcripts for hydroxylamine oxidoreductase (HAO) were abundant and more similar to known anammox HAO genes than those used in aerobic ammonia oxidation. The elevated levels of anammox transcripts suggest that anammox may play a significant role in nitrogen cycling within groundwater systems.

  9. High pressure structural, elastic and vibrational properties of green energetic oxidizer ammonium dinitramide

    NASA Astrophysics Data System (ADS)

    Yedukondalu, N.; Ghule, Vikas D.; Vaitheeswaran, G.

    2016-08-01

    Ammonium DiNitramide (ADN) is one of the most promising green energetic oxidizers for future rocket propellant formulations. In the present work, we report a detailed theoretical study on structural, elastic, and vibrational properties of the emerging oxidizer under hydrostatic compression using various dispersion correction methods to capture weak intermolecular (van der Waals and hydrogen bonding) interactions. The calculated ground state lattice parameters, axial compressibilities, and equation of state are in good accord with the available experimental results. Strength of intermolecular interactions has been correlated using the calculated compressibility curves and elastic moduli. Apart from this, we also observe discontinuities in the structural parameters and elastic constants as a function of pressure. Pictorial representation and quantification of intermolecular interactions are described by the 3D Hirshfeld surfaces and 2D finger print maps. In addition, the computed infra-red (IR) spectra at ambient pressure reveal that ADN is found to have more hygroscopic nature over Ammonium Perchlorate (AP) due to the presence of strong hydrogen bonding. Pressure dependent IR spectra show blue- and red-shift of bending and stretching frequencies which leads to weakening and strengthening of the hydrogen bonding below and above 5 GPa, respectively. The abrupt changes in the calculated structural, mechanical, and IR spectra suggest that ADN might undergo a first order structural transformation to a high pressure phase around 5-6 GPa. From the predicted detonation properties, ADN is found to have high and low performance characteristics (DCJ = 8.09 km/s and PCJ = 25.54 GPa) when compared with ammonium based energetic oxidizers (DCJ = 6.50 km/s and PCJ = 17.64 GPa for AP, DCJ = 7.28 km/s and PCJ = 18.71 GPa for ammonium nitrate) and well-known secondary explosives for which DCJ = ˜8-10 km/s and PCJ = ˜30-50 GPa, respectively.

  10. Redistribution of wastewater alkalinity with a microbial fuel cell to support nitrification of reject water.

    PubMed

    Modin, Oskar; Fukushi, Kensuke; Rabaey, Korneel; Rozendal, René A; Yamamoto, Kazuo

    2011-04-01

    In wastewater treatment plants, the reject water from the sludge treatment processes typically contains high ammonium concentrations, which constitute a significant internal nitrogen load in the plant. Often, a separate nitrification reactor is used to treat the reject water before it is fed back into the plant. The nitrification reaction consumes alkalinity, which has to be replenished by dosing e.g. NaOH or Ca(OH)(2). In this study, we investigated the use of a two-compartment microbial fuel cell (MFC) to redistribute alkalinity from influent wastewater to support nitrification of reject water. In an MFC, alkalinity is consumed in the anode compartment and produced in the cathode compartment. We use this phenomenon and the fact that the influent wastewater flow is many times larger than the reject water flow to transfer alkalinity from the influent wastewater to the reject water. In a laboratory-scale system, ammonium oxidation of synthetic reject water passed through the cathode chamber of an MFC, increased from 73.8 ± 8.9 mgN/L under open-circuit conditions to 160.1 ± 4.8 mgN/L when a current of 1.96 ± 0.37 mA (15.1 mA/L total MFC liquid volume) was flowing through the MFC. These results demonstrated the positive effect of an MFC on ammonium oxidation of alkalinity-limited reject water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Vertical migration of aggregated aerobic and anaerobic ammonium oxidizers enhances oxygen uptake in a stagnant water layer.

    PubMed

    Vlaeminck, Siegfried E; Dierick, Katleen; Boon, Nico; Verstraete, Willy

    2007-07-01

    Ammonium can be removed as dinitrogen gas by cooperating aerobic and anaerobic ammonium-oxidizing bacteria (AerAOB and AnAOB). The goal of this study was to verify putative mutual benefits for aggregated AerAOB and AnAOB in a stagnant freshwater environment. In an ammonium fed water column, the biological oxygen consumption rate was, on average, 76 kg O(2) ha(-1) day(-1). As the oxygen transfer rate of an abiotic control column was only 17 kg O(2) ha(-1) day(-1), biomass activity enhanced the oxygen transfer. Increasing the AnAOB gas production increased the oxygen consumption rate with more than 50% as a result of enhanced vertical movement of the biomass. The coupled decrease in dissolved oxygen concentration increased the diffusional oxygen transfer from the atmosphere in the water. Physically preventing the biomass from rising to the upper water layer instantaneously decreased oxygen and ammonium consumption and even led to the occurrence of some sulfate reduction. Floating of the biomass was further confirmed to be beneficial, as this allowed for the development of a higher AerAOB and AnAOB activity, compared to settled biomass. Overall, the results support mutual benefits for aggregated AerAOB and AnAOB, derived from the biomass uplifting effect of AnAOB gas production.

  12. 49 CFR 177.848 - Segregation of hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... materials 4.3 X X X X O X O Oxidizers 5.1 A X X X X O O X O Organic peroxides 5.2 X X X X O X O Poisonous...”, ammonium nitrate (UN 1942) and ammonium nitrate fertilizer may be loaded or stored with Division 1.1...

  13. Hydrous oxide ion-exchange compound catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1990-01-01

    A catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchange with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  14. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOEpatents

    Chang, Shih-Ger; Littlejohn, David; Shi, Yao

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH.sub.3. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20.degree. and 90.degree. C. to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution.

  15. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOEpatents

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  16. Renal ammonium production--une vue canadienne.

    PubMed

    Brosnan, J T; Lowry, M; Vinay, P; Gougoux, A; Halperin, M L

    1987-04-01

    The purpose of this review is to examine the factors regulating ammonium production in the kidney and to place these factors in the perspective of acid-base balance. Renal ammonium production and excretion are required to maintain acid-base balance. However, only a portion of renal ammonium production is specifically stimulated by metabolic acidosis. One should examine urinary ammonium excretion at three levels: distribution of ammonium between blood and urine, augmented glutamine metabolism, and an energy constraint due to ATP balance considerations. With respect to the biochemical regulation of acid-base renal ammonium production, an acute stimulation of alpha-ketoglutarate dehydrogenase by a fall in pH seems to be important but this may not be the entire story. In chronic metabolic acidosis augmented glutamine entry into mitochondria (dog) or increased phosphate-dependent glutaminase activity (rat) become critical to support a high flux rate. Metabolic alterations, which diminish the rate of oxidation of alternate fuels, might also be important. The above principles are discussed in the ketoacidosis of fasting, the clinically important situation of high rates of renal ammonium production.

  17. Ammonium nitrate as an oxidizer in solid composite propellants

    NASA Astrophysics Data System (ADS)

    Manelis, G. B.; Lempert, D. B.

    2009-09-01

    Despite the fact that ammonium nitrate (AN) has the highest hydrogen content and fairly high oxygen balance (compared to other oxidizers), its extremely low formation enthalpy and relatively low density makes it one of the worst power oxidizers in solid composite propellants (SCP). Nevertheless, AN has certain advantages - the combustion of the compositions containing AN is virtually safe, its combustion products are ecologically clean, it is very accessible and cheap, and also very thermostable (far more stable than ammonium dinitramide (ADN)). Besides, its low density stops being a disadvantage if the propellant has to be used in deep space and therefore, must be carried there with other rocket carriers. The low cost of AN may also become a serious advantage in the AN application even in lower stages of multistage space launchers as well as in one-stage space launchers with low mass fraction of the propellant. The main specific features relevant to the creation of AN-based SCPs with the optimal energetic characteristics are discussed. The use of metals and their hydrides and proper fuel-binders as well as the recent successes in phase stabilization of AN are described.

  18. The Increasing Importance of Deposition of Reduced Nitrogen ...

    EPA Pesticide Factsheets

    Rapid development of agricultural activities and fossil fuel combustion in the United States has led to a great increase in reactive nitrogen (Nr) emissions in the second half of the twentieth century. These emissions have been linked to excess nitrogen (N) deposition (i.e. deposition exceeding critical loads) in natural ecosystems through dry and wet deposition pathways. U.S. efforts to reduce nitrogen oxides (NOx) emissions since the 1970s have substantially reduced nitrate deposition, as evidenced by decreasing trends in long-term wet deposition data. These decreases in nitrate deposition along with increases in wet ammonium deposition have altered the balance between oxidized (nitrate) and reduced (ammonium) nitrogen deposition. Across most of the U.S., wet deposition has transitioned from being nitrate dominated in the 1980s to ammonium dominated in recent years. Because ammonia has not been a regulated air pollutant in the U.S., it has historically not been commonly measured. Recent measurement efforts, however, provide a more comprehensive look at ammonia concentrations across several regions of the U.S. These data, along with more routine measurements of gas phase nitric acid and fine particle ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) U.S. inorganic reactive nitrogen deposition budget. Utilizing two years of N-containing gas and fine particle observations from 37 U.S. monitoring si

  19. Studies on a Novel Actinobacteria Species Capable of Oxidizing Ammonium under Iron Reduction Conditions

    NASA Astrophysics Data System (ADS)

    Huanh, Shan; Ruiz-Urigüen, Melany; Jaffe, Peter R.

    2014-05-01

    Ammonium (NH4+) oxidation coupled to iron reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) was noted in a forested riparian wetland in New Jersey (1,2), and in tropical rainforest soils (3), and was coined Feammox (4). Through a 180-days anaerobic incubation of soil samples collected at the New Jersey site, and using 16S rDNA PCR-DGGE, 454-pyosequecing, and qPCR analysis, we have shown that an Acidimicrobiaceae bacterium A6, belonging to the phylum Actinobacteria, is responsible for this Feammox process, described previously (1,2). We have enriched these Feammox bacteria in a high efficiency Feammox membrane reactor (with 85% NH4+removal per 48h), and isolated the pure Acidimicrobiaceae bacterium A6 strain 5, in an autotrophic medium. To determine if the Feammox bacteria found in this study are common, at least at the regional scale, we analyzed a series of local wetland-, upland-, as well as storm-water detention pond-sediments. Through anaerobic incubations and molecular biology analysis, the Feammox reaction and Acidimicrobiaceae bacterium A6 were found in three of twenty soil samples collected, indicating that the Feammox pathway might be widespread in selected soil environments. Results show that soil pH and Fe(III) content are key environmental factors controlling the distributions of Feammox bacteria, which require acidic conditions and the presence of iron oxides. Results from incubation experiments conducted at different temperatures have shown that, in contrast to another anaerobic ammonium oxidation pathways (e.g., anammox), the optimal temperature of the Feammox process is ~ 20° and that the organisms are still active when the temperature is around 10°. An incubation experiment amended with acetylene gas (C2H2) as a selected inhibitor showed that in the Feammox reaction, Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+is the electron donor, which is oxidized to NO2-. After this process, NO2- is converted to nitrogen gas (N2) via conventional denitrification and/or anammox. Based on the results obtained so far, we conclude that Feammox may be an important process for nitrogen loss in iron rich, acidic soil environments under oxygen-limited conditions. Our results from operating a membrane reactor with a high Acidimicrobiaceae bacterium A6 content (~ 50%) indicate that it might be possible to develop a novel anaerobic NH4+ removal technology from wastewater based on the Feammox process, which might be more robust at low temperatures than Anammox-based processes. References 1. Clement J.C., Shrestha J., Ehrenfeld J.G., Jaffé P.R., 2005. Soil Biol Biochem 37:2323-2328. 2. Shrestha J., Rich J., Ehrenfeld J., Jaffé P.R., 2009. Soil Sci. 174:156-164. 3. Sawayama S., 2006. J Biosci Bioeng 101:70-72. 4. Yang WH, Weber KA, Silver WL, 2012. Nat Geosc 5: 538-541. 5. Huang, S., and P.R. Jaffe, 2013. Mineralogical Magazine, 77(5): 1339.

  20. The isotopic imprint of fixed nitrogen elimination in the redox transition zone of Lake Lugano, Switzerland

    NASA Astrophysics Data System (ADS)

    Wenk, Christine; Blees, Jan; Niemann, Helge; Zopfi, Jakob; Schubert, Carsten J.; Veronesi, Mauro; Simona, Marco; Koba, Keisuke; Lehmann, Moritz F.

    2010-05-01

    Nitrogen (N) loading in lakes from natural and anthropogenic sources is partially mitigated by microbially mediated processes that take place in redox transition zones (RTZ) in the water column and in sediments. However, the role of lakes as a terrestrial sink of fixed N is still poorly constrained. Furthermore, modes of suboxic N2 (and N2O) production other than canonical denitrification (e.g. anaerobic ammonium oxidation, or anammox) have barely been investigated in lakes, and the microbial communities involved in N transformations in lacustrine RTZ are mostly unknown. The isotopic composition of dissolved nitrogen species can serve as a reliable indicator of N-transformations in aquatic environments. However, the successful application of N (and O) isotope measurements in natural systems requires a solid understanding of the various N-transformation-specific isotope effects. The deep, south-alpine Lake Lugano, with a permanent chemocline in its North Basin, is an excellent model system for a biogeochemically dynamic lake, in which to study N isotope ratio variations associated with fixed N elimination and regeneration processes. We present the first comprehensive dataset of hydrochemical parameters (including N2/Ar and dissolved N2O concentrations), natural abundance stable isotope ratios of dissolved inorganic nitrogen (DIN) compounds (nitrate, nitrite, ammonium, dinitrogen, nitrous oxide), and the isotopomeric composition of water column N2O for the North Basin of Lake Lugano. Isotopic data will be integrated with molecular microbiological phylogenetic analyses and results from incubation experiments with 15N-labeled N-substrates. Strong gradients in DIN concentrations, as well as in the N and O isotope (and isotopomeric) compositions of nitrate and N2O towards the redox-transition zone indicate nitrate reduction, occurring with a high community N-fractionation. The site preference of N2O isotopomers above the chemocline indicates that the N2O is not only produced by denitrification. Furthermore, the ratio of nitrate N versus O isotope enrichment is 0.6, significantly lower than the ratio expected for sole water column denitrification. Ammonium concentrations in the hypolimnion constantly decrease to 0µM at about 20m below the oxycline, suggesting that anammox, the anaerobic oxidation of ammonium, takes place below the RTZ. First results from 16S rDNA analysis confirmed the presence of anammox bacteria (Candidatus ‘Kuenenia') in the water column. Further phylogenetic and isotope-labeling experiments will provide more information on the spatial and seasonal distribution of anammox bacteria in the water column, on the quantitative partitioning between the candidate N elimination processes, and thus likely on the N isotope fractionation of single N transformation pathways.

  1. Extreme nitrogen deposition can change methane oxidation rate in moist acidic tundra soil in Arctic regions

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, J.; Kang, H.

    2017-12-01

    Recently, extreme nitrogen(N) deposition events are observed in Arctic regions where over 90% of the annual N deposition occurred in just a few days. Since Arctic ecosystems are typically N-limited, input of extremely high amount of N could substantially affect ecosystem processes. CH4 is a potent greenhouse gas that has 25 times greater global warming potential than CO2 over a 100-year time frame. Ammonium is known as an inhibitor of methane oxidation and nitrate also shows inhibitory effect on it in temperate ecosystems. However, effects of N addition on Arctic ecosystems are still elusive. We conducted a lab-scale incubation experiment with moist acidic tundra (MAT) soil from Council, Alaska to investigate the effect of extreme N deposition events on methane oxidation. Zero point five % methane was added to the head space to determine the potential methane oxidation rate of MAT soil. Three treatments (NH4NO3-AN, (NH4)2SO4-AS, KNO3-PN) were used to compare effects of ammonium, nitrate and salts. All treatments were added in 3 levels: 10μg N gd.w-1(10), 50μg N gd.w-1(50) and 100μg N gd.w-1(100). AN10 and AN50 increased methane oxidation rate 1.7, 6% respectively. However, AN100 shows -8.5% of inhibitory effect. In AS added samples, all 3 concentrations (AN10, AN50, AN100) stimulated methane oxidation rate with 4.7, 8.9, 4%, respectively. On the contrary, PN50 (-9%) and PN100 (-59.5%) exhibited a significant inhibitory effect. We also analyzed the microbial gene abundance and community structures of methane oxidizing bacteria using a DNA-based fingerprinting method (T-RFLP) Our study results suggest that NH4+ can stimulate methane oxidation in Arctic MAT soil, while NO3- can inhibit methane oxidation significantly.

  2. Performance of a completely autotrophic nitrogen removal over nitrite process for treating wastewater with different substrates at ambient temperature.

    PubMed

    Chang, Xiaoyan; Li, Dong; Liang, Yuhai; Yang, Zhuo; Cui, Shaoming; Liu, Tao; Zeng, Huiping; Zhang, Jie

    2013-04-01

    The stability and parameters of a bio-ceramic filter for completely autotrophic nitrogen removal were investigated. The completely autotrophic nitrogen removal over nitrite (CANON) reactor was fed with different concentrations of ammonia (400, 300, and 200 mg N/L) but constant influent ammonia load. The results showed that the CANON system can achieve good treatment performance at ambient temperature (15-23 degrees C). The average removal rate and removal loading of NH4(+)-N and TN was 83.90%, 1.26 kg N/(m3 x day), and 70.14%, 1.09 kg N/(m3 x day), respectively. Among the influencing factors like pH, dissolved oxygen and alkalinity, it was indicated that the pH was the key parameter of the performance of the CANON system. Observing the variation of pH would contribute to better control of the CANON system in an intuitive and fast way. Denaturing gradient gel electrophoresis analysis of microorganisms further revealed that there were some significant changes in the community structure of ammonium oxidizing bacteria, which had low diversity in different stages, while the species of anaerobic ammonium oxidizing (anammox) bacteria were fewer and the community composition was relatively stable. These observations showed that anaerobic ammonia oxidation was more stable than the aerobic ammonia oxidation, which could explain that why the CANON system maintained a good removal efficiency under the changing substrate conditions.

  3. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    NASA Astrophysics Data System (ADS)

    Venterea, R. T.; Sadowsky, M.; Breuillin-Sessoms, F.; Wang, P.; Clough, T. J.; Coulter, J. A.

    2015-12-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted 'hot spots' and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils ('L' and 'W') having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4+) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3-) levels than soil L, but was more resistant to nitrite (NO2-) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2- oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2- was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2-. Differences between soils were explained by greater slNH3 in soil L which inhibited NO2- oxidization leading to greater NO2- levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2-, N2O and nitrifier genes, and the first to show how ASC can regulate NO2- levels and N2O production.

  4. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production.

    PubMed

    Venterea, Rodney T; Clough, Timothy J; Coulter, Jeffrey A; Breuillin-Sessoms, Florence; Wang, Ping; Sadowsky, Michael J

    2015-07-16

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted 'hot spots' and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils ('L' and 'W') having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4(+)) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3(-)) levels than soil L, but was more resistant to nitrite (NO2(-)) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2(-) oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2(-) was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2(-). Differences between soils were explained by greater slNH3 in soil L which inhibited NO2(-) oxidization leading to greater NO2(-) levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2(-), N2O and nitrifier genes, and the first to show how ASC can regulate NO2(-) levels and N2O production.

  5. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    NASA Astrophysics Data System (ADS)

    Venterea, Rodney T.; Clough, Timothy J.; Coulter, Jeffrey A.; Breuillin-Sessoms, Florence

    2015-07-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted ‘hot spots’ and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils (‘L’ and ‘W’) having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4+) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3-) levels than soil L, but was more resistant to nitrite (NO2-) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2- oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2- was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2-. Differences between soils were explained by greater slNH3 in soil L which inhibited NO2- oxidization leading to greater NO2- levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2-, N2O and nitrifier genes, and the first to show how ASC can regulate NO2- levels and N2O production.

  6. Co-existence of Anaerobic Ammonium Oxidation Bacteria and Denitrifying Anaerobic Methane Oxidation Bacteria in Sewage Sludge: Community Diversity and Seasonal Dynamics.

    PubMed

    Xu, Sai; Lu, Wenjing; Mustafa, Muhammad Farooq; Caicedo, Luis Miguel; Guo, Hanwen; Fu, Xindi; Wang, Hongtao

    2017-11-01

    Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) have been recently discovered as relevant processes in the carbon and nitrogen cycles of wastewater treatment plants. In this study, the seasonal dynamics of ANAMMOX and DAMO bacterial community structures and their abundance in sewage sludge collected from wastewater treatment plants were analysed. Results indicated that ANAMMOX and DAMO bacteria co-existed in sewage sludge in different seasons and their abundance was positively correlated (P < 0.05). The high abundance of ANAMMOX and DAMO bacteria in autumn and winter indicated that these seasons were the preferred time to favour the growth of ANAMMOX and DAMO bacteria. The community structure of ANNAMOX and DAMO bacteria could also shift with seasonal changes. The "Candidatus Brocadia" genus of ANAMMOX bacteria was mainly recovered in spring and summer, and an unknown cluster was primarily detected in autumn and winter. Similar patterns of seasonal variation in the community structure of DAMO bacteria were also observed. Group B was the dominant in spring and summer, whereas in autumn and winter, group A and group B presented almost the same proportion. The redundancy analysis revealed that pH and nitrate were the most significant factors affecting community structures of these two groups (P < 0.01). This study reported the diversity of ANAMMOX and DAMO in wastewater treatment plants that may be the basis for new nitrogen removal technologies.

  7. Destruction of VX by aqueous-phase oxidation using peroxydisulfate (direct chemical oxidation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, J.F.; Krueger, R.; Farmer, J.C.

    1995-10-11

    Chemical warfare agents may be completely destroyed (converted to H{sub 2}O, CO{sub 2}, salts) by oxidation at 90--100 C using acidified ammonium peroxydisulfate, with recycle of NH{sub 4}SO{sub 4} byproduct. The process requires no toxic or expended catalysts and produces no secondary wastes other than the precipitated inorganic content of the agents. To determine oxidative capability of peroxydisulfate at low reductant contents, we measured rate data for oxidation of 20 diverse compounds with diverse functional groups; 4 of these have bonds similar to those found in VX, HD, and GB. On an equivalence basis, integral first-order rate constants for 100more » C oxidation are 0.012{plus_minus}0.005 min{sup {minus}1} for di-isopropyl-methyl-phosphonate, methyl phosphonic acid, triethylamine, and 2,2{prime}-thiodiethanol at low initial concentrations of 50 ppM(as carbon) and pH 1.5. To provide scale-up equations for a bulk chemical agent destruction process, we measured time-dependent oxidation of bulk model chemicals at high concentrations (0.5 N) and developed and tested a quantitative model. A practical process for bulk VX destruction would begin with chemical detoxification by existing techniques (eg, hydrolysis or mild oxidation using oxone), followed by mineralization of the largely detoxified products by peroxydisulfate. Secondary wastes would be avoided by use of commercial electrolysis equipment to regenerate the oxidant. Reagent requirements, mass balance and scaleup parameters are given for VX destruction, using peroxydisulfate alone, or supplemented with hydrogen peroxide. For the use of 2.5 N peroxydisulfate as the oxidant, a 1 m{sup 3} digester will process about 200 kg (as C) per day. The process may be extended to total destruction of HD and hydrolysis products of G agents.« less

  8. Geochemistry of inorganic nitrogen in waters released from coal-bed natural gas production wells in the Powder River Basin, Wyoming

    USGS Publications Warehouse

    Smith, Richard L.; Repert, Deborah A.; Hart, Charles P.

    2009-01-01

    Water originating from coal-bed natural gas (CBNG) production wells typically contains ammonium and is often disposed via discharge to ephemeral channels. A study conducted in the Powder River Basin, Wyoming, documented downstream changes in CBNG water composition, emphasizing nitrogen-cycling processes and the fate of ammonium. Dissolved ammonium concentrations from 19 CBNG discharge points ranged from 95 to 527 μM. Within specific channels, ammonium concentrations decreased with transport distance, with subsequent increases in nitrite and nitrate concentrations. Removal efficiency, or uptake, of total dissolved inorganic nitrogen (DIN) varied between channel types. DIN uptake was greater in the gentle-sloped, vegetated channel as compared to the incised, steep, and sparsely vegetated channel and was highly correlated with diel patterns of incident light and dissolved oxygen concentration. In a larger main channel with multiple discharge inputs (n = 13), DIN concentrations were >300 μM, with pH > 8.5, after 5 km of transport. Ammonium represented 25−30% of the large-channel DIN, and ammonium concentrations remained relatively constant with time, with only a weak diel pattern evident. In July 2003, the average daily large-channel DIN load was 23 kg N day−1entering the Powder River, an amount which substantially increased the total Powder River DIN load after the channel confluence. These results suggest that CBNG discharge may be an important source of DIN to western watersheds, at least at certain times of the year, and that net oxidation and/or removal is dependent upon the extent of contact with sediment and biomass, type of drainage channel, and time of day.

  9. Respiratory Nitrate Ammonification by Shewanella oneidensis MR-1▿

    PubMed Central

    Cruz-García, Claribel; Murray, Alison E.; Klappenbach, Joel A.; Stewart, Valley; Tiedje, James M.

    2007-01-01

    Anaerobic cultures of Shewanella oneidensis MR-1 grown with nitrate as the sole electron acceptor exhibited sequential reduction of nitrate to nitrite and then to ammonium. Little dinitrogen and nitrous oxide were detected, and no growth occurred on nitrous oxide. A mutant with the napA gene encoding periplasmic nitrate reductase deleted could not respire or assimilate nitrate and did not express nitrate reductase activity, confirming that the NapA enzyme is the sole nitrate reductase. Hence, S. oneidensis MR-1 conducts respiratory nitrate ammonification, also termed dissimilatory nitrate reduction to ammonium, but not respiratory denitrification. PMID:17098906

  10. Effect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions

    PubMed Central

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl‐Heinz

    2012-01-01

    Summary Due to its high global warming potential, nitrous oxide (N2O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N2O production. In this study, two lab‐scale sequencing batch reactors were operated with deammonification biomass to investigate the role of denitrification and the influence of substrate availability regarding N2O formation during the anoxic phase of deammonification. Three different operational phases were established: within the first phase conversion by anammox was favoured and after a transition phase, denitrification activity was promoted. Low nitrous oxide production was observed during stable operation aiming for anammox conversion. Pulsed inflow of the wastewater containing ammonium (NH4+) and nitrite (NO2‐) led to increased N2O production rates. Within the period of denitrification as dominating nitrogen conversion process, the nitrous oxide concentration level was higher during continuous inflow conditions, but the reaction to pulsed inflow was less pronounced. The results indicated that denitrification was responsible for N2O formation from the deammonification biomass. Operational settings to achieve suppression of denitrification processes to a large extend were deducted from the results of the experiments. PMID:22296600

  11. Role of anaerobic ammonium oxidation (anammox) in nitrogen removal from a freshwater aquifer

    USGS Publications Warehouse

    Smith, Richard L.; Böhlke, John Karl; B. Song,; C. Tobias,

    2015-01-01

    Anaerobic ammonium oxidation (anammox) couples the oxidation of ammonium with the reduction of nitrite, producing N2. The presence and activity of anammox bacteria in groundwater were investigated at multiple locations in an aquifer variably affected by a large, wastewater-derived contaminant plume. Anammox bacteria were detected at all locations tested using 16S rRNA gene sequencing and quantification of hydrazine oxidoreductase (hzo) gene transcripts. Anammox and denitrification activities were quantified by in situ 15NO2–tracer tests along anoxic flow paths in areas of varying ammonium, nitrate, and organic carbon abundances. Rates of denitrification and anammox were determined by quantifying changes in 28N2, 29N2, 30N2, 15NO3–, 15NO2–, and 15NH4+ with groundwater travel time. Anammox was present and active in all areas tested, including where ammonium and dissolved organic carbon concentrations were low, but decreased in proportion to denitrification when acetate was added to increase available electron supply. Anammox contributed 39–90% of potential N2 production in this aquifer, with rates on the order of 10 nmol N2–N L–1 day–1. Although rates of both anammox and denitrification during the tracer tests were low, they were sufficient to reduce inorganic nitrogen concentrations substantially during the overall groundwater residence times in the aquifer. These results demonstrate that anammox activity in groundwater can rival that of denitrification and may need to be considered when assessing nitrogen mass transport and permanent loss of fixed nitrogen in aquifers.

  12. Improved hydrous oxide ion-exchange compound catalysts

    DOEpatents

    Dosch, R.G.; Stephens, H.P.

    1986-04-09

    Disclosed is a catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchanged with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  13. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate

    PubMed Central

    Thorup, Casper; Schramm, Andreas

    2017-01-01

    ABSTRACT This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus. Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. PMID:28720728

  14. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria.

    PubMed

    Martens-Habbena, Willm; Berube, Paul M; Urakawa, Hidetoshi; de la Torre, José R; Stahl, David A

    2009-10-15

    The discovery of ammonia oxidation by mesophilic and thermophilic Crenarchaeota and the widespread distribution of these organisms in marine and terrestrial environments indicated an important role for them in the global nitrogen cycle. However, very little is known about their physiology or their contribution to nitrification. Here we report oligotrophic ammonia oxidation kinetics and cellular characteristics of the mesophilic crenarchaeon 'Candidatus Nitrosopumilus maritimus' strain SCM1. Unlike characterized ammonia-oxidizing bacteria, SCM1 is adapted to life under extreme nutrient limitation, sustaining high specific oxidation rates at ammonium concentrations found in open oceans. Its half-saturation constant (K(m) = 133 nM total ammonium) and substrate threshold (

  15. Oxidation of pyrimidine nucleosides and nucleotides by osmium tetroxide

    PubMed Central

    Burton, K.

    1967-01-01

    1. Pyrimidine nucleosides such as thymidine, uridine or cytidine are oxidized readily at 0° by osmium tetroxide in ammonium chloride buffer. There is virtually no oxidation in bicarbonate buffer of similar pH. Oxidation of 1-methyluracil yields 5,6-dihydro-4,5,6-trihydroxy-1-methyl-2-pyrimidone. 2. Osmium tetroxide and ammonia react reversibly in aqueous solution to form a yellow 1:1 complex, probably OsO3NH. A second molecule of ammonia must be involved in the oxidation of UMP since the rate of this reaction is approximately proportional to the square of the concentration of unprotonated ammonia. 3. 4-Thiouridine reacts with osmium tetroxide much more rapidly than does uridine. The changes of absorption spectra are different in sodium bicarbonate buffer and in ammonium chloride buffer. They occur faster in the latter buffer and, under suitable conditions, cytidine is a major product. 4. Polyuridylic acid is oxidized readily by ammoniacal osmium tetroxide, but its oxidation is inhibited by polyadenylic acid. Pyrimidines of yeast amino acid-transfer RNA are oxidized more slowly than the corresponding mononucleosides, especially the thymine residues. Appreciable oxidation can occur without change of sedimentation coefficient. PMID:6048808

  16. Oxidation of pyrimidine nucleosides and nucleotides by osmium tetroxide.

    PubMed

    Burton, K

    1967-08-01

    1. Pyrimidine nucleosides such as thymidine, uridine or cytidine are oxidized readily at 0 degrees by osmium tetroxide in ammonium chloride buffer. There is virtually no oxidation in bicarbonate buffer of similar pH. Oxidation of 1-methyluracil yields 5,6-dihydro-4,5,6-trihydroxy-1-methyl-2-pyrimidone. 2. Osmium tetroxide and ammonia react reversibly in aqueous solution to form a yellow 1:1 complex, probably OsO(3)NH. A second molecule of ammonia must be involved in the oxidation of UMP since the rate of this reaction is approximately proportional to the square of the concentration of unprotonated ammonia. 3. 4-Thiouridine reacts with osmium tetroxide much more rapidly than does uridine. The changes of absorption spectra are different in sodium bicarbonate buffer and in ammonium chloride buffer. They occur faster in the latter buffer and, under suitable conditions, cytidine is a major product. 4. Polyuridylic acid is oxidized readily by ammoniacal osmium tetroxide, but its oxidation is inhibited by polyadenylic acid. Pyrimidines of yeast amino acid-transfer RNA are oxidized more slowly than the corresponding mononucleosides, especially the thymine residues. Appreciable oxidation can occur without change of sedimentation coefficient.

  17. The Contamination of Commercial 15N2 Gas Stocks with 15N–Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation Measurements

    PubMed Central

    Dabundo, Richard; Lehmann, Moritz F.; Treibergs, Lija; Tobias, Craig R.; Altabet, Mark A.; Moisander, Pia H.; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L−1 d−1, to 530 nmoles N L−1 d−1, contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations. PMID:25329300

  18. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements.

    PubMed

    Dabundo, Richard; Lehmann, Moritz F; Treibergs, Lija; Tobias, Craig R; Altabet, Mark A; Moisander, Pia H; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L(-1) d(-1), to 530 nmoles N L(-1) d(-1), contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations.

  19. Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp.

    PubMed

    Palomo, Alejandro; Jane Fowler, S; Gülay, Arda; Rasmussen, Simon; Sicheritz-Ponten, Thomas; Smets, Barth F

    2016-11-01

    Rapid gravity sand filtration is a drinking water production technology widely used around the world. Microbially catalyzed processes dominate the oxidative transformation of ammonia, reduced manganese and iron, methane and hydrogen sulfide, which may all be present at millimolar concentrations when groundwater is the source water. In this study, six metagenomes from various locations within a groundwater-fed rapid sand filter (RSF) were analyzed. The community gene catalog contained most genes of the nitrogen cycle, with particular abundance in genes of the nitrification pathway. Genes involved in different carbon fixation pathways were also abundant, with the reverse tricarboxylic acid cycle pathway most abundant, consistent with an observed Nitrospira dominance. From the metagenomic data set, 14 near-complete genomes were reconstructed and functionally characterized. On the basis of their genetic content, a metabolic and geochemical model was proposed. The organisms represented by draft genomes had the capability to oxidize ammonium, nitrite, hydrogen sulfide, methane, potentially iron and manganese as well as to assimilate organic compounds. A composite Nitrospira genome was recovered, and amo-containing Nitrospira genome contigs were identified. This finding, together with the high Nitrospira abundance, and the abundance of atypical amo and hao genes, suggests the potential for complete ammonium oxidation by Nitrospira, and a major role of Nitrospira in the investigated RSFs and potentially other nitrifying environments.

