Sample records for amorphous hydrogenated boron

  1. Hydrogenated nanostructure boron doped amorphous carbon films by DC bias

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Dayana, K.; Saurdi, I.; Malek, M. F.; Rusop, M.

    2018-03-01

    Hydrogenated nanostructure-boron doped amorphous carbon thin film carbon was deposited at different negative bias using custom-made deposition bias assisted-CVD. Solid of boron and palm oil were used as dopant and carbon source, respectively. The hydrogenated nanostructure amorphous films were characterized by Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, while the photo-response studies of thin film is done by I-V measurement under light measurement. The results showed the carbon film were in nanostructure with hydrogen and boron might be incorporated in the film. The Raman spectra observed the increase of upward shift of D and G peaks as negative bias increased which related to the structural change as boron incorporated in carbon network. These structural changes were further correlated with photo-response study and the results obtained are discussed and compared.

  2. Compensated amorphous silicon solar cell

    DOEpatents

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  3. Hydrogenation effects on carrier transport in boron-doped ultrananocrystalline diamond/amorphous carbon films prepared by coaxial arc plasma deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katamune, Yūki, E-mail: yuki-katamune@kyudai.jp; Takeichi, Satoshi; Ohmagari, Shinya

    2015-11-15

    Boron-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were deposited by coaxial arc plasma deposition with a boron-blended graphite target at a base pressure of <10{sup −3} Pa and at hydrogen pressures of ≤53.3 Pa. The hydrogenation effects on the electrical properties of the films were investigated in terms of chemical bonding. Hydrogen-scattering spectrometry showed that the maximum hydrogen content was 35 at. % for the film produced at 53.3-Pa hydrogen pressure. The Fourier-transform infrared spectra showed strong absorptions by sp{sup 3} C–H bonds, which were specific to the UNCD/a-C:H, and can be attributed to hydrogen atoms terminating the dangling bondsmore » at ultrananocrystalline diamond grain boundaries. Temperature-dependence of the electrical conductivity showed that the films changed from semimetallic to semiconducting with increasing hydrogen pressure, i.e., with enhanced hydrogenation, probably due to hydrogenation suppressing the formation of graphitic bonds, which are a source of carriers. Carrier transport in semiconducting hydrogenated films can be explained by a variable-range hopping model. The rectifying action of heterojunctions comprising the hydrogenated films and n-type Si substrates implies carrier transport in tunneling.« less

  4. Effect of Doping on the Properties of Hydrogenated Amorphous Silicon Irradiated with Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Denisova, K. N.; Il'in, A. S.; Martyshov, M. N.; Vorontsov, A. S.

    2018-04-01

    A comparative analysis of the effect of femtosecond laser irradiation on the structure and conductivity of undoped and boron-doped hydrogenated amorphous silicon ( a-Si: H) is performed. It is demonstrated that the process of nanocrystal formation in the amorphous matrix under femtosecond laser irradiation is initiated at lower laser energy densities in undoped a-Si: H samples. The differences in conductivity between undoped and doped a-Si: H samples vanish almost completely after irradiation with an energy density of 150-160 mJ/cm2.

  5. The boron-tailing myth in hydrogenated amorphous silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuckelberger, M., E-mail: michael.stuckelberger@alumni.ethz.ch; Bugnon, G.; Despeisse, M.

    The boron-tailing effect in hydrogenated amorphous silicon (a-Si:H) solar cells describes the reduced charge collection specifically in the blue part of the spectrum for absorber layers deposited above a critical temperature. This effect limits the device performance of state-of-the art solar cells: For enhanced current density (reduced bandgap), the deposition temperature should be as high as possible, but boron tailing gets detrimental above 200 °C. To investigate this limitation and to show potential paths to overcome it, we deposited high-efficiency a-Si:H solar cells, varying the deposition temperatures of the p-type and the intrinsic absorber (i) layers between 150 and 250 °C. Usingmore » secondary ion mass spectroscopy, we study dedicated stacks of i-p-i layers deposited at different temperatures. This allows us to track boron diffusion at the p-i and i-p interfaces as they occur in the p-i-n and n-i-p configurations of a-Si:H solar cells for different deposition conditions. Finally, we prove step-by-step that the common explanation for boron tailing—boron diffusion from the p layer into the i layer leading to enhanced recombination—is not generally true and propose an alternative explanation for the experimentally observed drop in the external quantum efficiency at short wavelengths.« less

  6. Electrical Characterization of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide

    NASA Astrophysics Data System (ADS)

    Peterson, George Glenn

    Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon substrates through the use of plasma enhanced chemical vapor deposition (PECVD). Many forms of structural and electrical measurements and analysis have been performed on the p-n heterojunction devices as a function of both He+ ion and neutron irradiation including: transmission electron microscopy (TEM), selected area electron diffraction (SAED), current versus voltage I(V), capacitance versus voltage C(V), conductance versus frequency G(f), and charge carrier lifetime (tau). In stark contrast to nearly all other electronic devices, the electrical performance of these p-n heterojunction diodes improved with irradiation. This is most likely the result of bond defect passivation and resolution of degraded icosahedral based carborane structures (icosahedral molecules missing a B, C, or H atom(s)).

  7. In situ characterization of the decomposition behavior of Mg(BH4)2 by X-ray Raman scattering spectroscopy.

    PubMed

    Sahle, Christoph J; Kujawski, Simon; Remhof, Arndt; Yan, Yigang; Stadie, Nicholas P; Al-Zein, Ali; Tolan, Metin; Huotari, Simo; Krisch, Michael; Sternemann, Christian

    2016-02-21

    We present an in situ study of the thermal decomposition of Mg(BH4)2 in a hydrogen atmosphere of up to 4 bar and up to 500 °C using X-ray Raman scattering spectroscopy at the boron K-edge and the magnesium L2,3-edges. The combination of the fingerprinting analysis of both edges yields detailed quantitative information on the reaction products during decomposition, an issue of crucial importance in determining whether Mg(BH4)2 can be used as a next-generation hydrogen storage material. This work reveals the formation of reaction intermediate(s) at 300 °C, accompanied by a significant hydrogen release without the occurrence of stable boron compounds such as amorphous boron or MgB12H12. At temperatures between 300 °C and 400 °C, further hydrogen release proceeds via the formation of higher boranes and crystalline MgH2. Above 400 °C, decomposition into the constituting elements takes place. Therefore, at moderate temperatures, Mg(BH4)2 is shown to be a promising high-density hydrogen storage material with great potential for reversible energy storage applications.

  8. Energy release properties of amorphous boron and boron-based propellant primary combustion products

    NASA Astrophysics Data System (ADS)

    Liang, Daolun; Liu, Jianzhong; Xiao, Jinwu; Xi, Jianfei; Wang, Yang; Zhang, Yanwei; Zhou, Junhu

    2015-07-01

    The microstructure of amorphous boron and the primary combustion products of boron-based fuel-rich propellant (hereafter referred to as primary combustion products) was analyzed by scanning electron microscope. Composition analysis of the primary combustion products was carried out by X-ray diffraction and X-ray photoelectron spectroscopy. The energy release properties of amorphous boron and the primary combustion products were comparatively studied by laser ignition experimental system and thermogravimetry-differential scanning calorimetry. The primary combustion products contain B, C, Mg, Al, B4C, B13C2, BN, B2O3, NH4Cl, H2O, and so on. The energy release properties of primary combustion products are different from amorphous boron, significantly. The full-time spectral intensity of primary combustion products at a wavelength of 580 nm is ~2% lower than that of amorphous boron. The maximum spectral intensity of the former at full wave is ~5% higher than that of the latter. The ignition delay time of primary combustion products is ~150 ms shorter than that of amorphous boron, and the self-sustaining combustion time of the former is ~200 ms longer than that of the latter. The thermal oxidation process of amorphous boron involves water evaporation (weight loss) and boron oxidation (weight gain). The thermal oxidation process of primary combustion products involves two additional steps: NH4Cl decomposition (weight loss) and carbon oxidation (weight loss). CL-20 shows better combustion-supporting effect than KClO4 in both the laser ignition experiments and the thermal oxidation experiments.

  9. Novel passivation dielectrics-The boron- or phosphorus-doped hydrogenated amorphous silicon carbide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.Y.; Fang, Y.K.; Huang, C.F.

    1985-02-01

    Hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared and studied in a radiofrequency glowdischarge system, using a gas mixture of SiH/sub 4/ and one of the following carbon sources: methane (CH/sub 4/), benzene (C/sub 6/H/sub 6/), toluene (C/sub 7/H/sub 8/), sigma-xylene (C/sub 8/H/sub 10/), trichloroethane (C/sub 2/H/sub 3/Cl/sub 3/), trichloroethylene (C/sub 2/HCl/sub 3/), or carbon tetrachloride (CCl/sub 4/). The effect of doping phosphorus and boron into those a-SiC:H films on chemical etching rate, electrica dc resistivity, breakdown strength, and optical refractive index have been systematically investigated. Their chemical etching properties were examined by immersing in 49% HF, buffered HF,more » 180/sup 0/C H/sub 3/PO/sub 4/ solutions, or in CF/sub 4/ + O/sub 2/ plasma. It was found that the boron-doped a-SiC:H film possesses five times slower etching rate than the undoped one, while phosphorus-doped a-SiC:H film shows about three times slower. Among those a-SiC:H films, the one obtained from a mixture of SiH/sub 4/ and benzene shows the best etch-resistant property, while the ones obtained from a mixture of SiH/sub 4/ and chlorine containing carbon sources (e.g., trichloroethylene, trichloroethane, or carbon tetrachloride) shows that they are poor in etching resistance (i.e., the etching rate is higher). By measuring dc resistivity, dielectric breakdown strength, and effective refractive index, it was found that boron- or phosphorus-doped a-SiC:H films exhibit much higher dielectric strength and resistivity, but lower etching rate, presumably because of higher density.« less

  10. Chemical and mechanical analysis of boron-rich boron carbide processed via spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Munhollon, Tyler Lee

    Boron carbide is a material of choice for many industrial and specialty applications due to the exceptional properties it exhibits such as high hardness, chemical inertness, low specific gravity, high neutron cross section and more. The combination of high hardness and low specific gravity makes it especially attractive for high pressure/high strain rate applications. However, boron carbide exhibits anomalous behavior when high pressures are applied. Impact pressures over the Hugoniot elastic limit result in catastrophic failure of the material. This failure has been linked to amorphization in cleavage planes and loss of shear strength. Atomistic modeling has suggested boron-rich boron carbide (B13C2) may be a better performing material than the commonly used B4C due to the elimination of amorphization and an increase in shear strength. Therefore, a clear experimental understanding of the factors that lead to the degradation of mechanical properties as well as the effects of chemistry changes in boron carbide is needed. For this reason, the goal of this thesis was to produce high purity boron carbide with varying stoichiometries for chemical and mechanical property characterization. Utilizing rapid carbothermal reduction and pressure assisted sintering, dense boron carbides with varying stoichiometries were produced. Microstructural characteristics such as impurity inclusions, porosity and grain size were controlled. The chemistry and common static mechanical properties that are of importance to superhard materials including elastic moduli, hardness and fracture toughness of the resulting boron-rich boron carbides were characterized. A series of six boron carbide samples were processed with varying amounts of amorphous boron (up to 45 wt. % amorphous boron). Samples with greater than 40 wt.% boron additions were shown to exhibit abnormal sintering behavior, making it difficult to characterize these samples. Near theoretical densities were achieved in samples with less than 40 wt. % amorphous boron additions. X-ray diffraction analysis revealed the samples to be phase pure and boron-rich. Carbon content was determined to be at or near expected values with exception of samples with greater than 40 wt. % amorphous boron additions. Raman microspectroscopy further confirmed the changes in chemistry as well as revealed the chemical homogeneity of the samples. Microstructural analysis carried out using both optical and electron imaging showed clean and consistent microstructures. The changes in the chemistry of the boron carbide samples has been shown to significantly affect the static mechanical properties. Ultrasonic wave speed measurements were used to calculate the elastic moduli which showed a clear decrease in the Young's and shear moduli with a slight increase in bulk modulus. Berkovich nano-indentation revealed a similar trend, as the hardness and fracture toughness of the material decreased with decreasing carbon content. Amorphization within 1 kg Knoop indents was shown to diminish in intensity and extent as carbon content decreased, signifying a mechanism for amorphization mitigation.

