Code of Federal Regulations, 2012 CFR
2012-10-01
... Category 2-Amino-2-hydroxymethyl-1,3-propanediol solution III Ammonium hydrogen phosphate solution D...) D Ammonium phosphate, Urea solution, see also Urea, Ammonium phosphate solution D Ammonium..., Magnesium nitrate, Potassium chloride solution III Caramel solutions III Chlorinated paraffins (C14-C17...
Thermoelectrochemical system and method
Ludwig, F.A.; Townsend, C.W.; Eliash, B.M.
1995-11-28
A thermal electrochemical system is described in which an electrical current is generated between a cathode immersed in a concentrated aqueous solution of phosphoric acid and an anode immersed in a molten salt solution of ammonium phosphate and monohydric ammonium phosphate. Reactants consumed at the electrodes during the electrochemical reaction are thermochemically regenerated and recycled to the electrodes to provide continuous operation of the system. 5 figs.
Diffusion, Viscosity and Crystal Growth in Microgravity
NASA Technical Reports Server (NTRS)
Myerson, Allan S.
1996-01-01
The diffusivity of TriGlycine Sulfate (TGS), Potassium Dihydrogen Phosphate (KDP), Ammonium Dihydrogen Phosphate (ADF) and other compounds of interest to microgravity crystal growth, in supersaturated solutions as a function of solution concentration, 'age' and 'history was studied experimentally. The factors that affect the growth of crystals from water solutions in microgravity have been examined. Three non-linear optical materials have been studied, potassium dihydrogen phosphate (KDP), ammonium dihydrogen phosphate (ADP) and triglycine sulfate (TGC). The diffusion coefficient and viscosity of supersaturated water solutions were measured. Also theoretical model of diffusivity and viscosity in a metastable state, model of crystal growth from solution including non-linear time dependent diffusivity and viscosity effect and computer simulation of the crystal growth process which allows simulation of the microgravity crystal growth were developed.
Korchef, Atef; Saidou, Hassidou; Ben Amor, Mohamed
2011-02-15
In the present study, the precipitation of struvite (MgNH(4)PO(4)·6H(2)O) using the CO(2) degasification technique is investigated. The precipitation of struvite was done from supersaturated solutions in which precipitation was induced by the increase of the solution supersaturation concomitant with the removal of dissolved carbon dioxide. The effect of magnesium, phosphate and ammonium concentrations on the kinetics and the efficiency of struvite precipitation was measured monitoring the respective concentrations in solution. In all cases struvite precipitated exclusively and the solid was characterized by powder XRD and FTIR. The morphology of the precipitated crystals was examined by scanning electronic microscopy and it was found that it exhibited the typical prismatic pattern of the struvite crystals with sizes in the range between 100 and 300 μm. The increase of magnesium concentration in the supersaturated solutions, resulted for all phosphate concentration tested, in significantly higher phosphate removal efficiency. Moreover, it is interesting to note that in this case the adhesion of the suspended struvite crystals to the reactor walls was reduced suggesting changes in the particle characteristics. The increase of phosphate concentration in the supersaturated solutions, for the magnesium concentrations tested resulted to the reduction of struvite suppression which reached complete suppression of the precipitate formation. Excess of ammonium in solution was found favour struvite precipitation. Contrary to the results found with increasing the magnesium concentration in solution, higher ammonium concentrations resulted to higher adhesion of the precipitated crystallites to the reactor walls. The results of the present work showed that it is possible to recover phosphorus in the form of struvite from wastewater reducing water pollution and at the same time saving valuable resources. Copyright © 2010 Elsevier B.V. All rights reserved.
Processes for making dense, spherical active materials for lithium-ion cells
Kang, Sun-Ho [Naperville, IL; Amine, Khalil [Downers Grove, IL
2011-11-22
Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.
Phosphate-bonded calcium aluminate cements
Sugama, Toshifumi
1993-01-01
A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.
Phosphate-bonded calcium aluminate cements
Sugama, T.
1993-09-21
A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.
Environmental Acceptable Medium Caliber Ammunition Percussion Primers
2008-05-01
the nanoparticles extremely hydrophobic. The alternative treatment of the solution was the addition of ammonium dihydrogen phosphate (ADP) to serve as...Ultrafine Aluminum Nanoparticles," LA-UR-04-2921. 49 ACRONYM LIST ADP Ammonium Dihydrogen Phosphate Al Aluminum ARDEC Armament Research Development and...Nitrocellulose Nd:Yag Neodymium -doped yttrium aluminum garnet NSWC-IH Naval Surface Warfare Center- Indian Head PAD Propellant actuated device PETN
Fabrication and cytocompatibility of spherical magnesium ammonium phosphate granules.
Christel, Theresa; Geffers, Martha; Klammert, Uwe; Nies, Berthold; Höß, Andreas; Groll, Jürgen; Kübler, Alexander C; Gbureck, Uwe
2014-09-01
Magnesium phosphate compounds, as for example struvite (MgNH4PO4·6H2O), have comparable characteristics to calcium phosphate bone substitutes, but degrade faster under physiological conditions. In the present work, we used a struvite forming calcium doped magnesium phosphate cement with the formulation Ca0.75Mg2.25(PO4)2 and an ammonium phosphate containing aqueous solution to produce round-shaped granules. For the fabrication of spherical granules, the cement paste was dispersed in a lipophilic liquid and stabilized by surfactants. The granules were characterized with respect to morphology, size distribution, phase composition, compressive strength, biocompatibility and solubility. In general, it was seen that small granules can hardly be produced by means of emulsification, when the raw material is a hydraulic paste, because long setting times promote coalescence of initially small unhardened cement droplets. Here, this problem was solved by using an aqueous solution containing both the secondary (NH4)2HPO4 and primary ammonium phosphates NH4H2PO4 to accelerate the setting reaction. This resulted in granules with 97 wt.% having a size in the range between 200 and 1,000 μm. The novel solution composition doubled the compressive strength of the cement to 37 ± 5 MPa without affecting either the conversion to struvite or the cytocompatibility using human fetal osteoblasts. Copyright © 2014 Elsevier B.V. All rights reserved.
Application of natural zeolite for phosphorus and ammonium removal from aqueous solutions.
Karapinar, Nuray
2009-10-30
Removal of both nutrients ammonium and phosphorus by natural zeolite has been studied in lab scale by using a mechanically stirred batch system (1000 ml). Zeolite, a mean particle size of 13 microm, was used as an adsorbent for the removal of ammonium and then as a seed material for the precipitation of calcium phosphate. A relationship was established between the uptake of ammonium by zeolite and the ratio of initial ammonium concentration to zeolite dosage. Ammonium uptake of zeolite was almost completed within initial 5 min of adsorption period. There is no pronounced effect of zeolite and ammonium, neither positive nor negative on the amount of calcium phosphate precipitation. The extent of the precipitation of phosphate increased with rising pH. It was also observed that when the system was allowed to relax at constant pH (i.e. under relatively low super saturations), a certain lag time was noted to elapse at the onset of the precipitation. At the pH 7.2, the amount of initial fast precipitation within 5 min and total precipitation within 120 min were around 34% and 93%, respectively. Precipitation of calcium phosphate on to ammonium-loaded zeolite was achieved at low super saturations (< pH 7.5) through secondary nucleation and crystal growth, leading to an increase in particle size.
Nur, Tanjina; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu
2016-01-01
Discharging phosphate through wastewaters into waterways poses a danger to the natural environment due to the serious risks of eutrophication and health of aquatic organisms. However, this phosphate, if economically recovered, can partly overcome the anticipated future scarcity of phosphorus (P) resulting from exhaustion of natural phosphate rock reserves. An experiment was conducted to determine the efficiency of removing phosphate from a membrane bioreactor effluent (pH 7.0–7.5, 20, 35 mg phosphate/L) produced in a water reclamation plant by adsorption onto Dowex 21K XLT ion exchange resin and recover the phosphate as fertilisers. The data satisfactorily fitted to Langmuir adsorption isotherm with a maximum adsorption capacity of 38.6 mg·P/g. The adsorbed phosphate was quantitatively desorbed by leaching the column with 0.1 M NaCl solution. The desorbed phosphate was recovered as struvite when ammonium and magnesium were added at the molar ratio of phosphate, ammonium and magnesium of 1:1:1 at pH 9.5. Phosphate was also recovered from the desorbed solution as hydroxyapatite precipitate by adding calcium hydroxide to the solution at a phosphate to calcium molar ratio of 1:2 at pH 7.0. The P contents of struvite and hydroxyapatite produced were close to those of the respective commercial phosphate fertilisers. PMID:26950136
Jho, Eun Hea; Im, Jinwoo; Yang, Kyung; Kim, Young-Jin; Nam, Kyoungphile
2015-01-01
This study was set to investigate the changes in the toxicity of arsenic (As)-contaminated soils after washing with phosphate solutions. The soil samples collected from two locations (A: rice paddy and B: forest land) of a former smelter site were contaminated with a similar level of As. Soil washing (0.5 M phosphate solution for 2 h) removed 24.5% As, on average, in soil from both locations. Regardless of soil washing, Location A soil toxicities, determined using Microtox, were greater than that of Location B and this could be largely attributed to different soil particle size distribution. With soils from both locations, the changes in As chemical forms resulted in either similar or greater toxicities after washing. This emphasizes the importance of considering ecotoxicological aspects, which are likely to differ depending on soil particle size distribution and changes in As chemical forms, in addition to the total concentration based remedial goals, in producing ecotoxicologically-sound soils for reuse. In addition, calcium phosphate used as the washing solution seemed to contribute more on the toxic effects of the washed soils than potassium phosphate and ammonium phosphate. Therefore, it would be more appropriate to use potassium or ammonium phosphate than calcium phosphate for phosphate-aided soil washing of the As-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Phosphorus doping a semiconductor particle
Stevens, G.D.; Reynolds, J.S.
1999-07-20
A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.
Phosphorous doping a semiconductor particle
Stevens, Gary Don; Reynolds, Jeffrey Scott
1999-07-20
A method (10) of phosphorus doping a semiconductor particle using ammonium phosphate. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried (16, 18), with the phosphorus then being diffused (20) into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement.
METHOD FOR REMOVING CONTAMINATION FROM PRECIPITATES
Stahl, G.W.
1959-01-01
An improvement in the bismuth phosphate carrier precipitation process is presented for the recovery and purification of plutonium. When plutonium, in the tetravalent state, is carried on a bismuth phosphate precipitate, amounts of centain of the fission products are carried along with the plutonium. The improvement consists in washing such fission product contaminated preeipitates with an aqueous solution of ammonium hydrogen fluoride. since this solution has been found to be uniquely effective in washing fission production contamination from the bismuth phosphate precipitate.
Rapid analysis of fertilizers by the direct-reading thermometric method.
Sajó, I; Sipos, B
1972-05-01
The authors have developed rapid methods for the determination of the main components of fertilizers, namely phosphate, potassium and nitrogen fixed in various forms. In the absence of magnesium ions phosphate is precipitated with magnesia mixture; in the presence of magnesium ions ammonium phosphomolybdate is precipitated and the excess of molybdate is reacted with hydrogen peroxide. Potassium is determined by precipitation with silico-fluoride. For nitrogen fixed as ammonium salts the ammonium ions are condensed in a basic solution with formalin to hexamethylenetetramine; for nitrogen fixed as carbamide the latter is decomposed with sodium nitrite; for nitrogen fixed as nitrate the latter is reduced with titanium(III). In each case the temperature change of the test solution is measured. Practically all essential components of fertilizers may be determined by direct-reading thermometry; with this method and special apparatus the time of analysis is reduced to at most about 15 min for any determination.
Magnesium-phosphate-glass cements with ceramic-type properties
Sugama, T.; Kukacka, L.E.
1982-09-23
Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.
Magnesium phosphate glass cements with ceramic-type properties
Sugama, Toshifumi; Kukacka, Lawrence E.
1984-03-13
Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.
Common stock solutions, buffers, and media.
2001-05-01
This collection of recipes describes the preparation of buffers and reagents used in Current Protocols in Pharmacology for cell culture, manipulation of neural tissue, molecular biological methods, and neurophysiological/neurochemical measurements. RECIPES: Acid, concentrated stock solutions Ammonium hydroxide, concentrated stock solution EDTA (ethylenediaminetetraacetic acid), 0.5 M (pH 8.0) Ethidium bromide staining solution Fetal bovine serum (FBS) Gel loading buffer, 6× LB medium (Luria broth) and LB plates Potassium phosphate buffer, 0.1 M Sodium phosphate buffer, 0.1 M TE (Tris/EDTA) buffer Tris⋅Cl, 1 M.
Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology.
Zhang, Tao; Ding, Lili; Ren, Hongqiang; Xiong, Xiang
2009-12-01
Ammonium nitrogen removal from wastewater has been of considerable concern for several decades. In the present research, we examined chemical precipitation recycle technology (CPRT) for ammonium nitrogen removal from coking wastewater. The pyrolysate resulting from magnesium ammonium phosphate (MAP) pyrogenation in sodium hydroxide (NaOH) solution was recycled for ammonium nitrogen removal from coking wastewater. The objective of this study was to investigate the conditions for MAP pyrogenation and to characterize of MAP pyrolysate for its feasibility in recycling. Furthermore, MAP pyrolysate was characterized by scanning electron microscope (FESEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) as well as X-ray diffraction (XRD). The MAP pyrolysate could be produced at the optimal condition of a hydroxyl (OH(-)) to ammonium molar ratio of 2:1, a heating temperature of 110 degrees C, and a heating time of 3h. Surface characterization analysis indicated that the main component of the pyrolysate was amorphous magnesium sodium phosphate (MgNaPO(4)). The pyrolysate could be recycled as a magnesium and phosphate source at an optimum pH of 9.5. When the recycle times were increased, the ammonium nitrogen removal ratio gradually decreased if the pyrolysate was used without supplementation. When the recycle times were increased, the ammonium nitrogen removal efficiency was not decreased if the added pyrolysate was supplemented with MgCl(2).6H(2)O plus Na(2)HPO(4).12H(2)O during treatment. A high ammonium nitrogen removal ratio was obtained by using pre-formed MAP as seeding material.
Common buffers, media, and stock solutions.
2001-05-01
This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.
Growth of single crystals from solutions using semi-permeable membranes
NASA Astrophysics Data System (ADS)
Varkey, A. J.; Okeke, C. E.
1983-05-01
A technique suitable for growth of single crystals from solutions using semi-preamble membranes is described. Using this technique single crystals of copper sulphate, potassium bromide and ammonium dihydrogen phosphate have been successfully grown. Advantages of this technique over other methods are discussed.
Chemically bonded phospho-silicate ceramics
Wagh, Arun S.; Jeong, Seung Y.; Lohan, Dirk; Elizabeth, Anne
2003-01-01
A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.
Osmotic pressures and second virial coefficients for aqueous saline solutions of lysozyme
Moon, Y. U.; Anderson, C. O.; Blanch, H. W.; ...
2000-03-27
Experimental data at 25 °C are reported for osmotic pressures of aqueous solutions containing lysozyme and any one of the following salts: ammonium sulfate, ammonium oxalate and ammonium phosphate at ionic strength 1 or 3M. Data were obtained using a Wescor Colloid Membrane Osmometer at lysozyme concentrations from about 4 to 20 grams per liter at pH 4, 7 or 8. Osmotic second virial coefficients for lysozyme were calculated from the osmotic-pressure data. All coefficients were negative, increasing in magnitude with ionic strength. Furthermore, tesults are insensitive to the nature of the anion, but rise slightly in magnitude as themore » size of the anion increases.« less
Xavier, Joao B; De Kreuk, Merle K; Picioreanu, Cristian; Van Loosdrecht, Mark C M
2007-09-15
Aerobic granular sludge is a novel compact biological wastewater treatment technology for integrated removal of COD (chemical oxygen demand), nitrogen, and phosphate charges. We present here a multiscale model of aerobic granular sludge sequencing batch reactors (GSBR) describing the complex dynamics of populations and nutrient removal. The macro scale describes bulk concentrations and effluent composition in six solutes (oxygen, acetate, ammonium, nitrite, nitrate, and phosphate). A finer scale, the scale of one granule (1.1 mm of diameter), describes the two-dimensional spatial arrangement of four bacterial groups--heterotrophs, ammonium oxidizers, nitrite oxidizers, and phosphate accumulating organisms (PAO)--using individual based modeling (IbM) with species-specific kinetic models. The model for PAO includes three internal storage compounds: polyhydroxyalkanoates (PHA), poly phosphate, and glycogen. Simulations of long-term reactor operation show how the microbial population and activity depends on the operating conditions. Short-term dynamics of solute bulk concentrations are also generated with results comparable to experimental data from lab scale reactors. Our results suggest that N-removal in GSBR occurs mostly via alternating nitrification/denitrification rather than simultaneous nitrification/denitrification, supporting an alternative strategy to improve N-removal in this promising wastewater treatment process.
Ko, K Y; Ahn, D U
2007-02-01
The objective of this study was to develop an economical, simple, and large-scale separation method for IgY from egg yolk. Egg yolk diluted with 9 volumes of cold water was centrifuged after adjusting the pH to 5.0. The supernatant was added with 0.01% charcoal or 0.01% carrageenan and centrifuged at 2,800 x g for 30 min. The supernatant was filtered through a Whatman no. 1 filter paper and then the filtrate was concentrated to 20% original volume using ultrafiltration. The concentrated solution was further purified using either cation exchange chromatography or ammonium sulfate precipitation. For the cation exchange chromatography method, the concentrated sample was loaded onto a column equilibrated with 20 mM citrate-phosphate buffer at pH 4.8 and eluted with 200 mM citrate-phosphate buffer at pH 6.4. For the ammonium sulfate precipitation method, the concentrated sample was twice precipitated with 40% ammonium sulfate solution at pH 9.0. The yield and purity of IgY were determined by ELISA and electrophoresis. The yield of IgY from the cation exchange chromatography method was 30 to 40%, whereas that of the ammonium sulfate precipitation was 70 to 80%. The purity of IgY from the ammonium sulfate method was higher than that of the cation exchange chromatography. The cation exchange chromatography could handle only a small amount of samples, whereas the ammonium sulfate precipitation could handle a large volume of samples. This suggests that ammonium sulfate precipitation was a more efficient and useful purification method than cation exchange chromatography for the large-scale preparation of IgY from egg yolk.
Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing.
Klammert, Uwe; Vorndran, Elke; Reuther, Tobias; Müller, Frank A; Zorn, Katharina; Gbureck, Uwe
2010-11-01
Synthetic bone replacement materials are of great interest because they offer certain advantages compared with organic bone grafts. Biodegradability and preoperative manufacturing of patient specific implants are further desirable features in various clinical situations. Both can be realised by 3D powder printing. In this study, we introduce powder-printed magnesium ammonium phosphate (struvite) structures, accompanied by a neutral setting reaction by printing farringtonite (Mg(3)(PO(4))(2)) powder with ammonium phosphate solution as binder. Suitable powders were obtained after sintering at 1100°C for 5 h following 20-40 min dry grinding in a ball mill. Depending on the post-treatment of the samples, compressive strengths were found to be in the range 2-7 MPa. Cytocompatibility was demonstrated in vitro using the human osteoblastic cell line MG63.
Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent.
Huang, Haiming; Xiao, Xianming; Yan, Bo; Yang, Liping
2010-03-15
This paper presents a study of the removal of ammonium ion from aqueous solutions using natural Chinese (Chende) zeolite. A series of experiments was conducted to examine the effects of solution pH, particle size, contact time, adsorbent dosage, and the presence of other cation- and anion species on ammonium removal. The findings indicated that these parameters named had a significant effect on the removal of ammonium by the zeolite. The effect of other cations on the removal of ammonium followed the order of preference Na(+)>K(+)>Ca(2+)>Mg(2+) at identical mass concentrations, and the effect of the presence of individual anions followed the order of preference carbonate>chloride>sulfate>phosphate at identical mass concentrations of ammonium ions. Kinetic analysis showed that the adsorption of ammonium on zeolite at different ranges of particle size well followed the pseudo-second-order model and followed the intra-particle diffusion model only during the initial 60 min of the adsorption process. Equilibrium isotherm data was fitted to the linear Langmuir- and Freundlich models with the latter model providing the better description of the process (R(2)=0.991-0.997) compared to the former (R(2)=0.902-0.989). (c) 2009 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... Ammonium citrate. Ammonium potassium hydrogen phosphate. Calcium glycerophosphate. Calcium phosphate.... Calcium stearate. Disodium hydrogen phosphate. Magnesium glycerophosphate. Magnesium stearate. Magnesium...
Masola, B; Zvinavashe, E
2003-06-01
The effects of ammonium and other ions on phosphate dependent glutaminase (PDG) activity in intact rat enterocyte mitochondria were investigated. Sulphate and bicarbonate activated the enzyme in absence and presence of added phosphate. In presence of 10 mM phosphate, ammonium at concentrations <1 mM inhibited the enzyme. This inhibition was reversed by increased concentration of phosphate or sulphate. The inhibition of PDG by ammonium in presence of 10 mM phosphate was biphasic with respect to glutamine concentration, its effect being through a lowering of V(max) at glutamine concentration of =5 mM, and increased K(m) for substrate concentration above 5 mM. The activation of the enzyme by bicarbonate was through an increase in V(max). Ammonium and bicarbonate ions may therefore be important physiological regulators of PDG. It is suggested that phosphate and other polyvalent ions may function by preventing product inhibition of the enzyme through promotion of PDG dimer formation. The dimerized enzyme may have a high affinity for glutamine and reduced sensitivity to inhibition by ammonium ions.
46 CFR 148.220 - Ammonium nitrate-phosphate fertilizers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Ammonium nitrate-phosphate fertilizers. 148.220 Section... § 148.220 Ammonium nitrate-phosphate fertilizers. (a) This section applies to the stowage and... nitrate and containing a maximum of 0.4 percent total added combustible material or containing a maximum...
46 CFR 148.220 - Ammonium nitrate-phosphate fertilizers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Ammonium nitrate-phosphate fertilizers. 148.220 Section... § 148.220 Ammonium nitrate-phosphate fertilizers. (a) This section applies to the stowage and... nitrate and containing a maximum of 0.4 percent total added combustible material or containing a maximum...
46 CFR 148.220 - Ammonium nitrate-phosphate fertilizers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Ammonium nitrate-phosphate fertilizers. 148.220 Section... § 148.220 Ammonium nitrate-phosphate fertilizers. (a) This section applies to the stowage and... nitrate and containing a maximum of 0.4 percent total added combustible material or containing a maximum...
46 CFR 148.220 - Ammonium nitrate-phosphate fertilizers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Ammonium nitrate-phosphate fertilizers. 148.220 Section... § 148.220 Ammonium nitrate-phosphate fertilizers. (a) This section applies to the stowage and... nitrate and containing a maximum of 0.4 percent total added combustible material or containing a maximum...
Sancho, I; Licon, E; Valderrama, C; de Arespacochaga, N; López-Palau, S; Cortina, J L
2017-04-15
The integration of up-concentration processes to increase the efficiency of primary sedimentation, as a solution to achieve energy neutral wastewater treatment plants, requires further post-treatment due to the missing ammonium removal stage. This study evaluated the use of zeolites as a post-treatment step, an alternative to the biological removal process. A natural granular clinoptilolite zeolite was evaluated as a sorbent media to remove low levels (up to 100mg-N/L) of ammonium from treated wastewater using batch and fixed bed columns. After being activated to the Na-form (Z-Na), the granular zeolite shown an ammonium exchange capacity of 29±0.8mgN-NH 4 + /g in single ammonium solutions and 23±0.8mgN-NH 4 + /g in treated wastewater simulating up-concentration effluent at pH=8. The equilibrium removal data were well described by the Langmuir isotherm. The ammonium adsorption into zeolites is a very fast process when compared with polymeric materials (zeolite particle diffusion coefficient around 3×10 -12 m 2 /s). Column experiments with solutions containing 100mgN-NH 4 + /L provide effective sorption and elution rates with concentration factors between 20 and 30 in consecutive operation cycles. The loaded zeolite was regenerated using 2g NaOH/L solution and the rich ammonium/ammonia concentrates 2-3g/L in NaOH were used in a liquid-liquid membrane contactor system in a closed-loop configuration with nitric and phosphoric acid as stripping solutions. The ammonia recovery ratio exceeded 98%. Ammonia nitrate and di-ammonium phosphate concentrated solutions reached up to 2-5% wt. of N. Copyright © 2017 Elsevier B.V. All rights reserved.
Kinetics of solution crystal growth of strengite, FePO4,2H2O
NASA Astrophysics Data System (ADS)
Lundager Madsen, Hans E.; Koch, Christian Bender
2018-01-01
The iron(III) phosphate strengite, FePO4,2H2O, has been precipitated at 25 °C by mixing solutions of iron alum and ammonium phosphate. The rate of crystallization has been determined by pH recording. Three stages of crystal growth kinetics could be distinguished: (1) mononuclear growth, (2) polynuclear growth and, in a few cases, (3) spiral growth (BCF mechanism). From the first two, the value of edge free energy λ = 87 ± 1 pJ/m was found. The identity of the precipitate was verified by SEM, XRD and Mössbauer spectroscopy.
Corrosion resistant properties of polyaniline acrylic coating on magnesium alloy
NASA Astrophysics Data System (ADS)
Sathiyanarayanan, S.; Azim, S. Syed; Venkatachari, G.
2006-12-01
The performance of the paint coating based on acrylic-polyaniline on magnesium alloy ZM 21 has been studied by electrochemical impedance spectroscopy in 0.5% NaCl solution. The polyaniline was prepared by chemical oxidative method of aniline with ammonium persulphate in phosphoric acid medium. The phosphate-doped polyaniline was characterized by FTIR and XRD methods. Acrylic paint containing the phosphate-doped polyaniline was prepared and coated on magnesium ZM 21 alloy. The coating was able to protect the magnesium alloy and no base metal dissolution was noted even after 75 days exposure to sodium chloride solution.
Hollister, C Colin; Bisogni, James J; Lehmann, Johannes
2013-01-01
Biochar (BC) was evaluated for nitrogen (N) and phosphorus (P) removal from aqueous solution to quantify its nutrient pollution mitigation potential in agroecosystems. Sorption isotherms were prepared for solutions of ammonium (NH), nitrate (NO), and phosphate (PO-P) using BC of corn ( L.) and oak ( spp.) feedstock, each pyrolyzed at 350 and 550°C highest treatment temperature (HTT). Sorption experiments were performed on original BC as well as on BC that went through a water extraction pretreatment (denoted WX-BC). Ammonium sorption was observed for WX-Oak-BC and WX-Corn-BC, and Freundlich model linearization showed that a 200°C increase in HTT resulted in a 55% decrease in * values for WX-Oak-BC and a 69% decrease in * for WX-Corn-BC. Nitrate sorption was not observed for any BC. Removing metals by water extraction from WX-Oak-350 and WX-Oak-550 resulted in a 25 to 100% decrease in phosphate removal efficiency relative to original Oak-350 and Oak-550, respectively. No PO-P sorption was observed using any Corn-BC. Calcium (Ca) leached from BC produced at 550°C was 63 and 104% higher than from BC produced at 350°C for corn and oak, respectively. Leaching of P was two orders of magnitude lower in WX-Oak-BC than in WX-Corn-BC, concurrent with similar difference in magnesium (Mg). Nitrate and NH leaching from consecutive water extractions of all tested BCs was mostly below detection limits. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
He, Yinhai; Lin, Hai; Dong, Yingbo; Liu, Quanli; Wang, Liang
2016-12-01
Simultaneous ammonium and phosphate removal characteristics and mechanism, as well as the major influencing factors, such as pH, temperature and co-existing ions, onto NaOH-activated and lanthanum-impregnated zeolite (NLZ) were investigated. The phosphate adsorption increases from 0.2 mg g -1 for natural zeolite up to 8.96 mg g -1 for NLZ, while only a slight decrease on the ammonium adsorption capacity from 23.9 mg g -1 for NaOH-activated zeolite to 21.2 mg g -1 for NLZ was observed. The ammonium and phosphate adsorption showed little pH dependence in the range from pH 3 to 7, while it decreased sharply with the pH increased above pH 7. Adsorption of ammonium and phosphate could be well described by the pseudo-second-order model and the process was mainly governed by intra-particle diffusion. The Langmuir and Freundlich model can be acceptably applied to fit the experimental data, which suggested that adsorption was caused by both the monolayer and homogeneous coverage at specific and equal affinity sites available NLZ. The underlying mechanism for the specific adsorption of phosphate by NLZ was revealed with the aid of SEM-EDS, XPS, and FTIR analysis, and the formation of (LaO)(OH)PO 2 was verified to be the dominant pathway for selective phosphate adsorption by lanthanum-impregnated zeolite. While the removal mechanism of ammonium could be well interpreted by SEM-EDS, FTIR and ICP analysis, and ion-exchange was expected to be the main removal process for ammonium. The results indicate that NLZ could efficiently and simultaneously remove low concentration of ammonium and phosphate from contaminated waters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synthesis and Characterization of a Phosphate Prodrug of Isoliquiritigenin.
Boyapelly, Kumaraswamy; Bonin, Marc-André; Traboulsi, Hussein; Cloutier, Alexandre; Phaneuf, Samuel C; Fortin, Daniel; Cantin, André M; Richter, Martin V; Marsault, Eric
2017-04-28
Isoliquiritigenin (1) possesses a variety of biological activities in vitro. However, its poor aqueous solubility limits its use for subsequent in vivo experimentation. In order to enable the use of 1 for in vivo studies without the use of toxic carriers or cosolvents, a phosphate prodrug strategy was implemented relying on the availability of phenol groups in the molecule. In this study, a phosphate group was added to position C-4 of 1, leading to the more water-soluble prodrug 2 and its ammonium salt 3, which possesses increased stability compared to 2. Herein are reported the synthesis, characterization, solubility, and stability of phosphate prodrug 3 in biological medium in comparison to 1, as well as new results on its anti-inflammatory properties in vivo. As designed, the solubility of prodrug 3 was superior to that of the parent natural product 1 (9.6 mg/mL as opposed to 3.9 μg/mL). Prodrug 3 as an ammonium salt was also found to possess excellent stability as a solid and in aqueous solution, as opposed to its phosphoric acid precursor 2.
Nair, Lakshmi S; Starnes, Trevor; Ko, Jia-Wei Kevin; Laurencin, Cato T
2007-12-01
Thermosetting polymers are attractive candidates for biomedical applications as noninvasive therapeutic delivery vehicles. In the present study, the feasibility of developing a neutral physiological temperature setting injectable formulation based on chitosan and an inorganic phosphate salt have been demonstrated. The in situ gelling system was developed by adding different concentrations of ammonium hydrogen phosphate (AHP) to chitosan solution. The resulting solutions have pH in the range of approximately 7-7.2. The gelling time of the chitosan-AHP solution was determined by incubating the solutions at 37 degrees C. Depending on the concentrations of AHP added, the gelling time varied from 5 min to 30 h at 37 degrees C. Addition of various diluents to chitosan-AHP solution did not significantly change the gelling time of the solutions. The gels were found to be cytocompatible as evidenced from in vitro cytocompatibility evaluation using MC3T3-E1 mouse osteoblast like cells. The feasibility of using the gels as a stem cell carrier vehicle as well as a macromolecular delivery vehicle has been demonstrated.
Karadağ, Sevinç; Görüşük, Emine M; Çetinkaya, Ebru; Deveci, Seda; Dönmez, Koray B; Uncuoğlu, Emre; Doğu, Mustafa
2018-01-25
A fully automated flow injection analysis (FIA) system was developed for determination of phosphate ion in nutrient solutions. This newly developed FIA system is a portable, rapid and sensitive measuring instrument that allows on-line analysis and monitoring of phosphate ion concentration in nutrient solutions. The molybdenum blue method, which is widely used in FIA phosphate analysis, was adapted to the developed FIA system. The method is based on the formation of ammonium Mo(VI) ion by reaction of ammonium molybdate with the phosphate ion present in the medium. The Mo(VI) ion then reacts with ascorbic acid and is reduced to the spectrometrically measurable Mo(V) ion. New software specific for flow analysis was developed in the LabVIEW development environment to control all the components of the FIA system. The important factors affecting the analytical signal were identified as reagent flow rate, injection volume and post-injection flow path length, and they were optimized using Box-Behnken experimental design and response surface methodology. The optimum point for the maximum analytical signal was calculated as 0.50 mL min -1 reagent flow rate, 100 µL sample injection volume and 60 cm post-injection flow path length. The proposed FIA system had a sampling frequency of 100 samples per hour over a linear working range of 3-100 mg L -1 (R 2 = 0.9995). The relative standard deviation (RSD) was 1.09% and the limit of detection (LOD) was 0.34 mg L -1 . Various nutrient solutions from a tomato-growing hydroponic greenhouse were analyzed with the developed FIA system and the results were found to be in good agreement with vanadomolybdate chemical method findings. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION
Faris, B.F.
1959-06-30
This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.
Predicting arsenic bioavailability to hyperaccumulator Pteris vittata in arsenic-contaminated soils.
Gonzaga, Maria Isidória Silva; Ma, Lena Q; Pacheco, Edson Patto; dos Santos, Wallace Melo
2012-12-01
Using chemical extraction to evaluate plant arsenic availability in contaminated soils is important to estimate the time frame for site cleanup during phytoremediation. It is also of great value to assess As mobility in soil and its risk in environmental contamination. In this study, four conventional chemical extraction methods (water, ammonium sulfate, ammonium phosphate, and Mehlich III) and a new root-exudate based method were used to evaluate As extractability and to correlate it with As accumulation in P. vittata growing in five As-contaminated soils under greenhouse condition. The relationship between different soil properties, and As extractability and plant As accumulation was also investigated. Arsenic extractability was 4.6%, 7.0%, 18%, 21%, and 46% for water, ammonium sulfate, organic acids, ammonium phosphate, and Mehlich III, respectively. Root exudate (organic acids) solution was suitable for assessing As bioavailability (81%) in the soils while Mehlich III (31%) overestimated the amount of As taken up by plants. Soil organic matter, P and Mg concentrations were positively correlated to plant As accumulation whereas Ca concentration was negatively correlated. Further investigation is needed on the effect of Ca and Mg on As uptake by P. vittata. Moreover, additional As contaminated soils with different properties should be tested.
West, Thomas P
2016-01-01
The effect of nitrogen source concentration on the production of the polysaccharide curdlan by the bacterium Agrobacterium sp. ATCC 31749 from hydrolysates of prairie cordgrass was examined. The highest curdlan concentrations were produced by ATCC 31749 when grown on a medium containing a solids-only hydrolysate and the nitrogen source ammonium phosphate (2.2 mM) or on a medium containing a complete hydrolysate and 3.3 mM ammonium phosphate. The latter medium sustained a higher level of bacterial curdlan production than the former medium after 144 hr. Biomass production by ATCC 31749 was highest after 144 hr when grown on a medium containing a solids-only hydrolysate and 2.2 or 8.7 mM ammonium phosphate. On the medium containing the complete hydrolysate, biomass production by ATCC 31749 was highest after 144 hr when 3.3 mM ammonium phosphate was present. Bacterial biomass production after 144 hr was greater on the complete hydrolysate medium compared to the solids-only hydrolysate medium. Curdlan yield produced by ATCC 31749 after 144 hr from the complete hydrolysate medium containing 3.3 mM ammonium phosphate was higher than from the solids-only hydrolysate medium containing 2.2 mM ammonium phosphate.
Ke, X; Bei, J H; Zhang, Y; Li, J
2011-04-01
Sanguinarine liposomes were prepared by a remote loading method using three different ammonium salts. A series of studies, including in vitro release, in vitro and in vivo anti-tumor effects and pharmacokinetics in rats, were conducted. The three liposomes showed pH-sensitive release characteristics in vitro, but there were obvious variations in their release profiles. Among the three liposomes, the liposomes made using ammonium citrate and phosphate possessed better anti-tumor activity in vitro and in vivo, compared with the liposome using ammonium sulfate. Pharmacokinetics test results in rats indicated that sanguinarine liposomes have notably elevated AUC (P<0.05) and markedly lower CL (P<0.05) compared with the solution, but there were no obvious differences between the three liposomes. The present study may be useful for better understanding and better choice of a suitable ammonium salt for the remote loading method.
Degradation processes of reinforced concretes by combined sulfate–phosphate attack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Secco, Michele, E-mail: michele.secco@unipd.it; Department of Civil, Environmental and Architectural Engineering; Lampronti, Giulio Isacco, E-mail: gil21@cam.ac.uk
2015-02-15
A novel form of alteration due to the interaction between hydrated cement phases and sulfate and phosphate-based pollutants is described, through the characterization of concrete samples from an industrial reinforced concrete building. Decalcification of the cement matrices was observed, with secondary sulfate and phosphate-based mineral formation, according to a marked mineralogical and textural zoning. Five alteration layers may be detected: the two outermost layers are characterized by the presence of gypsum–brushite solid solution phases associated with anhydrous calcium sulfates and phosphates, respectively, while a progressive increase in apatite and ammonium magnesium phosphates is observable in the three innermost layers, associatedmore » with specific apatite precursors (brushite, octacalcium phosphate and amorphous calcium phosphate, respectively). The heterogeneous microstructural development of secondary phases is related to the chemical, pH and thermal gradients in the attacked cementitious systems, caused by different sources of pollutants and the exposure to the sun's radiation.« less
40 CFR 721.10302 - Zinc ammonium phosphate (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Zinc ammonium phosphate (generic). 721.10302 Section 721.10302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10302 Zinc ammonium...
40 CFR 721.10302 - Zinc ammonium phosphate (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Zinc ammonium phosphate (generic). 721.10302 Section 721.10302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10302 Zinc ammonium...
40 CFR 721.10302 - Zinc ammonium phosphate (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Zinc ammonium phosphate (generic). 721.10302 Section 721.10302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10302 Zinc ammonium...
Dunbar, W E; Schilt, A A
1972-09-01
Seven new hydroxy-substituted 1,10-phenanthroline derivatives have been evaluated as chromogenic reagents for the determination of copper in strongly alkaline solution. The most sensitive of these, 2,9-dimethyl-4,7-dihydroxy-1,10-phenanthroline, has proven to be highly effective in a simple, rapid procedure for determining trace amounts of copper in sodium hydroxide, potassium carbonate, sodium phosphate or ammonium hydroxide.
Yu, Rongtai; Liu, Feng; Ren, Hongqiang; Wu, Jichun; Zhang, Xuxiang
2017-07-27
Nanomaterials of magnesium hydrosilicate Mg 3 Si 2 O 5 (OH) 4 were developed for phosphate and ammonium recovery from wastewater in virgin, which had the structure of diffuse interlamellar order, and synthesized under hydrothermal conditions at temperatures of 200°C for 36-72 h from mixtures of magnesite and zeolite as mineralizers. The amount of magnesium released has gone up to 48 mg/g by magnesium hydrosilicate, which was increased with the increase in the weight ratio of magnesite:zeolite. When magnesium hydrosilicate was used to adsorb phosphate and ammonium, electrostatic adsorption was not a dominant mechanism, the adsorbing capacity of phosphate was about 19 mg/g, and the simultaneous adsorbing capacity of ammonium was 7.8 mg/g.
Wang, Jun Juan; Yan, Ai Hua; Wang, Wei; Li, Ji Quan; Li, Yu Ling
2016-11-18
Two strains of phosphate-solubilizing bacteria were isolated from the rhizosphere of Pinus tabuliformis in iron tailings vegetation restoration areas in Malan Town, Qianan City, Hebei Pro-vince. The bacterial strain D2 with strong phosphate-solubilizing capacity was obtained via screening with plate and shake flask. Based on the morphology, physiology and biochemistry, and the sequence analysis of 16S rDNA, the D2 was identified as a member of Pantoea sp. A fermentation experiment was conducted to investigate the effect of carbon and nitrogen sources on the phosphate-solubilizing capacity of the strain D2; under different nitrogen sources, the organic acids in liquid culture, as well as their types and contents were determined by high performance liquid chromatography. The results showed that the strain D2 was capable of efficiently solubilizing tricalcium phosphate, and the highest value of available phosphorus was up to 392.13 mg·L -1 in liquid culture. The strain D2 displayed the strongest phosphate-solubilizing capability when glucose and ammonium sulfate were used as carbon and nitrogen sources in the culture media, respectively. Under varied nitrogen sources, the resulting organic acids and their types and contents were different. When the nitrogen source in culture media was ammonium sulfate, ammonium chloride, potassium nitrate, sodium nitrate or ammonium nitrate, all four organic acids, including oxalic acid, formic acid, acetic acid and citric acid, were produced. In addition, malic acid was uniquely produced when ammonium sulfate, ammonium chloride or ammonium nitrate was used as the nitrogen source. By Pearson's correlation analysis, a significant positive correlation between the acetic acid content and the available phosphorus content was found (r=0.886, P<0.05), suggesting that acetic acid produced by strain D2 played an important role in promoting inorganic phosphorus dissolution, which was most likely to be one of the important phosphate-solubilizing mechanisms of the strain.
Kim, Youngjin; Chekli, Laura; Shim, Wang-Geun; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong
2016-06-01
In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further for their FO performance tests and evaluated in terms of water flux and reverse salt flux. Using selected fertilizers, bio-methane potential experiments were conducted to examine the effect of fertilizers on anaerobic activity due to reverse diffusion. Mono-ammonium phosphate (MAP) showed the highest biogas production while other fertilizers exhibited an inhibition effect on anaerobic activity with solute accumulation. Salt accumulation in the bioreactor was also simulated using mass balance simulation models. Results showed that ammonium sulfate and MAP were the most appropriate for AnFDFOMBR since they demonstrated less salt accumulation, relatively higher water flux, and higher dilution capacity of draw solution. Given toxicity of sulfate to anaerobic microorganisms, MAP appears to be the most suitable draw solution for AnFDFOMBR. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phosphorus recovery as struvite from eutropic waters by XDA-7 resin.
Li, Huanwen; Ye, Zhiping; Lin, Ying; Wang, Fengying
2012-01-01
Phosphorus releases into aquatic environment and its subsequent contribution to eutrophication have resulted in a widespread global pollution issue. However, phosphorus is a non-renewable source. The potential supplies of phosphorus are decreasing worldwide. Therefore, removal and recovery of phosphorus from the eutropic waters is important, emergent and necessary. In this research, experiments for recovering phosphate from eutropic waters by anion exchange combined with struvite precipitation were conducted. The results indicated that the prepared XDA-7 resin was an effective adsorbent for phosphate. The adsorption isotherm of XDA-7 resin was found to be a modified Freundlich type. The maximum phosphate adsorption (20.9 mg/g) occurred in the pH range of 6.0-8.0. Phosphate adsorbed on the XDA-7 resin was effectively desorbed with 8% NaCl solution, and the resin was able to be regenerated with 3% NaClO and 4% NaOH solutions. Phosphate desorbed from the resin was recovered as magnesium ammonium phosphate (struvite). The obtained struvite was analyzed by acid dissolution method, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The struvite precipitate was found to be 75.8% in purity, a high-value fertilizer.
Urine Anion Gap to Predict Urine Ammonium and Related Outcomes in Kidney Disease.
Raphael, Kalani L; Gilligan, Sarah; Ix, Joachim H
2018-02-07
Low urine ammonium excretion is associated with ESRD in CKD. Few laboratories measure urine ammonium, limiting clinical application. We determined correlations between urine ammonium, the standard urine anion gap, and a modified urine anion gap that includes sulfate and phosphate and compared risks of ESRD or death between these ammonium estimates and directly measured ammonium. We measured ammonium, sodium, potassium, chloride, phosphate, and sulfate from baseline 24-hour urine collections in 1044 African-American Study of Kidney Disease and Hypertension participants. We evaluated the cross-sectional correlations between urine ammonium, the standard urine anion gap (sodium + potassium - chloride), and a modified urine anion gap that includes urine phosphate and sulfate in the calculation. Multivariable-adjusted Cox models determined the associations of the standard urine anion gap and the modified urine anion gap with the composite end point of death or ESRD; these results were compared with results using urine ammonium as the predictor of interest. The standard urine anion gap had a weak and direct correlation with urine ammonium ( r =0.18), whereas the modified urine anion gap had a modest inverse relationship with urine ammonium ( r =-0.58). Compared with the highest tertile of urine ammonium, those in the lowest urine ammonium tertile had higher risk of ESRD or death (hazard ratio, 1.46; 95% confidence interval, 1.13 to 1.87) after adjusting for demographics, GFR, proteinuria, and other confounders. In comparison, participants in the corresponding standard urine anion gap tertile did not have higher risk of ESRD or death (hazard ratio, 0.82; 95% confidence interval, 0.64 to 1.07), whereas the risk for those in the corresponding modified urine anion gap tertile (hazard ratio, 1.32; 95% confidence interval, 1.03 to 1.68) approximated that of directly measured urine ammonium. Urine anion gap is a poor surrogate of urine ammonium in CKD unless phosphate and sulfate are included in the calculation. Because the modified urine anion gap merely estimates urine ammonium and requires five measurements, direct measurements of urine ammonium are preferable in CKD. Copyright © 2018 by the American Society of Nephrology.
Elias, Daniel; Bernot, Melody J.
2014-01-01
Atrazine, metolachlor, carbaryl, and chlorothalonil are detected in streams throughout the U.S. at concentrations that may have adverse effects on benthic microbes. Sediment samples were exposed to these pesticides to quantify responses of ammonium, nitrate, and phosphate uptake by the benthic microbial community. Control uptake rates of sediments had net remineralization of nitrate (−1.58 NO3 µg gdm−1 h−1), and net assimilation of phosphate (1.34 PO4 µg gdm−1 h−1) and ammonium (0.03 NH4 µg gdm−1 h−1). Metolachlor decreased ammonium and phosphate uptake. Chlorothalonil decreased nitrate remineralization and phosphate uptake. Nitrate, ammonium, and phosphate uptake rates are more pronounced in the presence of these pesticides due to microbial adaptations to toxicants. Our interpretation of pesticide availability based on their water/solid affinities supports no effects for atrazine and carbaryl, decreasing nitrate remineralization, and phosphate assimilation in response to chlorothalonil. Further, decreased ammonium and phosphate uptake in response to metolachlor is likely due to affinity. Because atrazine target autotrophs, and carbaryl synaptic activity, effects on benthic microbes were not hypothesized, consistent with results. Metolachlor and chlorothalonil (non-specific modes of action) had significant effects on sediment microbial nutrient dynamics. Thus, pesticides with a higher affinity to sediments and/or broad modes of action are likely to affect sediment microbes' nutrient dynamics than pesticides dissolved in water or specific modes of action. Predicted nutrient uptake rates were calculated at mean and peak concentrations of metolachlor and chlorothalonil in freshwaters using polynomial equations generated in this experiment. We concluded that in natural ecosystems, peak chlorothalonil and metolachlor concentrations could affect phosphate and ammonium by decreasing net assimilation, and nitrate uptake rates by decreasing remineralization, relative to mean concentrations of metolachlor and chlorothalonil. Our regression equations can complement models of nitrogen and phosphorus availability in streams to predict potential changes in nutrient dynamics in response to pesticides in freshwaters. PMID:25275369
Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4(+)).
Nozière, Barbara; Dziedzic, Pawel; Córdova, Armando
2009-01-08
Glyoxal, a common atmospheric gas, has been reported to be depleted in some regions of the atmosphere. The corresponding sink could be accounted for by reactions in or at the surface of atmospheric particles, but these reactions were not identified. Recently, we showed that inorganic ammonium ions, NH(4)(+), are efficient catalysts for reactions of carbonyl compounds, including glyoxal, in the liquid phase. To determine whether ammonium-catalyzed reactions can contribute to depletion of glyoxal in the atmosphere, the reactivity of this compound in aqueous solutions containing ammonium salts (ammonium sulfate, chloride, fluoride, and phosphate) at 298 K has been studied. The products identified by LC-HRMS and UV absorption revealed a mechanism involving two distinct pathways: a Bronsted acid pathway and an iminium pathway. The kinetics of the iminium pathway was studied by monitoring formation of a specific product. This pathway was second order in glyoxal in most of the solutions studied and should therefore be second order in most ammonium-containing aerosols in the atmosphere. The corresponding rate constant, k(II) (M(-1) s(-1)), increased strongly with ammonium ion activity, a(NH(4)(+)), and pH: k(II) (M(-1) s(-1)) = (2 +/- 1) x 10(-10) exp((1.5 +/- 0.8)aNH(4)(+)) exp((2.5 +/- 0.2)pH). This iminium pathway is a lower limit for the ammonium-catalyzed consumption of glyoxal, but the contribution of the acid pathway is expected to be small in tropospheric aerosols. With these results the reactive uptake of glyoxal on ammonium-containing aerosols was estimated and shown to be a possible explanation for depletion of this compound in Mexico City.
2015-07-01
Observed sediment-water fluxes. Ammonium , g m-2 d -1 Nitrate , g m-2 d -1 Phosphate, g m-2 d -1 SOD, g m-2 d -1 System 0.01 to 0.28 -0.04 to 0.1...defined substances are included, as well. Sediment-water fluxes of organic matter, ammonium , nitrate , phosphate, and dissolved oxygen are considered...preference. The preference depends on the abudance of ammonium and nitrate relative to the half-saturation concentration for algal ammonium uptake
Effect of pH on uranium(VI) biosorption and biomineralization by Saccharomyces cerevisiae.
Zheng, X Y; Shen, Y H; Wang, X Y; Wang, T S
2018-07-01
Biosorption of radionuclides by microorganisms is a promising and effective method for the remediation of contaminated areas. pH is the most important factor during uranium biosorption by Saccharomyces cerevisiae because the pH value not only affects the biosorption rate but also affects the precipitation structure. This study investigated the effect of pH on uranium (VI) biosorption and biomineralization by S. cerevisiae. Cells have the ability to buffer the solution to neutral, allowing the biosorption system to reach an optimal level regardless of the initial pH value. This occurs because there is a release of phosphate and ammonium ions during the interaction between cells and uranium. The uranyl and phosphate ions formed nano-particles, which is chernikovite H 2 (UO 2 ) 2 (PO 4 ) 2 ·8H 2 O (PDF #08-0296), on cell surface under the initial acidic conditions. However, under the initial alkaline conditions, the uranyl, phosphate and ammonium ions formed a large amount of scale-like precipitation, which is uramphite (NH 4 )(UO 2 )PO 4 ·3H 2 O (PDF #42-0384), evenly over on cell surface. Copyright © 2018 Elsevier Ltd. All rights reserved.
Superposition model analysis of zero field splitting for Mn2+ in some host single crystals
NASA Astrophysics Data System (ADS)
Bansal, R. S.; Ahlawat, P.; Bharti, M.; Hooda, S. S.
2013-07-01
The Newman superposition model has been used to investigate the substitution of Mn2+ for Zn2+ site in ammonium tetra flurozincate dihydrate and for Co2+ site in cobalt ammonium phosphate hexahydrate and cobalt potassium phosphate hexahydrate single crystals. The calculated values of zero field splitting parameter b 2 0 at room temperature fit the experimental data with average intrinsic parameters overline{b}2 (F) = -0.0531 cm-1 for fluorine and overline{b}2 (O) = -0.0280 cm-1 for oxygen, taken t 2 = 7 for Mn2+ doped in ammonium tetra fluorozincate dihydrate single crystals. The values of overline{b}2 determined for Mn2+ doped in cobalt ammonium phosphate hexahydrate are -0.049 cm-1 for site I and -0.045 cm-1 for site II and in cobalt pottasium phosphate hexahydrate single crystals it is found to be overline{b}2 = -0.086 cm-1. We find close agreement between theoretical and experimental values of b 2 0.
Qiu, Hui; Liang, Chen; Zhang, Xiaolin; Chen, Mindong; Zhao, Yunxia; Tao, Tao; Xu, Zhengwen; Liu, Gang
2015-09-23
Advanced removal of phosphate by low-cost adsorbents from municipal wastewater or industrial effluents is an effective and economic way to prevent the occurrence of eutrophication. Here, we proposed a novel method to immobilize hydrous zirconium oxide nanoparticle within quaternary-aminated wheat straw, and obtained an inexpensive, eco-friendly nanocomposite Ws-N-Zr. The biomass-based Ws-N-Zr exhibited higher preference toward phosphate than commercial anion exchanger IRA-900 when competing sulfate ions coexisted at relatively high levels. Such excellent performance of Ws-N-Zr resulted from its specific hybrid structure, the quaternary ammonium groups bonded on the host favor the preconcentration of phosphate ions inside the wheat straw based on Donnan effect, and the encapsulated HZO nanoparticle exhibits preferable sequestration of phosphate ions through specific interaction, as further demonstrated by FTIR and X-ray photoelectron spectroscopy. Cycle adsorption and regeneration experiments demonstrated that Ws-N-Zr could be employed for repeated use without significant capacity loss, when the binary NaOH-NaCl solution was employed as the regenerant. The influence of solution pH and contact time was also examined. The results suggested that Ws-N-Zr has a great potential in efficient removal of phosphate in contaminated waters.
Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.
Liaw, S. H.; Kuo, I.; Eisenberg, D.
1995-01-01
Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia and glutamate to yield glutamine, ADP, and inorganic phosphate in the presence of divalent cations. Bacterial GS is an enzyme of 12 identical subunits, arranged in two rings of 6, with the active site between each pair of subunits in a ring. In earlier work, we have reported the locations within the funnel-shaped active site of the substrates glutamate and ATP and of the two divalent cations, but the site for ammonia (or ammonium) has remained elusive. Here we report the discovery by X-ray crystallography of a binding site on GS for monovalent cations, Tl+ and Cs+, which is probably the binding site for the substrate ammonium ion. Fourier difference maps show the following. (1) Tl+ and Cs+ bind at essentially the same site, with ligands being Glu 212, Tyr 179, Asp 50', Ser 53' of the adjacent subunit, and the substrate glutamate. From its position adjacent to the substrate glutamate and the cofactor ADP, we propose that this monovalent cation site is the substrate ammonium ion binding site. This proposal is supported by enzyme kinetics. Our kinetic measurements show that Tl+, Cs+, and NH4+ are competitive inhibitors to NH2OH in the gamma-glutamyl transfer reaction. (2) GS is a trimetallic enzyme containing two divalent cation sites (n1, n2) and one monovalent cation site per subunit. These three closely spaced ions are all at the active site: the distance between n1 and n2 is 6 A, between n1 and Tl+ is 4 A, and between n2 and Tl+ is 7 A. Glu 212 and the substrate glutamate are bridging ligands for the n1 ion and Tl+. (3) The presence of a monovalent cation in this site may enhance the structural stability of GS, because of its effect of balancing the negative charges of the substrate glutamate and its ligands and because of strengthening the "side-to-side" intersubunit interaction through the cation-protein bonding. (4) The presence of the cofactor ADP increases the Tl+ binding to GS because ADP binding induces movement of Asp 50' toward this monovalent cation site, essentially forming the site. This observation supports a two-step mechanism with ordered substrate binding: ATP first binds to GS, then Glu binds and attacks ATP to form gamma-glutamyl phosphate and ADP, which complete the ammonium binding site. The third substrate, an ammonium ion, then binds to GS, and then loses a proton to form the more active species ammonia, which attacks the gamma-glutamyl phosphate to yield Gln. (5) Because the products (Glu or Gln) of the reactions catalyzed by GS are determined by the molecule (water or ammonium) attacking the intermediate gamma-glutamyl phosphate, this negatively charged ammonium binding pocket has been designed naturally for high affinity of ammonium to GS, permitting glutamine synthesis to proceed in aqueous solution. PMID:8563633
NASA Astrophysics Data System (ADS)
Pagès, Anaïs; Welsh, David T.; Robertson, David; Panther, Jared G.; Schäfer, Jörg; Tomlinson, Rodger B.; Teasdale, Peter R.
2012-12-01
High resolution, two dimensional distributions of porewater iron(II) and sulfide were measured, using colourimetric DET (diffusive equilibration in a thin film) and DGT (diffusive gradients in a thin film) techniques, respectively, in Zostera capricorni colonised sediments under both light and dark conditions. Low resolution depth profiles of ammonium and phosphate were measured using conventional DET and DGT methods, respectively. Porewater iron(II) and sulfide distributions showed a high degree of spatial heterogeneity under both light and dark conditions, and distributions were characterised by a complex mosaic of sediment zones dominated by either iron(II) or sulfide. However, there was a clear shift in overall redox conditions between light and dark conditions. During light deployments, iron(II) and sulfide concentrations were generally low throughout the rhizosphere, apart from a few distinct "hotspots" of high concentration. Whereas during dark deployments, high concentrations of iron(II) were sometimes measured in the near surface sediments and sulfide depth distributions migrated towards the sediment surface. Profiles of porewater ammonium and phosphate demonstrated an increase in ammonium concentrations under dark compared to light conditions. Surprisingly, despite the large changes in iron(II) distributions between light and dark conditions, phosphate profiles remained similar, indicating that adsorption/release of phosphate by iron(III) hydr(oxide) mineral formation and reduction was not a major factor regulating porewater phosphate concentrations in these sediments or that phosphate uptake by the seagrass roots persisted during the dark period. Overall, the results demonstrate that the photosynthetic activity of the seagrass played a significant role in regulating sulfide, iron(II) and ammonium concentrations in the rhizosphere, due to rates of radial oxygen loss and ammonium uptake by the roots and rhizomes being lower under dark compared to light conditions. This cyclic production and reduction of iron(III) hydr(oxides) in the rhizosphere may act as a buffering system preventing sulfide accumulation.
30 CFR 75.1107-9 - Dry chemical devices; capacity; minimum requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Many dry chemical systems were originally designed for sodium bicarbonate before all-purpose chemical (ammonium phosphate) was shown to be more effective. Sodium bicarbonate is denser than ammonium phosphate; hence, for example, a 50-pound system designed for the sodium bicarbonate will hold slightly more by...
Determination of ammonium on an integrated microchip with LED-induced fluorescence detection.
Xue, Shuhua; Uchiyama, Katsumi; Li, Hai-Fang
2012-01-01
A simply fabricated microfluidic device integrated with a fluorescence detection system has been developed for on-line determination of ammonium in aqueous samples. A 365-nm light-emitting diode (LED) as an excitation source and a minor band pass filter were mounted into a polydimethylsiloxane (PDMS)-based microchip for the purpose of miniaturization of the entire analytical system. The ammonium sample reacted with o-phthaldialdehyde (OPA) on-chip with sodium sulfite as reducing reagent to produce a fluorescent isoindole derivative, which can emit fluorescence signal at about 425 nm when excited at 365 nm. Effects of pH, flow rate of solutions, concentrations of OPA-reagent, phosphate and sulfite salt were investigated. The calibration curve of ammonium in the range of 0.018-1.8 microg/mL showed a good linear relationship with R2 = 0.9985, and the detection limit was (S/N = 3) 3.6 x 10(-4) microg/mL. The relative standard deviation was 2.8% (n = 11) by calculating at 0.18 microg/mL ammonium for repeated detection. The system was applied to determine the ammonium concentration in rain and river waters, even extent to other analytes fluorescence detection by the presented device.
Gerardo, Michael L; Aljohani, Nasser H M; Oatley-Radcliffe, Darren L; Lovitt, Robert W
2015-09-01
The fractionation of nitrogen (as ammonia/ammonium) and phosphorus (as phosphate ions) present in the dairy manure digestate was investigated using a nanofiltration membrane NF270. The filtration and separation efficiencies were correlated to pH across the range 3 < pH < 11. Filtration at pH 11 enabled higher permeate flux of 125-150 LMH at 20 bar, however rejection of ammonia was high at 30-36% and phosphate was 96.4-97.2%. At pH 3 and pH 7, electrostatic charge effects led to higher permeation of ammonium and thus more efficient separation of nitrogen. The rejection of phosphorus was relatively constant at any given pH and determined as 83% at pH 3, 97% at pH 7 and 95% at pH 11. The fractionation of nitrogen and phosphorus from complex aqueous solutions was demonstrated to be highly dependent on the charge of the membrane and ionic speciation. Solutions rich in nitrogen (as ammonia/ammonium) were obtained with almost no phosphorus present (<1 ppm) whilst the purification of the PO4-P was achieved by series of diafiltration (DF) operations which further separated the nitrogen. The separation of nutrients benefited from an advantageous membrane process with potential added value for a wide range of industries. The analysis of the process economics for a membrane based plant illustrates that the recovery of nutrients, particularly NH3-N, may be commercially feasible when compared to manufactured anhydrous NH3. Copyright © 2015 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5293 Poly(oxy-1,2-ethanediyl), alpha-(9Z)-9-octadecenyl-.omega.-hydroxy-, phosphate, ammonium salt. (a) Chemical substance and significant...
Demeestere, K; Smet, E; Van Langenhove, H; Galbacs, Z
2001-12-01
Among the physico-chemical abatement technologies, mainly acid scrubbers have been used to control NH3-emission. The disadvantage of this technique is that it yields waste water, highly concentrated in ammonia. In this report, the applicability of the magnesium ammonium phosphate (MAP) process to regenerate the liquid phase, produced by scrubbing NH3-loaded waste gases, was investigated. In the MAP process, ammonium is precipitated as magnesium ammonium phosphate, which can be used as a slow release fertilizer. The influence of a number of parameters, e.g. pH, kinetics, molar ratio NH(+)4/Mg2+/PO(3-)4 on the efficiency of the formation of MAP and on the ammonium removal efficiency was investigated. In this way, optimal conditions were determined for the precipitation reaction. Next to this, interference caused by other precipitation reactions was studied. At aqueous NH(+)4-concentrations of about 600 mg l(-1), ammonium removal efficiencies of 97% could be obtained at a molar ratio NH(+)4/Mg2+/PO(3-)4 of 1/1.5/1.5. To obtain this result, the pH was continuously adjusted to a value of 9 during the reaction. According to this study, it is obvious that the MAP-precipitation technology offers opportunities for ammonium removal from scrubbing liquids. The practical applicability of the MAP-process in waste gas treatment systems, however, should be the subject for further investigations.
40 CFR 418.10 - Applicability; description of the phosphate subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Phosphate...-process phosphoric acid, normal superphosphate, triple superphosphate and ammonium phosphate, except that...
40 CFR 418.10 - Applicability; description of the phosphate subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Phosphate...-process phosphoric acid, normal superphosphate, triple superphosphate and ammonium phosphate, except that...
Phonon assisted electronic transition in telluric acid ammonium phosphate single crystals
NASA Astrophysics Data System (ADS)
El-Muraikhi, M.; Kassem, M. E.; Al-Houty, L.
The effect of gamma-irradiation on the absorption optical spectra of telluric acid ammonium phosphate single crystals (TAAP) has been studied, in the wave length of 200-600 nm, for samples irradiated by various doses up to 10 Mrad. The results show that the electron phonon coupling constant increases with the irradiation dose.
Study on pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source.
Li, Kai; Zhu, Changpeng; Zhang, Liqiang; Zhu, Xifeng
2016-06-01
The current study presents the pyrolysis characteristics of rice husk impregnated with different kinds of ammonia source (ammonium acetate, urea, ammonium sulfate and ammonium dihydrogen phosphate) in a fixed bed reactor. The introduction of ammonia source in pyrolysis process achieved the conversation from carbonyl compounds to nitrogenous heterocyclic compounds. The liquid product of urea-impregnated biomass has higher content of nitrogenous heterocyclic compounds (8.35%) and phenols (30.4%). For ammonium sulfate and ammonium dihydrogen phosphate-impregnated biomass, the quantity of compounds in liquid products reduces remarkably, and the gas products are rich in CO and H2. All the solid products of pyrolysis have great potential application in biochar-based fertilizer and activated carbon for their high N content. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.
2017-02-01
A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.
Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.