  20. Nitrogen loss by anaerobic ammonium oxidation in unconfined aquifer soils

    NASA Astrophysics Data System (ADS)

    Wang, Shanyun; Radny, Dirk; Huang, Shuangbing; Zhuang, Linjie; Zhao, Siyan; Berg, Michael; Jetten, Mike S. M.; Zhu, Guibing

    2017-01-01

    Anaerobic ammonium oxidation (anammox) is recognized as an important process for nitrogen cycling, yet little is known about its role in the subsurface biosphere. In this study, we investigated the presence, abundance, and role of anammox bacteria in upland soil cores from Tianjin, China (20 m depth) and Basel, Switzerland (10 m depth), using isotope-tracing techniques, (q)PCR assays, and 16 S rRNA & hzsB gene clone libraries, along with nutrient profiles of soil core samples. Anammox in the phreatic (water-saturated) zone contributed to 37.5-67.6% of the N-loss (up to 0.675 gN m-2 d-1), with anammox activities of 0.005-0.74 nmolN g-1 soil h-1, which were even higher than the denitrification rates. By contrast, no significant anammox was measured in the vadose zone. Higher anammox bacterial cell densities were observed (0.75-1.4 × 107 copies g-1 soil) in the phreatic zone, where ammonia-oxidizing bacteria (AOB) maybe the major source of nitrite for anammox bacteria. The anammox bacterial cells in soils of the vadose zone were all <103 copies g-1 soil. We suggest that the subsurface provides a favorable niche for anammox bacteria whose contribution to N cycling and groundwater nitrate removal seems considerably larger than previously known.

  1. Diversity and distribution of planktonic anaerobic ammonium-oxidizing bacteria in the Dongjiang River, China.

    PubMed

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Wang, Aijie; Sun, Guoping

    2014-12-01

    Anaerobic ammonium-oxidizing (anammox) process has recently been recognized as an important pathway for removing fixed nitrogen (N) from aquatic ecosystems. Anammox organisms are widely distributed in freshwater environments. However, little is known about their presence in the water column of riverine ecosystems. Here, the existence of a diverse anammox community was revealed in the water column of the Dongjiang River by analyzing 16S rRNA and hydrazine oxidation (hzo) genes of anammox bacteria. Phylogenetic analyses of hzo genes showed that Candidatus Jettenia related clades of anammox bacteria were dominant in the river, suggesting the ecological microniche distinction from freshwater/estuary and marine anammox bacteria with Ca. Brocadia and Kuenenia genera mainly detected in freshwater/estuary ecosystems, and Ca. Scalindua genus mainly detected in marine ecosystems. The abundance and diversity of anammox bacteria along the river were both significantly correlated with concentrations of NH4(+)-N based on Pearson and partial correlation analyses. Redundancy analyses showed the contents of NH4(+)-N, NO3(-)-N and the ratio of NH4(+)-N to NO2(-)-N significantly influenced the spatial distributions of anammox bacteria in the water column of the Dongjiang River. These results expanded our understanding of the distribution and potential roles of anammox bacteria in the water column of the river ecosystem. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Nitrogen loss by anaerobic ammonium oxidation in unconfined aquifer soils

    PubMed Central

    Wang, Shanyun; Radny, Dirk; Huang, Shuangbing; Zhuang, Linjie; Zhao, Siyan; Berg, Michael; Jetten, Mike S. M.; Zhu, Guibing

    2017-01-01

    Anaerobic ammonium oxidation (anammox) is recognized as an important process for nitrogen cycling, yet little is known about its role in the subsurface biosphere. In this study, we investigated the presence, abundance, and role of anammox bacteria in upland soil cores from Tianjin, China (20 m depth) and Basel, Switzerland (10 m depth), using isotope-tracing techniques, (q)PCR assays, and 16 S rRNA & hzsB gene clone libraries, along with nutrient profiles of soil core samples. Anammox in the phreatic (water-saturated) zone contributed to 37.5–67.6% of the N-loss (up to 0.675 gN m−2 d−1), with anammox activities of 0.005–0.74 nmolN g−1 soil h−1, which were even higher than the denitrification rates. By contrast, no significant anammox was measured in the vadose zone. Higher anammox bacterial cell densities were observed (0.75–1.4 × 107 copies g−1 soil) in the phreatic zone, where ammonia-oxidizing bacteria (AOB) maybe the major source of nitrite for anammox bacteria. The anammox bacterial cells in soils of the vadose zone were all <103 copies g−1 soil. We suggest that the subsurface provides a favorable niche for anammox bacteria whose contribution to N cycling and groundwater nitrate removal seems considerably larger than previously known. PMID:28071702

  3. Nitrogen transport and transformations in a shallow aquifer receiving wastewater discharge: A mass balance approach

    USGS Publications Warehouse

    Desimone, Leslie A.; Howes, Brian L.

    1998-01-01

    Nitrogen transport and transformations were followed over the initial 3 years of development of a plume of wastewater-contaminated groundwater in Cape Cod, Massachusetts. Ammonification and nitrification in the unsaturated zone and ammonium sorption in the saturated zone were predominant, while loss of fixed nitrogen through denitrification was minor. The major effect of transport was the oxidation of discharged organic and inorganic forms to nitrate, which was the dominant nitrogen form in transit to receiving systems. Ammonification and nitrification in the unsaturated zone transformed 16–19% and 50–70%, respectively, of the total nitrogen mass discharged to the land surface during the study but did not attenuate the nitrogen loading. Nitrification in the unsaturated zone also contributed to pH decrease of 2 standard units and to an N2O increase (46–660 µg N/L in the plume). Other processes in the unsaturated zone had little net effect: Ammonium sorption removed <1% of the total discharged nitrogen mass; filtering of particulate organic nitrogen was less than 3%; ammonium and nitrate assimilation was less than 6%; and ammonia volatilization was less than 0.25%. In the saturated zone a central zone of anoxic groundwater (DO ≤ 0.05 mg/L) was first detected 17 months after effluent discharge to the aquifer began, which expanded at about the groundwater-flow velocity. Although nitrate was dominant at the water table, the low, carbon-limited rates of denitrification in the anoxic zone (3.0–9.6 (ng N/cm3)/d) reduced only about 2% of the recharged nitrogen mass to N2. In contrast, ammonium sorption in the saturated zone removed about 16% of the recharged nitrogen mass from the groundwater. Ammonium sorption was primarily limited to anoxic zone, where nitrification was prevented, and was best described by a Langmuir isotherm in which effluent ionic concentrations were simulated. The initial nitrogen load discharged from the groundwater system may depend largely on the growth and stability of the sorbed ammonium pool, which in turn depends on effluent-loading practices, subsurface microbial processes, and saturation of available exchange sites.

  4. Multi-scale individual-based model of microbial and bioconversion dynamics in aerobic granular sludge.

    PubMed

    Xavier, Joao B; De Kreuk, Merle K; Picioreanu, Cristian; Van Loosdrecht, Mark C M

    2007-09-15

    Aerobic granular sludge is a novel compact biological wastewater treatment technology for integrated removal of COD (chemical oxygen demand), nitrogen, and phosphate charges. We present here a multiscale model of aerobic granular sludge sequencing batch reactors (GSBR) describing the complex dynamics of populations and nutrient removal. The macro scale describes bulk concentrations and effluent composition in six solutes (oxygen, acetate, ammonium, nitrite, nitrate, and phosphate). A finer scale, the scale of one granule (1.1 mm of diameter), describes the two-dimensional spatial arrangement of four bacterial groups--heterotrophs, ammonium oxidizers, nitrite oxidizers, and phosphate accumulating organisms (PAO)--using individual based modeling (IbM) with species-specific kinetic models. The model for PAO includes three internal storage compounds: polyhydroxyalkanoates (PHA), poly phosphate, and glycogen. Simulations of long-term reactor operation show how the microbial population and activity depends on the operating conditions. Short-term dynamics of solute bulk concentrations are also generated with results comparable to experimental data from lab scale reactors. Our results suggest that N-removal in GSBR occurs mostly via alternating nitrification/denitrification rather than simultaneous nitrification/denitrification, supporting an alternative strategy to improve N-removal in this promising wastewater treatment process.

  5. The contribution of anaerobic ammonium oxidation to nitrogen loss in two temperate eutrophic estuaries

    NASA Astrophysics Data System (ADS)

    Teixeira, Catarina; Magalhães, Catarina; Joye, Samantha B.; Bordalo, Adriano A.

    2014-04-01

    Studies of anaerobic ammonium oxidation (anammox) continue to show the significance of this metabolic pathway for the removal of nitrogen (N) in several natural environments, including estuaries. However, the seasonal dynamics of the anammox process and related environmental controls within estuarine systems remains poorly explored. We evaluated the seasonal anammox activity along a salinity gradient in two temperate Atlantic estuaries, the Ave and the Douro (NW Portugal). Anammox potential rates were measured in anaerobic sediment slurries using 15N-labeled NO3- and NH4+ amendments. Production of 29N2 and 30N2 in the slurries was quantified using membrane inlet mass spectrometry (MIMS). Environmental characteristics of the sediment and water column were also monitored. Anammox potentials in the Ave and Douro estuarine sediments varied between 0.8-8.4, and 0-2.9 nmol cm-3 wet sediment h-1, respectively, with high seasonal and spatial fluctuations. Inorganic nitrogen availability emerged as the primary environmental control of anammox activity, while water temperature appeared to modulate seasonal variations. The contribution of anammox to overall N2 production averaged over 20%, suggesting that the role of anammox in removing fixed N from these two systems cannot be neglected.

  6. Nitrogen removal and intentional nitrous oxide production from reject water in a coupled nitritation/nitrous denitritation system under real feed-stream conditions.

    PubMed

    Weißbach, Max; Thiel, Paul; Drewes, Jörg E; Koch, Konrad

    2018-05-01

    A Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) was performed over five months to investigate the performance and dynamics of nitrogen elimination and nitrous oxide production from digester reject water under real feed-stream conditions. A 93% conversion of ammonium to nitrite could be maintained for adapted seed sludge in the first stage (nitritation). The second stage (nitrous denitritation), inoculated with conventional activated sludge, achieved a conversion of 70% of nitrite to nitrous oxide after only 12 cycles of operation. The development of an alternative feeding strategy and the addition of a coagulant (FeCl 3 ) facilitated stable operation and process intensification. Under steady-state conditions, nitrite was reliably eliminated and different nitrous oxide harvesting strategies were assessed. Applying continuous removal increased N 2 O yields by 16% compared to the application of a dedicated stripping phase. These results demonstrate the feasible application of the CANDO process for nitrogen removal and energy recovery from ammonia rich wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Protein loss in human hair from combination straightening and coloring treatments.

    PubMed

    França-Stefoni, Simone Aparecida; Dario, Michelli Ferrera; Sá-Dias, Tânia Cristina; Bedin, Valcinir; de Almeida, Adriano José; Baby, André Rolim; Velasco, Maria Valéria R

    2015-09-01

    Hair chemical treatments, such as dyeing and straightening products, are known to cause damage that can be assessed by protein loss. The aim of this study was to evaluate the hair protein loss caused by combined chemical treatments (dye and relaxer) using the validated bicinchoninic acid (BCA) method. Three kinds of straighteners, based on ammonium thioglycolate, guanidine hydroxide and sodium hydroxide, were evaluated and the least harmful combination indicated. Caucasian virgin dark brown hair tresses were treated with developed natural brown color oxidative hair dyeing and/or straightening commercial products based on ammonium thioglycolate, sodium hydroxide, or guanidine hydroxide. Protein loss quantification was assessed by the validated BCA method which has several advantages for quantifying protein loss in chemically treated hair. When both treatments (straightening and dyeing) were combined, a higher negative effect was observed, particularly for dyed hair treated with sodium hydroxide. In this case, a 356% increase in protein loss relative to virgin hair was observed and 208% in relation to only dyed hair. The combination of dying and relaxers based on ammonium thioglycolate or guanidine hydroxide caused a small increase in protein loss, suggesting that these straightening products could be the best alternatives for individuals wishing to combine both treatments. These results indicated that when application of both types of products is desired, ammonium thioglycolate or guanidine hydroxide should be chosen for the straightening process. © 2015 Wiley Periodicals, Inc.

  8. 49 CFR 177.838 - Class 4 (flammable solid) materials, Class 5 (oxidizing) materials, and Division 4.2 (pyroforic...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... not be piled closer than 15 cm (5.9 inches) from the top of any motor vehicle with a closed body. (d)-(e) [Reserved] (f) Nitrates, except ammonium nitrate having organic coating, must be loaded in closed... covered. Ammonium nitrate having organic coating must not be loaded in all-metal vehicles, other than...

  9. Response of the ubiquitous pelagic diatom Thalassiosira weissflogii to darkness and anoxia.

    PubMed

    Kamp, Anja; Stief, Peter; Knappe, Jan; de Beer, Dirk

    2013-01-01

    Thalassiosira weissflogii, an abundant, nitrate-storing, bloom-forming diatom in the world's oceans, can use its intracellular nitrate pool for dissimilatory nitrate reduction to ammonium (DNRA) after sudden shifts to darkness and anoxia, most likely as a survival mechanism. T. weissflogii cells that stored 4 mM (15)N-nitrate consumed 1.15 (±0.25) fmol NO3 (-) cell(-1) h(-1) and simultaneously produced 1.57 (±0.21) fmol (15)NH4 (+) cell(-1) h(-1) during the first 2 hours of dark/anoxic conditions. Ammonium produced from intracellular nitrate was excreted by the cells, indicating a dissimilatory rather than assimilatory pathway. Nitrite and the greenhouse gas nitrous oxide were produced at rates 2-3 orders of magnitude lower than the ammonium production rate. While DNRA activity was restricted to the first few hours of darkness and anoxia, the subsequent degradation of photopigments took weeks to months, supporting the earlier finding that diatoms resume photosynthesis even after extended exposure to darkness and anoxia. Considering the high global abundance of T. weissflogii, its production of ammonium and nitrous oxide might be of ecological importance for oceanic oxygen minimum zones and the atmosphere, respectively.

  10. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    DOEpatents

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  11. Graphite oxide and molybdenum disulfide composite for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2017-10-01

    Graphite oxide and molybdenum disulfide (GO-MoS2) composite is prepared through a wet process by using hydrolysis of ammonium tetrathiomolybdate, and it exhibits excellent catalytic activity of the hydrogen evolution reaction (HER) with a low overpotential of -0.47 V, which is almost two and three times lower than those of precursor MoS2 and GO. The high performance of HER of the composite attributes to the reduced GO supporting MoS2, providing a conducting network for fast electron transport from MoS2 to electrodes. The composite also shows high stability after 500 cycles, demonstrating a synergistic effect of MoS2 and GO for efficient HER.

  12. Stable Isotope and Isotopomeric Constraints on Nitrous Oxide Production in a Wastewater Treatment Plant

    NASA Astrophysics Data System (ADS)

    Bellucci, F.; Gonzalez-Meler, M. A.; Sturchio, N. C.; Bohlke, J. K.; Ostrom, N. E.; Kozak, J. A.

    2011-12-01

    Estimates of US anthropogenic greenhouse gas emissions by USEPA (Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2009; 2011) indicate that wastewater treatment plants are the 7th highest contributor to atmospheric nitrous oxide. This unregulated gas has an estimated global warming potential (GWP) 310 times that of carbon dioxide on a per mol basis. There is general agreement that, within wastewater treatment plants, the vast majority of the nitrous oxide emissions occur in the aerobic zones for biological ammonia oxidation and/or downstream from anoxic zones used in biological nitrogen removal. However, the exact mechanism of production is not well understood, as both incomplete nitrification and denitrification might contribute to the overall nitrous oxide emissions. Determining the dominant biological pathways responsible for these emissions is important for the development of improved treatment systems that can reduce nitrous oxide greenhouse gas emissions to the atmosphere. In this study, we determined the total nitrous oxide flux from a single tank of one of the aeration basins from a large metropolitan wastewater treatment plant in Stickney, Illinois. Furthermore, we analyzed the changes in nitrogen and oxigen stable isotopic composition for ammonium, nitrate, and nitrous oxide, as well as the intramolecular site preference (SP) for δ15N within the linear N-N-O molecule, along the 520 meter wastewater flow path within the tank. Assuming the measured tank was representative of the 32 tanks constituting the 4 aeration basins of the plant, we estimate the combined annual nitrous oxide flux from this source to be approximately 230 metric ton/y. The δ15N values for ammonium ranged between +19.9% and +6.4%, those for nitrate ranged between +20.4% and +5.3%, and those for nitrous oxide ranged between -34.4% and 0.4%. The nitrous oxide SP ranged between +11.7% and -4.5%. The concentrations and δ15N values of ammonium and nitrate showed trends along the flow path of the tank that appear to be largely consistent with nitrification. The nitrous oxide SP values averaged near 0% in most samples, with the exception of the area near the inlet, where slightly positive values were measured. These data indicate that nitrification controlled the major features of ammonium and nitrate dynamics and isotopic compositions in the aeration tank, whereas incomplete denitrification may have been the main pathway responsible for nitrous oxide flux emission. Nitrification could have played a minor role in nitrous oxide production in the anoxic area at the reactor inlet. Nitrous oxide emissions were highest in the portion of the tank where dissolved oxygen concentrations were 0.2-2.0 mg/L. Inhibition of the nitrous oxide reductase enzyme by observed levels of dissolved oxygen might contribute to emissions of nitrous oxide from denitrification.

  13. [The action of quaternary ammonium derivatives on respiration and nitrate reduction in Pseudomonas aeruginosa].

    PubMed

    Bievskiĭ, A N

    1994-01-01

    It was revealed that the same dosages of quaternary ammonium derivatives, such as decamethoxin and cetyltrimethylammonium bromide, inhibited the respiratory chains and caused destruction of Pseudomonas aeruginosa under aerobic conditions more effectively than under anaerobic ones when anions of nitric acid were the terminal acceptors of electrons. It was also registered that Pseudomonas were able to dissimilatory nitrate reduction in the media under the polysaccharide layer that was produced by these bacteria: this fact possibly proves the possibility of survival of denitrifying bacteria in solutions with high concentrations of quaternary ammonium salts. The data obtained permit supposing that inhibitors of respiratory chains and oxidizers may be used as potentiators of the antimicrobial action of quaternary ammonium derivatives.

  14. Removal of triclosan in nitrifying activated sludge: effects of ammonia amendment and bioaugmentation.

    PubMed

    Lee, Do Gyun; Cho, Kun-Ching; Chu, Kung-Hui

    2015-04-01

    This study investigated two possible strategies, increasing ammonia oxidation activity and bioaugmenting with triclosan-degrader Sphingopyxis strain KCY1, to enhance triclosan removal in nitrifying activated sludge (NAS). Triclosan (2 mg L(-1)) was removed within 96-h in NAS bioreactors amended with 5, 25 and 75 mg L(-1) of ammonium (NH4-N). The fastest triclosan removal was observed in 25 mg NH4-NL(-1) amended-bioreactors where high ammonia oxidation occurred. Inhibition of ammonia oxidation and slower triclosan removal were observed in 75 mg NH4-NL(-1) amended-bioreactors. Triclosan removal was correlated to the molar ratio of the amount of nitrate produced to the amount of ammonium removed. Bioaugmentation with strain KCY1 did not enhance triclosan removal in the bioreactors with active ammonia oxidation. Approximately 36-42% and 59% of triclosan added were removed within 24-h by ammonia-oxidizing bacteria and unknown triclosan-degrading heterotrophs, respectively. The results suggested that increasing ammonia oxidation activity can be an effective strategy to enhance triclosan removal in NAS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Characterization of a Mutant Deficient for Ammonium and Nitric Oxide Signalling in the Model System Chlamydomonas reinhardtii

    PubMed Central

    Sanz-Luque, Emanuel; Ocaña-Calahorro, Francisco; Galván, Aurora; Fernández, Emilio; de Montaigu, Amaury

    2016-01-01

    The ubiquitous signalling molecule Nitric Oxide (NO) is characterized not only by the variety of organisms in which it has been described, but also by the wealth of biological processes that it regulates. In contrast to the expanding repertoire of functions assigned to NO, however, the mechanisms of NO action usually remain unresolved, and genes that work within NO signalling cascades are seldom identified. A recent addition to the list of known NO functions is the regulation of the nitrogen assimilation pathway in the unicellular alga Chlamydomonas reinhardtii, a well-established model organism for genetic and molecular studies that offers new possibilities in the search for mediators of NO signalling. By further exploiting a collection of Chlamydomonas insertional mutant strains originally isolated for their insensitivity to the ammonium (NH4+) nitrogen source, we found a mutant which, in addition to its ammonium insensitive (AI) phenotype, was not capable of correctly sensing the NO signal. Similarly to what had previously been described in the AI strain cyg56, the expression of nitrogen assimilation genes in the mutant did not properly respond to treatments with various NO donors. Complementation experiments showed that NON1 (NO Nitrate 1), a gene that encodes a protein containing no known functional domain, was the gene underlying the mutant phenotype. Beyond the identification of NON1, our findings broadly demonstrate the potential for Chlamydomonas reinhardtii to be used as a model system in the search for novel components of gene networks that mediate physiological responses to NO. PMID:27149516

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hug, Laura A.; Thomas, Brian C.; Sharon, Itai

    Nitrogen, sulfur and carbon fluxes in the terrestrial subsurface are determined by the intersecting activities of microbial community members, yet the organisms responsible are largely unknown. Metagenomic methods can identify organisms and functions, but genome recovery is often precluded by data complexity. To address this limitation, we developed subsampling assembly methods to re-construct high-quality draft genomes from complex samples. Here, we applied these methods to evaluate the interlinked roles of the most abundant organisms in biogeochemical cycling in the aquifer sediment. Community proteomics confirmed these activities. The eight most abundant organisms belong to novel lineages, and two represent phyla withmore » no previously sequenced genome. Four organisms are predicted to fix carbon via the Calvin Benson Bassham, Wood Ljungdahl or 3-hydroxyproprionate/4-hydroxybutarate pathways. The profiled organisms are involved in the network of denitrification, dissimilatory nitrate reduction to ammonia, ammonia oxidation and sulfate reduction/oxidation, and require substrates supplied by other community members. An ammonium-oxidizing Thaumarchaeote is the most abundant community member, despite low ammonium concentrations in the groundwater. Finally, this organism likely benefits from two other relatively abundant organisms capable of producing ammonium from nitrate, which is abundant in the groundwater. Overall, dominant members of the microbial community are interconnected through exchange of geochemical resources.« less

  17. Nitrogen Removal Characteristics of Pseudomonas putida Y-9 Capable of Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature.

    PubMed

    Xu, Yi; He, Tengxia; Li, Zhenlun; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue

    2017-01-01

    The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL -1  h -1 , respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature.

  18. Ochrobactrum anthropi used to control ammonium for nitrate removal by starch-stabilized nanoscale zero valent iron.

    PubMed

    Zhou, Jun; Sun, Qianyu; Chen, Dan; Wang, Hongyu; Yang, Kai

    2017-10-01

    In this study, the hydrogenotrophic denitrifying bacterium Ochrobactrum anthropi was added in to the process of nitrate removal by starch-stabilized nanoscale zero valent iron (nZVI) to minimize undesirable ammonium. The ammonium control performance and cooperative mechanism of this combined process were investigated, and batch experiments were conducted to discuss the effects of starch-stabilized nZVI dose, biomass, and pH on nitrate reduction and ammonium control of this system. The combined system achieved satisfactory performance because the anaerobic iron corrosion process generates H 2 , which is used as an electron donor for the autohydrogenotrophic bacterium Ochrobactrum anthropi to achieve the autohydrogenotrophic denitrification process converting nitrate to N 2 . When starch-stabilized nZVI dose was increased from 0.5 to 2.0 g/L, nitrate reduction rate gradually increased, and ammonium yield also increased from 9.40 to 60.51 mg/L. Nitrate removal rate gradually decreased and ammonium yield decreased from 14.93 to 2.61 mg/L with initial OD 600 increasing from 0.015 to 0.080. The abiotic Fe 0 reduction process played a key role in nitrate removal in an acidic environment and generated large amounts of ammonium. Meanwhile, the nitrate removal rate decreased and ammonium yield also reduced in an alkaline environment.

  19. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  20. Partitioning Nitrification Between Specific Archaeal and Bacterial Clades in a Large, Nitrogen-Rich Estuary (San Francisco Bay, CA)

    NASA Astrophysics Data System (ADS)

    Damashek, J.; Casciotti, K. L.; Francis, C. A.

    2014-12-01

    Nitrification is the sole link between nitrogen inputs and losses in marine ecosystems, and understanding the microbial ecology and biogeochemistry of nitrification is therefore crucial for understanding how aquatic ecosystems process nitrogen. Recently-discovered ammonia-oxidizing archaea (AOA), rather than ammonia-oxidizing bacteria (AOB), appear to drive ammonia oxidation in many ecosystems, including much of the ocean. However, few studies have investigated these microbes in estuary waters, despite the fact nitrogen concentrations in estuaries are often far higher than the ocean, and can cause drastic ecological harm. We sought to determine the roles of AOA and AOB in driving pelagic nitrification throughout San Francisco Bay, by combining biogeochemical rate measurements with a suite of measurements of the abundance and diversity of AOA and AOB. It addition to traditional functional gene analyses and high-throughput 16S amplicon sequencing, we developed novel qPCR assays to selectively target the ammonia-oxidizing clades found in this estuary, which gave insights into clade-specific distributional patterns. Our biogeochemical data suggest a sizable fraction of ammonium in the bay is oxidized in the water column, likely by AOA, with nitrification in bottom waters also oxidizing a substantial portion of the ammonium exuded by sediments. Generally, Sacramento River waters and Suisun Bay bottom waters had the highest nitrification rates. AOA outnumbered AOB at most stations, and were present in high abundance at both the marine and freshwater ends of the estuary, while AOB abundance was highest in the low-salinity, brackish regions. Different archaeal clades were found at either end of the estuary, suggesting strong niche partitioning along the salinity gradient, with a third clade present largely in brackish waters. This work helps to assess the ability of ammonia-oxidizing microbes in estuaries to transform nitrogen prior to water discharge into the sea, and furthers our understanding of the roles of specific clades of these microbes in complex estuarine ecosystems.

  1. Magnesium-phosphate-glass cements with ceramic-type properties

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  2. Magnesium phosphate glass cements with ceramic-type properties

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  3. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium.

    PubMed

    Fernandes, Sheryl Oliveira; Bonin, Patricia C; Michotey, Valérie D; Garcia, Nicole; LokaBharathi, P A

    2012-01-01

    Earlier observations in mangrove sediments of Goa, India have shown denitrification to be a major pathway for N loss. However, percentage of total nitrate transformed through complete denitrification accounted for <0-72% of the pore water nitrate reduced. Here, we show that up to 99% of nitrate removal in mangrove sediments is routed through dissimilatory nitrate reduction to ammonium (DNRA). The DNRA process was 2x higher at the relatively pristine site Tuvem compared to the anthropogenically-influenced Divar mangrove ecosystem. In systems receiving low extraneous nutrient inputs, this mechanism effectively conserves and re-circulates N minimizing nutrient loss that would otherwise occur through denitrification. In a global context, the occurrence of DNRA in mangroves has important implications for maintaining N levels and sustaining ecosystem productivity. For the first time, this study also highlights the significance of DNRA in buffering the climate by modulating the production of the greenhouse gas nitrous oxide.

  4. In Situ Infrared Spectroscopy of Oligoaniline Intermediates Created under Alkaline Conditions.

    PubMed

    Šeděnková, Ivana; Stejskal, Jaroslav; Trchová, Miroslava

    2014-12-26

    The progress of the oxidation of aniline with ammonium peroxydisulfate in an alkaline aqueous medium has been monitored in situ by attenuated total reflection (ATR) Fourier transform infrared spectroscopy. The growth of the microspheres and of the film at the ATR crystal surface, as well as the changes proceeding in the surrounding aqueous medium, are reflected in the spectra. The evolution of the spectra and the changes in the molecular structure occurring during aniline oxidation in alkaline medium are discussed with the help of differential spectra. Several processes connected with the various stages of aniline oxidation were distinguished. The progress of hydrolysis of the aniline in water and further an oxidation of aminophenol to benzoquinone imines in the presence of peroxydisulfate in alkaline medium have been detected in the spectra in real time. The precipitated solid oxidation product was analyzed by mass spectrometry. It is composed of oligomers, mainly trimers to octamers, of various molecular structures incorporating in addition to aniline constitutional units also p-benzoquinone or p-benzoquinoneimine moieties.

  5. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    PubMed Central

    Venterea, Rodney T.; Clough, Timothy J.; Coulter, Jeffrey A.; Breuillin-Sessoms, Florence

    2015-01-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted ‘hot spots’ and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils (‘L’ and ‘W’) having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4+) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3−) levels than soil L, but was more resistant to nitrite (NO2−) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2− oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2− was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2−. Differences between soils were explained by greater slNH3 in soil L which inhibited NO2− oxidization leading to greater NO2− levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2−, N2O and nitrifier genes, and the first to show how ASC can regulate NO2− levels and N2O production. PMID:26179972

  6. Nitrification at different salinities: Biofilm community composition and physiological plasticity.

    PubMed

    Gonzalez-Silva, Blanca M; Jonassen, Kjell Rune; Bakke, Ingrid; Østgaard, Kjetill; Vadstein, Olav

    2016-05-15

    This paper describes an experimental study of microbial communities of three moving bed biofilm reactors (MBBR) inoculated with nitrifying cultures originated from environments with different salinity; freshwater, brackish (20‰) and seawater. All reactors were run until they operated at a conversion efficiency of >96%. The microbial communities were profiled using 454-pyrosequencing of 16S rRNA gene amplicons. Statistical analysis was used to investigate the differences in microbial community structure and distribution of the nitrifying populations with different salinity environments. Nonmetric multidimensional scaling analysis (NMDS) and the PERMANOVA test based on Bray-Curtis similarities revealed significantly different community structure in the three reactors. The brackish reactor showed lower diversity index than fresh and seawater reactors. Venn diagram showed that 60 and 78% of the total operational taxonomic units (OTUs) in the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) guild, respectively, were unique OTUs for a given reactor. Similarity Percentages (SIMPER) analysis showed that two-thirds of the total difference in community structure between the reactors was explained by 10 OTUs, indicating that only a small number of OTUs play a numerically dominant role in the nitrification process. Acute toxicity of salt stress on ammonium and nitrite oxidizing activities showed distinctly different patterns, reaching 97% inhibition of the freshwater reactor for ammonium oxidation rate. In the brackish culture, inhibition was only observed at maximal level of salinity, 32‰. In the fully adapted seawater culture, higher activities were observed at 32‰ than at any of the lower salinities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Land-use impact on selected forms of arsenic and phosphorus in soils of different functions

    NASA Astrophysics Data System (ADS)

    Plak, Andrzej; Bartmiński, Piotr; Dębicki, Ryszard

    2017-10-01

    The aim of the study was to assess the impact of technosols and geomechanically unchanged soils of the Lublin agglomeration on the concentrations of arsenic and phosphorus, and on selected forms of these elements. Arsenic and phosphorus concentrations were determined in the urban soils of Lublin (Poland), and the relationship between their degree of contamination and different types of land use was estimated. The samples collected were subjected to sequential analysis, using ammonium sulphate, acid ammonium phosphate, oxalate buffer (also with ascorbic acid) and aqua regia for arsenic, and ammonium chloride, sodium hydroxide, hydrochloric acid and aqua regia for phosphorus. The influence of the land use forms was observed in the study. The greatest amount of arsenic (19.62 mg kg-1) was found in the industrial soils of Lublin, while the greatest amount of phosphorus (580.4 mg kg-1) was observed in non-anthropogenic soils (mainly due to the natural accumulation processes of this element). Fractions of arsenic and phosphorus obtained during analysis showed strong differentiation. Amorphic and crystalline fractions of arsenic, bound with iron oxides, proved to have the highest share in the total arsenic pool. The same situation was noted for phosphorus.

  8. Quantifying the sources and sinks of nitrite in the oxygen minimum zone of the Eastern Tropical South Pacific

    NASA Astrophysics Data System (ADS)

    Ji, Qixing; Widner, Brittany; Jayakumar, Amal; Ward, Bess; Mulholland, Margaret

    2017-04-01

    In coastal upwelling regions, high surface productivity leads to high export and intense remineralization consuming oxygen. This, in combination with slow ventilation, creates oxygen minimum zones (OMZ) in eastern boundary regions of the ocean, such as the one off the Peruvian coast in the Eastern Tropical South Pacific. The OMZ is characterized by a layer of high nitrite concentration coinciding with water column anoxia. Sharp oxygen gradients are located above and below the anoxic layer (upper and lower oxyclines). Thus, the OMZ harbors diverse microbial metabolisms, several of which involve the production and consumption of nitrite. The sources of nitrite are ammonium oxidation and nitrate reduction. The sinks of nitrite include anaerobic ammonium oxidation (anammox), canonical denitrification and nitrite oxidation to nitrate. To quantify the sources and sinks of nitrite in the Peruvian OMZ, incubation experiments with 15N-labeled substrates (ammonium, nitrite and nitrate) were conducted on a research cruise in January 2015. The direct measurements of instantaneous nitrite production and consumption rates were compared with ambient nitrite concentrations to evaluate the turnover rate of nitrite in the OMZ. The distribution of nitrite in the water column showed a two-peak structure. A primary nitrite maximum (up to 0.5 μM) was located in the upper oxycline. A secondary nitrite maximum (up to 10 μM) was found in the anoxic layer. A nitrite concentration minimum occurred at the oxic-anoxic interface just below the upper oxycline. For the sources of nitrite, highest rates of ammonium oxidation and nitrate reduction were detected in the upper oxycline, where both nitrite and oxygen concentrations were low. Lower rates of nitrite production were detected within the layer of secondary nitrite maximum. For the sinks of nitrite, the rates of anammox, denitrification and nitrite oxidation were the highest just below the oxic-anoxic interface. Low nitrite consumption rates were also detected within the layer of the secondary nitrite maximum. The imbalances between nitrite production and consumption rates help to explain the distribution of nitrite in the water column. The primary nitrite maximum in the upper oxycline is consistent with ammonium oxidation exceeding nitrite oxidation. Nitrite consumption rates exceeding rates of nitrite production result in the low nitrite concentration at the oxic-anoxic interface. Within the secondary nitrite maximum in the anoxic layer, production and consumption of nitrite are equivalent within measurement error. These low turnover rates suggest the stability of the nitrite pool in the secondary nitrite maximum over long time scales (decades to millennial). These data could be implemented into biogeochemical models to decipher the origin and the evolution of nitrite distribution in the OMZs.

  9. Anaerobic ammonium oxidation in sediments of surface flow constructed wetlands treating swine wastewater.

    PubMed

    Chen, Liang; Liu, Feng; Jia, Fen; Hu, Ya-Jun; Lai, Cui; Li, Xi; Luo, Pei; Xiao, Run-Lin; Li, Yong; Wu, Jin-Shui

    2017-02-01

    Anaerobic ammonium oxidation (anammox) was suggested to be involved in the nitrogen (N) removal process in constructed wetlands (CWs). Nevertheless, its occurrence and role in CWs treating swine wastewater have not been well evaluated yet. In this study, we investigated the diversity, activity, and role of anammox bacteria in sediments of mesoscale surface flow CWs (SFCWs) subjected to different N loads of swine wastewater. We found that anammox bacteria were abundant in SFCW sediments, as indicated by 7.5 × 10 5 to 3.5 × 10 6 copies of the marker hzsB gene per gram of dry soil. Based on stable isotope tracing, potential anammox rates ranged from 1.03 to 12.5 nmol N g -1 dry soil h -1 , accounting for 8.63-57.1% of total N 2 production. We estimated that a total N removal rate of 0.83-2.68 kg N year -1 was linked to the anammox process, representing ca. 10% of the N load. Phylogenetic analyses of 16S ribosomal RNA (rRNA) revealed the presence of multiple co-occurring anammox genera, including "Candidatus Brocadia" as the most common one, "Ca. Kuenenia," "Ca. Scalindua," and four novel unidentified clusters. Correlation analyses suggested that the activity and abundance of anammox bacteria were strongly related to sediments pH, NH 4 + -N, and NO 2 - -N. In conclusion, our results confirmed the presence of diverse anammox bacteria and indicated that the anammox process could serve as a promising N removal pathway in the treatment of swine wastewater by SFCWs.