  11. Electrically Active Defects In Solar Cells Based On Amorphous Silicon/Crystalline Silicon Heterojunction After Irradiation By Heavy Xe Ions

    NASA Astrophysics Data System (ADS)

    Harmatha, Ladislav; Mikolášek, Miroslav; Stuchlíková, L'ubica; Kósa, Arpád; Žiška, Milan; Hrubčín, Ladislav; Skuratov, Vladimir A.

    2015-11-01

    The contribution is focused on the diagnostics of structures with a heterojunction between amorphous and crystalline silicon prepared by HIT (Heterojunction with an Intrinsic Thin layer) technology. The samples were irradiated by Xe ions with energy 167 MeV and doses from 5 × 108 cm-2 to 5 × 1010 cm-2. Radiation defects induced in the bulk of Si and at the hydrogenated amorphous silicon and crystalline silicon (a-Si:H/c-Si) interface were identified by Deep Level Transient Spectroscopy (DLTS). Radiation induced A-centre traps, boron vacancy traps and different types of divacancies with a high value of activation energy were observed. With an increased fluence of heavy ions the nature and density of the radiation induced defects was changed.

  12. High Purity and Yield of Boron Nitride Nanotubes Using Amorphous Boron and a Nozzle-Type Reactor

    PubMed Central

    Kim, Jaewoo; Seo, Duckbong; Yoo, Jeseung; Jeong, Wanseop; Seo, Young-Soo; Kim, Jaeyong

    2014-01-01

    Enhancement of the production yield of boron nitride nanotubes (BNNTs) with high purity was achieved using an amorphous boron-based precursor and a nozzle-type reactor. Use of a mixture of amorphous boron and Fe decreases the milling time for the preparation of the precursor for BNNTs synthesis, as well as the Fe impurity contained in the B/Fe interdiffused precursor nanoparticles by using a simple purification process. We also explored a nozzle-type reactor that increased the production yield of BNNTs compared to a conventional flow-through reactor. By using a nozzle-type reactor with amorphous boron-based precursor, the weight of the BNNTs sample after annealing was increased as much as 2.5-times with much less impurities compared to the case for the flow-through reactor with the crystalline boron-based precursor. Under the same experimental conditions, the yield and quantity of BNNTs were estimated as much as ~70% and ~1.15 g/batch for the former, while they are ~54% and 0.78 g/batch for the latter. PMID:28788161

  13. High Purity and Yield of Boron Nitride Nanotubes Using Amorphous Boron and a Nozzle-Type Reactor.

    PubMed

    Kim, Jaewoo; Seo, Duckbong; Yoo, Jeseung; Jeong, Wanseop; Seo, Young-Soo; Kim, Jaeyong

    2014-08-11

    Enhancement of the production yield of boron nitride nanotubes (BNNTs) with high purity was achieved using an amorphous boron-based precursor and a nozzle-type reactor. Use of a mixture of amorphous boron and Fe decreases the milling time for the preparation of the precursor for BNNTs synthesis, as well as the Fe impurity contained in the B/Fe interdiffused precursor nanoparticles by using a simple purification process. We also explored a nozzle-type reactor that increased the production yield of BNNTs compared to a conventional flow-through reactor. By using a nozzle-type reactor with amorphous boron-based precursor, the weight of the BNNTs sample after annealing was increased as much as 2.5-times with much less impurities compared to the case for the flow-through reactor with the crystalline boron-based precursor. Under the same experimental conditions, the yield and quantity of BNNTs were estimated as much as ~70% and ~1.15 g/batch for the former, while they are ~54% and 0.78 g/batch for the latter.

  14. Amorphous boron gasket in diamond anvil cell research

    NASA Astrophysics Data System (ADS)

    Lin, Jung-Fu; Shu, Jinfu; Mao, Ho-kwang; Hemley, Russell J.; Shen, Guoyin

    2003-11-01

    Recent advances in high-pressure diamond anvil cell experiments include high-energy synchrotron x-ray techniques as well as new cell designs and gasketing procedures. The success of high-pressure experiments usually depends on a well-prepared sample, in which the gasket plays an important role. Various gasket materials such as diamond, beryllium, rhenium, and stainless steel have been used. Here we introduce amorphous boron as another gasket material in high-pressure diamond anvil cell experiments. We have applied the boron gasket for laser-heating x-ray diffraction, radial x-ray diffraction, nuclear resonant inelastic x-ray scattering, and inelastic x-ray scattering. The high shear strength of the amorphous boron maximizes the thickness of the sample chamber and increases the pressure homogeneity, improving the quality of high-pressure data. Use of amorphous boron avoids unwanted x-ray diffraction peaks and reduces the absorption of incident and x rays exiting the gasket material. The high quality of the diffraction patterns makes it possible to refine the cell parameters with powder x-ray diffraction data under high pressure and high temperature. The reactivity of boron prevents its use at high temperatures, however. When heated, boron may also react with the specimen to produce unwanted phases. The relatively porous boron starting material at ambient conditions also poses some challenges for sample preparation.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zheng; Li, Zhilin; Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029

    Graphical abstract: The MWCNT/Ni-B catalyst has been successfully prepared by an electroless deposition process. The Ni-B nanoparticles on the supporter are amorphous and are well-distributed. The catalytic conversion towards hydrogenation of styrene shows excellent catalytic activity of the obtained materials. Highlights: Black-Right-Pointing-Pointer A two-step treatment of MWCNTs enabled the homogeneous growth of Ni-B nanoparticles. Black-Right-Pointing-Pointer Ni-B nanoparticles were amorphous with an average size of 60 nm. Black-Right-Pointing-Pointer There were electron transfer between Ni and B. Black-Right-Pointing-Pointer The catalyst had excellent catalytic activity towards hydrogenation of styrene. -- Abstract: Nickel-boron (Ni-B) nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) were successfully synthesizedmore » through an electroless deposition process using the plating bath with sodium borohydride as a reducing agent. The structural and morphological analyses using field-emission scanning electron microscopy, X-ray diffractometry and high-resolution transmission electron microscopy have shown that the Ni-B nanoparticles deposited on the sidewalls of MWCNTs are fine spheres comprised of amorphous structure with the morphologically unique fine-structure like flowers, and homogenously dispersed with a narrow particle size distribution centered at around 60 nm diameter. The catalytic activity of MWCNT/Ni-B nanoparticles was evaluated with respect to hydrogenation of styrene. The hydrogenation catalyzed by MWCNT-supported Ni-B nanoparticles has been found to make styrene selectively converted into ethylbenzene. The highest conversion reaches 99.8% under proper reaction conditions, which demonstrates the high catalytic activity of MWCNT/Ni-B nanoparticles.« less

  16. Equation of state and pressure induced amorphization of beta-boron from X-ray measurements up to 100 GPa.

    PubMed

    Sanz, Delia Nieto; Loubeyre, Paul; Mezouar, Mohamed

    2002-12-09

    The equation of state of boron has been measured up to 100 GPa by single-crystal x-ray diffraction with helium as the pressure transmitting medium. Rhombohedral beta-boron is the stable structure up to 100 GPa under hydrostatic conditions. Nonhydrostatic stress stabilizes a different rhombohedral structure. At about 100 GPa a pressure-induced amorphization is observed. The amorphous phase can be quenched to ambient pressure. An explanation is proposed based on the different stability under pressure between intraicosahedra and intericosahedra bonds.

  17. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricant Diamond Films and Coatings. Chapter 10

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter describes three studies on the surface design, surface engineering, and tribology of chemical-vapor-deposited (CVD) diamond films and coatings toward wear-resistant, self-lubricating diamond films and coatings. Friction mechanisms and solid lubrication mechanisms of CVD diamond are stated. Effects of an amorphous hydrogenated carbon on CVD diamond, an amorphous, nondiamond carbon surface layer formed on CVD diamond by carbon and nitrogen ion implantation, and a materials combination of cubic boron nitride and CVD diamond on the adhesion, friction, and wear behaviors of CVD diamond in ultrahigh vacuum are described. How surface modification and the selected materials couple improved the tribological functionality of coatings, giving low coefficient of friction and good wear resistance, is explained.

  18. Production and Characterization of Bulk MgB2 Material made by the Combination of Crystalline and Carbon Coated Amorphous Boron Powders

    NASA Astrophysics Data System (ADS)

    Hiroki, K.; Muralidhar, M.; Koblischka, M. R.; Murakami, M.

    2017-07-01

    The object of this investigation is to reduce the cost of bulk production and in the same time to increase the critical current performance of bulk MgB2 material. High-purity commercial powders of Mg metal (99.9% purity) and two types of crystalline (99% purity) and 16.5 wt% carbon-coated, nanometer-sized amorphous boron powders (98.5% purity) were mixed in a nominal composition of MgB2 to reduce the boron cost and to see the effect on the superconducting and magnetic properties. Several samples were produced mixing the crystalline boron and carbon-coated, nanometer-sized amorphous boron powders in varying ratios (50:50, 60:40, 70:30, 80:20, 90:10) and synthesized using a single-step process using the solid state reaction around 800 °C for 3 h in pure argon atmosphere. The magnetization measurements exhibited a sharp superconducting transition temperature with T c, onset around 38.6 K to 37.2 K for the bulk samples prepared utilizing the mixture of crystalline boron and 16.5% carbon-coated amorphous boron. The critical current density at higher magnetic field was improved with addition of carbon-coated boron to crystalline boron in a ratio of 80:20. The highest self-field Jc around 215,000 A/cm2 and 37,000 A/cm2 were recorded at 20 K, self-field and 2 T for the sample with a ratio of 80:10. The present results clearly demonstrate that the bulk MgB2 performance can be improved by adding carbon-coated nano boron to crystalline boron, which will be attractive to reduce the cost of bulk MgB2 material for several industrial applications.

  19. Spatial Distribution of Amorphization Intensity in Boron Carbide During Rate-Dependent Indentation and Impact Processes

    NASA Astrophysics Data System (ADS)

    Parsard, Gregory G.