2017-01-01
A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance. PMID:28157233
Yu, Rongtai; Geng, Jinju; Ren, Hongqiang; Wang, Yanru; Xu, Ke
2012-11-01
Removal of ammonium from wastewater via struvite (MAP) pyrolysate recycling combined with a mixed-base NaOH/Mg(OH)(2) technology was investigated, and the phosphate and magnesium concentration in the supernatant were measured. The optimal parameters for acidolysis were a pH of 1; temperature of 120°C and time of 2h. The presence of derivatives of amorphous magnesium hydrogen phosphate (MgHPO(4)), namely magnesium phosphate (Mg(3)(PO(4))(2)) and magnesium pyrophosphate (Mg(2)P(2)O(7)) were verified by experiment. The ammonium removal ratio in this combined mixed-base technology was 96.8% in the first cycle, 80.6% in the second, and 81.0% after acidolysis. The phosphate and magnesium ions concentration in the supernatant were about 1mg/L and 40 mg/L, respectively. The grain size of MAP was 1.52 nm without seeding and 1.79 nm with seeding, and the growth rate of MAP was 17.6%. Copyright © 2012 Elsevier Ltd. All rights reserved.
Jin, Pengfei; Xia, Lufeng; Li, Zheng; Che, Ning; Zou, Ding; Hu, Xin
2012-11-01
A simple, isocratic, and stability-indicating high-performance liquid chromatography (HPLC) method has been developed for the rapid determination of thiamine (VB(1)), niacinamide (VB(3)), pyridoxine (VB(6)), ascorbic acid (VC), pantothenic acid (VB(5)), riboflavin (VB(2)) and folic acid (VB(9)) in Vitamins with Minerals Tablets (VMT). An Alltima C(18) column (250 mm × 4.6 mm i.d., 5 μm) was used for the separation at ambient temperature, with 50mM ammonium dihydrogen phosphate (adjusting with phosphoric acid to pH 3.0) and acetonitrile as the mobile phase at the flow rate of 0.5 ml min(-1). VB(1), VB(3), VB(6), VC and VB(5) were extracted with a solution containing 0.05% phosphoric acid (v/v) and 0.3% sodium thiosulfate (w/v), and were then simultaneously analyzed by using the mobile phase of phosphate buffer-acetonitrile (95:5, v/v), while VB(2) and VB(9) were extracted with a solution containing 0.5% ammonium hydroxide solution (v/v), and were then simultaneously analyzed by using the mobile phase of phosphate buffer-acetonitrile (85:15, v/v). The detection wavelengths were 275 nm for VB(1), VB(3), VB(6), VC, 210 nm for VB(5), and 282 nm for VB(2) and VB(9). The method showed good system suitability, sensitivity, linearity, specificity, precision, stability and accuracy. All the seven water-soluble vitamins were well separated from other ingredients and degradation products. Method comparison indicated good concordance between the developed method and the USP method. The developed method was reliable and convenient for the rapid determination of VB(1), VB(3), VB(6), VC, VB(5), VB(2) and VB(9) in VMT. Copyright © 2012 Elsevier B.V. All rights reserved.
Shibata, Hiroko; Izutsu, Ken-Ichi; Yomota, Chikako; Okuda, Haruhiro; Goda, Yukihiro
2015-01-01
Establishing appropriate drug release testing methods of liposomal products for assuring quality and performance requires the determination of factors affecting in vitro drug release. In this study, we investigated the effects of test conditions (human plasma lot, pH/salt concentration in the test media, dilution factor, temperature, ultrasound irradiation, etc.), and liposomal preparation conditions (pH/concentration of ammonium sulfate solution), on doxorubicin (DXR) release from PEGylated liposomal DXR. Higher temperature and lower pH significantly increased DXR release. The evaluation of DXR solubility indicated that the high DXR release induced by low pH may be attributed to the high solubility of DXR at low pH. Ultrasound irradiation induced rapid DXR release in an amplitude-dependent manner. The salt concentration in the test solution, human plasma lot, and dilution factor had a limited impact on DXR-release. Variations in the ammonium sulfate concentration used in solutions for the formation/hydration of liposomes significantly affected DXR release behavior, whereas differences in pH did not. In addition, heating condition in phosphate-buffered saline at lower pH (<6.5) exhibited higher discriminative ability for the release profiles from various liposomes with different concentrations of ammonium sulfate than did ultrasound irradiation. These results are expected to be helpful in the process of establishing appropriate drug release testing methods for PEGylated liposomal DXR.
1. NORTH IDAHO PHOSPHATE COMPANY PLANTS. VIEW IS TO THE ...
1. NORTH IDAHO PHOSPHATE COMPANY PLANTS. VIEW IS TO THE NORTHEAST, WITH THE SHIPPING AND STORAGE WAREHOUSE, AMMONIUM PHOSPHATE FERTILIZER PLANT, AND PHOSPHORIC ACID PLANT APPEARING IN SUCCESSION DOWN GOVERNMENT GULCH. - North Idaho Phosphate Company, Silver King Community, Kellogg, Shoshone County, ID
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Poly(oxy-1,2-ethanediyl), alpha-(9Z)-9... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5293 Poly(oxy-1,2-ethanediyl), alpha...), alpha-(9Z)-9-octadecenyl-.omega.-hydroxy-, phosphate, ammonium salt (PMN P-99-920; CAS No. 58857-49-1...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Poly(oxy-1,2-ethanediyl), alpha-(9Z)-9... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5293 Poly(oxy-1,2-ethanediyl), alpha...), alpha-(9Z)-9-octadecenyl-.omega.-hydroxy-, phosphate, ammonium salt (PMN P-99-920; CAS No. 58857-49-1...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly(oxy-1,2-ethanediyl), alpha-(9Z)-9... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5293 Poly(oxy-1,2-ethanediyl), alpha...), alpha-(9Z)-9-octadecenyl-.omega.-hydroxy-, phosphate, ammonium salt (PMN P-99-920; CAS No. 58857-49-1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Poly(oxy-1,2-ethanediyl), alpha-(9Z)-9... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5293 Poly(oxy-1,2-ethanediyl), alpha...), alpha-(9Z)-9-octadecenyl-.omega.-hydroxy-, phosphate, ammonium salt (PMN P-99-920; CAS No. 58857-49-1...
NASA Astrophysics Data System (ADS)
Lundager Madsen, Hans Erik
2014-09-01
In an attempt to grow pure crystals of the iron(II) phosphate vivianite, Fe3(PO4)2,8H2O, from a solution of Mohr's salt, Fe(NH4)2(SO4)2,6H2O, added to a solution of ammonium phosphate, hydroxylammonium chloride, NH3OHCl, was added to the iron(II) stock solution to eliminate oxidation of iron(II) by oxygen from the air. However, the effect turned out to be the opposite of the expected: whereas hydroxylamine reduces iron(III) in bulk solution, it acted as a strong oxidant in the presence of growing iron phosphate crystals, causing the crystallization of the iron(III) phosphate strengite, FePO4,2H2O, as the only solid phase. Evidently the crystal surface catalyses oxidation of iron(II) by hydroxylamine. The usual composite kinetics of spiral growth and surface nucleation was found. The surface-nucleation part yielded edge free energy λ in the range 12-45 pJ/m, virtually independent of temperature and in the range typical for phosphates of divalent metals. The scatter of values for λ presumably arises from contributions from different crystal forms to the overall growth rate. The low mean value points to strong adsorption of iron(II), which is subsequently oxidized at the crystal surface, forming strengite. The state of the system did not tend to thermodynamic equilibrium, but to a metastable state, presumably controlled by the iron(II) rich surface layer of the crystal. In addition to crystal growth, it was possible to measure nucleation kinetics by light scattering (turbidimetry). A point of transition from heterogeneous to homogeneous nucleation was found, and from the results for the homogeneous domain a rather precise value of crystal surface free energy γ=55 mJ/m2 was found. This is a relatively low value as well, indicating that the redox process plays a role already at the nucleation stage.
Bolívar, J P; García-Tenorio, R; Mosqueda, F; Gázquez, M J; López-Coto, I; Adame, J A; Vaca, F
2013-03-01
In order to fill a gap in the open literature, occupational exposures and activity concentrations have been assessed in two NORM industrial plants, located in the south-west of Spain, devoted to the production of mono-ammonium phosphate (MAP) and di-ammonium phosphate (DAP) fertilisers. The annual effective doses received by the workers from these plants are clearly below 1 mSv yr(-1) and the contribution due to external radiation is similar to that due to inhalation. The contribution to the maximum effective doses due to inhalation of particulate matter has been estimated to be about 0.12 mSv yr(-1), while the (222)Rn concentrations inside the plants are of no concern. Consequently, no additional actions or radiological protection measures need to be taken to decrease the natural radiation received by the workers in these facilities.
Fischer, R S; Rubin, J L; Gaines, C G; Jensen, R A
1987-07-01
The 5-enol-pyruvylshikimate-3-phosphate (EPSP) synthase from Bacillus subtilis was activated by monovalent cations, catalytic activity being negligible in the absence of monovalent cations. The order of cation effectiveness (NH4+ greater than K+ greater than Rb+ greater than Na+ = Cs+ = Li+) indicated that the extent of activation was directly related to the unhydrated cation radius. Ammonium salts, at physiological concentrations, were dramatically more effective than other cations. Activation by ammonium was instantaneous, was not influenced by the counter ion, and gave a hyperbolic saturation curve. Hill plots did not show detectable cooperativity in the binding of ammonium. Double-reciprocal plots indicated that ammonium increases the maximal velocity and decreases the apparent Michaelis constants of EPSP synthase with respect to both phosphoenol pyruvate (PEP) and shikimate 3-phosphate (S3P). A direct relationship between sensitivity to inhibition by glyphosate and the activation state of EPSP synthase was demonstrated. Hill plots indicated a single value for glyphosate binding throughout the range of ammonium activation. Double-reciprocal plots of substrate saturation data obtained with ammonium-activated enzyme in the presence of glyphosate showed glyphosate to behave as a competitive inhibitor with respect to PEP and as a mixed-type inhibitor relative to S3P. The increased glyphosate sensitivity of ammonium-activated EPSP synthase is attributed to a lowering of the inhibitor constant of glyphosate with respect to PEP. Erroneous underestimates of sensitivities of some bacterial EPSP synthases to inhibition by glyphosate may result from failure to recognize cation requirements of EPSP synthases.
Energetics of phosphate binding to ammonium and guanidinium containing metallo-receptors in water.
Tobey, Suzanne L; Anslyn, Eric V
2003-12-03
The design and synthesis of receptors containing a Cu(II) binding site with appended ammonium groups (1) and guanidinium groups (2), along with thermodynamics analyses of anion binding, are reported. Both receptors 1 and 2 show high affinities (10(4) M(-1)) and selectivities for phosphate over other anions in 98:2 water:methanol at biological pH. The binding of the host-guest pairs is proposed to proceed through ion-pairing interactions between the charged functional groups on both the host and the guest. The affinities and selectivities for oxyanions were determined using UV/vis titration techniques. Additionally, thermodynamic investigations indicate that the 1:phosphate complex is primarily entropy driven, while the 2:phosphate complex displays both favorable enthalpy and entropy changes. The thermodynamic data for binding provide a picture of the roles of the host, guest, counterions, and solvent. The difference in the entropy and enthalpy driving forces for the ammonium and guanidinium containing hosts are postulated to derive primarily from differences in the solvation shell of these two groups.
Effectiveness of biochar for sorption of ammonium and phosphate from dairy effluent.
Sarkhot, D V; Ghezzehei, T A; Berhe, A A
2013-09-01
The use of biochar for recovery of excess nutrients in dairy manure effluent and the use of nutrient-enriched biochar as soil amendment can offer a robust solution for multiple environmental issues. In this study we determined the capacity of biochar, produced by pyrolyzing mixed hardwood feedstock at 300°C, to adsorb and retain or release two major nutrient ions: ammonium (NH) and phosphate (PO). We conducted the experiment using a range of nutrient concentrations that represent those commonly observed in dairy manure effluent (0-50 mg L for PO and 0-1000 mg L for NH). Up to 5.3 mg g NH and 0.24 mg g PO was adsorbed from manure by biochar (18 and 50% of total amount in the manure slurry, respectively). During the desorption phase of the experiment, biochar retained 78 to 91% of the sorbed NH and 60% of the sorbed PO at reaction times <24 h. Our findings confirm that biochar can be used for recovering excess nitrogen and phosphorus from agricultural water, such as dairy manure effluent. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Chekli, Laura; Kim, Youngjin; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong
2017-02-01
The present study focused on the performance of the FDFO process to achieve simultaneous water reuse from wastewater and production of nutrient solution for hydroponic application. Bio-methane potential (BMP) measurements were firstly carried out to determine the effect of osmotic concentration of wastewater achieved in the FDFO process on the anaerobic activity. Results showed that 95% water recovery from the FDFO process is the optimum value for further AnMBR treatment. Nine different fertilizers were then tested based on their FO performance (i.e. water flux, water recovery and reverse salt flux) and final nutrient concentration. From this initial screening, ammonium phosphate monobasic (MAP), ammonium sulfate (SOA) and mono-potassium phosphate were selected for long term experiments to investigate the maximum water recovery achievable. After the experiments, hydraulic membrane cleaning was performed to assess the water flux recovery. SOA showed the highest water recovery rate, up to 76% while KH 2 PO 4 showed the highest water flux recovery, up to 75% and finally MAP showed the lowest final nutrient concentration. However, substantial dilution was still necessary to comply with the standards for fertigation even if the recovery rate was increased. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ando, Masaki; Imadzu, Sakiyo; Kitagawa, Shinya; Ohtani, Hajime
2010-08-06
A particulate formation-laser scattering detector (PFLSD) was developed and used for evaluating the crystallization efficiency of inorganic polyphosphates (PPs) that reacted with either magnesium or calcium cations. As the solutions for reactive crystallization, 0.5 M ammonium buffer (pH 9.6) containing either 0.15 M MgCl(2) or 0.15 M CaCl(2) (MAP: magnesium ammonium phosphate and HAP: hydroxyapatite solution) were used. In the case of mono- and diphosphate (P1 and P2), the significant dependences of the particulate formation efficiency on various types of both P1/P2 and MAP/HAP reaction solutions were observed with the direct sample injection mode. The PFLSD was hyphenated with the anion-exchange chromatography and the dependence of the particulate formation efficiency on the polymerization degree (n(p)) of PP oligomers, separated chromatographically, was evaluated sequentially. The significant suppression of the particulate formation for PP oligomers was clearly confirmed, i.e., the MAP and HAP reaction solutions did not produce the particulates of the PP oligomers having an n(p) value of more than 3 and 5, respectively. As the overall tendency, the particulate formation efficiency in the case of the HAP solution was superior to that in the case of the MAP solution. Copyright 2010 Elsevier B.V. All rights reserved.
Schwertschlag, U; Nakata, L M; Gal, J
1984-01-01
Several high-pressure liquid chromatography procedures for the determination of flucytosine in serum or plasma have appeared. Some of these suffer from significant disadvantages, and none was applicable in our routine clinical therapeutic-drug-monitoring laboratory. A new high-pressure liquid chromatography assay for flucytosine was therefore developed. A 100-microliter sample of plasma was treated with an aqueous 5-iodocytosine internal-standard solution, and the mixture was deproteinized with trichloroacetic acid. A portion of the protein-free supernatant was diluted with 0.1 M ammonium phosphate, and an aliquot of the resulting solution was injected into the high-pressure liquid chromatography system. Chromatography was performed on a strong-cation-exchange column with a mobile phase containing aqueous ammonium phosphate, phosphoric acid, methanol, and acetonitrile. Detection was at 254 nm. The assay was shown to be linear in the 10 to 200-micrograms/ml drug-concentration range. Forty other drugs were tested for potential interference with the assay, and none was found. For routine use, a single-point working standard containing 75 micrograms of flucytosine per ml was used, giving intraassay coefficients of variation at 50 and 150 micrograms/ml of 1.8 and 2.3% respectively, whereas the day-to-day coefficient of variation at 50 micrograms/ml was 10.0%. Advantages of the procedure include the small sample size, the use of a convenient and reliable internal standard, speed, and simplicity. The assay is highly suitable for routine clinical drug-analysis laboratories. PMID:6508261
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
... Purpose. 148.205 Ammonium nitrate and ammonium nitrate fertilizers. 148.220 Ammonium nitrate-phosphate fertilizers. 148.225 Calcined pyrites (pyritic ash, fly ash). 148.227 Calcium nitrate fertilizers. 148.230... tankage fertilizer. 148.325 Wood chips; wood pellets; wood pulp pellets. 148.330 Zinc ashes; zinc dross...
Wang, Lei; Zhou, Yan; Huang, Ya-Xi; Mi, Jin-Xiao
2009-01-01
The title compound, ammonium potassium iron(III) phosphate fluoride, (NH4)0.875K0.125FePO4F, is built from zigzag chains ∞ 1{[FeO4F2]7−}, with Fe3+ in a distorted octahedral coordination, extending along both the [011] and [01] directions. These chains are made up of alternating trans-[FeO4F2] and cis-[FeO4F2] octahedra via shared F-atom corners, and are linked by PO4 tetrahedra, resulting in an open-framework structure with channels along the [010] and [100] directions. There are two crystallographically independent ammonium sites: one in the [010] channels and the other, partially substituted by K+ ions, in the [100] channels. The ammonium in the [010] channels is fixed to the framework via eight hydrogen bonds (six N—H⋯O and two N—H⋯F). PMID:21581466
NASA Astrophysics Data System (ADS)
Mardawati, Efri; Parlan; Rialita, Tita; Nurhadi, Bambang
2018-03-01
Xylanase is an enzyme used in the industrial world, including food industry. Xylanase can be utilized as a 1,4-β-xylosidic endo-hydrolysis catalyst of xylanase, a hemicellulose component for obtaining a xylose monomer. This study aims to determine the optimum concentration of the fermentation medium using Response Surface Method (RSM) in the production of xylanase enzyme from oil palm empty fruit bunches (OPEFB) through solid state fermentation process. The variables varied in this study used factor A (ammonium sulphate concentration 1.0-2.0 g/L), B (concentration of potassium dihydrogen phosphate 1.5-2.5 g/L) and C (urea concentration 0.2 – 0.5 g/L). The data was analysed by using Design Expert version 10.0.1.0 especially CCD with total 17 running including 3 times replicated of canter point. Trichoderma viride was used for the process production of xylanase enzyme. The ratio between substrate and moistening solution used was 0.63 g / mL with temperature of 32.80C, 60 h incubation time. The analysis of enzyme activity was done by DNS method with 1% xylan as substrate. Analysis of protein content in enzyme was done by Bradford method. The optimum of moistening solution concentration in this fermentation was obtained. They are, the ammonium sulphate concentration of 1.5 g/L, potassium dihydrogen phosphate 2.0 g/L and urea 0.35 g/L with activity of 684.70 U/mL, specific activity enzyme xylanase 6261.58 U/mg, protein content 0.1093 U/mg, the model was validated using experiment design with perfect reliability value 0.96.
Removal of lead and phosphate ions from aqueous solutions by organo-smectite.
Bajda, Tomasz; Szala, Barbara; Solecka, Urszula
2015-01-01
Smectite has been modified using hexadecyltrimethyl ammonium bromide in an amount of double cationic exchange capacity. This alteration makes it possible to use organo-smectite as a sorbent to remove anionic forms. The experiment consisted of the interchangeable sorption of phosphate(V) and lead(II) by organo-smectite. Research was carried out with varying pH (2-5) and various concentrations (0.1-5 mmol/L). Organo-smectite with previously adsorbed lead ions removed more phosphate than the untreated organo-smectite. Experimental data show that lead is more likely to absorb on the organo-smectite than on the organo-smectite with previously adsorbed phosphate ions. It follows that the most effective use of the organo-smectite is through the sorption of first - Pb cations and then PO4 anions. With an increasing concentration of Pb(II) or P(V), the sorption efficiency increases. The maximum sorption efficiency of lead and phosphate ions is observed at pH 5. This enables the removal of harmful lead and phosphorus compounds from waste water and immobilizes them on the sorbent's surface. The alternating reactions of lead and phosphorus ions result in the crystallization of brompyromorphite Pb5(PO4)3Br.
Low temperature synthesis and characterization of carbonated hydroxyapatite nanocrystals
NASA Astrophysics Data System (ADS)
Anwar, Aneela; Asghar, Muhammad Nadeem; Kanwal, Qudsia; Kazmi, Mohsin; Sadiqa, Ayesha
2016-08-01
Carbonate substituted hydroxyapatite (CHA) nanorods were synthesized via coprecipitation method from aqueous solution of calcium nitrate tetrahydrate and diammonium hydrogen phosphate (with urea as carbonate ion source) in the presence of ammonium hydroxide solution at 70 °C at the conditions of pH 11. The obtained powders were physically characterized using transmission electron microscopy (TEM), X-ray powder diffraction analysis (XRD), and FTIR and Raman spectroscopy. The particle size was evaluated by Dynamic light scattering (DLS). The chemical structural analysis of as prepared sample was performed using X-ray photoelectron spectroscopy (XPS). After ageing for 12 h, and heat treatment at 1000 °C for 1 h, the product was obtained as highly crystalline nanorods of CHA.
Commercial fertilizers: Total US fertilizer consumption 44.9 million tons in 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargett, N.L.; Berry, J.T.; McKinney, S.L.
1989-12-31
US fertilizer consumption for the 1988--1989 year was 44.9 million tons of material-an increase of less than one percent from the previous year. The average plant nutrient content of all fertilizers decreased slightly as total plant nutrient consumption declined from 19.61 million to 19.59 million tons of N, P{sub 2}O{sub 5}, and K{sub 2}O. Total nitrogen consumption increased one percent to 10.63 million tons, while P{sub 2}O{sub 5} use decreased by less than one percent to 4.12 million tons. Potash consumption declined from 4.97 million tons to 4.83 million tons K{sub 2}O-a 2.8 percent decrease. Consumption patterns varied widely frommore » state to state as weather conditions adversely affected fertilizer application even with significant increases in total planted crop acreage. Illinois, Indiana, Iowa, Minnesota, and Ohio reported a decline in total plant nutrient application while several of the southeastern states registered an increase in consumption. Nutrient levels in mixed fertilizers remained unchanged as slight gains in the nitrogen and P{sub 2}O{sub 5} content were offset by a decline in K{sub 2}O. Consumption of ammonium polyphosphate solution (10-34-0) and monoammonium phosphates increased 9.2 percent and 12.8 percent respectively, while diammonium phosphate (18-46-0) use was 2.4 percent below last year. A general increase in the use of nitrogen materials was reported with the exception of nitrogen solutions which declined 2.1 percent from 1987--1988. Urea consumption rose almost 2 percent. ammonium nitrate was up 8.1 percent, and ammonium sulfate recorded a 9.5 percent gain in consumption. Anhydrous ammonia use was only 35,000 tons above last year. This document contains a state by state listing of individual fertilizer consumption rates, numerical data only.« less
Commercial fertilizers: Total US fertilizer consumption 44. 9 million tons in 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargett, N.L.; Berry, J.T.; McKinney, S.L.
1989-01-01
US fertilizer consumption for the 1988--1989 year was 44.9 million tons of material-an increase of less than one percent from the previous year. The average plant nutrient content of all fertilizers decreased slightly as total plant nutrient consumption declined from 19.61 million to 19.59 million tons of N, P[sub 2]O[sub 5], and K[sub 2]O. Total nitrogen consumption increased one percent to 10.63 million tons, while P[sub 2]O[sub 5] use decreased by less than one percent to 4.12 million tons. Potash consumption declined from 4.97 million tons to 4.83 million tons K[sub 2]O-a 2.8 percent decrease. Consumption patterns varied widely frommore » state to state as weather conditions adversely affected fertilizer application even with significant increases in total planted crop acreage. Illinois, Indiana, Iowa, Minnesota, and Ohio reported a decline in total plant nutrient application while several of the southeastern states registered an increase in consumption. Nutrient levels in mixed fertilizers remained unchanged as slight gains in the nitrogen and P[sub 2]O[sub 5] content were offset by a decline in K[sub 2]O. Consumption of ammonium polyphosphate solution (10-34-0) and monoammonium phosphates increased 9.2 percent and 12.8 percent respectively, while diammonium phosphate (18-46-0) use was 2.4 percent below last year. A general increase in the use of nitrogen materials was reported with the exception of nitrogen solutions which declined 2.1 percent from 1987--1988. Urea consumption rose almost 2 percent. ammonium nitrate was up 8.1 percent, and ammonium sulfate recorded a 9.5 percent gain in consumption. Anhydrous ammonia use was only 35,000 tons above last year. This document contains a state by state listing of individual fertilizer consumption rates, numerical data only.« less
Data on snow chemistry of the Cascade-Sierra Nevada Mountains
Laird, L.B.; Taylor, Howard E.; Lombard, R.E.
1986-01-01
Snow chemistry data were measured for solutes found in snow core samples collected from the Cascade-Sierra Nevada Mountains from late February to mid-March 1983. The data are part of a study to assess geographic variations in atmospheric deposition in Washington, Oregon, and California. The constituents and properties include pH and concentrations of hydrogen ion, calcium, magnesium, sodium, potassium, chloride, sulfate, nitrate, fluoride, phosphate, ammonium, iron, aluminum, manganese, copper, cadmium, lead, and dissolved organic carbon. Concentrations of arsenic and bromide were below the detection limit. (USGS)
40 CFR 180.920 - Inert ingredients used pre-harvest; exemptions from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium, and zinc salts of the phosphate esters; minimum oxyethylene content is 2 moles.... 14433-76-2) Emulsifier, solvent, cosolvent Diammonium phosphate (CAS Reg. No. 7783-28-0) Buffer...
40 CFR 180.920 - Inert ingredients used pre-harvest; exemptions from the requirement of a tolerance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium, and zinc salts of the phosphate esters; minimum oxyethylene content is 2 moles... phosphate (CAS Reg. No. 7783-28-0) Buffer, surfactant dibenzylidene sorbitol (32647-67-9) Thinning agent...
40 CFR 180.920 - Inert ingredients used pre-harvest; exemptions from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium, and zinc salts of the phosphate esters; minimum oxyethylene content is 2 moles... phosphate (CAS Reg. No. 7783-28-0) Buffer, surfactant dibenzylidene sorbitol (32647-67-9) Thinning agent...
Augmenting Laboratory Rearing of Stable Fly (Diptera: Muscidae) Larvae With Ammoniacal Salts
Friesen, Kristina; Berkebile, Dennis R.; Zhu, Jerry J.
2017-01-01
Stable flies are blood feeding parasites and serious pests of livestock. The immature stages develop in decaying materials which frequently have high ammonium content. We added various ammonium salts to our laboratory stable fly rearing medium and measured their effect on size and survival as well as the physical properties of the used media. The addition of ammonium hydroxide, ammonium phosphate and ammonium sulfate reduced larval survival. These compounds decreased pH and increased ammonium content of the used media. Ammonium bicarbonate had no effect on pH and marginally increased ammonium while increasing survival twofold. The optimal level of ammonium bicarbonate was 50 g (0.63 mol) per pan. Larval survival decreased when pH was outside the range of 8.5 to 9.0. PMID:28130462
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prosini, Pier Paolo, E-mail: pierpaolo.prosini@enea.it; Gislon, Paola; Cento, Cinzia
Graphical abstract: - Highlights: • Four different samples of FAP were synthesized by precipitation techniques. • The samples were used as precursors to synthesize electrochemical active LiFePO{sub 4}. • Their morphology, composition, structure and electrochemical performance were studied. • The LiFePO{sub 4} electrochemical performance resulted affected by the preparation method - Abstract: In this paper the morphological, structural and electrochemical properties of crystalline lithium iron phosphate (LiFePO{sub 4}) obtained from ferrous ammonium phosphate (FAP) have been studied. The FAP was obtained following four different processes, namely: (1) homogeneous phase precipitation, (2) heterogeneous phase precipitation from stoichiometric sodium phosphate, (3) heterogeneousmore » phase precipitation from stoichiometric ammonium phosphate, and (4) heterogeneous phase precipitation from over stoichiometric ammonium phosphate. Lithium iron phosphate was prepared by solid state reaction of FAP with lithium hydroxide. In order to evaluate the effect of reaction time and synthesis temperature the LiFePO{sub 4} was prepared varying the heating temperatures (550, 600 and 700 °C) and the reaction times (1 or 2 h). The morphology of the materials was evaluated by scanning electron microscopy while the chemical composition was determined by electron energy loss spectroscopy. X-ray diffraction was used to evaluate phase composition, crystal structure and crystallite size. The so obtained LiFePO{sub 4}'s were fully electrochemical characterized and a correlation was found between the crystal size and the electrochemical performance.« less
Method for providing uranium articles with a corrosion resistant anodized coating
Waldrop, Forrest B.; Washington, Charles A.
1982-01-01
Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75.degree. C. with a current flow of less than about 0.036 A/cm.sup.2 of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.
Agricultural chemicals: life changer for mosquito vectors in agricultural landscapes?
Kibuthu, Tabitha W; Njenga, Sammy M; Mbugua, Amos K; Muturi, Ephantus J
2016-09-13
Although many mosquito species develop within agricultural landscapes where they are potentially exposed to agricultural chemicals (fertilizers and pesticides), the effects of these chemicals on mosquito biology remain poorly understood. This study investigated the effects of sublethal concentrations of four agricultural chemicals on the life history traits of Anopheles arabiensis and Culex quinquefasciatus mosquitoes. Field and laboratory experiments were conducted to examine how sublethal concentrations of four agricultural chemicals: an insecticide (cypermethrin), a herbicide (glyphosate), and two nitrogenous fertilizers (ammonium sulfate and diammonium phosphate) alter oviposition site selection, emergence rates, development time, adult body size, and longevity of An. arabiensis and Cx. quinquefasciatus. Both mosquito species had preference to oviposit in fertilizer treatments relative to pesticide treatments. Emergence rates for An. arabiensis were significantly higher in the control and ammonium sulfate treatments compared to cypermethrin treatment, while emergence rates for Cx. quinquefasciatus were significantly higher in the diammonium phosphate treatment compared to glyphosate and cypermethrin treatments. For both mosquito species, individuals from the ammonium sulfate and diammonium phosphate treatments took significantly longer time to develop compared to those from cypermethrin and glyphosate treatments. Although not always significant, males and females of both mosquito species tended to be smaller in the ammonium sulfate and diammonium phosphate treatments compared to cypermethrin and glyphosate treatments. There was no significant effect of the agrochemical treatments on the longevity of either mosquito species. These results demonstrate that the widespread use of agricultural chemicals to enhance crop production can have unexpected effects on the spatial distribution and abundance of mosquito vectors of malaria and lymphatic filariasis.
Chen, Yong; Wang, Zejian; Chu, Ju; Zhuang, Yingping; Zhang, Siliang; Yu, Xiaoguang
2013-04-01
In this study, the effects of nitrogen sources on broth viscosity and glucose consumption in erythromycin fermentation were investigated. By controlling ammonium sulfate concentration, broth viscosity and glucose consumption were decreased by 18.2% and 61.6%, respectively, whereas erythromycin biosynthesis was little affected. Furthermore, erythromycin A production was increased by 8.7% still with characteristics of low broth viscosity and glucose consumption through the rational regulations of phosphate salt, soybean meal and ammonium sulfate. It was found that ammonium sulfate could effectively control proteinase activity, which was correlated with the utilization of soybean meal as well as cell growth. The pollets formation contributed much to the decrease of broth viscosity. The accumulation of extracellular propionate and succinate under the new regulation strategy indicated that higher propanol consumption might increase the concentration of methylmalonyl-CoA and propionyl-CoA and thus could increase the flux leading to erythromycin A. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sequential injection system with multi-parameter analysis capability for water quality measurement.
Kaewwonglom, Natcha; Jakmunee, Jaroon
2015-11-01
A simple sequential injection (SI) system with capability to determine multi-parameter has been developed for the determination of iron, manganese, phosphate and ammonium. A simple and compact colorimeter was fabricated in the laboratory to be employed as a detector. The system was optimized for suitable conditions for determining each parameter by changing software program and without reconfiguration of the hardware. Under the optimum conditions, the methods showed linear ranges of 0.2-10 mg L(-1) for iron and manganese determinations, and 0.3-5.0 mg L(-1) for phosphate and ammonium determinations, with correlation coefficients of 0.9998, 0.9973, 0.9987 and 0.9983, respectively. The system provided detection limits of 0.01, 0.14, 0.004 and 0.02 mg L(-1) for iron, manganese, phosphate and ammonium, respectively. The proposed system has good precision, low chemical consumption and high throughput. It was applied for monitoring water quality of Ping river in Chiang Mai, Thailand. Recoveries of the analysis were obtained in the range of 82-119%. Copyright © 2015 Elsevier B.V. All rights reserved.
Improving Water Use Efficiency of Lettuce (Lactuca sativa L.) Using Phosphorous Fertilizers.
Alkhader, Asad M F; Abu Rayyan, Azmi M
2013-01-01
A greenhouse pot experiment was conducted to evaluate the effect of phosphorous (P) fertilizers application to an alkaline calcareous soil on the water use efficiency (WUE) of lettuce cultivar "robinson" of iceberg type. Head fresh and dry weights, total water applied and WUE were affected significantly by the P fertilizer type and rate. P fertilizers addition induced a significant enhancement in the WUE and fresh and dry weights of the crop. A local phosphate rock (PR) applied directly was found to be inferior to the other types of P fertilizers (Mono ammonium phosphate (MAP), Single superphosphate (SSP), and Di ammonium phosphate ((DAP)). MAP fertilizer at 375 and 500 kg P2O5/ha application rates recorded the highest significant values of head fresh weight and WUE, respectively.
Ha, Jun Yong; Lee, Ji Hyun; Kim, Kyoung Hoon; Kim, Do Jin; Lee, Hyung Ho; Kim, Hye-Kyung; Yoon, Hye-Jin; Suh, Se Won
2006-02-01
The enzyme erythronate-4-phosphate dehydrogenase catalyses the conversion of erythronate-4-phosphate to 3-hydroxy-4-phospho-hydroxy-alpha-ketobutyrate. It belongs to the D-isomer-specific 2-hydroxyacid dehydrogenase family. It is essential for de novo biosynthesis of vitamin B6 (pyridoxine). Erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa, a homodimeric enzyme consisting of two identical 380-residue subunits, has been overexpressed in Escherichia coli with a C-terminal purification tag and crystallized at 297 K using 0.7 M ammonium dihydrogen phosphate, 0.4 M ammonium tartrate, 0.1 M sodium citrate pH 5.6 and 10 mM cupric chloride. X-ray diffraction data were collected to 2.20 A from a crystal grown in the presence of NADH. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 84.77, b = 101.28, c = 142.58 A. A dimeric molecule is present in the asymmetric unit, giving a crystal volume per protein weight (VM) of 3.64 A3 Da(-1) and a solvent content of 66%.
NASA Astrophysics Data System (ADS)
Qin, Yuqian; Hu, Shulong
2018-01-01
Ammonia nitrogen and phosphate are produced from activated excess sludge under anaerobic conditions,and will cause eutrophication upon release to the environment. A study of sludge from a eutrophication was carried out, to obtain knowledge of the nitrogen and phosphorus release patterns of the excess sludge during anaerobic fermentation and the recycling efficiency of both nitrogen and phosphorus, by adding magnesium salt and alkali solution to the supernatant liquors. The results showed that the concentration of ammonia nitrogen and phosphate of the supernatant liquors continued to increase during the process of anaerobic digestion, and both reached a maximum in 12 days, at 41.56mg / L and 47.02 mg / L respectively. By adding magnesium salt to the supernatant with c(Mg): c(P) = 1.1:1, adjusting pH value to 9.0 ∼ 9.5, phosphorus recovery rate reached up to 95.0%, while the recovery rate of ammonia was 47.4%, resulting in the formation of a sediment of magnesium ammonium phosphate, or MAP, which may he used as a high-quality fertilizer.
Liebold, Christoph; List, Felix; Kalbitzer, Hans Robert; Sterner, Reinhard; Brunner, Eike
2010-01-01
The imidazole glycerol phosphate (ImGP) synthase from the hyperthermophilic bacterium Thermotoga maritima is a 1:1 complex of the glutaminase subunit HisH and the cyclase subunit HisF. It has been proposed that ammonia generated by HisH is transported through a channel to the active site of HisF, which generates intermediates of histidine (ImGP) and de novo biosynthesis of 5-aminoimidazole-4-carboxamideribotide. Solution NMR spectroscopy of ammonium chloride-titrated samples was used to study the interaction of NH3 with amino acids inside this channel. Although numerous residues showed 15N chemical shift changes, most of these changes were caused by nonspecific ionic strength effects. However, several interactions appeared to be specific. Remarkably, the amino acid residue Thr 78—which is located in the central channel—shows a large chemical shift change upon titration with ammonium chloride. This result and the reduced catalytic activity of the Thr78Met mutant indicate a special role of this residue in ammonia channeling. To detect and further characterize internal cavities in HisF, which might for example contribute to ammonia channeling, the interaction of HisF with the noble gas xenon was analyzed by solution NMR spectroscopy using 1H-15N HSQC experiments. The results indicate that HisF contains three distinct internal cavities, which could be identified by xenon-induced chemical shift changes of the neighboring amino acid residues. Two of these cavities are located at the active site at opposite ends of the substrate N′-[(5′-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) binding groove. The third cavity is located in the interior of the central β-barrel of HisF and overlaps with the putative ammonia transport channel. PMID:20665694
Liu, Yan; Zhang, Ling; Niu, Li-Na; Yu, Tao; Xu, Hockin H K; Weir, Michael D; Oates, Thomas W; Tay, Franklin R; Chen, Ji-Hua
2018-05-01
To evaluate the bonding performance, antibacterial activity, and remineralization effect on enamel of the orthodontic adhesive containing MAE-DB and NACP. Eighty non-carious human premolars were divided into 3 groups: Transbond XT (TB), PEHB + 5% MAE-DB (PD), and PEHB + 40% NACP + 5% MAE-DB (PND). Premolars were bonded with orthodontic brackets, the first subgroup (n = 10) and the second subgroup (n = 10) were subjected to shear bond strength testing after immersed in water for 1 day and in demineralization solution for 28 days respectively and then tested surface roughness, while the third subgroup (n = 6) was used for microhardness evaluation after aged in demineralization solution for 28 days. For each adhesive, fifty disk samples were prepared for antibacterial study. Specimens measuring 12 mm × 2 mm × 2 mm were fabricated for ion release test. Bond strengths were in the order TB = PND > PND = PD for "1-day in water", and in the order TB = PND > PD for "28-days in pH 4 solution". No significant difference in the ARI scores for the three adhesive. Numerous bacteria adhered to TB surface, while PD and PND had minimal bacterial growth and activity. PND showed high levels of Ca and P ions release and enamel hardness. The surface roughness of enamel in PND was much lower than TB and PD and showed no significant difference with the sound, control enamel. PND adhesive with 5% MAE-DB and 40% NACP exhibits antibacterial and remineralizing capabilities, and did not adversely affect bond strength compared to commercial adhesive. Novel adhesive containing quaternary ammonium monomer and nano-amorphous calcium phosphate represents a promising candidate in combating enamel white spot lesions and even dental caries. Copyright © 2018 Elsevier Ltd. All rights reserved.
Method for providing uranium articles with a corrosion-resistant anodized coating
Waldrop, F.B.; Washington, C.A.
1981-01-07
Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75/sup 0/C with a current flow of less than about 0.036 A/cm/sup 2/ of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.
Su, Yuan; Liu, Jia; Yue, Qinyan; Li, Qian; Gao, Baoyu
2014-01-01
A new feather protein-grafted poly(potassium acrylate)/polyvinyl alcohol (FP-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was produced through graft copolymerization with FP as a basic macromolecular skeletal material, acrylic acid as a monomer and PVA as a semi-IPNs polymer. The adsorption of ammonium and phosphate ions from aqueous solution using the new hydrogel as N and P controlled-release fertilizer with water-retention capacity was studied. The effects of pH value, concentration, contact time and ion strength on NH4+ and PO3-4 removal by FP-g-PKA/PVA semi-IPNs hydrogel were investigated using batch adsorption experiments. The results indicated that the hydrogel had high adsorption capacities and fast adsorption rates for NH4+ and PO3-4 in wide pH levels ranging from 4.0 to 9.0. Kinetic analysis presented that both NH4+ and PO3-4 removal were closely fitted with the pseudo-second-order model. Furthermore, the adsorption isotherms of hydrogel were best represented by the Freundlich model. The adsorption-desorption experimental results showed the sustainable stability of FP-g-PKA/PVA semi-IPNs hydrogel for NH4+ and PO3-4 removal. Overall, FP-g-PKA/PVA could be considered as an efficient material for the removal and recovery of nitrogen and phosphorus with the agronomic reuse as a fertilizer.
Machnicka, Alicja; Grübel, Klaudiusz
2016-12-01
One of the problems in wastewater treatment technologies is the formation of foam/scum. It is thought that filamentous microorganisms are responsible for foam formation and foam elimination/destruction can be carried out by various methods, among which disintegration is included. Hybrid disintegration (chemical decomposition and hydrodynamic cavitation) of foam microorganisms results in the transfer of phosphates, ammonium nitrogen, magnesium and potassium from the foam solids into the liquid phase. Application of both methods as a hybrid pretreatment process caused an increase in the concentration of phosphates of about 650 mg [Formula: see text] L(-1) and ammonium nitrogen of about 30 mg [Formula: see text] L(-1). The concentration of Mg(2+) and K(+) in the solution increased from 6.8 and 26.1 mg Mg(2+) L(-1) to 32.2 and 82.2 mg K(+) L(-1), respectively. The presence of nutrients and metal cations in the solid phase of foam was acknowledged by EDX Quantification. The confirmation of physico-chemical changes and release of cellular matter as a result of cellular lysis (hybrid disintegration) was done by infrared analysis. It was demonstrated that the disintegration of foam permits the removal of a part of nutrients in the form of struvite.
Massey, Michael S; Ippolito, James A; Davis, Jessica G; Sheffield, Ron E
2010-02-01
Phosphorus (P) recovery and re-use will become increasingly important for water quality protection and sustainable nutrient cycling as environmental regulations become stricter and global P reserves decline. The objective of this study was to examine and characterize several magnesium phosphates recovered from actual wastewater under field conditions. Three types of particles were examined including crystalline magnesium ammonium phosphate hexahydrate (struvite) recovered from dairy wastewater, crystalline magnesium ammonium phosphate hydrate (dittmarite) recovered from a food processing facility, and a heterogeneous product also recovered from dairy wastewater. The particles were analyzed using "wet" chemical techniques, powder X-ray diffraction (XRD), and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy (SEM-EDS). The struvite crystals had regular and consistent shape, size, and structure, and SEM-EDS analysis clearly showed the struvite crystals as a surface precipitate on calcium phosphate seed material. In contrast, the dittmarite crystals showed no evidence of seed material, and were not regular in size or shape. The XRD analysis identified no crystalline magnesium phosphates in the heterogeneous product and indicated the presence of sand particles. However, magnesium phosphate precipitates on calcium phosphate seed material were observed in this product under SEM-EDS examination. These substantial variations in the macroscopic and microscopic characteristics of magnesium phosphates recovered under field conditions could affect their potential for beneficial re-use and underscore the need to develop recovery processes that result in a uniform, consistent product.
Tertiary and Quaternary Ammonium-Phosphate Ionic Liquids as Lubricant Additives
Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M; ...
2016-06-23
In this work we investigated the feasibility of five quaternary (aprotic) and four tertiary (protic) ammonium ionic liquids (ILs) with an identical organophosphate anion as lubricant antiwear additives. Viscosity, oil solubility, thermal stability, and corrosivity of the candidate ILs were characterized and correlated to the molecular structure. The protic group exhibits higher oil solubility than the aprotic group, and longer alkyl chains seem to provide better oil solubility and higher thermal stability. Selected ILs were applied as oil additives in steel-cast iron tribological tests and demonstrated promising anti-scuffing and anti-wear functionality. The thickness, nanostructure, coverage and composition of the tribofilmmore » formed by the besting performing IL were revealed by surface characterization for mechanistic understanding of the tribochemical interactions between the IL and metal surface. Results provide fundamental insights of the correlations among the molecular structure, physiochemical properties and lubricating performance for ammonium-phosphate ILs.« less
Tertiary and Quaternary Ammonium-Phosphate Ionic Liquids as Lubricant Additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M
In this work we investigated the feasibility of five quaternary (aprotic) and four tertiary (protic) ammonium ionic liquids (ILs) with an identical organophosphate anion as lubricant antiwear additives. Viscosity, oil solubility, thermal stability, and corrosivity of the candidate ILs were characterized and correlated to the molecular structure. The protic group exhibits higher oil solubility than the aprotic group, and longer alkyl chains seem to provide better oil solubility and higher thermal stability. Selected ILs were applied as oil additives in steel-cast iron tribological tests and demonstrated promising anti-scuffing and anti-wear functionality. The thickness, nanostructure, coverage and composition of the tribofilmmore » formed by the besting performing IL were revealed by surface characterization for mechanistic understanding of the tribochemical interactions between the IL and metal surface. Results provide fundamental insights of the correlations among the molecular structure, physiochemical properties and lubricating performance for ammonium-phosphate ILs.« less
Struvite pyrolysate recycling combined with dry pyrolysis for ammonium removal from wastewater.
Yu, Rongtai; Geng, Jinju; Ren, Hongqiang; Wang, Yanru; Xu, Ke
2013-03-01
The dry pyrolysis of magnesium ammonium phosphate (MAP) with NaOH powder for ammonium release was investigated, as well as the utility of MAP pyrolysate recycling. The identities of the MAP pyrolysate and its derivatives were experimentally validated. The results showed that the pyrolysate was amorphous magnesium hydrogen phosphate (MgHPO4) and magnesium pyrophosphate (Mg2P2O7). The best molar ratio of sodium hydroxide (NaOH) powder to ammonium was 1:1, at 110°C for 3h. The optimum pH for pyrolysate recycling was 9.5. The ammonia removal ratio could be maintained above 80% with MAP pyrolysate recycling. Seed crystal inoculation increased the rate of MAP crystallization by 20.86%, as well as the MAP grain size (2.08nm with seeding versus 1.72nm without). MAP particle size with NaOH treatment decreased: d(0.5)=19.34μm versus d(0.5)=30.35μm for direct pyrolysis. The results demonstrated that crystal growth was controlled by adding NaOH during MAP pyrolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gronwald, M.; Don, A.; Tiemeyer, B.; Helfrich, M.
2015-01-01
Leaching of nutrients from agricultural soils causes major environmental problems that may be reduced with biochar amendments to the soils. Biochars are characterised by a high adsorption capacity, i.e., they may retain nutrients such nitrate and ammonium. However, biochar properties strongly depend on feedstock and the production process. We investigated the nutrient retention capacity of biochars derived from pyrolysis (pyrochar) as well as from hydrothermal carbonization (hydrochar; produced at 200 and 250 °C) from three different feedstocks (digestates, Miscanthus, woodchips) mixed into different soil substrates (sandy loam and silty loam). Moreover, we investigated the influence of biochar degradation on its nutrient retention capacity using a seven-month in-situ field incubation of pyrochar and hydrochar. Pyrochars showed the highest ability to retain nitrate, ammonium and phosphate, with pyrochar from woodchips being particularly efficient in nitrate adsorption. Ammonium adsorption of pyrochars was controlled by the soil type of the soil-biochar mixture. We found some ammonium retention on sandy soils, but no pyrochar effect or even ammonium leaching from the loamy soil. The phosphate retention capacity of pyrochars strongly depended on the pyrochar feedstock with large phosphate leaching from digestate-derived pyrochar and some adsorption capacity from woodchip-derived pyrochar. Application of hydrochars to agricultural soils caused small, and often not significant, effects on nutrient retention. In contrast, some hydrochars did increase the leaching of nutrients compared to the non-amended control soil. We found a surprisingly rapid loss of the biochars' adsorption capacity after field application of the biochars. For all sites and for hydrochar and pyrochar, the adsorption capacity was reduced by 60-80% to less or no nitrate and ammonium adsorption. Thus, our results cast doubt on the efficiency of biochar applications to temperate zone soils to minimize nutrient losses via leaching.
NASA Astrophysics Data System (ADS)
Gronwald, M.; Don, A.; Tiemeyer, B.; Helfrich, M.
2015-06-01
Leaching of nutrients from agricultural soils causes major environmental problems that may be reduced with amendments of chars derived from pyrolysis (pyrochars) or hydrothermal carbonization (hydrochars). Chars are characterized by a high adsorption capacity - i.e. they may retain nutrients such as nitrate and ammonium. However, the physicochemical properties of the chars and hence their sorption capacity likely depend on feedstock and the production process. We investigated the nutrient retention capacity of pyrochars and hydrochars from three different feedstocks (digestates, Miscanthus, woodchips) mixed into different soil substrates (sandy loam and silty loam). Moreover, we investigated the influence of char degradation on its nutrient retention capacity using a 7-month in situ field incubation of pyrochar and hydrochar mixed into soils at three different field sites. Pyrochars showed the highest ability to retain nitrate, ammonium and phosphate, with pyrochar from woodchips being particularly efficient in nitrate adsorption. Ammonium adsorption of pyrochars was controlled by the soil type of the soil-char mixture. We found some ammonium retention on sandy soils, but no pyrochar effect or even ammonium leaching from the loamy soil. The phosphate retention capacity of pyrochars strongly depended on the pyrochar feedstock with large phosphate leaching from digestate-derived pyrochar and some adsorption capacity from woodchip-derived pyrochar. Application of hydrochars to agricultural soils caused small, and often not significant, effects on nutrient retention. In contrast, some hydrochars did increase the leaching of nutrients compared to the non-amended control soil. We found a surprisingly rapid loss of the chars' adsorption capacity after field application of the chars. For all sites and for hydrochar and pyrochar, the adsorption capacity was reduced by 60-80 % to less or no nitrate and ammonium adsorption. Thus, our results cast doubt on the efficiency of char applications to temperate zone soils to minimize nutrient losses via leaching.
Electricity production coupled to ammonium in a microbial fuel cell.
He, Zhen; Kan, Jinjun; Wang, Yanbing; Huang, Yuelong; Mansfeld, Florian; Nealson, Kenneth H
2009-05-01
The production of electricity from ammonium was examined using a rotating-cathode microbial fuel cell (MFC). The addition of ammonium chloride, ammonium sulfate, or ammonium phosphate (monobasic) resulted in electricity generation, while adding sodium chloride, nitrate, or nitrite did not cause any increase in current production. The peak current increased with increasing amount of ammonium addition up to 62.3 mM of ammonium chloride, suggesting that ammonium was involved in electricity generation either directly as the anodic fuel or indirectly as substrates for nitrifiers to produce organic compounds for heterotrophs. Adding nitrate or nitrite with ammonium increased current production compared to solely ammonium addition. Using 16S rRNA-linked molecular analyses, we found ammonium-oxidizing bacteria and denitrifying bacteria on both the anode and cathode electrodes, whereas no anammox bacteria were detected. The dominant ammonium-oxidizing bacteria were closely related to Nitrosomonas europaea. The present MFC achieved an ammonium removal efficiency of 49.2 +/- 5.9 or 69.7 +/- 3.6%, depending on hydraulic retention time, but exhibited a very low Coulombic efficiency.
Code of Federal Regulations, 2014 CFR
2014-07-01
... di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium and zinc salts of the phosphate esters; minimum oxyethylene content averages 2..., density control agent Benzoic acid Preservative for formulations 2-Bromo-2-nitro-1,3-propanediol (CAS Reg...
Code of Federal Regulations, 2011 CFR
2011-07-01
... without polyoxypropylene, mixture of di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium and zinc salts of the phosphate esters; minimum..., density control agent Benzoic acid Preservative for formulations 2-Bromo-2-nitro-1,3-propanediol (CAS Reg...
Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient.
Fritze, Andreas; Hens, Felicitas; Kimpfler, Andrea; Schubert, Rolf; Peschka-Süss, Regine
2006-10-01
This study examines a new method for the remote loading of doxorubicin into liposomes. It was shown that doxorubicin can be loaded to a level of up to 98% into large unilamellar vesicles composed of egg phosphatidylcholine/cholesterol (7/3 mol/mol) with a transmembrane phosphate gradient. The different encapsulation efficiencies which were achieved with ammonium salts (citrate 100%, phosphate 98%, sulfate 95%, acetate 77%) were significantly higher as compared to the loading via sodium salts (citrate 54%, phosphate 52%, sulfate 44%, acetate 16%). Various factors, including pH-value, buffer capacity, solubility of doxorubicin in different salt solutions and base counter-flow, which likely has an influence on drug accumulation in the intraliposomal interior are taken into account. In contrast to other methods, the newly developed remote loading method exhibits a pH-dependent drug release property which may be effective in tumor tissues. At physiological pH-value doxorubicin is retained in the liposomes, whereas drug release is achieved by lowering the pH to 5.5 (approximately 25% release at 25 degrees C or 30% at 37 degrees C within two h). The DXR release of liposomes which were loaded via a sulfate gradient showed a maximum of 3% at pH 5.5.
2015-01-01
The effects of different anions on the extent of electrothermal supercharging of proteins from aqueous ammonium and sodium salt solutions were investigated. Sulfate and hydrogen phosphate are the most effective anions at producing high charge state protein ions from buffered aqueous solution, whereas iodide and perchlorate are ineffective with electrothermal supercharging. The propensity for these anions to produce high charge state protein ions follows the following trend: sulfate > hydrogen phosphate > thiocyanate > bicarbonate > chloride > formate ≈ bromide > acetate > iodide > perchlorate. This trend correlates with the reverse Hofmeister series over a wide range of salt concentrations (1 mM to 2 M) and with several physical properties, including solvent surface tension, anion viscosity B-coefficient, and anion surface/bulk partitioning coefficient, all of which are related to the Hofmeister series. The effectiveness of electrothermal supercharging does not depend on bubble formation, either from thermal degradation of the buffer or from coalescence of dissolved gas. These results provide evidence that the effect of different ions in the formation of high charge state ions by electrothermal supercharging is largely a result of Hofmeister effects on protein stability leading to protein unfolding in the heated ESI droplet. PMID:24410546
NASA Astrophysics Data System (ADS)
Delidovich, I. V.; Taran, O. P.; Simonov, A. N.; Matvienko, L. G.; Parmon, V. N.
2011-08-01
The article analyzes new and previously reported data on several catalytic and photochemical processes yielding biologically important molecules. UV-irradiation of formaldehyde aqueous solution yields acetaldehyde, glyoxal, glycolaldehyde and glyceraldehyde, which can serve as precursors of more complex biochemically relevant compounds. Photolysis of aqueous solution of acetaldehyde and ammonium nitrate results in formation of alanine and pyruvic acid. Dehydration of glyceraldehyde catalyzed by zeolite HZSM-5-17 yields pyruvaldehyde. Monosaccharides are formed in the course of the phosphate-catalyzed aldol condensation reactions of glycolaldehyde, glyceraldehyde and formaldehyde. The possibility of the direct synthesis of tetroses, keto- and aldo-pentoses from pure formaldehyde due to the combination of the photochemical production of glycolahyde and phosphate-catalyzed carbohydrate chain growth is demonstrated. Erythrulose and 3-pentulose are the main products of such combined synthesis with selectivity up to 10%. Biologically relevant aldotetroses, aldo- and ketopentoses are more resistant to the photochemical destruction owing to the stabilization in hemiacetal cyclic forms. They are formed as products of isomerization of erythrulose and 3-pentulose. The conjugation of the concerned reactions results in a plausible route to the formation of sugars, amino and organic acids from formaldehyde and ammonia under presumed 'prebiotic' conditions.
Ha, Jun Yong; Lee, Ji Hyun; Kim, Kyoung Hoon; Kim, Do Jin; Lee, Hyung Ho; Kim, Hye-Kyung; Yoon, Hye-Jin; Suh, Se Won
2006-01-01
The enzyme erythronate-4-phosphate dehydrogenase catalyses the conversion of erythronate-4-phosphate to 3-hydroxy-4-phospho-hydroxy-α-ketobutyrate. It belongs to the d-isomer-specific 2-hydroxyacid dehydrogenase family. It is essential for de novo biosynthesis of vitamin B6 (pyridoxine). Erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa, a homodimeric enzyme consisting of two identical 380-residue subunits, has been overexpressed in Escherichia coli with a C-terminal purification tag and crystallized at 297 K using 0.7 M ammonium dihydrogen phosphate, 0.4 M ammonium tartrate, 0.1 M sodium citrate pH 5.6 and 10 mM cupric chloride. X-ray diffraction data were collected to 2.20 Å from a crystal grown in the presence of NADH. The crystals belong to the orthorhombic space group P212121, with unit-cell parameters a = 84.77, b = 101.28, c = 142.58 Å. A dimeric molecule is present in the asymmetric unit, giving a crystal volume per protein weight (V M) of 3.64 Å3 Da−1 and a solvent content of 66%. PMID:16511285
DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR
Swanson, J.L.
1961-07-11
The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.
Methods and systems for utilizing carbide lime or slag
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devenney, Martin; Fernandez, Miguel; Chen, Irvin
Provided herein are methods comprising a) treating a slag solid or carbide lime suspension with an ammonium salt in water to produce an aqueous solution comprising calcium salt, ammonium salt, and solids; b) contacting the aqueous solution with carbon dioxide from an industrial process under one or more precipitation conditions to produce a precipitation material comprising calcium carbonate and a supernatant aqueous solution wherein the precipitation material and the supernatant aqueous solution comprise residual ammonium salt; and c) removing and optionally recovering ammonia and/or ammonium salt using one or more steps of (i) recovering a gas exhaust stream comprising ammoniamore » during the treating and/or the contacting step; (ii) recovering the residual ammonium salt from the supernatant aqueous solution; and (iii) removing and optionally recovering the residual ammonium salt from the precipitation material.« less
Augmenting Laboratory Rearing of Stable Fly (Diptera: Muscidae) Larvae With Ammoniacal Salts.
Friesen, Kristina; Berkebile, Dennis R; Zhu, Jerry J; Taylor, David B
2017-01-01
Stable flies are blood feeding parasites and serious pests of livestock. The immature stages develop in decaying materials which frequently have high ammonium content. We added various ammonium salts to our laboratory stable fly rearing medium and measured their effect on size and survival as well as the physical properties of the used media. The addition of ammonium hydroxide, ammonium phosphate and ammonium sulfate reduced larval survival. These compounds decreased pH and increased ammonium content of the used media. Ammonium bicarbonate had no effect on pH and marginally increased ammonium while increasing survival twofold. The optimal level of ammonium bicarbonate was 50 g (0.63 mol) per pan. Larval survival decreased when pH was outside the range of 8.5 to 9.0. Published by Oxford University Press on behalf of the Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
Cui, Xiaoqiang; Hao, Hulin; Zhang, Changkuan; He, Zhenli; Yang, Xiaoe
2016-01-01
The objective of this study was to investigate the relationship between Cd(2+)/NH4(+) sorption and physicochemical properties of biochars produced from different wetland plants. Biochars from six species of wetland plants (i.e., Canna indica, Pennisetum purpureum Schum, Thalia dealbata, Zizania caduciflora, Phragmites australis and Vetiveria zizanioides) were obtained at 500°C and characterized, and their sorption for ammonium and cadmium was determined. There were significant differences in elemental composition, functional groups and specific surface area among the biochars derived from different wetland plant species. Sorption of ammonium and cadmium on the biochars could be described by a pseudo second order kinetic model, and the simple Langmuir model fits the isotherm data better than the Freundlich or Temkin model. The C. indica derived biochar had the largest sorption capacity for NH4(+) and Cd(2+), with a maximum sorption of 13.35 and 125.8mgg(-1), respectively. P. purpureum Schum derived biochar had a similar maximum sorption (119.3mgg(-1)) for Cd(2+). Ammonium sorption was mainly controlled by cation exchange, surface complexation with oxygen-containing functional groups and the formation of magnesium ammonium phosphate compounds, whereas for Cd(2+) sorption, the formation of cadmium phosphate precipitates, cation exchange and binding to oxygen-containing groups were the major possible mechanisms. In addition, the sorption of ammonium and cadmium was not affected by surface area and microporosity of the biochars. Copyright © 2015 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-hydroxypolyoxyethylene polymer with or without polyoxypropylene, mixture of di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium and zinc salts of the phosphate... Reg. No. 7727-43-7) Carrier, density control agent Benzoic acid Preservative for formulations 2-Bromo...
Code of Federal Regulations, 2012 CFR
2012-07-01
...-hydroxypolyoxyethylene polymer with or without polyoxypropylene, mixture of di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium and zinc salts of the phosphate..., density control agent Benzoic acid Preservative for formulations 2-Bromo-2-nitro-1,3-propanediol (CAS Reg...
Metillo, Ephrime B; Ritz, David A
2003-02-01
Three mysid species showed differences in chemosensory feeding as judged from stereotyped food capturing responses to dissolved mixtures of feeding stimulant (either betaine-HCl or glycine) and suppressant (ammonium). The strongest responses were to 50:50 mixtures of both betaine-ammonium and glycine-ammonium solutions. In general, the response curve to the different mixtures tested was bell-shaped. Anisomysis mixta australis only showed the normal curve in response to the glycine-ammonium mixture. The platykurtic curve for Tenagomysis tasmaniae suggests a less optimal response to the betaine-HCl-ammonium solution. Paramesopodopsis rufa reacted more strongly to the betaine-ammonium than to the glycine-ammonium solutions, and more individuals of this species responded to both solutions than the other two species. It is suggested that these contrasting chemosensitivities of the three coexisting mysid species serve as a means of partitioning the feeding niche.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruby, Christian; Naille, Sébastien; Ona-Nguema, Georges
The activated sludge treatments combined to the addition of ferric chloride is commonly used to eliminate nitrate and phosphate from waste water in urban area. These processes that need costly infrastructures are not suitable for rural areas and passive treatments (lagoons, reed bed filters…) are more frequently performed. Reed bed filters are efficient for removing organic matter but are not suitable for treating phosphate and nitrate as well. Passive water treatments using various materials (hydroxyapatite, slag…) were already performed, but those allowing the elimination of both nitrate and phosphate are not actually available. The goal of this work is tomore » identify the most suitable iron based materials for such treatments and to determine their optimal use conditions, in particular in hydrodynamic mode. The reactivity of the iron based minerals was measured either by using free particles in suspension or by depositing these particles on a solid substrate. Pouzzolana that is characterized by a porous sponge-like structure suits for settling a high amount of iron oxides. The experimental conditions enabling to avoid any ammonium formation when green rust encounters nitrate were determined within the framework of a full factorial design. The process is divided into two steps that will be performed inside two separated reactors. Indeed, the presence of phosphate inhibits the reduction of nitrate by green rust and the dephosphatation process must precede the denitrification process. In order to remove phosphate, ferrihydrite coated pouzzolana is the best materials. The kinetics of reaction of green rust with nitrate is relatively slow and often leads to the formation of ammonium. The recommendation of the identified process is to favor the accumulation of nitrite in a first step, these species reacting much more quickly with green rust and do not transform into ammonium.« less
Evren Terzi; S. Nami Kartal; Robert White; Katsumi Shinoda; Yuji Imamura
2010-01-01
In this study, the fire performance and decay resistance of solid wood and plywood treated with quaternary ammonia compounds (didecyl dimethyl ammonium chloride (DDAC) and didecyl dimethyl ammonium tetrafluoroborate (DBF)) were compared with the performance of untreated control specimens and specimens treated with common fire retardants ((monoammonium phosphate (MAP),...
Triska, F.J.; Pringle, C.M.; Zellweger, G.W.; Duff, J.H.; Avanzino, R.J.
1993-01-01
In Costa Rica, the Salto River is enriched by geothermal-based soluble reactive phosphorus (SRP), which raises the concentration up to 200 ??g/L whereas Pantano Creek, an unimpacted tributary, has an SRP concentration <10 ??g/L. Ammonium concentration in springs adjacent to the Salto and Pantano was typically greater than channel water (13 of 22 locations) whereas nitrate concentration was less (20 of 22 locations). Ground waters were typically high in ammonium relative to nitrate whereas channel waters were high in nitrate relative to ammonium. Sediment slurry studies indicated nitrification potential in two sediment types, firm clay (3.34 ??g N.cm-3.d-1) and uncompacted organic-rich sediment (1.76 ??g N.cm-3.d-1). Ammonium and nitrate amendments to each stream separately resulted in nitrate concentrations in excess of that expected after correlation for dilution using a conservative tracer. SRP concentration was not affected by DIN amendment to either stream. SRP concentration in the Pantano appeared to be regulated by abiotic sediment exchange reactions. DIN composition and concentration were regulated by a combination of biotic and abiotic processes. -from Authors
NASA Astrophysics Data System (ADS)
Ghezzehei, T. A.; Sarkhot, D. V.; Berhe, A. A.