  10. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis.

    PubMed

    Najafpour, Mohammad Mahdi; Rahimi, Fahime; Fathollahzadeh, Maryam; Haghighi, Behzad; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2014-07-28

    Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.

  11. Stress Corrosion Cracking Control Plans. 3. Copper Alloys

    DTIC Science & Technology

    1975-06-01

    convenience intended to include amines and all other species which can react with copper to produce the cupric -ammonium complex ion or perhap...capability of forming complexes even resembling the cupric -ammonium complex should be considered as potentially causative of SCC as ammonia unless...nitrate, acetate, tartrate , or citrate which also contain copper ions. There is some evidence that oxides of nitrogen (generating ammoniacal species

  12. Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment.

    PubMed

    Pérez, G; Fernández-Alba, A R; Urtiaga, A M; Ortiz, I

    2010-05-01

    This work investigates the application of the electro-oxidation technology provided with boron doped diamond (BDD), an electrode material which has shown outstanding properties in oxidation of organic and inorganic compounds, for the treatment of reverse osmosis (RO) concentrates generated in tertiary wastewater treatment plants (WWTP). Chemical oxygen demand (COD), ammonium and several anions were measured during the electro-oxidation process, and the influence of the applied current density (20-200A/m(2)) was analysed on process kinetics. Analytical assessment showed that several emerging pollutants (pharmaceuticals, personal care products, stimulants, etc.) were presented both in the effluent of the secondary WWTP as well as in the RO concentrate. For this reason, a group of 10 emerging pollutants, those found with higher concentrations, was selected in order to test whether electro-oxidation can be also applied for their mitigation. In the removal of emerging pollutants the electrical current density in the range 20-100A/m(2) did not show influence likely due to the mass transfer resistance developed in the process when the oxidized solutes are present in such low concentrations. Their removal rates were fitted to first order expressions, and the apparent kinetic constants for the anodic oxidation of each compound were calculated. Finally, the formation of trihalomethanes (THMs) has been checked; concluding that after selecting the appropriate operational conditions the attained concentration is lower than the standards for drinking water established in European and EPA regulations. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Genome-Resolved Meta-Omics Ties Microbial Dynamics to Process Performance in Biotechnology for Thiocyanate Degradation.

    PubMed

    Kantor, Rose S; Huddy, Robert J; Iyer, Ramsunder; Thomas, Brian C; Brown, Christopher T; Anantharaman, Karthik; Tringe, Susannah; Hettich, Robert L; Harrison, Susan T L; Banfield, Jillian F

    2017-03-07

    Remediation of industrial wastewater is important for preventing environmental contamination and enabling water reuse. Biological treatment for one industrial contaminant, thiocyanate (SCN - ), relies upon microbial hydrolysis, but this process is sensitive to high loadings. To examine the activity and stability of a microbial community over increasing SCN - loadings, we established and operated a continuous-flow bioreactor fed increasing loadings of SCN - . A second reactor was fed ammonium sulfate to mimic breakdown products of SCN - . Biomass was sampled from both reactors for metagenomics and metaproteomics, yielding a set of genomes for 144 bacteria and one rotifer that constituted the abundant community in both reactors. We analyzed the metabolic potential and temporal dynamics of these organisms across the increasing loadings. In the SCN - reactor, Thiobacillus strains capable of SCN - degradation were highly abundant, whereas the ammonium sulfate reactor contained nitrifiers and heterotrophs capable of nitrate reduction. Key organisms in the SCN - reactor expressed proteins involved in SCN - degradation, sulfur oxidation, carbon fixation, and nitrogen removal. Lower performance at higher loadings was linked to changes in microbial community composition. This work provides an example of how meta-omics can increase our understanding of industrial wastewater treatment and inform iterative process design and development.

  14. Effect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions.

    PubMed

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl-Heinz

    2012-05-01

    Due to its high global warming potential, nitrous oxide (N(2)O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N(2)O production. In this study, two lab-scale sequencing batch reactors were operated with deammonification biomass to investigate the role of denitrification and the influence of substrate availability regarding N(2)O formation during the anoxic phase of deammonification. Three different operational phases were established: within the first phase conversion by anammox was favoured and after a transition phase, denitrification activity was promoted. Low nitrous oxide production was observed during stable operation aiming for anammox conversion. Pulsed inflow of the wastewater containing ammonium (NH(4)(+)) and nitrite (NO(2)(-)) led to increased N(2)O production rates. Within the period of denitrification as dominating nitrogen conversion process, the nitrous oxide concentration level was higher during continuous inflow conditions, but the reaction to pulsed inflow was less pronounced. The results indicated that denitrification was responsible for N(2)O formation from the deammonification biomass. Operational settings to achieve suppression of denitrification processes to a large extend were deducted from the results of the experiments. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...

  16. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...

  17. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...

  18. 40 CFR 98.410 - Definition of the source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fluorinated GHG, the creation of HFC-23 during the production of HCFC-22, or the creation of by-products that... nitrous oxide by thermally decomposing ammonium nitrate (NH4NO3). Producing nitrous oxide does not include the reuse or recycling of nitrous oxide or the creation of by-products that are released or destroyed...

  19. Transformation and fate of nitrate near the sediment-water interface of Copano Bay

    NASA Astrophysics Data System (ADS)

    Hou, Lijun; Liu, Min; Carini, Stephen A.; Gardner, Wayne S.

    2012-03-01

    This study investigated potential transformation processes and fates of nitrate at the sediment-water interface of Copano Bay during a period of drought by conducting continuous-flow and slurry experiments combined with a 15NO3- addition technique. Rates of 15NO3--based denitrification, anaerobic ammonium oxidation (ANAMMOX) and potential dissimilatory nitrate reduction to ammonium (DNRA) were in the range of 27.7-40.1, 0.26-1.6 and 1.4-3.8 μmol 15N m-2 h-1, respectively. Compared with the total 15NO3-fluxes into sediments, dissimilatory processes contributed 29-49% to loss of the spiked 15NO3-. Based on the mass balance of 15NO3-, microbial assimilation was estimated to consume about 50-70% of the added 15NO3-, indicating that most of nitrate was incorporated by microorganisms in this N-limiting system. In addition, significant correlations of nitrate transformation rates with sediment characteristics reflect that the depth related behaviors of nitrate transformations in core sediments were coupled strongly to organic matter, iron (Fe) and sulfur (S) cycles.

  20. Nitric Oxide Production by the Human Intestinal Microbiota by Dissimilatory Nitrate Reduction to Ammonium

    PubMed Central

    Vermeiren, Joan; Van de Wiele, Tom; Verstraete, Willy; Boeckx, Pascal; Boon, Nico

    2009-01-01

    The free radical nitric oxide (NO) is an important signaling molecule in the gastrointestinal tract. Besides eukaryotic cells, gut microorganisms are also capable of producing NO. However, the exact mechanism of NO production by the gut microorganisms is unknown. Microbial NO production was examined under in vitro conditions simulating the gastrointestinal ecosystem using L-arginine or nitrate as substrates. L-arginine did not influence the microbial NO production. However, NO concentrations in the order of 90 ng NO-N per L feed medium were produced by the fecal microbiota from nitrate. 15N tracer experiments showed that nitrate was mainly reduced to ammonium by the dissimilatory nitrate reduction to ammonium (DNRA) pathway. To our knowledge, this is the first study showing that gastrointestinal microbiota can generate substantial amounts of NO by DNRA and not by the generally accepted denitrification or L-arginine pathway. Further work is needed to elucidate the exact role between NO produced by the gastrointestinal microbiota and host cells. PMID:19888436

  1. Nitric oxide production by the human intestinal microbiota by dissimilatory nitrate reduction to ammonium.

    PubMed

    Vermeiren, Joan; Van de Wiele, Tom; Verstraete, Willy; Boeckx, Pascal; Boon, Nico

    2009-01-01

    The free radical nitric oxide (NO) is an important signaling molecule in the gastrointestinal tract. Besides eukaryotic cells, gut microorganisms are also capable of producing NO. However, the exact mechanism of NO production by the gut microorganisms is unknown. Microbial NO production was examined under in vitro conditions simulating the gastrointestinal ecosystem using L-arginine or nitrate as substrates. L-arginine did not influence the microbial NO production. However, NO concentrations in the order of 90 ng NO-N per L feed medium were produced by the fecal microbiota from nitrate. (15)N tracer experiments showed that nitrate was mainly reduced to ammonium by the dissimilatory nitrate reduction to ammonium (DNRA) pathway. To our knowledge, this is the first study showing that gastrointestinal microbiota can generate substantial amounts of NO by DNRA and not by the generally accepted denitrification or L-arginine pathway. Further work is needed to elucidate the exact role between NO produced by the gastrointestinal microbiota and host cells.

  2. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms.

    PubMed

    Verhamme, Daniel T; Prosser, James I; Nicol, Graeme W

    2011-06-01

    The first step of nitrification, oxidation of ammonia to nitrite, is performed by both ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) in soil, but their relative contributions to ammonia oxidation and existence in distinct ecological niches remain to be determined. To determine whether available ammonia concentration has a differential effect on AOA and AOB growth, soil microcosms were incubated for 28 days with ammonium at three concentrations: native (control), intermediate (20 μg NH(4)(+)-N per gram of soil) and high (200 μg NH(4)(+)-N per gram of soil). Quantitative PCR demonstrated growth of AOA at all concentrations, whereas AOB growth was prominent only at the highest concentration. Similarly, denaturing gradient gel electrophoresis (DGGE) analysis revealed changes in AOA communities at all ammonium concentrations, whereas AOB communities changed significantly only at the highest ammonium concentration. These results provide evidence that ammonia concentration contributes to the definition of distinct ecological niches of AOA and AOB in soil.

  3. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms

    PubMed Central

    Verhamme, Daniel T; Prosser, James I; Nicol, Graeme W

    2011-01-01

    The first step of nitrification, oxidation of ammonia to nitrite, is performed by both ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) in soil, but their relative contributions to ammonia oxidation and existence in distinct ecological niches remain to be determined. To determine whether available ammonia concentration has a differential effect on AOA and AOB growth, soil microcosms were incubated for 28 days with ammonium at three concentrations: native (control), intermediate (20 μg NH4+-N per gram of soil) and high (200 μg NH4+-N per gram of soil). Quantitative PCR demonstrated growth of AOA at all concentrations, whereas AOB growth was prominent only at the highest concentration. Similarly, denaturing gradient gel electrophoresis (DGGE) analysis revealed changes in AOA communities at all ammonium concentrations, whereas AOB communities changed significantly only at the highest ammonium concentration. These results provide evidence that ammonia concentration contributes to the definition of distinct ecological niches of AOA and AOB in soil. PMID:21228892

  4. The Importance of Ammonia for Winter Haze Formation in Two Oil and Gas Production Regions

    NASA Astrophysics Data System (ADS)

    Collett, J. L., Jr.; Li, Y.; Evanoski-Cole, A. R.; Sullivan, A.; Day, D.; Archuleta, C.; Tigges, M.; Sewell, H. J.; Prenni, A. J.; Schichtel, B. A.

    2014-12-01

    Fine particle ammonium nitrate formation results from the atmospheric reaction of gaseous ammonia and nitric acid. This reaction is most important in winter when low temperatures thermodynamically enhance particle formation. Nitrogen oxides emissions from oil and gas operations partially react in the atmosphere to form nitric acid. The availability of atmospheric ammonia plays an important role in determining whether the nitric acid formed results in wintertime ammonium nitrate formation. Here we contrast situations in two important U.S. oil and gas production regions. Measurements of ammonia, nitric acid, ammonium nitrate and other species were made from 2007 to present near Boulder, Wyoming and in winters 2013 and 2014 in western North Dakota. The Boulder, Wyoming site is close to the large Jonah and Pinedale Anticline gas fields. Field sites at the north unit of Theodore Roosevelt National Park and Fort Union are situated in the large Bakken Formation oil and gas production region. Wintertime formation of nitric acid and ammonium nitrate, together comprising nitrogen in the +5 oxidation state (N(V)), was observed in both locations. Concentrations of N(V), however, are generally much lower at Boulder, WY than in the Bakken. An even bigger difference is seen in fine particle ammonium nitrate concentrations; limited regional ammonia is available in western Wyoming to react with nitric acid, leaving a portion of the nitric acid trapped in the gas phase. Higher concentrations of ammonia are observed in the Bakken where they support formation of much higher concentrations of ammonium nitrate. Comparison of these two regions clearly indicates the importance of understanding both local NOx emissions and regional concentrations of ammonia in predicting source impacts on formation of fine particles and haze.

  5. Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall

    NASA Astrophysics Data System (ADS)

    van Breemen, N.; Burrough, P. A.; Velthorst, E. J.; van Dobben, H. F.; de Wit, Toke; Ridder, T. B.; Reijnders, H. F. R.

    1982-10-01

    Acid rain commonly has high concentrations of dissolved SO2-4, NH+4 and NO-3. Sulphuric and nitric acids are usually considered to be the acidic components, whereas ammonium has a tendency to increase the pH of rainwater1. Ammonium can be transformed to nitric acid in soil but this source of acidity is generally less important than wet and dry deposition of free acids2,3. Here we describe the occurrence of high concentrations of ammonium in canopy throughfall (rainwater falling through the tree canopy) and stemflow in woodland areas in the Netherlands, resulting in acid inputs to soils two to five times higher than those previously described for acid atmospheric deposition2-5. The ammonium is present as ammonium sulphate, which probably forms by interaction of ammonia (volatilized from manure) with sulphur dioxide (from fossil fuels), on the surfaces of vegetation. After leaching by rainwater the ammonium sulphate reaching the soil oxidizes rapidly to nitric and sulphuric acid, producing extremely low pH values (2.8-3.5) and high concentrations of dissolved aluminium in the non-calcareous soils studied. Deposition of ammonium sulphate on the surfaces of vegetation and its environmental consequences are probably most important in areas with intensive animal husbandry.

  6. Dissimilatory nitrate reduction processes in sediments of urban river networks: Spatiotemporal variations and environmental implications.

    PubMed

    Cheng, Lv; Li, Xiaofei; Lin, Xianbiao; Hou, Lijun; Liu, Min; Li, Ye; Liu, Sai; Hu, Xiaoting

    2016-12-01

    Urbanizations have increased the loadings of reactive nitrogen in urban riverine environments. However, limited information about dissimilatory nitrate reduction processes and associated contributions to nitrogen removal is available for urban riverine environments. In this study, sediment slurry experiments were conducted with nitrogen isotope-tracing technique to investigate the potential rates of denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA) and their contributions to nitrate reduction in sediments of urban river networks, Shanghai. The potential rates of denitrification, anammox and DNRA measured in the study area ranged from 0.193 to 98.7 nmol N g -1  h -1 dry weight (dw), 0.0387-23.7 nmol N g -1  h -1  dw and 0-10.3 nmol N g -1  h -1  dw, respectively. Denitrification and DNRA rates were higher in summer than in winter, while anammox rates were greater in winter than in summer for most sites. Dissolved oxygen, total organic carbon, nitrate, ammonium, sulfide, Fe(II) and Fe(III) were found to have significant influence on these nitrate reduction processes. Denitrification contributed 11.5-99.5%% to total nitrate reduction, as compared to 0.343-81.6% for anammox and 0-52.3% for DNRA. It is estimated that nitrogen loss of approximately 1.33 × 10 5  t N year -1 was linked to both denitrification and anammox processes, which accounted for about 20.1% of total inorganic nitrogen transported annually into the urban river networks of Shanghai. Overall, these results show the potential importance of denitrification and anammox in nitrogen removal and provide new insight into the mechanisms of nitrogen cycles in urban riverine environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Inorganic nitrogen transformations in the treatment of landfill leachate with a high ammonium load: A case study.

    PubMed

    Parkes, Stephen D; Jolley, Dianne F; Wilson, Stephen R

    2007-01-01

    The inorganic nitrogen transformations occurring at a municipal waste leachate treatment facility were investigated. The treatment facility consisted of a collection well and an artificial wetland between two aeration ponds. The first aeration pond showed a decrease in ammonium (from 3480 (+/- 120) to 630(+/- 90) mg x L(-1)), a reduction in inorganic nitrogen load (3480 to 1680 mg N x L(-1)), and an accumulation of nitrite (< 1.3 mg-N x L(-1) in the collection well, to 1030 mg-N x L(-1)). Incomplete ammonium oxidation was presumably the result of the low concentration of carbonate alkalinity (approximately 2 mg x L(-1)), which may cause a limitation in the ammonium oxidation rate of nitrifiers. Low carbonate alkalinity levels may have been the result of stripping of CO(2) from the first aeration pond at the high aeration rates and low pH. Various chemodenitrification mechanisms are discussed as the reason for the reduction in the inorganic nitrogen load, including; the reduction of nitrite by iron (II) (producing various forms of gaseous nitrogen); and reactions involving nitrous acid. It is suggested that the accumulation of nitrite may be the result of inhibition of nitrite oxidizers by nitrous acid and low temperatures. Relative to the first aeration pond, the speciation and concentration of inorganic nitrogen was stable in the wetlands and 2nd aeration pond. The limited denitrification in the wetlands most probably occurred due to low concentrations of organic carbon, and short retention times.

  8. The thermal stability and catalytic application of manganese oxide-zirconium oxide powders

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang

    MnOx-ZrO2 mixed oxide is an active catalyst for combustion, oxidation, and oxygen storage applications. MnOx-ZrO 2 mixture also has large reversible adsorption capability for NO x, which makes it a promising candidate for NOx abatement in automobile emission control. However, MnOx-ZrO 2 mixed oxide has not been used extensively because the processing and the thermal stability of resulting powders have not been studied systematically. It is critical to have thermally stable catalytic material because the application temperature can reach as high as 1000°C during service. In this study, we focused on improving the thermal stability of oxide powders, such as MnO x, ZrO2, and MnOx-ZrO2, by controlling the processing methods and parameters. For pure MnOx made from the precipitation method using Mn(NO3)2 aqueous solution and ammonium hydroxide, we found that lower concentration of Mn(NO3) 2 solution and larger amount of ammonium hydroxide resulted in higher surface area powders. For pure ZrO2, we found curing hydrous zirconia in the mother liquid produced ZrO2 powders with larger pore volume and pore size. The specific surface area was also significantly enhanced by curing for the synthesized powders before calcination or after low temperature calcinations, and this improvement could be preserved to high temperatures if SiO2 was doped in ZrO2. A Monte Carlo simulation model examining the effect of primary particle packing on the specific surface area was used to explain the curing result. MnOx-ZrO2 mixtures had higher surface area than the single component oxide at 500 and 700°C because composite powders sintered less. The sintering behavior of composite powders at 900°C was opposite to that at 500°C and the specific surface area of MnOx-ZrO2 decreased drastically at 900°C. Curing ZrO2 first or using La dopant could significantly enhance the specific surface area of MnOx-ZrO2 at 900°C. Through the tests of the redox property and NO storage capability we found a close relationship between the enhanced thermal stability and better catalytic performance.

  9. The inner workings of the hydrazine synthase multiprotein complex.

    PubMed

    Dietl, Andreas; Ferousi, Christina; Maalcke, Wouter J; Menzel, Andreas; de Vries, Simon; Keltjens, Jan T; Jetten, Mike S M; Kartal, Boran; Barends, Thomas R M

    2015-11-19

    Anaerobic ammonium oxidation (anammox) has a major role in the Earth's nitrogen cycle and is used in energy-efficient wastewater treatment. This bacterial process combines nitrite and ammonium to form dinitrogen (N2) gas, and has been estimated to synthesize up to 50% of the dinitrogen gas emitted into our atmosphere from the oceans. Strikingly, the anammox process relies on the highly unusual, extremely reactive intermediate hydrazine, a compound also used as a rocket fuel because of its high reducing power. So far, the enzymatic mechanism by which hydrazine is synthesized is unknown. Here we report the 2.7 Å resolution crystal structure, as well as biophysical and spectroscopic studies, of a hydrazine synthase multiprotein complex isolated from the anammox organism Kuenenia stuttgartiensis. The structure shows an elongated dimer of heterotrimers, each of which has two unique c-type haem-containing active sites, as well as an interaction point for a redox partner. Furthermore, a system of tunnels connects these active sites. The crystal structure implies a two-step mechanism for hydrazine synthesis: a three-electron reduction of nitric oxide to hydroxylamine at the active site of the γ-subunit and its subsequent condensation with ammonia, yielding hydrazine in the active centre of the α-subunit. Our results provide the first, to our knowledge, detailed structural insight into the mechanism of biological hydrazine synthesis, which is of major significance for our understanding of the conversion of nitrogenous compounds in nature.

  10. Dissolution of uranium oxides from simulated environmental swipes using ammonium bifluoride

    DOE PAGES

    Meyers, Lisa A.; Yoshida, Thomas M.; Chamberlin, Rebecca M.; ...

    2016-11-01

    We developed an analytical chemistry method to quantitatively recover microgram quanties of solid uranium oxides from swipe media using ammonium bifluoride (ABF, NH 4HF 2) solution. Recovery of uranium from surrogate swipe media (filter paper) was demonstrated at initial uranium loading levels between 3 and 20 µg filter -1. Moreover, the optimal conditions for extracting U 3O 8 and UO 2 are using 1 % ABF solution and incubating at 80 °C for one hour. The average uranium recoveries are 100 % for U 3O 8, and 90 % for UO 2. Finally, with this method, uranium concentration as lowmore » as 3 µg filter -1 can be recovered for analysis.« less

  11. Suitability of anaerobic digestion effluent as process water for corn fuel ethanol fermentation.

    PubMed

    Wang, Ke; Zhang, Jian-Hua; Liu, Pei; Mao, Zhong-Gui

    2014-01-01

    A corn fuel ethanol plant integrated with anaerobic digestion treatment of thin stillage increases the net energy balance. Furthermore, the anaerobic digestion effluent (ADE) can be reused as a potential substitute for process water in the ethanol fermentation. In this study, the suitability of ADE as process water for corn ethanol fermentation was investigated by analyzing the potential inhibitory components in the ADE. It was found that ammonium influenced the growth and metabolism of Saccharomyces cerevisiae. Maximum ethanol production was obtained when the concentration of ammonium nitrogen was 200 mg/L, and ammonium could replace urea as the nitrogen source for S. cerevisiae under this concentration. In the ethanol fermentation with a higher concentration of ammonium, more glycerol was produced, thereby resulting in the decrease of ethanol production. In addition, components except ammonium in the ADE caused no inhibition to ethanol production. These results suggest that ADE could be reused as process water for corn ethanol fermentation without negative effect when ammonium concentration is well controlled.

  12. Synthesis of microspheres of triuranium octaoxide by simultaneous water and nitrate extraction from ascorbate-uranyl sols.

    PubMed

    Brykala, M; Deptula, A; Rogowski, M; Lada, W; Olczak, T; Wawszczak, D; Smolinski, T; Wojtowicz, P; Modolo, G

    A new method for synthesis of uranium oxide microspheres (diameter <100 μm) has been developed. It is a variant of our patented Complex Sol-Gel Process, which has been used to synthesize high-quality powders of a wide variety of complex oxides. Starting uranyl-nitrate-ascorbate sols were prepared by addition of ascorbic acid to uranyl nitrate hexahydrate solution and alkalizing by aqueous ammonium hydroxide and then emulsified in 2-ethylhexanol-1 containing 1v/o SPAN-80. Drops of emulsion were firstly gelled by extraction of water by the solvent. Destruction of the microspheres during thermal treatment, owing to highly reactive components in the gels, requires modification of the gelation step by Double Extraction Process-simultaneously extraction of water and nitrates using Primene JMT, which completely eliminates these problem. Final step was calcination in air of obtained microspheres of gels to triuranium octaoxide.

  13. Review on Thermal Decomposition of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Shalini; Dave, Pragnesh N.

    2013-01-01

    In this review data from the literature on thermal decomposition of ammonium nitrate (AN) and the effect of additives to their thermal decomposition are summarized. The effect of additives like oxides, cations, inorganic acids, organic compounds, phase-stablized CuO, etc., is discussed. The effect of an additive mainly occurs at the exothermic peak of pure AN in a temperature range of 200°C to 140°C.

  14. Interactions of aerosols (ammonium sulfate, ammonium nitrate and ammonium chloride) and of gases (HCl, HNO 3) with fogwater

    NASA Astrophysics Data System (ADS)

    Ruprecht, Heidi; Sigg, Laura

    The concentrations of aerosols (NH 4NO 3, (NH 4) 2SO 4 and NH 4Cl) and of gases (HCl (g), HNO 3(g), NH 3(g) were determined by denuder methods under different conditions (in the absence of fog, before, during and after fog events). At this site situated in an urban region, high concentrations of the gaseous strong acids HCl (g) and HNO 3(g) are observed. NH 4Cl and NH 4NO 3 aerosols represent a major fraction of the Cl - and NO 3- aerosols (<2.4 μm)collected by denuders. During a fog event, very high concentrations of SO 42- were found in small aerosols, which are attributed to the aqueous phase oxidation of SO 2 under the influence of high pH due to the presence of NH 3. Differences in SO 42- concentrations measured in aerosols (<2.4 μm) and in fog droplets were probably due to mass-transport limitations of the SO 2 oxidation. Ammonium sulfate aerosols represent in some cases a significant fraction of the total S present (SO 2(g) + SO 42-. Soluble aerosols and gases contribute to the composition of fogwater and are released again after fog dissipation.

  15. HONO (nitrous acid) emissions from acidic northern soils

    NASA Astrophysics Data System (ADS)

    Maljanen, Marja; Yli-Pirilä, Pasi; Joutsensaari, Jorma; Martikainen, Pertti J.

    2015-04-01

    The photolysis of HONO (nitrous acid) is an important source of OH radical, the key oxidizing agent in the atmosphere, contributing also to removal of atmospheric methane (CH4), the second most important greenhouse gas after carbon dioxide (CO2). The emissions of HONO from soils have been recently reported in few studies. Soil HONO emissions are regarded as missing sources of HONO when considering the chemical reactions in the atmosphere. The soil-derived HONO has been connected to soil nitrite (NO2-) and also directly to the activity of ammonia oxidizing bacteria, which has been studied with one pure culture. Our hypothesis was that boreal acidic soils with high nitrification activity could be also sources of HONO and the emissions of HONO are connected with nitrification. We selected a range of dominant northern acidic soils and showed in microcosm experiments that soils which have the highest nitrous oxide (N2O) and nitric oxide (NO) emissions (drained peatlands) also have the highest HONO production rates. The emissions of HONO are thus linked to nitrogen cycle and also NO and N2O emissions. Natural peatlands and boreal coniferous forests on mineral soils had the lowest HONO emissions. It is known that in natural peatlands with high water table and in boreal coniferous forest soils, low nitrification activity (microbial production of nitrite and nitrate) limits their N2O production. Low availability of nitrite in these soils is the likely reason also for their low HONO production rates. We also studied the origin of HONO in one peat soil with acetylene and other nitrification inhibitors and we found that HONO production is not closely connected to ammonium oxidation (nitrification). Acetylene blocked NO emissions but did not affect HONO or N2O emissions, thus there is another source behind HONO emission from these soils than ammonium oxidation. It is still an open question if this process is microbial or chemical origin.

  16. Simazine application inhibits nitrification and changes the ammonia-oxidizing bacterial communities in a fertilized agricultural soil.

    PubMed

    Hernández, Marcela; Jia, Zhongjun; Conrad, Ralf; Seeger, Michael

    2011-12-01

    s-Triazine herbicides are widely used for weed control, and are persistent in soils. Nitrification is an essential process in the global nitrogen cycle in soil, and involves ammonia-oxidizing Bacteria (AOB) and ammonia-oxidizing Archaea (AOA). In this study, we evaluated the effect of the s-triazine herbicide simazine on the nitrification and on the structure of ammonia-oxidizing microbial communities in a fertilized agricultural soil. The effect of simazine on AOB and AOA were studied by PCR-amplification of amoA genes of nitrifying Bacteria and Archaea in soil microcosms and denaturing gradient gel electrophoresis (DGGE) analyses. Simazine [50 μg g(-1) dry weight soil (d.w.s)] completely inhibited the nitrification processes in the fertilized agricultural soil. The inhibition by simazine of ammonia oxidation observed was similar to the reduction of ammonia oxidation by the nitrification inhibitor acetylene. The application of simazine-affected AOB community DGGE patterns in the agricultural soil amended with ammonium, whereas no significant changes in the AOA community were observed. The DGGE analyses strongly suggest that simazine inhibited Nitrosobacteria and specifically Nitrosospira species. In conclusion, our results suggest that the s-triazine herbicide not only inhibits the target susceptible plants but also inhibits the ammonia oxidation and the AOB in fertilized soils. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Environmentally Sound Processing Technology: JANNAF Safety and Environmental Protection Subcommittee and Propellant Development and Characterization Subcommittee Joint Workshop

    NASA Technical Reports Server (NTRS)

    Pickett, Lorri A. (Editor)

    1995-01-01

    Topics covered include: Risk assessment of hazardous materials, Automated systems for pollution prevention and hazardous materials elimination, Study design for the toxicity evaluation of ammonium perchlorate, Plasma sprayed bondable stainless surface coatings, Development of CFC-free cleaning processes, New fluorinated solvent alternatives to ozone depleting solvents, Cleaning with highly fluorinated liquids, Biotreatment of propyleneglycol nitrate by anoxic denitrification, Treatment of hazardous waste with white rot fungus, Hydrothermal oxidation as an environmentally benign treatment technology, Treatment of solid propellant manufacturing wastes by base hydrolysis, Design considerations for cleaning using supercritical fluid technology, and Centrifugal shear carbon dioxide cleaning.

  18. Interaction of Ammonia Monooxygenase from Nitrosomonas europaea with Alkanes, Alkenes, and Alkynes

    PubMed Central

    Hyman, Michael R.; Murton, Ian B.; Arp, Daniel J.

    1988-01-01

    Ammonia monooxygenase of Nitrosomonas europaea catalyzes the oxidation of alkanes (up to C8) to alcohols and alkenes (up to C5) to epoxides and alcohols in the presence of ammonium ions. Straight-chain, N-terminal alkynes (up to C10) all exhibited a time-dependent inhibition of ammonia oxidation without effects on hydrazine oxidation. PMID:16347810

  19. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages

    DOE PAGES

    Hug, Laura A.; Thomas, Brian C.; Sharon, Itai; ...

    2015-07-22

    Nitrogen, sulfur and carbon fluxes in the terrestrial subsurface are determined by the intersecting activities of microbial community members, yet the organisms responsible are largely unknown. Metagenomic methods can identify organisms and functions, but genome recovery is often precluded by data complexity. To address this limitation, we developed subsampling assembly methods to re-construct high-quality draft genomes from complex samples. Here, we applied these methods to evaluate the interlinked roles of the most abundant organisms in biogeochemical cycling in the aquifer sediment. Community proteomics confirmed these activities. The eight most abundant organisms belong to novel lineages, and two represent phyla withmore » no previously sequenced genome. Four organisms are predicted to fix carbon via the Calvin Benson Bassham, Wood Ljungdahl or 3-hydroxyproprionate/4-hydroxybutarate pathways. The profiled organisms are involved in the network of denitrification, dissimilatory nitrate reduction to ammonia, ammonia oxidation and sulfate reduction/oxidation, and require substrates supplied by other community members. An ammonium-oxidizing Thaumarchaeote is the most abundant community member, despite low ammonium concentrations in the groundwater. Finally, this organism likely benefits from two other relatively abundant organisms capable of producing ammonium from nitrate, which is abundant in the groundwater. Overall, dominant members of the microbial community are interconnected through exchange of geochemical resources.« less

  20. Increasing importance of deposition of reduced nitrogen in the United States

    PubMed Central

    Li, Yi; Schichtel, Bret A.; Walker, John T.; Schwede, Donna B.; Chen, Xi; Lehmann, Christopher M. B.; Puchalski, Melissa A.; Gay, David A.; Collett, Jeffrey L.

    2016-01-01

    Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium deposition, by contrast, have increased in many regions. Together these changes have altered the balance between oxidized and reduced nitrogen deposition. Across most of the United States, wet deposition has transitioned from being nitrate-dominated in the 1980s to ammonium-dominated in recent years. Ammonia has historically not been routinely measured because there are no specific regulatory requirements for its measurement. Recent expansion in ammonia observations, however, along with ongoing measurements of nitric acid and fine particle ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) US nitrogen deposition budget. Observations from 37 sites reveal that reduced nitrogen contributes, on average, ∼65% of the total inorganic nitrogen deposition budget. Dry deposition of ammonia plays an especially key role in nitrogen deposition, contributing from 19% to 65% in different regions. Future progress toward reducing US nitrogen deposition will be increasingly difficult without a reduction in ammonia emissions. PMID:27162336

  1. Manufacture of ammonium sulfate fertilizer from gypsum-rich byproduct of flue gas desulfurization - A prefeasibility cost estimate

    USGS Publications Warehouse

    Chou, I.-Ming; Rostam-Abadi, M.; Lytle, J.M.; Achorn, F.P.

    1996-01-01

    Costs for constructing and operating a conceptual plant based on a proposed process that converts flue gas desulfurization (FGD)-gypsum to ammonium sulfate fertilizer has been calculated and used to estimate a market price for the product. The average market price of granular ammonium sulfate ($138/ton) exceeds the rough estimated cost of ammonium sulfate from the proposed process ($111/ ton), by 25 percent, if granular size ammonium sulfate crystals of 1.2 to 3.3 millimeters in diameters can be produced by the proposed process. However, there was at least ??30% margin in the cost estimate calculations. The additional costs for compaction, if needed to create granules of the required size, would make the process uneconomical unless considerable efficiency gains are achieved to balance the additional costs. This study suggests the need both to refine the crystallization process and to find potential markets for the calcium carbonate produced by the process.