    Boron carbide is a lightweight ceramic commonly used in applications requiring high hardness. At sufficiently high stresses, the material experiences a localized phase transformation (amorphization) which seemingly weakens its structure. Raman spectroscopy is used to distinguish these transformed regions from crystalline material based on the evolution of new peaks in collected Raman spectra. Vickers indentations of various loads were created at quasistatic and dynamic strain rates to trigger amorphization. The resulting imprints and subsurface regions were scanned with Raman spectroscopy to map amorphization intensity at several depths to generate three-dimensional representations of the amorphized zones, which were analyzed to determine the influence of load and strain rate upon amorphized zone characteristics. The square of amorphized zone depth beneath Vickers indentations increases linearly with load and shows little to no strain rate dependence. Sudden decreases in amorphization intensity at certain depths coincided with the presence of lateral cracks, suggesting that lateral cracks may lead to a loss of amorphized material during mechanical polishing. Experimental results were compared against finite element simulations to estimate critical values of stress and strain associated with amorphization. Raman spectra were also analyzed to determine the indentation-induced residual compressive pressure in crystalline boron carbide. In unstressed crystalline boron carbide, a peak exists near 1088 cm-1 which shifts to higher wavenumbers with the application of compressive pressure. The change in position of this crystalline peak was tracked across surfaces at various depths beneath the indentations and then converted into pressure using the piezospectroscopic coefficient of boron carbide. Residual compressive pressures on the order of gigapascals were found near the indentations, with stress relaxation near regions affected by radial cracks, spall, and graphitic inclusions. These measured residual compressive pressures were consistently higher than those predicted by finite element simulations at various loads, suggesting that amorphization, which was not accounted for by the simulations, may increase compressive residual stress in the crystalline material. Amorphization may cause affected regions to expand relative to their formerly crystalline state and exerting radial compressive forces upon the surrounding crystalline regions and circumferential tension along its boundary, thus promoting crack propagation within the amorphized region.

  20. Depressurization amorphization of single-crystal boron carbide.

    PubMed

    Yan, X Q; Tang, Z; Zhang, L; Guo, J J; Jin, C Q; Zhang, Y; Goto, T; McCauley, J W; Chen, M W

    2009-02-20

    We report depressurization amorphization of single-crystal boron carbide (B4C) investigated by in situ high-pressure Raman spectroscopy. It was found that localized amorphization of B4C takes place during unloading from high pressures, and nonhydrostatic stresses play a critical role in the high-pressure phase transition. First-principles molecular dynamics simulations reveal that the depressurization amorphization results from pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices.

  1. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vajo, John J.

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slowmore » rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.« less

  2. Effect of gas flow ratio on the microstructure and mechanical properties of boron phosphide films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jia, Z. C.; Zhu, J. Q.; Jiang, C. Z.; Shen, W. X.; Han, J. C.; Chen, R. R.

    2011-10-01

    Boron phosphide films were grown on silicon substrate by radio frequency reactive magnetron sputtering using boron target and hydrogen phosphine at different gas flow ratios (PH 3/Ar) at lower temperature. The chemical composition, microstructure and mechanical properties were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectrum, FTIR spectrum, surface profilometer and nano-indenter. The results indicate that the atomic ratio (P/B) rises from 1.06 up to 1.52 with the gas flow ratio increasing from 3/50 to 15/50. Simultaneously, the hardness and Young's modulus decrease from 25.4 GPa to 22.5 GPa, and 250.4 GPa to 238.4 GPa, respectively. Microstructure transforms from microcrystalline state to amorphous state along with the gas flow ratio increasing. Furthermore higher gas flow ratio leads to lower stress. The BP film prepared at the gas flow ratio of 3/50 can be contributed with the best properties.

  3. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study.

    PubMed

    Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid

    2012-07-01

    Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity.

  4. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    NASA Technical Reports Server (NTRS)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  5. Sputtered boron indium oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Stewart, Kevin A.; Gouliouk, Vasily; Keszler, Douglas A.; Wager, John F.

    2017-11-01

    Boron indium oxide (BIO) is studied for thin-film transistor (TFT) channel layer applications. Sputtered BIO thin films exhibit an amorphous phase over a wide range of B2O3/In2O3 ratios and remain amorphous up to 500 °C. The band gap decreases linearly with decreasing boron content, whereas device performance generally improves with decreasing boron content. The best amorphous BIO TFT exhibits a field-effect mobility of 10 cm2 V-1 s-1, turn-on voltage of 2.5 V, and sub-threshold swing of 0.72 V/dec. Decreasing the boron content to 12.5% leads to a polycrystalline phase, but further increases the mobility up to 20-40 cm2 V-1 s-1. TCAD simulation results suggest that the reason for higher performance after increasing the anneal temperature from 200 to 400 °C is due to a lower defect density in the sub-bandgap region of the BIO channel layer.

  6. Novel Amorphous Fe-Zr-Si(Cu) Boron-free Alloys

    NASA Astrophysics Data System (ADS)

    Kopcewicz, M.; Grabias, A.; Latuch, J.; Kowalczyk, M.

    2010-07-01

    Novel amorphous Fe80(ZrxSi20-x-y)Cuy boron-free alloys, in which boron was completely replaced by silicon as a glass forming element, have been prepared in the form of ribbons by a melt quenching technique. The X-ray diffraction and Mössbauer spectroscopy measurements revealed that the as-quenched ribbons with the composition of x = 6-10 at. % and y = 0, 1 at. % are predominantly amorphous. DSC measurements allowed the estimation of the crystallization temperatures of the amorphous alloys. The soft magnetic properties have been studied by the specialized rf-Mössbauer technique in which the spectra were recorded during an exposure of the samples to the rf field of 0 to 20 Oe at 61.8 MHz. Since the rf-collapse effect observed is very sensitive to the local anisotropy fields it was possible to evaluate the soft magnetic properties of amorphous alloys studied. The rf-Mössbauer studies were accompanied by the conventional measurements of the quasi-static hysteresis loops from which the magnetization and coercive fields were estimated. It was found that amorphous Fe-Zr-Si(Cu) alloys are magnetically very soft, comparable with those of the conventional amorphous B-containing Fe-based alloys.

  7. Development of large diameter carbon monofilament

    NASA Technical Reports Server (NTRS)

    Jacob, B.; Neltri, R. D.

    1973-01-01

    A process for preparing large diameter carbon-boron monofilament was developed. The process involves chemical vapor depositing a carbon-boron alloy monofilament from a BCl3, CH4, and H2 gas mixture onto a carbon substrate. Amorphous alloys were formed when gaseous mixtures containing greater than 20 percent methane (80 percent BCl3) were used. The longest uninterrupted lengths of carbon-boron monofilament were produced using a CH4/BCl3 gas ratio of 2.34. It was found that the properties of the carbon-boron alloy monofilament improved when the carbon substrate was precleaned in chlorine. The highest strength monofilament was attained when a CH4/BCl3 gas volume ratio of 0.44 was 28 million N/sq cm (40 million psi). While the highest strengths were attained in this run, the 0.44 gas ratio and other CH4/BCl3 ratios less than 2.34 would not yield long runs. Runs using these ratios were usually terminated because of a break in the monofilament within the reactor. It is felt better process control could probably be achieved by varying the amount of hydrogen; the BCl3/H2 ratio was kept constant in these studies.

  8. Microstructure and Mechanical Behaviors of Titanium Matrix Composites Containing In Situ Whiskers Synthesized via Plasma Activated Sintering.

    PubMed

    Sun, Yi; Zhang, Jian; Luo, Guoqiang; Shen, Qiang; Zhang, Lianmeng

    2018-04-02

    In this paper, titanium matrix composites with in situ TiB whiskers were synthesized by the plasma activated sintering technique; crystalline boron and amorphous boron were used as reactants for in situ reactions, respectively. The influence of the sintering process and the crystallography type of boron on the microstructure and mechanical properties of composites were studied and compared. The densities were evaluated using Archimedes' principle. The microstructure and mechanical properties were characterized by SEM, XRD, EBSD, TEM, a universal testing machine, and a Vickers hardness tester. The prepared composite material showed a high density and excellent comprehensive performance under the PAS condition of 20 MPa at 1000 °C for 3 min. Amorphous boron had a higher reaction efficiency than crystalline boron, and it completely reacted with the titanium matrix to generate TiB whiskers, while there was still a certain amount of residual crystalline boron combining well with the titanium matrix at 1100 °C. The composite samples with a relative density of 98.33%, Vickers hardness of 389.75 HV, compression yield strength of up to 1190 MPa, and an ultimate compressive strength of up to 1710 MPa were obtained. Compared with the matrix material, the compressive strength of TC4 titanium alloy containing crystalline boron and amorphous boron was increased by 7.64% and 15.50%, respectively.

  9. Microstructure and Mechanical Behaviors of Titanium Matrix Composites Containing In Situ Whiskers Synthesized via Plasma Activated Sintering

    PubMed Central

    Luo, Guoqiang; Shen, Qiang; Zhang, Lianmeng

    2018-01-01

    In this paper, titanium matrix composites with in situ TiB whiskers were synthesized by the plasma activated sintering technique; crystalline boron and amorphous boron were used as reactants for in situ reactions, respectively. The influence of the sintering process and the crystallography type of boron on the microstructure and mechanical properties of composites were studied and compared. The densities were evaluated using Archimedes’ principle. The microstructure and mechanical properties were characterized by SEM, XRD, EBSD, TEM, a universal testing machine, and a Vickers hardness tester. The prepared composite material showed a high density and excellent comprehensive performance under the PAS condition of 20 MPa at 1000 °C for 3 min. Amorphous boron had a higher reaction efficiency than crystalline boron, and it completely reacted with the titanium matrix to generate TiB whiskers, while there was still a certain amount of residual crystalline boron combining well with the titanium matrix at 1100 °C. The composite samples with a relative density of 98.33%, Vickers hardness of 389.75 HV, compression yield strength of up to 1190 MPa, and an ultimate compressive strength of up to 1710 MPa were obtained. Compared with the matrix material, the compressive strength of TC4 titanium alloy containing crystalline boron and amorphous boron was increased by 7.64% and 15.50%, respectively. PMID:29614842

  10. Effect of Boron Microalloying Element on Susceptibility to Hydrogen Embrittlement in High Strength Mooring Chain Steel

    NASA Astrophysics Data System (ADS)

    Li, H.; Cheng, X. Y.; Shen, H. P.; Su, L. C.; Zhang, S. Y.

    The susceptibility to hydrogen embrittlement in high strength mooring chain steel with different boron content (0, 0.003 %, 0.008 %) were investigated by electrochemical hydrogen charging technique and tensile test. The results revealed that appropriate boron content can effectively depress hydrogen induced embrittlement. Precharged with a low current density, this effect seemed to be unobvious. It gradually became clearly with the increasing current density. The increase of resistance to the hydrogen embrittlement for 3B and 8B after adding appropriate boron was attributed to three facts. The first was that the segregation of boron atoms along grain boundaries reduced the grain boundary segregation of phosphorus, which prohibited hydrogen concentration at the grain boundaries, depressing the possibility of the intergranular fracture due to H. The second was that the segregation of boron increased intergranular cohesion, enhanced grain boundary strength, and refined the final microstructure. The third was that the addition of boron changed the state of hydrogen traps, leading to the small amount of diffusible hydrogen. That is to say, hydrogen transferred to these defects by dislocations was accordingly decreased, which led to the low sensitive of hydrogen induced cracking.

  11. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  12. Kinetic Monte Carlo (kMC) simulation of carbon co-implant on pre-amorphization process.

    PubMed

    Park, Soonyeol; Cho, Bumgoo; Yang, Seungsu; Won, Taeyoung

    2010-05-01

    We report our kinetic Monte Carlo (kMC) study of the effect of carbon co-implant on the pre-amorphization implant (PAL) process. We employed BCA (Binary Collision Approximation) approach for the acquisition of the initial as-implant dopant profile and kMC method for the simulation of diffusion process during the annealing process. The simulation results implied that carbon co-implant suppresses the boron diffusion due to the recombination with interstitials. Also, we could compare the boron diffusion with carbon diffusion by calculating carbon reaction with interstitial. And we can find that boron diffusion is affected from the carbon co-implant energy by enhancing the trapping of interstitial between boron and interstitial.