2014-09-01
Recently, the potential for biochar use to recapture excess nutrients from dairy wastewater has been a focus of a growing number of studies. It is suggested that biochar produced from locally available excess biomass can be important in reducing release of excess nutrient elements from agricultural runoff, improving soil productivity, and long-term carbon (C) sequestration. Here we present a review of a new approach that is showing promise for the use of biochar for nutrient capture. Using batch sorption experiments, it has been shown that biochar can adsorb up to 20-43% of ammonium and 19-65% of the phosphate in flushed dairy manure in 24 h. These results suggest a potential of biochar for recovering essential nutrients from dairy wastewater and improving soil fertility if the enriched biochar is returned to soil. Based on the sorption capacity of 2.86 and 0.23 mg ammonium and phosphate, respectively, per gram of biochar and 10-50% utilization of available excess biomass, in the state of California (US) alone, 11 440 to 57 200 tonnes of ammonium-N and 920-4600 tonnes of phosphate can be captured from dairy waste each year while at the same time disposing up to 8-40 million tons of excess biomass.
Biochar can be used to recapture essential nutrients from dairy wastewater and improve soil quality
NASA Astrophysics Data System (ADS)
Ghezzehei, T. A.; Sarkhot, D. V.; Berhe, A. A.
2014-04-01
Recently, the potential for biochar use to recapture excess nutrients from dairy wastewater has been a focus of a growing number of studies. It is suggested that biochar produced from locally available waste biomass can be important in reducing release of excess nutrient elements from agricultural runoff, improving soil productivity, and long-term carbon (C) sequestration. Here we present a review of a new approach that is showing promise for the use of biochar for nutrient capture. Using batch sorption experiments, it has been shown that biochar can adsorb up to 20 to 43% of ammonium and 19-65% of the phosphate in flushed dairy manure in 24 h. These results suggest a potential of biochar for recovering essential nutrients from dairy wastewater and improving soil fertility if the enriched biochar is returned to soil. Based on the sorption capacity of 2.86 and 0.23 mg ammonium and phosphate, respectively, per gram of biochar and 10-50% utilization of available excess biomass, in the state of California (US) alone, 11 440 to 57 200 t of ammonium-N and 920-4600 t of phosphate can be captured from dairy waste each year while at the same time disposing up to 8-40 million tons of waste biomass.
den Haan, Joost; Huisman, Jef; Brocke, Hannah J.; Goehlich, Henry; Latijnhouwers, Kelly R. W.; van Heeringen, Seth; Honcoop, Saskia A. S.; Bleyenberg, Tanja E.; Schouten, Stefan; Cerli, Chiara; Hoitinga, Leo; Vermeij, Mark J. A.; Visser, Petra M.
2016-01-01
Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs. PMID:27353576
NASA Astrophysics Data System (ADS)
den Haan, Joost; Huisman, Jef; Brocke, Hannah J.; Goehlich, Henry; Latijnhouwers, Kelly R. W.; van Heeringen, Seth; Honcoop, Saskia A. S.; Bleyenberg, Tanja E.; Schouten, Stefan; Cerli, Chiara; Hoitinga, Leo; Vermeij, Mark J. A.; Visser, Petra M.
2016-06-01
Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs.
den Haan, Joost; Huisman, Jef; Brocke, Hannah J; Goehlich, Henry; Latijnhouwers, Kelly R W; van Heeringen, Seth; Honcoop, Saskia A S; Bleyenberg, Tanja E; Schouten, Stefan; Cerli, Chiara; Hoitinga, Leo; Vermeij, Mark J A; Visser, Petra M
2016-06-29
Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs.
NASA Astrophysics Data System (ADS)
Balthasart, Françoise; Plavec, Janez; Gabelica, Valérie
2013-01-01
G-quadruplex nucleic acids can bind ammonium ions in solution, and these complexes can be detected by electrospray mass spectrometry (ESI-MS). However, because ammonium ions are volatile, the extent to which ESI-MS quantitatively could provide an accurate reflection of such solution-phase equilibria is unclear. Here we studied five G-quadruplexes having known solution-phase structure and ammonium ion binding constants: the bimolecular G-quadruplexes (dG4T4G4)2, (dG4T3G4)2, and (dG3T4G4)2, and the intramolecular G-quadruplexes dG4(T4G4)3 and dG2T2G2TGTG2T2G2 (thrombin binding aptamer). We found that not all mass spectrometers are equally suited to reflect the solution phase species. Ion activation can occur in the electrospray source, or in a high-pressure traveling wave ion mobility cell. When the softest instrumental conditions are used, ammonium ions bound between G-quartets, but also additional ammonium ions bound at specific sites outside the external G-quartets, can be observed. However, even specifically bound ammonium ions are in some instances too labile to be fully retained in the gas phase structures, and although the ammonium ion distribution observed by ESI-MS shows biases at specific stoichiometries, the relative abundances in solution are not always faithfully reflected. Ion mobility spectrometry results show that all inter-quartet ammonium ions are necessary to preserve the G-quadruplex fold in the gas phase. Ion mobility experiments, therefore, help assign the number of inner ammonium ions in the solution phase structure.[Figure not available: see fulltext.
Chromatography of blood-clotting factors and serum proteins on columns of diatomaceous earth.
MILSTONE, J H
1955-07-20
1. In batch adsorptions with prothrombin solutions, hyflo was the weakest adsorbent, standard super-cel intermediate, and filter-cel strongest. Of these three grades of diatomaceous earth, hyflo has the smallest surface area per gram and filter-cel the largest. In parallel breakthrough experiments, a column of standard super-cel had a capacity almost six times that of a hyflo column. 2. After partial removal of impurities by diatomaceous earth, prothrombin preparations contained less thrombokinase, were more stable, and displayed less tendency to form thrombin "spontaneously." Thrombokinase (or its precursor) was removed from a preparation of prothrombin by passage through a filter cake of standard super-cel. The specific activity of the prothrombin was increased; and 62 per cent of the activity was recovered. 3. Prothrombin was adsorbed from an ammonium sulfate solution at pH 5.26 by columns of hyflo or standard super-cel. When eluted by phosphate solutions, the protein moved down the columns more readily at higher pH and higher concentration of phosphate salts, within the pH range 5.0 to 6.6, and within the phosphate range 0.1 to 1.0 M. 4. Thrombin was adsorbed on a column of standard super-cel at pH 5.11. As successive eluents passed through the column, the thrombin emerged between two bands of impurities. The specific activity of the thrombin was raised; and 83 per cent of the activity was recovered. 5. With a column of standard super-cel, and with a series of eluents within the pH range 5.1 to 6.3, total serum proteins were separated into four major bands. About 94 per cent of the protein was recovered.
CHROMATOGRAPHY OF BLOOD-CLOTTING FACTORS AND SERUM PROTEINS ON COLUMNS OF DIATOMACEOUS EARTH
Milstone, J. H.
1955-01-01
1. In batch adsorptions with prothrombin solutions, hyflo was the weakest adsorbent, standard super-cel intermediate, and filter-cel strongest. Of these three grades of diatomaceous earth, hyflo has the smallest surface area per gram and filter-cel the largest. In parallel breakthrough experiments, a column of standard super-cel had a capacity almost six times that of a hyflo column. 2. After partial removal of impurities by diatomaceous earth, prothrombin preparations contained less thrombokinase, were more stable, and displayed less tendency to form thrombin "spontaneously." Thrombokinase (or its precursor) was removed from a preparation of prothrombin by passage through a filter cake of standard super-cel. The specific activity of the prothrombin was increased; and 62 per cent of the activity was recovered. 3. Prothrombin was adsorbed from an ammonium sulfate solution at pH 5.26 by columns of hyflo or standard super-cel. When eluted by phosphate solutions, the protein moved down the columns more readily at higher pH and higher concentration of phosphate salts, within the pH range 5.0 to 6.6, and within the phosphate range 0.1 to 1.0 M. 4. Thrombin was adsorbed on a column of standard super-cel at pH 5.11. As successive eluents passed through the column, the thrombin emerged between two bands of impurities. The specific activity of the thrombin was raised; and 83 per cent of the activity was recovered. 5. With a column of standard super-cel, and with a series of eluents within the pH range 5.1 to 6.3, total serum proteins were separated into four major bands. About 94 per cent of the protein was recovered. PMID:13242761
TREATMENT OF AMMONIUM NITRATE SOLUTIONS
Boyer, T.W.; MacHutchin, J.G.; Yaffe, L.
1958-06-10
The treatment of waste solutions obtained in the processing of neutron- irradiated uranium containing fission products and ammonium nitrate is described. The object of this process is to provide a method whereby the ammonium nitrate is destroyed and removed from the solution so as to permit subsequent concentration of the solution.. In accordance with the process the residual nitrate solutions are treated with an excess of alkyl acid anhydride, such as acetic anhydride. Preferably, the residual nitrate solution is added to an excess of the acetic anhydride at such a rate that external heat is not required. The result of this operation is that the ammonium nitrate and acetic anhydride react to form N/sub 2/ O and acetic acid.
Oxidation of ammonium sulfite in aqueous solutions using ozone technology
NASA Astrophysics Data System (ADS)
Li, Yue; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan
2013-03-01
How to deal with unstable ammonium sulfite, the byproduct of flue gas desulfuration by ammonia absorption methods, has been a difficult problem in recent years. Oxidation of ammonium sulfite in aqueous solutions using ozone produced by a surface discharge system was investigated in the paper. The oxidation efficiency of ammonium sulfite by ozone and traditional air aeration were compared, and the factors including ozone concentration, gas flow rate, initial concentration of ammonium sulfite solution and reaction temperature were discussed. The results show that the oxidation efficiency of ammonium sulfite by ozone technology reached nearly 100% under the optimum conditions, which had a significant increase compared with that by air aeration.
Huo, Jun; Liu, Zhong-Yuan; Wang, Ke-Feng; Xu, Zhen-Qun
2015-09-01
This study was conducted to evaluate the chemical composition of eight types of urinary calculi using spiral computerized tomography (CT) in vivo. From October 2011 to February 2013, upper urinary tract calculi were obtained from 122 patients in the department of urinary surgery of the First Affiliated Hospital of Soochow University. All patients were scanned with a 64-detector row helical CT scanner using 6.50 mm collimation before ureterorenoscopy. Data from the preoperative spiral CT scans and postoperative chemical composition of urinary calculi were collected. The chemical composition analysis indicates that there were five types of pure calculi and three types of mixed calculi, including 39 calcium oxalate calculi, 12 calcium phosphate calculi, 10 calcium carbonate calculi, 8 magnesium ammonium phosphate calculi, 6 carbonated apatite, 21 uric acid/ammonium urate calculi, 10 uric acid/calcium oxalate calculi, and 16 calcium oxalate/calcium phosphate calculi. There were significant differences in the mean CT values among the five types of pure calculi (P < 0.001). Furthermore, we also observed significant differences in the mean CT values among three types of mixed calculi (P < 0.001). Significant differences in the mean CT values were also found among eight types of urinary calculi (P < 0.001). However, no statistically significant difference was observed between the mean CT values of magnesium ammonium phosphate calculi and uric acid/calcium oxalate calculi (P = 0.262). Our findings suggest that spiral CT could be a promising tool for determining the chemical composition of upper urinary tract calculi. © 2014 Wiley Periodicals, Inc.
Bacillus stearothermophilus sporulation response to different composition media.
Penna, T C; Machoshvili, I A; Taqueda, M E; Ferraz, C A
1998-01-01
To evaluate the effectiveness of 11 commonly used ingredients to improve Bacillus stearothermophilus ATCC 7953 sporulation, with high spore yields in a short period of incubation, 32 composition media were set up by a fractional factorial 2IV11-6 design at two levels: D-glucose (0.018-0.25%), L-glutamic acid (0.040-0.10%), yeast extract (0.050-0.40%), peptone (0.30-0.50%), sodium chloride (0.001-1.0%), magnesium sulfate (0.001-0.20%), ammonium phosphate (0.010-0.035%), potassium phosphate monobasic (0.050-0.25%), calcium chloride (0.001-0.05%), ferrous sulfate (0.0003-0.002%), manganese sulfate (0.001-0.50%). The largest variation on Log10 CFU response took place due to sodium chloride main effect, by changing it from low to high levels. Magnesium sulfate, calcium chloride, and ferrous sulfate were split and exerted no detectable main effect influence on sporulation. Setting up two 16 runs for sodium chloride effect, in each of which the remainder levels were kept constant, other components contribution was studied. At low sodium chloride, best average 7.25 Log10 CFU yielded by fastening yeast extract and peptone at high level, and remainders at low level. Considering high level of sodium chloride, peptone, yeast extract and ammonium phosphate kept at high level and remainders at low level confirmed the best sporulation yield. Adjusted models evidenced a strong influence of joint yeast/peptone effect, associated to ammonium phosphate contributing positively. The reduced incubation period from 15 days to 3-6 days at 62 degrees C was attained for all 32 experimental runs.
PROCESS OF RECOVERING URANIUM FROM ITS ORES
Galvanek, P. Jr.
1959-02-24
A process is presented for recovering uranium from its ores. The crushed ore is mixed with 5 to 10% of sulfuric acid and added water to about 5 to 30% of the weight of the ore. This pugged material is cured for 2 to 3 hours at 100 to 110 deg C and then cooled. The cooled mass is nitrate-conditioned by mixing with a solution equivalent to 35 pounds of ammunium nitrate and 300 pounds of water per ton of ore. The resulting pulp containing 70% or more solids is treated by upflow percolation with a 5% solution of tributyl phosphate in kerosene at a rate equivalent to a residence time of about one hour to extract the solubilized uranium. The uranium is recovered from the pregnant organic liquid by counter-current washing with water. The organic extractant may be recycled. The uranium is removed from the water solution by treating with ammonia to precipitate ammonium diuranate. The filtrate from the last step may be recycled for the nitrate-conditioning treatment.
NASA Astrophysics Data System (ADS)
Yue, Dan; Lu, Wei; Li, Chunyang; Zhang, Xinlei; Liu, Chunxia; Wang, Zhenling
2014-01-01
Ln3+ (Ln = Tb, Eu) doped zinc phosphate tetrahydrate (ZPT:Ln3+) and ammonium zinc phosphate (AZP:Ln3+) nano-/micro-structured materials were synthesized in aqueous solution without the addition of any structure-directing agent. The phase structures, morphologies and luminescence properties of the as-synthesized samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy and lifetime. These investigations indicate that different phosphate sources MnH(3-n)PO4 (M = NH4+ or Na+, n = 1, 2, 3) can lead to the altering of morphology from nanosheet to microflower, but have no significant effect on the phase structure of the samples. The microlump, nanosheet, and microflower (constructed by the primary microlumps or nanosheets) of orthorhombic ZPT:Ln3+ could be selectively prepared by adjusting the pH value from 3.5 to 7.0. A mixture of orthorhombic ZPT:Ln3+ and monoclinic AZP:Ln3+ with a microflower morphology was obtained when the pH value was adjusted to 8.0. Monoclinic AZP:Ln3+ microplate, microcube and nanoparticle morphologies were obtained at pH values of 8.5, 9.0 and 11.0 respectively. The phase transformation and growth mechanism of the diverse morphologies were proposed, and ZPT:Ln3+ (Ln3+ = Eu or Tb) samples exhibit red or green emission under the excitation of UV light.Ln3+ (Ln = Tb, Eu) doped zinc phosphate tetrahydrate (ZPT:Ln3+) and ammonium zinc phosphate (AZP:Ln3+) nano-/micro-structured materials were synthesized in aqueous solution without the addition of any structure-directing agent. The phase structures, morphologies and luminescence properties of the as-synthesized samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy and lifetime. These investigations indicate that different phosphate sources MnH(3-n)PO4 (M = NH4+ or Na+, n = 1, 2, 3) can lead to the altering of morphology from nanosheet to microflower, but have no significant effect on the phase structure of the samples. The microlump, nanosheet, and microflower (constructed by the primary microlumps or nanosheets) of orthorhombic ZPT:Ln3+ could be selectively prepared by adjusting the pH value from 3.5 to 7.0. A mixture of orthorhombic ZPT:Ln3+ and monoclinic AZP:Ln3+ with a microflower morphology was obtained when the pH value was adjusted to 8.0. Monoclinic AZP:Ln3+ microplate, microcube and nanoparticle morphologies were obtained at pH values of 8.5, 9.0 and 11.0 respectively. The phase transformation and growth mechanism of the diverse morphologies were proposed, and ZPT:Ln3+ (Ln3+ = Eu or Tb) samples exhibit red or green emission under the excitation of UV light. Electronic supplementary information (ESI) available: Additional XRD patterns, EDX, SEM and TEM images, dependence of the average lifetimes on the different doping concentrations of Eu3+ and Tb3+. See DOI: 10.1039/c3nr03749e
Lakshminarayanaiah, N.; Rojas, E.
1973-01-01
1. Single barnacle muscle fibres from Megabalanus psittacus (Darwin) were internally perfused with a number of K salt solutions (200 mM) which were made isotonic to the barnacle saline with sucrose. 2. 200 mM-K acetate solution, in general, was found to be more effective than other solutions of K salts in generating and maintaining stable resting membrane potential of -56·0 ± 0·7 mV (all potentials are referred to the external solutions as ground). The various K salts, on the basis of the magnitude of the resting potential they generated in the muscle fibres, followed the sequence, acetate > isethionate > aspartate > glutamate > fluoride > monohydrogen phosphate > succinate > citrate > sulphate > oxalate > iodobenzoate > ferrocyanide > chlorate > nitrate > chloride > thiocyanate > iodide > bromide > cyanide. 3. The resting potential in muscle fibres perfused with solutions of acetate, aspartate and glutamate increased linearly with the logarithm of the K concentration (slope = 30·4 mV for K acetate and 27·4 for K aspartate and glutamate) when the ionic strength of the solutions was progressively increased from 50 to 650 mM. On the other hand, similar increase of ionic strength beyond 200 mM of solutions of K isethionate, fluoride, monohydrogen phosphate, succinate and citrate depolarized the muscle fibres. 4. Perfusion of acetate solutions of other alkali metal ions gave low values for the resting potential and followed the sequence K > Na > Rb > Li > Cs. Also NH4 and Tris ions gave low values for the resting potential which underwent oscillations associated with the twitching of the fibre and occasionally became positive in value (action potential). 5. Addition of tetraethyl ammonium chloride (TEA-Cl), 20-100 mM, to K acetate solutions (200 mM) depolarized the fibre membrane and the consequent reduction of resting potential varied linearly with the logarithm of TEA concentration. 6. Replacement of chloride ion by acetate or isethionate in the external solution did not change significantly the resting potential although the values were consistently lower by about 2 mV. 7. Complete elimination of K in the external solution and reduction of its ionic strength using sucrose depolarized the muscle fibres by about 27 mV when Na was changed from 475 to 1 mM. Under these conditions, external solutions completely in acetate form gave resting potentials which were more positive than those observed in completely chloride solutions by 6-8 mV. 8. Replacement of Na by Li, Tris, choline, tetramethyl or tetraethyl ammonium ion in the external solution made the values of the resting potential more positive (depolarization). Similarly increasing the concentration of K (or Cs or Rb in place of K) by correspondingly decreasing the concentration of Na in the outside solution depolarized the fibres and the resting potential became zero at a concentration of 280 mM (or 308 or 1500 mM for Rb or Cs, respectively) on extrapolation. PMID:4754874
NASA Astrophysics Data System (ADS)
Lukawska-Matuszewska, Katarzyna; Kielczewska, Joanna
2016-04-01
Sediments from four sampling sites in the Gulf of Gdansk were sampled to test how different oxygen concentrations in near-bottom water affects biogeochemical cycling of C, N and S. Vertical distributions of content of organic carbon (OC), total nitrogen (TN) and total sulfur (TS) and number of sulfate-reducing bacteria (SRB) in sediments were determined. Pore water total alkalinity (TA), dissolved inorganic carbon (DIC), sulfate, hydrogen sulfide, ammonium and phosphate were analyzed and benthic fluxes of DIC, hydrogen sulfide and ammonium were calculated. Concentrations of OC and TN decreased and concentration of TS increased with sediment depth. Highest concentrations of OC, TN and TS were observed in silty clay sediments from hypoxic and anoxic sediments below the permanent halocline. Organic matter (OM) accumulation in sediments and oxygen deficiency in near-bottom water stimulate preservation of OC and burial of TS in this area. Concentrations of TA, DIC, hydrogen sulfide, ammonium and phosphate in pore water increased, while concentration of sulfate decreased with sediment depth. Hydrogen sulfide, ammonium and phosphate was a significant additional source of TA in pore water under hypoxic and anoxic conditions. Mineralization of OM at oxygen concentrations <2 ml l-1 occurred mainly via bacterial sulfate reduction. Diurnal hydrogen sulfide fluxes under hypoxic conditions ranged from 400 to 1240 μmol m-2 d-1. Ammonium fluxes were estimated on 534 - 924 μmol m-2 d-1. Corresponding fluxes measured under anoxic conditions were 266 μmol m-2 d-1 and 106 μmol m-2 d-1. Sediments under oxic conditions became a place of the intensive regeneration of carbon - DIC flux from sediment reached 2775 μmol m-2 day-1. Sediment-water DIC fluxes under hypoxic and anoxic conditions were much lower and ranged from 1015 to 1208 μmol m-2 d-1.
Interaction between vitamin B6 metabolism, nitrogen metabolism and autoimmunity.
Colinas, Maite; Fitzpatrick, Teresa B
2016-01-01
The essential micronutrient vitamin B6 is best known in its enzymatic cofactor form, pyridoxal 5'-phosphate (PLP). However, vitamin B6 comprises the amine pyridoxamine 5'-phosphate (PMP) and the alcohol pyridoxine 5'-phosphate (PNP) in addition to PLP, as well as their corresponding non-phosphorylated forms. The different B6 forms (called vitamers) are enzymatically interconverted in a ubiquitous salvage pathway. Recently, we have shown that balancing the ratio of the different B6 vitamers in particular PMP by the PMP/PNP oxidase PDX3 is essential for growth and development in Arabidopsis thaliana. Intriguingly, nitrate to ammonium conversion is impaired in pdx3 mutants, such that the mutants become ammonium-dependent, suggesting an interaction between vitamin B6 and nitrogen metabolism. In addition, we found a strong up-regulation of genes related to plant defense. Here, we further show that pdx3 mutants display a temperature-sensitive phenotype that is typical of autoimmune mutants and is possibly connected to the impaired nitrogen metabolism.
The use of chemical treatments for improved comminution of artificial stones.
Heimbach, D; Kourambas, J; Zhong, P; Jacobs, J; Hesse, A; Mueller, S C; Delvecchio, F C; Cocks, F H; Preminger, G M
2004-05-01
The acoustic and mechanical properties of various stone compositions are significantly different and thus result in varying degrees of fragility. Consequently, results to shock wave lithotripsy (SWL) are influenced accordingly. We report the results of a study of fragility of various stone compositions, and the influence on each stone's baseline physical properties and fragility when exposed to various chemolytic solutions. Before SWL artificial stones of differing compositions were irrigated with various chemolytic solutions. Calcium oxalate monohydrate (COM) stones were treated with ethylenediaminetetraacetic acid (EDTA), stones composed of magnesium ammonium phosphate hydrogen were treated with hemiacidrin, and stones made of uric acid (UA) were treated with tromethamine. Synthetic urine served as a control for all stone groups. Using an ultrasound transmission technique, longitudinal wave propagation speed was measured in all groups of artificial stones. Stone density was also measured by using a pycnometer (based on Archimedes' principle). Based on these measurements transverse (shear) wave speed (assuming a constant Poisson's ratio), wave impedance and dynamic mechanical properties of the artificial stones were calculated. Moreover, the microhardness of these artificial stones was measured, and fragility testing using SWL with and without pretreatment with the previously mentioned chemolytic solutions, was performed. Wave speed, wave impedance, dynamic mechanical properties and microhardness of EDTA treated COM stones and tromethamine treated UA stones were found to decrease compared to untreated (synthetic urine) control groups. The suggestion that chemolytic pretreatment increases stone fragility was verified by the finding of increased stone comminution after SWL testing. Combining this medical pretreatment and SWL, the findings demonstrate a significant impact of various solvents on stone comminution, in particular EDTA treated COM stones, tromethamine treated UA stones and hemiacidrin treated magnesium ammonium phosphate hydrogen stones. These data suggest that by altering the chemical environment of the fluid surrounding the stones it is possible to increase the fragility of renal calculi in vitro. These results indicate that appropriate chemical treatments may provide a useful adjunctive modality for improving the efficacy of stone comminution during shock wave lithotripsy.
Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution
NASA Technical Reports Server (NTRS)
Weber, A. L.
1985-01-01
The formation of alanine (ala) form C(14)-glyceraldehyde and ammonium phosphate in the presence or absence of a thiol is reported. At ambient temperature, ala synthesis was six times more rapid in the presence of 3-mercaptopropionic acid than in its absence (0.6 and 0.1 percent, respectively, after 60 days). Similarly, the presence of another thiol, N-acetylcysteinate, increased the production of ala, as well as of lactate. The reaction pathway of thiol-catalyzed synthesis of ala, with the lactic acid formed in a bypath, is suggested. In this, dehydration of glyceraldehyde is followed by the formation of hemithioacetal. In the presence of ammonia, an imine is formed, which eventually yields ala. This pathway is consistent with the observation that the rate ratio of ala/lactate remains constant throughout the process. The fact that the reaction takes place under anaerobic conditions in the presence of H2O and with the low concentrations of simple substrates and catalysts makes it an attractive model prebiotic reaction in the process of molecular evolution.
Adair, Frank W.; Geftic, Sam G.; Gelzer, Justus
1969-01-01
Resistant cells of Pseudomonas aeruginosa and a waterborne Pseudomonas sp. (strain Z-R) were able to multiply in nitrogen-free minimal salts solution containing various concentrations of commercially prepared, ammonium acetate-buffered benzalkonium chloride (CBC), a potent antimicrobial agent. As the CBC concentration increased, growth increased until a point was reached at which the extent of growth leveled off or was completely depressed. Minimal salts solutions of pure benzalkonium chloride (PBC) containing no ammonium acetate did not support bacterial growth. When ammonium acetate was added to PBC solutions in the same concentrations found in CBC solutions, growth patterns developed that were comparable to those found with CBC. Likewise, (NH4)2SO4 added to PBC solutions supported growth of both organisms. P. aeruginosa was initially resistant to CBC levels of 0.02% and it was adapted to tolerate levels as high as 0.36%. Strain Z-R was naturally resistant to 0.4% CBC. Since ammonium acetate, carried over by the CBC used in drug formulations and disinfectant solutions, has the potential to support the growth of resistant bacteria and thus make possible the risk of serious infection, it is suggested that regulations allowing the presence of ammonium acetate in CBC solution be reconsidered. PMID:4984761
Development of fluorapatite cement for dental enamel defects repair.
Wei, Jie; Wang, Jiecheng; Shan, Wenpeng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng
2011-06-01
In order to restore the badly carious lesion of human dental enamel, a crystalline paste of fluoride substituted apatite cement was synthesized by using the mixture of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA) and ammonium fluoride. The apatite cement paste could be directly filled into the enamel defects (cavities) to repair damaged dental enamel. The results indicated that the hardened cement was fluorapatite [Ca(10)(PO(4))(6)F(2), FA] with calcium to phosphorus atom molar ratio (Ca/P) of 1.67 and Ca/F ratio of 5. The solubility of FA cement in Tris-HCl solution (pH = 5) was slightly lower than the natural enamel, indicating the FA cement was much insensitive to the weakly acidic solutions. The FA cement was tightly combined with the enamel surface, and there was no obvious difference of the hardness between the FA cement and natural enamel. The extracts of FA cement caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. In addition, the results showed that the FA cement had good mechanical strength, hydrophilicity, and anti-bacterial adhesion properties. The study suggested that using FA cement was simple and promising approach to effectively and conveniently restore enamel defects.
Pereira, João H O S; Reis, Ana C; Queirós, Daniel; Nunes, Olga C; Borges, Maria T; Vilar, Vítor J P; Boaventura, Rui A R
2013-10-01
In this study, solar driven TiO2-assisted heterogeneous photocatalytic experiments in a pilot-plant with compound parabolic collectors (CPCs) were carried out to study the degradation of two authorized veterinary antibiotics with particular relevance in finfish aquaculture, oxolinic acid (OXA) and oxytetracycline (OTC), using pure solutions of individual or mixed antibiotics. Firstly, the influence of natural solar photolysis was assessed for each antibiotic. Secondly, photocatalytic degradation kinetic rate constants for individual and mixed antibiotics were compared, using a catalyst load of 0.5 g L(-1) and an initial pH around 7.5. Thirdly, for individually photocatalytic-treated OXA and OTC in the same conditions, the growth inhibition of Escherichia coli DSM 1103 was followed, and the mineralization extent was assessed by the residual dissolved organic carbon (DOC), low-molecular-weight carboxylate anions and inorganic ions concentration. Finally, the effect of inorganic ions, such as chlorides, sulfates, nitrates, phosphates, ammonium and bicarbonates, on the photocatalytic degradation of individual solutions of OXA and OTC was also evaluated and the formation of different reactive oxygen species were probed using selective scavengers. The removal profiles of each antibiotic, both as single component or in mixture were similar, being necessary 2.5 kJ L(-1) of solar UV energy to fully remove them, and 18 kJ(UV) L(-1) to achieve 73% and 81% mineralization, for OXA and OTC, respectively. The remaining organic carbon content was mainly due to low-molecular-weight carboxylate anions. After complete removal of the antibiotics, the remaining degradation by-products no longer showed antibacterial activity. Also, 10% and 55% of the nitrogen content of each antibiotic was converted to ammonium, while no conversion to nitrite or nitrate was detected. The presence of phosphates hindered considerably the removal of both antibiotics, whereas the presence of other inorganic ions did not substantially altered the antibiotics photocatalytic degradation kinetics. Copyright © 2013 Elsevier B.V. All rights reserved.
Baker, Lucas R; Pierzynski, Gary M; Hettiarachchi, Ganga M; Scheckel, Kirk G; Newville, Matthew
2012-01-01
The use of P to immobilize Pb in contaminated soils has been well documented. However, the influence of P on Zn speciation in soils has not been extensively examined, and these two metals often occur as co-contaminants. We hypothesized that additions of P to a Pb/Zn-contaminated soil would induce Zn phosphate mineral formation and fluid P sources would be more effective than granular P amendments. A combination of different synchrotron-based techniques, namely, spatially resolved micro-X-ray fluorescence (μ-XRF), micro-extended X-ray absorption fine structure spectroscopy (μ-EXAFS), and micro-X-ray diffraction (μ-XRD), were used to speciate Zn at two incubation times in the proximity of application points (0 to 4 mm) for fluid and granular P amendments in a Pb/Zn smelter-contaminated soil. Phosphate rock (PR), triple super phosphate (TSP), monoammonium phosphate (MAP), and fluid ammonium polyphosphate induced Zn phosphate formation. Ammonium polyphosphate was more effective at greater distances (up to 3.7 mm) from the point of P application. Phosphoric acid increased the presence of soluble Zn species because of increased acidity. Soluble Zn has implications with respect to Zn bioavailability, which may negatively impact vegetation and other sensitive organisms. Although additions of P immobilize Pb, this practice needs close monitoring due to potential increases in Zn solubility in a Pb/Zn smelter-contaminated soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Chemical stability of oseltamivir in oral solutions.
Albert, K; Bockshorn, J
2007-09-01
The stability of oseltamivir in oral aqueous solutions containing the preservative sodium benzoate was studied by a stability indicating HPLC-method. The separation was achieved on a RP-18 ec column using a gradient of mobile phase A (aqueous solution of 50 mM ammonium acetate) and mobile phase B (60% (v/v) acetonitrile/40% (v/v) mobile phase A). The assay was subsequently validated according to the ICH guideline Q2(R1). The extemporaneously prepared "Oseltamivir Oral Solution 15 mg/ml for Adults or for Children" (NRF 31.2.) according to the German National Formulary ("Neues Rezeptur-Formularium") was stable for 84 days if stored under refrigeration. After storage at 25 degrees C the content of oseltamivir decreased to 98.4%. Considering the toxicological limit of 0.5% of the 5-acetylamino derivative (the so-called isomer I) the solution is stable for 46 days. Oseltamivir was less stable in a solution prepared with potable water instead of purified water. Due to an increasing pH the stability of this solution decreased to 14 days. Furthermore a white precipitate of mainly calcium phosphate was observed. The addition of 0.1% anhydrous citric acid avoided these problems and improved the stability of the solution prepared with potable water to 63 days. Sodium benzoate was stable in all oral solutions tested.
Renal ammonium production--une vue canadienne.
Brosnan, J T; Lowry, M; Vinay, P; Gougoux, A; Halperin, M L
1987-04-01
The purpose of this review is to examine the factors regulating ammonium production in the kidney and to place these factors in the perspective of acid-base balance. Renal ammonium production and excretion are required to maintain acid-base balance. However, only a portion of renal ammonium production is specifically stimulated by metabolic acidosis. One should examine urinary ammonium excretion at three levels: distribution of ammonium between blood and urine, augmented glutamine metabolism, and an energy constraint due to ATP balance considerations. With respect to the biochemical regulation of acid-base renal ammonium production, an acute stimulation of alpha-ketoglutarate dehydrogenase by a fall in pH seems to be important but this may not be the entire story. In chronic metabolic acidosis augmented glutamine entry into mitochondria (dog) or increased phosphate-dependent glutaminase activity (rat) become critical to support a high flux rate. Metabolic alterations, which diminish the rate of oxidation of alternate fuels, might also be important. The above principles are discussed in the ketoacidosis of fasting, the clinically important situation of high rates of renal ammonium production.
Metal sulfide and rare-earth phosphate nanostructures and methods of making same
Wong, Stanislaus; Zhang, Fen
2016-06-28
The present invention provides a method of producing a crystalline rare earth phosphate nanostructure. The method comprising: providing a rare earth metal precursor solution and providing a phosphate precursor solution; placing a porous membrane between the metal precursor solution and the phosphate precursor solution, wherein metal cations of the metal precursor solution and phosphate ions of the phosphate precursor solution react, thereby producing a crystalline rare earth metal phosphate nanostructure.
Calcium sulphate in ammonium sulphate solution
Sullivan, E.C.
1905-01-01
Calcium sulphate, at 25?? C., is two-thirds as soluble in dilute (o.i mol per liter) and twice as soluble in concentrated (3 mois per liter) ammonium sulphate solution as in water. The specific electric conductivity of concentrated ammonium sulphate solutions is lessened by saturating with calcium sulphate. Assuming that dissociation of ammonium sulphate takes place into 2NH4?? and SO4" and of calcium sulphate into Ca and SO4" only, and that the conductivity is a measure of such dissociation, the solubility of calcium sulphate in dilute ammonium sulphate solutions is greater than required by the mass-law. The conductivity of the dilute mixtures may be accurately calculated by means of Arrhenius' principle of isohydric solutions. In the data obtained in these calculations, the concentration of non-dissociated calcium sulphate decreases with increasing ammonium sulphate. The work as a whole is additional evidence of the fact that we are not yet in possession of all the factors necessary for reconciling the mass-law to the behavior of electrolytes. The measurements above described were made in the chemical laboratory of the University of Michigan.
In vitro production of azadirachtin from cell suspension cultures of Azadirachta indica.
Sujanya, S; Devi, B Poornasri; Sai, Isha
2008-03-01
The present study aimed to elucidate the effect of nutritional alteration on biomass content and azadirachtin production in cell suspensions of the elite neem variety crida-8. Variations in total nitrogen availability in the medium in terms of different ratios of nitrate: ammonium showed that the ratio 4:1 revealed a profound effect, leading to a 1.5-fold increase in the total extracellular azadirachtin production (5.59 mg/l) over the standard MS medium. Reduction in sucrose (15 mg/l) in the medium exhibited a reduction in biomass and absence of azadirachtin, whereas total phosphate reduction raised intracellular azadirachtin production (6.98 mg/l). An altered medium with a nitrate: ammonium ratio of 4:1 coupled with complete elimination of phosphate enhanced biomass by 36% (59.36 g/l).
Solubility of ammonium acid urate nephroliths from bottlenose dolphins (Tursiops truncatus).
Argade, Sulabha; Smith, Cynthia R; Shaw, Timothy; Zupkas, Paul; Schmitt, Todd L; Venn-Watson, Stephanie; Sur, Roger L
2013-12-01
Nephrolithiasis has been identified in managed populations of bottlenose dolphins (Tursiops truncatus); most of these nephroliths are composed of 100% ammonium acid urate (AAU). Several therapies are being investigated to treat and prevent nephrolithiasis in dolphins including the alkalization of urine for dissolution of nephroliths. This study evaluates the solubility of AAU nephroliths in a phosphate buffer, pH range 6.0-8.0, and in a carbonate-bicarbonate buffer, pH range 9.0-10.8. AAU nephroliths were obtained from six dolphins and solubility studies were conducted using reverse-phase high performance liquid chromatography with ultraviolet detection at 290 nm. AAU nephroliths were much more soluble in a carbonate-bicarbonate buffer, pH range 9.0-10.8 compared to phosphate buffer pH range 6.0-8.0. In the pH range 6.0-8.0, the solubility was 45% lower in potassium phosphate buffer compared to sodium phosphate buffer. When citrate was used along with phosphate in the same pH range, the solubility was improved by 13%. At pH 7 and pH 8, 150 mM ionic strength buffer was optimum for dissolution. In summary, adjustment of urinary pH alone does not appear to be a useful way to treat AAU stones in bottlenose dolphins. Better understanding of the pathophysiology of AAU nephrolithiasis in dolphins is needed to optimize kidney stone prevention and treatment.
Photometric Determination of Ammonium and Phosphate in Seawater Medium Using a Microplate Reader.
Ruppersberg, Hanna S; Goebel, Maren R; Kleinert, Svea I; Wünsch, Daniel; Trautwein, Kathleen; Rabus, Ralf
2017-01-01
To more efficiently process the large sample numbers for quantitative determination of ammonium (NH4+) and phosphate (orthophosphate, PO43-) generated during comprehensive growth experiments with the marine Roseobacter group member Phaeobacter inhibens DSM 17395, specific colorimetric assays employing a microplate reader (MPR) were established. The NH4+ assay is based on the reaction of NH4+ with hypochlorite and salicylate, yielding a limit of detection of 14 µM, a limit of quantitation of 36 µM, and a linear range for quantitative determination up to 200 µM. The PO43-assay is based on the complex formation of PO43- with ammonium molybdate in the presence of ascorbate and zinc acetate, yielding a limit of detection of 13 µM, a limit of quantitation of 50 µM, and a linear range for quantitative determination up to 1 mM. Both MPR-based assays allowed for fast (significantly lower than 1 h) analysis of 21 samples plus standards for calibration (all measured in triplicates) and showed only low variation across a large collection of biological samples. © 2017 S. Karger AG, Basel.
Barbosa, José Murillo P; Souza, Ranyere L; Fricks, Alini T; Zanin, Gisella Maria; Soares, Cleide Mara F; Lima, Alvaro S
2011-12-15
This work discusses the application of an aqueous two-phase system for the purification of lipases produced by Bacillus sp. ITP-001 using polyethylene glycol (PEG) and potassium phosphate. In the first step, the protein content was precipitated with ammonium sulphate (80% saturation). The enzyme remained in the aqueous solution and was dialyzed against ultra-pure water for 18 h and used to prepare an aqueous two-phase system (PEG/potassium phosphate). The use of different molecular weights of PEG to purify the lipase was investigated; the best purification factor (PF) was obtained using PEG 20,000g/mol, however PEG 8000 was used in the next tests due to lower viscosity. The influence of PEG and potassium phosphate concentrations on the enzyme purification was then studied: the highest FP was obtained with 20% of PEG and 18% of potassium phosphate. NaCl was added to increase the hydrophobicity between the phases, and also increased the purification factor. The pH value and temperature affected the enzyme partitioning, with the best purifying conditions achieved at pH 6.0 and 4°C. The molecular mass of the purified enzyme was determined to be approximately 54 kDa by SDS-PAGE. According to the results the best combination for purifying the enzyme is PEG 8000g/mol and potassium phosphate (20/18%) with 6% of NaCl at pH 6.0 and 4°C (201.53 fold). The partitioning process of lipase is governed by the entropy contribution. Copyright © 2011 Elsevier B.V. All rights reserved.
Xu, Kangning; Li, Jiyun; Zheng, Min; Zhang, Chi; Xie, Tao; Wang, Chengwen
2015-09-01
Nutrients recovery from urine to close the nutrient loop is one of the most attractive benefits of source separation in wastewater management. The current study presents an investigation of the thermodynamic modeling of the recovery of P and K from synthetic urine via the precipitation of magnesium potassium phosphate hexahydrate (MPP). Experimental results show that maximum recovery efficiencies of P and K reached 99% and 33%, respectively, when the precipitation process was initiated only through adding dissolvable Mg compound source. pH level and molar ratio of Mg:P were key factors determining the nutrient recovery efficiencies. Precipitation equilibrium of MPP and magnesium sodium phosphate heptahydrate (MSP) was confirmed via precipitates analysis using a Scanning Electron Microscope/Energy Dispersive Spectrometer and an X-ray Diffractometer. Then, the standard solubility products of MPP and MSP in the synthetic urine were estimated to be 10(-12.2 ± 0.0.253) and 10(-11.6 ± 0.253), respectively. The thermodynamic model formulated on chemical software PHREEQC could well fit the experimental results via comparing the simulated and measured concentrations of K and P in equilibrium. Precipitation potentials of three struvite-type compounds were calculated through thermodynamic modeling. Magnesium ammonium phosphate hexahydrate (MAP) has a much higher tendency to precipitate than MPP and MSP in normal urine while MSP was the main inhibitor of MPP in ammonium-removed urine. To optimize the K recovery, ammonium should be removed prior as much as possible and an alternative alkaline compound should be explored for pH adjustment rather than NaOH. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Rajul Ranjan, E-mail: rajul@barc.gov.in; Chitra, R.; Abraham, Geogy J.
2015-06-24
X-ray powder diffraction and Raman measurements were performed on the mixed crystals of deuterated potassium dihydrogen phosphate (DKDP) and deuterated ammonium dihydrogen phosphate (DADP) grown at our lab. These crystals are known to behave like deuteron glasses due to frustration between ferroelectric and antiferroelectric ordering. Both spectral as well as structural studies indicate that crystals belonging to the glassy regions of the crystal composition have stronger O-D-O hydrogen bonds as compared to those belong to the ferroelectric or antiferroelectric regions of the crystal composition.
Borojovich, Eitan J C; Münster, Meshulam; Rafailov, Gennady; Porat, Ze'ev
2010-07-01
Precipitation of struvite (MgNH4PO4) is a known process for purification of wastewater from high concentrations of ammonium. The optimal conditions for precipitation are basic pH (around 9) and sufficient concentrations of magnesium and phosphate ions. In this work, we accomplished efficient precipitation of ammonium from concentrated industrial waste stream by using magnesium oxide (MgO) both as a source of magnesium ions and as a base. Best results were obtained with technical-grade MgO, which provided 99% removal of ammonium. Moreover, ammonium removal occurred already at pH 7, and the residual ammonium concentration (50 mg/L) remained constant upon addition of more MgO without rising again, as occurs with sodium hydroxide (NaOH). This process may have two other advantages; it also can be relevant for the problem of uncontrolled precipitation of struvite in the supernatant of anaerobic sludge treatment plants, and the precipitate can be used as a fertilizer.
Computer model of hydroponics nutrient solution pH control using ammonium.
Pitts, M; Stutte, G
1999-01-01
A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.
Yue, Dan; Lu, Wei; Li, Chunyang; Zhang, Xinlei; Liu, Chunxia; Wang, Zhenling
2014-02-21
Ln(3+) (Ln = Tb, Eu) doped zinc phosphate tetrahydrate (ZPT:Ln(3+)) and ammonium zinc phosphate (AZP:Ln(3+)) nano-/micro-structured materials were synthesized in aqueous solution without the addition of any structure-directing agent. The phase structures, morphologies and luminescence properties of the as-synthesized samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy and lifetime. These investigations indicate that different phosphate sources MnH(3-n)PO4 (M = NH4(+) or Na(+), n = 1, 2, 3) can lead to the altering of morphology from nanosheet to microflower, but have no significant effect on the phase structure of the samples. The microlump, nanosheet, and microflower (constructed by the primary microlumps or nanosheets) of orthorhombic ZPT:Ln(3+) could be selectively prepared by adjusting the pH value from 3.5 to 7.0. A mixture of orthorhombic ZPT:Ln(3+) and monoclinic AZP:Ln(3+) with a microflower morphology was obtained when the pH value was adjusted to 8.0. Monoclinic AZP:Ln(3+) microplate, microcube and nanoparticle morphologies were obtained at pH values of 8.5, 9.0 and 11.0 respectively. The phase transformation and growth mechanism of the diverse morphologies were proposed, and ZPT:Ln(3+) (Ln(3+) = Eu or Tb) samples exhibit red or green emission under the excitation of UV light.
NASA Astrophysics Data System (ADS)
Ranjan Choudhury, Rajul; Chitra, R.; Jayakrishnan, V. B.
2016-03-01
Quenching of dynamic disorder in glassy systems is termed as the glass transition. Ferroic glasses belong to the class of paracrystalline materials having crystallographic order in-between that of a perfect crystal and amorphous material, a classic example of ferroic glass is the solid solution of ferroelectric deuterated potassium dihydrogen phosphate and antiferroelectric deuterated ammonium dihydrogen phosphate. Lowering temperature of this ferroic glass can lead to a glass transition to a quenched disordered state. The subtle atomic rearrangement that takes place at such a glass transition can be revealed by careful examination of the temperature induced changes occurring in the x-ray powder diffraction (XRD) patterns of these materials. Hence we report here results of a complete diffraction line shape analysis of the XRD patterns recorded at different temperatures from deuterated mixed crystals DK x A1-x DP with mixing concentration x ranging as 0 < x < 1. Changes observed in diffraction peak shapes have been explained on the basis of structural rearrangements induced by changing O-D-O hydrogen bond dynamics in these paracrystals.
Removal of ammonium from aqueous solutions with volcanic tuff.
Marañón, E; Ulmanu, M; Fernández, Y; Anger, I; Castrillón, L
2006-10-11
This paper presents kinetic and equilibrium data concerning ammonium ion uptake from aqueous solutions using Romanian volcanic tuff. The influence of contact time, pH, ammonium concentration, presence of other cations and anion species is discussed. Equilibrium isotherms adequately fit the Langmuir and Freundlich models. The results showed a contact time of 3h to be sufficient to reach equilibrium and pH of 7 to be the optimum value. Adsorption capacities of 19 mg NH(4)(+)/g were obtained in multicomponent solutions (containing NH(4)(+), Zn(2+), Cd(2+), Ca(2+), Na(2+)). The presence of Zn and Cd at low concentrations did not decrease the ammonium adsorption capacity. Comparison of Romanian volcanic tuff with synthetic zeolites used for ammonium removal (5A, 13X and ZSM-5) was carried out. The removal efficiciency of ammonium by volcanic tuff were similar to those of zeolites 5A and 13X at low initial ammonium concentration, and much higher than those of zeolite ZSM-5.
BROMAN, M; CARLSSON, O; FRIBERG, H; WIESLANDER, A; GODALY, G
2011-01-01
Background Hypophosphatemia occurs in up to 80% of the patients during continuous renal replacement therapy (CRRT). Phosphate supplementation is time-consuming and the phosphate level might be dangerously low before normophosphatemia is re-established. This study evaluated the possibility to prevent hypophosphatemia during CRRT treatment by using a new commercially available phosphate-containing dialysis fluid. Methods Forty-two heterogeneous intensive care unit patients, admitted between January 2007 and July 2008, undergoing hemodiafiltration, were treated with a new Gambro dialysis solution with 1.2 mM phosphate (Phoxilium) or with standard medical treatment (Hemosol B0). The patients were divided into three groups: group 1 (n=14) receiving standard medical treatment and intravenous phosphate supplementation as required, group 2 (n=14) receiving the phosphate solution as dialysate solution and Hemosol B0 as replacement solution and group 3 (n=14) receiving the phosphate-containing solution as both dialysate and replacement solutions. Results Standard medical treatment resulted in hypophosphatemia in 11 of 14 of the patients (group 1) compared with five of 14 in the patients receiving phosphate solution as the dialysate solution and Hemosol B0 as the replacement solution (group 2). Patients treated with the phosphate-containing dialysis solution (group 3) experienced stable serum phosphate levels throughout the study. Potassium, ionized calcium, magnesium, pH, pCO2 and bicarbonate remained unchanged throughout the study. Conclusion The new phosphate-containing replacement and dialysis solution reduces the variability of serum phosphate levels during CRRT and eliminates the incidence of hypophosphatemia. PMID:21039362
21 CFR 184.1141a - Ammonium phosphate, monobasic.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Academy Press, 2101 Constitution Ave. NW., Washington, DC 20418, or available for inspection at the... at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal...
21 CFR 184.1141b - Ammonium phosphate, dibasic.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., 2101 Constitution Ave. NW., Washington, DC 20418, or available for inspection at the National Archives... 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr...
Stomeo, Francesca; Portillo, Maria C; Gonzalez, Juan M
2009-09-01
The most representative bacterium (Pseudonocardia sp.) and fungus (Fusarium sp.) from the microbial communities of a cave containing paleolithic paintings were isolated and their growth on natural substrates assessed. Growth was tested at the in situ and optimal, laboratory growth temperature. Development was analyzed with and without supplemented nutrients (glucose, ammonium, phosphate, peptone). Results showed that the assayed bacterium on natural substrate was able to develop best at in situ temperature and the addition of organic nutrients and/or phosphate enhanced its growth. The growth of the assayed fungus, however, was limited by low temperature and the availability of ammonium. These results confirm a differential behavior of microorganisms between the laboratory and the natural environments and could explain previous invasion of fungi reported for some caves with prehistoric paintings.
Winter nutrient behaviours in the Pearl River estuary
NASA Astrophysics Data System (ADS)
Wang, G.; Jin, S.; Du, M.
2017-12-01
Nutrient (nitrate, nitrite, ammonium, phosphate, and silicate) mapping and time-series investigation were carried out in winter in the Pearl River estuary, China. These nutrients behaved non-conservatively in the upper estuary. In the middle and lower estuary, however, nitrate and silicate seemed to be controled by physical mixing, while additions of nitrite, ammonium, and phosphate were found in the middle estuary. Nitrate was the dominant disslved inorganic nitrogen, with a fraction of more than 2/3. From the upper to the lower estuary the N:P ratio decreased from more than 200 to near the Redfield ratio of 16. Nutrients near the surface behaved almost the same as near the bottom in the water column at both the uppper and lower estuary. During a tidal cycle these nutrients seemed to be regulated more by physical mixing than by other processes.
Mo, Qiongli; Chen, Nengwang; Zhou, Xingpeng; Chen, Jixin; Duan, Shuiwang
2016-07-13
Small river reservoirs are widespread and can be ecologically sensitive across the dry-wet transition under monsoon climate with respect to nutrient loading and phenology. Monthly sampling and high-frequency in situ measurements were conducted for a river reservoir (southeast China) in 2013-2014 to examine the seasonal pattern of nutrients and phytoplankton. We found that nutrient concentrations were runoff-mediated and determined by watershed inputs and, in some cases, by internal cycling depending on hydrology and temperature. Ammonium and phosphate were relatively enriched in February-March (a transitional period from dry/cold to wet/hot climate), which can be ascribed to initial flushing runoff from human/animal waste and spring fertilizer use. A phytoplankton bloom (mainly Chlorophyta) occurred during April after a surge of water temperature, probably due to the higher availability of inorganic nutrients and sunlight and suitable hydraulic residence time (medium flow) in the transitional period. The concentration of phytoplankton was low during May-June (wet-hot climate) when the concentrations of total suspended matter (TSM) were highest, likely owing to the "shading" effect of TSM and turbulence of high flow conditions. Nutrient-algae shifts across the dry-wet season and vertical profiles suggested that algal blooms seem to be fueled primarily by phosphate and ammonium rather than nitrate. Current findings of a strong temporal pattern and the relationship between physical parameters, nutrient and biota would improve our understanding of drivers of change in water quality and ecosystem functions with dam construction.
Berbert-Molina, M A; Sato, S; Silveira, M M
2001-01-01
The production of 2,3-butanediol by Klebsiella pneumoniae from sugar cane juice supplemented with different salts was studied. This microorganism is able to degrade sucrose present in sugar cane juice containing ammonium phosphate as the sole nutritional supplement. With a sugar cane juice-based medium containing approximately 180 g sucrose/l and 8.0 g (NH4)2HPO4/l, over 70 g 2,3-butanediol plus acetoin/l were formed. This result is comparable to that achieved with a sugar cane juice-based medium containing several nutrients, although the kinetic profiles of these runs presented significant differences. With the ammonium phosphate-enriched medium, cell growth was initially favoured by both the strong oxygen supply and the higher water activity due to the lower concentration of nutrients. After 14 h, the limitation in some nutrients led to the interruption of cell growth, and decreasing rates for product formation and substrate consumption were observed. During the stationary phase of this run, sucrose was preferentially converted to product, and the substrate was completely depleted after 35 h of the process. With the complete medium, the substrate was totally consumed after 36 h of run. In this case, the higher initial concentration of nutrients reduced the overall process rate but sustained the cell growth for 27 h. Conversion yields of 0.40 g product/g sucrose and productivities close to 2.0 g/l x h were obtained under both conditions.
Structural wood panels with improved fire resistance
NASA Technical Reports Server (NTRS)
Sawko, P. M. (Inventor)
1980-01-01
Structural wood paneling or other molded wood compositions consisting of finely divided wood chips, flour, or strands are bound together and hot pressed with a modified novolac resin which is the cured product of a prepolymer made from an aralkyl ether or halide with a phenol and a hardening agent such as hexamethylene tetramine. The fire resistance of these articles is further improved by incorporating in the binder certain inorganic fillers, especially a mixture of ammonium oxalate and ammonium phosphate.
Ability of various plant species to prevent leakage of N, P, and metals from sewage sludge.
Neuschütz, Clara; Greger, Maria
2010-01-01
The preventive effect of vegetation on nutrient and metal leakage from sewage sludge (SS) used in treatment of mine waste was investigated. In a 10-week greenhouse study, the release of ammonium, nitrate, phosphate, Cd, Cu, and Zn from SS was analyzed in the absence (control) and presence of basket willow, fireweed, reed Canary grass (RCG), and Scots pine. Plants significantly decreased the leakage by reducing the amount of leachate, and lowered the concentrations of phosphate (to 0.1 mg L(-1)), Cu (0.8 mg L(-1)), and Zn (2.2 mg L(-1)); and plants increased the pH in the leachate towards the end of the experiment. The most efficient plant was RCG that significantly decreased the total leakage of all pollutants. However, plants could not counteract high initial concentrations of ammonium and nitrate (< 400 mg L(-1) of both) and drop in pH (to 4.5), or increasing Cd release (< 9.7 microg L(-1)). RCG and fireweed used both ammonium and nitrate as nitrogen source and were more efficient in preventing nitrate leakage, compared with willow and pine that mainly used ammonium. This study indicates that introduction of RCG is a promising method for phytostabilization of SS, but that alkaline additives are needed to prevent an initial decrease in pH.
Hong, Pui Khoon; Betti, Mirko
2016-12-01
Glucosamine (GlcN, 5% w/v) was incubated in either phosphate buffer or ammonium hydroxide solutions at 40 and 60°C for up to 48h in order to yield caramel solutions. Non-enzymatic browning was monitored via changes in absorption at 280, 320 and 420nm and the physico-chemical properties as well as the generation of short chain α-dicarbonyl compounds were evaluated. Accumulation of GlcN autocondensation products (280nm) proceeded in parallel with the development of pre-melanoidins (320nm) and melanoidins (420nm). The reactive α-dicarbonyls were detected at temperature as low as 40°C within 3h with a maximum level of diacetyl recorded at 6h. The caramel solutions showed a high efficacy in scavenging DPPH and ABTS radicals in accordance with the increasing browning intensity. The results suggest that GlcN browning can be modulated according to the specific desired properties to produce a multi-functional food ingredient that has health-promoting effects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nakahata, Rina; Yusa, Shin-Ichi
2018-01-05
Amphoteric random copolymers P(AMPS/APTAC50) x , where x = 41, 89, and 117, composed of sodium 2-acrylamido-2-methylpropanesulfonate (AMPS) and 3-acrylamidopropyltrimethylammonium chloride (APTAC) were prepared via reversible addition-fragmentation chain transfer radical polymerization. P(AMPS/APTAC50) x can dissolve in pure water to form small interpolymer aggregates. In aqueous solutions of NaCl, P(AMPS/APTAC50) x can dissolve in the unimer state. Amphoteric random copolymer P(AMPS/APTAC50) c with high molecular weight was prepared via conventional free-radical polymerization. Although P(AMPS/APTAC50) c cannot dissolve in pure water, it can dissolve in aqueous solutions of NaCl. In amphoteric random copolymers with high molecular weight, the possibility of continuous sequences of monomers with the same charge may increase, which may cause strong interactions between polymer chains. When fetal bovine serum (FBS) and polyelectrolytes were mixed in phosphate-buffered saline, the hydrodynamic radius and light-scattering intensity increased. There was no interaction between P(AMPS/APTAC50) x and FBS because corresponding increases could not be observed.
Desmidt, E; Ghyselbrecht, K; Monballiu, A; Verstraete, W; Meesschaert, B D
2012-01-01
The removal of phosphate as magnesium ammonium phosphate (MAP, struvite) has gained a lot of attention. A novel approach using ureolytic MAP crystallization (pH increase by means of bacterial ureases) has been tested on the anaerobic effluent of a potato processing company in a pilot plant and compared with NuReSys(®) technology (pH increase by means of NaOH). The pilot plant showed a high phosphate removal efficiency of 83 ± 7%, resulting in a final effluent concentration of 13 ± 7 mg · L(-1) PO(4)-P. Calculating the evolution of the saturation index (SI) as a function of the remaining concentrations of Mg(2+), PO(4)-P and NH(4)(+) during precipitation in a batch reactor, resulted in a good estimation of the effluent PO(4)-P concentration of the pilot plant, operating under continuous mode. X-ray diffraction (XRD) analyses confirmed the presence of struvite in the small single crystals observed during experiments. The operational cost for the ureolytic MAP crystallization treating high phosphate concentrations (e.g. 100 mg · L(-1) PO(4)-P) was calculated as 3.9 € kg(-1) P(removed). This work shows that the ureolytic MAP crystallization, in combination with an autotrophic nitrogen removal process, is competitive with the NuReSys(®) technology in terms of operational cost and removal efficiency but further research is necessary to obtain larger crystals.
21 CFR 184.1135 - Ammonium bicarbonate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium bicarbonate. 184.1135 Section 184.1135... Listing of Specific Substances Affirmed as GRAS § 184.1135 Ammonium bicarbonate. (a) Ammonium bicarbonate.... Crystals of ammonium bicarbonate are precipitated from solution and subsequently washed and dried. (b) The...
21 CFR 184.1135 - Ammonium bicarbonate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium bicarbonate. 184.1135 Section 184.1135... Listing of Specific Substances Affirmed as GRAS § 184.1135 Ammonium bicarbonate. (a) Ammonium bicarbonate.... Crystals of ammonium bicarbonate are precipitated from solution and subsequently washed and dried. (b) The...
21 CFR 184.1135 - Ammonium bicarbonate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium bicarbonate. 184.1135 Section 184.1135... Listing of Specific Substances Affirmed as GRAS § 184.1135 Ammonium bicarbonate. (a) Ammonium bicarbonate.... Crystals of ammonium bicarbonate are precipitated from solution and subsequently washed and dried. (b) The...
Cellular Response to Doping of High Porosity Foamed Alumina with Ca, P, Mg, and Si.
Soh, Edwin; Kolos, Elizabeth; Ruys, Andrew J
2015-03-13
Foamed alumina was previously synthesised by direct foaming of sulphate salt blends varying ammonium mole fraction (AMF), foaming heating rate and sintering temperature. The optimal product was produced with 0.33AMF, foaming at 100 °C/h and sintering at 1600 °C. This product attained high porosity of 94.39%, large average pore size of 300 µm and the highest compressive strength of 384 kPa. To improve bioactivity, doping of porous alumina by soaking in dilute or saturated solutions of Ca, P, Mg, CaP or CaP + Mg was done. Saturated solutions of Ca, P, Mg, CaP and CaP + Mg were made with excess salt in distilled water and decanted. Dilute solutions were made by diluting the 100% solution to 10% concentration. Doping with Si was done using the sol gel method at 100% concentration only. Cell culture was carried out with MG63 osteosarcoma cells. Cellular response to the Si and P doped samples was positive with high cell populations and cell layer formation. The impact of doping with phosphate produced a result not previously reported. The cellular response showed that both Si and P doping improved the biocompatibility of the foamed alumina.
Chloroplast Phosphofructokinase
Kelly, Grahame J.; Latzko, Erwin
1977-01-01
Chloroplast phosphofructokinase from spinach (Spinacia oleracea L.) was purified approximately 40-fold by a combination of fractionations with ammonium sulfate and acetone followed by chromatography on DEAE-Sephadex A-50. Positive cooperative kinetics was observed for the interaction between the enzyme and the substrate fructose 6-phosphate. The optimum pH shifted from 7.7 toward 7.0 as the fructose 6-phosphate concentration was taken below 0.5 mm. The second substrate was MgATP2− (Michaelis constant 30 μm). Free ATP inhibited the enzyme. Chloroplast phosphofructokinase was sensitive to inhibition by low concentration of phosphoenolpyruvate and glycolate 2-phosphate (especially at higher pH); these compounds inhibited in a positively cooperative fashion. Inhibitions by glycerate 2-phosphate (and probably glycerate 3-phosphate), citrate, and inorganic phosphate were also recorded; however, inorganic phosphate effectively relieved the inhibitions by phosphoenolpyruvate and glycolate 2-phosphate. These regulatory properties are considered to complement those of ADP-glucose pyrophosphorylase and fructosebisphosphatase in the regulation of chloroplast starch metabolism. PMID:16660079
Factors affecting the hydrochemistry of a mangrove tidal creek, sepetiba bay, Brazil
NASA Astrophysics Data System (ADS)
Ovalle, A. R. C.; Rezende, C. E.; Lacerda, L. D.; Silva, C. A. R.
1990-11-01
We studied the porewater chemistry, and spatial and temporal variation of mangrove creek hydrochemistry. Except for nitrate porewater, the concentrations of nutrients we analysed were higher than for creek water. Groundwater is a source of silica and phosphate, whereas total alkalinity and ammonium are related to mangrove porewater migration to the creek. Open bay waters contribute chlorine, dissolved oxygen and elevated pH. The results also suggest that nitrate is related to nitrification inside the creek. During flood tides, salinity, chlorine, dissolved oxygen and pH increase, whereas total alkalinity decreases. This pattern is reversed at ebb tides. Silica, phosphate, nitrate and ammonium show an erratic behaviour during the tidal cycle. Tidal dynamics, precipitation events and nitrification inside the creek were identified as major control factors and an estimate of tidal exchanges indicate that the system is in an equilibrium state.
Chemical composition and binary mixture of human urinary stones using FT-Raman spectroscopy method.
Selvaraju, R; Raja, A; Thiruppathi, G
2013-10-01
In the present study the human urinary stones were observed in their different chemical compositions of calcium oxalate monohydrate, calcium oxalate dihydrate, calcium phosphate, struvite (magnesium ammonium phosphate), uric acid, cystine, oxammite (ammonium oxalate monohydrate), natroxalate (sodium oxalate), glushinkite (magnesium oxalate dihydrate) and moolooite (copper oxalate) were analyzed using Fourier Transform-Raman (FT-Raman) spectroscopy. For the quantitative analysis, various human urinary stone samples are used for ratios calculation of binary mixtures compositions such as COM/COD, HAP/COD, HAP/COD, Uric acid/COM, uric acid/COD and uric acid/HAP. The calibration curve is used for further analysis of binary mixture of human urinary stones. For the binary mixture calculation the various intensities bands at 1462 cm(-1) (I(COM)), 1473 cm(-1) (I(COD)), 961 cm(-1) (I(HAP)) and 1282 cm(-1) (I(UA)) were used. Copyright © 2013 Elsevier B.V. All rights reserved.