  2. Aggregate Size and Architecture Determine Microbial Activity Balance for One-Stage Partial Nitritation and Anammox ▿

    PubMed Central

    Vlaeminck, Siegfried E.; Terada, Akihiko; Smets, Barth F.; De Clippeleir, Haydée; Schaubroeck, Thomas; Bolca, Selin; Demeestere, Lien; Mast, Jan; Boon, Nico; Carballa, Marta; Verstraete, Willy

    2010-01-01

    Aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB) cooperate in partial nitritation/anammox systems to remove ammonium from wastewater. In this process, large granular microbial aggregates enhance the performance, but little is known about granulation so far. In this study, three suspended-growth oxygen-limited autotrophic nitrification-denitrification (OLAND) reactors with different inoculation and operation (mixing and aeration) conditions, designated reactors A, B, and C, were used. The test objectives were (i) to quantify the AerAOB and AnAOB abundance and the activity balance for the different aggregate sizes and (ii) to relate aggregate morphology, size distribution, and architecture putatively to the inoculation and operation of the three reactors. A nitrite accumulation rate ratio (NARR) was defined as the net aerobic nitrite production rate divided by the anoxic nitrite consumption rate. The smallest reactor A, B, and C aggregates were nitrite sources (NARR, >1.7). Large reactor A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the autotrophic space in these granules consisted of AerAOB- and AnAOB-specific extracellular polymeric substances. Large reactor B aggregates were thin film-like nitrite sinks (NARR, <0.5) in which AnAOB were not shielded by an AerAOB layer. Voids and channels occupied 13 to 17% of the anoxic zone of AnAOB-rich aggregates (reactors B and C). The hypothesized granulation pathways include granule replication by division and budding and are driven by growth and/or decay based on species-specific physiology and by hydrodynamic shear and mixing. PMID:19948857

  3. Long-term ammonia removal in a coconut fiber-packed biofilter: analysis of N fractionation and reactor performance under steady-state and transient conditions.

    PubMed

    Baquerizo, Guillermo; Maestre, Juan P; Machado, Vinicius C; Gamisans, Xavier; Gabriel, David

    2009-05-01

    A comprehensive study of long-term ammonia removal in a biofilter packed with coconut fiber is presented under both steady-state and transient conditions. Low and high ammonia loads were applied to the reactor by varying the inlet ammonia concentration from 90 to 260 ppm(v) and gas contact times ranging from 20 to 36 s. Gas samples and leachate measurements were periodically analyzed and used for characterizing biofilter performance in terms of removal efficiency (RE) and elimination capacity (EC). Also, N fractions in the leachate were quantified to both identify the experimental rates of nitritation and nitratation and to determine the N leachate distribution. Results showed stratification in the biofilter activity and, thus, most of the NH(3) removal was performed in the lower part of the reactor. An average EC of 0.5 kg N-NH(3)m(-3)d(-1) was obtained for the whole reactor with a maximum local average EC of 1.7 kg N-NH(3)m(-3)d(-1). Leachate analyses showed that a ratio of 1:1 of ammonium and nitrate ions in the leachate was obtained throughout steady-state operation at low ammonia loads with similar values for nitritation and nitratation rates. Low nitratation rates during high ammonia load periods occurred because large amounts of ammonium and nitrite accumulated in the packed bed, thus causing inhibition episodes on nitrite-oxidizing bacteria due to free ammonia accumulation. Mass balances showed that 50% of the ammonia fed to the reactor was oxidized to either nitrite or nitrate and the rest was recovered as ammonium indicating that sorption processes play a fundamental role in the treatment of ammonia by biofiltration.

  4. Molecular Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria in High-Temperature Petroleum Reservoirs

    PubMed Central

    Li, Hui; Chen, Shuo; Mu, Bo-Zhong

    2010-01-01

    Anaerobic ammonium-oxidizing (anammox) process plays an important role in the nitrogen cycle of the worldwide anoxic and mesophilic habitats. Recently, the existence and activity of anammox bacteria have been detected in some thermophilic environments, but their existence in the geothermal subterranean oil reservoirs is still not reported. This study investigated the abundance, distribution and functional diversity of anammox bacteria in nine out of 17 high-temperature oil reservoirs by molecular ecology analysis. High concentration (5.31–39.2 mg l−1) of ammonium was detected in the production water from these oilfields with temperatures between 55°C and 75°C. Both 16S rRNA and hzo molecular biomarkers indicated the occurrence of anammox bacteria in nine out of 17 samples. Most of 16S rRNA gene phylotypes are closely related to the known anammox bacterial genera Candidatus Brocadia, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia, while hzo gene phylotypes are closely related to the genera Candidatus Anammoxoglobus, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia. The total bacterial and anammox bacterial densities were 6.4 ± 0.5 × 103 to 2.0 ± 0.18 × 106 cells ml−1 and 6.6 ± 0.51 × 102 to 4.9 ± 0.36 × 104 cell ml−1, respectively. The cluster I of 16S rRNA gene sequences showed distant identity (<92%) to the known Candidatus Scalindua species, inferring this cluster of anammox bacteria to be a new species, and a tentative name Candidatus “Scalindua sinooilfield” was proposed. The results extended the existence of anammox bacteria to the high-temperature oil reservoirs. PMID:20740282

  5. Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleum reservoirs.

    PubMed

    Li, Hui; Chen, Shuo; Mu, Bo-Zhong; Gu, Ji-Dong

    2010-11-01

    Anaerobic ammonium-oxidizing (anammox) process plays an important role in the nitrogen cycle of the worldwide anoxic and mesophilic habitats. Recently, the existence and activity of anammox bacteria have been detected in some thermophilic environments, but their existence in the geothermal subterranean oil reservoirs is still not reported. This study investigated the abundance, distribution and functional diversity of anammox bacteria in nine out of 17 high-temperature oil reservoirs by molecular ecology analysis. High concentration (5.31-39.2 mg l(-1)) of ammonium was detected in the production water from these oilfields with temperatures between 55°C and 75°C. Both 16S rRNA and hzo molecular biomarkers indicated the occurrence of anammox bacteria in nine out of 17 samples. Most of 16S rRNA gene phylotypes are closely related to the known anammox bacterial genera Candidatus Brocadia, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia, while hzo gene phylotypes are closely related to the genera Candidatus Anammoxoglobus, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia. The total bacterial and anammox bacterial densities were 6.4 ± 0.5 × 10(3) to 2.0 ± 0.18 × 10(6) cells ml(-1) and 6.6 ± 0.51 × 10(2) to 4.9 ± 0.36 × 10(4) cell ml(-1), respectively. The cluster I of 16S rRNA gene sequences showed distant identity (<92%) to the known Candidatus Scalindua species, inferring this cluster of anammox bacteria to be a new species, and a tentative name Candidatus "Scalindua sinooilfield" was proposed. The results extended the existence of anammox bacteria to the high-temperature oil reservoirs.

  6. 40 CFR 60.421 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... stream to the reactor/crystallizer for synthetic and coke oven by-product ammonium sulfate manufacturing...-product ammonium sulfate manufacturing plant means any plant which produces ammonium sulfate as a by-product from process streams generated during caprolactam manufacture. Coke oven by-product ammonium...

  7. Nitrogen Removal Characteristics of Pseudomonas putida Y-9 Capable of Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature

    PubMed Central

    He, Tengxia; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue

    2017-01-01

    The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL−1 h−1, respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature. PMID:28293626

  8. Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: extensions to the general ASM models.

    PubMed

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer-Nàcher, Carles; Smets, Barth F

    2011-09-15

    Nitrous oxide (N(2)O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N(2)O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N(2)O dynamics during both nitrification and denitrification in biological N removal. Six additional processes and three additional reactants, all involved in known biochemical reactions, have been added. The validity and applicability of the model is demonstrated by comparing simulations with experimental data on N(2)O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO(2)(-) participates as final electron acceptor compared to the oxic pathway. Among the four denitrification steps, the last one (N(2)O reduction to N(2)) seems to be inhibited first when O(2) is present. Overall, N(2)O production can account for 0.1-25% of the consumed N in different nitrification and denitrification systems, which can be well simulated by the proposed model. In conclusion, we provide a modeling structure, which adequately captures N(2)O dynamics in autotrophic nitrification and heterotrophic denitrification driven biological N removal processes and which can form the basis for ongoing refinements.

  9. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification

    PubMed Central

    Casciotti, Karen L.; Buchwald, Carolyn

    2012-01-01

    The microbial nitrogen (N) cycle involves a variety of redox processes that control the availability and speciation of N in the environment and that are involved with the production of nitrous oxide (N2O), a climatically important greenhouse gas. Isotopic measurements of ammonium (NH+4), nitrite (NO−2), nitrate (NO−3), and N2O can now be used to track the cycling of these compounds and to infer their sources and sinks, which has lead to new and exciting discoveries. For example, dual isotope measurements of NO−3 and NO−2 have shown that there is NO−3 regeneration in the ocean's euphotic zone, as well as in and around oxygen deficient zones (ODZs), indicating that nitrification may play more roles in the ocean's N cycle than generally thought. Likewise, the inverse isotope effect associated with NO−2 oxidation yields unique information about the role of this process in NO−2 cycling in the primary and secondary NO−2 maxima. Finally, isotopic measurements of N2O in the ocean are indicative of an important role for nitrification in its production. These interpretations rely on knowledge of the isotope effects for the underlying microbial processes, in particular ammonia oxidation and nitrite oxidation. Here we review the isotope effects involved with the nitrification process and the insights provided by this information, then provide a prospectus for future work in this area. PMID:23091468

  10. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification.

    PubMed

    Casciotti, Karen L; Buchwald, Carolyn

    2012-01-01

    The microbial nitrogen (N) cycle involves a variety of redox processes that control the availability and speciation of N in the environment and that are involved with the production of nitrous oxide (N(2)O), a climatically important greenhouse gas. Isotopic measurements of ammonium (NH(+) (4)), nitrite (NO(-) (2)), nitrate (NO(-) (3)), and N(2)O can now be used to track the cycling of these compounds and to infer their sources and sinks, which has lead to new and exciting discoveries. For example, dual isotope measurements of NO(-) (3) and NO(-) (2) have shown that there is NO(-) (3) regeneration in the ocean's euphotic zone, as well as in and around oxygen deficient zones (ODZs), indicating that nitrification may play more roles in the ocean's N cycle than generally thought. Likewise, the inverse isotope effect associated with NO(-) (2) oxidation yields unique information about the role of this process in NO(-) (2) cycling in the primary and secondary NO(-) (2) maxima. Finally, isotopic measurements of N(2)O in the ocean are indicative of an important role for nitrification in its production. These interpretations rely on knowledge of the isotope effects for the underlying microbial processes, in particular ammonia oxidation and nitrite oxidation. Here we review the isotope effects involved with the nitrification process and the insights provided by this information, then provide a prospectus for future work in this area.

  11. The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs

    NASA Astrophysics Data System (ADS)

    Hoag, Katherine J.; Collett, Jeffrey L., Jr.; Pandis, Spyros N.

    Drop size-resolved measurements of fog chemistry in California's San Joaquin Valley during the 1995 Integrated Monitoring Study reveal that fog composition varies with drop size. Small fog drops were less alkaline and typically contained higher major ion (nitrate, sulfate, ammonium) concentrations than large drops. Small drops often contained higher concentrations of Fe and Mn than large drops while H 2O 2 concentrations exhibited no strong drop size dependence. Simulation of an extended fog episode in Fresno, California revealed the capability of a drop size-resolved fog chemistry model to reproduce the measured (based on two drop size categories) drop size dependence of several key species. The model was also able to satisfactorily reproduce measured species-dependent deposition rates (ammonium>sulfate>nitrate) resulting from fog drop sedimentation. Both the model simulation and direct analysis of size-resolved fog composition observations and measured gas-phase oxidant concentrations indicate the importance of ozone as an aqueous-phase S(IV) oxidant in these high pH fogs. Due to the nonlinear dependence of the rate law for the ozone pathway on the hydrogen ion concentration, use of the average fog drop composition can lead to significant underprediction of aqueous phase sulfate production rates in these chemically heterogeneous fogs.

  12. Distribution and diversity of anaerobic ammonium oxidation (anammox) bacteria in the sediment of a eutrophic freshwater lake, Lake Kitaura, Japan.

    PubMed

    Yoshinaga, Ikuo; Amano, Teruki; Yamagishi, Takao; Okada, Kentaro; Ueda, Shingo; Sako, Yoshihiko; Suwa, Yuichi

    2011-01-01

    Although the emission of N(2) via anaerobic ammonium oxidation (anammox) is a key process in the elimination of nitrogenous compounds from aquatic environments, little information is available regarding its significance and the relevant microorganisms (anammox bacteria) in eutrophic freshwater lakes. In the present study, the anammox bacteria in the sediment of a eutrophic lake in Japan, Lake Kitaura, were examined using a (15)N-tracer technique to measure their potential anammox activity. Potential anammox activity was localized to the northern region of the lake where a stable supply of both NH(4)(+) and NO(3)(-) existed in the sediment. These results suggest the contribution of anammox bacteria to the total emission of N(2) from sediment in this eutrophic lake to not be negligible. Moreover, selective PCR successfully amplified anammox bacteria-related (Brocadiales-related) 16S rRNA genes from sediment samples in which potential anammox activity was observed. The clone libraries consisted of diverse phylotypes except the genus "Scalindua"-lineages, and the lineages of genus "Brocadia" were dominantly recovered, followed by the genus "Kuenenia"-lineages. Most of them, however, were novel and phylogenetically distinguishable from known Brocadiales species. A unique population of anammox bacteria inhabits and potentially contributes to the emission of N(2) from Lake Kitaura.

  13. Influence of long-term diesel fuel pollution on nitrite-oxidising activity and population size of nitrobacter spp in soil.

    PubMed

    Deni, Jamal; Penninckx, Michel J

    2004-01-01

    Previous investigations have shown that ammonia oxidation is not inhibited by diesel fuel in a soil with a long history of contamination contrary to a non-contaminated soil. As a consequence, ammonia oxidation does not constitute a Limited step in nitrification process (Appl. Environ. Microbiol. 65 (1999) 4008). Moreover, this type of soil also has had the opportunity to develop an abundant microbial population able to metabolise the diesel hydrocarbons. Whether the properties of soil with a long history of diesel fuel contamination may affect the activity of nitrite-oxidising bacteria was investigated. It was observed that re-exposure of soil to diesel fuel apparently stimulated the proliferation of nitrite-oxidising bacteria, as determined by most probable number (MPN) culture technique and MPN-polymerase chain reaction technique. The potential of nitrite-oxidising activity in soil treated with diesel fuel was about 4 times higher than in the control without addition. In the presence of diesel fuel and ammonium, the potential nitrite-oxidising activity was 40% higher than in presence of ammonium only. However, in the presence of hydrocarbon only, low proliferation of Nitrobacter was observed, probably because the heterotrophic bacteria were strongly limited by lack of nitrogen and did not produce sufficient organic metabolites that could be used by the Nitrobacter cells.

  14. Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit

    PubMed Central

    2014-01-01

    Background The currently accepted thesis on nitrogenous fertilizer additions on methane oxidation activity assumes niche partitioning among methanotrophic species, with activity responses to changes in nitrogen content being dependent on the in situ methanotrophic community structure Unfortunately, widely applied tools for microbial community assessment only have a limited phylogenetic resolution mostly restricted to genus level diversity, and not to species level as often mistakenly assumed. As a consequence, intragenus or intraspecies metabolic versatility in nitrogen metabolism was never evaluated nor considered among methanotrophic bacteria as a source of differential responses of methane oxidation to nitrogen amendments. Results We demonstrated that fourteen genotypically different Methylomonas strains, thus distinct below the level at which most techniques assign operational taxonomic units (OTU), show a versatile physiology in their nitrogen metabolism. Differential responses, even among strains with identical 16S rRNA or pmoA gene sequences, were observed for production of nitrite and nitrous oxide from nitrate or ammonium, nitrogen fixation and tolerance to high levels of ammonium, nitrate, and hydroxylamine. Overall, reduction of nitrate to nitrite, nitrogen fixation, higher tolerance to ammonium than nitrate and tolerance and assimilation of nitrite were general features. Conclusions Differential responses among closely related methanotrophic strains to overcome inhibition and toxicity from high nitrogen loads and assimilation of various nitrogen sources yield competitive fitness advantages to individual methane-oxidizing bacteria. Our observations proved that community structure at the deepest phylogenetic resolution potentially influences in situ functioning. PMID:24708438

  15. Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit.

    PubMed

    Hoefman, Sven; van der Ha, David; Boon, Nico; Vandamme, Peter; De Vos, Paul; Heylen, Kim

    2014-04-04

    The currently accepted thesis on nitrogenous fertilizer additions on methane oxidation activity assumes niche partitioning among methanotrophic species, with activity responses to changes in nitrogen content being dependent on the in situ methanotrophic community structure Unfortunately, widely applied tools for microbial community assessment only have a limited phylogenetic resolution mostly restricted to genus level diversity, and not to species level as often mistakenly assumed. As a consequence, intragenus or intraspecies metabolic versatility in nitrogen metabolism was never evaluated nor considered among methanotrophic bacteria as a source of differential responses of methane oxidation to nitrogen amendments. We demonstrated that fourteen genotypically different Methylomonas strains, thus distinct below the level at which most techniques assign operational taxonomic units (OTU), show a versatile physiology in their nitrogen metabolism. Differential responses, even among strains with identical 16S rRNA or pmoA gene sequences, were observed for production of nitrite and nitrous oxide from nitrate or ammonium, nitrogen fixation and tolerance to high levels of ammonium, nitrate, and hydroxylamine. Overall, reduction of nitrate to nitrite, nitrogen fixation, higher tolerance to ammonium than nitrate and tolerance and assimilation of nitrite were general features. Differential responses among closely related methanotrophic strains to overcome inhibition and toxicity from high nitrogen loads and assimilation of various nitrogen sources yield competitive fitness advantages to individual methane-oxidizing bacteria. Our observations proved that community structure at the deepest phylogenetic resolution potentially influences in situ functioning.

  16. Microbial Nitrogen Cycling Associated with the Early Diagenesis of Organic Matter in Subseafloor Sediments

    NASA Astrophysics Data System (ADS)

    Zhao, R.

    2015-12-01

    The early diagenesis of organic matter is the major energy source of marine sedimentary biosphere and thus controls its population size; however, the vertical distribution of any functional groups along with the diagenesis of organic matter is remained unclear, especially for those microbes involved in nitrogen transformation which serve as a major control on the nitrogen flux between reservoirs. Here we investigated the vertical distributions of various functional groups in five sediment cores retrieved from Arctic Mid-Ocean Ridge (AMOR), with emphasis on the nitrifiers, denitrifiers and anaerobic ammonium oxidizing bacteria (anammox). We observed the clear geochemical zonation associated with organic matter diagenesis in the sediments based on the pore water profiles of oxygen, nitrate, ammonium, manganese and sulfate, with distinct geochemical transition zones at the boundaries of geochemical zones, including oxic-anoxic transition zone (OATZ) and nitrate-manganese reduction zone (NMTZ). Nitrate was produced in surface oxygenated sediments and nitrate consumption mainly took place at the NMTZ, splitted between re-oxidation of ammonium and manganese (II). Abundances of ammonia oxidizers, nitrite oxidizers, and denitrifiers, estimated through quantitative PCR targeting their respective functional genes, generally decrease with depth, but constantly elevated around the OATZ, NMTZ, and manganese-reduction zone as well. Anammox bacteria were only detected around the NMTZ where both nitrate/nitrite and ammonium are available. These depth profiles of functional groups were also confirmed by the community structure profiling by prokaryotic 16S rRNA gene tag pyrosequencing. Cell-specific rates of nitrification and denitrification, calculated from the bulk net reaction rates divided by functional group abundances, were similar to those values from oligotrophic sediments like North Pond and thus suggested that nitrifiers and denitirifiers populations were in maintenance state. This study illustrated the microbial nitrogen transformation accompanying the early diagenesis of organic matter in marine sediments, which scenario might be occurring in a wide range of stratified environments on Earth.

  17. Heterogeneous Ag-TiO2-SiO2 composite materials as novel catalytic systems for selective epoxidation of cyclohexene by H2O2

    PubMed Central

    Wang, Xin; Xue, Jianyue; Wang, Xinyun; Liu, Xiaoheng

    2017-01-01

    TiO2-SiO2 composites were synthesized using cetyl trimethyl ammonium bromide (CTAB) as the structure directing template. Self-assembly hexadecyltrimethyl- ammonium bromide TiO2-SiO2/(CTAB) were soaked into silver nitrate (AgNO3) aqueous solution. The Ag-TiO2-SiO2(Ag-TS) composite were prepared via a precipitation of AgBr in soaking process and its decomposition at calcination stage. Structural characterization of the materials was carried out by various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption and ultraviolet visible spectroscopy (UV-Vis). Characterization results revealed that Ag particles were incorporated into hierarchical TiO2-SiO2 without significantly affecting the structures of the supports. Further heating-treatment at 723 K was more favorable for enhancing the stability of the Ag-TS composite. The cyclohexene oxide was the major product in the epoxidation using H2O2 as the oxidant over the Ag-TS catalysts. Besides, the optimum catalytic activity and stability of Ag-TS catalysts were obtained under operational conditions of calcined at 723 K for 2 h, reaction time of 120 min, reaction temperature of 353 K, catalyst amount of 80 mg, aqueous H2O2 (30 wt.%) as oxidant and chloroform as solvent. High catalytic activity with conversion rate up to 99.2% of cyclohexene oxide could be obtainable in water-bathing. The catalyst was found to be stable and could be reused three times without significant loss of catalytic activity under the optimized reaction conditions. PMID:28493879

  18. Oxidation of ferrocene by thiocyanic acid in the presence of ammonium oxalate

    NASA Astrophysics Data System (ADS)

    Ruslin, Farah bt; Yamin, Bohari M.

    2014-09-01

    A flake-like crystalline salt was obtained from the reaction of ferrocene, oxalic acid and ammonium thiocyanate in ethanol The elemental analysis and spectroscopic data were in agreement with the preliminary X-ray molecular structure. The compound consists of four ferrocenium moieties and a counter anion consisting of two (tetraisothiocyanato)iron(III) linked by an oxalato bridging group in such a way that both iron central atoms adopt octahedral geometries.

  19. Assessment and analysis of aged refuse as ammonium-removal media for the treatment of landfill leachate.

    PubMed

    He, Yan; Li, Dan; Zhao, Youcai; Huang, Minsheng; Zhou, Gongming

    2017-11-01

    This is the first attempt to explore the sustainability of aged refuse as ammonium-removal media. Batch experiments combined with the aged-refuse-based reactor were performed to examine how the adsorption and desorption processes are involved in the ammonia removal via aged refuse media in this research. The results showed that the adsorption of ammonium by aged refuse occurred instantly and the adsorbed ammonium was stable and less exchangeable. The adsorption data fit the Freundlich isotherms well and the n value of 0.1-0.5 indicated that the adsorption of ammonium occurred easily. The maximum adsorbed ammonium occupied less than 10% of the cation exchange capacity in aged-refuse-based reactors owing to the high solid/liquid ratios (50:1-120:1). The synergistic transformations of ammonium within the aged-refuse-based reactor indicated that the cation exchange sites only provide temporary storage of ammonium, and the subsequent nitrification process can be considered the predominant restoration pathway of ammonium adsorption capacity of the reactor. It seems reasonable to assume that there is no expiry for the aged-refuse-based reactor in terms of ammonium removal owing to its bioregeneration via nitrification.

  20. From biofilm ecology to reactors: a focused review.

    PubMed

    Boltz, Joshua P; Smets, Barth F; Rittmann, Bruce E; van Loosdrecht, Mark C M; Morgenroth, Eberhard; Daigger, Glen T

    2017-04-01

    Biofilms are complex biostructures that appear on all surfaces that are regularly in contact with water. They are structurally complex, dynamic systems with attributes of primordial multicellular organisms and multifaceted ecosystems. The presence of biofilms may have a negative impact on the performance of various systems, but they can also be used beneficially for the treatment of water (defined herein as potable water, municipal and industrial wastewater, fresh/brackish/salt water bodies, groundwater) as well as in water stream-based biological resource recovery systems. This review addresses the following three topics: (1) biofilm ecology, (2) biofilm reactor technology and design, and (3) biofilm modeling. In so doing, it addresses the processes occurring in the biofilm, and how these affect and are affected by the broader biofilm system. The symphonic application of a suite of biological methods has led to significant advances in the understanding of biofilm ecology. New metabolic pathways, such as anaerobic ammonium oxidation (anammox) or complete ammonium oxidation (comammox) were first observed in biofilm reactors. The functions, properties, and constituents of the biofilm extracellular polymeric substance matrix are somewhat known, but their exact composition and role in the microbial conversion kinetics and biochemical transformations are still to be resolved. Biofilm grown microorganisms may contribute to increased metabolism of micro-pollutants. Several types of biofilm reactors have been used for water treatment, with current focus on moving bed biofilm reactors, integrated fixed-film activated sludge, membrane-supported biofilm reactors, and granular sludge processes. The control and/or beneficial use of biofilms in membrane processes is advancing. Biofilm models have become essential tools for fundamental biofilm research and biofilm reactor engineering and design. At the same time, the divergence between biofilm modeling and biofilm reactor modeling approaches is recognized.

  1. The toxicity of ammonia/ammonium to the vermifiltration wastewater treatment process.

    PubMed

    Hughes, R J; Nair, J; Ho, G

    2008-01-01

    This study was undertaken to assess the toxicity of ammonia/ammonium to key species within the vermifiltration process. The key species, the earthworm Eisenia fetida, was subjected to a series of tests in solid phase mesocosms and full-scale units. The solid phase tests showed a relatively low toxicity to ammonium with ammonium chloride having an LC50 for ammonium of 1.49 g/kg. Ammonium sulfate did not show an effect on mortality at 2 g/kg ammonium. The full-scale units showed that ammonia hydroxide can change the pH and concentration of ammonia in wastewater and while it caused some mortality to the worms its overall affect on system functioning was minimal with no significant difference in terms of worm survival found between treatments. The affect on nitrifying bacteria was also minimal with no linear trend shown with ammonia concentration. IWA Publishing 2008.

  2. The optical constants of several atmospheric aerosol species - Ammonium sulfate, aluminum oxide, and sodium chloride

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.; Khare, B. N.

    1976-01-01

    An investigation is conducted of problems which are related to a use of measured optical constants in the simulation of the optical constants of real atmospheric aerosols. The techniques of measuring optical constants are discussed, taking into account transmission measurements through homogeneous and inhomogeneous materials, the immersion of a material in a liquid of a known refractive index, the consideration of the minimum deviation angle of prism measurement, the interference of multiply reflected light, reflectivity measurements, and aspects of mathematical analysis. Graphs show the real and the imaginary part of the refractive index as a function of wavelength for aluminum oxide, NaCl, and ammonium sulfate. Tables are provided for the dispersion parameters and the optical constants.

  3. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    NASA Astrophysics Data System (ADS)

    Stief, P.

    2013-12-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies reveal that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.

  4. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    NASA Astrophysics Data System (ADS)

    Stief, P.

    2013-07-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments often is enhanced even more than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies revealed that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.

  5. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Yanjie; Key Laboratory of Environmental Protection in Water Transport Engineering Ministry of Communications, Tianjin Research Institute of Water Transport Engineering, Tianjin 300456; Ji Min, E-mail: jmtju@yahoo.cn

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration inmore » the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.« less

  6. Microbial Anaerobic Ammonium Oxidation Under Iron Reducing Conditions, Alternative Electron Acceptors

    NASA Astrophysics Data System (ADS)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2015-12-01

    Autotrophic Acidimicrobiaceae-bacterium named A6 (A6), part of the Actinobacteria phylum have been linked to anaerobic ammonium (NH4+) oxidation under iron reducing conditions. These organisms obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, the TEAs are iron oxides [Fe(III)], which are reduced to Fe(II), this process is known as Feammox. Our studies indicate that alternative forms of TEAs can be used by A6, e.g. iron rich clays (i.e. nontronite) and electrodes in bioelectrochemical systems such as Microbial Electrolysis Cells (MECs), which can sustain NH4+removal and A6 biomass production. Our results show that nontronite can support Feammox and promote bacterial cell production. A6 biomass increased from 4.7 x 104 to 3.9 x 105 cells/ml in 10 days. Incubations of A6 in nontronite resulted in up to 10 times more NH4+ removal and 3 times more biomass production than when ferrihydrite is used as the Fe(III) source. Additionally, Fe in nontronite can be reoxidized by aeration and A6 can reutilize it; however, Fe is still finite in the clay. In contrast, in MECs, A6 harvest electrons from NH4+ and use an anode as an unlimited TEA, as a result current is produced. We operated multiple MECs in parallel using a single external power source, as described by Call & Logan (2011). MECs were run with an applied voltage of 0.7V and different growing mediums always containing initial 5mM NH4+. Results show that current production is favored when anthraquinone-2,6-disulfonate (AQDS), an electron shuttled, is present in the medium as it facilitates the transfer of electrons from the bacterial cell to the anode. Additionally, A6 biomass increased from 1 x 104 to 9.77 x 105cells/ml in 14 days of operation. Due to Acidimicrobiaceae-bacterium A6's ability to use various TEAs, MECs represent an alternative, iron-free form, for optimized biomass production of A6 and its application in NH4+ oxidation, an essential process in water quality control. Future work seeks to scale up MECs in order to achieve rates of microbial NH4+ oxidation comparable to existing technologies.

  7. Final report on the safety assessment of Ammonium, Potassium, and Sodium Persulfate.

    PubMed

    Pang, S; Fiume, M Z

    2001-01-01

    Ammonium, Potassium, and Sodium Persulfate are inorganic salts used as oxidizing agents in hair bleaches and hair-coloring preparations. Persulfates are contained in hair lighteners at concentrations up to 60%, in bleaches and lighteners at up to 22% and 16%, respectively, and in off-the-scalp products used to highlight hair strands at up to 25%. They are used in professional product bleaches and lighteners at similar concentrations. Much of the available safety test data are for Ammonium Persulfate, but these data are considered applicable to the other salts as well. Acute dermal, oral, and inhalation toxicity studies are available, but only the latter are remarkable, with gross lesions observed in the lungs, liver, stomach, and spleen. In short-term and subchronic feeding studies the results were mixed; some studies found no evidence of toxicity and others found local damage to the mucous membrane in the gastrointestinal tract, but no other systemic effects. Short-term inhalation toxicity was observed when rats were exposed to aerosolized Ammonium Persulfate at concentrations of 4 mg/m3 and greater. Ammonium Persulfate (as a moistened powder) was not an irritant to intact rabbit skin, but was sensitizing (in a saline solution) to the guinea pig. It was slightly irritating to rabbit eyes. Ammonium Persulfate was negative in the Ames test and the chromosomal aberration test. No significant evidence of tumor promotion or carcinogenicity was observed in studies of rats receiving topical applications of Ammonium Persulfate. The persulfates were reported to cause both delayed-type and immediate skin reactions, including irritant dermatitis, allergic eczematous dermatitis, localized contact urticaria, generalized urticaria, rhinitis, asthma, and syncope. The most common causes of allergic dermatitis in hairdressers are the active ingredients in hair dyes, and Ammonium Persulfate has been identified as a frequent allergen. A sensitization study that also examined the incidence of urticarial reactions was performed with 17.5% Ammonium, Potassium, and Sodium Persulfate under occlusive patches. At this concentration and exposure conditions, a mixture of these Persulfates was not sensitizing, and application of Ammonium, Potassium, and Sodium Persulfate did not result in an urticarial reaction. In normal use (i.e., not occluded and rinsed off), it was expected that a concentration greater than 17.5% would also be safe. Given the clinical reports of urticarial reactions, however, manufacturers and formulators should be aware of the potential for urticarial reactions at concentrations of Persulfates greater than 17.5%. Based on the available data, the Cosmetic Ingredient Review (CIR) Expert Panel concluded that Ammonium, Potassium, and Sodium Persulfate are safe as used as oxidizing agents in hair colorants and lighteners designed for brief discontinuous use followed by thorough rinsing from the hair and skin.

  8. The Effect of gadolinium on the ESR response of alanine and ammonium tartrate exposed to thermal neutrons.

    PubMed

    Marrale, Maurizio; Brai, Maria; Gennaro, Gaetano; Bartolotta, Antonio; D'Oca, Maria Cristina

    2008-02-01

    Many efforts have been made to develop neutron capture therapy (NCT) for cancer treatment. Among the challenges in using NCT is the characterization of the features of the mixed radiation field and of its components. In this study, we examined the enhancement of the ESR response of pellets of alanine and ammonium tartrate with gadolinium oxide exposed to a thermal neutron beam. In particular, the ESR response of these dosimeters as a function of the gadolinium content inside the dosimeter was analyzed. We found that the addition of gadolinium improves the sensitivity of both alanine and ammonium tartrate. However, the use of gadolinium reduces or abolishes tissue equivalence because of its high atomic number (Z(Gd) = 64). Therefore, it is necessary to find the optimum compromise between the sensitivity to thermal neutrons and the reduction of tissue equivalence. Our analysis showed that a low concentration of gadolinium oxide (of the order of 5% of the total mass of the dosimeter) can enhance the thermal neutron sensitivity more than 13 times with an insignificant reduction of tissue equivalence.

  9. The fate of ammonium-nitrogen in leachate contaminated groundwater system

    NASA Astrophysics Data System (ADS)

    M, Atta; W, Yaacob W. Z.

    2015-09-01

    Hydrogeochemical conditions influences strongly on ammonium attenuation and ultimately its long-term fate in the subsurface. The purpose of this work was to identify the conditions influencing the persistence of ammonium-nitrogen in the contaminated groundwater system of Taman Beringin ex-landfill site in Malaysia. This study applies hydrogeochemical data extractions techniques of redox sensitive groundwater species from previously installed monitoring wells between February to August 2014. Electrochemical measurements of Oxidation Reduction Potential (ORP) were collected successively with several other physicochemical parameters including pH, Temperature, and DO in the landfill site. The result show that the mean concentration of NH4-N, NO2-N, and NO3-N are: (47.98±81.83 mg/L), (0.17±0.22 mg/L) and (6.11± 8.74 mg/L) respectively. The mean range of redox potentials (-10.25±128.28 mV) delineated areas of strongly reducing conditions. Based on the evaluation of the data, NH4-N, NO2-N and NO3-N accounts for 89.98%, 0.28% and 9.7% respectively of the groundwater concentration of total nitrogen, while a miniature proportion of oxidisable nitrogen concentrations (10.02%) are attributed t o biological process of nitrification. Relationship exist between data set NH4-N and ORP (r = -0.65009). It was concluded that although biological attenuation processes are effectively decreasing the ammonia concentrations in some of the wells, the processes are inhibited by chemical conditions that were attributed to Fe reducing conditions as observed in some of the wells. NH4-N will remain persistent and at elevated levels as much as the conditions persist and contributes in determining the fate of NH4-N in the Taman Beringin ground water system.

  10. Variability of Ambient Aerosol in the Mexico City Metropolian Area

    NASA Astrophysics Data System (ADS)

    Onasch, T. B.; Worsnop, D. R.; Canagaratna, M.; Jayne, J. T.; Herndon, S.; Mortimer, P.; Kolb, C. E.; Rogers, T.; Knighton, B.; Dunlea, E.; Marr, L.; de Foy, B.; Molina, M.; Molina, L.; Salcedo, D.; Dzepina, K.; Jimenez, J. L.