  13. Boron Doped Nanocrystalline Film with Improved Work Function as a Buffer Layer in Thin Film Silicon Solar Cells.

    PubMed

    Park, Jinjoo; Shin, Chonghoon; Park, Hyeongsik; Jung, Junhee; Lee, Youn-Jung; Bong, Sungjae; Dao, Vinh Ai; Balaji, Nagarajan; Yi, Junsin

    2015-03-01

    We investigated thin film silicon solar cells with boron doped hydrogenated nanocrystalline silicon/ hydrogenated amorphous silicon oxide [p-type nc-Si:H/a-SiOx:H] layer. First, we researched the bandgap engineering of diborane (B2H6) doped wide bandgap hydrogenated nanocryslline silicon (p-type nc-Si:H) films, which have excellent electrical properties of high dark conductivity, and low activation energy. The films prepared with lower doping ratio and higher hydrogen dilution ratio had higher optical gap (Eg), with higher dark conductivity (σ(d)), and lower activation energy (Ea). We controlled Eg from 2.10 eV to 1.75 eV, with σ(d) from 1.1 S/cm to 7.59 x 10(-3) S/cm, and Ea from 0.040 eV to 0.128 eV. Next, we focused on the fabrication of thin film silicon solar cells. By inserting p-type nc-Si:H film into the thin film silicon solar cells, we achieved a remarkable increase in the built-in potential from 0.803 eV to 0.901 eV. By forming p-type nc-Si:H film between SnO2:F/ZnO:Al (30 nm) and p-type a-SiOx:H layer, the solar cell properties of open circuit voltage (Voc), short circuit current density (Jsc), and efficiency (η) were improved by 3.7%, 9.2%, and 9.8%, respectively.

  14. Mechanism for amorphization of boron carbide B{sub 4}C under uniaxial compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryal, Sitaram; Rulis, Paul; Ching, W. Y.

    2011-11-01

    Boron carbide undergoes an amorphization transition under high-velocity impacts, causing it to suffer a catastrophic loss in strength. The failure mechanism is not clear and this limits the ways to improve its resistance to impact. To help uncover the failure mechanism, we used ab initio methods to carry out large-scale uniaxial compression simulations on two polytypes of stoichiometric boron carbide (B{sub 4}C), B{sub 11}C-CBC, and B{sub 12}-CCC, where B{sub 11}C or B{sub 12} is the 12-atom icosahedron and CBC or CCC is the three-atom chain. The simulations were performed on large supercells of 180 atoms. Our results indicate that themore » B{sub 11}C-CBC (B{sub 12}-CCC) polytype becomes amorphous at a uniaxial strain s = 0.23 (0.22) and with a maximum stress of 168 (151) GPa. In both cases, the amorphous state is the consequence of structural collapse associated with the bending of the three-atom chain. Careful analysis of the structures after amorphization shows that the B{sub 11}C and B{sub 12} icosahedra are highly distorted but still identifiable. Calculations of the elastic coefficients (C{sub ij}) at different uniaxial strains indicate that both polytypes may collapse under a much smaller shear strain (stress) than the uniaxial strain (stress). On the other hand, separate simulations of both models under hydrostatic compression up to a pressure of 180 GPa show no signs of amorphization, in agreement with experimental observation. The amorphized nature of both models is confirmed by detailed analysis of the evolution of the radial pair distribution function, total density of states, and distribution of effective charges on atoms. The electronic structure and bonding of the boron carbide structures before and after amorphization are calculated to further elucidate the mechanism of amorphization and to help form the proper rationalization of experimental observations.« less

  15. Self-Diffusion in Amorphous Silicon by Local Bond Rearrangements

    NASA Astrophysics Data System (ADS)

    Kirschbaum, J.; Teuber, T.; Donner, A.; Radek, M.; Bougeard, D.; Böttger, R.; Hansen, J. Lundsgaard; Larsen, A. Nylandsted; Posselt, M.; Bracht, H.

    2018-06-01

    Experiments on self-diffusion in amorphous silicon (Si) were performed at temperatures between 460 to 600 ° C . The amorphous structure was prepared by Si ion implantation of single crystalline Si isotope multilayers epitaxially grown on a silicon-on-insulator wafer. The Si isotope profiles before and after annealing were determined by means of secondary ion mass spectrometry. Isothermal diffusion experiments reveal that structural relaxation does not cause any significant intermixing of the isotope interfaces whereas self-diffusion is significant before the structure recrystallizes. The temperature dependence of self-diffusion is described by an Arrhenius law with an activation enthalpy Q =(2.70 ±0.11 ) eV and preexponential factor D0=(5.5-3.7+11.1)×10-2 cm2 s-1 . Remarkably, Q equals the activation enthalpy of hydrogen diffusion in amorphous Si, the migration of bond defects determining boron diffusion, and the activation enthalpy of solid phase epitaxial recrystallization reported in the literature. This close agreement provides strong evidence that self-diffusion is mediated by local bond rearrangements rather than by the migration of extended defects as suggested by Strauß et al. (Phys. Rev. Lett. 116, 025901 (2016), 10.1103/PhysRevLett.116.025901).

  16. The preparation of in situ doped hydrogenated amorphous silicon by homogeneous chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Meyerson, B. S.; Scott, B. A.; Wolford, D. J.

    1983-03-01

    Raman scattering, infrared absorption, conductivity measurements, electron microprobe, and secondary ion mass spectrometry (SIMS) were used to characterize boron and phosphorus doped hydrogenated amorphous silicon (a-Si:H) films prepared by Homogeneous Chemical Vapor Deposition (HOMOCVD). HOMOCVD is a thermal process which relies upon the gas phase pyrolysis of a source (silane containing up to 1.0% diborane or phosphine) to generate activated species for deposition upon a cooled substrate. Doped films prepared at 275 °C by this process were found to contain ˜12-at. % hydrogen as determined by infrared absorption. We examined dopant incorporation from the gas phase, obtaining values for a distribution coefficient CD (film dopant content/gas phase dopant concentration, atomic basis) of 0.33≤CD ≤0.63 for boron, while 0.4≤CD ≤10.75 in the limits 3.3×10-5≤PH3/SiH4≤0.004. We interpret the data as indicative of the formation of an unstable phosphorus/silicon intermediate in the gas phase, leading to the observed enhancements in CD at high gas phase phosphine content. HOMOCVD films doped at least as efficiently as their prepared counterparts, but tended to achieve higher conductivities [σ≥0.1 (Ω cm)-1 for 4.0% incorporated phosphorus] in the limit of heavy doping. Raman spectra showed no evidence of crystallinity in the doped films. Film properties (conductivity, activation energy of of conduction) have not saturated at the doping levels investigated here, making the attainment of higher ``active'' dopant levels a possibility. We attribute the observation that HOMOCVD appears more amenable to high ``active'' dopant levels than plasma techniques to the low (˜0.1 eV) thermal energy at which HOMOCVD proceeds, versus ˜10-100 eV for plasma techniques. Low substrate temperature (75 °C) doped films were prepared with initial results showing these films to dope as readily as those prepared at high temperature (T˜275 °C).

  17. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Serra, R.; Oliveira, V.; Oliveira, J. C.; Kubart, T.; Vilar, R.; Cavaleiro, A.

    2015-03-01

    Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm2. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different circumstances. Processing of the amorphous films at low fluence (72 μJ) results in LIPSS formation only on localized spots on the film surface. LIPSS formation was also observed on the top of the undulations formed after laser processing with 78 μJ of the amorphous film deposited at 800 °C. Finally, large-area homogeneous LIPSS coverage of the boron carbide crystalline films surface was achieved within a large range of laser fluences although holes are also formed at higher laser fluences.

  18. Directional amorphization of boron carbide subjected to laser shock compression.

    PubMed

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A; LaSalvia, Jerry C; Wehrenberg, Christopher E; Behler, Kristopher D; Meyers, Marc A

    2016-10-25

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4 C.

  19. Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Nitta, Shugo; Pristovsek, Markus; Liu, Yuhuai; Nagamatsu, Kentaro; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi

    2018-05-01

    Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.

  20. Chemical and structural characterization of boron carbide powders and ceramics

    NASA Astrophysics Data System (ADS)

    Kuwelkar, Kanak Anant

    Boron carbide is the material of choice for lightweight armor applications due to its extreme hardness, high Young's modulus and low specific weight. The homogeneity range in boron carbide extends from 9 to 20 at% carbon with the solubility limits not uniquely defined in literature. Over the homogeneity range, the exact lattice positions of boron and carbon atoms have not been unambiguously established, and this topic has been the consideration of significant debate over the last 60 years. The atomic configuration and positions of the boron and carbon atoms play a key role in the crystal structure of the boron carbide phases. Depending on the atomic structure, boron carbide exhibits different mechanical properties which may alter its ballistic performance under extreme dynamic conditions. This work focusses on refinement and development of analytical and chemical methods for an accurate determination of the boron carbide stoichiometry. These methods were then utilized to link structural changes of boron carbide across the solubility range to variations in mechanical properties. After an extensive assessment of the currently employed characterization techniques, it was discerned that the largest source of uncertainty in the determination of the boron carbide stoichiometry was found to arise from the method utilized to evaluate the free carbon concentration. To this end, a modified spiking technique was introduced for free carbon determination where curve fitting techniques were employed to model the asymmetry of the 002 free carbon diffraction peak based on the amorphous, disordered and graphitic nature of carbon. A relationship was then established between the relative intensities of the carbon and boron carbide peaks to the percentage of added carbon and the free-carbon content was obtained by extrapolation. Samples with varying chemistry and high purity were synthesized across the solubility range by hot pressing mixtures of amorphous boron and boron carbide. Vibrational mode frequencies and lattice parameter measurements from Rietveld refinement were correlated to the respective B:C ratios calculated using the developed characterization techniques. An expansion of the unit cell and change in slope in the lattice parameter-stoichiometry relationship were observed at more boron rich stoichiometries. These observations were justified through the proposal of a simplified structural model considering preferential substitution of boron atoms for carbon atoms in the icosahedra from 20 at% to 13.3 at% carbon, followed by formation of B-B bonds from 13.3 at % C to 9 at% C. Hardness measurements uncovered decreased hardness values in boron rich boron carbide which was attributed to the formation of weaker unit cells. Load induced amorphization was also detected in all the indented materials. Finally, experimental observations have shown that failure in boron carbide may be governed by a mechanism other than amorphization and synthesizing boron carbide with a modified microstructure at stoichiometries close to B4C may be the way forward to attain improved ballistic performance.

  1. Low temperature growth of heavy boron-doped hydrogenated Ge epilayers and its application in Ge/Si photodetectors

    NASA Astrophysics Data System (ADS)

    Kuo, Wei-Cheng; Lee, Ming Jay; Wu, Mount-Learn; Lee, Chien-Chieh; Tsao, I.-Yu; Chang, Jenq-Yang

    2017-04-01

    In this study, heavily boron-doped hydrogenated Ge epilayers are grown on Si substrates at a low growth temperature (220 °C). The quality of the boron-doped epilayers is dependent on the hydrogen flow rate. The optical emission spectroscopic, X-ray diffraction and Hall measurement results demonstrate that better quality boron-doped Ge epilayers can be obtained at low hydrogen flow rates (0 sccm). This reduction in quality is due to an excess of hydrogen in the source gas, which breaks one of the Ge-Ge bonds on the Ge surface, leading to the formation of unnecessary dangling bonds. The structure of the boron doped Ge epilayers is analyzed by transmission electron microscopy and atomic force microscopy. In addition, the performance, based on the I-V characteristics, of Ge/Si photodetectors fabricated with boron doped Ge epilayers produced under different hydrogen flow rates was examined. The photodetectors with boron doped Ge epilayers produced with a low hydrogen flow rate (0 sccm) exhibited a higher responsivity of 0.144 A/W and a lower dark current of 5.33 × 10-7 A at a reverse bias of 1 V.