Fate of arsenic, phosphate and ammonium plumes in a coastal aquifer affected by saltwater intrusion.
Colombani, N; Mastrocicco, M; Prommer, H; Sbarbati, C; Petitta, M
2015-08-01
A severe groundwater contamination with extensive plumes of arsenic, phosphate and ammonium was found in a coastal aquifer beneath a former fertilizer production plant. The implementation of an active groundwater remediation strategy, based on a comprehensive pump and treat scheme, now prevents the migration of the dissolved contaminants into the marine environment. However, due to the site's proximity to the coastline, a seawater wedge was induced by the pumping scheme. Additionally the groundwater flow and salinity patterns were also strongly affected by leakage from the site's sewer system and from a seawater-fed cooling canal. The objective of this study was to elucidate the fate of arsenic and its co-contaminants over the site's history under the complex, coupled hydrodynamic and geochemical conditions that prevail at the site. A detailed geochemical characterisation of samples from sediment cores and hydrochemical data provided valuable high-resolution information. The obtained data were used to develop various conceptual models and to constrain the development and calibration of a reactive transport model. The reactive transport simulations were performed for a sub-domain (two-dimensional transect) of an earlier developed three-dimensional flow and variable density solute transport model. The results suggest that in the upper sub-oxic zone the influx of oxygenated water promoted As attenuation via co-precipitation with Al and Fe oxides and copper hydroxides. In contrast, in the deeper aquifer zone, iron reduction, associated with the release of adsorbed As and the dissolution of As bearing phases, provided and still provides to date a persistent source for groundwater pollution. The presented monitoring and modelling approach could be broadly applied to coastal polluted sites by complex contaminant mixture containing As. Copyright © 2015 Elsevier B.V. All rights reserved.
Xue, Wenchao; Tobino, Tomohiro; Nakajima, Fumiyuki; Yamamoto, Kazuo
2015-02-01
Seawater-driven forward osmosis (FO) is considered to be a novel strategy to concentrate nutrients in treated municipal wastewater for further recovery as well as simultaneous discharge of highly purified wastewater into the sea with low cost. As a preliminary test, the performance of FO membranes in concentrating nutrients was investigated by both batch experiments and model simulation approaches. With synthetic seawater as the draw solution, the dissolved organic carbon, phosphate, and ammonia in the effluent from a membrane bioreactor (MBR) treating municipal wastewater were 2.3-fold, 2.3-fold, and 2.1-fold, respectively, concentrated by the FO process with approximately 57% of water reduction. Most of the dissolved components, including trace metals in the MBR effluent, were highly retained (>80%) in the feed side, indicating high water quality of permeate to be discharged. The effect of membrane properties on the nutrient enrichment performance was investigated by comparing three types of FO membranes. Interestingly, a polyamide membrane possessing a high negative charge demonstrated a poor capability of retaining ammonia, which was hypothesized because of an ion exchange-like mechanism across the membrane prompted by the high ionic concentration of the draw solution. A feed solution pH of 7 was demonstrated to be an optimum condition for improving the overall retention of nutrients, especially for ammonia because of the pH-dependent speciation of ammonia/ammonium forms. The modeling results showed that higher than 10-fold concentrations of ammonia and phosphate are achievable by seawater-driven FO with a draw solution to feed solution volume ratio of 2:1. The enriched municipal wastewater contains nitrogen and phosphorous concentrations comparable with typical animal wastewater and anaerobic digestion effluent, which are used for direct nutrient recovery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ammonium hydroxide is a colorless liquid chemical solution. It is in a class of substances called caustics. Ammonium hydroxide forms when ammonia dissolves in water. This article discusses poisoning from ...
Western hemlock seedlings were grown in nutrient solutions with ammonium, nitrate or ammonium plus nitrate as nitrogen sources. he objectives were to examine (1) possible selectivity for ammonium or nitrate as an N source, (2) the maintenance of charge balance during ammonium and...
21 CFR 184.1138 - Ammonium chloride.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The...
Boopathy, Ramasamy; Karthikeyan, Sekar; Mandal, Asit Baran; Sekaran, Ganesan
2013-01-01
Ammonium ions are one of the most encountered nitrogen species in polluted water bodies. High level of ammonium ion in aqueous solution imparts unpleasant taste and odor problems, which can interfere with the life of aquatics and human population when discharged. Many chemical methods are developed and being used for removal of ammonium ion from aqueous solution. Among various techniques, adsorption was found to be the most feasible and environmentally friendly with the use of natural-activated adsorbents. Hence, in this study, coconut shell-activated carbon (CSAC) was prepared and used for the removal of ammonium ion by adsorption techniques. Ammonium chloride (analytical grade) was purchased from Merck Chemicals for adsorption studies. The CSAC was used to adsorb ammonium ions under stirring at 100 rpm, using orbital shaker in batch experiments. The concentration of ammonium ion was estimated by ammonia distillate, using a Buchi distillation unit. The influence of process parameters such as pH, temperature, and contact time was studied for adsorption of ammonium ion, and kinetic, isotherm models were validated to understand the mechanism of adsorption of ammonium ion by CSAC. Thermodynamic properties such as ∆G, ∆H, and ∆S were determined for the ammonium adsorption, using van't Hoff equation. Further, the adsorption of ammonium ion was confirmed through instrumental analyses such as SEM, XRD, and FTIR. The optimum conditions for the effective adsorption of ammonium ion onto CSAC were found to be pH 9.0, temperature 283 K, and contact time 120 min. The experimental data was best followed by pseudosecond order equation, and the adsorption isotherm model obeyed the Freundlich isotherm. This explains the ammonium ion adsorption onto CSAC which was a multilayer adsorption with intraparticle diffusion. Negative enthalpy confirmed that this adsorption process was exothermic. The instrumental analyses confirmed the adsorption of ammonium ion onto CSAC.
Guaya, Diana; Valderrama, César; Farran, Adriana; Sauras, Teresa; Cortina, José Luis
2018-01-15
The removal of nutrients (nitrogen (N), phosphorous (P)) from waste water has become a resource recovery option in recent regulations worldwide, as observed in the European Union. Although both of these nutrients could be recovered from the sludge line, >70-75% of the N and P is discharged into the water line. Efforts to improve the nutrient recovery ratios have focused on developing low-cost technologies that use sorption processes. In this study, a natural zeolite (clinoptilolite type) in its potassium (K) form was impregnated with hydrated metal oxides and used to prepare natural hybrid reactive sorbents (HRS) for the simultaneous recovery of ammonium (NH 4 + ) and phosphate (PO 4 3- ) from treated urban waste water. Three unfertile soils (e.g., one acidic and two basic) amended with N-P-K charged HRS were leached with deionized water (e.g. to simulate infiltration in the field) at two- and three-day time intervals over 15 different leaching cycles (equivalent to 15 bed volumes). The N-P-K leaching profiles for the three charged hybrid sorbents exhibited continuous nutrient release, with their values dependent on the composition of minerals in the soils. In the basic soil that is rich in illite and calcite, the release of potassium (K + ) and ammonium (NH 4 + ) is favoured by-ion exchange with calcium (Ca 2+ ) and accordingly diminishes the release of phosphate (PO 4 3- ) due to its limited solubility in saturated calcite solutions (pH8 to 9). The opposite is true for sandy soils that are rich in albite (both acidic and basic), whereas the release of NH 4 + and K + was limited and the values of both ions measured in the leaching solutions were below 1mg/L. Their leaching solutions were poor in Ca 2+ , and the release of PO 4 3- was higher (up to 12mgP-PO 4 3- /L). The nutrient releases necessary for plant growth were provided continuously and were controlled primarily by the soil mineral dissolution rates fixing the soil aqueous solution composition (e.g. pH and ionic composition; in particular, the presence of calcite is a determinant for nutrient release, especially in alkaline soils). The N-P-K charged HRS sorbents that were used for soil amendment may be an alternative for avoiding nutrient leaching and reaching the goals of soil sustainability in agriculture and reducing the nutrient overloading of surface waters. Copyright © 2017 Elsevier B.V. All rights reserved.
Liang, H.; Brignole-Baudouin, F.; Rabinovich-Guilatt, L.; Mao, Z.; Riancho, L.; Faure, M.O.; Warnet, J.M.; Lambert, G.
2008-01-01
Purpose To evaluate and compare the toxicological profiles of two quaternary ammonium compounds (QAC), benzalkonium chloride (BAK), and cetalkonium chloride (CKC), in standard solution or cationic emulsion formulations in rabbit eyes using newly developed in vivo and ex vivo experimental approaches. Methods Seventy eyes of 35 adult male New Zealand albino rabbits were used in this study. They were randomly divided into five groups: 50 µl of phosphate-buffered saline (PBS), PBS containing 0.02% BAK or 0.002% CKC (BAK Sol and CKC Sol, respectively), and emulsion containing 0.02% BAK or 0.002% CKC (BAK Em and CKC Em, respectively) were applied to rabbit eyes 15 times at 5-min intervals. The ocular surface changes induced by these eye drops were investigated using slit-lamp examination, flow cytometry (FCM), impression cytology (IC) on conjunctiva, and corneal in vivo confocal microscopy (IVCM). Standard immunohistology in cryosections was also examined for cluster of differentiation (CD) 45+ infiltrating and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL)+ apoptotic cells. Results Clinical observations and IVCM showed that the highest toxicity was induced by BAK Sol, characterized by damaged corneal epithelium and a high level of inflammatory infiltration. BAK Em and CKC Sol presented moderate effects, and CKC Em showed the lowest toxicity with results similar to those of PBS. Conjunctival imprints analyzed by FCM showed a higher expression of RLA-DR and TNFR1 markers in BAK Sol-instilled eyes than in all other groups, especially at 4 h. Immunohistology was correlated with in vivo and ex vivo findings and confirmed this toxicity profile. A high level of infiltration of CD45+ inflammatory cells and TUNEL+ apoptotic cells was observed in limbus and conjunctiva, especially in QAC solution-receiving eyes compared to QAC emulsion-instilled eyes. Conclusions The acute administration of 15 instillations at 5 min intervals was a rapid and efficient model to assess quaternary ammonium toxicity profiles. This model showed the highest toxicity, induced by the BAK solution, and the lowest level of toxicity, induced by the CKC emulsion. These in vivo and ex vivo experimental approaches demonstrated that ocular surface toxicity was reduced by using an emulsion instead of a traditional solution and that a CKC emulsion was safe for future ocular administration. PMID:18347566
Liang, H; Brignole-Baudouin, F; Rabinovich-Guilatt, L; Mao, Z; Riancho, L; Faure, M O; Warnet, J M; Lambert, G; Baudouin, C
2008-01-31
To evaluate and compare the toxicological profiles of two quaternary ammonium compounds (QAC), benzalkonium chloride (BAK), and cetalkonium chloride (CKC), in standard solution or cationic emulsion formulations in rabbit eyes using newly developed in vivo and ex vivo experimental approaches. Seventy eyes of 35 adult male New Zealand albino rabbits were used in this study. They were randomly divided into five groups: 50 microl of phosphate-buffered saline (PBS), PBS containing 0.02% BAK or 0.002% CKC (BAK Sol and CKC Sol, respectively), and emulsion containing 0.02% BAK or 0.002% CKC (BAK Em and CKC Em, respectively) were applied to rabbit eyes 15 times at 5-min intervals. The ocular surface changes induced by these eye drops were investigated using slit-lamp examination, flow cytometry (FCM), impression cytology (IC) on conjunctiva, and corneal in vivo confocal microscopy (IVCM). Standard immunohistology in cryosections was also examined for cluster of differentiation (CD) 45+ infiltrating and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL)+ apoptotic cells. Clinical observations and IVCM showed that the highest toxicity was induced by BAK Sol, characterized by damaged corneal epithelium and a high level of inflammatory infiltration. BAK Em and CKC Sol presented moderate effects, and CKC Em showed the lowest toxicity with results similar to those of PBS. Conjunctival imprints analyzed by FCM showed a higher expression of RLA-DR and TNFR1 markers in BAK Sol-instilled eyes than in all other groups, especially at 4 h. Immunohistology was correlated with in vivo and ex vivo findings and confirmed this toxicity profile. A high level of infiltration of CD45+ inflammatory cells and TUNEL+ apoptotic cells was observed in limbus and conjunctiva, especially in QAC solution-receiving eyes compared to QAC emulsion-instilled eyes. The acute administration of 15 instillations at 5 min intervals was a rapid and efficient model to assess quaternary ammonium toxicity profiles. This model showed the highest toxicity, induced by the BAK solution, and the lowest level of toxicity, induced by the CKC emulsion. These in vivo and ex vivo experimental approaches demonstrated that ocular surface toxicity was reduced by using an emulsion instead of a traditional solution and that a CKC emulsion was safe for future ocular administration.
Inhibition of Protein Carbamylation in Urea Solution Using Ammonium Containing Buffers
Sun, Shisheng; Zhou, Jian-Ying; Yang, Weiming; Zhang, Hui
2013-01-01
Urea solution is one of the most commonly employed protein denaturants for protease digestion in proteomic studies. However, it has long been recognized that urea solution can cause carbamylation at the N-termini of proteins/peptides and at the side chain amino groups of lysine and arginine residues. Protein/peptide carbamylation blocks protease digestion and affects protein identification and quantification in mass spectrometry analysis by blocking peptide amino groups from isotopic/isobaric labeling and changing peptide charge states, retention times and masses. In addition, protein carbamylation during sample preparation makes it difficult to study in vivo protein carbamylation. In this study, we compared the peptide carbamylation in urea solutions of different buffers and found that ammonium containing buffers were the most effective buffers to inhibit protein carbamylation in urea solution. The possible mechanism of carbamylation inhibition by ammonium containing buffers is discussed, and a revised procedure for the protease digestion of proteins in urea and ammonium containing buffers was developed to facilitate its application in proteomic research. PMID:24161613
URINE SOURCE SEPARATION AND TREATMENT: NUTRIENT RECOVERY USING LOW-COST MATERIALS
Successful completion of this P3 Project will achieve the following expected outputs: identification of low-cost materials that can effectively recover ammonium, phosphate, and potassium from urine; material balance calculations for different urine separation and treatment scheme...
Synthesis and characterization of struvite nano particles
NASA Astrophysics Data System (ADS)
Rathod, K. R.; Jogiya, B. V.; Chauhan, C. K.; Joshi, M. J.
2015-06-01
Struvite, Ammonium Magnesium Phosphate Hexahydrate [(AMPH) - (NH4)MgPO4.6(H2O)], is one of the fascinating inorganic phosphate minerals. Struvite is one of the components of the urinary stones. Struvite occurs as crystallites in urine and grows as a type of kidney stone. In this study, struvite nano particles were synthesized by wet chemical technique. The aqueous solutions containing dissolved Mg(CH3COO)2.4H2O and (NH4)H2PO4 mixed at the Mg/P molar ratio of 1.00. The synthesized struvite nano particles were characterized by XRD, FT-IR, Thermal Analysis and TEM. From XRD, crystal structure of the nano particle was found to be orthorhombic and crystalline size was found to be within 11 to 26 nm. The FT-IR spectrum for the struvite nano particles confirmed the presence of a water molecule and metal-oxygen stretching vibration, O-H stretching and bending, N-H bending and stretching, P-O bending and stretching vibrations. The Thermal Analysis was carried out from room temperature to 900°C. From TEM analysis, particle size was 23 to 30 nm. All the results were compared with bulk struvite.
NASA Astrophysics Data System (ADS)
Szyper, James P.
1981-12-01
Freshly captured Sagitta enflata exhibited specific excretion rates of ammonium and phosphate (expressed as percentage body content of N or P per hour) that were not significantly related to the size of individual animals. The degree of crowding in experimental vessels was positively correlated with specific excretion rates of ammonium. Excretion rates, under conditions that precluded feeding, decreased sharply during the first several hours' incubation time, approaching the rates exhibited by animals starved overnight. The practice of holding freshly captured zooplankton for a time before determining excretion rates may seriously affect those rates, if the animals are unable to feed. Animals captured during the day in Kaneohe Bay, Hawaii, having no food items in their guts, had mean specific excretion rates (± S.D.) of 0·81±0·51% body content of N h -1 for ammonium, and 1·29±1·24% body content of P h -1 for phosphate. Minimal estimates of natural excretion rates, made from the first hour of incubation in further experiments, were 1·19±0·47% h -1 for nitrogen and 3·8±3·95% h -1 for phosphorus. Sagitta is not a large contributor to nutrient regeneration in Kaneohe Bay.
Statistical media design for efficient polyhydroxyalkanoate production in Pseudomonas sp. MNNG-S.
Saranya, V; Rajeswari, V; Abirami, P; Poornimakkani, K; Suguna, P; Shenbagarathai, R
2016-07-03
Polyhydroxyalkanoate (PHA) is a promising polymer for various biomedical applications. There is a high need to improve the production rate to achieve end use. When a cost-effective production was carried out with cheaper agricultural residues like molasses, traces of toxins were incorporated into the polymer, which makes it unfit for biomedical applications. On the other hand, there is an increase in the popularity of using chemically defined media for the production of compounds with biomedical applications. However, these media do not exhibit favorable characteristics such as efficient utilization at large scale compared to complex media. This article aims to determine the specific nutritional requirement of Pseudomonas sp. MNNG-S for efficient production of polyhydroxyalkanoate. Response surface methodology (RSM) was used in this study to statistically design for PHA production based on the interactive effect of five significant variables (sucrose; potassium dihydrogen phosphate; ammonium sulfate; magnesium sulfate; trace elements). The interactive effects of sucrose with ammonium sulfate, ammonium sulfate with combined potassium phosphate, and trace element with magnesium sulfate were found to be significant (p < .001). The optimization approach adapted in this study increased the PHA production more than fourfold (from 0.85 g L(-1) to 4.56 g L(-1)).
Synthesis of Struvite using a Vertical Canted Reactor with Continuous Laminar Flow Process
NASA Astrophysics Data System (ADS)
Sutiyono, S.; Edahwati, L.; Muryanto, S.; Jamari, J.; Bayuseno, A. P.
2018-01-01
Struvite is a white crystalline that is chemically known as magnesium ammonium phosphorus hexahydrate (MgNH4PO4·6H2O). It can easily dissolve in acidic conditions and slightly soluble in neutral and alkaline conditions. In industry, struvite forms as a scale deposit on a pipe with hot flow fluid. However, struvite can be used as fertilizer because of its phosphate content. A vertical canted reactor is a promising technology for recovering phosphate levels in wastewater through struvite crystallization. The study was carried out with the vertical canted reactor by mixing an equimolar stock solution of MgCl2, NH4OH, and H3PO4 in 1: 1: 1 ratio. The crystallization process worked with the flow rate of three stock solution entering the reactor in the range of 16-38 ml/min, the temperature in the reactor is worked on 20°, 30°, and 40°C, while the incoming air rate is kept constant at 0.25 liters/min. Moreover, pH was maintained at a constant value of 9. The struvite crystallization process run until the steady state was reached. Then, the result of crystal precipitates was filtered and dried at standard temperature room for 48 hours. After that, struvite crystals were stored for the subsequent analysis by Scanning Electron Microscope (SEM) and XRD (X-Ray Diffraction) method. The use of canted reactor provided the high pure struvite with a prismatic crystal morphology.
NASA Astrophysics Data System (ADS)
Cherbadgy, I. I.; Sabitova, L. I.
2011-02-01
A complex study of the influence of various environmental factors on the rate of the oxygen (MO 2), ammonium (MNH 4), and phosphate (MPO 4) metabolism in Ahnfeltia tobuchiensis has been carried out in situ in the Izmena Bay of Kunashir Island. The following environmental factors have been included into the investigation: the photosynthetically active radiation (PAR); the ammonium (NH4); the phosphate (PO4); and the tissue content of carbon (C), nitrogen (N), phosphorus (P), and chlorophyll a (Chl). The population of agar-containing seaweed A. tobuchiensis forms a layer with a thickness up to 0.5 m, which occupies about 23.3 km2; the population's biomass is equal to 125000 tons. The quantitative assessment of the organic matter production and nutrient consumption during the oxygen metabolism (MO 2) has been carried out for the whole population. It has been shown that the daily rate depends on the PAR intensity, the seawater concentrations of PO4 and NH4, and the tissue content of N and P ( r 2 = 0.78, p < 0.001). The daily NH4 consumption averages 0.21 μmol/(gDW h) and depends on the NH4 and O2 concentrations in the seawater and on the C and Chl a content in the algal tissues ( r 2 = 0.64, p < 0.001). The daily PO4 consumption averages 0.01 μmol/(gDW h) and depends on the NH4 concentration in the seawater and on the P content in the algal tissues ( r 2 = 0.40, p < 0.001).
Cheng, Lei; Weir, Michael D.; Limkangwalmongkol, Penwadee; Hack, Gary D.; Xu, Hockin H. K.; Chen, Qianming; Zhou, Xuedong
2012-01-01
Tooth caries is a carbohydrate-modified bacterial infectious disease, and recurrent caries is a frequent reason for restoration failure. The objective of this study was to develop a novel antibacterial composite using tetracalcium phosphate (TTCP) fillers and bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, which is a quaternary ammonium dimethacrylate (QADM). QADM was synthesized using 2-(N,N-dimethylamino)ethyl methacrylate and 2-bromoethyl methacrylate and incorporated into a resin. The resin was filled with 40% TTCP and 30% glass particles. The following QADM mass fractions in the composite were tested: 0%, 6%, 12%, and 18%. Streptococcus mutans biofilms were formed on the composites and the colony-forming units (CFUs), metabolic activity, and lactic acid production were measured. The TTCP-QADM composite had flexural strength and elastic modulus similar to those of two commercial composites (p > 0.1). Increasing the QADM content in TTCP composite greatly decreased the bacteria growth and biofilm matrix production. There were significantly more dead bacteria with increasing QADM content. TTCP composite containing 18% QADM had biofilm CFU, metabolic activity, and acid production about half of those without QADM. Inversely linear relationships were established between QADM mass fraction and S. mutans biofilm CFU, metabolic activity, and acid production, with correlation coefficients R2 ≥ 0.98. In conclusion, TTCP-QADM composites were developed and the effect of QADM mass fraction on the antibacterial properties of the composite was determined for the first time. The novel TTCP-QADM composites possessing a strong antibacterial capability, together with calcium phosphate ion release and good mechanical properties, are promising for dental restorations to reduce biofilm growth and recurrent caries. PMID:22190356
NASA Astrophysics Data System (ADS)
Baine, G. C., II; Caffrey, J. M.
2016-02-01
The estuarine system at Grand Bay National Estuarine Research Reserve in Mississippi is a near pristine wetland home to a diversity of flora and fauna. While seasonal fluctuations in water quality are well understood, less is known about the coupled dynamics of water quality and phytoplankton production. Light availability and nutrient levels are key factors regulating phytoplankton. Previous studies have revealed Grand Bay to primarily be limited by nitrogen rather than phosphorus or light. Since then, extended phosphate inputs from the neighboring Mississippi Phosphates fertilizer plant have occurred provoking the question: will the phosphate inputs affect the growth and structure of the phytoplankton communities? This study is investigating the effects of inputs of an array of nutrients (ammonium, nitrate, silicon, and phosphate) on phytoplankton growth, community structure, and production over an annual cycle. Phytoplankton production is being monitored by accumulation of biomass (chlorophyll a concentration) and C14 incorporation. We are also evaluating changes in the phytoplankton community composition using Flowcam imaging over the course of the incubation. Currently the summer months have shown nitrogen limitation as previously observed, with little difference between nitrate and ammonium additions. Flowcam images have revealed increases in ciliate abundance in all treatments. C14 experiments show significant decreases in efficiency for all treatments compared to the initial condition, however there is no significant variation among treatments. The results of this study will provide a strong foundation in understanding the nature of phytoplankton response to various nutrient inputs in Grand Bay.
Kaur, Baljinder; McBride, Sean P; Paul, Abhijit; Ford, Warren T
2010-10-19
Semifluorinated polymer latexes were prepared by emulsion polymerization of 2.5-25% of a fluoroalkyl methacrylate, 25% chloromethylstyrene, 1% styrylmethyl(trimethyl)ammonium chloride, and the remainder 2-ethylhexyl methacrylate under surfactant-free conditions. The chloromethylstyrene units were converted to quaternary ammonium ions with trimethylamine. In aqueous dispersions at particle concentrations of less than 1 mg mL(-1) the quaternary ammonium ion latexes promoted hydrolyses of p-nitrophenyl hexanoate (PNPH) in pH 9.4 borate buffer and of diethyl p-nitrophenyl phosphate (Paraoxon) in 0.1 M NaOH at 30 °C with half-lives of less than 10 min. Thin 0.7-2 μm films of the latexes on glass promoted fast hydrolysis of Paraoxon but not of PNPH under the same conditions. Even after annealing the quaternary ammonium ion polymer films at temperatures well above their glass transition temperatures, AFM images of the film surfaces had textures of particles. Contact angle measurements of the annealed films against water and against hexadecane showed that the surfaces were not highly fluorinated.
Kashefolgheta, Sadra; Vila Verde, Ana
2017-08-09
We present a set of Lennard-Jones parameters for classical, all-atom models of acetate and various alkylated and non-alkylated forms of sulfate, sulfonate and phosphate ions, optimized to reproduce their interactions with water and with the physiologically relevant sodium, ammonium and methylammonium cations. The parameters are internally consistent and are fully compatible with the Generalized Amber Force Field (GAFF), the AMBER force field for proteins, the accompanying TIP3P water model and the sodium model of Joung and Cheatham. The parameters were developed primarily relying on experimental information - hydration free energies and solution activity derivatives at 0.5 m concentration - with ab initio, gas phase calculations being used for the cases where experimental information is missing. The ab initio parameterization scheme presented here is distinct from other approaches because it explicitly connects gas phase binding energies to intermolecular interactions in solution. We demonstrate that the original GAFF/AMBER parameters often overestimate anion-cation interactions, leading to an excessive number of contact ion pairs in solutions of carboxylate ions, and to aggregation in solutions of divalent ions. GAFF/AMBER parameters lead to excessive numbers of salt bridges in proteins and of contact ion pairs between sodium and acidic protein groups, issues that are resolved by using the optimized parameters presented here.
NASA Astrophysics Data System (ADS)
Hensley, R. T.; Cohen, M. J.; Spangler, M.; Gooseff, M. N.
2017-12-01
The lower Santa Fe River is a large, karst river of north Florida, fed by numerous artesian springs and also containing multiple sink-rise systems. We performed repeated longitudinal profiles collecting very high frequency measurements of multiple stream parameters including temperature, dissolved oxygen, carbon dioxide, pH, dissolved organic matter, nitrate, ammonium, phosphate and turbidity. This high frequency dataset provided a spatially explicit understanding of solute sources and coupled biogeochemical processing rates along the 25 km study reach. We noted marked changes in river profiles as the river transitioned from low to high flow during the onset of the wet season. The role of lateral inflow from springs as the primary solute source was greatly reduced under high flow conditions. Effects of sink-rise systems, which under low flow conditions allow the majority of flow to bypass several kilometer long sections of the main channel, virtually disappeared under high flow conditions. Impeded light transmittance at high flow reduced primary production and by extension assimilatory nutrient uptake. This study demonstrates how high frequency longitudinal profiling can be used to observe how hydrologic conditions can alter groundwater-surface water interactions and modulate the sourcing, transport and biogeochemical processing of stream solutes.
Aryal, Uma K.; Olson, Douglas J.H.; Ross, Andrew R.S.
2008-01-01
Although widely used in proteomics research for the selective enrichment of phosphopeptides from protein digests, immobilized metal-ion affinity chromatography (IMAC) often suffers from low specificity and differential recovery of peptides carrying different numbers of phosphate groups. By systematically evaluating and optimizing different loading, washing, and elution conditions, we have developed an efficient and highly selective procedure for the enrichment of phosphopeptides using a commercially available gallium(III)-IMAC column (PhosphoProfile, Sigma). Phosphopeptide enrichment using the reagents supplied with the column is incomplete and biased toward the recovery and/or detection of smaller, singly phosphorylated peptides. In contrast, elution with base (0.4 M ammonium hydroxide) gives efficient and balanced recovery of both singly and multiply phosphorylated peptides, while loading peptides in a strong acidic solution (1% trifluoracetic acid) further increases selectivity toward phosphopeptides, with minimal carryover of nonphosphorylated peptides. 2,5-Dihydroxybenzoic acid, a matrix commonly used when analyzing phosphopeptides by matrix-assisted laser desorption/ionization mass spectrometry was also evaluated as an additive in loading and eluting solvents. Elution with 50% acetonitrile containing 20 mg/mL dihydroxybenzoic acid and 1% phosphoric acid gave results similar to those obtained using ammonium hydroxide as the eluent, although the latter showed the highest specificity for phosphorylated peptides. PMID:19183793
Hydrogen bonded nonlinear optical γ-glycine: Crystal growth and characterization
NASA Astrophysics Data System (ADS)
Narayana Moolya, B.; Jayarama, A.; Sureshkumar, M. R.; Dharmaprakash, S. M.
2005-07-01
Single crystals of γ-glycine(GG) were grown by solvent evaporation technique from a mixture of aqueous solutions of glycine and ammonium nitrate at ambient temperature. X-ray diffraction, thermogravimetric/differential thermal analysis, Fourier transform infrared spectral techniques were employed to characterize the crystal. The lattice parameters were calculated and they agree well with the reported values. GG exists as dipolar ions in which the carboxyl group is present as a carboxylate ion and the amino group as an ammonium ion. Due to this dipolar nature, glycine has a high decomposition temperature. The UV cutoff of GG is below 300 nm and has a wide transparency window, which is suitable for second harmonic generation of laser in the blue region. Nonlinear optical characteristics of GG were studied using Q switched Nd:YAG laser ( λ=1064 nm). The second harmonic generation conversion efficiency of GG is 1.5 times that of potassium dihydrogen phosphate . The X-ray diffraction and Fourier transform infrared spectral studies show the presence of strong hydrogen bonds which create and stabilize the crystal structure in GG. The main contributions to the nonlinear optical properties in GG results from the presence of the hydrogen bond and from the vibrational part due to very intense infrared bands of the hydrogen bond vibrations. GG is thermally stable up to 441 K.
Huber, Regina; Schoenlechner, Regine
2017-05-01
Fresh egg waffles are continuously baked in tunnel baking ovens in industrial scale. Waffles that partly or fully stick to the baking plates cause significant product loss and increased costs. The aim of this study was, therefore, to investigate the effect of different recipe ingredients on the sticking behavior of waffles. In this second part, ingredients investigated were different leavening agents (sodium acid pyrophosphate, ammonium bicarbonate, magnesium hydroxide carbonate, or monocalcium phosphate), different fat sources (rapeseed oil, cocos fat, butter, or margarine), and different water sources (tap water 12°dH and distilled water). Within the different types of fats, solid fats with high amount of short-chain fatty acids (cocos fat or butter) decreased the number of sticking waffles compared to liquid oils (rapeseed oil). Regarding leavening agents, magnesium hydroxide carbonate and ammonium bicarbonate were superior to sodium acid pyrophosphate or monocalcium phosphate. Between the two water sources, effects were small.
Kramer, D.A.
2007-01-01
Ammonia was produced by 15 companies at 25 plants in 16 states in the United States during 2006. Fifty-seven percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock. In 2006, U.S. producers operated at about 72 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies, Koch Nitrogen, Terra Industries, CF Industries, PCS Nitro-gen, and Agrium, in descending order, accounted for 79 percent U.S. ammonia production capacity. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.
Inhibition of protein carbamylation in urea solution using ammonium-containing buffers.
Sun, Shisheng; Zhou, Jian-Ying; Yang, Weiming; Zhang, Hui
2014-02-01
Urea solution is one of the most commonly employed protein denaturants for protease digestion in proteomic studies. However, it has long been recognized that urea solution can cause carbamylation at the N termini of proteins/peptides and at the side chain amino groups of lysine and arginine residues. Protein/peptide carbamylation blocks protease digestion and affects protein identification and quantification in mass spectrometry analysis by blocking peptide amino groups from isotopic/isobaric labeling and changing peptide charge states, retention times, and masses. In addition, protein carbamylation during sample preparation makes it difficult to study in vivo protein carbamylation. In this study, we compared the peptide carbamylation in urea solutions of different buffers and found that ammonium-containing buffers were the most effective buffers to inhibit protein carbamylation in urea solution. The possible mechanism of carbamylation inhibition by ammonium-containing buffers is discussed, and a revised procedure for the protease digestion of proteins in urea and ammonium-containing buffers was developed to facilitate its application in proteomic research. Copyright © 2013 Elsevier Inc. All rights reserved.
PHOSPHORYLATION BY EXTRACTS OF NITROSOMONAS EUROPAEA
Burge, W. D.; Malavolta, E.; Delwiche, C. C.
1963-01-01
Burge, W. D. (University of California, Berkeley), E. Malavolta, and C. C. Delwiche. Phosphorylation by extracts of Nitrosomonas europaea. J. Bacteriol. 85:106–110. 1963.—Cellfree preparations of Nitrosomonas europaea are capable of oxidizing hydroxylamine, but not ammonium ion, to nitrite. The quantity of nitrite formed by our preparations was, at most, equivalent to only 70% of the hydroxylamine added. Although the preparations had a strong phosphatase activity, resulting in a net loss of organic phosphate during the experimental period, P32-labeled inorganic phosphate was found to be incorporated into the organic fraction, including adenosine triphosphate (ATP) and adenosine diphosphate (ADP). The provision of hydroxylamine as substrate resulted in the formation of nitrite and an increased incorporation of P32 into the organic fraction. It is concluded that the chemosynthetic autotroph Nitrosomonas, in common with certain other autotrophic organisms and heterotrophs, is capable of converting energy released in the oxidation of its inorganic substrate into high-energy phosphate units (ATP and ADP) for the mediation of other energy-requiring reactions. The simultaneous formation of ATP and ADP is interpreted as evidence for an adenylate kinase activity. The preparations used exhibited a considerable endogenous incorporation of P32 into organic phosphate in the absence of added hydroxylamine. Cyanide inhibited both phosphorylation and the oxidation of hydroxylamine. Both the supernatant and particulate fractions of a Nitrosomonas extract subjected to centrifugal fields of 100,000 × g were active in phosphorylation and nitrite formation, but these activities appeared to be uncoupled in the particulate fraction and only partially coupled in the supernatant solution. This most likely reflects a significant endogenous respiration, and not a real lack of coupling between the two reactions. PMID:14016952
Correlation of second virial coefficient with solubility for proteins in salt solutions.
Mehta, Chirag M; White, Edward T; Litster, James D
2012-01-01
In this work, osmotic second virial coefficients (B(22)) were determined and correlated with the measured solubilities for the proteins, α-amylase, ovalbumin, and lysozyme. The B(22) values and solubilities were determined in similar solution conditions using two salts, sodium chloride and ammonium sulfate in an acidic pH range. An overall decrease in the solubility of the proteins (salting out) was observed at high concentrations of ammonium sulfate and sodium chloride solutions. However, for α-amylase, salting-in behavior was also observed in low concentration sodium chloride solutions. In ammonium sulfate solutions, the B(22) are small and close to zero below 2.4 M. As the ammonium sulfate concentrations were further increased, B(22) values decreased for all systems studied. The effect of sodium chloride on B(22) varies with concentration, solution pH, and the type of protein studied. Theoretical models show a reasonable fit to the experimental derived data of B(22) and solubility. B(22) is also directly proportional to the logarithm of the solubility values for individual proteins in salt solutions, so the log-linear empirical models developed in this work can also be used to rapidly predict solubility and B(22) values for given protein-salt systems. Copyright © 2011 American Institute of Chemical Engineers (AIChE).
Nonflammable potting, encapsulating and/or conformal coating compound
NASA Technical Reports Server (NTRS)
Kline, H. F.; Dawn, F.
1972-01-01
Compound formed from dimethylpolysiloxane, ammonium phosphate, and ground glass is nonflammable in air environment and self-extingushing in atmosphere of 60 percent oxygen and 40 percent nitrogen. Material may have applications for reducing industrial fire hazards and should interest aircraft industry, machinery manufacturers, and automotive industry.
Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Lahori, Altaf Hussain; Mahar, Amanullah
2016-09-01
The present study deals with the preparation of a novel MgO-impregnated magnetic biochar (MMSB) for phosphate recovery from aqueous solution. The MMSB was evaluated against sugarcane harvest residue biochar (SB) and magnetic biochar without Mg (MSB). The results showed that increasing Mg content in MMSB greatly improved the phosphate adsorption compared to SB and MSB, with 20% Mg-impregnated MMSB (20MMSB) recovering more than 99.5% phosphate from aqueous solution. Phosphate adsorption capacity of 20MMSB was 121.25mgP/g at pH 4 and only 37.53% of recovered phosphate was desorbed by 0.01mol/L HCl solutions. XRD and FTIR analysis showed that phosphate sorption mechanisms involved predominately with surface electrostatic attraction and precipitation with impregnated MgO and surface inner-sphere complexation with Fe oxide. The 20MMSB exhibited both maximum phosphate sorption and strong magnetic separation ability. Overall, phosphate-loaded 20MMSB significantly enhanced plant growth and could be used as a potential substitute for phosphate-based fertilizer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Improved Spectra for MALDI MSI of Peptides Using Ammonium Phosphate Monobasic in MALDI Matrix.
Ucal, Yasemin; Ozpinar, Aysel
2018-05-10
MALDI mass spectrometry imaging (MSI) enables analysis of peptides along with histology. However, there are several critical steps in MALDI MSI of peptides, one of which is spectral quality. Suppression of MALDI matrix clusters by the aid of ammonium salts in MALDI experiments is well-known. It is asserted that addition of ammonium salts dissociates potential matrix adducts and thereafter decreases matrix cluster formation. Consequently, MALDI MS sensitivity and mass accuracy increases. Up to our knowledge, a limited number of MALDI MSI studies used ammonium salts as matrix additives to suppress matrix clusters and enhance peptide signals. In this work, we investigated the effect of ammonium phosphate monobasic (AmP) as alpha-cyano-4-hydroxycinnamic acid (α-CHCA) matrix additive in MALDI MSI of peptides. Prior to MALDI MSI, the effect of varying concentrations of AmP in α-CHCA were assessed in bovine serum albumin (BSA) tryptic digests and compared with the control (α-CHCA without AmP). Based on our data, the addition of AmP as matrix additive decreased matrix cluster formation regardless of its concentration and, specifically 8 mM AmP and 10 mM AmP increased BSA peptide signal intensities. In MALDI MSI of peptides, both 8 mM, and 10 mM AmP in α-CHCA improved peptide signals especially in the mass range of m/z 2000 to 3000. In particular, 9 peptide signals were found to have differential intensities within the tissues deposited with AmP in α-CHCA (AUC>0.60). To the best of our knowledge, this is the first MALDI MSI of peptides work investigating different concentrations of AmP as α-CHCA matrix additive in order to enhance peptide signals in formalin fixed paraffin embedded (FFPE) tissues. Further, AmP as part of α-CHCA matrix could enhance protein identifications and support MALDI MSI based proteomic approaches. This article is protected by copyright. All rights reserved.
Chen, Chen; Weir, Michael D.; Cheng, Lei; Lin, Nancy; Lin-Gibson, Sheng; Chow, Laurence C.; Zhou, Xuedong; Xu, Hockin H. K.
2015-01-01
Objectives Recurrent caries at the margins is a primary reason for restoration failure. The objectives of this study were to develop bonding agent with the double benefits of antibacterial and remineralizing capabilities, to investigate the effects of NACP filler level and solution pH on Ca and P ion release from adhesive, and to examine the antibacterial and dentin bond properties. Methods Nanoparticles of amorphous calcium phosphate (NACP) and a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) were synthesized. Scotchbond Multi-Purpose (SBMP) primer and adhesive served as control. DMADDM was incorporated into primer and adhesive at 5% by mass. NACP was incorporated into adhesive at filler mass fractions of 10%, 20%, 30% and 40%. A dental plaque microcosm biofilm model was used to test the antibacterial bonding agents. Calcium (Ca) and phosphate (P) ion releases from the cured adhesive samples were measured vs. filler level and solution pH of 7, 5.5 and 4. Results Adding 5% DMADDM and 10–40% NACP into bonding agent, and water-aging for 28 days, did not affect dentin bond strength, compared to SBMP control at 1 day (p > 0.1). Adding DMADDM into bonding agent substantially decreased the biofilm metabolic activity and lactic acid production. Total microorganisms, total streptococci, and mutans streptococci were greatly reduced for bonding agents containing DMADDM. Increasing NACP filler level from 10% to 40% in adhesive increased the Ca and P ion release by an order of magnitude. Decreasing solution pH from 7 to 4 increased the ion release from adhesive by 6–10 folds. Significance Bonding agents containing antibacterial DMADDM and remineralizer NACP were formulated to have Ca and P ion release, which increased with NACP filler level from 10% to 40% in adhesive. NACP adhesive was “smart” and dramatically increased the ion release at cariogenic pH 4, when these ions would be most-needed to inhibit caries. Therefore, bonding agent containing DMADDM and NACP may be promising to inhibit biofilms and remineralize tooth lesions thereby increasing the restoration longevity. PMID:24954647
Chen, Chen; Weir, Michael D; Cheng, Lei; Lin, Nancy J; Lin-Gibson, Sheng; Chow, Laurence C; Zhou, Xuedong; Xu, Hockin H K
2014-08-01
Recurrent caries at the margins is a primary reason for restoration failure. The objectives of this study were to develop bonding agent with the double benefits of antibacterial and remineralizing capabilities, to investigate the effects of NACP filler level and solution pH on Ca and P ion release from adhesive, and to examine the antibacterial and dentin bond properties. Nanoparticles of amorphous calcium phosphate (NACP) and a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) were synthesized. Scotchbond Multi-Purpose (SBMP) primer and adhesive served as control. DMADDM was incorporated into primer and adhesive at 5% by mass. NACP was incorporated into adhesive at filler mass fractions of 10%, 20%, 30% and 40%. A dental plaque microcosm biofilm model was used to test the antibacterial bonding agents. Calcium (Ca) and phosphate (P) ion releases from the cured adhesive samples were measured vs. filler level and solution pH of 7, 5.5 and 4. Adding 5% DMADDM and 10-40% NACP into bonding agent, and water-aging for 28 days, did not affect dentin bond strength, compared to SBMP control at 1 day (p>0.1). Adding DMADDM into bonding agent substantially decreased the biofilm metabolic activity and lactic acid production. Total microorganisms, total streptococci, and mutans streptococci were greatly reduced for bonding agents containing DMADDM. Increasing NACP filler level from 10% to 40% in adhesive increased the Ca and P ion release by an order of magnitude. Decreasing solution pH from 7 to 4 increased the ion release from adhesive by 6-10 folds. Bonding agents containing antibacterial DMADDM and remineralizer NACP were formulated to have Ca and P ion release, which increased with NACP filler level from 10% to 40% in adhesive. NACP adhesive was "smart" and dramatically increased the ion release at cariogenic pH 4, when these ions would be most-needed to inhibit caries. Therefore, bonding agent containing DMADDM and NACP may be promising to inhibit biofilms and remineralize tooth lesions thereby increasing the restoration longevity. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hodyss, R. P.; Thomas, E. C.; Vu, T. H.; Johnson, P. V.; Choukroun, M.
2017-12-01
Subsurface brines on Ceres containing natrite (Na2CO3) and smaller amounts of NH4Cl or NH4HCO3 have been proposed to reach the dwarf planet's surface from an internal reservoir, where the brines freeze and result in bright spots across Ceres. Kinetically frozen solutions containing the likely constituents of Ceres' subsurface brines (ammonium, sodium, carbonate, and chloride ions) were studied via infrared and micro-Raman spectroscopy, where the flash-frozen mixtures were found to preferentially form ammonium chloride and ammonium bicarbonate, even in sodium-dominated solutions. Additionally, sodium chloride only formed when sodium or chloride (or both) were present in excess in the brine solutions. Raman spectroscopy was further employed to analyze the effect of vacuum exposure on these frozen brines over longer periods of time to simulate the surface conditions of Ceres.
Protein Precipitation Using Ammonium Sulfate.
2016-04-01
The basic theory of protein precipitation by addition of ammonium sulfate is presented, and the most common applications are listed. Tables are provided for calculating the appropriate amount of ammonium sulfate to add to a particular protein solution. Copyright © 2016 John Wiley & Sons, Inc.
Cheng, Lei; Weir, Michael D; Zhang, Ke; Wu, Eric J; Xu, Sarah M; Zhou, Xuedong; Xu, Hockin H K
2012-08-01
Half of dental restorations fail in 10 years, with secondary caries as the main reason. Calcium phosphate composites could remineralize tooth lesions. The objectives of this study were to: (1) impart antibacterial activity to a composite with nanoparticles of amorphous calcium phosphate (NACP); and (2) investigate the effect of quaternary ammonium dimethacrylate (QADM) on mechanical and dental plaque microcosm biofilm properties for the first time. The NACP and glass particles were filled into a dental resin that contained bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, the QADM. NACP nanocomposites containing 0%, 7%, 14%, and 17.5% of QADM by mass, respectively, were photo-cured. A commercial composite with no antibacterial activity was used as control. Mechanical properties were measured in three-point flexure. A human saliva microcosm model was used to grow biofilms on composites. Live/dead assay, metabolic activity, colony-forming unit (CFU) counts, and lactic acid production of biofilms on the composites were measured. Increasing QADM mass fraction monotonically reduced the biofilm viability, CFU and lactic acid. Biofilms on NACP nanocomposite with 17.5% QADM had metabolic activity that was 30% that on a commercial composite control (p<0.05). Total microorganisms, total streptococci, and mutans streptococci CFU counts (mean ± sd; n = 6) on composite control was 6-fold those on NACP +17.5% QADM nanocomposite. Composite control had long strings of bacterial cells with normal short-rod shapes, while some cells on NACP-QADM nanocomposites disintegrated into pieces. Adding QADM to NACP did not decrease the composite strength and elastic modulus, which matched (p>0.1) those of a commercial composite without Ca-PO(4) or antibacterial activity. A dental plaque microcosm model was used to evaluate the novel NACP-QADM nanocomposite. The nanocomposite greatly reduced the biofilm viability, metabolic activity and lactic acid, while its mechanical properties matched those of a commercial composite. NACP-QADM nanocomposite with calcium phosphate fillers, good mechanical properties and a strong antibacterial activity may have potential for anti-biofilm and anti-caries restorations. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Dental plaque microcosm biofilm behavior on calcium phosphate nanocomposite with quaternary ammonium
Cheng, Lei; Weir, Michael D.; Zhang, Ke; Wu, Eric; Xu, Sarah M.; Zhou, Xuedong; Xu, Hockin H. K.
2012-01-01
Objectives Half of dental restorations fail in 10 years, with secondary caries as the main reason. Calcium phosphate composites could remineralize tooth lesions. The objectives of this study were to: (1) Impart antibacterial activity to a composite with nanoparticles of amorphous calcium phosphate (NACP); and (2) investigate the effect of quaternary ammonium dimethacrylate (QADM) on mechanical and dental plaque microcosm biofilm properties for the first time. Methods The NACP and glass particles were filled into a dental resin that contained bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, the QADM. NACP nanocomposites containing 0%, 7%, 14%, and 17.5% of QADM by mass, respectively, were photo-cured. A commercial composite with no antibacterial activity was used as control. Mechanical properties were measured in three-point flexure. A human saliva microcosm model was used to grow biofilms on composites. Live/dead assay, metabolic activity, colony-forming unit (CFU) counts, and lactic acid production of biofilms on the composites were measured. Results Increasing QADM mass fraction monotonically reduced the biofilm viability, CFU and lactic acid. Biofilms on NACP nanocomposite with 17.5% QADM had metabolic activity that was 30% that on a commercial composite control (p<0.05). Total microorganisms, total streptococci, and mutans streptococci CFU counts (mean±sd; n=6) on composite control was 6-fold those on NACP+17.5% QADM nanocomposite. Composite control had long strings of cells with normal short-rod shapes, while some cells on NACP-QADM nanocomposites disintegrated into pieces. Adding QADM to NACP did not decrease the strength and elastic modulus, which matched (p>0.1) those of a commercial composite without Ca-PO4 or antibacterial activity. Significance A dental plaque microcosm model was used to evaluate the novel NACP-QADM nanocomposite. The nanocomposite greatly reduced the biofilm viability, metabolic activity and lactic acid, while its mechanical properties matched those of a commercial composite. NACP-QADM nanocomposite with calcium phosphate fillers, good mechanical properties and a strong antibacterial activity may have potential for anti-biofilm and anti-caries restorations. PMID:22578992
Ether bond effects in quaternary ammonium and phosphonium ionic liquid-propanol solutions
NASA Astrophysics Data System (ADS)
Kishimura, Hiroaki; Kohki, Erica; Nakada, Ayumu; Tamatani, Kentaro; Abe, Hiroshi
2018-03-01
The liquid-liquid equilibria (LLE) of quaternary ammonium and phosphonium ionic liquid (IL)-propanol solutions were examined. The ILs contained cations with or without ether bonds; the anion in all the ILs was bis(trifluoromethanesulfonyl)imide (TFSI-). The cations without ether groups are tributylmethyl ammonium (N4441+), triethylpentyl phosphonium (P2225+), triethyloctyl phosphonium (P2228+), and tributylmethyl phosphonium (P4441+). The cations containing ether groups are N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium, (N122(2O1)+), triethyl(methoxymethyl) phosphonium (P222(1O1)+), and triethyl(2-methoxyethyl) phosphonium, (P222(2O1)+). Propanol isomer effect was observed to affect the LLEs, reflecting the geometrical factors and hydrophobicities of 1-propanol and 2-propanol. According to Raman spectroscopy, the TFSI- anion conformers in the mixtures were altered in the presence of ether bonds in the cations. The universal quasichemical (UNIQUAC) interaction parameters are consistent with significant factors affecting IL-propanol solutions, such as the type of cation (ammonium or phosphonium), ether bonds, TFSI- conformers, and propanol isomer effects.
Preparation and the influencing factors of timozolomide liposomes.
Kong, Bin; Sun, Yong; Li, Yongjian; Hu, Dejian
2009-01-01
To prepare timozolomide liposomes for administration through nasal mucous membrane, we studied the factors of the preparation of the liposomes. The timozolomide liposomes were prepared by the ammonium sulphate gradient method; electroscopy and laser particle analyzer were utilized to determine the conformation, size and distribution of timozolomide liposomes; high performance liquid chromatography (HPLC) was applied to determine the entrapping efficiency of timozolomide liposomes; then we studied the influences of the concentration of ammonium sulphate solution, temperature, and the drug-to-lipid ratio on the entrapping efficiency. The average size of timozolomide liposomes was 185 nm; the entrapping efficiency was 90.3%. The entrapping efficiency was enhanced with the increasing of the concentration of ammonium sulphate solution and the rising of temperature, and decreased with the increasing of the drug-to-lipid ratio. The timozolomide liposomes with high entrapping efficiency, small and even particle sizes could be prepared by the simple and convenient ammonium sulphate gradient method. The primary influencing factors on the entrapping efficiency of timozolomide liposomes were the concentration of ammonium sulphate solution, the temperature, and the drug-to-lipid ratio.
BENTHIC NUTRIENT FLUX IN A SMALL ESTUARY IN NORTHWESTERNFLORIDA (USA)
Benthic Nutrient Flux in a Small Estuary in Northwestern Florida(USA).Gulf and Caribbean Research 18, 15-25, 2006.
Benthic nutrient fluxes of ammonium (NH4+), nitrite/nitrate (NO2-+NO3-), phosphate (PO4-), and dissolved silica (DSi) were measured in Escambia Bay, an estuar...
Effects of Phos-Chek® on soil nutrient availability
USDA-ARS?s Scientific Manuscript database
Wildfire frequencies and intensities have been steadily increasing on western US landscapes. Phos-chek® is an aerially-applied fire retardant used to contain and control wildfires. Composed of ammonium and phosphate salts, Phos-chek® has the potential to increase soil nutrient availability of N and ...
21 CFR 184.1141a - Ammonium phosphate, monobasic.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 184.1141a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS... phosphoric acid at a pH below 5.8. (b) The ingredient meets the specifications of the Food Chemicals Codex...
21 CFR 184.1141a - Ammonium phosphate, monobasic.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 184.1141a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS... phosphoric acid at a pH below 5.8. (b) The ingredient meets the specifications of the Food Chemicals Codex...
Kabala, Cezary; Karczewska, Anna; Gałka, Bernard; Cuske, Mateusz; Sowiński, Józef
2017-07-01
The aims of the study were to analyse the concentration of nitrate and ammonium ions in soil solutions obtained using MacroRhizon miniaturized composite suction cups under field conditions and to determine potential nitrogen leaching from soil fertilized with three types of fertilizers (standard urea, slow-release urea, and ammonium nitrate) at the doses of 90 and 180 kg ha -1 , applied once or divided into two rates. During a 3-year growing experiment with sugar sorghum, the concentration of nitrate and ammonium ions in soil solutions was the highest with standard urea fertilization and the lowest in variants fertilized with slow-release urea for most of the months of the growing season. Higher concentrations of both nitrogen forms were noted at the fertilizer dose of 180 kg ha -1 . One-time fertilization, at both doses, resulted in higher nitrate concentrations in June and July, while dividing the dose into two rates resulted in higher nitrate concentrations between August and November. The highest potential for nitrate leaching during the growing season was in July. The tests confirmed that the miniaturized suction cups MacroRhizon are highly useful for routine monitoring the concentration of nitrate and ammonium ions in soil solutions under field conditions.
PROCESS FOR THE PRODUCTION OF AMMONIUM URANIUM FLUORIDE
Ellis, A.S.; Mooney, R.B.
1953-08-25
This patent relates to the preparation of ammonium uranium fluoride. The process comprises adding a water soluble fluoride to an aqueous solution of a uranous compound containing an ammonium salt, and isolating the resulting precipitate. This patent relates to the manufacture of uranium tetnafluoride from ammonium uranium fluoride, NH/sub 4/UF/sub 5/. Uranium tetrafluoride is prepared by heating the ammonium uranium fluoride to a temperature at which dissociation occurs with liberation of ammonium fluoride. Preferably the process is carried out under reduced pressure, or in a current of an inert gas.
NASA Astrophysics Data System (ADS)
Razali, N. N.; Sopyan, I.; Mel, M.; Salleh, H. M.; Rahman, M. M.; Singh, R.
2017-06-01
The effect of addition of poly(vinyl alcohol) on hydrothermal derived calcium phosphate cement has been studied. The precursors used to prepare the cement were calcium oxide (CaO) and ammonium dihydrogen phosphate (NH4H2PO4); the reaction was conducted in water at 80-100°C. To improve properties of CPC, poly(vinyl alcohol) (PVA) of 1wt% and 2wt% was added to the liquid phase of CPC and the results were compared to CPC without PVA addition. The addition of PVA was proved to bring remarkable effects on cohesion, setting time and mechanical strength of CPC which make it suitable physically for injectable bone filler applications.
METHOD FOR THE RECOVERY OF CESIUM VALUES
Rimshaw, S.J.
1960-02-16
A method is given for recovering Cs/sup 137/ from radioactive waste solutions together with extraneous impurities. Ammonium alum is precipitated in the waste solution. The alum, which carries the cesium, is separated from the supernatant liquid and then dissolved in water. The resulting aqueous solution is then provided with a source of hydroxyl ions, which precipitates aluminum as the hydroxide, and the aluminum hydroxide is separated from the resulting liquid. This liquid, which contains anionic impurities together with ammonium and cesium, is passed through an anion exchange resin bed which removes the anionic impurities. The ammonium in the effluent is removed by destructive distiilation, leaving a substantiaily pure cesium salt in the effluent.
Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y
2016-11-01
Recovery of valuable metals from electronic waste has been highlighted by the EU directives. The difficulties for recycling are induced by the high complexity of such waste. In this research, copper could be selectively recovered using an ammonia-based process, from industrially processed information and communication technology (ICT) waste with high complexity. A detailed understanding on the role of ammonium salt was focused during both stages of leaching copper into a solution and the subsequent step for copper recovery from the solution. By comparing the reactivity of the leaching solution with different ammonium salts, their physiochemical behaviour as well as the leaching efficiency could be identified. The copper recovery rate could reach 95% with ammonium carbonate as the leaching salt. In the stage of copper recovery from the solution, electrodeposition was introduced without an additional solvent extraction step and the electrochemical behaviour of the solution was figured out. With a careful control of the electrodeposition conditions, the current efficiency could be improved to be 80-90% depending on the ammonia salts and high purity copper (99.9wt.%). This research provides basis for improving the recyclability and efficiency of copper recovery from such electronic waste and the whole process design for copper recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sources and Fates of Carbamyl Phosphate: A Labile Energy-Rich Molecule with Multiple Facets.
Shi, Dashuang; Caldovic, Ljubica; Tuchman, Mendel
2018-06-12
Carbamyl phosphate (CP) is well-known as an essential intermediate of pyrimidine and arginine/urea biosynthesis. Chemically, CP can be easily synthesized from dihydrogen phosphate and cyanate. Enzymatically, CP can be synthesized using three different classes of enzymes: (1) ATP-grasp fold protein based carbamyl phosphate synthetase (CPS); (2) Amino-acid kinase fold carbamate kinase (CK)-like CPS (anabolic CK or aCK); and (3) Catabolic transcarbamylase. The first class of CPS can be further divided into three different types of CPS as CPS I, CPS II, and CPS III depending on the usage of ammonium or glutamine as its nitrogen source, and whether N -acetyl-glutamate is its essential co-factor. CP can donate its carbamyl group to the amino nitrogen of many important molecules including the most well-known ornithine and aspartate in the arginine/urea and pyrimidine biosynthetic pathways. CP can also donate its carbamyl group to the hydroxyl oxygen of a variety of molecules, particularly in many antibiotic biosynthetic pathways. Transfer of the carbamyl group to the nitrogen group is catalyzed by the anabolic transcarbamylase using a direct attack mechanism, while transfer of the carbamyl group to the oxygen group is catalyzed by a different class of enzymes, CmcH/NodU CTase, using a different mechanism involving a three-step reaction, decomposition of CP to carbamate and phosphate, transfer of the carbamyl group from carbamate to ATP to form carbamyladenylate and pyrophosphate, and transfer of the carbamyl group from carbamyladenylate to the oxygen group of the substrate. CP is also involved in transferring its phosphate group to ADP to generate ATP in the fermentation of many microorganisms. The reaction is catalyzed by carbamate kinase, which may be termed as catabolic CK (cCK) in order to distinguish it from CP generating CK. CP is a thermally labile molecule, easily decomposed into phosphate and cyanate, or phosphate and carbamate depending on the pH of the solution, or the presence of enzyme. Biological systems have developed several mechanisms including channeling between enzymes, increased affinity of CP to enzymes, and keeping CP in a specific conformation to protect CP from decomposition. CP is highly important for our health as both a lack of, or decreased, CP production and CP accumulation results in many disease conditions.
Aqueous Ammonia or Ammonium Hydroxide? Identifying a Base as Strong or Weak
ERIC Educational Resources Information Center
Sanger, Michael J.; Danner, Matthew
2010-01-01
When grocery stores sell solutions of ammonia, they are labeled "ammonia"; however, when the same solution is purchased from chemical supply stores, they are labeled "ammonium hydroxide". The goal of this experiment is for students to determine which name is more appropriate. In this experiment, students use several different experimental methods…
A precise ion chromatography method has been developed for the determination of chloride in high ionic strength ammonium acetate solutions (10-5 M-5 M) using sodium carbonate/sodium bicarbonate as eluent. Negative ion electrospray ionization (ESI) mass spectrometry was used for q...
Li, Long; Ji, Yuzhuo; Tang, Xinjing
2014-10-21
Highly selective and sensitive fluorescent probes with a quaternary ammonium moiety have been rationally designed and developed for fast and sensitive fluorescence detection of fluoride ion (F(-) from NaF, not TBAF) in aqueous solution and living cells. With the sequestration effect of quaternary ammonium, the detection time was less than 2 min and the detection limit of fluoride ion was as low as 0.57 ppm that is among the lowest detection limits in aqueous solutions of many fluoride fluorescence probes in the literature.
Xu, Changwen; Yuan, Haiping; Lou, Ziyang; Zhang, Guofang; Gong, Junzhe; Zhu, Nanwen
2013-12-01
Magnesium ammonium phosphate (MAP) precipitation was introduced to remove ammonium nitrogen (NH4(+)-N) in autothermal thermophilic aerobic digestion (ATAD) in this study. The dosing time of MgCl2 · 6H2O and NaH2PO4 · 2H2O will influence the removal efficiency of ammonium nitrogen greatly, and the time interval of 2nd, 7th, 12th day were chosen in ATAD process. The lowest NH4(+)-N concentration was found in the 2nd day dosing digester, and 38.37% of VS removal rate was obtained after 12 days digestion, which achieved stabilization 9 days earlier than the non-dosing digester. It revealed that removal of ammonium nitrogen could accelerate the sludge stabilization process. Meanwhile, 49.30% of VS removal rate was found in the 2nd day dosing digester in the 21st day, much higher than that in the non-dosing digester, the 7th day dosing digester, and the 12th day dosing digester, with the corresponding value of 38.37%, 38.38% and 37.04%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Method for producing nuclear fuel
Haas, Paul A.
1983-01-01
Nuclear fuel is made by contacting an aqueous solution containing an actinide salt with an aqueous solution containing ammonium hydroxide, ammonium oxalate, or oxalic acid in an amount that will react with a fraction of the actinide salt to form a precipitate consisting of the hydroxide or oxalate of the actinide. A slurry consisting of the precipitate and solution containing the unreacted actinide salt is formed into drops which are gelled, calcined, and pressed to form pellets.
Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith.
Krishnan, K Anoop; Haridas, Ajit
2008-04-01
Iron impregnated coir pith (CP-Fe-I) can be effectively used for the removal of phosphate from aqueous streams and sewage. Iron impregnation on natural coir pith was carried out by drop by drop addition method. The effect of various factors such as pH, initial concentration of phosphate, contact time and adsorbent dose on phosphate adsorption was studied by batch technique. The pH at 3.0 favored the maximum adsorption of phosphate from aqueous solutions. The effect of pH on phosphate adsorption was explained by pH(zpc), phosphate speciation in solution and affinity of anions towards the adsorbent sites. A comparative study of the adsorption of phosphate using CP-Fe-I and CP (coir pith) was made and results show that the former one is five to six times more effective than the latter. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Adsorption followed Langmuir isotherm model. Column studies were conducted to examine the utility of the investigated adsorbent for the removal of phosphate from continuously flowing aqueous solutions.
Microbial solubilization of phosphate
Rogers, R.D.; Wolfram, J.H.
1993-10-26
A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.
Microbial solubilization of phosphate
Rogers, Robert D.; Wolfram, James H.
1993-01-01
A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.
Code of Federal Regulations, 2014 CFR
2014-10-01
...” flammable liquids. 29 Stow “away from” ammonium compounds. 30 Stow “away from” animal or vegetable oils. 31... vegetable oils. 55 Stow “separated from” ammonia. 56 Stow “separated from” ammonium compounds. 57 Stow... hexahydrate solution, uranium metal hexahydrate solution, uranium metal pyrophoric and thorium metal...
Code of Federal Regulations, 2013 CFR
2013-10-01
...” flammable liquids. 29 Stow “away from” ammonium compounds. 30 Stow “away from” animal or vegetable oils. 31... vegetable oils. 55 Stow “separated from” ammonia. 56 Stow “separated from” ammonium compounds. 57 Stow... hexahydrate solution, uranium metal hexahydrate solution, uranium metal pyrophoric and thorium metal...