    2004-12-01

    The spatial and temporal variations of the ambient aerosol in the Mexico City Metropolitan area was characterized during the springs of 2002 and 2003 using a mobile laboratory equipped with gas and particulate measurement instrumentation. The laboratory was operated at various fixed sites locations in and at the edge of the metropolitan area (Xalostoc, Merced, Cenica, Pedregal, and Santa Ana). Size-resolved aerosol mass and chemical composition was measured with an aerosol mass spectrometer and selected trace gas species (low mass organic compounds, NO, NO2, NOy, O3, SO2, CH2O, NH3, CO2) were measured using a proton transfer reaction mass spectrometer and various optical systems. The aerosol was predominantly organic in composition with lesser amounts of ammonium nitrate, sulfate, and chloride. The organic component was composed of mixed primary and secondary organic compounds. The mass loading and chemical composition of the aerosol was influenced by local and regional air pollution sources and the meteorology in Mexico City. Most urban sites were influenced by a strong diurnal particulate mass trend indicative of primary organic emissions from traffic during early morning and subsequently oxidized/processed organics and ammonium nitrate particles starting in the mid-morning (~9 AM) and continuing throughout the day. Morning traffic-related primary organic emissions were strongest at La Merced (center of Mexico City, located near a busy food market), more subdued at other fixed sites further from the city center, and varied depending upon the day of week and holiday schedules. Particle-bound polycyclic aromatic hydrocarbons were observed within Mexico City fixed sites and were correlated with traffic organic PM emissions. Oxidized organic and ammonium nitrate events occurred during mid-morning at all city sites and were well correlated with gas phase photochemical activity. The daily ammonium nitrate aerosol event occurred later at sites near the city limits, likely due to transported emissions from the city center. The sulfate particulate mass measured throughout most of the Mexico City area did not show a consistent diurnal pattern, characteristic of aged regional aerosol. Local refuse burns were observed to be a source of inorganic particulate chloride.

  11. Metabolism of Nitrogen Oxides in Ammonia-Oxidizing Bacteria

    NASA Astrophysics Data System (ADS)

    Kozlowski, J.; Stein, L. Y.

    2014-12-01

    Ammonia-oxidizing bacteria (AOB) are key microorganisms in the transformation of nitrogen intermediates in most all environments. Until recently there was very little work done to elucidate the physiology of ammonia-oxidizing bacteria cultivated from variable trophic state environments. With a greater variety of ammonia-oxidizers now in pure culture the importance of comparative physiological and genomic analysis is crucial. Nearly all known physiology of ammonia-oxidizing bacteria lies within the Nitrosomonas genus with Nitrosomonas europaea strain ATCC 19718 as the model. To more broadly characterize and understand the nature of obligate ammonia chemolithotrophy and the contribution of AOB to production of nitrogen oxides, Nitrosomonas spp. and Nitrosospira spp. isolated from variable trophic states and with sequenced genomes, were utilized. Instantaneous ammonia- and hydroxylamine-oxidation kinetics as a function of oxygen and substrate concentration were measured using an oxygen micro-sensor. The pathway intermediates nitric oxide and nitrous oxide were measured in real time using substrate-specific micro-sensors to elucidate whether production of these molecules is stoichiometric with rates of substrate oxidation. Genomic inventory was compared among the strains to identify specific pathways and modules to explain physiological differences in kinetic rates and production of N-oxide intermediates as a condition of their adaptation to different ammonium concentrations. This work provides knowledge of how nitrogen metabolism is differentially controlled in AOB that are adapted to different concentrations of ammonium. Overall, this work will provide further insight into the control of ammonia oxidizing chemolithotrophy across representatives of the Nitrosomonas and Nitrosospira genus, which can then be applied to examine additional genome-sequenced AOB isolates.

  12. Solar cells with perovskite-based light sensitization layers

    DOEpatents

    Kanatzidis, Mercouri G.; Chang, Robert P.H.; Stoumpos, Konstantinos; Lee, Byunghong

    2018-05-08

    Solar cells are provided which comprise an electron transporting layer and a light sensitizing layer of perovskite disposed over the surface of the electron transporting layer. The perovskite may have a formula selected from the group consisting of A2MX6, Z2MX6 or YMX6, wherein A is an alkali metal, M is a metal or a metalloid, X is a halide, Z is selected from the group consisting of a primary ammonium, an iminium, a secondary ammonium, a tertiary ammonium, and a quaternary ammonium, and Y has formula Mb(L)3, wherein Mb is a transition metal in the 2+ oxidation state L is an N--N neutral chelating ligand. Methods of making the solar cells are also provided, including methods based on electrospray deposition.

  13. Quaternary ammonium salt N-(dodecyloxycarboxymethyl)-N,N,N-trimethyl ammonium chloride induced alterations in Saccharomyces cerevisiae physiology.

    PubMed

    Oblak, Ewa; Piecuch, Agata; Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata

    2016-12-01

    We investigated the influence of the quaternary ammonium salt (QAS) called IM (N-(dodecyloxycarboxymethyl)- N,N,N-trimethyl ammonium chloride) on yeast cells of the parental strain and the IM-resistant mutant (EO25 IMR) growth. The phenotype of this mutant was pleiotropic. The IMR mutant exhibited resistance to ethanol, osmotic shock and oxidative stress, as well as increased sensitivity to UV. Moreover, it was noted that mutant EO25 appears to have an increased resistance to clotrimazole, ketoconazole, fluconazole, nystatin and cycloheximide. It also tolerated growth in the presence of crystal violet, DTT and metals (selenium, tin, arsenic). It was shown that the presence of IM decreased ergosterol level in mutant plasma membrane and increased its unsaturation. These results indicate changes in the cell lipid composition. Western blot analysis showed the induction of Pma1 level by IM. RT-PCR revealed an increased PMA1 expression after IM treatment.

  14. Genome-Resolved Meta-Omics Ties Microbial Dynamics to Process Performance in Biotechnology for Thiocyanate Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kantor, Rose S.; Huddy, Robert J.; Iyer, Ramsunder

    Remediation of industrial wastewater is important for preventing environmental contamination and allowing water reuse. Biological treatment for one industrial contaminant, thiocyanate (SCN - ), relies upon microbial hydrolysis, but this process is sensitive to high loadings. To examine the activity and stability of a microbial community over increasing SCN - loadings, we established and operated a continuous-flow bioreactor fed increasing loadings of SCN - . A second reactor was fed ammonium sulfate to mimic breakdown products of SCN - . Biomass was sampled from both reactors for metagenomics and metaproteomics, yielding a set of genomes for 144 bacteria and onemore » rotifer that constituted the abundant community in both reactors. We analyzed the metabolic potential and temporal dynamics of these organisms across the increasing loadings. In the SCN - reactor, Thiobacillus strains capable of SCN - degradation were highly abundant, whereas the ammonium sulfate reactor contained nitrifiers and heterotrophs capable of nitrate reduction. Key organisms in the SCN - reactor expressed proteins involved in SCN - degradation, sulfur oxidation, carbon fixation, and nitrogen removal. Lower performance at higher loadings was linked to changes in microbial community composition. This work provides an example of how meta-omics can increase our understanding of industrial wastewater treatment and inform iterative process design and development.« less

  15. Removal of ammonium ion from produced waters in petroleum offshore exploitation by a batch single-stage electrolytic process.

    PubMed

    de Lima, Rosilda Maria Gomes; da Silva Wildhagen, Glória Regina; da Cunha, José Waldemar Silva Dias; Afonso, Julio Carlos

    2009-01-30

    This work describes a batch single-stage electrochemical process to remove quantitatively the ammonium ion from produced waters from petroleum exploration of the Campos' Basin, seeking to fulfil the directories of the National Brazilian Environmental Council. The anode was made out of titanium covered by a layer of RuO(2)+TiO(2) oxides (Dimensionally Stable Anode), whereas the cathode was made out of pure titanium. Anodic and cathodic compartments were separated by a membrane. The applied current varied from 0.3 to 1.5A. As the current increased NH(4)(+) removal was faster and pH was rapidly decreased to 3. The pH of the anodic compartment increased to approximately 10. When the current was 0.92 A chlorine evolution was observed after 40 min or only 15 min when that current was 1.50 A. In this voltage a deposit containing alkali-earth metal hydroxides/sulphates was formed on the membrane surface of the cathode side, thus suggesting a diffusion process from the anodic to the cathodic compartment. The maximum current applied to the cell must not exceed approximately 0.70 A in order to avoid chlorine evolution. Ammonia removal was over 99.9 wt% at 0.68 A in about 75 min.

  16. Genome-Resolved Meta-Omics Ties Microbial Dynamics to Process Performance in Biotechnology for Thiocyanate Degradation

    DOE PAGES

    Kantor, Rose S.; Huddy, Robert J.; Iyer, Ramsunder; ...

    2017-01-31

    Remediation of industrial wastewater is important for preventing environmental contamination and allowing water reuse. Biological treatment for one industrial contaminant, thiocyanate (SCN - ), relies upon microbial hydrolysis, but this process is sensitive to high loadings. To examine the activity and stability of a microbial community over increasing SCN - loadings, we established and operated a continuous-flow bioreactor fed increasing loadings of SCN - . A second reactor was fed ammonium sulfate to mimic breakdown products of SCN - . Biomass was sampled from both reactors for metagenomics and metaproteomics, yielding a set of genomes for 144 bacteria and onemore » rotifer that constituted the abundant community in both reactors. We analyzed the metabolic potential and temporal dynamics of these organisms across the increasing loadings. In the SCN - reactor, Thiobacillus strains capable of SCN - degradation were highly abundant, whereas the ammonium sulfate reactor contained nitrifiers and heterotrophs capable of nitrate reduction. Key organisms in the SCN - reactor expressed proteins involved in SCN - degradation, sulfur oxidation, carbon fixation, and nitrogen removal. Lower performance at higher loadings was linked to changes in microbial community composition. This work provides an example of how meta-omics can increase our understanding of industrial wastewater treatment and inform iterative process design and development.« less

  17. Broad Distribution of Diverse Anaerobic Ammonium-Oxidizing Bacteria in Chinese Agricultural Soils

    PubMed Central

    Shen, Li-dong; Liu, Shuai; Lou, Li-ping; Liu, Wei-ping; Xu, Xiang-yang; Zheng, Ping

    2013-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria have been detected in many marine and freshwater ecosystems. However, little is known about the distribution, diversity, and abundance of anammox bacteria in terrestrial ecosystems. In this study, anammox bacteria were found to be present in various agricultural soils collected from 32 different locations in China. Phylogenetic analysis of the 16S rRNA genes showed “Candidatus Brocadia,” “Candidatus Kuenenia,” “Candidatus Anammoxoglobus,” and “Candidatus Jettenia” in the collected soils, with “Candidatus Brocadia” being the dominant genus. Quantitative PCR showed that the abundance of anammox bacteria ranged from 6.38 × 104 ± 0.42 × 104 to 3.69 × 106 ± 0.25 × 106 copies per gram of dry weight. Different levels of diversity, composition, and abundance of the anammox bacterial communities were observed, and redundancy analysis indicated that the soil organic content and the distribution of anammox communities were correlated in the soils examined. Furthermore, Pearson correlation analysis showed that the diversity of the anammox bacteria was positively correlated with the soil ammonium content and the organic content, while the anammox bacterial abundance was positively correlated with the soil ammonium content. These results demonstrate the broad distribution of diverse anammox bacteria and its correlation with the soil environmental conditions within an extensive range of Chinese agricultural soils. PMID:23747706

  18. Use of Ferrihydrite-Coated Pozzolana and Biogenic Green Rust to Purify Waste Water Containing Phosphate and Nitrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruby, Christian; Naille, Sébastien; Ona-Nguema, Georges

    The activated sludge treatments combined to the addition of ferric chloride is commonly used to eliminate nitrate and phosphate from waste water in urban area. These processes that need costly infrastructures are not suitable for rural areas and passive treatments (lagoons, reed bed filters…) are more frequently performed. Reed bed filters are efficient for removing organic matter but are not suitable for treating phosphate and nitrate as well. Passive water treatments using various materials (hydroxyapatite, slag…) were already performed, but those allowing the elimination of both nitrate and phosphate are not actually available. The goal of this work is tomore » identify the most suitable iron based materials for such treatments and to determine their optimal use conditions, in particular in hydrodynamic mode. The reactivity of the iron based minerals was measured either by using free particles in suspension or by depositing these particles on a solid substrate. Pouzzolana that is characterized by a porous sponge-like structure suits for settling a high amount of iron oxides. The experimental conditions enabling to avoid any ammonium formation when green rust encounters nitrate were determined within the framework of a full factorial design. The process is divided into two steps that will be performed inside two separated reactors. Indeed, the presence of phosphate inhibits the reduction of nitrate by green rust and the dephosphatation process must precede the denitrification process. In order to remove phosphate, ferrihydrite coated pouzzolana is the best materials. The kinetics of reaction of green rust with nitrate is relatively slow and often leads to the formation of ammonium. The recommendation of the identified process is to favor the accumulation of nitrite in a first step, these species reacting much more quickly with green rust and do not transform into ammonium.« less

  19. Electrochemical and spectroscopic study of interfacial interactions between chalcopyrite and typical flotation process reagents

    NASA Astrophysics Data System (ADS)

    Urbano, Gustavo; Lázaro, Isabel; Rodríguez, Israel; Reyes, Juan Luis; Larios, Roxana; Cruz, Roel

    2016-02-01

    Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between chalcopyrite (CuFeS2) and n-isopropyl xanthate (X) in the presence of ammonium bisulfite/39wt% SO2 and caustic starch at different pH values. Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, and microflotation tests were used to establish the type and extent of xanthate adsorption as well as the species involved under different mineral surface conditions in this study. The results demonstrate that the species that favor a greater hydrophobicity of chalcopyrite are primarily CuX and S0, whereas oxides and hydroxides of Cu and Fe as well as an excess of starch decrease the hydrophobicity. A conditioning of the mineral surface with ammonium bisulfite/39wt% SO2 at pH 6 promotes the activation of surface and enhances the xanthate adsorption. However, this effect is diminished at pH ≥ 8, when an excess of starch is added during the preconditioning step.

  20. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium

    PubMed Central

    Fernandes, Sheryl Oliveira; Bonin, Patricia C.; Michotey, Valérie D.; Garcia, Nicole; LokaBharathi, P. A.

    2012-01-01

    Earlier observations in mangrove sediments of Goa, India have shown denitrification to be a major pathway for N loss1. However, percentage of total nitrate transformed through complete denitrification accounted for <0–72% of the pore water nitrate reduced. Here, we show that up to 99% of nitrate removal in mangrove sediments is routed through dissimilatory nitrate reduction to ammonium (DNRA). The DNRA process was 2x higher at the relatively pristine site Tuvem compared to the anthropogenically-influenced Divar mangrove ecosystem. In systems receiving low extraneous nutrient inputs, this mechanism effectively conserves and re-circulates N minimizing nutrient loss that would otherwise occur through denitrification. In a global context, the occurrence of DNRA in mangroves has important implications for maintaining N levels and sustaining ecosystem productivity. For the first time, this study also highlights the significance of DNRA in buffering the climate by modulating the production of the greenhouse gas nitrous oxide. PMID:22639727

  1. Microscopic observations of X-ray and gamma-ray induced decomposition of ammonium perchlorate crystals

    NASA Technical Reports Server (NTRS)

    Herley, P. J.; Levy, P. W.

    1972-01-01

    The X-ray and gamma-ray induced decomposition of ammonium perchlorate was studied by optical, transmission, and scanning electron microscopy. This material is a commonly used oxidizer in solid propellents which could be employed in deep-space probes, and where they will be subjected to a variety of radiations for as long as ten years. In some respects the radiation-induced damage closely resembles the effects produced by thermal decomposition, but in other respects the results differ markedly. Similar radiation and thermal effects include the following: (1) irregular or ill-defined circular etch pits are formed in both cases; (2) approximately the same size pits are produced; (3) the pit density is similar; (4) the c face is considerably more reactive than the m face; and (5) most importantly, many of the etch pits are aligned in crystallographic directions which are the same for thermal or radiolytic decomposition. Thus, dislocations play an important role in the radiolytic decomposition process.

  2. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation

    NASA Astrophysics Data System (ADS)

    Jolliffe, John D.; Armstrong, Roly J.; Smith, Martin D.

    2017-06-01

    Axially chiral biaryls, as exemplified by 1,1‧-bi-2-naphthol (BINOL), are key components of catalysts, natural products and medicines. These materials are synthesized conventionally in enantioenriched form through metal-mediated cross coupling, de novo construction of an aromatic ring, point-to-axial chirality transfer or an atropselective transformation of an existing biaryl. Here, we report a highly enantioselective organocatalytic method for the synthesis of atropisomeric biaryls by a cation-directed O-alkylation. Treatment of racemic 1-aryl-2-tetralones with a chiral quinidine-derived ammonium salt under basic conditions in the presence of an alkylating agent leads to atropselective O-alkylation with e.r. up to 98:2. Oxidation with DDQ gives access to C2-symmetric and non-symmetric BINOL derivatives without compromising e.r. We propose that the chiral ammonium counterion differentiates between rapidly equilibrating atropisomeric enolates, leading to highly atropselective O-alkylation. This dynamic kinetic resolution process offers a general approach to the synthesis of enantioenriched atropisomeric materials.

  3. Influence of nitrogen on magnetic properties of indium oxide

    NASA Astrophysics Data System (ADS)

    Ashok, Vishal Dev; De, S. K.

    2013-07-01

    Magnetic properties of indium oxide (In2O3) prepared by the decomposition of indium nitrate/indium hydroxide in the presence of ammonium chloride (NH4Cl) has been investigated. Structural and optical characterizations confirm that nitrogen is incorporated into In2O3. Magnetization has been convoluted to individual diamagnetic paramagnetic and ferromagnetic contributions with varying concentration of NH4Cl. Spin wave with diverging thermal exponent dominates in both field cool and zero field cool magnetizations. Uniaxial anisotropy plays an important role in magnetization as a function of magnetic field at higher concentration of NH4Cl. Avrami analysis indicates the absence of pinning effect in the magnetization process. Ferromagnetism has been interpreted in terms of local moments induced by anion dopant and strong hybridization with host cation.

  4. Suppressing Nitrite-oxidizing Bacteria Growth to Achieve Nitrogen Removal from Domestic Wastewater via Anammox Using Intermittent Aeration with Low Dissolved Oxygen

    PubMed Central

    Ma, Bin; Bao, Peng; Wei, Yan; Zhu, Guibing; Yuan, Zhiguo; Peng, Yongzhen

    2015-01-01

    Achieving nitrogen removal from domestic wastewater using anaerobic ammonium oxidation (anammox) has the potential to make wastewater treatment energy-neutral or even energy-positive. The challenge is to suppress the growth of nitrite-oxidizing bacteria (NOB). This study presents a promising method based on intermittent aeration with low dissolved oxygen to limit NOB growth, thereby providing an advantage to anammox bacteria to form a partnership with the ammonium-oxidizing bacteria (AOB). The results showed that NOB was successfully suppressed using that method, with the relative abundance of NOB maintained between 2.0–2.6%, based on Fluorescent in-situ Hybridization. Nitrogen could be effectively removed from domestic wastewater with anammox at a temperature above 20 °C, with an effluent total nitrogen (TN) concentration of 6.6 ± 2.7 mg/L, while the influent TN and soluble chemical oxygen demand were 62.6 ± 3.1 mg/L and 88.0 ± 8.1 mg/L, respectively. PMID:26354321

  5. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea.

    PubMed

    Dodsworth, Jeremy A; Hungate, Bruce A; Hedlund, Brian P

    2011-08-01

    Many thermophiles catalyse free energy-yielding redox reactions involving nitrogenous compounds; however, little is known about these processes in natural thermal environments. Rates of ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in source water and sediments of two ≈ 80°C springs in the US Great Basin. Ammonia oxidation and denitrification occurred mainly in sediments. Ammonia oxidation rates measured using (15)N-NO(3)(-) pool dilution ranged from 5.5 ± 0.8 to 8.6 ± 0.9 nmol N g(-1) h(-1) and were unaffected or only mildly stimulated by amendment with NH(4) Cl. Denitrification rates measured using acetylene block ranged from 15.8 ± 0.7 to 51 ± 12 nmol N g(-1) h(-1) and were stimulated by amendment with NO(3)(-) and complex organic compounds. The DNRA rate in one spring sediment measured using an (15)N-NO(3)(-) tracer was 315 ± 48 nmol N g(-1) h(-1). Both springs harboured distinct planktonic and sediment microbial communities. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both spring sediments by 16S rRNA gene pyrotag analysis. Quantitative PCR (qPCR) indicated that 'Ca. N. yellowstonii'amoA and 16S rRNA genes were present at 3.5-3.9 × 10(8) and 6.4-9.0 × 10(8) copies g(-1) sediment. Potential denitrifiers included members of the Aquificales and Thermales. Thermus spp. comprised <1% of 16S rRNA gene pyrotags in both sediments and qPCR for T. thermophilus narG revealed sediment populations of 1.3-1.7 × 10(6) copies g(-1) sediment. These data indicate a highly active nitrogen cycle (N-cycle) in these springs and suggest that ammonia oxidation may be a major source of energy fuelling primary production. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Synthesis of graphene oxide-quaternary ammonium nanocomposite with synergistic antibacterial activity to promote infected wound healing.

    PubMed

    Liu, Tengfei; Liu, Yuqing; Liu, Menglong; Wang, Ying; He, Weifeng; Shi, Gaoqiang; Hu, Xiaohong; Zhan, Rixing; Luo, Gaoxing; Xing, Malcolm; Wu, Jun

    2018-01-01

    Bacterial infection is one of the most common complications in burn, trauma, and chronic refractory wounds and is an impediment to healing. The frequent occurrence of antimicrobial-resistant bacteria due to irrational application of antibiotics increases treatment cost and mortality. Graphene oxide (GO) has been generally reported to possess high antimicrobial activity against a wide range of bacteria in vitro . In this study, a graphene oxide-quaternary ammonium salt (GO-QAS) nanocomposite was synthesized and thoroughly investigated for synergistic antibacterial activity, underlying antibacterial mechanisms and biocompatibility in vitro and in vivo . The GO-QAS nanocomposite was synthesized through amidation reactions of carboxylic group end-capped QAS polymers with primary amine-decorated GO to achieve high QAS loading ratios on nanosheets. Next, we investigated the antibacterial activity and biocompatibility of GO-QAS in vitro and in vivo . GO-QAS exhibited synergistic antibacterial activity against bacteria through not only mechanical membrane perturbation, including wrapping, bacterial membrane insertion, and bacterial membrane perforation, but also oxidative stress induction. In addition, it was found that GO-QAS could eradicate multidrug-resistant bacteria more effectively than conventional antibiotics. The in vitro and in vivo toxicity tests indicated that GO-QAS did not exhibit obvious toxicity towards mammalian cells or organs at low concentrations. Notably, GO-QAS topically applied on infected wounds maintained highly efficient antibacterial activity and promoted infected wound healing in vivo . The GO-QAS nanocomposite exhibits excellent synergistic antibacterial activity and good biocompatibility both in vitro and in vivo . The antibacterial mechanisms involve both mechanical membrane perturbation and oxidative stress induction. In addition, GO-QAS accelerated the healing process of infected wounds by promoting re-epithelialization and granulation tissue formation. Overall, the results indicated that the GO-QAS nanocomposite could be applied as a promising antimicrobial agent for infected wound management and antibacterial wound dressing synthesis.

  7. Nitrogen Loss from Pristine Carbonate-Rock Aquifers of the Hainich Critical Zone Exploratory (Germany) Is Primarily Driven by Chemolithoautotrophic Anammox Processes

    PubMed Central

    Kumar, Swatantar; Herrmann, Martina; Thamdrup, Bo; Schwab, Valérie F.; Geesink, Patricia; Trumbore, Susan E.; Totsche, Kai-Uwe; Küsel, Kirsten

    2017-01-01

    Despite the high relevance of anaerobic ammonium oxidation (anammox) for nitrogen loss from marine systems, its relative importance compared to denitrification has less been studied in freshwater ecosystems, and our knowledge is especially scarce for groundwater. Surprisingly, phospholipid fatty acids (PLFA)-based studies identified zones with potentially active anammox bacteria within two superimposed pristine limestone aquifer assemblages of the Hainich Critical Zone Exploratory (CZE; Germany). We found anammox to contribute an estimated 83% to total nitrogen loss in suboxic groundwaters of these aquifer assemblages at rates of 3.5–4.7 nmol L−1 d−1, presumably favored over denitrification by low organic carbon availability. Transcript abundances of hzsA genes encoding hydrazine synthase exceeded nirS and nirK transcript abundances encoding denitrifier nitrite reductase by up to two orders of magnitude, providing further support of a predominance of anammox. Anammox bacteria, dominated by groups closely related to Cand. Brocadia fulgida, constituted up to 10.6% of the groundwater microbial community and were ubiquitously present across the two aquifer assemblages with indication of active anammox bacteria even in the presence of 103 μmol L−1 oxygen. Co-occurrence of hzsA and amoA gene transcripts encoding ammonia mono-oxygenase suggested coupling between aerobic and anaerobic ammonium oxidation under suboxic conditions. These results clearly demonstrate the relevance of anammox as a key process driving nitrogen loss from oligotrophic groundwater environments, which might further be enhanced through coupling with incomplete nitrification. PMID:29067012

  8. Genome-Guided Analysis of Physiological Capacities of Tepidanaerobacter acetatoxydans Provides Insights into Environmental Adaptations and Syntrophic Acetate Oxidation

    PubMed Central

    Niazi, Adnan; Bongcam-Rudloff, Erik; Schnürer, Anna

    2015-01-01

    This paper describes the genome-based analysis of Tepidanaerobacter acetatoxydans strain Re1, a syntrophic acetate-oxidising bacterium (SAOB). Principal issues such as environmental adaptations, metabolic capacities, and energy conserving systems have been investigated and the potential consequences for syntrophic acetate oxidation discussed. Briefly, in pure culture, T. acetatoxydans grows with different organic compounds and produces acetate as the main product. In a syntrophic consortium with a hydrogenotrophic methanogen, it can also reverse its metabolism and instead convert acetate to formate/H2 and CO2. It can only proceed if the product formed is continuously removed. This process generates a very small amount of energy that is scarcely enough for growth, which makes this particular syntrophy of special interest. As a crucial member of the biogas-producing community in ammonium-rich engineered AD processes, genomic features conferring ammonium resistance, bacterial defense, oxygen and temperature tolerance were found, as well as attributes related to biofilm formation and flocculation. It is likely that T. acetatoxydans can form an electrochemical gradient by putative electron-bifurcating Rnf complex and [Fe-Fe] hydrogenases, as observed in other acetogens. However, genomic deficiencies related to acetogenic metabolism and anaerobic respiration were discovered, such as the lack of formate dehydrogenase and F1F0 ATP synthase. This has potential consequences for the metabolic pathways used under SAO and non-SAO conditions. The two complete sets of bacteriophage genomes, which were found to be encoded in the genome, are also worthy of mention. PMID:25811859

  9. Diurnal shifts in co-distributions of sulfide and iron(II) and profiles of phosphate and ammonium in the rhizosphere of Zostera capricorni

    NASA Astrophysics Data System (ADS)

    Pagès, Anaïs; Welsh, David T.; Robertson, David; Panther, Jared G.; Schäfer, Jörg; Tomlinson, Rodger B.; Teasdale, Peter R.

    2012-12-01

    High resolution, two dimensional distributions of porewater iron(II) and sulfide were measured, using colourimetric DET (diffusive equilibration in a thin film) and DGT (diffusive gradients in a thin film) techniques, respectively, in Zostera capricorni colonised sediments under both light and dark conditions. Low resolution depth profiles of ammonium and phosphate were measured using conventional DET and DGT methods, respectively. Porewater iron(II) and sulfide distributions showed a high degree of spatial heterogeneity under both light and dark conditions, and distributions were characterised by a complex mosaic of sediment zones dominated by either iron(II) or sulfide. However, there was a clear shift in overall redox conditions between light and dark conditions. During light deployments, iron(II) and sulfide concentrations were generally low throughout the rhizosphere, apart from a few distinct "hotspots" of high concentration. Whereas during dark deployments, high concentrations of iron(II) were sometimes measured in the near surface sediments and sulfide depth distributions migrated towards the sediment surface. Profiles of porewater ammonium and phosphate demonstrated an increase in ammonium concentrations under dark compared to light conditions. Surprisingly, despite the large changes in iron(II) distributions between light and dark conditions, phosphate profiles remained similar, indicating that adsorption/release of phosphate by iron(III) hydr(oxide) mineral formation and reduction was not a major factor regulating porewater phosphate concentrations in these sediments or that phosphate uptake by the seagrass roots persisted during the dark period. Overall, the results demonstrate that the photosynthetic activity of the seagrass played a significant role in regulating sulfide, iron(II) and ammonium concentrations in the rhizosphere, due to rates of radial oxygen loss and ammonium uptake by the roots and rhizomes being lower under dark compared to light conditions. This cyclic production and reduction of iron(III) hydr(oxides) in the rhizosphere may act as a buffering system preventing sulfide accumulation.

  10. Treatment of ferrous-NTA-based NO x scrubber solution by an up-flow anaerobic packed bed bioreactor.

    PubMed

    Chandrashekhar, B; Sahu, Nidhi; Tabassum, Heena; Pai, Padmaraj; Morone, Amruta; Pandey, R A

    2015-06-01

    A bench scale system consisting of an up-flow packed bed bioreactor (UAPBR) made of polyurethane foam was used for the treatment and regeneration of aqueous solution of ferrous-NTA scrubbed with nitric oxide (NO). The biomass in the UAPBR was sequentially acclimatized under denitrifying and iron reducing conditions using ethanol as electron donor, after which nitric oxide (NO) gas was loaded continuously to the system by absorption. The system was investigated for different parameters viz. pH, removal efficiency of nitric oxide, biological reduction efficiency of Fe(II)NTA-NO and COD utilization. The Fe(II)NTA-NO reduction efficiency reached 87.8 % at a loading rate of 0.24 mmol L(-1) h(-1), while the scrubber efficiency reached more than 75 % with 250 ppm NO. Stover-Kincannon and a Plug-flow kinetic model based on Michaelis-Menten equation were used to describe the UAPBR performance with respect to Fe(II)NTA-NO and COD removal. The Stover-Kincannon model was found capable of describing the Fe(II)NTA-NO reduction (R m = 8.92 mM h(-1) and K NO = 11.46 mM h(-1)) while plug-flow model provided better fit to the COD utilization (U m = 66.62 mg L(-1) h(-1), K COD = 7.28 mg L(-1)). Analyses for pH, Fe(III)NTA, ammonium, nitrite concentration, and FTIR analysis of the medium samples indicated degradation of NTA, which leads to ammonium and nitrite accumulation in the medium, and affect the regeneration process.

  11. Field and Laboratory Studies of Atmospheric Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Coggon, Matthew Mitchell

    This thesis is the culmination of field and laboratory studies aimed at assessing processes that affect the composition and distribution of atmospheric organic aerosol. An emphasis is placed on measurements conducted using compact and high-resolution Aerodyne Aerosol Mass Spectrometers (AMS). The first three chapters summarize results from aircraft campaigns designed to evaluate anthropogenic and biogenic impacts on marine aerosol and clouds off the coast of California. Subsequent chapters describe laboratory studies intended to evaluate gas and particle-phase mechanisms of organic aerosol oxidation. The 2013 Nucleation in California Experiment (NiCE) was a campaign designed to study environments impacted by nucleated and/or freshly formed aerosol particles. Terrestrial biogenic aerosol with > 85% organic mass was observed to reside in the free troposphere above marine stratocumulus. This biogenic organic aerosol (BOA) originated from the Northwestern United States and was transported to the marine atmosphere during periodic cloud-clearing events. Spectra recorded by a cloud condensation nuclei counter demonstrated that BOA is CCN active. BOA enhancements at latitudes north of San Francisco, CA coincided with enhanced cloud water concentrations of organic species such as acetate and formate. Airborne measurements conducted during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) were aimed at evaluating the contribution of ship emissions to the properties of marine aerosol and clouds off the coast of central California. In one study, analysis of organic aerosol mass spectra during periods of enhanced shipping activity yielded unique tracers indicative of cloud-processed ship emissions (m/z 42 and 99). The variation of their organic fraction (f42 and f 99) was found to coincide with periods of heavy (f 42 > 0.15; f99 > 0.04), moderate (0.05 < f42 < 0.15; 0.01 < f99 < 0.04), and negligible (f42 < 0.05; f99 < 0.01) ship influence. Application of these conditions to all measurements conducted during E-PEACE demonstrated that a large fraction of cloud droplet (72%) and dry aerosol mass (12%) sampled in the California coastal study region was heavily or moderately influenced by ship emissions. Another study investigated the chemical and physical evolution of a controlled organic plume emitted from the R/V Point Sur. Under sunny conditions, nucleated particles composed of oxidized organic compounds contributed nearly an order of magnitude more cloud condensation nuclei (CCN) than less oxidized particles formed under cloudy conditions. The processing time necessary for particles to become CCN active was short ( 4 hr). Laboratory chamber experiments were also conducted to evaluate particle-phase processes influencing aerosol phase and composition. In one study, ammonium sulfate seed was coated with a layer of secondary organic aerosol (SOA) from toluene oxidation followed by a layer of SOA from α-pinene oxidation. The system exhibited different evaporative properties than ammonium sulfate seed initially coated with α-pinene SOA followed by a layer of toluene SOA. This behavior is consistent with a shell-and-core model and suggests limited mixing among different SOA types. Another study investigated the reactive uptake of isoprene epoxy diols (IEPOX) onto non-acidified aerosol. It was demonstrated that particle acidity has limited influence on organic aerosol formation onto ammonium sulfate seed, and that the chemical system is limited by the availability of nucleophiles such as sulfate. Flow tube experiments were conducted to examine the role of iron in the reactive uptake and chemical oxidation of glycolaldehyde. Aerosol particles doped with iron and hydrogen peroxide were mixed with gas-phase glycolaldehyde and photochemically aged in a custom-built flow reactor. Compared to particles free of iron, iron-doped aerosols significantly enhanced the oxygen to carbon (O/C) ratio of accumulated organic mass. The primary oxidation mechanism is suggested to be a combination of Fenton and photo-Fenton reactions which enhance particle-phase OH radical concentrations.

  12. Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron.