  2. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeifer, Peter; Wexler, Carlos; Hawthorne, M. Frederick

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide rangemore » of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have demonstrated the predicted increase in binding energy experimentally, currently at ~10 kJ/mol. The synthetic route for incorporation of boron at the outset is to create appropriately designed copoly- mers, with a boron-free and a boron-carrying monomer, followed by pyrolysis of the polymer, yielding a bo- ron-substituted carbon scaffold in which boron atoms are bonded to carbon atoms by synthesis. This is in contrast to a second route (funded by DE-FG36-08GO18142) in which first high-surface area carbon is cre- ated and doped by surface vapor deposition of boron, with incorporation of the boron into the lattice the final step of the fabrication. The challenge in the first route is to create high surface areas without compromising sp2 boron-carbon bonds. The challenge in the second route is to create sp2 boron-carbon bonds without com- promising high surface areas.« less

  3. Retrospective Study of Selected DoD Materials and Structures Research and Development Programs. Phase 1. Case History Data Collection

    DTIC Science & Technology

    1979-03-01

    made in continuous form by reducing boron trichloride with hydrogen and depositing the elemental boron formed on an electrically heated, continuously...filament take-up unit. A stoichio- metric mixture of boron trichloride and hydrogen is introduced at the top of the reactor. These react at the surface of...fibers are tungsten wire, boron trichloride , and hydrogen gas. The fine diameter tungsten wire on which boron is deposited is an imported product and is

  4. Directional amorphization of boron carbide subjected to laser shock compression

    PubMed Central

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.

    2016-01-01

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C. PMID:27733513

  5. Directional amorphization of boron carbide subjected to laser shock compression

    DOE PAGES

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; ...

    2016-10-12

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. When using high-power pulsed-laser-driven shock compression, an unprecedented high strain rates can be achieved; we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45~50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. We also propose that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversionmore » calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4C.« less

  6. Preparation and uses of amorphous boron carbide coated substrates

    DOEpatents

    Riley, Robert E.; Newkirk, Lawrence R.; Valencia, Flavio A.

    1981-09-01

    Cloth is coated at a temperature below about 1000.degree. C. with amorphous boron-carbon deposits in a process which provides a substantially uniform coating on all the filaments making up each yarn fiber bundle of the cloth. The coated cloths can be used in the as-deposited condition for example as wear surfaces where high hardness values are needed; or multiple layers of coated cloths can be hot-pressed to form billets useful for example in fusion reactor wall armor. Also provided is a method of controlling the atom ratio of B:C of boron-carbon deposits onto any of a variety of substrates, including cloths.

  7. Preparation and uses of amorphous boron carbide coated substrates

    DOEpatents

    Riley, R.E.; Newkirk, L.R.; Valencia, F.A.; Wallace, T.C.

    1979-12-05

    Cloth is coated at a temperature below about 1000/sup 0/C with amorphous boron-carbon deposits in a process which provides a substantially uniform coating on all the filaments making up each yarn fiber bundle of the cloth. The coated cloths can be used in the as-deposited condition for example as wear surfaces where high hardness values are needed; or multiple layers of coated cloths can be hot-pressed to form billets useful for example in fusion reactor wall armor. Also provided is a method of controlling the atom ratio of B:C of boron-carbon deposits onto any of a variety of substrates, including cloths.

  8. Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Shakhov, Fedor M.; Abyzov, Andrey M.; Takai, Kazuyuki

    2017-12-01

    Boron doped diamond (BDD) was synthesized under high pressure and high temperature (HPHT) of 7 GPa, 1230 °C in a short time of 10 s from a powder mixtures of detonation nanodiamond (DND), pentaerythritol C5H8(OH)4 and amorphous boron. SEM, TEM, XRD, XPS, FTIR and Raman spectroscopy indicated that BDD nano- and micro-crystals have formed by consolidation of DND particles (4 nm in size). XRD showed the enlargement of crystallites size to 6-80 nm and the increase in diamond lattice parameter by 0.02-0.07% without appearance of any microstrains. Raman spectroscopy was used to estimate the content of boron atoms embedded in the diamond lattice. It was found that the Raman diamond peak shifts significantly from 1332 cm-1 to 1290 cm-1 without appearance of any non-diamond carbon. The correlation between Raman peak position, its width, and boron content in diamond is proposed. Hydrogenated diamond carbon in significant amount was detected by IR spectroscopy and XPS. Due to the doping with boron content of about 0.1 at%, the electrical conductivity of the diamond achieved approximately 0.2 Ω-1 cm-1. Reaction mechanism of diamond growth (models of recrystallization and oriented attachment) is discussed, including the initial stages of pentaerythritol pyrolysis and thermal desorption of functional groups from the surface of DND particles with the generation of supercritical fluid of low-molecular substances (H2O, CH4, CO, CO2, etc.), as well as byproducts formation (B2O3, B4C).

  9. Raman spectra boron doped amorphous carbon thin film deposited by bias assisted-CVD

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Fadzilah, A. N.; Dayana, K.; Saurdi, I.; Malek, M. F.; Nurbaya, Z.; Shafura, A. K.; Rusop, M.

    2018-05-01

    Boron doped amorphous carbon thin film carbon was deposited at 200°C-350°C by bias assisted-CVD using palm oil as a precursor material. The structural boron doped amorphous carbon films were discussed by Raman analysis through the evolution of D and G bands. The spectral evolution observed showed the increase of upward shift of D and G peaks as substrate deposition temperatures increased. These structural changes were further correlated with optical gap and the results obtained are discussed and compared. The estimated optical band gap is found to be 1.9 to 2.05 eV and conductivity is to be in the range of 10-5 Scm-1 to 10-4 Scm-1. The decrease of optical band gap is associated to conductivity increased which change the characteristic parameters of Raman spectra including the position of G peak, full width at half maximum of G peak, and ID/IG.

  10. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent.

    PubMed

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-30

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  11. Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides

    PubMed Central

    Zielonka, Jacek; Sikora, Adam; Hardy, Micael; Joseph, Joy; Dranka, Brian P.; Kalyanaraman, Balaraman

    2012-01-01

    Boronates, a group of organic compounds, are emerging as one of the most effective probes for detecting and quantifying peroxynitrite, hypochlorous acid and hydrogen peroxide. Boronates react with peroxynitrite nearly a million times faster than with hydrogen peroxide. Boronate-containing fluorogenic compounds have been used to monitor real time generation of peroxynitrite in cells and for imaging hydrogen peroxide in living animals. This Perspective highlights potential applications of boronates and other fluorescent probes to high-throughput analyses of peroxynitrite and hydroperoxides in toxicological studies. PMID:22731669

  12. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  13. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2000-01-01

    A process for producing polycrystalline silicon carbide includes heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  14. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOEpatents

    Maya, Leon

    1994-01-01

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film.

  15. Neutron Detection using Amorphous Boron-Carbide Hetero-Junction Diodes

    DTIC Science & Technology

    2012-03-22

    Parameter Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 B.1.1 UMKC Built-in Voltage...Electronic properties of boron carbide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2. Diode Material/Geometric Parameters ...42 6. Material parameters for Davinci model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 x List of

  16. Methods of forming boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boronmore » nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.« less

  17. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOEpatents

    Maya, L.

    1994-06-14

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film. 11 figs.

  18. Electron irradiation induced phase separation in a sodium borosilicate glass

    NASA Astrophysics Data System (ADS)

    Sun, K.; Wang, L. M.; Ewing, R. C.; Weber, W. J.

    2004-06-01

    Electron irradiation induced phase separation in a sodium borosilicate glass was studied in situ by analytical electron microscopy. Distinctly separate phases that are rich in boron and silicon formed at electron doses higher than 4.0 × 10 11 Gy during irradiation. The separated phases are still in amorphous states even at a much high dose (2.1 × 10 12 Gy). It indicates that most silicon atoms remain tetrahedrally coordinated in the glass during the entire irradiation period, except some possible reduction to amorphous silicon. The particulate B-rich phase that formed at high dose was identified as amorphous boron that may contain some oxygen. Both ballistic and ionization processes may contribute to the phase separation.

  19. Formation of polycrystalline MgB2 synthesized by powder in sealed tube method with different initial boron phase

    NASA Astrophysics Data System (ADS)

    Yudanto, Sigit Dwi; Imaduddin, Agung; Kurniawan, Budhy; Manaf, Azwar

    2018-04-01

    Magnesium diboride, MgB2 is a new high critical temperature superconductor that discovered in the beginning of the 21st century. The MgB2 has a simple crystal structure and a high critical temperature, which can be manufactured in several forms like thin films, tapes, wires including bulk in the large scale. For that reason, the MgB2 has good prospects for various applications in the field of electronic devices. In the current work, we have explored the synthesis of MgB2 polycrystalline using powder in a sealed tube method. Different initial boron phase for the synthesized of MgB2 polycrystalline were used. These were, in addition to magnesium powders, crystalline boron, amorphous boron and combination both of them were respectively fitted in the synthesis. The raw materials were mixed in a stoichiometric ratio of Mg: B=1:2, ground using agate mortar, packed into stainless steel SS304. The pack was then sintered at temperature of 800°C for 2 hours in air atmosphere. Phase formation of MgB2 polycrystalline in difference of initial boron phase was characterized using XRD and SEM. Referring to the diffraction pattern and microstructure observation, MgB2 polycrystalline was formed, and the formation was effective when using the crystalline Mg and fully amorphous B as the raw materials. The critical temperature of the specimen was evaluated by the cryogenic magnet. The transition temperature of the MgB2 specimen synthesized using crystalline magnesium and full amorphous boron is 42.678 K (ΔTc = 0.877 K).

  20. Boron nitride - Composition, optical properties, and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at. percent. The carbon and oxygen impurities were in the 5 to 8 at. percent range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  1. Boron nitride: Composition, optical properties and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  2. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1993-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  3. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1995-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  4. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1993-04-20

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  5. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1995-02-14

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence. 6 figs.

  6. Significantly enhanced critical current density in nano-MgB2 grains rapidly formed at low temperature with homogeneous carbon doping

    NASA Astrophysics Data System (ADS)

    Liu, Yongchang; Lan, Feng; Ma, Zongqing; Chen, Ning; Li, Huijun; Barua, Shaon; Patel, Dipak; Shahriar, M.; Hossain, Al; Acar, S.; Kim, Jung Ho; Xue Dou, Shi

    2015-05-01

    High performance MgB2 bulks using carbon-coated amorphous boron as a boron precursor were fabricated by Cu-activated sintering at low temperature (600 °C, below the Mg melting point). Dense nano-MgB2 grains with a high level of homogeneous carbon doping were formed in these MgB2 samples. This type of microstructure can provide a stronger flux pinning force, together with depressed volatility and oxidation of Mg owing to the low-temperature Cu-activated sintering, leading to a significant improvement of critical current density (Jc) in the as-prepared samples. In particular, the value of Jc for the carbon-coated (Mg1.1B2)Cu0.05 sample prepared here is even above 1 × 105 A cm-2 at 20 K, 2 T. The results herein suggest that the combination of low-temperature Cu-activated sintering and employment of carbon-coated amorphous boron as a precursor could be a promising technique for the industrial production of practical MgB2 bulks or wires with excellent Jc, as the carbon-coated amorphous boron powder can be produced commercially at low cost, while the addition of Cu is very convenient and inexpensive.