USDA-ARS?s Scientific Manuscript database
A benchtop baking method has been developed to predict the contribution of gluten functionality to overall flour performance for chemically leavened crackers. In order to identify a diagnostic cracker formula, the effects of leavening system (sodium bicarbonate, monocalcium phosphate, and ammonium b...
Choctawhatchee Bay (CB) is a large estuarine ecosystem in northwest Florida that provides quality of life and economic benefits to local residents. The CB watershed is largely forested, but with significant agriculture in its northern part and intense residential and commercial ...
Detection and Identification of Viruses using the Integrated Virus Detection System (IVDS)
2005-11-01
Hepatitis Virus (MHV) or Coronaviridae ................................. 5 3.2.5 M VM Parvovirus ...Acetate ........... 29 24. Mouse Hepatitus Virus MHV-A59 Diluted with Potassium Phosphate .......... 30 25. Scan of MVM Parvovirus - Neat...31 26. Scan of MVM Parvovirus -Diluted in Ammonium Acetate, Expanded Scale ...... 32 27. Scan of
Response of a poor-site western redcedar stand to precommercial thinning and fertilization.
Constance A. Harrington; Charles A. Wierman
1985-01-01
Seven silvicultural treatments were applied in a 20-year-old natural western red-cedar (Thuja plicata) Donn ex D. Don) stand on a poor site in coastal Washington: (1) control (unthinned, unfertilized); (2) unthinned, fertilized with ammonium nitrate, monodicalcium phosphate, and potassium sulfate; (3) thinned, unfertilized; (4) thinned, fertilized...
The formation of ammonium cobalt (II) phosphate was utilized to synthesize unprecedented 3D structures of Co3O4, triangular prisms and trunk-like structures, via a self-supported and organics-free method. The length of a triangular side of the prepared 3D triangular prisms is ~1...
21 CFR 184.1141b - Ammonium phosphate, dibasic.
Code of Federal Regulations, 2010 CFR
2010-04-01
....1141b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE... acid at a pH above 5.8. (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed...
21 CFR 184.1141b - Ammonium phosphate, dibasic.
Code of Federal Regulations, 2011 CFR
2011-04-01
....1141b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE... acid at a pH above 5.8. (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed...
Singh, Ram Sarup; Singh, Harpreet; Saini, Gaganpreet Kaur
2009-01-01
Culture conditions for pullulan production by Aureobasidium pullulans were optimized using response surface methodology at shake flask level without pH control. In the present investigation, a five-level with five-factor central composite rotatable design of experiments was employed to optimize the levels of five factors significantly affecting the pullulan production, biomass production, and sugar utilization in submerged cultivation. The selected factors included concentration of sucrose, ammonium sulphate, yeast extract, dipotassium hydrogen phosphate, and sodium chloride. Using this methodology, the optimal values for concentration of sucrose, ammonium sulphate, yeast extract, dipotassium hydrogen phosphate, and sodium chloride were 5.31%, 0.11%, 0.07%, 0.05%, and 0.15% (w/v), respectively. This optimized medium has projected a theoretically production of pullulan of 4.44%, biomass yield of 1.03%, and sugar utilization of 97.12%. The multiple correlation coefficient 'R' was 0.9976, 0.9761 and 0.9919 for pullulan production, biomass production, and sugar utilization, respectively. The value of R being very close to one justifies an excellent correlation between the predicted and the experimental data.
Precipitation of impurities in 9-32-0 grade fluid fertilizers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillard, E.F.; Scheib, R.M.; Greenwell, B.E.
1986-01-01
For several years TVA has been studying production of 9-32-0 ammonium polyphosphate suspension produced from ammoniated merchant-grade wet-process orthophosphoric acid. Suspensions containing polyphosphate have an advantage over those that contain only orthophosphate in that they can be stored satisfactorily at much lower temperature. However, the introduction of polyphosphate (pyrophosphate anion) complicates the precipitation of impurities and has yielded inconsistent storage characteristics in 9-32-0 fluid fertilizers. Fluorine also has been shown to affect suspension fertilizer properties. The viscosity of 13-38-0 orthophosphate suspension fertilizers is affected by the atomic ratios F:(Al + Fe + Mg). Addition of fluorine prevents sludges and precipitatesmore » in ammonium polyphosphate fertilizer solutions - the proper amount of fluorine is related to the amount of each of the metallic impurities present and also to the fraction of the phosphate present as pyrophosphate. Incorporation of polyphosphate or fluorine or both has been shown to have positive effects on ammoniated wet-process phosphoric acid (WPPA), but they do not report the solubility relationships of the cation impurities (Fe, Al, Mg, and Ca) with respect to the anion constituents (PO/sub 4/, P/sub 2/O/sub 7/, and F). Therefore, a factorial study was developed to determine the solubility relationships of the precipitated metal impurities encountered in 9-32-0 fluid fertilizers. 10 refs., 1 fig., 20 tabs.« less
Okada, Ken; Akiyoshi, Miyako; Ishizaki, Keiko; Sato, Hiroyasu; Matsunaga, Takehiro
2014-08-15
Five liters of sodium hypochlorite aqueous solution (12 mass%) was poured into 300 L of liquid waste containing ammonium ion of about 1.8 mol/L in a 500 L tank in a plant area; then, two minutes later the solution exploded with a flash on March 30th, 2005. The tank cover, the fluorescent lamp and the air duct were broken by the blast wave. Thus, we have conducted 40 runs of laboratory-scale explosion tests under various conditions (solution concentrations of (NH4)2SO4 and NaClO, temperatures, Pt catalysts, pH, etc.) to investigate the causes for such an explosion. When solutions of ammonium sulfate and sodium hypochlorite are mixed in the presence of platinum black, explosions result. This is ascribable to the formation of explosive nitrogen trichloride (NCl3). In the case where it is necessary to mix these 2 solutions (ammonium sulfate and sodium hypochlorite) in the presence of platinum black, the following conditions would reduce a probability of explosion; the initial concentration of NH4(+) should be less than 3 mol/L and the pH should be higher than 6. The hypochlorite solution (in 1/10 in volume) to be added at room temperature is recommended to be less than 0.6 mol/L. Copyright © 2014 Elsevier B.V. All rights reserved.
Formation of apatitic calcium phosphates in a Na-K-phosphate solution of pH 7.4.
Tas, A C; Aldinger, F
2005-02-01
Poorly crystalline, apatitic calcium phosphate powders have been synthesized by slowly adding a Na- and K-containing reference phosphate solution with a pH value of 7.4 to an aqueous calcium nitrate solution at 37 degrees C. Nano-particulated apatitic powders obtained were shown to contain small amounts of Na and K, which render them more similar in chemical composition to that of the bone mineral. Precipitated and dried powders were found to exhibit self-hardening cement properties when kneaded in a mortar with a sodium citrate- and sodium phosphate-containing starter solution. The same phosphate solution used in powder synthesis was found to be able to partially convert natural, white and translucent marble pieces of calcite (CaCO3) into calcium-deficient hydroxyapatite upon aging the samples in that solution for 3 days at 60 degrees C. Sample characterization was performed by using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, inductively-coupled plasma atomic emission spectroscopy, and simultaneous thermogravimetry and differential thermal analysis.
NASA Technical Reports Server (NTRS)
Downing, H. D.; Pinkley, L. W.; Sethna, P. P.; Williams, D.
1977-01-01
The infrared spectral reflectance at near normal incidence has been measured for 3.2 M, 2.4 M, and 1.6 M solutions of ammonium sulfate, an aerosol abundant in the stratosphere and also present in the troposphere. Kramers-Kronig analysis was used to determine values of the refractive and absorption indices from the measured spectral reflectance. A synthetic spectrum of crystalline ammonium sulfate was obtained by extrapolation of the absorption index obtained for the solution to the absorber number densities of the NH4 and SO4 ions characteristic of the crystal.
Garcia-Robledo, Emilio; Bohorquez, Julio; Corzo, Alfonso; Jimenez-Arias, Juan L.; Papaspyrou, Sokratis
2016-01-01
The study of inorganic nutrients dynamics in shallow sediments usually focuses on two main pools: porewater (PW) nutrients and exchangeable (EX) ammonium and phosphate. Recently, it has been found that microphytobenthos (MPB) and other microorganisms can accumulate large amounts of nutrients intracellularly (IC), highlighting the biogeochemical importance of this nutrient pool. Storing nutrients could support the growth of autotrophs when nutrients are not available, and could also provide alternative electron acceptors for dissimilatory processes such as nitrate reduction. Here, we studied the magnitude and relative importance of these three nutrient pools (PW, IC, and EX) and their relation to chlorophylls (used as a proxy for MPB abundance) and organic matter (OM) contents in an intertidal mudflat of Cadiz Bay (Spain). MPB was localized in the first 4 mm of the sediment and showed a clear seasonal pattern; highest chlorophylls content was found during autumn and lowest during spring-summer. The temporal and spatial distribution of nutrients pools and MPB were largely correlated. Ammonium was higher in the IC and EX fractions, representing on average 59 and 37% of the total ammonium pool, respectively. Similarly, phosphate in the IC and EX fractions accounted on average for 40 and 31% of the total phosphate pool, respectively. Nitrate in the PW was low, suggesting low nitrification activity and rapid consumption. Nitrate accumulated in the IC pool during periods of moderate MPB abundance, being up to 66% of the total nitrate pool, whereas it decreased when chlorophyll concentration peaked likely due to a high nitrogen demand. EX-Nitrate accounted for the largest fraction of total sediment nitrate, 66% on average. The distribution of EX-Nitrate was significantly correlated with chlorophyll and OM, which probably indicates a relation of this pool to an increased availability of sites for ionic adsorption. This EX-Nitrate pool could represent an alternative nitrate source with significant concentrations available to the microbial community, deeper in the sediment below the oxic layer. PMID:27303370
Garcia-Robledo, Emilio; Bohorquez, Julio; Corzo, Alfonso; Jimenez-Arias, Juan L; Papaspyrou, Sokratis
2016-01-01
The study of inorganic nutrients dynamics in shallow sediments usually focuses on two main pools: porewater (PW) nutrients and exchangeable (EX) ammonium and phosphate. Recently, it has been found that microphytobenthos (MPB) and other microorganisms can accumulate large amounts of nutrients intracellularly (IC), highlighting the biogeochemical importance of this nutrient pool. Storing nutrients could support the growth of autotrophs when nutrients are not available, and could also provide alternative electron acceptors for dissimilatory processes such as nitrate reduction. Here, we studied the magnitude and relative importance of these three nutrient pools (PW, IC, and EX) and their relation to chlorophylls (used as a proxy for MPB abundance) and organic matter (OM) contents in an intertidal mudflat of Cadiz Bay (Spain). MPB was localized in the first 4 mm of the sediment and showed a clear seasonal pattern; highest chlorophylls content was found during autumn and lowest during spring-summer. The temporal and spatial distribution of nutrients pools and MPB were largely correlated. Ammonium was higher in the IC and EX fractions, representing on average 59 and 37% of the total ammonium pool, respectively. Similarly, phosphate in the IC and EX fractions accounted on average for 40 and 31% of the total phosphate pool, respectively. Nitrate in the PW was low, suggesting low nitrification activity and rapid consumption. Nitrate accumulated in the IC pool during periods of moderate MPB abundance, being up to 66% of the total nitrate pool, whereas it decreased when chlorophyll concentration peaked likely due to a high nitrogen demand. EX-Nitrate accounted for the largest fraction of total sediment nitrate, 66% on average. The distribution of EX-Nitrate was significantly correlated with chlorophyll and OM, which probably indicates a relation of this pool to an increased availability of sites for ionic adsorption. This EX-Nitrate pool could represent an alternative nitrate source with significant concentrations available to the microbial community, deeper in the sediment below the oxic layer.
Ammonium detection by formation of colored zebra-bands in a detecting tube.
Hori, Tatsuaki; Niki, Keizou; Kiso, Yoshiaki; Oguchi, Tatsuo; Kamimoto, Yuki; Yamada, Toshiro; Nagai, Masahiro
2010-06-15
Ammonium ion was colorized by means of a diazo coupling reaction with 2-phenylphenol, where the color development reaction was conducted within 3min by using boric acid as a catalyst. The resulting colored solution (0.5ml) was supplied by suction to a detecting tube consisting of a nonwoven fabric test strip (2mm wide, 1mm thick, 150mm long) impregnated with benzylcetyldimethylammonium chloride in a stripe pattern and enclosed in a heat-shrinkable tube. When the colored solution was supplied to the detecting tube, blue zebra-bands formed, and the ammonium concentration was determined by counting the number of zebra-bands. The detection range was 1-20mg-Nl(-1). Ammonium ion in actual domestic wastewater samples was successfully detected by means of this method.
Al-Gousous, J; Penning, M; Langguth, P
2015-04-30
The purpose of this investigation was to study the effect of using different salts of shellac on the disintegration properties of shellac-based enteric coatings. In the last two decades, shellac has been increasingly used as an aqueous solution for enteric coating purposes, with the ammonium salt being the form typically used. Little investigation has been performed on using other salts, and therefore, this was the focus of our work. Enteric coatings, based on different shellac salts (ammonium, sodium, potassium and composite ammonium-sodium), were applied onto soft gelatin capsules. Disintegration testing of the coated soft gelatin capsules showed that alkali metal salts promote faster disintegration than ammonium salts. In order to determine the causes behind these differences, the solubility, thermal and spectroscopic properties of films cast from the different salts were investigated. The results show that films cast from ammonium-based salts of shellac are, unlike those cast from alkali metal-based salts, water-insoluble. Spectroscopic evidence suggests that this might be due to partial salt dissociation resulting in loss of ammonium as ammonia and reduced degree of shellac ionization during drying. In addition, oxidation of shellac aldehyde groups of the ammonium-based shellac salts could also play a role. And possible higher extent of shellac hydrolysis during the preparation of alkali metal salts might also be a factor. Therefore, the nature of the shellac salt used in the preparation of shellac-based aqueous coating solutions is a significant formulation factor affecting product performance. Copyright © 2014 Elsevier B.V. All rights reserved.
Qin, Mohan; Molitor, Hannah; Brazil, Brian; Novak, John T; He, Zhen
2016-01-01
A microbial electrolysis cell (MEC)-forward osmosis (FO) system was previously reported for recovering ammonium and water from synthetic solutions, and here it has been advanced with treating landfill leachate. In the MEC, 65.7±9.1% of ammonium could be recovered in the presence of cathode aeration. Without aeration, the MEC could remove 54.1±10.9% of ammonium from the leachate, but little ammonia was recovered. With 2M NH4HCO3 as the draw solution, the FO process achieved 51% water recovery from the MEC anode effluent in 3.5-h operation, higher than that from the raw leachate. The recovered ammonia was used as a draw solute in the FO for successful water recovery from the treated leachate. Despite the challenges with treating returning solution from the FO, this MEC-FO system has demonstrated the potential for resource recovery from wastes, and provide a new solution for sustainable leachate management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Proton transport by phosphate diffusion--a mechanism of facilitated CO2 transfer
1976-01-01
We have measured CO2 fluxes across phosphate solutions at different carbonic anhydrase concentrations, bicarbonate concentration gradients, phosphate concentrations, and mobilities. Temperature was 22-25 degrees C, the pH of the phosphate solutions was 7.0-7.3. We found that under physiological conditions of pH and pCO2 a facilitated diffusion of CO2 occurs in addition to free diffusion when (a) sufficient carbonic anhydrase is present, and (b) a concentration gradient of HCO3- is established along with a pCO2 gradient, and (c) the phosphate buffer has a mobility comparable to that of bicarbonate. When the phosphate was immobilized by attaching 0.25-mm-long cellulose particles, no facilitation of CO2 diffusion was detectable. A mechanism of facilitated CO2 diffusion in phosphate solutions analogous to that in albumin solutions was proposed on the basis of these findings: bicarbonate diffusion together with a facilitated proton transport by phosphate diffusion. A mathematical model of this mechanism was formulated. The CO2 fluxed predicted by the model agree quantitatively with the experimentally determined fluxes. It is concluded that a highly effective proton transport mechanism acts in solutions of mobile phosphate buffers. By this mechanism; CO2 transfer may be increased up to fivefold and proton transfer may be increased to 10,000-fold. PMID:6619
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-30
... Schedule of the United States (``HTSUS'') of a certain CN-9 solution, a hydrated ammonium calcium nitrate..., a hydrated ammonium calcium nitrate double salt that is primarily used as a fertilizer but is also... calcium nitrate and ammonium nitrate.'' Citing Legal Note 2(a)(v) to Chapter 31, HTSUS,\\2\\ the Port of...
Microbial and chemical properties of log ponds along the Oregon Coast.
Iwan Ho; Ching Yan Li
1987-01-01
The microbial and chemical properties of log ponds along the Oregon coast were investigated. The log ponds were highly eutrophic, containing high concentrations of ammonium and nitrate nitrogen, phosphate, and organic compounds. Because of large microbial populations, the biochemical oxygen demand was high and dissolved oxygen was low. Bacterial species in log ponds...
Separation and structural analysis of saponins in a bark extract from Quillaja saponaria Molina.
Nord, L I; Kenne, L
1999-07-20
Six major saponins were isolated from a bark extract from Quillaja saponaria Molina. Solid-phase extraction, followed by a two-step reversed-phase HPLC separation procedure with phosphate and ammonium acetate buffers of different pH values, was used. The compounds were characterised using NMR spectroscopy, mass spectrometry and chemical methods.
Impact of point-source pollution on phosphorus and nitrogen cycling in stream-bed sediments.
Palmer-Felgate, Elizabeth J; Mortimer, Robert J G; Krom, Michael D; Jarvie, Helen P
2010-02-01
Diffusive equilibration in thin films was used to study the cycling of phosphorus and nitrogen at the sediment-water interface in situ and with minimal disturbance to redox conditions. Soluble reactive phosphate (SRP), nitrate, nitrite, ammonium, sulfate, iron, and manganese profiles were measured in a rural stream, 12 m upstream, adjacent to, and 8 m downstream of a septic tank discharge. Sewage fungus adjacent to the discharge resulted in anoxic conditions directly above the sediment. SRP and ammonium increased with depth through the fungus layer to environmentally significant concentrations (440 and 1800 microM, respectively) due to release at the sediment surface. This compared to only 0.8 microM of SRP and 2.0 microM of ammonium in the water column upstream of the discharge. Concomitant removal of ammonium, nitrite and nitrate within 0.5 cm below the fungus-water interface provided evidence for anaerobic ammonium oxidation (anammox). "Hotspots" of porewater SRP (up to 350 microM) at the downstream site demonstrated potential in-stream storage of the elevated P concentrations from the effluent. These results provide direct in situ evidence of phosphorus and nitrogen release from river-bed sediments under anoxic conditions created by sewage-fungus, and highlight the wider importance of redox conditions and rural point sources on in-stream nutrient cycling.
Formation of urea and guanidine by irradiation of ammonium cyanide.
NASA Technical Reports Server (NTRS)
Lohrmann, R.
1972-01-01
Aqueous solutions of ammonium cyanide yield urea, cyanamide and guanidine when exposed to sunlight or an unfiltered 254 nm ultraviolet source. The prebiotic significance of these results is discussed.
Liu, Jia; Su, Yuan; Li, Qian; Yue, Qinyan; Gao, Baoyu
2013-09-01
A novel wheat straw cellulose-g-poly (potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) superabsorbent resin (SAR) was prepared by graft copolymerization. The structure and performance of the WSC-g-PKA/PVA semi-IPNs SAR was studied and compared with those of wheat straw cellulose-g-poly (potassium acrylate) (WSC-g-PKA) SAR. The effects of various experimental parameters such as solution pH, concentration, contact time and ion strength on NH4(+) and PO4(3-) removal from solutions were investigated. Equilibrium isotherm data of adsorption of both NH4(+) and PO4(3-) were well fitted to the Freundlich model. Kinetic analysis showed that the pseudo-second-order kinetic model was more suitable for describing the whole adsorption process of NH4(+) and PO4(3-) on SARs. Overall, WSC-g-PKA/PVA semi-IPNs SAR showed better properties in comparison with WSC-g-PKA SAR and it could be considered as one efficient material for the removal and recovery of nitrogen and phosphorus with the agronomic reuse as a fertilizer. Copyright © 2013 Elsevier Ltd. All rights reserved.
Comprehensive Study Of Duckweed Cultivation And Growth Conditions Under Controlled Eutrophication
NASA Astrophysics Data System (ADS)
Bartošová, Alica; Sirotiak, Maroš; Fiala, Jozef
2015-06-01
The paper discussed the issue of eutrophication. The most conspicuous effect of eutrophication is the creation of dense blooms of noxious, foul-smelling phytoplankton that reduce water clarity and harm water quality. Nutrient concentration, temperature and pH of the water largely influence the growth rate and composition of duckweed in general, but it can be said that the temperature and solar irradiation are the most important factors. In order to compare the rate of biomass increase of duckweed biomass in natural conditions and in a laboratory grown sample was analysed by spectrophotometric methods in UV/VIS region (Spectrophotometer GENESYSTM) for the selected nutrients such as ammonium, ammonium nitrogen, nitrite, nitrate, and phosphate.
NASA Astrophysics Data System (ADS)
Abdalla, Khalid; Zuhailawati, H.; Rahmat, Azmi; Azizan, A.
2017-02-01
Activation pretreatment with nickel acetate solution at various concentrations was performed prior to the phosphating step to enhance the corrosion resistance of carbon steel substrates. The activation solution was studied over various concentrations: 10, 50, and 100 g/L. The effects of these concentrations on surface characteristics and microstructural evolution of the coated samples were characterized by scanning electron microscopy and energy-dispersive spectroscopy. The electrochemical behavior was evaluated using potentiodynamic polarization curves, electrochemical impedance spectroscopy, and immersion test in a 3.5 pct NaCl solution. Significant increases in the nucleation sites and surface coverage of zinc phosphate coating were observed as the concentration of activation solution reached 50 g/L. The electrochemical analysis revealed that the activation treatment with 50 g/L nickel acetate solution significantly improved the protection ability of the zinc phosphate coating. The corrosion current density of activated phosphate coating with 50 g/L was reduced by 64.64 and 13.22 pct, compared to the coatings obtained with activation solutions of 10 and 100 g/L, respectively.
Production of cerium dioxide microspheres by an internal gelation sol–gel method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katalenich, Jeffrey A.
An internal gelation sol-gel technique was used to prepare cerium dioxide microspheres with uniform diameters near 100 µm. In this process, chilled aqueous solutions containing cerium, hexamethylenetetramine (HMTA), and urea are transformed into a solid gel by heat addition and are subsequently washed, dried, and sintered to produce pure cerium dioxide. Cerous nitrate and ceric ammonium nitrate solutions were compared for their usefulness in microsphere production. Gelation experiments were performed with both cerous nitrate and ceric ammonium nitrate to determine desirable concentrations of cerium, HMTA, and urea in feed solutions as well as the necessary quantity of ammonium hydroxide addedmore » to cerium solutions. Analysis of the pH before and after sample gelation was found to provide a quantitative metric for optimal parameter selection along with subjective evaluations of gel qualities. The time necessary for chilled solutions to gel upon inserting into a hot water bath was determined for samples with a variety of parameters and also used to determine desirable formulations for microsphere production. A technique for choosing the optimal mixture of ceric ammonium nitrate, HMTA, and urea was determined using gelation experiments and used to produce microspheres by dispersion of the feed solution into heated silicone oil. Gelled spheres were washed to remove excess reactants and reaction products before being dried and sintered. X-ray diffraction of air-dried microspheres, sintered microspheres, and commercial CeO 2 powders indicated that air-dried and sintered spheres were pure CeO 2.« less
A combined qualitative and quantitative procedure for the chemical analysis of urinary calculi
Hodgkinson, A.
1971-01-01
A better understanding of the physico-chemical principles underlying the formation of calculus has led to a need for more precise information on the chemical composition of stones. A combined qualitative and quantitative procedure for the chemical analysis of urinary calculi which is suitable for routine use is presented. The procedure involves five simple qualitative tests followed by the quantitative determination of calcium, magnesium, inorganic phosphate, and oxalate. These data are used to calculate the composition of the stone in terms of calcium oxalate, apatite, and magnesium ammonium phosphate. Analytical results and derived values for five representative types of calculi are presented. PMID:5551382
Peetsch, Alexander; Greulich, Christina; Braun, Dieter; Stroetges, Christian; Rehage, Heinz; Siebers, Bettina; Köller, Manfred; Epple, Matthias
2013-02-01
Spherical silver-doped calcium phosphate nanoparticles were synthesized in a co-precipitation route from calcium nitrate/silver nitrate and ammonium phosphate in a continuous process and colloidally stabilized by carboxymethyl cellulose. Nanoparticles with 0.39 wt% silver content and a diameter of about 50-60 nm were obtained. The toxic effects toward mammalian and prokaryotic cells were determined by viability tests and determination of the minimal inhibitory and minimal bactericidal concentrations (MIC and MBC). Three mammalian cells lines, i.e. human mesenchymal stem cells (hMSC) and blood peripheral mononuclear cells (PBMC, monocytes and T-lymphocytes), and two prokaryotic strains, i.e. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used. Silver-doped calcium phosphate nanoparticles and silver acetate showed similar effect toward mammalian and prokaryotic cells with toxic silver concentrations in the range of 1-3 μg mL(-1). Copyright © 2012 Elsevier B.V. All rights reserved.
Xu, Kangning; Wang, Chengwen; Wang, Xiaoxue; Qian, Yi
2012-06-01
The simultaneous removal of K and P from urine for nutrient recycling by crystallization of magnesium potassium phosphate hexahydrate (MPP) in a laboratory-scale draft tube and baffle reactor (DTBR) is investigated. Results show that mixing speed and hydraulic retention time are important operating factors that influence crystallization and crystal settlement. Slurry should be discharged at a crystal retention time of 11 h to maintain fluidity in the reactor. Further applications of the DTBR using real urine (pretreated by ammonia stripping and diluted five times) showed that 76% K and 68% P were recycled to multi-nutrient products. The crystals collected were characterized and confirmed mainly as a mixture of magnesium ammonium phosphate hexahydrate, MPP, and magnesium sodium phosphate heptahydrate. Results indicate that the DTBR effectively achieved the simultaneous recycling of K and P from urine to multi-nutrient products through MPP crystallization. Copyright © 2012 Elsevier Ltd. All rights reserved.
Occurrence of 1-glyceryl-1-myo-inosityl phosphate in hyperthermophiles.
Lamosa, Pedro; Gonçalves, Luís G; Rodrigues, Marta V; Martins, Lígia O; Raven, Neil D H; Santos, Helena
2006-09-01
The accumulation of compatible solutes was studied in the hyperthermophilic bacterium Aquifex pyrophilus as a function of the temperature and the NaCl concentration of the growth medium. Nuclear magnetic resonance analysis of cell extracts revealed the presence of alpha- and beta-glutamate, di-mannosyl-di-myo-inositol phosphate, di-myo-inositol phosphate, and an additional compound here identified as 1-glyceryl-1-myo-inosityl phosphate. All solutes accumulated by A. pyrophilus are negatively charged at physiological pH. The intracellular levels of di-myo-inositol phosphate increased in response to supraoptimal growth temperature, while alpha- and beta-glutamate accumulated in response to osmotic stress, especially at growth temperatures below the optimum. The newly discovered compound, 1-glyceryl-1-myo-inosityl phosphate, appears to play a double role in osmo- and thermoprotection, since its intracellular pool increased primarily in response to a combination of osmotic and heat stresses. This work also uncovered the nature of the unknown compound, previously detected in Archaeoglobus fulgidus (L. O. Martins et al., Appl. Environ. Microbiol. 63:896-902, 1997). The curious structural relationship between diglycerol phosphate (found only in Archaeoglobus species), di-myo-inositol phosphate (a canonical solute of hyperthermophiles), and the newly identified solute is highlighted. This is the first report on the occurrence of 1-glyceryl-1-myo-inosityl phosphate in living systems.
Kinetic and molecular characterization of the pyruvate phosphate dikinase from Trypanosoma cruzi.
González-Marcano, Eglys; Acosta, Héctor; Mijares, Alfredo; Concepción, Juan Luis
2016-06-01
Trypanosoma cruzi, like other trypanosomatids analyzed so far, can use both glucose and amino acids as carbon and energy source. In these parasites, glycolysis is compartmentalized in glycosomes, authentic but specialized peroxisomes. The major part of this pathway, as well as a two-branched glycolytic auxiliary system, are present in these organelles. The first enzyme of one branch of this auxiliary system is the PPi-dependent pyruvate phosphate dikinase (PPDK) that converts phosphoenolpyruvate (PEP), inorganic pyrophosphate (PPi) and AMP into pyruvate, inorganic phosphate (Pi) and ATP, thus contributing to the ATP/ADP balance within the glycosomes. In this work we cloned, expressed and purified the T. cruzi PPDK. It kinetic parameters were determined, finding KM values for PEP, PPi and AMP of 320, 70 and 17 μM, respectively. Using molecular exclusion chromatography, two native forms of the enzyme were found with estimated molecular weights of 200 and 100 kDa, corresponding to a homodimer and monomer, respectively. It was established that T. cruzi PPDK's specific activity can be enhanced up to 2.6 times by the presence of ammonium in the assay mixture. During growth of epimastigotes in batch culture an apparent decrease in the specific activity of PPDK was observed. However, when its activity is normalized for the presence of ammonium in the medium, no significant modification of the enzyme activity per cell in time was found. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Kiin, K.; Fujimura, M.; Hashimoto, Y.
1981-01-01
Methods for the fractional collection of trace amounts of atmospheric ammonia gas and ammonium particles on a two staged glass fiber filter are summarized. A standard glass fiber filter washed with distilled water and dried at 120 to 130 C was used. A second filter was impregnated with a mixture of 3% boric acid and 25% glycerin solution. The blank of glass fiber filters impregnated with a mixture of the above solution was very low for ammonia, i.e. 0.06 micrograms in a filter of 47 mm in diameter. The mean concentrations of ammonia and ammonium in air at Kawasaki, a polluted area, were 7.6 and 2.3 micrograms cu m, and those at Sanriku, an unpolluted area 0.9 and 0.2 micrograms cu m, respectively. Ratios of concentration levels of ammonium to total ammonia in the atmosphere were 0.3 and 0.2 for the polluted and unpolluted areas, respectively. Ammonium salts in air at both areas were not correlated with relative humidity. Variations in time of ammonia concentrations and sources in surrounding areas are also considered.
Zhao, Xue Qiang; Guo, Shi Wei; Shinmachi, Fumie; Sunairi, Michio; Noguchi, Akira; Hasegawa, Isao; Shen, Ren Fang
2013-01-01
Acidic soils are dominated chemically by more ammonium and more available, so more potentially toxic, aluminium compared with neutral to calcareous soils, which are characterized by more nitrate and less available, so less toxic, aluminium. However, it is not known whether aluminium tolerance and nitrogen source preference are linked in plants. This question was investigated by comparing the responses of 30 rice (Oryza sativa) varieties (15 subsp. japonica cultivars and 15 subsp. indica cultivars) to aluminium, various ammonium/nitrate ratios and their combinations under acidic solution conditions. indica rice plants were generally found to be aluminium-sensitive and nitrate-preferring, while japonica cultivars were aluminium-tolerant and relatively ammonium-preferring. Aluminium tolerance of different rice varieties was significantly negatively correlated with their nitrate preference. Furthermore, aluminium enhanced ammonium-fed rice growth but inhibited nitrate-fed rice growth. The results suggest that aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference under acidic solution conditions. A schematic diagram summarizing the interactions of aluminium and nitrogen in soil-plant ecosystems is presented and provides a new basis for the integrated management of acidic soils.
Biogeochemical toxicity and phytotoxicity of nitrogenous compounds in a variety of arctic soils.
Anaka, Alison; Wickstrom, Mark; Siciliano, Steven D
2008-08-01
Ammonium nitrate (NH(4)NO(3)) is a common water pollutant associated with many industrial and municipal activities. One solution to reduce exposure of sensitive aquatic systems to nitrogenous compounds is to atomize (atmospherically disperse in fine particles) contaminated water over the Arctic tundra, which will reduce nitrogen loading to surface water. The toxicity of ammonium nitrate to Arctic soils, however, is poorly understood. In the present study, we characterized the biogeochemical toxicity and phytotoxicity of ammonium nitrate solutions in four different Arctic soils and in a temperate soil. Soil was exposed to a range of ammonium nitrate concentrations over a 90-d period. Dose responses of carbon mineralization, nitrification, and phytotoxicity endpoints were estimated. In addition to direct toxicity, the effect of ammonium nitrate on ecosystem resilience was investigated by dosing nitrogen-impacted soils with boric acid. Ammonium nitrate had no effect on carbon mineralization activity and only affected nitrification in one soil, a polar desert soil from Cornwallis Island, Northwest Territories, Canada. In contrast, ammonium nitrate applications (43 mmol N/L soil water) significantly impaired seedling emergence, root length, and shoot length of northern wheatgrass (Elymus lanceolatus). Concentrations of ammonium nitrate in soil water that inhibited plant parameters by 20% varied between 43 and 280 mmol N/L soil water, which corresponds to 2,100 to 15,801 mg/L of ammonium nitrate in the application water. Arctic soils were more resistant to ammonium nitrate toxicity compared with the temperate soil under these study conditions. It is not clear, however, if this represents a general trend for all polar soils, and because nitrogen is an essential macronutrient, nitrogenous toxicity likely should be considered as a special case for soil toxicity.
Recovery of boric acid from ion exchangers
Pollock, Charles W.
1976-01-01
The recovery of boric acid from an anion exchange resin is improved by eluting the boric acid with an aqueous solution of ammonium bicarbonate. The boric acid can be readily purified and concentrated by distilling off the water and ammonium bicarbonate. This process is especially useful for the recovery of boric acid containing a high percentage of .sup.10 B which may be found in some nuclear reactor coolant solutions.
NASA Astrophysics Data System (ADS)
Schmidt, Christian; Watenphul, Anke
2010-12-01
The behavior of ammonium, NH 4+, in aqueous systems was studied based on Raman spectroscopic experiments to 600 °C and about 1.3 GPa. Spectra obtained at ambient conditions revealed a strong reduction of the dynamic three-dimensional network of water with addition of ammonium chloride, particularly at small solute concentrations. The differential scattering cross section of the ν 1-NH 4+ Raman band in these solutions was found to be similar to that of salammoniac. The Raman band of silica monomers at ˜780 cm -1 was present in all spectra of the fluid at high temperatures in hydrothermal diamond-anvil cell experiments with H 2O ± NH 4Cl and quartz or the assemblage quartz + kyanite + K-feldspar ± muscovite/tobelite. However, these spectra indicated that dissolved silica is less polymerized in ammonium chloride solutions than in comparable experiments with water. Quantification based on the normalized integrated intensity of the H 4SiO 40 band showed that the silica solubility in experiments with H 2O + NH 4Cl was significantly lower than that in equimolal NaCl solutions. This suggests that ammonium causes a stronger decrease in the activity of water in chloridic solutions than sodium. The Raman spectra of the fluid also showed that a significant fraction of ammonium was converted to ammonia, NH 3, in all experiments at temperatures above 300 °C. This indicates a shift towards acidic conditions for experiments without a buffering mineral assemblage. The estimated pH of the fluid was ˜2 at 600 °C, 0.26 GPa, 6.6 m initial NH 4Cl, based on the ratio of the integrated ν 1-NH 3 and ν 1-NH 4+ intensities and the HCl 0 dissociation constant. The NH 3/NH 4+ ratio increased with temperature and decreased with pressure. This implies that more ammonium should be retained in K-bearing minerals coexisting with chloridic fluids upon high- P low- T metamorphism. At 500 °C, 0.73 GPa, ammonium partitions preferentially into the fluid, as constrained from infrared spectroscopy on the muscovite and from mass balance. The conversion of K-feldspar to muscovite proceeded much faster in experiments with NH 4Cl solutions than in comparable experiments with water. This is interpreted as being caused by enhancement of the rate-limiting alumina solubility, suggesting complexation of Al with NH 4. Nucleation and growth of mica at the expense of K-feldspar and NH 4+/K + exchange between fluid and K-feldspar occurred simultaneously, but incorporation of NH 4+ into K-feldspar was distinctly faster than K-feldspar consumption.
SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS
Nicholls, C.M.; Wells, I.; Spence, R.
1959-10-13
The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.
Friction modifier using adherent metallic multilayered or mixed element layer conversion coatings
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor); Defalco, Frank G. (Inventor); Starks, Sr., Lloyd L. (Inventor)
2012-01-01
A process for creating conversion coatings and spin, drawing, and extrusion finishes for surfaces, wherein the conversion coatings and spin, drawing, and extrusion finishes contain potassium, phosphorus, nitrogen, silicon, and one or more non-alkaline metals. The process comprises forming a first aqueous solution of silicate, potassium hydroxide, and ammonium hydroxide; forming a second aqueous solution of water, phosphoric acid, ammonium hydroxide, an alkali metal hydroxide, and one or more non-alkaline metals, and then combining the first solution with the second solution to form a final solution. This final solution forms an anti-friction multi-layer conversion coating or a spin, drawing, and extrusion finish on a surface when applied to the surface, either directly or as an additive in lubricating fluids.
Glyoxal in aqueous ammonium sulfate solutions: products, kinetics and hydration effects.
Yu, Ge; Bayer, Amanda R; Galloway, Melissa M; Korshavn, Kyle J; Fry, Charles G; Keutsch, Frank N
2011-08-01
Reactions and interactions between glyoxal and salts in aqueous solution were studied. Glyoxal was found to react with ammonium to form imidazole, imidazole-2-carboxaldehyde, formic acid, N-glyoxal substituted imidazole, and minor products at very low concentrations. Overall reaction orders and rates for each major product were measured. Sulfate ions have a strong and specific interaction with glyoxal in aqueous solution, which shifts the hydration equilibria of glyoxal from the unhydrated carbonyl form to the hydrated form. This ion-specific effect contributes to the observed enhancement of the effective Henry's law coefficient for glyoxal in sulfate-containing solutions. The results of UV-vis absorption and NMR spectroscopy studies of solutions of glyoxal with ammonium, methylamine, and dimethylamine salts reveal that light absorbing compounds require the formation of nitrogen containing molecules. These findings have implications on the role of glyoxal in the atmosphere, both in models of the contribution of glyoxal to form secondary organic aerosol (SOA), the role of nitrogen containing species for aerosol optical properties and in predictions of the behavior of other carbonyls or dicarbonyls in the atmosphere.
Jia, Ka-La-Tie; Yu, Hua; Feng, Wen-Qiang; Qin, Yu-Sheng; Zhao, Jing; Liao, Ming-Lan; Wang, Chang-Quan; Tu, Shi-Hua
2009-11-01
In order to tackle the problem of Cd pollution in paddy soils and investigate soil available Cd as affected by different fertilizers, incubation experiments were carried out to study the effects of different N, P and K fertilizers and pH by adding acid or base on soil available Cd under waterlogged conditions. Results revealed that soil pH increased sharply after the soil was flooded, especially at the beginning of incubation, and gradually decreased with incubation time and finally tended to approach the neutral values. The patterns of soil pH change were just opposite to those of soil available Cd, a negative correlation observed between the two. Soil flooding made the soil available Cd drop by 58.2%-84.1%. There were significant differences between different fertilizer types/varieties on soil available Cd, being most complex with N fertilizers and followed by K and P fertilizers. Among the fertilizers studied, ammonium chloride showed the unique ability in reducing soil pH and enhancing soil available Cd, and urea, single super phosphate and potassium chloride also promoted to a less extent amounts of Cd extracted from the soil. Ammonium sulfate, potassium sulfate and mono-ammonium phosphate significantly decreased soil available Cd compared to the CK treatment. Whether or not the soil was flooded, soil available Cd was highly negatively correlated with soil pH after adding acid or base (R = - 0.994 without incubation and R = - 0.919 after incubation for 60 d). The results further suggest that in the Cd polluted paddy soil, use of ammonium chloride should be avoided, S bearing fertilizers in combination with alkaline materials can be adopted, and the rice field should be flooded all the time during growing season, all the these practices can effectively lower soil available Cd.
NASA Astrophysics Data System (ADS)
Cooney, E. M.; Cuhel, R. L.; Aguilar, C.
2016-02-01
In 2003 Quagga mussels were found to have invaded Lake Michigan. Their presence has changed the structure of the lake both ecologically (benthification) as well as chemically (oligotrophication). They consume large amounts of phytoplankton, which decreases the particulate nitrogen and phosphorous nutrients available to other consumers including zooplankton. As a result, fisheries productivity has decreased nearly 95%. Recently reaching the end of the first life cycle, in death they release a portion of these nutrients back into the freshwater system during decomposition. This work determined amounts of phosphorus and nitrogen nutrient recycling for several relevant sediment-water interface conditions: oxic vs anoxic in water, mud, or sand over a weeklong period. Concentrations of ammonium, soluble reactive phosphorus, and nitrate were used to analyze nutrient release as decomposition took place. In a short time up to 25% of tissue N was released as ammonia, and under oxic conditions in mud or sand, nitrification converted some of the ammonia to nitrate. Unexpectedly, mussels decaying in anoxic conditions released ammonium much more slowly. A slower rate of release in ammonium for the intact body with the shell (burial) was observed when compared to ground mussel tissue (detritivory). Nitrate was removed in anoxic incubations, indicating anaerobic denitrification. Phosphate release was initially higher under anoxic conditions than those decaying aerobically. There was no significant difference in the amount or rate of release of SRP between ground mussel and whole bodied with the shell. The anoxic treatment showed similar patterns of release for both ground mussel and intact body with shell. Most important, phosphate was subsequently removed in all treatments and diffusible nutrient was minimal (<100nM). The results link to nutrient assimilation patterns of deep phytoplankton communities, which can replace nitrate with ammonium as an N source.
Kawashita, Masakazu; Matsui, Naoko; Li, Zhixia; Miyazaki, Toshiki
2010-06-01
Porous Y2O3 microparticles 500 microm in size were obtained, when 1 wt%-ammonium alginate aqueous solution was dropped into 0.5 M-YCl3 aqueous solution by a Pasteur pipette and the resultant gel microparticles were heat-treated at 1100 degrees C. Small pores less than 1 microm were formed in the microparticles by the heat treatment. The bulk density of the heat-treated microparticle was as low as 0.66 g cm(-3). The chemical durability of the heat-treated microparticles in simulated body fluid at pH = 6 and 7 was high enough for clinical application of in situ radiotherapy. Although the size of the microparticles should be decreased to around 25 microm using atomizing device such as spray gun for clinical application, we found that the porous Y2O3 microparticles with high chemical durability and low density can be obtained by utilizing gelation of ammonium alginate in YCl3 aqueous solution in this study.
Veillette, Marc; Avalos Ramirez, Antonio; Heitz, Michèle
2012-01-01
An evaluation of the effect of ammonium on the performance of two up-flow inorganic packed bed biofilters treating methane was conducted. The air flow rate was set to 3.0 L min(-1) for an empty bed residence time of 6.0 min. The biofilter was fed with a methane concentration of 0.30% (v/v). The ammonium concentration in the nutrient solution was increased by small increments (from 0.01 to 0.025 gN-NH(4) (+) L(-1)) for one biofilter and by large increments of 0.05 gN-NH(4) (+) L(-1) in the other biofilter. The total concentration of nitrogen was kept constant at 0.5 gN-NH(4) (+) L(-1) throughout the experiment by balancing ammonium with nitrate. For both biofilters, the methane elimination capacity, carbon dioxide production, nitrogen bed retention and biomass content decreased with the ammonium concentration in the nutrient solution. The biofilter with smaller ammonium increments featured a higher elimination capacity and carbon dioxide production rate, which varied from 4.9 to 14.3 g m(-3) h(-1) and from 11.5 to 30 g m(-3) h(-1), respectively. Denitrification was observed as some values of the nitrate production rate were negative for ammonium concentrations below 0.2 gN-NH(4) (+) L(-1). A Michalelis-Menten-type model fitted the ammonium elimination rate and the nitrate production rate.
Effect of Boron and Phosphate compounds on Thermal and Fire Properties of wood/HDPE composites
Turgay Akbulut; Nadir Ayrilmis; Turker Dundar; Ali Durmus; Robert H. White; Murat Teker
2011-01-01
Melting and non-isothermal crystallization behaviors, oxidative induction time, and fire performance of the injection-molded wood flour-high density polyethylene (HDPE) composites (WPCs) incorporated with different levels (4, 8, or 12 wt %) of boron compounds [borax/boric acid (BX/BA) (0.5:0.5 wt %), zinc borate (ZB)] and phosphorus compounds [mono- and di-ammonium...
Vladislav Gulis; Keller Suberkropp
2003-01-01
1. Decomposition of red maple (Acer rubrum) and rhododendron (Rhododendron maximum) leaves and activity of associated microorganisms were compared in two reaches of a headwater stream in Coweeta Hydrologic Laboratory, NC, U.S.A. The downstream reach was enriched with ammonium, nitrate, and phosphate whereas the upstream reach was not altered.2. Decomposition...
Evaluation of a passive flame-height sensor to estimate forest fire intensity.
Kevin C. Ryan
1981-01-01
The length of flames of wildland fires is a relative indicator of fireline intensity and an important index to fire effects and difficulty of control. A technique for measuring flame height and flame-tilt angle for the purpose of calculating flame length is described. Laboratory tests determined the feasibility of using cotton string treated with ammonium phosphate...
Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino
2016-06-27
This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimal nitrogen and phosphorus codoping carbon dots towards white light-emitting device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Feng; Wang, Yaling; Miao, Yanqin
Through a one-step fast microwave-assisted approach, nitrogen and phosphorus co-doped carbon dots (N,P-CDs) were synthesized using ammonium citrate (AC) as a carbon source and phosphates as additive reagent. Under the condition of an optimal reaction time of 140 s, the influence of additive with different N and P content on fluorescent performance of N,P-CDs was further explored. It was concluded that high nitrogen content and moderate phosphorus content are necessary for obtaining high quantum yield (QY) N,P-CDs, among which the TAP-CDs (CDs synthesized using ammonium phosphate as additive reagent) show high quantum yield (QY) of 62% and red-green-blue (RGB) spectral compositionmore » of 51.67%. Besides, the TAP-CDs exhibit satisfying thermal stability within 180 °C. By virtue of good optical and thermal properties of TAP-CDs, a white light-emitting device (LED) was fabricated by combining ultraviolet chip with TAP-CDs as phosphor. The white LED emits bright warm-white light with the CIE chromaticity coordinate of (0.38, 0.35) and the corresponding color temperature (CCT) of 4450 K, indicating the potential of TAP-CDs phosphor in white LED.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghaly, A.E.; El-Taweel, A.A.
1995-05-01
Candida psuedotropicalis ATCC 8619 was selected among nine strains of lactose fermenting yeast for the production of ethanol from cheese whey. The effects of three nutrients (ammonium sulfate (NH{sub 4}){sub 2}SO{sub 4}, dipotassium hydrogen phosphate K{sub 2}HPO{sub 4}, yeast extract, and combination of them) on the ethanol yield from cheese whey were investigated. The results indicated that no addition of nutrient supplement is necessary to achieve complete lactose utilization during the cheese whey ethanol fermentation. However, addition of a small concentration (0.005% w/v) of these supplements reduced the lag period and the total fermentation time and increased the specific growthmore » rate of the yeast. Higher concentrations (0.01 and 0.015% w/v) of ammonium sulfate and dipotassium hydrogen phosphate inhibited the cell growth rate of the yeast. The highest ethanol (21.7% g/L) was achieved using yeast extract at a concentration of 0.01% w/v, given a conversion efficiency of 98.3%. No indication of alcohol inhibition was observed in this study. 60 refs., 9 figs., 3 tabs.« less
Liu, Rong; Ishimatsu, Ryoichi; Yahiro, Masayuki; Adachi, Chihaya; Nakano, Koji; Imato, Toshihiko
2015-01-01
A compact photometric detector was constructed from an organic light emitting diode (OLED) based on a europium complex, europium(diben-zoylmethanato)3(bathophenanthroline) (Eu(DBM)3bath), as the light source and an organic photodiode (OPD) fabricated from a hetero-junction of two layers of copper phthalocyanine (CuPc)/fullerene (C60) as the photo-detector on a microchip prepared from poly(dimethylsiloxan) (PDMS) and was applied to the determination of phosphate. The OLED and the OPD were fabricated by a vapor deposition method on an indium tin oxide (ITO) coated glass substrate with the following layered structure; Glass (0.7 mm)/ITO (110 nm)/4,4'-bis[N-(1-naphthyl)-N-phenyl amino]-biphenyl (α-NPD) (30 nm)/4,4'-di(N-carbazolyl)biphenyl (CBP): Eu(3+) (8 wt%, 30 nm)/bathocuproine (BCP) (30 nm)/aluminum tris(8-hydroxyquinoline) (Alq3) (25 nm)/magnesium and silver (MgAg) (100 nm)/Ag (10nm) and Glass (0.7 mm)/ITO (110 nm)/CuPc (35 nm)/C60 (50 nm)/BCP (10 nm)/Ag (50 nm), respectively. The OLED based on the europium complex emitted a sharp light at the wavelength of 612 nm with a full width at half maximum (FWHM) of 8 nm. The performance of the photometric detector assembled was evaluated based on measurements of the absorbance of different concentrations of malachite green (MG) solutions for a batch system with 1cm long path length. The molar absorptive coefficient of the MG solution, calculated from the photocurrent of the OPD, was in good agreement with the value reported in the literature. A microchip with two inlets and one outlet U-shaped channel was prepared by a conventional photolithograph method. The OLED and the OPD were configured so as to face each other through the PDMS microchip in parallel in order to align the light axis of the OLED and the OPD with the flow cell (optical path length of 5mm), which was located at the end of outlet. For the determination of phosphate, an ion-association reaction between MG and a molybdenum-phosphate complex was utilized and a good linear relationship between the concentration and absorbance was observed in the concentration range 0-0.2 ppm, with a detection limit (S/N=3) of 0.02 ppm. The assembled photometric detector was also applied to the determination of phosphate by the flow injection of river water samples using the reagent solution containing MG and molybdenum ammonium in sulfuric acid. A good recovery (97-99%) for the river water samples, which had been spiked with the standard 0.08 ppm, with an RSD of ca 5% (n=5) was obtained using the constructed system. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Xian-Hao; Luo, Xiao-Hong; Lu, Shu-Xia; Zhang, Jing-Chang; Cao, Wei-Liang
2007-03-01
A novel cetyltrimethyl ammonium silver bromide (CTASB) complex has been prepared simply through the reaction of silver nitrate with cetyltrimethyl ammonium bromide (CTAB) in aqueous solution at room temperature by controlling the concentration of CTAB and the molar ratio of CTAB to silver nitrate in the reaction solution, in which halogen in CTAB is used as surfactant counterion. The structure and thermal behavior of cetyltrimethyl ammonium silver bromide have been investigated by using X-ray diffraction (XRD), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), UV/vis spectroscopy, thermal analysis (TG-DTA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results show that the complex possesses a metastable layered structure. Upon heating the CTASB aqueous dispersion to above 80 degrees C, the structure change of the complex took place and CTAB-capped nanosized silver bromide particles further formed.
Baldwin, W.H.; Higgins, C.E.
1958-12-16
A process is described for recovering uranium values from acidic aqueous solutions containing hexavalent uranium by contacting the solution with an organic solution comprised of a substantially water-immiscible organlc diluent and an organic phosphate to extract the uranlum values into the organic phase. Carbon tetrachloride and a petroleum hydrocarbon fraction, such as kerosene, are sultable diluents to be used in combination with organlc phosphates such as dibutyl butylphosphonate, trlbutyl phosphine oxide, and tributyl phosphate.
Mineral induced formation of sugar phosphates
NASA Technical Reports Server (NTRS)
Pitsch, S.; Eschenmoser, A.; Gedulin, B.; Hui, S.; Arrhenius, G.
1995-01-01
Glycolaldehyde phosphate, sorbed from highly dilute, weakly alkaline solution into the interlayer of common expanding sheet structure metal hydroxide minerals, condenses extensively to racemic aldotetrose-2, 4-diphophates, and aldohexose-2, 4, 6-triphosphates. The reaction proceeds mainly through racemic erythrose-2, 4-phosphate, and terminates with a large fraction of racemic altrose-2, 4, 6-phosphate. In the absence of an inductive mineral phase, no detectable homogeneous reaction takes place in the concentration- and pH range used. The reactant glycolaldehyde phosphate is practically completely sorbed within an hour from solutions with concentrations as low as 50 micron; the half-time for conversion to hexose phosphates is of the order of two days at room temperature and pH 9.5. Total production of sugar phosphates in the mineral interlayer is largely independent of the glycolaldehyde phosphate concentration in the external solution, but is determined by the total amount of GAP offered for sorption up to the capacity of the mineral. In the presence of equimolar amounts of rac-glyceraldehyde-2-phosphate, but under otherwise similar conditions, aldopentose-2, 4, -diphosphates also form, but only as a small fraction of the hexose-2, 4, 6-phosphates.
Rout, Alok; Kotlarska, Justyna; Dehaen, Wim; Binnemans, Koen
2013-10-21
The ionic liquids 1-hexyl-3-methylimidazolium bis(2-ethylhexyl)phosphate, [C6mim][DEHP], 1-hexyl-1-methylpyrrolidinium bis(2-ethylhexyl)phosphate, [C6mpyr][DEHP], and tetrabutylammonium bis(2-ethylhexyl)phosphate, [N4444][DEHP], were prepared and characterized using (1)H and (13)C NMR spectroscopy. The extraction behavior of neodymium(iii) from nitrate medium by these ionic liquids, diluted with the room temperature ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][NTf2], 1-hexyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C6mpyr][NTf2], and tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N1444][NTf2], was studied. The distribution ratio of neodymium(iii) was measured as a function of various parameters, such as pH, concentration of the ionic liquid extractant, nature of diluents, concentration of ionic liquid cations and nitrate anions in the aqueous phase. The extraction behavior was compared with that obtained for a solution of the molecular extractant bis(2-ethylhexyl)phosphoric acid (DEHPA) in an ionic liquid diluent. The extraction of neodymium(iii) in the ionic liquids [C6mim][DEHP] and [C6mpyr][DEHP] showed markedly different extraction properties in comparison with that of the quaternary ammonium analogue [N4444][DEHP], especially concerning the pH dependence of the extraction process. These results show that the extraction process can be tuned by the selection of the ionic liquid cation. The extraction experiments also included the trivalent rare-earth ions lanthanum(iii), cerium(iii), praseodymium(iii), ytterbium(iii) and yttrium(iii). Studies of the stripping behavior and the reusability of the ionic liquids were carried out, which indicate that the ionic liquids can be reused with no loss in activity.
Fate of Nutrients in Shallow Groundwater Receiving Treated Septage, Malibu, CA
Izbicki, John A
2014-01-01
Treated wastewater discharged from more than 400 onsite wastewater treatment systems (OWTS) near the Civic Center area of Malibu, California, 40 km west of downtown Los Angeles, composes 28% of the recharge to a 3.4 km2 alluvial aquifer. On the basis of δ18O and δD data, the fraction of wastewater in some samples was >70%. Ammonium and nitrate concentrations in water from 15 water-table wells sampled in July 2009 and April 2010 ranged from <0.01 to 12 milligrams per liter as nitrogen (mg/L as N), and from <0.01 to 11 mg/L as N, respectively. Chemical and isotopic data (δ15N of ammonium and nitrate, and δ18O of nitrate) show two processes remove nitrogen discharged from OWTS. Where groundwater was reducing, sorption of ammonium resulted in 30 to 50% nitrogen removal. Where groundwater was initially oxic, nitrification with subsequent denitrification as reducing conditions developed, resulted in up to 60% nitrogen removal. Nitrogen removal through sorption dominated during the cooler April sample period, and denitrification dominated during the warmer July sample period. The combination of mixing and nitrogen removal due to denitrification, sorption, and volatilization produces a δ15N apparent fractionation factor (εapp = −5), that can be explained using laboratory-derived fractionation factors (ε) for the individual processes. Phosphate concentrations ranged from < 0.04 to 2 mg/L as phosphorous. Sorption to iron oxides on the surfaces of mineral grains at near-neutral pH's removed some phosphate; however, little removal occurred at more alkaline pH's (>7.3). PMID:24902718
Nikolaidis, C; Mandalos, P; Vantarakis, A
2008-08-01
Chemical fertilizers are used extensively in modern agriculture, in order to improve yield and productivity of agricultural products. However, nutrient leaching from agricultural soil into groundwater resources poses a major environmental and public health concern. The Evros region is one of the largest agricultural areas in Northern Greece, extending over 1.5 million acres of cultivated land. Many of its drinking water resources are of groundwater origin and lie within agricultural areas. In order to assess the impact of agricultural fertilizers on drinking water quality in this region, tap-water samples from 64 different locations were collected and analyzed for the presence of nitrates (NO(3)(-)), nitrites (NO(2)(-)), ammonium (NH(4)(+)), sulfate (SO(4)(-2)) and phosphate (PO(4)(-3)). These chemicals were selected based on the information that ammonium nitrate, ammonium sulfate and inorganic phosphate were the primary fertilizers used in local crop production. NO(3)(-), SO(4)(-2) and PO(4)(-3) levels exceeding accepted values were recorded in 6.25, 4.70 and 9.38% of all sampling points, respectively. NO(2)(-) and NH(4)(+) concentrations, on the other hand, were inside the permitted range. The data generated were introduced into a geographic information system (GIS) program for computer analysis and projection maps representing afflicted areas were created. Our results indicate a profound geographic correlation in the surface distribution of primary contaminants in areas of intensified agricultural production. Thus, drinking water pollution in these areas can be attributed to excessive fertilizer use from agricultural sources.
Fate of nutrients in shallow groundwater receiving treated septage, Malibu, CA
Izbicki, John
2014-01-01
Treated wastewater discharged from more than 400 onsite wastewater treatment systems (OWTS) near the Civic Center area of Malibu, California, 40 km west of downtown Los Angeles, composes 28% of the recharge to a 3.4 km2 alluvial aquifer. On the basis of δ18O and δD data, the fraction of wastewater in some samples was >70%. Ammonium and nitrate concentrations in water from 15 water-table wells sampled in July 2009 and April 2010 ranged from <0.01 to 12 milligrams per liter as nitrogen (mg/L as N), and from <0.01 to 11 mg/L as N, respectively. Chemical and isotopic data (δ15N of ammonium and nitrate, and δ18O of nitrate) show two processes remove nitrogen discharged from OWTS. Where groundwater was reducing, sorption of ammonium resulted in 30 to 50% nitrogen removal. Where groundwater was initially oxic, nitrification with subsequent denitrification as reducing conditions developed, resulted in up to 60% nitrogen removal. Nitrogen removal through sorption dominated during the cooler April sample period, and denitrification dominated during the warmer July sample period. The combination of mixing and nitrogen removal due to denitrification, sorption, and volatilization produces a δ15N apparent fractionation factor (εapp= -5), that can be explained using laboratory-derived fractionation factors (ε) for the individual processes. Phosphate concentrations ranged from <0.04 to 2 mg/L as phosphorous. Sorption to iron oxides on the surfaces of mineral grains at near-neutral pH's removed some phosphate; however, little removal occurred at more alkaline pH's (>7.3).
Zhao, Xuchen; Ouyang, Wei; Hao, Fanghua; Lin, Chunye; Wang, Fangli; Han, Sheng; Geng, Xiaojun
2013-11-01
Biochar has been recognised as an efficient pollution control material. In this study, biochars (CS450 and ADPCS450) were produced using corn straw with different pretreatment techniques (without and with ammonium dihydrogen phosphate (ADP)). The character of the two biochars was compared using elemental analysis, specific surface area (SSA) and Fourier transform infrared spectra (FTIR). ADPCS450 had a higher residue yield and a much larger specific surface area than CS450. The Freundlich, Langmuir and Redlich-Peterson models were used to interpret the sorption behaviour of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine), and the results fit the Redlich-Peterson equation best. The isothermal sorption parameters indicated that the sorption capacity of atrazine on ADPCS450 was much larger than the sorption capacity of atrazine on CS450. Atrazine sorption was also favoured in acidic solution and under higher temperature conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.
1959-02-10
A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.
Separation of proteins by hydrophobic interaction chromatography at low salt concentration.
Kato, Yoshio; Nakamura, Koji; Kitamura, Takashi; Moriyama, Hiroyuki; Hasegawa, Masazumi; Sasaki, Hiroo
2002-09-20
We investigated protein separation by hydrophobic interaction chromatography (HIC) at low salt concentration on the supports of various hydrophobicities. Hydrophobic proteins could be successfully separated with more than 90% recovery by gradient elution of ammonium sulfate from 0.3-0.5 M to 0 in 50 mM phosphate buffer (pH 6.8) by using supports whose hydrophobicities were properly adjusted individually for each protein. Satisfactory results were also obtained by isocratic elution without ammonium sulfate and gradient elution of ethanol from 0 to 10%. HIC at low salt concentration was compatible with other modes of liquid chromatography like ion-exchange chromatography. On the other hand, it was not successful to separate hydrophilic proteins at low salt concentration. Recoveries of hydrophilic proteins decreased before they were retained enough as support hydrophobicity increased. Therefore, it is inevitable to use a higher concentration of salt, e.g., 1-2 M ammonium sulfate, on hydrophilic or moderately hydrophobic support in order to retain hydrophilic proteins without decrease in recovery.
Tosun, İsmail
2012-01-01
The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R2) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients. PMID:22690177
Tosun, Ismail
2012-03-01
The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araujo, Jose Adroalado de
1974-05-15
The paper deals with the ammonium diuranate continuous precipitation with a high chemical purity degree from uranyl nitrate solutions, using 1.2 and 2.4 ammonium hydroxide solutions and gaseous NH{sub 3} as a precipitating agent. The precipitations were carried out in a continuous procedure with one and two stages. The variables studied were the NH[sub 4}OH solutions concentration, ADU precipitation curve, the flow rate of reactants, the temperature of the precipitation, pH of the suspended ADU, and ammonium diuranate filtrability. The experimental work performed and the data obtained permitted the design of a chemical reactor for the continuous nuclear grade ADUmore » precipitation at the Chemical Engineering Department of the Atomic Energy Institute of Sao Paulo.« less
Recovery of nitrogen from saponification wastewater by struvite precipitation.
Huang, Haiming; Xiao, Xianming; Yang, Liping; Yan, Bo
2010-01-01
In general, saponification wastewater produced from the separation process of rare-earth elements contains high ammonium concentration. In this study, a series of experiments were conducted to investigate the parameters to enhance the struvite precipitation potential for ammonium removal from the wastewater having an ammonium concentration of 4,100 mg/L. Experimental results showed that increasing the dose and grain size of pre-formed struvite, which was added as the seeding material in struvite reaction, could increase ammonium removal. The removal efficiency increased 7.6% when the dose of pre-formed struvite with crystal grain size range of 0.098-0.150 mm increased from 0 g/L to 60 g/L. Additionally, struvite precipitation was tested with the intermittent addition of magnesium and phosphate to utilize the struvite crystals formed during the reaction process as the seeding material for the subsequent reaction. The results revealed that intermittently adding magnesium 7 times effectively enhanced ammonium removal by around 8%, which was equivalent to that of using pre-formed struvite as the seeding material. Furthermore, the chemical composition of the struvite recovered with intermittent addition of magnesium was characterized, showing the struvite could be used as fertilizer. An economic evaluation indicated that intermittent addition of magnesium 7 times can save 13.4% cost for recovering per kg NH(4)(+) compared to that of bulk addition.
PROCESS FOR THE RECOVERY AND PURIFICATION OF URANIUM DEPOSITS
Carter, J.M.; Kamen, M.D.
1958-10-14
A process is presented for recovering uranium values from UCl/sub 4/ deposits formed on calutrons. Such deposits are removed from the calutron parts by an aqueous wash solution which then contains the uranium values in addition to the following impurities: Ni, Cu, Fe, and Cr. This impurity bearing wash solution is treated with an oxidizing agent, and the oxidized solution is then treated with ammonia in order to precipitate the uranium as ammonium diuranate. The metal impurities of iron and chromium, which form insoluble hydroxides, are precipitated along with the uranium values. The precipitate is separated from the solution, dissolved in acid, and the solution again treated with ammonia and ammonium carbonate, which results in the precipitation of the metal impurities as hydroxides while the uranium values remain in solution.