    PubMed

    Pipi, Angelo R F; Sirés, Ignasi; De Andrade, Adalgisa R; Brillas, Enric

    2014-08-01

    Here, solutions with 0.185mM of the herbicide diuron of pH 3.0 have been treated by electrochemical advanced oxidation processes (EAOPs) like electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and UVA photoelectro-Fenton (PEF) or solar PEF (SPEF). Trials were performed in stirred tank reactors of 100mL and in a recirculation flow plant of 2.5L using a filter-press reactor with a Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H2O2 electrogeneration. Oxidant hydroxyl radicals were formed from water oxidation at the anode and/or in the bulk from Fenton's reaction between added Fe(2+) and generated H2O2. In both systems, the relative oxidation ability of the EAOPs increased in the sequence EO-H2O2

  13. Improvement of the GaSb/Al2O3 interface using a thin InAs surface layer

    NASA Astrophysics Data System (ADS)

    Greene, Andrew; Madisetti, Shailesh; Nagaiah, Padmaja; Yakimov, Michael; Tokranov, Vadim; Moore, Richard; Oktyabrsky, Serge

    2012-12-01

    The highly reactive GaSb surface was passivated with a thin InAs layer to limit interface trap state density (Dit) at the III-V/high-k oxide interface. This InAs surface was subjected to various cleaning processes to effectively reduce native oxides before atomic layer deposition (ALD). Ammonium sulfide pre-cleaning and trimethylaluminum/water ALD were used in conjunction to provide a clean interface and annealing in forming gas (FG) at 350 °C resulted in an optimized fabrication for n-GaSb/InAs/high-k gate stacks. Interface trap density, Dit ≈ 2-3 × 1012 cm-2eV-1 resided near the n-GaSb conductance band which was extracted and compared with three different methods. Conductance-voltage-frequency plots showed efficient Fermi level movement and a sub-threshold slope of 200 mV/dec. A composite high-k oxide process was also developed using ALD of Al2O3 and HfO2 resulting in a Dit ≈ 6-7 × 1012 cm-2eV-1. Subjecting these samples to a higher (450 °C) processing temperature results in increased oxidation and a thermally unstable interface. p-GaSb displayed very fast minority carrier generation/recombination likely due to a high density of bulk traps in GaSb.

  14. Genome Sequence of an Ammonia-Oxidizing Soil Archaeon, “Candidatus Nitrosoarchaeum koreensis” MY1

    PubMed Central

    Kim, Byung Kwon; Jung, Man-Young; Yu, Dong Su; Park, Soo-Je; Oh, Tae Kwang; Rhee, Sung-Keun; Kim, Jihyun F.

    2011-01-01

    Ammonia-oxidizing archaea are ubiquitous microorganisms which play important roles in global nitrogen and carbon cycle on earth. Here we present the high-quality draft genome sequence of an ammonia-oxidizing archaeon, “Candidatus Nitrosopumilus koreensis” MY1, that dominated an enrichment culture of a soil sample from the rhizosphere. Its genome contains genes for survival in the rhizosphere environment as well as those for carbon fixation and ammonium oxidation to nitrite. PMID:21914867

  15. Integration of biofiltration and advanced oxidation processes for tertiary treatment of an oil refinery wastewater aiming at water reuse.

    PubMed

    Nogueira, A A; Bassin, J P; Cerqueira, A C; Dezotti, M

    2016-05-01

    The combination of biological and chemical oxidation processes is an interesting approach to remove ready, poor, and non-biodegradable compounds from complex industrial wastewaters. In this study, biofiltration followed by H2O2/UV oxidation (or microfiltration) and final reverse osmosis (RO) step was employed for tertiary treatment of an oil refinery wastewater. Biofiltration alone allowed obtaining total organic carbon (TOC), chemical oxygen demand (COD), UV absorbance at 254 nm (UV254), ammonium, and turbidity removal of around 46, 46, 23, 50, and 61 %, respectively. After the combined biological-chemical oxidation treatment, TOC and UV254 removal amounted to 88 and 79 %, respectively. Whereas, the treatment performance achieved with different UV lamp powers (55 and 95 W) and therefore distinct irradiance levels (26.8 and 46.3 mW/cm(2), respectively) were very similar and TOC and UV254 removal rates were highly affected by the applied C/H2O2 ratio. Silt density index (SDI) was effectively reduced by H2O2/UV oxidation, favoring further RO application. C/H2O2 ratio of 1:4, 55 W UV lamp, and 20-min oxidation reaction corresponded to the experimental condition which provided the best cost/benefit ratio for TOC, UV254, and SDI reduction from the biofilter effluent. The array of treatment processes proposed in this study has shown to be adequate for tertiary treatment of the oil refinery wastewater, ensuring the mitigation of membrane fouling problems and producing a final effluent which is suitable for reuse applications.

  16. TREATMENT OF AMMONIUM NITRATE SOLUTIONS

    DOEpatents

    Boyer, T.W.; MacHutchin, J.G.; Yaffe, L.

    1958-06-10

    The treatment of waste solutions obtained in the processing of neutron- irradiated uranium containing fission products and ammonium nitrate is described. The object of this process is to provide a method whereby the ammonium nitrate is destroyed and removed from the solution so as to permit subsequent concentration of the solution.. In accordance with the process the residual nitrate solutions are treated with an excess of alkyl acid anhydride, such as acetic anhydride. Preferably, the residual nitrate solution is added to an excess of the acetic anhydride at such a rate that external heat is not required. The result of this operation is that the ammonium nitrate and acetic anhydride react to form N/sub 2/ O and acetic acid.

  17. Inhaled ammonium persulphate inhibits non-adrenergic, non-cholinergic relaxations in the guinea pig isolated trachea.

    PubMed

    Dellabianca, A; Faniglione, M; De Angelis, S; Colucci, M; Cervio, M; Balestra, B; Tonini, S; Candura, S M

    2010-01-01

    Persulphates can act both as irritants and sensitizers in inducing occupational asthma. A dysfunction of nervous control regulating the airway tone has been hypothesized as a mechanism underlying bronchoconstriction in asthma. It was the aim of this study to investigate whether inhaled ammonium persulphate affects the non-adrenergic, non-cholinergic (NANC) inhibitory innervation, the cholinergic nerve-mediated contraction or the muscular response to the spasmogens, carbachol or histamine, in the guinea pig epithelium-free, isolated trachea. Male guinea pigs inhaled aerosols containing ammonium persulphate (10 mg/m(3) for 30 min for 5 days during 3 weeks). Control animals inhaled saline aerosol. NANC relaxations to electrical field stimulation at 3 Hz were evaluated in whole tracheal segments as intraluminal pressure changes. Drugs inactivating peptide transmission, nitric oxide synthase, carbon monoxide production by haem oxygenase-2 and soluble guanylyl cyclase were used to assess the involvement of various inhibitory neurotransmitters. Carbachol and histamine cumulative concentration-response curves were obtained. In both groups, nitric oxide and carbon monoxide participated to the same extent as inhibitory neurotransmitters. In exposed animals, the tracheal NANC relaxations were reduced to 45.9 +/- 12.1% (p < 0.01). The cholinergic nerve-mediated contractions to electrical field stimulation and the muscular response to histamine were not modified by ammonium persulphate exposure. The muscular response to carbachol was unaffected up to 1 microM. Conversely, the response to the maximal concentration of carbachol (3 microM) was increased (p < 0.01). Ammonium persulphate inhalation at high concentrations impairs the nervous NANC inhibitory control in the guinea pig airways. This may represent a novel mechanism contributing to persulphate-induced asthma. Copyright 2009 S. Karger AG, Basel.

  18. 21 CFR 163.112 - Breakfast cocoa.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ingredients. Ammonium, potassium, or sodium bicarbonate, carbonate, or hydroxide, or magnesium carbonate or oxide, used as such, or in aqueous solution; (2) Neutralizing agents. Phosphoric acid, citric acid and L...

  19. Aircraft measurements to characterize polluted winter boundary layers: Overview of twin otter flights during the Utah Winter Fine Particulate Matter Study

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Baasandorj, M.; Franchin, A.; Middlebrook, A. M.; Goldberger, L.; Thornton, J. A.; Dube, W. P.; McDuffie, E. E.; Womack, C.; Fibiger, D. L.; Moravek, A.; Clark, J. C.; Murphy, J. G.; Mitchell, R.

    2017-12-01

    Winter air pollution is a significant public health concern. In many regions of the U.S., Europe and Asia, wintertime particulate matter concentrations exceed national and / or international air quality standards. Winter air pollution also represents a scientific challenge because these events occur during stagnation events in shallow, vertically stratified boundary layers whose composition is difficult to probe from surface level measurements. Chemical processes responsible for the conversion of primary emissions to secondary pollutants such as ammonium nitrate aerosol vary with height above ground level. Sources of oxidants are poorly understood and may result from both local chemical production and mixing between shallow inversion layers and background air. During the Utah Winter Fine Particulate Study (UWFPS) in January - February 2017, the NOAA twin otter executed 23 research flights with a payload designed to characterize the formation of ammonium nitrate aerosol in three mountain valleys of northern Utah (Salt Lake, Cache, and Utah). These valleys are subject to periodic episodes of winter aerosol pollution well in excess of U.S. national ambient air quality standards. This presentation will describe the measurement strategy of the twin otter flights to address the specific features of aerosol pollution within winter boundary layer of this region. This strategy is relevant to understanding the broader issue of winter air pollution in other regions and potentially to the design of future studies. The presentation will summarize findings from UWFPS related to boundary layer structure, emissions and chemical processes responsible for ammonium nitrate aerosol in this region.

  20. Occurrence and importance of anaerobic ammonium-oxidising bacteria in vegetable soils.

    PubMed

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Xu, Xiang-hua; Chen, Tie-xi; Liu, Shuai; Cheng, Hai-xiang

    2015-07-01

    The quantitative importance of anaerobic ammonium oxidation (anammox) has been described in paddy fields, while the presence and importance of anammox in subsurface soil from vegetable fields have not been determined yet. Here, we investigated the occurrence and activity of anammox bacteria in five different types of vegetable fields located in Jiangsu Province, China. Stable isotope experiments confirmed the anammox activity in the examined soils, with the potential rates of 2.1 and 23.2 nmol N2 g(-1) dry soil day(-1), and the anammox accounted for 5.9-20.5% of total soil dinitrogen gas production. It is estimated that a total loss of 7.1-78.2 g N m(-2) year(-1) could be linked to the anammox process in the examined vegetable fields. Phylogenetic analyses showed that multiple co-occurring anammox genera were present in the examined soils, including Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and Candidatus Jettenia, and Candidatus Brocadia appeared to be the most common anammox genus. Quantitative PCR further confirmed the presence of anammox bacteria in the examined soils, with the abundance varying from 2.8 × 10(5) to 3.0 × 10(6) copies g(-1) dry soil. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity and abundance of anammox bacteria in the examined soils. The results of our study showed the presence of diverse anammox bacteria and indicated that the anammox process could serve as an important nitrogen loss pathway in vegetable fields.

  1. Fate of Nutrients in Shallow Groundwater Receiving Treated Septage, Malibu, CA

    PubMed Central

    Izbicki, John A

    2014-01-01

    Treated wastewater discharged from more than 400 onsite wastewater treatment systems (OWTS) near the Civic Center area of Malibu, California, 40 km west of downtown Los Angeles, composes 28% of the recharge to a 3.4 km2 alluvial aquifer. On the basis of δ18O and δD data, the fraction of wastewater in some samples was >70%. Ammonium and nitrate concentrations in water from 15 water-table wells sampled in July 2009 and April 2010 ranged from <0.01 to 12 milligrams per liter as nitrogen (mg/L as N), and from <0.01 to 11 mg/L as N, respectively. Chemical and isotopic data (δ15N of ammonium and nitrate, and δ18O of nitrate) show two processes remove nitrogen discharged from OWTS. Where groundwater was reducing, sorption of ammonium resulted in 30 to 50% nitrogen removal. Where groundwater was initially oxic, nitrification with subsequent denitrification as reducing conditions developed, resulted in up to 60% nitrogen removal. Nitrogen removal through sorption dominated during the cooler April sample period, and denitrification dominated during the warmer July sample period. The combination of mixing and nitrogen removal due to denitrification, sorption, and volatilization produces a δ15N apparent fractionation factor (εapp = −5), that can be explained using laboratory-derived fractionation factors (ε) for the individual processes. Phosphate concentrations ranged from < 0.04 to 2 mg/L as phosphorous. Sorption to iron oxides on the surfaces of mineral grains at near-neutral pH's removed some phosphate; however, little removal occurred at more alkaline pH's (>7.3). PMID:24902718

  2. Fate of nutrients in shallow groundwater receiving treated septage, Malibu, CA

    USGS Publications Warehouse

    Izbicki, John

    2014-01-01

    Treated wastewater discharged from more than 400 onsite wastewater treatment systems (OWTS) near the Civic Center area of Malibu, California, 40 km west of downtown Los Angeles, composes 28% of the recharge to a 3.4 km2 alluvial aquifer. On the basis of δ18O and δD data, the fraction of wastewater in some samples was >70%. Ammonium and nitrate concentrations in water from 15 water-table wells sampled in July 2009 and April 2010 ranged from <0.01 to 12 milligrams per liter as nitrogen (mg/L as N), and from <0.01 to 11 mg/L as N, respectively. Chemical and isotopic data (δ15N of ammonium and nitrate, and δ18O of nitrate) show two processes remove nitrogen discharged from OWTS. Where groundwater was reducing, sorption of ammonium resulted in 30 to 50% nitrogen removal. Where groundwater was initially oxic, nitrification with subsequent denitrification as reducing conditions developed, resulted in up to 60% nitrogen removal. Nitrogen removal through sorption dominated during the cooler April sample period, and denitrification dominated during the warmer July sample period. The combination of mixing and nitrogen removal due to denitrification, sorption, and volatilization produces a δ15N apparent fractionation factor (εapp= -5), that can be explained using laboratory-derived fractionation factors (ε) for the individual processes. Phosphate concentrations ranged from <0.04 to 2 mg/L as phosphorous. Sorption to iron oxides on the surfaces of mineral grains at near-neutral pH's removed some phosphate; however, little removal occurred at more alkaline pH's (>7.3).

  3. Optimalisation of magnesium ammonium phosphate precipitation and its applicability to the removal of ammonium.

    PubMed

    Demeestere, K; Smet, E; Van Langenhove, H; Galbacs, Z

    2001-12-01

    Among the physico-chemical abatement technologies, mainly acid scrubbers have been used to control NH3-emission. The disadvantage of this technique is that it yields waste water, highly concentrated in ammonia. In this report, the applicability of the magnesium ammonium phosphate (MAP) process to regenerate the liquid phase, produced by scrubbing NH3-loaded waste gases, was investigated. In the MAP process, ammonium is precipitated as magnesium ammonium phosphate, which can be used as a slow release fertilizer. The influence of a number of parameters, e.g. pH, kinetics, molar ratio NH(+)4/Mg2+/PO(3-)4 on the efficiency of the formation of MAP and on the ammonium removal efficiency was investigated. In this way, optimal conditions were determined for the precipitation reaction. Next to this, interference caused by other precipitation reactions was studied. At aqueous NH(+)4-concentrations of about 600 mg l(-1), ammonium removal efficiencies of 97% could be obtained at a molar ratio NH(+)4/Mg2+/PO(3-)4 of 1/1.5/1.5. To obtain this result, the pH was continuously adjusted to a value of 9 during the reaction. According to this study, it is obvious that the MAP-precipitation technology offers opportunities for ammonium removal from scrubbing liquids. The practical applicability of the MAP-process in waste gas treatment systems, however, should be the subject for further investigations.

  4. Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate.

    PubMed

    Rubasinghege, Gayan; Spak, Scott N; Stanier, Charles O; Carmichael, Gregory R; Grassian, Vicki H

    2011-04-01

    Nitrous oxide (N2O) is an important greenhouse gas and a primary cause of stratospheric ozone destruction. Despite its importance, there remain missing sources in the N2O budget. Here we report the formation of atmospheric nitrous oxide from the decomposition of ammonium nitrate via an abiotic mechanism that is favorable in the presence of light, relative humidity and a surface. This source of N2O is not currently accounted for in the global N2O budget. Annual production of N2O from atmospheric aerosols and surface fertilizer application over the continental United States from this abiotic pathway is estimated from results of an annual chemical transport simulation with the Community Multiscale Air Quality model (CMAQ). This pathway is projected to produce 9.3(+0.7/-5.3) Gg N2O annually over North America. N2O production by this mechanism is expected globally from both megacities and agricultural areas and may become more important under future projected changes in anthropogenic emissions.

  5. Similar microbial communities found on two distant seafloor basalts

    NASA Astrophysics Data System (ADS)

    Singer, E.; Chong, L. S.; Heidelberg, J. F.; Edwards, K. J.

    2016-12-01

    The oceanic crust forms two thirds of the Earth's surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present a comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō'ihi Seamount, Hawai'i, and the East Pacific Rise (EPR) (9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō'ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

  6. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  7. Controlling the nitrite:ammonium ratio in a SHARON reactor in view of its coupling with an Anammox process.

    PubMed

    Volcke, E I P; van Loosdrecht, M C M; Vanrolleghem, P A

    2006-01-01

    The combined SHARON-Anammox process for treating wastewater streams with high ammonia load is the focus of this paper. In particular, partial nitritation in the SHARON reactor should be performed to such an extent that a nitrite:ammonium ratio is generated which is optimal for full conversion in an Anammox process. In the simulation studies performed in this contribution, the nitrite:ammonium ratio produced in a SHARON process with fixed volume, as well as its effect on the subsequent Anammox process, is examined for realistic influent conditions and considering both direct and indirect pH effects on the SHARON process. Several possible operating modes for the SHARON reactor, differing in control strategies for O2, pH and the produced nitrite:ammonium ratio and based on regulating the air flow rate and/or acid/base addition, are systematically evaluated. The results are quantified through an operating cost index. Best results are obtained by means of cascade feedback control of the SHARON effluent nitrite:ammonium ratio through setting an O2 set-point that is tracked by adjusting the air flow rate, combined with single loop pH control through acid/base addition.

  8. Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs).

    PubMed

    Lü, Hongying; Li, Pengcheng; Deng, Changliang; Ren, Wanzhong; Wang, Shunan; Liu, Pan; Zhang, Han

    2015-07-07

    An oxalate-based DES with a tetrabutyl ammonium chloride and oxalate acid molar ratio of 1/2 (TBO1 : 2) exhibited high activity in oxidative desulfurization (ODS) of dibenzothiophene (DBT) under mild reaction conditions. It is potentially a promising and highly environmentally friendly approach for desulfurization of fuels.

  9. Cage Compounds as Potential Energetic Oxidizers: A Theoretical Study of a Cage Isomer of N2O3

    DTIC Science & Technology

    2014-07-01

    Laboratory. References [1] P. W. M. Jacobs, H. M. Whitehead, Decomposition and Combustion of Ammonium Perchlorate, Chem. Rev., 1969, 69 551- 590 . [2...and Symmetric Dinitrogen Trioxide in Nitric-Oxide Matrices by Raman and Infrared- Spectroscopy, J. Phys. Chem. 1983, 87, 1113- 1120. [14] a) X. Wang

  10. Implementation and evaluation of PM2.5 source contribution ...

    EPA Pesticide Factsheets

    Source culpability assessments are useful for developing effective emissions control programs. The Integrated Source Apportionment Method (ISAM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to track contributions from source groups and regions to ambient levels and deposited amounts of primary and secondary inorganic PM2.5. Confidence in this approach is established by comparing ISAM source contribution estimates to emissions zero-out simulations recognizing that these approaches are not always expected to provide the same answer. The comparisons are expected to be most similar for more linear processes such as those involving primary emissions of PM2.5 and most different for non-linear systems like ammonium nitrate formation. Primarily emitted PM2.5 (e.g. elemental carbon), sulfur dioxide, ammonia, and nitrogen oxide contribution estimates compare well to zero-out estimates for ambient concentration and deposition. PM2.5 sulfate ion relationships are strong, but nonlinearity is evident and shown to be related to aqueous phase oxidation reactions in the host model. ISAM and zero-out contribution estimates are less strongly related for PM2.5 ammonium nitrate, resulting from instances of non-linear chemistry and negative responses (increases in PM2.5 due to decreases in emissions). ISAM is demonstrated in the context of an annual simulation tracking well characterized emissions source sectors and boundary conditions shows source contri

  11. pH variation and influence in an autotrophic nitrogen removing biofilm system using an efficient numerical solution strategy.

    PubMed

    Vangsgaard, Anna Katrine; Mauricio-Iglesias, Miguel; Valverde-Pérez, Borja; Gernaey, Krist V; Sin, Gürkan

    2013-01-01

    A pH simulator consisting of an efficient numerical solver of a system of nine nonlinear equations was constructed and implemented in the modeling software MATLAB. The pH simulator was integrated in a granular biofilm model and used to simulate the pH profiles within granules performing the nitritation-anammox process for a range of operating points. The simulation results showed that pH profiles were consistently increasing with increasing depth into the granule, since the proton-producing aerobic ammonium-oxidizing bacteria (AOB) were located close to the granule surface. Despite this pH profile, more NH3 was available for AOB than for anaerobic ammonium oxidizers, located in the center of the granules. However, operating at a higher oxygen loading resulted in steeper changes in pH over the depth of the granule and caused the NH3 concentration profile to increase from the granule surface towards the center. The initial value of the background charge and influent bicarbonate concentration were found to greatly influence the simulation result and should be accurately measured. Since the change in pH over the depth of the biofilm was relatively small, the activity potential of the microbial groups affected by the pH did not change more than 5% over the depth of the granules.

  12. Geochemical impacts of waste disposal on the abyssal seafloor

    NASA Astrophysics Data System (ADS)

    Jahnke, Richard A.

    1998-05-01

    The response of pore water oxygen, nitrate, sulfate, sulfide, ammonium and methane and particulate organic carbon distributions to the input of 8.5 million m 3 (3.8×10 12 g) of organic-rich waste materials is simulated. The deposit is assumed to be conical with a maximum thickness of approximately 20 m. Remineralization reactions within the deposit rapidly deplete any initially available pore water oxidants such as oxygen, nitrate and sulfate, and are subsequently dominated by fermentation reactions. Diffusion downward of reduced metabolites, sulfide, ammonium and methane, depletes the available oxidants in the pore waters below the waste pile, increasing the thickness of the anoxic layer. While the impacted region is limited to essentially the deposition site, recovery of the pore waters is estimated to be >10 4 years. The overall computational results are corroborated by the pore water distributions observed at turbidite boundaries. Numerous uncertainties in the parameterizations limit the overall accuracy of the calculations presented. The most significant of these are: (1) A quantitatively accurate assessment of the remineralization rate of the deposited organic matter including its rate of inoculation by abyssal microorganisms; (2) a detailed assessment of potential non-diffusive pore water transport processes including advection due to compaction and buoyancy-driven flows and enhanced exchange due to macrobenthic irrigation activities and (3) an assessment of the potential alteration of pore space and methane reactivity due to gas hydrate formation.

  13. Synthesis and characterization of zinc-molybdenum oxide photocatalysts using an electrochemical-thermal process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goveas, J. J., E-mail: jenicegoveas@gmail.com; Gonsalves, R. A.; Rao, P.

    2016-05-23

    Dyes act as major pollutants in water and can be degraded by photocatalysis. This paper establishes the role of electrochemically generated nanostructures of Zinc-Molybdenum oxides (ZMO) as photocatalysts by degrading EBT (Eriochrome Black- T) taken as a model pollutant under UV light. A facile, rapid and low cost process to synthesize these nanostructures (ZMO) is presented. Various factors that affect the synthesis and photocatalytic activity of these nanostructures are discussed. The role of calcination temperature and pulverization on the photocatalytic action has also been established. Particles have been synthesized in pure form as well as using surfactants such as cetrimidemore » (cetyl trimethyl ammonium bromide), polyethylene glycol (PEG) and SDS (sodium dodecyl sulphate) to enhance their photocatalytic action. This paper also discusses the characterization of these nanoparticles by powder XRD, SEM, FT-IR and UV-Visible spectroscopy. Decolourisation was achieved to completion under optimum experimental conditions at room temperature ascertaining the application of these nanostructures as effective photocatalysts.« less

  14. Effects of Grazing by Flagellates on Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Chemostats

    PubMed Central

    Verhagen, Frank J. M.; Laanbroek, Hendrikus J.

    1992-01-01

    The enhanced mineralization of organic nitrogen by bacteriophagous protozoa is thought to favor the nitrification process in soils, in which nitrifying bacteria have to compete with heterotrophic bacteria for the available ammonium. To obtain more insight into this process, the influence of grazing by the bacteriovorous flagellate Adriamonas peritocrescens on the competition for limiting amounts of ammonium between the ammonium-oxidizing species Nitrosomonas europaea and the heterotrophic species Arthrobacter globiformis was studied in the presence of Nitrobacter winogradskyi in continuous cultures at dilution rates of 0.004 and 0.01 h-1. The ammonium concentration in the reservoir was maintained at 2 mM, whereas the glucose concentration was increased stepwise from 0 to 7 mM. A. globiformis won the competition for limiting amounts of ammonium when the glucose concentration in the reservoirs increased, in agreement with previously described experiments in which the flagellates were not included. The numbers of nitrifying bacteria decreased as the numbers of heterotrophic bacteria rose with increasing glucose concentrations. Critical C/N ratios, i.e., ratios between glucose and ammonium in the reservoirs at which no nitrate was found in the culture vessels, of 12.5 and 10.5 were determined at dilution rates of 0.004 and 0.01 h-1, respectively. Below these critical values, coexistence of the competing species was found. The numbers of nitrifying bacteria decreased more in the presence of flagellates than in their absence, presumably by selective predation on the nitrifying bacteria, either in the liquid culture or on the glass wall of the culture vessels. Despite this, the rate of nitrate production did not decrease more in the presence of flagellates than in their absence. This demonstrates that no correlation has to be expected between numbers of nitrifying bacteria and their activity and that a constant nitrification rate per cell cannot be assumed for nitrifying bacteria. Above the critical C/N ratios, low numbers of nitrifying bacteria were still found in the culture vessels, probably because of attachment of the nitrifying bacteria to the glass wall of the culture vessels. Like the numbers of heterotrophic bacteria, the numbers of flagellates increased when the glucose concentrations in the reservoirs increased. Numbers of 2 × 105 and 12 × 105 flagellates ml-1 were found at 7 mM glucose at dilution rates of 0.004 and 0.01 h-1, respectively. It was concluded that the critical C/N ratios were practically unaffected by the presence of protozoa. Although nitrate production rates were equal in the presence and absence of flagellates, the numbers of nitrifying bacteria decreased more strongly in their presence. This indicates a higher activity per nitrifying cell in the presence of flagellates. PMID:16348722

  15. 40 CFR 418.60 - Applicability; description of the ammonium sulfate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... production of ammonium sulfate by the synthetic process and by coke oven by-product recovery. The provisions of this subpart do not apply to ammonium sulfate produced as a by-product of caprolactam production. ...

  16. Startup of the Anammox Process in a Membrane Bioreactor (AnMBR) from Conventional Activated Sludge.

    PubMed

    Gutwiński, P; Cema, G; Ziembińska-Buczyńska, A; Surmacz-Górska, J; Osadnik, M

    2016-12-01

      In this study, a laboratory-scale anammox process in a membrane bioreactor (AnMBR) was used to startup the anaerobic ammonium oxidation (anammox) process from conventional activated sludge. Stable operation was achieved after 125 days. From that time, nitrogen load was gradually increased. After six months, the average nitrogen removal efficiency exceeded 80%. The highest obtained special anammox activity (SAA) achieved was 0.17 g (-N + -N) (g VSS × d)-1. Fluorescent in situ hybridization also proved the presence of the anammox bacteria, typically a genus of Brocadia anammoxidans and Kuenenia stuttgartiensis.

  17. A series of inorganic solid nitrogen sources for the synthesis of metal nitride clusterfullerenes: the dependence of production yield on the oxidation state of nitrogen and counter ion.

    PubMed

    Liu, Fupin; Guan, Jian; Wei, Tao; Wang, Song; Jiao, Mingzhi; Yang, Shangfeng

    2013-04-01

    A series of nitrogen-containing inorganic solid compounds with variable oxidation states of nitrogen and counter ions have been successfully applied as new inorganic solid nitrogen sources toward the synthesis of Sc-based metal nitride clusterfullerenes (Sc-NCFs), including ammonium salts [(NH4)xH(3-x)PO4 (x = 0-2), (NH4)2SO4, (NH4)2CO3, NH4X (X = F, Cl), NH4SCN], thiocyanate (KSCN), nitrates (Cu(NO3)2, NaNO3), and nitrite (NaNO2). Among them, ammonium phosphates ((NH4)xH(3-x)PO4, x = 1-3) and ammonium thiocyanate (NH4SCN) are revealed to behave as better nitrogen sources than others, and the highest yield of Sc-NCFs is achieved when NH4SCN was used as a nitrogen source. The optimum molar ratio of Sc2O3:(NH4)3PO4·3H2O:C and Sc2O3:NH4SCN:C has been determined to be 1:2:15 and 1:3:15, respectively. The thermal decomposition products of these 12 inorganic compounds have been discussed in order to understand their different performances toward the synthesis of Sc-NCFs, and accordingly the dependence of the production yield of Sc-NCFs on the oxidation state of nitrogen and counter ion is interpreted. The yield of Sc3N@C80 (I(h) + D(5h)) per gram Sc2O3 by using the N2-based group of nitrogen sources (thiocyanate, nitrates, and nitrite) is overall much lower than those by using gaseous N2 and NH4SCN, indicating the strong dependence of the yield of Sc-NCFs on the oxidation state of nitrogen, which is attributed to the "in-situ" redox reaction taking place for the N2-based group of nitrogen sources during discharging. For NH3-based group of nitrogen sources (ammonium salts) which exhibits a (-3) oxidation states of nitrogen, their performance as nitrogen sources is found to be sensitively dependent on the anion, and this is understood by considering their difference on the thermal stability and/or decomposition rate. Contrarily, for the N2-based group of nitrogen sources, the formation of Sc-NCFs is independent to both the oxidation state of nitrogen (+3 or +5) and the cation.

  18. Removal of herbicidal ionic liquids by electrochemical advanced oxidation processes combined with biological treatment.

    PubMed

    Pęziak-Kowalska, Daria; Fourcade, Florence; Niemczak, Michał; Amrane, Abdeltif; Chrzanowski, Łukasz; Lota, Grzegorz

    2017-05-01

    Recently a new group of ionic liquids (ILs) with herbicidal properties has been proposed for use in agriculture. Owing to the design of specific physicochemical properties, this group, referred to as herbicidal ionic liquids (HILs), allows for reducing herbicide field doses. Several ILs comprising phenoxy herbicides as anions and quaternary ammonium cations have been synthesized and tested under greenhouse and field conditions. However, since they are to be introduced into the environment, appropriate treatment technologies should be developed in order to ensure their proper removal and avoid possible contamination. In this study, didecyldimethylammonium (4-chloro-2-methylphenoxy) acetate was selected as a model HIL to evaluate the efficiency of a hybrid treatment method. Electrochemical oxidation or electro-Fenton was considered as a pretreatment step, whereas biodegradation was selected as the secondary treatment method. Both processes were carried out in current mode, at 10 mA with carbon felt as working electrode. The efficiency of degradation, oxidation and mineralization was evaluated after 6 h. Both processes decreased the total organic carbon and chemical oxygen demand (COD) values and increased the biochemical oxygen demand (BOD 5 ) on the COD ratio to a value close to 0.4, showing that the electrolyzed solutions can be considered as 'readily biodegradable.'

  19. Nitrogen sources, transport and processing in peri-urban floodplains.

    PubMed

    Gooddy, D C; Macdonald, D M J; Lapworth, D J; Bennett, S A; Griffiths, K J

    2014-10-01

    Peri-urban floodplains are an important interface between developed land and the aquatic environment and may act as a source or sink for contaminants moving from urban areas towards surface water courses. With increasing pressure from urban development the functioning of floodplains is coming under greater scrutiny. A number of peri-urban sites have been found to be populated with legacy landfills which could potentially cause pollution of adjacent river bodies. Here, a peri-urban floodplain adjoining the city of Oxford, UK, with the River Thames has been investigated over a period of three years through repeated sampling of groundwaters from existing and specially constructed piezometers. A nearby landfill has been found to have imprinted a strong signal on the groundwater with particularly high concentrations of ammonium and generally low concentrations of nitrate and dissolved oxygen. An intensive study of nitrogen dynamics through the use of N-species chemistry, nitrogen isotopes and dissolved nitrous oxide reveals that there is little or no denitrification in the majority of the main landfill plume, and neither is the ammonium significantly retarded by sorption to the aquifer sediments. A simple model has determined the flux of total nitrogen and ammonium from the landfill, through the floodplain and into the river. Over an 8 km reach of the river, which has a number of other legacy landfills, it is estimated that 27.5 tonnes of ammonium may be delivered to the river annually. Although this is a relatively small contribution to the total river nitrogen, it may represent up to 15% of the ammonium loading at the study site and over the length of the reach could increase in-stream concentrations by nearly 40%. Catchment management plans that encompass floodplains in the peri-urban environment need to take into account the likely risk to groundwater and surface water quality that these environments pose. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  20. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies.

    PubMed

    Boopathy, Ramasamy; Karthikeyan, Sekar; Mandal, Asit Baran; Sekaran, Ganesan

    2013-01-01

    Ammonium ions are one of the most encountered nitrogen species in polluted water bodies. High level of ammonium ion in aqueous solution imparts unpleasant taste and odor problems, which can interfere with the life of aquatics and human population when discharged. Many chemical methods are developed and being used for removal of ammonium ion from aqueous solution. Among various techniques, adsorption was found to be the most feasible and environmentally friendly with the use of natural-activated adsorbents. Hence, in this study, coconut shell-activated carbon (CSAC) was prepared and used for the removal of ammonium ion by adsorption techniques. Ammonium chloride (analytical grade) was purchased from Merck Chemicals for adsorption studies. The CSAC was used to adsorb ammonium ions under stirring at 100 rpm, using orbital shaker in batch experiments. The concentration of ammonium ion was estimated by ammonia distillate, using a Buchi distillation unit. The influence of process parameters such as pH, temperature, and contact time was studied for adsorption of ammonium ion, and kinetic, isotherm models were validated to understand the mechanism of adsorption of ammonium ion by CSAC. Thermodynamic properties such as ∆G, ∆H, and ∆S were determined for the ammonium adsorption, using van't Hoff equation. Further, the adsorption of ammonium ion was confirmed through instrumental analyses such as SEM, XRD, and FTIR. The optimum conditions for the effective adsorption of ammonium ion onto CSAC were found to be pH 9.0, temperature 283 K, and contact time 120 min. The experimental data was best followed by pseudosecond order equation, and the adsorption isotherm model obeyed the Freundlich isotherm. This explains the ammonium ion adsorption onto CSAC which was a multilayer adsorption with intraparticle diffusion. Negative enthalpy confirmed that this adsorption process was exothermic. The instrumental analyses confirmed the adsorption of ammonium ion onto CSAC.

  1. High diversity of ammonia-oxidizing archaea in permanent and seasonal oxygen-deficient waters of the eastern South Pacific.