  7. Electron-beam-induced information storage in hydrogenated amorphous silicon devices

    DOEpatents

    Yacobi, B.G.

    1985-03-18

    A method for recording and storing information in a hydrogenated amorphous silicon device, comprising: depositing hydrogenated amorphous silicon on a substrate to form a charge collection device; and generating defects in the hydrogenated amorphous silicon device, wherein the defects act as recombination centers that reduce the lifetime of carriers, thereby reducing charge collection efficiency and thus in the charge collection mode of scanning probe instruments, regions of the hydrogenated amorphous silicon device that contain the defects appear darker in comparison to regions of the device that do not contain the defects, leading to a contrast formation for pattern recognition and information storage.

  8. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  9. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  10. Acetylene chain reaction on hydrogenated boron nitride monolayers: a density functional theory study.

    PubMed

    Ponce-Pérez, R; Cocoletzi, Gregorio H; Takeuchi, Noboru

    2017-11-28

    Spin-polarized first-principles total-energy calculations have been performed to investigate the possible chain reaction of acetylene molecules mediated by hydrogen abstraction on hydrogenated hexagonal boron nitride monolayers. Calculations have been done within the periodic density functional theory (DFT), employing the PBE exchange correlation potential, with van der Waals corrections (vdW-DF). Reactions at two different sites have been considered: hydrogen vacancies on top of boron and on top of nitrogen atoms. As previously calculated, at the intermediate state of the reaction, when the acetylene molecule is attached to the surface, the adsorption energy is of the order of -0.82 eV and -0.20 eV (measured with respect to the energy of the non interacting molecule-substrate system) for adsorption on top of boron and nitrogen atoms, respectively. After the hydrogen abstraction takes place, the system gains additional energy, resulting in adsorption energies of -1.52 eV and -1.30 eV, respectively. These results suggest that the chain reaction is energetically favorable. The calculated minimum energy path (MEP) for hydrogen abstraction shows very small energy barriers of the order of 5 meV and 22 meV for the reaction on top of boron and nitrogen atoms, respectively. Finally, the density of states (DOS) evolution study helps to understand the chain reaction mechanism. Graphical abstract Acetylene chain reaction on hydrogenated boron nitride monolayers.

  11. Electron-beam-induced information storage in hydrogenated amorphous silicon device

    DOEpatents

    Yacobi, Ben G.

    1986-01-01

    A method for recording and storing information in a hydrogenated amorphous silicon device, comprising: depositing hydrogenated amorphous silicon on a substrate to form a charge-collection device; and generating defects in the hydrogenated amorphous silicon device, wherein the defects act as recombination centers that reduce the lifetime of carriers, thereby reducing charge-collection efficiency; and thus in the charge-collection mode of scanning probe instruments, regions of the hydrogenated amorphous silicon device that contain the defects appear darker in comparison to regions of the device that do not contain the defects, leading to a contrast formation for pattern recognition and information storage, in the device, which darkened areas can be restored to their original charge-collection efficiency by heating the hydrogenated amorphous silicon to a temperature of about 100.degree. C. to 250.degree. C. for a sufficient period of time to provide for such restoration.

  12. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  13. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  14. Special features of the technology of boronizing steel in a calcium chloride melt

    NASA Astrophysics Data System (ADS)

    Chernov, Ya. B.; Anfinogenov, A. I.; Veselov, I. N.

    1999-12-01

    A technology for hardening machine parts and tools by boronizing in molten calcium chloride with amorphous-boron powder in electrode salt baths has been developed with the aim of creating a closed cycle of utilizing the raw materials and the washing water. A process of boronizing that includes quenching and tempering of the boronized articles is described. The quenching medium is an ecologically safe and readily available aqueous solution of calcium chloride. The process envisages return of the melt components to the boronizing bath. Boronizing by the suggested method was tested for different classes of steel, namely, structural and tool steels for cold and hot deformation. The wear resistance of the boronized steels was studied.

  15. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y. Simon; Deb, Satyen K.

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  16. In Situ Mechanical Property Measurements of Amorphous Carbon-Boron Nitride Nanotube Nanostructures

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Lin, Yi; Nunez, Jennifer Carpena; Siochi, Emilie J.; Wise, Kristopher E.; Connell, John W.; Smith, Michael W.

    2011-01-01

    To understand the mechanical properties of amorphous carbon (a-C)/boron nitride nanotube (BNNT) nanostructures, in situ mechanical tests are conducted inside a transmission electron microscope equipped with an integrated atomic force microscope system. The nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation. We demonstrate multiple in situ tensile, compressive, and lap shear tests with a-C/BNNT hybrid nanostructures. The tensile strength of the a-C/BNNT hybrid nanostructure is 5.29 GPa with about 90 vol% of a-C. The tensile strength and strain of the end-to-end joint structure with a-C welding is 0.8 GPa and 5.2% whereas the lap shear strength of the side-by-side joint structure with a-C is 0.25 GPa.

  17. Hydrogen storage compositions

    DOEpatents

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  18. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  19. Annealing induced structural changes in amorphous Co{sub 23}Fe{sub 60}B{sub 17} film on Mo buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, Jagrati, E-mail: jdwivedi.phy@gmail.com; Mishra, Ashutosh; Gupta, Ranjeeta

    2016-05-23

    Structural changes occurring in a thin amorphous Co{sub 23}Fe{sub 60}B{sub 17} film sandwiched between two Mo layers, as a function of thermal annealing has been studied. Thermal stability of the Co{sub 23}Fe{sub 60}B{sub 17} film is found to be significantly lower than the bulk ribbons. SIMS measurements show that during crystallization, boron which is expelled out of the crystallites, has a tendency to move towards the surface. No significant diffusion of boron in Mo buffer layer is observed. This result is in contrast with some earlier studies where it was proposed that the role of buffer layer of refractory metalmore » is to absorb boron which is expelled out of the bcc FeCo phase during crystallization.« less

  20. Microstructure and surface chemistry of amorphous alloys important to their friction and wear behavior

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    An investigation was conducted to examine the microstructure and surface chemistry of amorphous alloys, and their effects on tribological behavior. The results indicate that the surface oxide layers present on amorphous alloys are effective in providing low friction and a protective film against wear in air. Clustering and crystallization in amorphous alloys can be enhanced as a result of plastic flow during the sliding process at a low sliding velocity, at room temperature. Clusters or crystallines with sizes to 150 nm and a diffused honeycomb-shaped structure are produced on the wear surface. Temperature effects lead to drastic changes in surface chemistry and friction behavior of the alloys at temperatures to 750 C. Contaminants can come from the bulk of the alloys to the surface upon heating and impart to the surface oxides at 350 C and boron nitride above 500 C. The oxides increase friction while the boron nitride reduces friction drastically in vacuum.

  1. Preparation, Properties, and Structure of Hydrogenated Amorphous Carbon Films.

    NASA Astrophysics Data System (ADS)

    Chen, Hsiung

    1990-01-01

    Hydrogenated amorphous carbon films (a-C:H) have been deposited on glass, fused silica, Si, Mo, Al, and 304 stainless steel at room temperature by plasma enhanced chemical vapor deposition (PECVD). The rf glow discharge and plasma kinetics of the deposition process were investigated. Negative self-bias voltage V_{rm b} and gas pressure P were used as two major deposition parameters. The hydrogen concentration, internal stress, mass density, hardness, and thickness of the deposited films were measured. In the low energy deposition region, 0 > V_{rm b} > -100 V, soft polymerlike films with high hydrogen concentration and low density were found. Hard diamondlike films with high stress were deposited in the bias voltage range, -100 V > V _{rm b} > -1000 V. Dark graphitic films with low hydrogen concentration were grown at V_ {rm b} < -1000 V. The optical absorption of a series of a-C:H films have been measured. Optical energy gaps deduced from optical absorption data using the Tauc relation lie between 0.8 eV and 1.4 eV. Doping of a-C:H films by boron and sulfur is accompanied by an increasing number of gap states, i.e., the absorption coefficient is increased and the optical gap is reduced. The thermal stability was studied by thermal desorption spectroscopy and heat treatment at atmospheric pressure. A structural study of a-C:H films was performed using data taken on our films and from literature sources. The relation between cluster size and the intensity ratio of Raman peaks was studied. A comparison of the films as described by the graphitic cluster two-phase (GCT) model, the random covalent network (RCN) model and the all-sp ^2 defect graphite (DG) model was made. The properties and structure of a-C:H films are sensitively dependent on the preparation conditions. Correlations between the deposition conditions, structure, and properties are determined.

  2. Magnetron sputtered boron films for increasing hardness of a metal surface

    DOEpatents

    Makowiecki, Daniel M [Livermore, CA; Jankowski, Alan F [Livermore, CA

    2003-05-27

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  3. Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mir, Showkat H.; Chakraborty, Sudip, E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in; Wärnå, John

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have been envisaged on a two-dimensional (2D) boron sheet through electronic structure calculations based on a density functional theory framework. To date, boron sheets are the lightest 2D material and, therefore, exploring the catalytic activity of such a monolayer system would be quite intuitive both from fundamental and application perspectives. We have functionalized the boron sheet (BS) with different elemental dopants like carbon, nitrogen, phosphorous, sulphur, and lithium and determined the adsorption energy for each case while hydrogen and oxygen are on top of the doping site of themore » boron sheet. The free energy calculated from the individual adsorption energy for each functionalized BS subsequently guides us to predict which case of functionalization serves better for the HER or the OER.« less

  4. Fabrication of boron articles

    DOEpatents

    Benton, Samuel T.

    1976-01-01

    This invention is directed to the fabrication of boron articles by a powder metallurgical method wherein the articles are of a density close to the theoretical density of boron and are essentially crackfree. The method comprises the steps of admixing 1 to 10 weight percent carbon powder with amorphous boron powder, cold pressing the mixture and then hot pressing the cold pressed compact into the desired article. The addition of the carbon to the mixture provides a pressing aid for inhibiting the cracking of the hot pressed article and is of a concentration less than that which would cause the articles to possess significant concentrations of boron carbide.