Structure and dynamics of phosphate ion in aqueous solution: an ab initio QMCF MD study.
Pribil, Andreas B; Hofer, Thomas S; Randolf, Bernhard R; Rode, Bernd M
2008-11-15
A simulation of phosphate in aqueous solution was carried out employing the new QMCF MD approach which offers the possibility to investigate composite systems with the accuracy of a QMMM method but without the time consuming creation of solute-solvent potential functions. The data of the simulations give a clear picture of the hydration shells of the phosphate anion. The first shell consists of 13 water molecules and each oxygen of the phosphate forms in average three hydrogens bonds to different solvent molecules. Several structural parameters such as radial distribution functions and coordination number distributions allow to fully characterize the embedding of the highly charged phosphate ion in the solvent water. The dynamics of the hydration structure of phosphate are described by mean residence times of the solvent molecules in the first hydration shell and the water exchange rate. 2008 Wiley Periodicals, Inc.
Zhang, Jinqing; Wang, Shuo; Hong, Jingfan; Liu, Chunxiao; Jiang, Yanbin
2015-04-01
To find a more efficient solution for chemolysis of urinary calculi, several organic acids were chosen to form solutions by consulting the composition of a classic solution, Suby G. The solutions together with Renacidin, another classic solution, were designed to react with the 4 phosphate components of urinary stone. The processes were real-time measured and analysed by a focused beam reflectance measurement, and the efficiency factors were investigated and discussed in detail. The results show that several organic acids, e.g. hydroxyacetic acid, lactic acid and α-ketoglutaric acid, are more efficient than citric acid in dissolving urinary phosphate calculus. The new solutions containing the organic acids are promising for improving chemolysis treatment.
Wolframite Conversion in Treating a Mixed Wolframite-Scheelite Concentrate by Sulfuric Acid
NASA Astrophysics Data System (ADS)
Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka
2017-12-01
Complete wolframite conversion in sulfuric acid is significant for expanding the applicability of the sulfuric acid method for producing ammonium paratungstate. In this paper, the conversion of wolframite in treating a mixed wolframite-scheelite concentrate by sulfuric acid was studied systematically. The results show that the conversion of wolframite in sulfuric acid is more difficult than that of scheelite, requiring rigorous reaction conditions. A solid H2WO4 layer forms on the surfaces of the wolframite particles and becomes denser with increasing H2SO4 concentration, thus hindering the conversion. Furthermore, the difficulty in wolframite conversion can be mainly attributed to the accumulation of Fe2+ (and/or Mn2+) in the H2SO4 solution, which can be solved by reducing Fe2+ (and/or Mn2+) concentration through oxidization and/or a two-stage process. Additionally, the solid converted product of the mixed wolframite-scheelite concentrate has an excellent leachability of tungsten in an aqueous ammonium carbonate solution at ambient temperature, with approximately 99% WO3 recovery. This work presents a route for manufacturing ammonium paratungstate by treating the mixed concentrate in sulfuric acid followed by leaching in ammonium carbonate solution.
Wolframite Conversion in Treating a Mixed Wolframite-Scheelite Concentrate by Sulfuric Acid
NASA Astrophysics Data System (ADS)
Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka
2018-02-01
Complete wolframite conversion in sulfuric acid is significant for expanding the applicability of the sulfuric acid method for producing ammonium paratungstate. In this paper, the conversion of wolframite in treating a mixed wolframite-scheelite concentrate by sulfuric acid was studied systematically. The results show that the conversion of wolframite in sulfuric acid is more difficult than that of scheelite, requiring rigorous reaction conditions. A solid H2WO4 layer forms on the surfaces of the wolframite particles and becomes denser with increasing H2SO4 concentration, thus hindering the conversion. Furthermore, the difficulty in wolframite conversion can be mainly attributed to the accumulation of Fe2+ (and/or Mn2+) in the H2SO4 solution, which can be solved by reducing Fe2+ (and/or Mn2+) concentration through oxidization and/or a two-stage process. Additionally, the solid converted product of the mixed wolframite-scheelite concentrate has an excellent leachability of tungsten in an aqueous ammonium carbonate solution at ambient temperature, with approximately 99% WO3 recovery. This work presents a route for manufacturing ammonium paratungstate by treating the mixed concentrate in sulfuric acid followed by leaching in ammonium carbonate solution.
SEPARATION OF FISSION PRODUCT VALUES FROM THE HEXAVALENT PLUTONIUM BY CARRIER PRECIPITATION
Davies, T.H.
1959-12-15
An improved precipitation of fission products on bismuth phosphate from an aqueous mineral acid solution also containing hexavalent plutonium by incorporating, prior to bismuth phosphate precipitation, from 0.05 to 2.5 grams/ liter of zirconium phosphate, niobium oxide. and/or lanthanum fluoride is described. The plutonium remains in solution.
Index of refraction, density, and solubility of ammonium iodide solutions at high pressure.
Lamelas, F J
2013-03-07
An asymmetric moissanite anvil cell is used to study aqueous solutions of ammonium iodide at pressures up to 10 kbar. The index of refraction is measured using the rotating Fabry-Perot technique, with an accuracy of approximately 1%. The mass density and molar volume of the solutions are estimated using the measured index values, and the molar volume is used to predict the pressure dependence of the solubility. The solubility derived from the index of refraction measurements is shown to agree with that which is determined by direct observation of the onset of crystallization.
Nonidentity of Some Simian Virus 40-induced Enzymes with Tumor Antigen
Kit, Saul; Melnick, Joseph L.; Anken, Milton; Dubbs, Del Rose; de Torres, R. A.; Kitahara, Tsunehiro
1967-01-01
The complement-fixing tumor (T) antigen induced by simian virus 40 (SV40) has been prepared from SV40-infected cell cultures, from infected cell cultures treated at the time of infection with 1-β-d-arabinofuranosylcytosine (ara-C), and from SV40-transformed cells. Upon partial purification, the T antigen exhibited the following properties: it was tightly adsorbed by calcium phosphate gel, it was precipitated by acetic acid at pH 5 or by ammonium sulfate at about 20 to 32% saturation, and it had a molecular weight greater than 250,000, as estimated by Sephadex G-200 gel chromatography. In contrast, deoxycytidylate (dCMP) deaminase, thymidylate (dTMP) kinase, and thymidine (dT) kinase were less strongly bound to calcium phosphate and were not precipitated at pH 5; these enzymes also had much lower molecular weights than the T antigen, as did dihydrofolic (FH2) reductase. Furthermore, higher ammonium sulfate concentrations were required to precipitate dCMP deaminase, dTMP kinase, and FH2 reductase activities than to precipitate the T antigen. Another difference was that the T antigen was not stabilized, but dCMP deaminase, dTMP kinase, and dT kinase, were stabilized, respectively, by dCTP, dTMP, and dT or dTTP. Deoxyribonucleic acid (DNA) polymerase activity resembled the T antigen in adsorption to calcium phosphate, in precipitation by ammonium sulfate or at pH 5, and in the rate of inactivation when incubated at 38 C. However, the polymerase activity could be partly separated from the T antigen by Sephadex G-200 gel chromatography. The cell fraction containing partially purified T antigen also contained a soluble complement-fixing antigen (presumably a subunit of the viral capsid) which reacted with hyperimmune monkey sera. The latter antigen was present in very low titers or absent from cell extracts prepared from SV40-infected monkey kidney cell cultures which had been treated with ara-C at the time of infection, or from SV40-transformed mouse kidney (mKS) or hamster tumor (H-50) cells. The T antigen, however, was present in usual amounts in SV40-transformed cells or ara-C treated, infected cells. PMID:4316227
Miyaguchi, Hajime; Kuwayama, Kenji
2017-10-13
Zopiclone and its (S)-enantiomer (eszopiclone) are commonly prescribed for insomnia. Despite the high demand for enantioselective differentiation, the chiral analysis of zopiclone in hair has not been reported. In this study, a method for the enantioselective quantification of zopiclone in human hair was developed. The extraction medium and duration were optimized using real eszopiclone-positive hair samples. Specifically, micropulverized extraction with 3.0M ammonium phosphate buffer (pH 8.4) involving salting-out assisted liquid-liquid extraction with acetonitrile was utilized to minimize the degradation of zopiclone and for rapid and facile operation. On the other hand, recovery of the conventional solid-liquid extraction involved overnight soaking in 3.0M ammonium phosphate buffer (pH 8.4) was only 0.58±0.12% of the maximum recovery achieved by the present method due to the decomposition in the phosphate buffer. An excellent chiral separation (Rs=5.0) was achieved using a chiral stationary phase comprising cellulose tris(3,5-dichlorophenylcarbamate) and a volatile mobile phase of 10mM ammonium carbonate (pH 8.0)-acetonitrile (25:75, v/v). Detection was carried out using liquid chromatography/high resolution mass spectrometry (LC/HRMS) with electrospray ionization. A Q Exactive mass spectrometer equipped with a quadrupole-Orbitrap analyzer was used for detection. The concentration of 0.50pg/mg was defined as the lowest limit of quantification using 5mg of hair sample. Using the developed approach, the concentration of eszopiclone in hair after a single 2-mg dose was found to be 441pg/mg, which was higher than all the reported values regarding a single administration of zopiclone. After daily administration of racemic zopiclone (3.75mg/day), the concentrations of (R)-enantiomer and (S)-enantiomer in the black hair were 5.30-8.31ng/mg and 7.96-12.8ng/mg, respectively, and the concentration of the (S)-enantiomer was always higher than that of the (R)-enantiomer due to the enantioselective difference in the pharmacokinetics. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of solution conditions on deposition of calcium phosphate on titanium by NaOH-treatment
NASA Astrophysics Data System (ADS)
Feng, Q. L.; Cui, F. Z.; Wang, H.; Kim, T. N.; Kim, J. O.
2000-03-01
The present paper demonstrated a biomimetic method to coat calcium phosphate (Ca-P) on the surface of titanium induced by NaOH-treatment from a simple supersaturated hydroxyapatite solution (SHS). The influence of pH value and calcium ions concentration on the precipitation process was investigated. It is necessary for the solution to be supersaturated than the critical concentration of octacalcium phosphate (OCP) to get Ca-P coatings on titanium surface. In the precipitating process, it seems that amorphous calcium phosphate (ACP) precipitated first, then OCP, and finally hydroxyapatite (HA). The system was in continuous evolution and the phase transitions occurred in sequence.
Molecular recognition of organic ammonium ions in solution using synthetic receptors
Späth, Andreas
2010-01-01
Summary Ammonium ions are ubiquitous in chemistry and molecular biology. Considerable efforts have been undertaken to develop synthetic receptors for their selective molecular recognition. The type of host compounds for organic ammonium ion binding span a wide range from crown ethers to calixarenes to metal complexes. Typical intermolecular interactions are hydrogen bonds, electrostatic and cation–π interactions, hydrophobic interactions or reversible covalent bond formation. In this review we discuss the different classes of synthetic receptors for organic ammonium ion recognition and illustrate the scope and limitations of each class with selected examples from the recent literature. The molecular recognition of ammonium ions in amino acids is included and the enantioselective binding of chiral ammonium ions by synthetic receptors is also covered. In our conclusion we compare the strengths and weaknesses of the different types of ammonium ion receptors which may help to select the best approach for specific applications. PMID:20502608
Attri, Pankaj; Venkatesu, Pannuru; Hofman, T
2011-08-25
We report the synthesis and characterization of a series of an ammonium ionic liquids (ILs) containing acetate, dihydrogen phosphate, and hydrogen sulfate anions with a common cation. To characterize the thermophysical properties of these newly synthesized ILs with the highly polar solvent N,N-dimethylformamide (DMF), precise measurements such as densities (ρ) and ultrasonic sound velocities (u) over the whole composition range have been performed at atmospheric pressure and over wide temperature ranges (25-50 °C). The excess molar volume (V(E)) and the deviation in isentropic compressibilities (Δκ(s)) were predicted using these temperature dependence properties as a function of the concentration of ILs. The Redlich-Kister polynomial was used to correlate the results. The ILs investigated in the present study included trimethylammonium acetate [(CH(3))(3)NH][CH(3)COO] (TMAA), trimethylammonium dihydrogen phosphate [(CH(3))(3)NH][H(2)PO(4)] (TMAP), and trimethylammonium hydrogen sulfate [(CH(3))(3)NH][HSO(4)] (TMAS). The intermolecular interactions and structural effects were analyzed on the basis of the measured and the derived properties. In addition, the hydrogen bonding between ILs and DMF has been demonstrated using semiempirical calculations with help of Hyperchem 7. A qualitative analysis of the results is discussed in terms of the ion-dipole, ion-pair interactions, and hydrogen bonding between ILs and DMF molecules and their structural factors. The influence of the anion of the protic IL, namely, acetate (CH(3)COO), dihydrogen phosphate (H(2)PO(4)), and hydrogen sulfate (HSO(4)), on the thermophysical properties is also provided. © 2011 American Chemical Society
Vote, D J; Platter, W J; Tatum, J D; Schmidt, G R; Belk, K E; Smith, G C; Speer, N C
2000-04-01
Beef strip loins (46 U.S. Choice loins and 49 U.S. Select loins) were used to evaluate the potential for enhancing beef tenderness, juiciness, and flavor by injecting fresh cuts with solutions containing sodium tripolyphosphate, sodium lactate, and sodium chloride. One half of each loin served as an untreated control, and the other half was injected with either distilled water (110% of raw weight) or a solution containing phosphate/lactate/chloride solution (107.5, 110, 112.5, or 115% of raw weight). All phosphate/lactate/chloride solutions were formulated to produce injected product concentrations of .25% sodium tripolyphosphate, .5% sodium chloride, and 2.5% sodium lactate. Ten additional U.S. Select loins were injected to 110% of raw weight with a phosphate-only solution (final product concentration of .25% sodium tripolyphosphate) for comparison with Select loins injected to 110% with phosphate/lactate/chloride and with distilled water. Steaks from each control and treated loin section were cooked to two final internal temperatures (66 degrees C and 77 degrees C) for sensory panel evaluation and shear force measurement. Injection of subprimal cuts with phosphate/lactate/chloride solutions improved tenderness (P < .05), juiciness (P < .05), and cooked beef flavor (P < .10) of strip loin steaks and was especially effective for maintaining tenderness and juiciness of steaks cooked to the higher final internal temperature. Injection of Select loins with a solution containing only sodium tripolyphosphate was not effective for improving beef tenderness or juiciness and tended to impart off-flavors characterized by sensory panelists as soapy and sour. Injection of fresh cuts with phosphate/lactate/chloride solutions could assist the beef industry's efforts to improve product quality and consistency.
Solubility of glucose isomerase in ammonium sulphate solutions
NASA Astrophysics Data System (ADS)
Chayen, N.; Akins, J.; Campbell-Smith, S.; Blow, D. M.
1988-07-01
In order to quantify protein crystallization techniques, a method for measuring protein solubility in high salt concentration has been developed. It is based on a sensitive protein concentration assay, using binding to Coomassie blue dye. The protein concentration in a supernatant from which glucose isomerase is crystallising has been studied as a function of time. Equilibrium is established in 3-5 weeks, and the protein concentration remaining in solution is defined as the solubility of the protein. The solubility of glucose isomerase has been determined as a function of ammonium sulphate concentration; its variation with pH in 1.50M ammonium sulphate has also been studied. A remarkable dependence on pH over the range of 5.5 to 6.5 has been observed.
NASA Astrophysics Data System (ADS)
Capps, R.; Caffrey, J. M.; Hester, C.
2016-02-01
Seagrass meadows provide key ecosystem services including nursery and foraging grounds, storm and erosion buffers, biodiversity enhancers and global carbon and nutrient cycling. Nitrogen concentrations are often very low in coastal waters and sediments, which may limit primary productivity. Biological nitrogen fixation is a microbial process that converts dinitrogen to ammonium, which is readily taken up by seagrasses. In the oxygenated rhizospheres, diazotrophs provide the plant with ammonium and use root exudates as an energy source. Nitrogen fixation rates and nutrient concentrations differ between seagrass species and substrate types. Thalassia testudinum has a higher biomass and is a climax species than Halodule wrightii, which is a pioneer species. Nitrogen fixation rates are relatively consistent in Thalassia testudinum dominated sediments. However, it is relatively variable in sediments occupied by Halodule wrightii. Nitrogen fixation rates are higher in bare substrate compared to areas with Thalassia testudinum, which may be due to T. testudinum's greater efficiency in nutrient retention because it is a climax species. We hypothesize that seasonal shifts in nitrogen fixation will coincide with seasonal shifts in seagrass biomass due to higher nutrient requirements during peak growth and lower requirements during senescence and dormancy. The ratio of porewater ammonium to phosphate suggests that seagrass growth may be nitrogen limited as does nitrogen demand, estimated from gross primary productivity. Significant rates of ammonium oxidation in both surface and rhizosphere sediments contribute to this imbalance. Thus, nitrogen fixation may be critical in supporting plant growth.
Vasantha, T; Attri, Pankaj; Venkatesu, Pannuru; Devi, R S Rama
2012-10-04
Protein folding/unfolding is a fascinating study in the presence of cosolvents, which protect/disrupt the native structure of protein, respectively. The structure and stability of proteins and their functional groups may be modulated by the addition of cosolvents. Ionic liquids (ILs) are finding a vast array of applications as novel cosolvents for a wide variety of biochemical processes that include protein folding. Here, the systematic and quantitative apparent transfer free energies (ΔG'(tr)) of protein model compounds from water to ILs through solubility measurements as a function of IL concentration at 25 °C have been exploited to quantify and interpret biomolecular interactions between model compounds of glycine peptides (GPs) with ammonium based ILs. The investigated aqueous systems consist of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly(2)), triglycine (Gly(3)), tetraglycine (Gly(4)), and cyclic glycylglycine (c(GG)) in the presence of six ILs such as diethylammonium acetate (DEAA), diethylammonium hydrogen sulfate (DEAS), triethylammonium acetate (TEAA), triethylammonium hydrogen sulfate (TEAS), triethylammonium dihydrogen phosphate (TEAP), and trimethylammonium acetate (TMAA). We have observed positive values of ΔG'(tr) for GPs from water to ILs, indicating that interactions between ILs and GPs are unfavorable, which leads to stabilization of the structure of model protein compounds. Moreover, our experimental data ΔG'(tr) is used to obtain transfer free energies (Δg'(tr)) of the peptide backbone unit (or glycyl unit) (-CH(2)C═ONH-), which is the most numerous group in globular proteins, from water to IL solutions. To obtain the mechanism events of the ILs' role in enhancing the stability of the model compounds, we have further obtained m-values for GPs from solubility limits. These results explicitly elucidate that all alkyl ammonium ILs act as stabilizers for model compounds through the exclusion of ILs from model compounds of proteins and also reflect the effect of alkyl chain on the stability of protein model compounds.
NASA Astrophysics Data System (ADS)
Andhavarapu, A.; King, W.; Lindsay, A.; Byrns, B.; Knappe, D.; Fonteno, W.; Shannon, S.
2014-10-01
Plasma source generated nitrogen fertilizer is compared to conventional nitrogen fertilizers in water for plant growth. Root, shoot sizes, and weights are used to examine differences between plant treatment groups. With a simple coaxial structure creating a large-volume atmospheric glow discharge, a 162 MHz generator drives the air plasma. The VHF plasma source emits a steady state glow; the high drive frequency is believed to inhibit the glow-to-arc transition for non-thermal discharge generation. To create the plasma activated water (PAW) solutions used for plant treatment, the discharge is held over distilled water until a 100 ppm nitrate aqueous concentration is achieved. The discharge is used to incorporate nitrogen species into aqueous solution, which is used to fertilize radishes, marigolds, and tomatoes. In a four week experiment, these plants are watered with four different solutions: tap water, dissolved ammonium nitrate DI water, dissolved sodium nitrate DI water, and PAW. Ammonium nitrate solution has the same amount of total nitrogen as PAW; sodium nitrate solution has the same amount of nitrate as PAW. T-tests are used to determine statistical significance in plant group growth differences. PAW fertilization chemical mechanisms are presented.
Ammonium Nitrogen Removal from Urea Fertilizer Plant Wastewater via Struvite Crystal Production
NASA Astrophysics Data System (ADS)
Machdar, I.; Depari, S. D.; Ulfa, R.; Muhammad, S.; Hisbullah, A. B.; Safrul, W.
2018-05-01
Elimination of ammonium concentration from urea fertilizer plant wastewater through struvite crystal (NH4MgPO4.6H2O) formation by adding MgCl2, KH2PO4, and KOH were studied. This method of elimination has two benefits, namely, reducing ammonium nitrogen content in the wastewater, as well as production of a valuable material (struvite crystal). Struvite is known as a slow-release fertilizer and less soluble. This report presents the ammonium removal efficiencies during struvite formation. The growth of struvite production under different molar ratios of Mg2+:NH4 +:PO4 3- and solution pH is also discussed. To find the efficiencies and measure the growth rates, lab-scale experiments were conducted in a batch crystallizer-reactor. SEM, XRD, and FTIR observation were also applied to investigate the characteristics of struvite. The reactant molar ratios of Mg2+:NH4 +:PO4 3- of 1.2:1:1, 1:1:1.2, and 1:1:1 were evaluated. Each of the molar ratios was treated at the solution pH of 8, 9, and 10. It was found that, the highest ammonium removal efficiency was 94.7% at the molar ratio of 1.2:1:1 and pH of 9. Primarily, the growth rate of struvite formation complied with a first-order kinetic model. The rate constants (k1) were calculated to be 2.6, 4.3, and 5.0 h-1 for solution pH of 8, 9, and 10, respectively. The findings of the study provide suggestion for an alternative sustainable recovery of ammonium nitrogen content in a urea fertilizer plant effluent.
Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.
Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A
2014-10-21
Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability of the co-ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity.
Crutchik, D; Garrido, J M
2011-01-01
Struvite crystallization (MgNH(4)PO(4)·6H(2)O, MAP) could be an alternative for the sustainable and economical recovery of phosphorus from concentrated wastewater streams. Struvite precipitation is recommended for those wastewaters which have high orthophosphate concentration. However the presence of a cheap magnesium source is required in order to make the process feasible. For those wastewater treatment plants (WWTP) located near the seashore magnesium could be economically obtained using seawater. However seawater contains calcium ions that could interfere in the process, by promoting the precipitation of amorphous magnesium and calcium phosphates. Precipitates composition was affected by the NH(4)(+)/PO(4)(3-) molar ratio used. Struvite or magnesium and calcium phosphates were obtained when NH(4)(+)/PO(4)(3-) was fixed at 4.7 or 1.0, respectively. This study demonstrates that by manipulating the NH(4)(+)/PO(4)(3-) it is possible to obtain pure struvite crystals, instead of precipitates of amorphous magnesium and calcium phosphates. This was easily performed by using either raw or secondary treated wastewater with different ammonium concentrations.
Role of magnesium on the biomimetic deposition of calcium phosphate
NASA Astrophysics Data System (ADS)
Sarma, Bimal K.; Sarma, Bikash
2016-10-01
Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.
METHOD FOR DECONTAMINATION OF REACTOR SOLUTIONS
Maraman, W.J.; Baxman, H.R.; Baker, R.D.
1959-05-01
A process for U recovery from phosphate fuel solutions is described. To fuel solution drawn from the reactor is added Fe(NO/sub 3/)/sub 3/ which destroys the U complex and forms ferric phosphate complex. The UO/sub 2/(NO/sub 3/)/sub 2/ formed is extracted into TBP-kerosene in a countercurrent column. The TBP contalning UO/sub 2/(NO/sub 3/)/sub 2/ is further purified by an aqueous Al(NO/ sub 3/)/sub 3/ scrub solution. The pregnant solution then goes to an H/sub 3/PO/ sub 4/ stripping and kerosene washing column. The H/sub 3/PO/sub 4/--uranyl phosphate solution is separated at the bottom and boiled to remove HNO/sub 3/ then diluted to fuel solution make-up strength. (T.R.H.)
Cheng, Yu-Chia; Lobo, Raul F; Sandler, Stanley I; Lenhoff, Abraham M
2006-05-05
The kinetics and thermodynamics of lysozyme precipitation in ammonium sulfate solutions at pH 4 and 8 and room temperature were studied. X-ray powder diffraction (XRD) was used to characterize the structure of lysozyme precipitates. It was found that, if sufficient time was allowed, microcrystals developed following an induction period after initial lysozyme precipitation, even up to ionic strengths of 8 m and at acidic pH, where lysozyme is refractory to crystallization in ammonium sulfate. The full set of precipitation and crystallization data allowed construction of a phase diagram of lysozyme, showing the ammonium sulfate dependence. It suggests that precipitation may reflect a frustrated metastable liquid-liquid phase separation, which would allow this process to be understood within the framework of the generic phase diagram for proteins. The results also demonstrate that XRD, more frequently used for characterizing inorganic and organic polycrystalline materials, is useful both in characterizing the presence of crystals in the dense phase and in verifying the crystal form of proteins.
Oliveira, Sara M; Lopes, Teresa I M S; Tóth, Ildikó V; Rangel, António O S S
2007-09-26
A flow system with a multi-channel peristaltic pump placed before the solenoid valves is proposed to overcome some limitations attributed to multi-commuted flow injection systems: the negative pressure can lead to the formation of unwanted air bubbles and limits the use of devices for separation processes (gas diffusion, dialysis or ion-exchange). The proposed approach was applied to the colorimetric determination of ammonium nitrogen. In alkaline medium, ammonium is converted into ammonia, which diffuses over the membrane, causing a pH change and subsequently a colour change in the acceptor stream (bromothymol blue solution). The system allowed the re-circulation of the acceptor solution and was applied to ammonium determination in surface and tap water, providing relative standard deviations lower than 1.5%. A stopped flow approach in the acceptor stream was adopted to attain a low quantification limit (42 microgL(-1)) and a linear dynamic range of 50-1000 microgL(-1) with a determination rate of 20 h(-1).
Condensation Reactions and Formation of Amides, Esters, and Nitriles Under Hydrothermal Conditions
NASA Astrophysics Data System (ADS)
Rushdi, Ahmed I.; Simoneit, Bernd R. T.
2004-06-01
Hydrothermal pyrolysis experiments were performed to assess condensation (dehydration) reactions to amide, ester, and nitrile functionalities from lipid precursors. Beside product formation, organic compound alteration and stability were also evaluated. Mixtures of nonadecanoic acid, hexadecanedioic acid, or hexadecanamide with water, ammonium bicarbonate, and oxalic acid were heated at 300°C for 72 h. In addition, mixtures of ammonium bicarbonate and oxalic acid solutions were used to test the abiotic formation of organic nitrogen compounds at the same temperature. The resulting products were condensation compounds such as amides, nitriles, and minor quantities of N-methylalkyl amides, alkanols, and esters. Mixtures of alkyl amide in water or oxalic acid yielded mainly hydrolysis and dehydration products, and with ammonium bicarbonate and oxalic acid the yield of condensation products was enhanced. The synthesis experiments with oxalic acid and ammonium bicarbonate solutions yielded homologous series of alkyl amides, alkyl amines, alkanes, and alkanoic acids, all with no carbon number predominances. These organic nitrogen compounds are stable and survive under the elevated temperatures of hydrothermal fluids.
Nguyen, Minh Dong; Risgaard-Petersen, Nils; Sørensen, Jan; Brandt, Kristian K
2011-02-01
Knowledge on bioavailable ammonium sensu strictu (i.e., immediately available for cellular uptake) in soil is required to understand nutrient uptake processes in microorganisms and thus of vital importance for plant production. We here present a novel ammonium biosensor approach based on the lithoautotrophic ammonia-oxidizing bacterium Nitrosomonas europaea transformed with a luxAB sensor plasmid. Bioluminescence-based ammonium detection was achieved within 10 min with a quantification limit in liquid samples of ∼20 μM and a linear response range up to 400 μM. Biosensor and conventional chemical quantification of ammonium in soil solutions agreed well across a range of sample and assay conditions. The biosensor was subsequently applied for a solid phase-contact assay allowing for direct interaction of biosensor cells with soil particle-associated (i.e., exchangeable plus fixed) ammonium. The assay successfully quantified bioavailable ammonium even in unfertilized soil and demonstrated markedly higher ratios of bioavailable ammonium to water- or 2 M KCl-exchangeable ammonium in anoxic soil than in corresponding oxic soil. Particle-associated ammonium contributed by at least 74% and 93% of the total bioavailable pool in oxic and anoxic soil, respectively. The N. europaea biosensor should have broad relevance for environmental monitoring of bioavailable ammonium and processes depending on ammonium bioavailability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mechelynck, Ph.
1958-07-15
After an examination of the different processes for the treatment of uranium minerals, it is concluded that the extraction of uranium by ion exchange is not applicable to hydrochloric acid solutions of phosphates. A sulfuric or phosphoric solution can be used. For solvent extraction of uranium, sulfuric or phosphoric solutions are the best, but hydrochloric solutions can be used. The cost of the solvents used would determine the cost of the operation. It is necessary, in the case of liquid-liquid extraction, to filter or decant the solution before extraction. (tr-auth)
Ponce de León, Claudia A; DeNicola, Katie; Montes Bayón, Maria; Caruso, Joseph A
2003-06-01
Different techniques have been employed in order to evaluate the most efficient procedure for the extraction of selenium from soil as required for speciation. Selenium contaminated sediments from Stewart Lake Wetland, California were used. A strong acid mineralization of the samples gives quantitative total selenium, which is then used to estimate recoveries for the milder extraction methods. The different extraction methodologies involve the sequential use of water, buffer (phosphate, pH 7) and either acid solution (e.g. HNO3 or HCl) or basic solutions (e.g. ammonium acetate, NaOH or TMAH). Pyrophosphate extraction was also evaluated and showed that selenium was not associated with humic acids. The extractants were subsequently analyzed by size exclusion chromatography (SEC) with UV (254 and 400 nm) and on-line ICP-MS detection; anion exchange chromatography, and ion-pair reversed phase chromatography with ICP-MS detection. For sequential extractions the extraction efficiencies showed that the basic extractions were more efficient than the acidic. The difference between the acidic and the basic extraction efficiency is carried to the sulfite extraction, suggesting that whatever is not extracted by the acid is subsequently extracted by the sulfite. The species identified with the different chromatographies were selenate, selenite, elemental selenium and some organic selenium.
Reduction of Mo(VI) by the bacterium Serratia sp. strain DRY5.
Rahman, M F A; Shukor, M Y; Suhaili, Z; Mustafa, S; Shamaan, N A; Syed, M A
2009-01-01
The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.
Chen, Zhu-hong; Chen, Neng-wang; Wu, Yin-qi; Mo, Qiong-li; Zhou, Xing-peng; Lu, Ting; Tian, Yun
2014-09-01
The key processes and fluxes of nutrients (N and P) and gaseous N (N2 and N2O) across the sediment-water interface in a river reservoir (Xipi) of the Jiulong River watershed in southeast China were studied. Intact core sediment incubation of nutrients exchange, in-situ observation and lab incubation of excess dissolved N2 and N2O (products of nitrification, denitrification and Anammox), and determination of physiochemical and microbe parameters were carried out in 2013 for three representative sites along the lacustrine zone of the reservoir. Results showed that ammonium and phosphate were generally released from sediment to overlying water [with averaged fluxes of N (479.8 ± 675.4) mg. (m2. d)-1 and P (4. 56 ± 0.54) mg. (m2 d) -1] , while nitrate and nitrite diffused into the sediment. Flood events in the wet season could introduce a large amount of particulate organic matter that would be trapped by the dam reservoir, resulting in the high release fluxes of ammonium and phosphate observed in the following low-flow season. No clear spatial variation of sediment nutrient release was found in the lacustrine zone of the reservoir. Gaseous N release was dominated by excess dissolved N2 (98% of total), and the N2 flux from sediment was (15.8 ± 12. 5) mg (m2. d) -1. There was a longitudinal and vertical variation of excess dissolved N2, reflecting the combined results of denitrification and Anammox occurring in anoxic sediment and fluvial transport. Nitrification mainly occurred in the lower lacustrine zone, and the enrichment of N2O was likely regulated by the ratio of ammonium to DIN in water.
Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae
NASA Astrophysics Data System (ADS)
Jiang, MingYu; Ohnuki, Toshihiko; Tanaka, Kazuya; Kozai, Naofumi; Kamiishi, Eigo; Utsunomiya, Satoshi
2012-09-01
In this study, we have investigated the post-adsorption process of ytterbium (Yb) phosphate nano-particle formation by Saccharomyces cerevisiae (yeast). The yeast grown in P-rich medium were exposed to 1.44 × 10-4 mol/L Yb(III) solution for 2-120 h, and 2 months at 25 ± 1 °C at an initial pH of 3, 4, or 5, respectively. Ytterbium concentrations in solutions decreased as a function of exposure time. Field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (FESEM), transmission electron microscopy (TEM), and synchrotron-based extended X-ray absorption fine structure (EXAFS) analyses revealed that nano-sized blocky Yb phosphate with an amorphous phase formed on the yeast cells surfaces in the solutions with Yb. These nano-sized precipitates that formed on the cell surfaces remained stable even after 2 months of exposure at 25 ± 1 °C around neutral pHs. The EXAFS data revealed that the chemical state of the accumulated Yb on the cell surfaces changed from the adsorption on both phosphate and carboxyl sites at 30 min to Yb phosphate precipitates at 5 days, indicating the Yb-phosphate precipitation as a major post-adsorption process. In addition, the precipitation of Yb phosphate occurred on cell surfaces during 7 days of exposure in Yb-free solution after 2 h of exposure (short-term Yb adsorption) in Yb solution. These results suggest that the released P from the inside of yeast cells reacted with adsorbed Yb on cell surfaces, resulting in the formation of Yb precipitates, even though no P was added to the exposure solution. In an abiotic system, the EXAFS data showed that the speciation of sorbed Yb on the reference materials, carboxymethyl cellulose and Ln resin, did not change even when the Yb was exposed to P solution, without forming Yb phosphate precipitates. This result strongly suggests that the cell surface of the yeast plays an important role in the Yb-phosphate precipitation process, not only as a carrier of the functional groups but also as a substrate inducing the nucleation of phosphate nanoparticles. Stable nano-sized Yb phosphate precipitates formed on yeast cell surfaces in the present study, which implies that this post-adsorption nano-particle formation process caused by microbial cells should be one of the important processes governing the long-term migration of heavy rare earth elements and presumably trivalent actinides in geological repository.
Can earthworms survive fire retardants?
Beyer, W.N.; Olson, A.
1996-01-01
Most common fire retardants are foams or are similar to common agricultural fertilizers, such as ammonium sulfate and ammonium phosphate. Although fire retardants are widely applied to soils, we lack basic information about their toxicities to soil organisms. We measured the toxicity of five fire retardants (Firetrol LCG-R, Firetrol GTS-R, Silv-Ex Foam Concentrate, Phos-chek D-75, and Phos-chek WD-881) to earthworms using the pesticide toxicity test developed for earthworms by the European Economic Community. None was lethal at 1,000 ppm in the soil, which was suggested as a relatively high exposure under normal applications. We concluded that the fire retardants tested are relatively nontoxic to soil organisms compared with other environmental chemicals and that they probably do not reduce earthworm populations when applied under usual firefighting conditions.
Kawasaki, Kosei; Kamagata, Yoichi
2017-11-01
Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H 2 O 2 ) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659-7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H 2 O 2 formation in agar. The H 2 O 2 formation was pH dependent: H 2 O 2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H 2 O 2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H 2 O 2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H 2 O 2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H 2 O 2 from PT medium, these observations indicate that although H 2 O 2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H 2 O 2 levels in media prepared by autoclaving agar and phosphate buffer together (PT medium). In this study, we investigated the factors affecting H 2 O 2 formation from agar. H 2 O 2 formation is pH dependent, and ammonium ions promote this phosphate-catalyzed H 2 O 2 formation. Amendment of catalase or pyruvate, a well-known H 2 O 2 -scavenging agent, effectively eliminated H 2 O 2 Yet results suggest that growth-inhibiting factor(s) that cannot be eliminated by pyruvate (but can be by catalase) are present in PT medium. Copyright © 2017 American Society for Microbiology.
Kamagata, Yoichi
2017-01-01
ABSTRACT Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H2O2) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659–7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H2O2 formation in agar. The H2O2 formation was pH dependent: H2O2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H2O2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H2O2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H2O2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H2O2 from PT medium, these observations indicate that although H2O2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H2O2 levels in media prepared by autoclaving agar and phosphate buffer together (PT medium). In this study, we investigated the factors affecting H2O2 formation from agar. H2O2 formation is pH dependent, and ammonium ions promote this phosphate-catalyzed H2O2 formation. Amendment of catalase or pyruvate, a well-known H2O2-scavenging agent, effectively eliminated H2O2. Yet results suggest that growth-inhibiting factor(s) that cannot be eliminated by pyruvate (but can be by catalase) are present in PT medium. PMID:28821549
Extracting lignins from mill wastes
NASA Technical Reports Server (NTRS)
Humphrey, M. F.
1977-01-01
Addition of quaternary ammonium compound and activated charcoal to pulp and mill wastes precipitates lignins in sludge mixture. Methanol dissolves lignins for separation from resulting slurry. Mineral acid reprecipitates lignins in filtered solution. Quaternary ammonium compound, activated charcoal, as well as water may be recovered and recycled from this process.
Yuan, Haiping; Xu, Changwen; Zhu, Nanwen
2014-10-01
Magnesium ammonium phosphate (MAP) precipitation was introduced to remove ammonium nitrogen (NH4(+)-N) in autothermal thermophilic aerobic digestion (ATAD) in this study by addition of MgCl2 · 6H2O and NaH2PO4 · 2H2O. The results showed that the lowest NH4(+)-N concentration was found in the D2 digester after 2nd day dosing treatment and 38.12% of VS removal efficiency was obtained after 15 days ATAD treatment. Sludge stabilization was achieved in the D2 digester 6 days earlier than the non-dosing digester when 8.7 g/L MgCl2 · 6H2O and 6.7 g/L NaH2PO4 · 2H2O were added into the digester. Furthermore, the highest VS removal efficiency of 40.03% was observed after 21 days digestion in D2 digesters. Therefore, MAP precipitation was an effective method for the ammonium nitrogen disinhibition when 8.7 g/L MgCl2 · 6H2O and 6.7 g/L NaH2PO4 · 2H2O were added into on the 2nd day after the digester startup. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vaginal Calculus in a Woman With Mixed Urinary Incontinence and Vaginal Mesh Exposure.
Winkelman, William D; Rabban, Joseph T; Korn, Abner P
2016-01-01
Vaginal calculi are extremely rare and are most commonly encountered in the setting of an urethrovaginal or vesicovaginal fistula. We present a case of a 72-year-old woman with mixed urinary incontinence and vaginal mesh exposure incidentally found to have a large vaginal calculus. We removed the calculus surgically and analyzed the components. Results demonstrated the presence of ammonium-magnesium phosphate hexahydrate and carbonate apatite.
NASA Technical Reports Server (NTRS)
1971-01-01
A study of the effect of pollutants on the sea nettle population of Chesapeake Bay was conducted. The effects of pollutants on the polyp stage of the nettle were stressed. Methods of detecting adult sea nettles by remote sensing are discussed. The effects of phosphate, nitrate, ammonium, and combinations of these pollutants were investigated.
A Study of Intumescent Reaction Mechanisms.
1984-08-01
Neoprene Fibers Considered Asbestos Metal Fiber (Steel Wool) Kevlar Mica Glass Fiber Mineral Wool Graphite Refrasil -7- • . . . ’ .. I , "’ - . NADC-84 170...Kevlar o Flexible Epoxy e Metal Fiber (Steel Wool) * Mineral Wool Fillers * Borax * Sodium Metasilicate * Ammonium Phosphate o Aluminum Sulfate...reference tables in Section 2.0] . The mineral wool appears to be the least effec- tive of the five fibers. To optimize thermal performance for a set of
Wang, Shao-Yang; Li, Yi-Qing; Li, Teng; Yang, Hang-Yu; Ren, Jie; Zhang, Bo-Lin; Zhu, Bao-Qing
2016-12-29
A nitrogen deficiency always causes bog bilberry syrup wine to have a poor sensory feature. This study investigated the effect of nitrogen source addition on volatile compounds during bog bilberry syrup wine fermentation. The syrup was supplemented with 60, 90, 120 or 150 mg/L dibasic ammonium phosphate (DAP) before fermentation. Results showed that an increase of DAP amounts accelerated fermentation rate, increased alcohol content, and decreased sugar level. Total phenol and total flavonoid content were also enhanced with the increase of DAP amounts. A total of 91 volatile compounds were detected in the wine and their concentrations were significantly enhanced with the increase of DAP. Ethyl acetate, isoamyl acetate, phenethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, isobutanol, isoamyl alcohol, levo -2,3-butanediol, 2-phenylethanol, meso -2,3-butanediol, isobutyric acid, hexanoic acid, and octanoic acid exhibited a significant increase of their odor activity value (OAV) with the increase of DAP amounts. Bog bilberry syrup wine possessed fruity, fatty, and caramel flavors as its major aroma, whereas a balsamic note was the least present. The increase of DAP amounts significantly improved the global aroma attributes, thereby indicating that DAP supplementation could promote wine fermentation performance and enhance the sensory quality of bog bilberry syrup wine.
Macadam, Xana Melissa Belastegui; del Prado, Agustin; Merino, Pilar; Estavillo, José María; Pinto, Miriam; González-Murua, Carmen
2003-12-01
The application of nitrogen fertilisers leads to different ecological problems such as nitrate leaching and the release of nitrogenous gases. N2O is a gas involved in global warming, therefore, agricultural soils can be regarded as a source of global warming. Soil N2O production comes from both the nitrification and denitrification processes. From an ecological viewpoint, using nitrification inhibitors with ammonium based fertilisers may be a potential management strategy to lower the fluxes of N2O, thus decreasing its undesirable effect. In this study, the nitrification inhibitors (NIs) dicyandiamide (DCD) and 3,4-dimethyl pyrazole phosphate (DMPP) have been evaluated as management tools to mitigate N2O emissions from mineral fertilisation and slurry application in grassland systems (experiments 1 and 2), and to assess the phytotoxic effect of these inhibitors per se on clover (experiment 3). Both nitrification inhibitors acted in maintaining soil nitrogen (N) in ammonium form, decreasing cumulative N2O emissions. DCD, but not DMPP, produced phytotoxic effects and yield reduction in white clover. A nutrient imbalance, which led to a senescence process visually observed as chlorosis and necrosis at the border of the leaves, was noted.
Influence of phosphate and solution pH on the mobility of ZnO nanoparticles in saturated sand.
Li, Lingxiangyu; Schuster, Michael
2014-02-15
The mobility of nanoparticles (NPs) strongly depends on the chemical characterization of the environmental medium. However, the influence of phosphate on NPs mobility was ignored by scientists despite the serious phosphate contamination in natural environments. Hence, the influence of phosphate and solution pH on the mobility of zinc oxide nanoparticles (ZnO-NPs) was investigated in water-saturated sand representative of groundwater aquifers, which encompassed a range of P/Zn molar ratios (P/Zn: 0-4) and pH (4.8-10.0). The transport of ZnO-NPs was dramatically enhanced in the presence of phosphate, even at a low P/Zn molar ratio namely 0.25, and the retention of ZnO-NPs in the saturated sand decreased with increasing P/Zn molar ratio. Moreover, attachment efficiencies (α) and deposition rates (kd) of ZnO-NPs rapidly decreased with increasing P/Zn molar ratio. In contrast, the solution pH had negligible effects on ZnO-NP transport behavior under phosphate-abundant condition (P/Zn: 4). The distinct effects may be explained by the energy interaction between ZnO-NPs and sand surface under different conditions. Interestingly, under phosphate-abundant condition (P/Zn: 4), solution pH could strongly affect the transport of Zn(2+) in the water-saturated sand. Overall, this study outlines the importance of taking account of phosphate into risk assessment of NPs in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.
Ammonium sensing in aqueous solutions with plastic optical fiber modified by molecular imprinting
NASA Astrophysics Data System (ADS)
Sequeira, F.; Duarte, D.; Rudnitskaya, A.; Gomes, M. T. S. R.; Nogueira, R.; Bilro, L.
2016-05-01
We report the development of a low cost plastic optical fibre (POF) sensor for ammonium detection using molecularly imprinted polymers (MIP's). The cladding of a 1 mm diameter PMMA fiber is removed, in which is grafted a molecular imprinted polymer (MIP), by radical polymerization with thermal initiation, that act as a selective sensing layer. For the polymerization, 2,2'-Azobis(2-methylpropionamidine)dihydrochloride (AAPH) is used as initiator, methacrylic acid (MAA) as a monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linker, ammonium chloride (NH4Cl) as a template and 30% of ethanol in water as a solvent. The sensing method consists of an intensity based scheme. The response to different concentrations of ammonium solutions in water has been evaluated at room temperature. Solutions with (0 - 0.6) M concentration, with the corresponding refractive indexes varying between 1.3325 - 1.3387, at 25°C were used. The response of the fiber with the original cladding, and after cladding removal has been monitored and compared to the response given by the developed sensor. The response is very fast, less than 1 minute and reversible, which allows the continuum use of the sensor. Further developments are focused in optimization of MIP grafting procedure and sensor performance, in order to increase sensitivity.
Barbaroux, R; Plasari, E; Mercier, G; Simonnot, M O; Morel, J L; Blais, J F
2012-04-15
The extraction of nickel (Ni) from ultramafic soils by phytomining can be achieved using Alyssum murale cultures. This study presents a new process for the valorization of Ni accumulated by this plant through the production of a Ni ammonium disulfate salt (Ni(NH(4))(2)(SO(4))(2).6H(2)O). The process comprises an initial leaching of the ashes of A. murale with a sulphuric acid solution (1.9 M H(2)SO(4), T=95 °C, t=240 min, TS=150 g ash L(-1)), producing a leachate rich in Ni (10.2 g Ni L(-1); 96% Ni solubilisation), Mg, P, K, Fe, Ca and Al. The pH of the acid leachate is increased to 5.0 with NaOH (5M), followed by an evaporation step which produced a purified solution rich in Ni (21.3 g NiL(-1)) and an iron hydroxide precipitate. The cold crystallization (T=2 °C, t=6h) of this solution by the stoichiometric addition (× 1.2) of ammonium sulfate generates a Ni ammonium disulfate salt, containing 13.2% Ni, that is potentially valuable to industry. Copyright © 2012 Elsevier B.V. All rights reserved.
Prebiotic condensation reactions using cyanamide
NASA Technical Reports Server (NTRS)
Sherwood, E.; Nooner, D. W.; Eichberg, J.; Epps, D. E.; Oro, J.
1978-01-01
Condensation reactions in cyanamide, 4-amino-5-imidazole-carboxamide and cyanamide, imidazole systems under dehydrating conditions at moderate temperatures (60 to 100 deg C) were investigated. The cyanamide, imidazole system was used for synthesis of palmitoylglycerols from ammonium palmitate and glycerol. With the addition of deoxythymidine to the former system, P1, P2-dideoxythymidine 5 prime-phosphate was obtained; the same cyanamide, 4-amino-5-imidazole-carboxamide system was used to synthesize deoxythymidine oligonucleotides using deoxythymidine 5 prime-phosphate and deoxythymidine 5 prime-triphosphate, and peptides using glycine, phenylalanine or isoleucine with adenosine 5 prime-triphosphate. The pH requirements for these reactions make their prebiotic significance questionable; however, it is conceivable that they could occur in stable pockets of low interlayer acidity in a clay such as montmorillonite.
Brault, James P; Friesen, Jon A
2016-10-01
The cytidylyltransferases are a family of enzymes that utilize cytidine 5'-triphosphate (CTP) to synthesize molecules that are typically precursors to membrane phospholipids. The most extensively studied cytidylyltransferase is CTP:phosphocholine cytidylyltransferase (CCT), which catalyzes conversion of phosphocholine and CTP to cytidine diphosphocholine (CDP-choline), a step critical for synthesis of the membrane phospholipid phosphatidylcholine (PC). The current method used to determine catalytic activity of CCT measures production of radiolabeled CDP-choline from (14)C-labeled phosphocholine. The goal of this research was to develop a CCT enzyme assay that employed separation of non-radioactive CDP-choline from CTP. A C18 reverse phase column with a mobile phase of 0.1 M ammonium bicarbonate (98%) and acetonitrile (2%) (pH 7.4) resulted in separation of solutions of the substrate CTP from the product CDP-choline. A previously characterized truncated version of rat CCTα (denoted CCTα236) was used to test the HPLC enzyme assay by measuring CDP-choline product formation. The Vmax for CCTα236 was 3850 nmol/min/mg and K0.5 values for CTP and phosphocholine were 4.07 mM and 2.49 mM, respectively. The HPLC method was applied to glycerol 3-phosphate cytidylyltransferase (GCT) and CTP:2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase synthetase (CMS), members of the cytidylyltransferase family that produce CDP-glycerol and CDP-methylerythritol, respectively. Copyright © 2016 Elsevier Inc. All rights reserved.
Hutnik, Nina; Kozik, Anna; Mazienczuk, Agata; Piotrowski, Krzysztof; Wierzbowska, Boguslawa; Matynia, Andrzej
2013-07-01
Continuous DT MSMPR (Draft Tube Mixed Suspension Mixed Product Removal) crystallizer was provided with typical wastewater from phosphorus mineral fertilizers industry (pH < 4, 0.445 mass % of PO4(3-), inorganic impurities presence), dissolved substrates (magnesium and ammonium chlorides) and solution alkalising the environment of struvite MgNH4PO4·6H2O reaction crystallization process. Research ran in constant temperature 298 K assuming stoichiometric proportions of substrates or 20% excess of magnesium ions. Influence of pH (8.5-10) and mean residence time (900-3600 s) on product size distribution, its chemical composition, crystals shape, size-homogeneity and process kinetics was identified. Crystals of mean size ca. 25-37 μm and homogeneity CV 70-83% were produced. The largest crystals, of acceptable homogeneity, were produced using 20% excess of magnesium ions, pH 9 and mean residence time 3600 s. Under these conditions nucleation rate did not exceed 9 × 10(7) 1/(s m(3)) according to SIG (Size Independent Growth) MSMPR kinetic model. Linear crystal growth rate was 4.27 × 10(-9) m/s. Excess of magnesium ions influenced struvite reaction crystallization process yield advantageously. Concentration of phosphate(V) ions decreased from 0.445 to 9.2 × 10(-4) mass %. This can be regarded as a very good process result. In product crystals, besides main component - struvite, all impurities from wastewater were detected analytically. Copyright © 2013 Elsevier Ltd. All rights reserved.
Response of non-added solutes during nutrient addition experiments in streams
NASA Astrophysics Data System (ADS)
Rodriguez-Cardona, B.; Wymore, A.; Koenig, L.; Coble, A. A.; McDowell, W. H.
2015-12-01
Nutrient addition experiments, such as Tracer Additions for Spiraling Curve Characterization (TASCC), have become widely popular as a means to study nutrient uptake dynamics in stream ecosystems. However, the impact of these additions on ambient concentrations of non-added solutes is often overlooked. TASCC addition experiments are ideal for assessing interactions among solutes because it allows for the characterization of multiple solute concentrations across a broad range of added nutrient concentrations. TASCC additions also require the addition of a conservative tracer (NaCl) to track changes in conductivity during the experimental manipulation. Despite its use as a conservative tracer, chloride (Cl) and its associated sodium (Na) might change the concentrations of other ions and non-added nutrients through ion exchange or other processes. Similarly, additions of biologically active solutes might change the concentrations of other non-added solutes. These methodological issues in nutrient addition experiments have been poorly addressed in the literature. Here we examine the response of non-added solutes to pulse additions (i.e. TASCC) of NaCl plus nitrate (NO3-), ammonium, and phosphate across biomes including temperate and tropical forests, and arctic taiga. Preliminary results demonstrate that non-added solutes respond to changes in the concentration of these added nutrients. For example, concentrations of dissolved organic nitrogen (DON) in suburban headwater streams of New Hampshire both increase and decrease in response to NO3- additions, apparently due to biotic processes. Similarly, cations such as potassium, magnesium, and calcium also increase during TASCC experiments, likely due to cation exchange processes associated with Na addition. The response of non-added solutes to short-term pulses of added nutrients and tracers needs to be carefully assessed to ensure that nutrient uptake metrics are accurate, and to detect biotic interactions that may provide insights into fundamental aspects of stream nutrient cycling.
METHOD OF REMOVING STRONTIUM IONS
Rhodes, D.W.; McHenry, J.R.; Ames, L.L. Jr.
1962-05-01
A method is given for removing trace amounts of Sr/sup 90/ from solutions. Phosphate ion is added to the solution and it is then brought into contact with a solid salt such as calcium carbonate which will react methathetically with the phosphate ion to form a salt such as calcium phosphate. During this reaction, strontium will be absorbed to a high degree within the newly formed lattice. (AEC)
The interaction of zinc oxide-based dental cements with aqueous solutions of potassium fluoride.
Pawluk, K; Booth, S E; Coleman, N J; Nicholson, J W
2008-09-01
The ability of zinc oxide-based dental cements (zinc phosphate and zinc polycarboxylate) to take up fluoride from aqueous solution has been studied. Only zinc phosphate cement was found to take up any measurable fluoride after 5 h exposure to the solutions. The zinc oxide filler of the zinc phosphate also failed to take up fluoride from solution. The key interaction for this uptake was thus shown to involve the phosphate groups of the set cement. However, whether this took the form of phosphate/fluoride exchange, or the formation of oxyfluoro-phosphate groups was not clear. Fluoride uptake followed radicaltime kinetics for about 2 h in some cases, but was generally better modelled by the Elovich equation, dq(t)/dt = alpha exp(-betaq(t)). Values for alpha varied from 3.80 to 2.48 x 10(4), and for beta from 7.19 x 10(-3) to 0.1946, though only beta showed any sort of trend, becoming smaller with increasing fluoride concentration. Fluoride was released from the zinc phosphate cements in processes that were diffusion based up to M(t)/M(infinity) of about 0.4. No further release occurred when specimens were placed in fresh volumes of deionised water. Only a fraction of the fluoride taken up was re-released, demonstrating that most of the fluoride taken up becomes irreversibly bound within the cement.
Seaborg, G.T.; Thompson, S.G.
1960-08-23
A process is given for isolating plutonium present in the tetravalent state in an aqueous solution together with fission products. First, the plutonium and fission products are coprecipitated on a bismuth phosphate carrier. The precipitate obtained is dissolved, and the plutonium in the solution is oxidized to the hexavalent state (with ceric nitrate, potassium dichromate, Pb/ sub 3/O/sub 4/, sodium bismuthate and/or potassium dichromate). Thereafter a carrier for fission products is added (bismuth phosphate, lanthanum fluoride, ceric phosphate, bismuth oxalate, thorium iodate, or thorium oxalate), and the fission-product precipitation can be repeated with one other of these carriers. After removal of the fission-product-containing precipitate or precipitates. the plutonium in the supernatant is reduced to the tetravalent state (with sulfur dioxide, hydrogen peroxide. or sodium nitrate), and a carrier for tetravalent plutonium is added (lanthanum fluoride, lanthanum hydroxide, lanthanum phosphate, ceric phosphate, thorium iodate, thorium oxalate, bismuth oxalate, or niobium pentoxide). The plutonium-containing precipitate is then dissolved in a relatively small volume of liquid so as to obtain a concentrated solution. Prior to dissolution, the bismuth phosphate precipitates first formed can be metathesized with a mixture of sodium hydroxide and potassium carbonate and plutonium-containing lanthanum fluorides with alkali-metal hydroxide. In the solutions formed from a plutonium-containing lanthanum fluoride carrier the plutonium can be selectively precipitated with a peroxide after the pH was adjusted preferably to a value of between 1 and 2. Various combinations of second, third, and fourth carriers are discussed.
Fomina, Marina; Bowen, Andrew D; Charnock, John M; Podgorsky, Valentin S; Gadd, Geoffrey M
2017-03-01
This work elucidates spatio-temporal aspects of the biogeochemical transformation of copper mobilized from malachite (Cu 2 (CO 3 )(OH) 2 ) and bioaccumulated within Aspergillus niger colonies when grown on different inorganic nitrogen sources. It was shown that the use of either ammonium or nitrate determined how copper was distributed within the colony and its microenvironment and the copper oxidation state and succession of copper coordinating ligands within the biomass. Nitrate-grown colonies yielded ∼1.7× more biomass, bioaccumulated ∼7× less copper, excreted ∼1.9× more oxalate and produced ∼1.75× less water-soluble copper in the medium in contrast to ammonium-grown colonies. Microfocus X-ray absorption spectroscopy revealed that as the mycelium matured, bioaccumulated copper was transformed from less stable and more toxic Cu(I) into less toxic Cu(II) which was coordinated predominantly by phosphate/malate ligands. With time, a shift to oxalate coordination of bioaccumulated copper occurred in the central older region of ammonium-grown colonies. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Tsai, Suh-Jen Jane; Shiue, Chia-Chann; Chang, Shiow-Ing
1997-07-01
The analytical characteristics of copper in nickel-base alloys have been investigated with electrothermal atomic absorption spectrometry. Deuterium background correction was employed. The effects of various chemical modifiers on the analysis of copper were investigated. Organic modifiers which included 2-(5-bromo-2-pyridylazo)-5-(diethylamino-phenol) (Br-PADAP), ammonium citrate, 1-(2-pyridylazo)-naphthol, 4-(2-pyridylazo)resorcinol, ethylenediaminetetraacetic acid and Triton X-100 were studied. Inorganic modifiers palladium nitrate, magnesium nitrate, aluminum chloride, ammonium dihydrogen phosphate, hydrogen peroxide and potassium nitrate were also applied in this work. In addition, zirconium hydroxide and ammonium hydroxide precipitation methods have also been studied. Interference effects were effectively reduced with Br-PADAP modifier. Aqueous standards were used to construct the calibration curves. The detection limit was 1.9 pg. Standard reference materials of nickel-base alloys were used to evaluate the accuracy of the proposed method. The copper contents determined with the proposed method agreed closely with the certified values of the reference materials. The recoveries were within the range 90-100% with relative standard deviation of less than 10%. Good precision was obtained.
Nucleoside phosphorylation in amide solutions
NASA Technical Reports Server (NTRS)
Schoffstall, A. M.; Kokko, B.
1978-01-01
The paper deals with phosphorylation in possible prebiotic nonaqueous solvents. To this end, phosphorylation of nucleosides using inorganic phosphates in amide solutions is studied at room and elevated temperatures. Reaction proceeds most readily in formamide and N-methylformamide. Products obtained at elevated temperature are nucleotides, nucleoside 2',3'-cyclic phosphates, and when the phosphate concentration is high, nucleoside diphosphates. At room temperature, adenosine afforded a mixture of nucleotides, but none of the cyclic nucleotide. Conditions leading to the highest relative percentage of cyclic nucleotide involve the use of low concentrations of phosphate and an excess of nucleoside.
Method for cleaning solution used in nuclear fuel reprocessing
Tallent, O.K.; Crouse, D.J.; Mailen, J.C.
1980-12-17
Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.
Method for cleaning solution used in nuclear fuel reprocessing
Tallent, Othar K.; Crouse, David J.; Mailen, James C.
1982-01-01
Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.
Characterization and obtainment of phosphate rock concentrates of Turmequé, Boyacá
NASA Astrophysics Data System (ADS)
Zanguña, S. Quijano; Lozano Gómez, L. F.; Pineda Triana, Y.
2017-12-01
The work focuses on the use and exploitation of the mineral concentrates from phosphate rock (PR) coming from mines with a low percentage of phosphorus. The procedure was based on the collection of a source of phosphate rock from the department of Boyacá (municipality of Turmequé), using a randomized design with three replications. The samples were initially milled and sifted using meshes between 140 and 200 US standard, homogenizing them and improving the process of solubility of the phosphorus in the soil. We conduced Z-potential tests, which show that by performing a prior wash on the mineral and maintaining certain concentrations and pH defined, better results are achieved in terms of the buoyancy of the particles in the flotation process. The results obtained from the microflotation tests; both direct and inverse, and the results of chemical composition, with X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD), before and after the microflotation process, were carried out to obtain of commercial laws grade phosphate rock concentrate, confirm that the protocol used increases by 9% the value of total phosphorus in the collected sample. These concentrates from phosphate rock, could be used in the future for the attainment of simple superphosphate (SSP), with the help of sulphuric acid and ammonium thiosulphate mixtures.
Kilner, S.B.
1959-12-29
A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.
Continuous analysis of phosphate in a Greenland shallow ice core
NASA Astrophysics Data System (ADS)
Kjær, Helle Astrid; Svensson, Anders; Bigler, Matthias; Vallelonga, Paul; Kettner, Ernesto; Dahl-Jensen, Dorthe
2010-05-01
Phosphate is an important and sometimes limiting nutrient for primary production in the oceans. Because of deforestation and the use of phosphate as a fertilizer changes in the phosphate cycle have occurred over the last centuries. On longer time scales, sea level changes are thought to have also caused changes in the phosphate cycle. Analyzing phosphate concentrations in ice cores may help to gain important knowledge about those processes. In the present study, we attach a phosphate detection line to an existing continuous flow analysis (CFA) setup for ice core analysis at the University of Copenhagen. The CFA system is optimized for high-resolution measurements of insoluble dust particles, electrolytic melt water conductivity, and the concentrations of ammonium and sodium. For the phosphate analysis we apply a continuous and highly sensitive absorption method that has been successfully applied to determine phosphate concentrations of sea water (Zhang and Chi, 2002). A line of melt water from the CFA melt head (1.01 ml per minute) is combined with a molybdate blue reagent and an ascorbic acid buffer. An uncompleted reaction takes place in five meters of heated mixing coils before the absorption measurement at a wavelength of 710 nanometer takes place in a 2 m long liquid waveguide cell (LWCC) with an inner volume of 0.5 ml. The method has a detection limit of around 0.1 ppb and we are currently investigating a possible interference from molybdate reacting with silicates that are present in low amounts in the ice. Preliminary analysis of early Holocene samples from the NGRIP ice core show phosphate concentration values of a few ppb. In this study, we will attempt to determine past levels of phosphate in a shallow Northern Greenland firn core with an annual layer thickness of about 20 cm ice equivalent. With a melt speed of 2.5 cm ice per minute our method should allow the resolution of any seasonal variability in phosphate concentrations.
NASA Astrophysics Data System (ADS)
Houriez, Céline; Vallet, Valérie; Réal, Florent; Meot-Ner Mautner, Michael; Masella, Michel
2017-10-01
We performed molecular dynamics simulations of carboxylate/methylated ammonium ion pairs solvated in bulk water and of carboxylate/methylated ammonium salt solutions at ambient conditions using an ab initio-based polarizable force field whose parameters are assigned to reproduce only high end quantum computations, at the Møller-Plesset second-order perturbation theory/complete basis set limit level, regarding single ions and ion pairs as isolated and micro-hydrated in gas phase. Our results agree with the available experimental results regarding carboxylate/ammonium salt solutions. For instance, our force field approach predicts the percentage of acetate associated with ammonium ions in CH3 COO-/CH3 NH3+ solutions at the 0.2-0.8M concentration scale to range from 14% to 35%, in line with the estimates computed from the experimental ion association constant in liquid water. Moreover our simulations predict the number of water molecules released from the ion first hydration shell to the bulk upon ion association to be about 2.0 ± 0.6 molecules for acetate/protonated amine ion pairs, 3.1 ± 1.5 molecules for the HCOO-/NH4+ pair and 3.3 ± 1.2 molecules for the CH3COO-/(CH3)4N+ pair. For protonated amine-based ion pairs, these values are in line with experiment for alkali/halide pairs solvated in bulk water. All these results demonstrate the promising feature of ab initio-based force fields, i.e., their capacity in accurately modeling chemical systems that cannot be readily investigated using available experimental techniques.
Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Gaston, Lewis A; Lahori, Altaf Hussain; Mahar, Amanullah
2016-07-15
Mg/Al ratio plays a significant role for anion adsorption by Mg/Al-layered double hydroxides (Mg/Al-LDHs) modified biochar. In this study, Mg/Al-LDHs biochar with different Mg/Al ratios (2, 3, 4) were prepared by co-precipitation for phosphate removal from aqueous solution. Factors on phosphate adsorption including Mg/Al ratio, pH, and the presence of other inorganic anions were investigated through batch experiments. Increasing Mg/Al ratio in the Mg/Al-LDHs biochar composites generally enhanced phosphate adsorption with Langmuir adsorption maximum calculated at 81.83mg phosphorous (P) per gram of 4:1Mg/Al-LDHs biochar at pH3.0. The adsorption process was best described by the pseudo-second-order kinetic model. Solution pH had greater effects on the phosphate adsorption by Mg/Al LDHs biochar composites with lower Mg/Al ratios. The presence of other inorganic anions decreased the phosphate adsorption efficiency in the order of F(-) > SO4(2-) > NO2(-) >Cl(-). Phosphate adsorption mechanism involves ion exchange, electrostatic attraction and surface inner-sphere complex formation. Overall, Mg/Al-LDHs biochar composites offer a potential alternative of carbon-based adsorbent for phosphate removal from aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.
Howell, J M
1991-11-01
Alkaline cleaning products are a cause of serious esophageal injury. Over time, legislation has diminished the concentration of many such non-industrial solutions and solids; however several products presently do not list either the pH or relative concentrations of alkaline constituents. This study measures the pHs of several non-industrial cleaning products containing either ammonium chloride, sodium hydroxide, or potassium hydroxide. Three pH measurements were performed on each of 10 non-industrial alkaline cleaning products (eight liquid, two solid). Two 0.1% ammonium chloride solutions had pHs of 12.06 +/- 0.00 and 12.06 +/- 0.01, whereas a pH of 12.43 +/- 0.00 was recorded in a 0.2% ammonium chloride solution. Concentrations of sodium hydroxide and potassium hydroxide were listed on only one of five liquid cleaning product labels. The pHs for these five products varied between 12.83 +/- 0.009 and 13.5 +/- .0.2. The pHs of three sodium hydroxide solutions differed from values reported in Micromedex (Micromedex Inc, Denver CO) by up to 0.32 pH units. Ten percent (v/v) solutions of two solid lye products had pHs of 13.62 +/- 0.008 and 13.74 +/- 0.02. The investigator found that selected non-industrial cleaning products, including ammonia solutions, retain the ability to cause clinically important esophageal damage.
Initial-phase optimization for bioremediation of munition compound-contaminated soils.
Funk, S B; Roberts, D J; Crawford, D L; Crawford, R L
1993-01-01
We examined the bioremediation of soils contaminated with the munition compounds 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine by a procedure that produced anaerobic conditions in the soils and promoted the biodegradation of nitroaromatic contaminants. This procedure consisted of flooding the soils with 50 mM phosphate buffer, adding starch as a supplemental carbon substrate, and incubating under static conditions. Aerobic heterotrophs, present naturally in the soil or added as an inoculum, quickly removed the oxygen from the static cultures, creating anaerobic conditions. Removal of parent TNT molecules from the soil cultures by the strictly anaerobic microflora occurred within 4 days. The reduced intermediates formed from TNT and hexahydro-1,3,5-trinitro-1,3,5-triazine were removed from the cultures within 24 days, completing the first stage of remediation. The procedure was effective over a range of incubation temperatures, 20 to 37 degrees C, and was improved when 25 mM ammonium was added to cultures buffered with 50 mM potassium phosphate. Ammonium phosphate buffer (50 mM), however, completely inhibited TNT reduction. The optimal pH for the first stage of remediation was between 6.5 and 7.0. When soils were incubated under aerobic conditions or under anaerobic conditions at alkaline pHs, the TNT biodegradation intermediates polymerized. Polymerization was not observed at neutral to slightly acidic pHs under anaerobic conditions. Completion of the first stage of remediation of munition compound-contaminated soils resulted in aqueous supernatants that contained no munition residues or aminoaromatic compounds. PMID:8357251
Godinot, Claire; Houlbrèque, Fanny
2011-01-01
The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification. PMID:21949839
Dias-Ferreira, Celia; Kirkelund, Gunvor M; Ottosen, Lisbeth M
2015-01-01
Seven electrodialytic experiments were conducted using ammonium citrate as enhancing agent to remediate copper and chromium-contaminated soil from a wood-preservation site. The purpose was to investigate the effect of current density (0.2, 1.0 and 1.5 mA cm(-2)), concentration of enhancing agent (0.25, 0.5 and 1.0 M) and remediation times (21, 42 and 117 d) for the removal of Cu and Cr from a calcareous soil. To gain insight on metal behavior, soil solution was periodically collected using suction cups. It was seen that current densities higher than 1.0 mA cm(-2) did not increase removal and thus using too high current densities can be a waste of energy. Desorption rate is important and both remediation time and ammonium citrate concentration are relevant parameters. It was possible to collect soil solution samples following an adaptation of the experimental set-up to ensure continuous supply of ammonium citrate to the soil in order to keep it saturated during the remediation. Monitoring soil solution gives valuable information on the evolution of remediation and helps deciding when the soil is remediated. Final concentrations in the soil ranged from 220 to 360 mg Cu kg(-1) (removals: 78-86%) and 440-590 mg Cr kg(-1) (removals: 35-51%), being within the 500 mg kg(-1) limit for a clean soil only for Cu. While further optimization is still required for Cr, the removal percentages are the highest achieved so far, for a real Cu and Cr-contaminated, calcareous soil. The results highlight EDR potential to remediate metal polluted soils at neutral to alkaline pH by choosing a good enhancement solution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Electrochemical characteristics of calcium-phosphatized AZ31 magnesium alloy in 0.9 % NaCl solution.
Hadzima, Branislav; Mhaede, Mansour; Pastorek, Filip
2014-05-01
Magnesium alloys suffer from their high reactivity in common environments. Protective layers are widely created on the surface of magnesium alloys to improve their corrosion resistance. This article evaluates the influence of a calcium-phosphate layer on the electrochemical characteristics of AZ31 magnesium alloy in 0.9 % NaCl solution. The calcium phosphate (CaP) layer was electrochemically deposited in a solution containing 0.1 M Ca(NO3)2, 0.06 M NH4H2PO4 and 10 ml l(-1) of H2O2. The formed surface layer was composed mainly of brushite [(dicalcium phosphate dihidrate (DCPD)] as proved by energy-dispersive X-ray analysis. The surface morphology was observed by scanning electron microscopy. Immersion test was performed in order to observe degradation of the calcium phosphatized surfaces. The influence of the phosphate layer on the electrochemical characteristics of AZ31, in 0.9 % NaCl solution, was evaluated by potentiodynamic measurements and electrochemical impedance spectroscopy. The obtained results were analysed by the Tafel-extrapolation method and equivalent circuits method. The results showed that the polarization resistance of the DCPD-coated surface is about 25 times higher than that of non-coated surface. The CaP electro-deposition process increased the activation energy of corrosion process.
A study of phosphate absorption by magnesium iron hydroxycarbonate.
Du, Yi; Rees, Nicholas; O'Hare, Dermot
2009-10-21
A study of the mechanism of phosphate adsorption by magnesium iron hydroxycarbonate, [Mg(2.25)Fe(0.75)(OH)(6)](CO(3))(0.37).0.65H(2)O over a range of pH has been carried out. The efficiency of the phosphate removal from aqueous solution has been investigated between pH 3-9 and the resulting solid phases have been studied by elemental analysis, XRD, FT-IR, Raman, HRTEM, EDX and solid-state MAS (31)P NMR. The analytical and spectroscopic data suggest that phosphate removal from solution occurs not by anion intercalation of the relevant phosphorous oxyanion (H(2)PO(4)(-) or HPO(4)(2-)) into the LDH but by the precipitation of either an insoluble iron hydrogen phosphate hydrate and/or a magnesium phosphate hydrate.
Prasad, K V; Bharathi, K; Srinivasan, K K
1993-10-01
The fresh juice of Musa stem (Puttubale) was tested for its antilithiatic activity. Zinc discs were implanted in the urinary bladder of albino rats to induce urolithiasis. The stones formed were mainly of magnesium ammonium phosphate with traces of calcium oxalate. Musa stem juice (3 mL/rat/day orally) was found to be effective in reducing the formation and also in dissolving the pre-formed stones.
NASA Astrophysics Data System (ADS)
Lee, Ming-Kwei; Lee, Bo-Wei; Kao, Chen-Yu
2017-05-01
A TiO2 film was prepared on indium tin oxide (ITO)/glass by aqueous solution deposition (ASD) with precursors of ammonium hexafluoro-titanate and boric acid at 40 °C. The photocatalysis of annealed TiO2 film increases with increasing growth time and decreases with increasing growth times longer than 60 min. A ZnO nanotip array was prepared on ZnO seed layer/TiO2 film/glass by aqueous solution deposition with precursors of zinc nitrate and ammonium hydroxide at 70 °C. The photocatalysis of ASD-ZnO/ASD-TiO2 film/ITO glass can be better than that of P25.
SEPARATION OF TRANSURANIC ELEMENTS FROM RARE EARTH COMPOUNDS
Kohman, T.P.
1961-11-21
A process of separating neptunium and plutonium values from rare earths and alkaline earth fission products present on a solid mixed actinide carrier (Th or U(IV) oxalate or fluoride) --fission product carrier (LaF/sub 3/, CeF/sub 3/, SrF/sub 2/, CaF/sub 2/, YF/sub 3/, La oxalate, cerous oxalate, Sr oxalate, Ca oxalate or Y oxalate) by extraction of the actinides at elevated temperature with a solution of ammonium fluoride and/or ammonium oxalate is described. Separation of the fission-product-containing carriers from the actinide solution formed and precipitation of the neptunium and plutonium from the solution with mineral acid are also accomplished. (AEC)
Polymer-treated woody biomass: a filtration medium for removing phosphate from water
Thomas L Eberhardt
2006-01-01
A two-stage treatment of refined aspen wood fiber with solutions of carboxymethyl cellulose (CMC) and ferrous chloride afforded a filtration medium that was effective in removing phosphate from test solutions. To assess the stability of the filtration medium, samples exposed to the test solutions were analyzed by FTIR spectroscopy. The resultant spectra indicated that...
Adsorption of phosphate from seawater on calcined MgMn-layered double hydroxides.
Chitrakar, Ramesh; Tezuka, Satoko; Sonoda, Akinari; Sakane, Kohji; Ooi, Kenta; Hirotsu, Takahiro
2005-10-01
Adsorptive properties of MgMn-3-300 (MgMn-type layered double hydroxide with Mg/Mn mole ratio of 3, calcined at 300 degrees C) for phosphate were investigated in phosphate-enriched seawater with a concentration of 0.30 mg-P/dm3. It showed the highest phosphate uptake from the seawater among the inorganic adsorbents studied (hydrotalcite, calcined hydrotalcite, activated magnesia, hydrous aluminum oxide, manganese oxide (delta-MnO2)). The phosphate uptake by MgMn-3-300 reached 7.3 mg-P/g at an adsorbent/solution ratio of 0.05 g/2 dm3. The analyses of the uptakes of other constituents (Na+, K+, Ca(+, Cl-, and SO(2-)4) of seawater showed that the adsorbent had a markedly high selectivity for the adsorption of phosphate ions. Effects of initial phosphate concentration, temperature, pH, and salinity on phosphate uptake were investigated in detail by a batch method. The phosphate uptake increased slightly with an increase in the adsorption temperature. The adsorption isotherm followed Freundlich's equation with constants of logK(F)=1.25 and 1/n=0.65, indicating that it could effectively remove phosphate even from a solution of markedly low phosphate concentration as well as with large numbers of coexisting ions. The pH dependence showed a maximum phosphate uptake around pH 8.5. The pH dependence curve suggested that selective phosphate adsorption progresses mainly by the ion exchange of HPO(2-)4. The study on the effect of salinity suggested the presence of two kinds of adsorption sites in the adsorbent: one nonspecific site with weak interaction and one specific site with strong interaction. The effective desorption of phosphate could be achieved using a mixed solution of 5 M NaCl + 0.1 M NaOH (1 M = 1 mol/dm3), with negligible dissolution of adsorbent. The adsorbent had high chemical stability against the adsorption/desorption cycle; it kept a good phosphate uptake even after the repetition of the seventh cycle.
SEPARATION OF SCANDIUM VALUES FORM IRON VALUES BY SOLVENT EXTRACTION
Kuhlman, C.W. Jr.; Lang, G.P.
1961-12-19
A process is given for separating scandium from trivalent iron values. In this process, an aqueous nitric acid solution is contacted with a water- immiscible alkyl phosphate solution, the aqueous solution containing the values to be separated, whereby the scandium is taken up by the alkyl phosphate. The aqueous so1ution is preferably saturated with magnesium nitrate to retain the iron in the aqueous solution. (AEC)
NASA Astrophysics Data System (ADS)
Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.
2016-01-01
Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.
Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T
2016-01-05
Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. Copyright © 2015 Elsevier B.V. All rights reserved.
Hydrous oxide ion-exchange compound catalysts
Dosch, Robert G.; Stephens, Howard P.
1990-01-01
A catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchange with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.
Oxidative Pressure Leaching of Silver from Flotation Concentrates with Ammonium Thiocyanate Solution
NASA Astrophysics Data System (ADS)
Yang, Sheng-Hai; Yang, Jian-Guang; Liu, Wei; Chen, Geng-Tao; Tang, Mo-Tang; Qiu, Guan-Zhou
2010-02-01
The thermodynamics and technologies of the selective pressure leaching of silver from flotation concentrates were investigated in an ammonium thiocyanate medium. Thermodynamic analyses, which include silver solubility in NH4SCN solution and Eh-pH diagrams of the Me-MeS-NH4SCN-H2O system at 25 °C, were discussed. The effects of several factors, such as temperature, leaching time, oxidant, pH value, flotation concentrates concentration, surfactant concentration, and so on, on the extraction percentages of silver and zinc were investigated. The following optimal leaching conditions were obtained: NH4SCN concentration 1.5 M, lignin concentration 0.5 g/L, Fe3+ concentration 2 g/L, flotation concentrates addition 200 g/L, and oxygen pressure 1.2 MPa at 130 °C for 3 hours. Under these optimum conditions, the average extraction percentage of silver exceeded 94 pct, whereas the average extraction percentage of zinc was less than 3 pct. Only 7 pct of ammonium thiocyanate was consumed after 4 cycles, which indicated that ammonium thiocyanate hardly was oxidized under these oxidative pressure leaching conditions.
Method of synthesizing pyrite nanocrystals
Wadia, Cyrus; Wu, Yue
2013-04-23
A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.
Rare-earth leaching from Florida phosphate rock in wet-process phosphoric acid production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Haijun; Zhang, Patrick; Jin, Zhen
Phosphorite, or phosphate rock, is the most significant secondary rare-earth resource. It contains high amounts of phosphate-bearing minerals along with low contents of rare earth elements (REEs). In Florida, about 19 Mt of phosphate rock are mined annually and most are used to manufacture fertilizers using a wet process, in which sulfuric acid reacts with phosphates to produce phosphoric acid and phosphogypsum. In the wet process, REEs are also leached out into solution and eventually get lost in the leaching residue and phosphate fertilizer. Recovering REEs from Florida phosphate rock in the wet process will be beneficial to broadening rare-earthmore » availability, improving the quality of phosphoric acid product and protecting the environment. Here, this study focuses on the influences of wet-process operating conditions on REE leaching efficiency. The results indicate that REE leaching efficiency increases with phosphoric acid addition in the initial pulp. At a temperature of 75 °C, a stoichiometric ratio of sulfuric acid (H2 SO4 ) to calcium oxide (CaO) of 1.05 and a weight ratio of liquid to solid of 3.5, REE leaching efficiency reached a relatively high value of 52.82 percent. The trends of REE leaching efficiency were similar to those for phosphoric acid (P2O5 ). Extensive tests on the leaching residue showed that during leaching, about 90 percent of the REEs were released from the phosphate rock but only 52.82 percent ended up in the leaching solution. This phenomenon can be attributed to two factors: (1) the effect of phosphate ions (PO43-) in the solution, which caused REE ions to form REE phosphates and be precipitated into the leaching residue, and (2) the influence of large amounts of anions such as sulfate (SO42-), dihydrogen phosphate (H2 PO4-) and hydrogen phosphate (HPO42-) anions as well as the polar molecule H3 PO4 , which surrounded the REE cations and formed an ion atmosphere that prevented the PO43- from contacting and combining with REE cations. Finally, interaction of these two opposite effects determined the REE distribution between leaching solution and residue.« less
Rare-earth leaching from Florida phosphate rock in wet-process phosphoric acid production
Liang, Haijun; Zhang, Patrick; Jin, Zhen; ...
2017-08-01
Phosphorite, or phosphate rock, is the most significant secondary rare-earth resource. It contains high amounts of phosphate-bearing minerals along with low contents of rare earth elements (REEs). In Florida, about 19 Mt of phosphate rock are mined annually and most are used to manufacture fertilizers using a wet process, in which sulfuric acid reacts with phosphates to produce phosphoric acid and phosphogypsum. In the wet process, REEs are also leached out into solution and eventually get lost in the leaching residue and phosphate fertilizer. Recovering REEs from Florida phosphate rock in the wet process will be beneficial to broadening rare-earthmore » availability, improving the quality of phosphoric acid product and protecting the environment. Here, this study focuses on the influences of wet-process operating conditions on REE leaching efficiency. The results indicate that REE leaching efficiency increases with phosphoric acid addition in the initial pulp. At a temperature of 75 °C, a stoichiometric ratio of sulfuric acid (H2 SO4 ) to calcium oxide (CaO) of 1.05 and a weight ratio of liquid to solid of 3.5, REE leaching efficiency reached a relatively high value of 52.82 percent. The trends of REE leaching efficiency were similar to those for phosphoric acid (P2O5 ). Extensive tests on the leaching residue showed that during leaching, about 90 percent of the REEs were released from the phosphate rock but only 52.82 percent ended up in the leaching solution. This phenomenon can be attributed to two factors: (1) the effect of phosphate ions (PO43-) in the solution, which caused REE ions to form REE phosphates and be precipitated into the leaching residue, and (2) the influence of large amounts of anions such as sulfate (SO42-), dihydrogen phosphate (H2 PO4-) and hydrogen phosphate (HPO42-) anions as well as the polar molecule H3 PO4 , which surrounded the REE cations and formed an ion atmosphere that prevented the PO43- from contacting and combining with REE cations. Finally, interaction of these two opposite effects determined the REE distribution between leaching solution and residue.« less
Yamashita, Takahiro; Aketo, Tsuyoshi; Minowa, Nobutaka; Sugimoto, Kiyomi; Yokoyama, Hiroshi; Ogino, Akifumi; Tanaka, Yasuo
2013-01-01
An agent synthesized from amorphous silica and hydrated lime (CSH-lime) was investigated for its ability to simultaneously remove the colour, phosphorus and disinfection from the effluents from wastewater treatment plants on swine farms. CSH-lime removed the colour and phosphate from the effluents, with the colour-removal effects especially high at pH 12, and phosphorous removal was more effective in strongly alkaline conditions (pH > 10). Colour decreased from 432 +/-111 (mean +/- SD) to 107 +/- 41 colour units and PO4(3-)P was reduced from 45 +/- 39 mg/L to undetectable levels at the CSH-lime dose of 2.0% w/v. Moreover, CSH-lime reduced the total organic carbon from 99.0 to 37.9 mg/L at the dose of 2.0% w/v and was effective at inactivating total heterotrophic and coliform bacteria. However, CSH-lime did not remove nitrogen compounds such as nitrite, nitrate and ammonium. Colour was also removed from dye solutions by CSH-lime, at the same dose.
Pathak, Nirenkumar; Fortunato, Luca; Li, Sheng; Chekli, Laura; Phuntsho, Sherub; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong
2018-05-02
This study investigated the performance of an integrated osmotic and microfiltration membrane bioreactor for real sewage employing baffles in the reactor. To study the biofouling development on forward osmosis membranes optical coherence tomography (OCT) technique was employed. On-line monitoring of biofilm growth on a flat sheet cellulose triacetate forward osmosis (CTA-FO) membrane was conducted for 21 days. Further, the process performance was evaluated in terms of water flux, organic and nutrient removal, microbial activity in terms of soluble microbial products (SMP) and extracellular polymeric substance (EPS), and floc size. The measured biofouling layer thickness was in the order sodium chloride (NaCl) > ammonium sulfate (SOA) > potassium dihydrogen phosphate (KH 2 PO 4 ). Very high organic removal (96.9 ± 0.8%) and reasonably good nutrient removal efficiency (85.2 ± 1.6% TN) was achieved. The sludge characteristics and biofouling layer thickness suggest that less EPS and higher floc size were the governing factors for less fouling. Copyright © 2018 Elsevier Ltd. All rights reserved.
Simental-Martínez, Jesús; Rito-Palomares, Marco; Benavides, Jorge
2014-01-01
Superoxide dismutase (SOD; EC 1.15.1.1) is an antioxidant enzyme that represents the primary cellular defense against superoxide radicals and has interesting applications in the medical and cosmetic industries. In the present work, the partition behavior of SOD in aqueous two-phase systems (ATPS) (using a standard solution and a complex extract from Kluyveromyces marxianus as sample) was characterized on different types of ATPS (polymer-polymer, polymer-salt, alcohol-salt, and ionic liquid (IL)-salt). The systems composed of PEG 3350-potassium phosphate, 45% TLL, 0.5 M NaCl (315 U/mg, 87% recovery, and 15.1-fold purification) and t-butanol-20% ammonium sulfate (205.8 U/mg, 80% recovery and 9.8-fold purification), coupled with a subsequent 100 kDa ultrafiltration stage, allowed the design of a prototype process for the recovery and partial purification of the product of interest. The findings reported herein demonstrate the potential of PEG-salt ATPS for the potential recovery of SOD. © 2014 American Institute of Chemical Engineers.
Chen, Liang; Zhao, Xin; Pan, Bingcai; Zhang, Weixian; Hua, Ming; Lv, Lu; Zhang, Weiming
2015-03-02
In this study, we employed a new nanocomposite adsorbent HZO-201, which featured high stability under varying solution chemistry, for preferable removal of phosphate from synthetic solution and a real effluent. An anion exchange resin (D-201) was employed as the host of HZO-201, where nano-hydrous zirconium oxide (HZO) was encapsulated as the active species. D-201 binds phosphate through nonspecific electrostatic affinity, whereas the loaded HZO nanoparticles capture phosphate through formation of the inner-sphere complexes. Quantitative contribution of both species to phosphate adsorption was predicted based on the double-Langmuir model. Preferable removal of phosphate by HZO-201 was observed in the presence of the competing anions at higher levels (Cl(-), NO3(-), SO4(2-), HCO3(-)). Fixed-bed adsorption indicated that the effective volume capacity of a synthetic water (2.0 mg P-PO4(3-)/L) by using HZO-201 was ∼1600 BV in the first run (<0.5mg P-PO4(3-)/L), comparable to Fe(III)-based nanocomposite HFO-201 (∼1500 BV) and much larger than D-201 (<250 BV). The exhausted HZO-201 can be in situ regenerated by using a binary NaOH-NaCl solution for cyclic runs, whether fed with the synthetic solution or real effluent. In general, HZO-201 is a promising alternative to Fe(III)-based adsorbents for trace phosphate removal from effluent particularly at acidic pH. Copyright © 2014 Elsevier B.V. All rights reserved.
Sanderson, Peter; Naidu, Ravi; Bolan, Nanthi
2016-04-01
The stabilisation of Pb in the soil by phosphate is influenced by environmental conditions and physicochemical properties of the soils to which it is applied. Stabilisation of Pb by phosphate was examined in four soils under different environmental conditions. The effect of soil moisture and temperature on stabilisation of Pb by phosphate was examined by measurement of water extractable and bioaccessible Pb, sequential fractionation and X-ray absorption spectroscopy. The addition of humic acid, ammonium nitrate and chloride was also examined for inhibition or improvement of Pb stability with phosphate treatment. The effect of moisture level varied between soils. In soil MB and DA a soil moisture level of 50% water holding capacity was sufficient to maximise stabilisation of Pb, but in soil TV and PE reduction in bioaccessible Pb was inhibited at this moisture level. Providing moisture at twice the soil water holding capacity did not enhance the effect of phosphate on Pb stabilisation. The difference of Pb stability as a result of incubating phosphate treated soils at 18 °C and 37 °C was relatively small. However wet-dry cycles decreased the effectiveness of phosphate treatment. The reduction in bioaccessible Pb obtained was between 20 and 40% with the most optimal treatment conditions. The reduction in water extractable Pb by phosphate was substantial regardless of incubation conditions and the effect of different temperature and soil moisture regimes was not significant. Selective sequential extraction showed phosphate treatment converted Pb in fraction 1 (exchangeable, acid and water soluble) to fraction 2 (reducible). There were small difference in fraction 4 (residual) Pb and fraction 1 as a result of treatment conditions. X-ray absorption spectroscopy of stabilised PE soil revealed small differences in Pb speciation under varying soil moisture and temperature treatments. The addition of humic acid and chloride produced the greatest effect on Pb speciation in phosphate treated soils. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Zhu, Hong-Ji; Sun, Li-Fan; Zhang, Yan-Fei; Zhang, Xiao-Li; Qiao, Jian-Jun
2012-05-01
To develop high-efficient biofertilizer, an environmental stress-tolerant phosphate-solubilizing microorganism (PSM) was isolated from agricultural wastes compost, and then applied to spent mushroom substrate (SMS). The isolate FL7 was identified as Pichia farinose with resistance against multiple environmental stresses, including 5-45°C temperature, 3-10 pH range, 0-23% (w/v) NaCl and 0-6M ammonium ion. Under the optimized cultivation condition, 852.8 mg/l total organic acids can be produced and pH can be reduced to 3.8 after 60 h, meanwhile, the soluble phosphate content reached 816.16 mg/l. The P. farinose was used to convert SMS to a phosphate biofertilizer through a semi-solid fermentation (SSF) process. After fermentation of 10 days, cell density can be increased to 5.6 × 10(8)CFU/g in biomass and pH in this medium can be decreased to 4.0. SMS biofertilizer produced by P. farinose significantly improved the growth of soybean in pot experiments, demonstrating a tremendous potential in agricultural application. Copyright © 2012 Elsevier Ltd. All rights reserved.
De Poorter, Gerald L.; Rofer-De Poorter, Cheryl K.
1978-01-01
Uranyl ion in solution in tri-n-butyl phosphate is readily photochemically reduced to U(IV). The product U(IV) may effectively be used in the Purex process for treating spent nuclear fuels to reduce Pu(IV) to Pu(III). The Pu(III) is readily separated from uranium in solution in the tri-n-butyl phosphate by an aqueous strip.
Bollineni, Ravi Chand; Guldvik, Ingrid J; Grönberg, Henrik; Wiklund, Fredrik; Mills, Ian G; Thiede, Bernd
2015-12-21
Depletion of highly abundant proteins is an approved step in blood plasma analysis by mass spectrometry (MS). In this study, we explored a precipitation and differential protein solubility approach as a fractionation strategy for abundant protein removal from plasma. Total proteins from plasma were precipitated with 90% saturated ammonium sulfate, followed by differential solubilization in 55% and 35% saturated ammonium sulfate solutions. Using a four hour liquid chromatography (LC) gradient and an LTQ-Orbitrap XL mass spectrometer, a total of 167 and 224 proteins were identified from the 55% and 35% ammonium sulfate fractions, whereas 235 proteins were found in the remaining protein fractions with at least two unique peptides. SDS-PAGE and exclusive total spectrum counts from LC-MS/MS analyses clearly showed that majority of the abundant plasma proteins were solubilized in 55% and 35% ammonium sulfate solutions, indicating that the remaining protein fraction is of potential interest for identification of less abundant plasma proteins. Serum albumin, serotransferrin, alpha-1-antitrypsin and transthyretin were the abundant proteins that were highly enriched in 55% ammonium sulfate fractions. Immunoglobulins, complement system proteins, and apolipoproteins were among other abundant plasma proteins that were enriched in 35% ammonium sulfate fractions. In the remaining protein fractions a total of 40 unique proteins were identified of which, 32 proteins were identified with at least 10 exclusive spectrum counts. According to PeptideAtlas, 9 of these 32 proteins were estimated to be present at low μg ml(-1) (0.12-1.9 μg ml(-1)) concentrations in the plasma, and 17 at low ng ml(-1) (0.1-55 ng ml(-1)) range.
21 CFR 522.1883 - Prednisolone sodium phosphate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Prednisolone sodium phosphate. 522.1883 Section... § 522.1883 Prednisolone sodium phosphate. (a) Specifications. Each milliliter of solution contains 20 milligrams (mg) prednisolone sodium phosphate (equivalent to 14.88 mg of prednisolone). (b) Sponsor. See No...
21 CFR 522.1883 - Prednisolone sodium phosphate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Prednisolone sodium phosphate. 522.1883 Section... § 522.1883 Prednisolone sodium phosphate. (a) Specifications. Each milliliter of solution contains 20 milligrams (mg) prednisolone sodium phosphate (equivalent to 14.88 mg of prednisolone). (b) Sponsor. See No...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheat, C.G.; Mottl, M.J.
Warm hydrothermal springs were discovered on Baby Bare, which is an isolated basement outcrop on 3.5 Ma-old crust on the eastern flank of the Juan de Fuca Ridge. The authors have sampled these spring waters from a manned submersible, along with associated sediment pore waters from 48 gravity and piston cores. Systematic variations in the chemical composition of these waters indicate that hydrothermal reactions in basement at moderate temperatures remove Na, K, Li, Rb, Mg, TCO{sub 2}, alkalinity, and phosphate from the circulating seawater and leach Ca, Sr, Si, B, and Mn from the oceanic crust; and that reactions withmore » the turbidite sediment surrounding Baby Bare remove Na, Li, Mg, Ca, Sr, and sulfate from the pore water while producing ammonium and Si and both producing and consuming phosphate, nitrate, alkalinity, Mn, and Fe. K, Rb, and B are relatively unreactive in the sediment column. The composition of altered seawater in basement at Baby Bare is similar to the inferred composition of 58 C formation water from crust nearly twice as old (5.9 Ma) on the southern flank of the Costa Rica Rift. The Baby Bare fluids also exhibit the same directions of net elemental transfer between basalt and seawater as solutions produced in laboratory experiments at a similar temperature, and complement compositional changes form seawater observed in seafloor basalts altered at cool to moderate temperatures. The common parameter among the two ridge flanks and experiments is temperature, suggesting that the residence time of seawater in the two ridge-flank sites is sufficiently long for the solutions to equilibrate with altered basalt. The authors use the Baby Bare spring water to estimate upper limits on the global fluxes of 14 elements at warm ridge-flank sites such as Baby Bare. Maximum calculated fluxes of Mg, Ca, sulfate, B, and K may equal or exceed 25% of the riverine flux, and such sites may represent the missing, high K/Rb sink required for the K budget.« less
Formulating Precursors for Coating Metals and Ceramics
NASA Technical Reports Server (NTRS)
Morales, Wilfredo; Gatica, Jorge E.; Reye, John T.
2005-01-01
A protocol has been devised for formulating low-vapor-pressure precursors for protective and conversion coatings on metallic and ceramic substrates. The ingredients of a precursor to which the protocol applies include additives with phosphate esters, or aryl phosphate esters in solution. Additives can include iron, chromium, and/or other transition metals. Alternative or additional additives can include magnesium compounds to facilitate growth of films on substrates that do not contain magnesium. Formulation of a precursor begins with mixing of the ingredients into a high-vapor-pressure solvent to form a homogeneous solution. Then the solvent is extracted from the solution by evaporation - aided, if necessary, by vacuum and/or slight heating. The solvent is deemed to be completely extracted when the viscosity of the remaining solution closely resembles the viscosity of the phosphate ester or aryl phosphate ester. In addition, satisfactory removal of the solvent can be verified by means of a differential scanning calorimetry essay: the absence of endothermic processes for temperatures below 150 C would indicate that the residual solvent has been eliminated from the solution beyond a detectable dilution level.
RECOVERY AND SEPARATION OF LITHIUM VALUES FROM SALVAGE SOLUTIONS
Hansford, D.L.; Raabe, E.W.
1963-08-20
Lithium values can be recovered from an aqueous basic solution by reacting the values with a phosphate salt soluble in the solution, forming an aqueous slurry of the resultant aqueous insoluble lithium phosphate, contacting the slurry with an organic cation exchange resin in the acid form until the slurry has been clarified, and thereafter recovering lithium values from the resin. (AEC)
Dey, Sandeep Kumar; Das, Gopal
2012-08-07
A tren-based tris(thiourea) receptor, L with electron-withdrawing p-nitrophenyl terminals has been established as a competent hydrogen-bonding scaffold that can selectively encapsulate PO(4)(3-) within persistent and rigid dimeric capsules, assembled by aromatic π-stacking interactions between the receptor side-arms. A quaternary ammonium salt of PO(4)(3-) capsules (complexes 1 and 1b, 2:1 host-guest) can reproducibly be obtained in quantitative yields by a solution-state deprotonation of [HL](+) moieties and a bound HPO(4)(2-) anion of complex 1a (HPO(4)(2-) complex of protonated L, 2:1 host-guest), induced by the presence of a large excess of anions such as HCO(3)(-), CH(3)CO(2)(-), and F(-). Qualitative as well as quantitative (1)H and (31)P NMR experiments (DMSO-d(6)) have been carried out in detail to demonstrate the selective and preferential inclusion of PO(4)(3-) by L in solution-states. Competitive crystallization experiments performed in the presence of an excess of anions such as HCO(3)(-), HSO(4)(-), CH(3)CO(2)(-), NO(3)(-) and halides (F(-) and Cl(-)) further establish the phenomenon of selective PO(4)(3-) encapsulation as confirmed by (1)H NMR, (31)P NMR, FT-IR and powder X-ray diffraction patterns of the isolated crystals. X-ray structural analyses and (31)P NMR studies of the isolated crystals of phosphate complexes (1, 1a and 1b) provide evidence of the binding discrepancy of inorganic phosphates with protonated and neutral form of L. Furthermore, extensive studies have been carried out with other anions of different sizes and dimensions in solid- and solution-states (complexes 2a, 3, 4 and 5). Crystal structure elucidation revealed the formation of a solvent (DMSO) sealed unimolecular capsule in the F(-) encapsulated complex, 2a (1:1 host-guest), a CO(3)(2-) encapsulated centrosymmetric molecular capsule in 3 (2:1 host-guest) and a cation (tetrabutylammonium) sealed SO(4)(2-) encapsulated unimolecular capsule in 4 (1:1 host-guest). 2D-NOESY NMR experiments carried out on these capsule complexes further confirm the relevant binding stoichiometry of complexes (2a-4) except for the PO(4)(3-)-encapsulated complex (1b) which showed a 1:1 host-guest stoichiometry in solution.
Boulanouar, Omar; Fromm, Michel; Mavon, Christophe; Cloutier, Pierre; Sanche, Léon
2013-01-01
We measure the desorption of anions stimulated by the impact of 0–20 eV electrons on highly uniform thin films of plasmid DNA-diaminopropane. The results are accurately correlated with film thickness and composition by AFM and XPS measurements, respectively. Resonant structures in the H−, O−, and OH− yield functions are attributed to the decay of transient anions into the dissociative electron attachment (DEA) channel. The diamine induces ammonium-phosphate bridges along the DNA backbone, which suppresses the DEA O− channel and in counter-part increases considerably the desorption of OH−. The close environment of the phosphate groups may therefore play an important role in modulating the rate and type of DNA damages induced by low energy electrons. PMID:23927286
Effect of ten quaternary ammonium cations on tetrachloromethane sorption to clay from water
Smith, J.A.
1990-01-01
The mineral surface of Wyoming bentonite (clay) was modified by replacing inorganic ions by each of 10 quaternary ammonium compounds, and tetrachloromethane sorption to the modified sorbents from water was studied. Tetrachloromethane sorption from solution to clay modified with tetramethyl-, tetraethyl-, benzyltrimethyl-, or benzyltriethylammonium cations generally is characterized by relatively high solute uptake, isotherm nonlinearity, and competitive sorption (with trichloroethene as the competing sorbate). For these sorbents, the ethyl functional groups yield reduced sorptive capacity relative to methyl groups, whereas the benzyl group appears to have a similar effect on sorbent capacity as the methyl group. Sorption of tetrachloromethane to clay modified with dodecyldimethyl(2-phenoxyethyl)-, dodecyltrimethyl-, tetradecyltrimethyl-, hexadecyltrimethyl-, or benzyldimethylhexadecylammonium bromide is characterized by relatively low solute uptake, isotherm linearity, and noncompetitive sorption. For these sorbents, an increase in the size of the nonpolar functional group(s) causes an increase in the organic carbon normalized sorption coefficient (Koc). No measurable uptake of tetrachloromethane sorption by the unmodified clay or clay modified by ammonium bromide was observed. ?? 1990 American Chemical Society.
Levels of Phosphate Esters in Spirodela
Bieleski, R. L.
1968-01-01
The duckweed Spirodela oligorrhiza was grown in sterile nutrient solutions that contained 1 mm phosphate-32P at various specific activities. In solutions with activities higher than 2 μc per μmole per ml, plant growth was inhibited after a time, and the physical appearance of the plants was affected. The critical level of radiation, at which growth was first affected, corresponded to 5 kilorads. Plants were grown for 9 days (5 generations) in a culture solution containing phosphate at 0.5 μc per μmole per ml (radiation load approx 0.5 kilorads) so that all phosphorus-containing materials in the tissue became uniformly labeled. The various radioactive compounds were extracted, chromatographed, identified, and their radioactivity was measured. From this radioactivity plus the specific activity of the supplied phosphate, the amount of each compound was calculated. The data constitute a complete balance-sheet for phosphorus in a plant tissue. The identity of 98% of the phosphorus in the tissue was determined. Inorganic phosphate (32,700 mμmoles/g fr wt) was the predominant phosphorus-containing compound; RNA (5100 mμmoles P/g fr wt) was the main organic phosphate; phosphatidyl choline (1600 mμmoles/g fr wt) was the main phospholipid, and glucose-6-phosphate (500 mμmoles/g fr wt) the main acid-soluble phosphate ester. Amounts of other phosphorus compounds are given. Images PMID:16656910
Phosphate removal from aqueous solutions using raw and activated red mud and fly ash.
Li, Yanzhong; Liu, Changjun; Luan, Zhaokun; Peng, Xianjia; Zhu, Chunlei; Chen, Zhaoyang; Zhang, Zhongguo; Fan, Jinghua; Jia, Zhiping
2006-09-01
The effect of acidification and heat treatment of raw red mud (RM) and fly ash (FA) on the sorption of phosphate was studied in parallel experiments. The result shows that a higher efficiency of phosphate removal was acquired by the activated samples than by the raw ones. The sample prepared by using the RM stirred with 0.25 M HCl for 2h (RM0.25), as well as another sample prepared by heating the RM at 700 degrees C for 2h (RM700), registered the maximum removal of phosphate (99% removal of phosphate). This occurred when they were used in the phosphate sorption studies conducted at pH 7.0 and 25 degrees C with the initial PO(4)(3-) concentration of 155 mg P/l. The FA samples treated in the same way described above can achieve 7.0 and 8.2 mg P/l phosphate removal for FA0.25 and FA700 respectively, corresponding to 45.2% and 52.9% removal. The activated materials performed higher phosphate removal over broader pH range compared with the raw ones. The influences of various factors, such as initial pH and initial phosphate concentration on the sorption capacity were also studied in batch equilibration technique. Solution pH significantly influenced the sorption. Each sample achieved the maximal removal of phosphate at pH 7.0. The amount of phosphate removal increased with the solute concentration. The Freundlich and Langmuir models were used to simulate the sorption equilibrium. The results indicate that the Langmuir model has a better correlation with the experimental data than the Freundlich model.
Ezzat, Leïla; Maguer, Jean-François; Grover, Renaud; Ferrier-Pagès, Christine
2015-01-01
Anthropogenic nutrient enrichment affects the biogeochemical cycles and nutrient stoichiometry of coastal ecosystems and is often associated with coral reef decline. However, the mechanisms by which dissolved inorganic nutrients, and especially nitrogen forms (ammonium versus nitrate) can disturb the association between corals and their symbiotic algae are subject to controversial debate. Here, we investigated the coral response to varying N : P ratios, with nitrate or ammonium as a nitrogen source. We showed significant differences in the carbon acquisition by the symbionts and its allocation within the symbiosis according to nutrient abundance, type and stoichiometry. In particular, under low phosphate concentration (0.05 µM), a 3 µM nitrate enrichment induced a significant decrease in carbon fixation rate and low values of carbon translocation, compared with control conditions (N : P = 0.5 : 0.05), while these processes were significantly enhanced when nitrate was replaced by ammonium. A combined enrichment in ammonium and phosphorus (N : P = 3 : 1) induced a shift in nutrient allocation to the symbionts, at the detriment of the host. Altogether, these results shed light into the effect of nutrient enrichment on reef corals. More broadly, they improve our understanding of the consequences of nutrient loading on reef ecosystems, which is urgently required to refine risk management strategies. PMID:26203006
Supported liquid inorganic membranes for nuclear waste separation
Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K
2015-04-07
A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.
NASA Astrophysics Data System (ADS)
Yang, Wei; Cai, Jiaxuan; Zhang, Shuchen; Yi, Xuegang; Gao, Baoxiang
2018-01-01
To synthesize perylenbisimides (PBI) fluorescent probes that will improve the water-soluble ability and the cytocompatibility, the synthesis and properties of fluorescent water-soluble probes based on dendritic ammonium cation polyethylene glycol (PEG) substituted perylenebisimides(GPDIs) are presented. As we expected, with increased ammonium cation PEG, the aggregation of the PBI in an aqueous solution is completely suppressed by the hydrophilic ammonium cation PEG groups. And the fluorescence quantum yield increases from 25% for GPDI-1 to 62% for GPDI-2. When incubated with Hela cells for 48 h, the viabilities are 71% (for GPDI-1) and 76% (for GPDI-2). Live cell imaging shows that these probes are efficiently internalized by HeLa cells. The study of the photophysical properties indicated increasing the ammonium cation PEG generation can increase the fluorescence quantum yield. Live cell imaging shows that with the ammonium cation PEG chains of perylenebisimides has high biocompatibility. The exceptionally low cytotoxicity is ascribed to the ammonium cation PEG chains, which protect the dyes from nonspecifically interacting with the extracellular proteins. Live cell imaging shows that ammonium cations PEG chains can promote the internalization of these probes.
NASA Astrophysics Data System (ADS)
Ahadnejad, Vahid; Hirt, Ann Marie; Valizadeh, Mohammad-Vali; Bokani, Saeed Jabbari
2011-04-01
The ammonium (NH4+) contents of the Malayer area (Western Iran) have been determined by using the colorimetric method on 26 samples from igneous and metamorphic rocks. This is the first analysis of the ammonium contents of Iranian metamorphic and igneous rocks. The average ammonium content of metamorphic rocks decreases from low-grade to high-grade metamorphic rocks (in ppm): slate 580, phyllite 515, andalusite schist 242. In the case of igneous rocks, it decreases from felsic to mafic igneous types (in ppm): granites 39, monzonite 20, diorite 17, gabbro 10. Altered granitic rocks show enrichment in NH4+ (mean 61 ppm). The high concentration of ammonium in Malayer granites may indicate metasedimentary rocks as protoliths rather than meta-igneous rocks. These granitic rocks (S-types) have high K-bearing rock-forming minerals such as biotite, muscovite and K-feldspar which their potassium could substitute with ammonium. In addition, the high ammonium content of metasediments is probably due to inheritance of nitrogen from organic matter in the original sediments. The hydrothermally altered samples of granitic rocks show highly enrichment of ammonium suggesting external sources which intruded additional content by either interaction with metasedimentary country rocks or meteoritic solutions.
Amand, L; Carlsson, B
2013-01-01
Ammonium feedback control is increasingly used to determine the dissolved oxygen (DO) set-point in aerated activated sludge processes for nitrogen removal. This study compares proportional-integral (PI) ammonium feedback control with a DO profile created from a mathematical minimisation of the daily air flow rate. All simulated scenarios are set to reach the same treatment level of ammonium, based on a daily average concentration. The influent includes daily variations only and the model has three aerated zones. Comparisons are made at different plant loads and DO concentrations, and the placement of the ammonium sensor is investigated. The results show that ammonium PI control can achieve the best performance if the DO set-point is limited at a maximum value and with little integral action in the controller. Compared with constant DO control the best-performing ammonium controller can achieve 1-3.5% savings in the air flow rate, while the optimal solution can achieve a 3-7% saving. Energy savings are larger when operating at higher DO concentrations.
Effect of ammonium hydroxide on ultrastructure and tenderness of buffalo meat.
Naveena, B M; Kiran, M; Reddy, K Sudhakar; Ramakrishna, C; Vaithiyanathan, S; Devatkal, Suresh K
2011-08-01
This study was conducted with an objective to improve the tenderness of tough buffalo meat using ammonium hydroxide. Buffalo meat chunks from Biceps femoris muscle were marinated with distilled water (control), 0.1%, 0.5% and 1.0% solution of ammonium hydroxide for 48 h at 4±1 °C and subjected to various physico-chemical analysis and ultrastructural studies. Ammonium hydroxide increased (P<0.05) the pH, water holding capacity (WHC), collagen solubility, total and salt soluble protein extractability and cooking yield. Reduction (P<0.05) in Warner-Bratzler shear force values were observed in all ammonium hydroxide treated samples compared to non-treated control. Electrophoretic pattern of muscle proteins exhibited reduction in the intensity and number of certain protein bands for 0.1% and 0.5% ammonium hydroxide treated samples compared to control. Scanning and transmission electron microscopy also revealed breakdown of endothelium layers surrounding muscle fibers and weakening of Z-discs respectively, in treated samples compared to controls. These results suggest that ammonium hydroxide might be used to tenderize tough buffalo meat. Copyright © 2011 Elsevier Ltd. All rights reserved.
Removal of ammonium from municipal landfill leachate using natural zeolites.
Ye, Zhihong; Wang, Jiawen; Sun, Lingyu; Zhang, Daobin; Zhang, Hui
2015-01-01
Ammonium ion-exchange performance of the natural zeolite was investigated in both batch and column studies. The effects of zeolite dosage, contact time, stirring speed and pH on ammonium removal were investigated in batch experiments. The result showed that ammonium removal efficiency increased with an increase in zeolite dosage from 25 to 150 g/L, and an increase in stirring speed from 200 to 250 r/min. But further increase in zeolite dosage and stirring speed would result in an unpronounced increase of ammonium removal. The optimal pH for the removal of ammonium was found as 7.1. In the column studies, the effect of flow rate was investigated, and the total ammonium removal percentage during 180 min operation time decreased with the flow rate though the ion-exchange capacity varied to a very small extent with the flow rate ranging from 4 to 9 mL/min. The spent zeolite was regenerated by sodium chloride solution and the ammonia removal capacity of zeolite changed little or even increased after three regeneration cycles.
Soluble phosphate fertilizer production using acid effluent from metallurgical industry.
Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B
2016-01-15
Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p < 0.05) on the chemical and mineralogical phosphate characteristics. Phosphate fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Inorganic and organic phosphates react strongly with soil constituents, resulting in relatively low concentrations of soluble phosphates in the soil solution. Multiple competing reactions control the solution-phase concentration and the cycling of phosphorus-containing organic substrates and the re...
Zhang, Qian; Lin, Bing; Hong, Junming; Chang, Chang-Tang
2017-02-01
This study focuses on the effectiveness of zeolite (10% CF-Z [0.5]) hydrothermally synthesized from waste quartz sand and calcium fluoride (CF) for ammonium ion and heavy metal removal. Zeolite was characterized through powder X-ray diffraction, Fourier-transform infrared spectroscopy, micromeritics N 2 adsorption/desorption analysis, and field emission scanning electron microscopy. The effects of CF addition, Si/Al ratio, initial ammonium concentration, solution pH, and temperature on the adsorption of ammonium on 10% CF-Z (0.5) were further examined. Results showed that 10% CF-Z (0.5) was a single-phase zeolite A with cubic-shaped crystals and 10% CF-Z (0.5) efficiently adsorbs ammonium and heavy metals. For instance, 91% ammonium (10 mg L -1 ) and 93% lead (10 mg L -1 ) are removed. The adsorption isotherm, kinetics, and thermodynamics of ammonium adsorption on 10% CF-Z (0.5) were also theoretically analyzed. The adsorption isotherm of ammonium and lead on 10% CF-Z (0.5) in single systems indicated that Freundlich model provides the best fit for the equilibrium data, whereas pseudo-second-order model best describes the adsorption kinetics. The adsorption degree of ions on 10% CF-Z (0.5) in mixed systems exhibits the following pattern: lead > ammonium > cadmium > chromium.
Laser Raman spectra of mono-, oligo- and polysaccharides in solution
NASA Astrophysics Data System (ADS)
Barrett, T. W.
We examined the Raman spectra of thirteen sugars—seven monosaccharides, two disaccharides, one trisaccharide and three polysaccharides—in the wavelength range 200—1700 cm -1 and (i) varied the phosphate buffered solution from pH 6.0 to 8.5 at constant ionic strength of 0.1 and (ii) varied HCl solutions from pH 0.8 to 5.0. As is to be expected with molecules containing COH groupings, all the molecular spectra are distinct. Of the thirteen sugars examined, only D-fructose 1,6-diphosphate (FDP) demonstrated spectral changes for the pH range 6.0—8.5 in phosphate buffer; but all exhibited band intensity enhancement in HCl at the lower pHs, but not band wavenumber changes. The results indicate that: (i) changes in the pH of the major intracellular buffer, phosphate, toward acidity, are able to hydrolyze the 1-phosphate group of FDP and the relative concentration of fructose 1-phosphate to fructose 6-phosphate is indicated by the intensity ratio of the 982 and 1080 cm -1 bands; (ii) it appears that all phosphate groups of FDP are hydrolyzed at pH 0.8 in HCl; and (iii) although conditions of extreme acidity are able to hydrolyze other sugars examined, there is no major degradation.
Okumura, M; Tong, L; Fujinaga, K; Seike, Y
2001-05-01
A simple and rapid in situ preconcentration method for the determination of phosphate in environmental waters has been developed for field analysis. This method is based on solid-phase extraction on a zirconium-loaded Sep-Pack Accell CM cartridge (Zr-SP) and is applicable to studies in which sampling is performed by use of a graduated syringe to prevent contamination and to ensure easy operation at sampling sites. The Zr-SP cartridge was prepared by passing 0.1 mol L(-1) zirconium solution through a Sep-Pak Accell CM cartridge, packed with cation exchange sorbent based on a silica matrix. The adsorption of phosphate and its desorption depend only on the pH of the solution. A water sample containing phosphate was adjusted to pH 2 and passed through the Zr-SP cartridge to collect it. The retained phosphate was quantitatively eluted with 0.5 mol L(-1) sodium hydroxide solution. The phosphate retained in the Zr-SP cartridge was stable for at least one month. The established preconcentration method was successfully applied to brackish lake waters to investigate seasonal changes in the distribution and behavior of phosphate in a brackish lake.
Hydroxyapatite and Other Calcium Phosphates for the Conservation of Cultural Heritage: A Review
2018-01-01
The present paper reviews the methods and the performance of in situ formation of calcium phosphates (CaP) for the conservation of materials belonging to cultural heritage. The core idea is to form CaP (ideally hydroxyapatite, HAP, the most stable CaP at pH > 4) by reaction between the substrate and an aqueous solution of a phosphate salt. Initially proposed for the conservation of marble and limestone, the treatment has been explored for a variety of different substrates, including sandstones, sulphated stones, gypsum stuccoes, concrete, wall paintings, archaeological bones and paper. First, the studies aimed at identifying the best treatment conditions (e.g., nature and concentration of the phosphate precursor, solution pH, treatment duration, ionic and organic additions to the phosphate solution, mineralogical composition of the new CaP phases) are summarized. Then, the treatment performance on marble and limestone is reviewed, in terms of protective and consolidating effectiveness, compatibility (aesthetic, microstructural and physical) and durability. Some pilot applications in real case studies are also reported. Recent research aimed at extending the phosphate treatment to other substrates is then illustrated. Finally, the strengths of the phosphate treatment are summarized, in comparison with alternative products, and some aspects needing future research are outlined. PMID:29617322
Improved hydrous oxide ion-exchange compound catalysts
Dosch, R.G.; Stephens, H.P.
1986-04-09
Disclosed is a catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchanged with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.
Soptrajanov, Bojan; Cahil, Adnan; Najdoski, Metodija; Koleva, Violeta; Stefov, Viktor
2011-09-01
The infrared and Raman spectra of magnesium rubidium phosphate hexahydrate MgRbPO4 • 6H2O and magnesium thallium phosphate hexahydrate, MgTlPO4 • 6H2O were recorded at room temperature (RT) and the boiling temperature of liquid nitrogen (LNT). To facilitate their analysis, also recorded were the spectra of partially deuterated analogues with varying content of deuterium. The effects of deuteration and those of lowering the temperature were the basis of the conclusions drawn regarding the origin of the observed bands which were assigned to vibrations which are predominantly localized in the water molecules (four crystallographically different types of such molecules exist in the structures) and those with PO43- character. It was concluded that in some cases coupling of phosphate and water vibrations is likely to take place. The appearance of the infrared spectra in the O-H stretching regions of the infrared spectra is explained as being the result of an extensive overlap of bands due to components of the fundamental stretching modes of the H2O units with a possible participation of bands due to second-order transitions. A broad band reminiscent of the B band of the well-known ABC trio characteristic of spectra of substances containing strong hydrogen bonds in their structure was found around 2400 cm-1 in the infrared spectra of the two studied compounds.
Walczyk, Thomas; Kastenmayer, Peter; Storcksdieck Genannt Bonsmann, Stefan; Zeder, Christophe; Grathwohl, Dominik; Hurrell, Richard F
2013-06-01
The main purpose of this study was to establish bioavailability data in humans for the new (Fe) fortification compound ferrous ammonium phosphate (FAP), which was specially developed for fortification of difficult-to-fortify foods where soluble Fe compounds cannot be used due to their negative impact on product stability. A double-blind, randomized clinical trial with cross-over design was conducted to obtain bioavailability data for FAP in humans. In this trial, Fe absorption from FAP-fortified full-cream milk powder was compared to that from ferric pyrophosphate (FPP) and ferrous sulfate. Fe absorption was determined in 38 young women using the erythrocyte incorporation dual stable isotope technique (⁵⁷Fe, ⁵⁸Fe). Geometric mean Fe absorption from ferrous sulfate, FAP and FPP was 10.4, 7.4 and 3.3 %, respectively. Fe from FAP was significantly better absorbed from milk than Fe from FPP (p < 0.0001). Fe absorption from FAP was significantly lower than Fe absorption from ferrous sulfate, which was used as water-soluble reference compound (p = 0.0002). Absorption ratios of FAP and FPP relative to ferrous sulfate as a measure of relative bioavailability were 0.71 and 0.32, respectively. The results of the present studies show that replacing FPP with FAP in full-cream milk could significantly improve iron bioavailability.
Nutrient availability at Mer Bleue bog measured by PRSTM probes
NASA Astrophysics Data System (ADS)
Wang, M.; Moore, T. R.; Talbot, J.
2015-12-01
Bogs, covering ~0.7 million km2 in Canada, store a large amount of C and N. As nutrient deficient ecosystems, it's critical to examine the nutrient availabilities and seasonal dynamics. We used Plant Root Simulators (PRSTM) at Mer Bleue bog to provide some baseline data on nutrient availability and its variability. In particular, we focused on ammonium, nitrate, phosphate, calcium, magnesium and potassium, iron, sulphate and aluminum. We placed PRS probes at a depth of 5 - 15 cm in pristine plots and plots with long term N, P and K fertilization for 4 weeks and determined the availability of these nutrients, from spring through to fall. Probes were also placed beneath the water table in hummock and hollow microtopography and along a transect including part of the bog which had been drained through the creation of a ditch 80 years ago. The result showed that there was limited available ammonium, nitrate and phosphate in the bog, the seasonal variation of nutrient availabilities probably due to mineralization, an increase in the availability of some nutrients between different water table depths or as a result of drainage, and the relative availability of nutrients compared to the input from fertilization. We suggest that PRS probes could be a useful tool to examine nutrient availability and dynamics in wetlands, with careful consideration of installing condition, for example, proper exposure period, depth relative to water table etc.
Song, Yonghui; Dai, Yunrong; Hu, Qiong; Yu, Xiaohua; Qian, Feng
2014-04-01
P recovery from swine wastewater has become a great concern as a result of the high demand for P resources and its potential eutrophication effects on water ecosystems. The method of magnesium ammonium phosphate (MAP) crystallization was used to recover P from simulated swine wastewater, and the effects of three organic acids (citric acid, succinic acid and acetic acid) on P removal efficiency and rate at different pH values were investigated. The results indicated that the P removal efficiency was worst affected by citric acid in the optimal pH range of 9.0-10.5, followed by succinic acid and acetic acid, and the influencing extent of organic acids decreased with the increasing pH value. Due to the complexation between organic acid and Mg(2+)/NH4(+), all of three organic acids could inhibit the P removal rate at the beginning of the reaction, which showed positive correlation between the inhibition effects and the concentration of organic acids. The high concentration of citric acid could completely suppress the MAP crystallization reaction. Moreover, citric acid and succinic acid brought obvious effects on the morphology of the crystallized products. The experimental results also demonstrated that MAP crystals could be obtained in the presence of different kinds and concentrations of organic acids. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chitinase activity of Pseudomonas stutzeri PT5 in different fermentation condition
NASA Astrophysics Data System (ADS)
Chalidah, N.; Khotimah, I. N.; Hakim, A. R.; Meata, B. A.; Puspita, I. D.; Nugraheni, P. S.; Ustadi; Pudjiraharti, S.
2018-03-01
This study aimed to determine the incubation condition of Pseudomonas stutzeri PT5 in producing chitin degrading enzyme in various pH and temperatures; to compare the production of chitin degrading enzyme in chitin medium supplemented with additional nitrogen, carbon and a mixture of nitrogen and carbon sources and to observe the production of chitin degrading enzyme in 250 mL-shake flasks and 2 L-fermentor. The parameters tested during production were chitinase activity (U·mL-1) of culture supernatant and N-acetylglucosamine concentration (μg·mL-1) in the medium. The results showed that Pseudomonas stutzeri PT5 was able to produce the highest chitinase activity at pH 6 and temperature of 37 °C (0.024 U·mL-1). The addition of 0.1 % of ammonium phosphate and 0.1 % of maltose, increased the chitinase activity of Pseudomonas stutzeri PT5 by 3.24 and 8.08 folds, respectively, compared to the control. The addition of 0.1 % ammonium phosphate and 0.1 % maltose mixture to chitin medium resulted in the shorter time of chitinase production compared to the addition of sole nutrition. The production of chitinase using 2 L-fermentor shows that the highest chitinase activity produced by Pseudomonas stutzeri PT5 was reached at 1-day incubation (0.0283 U·mL-1), which was shorter than in 250 mL-shake flasks.
NASA Astrophysics Data System (ADS)
Milošević, Maja; Logar, Mihovil; Dojčinović, Biljana; Erić, Suzana
2015-04-01
Cation exchange capacity (CEC) represents one of the most important parameters of clay minerals which reflects their ability to exchange cations with liquid phases in near contact. Measurement of CEC is used for characterizing sample plasticity, adsorbing and swelling properties which later define their usage in industrial purposes. Several methods have been developed over the years for determination of layer charge, charge density, charge distribution, etc. and have been published in numerous papers (Czimerova et al., 2006; Yukselen and Kaya, 2008). The main goal of present study is comparison of suitability of more recent method - methylene blue test in regard to older method - ammonium acetate for determination of CEC. For this study, we selected one montmorillonite clay (Bogovina, Serbia) and two mainly kaolinite clays (Miličinica, Serbia). Chemicals used for CEC determinations were solution of methylene blue (MB)(14*10-6M/ml) and ammonium acetate (AA) solution (1M). The obtained results are showing generally lower values in case of MB method. The main difference is due to molecular aggregation of MB on the clay surface. AA method is highly sensitive to the presence of CaO. Release of Ca ion from the sample into the solution can limit the saturation of exchange sites by the ammonium ion. This is clearly visible in case of montmorillonite clay. Fe2+ and Mg ions are difficult to move by the ammonium ion because of their ion radius, but in case of MB molecule there is no such restriction in removing them from the exchange sites. MB solution, even in a low concentration (2*10-6M/ml), is showing preferable results in moving the ions from their positions which is already visible after adding a small quantity of solution (25cm3). Both MB-titration and MB-spot test yield similar results and are much simpler methods than AA and they also give other information such as specific surface area (external and internal) whereas AA method only provides information about cations in exchangeable positions. Both methods, methylene blue test and ammonium acetate method, have advantages and disadvantages and differ in their requirements for the sample preparations but in general method selection is depending on the specific application of the given sample. References: - Yukselen, Y. and Kaya, A., Engineering Geology 102 (2008) 38-45 - Czimerova, A., Bujdak, J. and Dohrmann, R., Applied Clay Science 34 (2006) 2-13
Laboratory and field studies of stratospheric aerosols: Phase changes under high supersaturation
NASA Technical Reports Server (NTRS)
Hallet, John
1991-01-01
It is well known that water in the form of isolated small droplets supercool as much as 40 C below their equilibrium melting point. Solutions similarly supercool (with respect to water) and supersaturate (with respect of the solute). Experiments are described in which bulk solutions typical of atmospheric aerosols (nitric acid, sulfuric acid, and hydrates; ammonium sulfate; ammonium bisulfate; sodium chloride) are supercooled and/or supersaturated and nucleated to initiate crystal growth. Supersaturation of 300 percent is readily attainable, with linear growth of crystals increasing roughly as (supercooling/supersaturation)sup 2. The implication of the experiments is that the situation of metastability in polar stratosphere clouds is very likely, with nucleation only occuring under a high degree of supercooling or supersaturation.
NASA Astrophysics Data System (ADS)
Deosarkar, S. D.; Mendkudle, M. S.
2014-09-01
Densities (ρ), viscosities (η) and refractive indices ( n D) of aqueous sodium acetate (SA), ammonium acetate (AA), and lead acetate (LA) solutions have been measured for different concentrations of salts at 302.15 K. Apparent molar volumes (φv) for studied solutions were calculated from density data, and fitted to Masson's relation and partial molar volume (φ{v/o}) was determined. Viscosity data were fitted to Jones-Dole equation and viscosity A- and B-coefficients were determined. Refractive index and density data were fitted to Lorentz and Lorenz equation and specific refraction ( R D) were calculated. Behavior of various physicochemical properties indicated presence of strong ion-solvent interactions in present systems and the acetate salts structure maker in water.
Nordstierna, Lars; Yushmanov, Pavel V; Furó, István
2006-08-21
Intermolecular cross-relaxation rates between solute and solvent were measured by {1H} 19F nuclear magnetic resonance experiments in aqueous molecular solutions of ammonium perfluoro-octanoate and sodium trifluoroacetate. The experiments performed at three different magnetic fields provide frequency-dependent cross-relaxation rates which demonstrate clearly the lack of extreme narrowing for nuclear spin relaxation by diffusionally modulated intermolecular interactions. Supplemented by suitable intramolecular cross-relaxation, longitudinal relaxation, and self-diffusion data, the obtained cross-relaxation rates are evaluated within the framework of recent relaxation models and provide information about the hydrophobic hydration. In particular, water dynamics around the trifluoromethyl group in ammonium perfluoro-octanoate are more retarded than that in the smaller trifluoroacetate.
Quartz crystal microbalance sensor using ionophore for ammonium ion detection.