    PubMed

    Molina, Verónica; Belmar, Lucy; Ulloa, Osvaldo

    2010-09-01

    The community structure of putative aerobic ammonia-oxidizing archaea (AOA) was explored in two oxygen-deficient ecosystems of the eastern South Pacific: the oxygen minimum zone off Peru and northern Chile (11°S-20°S), where permanent suboxic and low-ammonium conditions are found at intermediate depths, and the continental shelf off central Chile (36°S), where seasonal oxygen-deficient and relatively high-ammonium conditions develop in the water column, particularly during the upwelling season. The AOA community composition based on the ammonia monooxygenase subunit A (amoA) genes changed according to the oxygen concentration in the water column and the ecosystem studied, showing a higher diversity in the seasonal low-oxygen waters. The majority of the archaeal amoA genotypes was affiliated to the uncultured clusters A (64%) and B (35%), with Cluster A AOA being mainly associated with higher oxygen and ammonium concentrations and Cluster B AOA with permanent oxygen- and ammonium-poor waters. Q-PCR assays revealed that AOA are an abundant community (up to 10(5) amoA copies ml(-1) ), while bacterial amoA genes from β proteobacteria were undetected. Our results thus suggest that a diverse uncultured AOA community, for which, therefore, we do not have any physiological information, to date, is an important component of the nitrifying community in oxygen-deficient marine ecosystems, and particularly in rich coastal upwelling ones. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Effect of didecyl dimethyl ammonium chloride on nitrate reduction in a mixed methanogenic culture.

    PubMed

    Tezel, U; Pierson, J A; Pavlostathis, S G

    2008-01-01

    The effect of the quaternary ammonium compound, didecyl dimethyl ammonium chloride (DDAC), on nitrate reduction was investigated at concentrations up to 100 mg/L in a batch assay using a mixed, mesophilic (35 degrees C) methanogenic culture. Glucose was used as the carbon and energy source and the initial nitrate concentration was 70 mg N/L. Dissimilatory nitrate reduction to ammonia (DNRA) and to dinitrogen (denitrification) were observed at DDAC concentrations up to 25 mg/L. At and above 50 mg DDAC/L, DNRA was inhibited and denitrification was incomplete resulting in accumulation of nitrous oxide. At DDAC concentrations above 10 mg/L, production of nitrous oxide, even transiently, resulted in complete, long-term inhibition of methanogenesis and accumulation of volatile fatty acids. Fermentation was inhibited at and above 75 mg DDAC/L. DDAC suppressed microbial growth and caused cell lysis at a concentration 50 mg/L or higher. Most of the added DDAC was adsorbed on the biomass. Over 96% of the added DDAC was recovered from all cultures at the end of the 100-days incubation period, indicating that DDAC did not degrade in the mixed methanogenic culture under the conditions of this study.

  3. Controlled release and long-term antibacterial activity of reduced graphene oxide/quaternary ammonium salt nanocomposites prepared by non-covalent modification.

    PubMed

    Ye, Xiaoli; Feng, Jin; Zhang, Jingxian; Yang, Xiujiang; Liao, Xiaoyan; Shi, Qingshan; Tan, Shaozao

    2017-01-01

    In order to control the long-term antibacterial property of quaternary ammonium salts, dodecyl dimethyl benzyl ammonium chloride (rGO-1227) and rGO-bromohexadecyl pyridine (rGO-CPB) were self-assembled on surfaces of reduced graphene oxide (rGO) via π-π interactions. The obtained rGO-1227 and rGO-CPB nanocompounds were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM).The antibacterial activities were evaluated on Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Both rGO-CPB and rGO-1227 reduced the cytotoxicity of the pure antimicrobial agents and presented strong antimicrobial properties. Especially, CPB could be loaded efficiently on the surface of rGO via π-π conjugate effect, which resulted in a nanocomposite presenting a long-term antibacterial capability due to the more important quantity of free π electrons compared to that of 1227. When comparing the advantages of both prepared nanocomposites, rGO-CPB displayed a better specific-targeting capability and a longer-term antibacterial property. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.

    PubMed

    Pradhan, Debabrata; Kim, Dong J; Roychaudhury, Gautam; Lee, Seoung W

    2010-01-01

    Bioleaching studies of spent petroleum catalyst containing Ni, V and Mo were carried out using iron oxidizing bacteria. Various leaching parameters such as Fe(II) concentration, pulp density, pH, temperature and particle size were studied to evaluate their effects on the leaching efficiency as well as the kinetics of dissolution. The percentage of leaching of Ni and V were higher than Mo. The leaching process followed a diffusion controlled model and the product layer was observed to be impervious due to formation of ammonium jarosite (NH(4))Fe(3)(SO(4))(2)(OH)(6). Apart from this, the lower leaching efficiency of Mo was due to a hydrophobic coating of elemental sulfur over Mo matrix in the spent catalyst. The diffusivities of the attacking species for Ni, V and Mo were also calculated.

  5. Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation

    NASA Astrophysics Data System (ADS)

    Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei

    2017-09-01

    A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.

  6. Transformation products of submicron-sized aluminum-substituted magnetite: Color and reductant solubility

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Lauer, H. V., Jr.

    1991-01-01

    Magnetite, when present as fine particles, is soluble in acid ammonium oxalate (pH equals 3). However, the commonly used extractant for free iron oxides (i.e., citrate dithionite-bicarbonate (CDB) is not very effective in dissolving magnetite in soils and geologic materials. Upon oxidation, magnetite transforms to maghemite; at elevated temperatures, maghemite inverts to hematite. This transformation causes a change in color from black to red and may affect the reductant solubility as well. The objectives here were to examine the color and reflectance spectral characteristics of products during the transformation of magnetite to maghemite to hematite and to study the effect of Al-substitution in magnetite on the above process. Reductant solubility of Al-substituted magnetite, maghemite, and hematite was also studied. In summary, the transformation of magnetite to maghemite was accompanied by a change in color from black to red because of the oxidation of Fe2(+) to Fe3(+). The phase change maghemite to hematite had a relatively minor effect on the color and the reflectance spectra.

  7. Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites.

    PubMed

    Ma, Renzhi; Sasaki, Takayoshi

    2010-12-01

    A wide variety of cation-exchangeable layered transition metal oxides and their relatively rare counterparts, anion-exchangeable layered hydroxides, have been exfoliated into individual host layers, i.e., nanosheets. Exfoliation is generally achieved via a high degree of swelling, typically driven either by intercalation of bulky organic ions (quaternary ammonium cations, propylammonium cations, etc.) for the layered oxides or by solvation with organic solvents (formamide, butanol, etc.) for the hydroxides. Ultimate two-dimensional (2D) anisotropy for the nanosheets, with thickness of around one nanometer versus lateral size ranging from submicrometer to several tens of micrometers, allows them to serve either as an ideal quantum system for fundamental study or as a basic building block for functional assembly. The charge-bearing inorganic macromolecule-like nanosheets can be assembled or organized through various solution-based processing techniques (e.g., flocculation, electrostatic sequential deposition, or the Langmuir-Blodgett method) to produce a range of nanocomposites, multilayer nanofilms, and core-shell nanoarchitectures, which have great potential for electronic, magnetic, optical, photochemical, and catalytic applications.

  8. 40 CFR 60.421 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... stream to the reactor/crystallizer for synthetic and coke oven by-product ammonium sulfate manufacturing...-product from process streams generated during caprolactam manufacture. Coke oven by-product ammonium... ammonia recovered as a by-product from the manufacture of coke. Synthetic ammonium sulfate manufacturing...

  9. 40 CFR 60.421 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... stream to the reactor/crystallizer for synthetic and coke oven by-product ammonium sulfate manufacturing...-product from process streams generated during caprolactam manufacture. Coke oven by-product ammonium... ammonia recovered as a by-product from the manufacture of coke. Synthetic ammonium sulfate manufacturing...

  10. 40 CFR 60.421 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stream to the reactor/crystallizer for synthetic and coke oven by-product ammonium sulfate manufacturing...-product from process streams generated during caprolactam manufacture. Coke oven by-product ammonium... ammonia recovered as a by-product from the manufacture of coke. Synthetic ammonium sulfate manufacturing...

  11. 40 CFR 60.421 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... stream to the reactor/crystallizer for synthetic and coke oven by-product ammonium sulfate manufacturing...-product from process streams generated during caprolactam manufacture. Coke oven by-product ammonium... ammonia recovered as a by-product from the manufacture of coke. Synthetic ammonium sulfate manufacturing...

  12. Start-up and stabilization of an Anammox process from a non-acclimatized sludge in CSTR.

    PubMed

    Bagchi, Samik; Biswas, Rima; Nandy, Tapas

    2010-09-01

    Development of an Anammox (anaerobic ammonium oxidation) process using non-acclimatized sludge requires a long start-up period owing to the very slow growth rate of Anammox bacteria. This article addresses the issue of achieving a shorter start-up period for Anammox activity in a well-mixed continuously stirred tank reactor (CSTR) using non-acclimatized anaerobic sludge. Proper selection of enrichment conditions and low stirring speed of 30 +/- 5 rpm resulted in a shorter start-up period (82 days). Activity tests revealed the microbial community structure of Anammox micro-granules. Ammonia-oxidizing bacteria (AOB) were found on the surface and on the outer most layers of granules while nitrite-oxidizing bacteria (NOB) and Anammox bacteria were present inside. Fine-tuning of influent NO2(-)/NH4+ ratio allowed Anammox activity to be maintained when mixed microbial populations were present. The maximum nitrogen removal rate achieved in the system was 0.216 kg N/(m(3) day) with a maximum specific nitrogen removal rate of 0.434 g N/(g VSS day). During the study period, Anammox activity was not inhibited by pH changes and free ammonia toxicity.

  13. Control of GHG emission at the microbial community level.

    PubMed

    Insam, H; Wett, B

    2008-01-01

    All organic material eventually is decomposed by microorganisms, and considerable amounts of C and N end up as gaseous metabolites. The emissions of greenhouse relevant gases like carbon dioxide, methane and nitrous oxides largely depend on physico-chemical conditions like substrate quality or the redox potential of the habitat. Manipulating these conditions has a great potential for reducing greenhouse gas emissions. Such options are known from farm and waste management, as well as from wastewater treatment. In this paper examples are given how greenhouse gas production might be reduced by regulating microbial processes. Biogas production from manure, organic wastes, and landfills are given as examples how methanisation may be used to save fossil fuel. Methane oxidation, on the other hand, might alleviate the problem of methane already produced, or the conversion of aerobic wastewater treatment to anaerobic nitrogen elimination through the anaerobic ammonium oxidation process might reduce N2O release to the atmosphere. Changing the diet of ruminants, altering soil water potentials or a change of waste collection systems are other measures that affect microbial activities and that might contribute to a reduction of carbon dioxide equivalents being emitted to the atmosphere.

  14. Life cycle energy and greenhouse gas profile of a process for the production of ammonium sulfate from nitrogen-fixing photosynthetic cyanobacteria.

    PubMed

    Razon, Luis F

    2012-03-01

    In this paper, an alternative means for nitrogen fixation that may consume less energy and release less greenhouse gases than the Haber-Bosch process is explored. A life-cycle assessment was conducted on a process to: culture the cyanobacterium, Anabaena sp. ATCC 33047, in open ponds; harvest the biomass and exopolysaccharides and convert these to biogas; strip and convert the ammonia from the biogas residue to ammonium sulfate; dry the ammonium sulfate solution to ammonium sulfate crystals and transport the finished product. The results suggest that substantial reductions in non-renewable energy use and greenhouse gas emissions may be realized. The study opens the possibility that Haber-Bosch ammonia may be replaced with ammonia from a biomass process which simultaneously generates renewable energy. The process is intrinsically safer than the Haber-Bosch process. However, there are trade-offs in terms of land use and possibly, water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. The optimal dissolved oxygen profile in a nitrifying activated sludge process - comparisons with ammonium feedback control.

    PubMed

    Amand, L; Carlsson, B

    2013-01-01

    Ammonium feedback control is increasingly used to determine the dissolved oxygen (DO) set-point in aerated activated sludge processes for nitrogen removal. This study compares proportional-integral (PI) ammonium feedback control with a DO profile created from a mathematical minimisation of the daily air flow rate. All simulated scenarios are set to reach the same treatment level of ammonium, based on a daily average concentration. The influent includes daily variations only and the model has three aerated zones. Comparisons are made at different plant loads and DO concentrations, and the placement of the ammonium sensor is investigated. The results show that ammonium PI control can achieve the best performance if the DO set-point is limited at a maximum value and with little integral action in the controller. Compared with constant DO control the best-performing ammonium controller can achieve 1-3.5% savings in the air flow rate, while the optimal solution can achieve a 3-7% saving. Energy savings are larger when operating at higher DO concentrations.

  16. Ammonium stimulates nitrate reduction during simultaneous nitrification and denitrification process by Arthrobacter arilaitensis Y-10.

    PubMed

    He, Tengxia; Xie, Deti; Li, Zhenlun; Ni, Jiupai; Sun, Quan

    2017-09-01

    The ability of Arthrobacter arilaitensis Y-10 for nitrogen removal from simulated wastewater was studied. Results showed that ammonium was the best inorganic nitrogen for strain Y-10's cell growth, which could also promote nitrate reduction. Approximately 100.0% of ammonium was removed in the nitrogen removal experiments. The nitrate removal efficiency was 73.3% with nitrate as sole nitrogen source, and then the nitrate efficiency was increased to 85.3% and 100.0% with ammonium and nitrate (both about 5 or 100mg/L) as the mixed nitrogen sources. Nitrite accumulation was observed in presence of ammonium and nitrate. When the concentration of sole nitrite nitrogen was 10.31mg/L, the nitrite removal efficiency was 100.0%. Neither ammonium nor nitrate was accumulated during the whole experimental process. All experimental results indicated that A. arilaitensis Y-10 could remove ammonium, nitrate and nitrite at 15°C from wastewater, and could also perform simultaneous nitrification and denitrification under aerobic condition. Copyright © 2017. Published by Elsevier Ltd.

  17. Soil nitrate reducing processes – drivers, mechanisms for spatial variation, and significance for nitrous oxide production

    PubMed Central

    Giles, Madeline; Morley, Nicholas; Baggs, Elizabeth M.; Daniell, Tim J.

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate (NO3−) and production of the potent greenhouse gas, nitrous oxide (N2O). A number of factors are known to control these processes, including O2 concentrations and moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub centimeter areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location, and potential for N2O production from soils. PMID:23264770

  18. Soil nitrate reducing processes - drivers, mechanisms for spatial variation, and significance for nitrous oxide production.

    PubMed

    Giles, Madeline; Morley, Nicholas; Baggs, Elizabeth M; Daniell, Tim J

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate ([Formula: see text]) and production of the potent greenhouse gas, nitrous oxide (N(2)O). A number of factors are known to control these processes, including O(2) concentrations and moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub centimeter areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location, and potential for N(2)O production from soils.

  19. Utilization of the gypsum from a wet limestone flue gas desulfurization process

    USGS Publications Warehouse

    Chou, I.-Ming; Patel, V.; Lytle, J.M.; Chou, S.J.; Carty, R.H.

    1999-01-01

    The authors have been developing a process which converts FGD-gypsum to ammonium sulfate fertilizer with precipitated calcium carbonate as a by-product during the conversion. Preliminary cost estimates suggest that the process is economically feasible when ammonium sulfate crystals are produced in a granular size (1.2 to 3.3 mm), instead of a powder form. However, if additional revenue from the sale of the PCC for higher-value commercial application is applicable, this could further improve the economics of the process. Ammonium sulfate is known to be an excellent source of nitrogen and sulfur in fertilizer for corn and wheat production. It was not known what impurities might co-exist in ammonium sulfate derived from scrubber gypsum. Before the product could be recommended for use on farm land, the impurities and their impact on soil productivity had to be assessed. The objectives of this phase of the study were to evaluate the chemical properties of ammonium sulfate made from the FGD-gypsum, to estimate its effects on soil productivity, and to survey the marketability of the two products. The results of this phase of the study indicated that the impurities in the ammonium sulfate produced would not impose any practical limitations on its use at application levels used by farmers. The market survey showed that the sale price of solid ammonium sulfate fertilizer increased significantly from 1974 at $110/ton to 1998 at $187/ton. Utilities currently pay $16 to $20/ton for the calcium carbonate they use in their flue gas scrubber system. The industries making animal-feed grade calcium supplement pay $30/ton to $67/m-ton for their source of calcium carbonate. Paper, paint, and plastic industries pay as much as $200 to $300/ton for their calcium carbonate filers. The increased sale price of solid ammonium sulfate fertilizer and the possible additional revenue from the sale of the PCC by-product could further improve the economics of producing ammonium sulfate from FGD-gypsum.

  20. Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon Nitrososphaera gargensis.

    PubMed

    Men, Yujie; Han, Ping; Helbling, Damian E; Jehmlich, Nico; Herbold, Craig; Gulde, Rebekka; Onnis-Hayden, Annalisa; Gu, April Z; Johnson, David R; Wagner, Michael; Fenner, Kathrin

    2016-05-03

    The biotransformation of some micropollutants has previously been observed to be positively associated with ammonia oxidation activities and the transcript abundance of the archaeal ammonia monooxygenase gene (amoA) in nitrifying activated sludge. Given the increasing interest in and potential importance of ammonia-oxidizing archaea (AOA), we investigated the capabilities of an AOA pure culture, Nitrososphaera gargensis, to biotransform ten micropollutants belonging to three structurally similar groups (i.e., phenylureas, tertiary amides, and tertiary amines). N. gargensis was able to biotransform two of the tertiary amines, mianserin (MIA) and ranitidine (RAN), exhibiting similar compound specificity as two ammonia-oxidizing bacteria (AOB) strains that were tested for comparison. The same MIA and RAN biotransformation reactions were carried out by both the AOA and AOB strains. The major transformation product (TP) of MIA, α-oxo MIA was likely formed via a two-step oxidation reaction. The first hydroxylation step is typically catalyzed by monooxygenases. Three RAN TP candidates were identified from nontarget analysis. Their tentative structures and possible biotransformation pathways were proposed. The biotransformation of MIA and RAN only occurred when ammonia oxidation was active, suggesting cometabolic transformations. Consistently, a comparative proteomic analysis revealed no significant differential expression of any protein-encoding gene in N. gargensis grown on ammonium with MIA or RAN compared with standard cultivation on ammonium only. Taken together, this study provides first important insights regarding the roles played by AOA in micropollutant biotransformation.

  1. Synthesis and Characterization of Tin(IV) Oxide Obtained by Chemical Vapor Deposition Method

    NASA Astrophysics Data System (ADS)

    Nagirnyak, Svitlana V.; Lutz, Victoriya A.; Dontsova, Tatiana A.; Astrelin, Igor M.

    2016-07-01

    The effect of precursors on the characteristics of tin oxide obtained by chemical vapor deposition (CVD) method was investigated. The synthesis of nanosized tin(IV) oxide was carried out with the use of two different precursors: tin(II) oxalate obtained using tin chloride(II) and oxalic acid; tin(II) oxalate obtained using tin chloride(II); and ammonium oxalate. The synthesized tin(IV) oxide samples were studied by electron microscopy, X-ray diffraction and optical spectra. The lattice parameters of tin(IV) oxide samples were defined, the bandgap of samples were calculated.

  2. An assessment of the effects of human-caused air pollution on resources within the interior Columbia River basin.

    Treesearch

    Anna W. Schoettle; Kathy Tonnessen; John Turk; John Vimont; Robert Amundson; Ann Acheson; Janice Peterson

    1999-01-01

    An assessment of existing and potential impacts to vegetation, aquatics, and visibility within the Columbia River basin due to air pollution was conducted as part of the Interior Columbia Basin Ecosystem Management Project. This assessment examined the current situation and potential trends due to pollutants such as ammonium, nitrogen oxides, sulfur oxides,...

  3. The nature of electron acceptor (MnIV/NO3) triggers differential expression of genes associated with stress and ammonium limitation responses in Shewanella algae C6G3.

    PubMed

    Aigle, Axel; Bonin, Patricia; -Nunez, Nicolas Fernandez; Loriod, Béatrice; Guasco, Sophie; Bergon, Aurélie; Armougom, Fabrice; Iobbi-Nivol, Chantal; Imbert, Jean; Michotey, Valérie

    2018-03-16

    Shewanella algae C6G3 can reduce dissimilatively nitrate into ammonium and manganese-oxide (MnIV) into MnII. It has the unusual ability to produce anaerobically nitrite from ammonium in the presence of MnIV. To gain insight into their metabolic capabilities, global mRNA expression patterns were investigated by RNA-seq and qRT-PCR in cells growing with lactate and ammonium as carbon and nitrogen sources and with either MnIV or nitrate as electron acceptors. Gene exhibiting higher expression levels in the presence of MnIV belonged to functional categories of carbohydrate, coenzyme, lipid metabolisms and inorganic ion transport. Comparative transcriptomic pattern between MnIV and NO3 revealed that the strain presented an ammonium limitation status with MnIV, despite the presence of non-limiting concentration of ammonium under both culture conditions. In addition, in presence of MnIV, ntrB/nrtC regulators, ammonium channel, nitrogen regulatory protein P-II, glutamine synthetase and asparagine synthetase glutamine dependent genes were over-represented. Under nitrate condition, the expression of genes involved in the synthesis of several amino acids was increased. Finally, expression level of genes associated with the general stress response was also amplified and among them, katE, a putative catalase/peroxidase present on several Shewanella genomes, was highly expressed with a relative median value higher in MnIV condition.

  4. Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge

    PubMed Central

    Dai, Xiaohu; Yan, Han; Li, Ning; He, Jin; Ding, Yueling; Dai, Lingling; Dong, Bin

    2016-01-01

    A high solid digester with dewatered sludge was operated for 110 days to ascertain the interactions between bacterial and archaeal communities under ammonium stress, as well as the corresponding changes in bio-degradation mechanisms. The volatile solids reduction (95% confidence intervals in mean) changed from 31.6 ± 0.9% in the stable period (day 40–55) to 21.3 ± 1.5% in the last period (day 71–110) when ammonium concentration was elevated to be within 5,000–6,000 mgN/L. Biogas yield dropped accordingly from 11.9 ± 0.3 to 10.4 ± 0.2 L/d and carbon dioxide increased simultaneously from 35.2% to 44.8%. Anaerobranca better adapted to the ammonium stress, while the initially dominant protein-degrading microbes-Tepidimicrobium and Proteiniborus were suppressed, probably responsible for the increase of protein content in digestate. Meanwhile, Methanosarcina, as the dominant Archaea, was resistant to ammonium stress with the constant relative abundance of more than 92% during the whole operation. Nonmetric Multidimensional Scaling (NMDS) analysis was thus conducted which indicated that the gradually increased TAN dictated the bacterial clusters. The dominant Methanosarcina and the increased carbon dioxide content under ammonium stress suggested that, rather than the commonly acknowledged syntrophic acetate oxidation (SAO) with hydrogenotrophic methanogenesis, only SAO pathway was enhanced during the initial ‘ammonium inhibition’. PMID:27312792

  5. Photochemically-induced acid generation from 18-molybdodiphosphate and 18-tungstodiphosphate within poly(2-hydroxyethyl methacrylate) films.

    PubMed

    Douvas, Antonios M; Kapella, Anna; Dimotikali, Dimitra; Argitis, Panagiotis

    2009-06-01

    The capability of ammonium 18-molybdodiphosphate, (NH(4))(6)P(2)Mo(18)O(62) (Mo(18)(6-)), and ammonium 18-tungstodiphosphate, (NH(4))(6)P(2)W(18)O(62) (W(18)(6-)), to photochemically generate acid within films of a polymer with hydroxylic functional groups (namely, within poly(2-hydroxyethyl methacrylate) (PHEMA) films) is demonstrated. Upon UV irradiation, both 2:18 polyoxometalates (POMs) investigated are reduced with concomitant oxidation of PHEMA and generation of acid, which subsequently catalyzes the cross-linking of PHEMA. The photoacid generation is mainly evidenced by monitoring the protonation of an appropriate acid indicator (4-dimethylamino-4'-nitrostilbene) with UV spectroscopy and by photolithographic imaging experiments. By comparing the efficiency of both POMs to induce acid-catalyzed cross-linking of PHEMA under similar conditions, the W(18)(6-) ion is found to be more efficient in photoacid generation than the Mo(18)(6-) ion. Imaging of the POM-containing PHEMA films through UV photolithographic processing is demonstrated. In that process, both POMs can be entirely leached during the development step by using pure water as a developer, resulting in patterned PHEMA films. This characteristic renders the investigated POMs attractive materials for applications, especially in the area of biomaterials, where removal of the photoacid generator from the film at the end of the process is desirable.

  6. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps.

    PubMed

    Gerbl, Friedrich W; Weidler, Gerhard W; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga

    2014-01-01

    Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6-47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with (15)NH4Cl or ((15)NH4)2SO4as sole energy sources revealed incorporation of (15)N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH(+) 4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.

  7. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps

    PubMed Central

    Gerbl, Friedrich W.; Weidler, Gerhard W.; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga

    2014-01-01

    Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6–47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with 15NH4Cl or (15NH4)2SO4as sole energy sources revealed incorporation of 15N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH+4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ. PMID:24904540

  8. Cyanate as energy source for nitrifiers

    PubMed Central

    Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico; Pogoda, Mario; Han, Ping; von Bergen, Martin; Lagkouvardos, Ilias; Karst, Søren M.; Galushko, Alexander; Koch, Hanna; Berry, David; Daims, Holger; Wagner, Michael

    2015-01-01

    Ammonia- and nitrite-oxidizers are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and play essential roles for the global biogeochemical nitrogen cycle. The physiology of these nitrifying microbes has been intensively studied since the first experiments of Sergei Winogradsky more than a century ago. Urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis1 on cyanate as the sole source of energy and reductant, the first organism known to do so. Cyanate, which is a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems2, is converted to ammonium and CO2 by this archaeon using a cyanase that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade that also contains cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite-oxidizers supply ammonia-oxidizers lacking cyanase with ammonium from cyanate, which is fully nitrified by this consortium through reciprocal feeding. Screening of a comprehensive set of more than 3,000 publically available metagenomes from environmental samples revealed that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microbes and suggest a previously unrecognized importance of cyanate for N-cycling in the environment. PMID:26222031

  9. Community structure analysis of soil ammonia oxidizers during vegetation restoration in southwest China.

    PubMed

    Liang, Yueming; He, Xunyang; Liang, Shichu; Zhang, Wei; Chen, Xiangbi; Feng, Shuzheng; Su, Yirong

    2014-03-01

    Soil ammonia oxidizers play a critical role in nitrogen cycling and ecological restoration. The composition and structure of soil ammonia oxidizers and their impacting factors were studied in four typical ecosystem soils, tussock (T), shrub (S), secondary forest (SF), and primary forest (PF), during vegetation restoration in the Karst region of Southwest China. The composition and structure of the ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities were characterized by sequencing the amoA and arch-amoA genes, respectively. The diversity of soil ammonia oxidizers (except in S) and plant Shannon diversity index gradually increased with vegetation restoration, and the ammonia oxidizer communities differed significantly (p < 0.001). Amplicons of AOA from the Nitrososphaera cluster dominated all four ecosystem soils. AOB Nitrosospira cluster 3b only appeared in PF and SF soils, while Nitrosospira cluster 3a species were found in all soils. Changes in AOB paralleled the changes in soil ammonium content that occurred with vegetation restoration. Redundancy analysis showed that the distribution of dominant AOB species was linked to pH, soil urease activity, and soil C/N ratio, whereas the distribution of dominant AOA species was mainly influenced by litter nitrogen content and C/N ratio. These results suggested that the composition and structure of the AOB community were more sensitive to changes in vegetation and soil ammonium content, and may be an important indicator of nitrogen availability in Karst ecosystem soils. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Microbially mediated clinoptilolite regeneration in a multifunctional permeable reactive barrier used to remove ammonium from landfill leachate contamination: laboratory column evaluation.

    PubMed

    Nooten, Thomas Van; Diels, Ludo; Bastiaens, Leen

    2010-05-01

    This study focuses on multifunctional permeable reactive barrier (multibarrier) technology, combining microbial degradation and abiotic ion exchange processes for removal of ammonium from landfill leachate contamination. The sequential multibarrier concept relies on the use of a clinoptilolite-filled buffer compartment to ensure a robust ammonium removal in case of temporary insufficient microbial activities. An innovative strategy was developed to allow in situ clinoptilolite regeneration. Laboratory-scale clinoptilolite-filled columns were first saturated with ammonium, using real landfill leachate as well as synthetic leachates as feed media. Other inorganic metal cations, typically present in landfill leachate, had a detrimental influence on the ammonium removal capacity by competing for clinoptilolite exchange sites. On the other hand, the metals had a highly favorable impact on regeneration of the saturated material. Feeding the columns with leachate deprived from ammonium (e.g., by microbial nitrification in an upgradient compartment), resulted in a complete release of the previously sorbed ammonium from the clinoptilolite, due to exchange with metal cations present in the leachate. The released ammonium is then available for microbial consumption in a downgradient compartment. The regeneration process resulted in a slightly increased ammonium exchange capacity afterward. The described strategy throws a new light on sustainable use of sorption materials for in situ groundwater remediation, by avoiding the need for material replacement and the use of external chemical regenerants.

  11. Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina alterniflora.

    PubMed

    Zheng, Yanling; Hou, Lijun; Liu, Min; Yin, Guoyu; Gao, Juan; Jiang, Xiaofen; Lin, Xianbiao; Li, Xiaofei; Yu, Chendi; Wang, Rong

    2016-09-01

    Anaerobic ammonium oxidation (anammox) as an important nitrogen removal pathway has been investigated in intertidal marshes. However, the rhizosphere-driven anammox process in these ecosystems is largely overlooked so far. In this study, the community dynamics and activities of anammox bacteria in the rhizosphere and non-rhizosphere sediments of salt-marsh grass Spartina alterniflora (a widely distributed plant in estuaries and intertidal ecosystems) were investigated using clone library analysis, quantitative PCR assay, and isotope-tracing technique. Phylogenetic analysis showed that anammox bacterial diversity was higher in the non-rhizosphere sediments (Scalindua and Kuenenia) compared with the rhizosphere zone (only Scalindua genus). Higher abundance of anammox bacteria was detected in the rhizosphere (6.46 × 10(6)-1.56 × 10(7) copies g(-1)), which was about 1.5-fold higher in comparison with that in the non-rhizosphere zone (4.22 × 10(6)-1.12 × 10(7) copies g(-1)). Nitrogen isotope-tracing experiments indicated that the anammox process in the rhizosphere contributed to 12-14 % N2 generation with rates of 0.43-1.58 nmol N g(-1) h(-1), while anammox activity in the non-rhizosphere zone contributed to only 4-7 % N2 production with significantly lower activities (0.28-0.83 nmol N g(-1) h(-1)). Overall, we propose that the rhizosphere microenvironment in intertidal marshes might provide a favorable niche for anammox bacteria and thus plays an important role in nitrogen cycling.

  12. Vertical segregation among pathways mediating nitrogen loss (N2 and N2O production) across the oxygen gradient in a coastal upwelling ecosystem

    NASA Astrophysics Data System (ADS)

    Galán, Alexander; Thamdrup, Bo; Saldías, Gonzalo S.; Farías, Laura

    2017-10-01

    The upwelling system off central Chile (36.5° S) is seasonally subjected to oxygen (O2)-deficient waters, with a strong vertical gradient in O2 (from oxic to anoxic conditions) that spans a few metres (30-50 m interval) over the shelf. This condition inhibits and/or stimulates processes involved in nitrogen (N) removal (e.g. anammox, denitrification, and nitrification). During austral spring (September 2013) and summer (January 2014), the main pathways involved in N loss and its speciation, in the form of N2 and/or N2O, were studied using 15N-tracer incubations, inhibitor assays, and the natural abundance of nitrate isotopes along with hydrographic information. Incubations were developed using water retrieved from the oxycline (25 m depth) and bottom waters (85 m depth) over the continental shelf off Concepción, Chile. Results of 15N-labelled incubations revealed higher N removal activity during the austral summer, with denitrification as the dominant N2-producing pathway, which occurred together with anammox at all times. Interestingly, in both spring and summer maximum potential N removal rates were observed in the oxycline, where a greater availability of oxygen was observed (maximum O2 fluctuation between 270 and 40 µmol L-1) relative to the hypoxic bottom waters ( < 20 µmol O2 L-1). Different pathways were responsible for N2O produced in the oxycline and bottom waters, with ammonium oxidation and dissimilatory nitrite reduction, respectively, as the main source processes. Ammonium produced by dissimilatory nitrite reduction to ammonium (DNiRA) could sustain both anammox and nitrification rates, including the ammonium utilized for N2O production. The temporal and vertical variability of δ15N-NO3- confirms that multiple N-cycling processes are modulating the isotopic nitrate composition over the shelf off central Chile during spring and summer. N removal processes in this coastal system appear to be related to the availability and distribution of oxygen and particles, which are a source of organic matter and the fuel for the production of other electron donors (i.e. ammonium) and acceptors (i.e. nitrate and nitrite) after its remineralization. These results highlight the links between several pathways involved in N loss. They also establish that different mechanisms supported by alternative N substrates are responsible for substantial accumulation of N2O, which are frequently observed as hotspots in the oxycline and bottom waters. Considering the extreme variation in oxygen observed in several coastal upwelling systems, these findings could help to understand the ecological and biogeochemical implications due to global warming where intensification and/or expansion of the oceanic OMZs is projected.

  13. Synthesis of porous sheet-like Co{sub 3}O{sub 4} microstructure by precipitation method and its potential applications in the thermal decomposition of ammonium perchlorate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Shanshan; Jing Xiaoyan; Liu Jingyuan

    2013-01-15

    Porous sheet-like cobalt oxide (Co{sub 3}O{sub 4}) were successfully synthesized by precipitation method combined with calcination of cobalt hydroxide precursors. The structure, morphology and porosity properties of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption measurement. The as-prepared sheet-like microstructures were approximately 2-3 {mu}m in average diameter, and the morphology of the cobalt hydroxide precursors was retained after the calcination process. However, it appeared a large number of uniform pores in the sheets after calcination. In order to calculate the potential catalytic activity, the thermal decomposition of ammoniummore » perchlorate (AP) has been analyzed, in which cobalt oxide played a role of an additive and the porous sheet-like Co{sub 3}O{sub 4} microstructures exhibited high catalytic performance and considerable decrease in the thermal decomposition temperature of AP. Moreover, a formation mechanism for the sheet-like microstructures has been discussed. - Graphical abstract: Porous sheet-like Co{sub 3}O{sub 4} were synthesized by facile precipitation method combined with calcination of {beta}-Co(OH){sub 2} precursors. Thermogravimetric-differential scanning calorimetric analysis indicates potential catalytic activity in the thermal decomposition of ammonium perchlorate. Highlights: Black-Right-Pointing-Pointer Synthesis of sheet-like {beta}-Co(OH){sub 2} precursors by precipitation method. Black-Right-Pointing-Pointer Porous sheet-like Co{sub 3}O{sub 4} were obtained by calcining {beta}-Co(OH){sub 2} precursors. Black-Right-Pointing-Pointer The possible formation mechanism of porous sheet-like Co{sub 3}O{sub 4} has been discussed. Black-Right-Pointing-Pointer Porous sheet-like Co{sub 3}O{sub 4} decrease the thermal decomposition temperature of ammonium perchlorate.« less

  14. The pH Dependence of Brown Carbon Formation in Maillard Chemistry

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; Welsh, H.; Alexander, M. V.