  5. Simulations of the synthesis of boron-nitride nanostructures in a hot, high pressure gas volume† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc00667a

    PubMed Central

    Han, Longtao; Irle, Stephan; Nakai, Hiromi

    2018-01-01

    We performed nanosecond timescale computer simulations of clusterization and agglomeration processes of boron nitride (BN) nanostructures in hot, high pressure gas, starting from eleven different atomic and molecular precursor systems containing boron, nitrogen and hydrogen at various temperatures from 1500 to 6000 K. The synthesized BN nanostructures self-assemble in the form of cages, flakes, and tubes as well as amorphous structures. The simulations facilitate the analysis of chemical dynamics and we are able to predict the optimal conditions concerning temperature and chemical precursor composition for controlling the synthesis process in a high temperature gas volume, at high pressure. We identify the optimal precursor/temperature choices that lead to the nanostructures of highest quality with the highest rate of synthesis, using a novel parameter of the quality of the synthesis (PQS). Two distinct mechanisms of BN nanotube growth were found, neither of them based on the root-growth process. The simulations were performed using quantum-classical molecular dynamics (QCMD) based on the density-functional tight-binding (DFTB) quantum mechanics in conjunction with a divide-and-conquer (DC) linear scaling algorithm, as implemented in the DC-DFTB-K code, enabling the study of systems as large as 1300 atoms in canonical NVT ensembles for 1 ns time. PMID:29780513

  6. Bias in bonding behavior among boron, carbon, and nitrogen atoms in ion implanted a-BN, a-BC, and diamond like carbon films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genisel, Mustafa Fatih; Uddin, Md. Nizam; Say, Zafer

    2011-10-01

    In this study, we implanted N{sup +} and N{sub 2}{sup +} ions into sputter deposited amorphous boron carbide (a-BC) and diamond like carbon (DLC) thin films in an effort to understand the chemical bonding involved and investigate possible phase separation routes in boron carbon nitride (BCN) films. In addition, we investigated the effect of implanted C{sup +} ions in sputter deposited amorphous boron nitride (a-BN) films. Implanted ion energies for all ion species were set at 40 KeV. Implanted films were then analyzed using x-ray photoelectron spectroscopy (XPS). The changes in the chemical composition and bonding chemistry due to ion-implantationmore » were examined at different depths of the films using sequential ion-beam etching and high resolution XPS analysis cycles. A comparative analysis has been made with the results from sputter deposited BCN films suggesting that implanted nitrogen and carbon atoms behaved very similar to nitrogen and carbon atoms in sputter deposited BCN films. We found that implanted nitrogen atoms would prefer bonding to carbon atoms in the films only if there is no boron atom in the vicinity or after all available boron atoms have been saturated with nitrogen. Implanted carbon atoms also preferred to either bond with available boron atoms or, more likely bonded with other implanted carbon atoms. These results were also supported by ab-initio density functional theory calculations which indicated that carbon-carbon bonds were energetically preferable to carbon-boron and carbon-nitrogen bonds.« less

  7. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Research on the boron contamination at the p/i interface of microcrystalline silicon solar cells deposited in a single PECVD chamber

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Dan; Sun, Fu-He; Wei, Chang-Chun; Sun, Jian; Zhang, De-Kun; Geng, Xin-Hua; Xiong, Shao-Zhen; Zhao, Ying

    2009-10-01

    This paper studies boron contamination at the interface between the p and i layers of μc-Si:H solar cells deposited in a single-chamber PECVD system. The boron depth profile in the i layer was measured by Secondary Ion Mass Spectroscopy. It is found that the mixed-phase μc-Si:H materials with 40% crystalline volume fraction is easy to be affected by the residual boron in the reactor. The experimental results showed that a 500-nm thick μc-Si:H covering layer or a 30-seconds of hydrogen plasma treatment can effectively reduce the boron contamination at the p/i interface. However, from viewpoint of cost reduction, the hydrogen plasma treatment is desirable for solar cell manufacture because the substrate is not moved during the hydrogen plasma treatment.

  8. Thermal decomposition of silane to form hydrogenated amorphous Si

    DOEpatents

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  9. High-Nitrogen-Based Pyrotechnics: Longer- and Brighter-Burning, Perchlorate-Free, Red-Light Illuminants for Military and Civilian Applications

    DTIC Science & Technology

    2011-01-01

    combustion of these materials. To address the aforementioned perchlorate issues, an effort was initiated by ARDEC to remove potassium per- chlorate ...with acceptable burn times for pyrotechnic applications by using potassium nitrate– amorphous boron–crystalline boron/boron carbide–epoxy binder mixtures...3,4] Moreover, it was discovered by ARDEC that a potassium nitrate–boron carbide–epoxy binder mix- ture alone was able to generate suitable green

  10. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOEpatents

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  11. Synthesis and high temperature stability of amorphous Si(B)CN-MWCNT composite nanowires

    NASA Astrophysics Data System (ADS)

    Bhandavat, Romil; Singh, Gurpreet

    2012-02-01

    We demonstrate synthesis of a hybrid nanowire structure consisting of an amorphous polymer-derived silicon boron-carbonitride (Si-B-C-N) shell with a multiwalled carbon nanotube core. This was achieved through a novel process involving preparation of a boron-modified liquid polymeric precursor through a reaction of trimethyl borate and polyureasilazane under atmospheric conditions; followed by conversion of polymer to glass-ceramic on carbon nanotube surfaces through controlled heating. Chemical structure of the polymer was studied by liquid-NMR while evolution of various ceramic phases was studied by Raman spectroscopy, solid-NMR, Fourier transform infrared and X-ray photoelectron spectroscopy. Electron microscopy and X-ray diffraction confirms presence of amorphous Si(B)CN coating on individual nanotubes for all specimen processed below 1400 degree C. Thermogravimetric analysis, followed by TEM revealed high temperature stability of the carbon nanotube core in flowing air up to 1300 degree C.

  12. Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Young, Matthew Garett

    The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type silicon solar cells. This required the development of a boron diffusion process that maintained the bulk lifetime of n-type silicon such that the recombination current density could be extracted by photoconductance spectroscopy. It is demonstrated that by hydrogenating boron diffusions, the majority carrier concentration can be controlled. By using symmetrically diffused test structures with quinhydrone-methanol surface passivation the recombination current density of a hydrogenated boron profile is shown to be less than that of a standard boron profile, by as much as 30%. This is then applied to a modified industrial silicon solar cell process to demonstrate an efficiency enhancement of 0.4%.

  13. Boron depth profiles and residual damage following rapid thermal annealing of low-temperature BSi molecular ion implantation in silicon

    NASA Astrophysics Data System (ADS)

    Liang, J. H.; Wang, S. C.

    2007-08-01

    The influence of substrate temperature on both the implantation and post-annealing characteristics of molecular-ion-implanted 5 × 1014 cm-2 77 keV BSi in silicon was investigated in terms of boron depth profiles and damage microstructures. The substrate temperatures under investigation consisted of room temperature (RT) and liquid nitrogen temperature (LT). Post-annealing treatments were performed using rapid thermal annealing (RTA) at 1050 °C for 25 s. Boron depth profiles and damage microstructures in both the as-implanted and as-annealed specimens were determined using secondary ion mass spectrometry (SIMS) and transmission electron microscopy (TEM), respectively. The as-implanted results revealed that, compared to the RT specimen, the LT specimen yields a shallower boron depth profile with a reduced tail into the bulk. An amorphous layer containing a smooth amorphous-to-crystalline (a/c) interface is evident in the LT specimen while just the opposite is true in the as-implanted RT one. The as-annealed results illustrated that the extension of the boron depth profile into the bulk via transient-enhanced diffusion (TED) in the LT specimen is less than it is in the RT one. Only residual defects are visible in the LT specimen while two clear bands of dislocation loops appear in the RT one.

  14. Structural, optical, and spin properties of hydrogenated amorphous silicon-germanium alloys

    NASA Astrophysics Data System (ADS)

    Stutzmann, M.; Street, R. A.; Tsai, C. C.; Boyce, J. B.; Ready, S. E.

    1989-07-01

    We report on a detailed study of structural and electronic properties of hydrogenated amorphous silicon-germanium alloys deposited by rf glow discharge from SiH4 and GeH4 in a diode reactor. The chemical composition of the alloys is related to the deposition conditions, with special emphasis on preferential incorporation of Ge into the solid phase and on the role of inert dilutant gases. Hydrogen bonding in the alloys is investigated with nuclear magnetic resonance and vibrational (Raman and infrared) spectroscopy. The optical properties of a-SiGe:H samples deposited under optimal conditions are analyzed with the help of subgap absorption measurements and band-tail luminescence for the entire range of alloy composi-tions. A large part of the article describes an investigation of the electron-spin-resonance response of undoped alloys. The spin density associated with dangling bond defects localized on Si and Ge atoms has been measured as a function of alloy composition for optimized material. In addition, the dependence of the two defect densities on the detailed deposition conditions (rf power, substrate temperature, and dilution) has been determined in a systematic way for alloys deposited from a plasma with a fixed SiH4/GeH4ratio. The results of this study, especially the preferential creation of Ge dangling bonds, are discussed in the context of our structural data. Furthermore, spin resonance is employed to investigate the light-induced degradation (Staebler-Wronski effect) of a-SiGe:H. Finally, the changes of the spin-resonance spectra of a-Si0.7 Ge0.3 :H upon substitutional doping with phosphorus and boron have been obtained experimentally, and are used to construct a model for the electronic density of states in this material.

  15. Theoretical investigation of calcium-decorated β12 boron sheet for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Tang, Xiao; Gu, Yuantong; Kou, Liangzhi

    2018-03-01

    From first-principles calculations based on density functional theory, we find that the recently synthesized β12 boron sheet is a perfect candidate for calcium-decoration and hydrogen storage application. In contrast to graphene where defects are required to capture Ca, the naturally formed hexagonal hollow ring in β12 boron sheet provides the ideal site for Ca adsorption, and up to 6H2 molecules for each Ca atom can be captured with a desirable binding energy of ∼0.2 eV/H2. The gravimetric hydrogen density for Ca decorated boron sheet can reach up to 8.92 wt%. From the electronic analysis, it is found that both the orbital hybridizations and polarization mechanism play significant roles in H2 adsorption and storage.

  16. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  17. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  18. Thermal decomposition of silane to form hydrogenated amorphous Si film

    DOEpatents

    Strongin, Myron; Ghosh, Arup K.; Wiesmann, Harold J.; Rock, Edward B.; Lutz, III, Harry A.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silano (SiH.sub.4) or other gases comprising H and Si, at elevated temperatures of about 1700.degree.-2300.degree. C., and preferably in a vacuum of about 10.sup.-8 to 10.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseous mixture onto a substrate outside said source of thermal decomposition to form hydrogenated amorphous silicon.

  19. Highly tunable electronic properties in plasma-synthesized B-doped microcrystalline-to-amorphous silicon nanostructure for solar cell applications

    NASA Astrophysics Data System (ADS)

    Lim, J. W. M.; Ong, J. G. D.; Guo, Y.; Bazaka, K.; Levchenko, I.; Xu, S.

    2017-10-01

    Highly controllable electronic properties (carrier mobility and conductivity) were obtained in the sophisticatedly devised, structure-controlled, boron-doped microcrystalline silicon structure. Variation of plasma parameters enabled fabrication of films with the structure ranging from a highly crystalline (89.8%) to semi-amorphous (45.4%) phase. Application of the innovative process based on custom-designed, optimized, remote inductively coupled plasma implied all advantages of the plasma-driven technique and simultaneously avoided plasma-intrinsic disadvantages associated with ion bombardment and overheating. The high degree of SiH4, H2 and B2H6 precursor dissociation ensured very high boron incorporation into the structure, thus causing intense carrier scattering. Moreover, the microcrystalline-to-amorphous phase transition triggered by the heavy incorporation of the boron dopant with increasing B2H6 flow was revealed, thus demonstrating a very high level of the structural control intrinsic to the process. Control over the electronic properties through variation of impurity incorporation enabled tailoring the carrier concentrations over two orders of magnitude (1018-1020 cm-3). These results could contribute to boosting the properties of solar cells by paving the way to a cheap and efficient industry-oriented technique, guaranteeing a new application niche for this new generation of nanomaterials.

  20. Depth profiling of hydrogen passivation of boron in Si(100)

    NASA Astrophysics Data System (ADS)

    Huang, L. J.; Lau, W. M.; Simpson, P. J.; Schultz, P. J.