Kosaki, Yasuhiro; Takano, Kosuke; Citterio, Daniel; Suzuki, Koji; Shiratori, Seimei
2012-01-01
Ionophore-based quartz crystal microbalance (QCM) ammonium ion sensors with a detection limit for ammonium ion concentrations as low as 2.2 microM were fabricated. Ionophores are molecules, which selectively bind a particular ion. In this study, one of the known ionophores for ammonium, nonactin, was used to detect ammonium ions for environmental in-situ monitoring of aquarium water for the first time. To fabricate the sensing films, poly(vinyl chloride) was used as the matrix for the immobilization of nonactin. Furthermore, the anionic additive, tetrakis (4-chlorophenyl) borate potassium salt and the plasticizer dioctyl sebacate were used to enhance the sensor properties. The sensor allowed detecting ammonium ions not only in static solution, but also in flowing water. The sensor showed a nearly linear response with the increase of the ammonium ion concentration. The QCM resonance frequency increased with the increase of ammonium ion concentration, suggesting a decreasing weight of the sensing film. The detailed response mechanism could not be verified yet. However, from the results obtained when using a different plasticizer, nitrophenyl octyl ether, it is considered that this effect is caused by the release of water molecules. Consequently, the newly fabricated sensor detects ammonium ions by discharge of water. It shows high selectivity over potassium and sodium ions. We conclude that the newly fabricated sensor can be applied for detecting ammonium ions in aquarium water, since it allows measuring low ammonium ion concentrations. This sensor will be usable for water quality monitoring and controlling.
Akar, Sibel Tunali; Arslan, Derya; Alp, Tugba
2012-08-15
The biosorption properties of APDC modified S. albus were tested in batch and column conditions. Effective experimental parameters such as pH, biosorbent dosage, contact time, temperature, initial lead(II) ion concentration, flow rate and bed height were investigated. The biosorption capacity of modified biosorbent was at maximum when lead(II) solution pH and biosorbent dosage were 5.5 and 2.0 g L(-1), respectively. The biosorption equilibrium was established in 20 min. Langmuir isotherm fitted well to the equilibrium data and kinetics is found to fit pseudo-second-order model. Increase in ionic strength of lead(II) solutions caused a slight decrease in the biosorption yield of APDC-modified biosorbent. Co-ions affected the biosorption performance of modified biomass up to maximum 20.81% reduction. Column biosorption of lead(II) showed higher biosorption yields at lower flow rates. Required time of breakthrough point was found to be 200 min. The recommended mechanism was found to depend mainly on electrostatic interaction, ion-exchange and complex formation. The ion-exchange mechanism for lead(II) biosorption onto the modified biosorbent is verified from the ionic strength effect and EDX analysis. Carbonyl, phosphate and CN groups on the modified surface of S. albus were found to responsible for complexation with lead(II). Copyright © 2012 Elsevier B.V. All rights reserved.
Zhang, Xiaoguang; Liu, Dong; Liu, Hongran; Li, Qiang; Li, Lili; Wang, Lixia; Zhang, Yan
2017-10-08
A high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method based on-line solid phase extraction (SPE) purification was established to determine 10 macrolide antibiotics in pork samples. The samples were extracted with acetonitrile, and the extracts were dried with rotary evaporator at 40℃, then the analytes were dissolved with 2 mL phosphate buffer. The solutions were purified and concentrated by on-line SPE with HLB cartridges. The analytes were eluted with methanol, and then transferred to XBridge BEH C18 column, separated with the mobile phases of 10 mmol/L ammonium acetate aqueous solution and acetonitrile. Finally, the target analytes were detected by tandem mass spectrometry. The results showed that good linearity was obtained in the range of 0.1-200 μg/L for the 10 macrolide antibiotics with correlation coefficients better than 0.990. The limits of detection were in range of 0.05-0.30 μg/kg and the limits of quantitation were in range of 0.10-1.00 μg/kg. The recoveries of the method were in range of 69.6%-115.2% at the spiked levels of 0.10-10.0 μg/kg for all analytes, with the relative standard deviations less than 10%. The developed method can be used for the determination of the 10 macrolide antibiotics in pork samples.
Kim, Ki Jae; Lee, Heon Seong; Kim, Jeonghun; Park, Min-Sik; Kim, Jung Ho; Kim, Young-Jun; Skyllas-Kazacos, Maria
2016-06-08
A newly prepared type of carbon felt with oxygen-rich phosphate groups is proposed as a promising electrode with good stability for all-vanadium redox flow batteries (VRFBs). Through direct surface modification with ammonium hexafluorophosphate (NH4 PF6 ), phosphorus can be successfully incorporated onto the surface of the carbon felt by forming phosphate functional groups with -OH chemical moieties that exhibit good hydrophilicity. The electrochemical reactivity of the carbon felt toward the redox reactions of VO(2+) /VO2 (+) (in the catholyte) and V(3+) /V(2+) (in the anolyte) can be effectively improved owing to the superior catalytic effects of the oxygen-rich phosphate groups. Furthermore, undesirable hydrogen evolution can be suppressed by minimizing the overpotential for the V(3+) /V(2+) redox reaction in the anolyte of the VRFB. Cell-cycling tests with the catalyzed electrodes show improved energy efficiencies of 88.2 and 87.2 % in the 1(st) and 20(th) cycles compared with 83.0 and 81.1 %, respectively, for the pristine electrodes at a constant current density of 32 mA cm(-2) . These improvements are mainly attributed to the faster charge transfer allowed by the integration of the oxygen-rich phosphate groups on the carbon-felt electrode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bievskiĭ, A N
1994-01-01
It was revealed that the same dosages of quaternary ammonium derivatives, such as decamethoxin and cetyltrimethylammonium bromide, inhibited the respiratory chains and caused destruction of Pseudomonas aeruginosa under aerobic conditions more effectively than under anaerobic ones when anions of nitric acid were the terminal acceptors of electrons. It was also registered that Pseudomonas were able to dissimilatory nitrate reduction in the media under the polysaccharide layer that was produced by these bacteria: this fact possibly proves the possibility of survival of denitrifying bacteria in solutions with high concentrations of quaternary ammonium salts. The data obtained permit supposing that inhibitors of respiratory chains and oxidizers may be used as potentiators of the antimicrobial action of quaternary ammonium derivatives.
NASA Astrophysics Data System (ADS)
Chiweshe, Trevor T.; Purcell, Walter; Venter, Johan A.
2016-06-01
Complete sample digestion is a prerequisite in achieving accurate and reproducible results in wet chemical analysis as well as effective element recovery in hydrometallurgical beneficiation processes. Inductively coupled plasma-optical emission spectroscopy was used to evaluate the efficiency of (NH4)2HPO4/(NH4)H2PO4, Na2HPO4/NaH2PO4·H2O (800°C), NH4F·HF flux (250°C), microwave dissolution using HCl and aqua regia acids (240°C) to dissolve and liberate the platinum group metals (PGE) in a Upper Group 2 (UG2) chromitite concentrate sample. Complete digestion of the UG2 chromitite ore was achieved using Na2HPO4/NaH2PO4·H2O and (NH4)2HPO4/(NH4)H2PO4 flux mixtures and average PGE (Ru, Os and Pt) yields of 1.90 g/kg (Ru), 0.88 g/kg (Os), 2.52 g/kg (Pt) were obtained using Sc as internal standard. Fusion with NH4F·HF yielded 0.85 g/kg (Ru), 0.72 g/kg (Os) and 0.95 g/kg (Pt) whilst microwave dissolution using HCl and aqua regia yielded an average of 0.77 g/kg (Ru), 0.08 g/kg (Os) and 0.35 g/kg (Pt). Sodium phosphate flux, however, introduced Na+ ions as easily ionised elements, which affected the emission intensities to yield slightly inflated PGE (Ru, Os and Pt) yields. The use of ammonium phosphate and sodium phosphate at 800°C (after the selective removal of Na+ ions) proved to better the fluxes and produced higher and consistent PGE yields. The use of ammonium phosphate flux was also shown to facilitate the isolation of a green chromium precipitate with a 98.9% purity, which may assist in a hydrometallurgical beneficiation process of the UG2 chromitite concentrate ore and may also have important implications for the ferro-chrome industry.
Xu, Yi; He, Tengxia; Li, Zhenlun; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue
2017-01-01
The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL -1 h -1 , respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature.
CdTe/ZnS quantum dots as fluorescent probes for ammonium determination.
Yi, Kui-Yu
2016-06-01
Novel CdTe/ZnS quantum dot (QD) probes based on the quenching effect were proposed for the simple, rapid, and specific determination of ammonium in aqueous solutions. The QDs were modified using 3-mercaptopropionic acid, and the fluorescence responses of the CdTe/ZnS QD probes to ammonium were detected through regularity quenching. The quenching levels of the CdTe/ZnS QDs and ammonium concentration showed a good linear relationship between 4.0 × 10(-6) and 5.0 × 10(-4) mol/L; the detection limit was 3.0 × 10(-7) mol/L. Ammonium contents in synthetic explosion soil samples were measured to determine the practical applications of the QD probes and a probable quenching mechanism was described. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Quirino, Joselito P; Aranas, Agnes T
2011-10-14
The on-line sample concentration technique, micelle to solvent stacking (MSS), was studied for small organic cations (quaternary ammonium herbicides, β-blocker drugs, and tricyclic antidepressant drugs) in reversed migration micellar electrokinetic chromatography. Electrokinetic chromatography was carried out in fused silica capillaries with a background solution of sodium dodecyl sulfate (SDS) in a low pH phosphate buffer. MSS was performed using anionic SDS micelles in the sample solution for analyte transport and methanol or acetonitrile as organic solvent in the background solution for analyte effective electrophoretic mobility reversal. The solvent also allowed for the separation of the analyte test mixtures. A model for focusing and separation was developed and the mobility reversal that involved micelle collapse was experimentally verified. The effect of analyte retention factor was observed by changing the % organic solvent in the background solution or the concentration of SDS in the sample matrix. With an injection length of 31.9 cm (77% of effective capillary length) for the 7 test drugs, the LODs (S/N=3) of 5-14 ng/mL were 101-346-fold better when compared to typical injection. The linearity (R(2), range=0.025-0.8 μg/mL), intraday and interday repeatability (%RSD, n=10) were ≥0.988, <6.0% and <8.5%, respectively. In addition, analysis of spiked urine samples after 10-fold dilution with the sample matrix yielded LODs=0.02-0.10 μg/mL. These LODs are comparable to published electrophoretic methods that required off-line sample concentration. However, the practicality of the technique for more complex samples will rely on dedicated sample preparation schemes. Copyright © 2011 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Inorganic and organic phosphates react strongly with soil constituents, resulting in relatively low concentrations of soluble P in the soil solution. Multiple competing reactions are operating to regulate the solution-phase concentration of P-containing organic substrates and the released phosphate...
Land-use impact on selected forms of arsenic and phosphorus in soils of different functions
NASA Astrophysics Data System (ADS)
Plak, Andrzej; Bartmiński, Piotr; Dębicki, Ryszard
2017-10-01
The aim of the study was to assess the impact of technosols and geomechanically unchanged soils of the Lublin agglomeration on the concentrations of arsenic and phosphorus, and on selected forms of these elements. Arsenic and phosphorus concentrations were determined in the urban soils of Lublin (Poland), and the relationship between their degree of contamination and different types of land use was estimated. The samples collected were subjected to sequential analysis, using ammonium sulphate, acid ammonium phosphate, oxalate buffer (also with ascorbic acid) and aqua regia for arsenic, and ammonium chloride, sodium hydroxide, hydrochloric acid and aqua regia for phosphorus. The influence of the land use forms was observed in the study. The greatest amount of arsenic (19.62 mg kg-1) was found in the industrial soils of Lublin, while the greatest amount of phosphorus (580.4 mg kg-1) was observed in non-anthropogenic soils (mainly due to the natural accumulation processes of this element). Fractions of arsenic and phosphorus obtained during analysis showed strong differentiation. Amorphic and crystalline fractions of arsenic, bound with iron oxides, proved to have the highest share in the total arsenic pool. The same situation was noted for phosphorus.
Apodaca, L.E.
2010-01-01
Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.
Kukusamude, Chunyapuk; Burakham, Rodjana; Chailapakul, Orawon; Srijaranai, Supalax
2012-04-15
An ion-paired extraction (IPE) has been developed for the analysis of penicillin antibiotics (penicillin G, oxacillin and cloxacillin) in beef and milk samples using tetrabutylammonium bromide (TBABr) as ion-pairing agent and binary water-acetonitrile as extractant. The factors affecting the IPE efficiency were optimized including solution pH, volume of acetonitrile (ACN), concentration of TBABr and electrolyte salt (NH(4))(2)SO(4). The optimum IPE conditions were 10 mmol L(-1) phosphate buffer pH 8, 2 mL of ACN, 6 mmol L(-1) of TBABr and 2.5 mL of saturated ammonium sulfate. Under the HPLC condition: an Xbridge™ C18 reversed-phase column, isocratic elution of 5 mmol L(-1) phosphate buffer (pH 6.6) and acetonitrile (75:25, v/v) and a flow rate of 1 mL min(-1), with UV detection at 215 nm, the separation of three penicillins was achieved within 10 min. Under the selected optimum conditions, the enhancement of 21-53 folds compared to that without preconcentration and limits of detection (LODs) of 1-2 ng mL(-1) were obtained. Good reproducibility was achieved with RSD<2% for retention time and <5% for slope of calibration curves. The average recoveries higher than 85% were obtained. The proposed IPE-HPLC method has shown to be high efficient preconcentration and analysis method for penicillin residues in beef and milk with LOD lower than the maximum residue limits. Copyright © 2012 Elsevier B.V. All rights reserved.
Abrams, Dean; Metcalf, David; Hojjatie, Michael
2014-01-01
In AOAC Official Method 955.04, Nitrogen (Total) in Fertilizers, Kjeldahl Method, fertilizer materials are analyzed using mercuric oxide or metallic mercury HgO or Hg) as a catalyst. AOAC Official Methods 970.02, Nitrogen (Total) in Fertilizers is a comprehensive total nitrogen (including nitrate nitrogen) method adding chromium metal. AOAC Official Method 978.02, Nitrogen (Total) in Fertilizers is a modified comprehensive nitrogen method used to measure total nitrogen in fertilizers with two types of catalysts. In this method, either copper sulfate or chromium metal is added to analyze for total Kjeldahl nitrogen. In this study, the part of AOAC Official Method 978.02 that is for nitrate-free fertilizer products was modified. The objective was to examine the necessity of copper sulfate as a catalyst for the nitrate-free fertilizer products. Copper salts are not environmentally friendly and are considered pollutants. Products such as ammonium sulfate, diammonium phosphate, monoammonium phosphate, urea-containing fertilizers such as isobutylene diurea (IBDU), and urea-triazone fertilizer solutions were examined. The first part of the study was to measure Kjeldahl nitrogen as recommended by AOAC Official Method 978.02. The second part of the study was to exclude the addition of copper sulfate from AOAC Official Method 978.02 to examine the necessity of copper sulfate as a catalyst in nitrate-free fertilizers, which was the primary objective. Our findings indicate that copper sulfate can be eliminated from the method with no significant difference in the results for the nitrogen content of the fertilizer products.
Yang, Bixia; Wang, Lian; Luo, Chunying; Wang, Xixi; Sun, Chengjun
2017-11-01
An analytical method was developed for the simultaneous determination of 11 aminoglycoside (AG) antibiotics, including amikacin, paromomycin, dihydrostreptomycin, gentamicin C1a, hygromycin, kanamycin, netilmicin, spectinomycin, sisomicin, streptomycin, and tobramycin in honey, milk, and pork samples by LC with tandem MS and molecularly imprinted polymer (MIP) SPE. The AG antibiotics in milk and homogenated meat samples were extracted with a solution composed of 10 mmol/L potassium dihydrogen phosphate, 0.4 mmol/L EDTA-Na2, and 2% trichloroacetic acid. For honey samples, the extractant was 50 mmol/L potassium dihydrogen phosphate. The extracts were cleaned up with MIP SPE cartridges. The separation was performed on a zwitter ionic-HILIC column (50 × 2.1 mm, 3.5 μm), with the mobile phase consisting of methanol, 0.3% formic acid, and 175 mmol/L ammonium formate at 0.50 mL/min in gradient elution. A triple-quadrupole mass spectrometer equipped with an electrospray ionization source, which was operated in positive mode, was used for detection. The quantification was based on matrix-matched calibration curves. The method was applied to real samples with three different matrixes. The LODs of the method were 2-30 μg/kg and the LOQs were 7-100 μg/kg; the average recovery ranged from 78.2 to 94.8%; intraday RSDs and interday RSDs were ≤15 and ≤18%, respectively; and the absolute values of matrix effect for all AGs were RSDs ≤23%.
Investigation of detection limits for solutes in water measured by laser raman spectrometry
Goldberg, M.C.
1977-01-01
The influence of experimental parameters on detection sensitivity was determined for laser Raman analysis of dissolved solutes in water. Individual solutions of nitrate, sulfate, carbonate, bicarbonate, monohydrogen phosphate, dihydrogen phosphate, acetate ion, and acetic acid were measured. An equation is derived which expresses the signal-to-noise ratio in terms of solute concentration, measurement time, spectral slit width, laser power fluctuations, and solvent background intensity. Laser beam intensity fluctuations at the sample and solvent background intensity are the most important limiting factors.
SCAVENGER AND PROCESS OF SCAVENGING
Olson, C.M.
1960-04-26
Carrier precipitation processes are given for the separation and recovery of plutonium from aqueous acidic solutions containing plutonium and fission products. Bismuth phosphate is precipitated in the acidic solution while plutonlum is maintained in the hexavalent oxidation state. Preformed, uncalcined, granular titanium dioxide is then added to the solution and the fission product-carrying bismuth phosphate and titanium dioxide are separated from the resulting mixture. Fluosilicic acid, which dissolves any remaining titanium dioxide particles, is then added to the purified plutonium-containing solution.
FORMATION OF NITRITE AND NITRATE BY ACTINOMYCETES AND FUNGI
Hirsch, P.; Overrein, L.; Alexander, M.
1961-01-01
Hirsch, P. (Cornell University, Ithaca, New York), L. Overrein, and M. Alexander. Formation of nitrite and nitrate by actinomycetes and fungi. J. Bacteriol. 82:442–448. 1961.—Nitrite was produced by strains of Mycobacterium, Nocardia, Streptomyces, Micromonospora, and Streptosporangium in media containing ammonium phosphate as the sole nitrogen source. The quantity of nitrite formed was small, and the concentration was affected by pH and by the relative levels of carbon and nitrogen. Aspergillus flavus produced little nitrite from ammonium but formed in excess of 100 parts per million of nitrate-nitrogen. Peroxidase activity and heterotrophic nitrification were reduced in acid conditions, but mycelial development of the fungus was not markedly affected. The inability of A. flavus to form nitrate and nitrite at low pH appears to result from a selective effect of pH upon nitrification rather than being a consequence of the decomposition of nitrogenous intermediates. PMID:13714587
Improved photocatalytic degradation of chlorophenol over Pt/Bi2WO6 on addition of phosphate
NASA Astrophysics Data System (ADS)
Meng, Jie; Xiong, Xianqiang; Zhang, Xiao; Xu, Yiming
2018-05-01
Bismuth tungstate (BiW) is a promising visible light photocatalyst. Herein we report a synergism between Pt and phosphate that increases the UV and visible light activities of BiW by factors of 32 and 15, respectively, for phenol degradation in neutral aqueous solution. BiW was home-made, followed by a photochemical deposition of Pt (Pt/BiW). On the addition of phosphate, the reaction rates on BiW and Pt/BiW in aqueous solution were decreased and increased, respectively. Such a phosphate effect was also observed from the reduction of O2 to H2O2, and from 2,4-dichlorophenol degradation. Moreover, the rate of phenol degradation was proportional to the amount of phosphate adsorption on Pt/BiW, and the phosphate activity increased in the order H3PO4 < H2PO4- < HPO42-. A (photo)electrochemical measurement revealed that Pt and phosphate catalyzed the electron reduction of O2 and the hole oxidation of phenol, respectively. A possible mechanism is proposed, involving the hole oxidation of phosphate into a phosphate radical, followed by phenol oxidation in aqueous phase. As phosphate loading exceeded 0.50 mM, however, the rates of phenol degradation on Pt/BiW under UV and visible light decreased with the phosphate loading. This is ascribed to recombination of the phosphate radicals into a less reactive peroxobiphosphate.
Pant, Atul; Parsons, Matthew T; Bertram, Allan K
2006-07-20
Using optical microscopy, we investigated the crystallization of aqueous ammonium sulfate droplets containing soot and kaolinite, as well as the crystallization of aqueous ammonium sulfate droplets free of solid material. Our results show that soot did not influence the crystallization RH of aqueous ammonium sulfate particles under our experimental conditions. In contrast, kaolinite increased the crystallization RH of the aqueous ammonium sulfate droplets by approximately 10%. In addition, our results show that the crystallization RH of aqueous ammonium sulfate droplets free of solid material does not depend strongly on particle size. This is consistent with conclusions made previously in the literature, based on comparisons of results from different laboratories. From the crystallization results we determined the homogeneous nucleation rates of crystalline ammonium sulfate in aqueous ammonium sulfate droplets and the heterogeneous nucleation rates of crystalline ammonium sulfate in aqueous ammonium sulfate particles containing kaolinite. Using classical nucleation theory and our experimental data, we determined that the interfacial tension between an ammonium sulfate critical nucleus and an aqueous ammonium sulfate solution is 0.064 +/- 0.003 J m(-2) (in agreement with our previous measurements), and the contact angle between an ammonium sulfate critical nucleus and a kaolinite surface is 59 +/- 2 degrees. On the basis of our results, we argue that soot will not influence the crystallization RH of aqueous ammonium sulfate droplets in the atmosphere, but kaolinite can significantly modify the crystallization RH of atmospheric ammonium sulfate droplets. As an example, the CRH50 (the relative humidity at which 50% of the droplets crystallize) ranges from about 41 to 51% RH when the diameter of the kaolinite inclusion ranges from 0.1 to 5 microm. For comparison, the CRH50 of aqueous ammonium sulfate droplets (0.5 microm diameter) free of solid material is approximately 34.3% RH under atmospheric conditions.
Effects of plant diversity on microbial nitrogen and phosphorus dynamics in soil
NASA Astrophysics Data System (ADS)
Prommer, Judith; Braun, Judith; Daly, Amanda; Gorka, Stefan; Hu, Yuntao; Kaiser, Christina; Martin, Victoria; Meyerhofer, Werner; Walker, Tom W. N.; Wanek, Wolfgang; Wasner, Daniel; Wiesenbauer, Julia; Zezula, David; Zheng, Qing; Richter, Andreas
2017-04-01
There is a general consensus that plant diversity affects many ecosystem functions. One example of such an effect is the enhanced aboveground and belowground plant biomass production with increasing species richness, with implications for carbon and nutrient distribution in soil. The Jena Experiment (http://www.the-jena-experiment.de/), a grassland biodiversity experiment established in 2002 in Germany, comprises different levels of plant species richness and different numbers of plant functional groups. It provides the opportunity to examine how changes in biodiversity impact on microbially-mediated nutrient cycling processes. We here report on plant diversity and plant functional composition effects on growth and nitrogen and phosphorus transformation rates, including nitrogen use efficiency, of microbial communities. Microbial growth rates and microbial biomass were positively affected by increasing plant species richness. Amino acid and ammonium concentrations in soil were also positively affected by plant species richness, while phosphate concentrations in contrast were negatively affected. The cycling of organic N in soils (estimated as gross protein depolymerization rates) increased about threefold with plant diversity, while gross N and P mineralization were not significantly affected by either species or functional richness. Microbial nitrogen use efficiency did not respond to different levels of plant diversity but was very high (0.96 and 0.98) across all levels of plant species richness, demonstrating a low N availability for microbes. Taken together this indicates that soil microbial communities were able to meet the well-documented increase in plant N content with species richness, and also the higher N demand of the microbial community by increasing the recycling of organic N such as proteins. In fact, the microbial community even overcompensated the increased plant and microbial N demand, as evidenced by increased levels of free amino acids and ammonium in the soil solution at higher species richness. A possible explanation for increased organic nitrogen transformation rates is the increased microbial biomass, which has previously been related to higher quantity and variety of plant derived compounds that are available to the microbial communities at higher plant diversity. Given that this explanation is right, it is interesting to note that the additional (plant-derived) microbial biomass at higher species richness, did not translate in higher soil P mineralization rates or phosphate availability.
Impurities Removal in Seawater to Optimize the Magnesium Extraction
NASA Astrophysics Data System (ADS)
Natasha, N. C.; Firdiyono, F.; Sulistiyono, E.
2017-02-01
Magnesium extraction from seawater is promising way because magnesium is the second abundant element in seawater and Indonesia has the second longest coastline in the world. To optimize the magnesium extraction, the impurities in seawater need to be eliminated. Evaporation and dissolving process were used in this research to remove the impurities especially calcium in seawater. Seawater which has been evaporated from 100 ml to 50 ml was dissolved with variations solution such as oxalic acid and ammonium bicarbonate. The solution concentration is 100 g/l and it variations are 2 ml, 4 ml, 6 ml, 8 ml, 10 ml, 20 ml, 30 ml, 40 ml and 50 ml. This step will produce precipitate and filtrate then it will be analysed to find out the result of this process. The precipitate was analysed by X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) but the filtrate was analysed by Inductively Coupled Plasma (ICP). XRD analysis shows that calcium oxalate and calcium carbonate were formed and ICP analysis shows that the remaining calcium in seawater using oxalic acid is about 0.01% and sodium 0.14% but when using ammonium bicarbonate the remaining calcium is 2.5% and sodium still more than 90%. The results show that both oxalic acid and ammonium bicarbonate can remove the impurities but when using oxalic acid, not only the impurities but also magnesium was precipitated. The conclusion of this research is the best solution to remove the impurities in seawater without precipitate the magnesium is using ammonium bicarbonate.
Contribution of calcium oxalate to soil-exchangeable calcium
Dauer, Jenny M.; Perakis, Steven S.
2013-01-01
Acid deposition and repeated biomass harvest have decreased soil calcium (Ca) availability in many temperate forests worldwide, yet existing methods for assessing available soil Ca do not fully characterize soil Ca forms. To account for discrepancies in ecosystem Ca budgets, it has been hypothesized that the highly insoluble biomineral Ca oxalate might represent an additional soil Ca pool that is not detected in standard measures of soil-exchangeable Ca. We asked whether several standard method extractants for soil-exchangeable Ca could also access Ca held in Ca oxalate crystals using spike recovery tests in both pure solutions and soil extractions. In solutions of the extractants ammonium chloride, ammonium acetate, and barium chloride, we observed 2% to 104% dissolution of Ca oxalate crystals, with dissolution increasing with both solution molarity and ionic potential of cation extractant. In spike recovery tests using a low-Ca soil, we estimate that 1 M ammonium acetate extraction dissolved sufficient Ca oxalate to contribute an additional 52% to standard measurements of soil-exchangeable Ca. However, in a high-Ca soil, the amount of Ca oxalate spike that would dissolve in 1 M ammonium acetate extraction was difficult to detect against the large pool of exchangeable Ca. We conclude that Ca oxalate can contribute substantially to standard estimates of soil-exchangeable Ca in acid forest soils with low soil-exchangeable Ca. Consequently, measures of exchangeable Ca are unlikely to fully resolve discrepancies in ecosystem Ca mass balance unless the contribution of Ca oxalate to exchangeable Ca is also assessed.
A Laboratory Study on the Phase Transition for Polar Stratospheric Cloud Particles
NASA Technical Reports Server (NTRS)
Teets, Edward H., Jr.
1997-01-01
The nucleation and growth of different phases of simulated polar stratospheric cloud (PSC) particles were investigated in the laboratory. Solutions and mixtures of solutions at concentrations 1 to 5 m (molality) of ammonium sulfate, ammonium bisulfate, sodium chloride, sulfuric acid, and nitric acid were supercooled to prescribed temperatures below their equilibrium melting point. These solutions were contained in small diameter glass tubing of volumes ranging from 2.6 to 0.04 ml. Samples were nucleated by insertion of an ice crystal, or in some cases by a liquid nitrogen cooled wire. Crystallization velocities were determined by timing the crystal growth front passages along the glass tubing. Solution mixtures containing aircraft exhaust (soot) were also examined. Crystallization rates increased as deltaT2, where deltaT is the supercooling for weak solutions (2 m or less). The higher concentrated solutions (greater than 3 m) showed rates significantly less than deltaT2. This reduced rate suggested an onset of a glass phase. Results were applied to the nucleation of highly concentrated solutions at various stages of polar stratospheric cloud development within the polar stratosphere.
Anderson, Collin; MacKay, Mark
2016-11-01
Calcium and phosphate precipitation is an ongoing concern when compounding pediatric parenteral nutrition (PN) solutions. Considerable effort has been expended in producing graphs, tables, and equations to guide the practitioner in prescribing PN that will remain stable. Calcium gluconate is preferred over calcium chloride when compounding PN because of its superior compatibility with inorganic phosphates. PN solutions containing calcium gluconate carry a higher aluminum load than equivalent solutions compounded with calcium chloride, leading to increased potential for aluminum toxicity. This study tested the solubility of calcium chloride in PN solutions compounded with an organic phosphate component, sodium glycerophosphate (NaGP), in place of sodium phosphate. Five PN solutions were compounded by adding calcium chloride at 10, 20, 30, 40, and 50 mEq/L and corresponding concentrations of NaGP at 10, 20, 30, 40, and 50 mmol/L. Each of the 5 solutions was compounded using 1.5% and 4% amino acids, cysteine, and lipids. The physical stability was evaluated by visual inspection (precipitation, haze, and color change). Solutions were evaluated microscopically for any microcrystals using U.S. Pharmacopeia <788> standards. Compatibility testing showed no changes in the PN solution in any of the concentrations tested. Calcium chloride was found to be physically compatible with NaGP in PN at the tested concentrations. Utilization of NaGP in PN solutions would eliminate the need for precipitation curves and allow for the use of calcium chloride. Compounding with NaGP and calcium chloride allows the practitioner a mechanism for reducing the aluminum load in PN. © 2015 American Society for Parenteral and Enteral Nutrition.
Resin catalysts and method of preparation
Smith, Jr., Lawrence A.
1986-01-01
Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
Resin catalysts and method of preparation
Smith, L.A. Jr.
1986-12-16
Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
NASA Technical Reports Server (NTRS)
Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1994-01-01
While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.
Simulation of phosphate transport in sewage-contaminated groundwater, Cape Cod, Massachusetts
Stollenwerk, K.G.
1996-01-01
Sewage-contaminated groundwater currently discharges to Ashumet Pond, located on Cape Cod, Massachusetts Phosphate concentrations as high as 60 ??mol l-1 have been measured in groundwater entering Ashumet Pond, and there is concern that the rate of eutrophication could increase. Phosphate in the sewage plume is sorbed by aquifer sediment; the amount is a function of phosphate concentration and pH. A nonelectrostatic surface-complexation model coupled with a one-dimensional solute-transport code was used to simulate sorption and desorption of phosphate in laboratory column experiments. The model simulated sorption of phosphate reasonably well, although the slow rate of approach to complete breakthrough indicated a nonequilibrium process that was not accounted for in the solute-transport model The rate of phosphate desorption in the column experiments was relatively slow Phosphate could still be measured in effluent after 160 pore volumes of uncontaminated groundwater had been flushed through the columns. Desorption was partly a function of the slowly decreasing pH in the columns and could be modeled quantitatively. Disposal of sewage at this site is scheduled to stop in 1995; however, a large reservoir of sorbed phosphate exists on aquifer sediment upgradient from Ashumet Pond. Computer simulations predict that desorption of phosphate could result in contamination of Ashumet Pond for decades.
The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution.
Cerozi, Brunno da Silva; Fitzsimmons, Kevin
2016-11-01
The interaction between the main ions in aquaponics nutrient solutions affects chemical composition and availability of nutrients, and nutrient uptake by plant roots. This study determined the effect of pH on phosphorus (P) speciation and availability in an aquaponics nutrient solution and used Visual MINTEQ to simulate P species and P activity. In both experimental and simulated results, P availability decreased with increase in pH of aquaponics nutrient solutions. According to simulations, P binds to several cations leaving less free phosphate ions available in solution. High pH values resulted in the formation of insoluble calcium phosphate species. The study also demonstrated the importance of organic matter and alkalinity in keeping free phosphate ions in solution at high pH ranges. It is recommended though that pH in aquaponics systems is maintained at a 5.5-7.2 range for optimal availability and uptake by plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ma, Fang; Du, Hongtao; Li, Ronghua; Zhang, Zengqiang
In this work, pyridinium-functionalized silica nanoparticles adsorbent (PC/SiO2/Fe3O4) was synthesized for phosphate removal from aqueous solutions. The removal efficiency of phosphate on the PC/SiO2/Fe3O4 was carried out and investigated under various conditions such as pH, contact temperature and initial concentration. The results showed that the adsorption equilibrium could be reached within 10 min, which fitted a Langmuir isotherm model, with maximum adsorption capacity of 94.16 mg/g, and the kinetic data were fitted well by pseudo-second-order and intra-particle diffusion models. Phosphate loaded on the adsorbents could be easily desorbed with 0.2 mol/L of NaOH, and the adsorbents showed good reusability. The adsorption capacity was still around 50 mg/g after 10 times of reuse. All the results demonstrated that this pyridinium-functionalized mesoporous material could be used for the phosphate removal from aqueous solution and it was easy to collect due to its magnetic properties.
Polysaccharides as Alternative Moisture Retention Agents for Shrimp.
Torti, Michael J; Sims, Charles A; Adams, Charles M; Sarnoski, Paul J
2016-03-01
Phosphates are used as moisture retention agents (MRAs) by the shrimp industry. Although they are effective, phosphates are expensive, need to be listed on a food label, and overuse can often lead to a higher product cost for consumers. Polysaccharides were researched as alternative MRAs. Polysaccharides are usually inexpensive, are considered natural, and can have nutritional benefits. Research was conducted to determine whether polysaccharides yielded similar functional impacts as phosphates. Treatments included a 0.5% fibercolloid solution isolated from citrus peel, an 8% pectin solution, a 0.5% xanthan gum (XG) solution, a 1% carboxymethyl cellulose solution, and conventionally used 4% sodium tripolyphosphate (STP). Experimental treatments were compared to a distilled water control to gauge effectiveness. Freezing, boiling, and oven drying studies were performed to determine how moisture retention in shrimp differed using these different treatments. Water activity was measured to determine any potential differences in shelf life. Solution uptake was also determined to understand how well the treatments enhanced water binding. For moisture loss by freezing, 4% STP and the 0.5% fibercolloid solution functioned the best. The 4% STP treated shrimp lost the least amount of moisture during boiling. The 0.5% fibercolloid and 0.5% XG treatment outperformed phosphates in respect to moisture uptake ability. None of the treatments had a major effect on water activity. All treatments were rated similar in consumer sensory acceptability tests except for pectin, which was rated lower by the sensory panel. Overall, polysaccharides were found to be viable alternatives to phosphates. © 2016 Institute of Food Technologists®
Glucose-6-phosphate Reduces Calcium Accumulation in Rat Brain Endoplasmic Reticulum
2012-04-01
Ekman and Jager, 1993) adapted from the ammonium molybdate/ malachite green method quan- tified Pi production by SERCA activity. Colorimetric reagent was...prepared by mixing one volume of 10% (w/v) (NH4)6Mo7O24– 4 H2O in 4M HCl with three volumes of 0.2% (w/v) malachite green in 4M HCl, followed by...seryl and threonyl residues in phosphoproteins using alkaline hydrolysis and malachite green. Anal. Biochem. 214, 138. Fulceri, R., Romani, A
Miniaturized and direct spectrophotometric multi-sample analysis of trace metals in natural waters.
Albendín, Gemma; López-López, José A; Pinto, Juan J
2016-03-15
Trends in the analysis of trace metals in natural waters are mainly based on the development of sample treatment methods to isolate and pre-concentrate the metal from the matrix in a simpler extract for further instrumental analysis. However, direct analysis is often possible using more accessible techniques such as spectrophotometry. In this case a proper ligand is required to form a complex that absorbs radiation in the ultraviolet-visible (UV-Vis) spectrum. In this sense, the hydrazone derivative, di-2-pyridylketone benzoylhydrazone (dPKBH), forms complexes with copper (Cu) and vanadium (V) that absorb light at 370 and 395 nm, respectively. Although spectrophotometric methods are considered as time- and reagent-consuming, this work focused on its miniaturization by reducing the volume of sample as well as time and cost of analysis. In both methods, a micro-amount of sample is placed into a microplate reader with a capacity for 96 samples, which can be analyzed in times ranging from 5 to 10 min. The proposed methods have been optimized using a Box-Behnken design of experiments. For Cu determination, concentration of phosphate buffer solution at pH 8.33, masking agents (ammonium fluoride and sodium citrate), and dPKBH were optimized. For V analysis, sample (pH 4.5) was obtained using acetic acid/sodium acetate buffer, and masking agents were ammonium fluoride and 1,2-cyclohexanediaminetetraacetic acid. Under optimal conditions, both methods were applied to the analysis of certified reference materials TMDA-62 (lake water), LGC-6016 (estuarine water), and LGC-6019 (river water). In all cases, results proved the accuracy of the method. Copyright © 2015 Elsevier Inc. All rights reserved.
Calcium Solubility and Cation Exchange Properties in Zeoponic Soil
NASA Technical Reports Server (NTRS)
Beiersdorfer, Raymond E.
1999-01-01
An important aspect of a regenerative life support system at a Lunar or Martian outpost is the ability to produce food. Essential plant nutrients, as well as a solid support substrate, can be provided by: (1) treated Lunar or Martian regolith; (2) a synthetic soil or (3) some combination of both. A synthetic soil composed of ammonium- and potassium-saturated chinoptlolite (a zeolite mineral) and apatite, can provide slow-release fertilization of plants via dissolution and ion-exchange reactions. Previous equilibrium studies (Beiersdorfer, 1997) on mixtures of synthetic hydroxyapatite and saturated-clinoptilolite indicate that the concentrations of macro-nutrients such as ammonium, phosphorous, potassium, magnesium, and calcium are a function of the ratio of chinoptilolite to apatite in the sample and to the ratio of potassium to ammonium on the exchange sites in the clinoptilolite. Potassium, ammonium, phosphorous, and magnesium are available to plants at sufficient levels. However, calcium is deficient, due to the high degree of calcium adsorption by the clinoptilolite. Based on a series of batch-equilibration experiments, this calcium deficiency can be reduced by (1) treating the clinoptilolite with CaNO3 or (2) adding a second Ca-bearing mineral (calcite, dolomite or wollastonite) to the soil. Treating the Cp with CaNO3 results in increased Ca in solution, decreased P in solution and decreased NH4 in solution. Concentrations of K were not effected by the CaNO3 treatment. Additions of Cal, Dol and Wol changed the concentrations of Ca and P in solution in a systematic fashion. Cal has the greatest effect, Dol the least and Wol is intermediate. The changes are consistent with changes expected for a common ion effect with Ca. Higher concentrations of Ca in solution with added Cal, Dol or Wol do not result in changes in K or NH4 concentrations.
Understanding the ice nucleation characteristics of feldspars suspended in solution
NASA Astrophysics Data System (ADS)
Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas
2017-04-01
Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Zobrist et al. (2008) Arizona test dust, silver iodide, nonadecanol and silicon dioxide suspensions in various solutes showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust particles at a microphysical scale. To improve our understanding how solute and mineral dust particle surface interaction, we run freezing experiments using a differential scanning calorimeter (DSC) with microcline, sanidine, plagioclase, kaolinite and quartz particles suspended in pure water and solutions containing ammonia, ammonium bisulfate, ammonium sulfate, ammonium chloride, ammonium nitrate, potassium chloride, potassium sulfate, sodium sulfate and sulfuric acid. Methodology Suspensions of mineral dust samples (2 - 5 wt%) are prepared in water with varying solute concentrations (0 - 15 wt%). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich Chemical) and 5 wt% lanolin (Fluka Chemical) is emulsified with a rotor-stator homogenizer for 40 s at a rotation frequency of 7000 rpm. 4 - 10 mg of this mixture is pipetted in an aluminum pan (closed hermetically), placed in the DSC and subjected to three freezing cycles. The first and the third freezing cycles are executed at a cooling rate of 10 K/min to control the stability of the sample. The second freezing cycle is executed at a 1 K/min cooling rate and is used for evaluation. Freezing temperatures are obtained by evaluating the onset of the freezing signal in the DSC curve and plotted against water activity. Results Based on Koop et al. (2000), a general decreasing trend in ice nucleation efficiency of the mineral samples with increasing solute concentrations is expected. Interestingly, feldspars (microcline, sanidine, plagioclase) in very dilute solutions of ammonia and ammonium salts (water activity close to one) show an increase in ice nucleation efficiency of 4 to 6 K compared to that in pure water. Similar trends but less pronounced are observed for kaolinite while quartz shows barely any effect. Therefore, there seem to be specific interactions between the feldspar surface and ammonia and/or ammonium ions which result in an increase in freezing temperatures at low solute concentrations. The surface ion exchange seems to be secondary for this effect since it is also present in ammonia solution. We hypothesize that ammonia adsorbs on the aluminol/silanol groups present on feldspar (viz. aluminosilicate surface) surfaces (Nash and Marshall, 1957; Belchinskaya et al., 2013). Hence allowing one of the N-H bonds to stick outwards from the surface, facing towards the bulk water and providing a favorable template for ice to grow. The current study gives an insight into the ice nucleation behavior of aluminosilicate minerals when present in conjunction with chemical species, eg. ammonium/sulfates, which is of high atmospheric relevance. References Koop et al., (2000), doi:10.1038/35020537. Zobrist et al., (2008). J. Phys. Chem., 112:3965-3975. Nash and Marshall (1957). Proceedings Soil Sci. Society, 21:149-153. Belchinskaya et al., (2013). J. Applied Chemistry, doi:10.1155/2013/789410
Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin H K
2015-03-01
Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining nanoparticles of silver/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry.
Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin HK
2015-01-01
Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining NAg/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry. PMID:25723095
Kositchaiwat, Savit; Suwanthanmma, Weerapat; Suvikapakornkul, Ronnarat; Tiewthanom, Vaewvadee; Rerkpatanakit, Prisna; Tinkornrusmee, Chaowalitr
2006-09-14
To compare the efficacy and acceptance of senna tablet and sodium phosphate solution for bowel preparation before colonoscopy. One hundred and thirty four patients, who needed elective colonoscopy, were randomly allocated to take 180 mg senna tablet or 95 mL sodium phosphate solution on the day before colonoscopy. The efficacies of both laxatives were compared using the mean difference of colon-cleanliness score of the rectum, sigmoid segments, descending colon, transverse colon and cecum. The scores were rated by two observers who were blinded to the laxatives administered. The higher score means that the colon is cleaner. The efficacy of both laxatives were equivalent if the 95% confidence interval of the mean difference of the score of colon lie within -1 to +1. On intention-to-treat analysis, the mean cleanliness scores in the four segments of colon except the cecum were higher in the sodium phosphate group than those in senna group (7.9 +/- 1.7 vs 8.3 +/- 1.5, 8.0 +/- 1.8 vs 8.5 +/- 1.4, 7.9 +/- 2.0 vs 8.5 +/- 1.3, 7.9 +/- 2.0 vs 8.2 +/- 1.4 and 7.2 +/- 1.7 vs 6.9 +/- 1.4, respectively). The 95% confidence intervals (95% CI) of mean difference in each segment of colon were not found to lie within 1 point which indicated that their efficacies were not equivalent. The taste of senna was better than sodium phosphate solution. Also, senna had fewer side effects. The efficacy of senna is not equivalent to sodium phosphate solution in bowel preparation for colonoscopy, but senna may be considered an alternative laxative.
Kositchaiwat, Savit; Suwanthanmma, Weerapat; Suvikapakornkul, Ronnarat; Tiewthanom, Vaewvadee; Rerkpatanakit, Prisna; Tinkornrusmee, Chaowalitr
2006-01-01
AIM: To compare the efficacy and acceptance of senna tablet and sodium phosphate solution for bowel preparation before colonoscopy. METHODS: One hundred and thirty four patients, who needed elective colonoscopy, were randomly allocated to take 180 mg senna tablet or 95 mL sodium phosphate solution on the day before colonoscopy. The efficacies of both laxatives were compared using the mean difference of colon-cleanliness score of the rectum, sigmoid segments, descending colon, transverse colon and cecum. The scores were rated by two observers who were blinded to the laxatives administered. The higher score means that the colon is cleaner. The efficacy of both laxatives were equivalent if the 95% confidence interval of the mean difference of the score of colon lie within -1 to +1. RESULTS: On intention-to-treat analysis, the mean cleanliness scores in the four segments of colon except the cecum were higher in the sodium phosphate group than those in senna group (7.9 ± 1.7 vs 8.3 ± 1.5, 8.0 ± 1.8 vs 8.5 ± 1.4, 7.9 ± 2.0 vs 8.5 ± 1.3, 7.9 ± 2.0 vs 8.2 ± 1.4 and 7.2 ± 1.7 vs 6.9 ± 1.4, respectively). The 95% confidence intervals (95% CI) of mean difference in each segment of colon were not found to lie within 1 point which indicated that their efficacies were not equivalent. The taste of senna was better than sodium phosphate solution. Also, senna had fewer side effects. CONCLUSION: The efficacy of senna is not equivalent to sodium phosphate solution in bowel preparation for colonoscopy, but senna may be considered an alternative laxative. PMID:17006995
Synthesis and anticoagulant activity of the quaternary ammonium chitosan sulfates.
Fan, Lihong; Wu, Penghui; Zhang, Jinrong; Gao, Song; Wang, Libo; Li, Mingjia; Sha, Mingming; Xie, Weiguo; Nie, Min
2012-01-01
Quaternary ammonium chitosan sulfates with diverse degrees of substitution (DS) ascribed to sulfate groups between 0.52 and 1.55 were synthesized by reacting quaternary ammonium chitosan with an uncommon sulfating agent (N(SO(3)Na)(3)) that was prepared from sodium bisulfite (NaHSO(3)) through reaction with sodium nitrite (NaNO(2)) in the aqueous system homogeneous. The structures of the derivatives were characterized by FTIR, (1)H NMR and (13)C NMR. The factors affecting DS of quaternary ammonium chitosan sulfates which included the molar ratio of NaNO(2) to quaternary ammonium chitosan, sulfated temperature, sulfated time and pH of sulfated reaction solution were investigated in detail. Its anticoagulation activity in vitro was determined by an activated partial thromboplastin time (APTT) assay, a thrombin time (TT) assay and a prothrombin time (PT) assay. Results of anticoagulation assays showed quaternary ammonium chitosan sulfates significantly prolonged APTT and TT, but not PT, and demonstrated that the introduction of sulfate groups into the quaternary ammonium chitosan structure improved its anticoagulant activity obviously. The study showed its anticoagulant properties strongly depended on its DS, concentration and molecular weight. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Highly conductive side chain block copolymer anion exchange membranes.
Wang, Lizhu; Hickner, Michael A
2016-06-28
Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days.
Hassler, Sebastian; Jung, Benjamin; Lemke, Lilia; Novák, Ondřej; Strnad, Miroslav; Martinoia, Enrico; Neuhaus, H. Ekkehard
2016-01-01
The phosphate transporter PHT4;6 locates to the trans-Golgi compartment, and its impaired activity causes altered intracellular phosphate compartmentation, leading to low cytosolic Pi levels, a blockage of Golgi-related processes such as protein glycosylation and hemicellulose biosynthesis, and a dwarf phenotype. However, it was unclear whether altered Pi homeostasis in pht4;6 mutants causes further cellular problems, typically associated with limited phosphate availability. Here we report that pht4;6 mutants exhibit a markedly increased disposition to induce dark-induced senescence. In control experiments, in which pht4;6 mutants and wild-type plants developed similarly, we confirmed that accelerated dark-induced senescence in mutants is not a ‘pleiotropic’ process associated with the dwarf phenotype. In fact, accelerated dark-induced senescence in pht4;6 mutants correlates strongly with increased levels of toxic NH4 + and higher sensitivity to ammonium, which probably contribute to the inability of pht4;6 mutants to recover from dark treatment. Experiments with modified levels of either salicylic acid (SA) or trans-zeatin (tZ) demonstrate that altered concentrations of these compounds in pht4;6 plants act as major cellular mediators for dark-induced senescence. This conclusion gained further support from the notion that the expression of the pht4;6 gene is, in contrast to genes coding for major phosphate importers, substantially induced by tZ. Taken together, our findings point to a critical function of PHT4;6 to control cellular phosphate levels, in particular the cytosolic Pi availability, required to energize plant primary metabolism for proper plant development. Phosphate and its allocation mediated by PHT4;6 is critical to prevent onset of dark-induced senescence. PMID:27325894
Su, Guanyong; Letcher, Robert J; Yu, Hongxia
2015-12-24
Organophosphate (OP) diesters in urine samples have potential use as biomarkers of organism exposure to environmentally relevant OP triester precursors and in particular OP triester flame retardants. This present study developed a quantitatively sensitive ultra high pressure liquid chromatography (UHPLC-MS) based method for urine and the determination of OP diesters (i.e. diphenyl phosphate (DPHP), bis(2-chloroethyl) phosphate (BCEP), bis(2-chloroisopropyl) phosphate (BDCIPP), di-n-butyl phosphate (DNBP), di(2-ethylhexyl) phosphate (DEHP), bis(1-chloro-2-propyl) phosphate (BCIPP), and bis(2-butoxyethyl) phosphate (BBOEP)). Fortified with the 7 OP diesters, 1mL of human urine sample was cleaned up using weak anion exchange solid phase extraction and eluted with high ionic strength ammonium acetate buffer. Subsequently, 4 non-chlorinated OP diesters were directly determined using UHPLC-electrospray(-)-triple quadrupole-MS (UHPLC-ESI(-)-QqQ-MS), and UHPLC-ESI(+)-QqQ-MS was used for determination of 3 chlorinated OP diesters after methylation using diazomethane. Recovery efficiencies of OP diesters ranged from 88 to 160% at three spiking levels (0.4, 2 and 10ng/mL urine). Matrix effects (MEs) and method limits of quantification (MLOQs) were 15-134% and 0.10-0.32ng/mL urine, respectively. Concentrations of OP diesters in n=12 urine samples (from 4 Canadian residents, 2014) varied as follows, nd-<0.28 (DNBP), nd-1.29 (DPHP), nd-<0.28 (DEHP), <0.16-12.33 (BCEP), nd-1.17 (BCDIPP) and nd-0.68ng/mL (BCIPP). Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Straub, D.
2016-12-01
The chemical composition of radiation fog has been studied at a rural site in central Pennsylvania over an eight year period extending through 2015. Bulk fog samples were collected with an automated Caltech Heated Rod Cloud Collector (CHRCC) and analyzed for pH, inorganic ions, organic acids, total organic carbon (TOC), and total nitrogen (TN). Over the duration of the project, 146 samples were collected and used to document chemical composition, evaluate changes over time, and to investigate partitioning between the gas and aqueous phases. Ammonium, sulfate, calcium, and nitrate were the most abundant inorganic ions while acetate and formate were the dominant organic acids. Organic acids contributed about 15% to TOC. Inorganic nitrogen accounted for the majority of TN, with only 18% of TN attributed to organic nitrogen. Overall, organic matter contributed 52% to the total mass loading of the fog samples, a value that is higher than reported for other radiation fog studies. Statistically significant decreasing trends were observed for sulfate, ammonium, chloride, nitrate, and pH. These trends coincide with reductions in emissions from fossil fuel combustion that have been documented over this time period. Seasonal trends were also detected for nitrate, ammonium, potassium, phosphate, acetate and formate which appear to be related to the agricultural growing season. Based on simultaneous measurements of gas phase ammonia and ammonium in the fog samples, significant deviations from equilibrium were found. In low pH samples, ammonium concentrations were much lower than equilibrium predicts, while the opposite occurred in high pH samples. Modeling suggested that mass transfer limitations contributed to the departure from equilibrium. Similarly, predictions of bicarbonate concentrations based on equilibrium with gas phase carbon dioxide appears to underestimate the actual amount of bicarbonate present in samples collected during this study.
Fuh, Lih-Jyh; Huang, Ya-Jing; Chen, Wen-Cheng; Lin, Dan-Jae
2017-06-01
Dimensional instability caused by sintering shrinkage is an inevitable drawback for conventional processing of hydroxyapatite (HA). A new preparation method for biphasic calcium phosphates was developed to increase micro pores and biodegradation without significant dimensional change. Powder pressed HA discs, under 100MPa, were immersed in a colloidal mixture of tetraethoxysilane (TEOS) and ammonium hydroxide for 10min, followed by drying, and then were sintered at 900°C, 1050°C, and 1200°C, respectively. Comparing with pure HA discs, the newly prepared product sintered up to 1200°C contained silicon substituted HA, beta-tricalcium phosphate, and calcium silicate with better micro-porosity, high specific surface area, less sintering shrinkage and the strength maintained. The cytocompatibility test demonstrated a better viability for D1 mice stem cells cultured on TEOS treated HA for 14days compared to the pure HA. This simple TEOS sol-gel pretreatment has the potential to be applied to any existing manufacturing process of HA scaffold for better control of sintering shrinkage, create micropores, and increase biodegradation. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zia-ul-Mustafa, M., E-mail: engr.ziamustafa@gmail.com; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.
In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD)more » and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.« less
Xavier, Luciano Dias; Cammarota, Magali Christe; Yokoyama, Lídia; Volschan Junior, Isaac
2014-01-01
The goal of this work was to study the effective recovery of phosphorus from the supernatant of anaerobic digestion of sewage sludge by precipitation as struvite. The formation of struvite is envisioned as a promising process for nutrient removal and subsequent recovery, thus providing a strong incentive for its implementation, since the sewage is a renewable source of phosphorus. Struvite precipitation was obtained by controlled addition of Mg(OH)2 or MgCl2. We evaluated the removal of ammonia and phosphate under equimolar conditions of magnesium and magnesium stoichiometric excess of 100 to 200% relative to the limiting reagent, under a stirring speed of 300 rpm at pH 8, 9 and 10. The best condition was MgCl2 in 1:1 molar ratio to phosphate, considering the stoichiometric ratio [PO4(3-)]:[NH4(+)] of 0.13 (presented by raw sample). The results show the best cost-benefit ratio, removal of phosphate of 90.6% and ammonium removal of 29%, resulting in 23 mg l(-1) PO4(3-) and 265 mg l(-1) NH4(+) concentration in effluent.
Duquène, L; Vandenhove, H; Tack, F; Van Hees, M; Wannijn, J
2010-02-01
The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C(DGT)) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO(2)(2+), uranyl carbonate complexes and UO(2)PO(4)(-). The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants. Copyright 2009 Elsevier Ltd. All rights reserved.
CATIONIC EXCHANGE PROCESS FOR THE SEPARATION OF RARE EARTHS
Choppin, G.R.; Thompson, S.G.; Harvey, B.G.
1960-02-16
A process for separating mixtures of elements in the lanthanum and actinium series of the periodic table is described. The mixture of elements is dissolved in 0.05 M HCI, wherein the elements exist as tripositive ions. The resulting solution is then transferred to a column of cationic exchange resin and the column eluted with 0.1 to 0.6 M aqueous ammonium alpha hydroxy isobutyrate solution of pH 3.8 to 5.0. The use of ammonium alpha hydroxy isobutyrate as an eluting agent results in sharper and more rapid separations than previously obtainable with eluants such as citric, tartaric, glycolic, and lactic acids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drabo, Mebougna L.; Egarievwe, Stephen U.; Okwechime, Ifechukwude O.
Surface defects caused during cutting and polishing in the fabrication of cadmium zinc telluride (CdZnTe) nuclear detectors limit their spectral performance. Chemical treatments are often used to remove surface damages and defects. In this paper, we present the analysis of Te and TeO 2 species on the surfaces of CdZnTe nuclear detectors treated with hydrogen bromide and ammonium-based solutions. The CdZnTe wafers were chemo-mechanically polished in a mixture of hydrogen bromide in hydrogen peroxide and ethylene glycol, followed by a chemical passivation in a mixture of ammonium fluoride and hydrogen peroxide solution. X-ray photoelectron spectroscopy showed significant conversion of Temore » to TeO 2, thus producing a more chemically stable surface. The resistivity of the CdZnTe samples is in the order of 1010 ohms-cm. The current for a given applied voltage increased following the passivation and decreased after a 3-hour period. Results from spectral response measurements showed that the 59.5-keV gamma-peak of Am-241 was stable under the same channel for the surface treatment processes.« less
Drabo, Mebougna L.; Egarievwe, Stephen U.; Okwechime, Ifechukwude O.; ...
2017-04-30
Surface defects caused during cutting and polishing in the fabrication of cadmium zinc telluride (CdZnTe) nuclear detectors limit their spectral performance. Chemical treatments are often used to remove surface damages and defects. In this paper, we present the analysis of Te and TeO 2 species on the surfaces of CdZnTe nuclear detectors treated with hydrogen bromide and ammonium-based solutions. The CdZnTe wafers were chemo-mechanically polished in a mixture of hydrogen bromide in hydrogen peroxide and ethylene glycol, followed by a chemical passivation in a mixture of ammonium fluoride and hydrogen peroxide solution. X-ray photoelectron spectroscopy showed significant conversion of Temore » to TeO 2, thus producing a more chemically stable surface. The resistivity of the CdZnTe samples is in the order of 1010 ohms-cm. The current for a given applied voltage increased following the passivation and decreased after a 3-hour period. Results from spectral response measurements showed that the 59.5-keV gamma-peak of Am-241 was stable under the same channel for the surface treatment processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smales, A.A.; Airey, L.; Woodward, J.
1950-06-01
Consideration has been given to the problem of separating and estimating uranium, polonium, and other alpha emitters (in order to provide analytical methods for their routine determination in conformily with the draft agreement on the Harwell effluent). Uranium may be ether extracted from solutions of ammonium nitrate as salting out agent at pHl with an efficiency of 98 to 99%. The deposition of polonium on silver foil is a specific method for this element and under prescribed conditions similar extraction efficiencies may be obtained. An adequate separation from all other alpha emitters'' is obtained and methods for the estimation ofmore » these are discussed. A comprehensive scheme involving a preliminary activity concentration step has been elaborated. Uranium, polonium, and the majority of the other alpha emitters'' are precipitated as their tannin complexes at pH8 using calcium hydroxide, the calcium-tannin complex acting as a carrier. That part of the activity remaining in solution is determined as in the total activity method, previously described. From the solution of the precipitate, polonium is first separated by electrodeposition, and then uranium by ether extraction in the presence of ammonium nitrate. The majority of the other alpha emitters'' still in the aqueous ammonium nitrate solution are collected on a second calcium-tannin precipitate, while the small part remaining in solution after this operation is obtained by direct evaporation. (auth)« less
Ammonium fluoride as a mobile phase additive in aqueous normal phase chromatography.
Pesek, Joseph J; Matyska, Maria T
2015-07-03
The use of ammonium fluoride as a mobile phase additive in aqueous normal phase chromatography with silica hydride-based stationary phases and mass spectrometry detection is evaluated. Retention times, peak shape, efficiency and peak intensity are compared to the more standard additives formic acid and ammonium formate. The test solutes were NAD, 3-hydroxyglutaric acid, α-ketoglutaric acid, p-aminohippuric acid, AMP, ATP, aconitic acid, threonine, N-acetyl carnitine, and 3-methyladipic acid. The column parameters are assessed in both the positive and negative ion detection modes. Ammonium fluoride is potentially an aggressive mobile phase additive that could have detrimental effects on column lifetime. Column reproducibility is measured and the effects of switching between different additives are also tested. Copyright © 2015 Elsevier B.V. All rights reserved.
Low-temperature solution route to macroscopic amounts of hydrogen terminated silicon nanoparticles.
Neiner, Doinita; Chiu, Hsiang Wei; Kauzlarich, Susan M
2006-08-30
A new solution route for preparing gram-scale, hydrogen terminated silicon nanoparticles is presented. Dimethoxyethane and diocytl ether have been used to prepare silicon nanoparticles via a solution reaction between sodium silicide and ammonium bromide. The reaction products are isolated as a clear yellow-orange solution and a dark black powder. Both the solution and the powder have been characterized.
NASA Astrophysics Data System (ADS)
Razali, N. N.; Sukardi, M. A.; Sopyan, I.; Mel, M.; Salleh, H. M.; Rahman, M. M.
2018-01-01
The objective of this study is to determine the effects of excess calcium on the handling and mechanical properties of hydrothermal derived calcium phosphate cement (CPC) for bone filling applications. Hydroxyapatite powder was synthesized via hydrothermal method using calcium oxide, CaO and ammonium dihydrogen phosphate, NH4H2PO4 as the calcium and phosphorus precursors respectively. The effects of calcium excess were evaluated by varying the CaO content at 0, 5 and 15 mole %. The precursors were then refluxed in distilled water at 90-100°C and dried overnight until the calcium phosphate powder was formed. CPC was then produced by mixing the synthesized powder with distilled water at the powder-to-liquid (P/L) ratio of 1.5. The result from the morphological properties of CPC shows the increase in agglomeration and particles size with 5 mole % of calcium excess but decreased with 15 mole % of calcium excess in CPC. This result was in agreement with the compressive strength result where the CPC increased its strength with 5 mole % of calcium excess but reduced with 15 mole % of calcium excess. The excess in calcium precursor also significantly improved the setting time but reduced the injectability of CPC.
Dmitryjuk, M; Dopieralska, M; Łopieńska-Biernat, E; Frączek, R J
2013-06-01
Trehalose 6-phosphate (T6P) synthase (TPS; EC 2.4.1.15) was isolated from muscles of Ascaris suum by ammonium sulphate fractionation, ion-exchange DEAE SEPHACEL(TM) anion exchanger column chromatography and Sepharose 6B gel filtration. On sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), 265-fold purified TPS exhibited a molecular weight of 66 kDa. The optimum pH and temperature of the purified enzyme were 3.8-4.2 and 35°C, respectively. The isoelectric point (pI) of TPS was pH 5.4. The studied TPS was not absolutely substrate specific. Besides glucose 6-phosphate, the enzyme was able to use fructose 6-phosphate as an acceptor of glucose. TPS was activated by 10 mM MgCl2, 10 mM CaCl2 and 10 mM NaCl. In addition, it was inhibited by ethylenediaminetetra-acetic acid (EDTA), KCl, FeCl3 and ZnCl2. Two genes encoding TPS were isolated and sequenced from muscles of the parasite. Complete coding sequences for tps1 (JF412033.2) and tps2 (JF412034.2) were 3917 bp and 3976 bp, respectively. Translation products (AEX60788.1 and AEX60787.1) showed expression to the glucosyltransferase-GTB-type superfamily.
Optical constants of concentrated aqueous ammonium sulfate.
NASA Technical Reports Server (NTRS)
Remsberg, E. E.
1973-01-01
Using experimental data obtained from applying spectroscopy to a 39-wt-% aqueous ammonium sulfate solution, it is shown that, even though specific aerosol optical constants appear quite accurate, spectral variations may exist as functions of material composition or concentration or both. Prudent users of optical constant data must then include liberal data error estimates when performing calculations or in interpreting spectroscopic surveys of collected aerosol material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sckefe, C.R.; Patti, A.F.; Clune, T.S.
2008-07-15
To determine how organic amendments and phosphate fertilizers interact to modify P sorption processes, three phosphate fertilizers were applied to lignite- and compost-amended acid soil and incubated for either 3 or 26 days. The fertilizers applied were potassium dihydrogen phosphate, triple superphosphate, and diammonium phosphate (DAP). After 3 days of incubation, sorption of all three P sources was decreased in the lignite-amended treatments, whereas P sorption was increased in the compost-amended treatments. Increased incubation time (26 days) resulted in significantly decreased P sorption when DAP was added to lignite-amended treatments. Addition of triple superphosphate increased P sorption in lignite- andmore » compost-amended treatments and decreased solution pH compared with DAP application. In addition to the effect of P source, differences in P sorption between the lignite- and compost-amended treatments were driven by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment and fertilizer addition also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. It is proposed that the combination of lignite and DAP may contribute to decreased P sorption in acid soils, with the positive effects likely caused by both chemical and biological processes, including the formation of soluble organic-metal complexes.« less