    2017-12-01

    Secondary organic aerosol (SOA) composes a non-negligible fraction of brown carbon (BrC), and typically appears as small, nitrated aromatics or larger, highly functionalized humic-like substances (HULIS). Both nitrated aromatics and HULIS contain nitrogen, indicating the importance of nitrogen to light-absorbing aerosol. It is therefore unsurprising that BrC, when generated in aqueous phase reactions (aqBrC) between amines and small aldehydes, often resembles atmospheric HULIS. The effects of pH and aqueous phase oxidation on absorptivity and composition were simulated using bulk (microliter) samples under a variety of experimental conditions, including evaporation. The system of amines and small aldehydes included methylamine, ammonium sulfate, glyoxal, and methylglyoxal. Chemical composition of these products was characterized using an Aerosol Chemical Speciation Monitor (ACSM) and a desorption-based atmospheric pressure chemical ionization (APCI) spectrometer. The results of this study indicate that methylamine and methylglyoxal form the most absorptive BrC, cloud processing serves to increase BrC absorptivity, and the generated BrC is highly persistent to oxidative and photodegradation. Lowering the pH to values below 6 reduces absorptivity at shorter wavelengths, but produces a new shoulder beyond 400 nm indicating new chromophore formation. Results of this research also show that evaporation increased formation of large molecular fragments (m/z > 100). Furthermore, the mass spectra showed significant formation of these larger fragments in methylamine systems with little evidence for similar compounds in ammonium sulfate systems. Systems with methylglyoxal had higher absorptivity than all other systems, although in both methylamine and ammonium sulfate systems, glyoxal appeared to result in a higher percentage of large fragments than methylglyoxal. Lastly, hydroxyl radical degradation seemed to have a minimal effect on absorptivity and composition, although longer reaction time may produce a larger effect on both properties. These results may simplify some aspects of atmospheric models (like negligible degradation) but may complicate others (highly variable absorptivity between glyoxal and methylglyoxal).

  15. Direct esterification of ammonium salts of carboxylic acids

    DOEpatents

    Halpern, Yuval [Skokie, IL

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  16. Stoichiometric evaluation of partial nitritation, anammox and denitrification processes in a sequencing batch reactor and interpretation of online monitoring parameters.

    PubMed

    Langone, Michela; Ferrentino, Roberta; Cadonna, Maria; Andreottola, Gianni

    2016-12-01

    A laboratory-scale sequencing batch reactor (SBR) performing partial nitritation - anammox and denitrification was used to treat anaerobic digester effluents. The SBR cycle consisted of a short mixing filling phase followed by oxic and anoxic reaction phases. Working at 25 °C, an ammonium conversion efficiency of 96.5%, a total nitrogen removal efficiency of 88.6%, and an organic carbon removal efficiency of 63.5% were obtained at a nitrogen loading rate of 0.15 kg N m -3 d -1 , and a biodegradable organic carbon to nitrogen ratio of 0.37. The potential contribution of each biological process was evaluated by using a stoichiometric model. The nitritation contribution decreased as the temperature decreased, while the contribution from anammox depended on the wastewater type and soluble carbon to nitrogen ratio. Denitrification improved the total nitrogen removal efficiency, and it was influenced by the biodegradable organic carbon to nitrogen ratio. The characteristic patterns of conductivity, oxidation-reduction potential (ORP) and pH in the SBR cycle were well related to biological processes. Conductivity profiles were found to be directly related to the decreasing profiles of ammonium. Positive ORP values at the end of the anoxic phases were detected for total nitrogen removal efficiency of lower than 85%, and the occurrence of bending points on the ORP curves during the anoxic phases was associated with nitrite depletion by the anammox process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Impacts of Edaphic Factors on Communities of Ammonia-Oxidizing Archaea, Ammonia-Oxidizing Bacteria and Nitrification in Tropical Soils

    PubMed Central

    de Gannes, Vidya; Eudoxie, Gaius; Hickey, William J.

    2014-01-01

    Nitrification is a key process in soil nitrogen (N) dynamics, but relatively little is known about it in tropical soils. In this study, we examined soils from Trinidad to determine the edaphic drivers affecting nitrification levels and community structure of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in non-managed soils. The soils were naturally vegetated, ranged in texture from sands to clays and spanned pH 4 to 8. The AOA were detected by qPCR in all soils (ca. 105 to 106 copies archaeal amoA g−1 soil), but AOB levels were low and bacterial amoA was infrequently detected. AOA abundance showed a significant negative correlation (p<0.001) with levels of soil organic carbon, clay and ammonium, but was not correlated to pH. Structures of AOA and AOB communities, as determined by amoA terminal restriction fragment (TRF) analysis, differed significantly between soils (p<0.001). Variation in AOA TRF profiles was best explained by ammonium-N and either Kjeldahl N or total N (p<0.001) while variation in AOB TRF profiles was best explained by phosphorus, bulk density and iron (p<0.01). In clone libraries, phylotypes of archaeal amoA (predominantly Nitrososphaera) and bacterial amoA (predominanatly Nitrosospira) differed between soils, but variation was not correlated with pH. Nitrification potential was positively correlated with clay content and pH (p<0.001), but not to AOA or AOB abundance or community structure. Collectively, the study showed that AOA and AOB communities were affected by differing sets of edaphic factors, notably that soil N characteristics were significant for AOA, but not AOB, and that pH was not a major driver for either community. Thus, the effect of pH on nitrification appeared to mainly reflect impacts on AOA or AOB activity, rather than selection for AOA or AOB phylotypes differing in nitrifying capacity. PMID:24586878

  18. Sensitivity analyses of factors influencing CMAQ performance for fine particulate nitrate.

    PubMed

    Shimadera, Hikari; Hayami, Hiroshi; Chatani, Satoru; Morino, Yu; Mori, Yasuaki; Morikawa, Tazuko; Yamaji, Kazuyo; Ohara, Toshimasa

    2014-04-01

    Improvement of air quality models is required so that they can be utilized to design effective control strategies for fine particulate matter (PM2.5). The Community Multiscale Air Quality modeling system was applied to the Greater Tokyo Area of Japan in winter 2010 and summer 2011. The model results were compared with observed concentrations of PM2.5 sulfate (SO4(2-)), nitrate (NO3(-)) and ammonium, and gaseous nitric acid (HNO3) and ammonia (NH3). The model approximately reproduced PM2.5 SO4(2-) concentration, but clearly overestimated PM2.5 NO3(-) concentration, which was attributed to overestimation of production of ammonium nitrate (NH4NO3). This study conducted sensitivity analyses of factors associated with the model performance for PM2.5 NO3(-) concentration, including temperature and relative humidity, emission of nitrogen oxides, seasonal variation of NH3 emission, HNO3 and NH3 dry deposition velocities, and heterogeneous reaction probability of dinitrogen pentoxide. Change in NH3 emission directly affected NH3 concentration, and substantially affected NH4NO3 concentration. Higher dry deposition velocities of HNO3 and NH3 led to substantial reductions of concentrations of the gaseous species and NH4NO3. Because uncertainties in NH3 emission and dry deposition processes are probably large, these processes may be key factors for improvement of the model performance for PM2.5 NO3(-). The Community Multiscale Air Quality modeling system clearly overestimated the concentration of fine particulate nitrate in the Greater Tokyo Area of Japan, which was attributed to overestimation of production of ammonium nitrate. Sensitivity analyses were conducted for factors associated with the model performance for nitrate. Ammonia emission and dry deposition of nitric acid and ammonia may be key factors for improvement of the model performance.

  19. Impact of short-term acidification on nitrification and nitrifying bacterial community dynamics in soilless cultivation media.

    PubMed

    Cytryn, Eddie; Levkovitch, Irit; Negreanu, Yael; Dowd, Scot; Frenk, Sammy; Silber, Avner

    2012-09-01

    Soilless medium-based horticulture systems are highly prevalent due to their capacity to optimize growth of high-cash crops. However, these systems are highly dynamic and more sensitive to physiochemical and pH perturbations than traditional soil-based systems, especially during nitrification associated with ammonia-based fertilization. The objective of this study was to assess the impact of nitrification-generated acidification on ammonia oxidation rates and nitrifying bacterial community dynamics in soilless growth media. To achieve this goal, perlite soilless growth medium from a commercial bell pepper greenhouse was incubated with ammonium in bench-scale microcosm experiments. Initial quantitative real-time PCR analysis indicated that betaproteobacterial ammonia oxidizers were significantly more abundant than ammonia-oxidizing archaea, and therefore, research focused on this group. Ammonia oxidation rates were highest between 0 and 9 days, when pH values dropped from 7.4 to 4.9. Pyrosequencing of betaproteobacterial ammonia-oxidizing amoA gene fragments indicated that r-strategist-like Nitrosomonas was the dominant ammonia-oxidizing bacterial genus during this period, seemingly due to the high ammonium concentration and optimal growth conditions in the soilless media. Reduction of pH to levels below 4.8 resulted in a significant decrease in both ammonia oxidation rates and the diversity of ammonia-oxidizing bacteria, with increased relative abundance of the r-strategist-like Nitrosospira. Nitrite oxidizers (Nitrospira and Nitrobacter) were on the whole more abundant and less sensitive to acidification than ammonia oxidizers. This study demonstrates that nitrification and nitrifying bacterial community dynamics in high-N-load intensive soilless growth media may be significantly different from those in in-terra agricultural systems.

  20. Impact of Short-Term Acidification on Nitrification and Nitrifying Bacterial Community Dynamics in Soilless Cultivation Media

    PubMed Central

    Levkovitch, Irit; Negreanu, Yael; Dowd, Scot; Frenk, Sammy; Silber, Avner

    2012-01-01

    Soilless medium-based horticulture systems are highly prevalent due to their capacity to optimize growth of high-cash crops. However, these systems are highly dynamic and more sensitive to physiochemical and pH perturbations than traditional soil-based systems, especially during nitrification associated with ammonia-based fertilization. The objective of this study was to assess the impact of nitrification-generated acidification on ammonia oxidation rates and nitrifying bacterial community dynamics in soilless growth media. To achieve this goal, perlite soilless growth medium from a commercial bell pepper greenhouse was incubated with ammonium in bench-scale microcosm experiments. Initial quantitative real-time PCR analysis indicated that betaproteobacterial ammonia oxidizers were significantly more abundant than ammonia-oxidizing archaea, and therefore, research focused on this group. Ammonia oxidation rates were highest between 0 and 9 days, when pH values dropped from 7.4 to 4.9. Pyrosequencing of betaproteobacterial ammonia-oxidizing amoA gene fragments indicated that r-strategist-like Nitrosomonas was the dominant ammonia-oxidizing bacterial genus during this period, seemingly due to the high ammonium concentration and optimal growth conditions in the soilless media. Reduction of pH to levels below 4.8 resulted in a significant decrease in both ammonia oxidation rates and the diversity of ammonia-oxidizing bacteria, with increased relative abundance of the r-strategist-like Nitrosospira. Nitrite oxidizers (Nitrospira and Nitrobacter) were on the whole more abundant and less sensitive to acidification than ammonia oxidizers. This study demonstrates that nitrification and nitrifying bacterial community dynamics in high-N-load intensive soilless growth media may be significantly different from those in in-terra agricultural systems. PMID:22773643

  1. Mechanism and toxicity research of benzalkonium chloride oxidation in aqueous solution by H2O2/Fe(2+) process.

    PubMed

    Zhang, Qian; Xia, Yu-Feng; Hong, Jun-Ming

    2016-09-01

    As widely used disinfectants, the pollution caused by benzalkonium chloride (BAC) has attracted a lot of attention in recent years. Since it is not suitable for biodegradation, BAC was degraded firstly by Fenton advanced oxidation technologies (AOTs) in this research to enhance the biodegradability of the pollutions. The result revealed that the optimal molar ratio of H2O2/Fe(2+) for BAC degradation was 10:1, and the COD removal rate was 32 %. To clarify the pathway of degradation, the technique of GC-MS was implemented herein to identify intermediates and the toxicity of those BAC intermediates were also novelty tested through microbial fuel cells (MFC). The findings indicated that ten transformation products including benzyl dimethyl amine and dodecane were formed during the H2O2/Fe(2+) processes, which means the degradation pathway of BAC was initiated both on the hydrophobic (alkyl chain) and hydrophilic (benzyl and ammonium moiety) region of the surfactant. The toxicity of BAC before and after treated by Fenton process was monitored through MFC system. The electricity generation was improved 337 % after BAC was treated by H2O2/Fe(2+) oxidation processes which indicated that the toxicity of those intermediates were much lower than BAC. The mechanism and toxicity research in this paper could provide the in-depth understanding to the pathway of BAC degradation and proved the possibility of AOTs for the pretreatment of a biodegradation process.

  2. High-Nitrogen-Based Pyrotechnics: Development of Perchlorate-Free Green-Light Illuminants for Military and Civilian Applications

    DTIC Science & Technology

    2012-01-01

    Table 1. Magnesium served as the main fuel in the formulation, barium nitrate and potassium per- chlorate served as the oxidizers, and dechlorane plus...course of the investigation needed to be changed. Although the initial investigation set out to remove potassium per- chlorate oxidizer from the M195 HHS...become a concern of the US Department of Defense is the “perchlorate issue.” Potassium perchlorate and ammonium perchlorate oxidizers, once believed to be

  3. The activity of nitrifying microorganisms in a high-altitude Andean wetland.

    PubMed

    Molina, Verónica; Dorador, Cristina; Fernández, Camila; Bristow, Laura; Eissler, Yoanna; Hengst, Martha; Hernandez, Klaudia; Olsen, Lasse Mork; Harrod, Chris; Marchant, Francisca; Anguita, Cristobal; Cornejo, Marcela

    2018-06-01

    High-altitude wetland holds freshwater springs, evaporitic ponds and lagoon with variable salinity and nutrients, potentially influencing the ecology of nitrifying communities. In this study, nitrifying microorganisms in Salar de Huasco (Chile) were surveyed to determine bacterial and archaeal contribution to ammonium (AO), nitrite oxidation (NO), ammonium uptake (AU) during wet and dry seasons. The activity signals from these groups were assessed by specific amoA-qPCR transcription, 15N tracer studies and addition of group specific inhibitor experiments for nitrifying microorganisms (N1-guanyl-1, 7-diaminoheptane [GC7]-archaeal specific and allylthiourea [ATU]-bacterial specific). Nitrifying communities, i.e. Nitrosopumilus, Nitrosospira, Nitrosomonas, Kuenenia and Nitrospira, were more frequent (∼0.25% of 16S rRNA sequences) at low salinity sites. Bacterial amoA-qPCR transcripts also increased at low salinity and along in situ ammonium increase observed between wet/dry seasons. Nutrient changes through time and 15N tracer experiments results showed that AO and NO were detected and peaked mainly at low salinity-high ammonium sites (<37 000 μS cm-1 and >0.3 μM), whereas AU was predominant at evaporitic sites. Our results indicate that salinity and ammonium affect the nitrifying communities that are potentially more active at low-salinity sites but persistent at saltier evaporitic areas of the wetland when ammonium is available.

  4. Integrative response of plant mitochondrial electron transport chain to nitrogen source.

    PubMed

    Hachiya, Takushi; Noguchi, Ko

    2011-02-01

    Nitrogen (N) availability is widely known as a determinant of plant growth and respiration rate. However, less attention has been paid to the effect of the type of N source (nitrate, nitrite or ammonium) on the respiratory system. This review summarizes the latest findings on this topic, with an emphasis on the effect of ammonium and nitric oxide (NO) on the respiratory system, and the physiological role of alternative oxidase (AOX). First, concentrated ammonium has been found to increase plant respiration rate (ammonium-dependent respiratory increase, ARI). We will introduce two hypotheses to explain ARI, futile ammonium cycling and excess reducing equivalents, and verify the validity of each hypothesis. We suggest that these two hypotheses are not necessarily mutually exclusive. Second, gene expression of AOX is suppressed when N is predominately available as nitrate instead of ammonium. We will discuss possible signaling pathways leading to this expression pattern. Third, while AOX expression is induced by NO, AOX activity itself is insensitive to NO. In contrast, activity of cytochrome c oxidase (COX) is sensitive to NO. We outline the NO production pathway, focusing on nitrite-dependent NO production, and discuss the physiological significance of the fact that AOX activity is insensitive to NO. Finally, this review aims to build an integrated scheme of the respiratory response to the type of N source, considering leaves in high light conditions or hypoxic roots.

  5. Ammonium addition (and aerosol pH) has a dramatic impact on the volatility and yield of glyoxal secondary organic aerosol.

    PubMed

    Ortiz-Montalvo, Diana L; Häkkinen, Silja A K; Schwier, Allison N; Lim, Yong B; McNeill, V Faye; Turpin, Barbara J

    2014-01-01

    Glyoxal is an important precursor to secondary organic aerosol (SOA) formed through aqueous chemistry in clouds, fogs, and wet aerosols, yet the gas-particle partitioning of the resulting mixture is not well understood. This work characterizes the volatility behavior of the glyoxal precursor/product mix formed after aqueous hydroxyl radical oxidation and droplet evaporation under cloud-relevant conditions for 10 min, thus aiding the prediction of SOA via this pathway (SOACld). This work uses kinetic modeling for droplet composition, droplet evaporation experiments and temperature-programmed desorption aerosol-chemical ionization mass spectrometer analysis of gas-particle partitioning. An effective vapor pressure (p'L,eff) of ∼10(-7) atm and an enthalpy of vaporization (ΔHvap,eff) of ∼70 kJ/mol were estimated for this mixture. These estimates are similar to those of oxalic acid, which is a major product. Addition of ammonium until the pH reached 7 (with ammonium hydroxide) reduced the p'L,eff to <10(-9) atm and increased the ΔHvap,eff to >80 kJ/mol, at least in part via the formation of ammonium oxalate. pH 7 samples behaved like ammonium oxalate, which has a vapor pressure of ∼10(-11) atm. We conclude that ammonium addition has a large effect on the gas-particle partitioning of the mixture, substantially enhancing the yield of SOACld from glyoxal.

  6. Dynamics of nitrifying bacterial communities in the Seine river and estuary as affected by changes in the treatment of Paris wastewater : a comparison of 2001-2003 vs 2012-2013 periods

    NASA Astrophysics Data System (ADS)

    Aissa Grouz, Najla; Billen, Gilles; Garnier, Josette; Mercier, Benjamin; Martinez, Anun

    2014-05-01

    The major branch of the Seine river from the confluence with the Marne river to the entrance of the estuary is deeply affected by the release of wastewater from the huge Paris agglomeration. In the first years of 2000, the largest part of the effluents were still discharged at the Seine-Aval (Achères) treatment plant with only a standard, low residence time, activated sludge treatment, thus releasing a high ammonium load. NH4 concentration as high as 7 mgN/l were frequently observed downstream from Paris agglomeration. Cébron et al. (2003, 2005) and Garnier et al. 2007 described in details how this massive reduced nitrogen concentrations triggered the growth of nitrifying bacteria, already present in the upstream Seine and Marne rivers, but also brought in large amount by the effluents of the wastewater treatment plant themselves. The decrease of ammonium concentration was slow, however, and was only completed 200 km downstream, in the upper estuarine area, where it causes a severe oxygen deficiency. Since 2007, important changes occurred in the treatment of nitrogen in the Parisian wastewater purification plants. In 2007, the Seine-Aval plant treated up to 90% of the ammonium contained in wastewater through nitrification, and 30% of the total supply of nitrates is treated by denitrification. These modifications have of course favorably affected the water quality of the Seine river: ammonium concentrations are reduced by a factor of 5 and the area of oxygen depletion in the upstream estuary is no more observed. However, nitrites, still released in the effluents, are a matter of concern for the water quality of the Seine downstream from Paris. Using measurements of potential microbial activities carried out with the same experimental protocol for the 2000-2003 and 2012-2013 periods, we here examine and model the dynamics of ammonium oxidizing and nitrite oxidizing microbial populations before and after the implementation of nitrification treatment of Paris wastewaters. We show that, although large amounts of ammonium oxidizing microbes are still released in large amounts with the treated effluents, they no longer grows up in the Seine water by lack of substrate in sufficiently high concentration. The same is true for nitrite oxidizing micro-organisms, which explains the slow disappearance of nitrites from the downstream sector of the Seine River. The maximum turbidity zone of the downstream estuary acts as a concentrator of particulate material. The concentration of nitrifying bacteria observed there is therefore a good indicator of the development of nitrifiers in the downstream sector of the Seine. Comparison of the levels observed in the 2000-2003 period and in 2012 fully confirms our interpretation. In August-September 2013, a dysfunction of the Seine-Aval treatment plant occurred, and large amounts of incompletely nitrified effluents were released, so that high ammonium concentrations were still observed in the river. Interestingly, the dynamics of nitrifying microbial populations recorded during this event, contrasted with that observed in the preceding months, and more closely resembled that observed ten year ago, before the implementation of the new treatment in the wastewater purification plant.

  7. Inorganic Halogen Oxidizer Research.

    DTIC Science & Technology

    1980-03-17

    Synthesis, Novel Oxidizers, Solid-Propellant NF3 /F2 Gas Generators, Perfluoro- a- ammonium Salts, Perchlorates, Pentafluorooxouranate, Fluorosulfate...kcal mol I previously reported.’ by immersion into i constant-temperature 140.05 () circulating oil The fact that the small mole fraction ranges of...reactor higher tenperatures over almost t he entire nnole fraction () into the hot oil bath. the reactor was evacnaied. and the pressure range A mxpical

  8. Reaction rate constants and mean population percentage for nitrifiers in an alternating oxidation ditch system.

    PubMed

    Mantziaras, I D; Katsiri, A

    2011-01-01

    This paper presents a methodology for the determination of reaction rate constants for nitrifying bacteria and their mean population percentage in biomass in an alternating oxidation ditch system. The method used is based on the growth rate equations of the ASM1 model (IWA) (Henze et al. in Activated sludge models ASM1, ASM2, ASM2d, and ASM3. IWA Scientific and Technical Report no. 9, IWA Publishing, London, UK, 2000) and the application of mass balance equations for nitrifiers and ammonium nitrogen in an operational cycle of the ditch system. The system consists of two ditches operating in four phases. Data from a large-scale oxidation ditch pilot plant with a total volume of 120 m(3) within an experimental period of 8 months was used. Maximum specific growth rate for autotrophs (μ(A)) and the half-saturation constant for ammonium nitrogen (K(NH)) were found to be 0.36 day(-1) and 0.65 mgNH(4)-N/l, respectively. Additionally, the average population percentage of the nitrifiers in the biomass was estimated to be around 3%.

  9. Effect of Copper Oxide, Titanium Dioxide, and Lithium Fluoride on the Thermal Behavior and Decomposition Kinetics of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Vargeese, Anuj A.; Mija, S. J.; Muralidharan, Krishnamurthi

    2014-07-01

    Ammonium nitrate (AN) is crystallized along with copper oxide, titanium dioxide, and lithium fluoride. Thermal kinetic constants for the decomposition reaction of the samples were calculated by model-free (Friedman's differential and Vyzovkins nonlinear integral) and model-fitting (Coats-Redfern) methods. To determine the decomposition mechanisms, 12 solid-state mechanisms were tested using the Coats-Redfern method. The results of the Coats-Redfern method show that the decomposition mechanism for all samples is the contracting cylinder mechanism. The phase behavior of the obtained samples was evaluated by differential scanning calorimetry (DSC), and structural properties were determined by X-ray powder diffraction (XRPD). The results indicate that copper oxide modifies the phase transition behavior and can catalyze AN decomposition, whereas LiF inhibits AN decomposition, and TiO2 shows no influence on the rate of decomposition. Possible explanations for these results are discussed. Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Energetic Materials to view the free supplemental file.

  10. Atomic layer deposition of iron oxide on reduced graphene oxide and its catalytic activity in the thermal decomposition of ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Yan, Ning; Qin, Lijun; Li, Jianguo; Zhao, Fengqi; Feng, Hao

    2018-09-01

    Reduced graphene oxide (rGO) decorated with finely dispersed Fe2O3 nanoparticles (rGO@Fe2O3) was prepared through a facile atomic layer deposition (ALD) route. Compositional and morphological characterizations were conducted using various techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). A uniform dispersion of densely packed Fe2O3 nanoparticles has been successfully achieved on the graphene nanosheets, leading to improved spatial distribution as well as increased number of active sites compared to unsupported Fe2O3 nanoparticles. Differential scanning calorimetry (DSC) results show that rGO@Fe2O3 composites exhibit excellent catalytic activities in the thermal decomposition of ammonium perchlorate (AP), which are probably due to the synergistic effect of the rGO nanosheets and the supported Fe2O3 nanoparticles. ALD has been proved to be an effective approach to design and develop new classes of materials as efficient combustion catalysts.

  11. 76 FR 46907 - Ammonium Nitrate Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ...; Comments on how likely ammonium nitrate fertilizer users would be to use an alternative fertilizer that is potentially less detonable, such as Sulf-N[supreg] 26 Fertilizer Process and Product (ammonium sulfate nitrate fertilizer) which DHS recently Designated as a Qualified Anti-Terrorism Technology (QATT) pursuant to 6 U.S.C...

  12. METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Tolley, W.B.; Smith, R.C.

    1959-12-15

    A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

  13. Nitrated graphene oxide and its catalytic activity in thermal decomposition of ammonium perchlorate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenwen; Luo, Qingping; Duan, Xiaohui

    2014-02-01

    Highlights: • The NGO was synthesized by nitrifying homemade GO. • The N content of resulted NGO is up to 1.45 wt.%. • The NGO can facilitate the decomposition of AP and release much heat. - Abstract: Nitrated graphene oxide (NGO) was synthesized by nitrifying homemade GO with nitro-sulfuric acid. Fourier transform infrared spectroscopy (FTIR), laser Raman spectroscopy, CP/MAS {sup 13}C NMR spectra and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure of NGO. The thickness and the compositions of GO and NGO were analyzed by atomic force microscopy (AFM) and elemental analysis (EA), respectively. The catalytic effectmore » of the NGO for the thermal decomposition of ammonium perchlorate (AP) was investigated by differential scanning calorimetry (DSC). Adding 10% of NGO to AP decreases the decomposition temperature by 106 °C and increases the apparent decomposition heat from 875 to 3236 J/g.« less

  14. Ion generation and CPC detection efficiency studies in sub 3-nm size range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kangasluoma, J.; Junninen, H.; Sipilae, M.

    2013-05-24

    We studied the chemical composition of commonly used condensation particle counter calibration ions with a mass spectrometer and found that in our calibration setup the negatively charged ammonium sulphate, sodium chloride and tungsten oxide are the least contaminated whereas silver on both positive and negative and the three mentioned earlier in positive mode are contaminated with organics. We report cut-off diameters for Airmodus Particle Size Magnifier (PSM) 1.1, 1.3, 1.4, 1.6 and 1.6-1.8 nm for negative sodium chloride, ammonium sulphate, tungsten oxide, silver and positive organics, respectively. To study the effect of sample relative humidity on detection efficiency of themore » PSM we used different humidities in the differential mobility analyzer sheath flow and found that with increasing relative humidity also the detection efficiency of the PSM increases.« less

  15. Chemically bonded phospho-silicate ceramics

    DOEpatents

    Wagh, Arun S.; Jeong, Seung Y.; Lohan, Dirk; Elizabeth, Anne

    2003-01-01

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  16. Analyzing the revolution of anaerobic ammonium oxidation (anammox) performance and sludge characteristics under zinc inhibition.

    PubMed

    Zhang, Qian-Qian; Zhang, Zheng-Zhe; Guo, Qiong; Wang, Jiao-Jiao; Wang, Hui-Zhong; Jin, Ren-Cun

    2015-04-01

    In the present study, the short- and long-term effects of Zn(II) on the anaerobic ammonium oxidation (anammox) performance and sludge characteristics were evaluated. The anammox activity decreased with increasing Zn(II) concentration and pre-exposure time in short-term tests. The half maximal inhibitory concentration (IC50) of Zn(II) was found to be 25.0 mg L(-1). The 24 and 48-h pre-exposure time was a restricted factor impacting the anammox activity, and washing the inhibited sludge with buffer solution only worked under 0 and 24-h pre-exposure time. The anammox sludge could tolerate 5 mg L(-1) Zn(II) but was suppressed at 8 mg L(-1). The inhibited performance could be remitted, as the combination strategies were applied, and after the short term of recovery period, the inhibited sludge characteristics were remitted to the normal.

  17. Controls of Sediment Nitrogen Dynamics in Tropical Coastal Lagoons

    PubMed Central

    Enrich-Prast, Alex; Figueiredo, Viviane; Esteves, Francisco de Assis; Nielsen, Lars Peter

    2016-01-01

    Sediment denitrification rates seem to be lower in tropical environments than in temperate environments. Using the isotope pairing technique, we measured actual denitrification rates in the sediment of tropical coastal lagoons. To explain the low denitrification rates observed at all study sites (<5 μmol N2 m-2 h-1), we also evaluated potential oxygen (O2) consumption, potential nitrification, potential denitrification, potential anammox, and estimated dissimilatory nitrate (NO3-) reduction to ammonium (NH4+; DNRA) in the sediment. 15NO3- and 15NH4+ conversion was measured in oxic and anoxic slurries from the sediment surface. Sediment potential O2 consumption was used as a proxy for overall mineralization activity. Actual denitrification rates and different potential nitrogen (N) oxidation and reduction processes were significantly correlated with potential O2 consumption. The contribution of potential nitrification to total O2 consumption decreased from contributing 9% at sites with the lowest sediment mineralization rates to less than 0.1% at sites with the highest rates. NO3- reduction switched completely from potential denitrification to estimated DNRA. Ammonium oxidation and nitrite (NO2-) reduction by potential anammox contributed up to 3% in sediments with the lowest sediment mineralization rates. The majority of these patterns could be explained by variations in the microbial environments from stable and largely oxic conditions at low sediment mineralization sites to more variable conditions and the prevalences of anaerobic microorganisms at high sediment mineralization sites. Furthermore, the presence of algal and microbial mats on the sediment had a significant effect on all studied processes. We propose a theoretical model based on low and high sediment mineralization rates to explain the growth, activity, and distribution of microorganisms carrying out denitrification and DNRA in sediments that can explain the dominance or coexistence of DNRA and denitrification processes. The results presented here show that the potential activity of anaerobic nitrate-reducing organisms is not dependent on the availability of environmental NO3-. PMID:27175907

  18. Controls of Sediment Nitrogen Dynamics in Tropical Coastal Lagoons.

    PubMed

    Enrich-Prast, Alex; Figueiredo, Viviane; Esteves, Francisco de Assis; Nielsen, Lars Peter

    2016-01-01

    Sediment denitrification rates seem to be lower in tropical environments than in temperate environments. Using the isotope pairing technique, we measured actual denitrification rates in the sediment of tropical coastal lagoons. To explain the low denitrification rates observed at all study sites (<5 μmol N2 m-2 h-1), we also evaluated potential oxygen (O2) consumption, potential nitrification, potential denitrification, potential anammox, and estimated dissimilatory nitrate (NO3-) reduction to ammonium (NH4+; DNRA) in the sediment. 15NO3- and 15NH4+ conversion was measured in oxic and anoxic slurries from the sediment surface. Sediment potential O2 consumption was used as a proxy for overall mineralization activity. Actual denitrification rates and different potential nitrogen (N) oxidation and reduction processes were significantly correlated with potential O2 consumption. The contribution of potential nitrification to total O2 consumption decreased from contributing 9% at sites with the lowest sediment mineralization rates to less than 0.1% at sites with the highest rates. NO3- reduction switched completely from potential denitrification to estimated DNRA. Ammonium oxidation and nitrite (NO2-) reduction by potential anammox contributed up to 3% in sediments with the lowest sediment mineralization rates. The majority of these patterns could be explained by variations in the microbial environments from stable and largely oxic conditions at low sediment mineralization sites to more variable conditions and the prevalences of anaerobic microorganisms at high sediment mineralization sites. Furthermore, the presence of algal and microbial mats on the sediment had a significant effect on all studied processes. We propose a theoretical model based on low and high sediment mineralization rates to explain the growth, activity, and distribution of microorganisms carrying out denitrification and DNRA in sediments that can explain the dominance or coexistence of DNRA and denitrification processes. The results presented here show that the potential activity of anaerobic nitrate-reducing organisms is not dependent on the availability of environmental NO3-.

  19. Formation of Oxidized Organic Aerosol (OOA) through Fog Processing in the Po Valley

    NASA Astrophysics Data System (ADS)

    Gilardoni, S.; Paglione, M.; Rinaldi, M.; Giulianelli, L.; Massoli, P.; Hillamo, R. E.; Carbone, S.; Lanconelli, C.; Laaksonen, A. J.; Russell, L. M.; Poluzzi, V.; Fuzzi, S.; Facchini, C.

    2014-12-01

    Aqueous phase chemistry might be responsible for the formation of a significant fraction of the organic aerosol (OA) observed in the atmosphere, and could explain some of the discrepancies between OA concentration and properties predicted by models and observed in the environment. Aerosol - fog interaction and its effect on submicron aerosol properties were investigated in the Po Valley (northern Italy) during fall 2011, in the framework of the Supersite project (ARPA Emilia Romagna). Composition and physical properties of submicron aerosol were measured online by a High Resolution- Time of Flight - Aerosol Mass Spectrometer (HR-TOF-AMS), a Soot Photometer - Aerosol Mass Spectrometer (SP-AMS), and a Tandem Differential Mobility Particle Sizer (TDMPS). Organic functional group analysis was performed off-line by Hydrogen - Nuclear Magnetic Resonance (H-NMR) spectrometry and by Fourier Transform Infrared (FTIR) spectrometry. Aerosol absorption, scattering, and total extinction were measured simultaneously with a Particle Soot Absorption Photometer (PSAP), a Nephelometer, and a Cavity Attenuated Phase Shift Spectrometer particle extinction monitor (CAPS PMex), respectively. Water-soluble organic carbon in fog-water was characterized off-line by HR-TOF-AMS. Fourteen distinct fog events were observed. Fog dissipation left behind an aerosol enriched in particles larger than 400 nm, typical of fog and cloud processing, and dominated by secondary species, including ammonium nitrate, ammonium sulfate and oxidized OA (OOA). Source apportionment of OA allowed us to identify OOA as the difference between total OA and primary OA (hydrocarbon like OA and biomass burning OA). The formation of OOA through fog processing is proved by the correlation of OOA concentration with hydroxyl methyl sulfonate signal and by the similarity of OOA spectra with organic mass spectra obtained by re-aerosolization of fog water samples. The oxygen to carbon ratio and the hydrogen to carbon ratio of this OOA fraction was about 0.6 and 1.3, respectively. Organic functional group analysis showed that OOA observed after fog dissipation was characterized by organic-sulfur and organic-nitrogen species.

  20. Autotrophic growth of nitrifying community in an agricultural soil

    PubMed Central

    Xia, Weiwei; Zhang, Caixia; Zeng, Xiaowei; Feng, Youzhi; Weng, Jiahua; Lin, Xiangui; Zhu, Jianguo; Xiong, Zhengqin; Xu, Jian; Cai, Zucong; Jia, Zhongjun

    2011-01-01

    The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by 13CO2 after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the 13C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the 13C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that 13CO2 assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested. PMID:21326337

Top