    1992-08-01

    The properties of SiO2/p-Si were studied using variable-energy positron-annihilation spectroscopy and Raman spectroscopy. The oxide film was formed by ozone oxidation in the presence of ultraviolet radiation at room temperature. Both the positron-annihilation and Raman analyses show that chemical cleaning of boron-doped p-type Si(100) using concentrated hydrofluoric acid prior to the oxide formation leads to hydrogen incorporation in the semiconductor. The incorporated hydrogen passivates the boron dopant by forming a B-H complex, the presence of which increases the broadening of the line shape in the positron-annihilation analysis, and narrows the linewidth of the Raman peak. Annealing of the SiO2/Si sample at a moderate temperature of 220 °C in vacuum was found sufficient to dissociate the complex and reactivate the boron dopant.

  1. Influence of hydrogen effusion from hydrogenated silicon nitride layers on the regeneration of boron-oxygen related defects in crystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilking, S., E-mail: Svenja.Wilking@uni-konstanz.de; Ebert, S.; Herguth, A.

    The degradation effect boron doped and oxygen-rich crystalline silicon materials suffer from under illumination can be neutralized in hydrogenated silicon by the application of a regeneration process consisting of a combination of slightly elevated temperature and carrier injection. In this paper, the influence of variations in short high temperature steps on the kinetics of the regeneration process is investigated. It is found that hotter and longer firing steps allowing an effective hydrogenation from a hydrogen-rich silicon nitride passivation layer result in an acceleration of the regeneration process. Additionally, a fast cool down from high temperature to around 550 °C seems tomore » be crucial for a fast regeneration process. It is suggested that high cooling rates suppress hydrogen effusion from the silicon bulk in a temperature range where the hydrogenated passivation layer cannot release hydrogen in considerable amounts. Thus, the hydrogen content of the silicon bulk after the complete high temperature step can be increased resulting in a faster regeneration process. Hence, the data presented here back up the theory that the regeneration process might be a hydrogen passivation of boron-oxygen related defects.« less

  2. Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-04-02

    A silicon PIN microcrystalline/amorphous silicon semiconductor device is constructed by the sputtering of N, and P layers of silicon from silicon doped targets and the I layer from an undoped target, and at least one semi-transparent ohmic electrode.

  3. QMD and classical MD simulation of alpha boron and boron-carbide behavior under pressure

    NASA Astrophysics Data System (ADS)

    Yanilkin, Alexey; Korotaev, Pavel; Kuksin, Alexey; Pokatashkin, Pavel

    2015-06-01

    Boron and some boron-rich compounds are super-hard and light-weighted material with a wide range of different applications. Nevertheless, the question of its behavior under pressure is still open. In the present work we study the equation of state (EOS), stability and deformation of α-B and B4C under high pressure within quantum and classical molecular dynamics (QMD and MD). Based on QMD results the finite temperature EOSs are revealed. CBC chain bending, amorphization and recrystallization of B4C are investigated under hydrostatic, uniform and uniaxial compression. The influence of nonhydrostatic loading is discussed. Angular dependent interatomic potentials are derived by force-matching method. The properties of α-B and B4C, obtained by classical potential, are verified. Structure, bulk modulus, pressure-volume relation, Gruneisen and thermal expansion coefficients are in good agreement with both ab initio and experimental data. These potentials are used to study shock wave propagation in a single crystal of α-B and B4C. Two mechanisms of shear deformation are observed: stacking fault formation and local amorphization. The crystallographic orientations of defects are in a good agreement with experiments.

  4. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-06-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials and their stability at high neutron doses enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for waste package and drip shield applications, although the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas-atomized powders and applied as near full density, nonporous coatings with the high-velocity oxy-fuel process. This article summarizes the performance of these coatings as corrosion-resistant barriers and as neutron absorbers. This article also presents a simple cost model to quantify the economic benefits possible with these new materials.

  5. The dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the film thickness: αl Experimental limitations and the impact of curvature in the Tauc and Cody plots

    NASA Astrophysics Data System (ADS)

    Mok, Tat M.; O'Leary, Stephen K.

    2007-12-01

    Using a model for the optical spectrum associated with hydrogenated amorphous silicon, explicitly taking into account fundamental experimental limitations encountered, we theoretically determine the dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the thickness of the film. We compare these results with that obtained from experiment. We find that the curvature in the Tauc plot plays a significant role in influencing the determination of the Tauc optical gap associated with hydrogenated amorphous silicon, thus affirming an earlier hypothesis of Cody et al. We also find that the spectral dependence of the refractive index plays an important role in influencing the determination of the Cody optical gap. It is thus clear that care must be exercised when drawing conclusions from the dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the thickness of the film.

  6. Hydrogen absorption of Pd/ZrO2 composites prepared from Zr65Pd35 and Zr60Pd35Pt5 amorphous alloys

    NASA Astrophysics Data System (ADS)

    Ozawa, Masakuni; Katsuragawa, Naoya; Hattori, Masatomo; Yogo, Toshinobu; Yamamura, Shin-ichi

    2018-01-01

    Metal-dispersed composites were derived from amorphous Zr65Pd35 and Zr65Pd30Pt5 alloys and their hydrogen absorption behavior was studied. X-ray diffractograms and scanning electron micrographs indicated that mixtures containing ZrO2, the metallic phase of Pd, and PdO were formed for both amorphous alloys heat-treated in air. In the composites, micron-sized Pd-based metal precipitates were embedded in a ZrO2 matrix after heat treatment at 800 °C in air. The hydrogen temperature-programmed reduction was applied to study the reactivity of hydrogen gas with the oxidized Zr65Pd35 and Zr65Pd30Pt5 materials. Rapid hydrogen absorption and release were observed on the composite derived from the amorphous alloy below 100 °C. The hydrogen pressure-concentration isotherm showed that the absorbed amount of hydrogen in materials depended on the formation of the Pd or Pt-doped Pd phase and its large interface area to the matrix in the nanocomposites. The results indicate the importance of the composite structure for the fabrication of a new type of hydrogen storage material prepared from amorphous alloys.

  7. Deposition of device quality low H content, amorphous silicon films

    DOEpatents

    Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

    1995-03-14

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

  8. Deposition of device quality low H content, amorphous silicon films

    DOEpatents

    Mahan, Archie H.; Carapella, Jeffrey C.; Gallagher, Alan C.

    1995-01-01

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH.sub.4) over a high temperature, 2000.degree. C., tungsten (W) filament in the proximity of a high temperature, 400.degree. C., substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20-30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content.

  9. Hydrogen diffusion and electronic structure in crystalline and amorphous Ti/sub y/CuH/sub x/

    NASA Technical Reports Server (NTRS)

    Bowman, R. C., Jr.; Rhim, W. K.; Maeland, A. J.; Lynch, J. F.

    1982-01-01

    Hydrogen diffusion behavior and electronic properties of crystalline TiCuHo94, Ti2CuH1.90, and Ti2CuH2.63 and amorphous a-TiCuH1.4 were studied using proton relaxation times, proton Knight shifts, and magnetic susceptibilities. Crystal structure and hydrogen site occupancy have major roles in hydrogen mobility. The density of electron states at E sub F is reduced in amorphous a-TiCuH1.4 compared to the crystalline hydrides.

  10. Synthesis of boron nitride nanofibers and measurement of their hydrogen uptake capacity

    NASA Astrophysics Data System (ADS)

    Ma, Renzhi; Bando, Yoshio; Sato, Tadao; Golberg, Dmitri; Zhu, Hongwei; Xu, Cailu; Wu, Dehai

    2002-12-01

    High-purity boron nitride (BN) nanofibers with diameters ranging from 30 to 100 nm were synthesized. Electron energy loss spectroscopy revealed that they have stoichiometric BN composition. The hydrogen uptake capacity measurements showed that the fibers could adsorb 2.9 wt % hydrogen under ˜10 MPa at room temperature. This hydrogen uptake capacity was compared with those of BN multiwalled or bamboo-like nanotubes under the same experimental conditions. It was suggested that the unique morphology of nanofibers, namely open-ended BN edge layers on the exterior surface, might facilitate hydrogen adsorption.

  11. Amorphous titania modified with boric acid for selective capture of glycoproteins.

    PubMed

    Jin, Shanxia; Liu, Liping; Zhou, Ping

    2018-05-22

    Amorphous titania was modified with boric acid, and the resulting material was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction and X-ray photoelectron spectrometry. The new material, in contrast to conventional boronate affinity materials containing boronic acid ligands, bears boric acid groups. It is shown to exhibit high specificity for glycoproteins, and this was applied to design a method for solid phase extraction of glycoproteins as shown for ribonuclease B, horse radish peroxidase and ovalbumin. Glycoproteins were captured under slightly alkaline environment and released in acidic solutions. The glycoproteins extracted were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The binding capacities for ribonuclease B, horse radish peroxidase and ovalbumin typically are 9.3, 26.0 and 53.0 mg ∙ g -1 , respectively. The method was successfully applied to the selective enrichment of ovalbumin from egg white. Graphical abstract Schematic presentation of the capture of glycoproteins by amorphous titania modified with boric acid.

  12. Properties of vacuum-evaporated boron films

    NASA Technical Reports Server (NTRS)

    Feakes, F.

    1973-01-01

    The work on the properties of thin boron films made by vacuum evaporation of elemental boron using an electron beam as the energy source is reported. The program aimed at characterizing the properties of vacuum evaporated films. The work was directed toward those variables considered to be important in affecting the tensile strength of the boron films. In general, the thickness of the films was less than 0.002 in. The temperature of the substrate on which the boron was condensed was found to be most important. Three distinctly different forms of boron deposit were produced. Although the transition temperature was not sharply defined, at substrate temperatures of less than approximately 600 deg C the boron deposits were amorphous to X-ray. If the substrate were highly polished, the deposits were black and mirror-like. For substrates with coefficients of thermal expansion close to that of boron, the deposits were then continuous and uncracked. The studies suggest that the potential continues to exist for film-type composites to have both high strength and high modulus.

  13. Hydrogen absorption properties of amorphous (Ni 0.6Nb 0.4-yTa y ) 100-x Zr x membranes

    DOE PAGES

    Palumbo, O.; Trequattrini, F.; Pal, N.; ...

    2017-02-01

    Ni based amorphous materials have great potential as hydrogen purification membranes. In the present work the melt spun (Ni 0.6Nb 0.4-yTa y) 100-xZr x with y=0, 0.1 and x=20, 30 was studied. Our result of X-ray diffraction spectra of the ribbons showed an amorphous nature of the alloys. Heating these ribbons below T < 400 °C, even in a hydrogen atmosphere (1-10 bar), the amorphous structure was retained. Furthermore, the crystallization process was characterized by differential thermal analysis and the activation energy of such process was obtained. The hydrogen absorption properties of the samples in their amorphous state were studiedmore » by the volumetric method, and the results showed that the addition of Ta did not significantly influence the absorption properties, a clear change of the hydrogen solubility was observed with the variation of the Zr content. The values of the hydrogenation enthalpy changed from ~37 kJ/mol for x=30 to ~9 kJ/mol for x=20. Our analysis of the volumetric data provides the indications about the hydrogen occupation sites during hydrogenation, suggesting that at the beginning of the absorption process the deepest energy levels are occupied, while only shallower energy levels are available at higher hydrogen content, with the available interstitial sites forming a continuum of energy levels.« less

  14. Hydrogen absorption properties of amorphous (Ni 0.6Nb 0.4-yTa y ) 100-x Zr x membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palumbo, O.; Trequattrini, F.; Pal, N.

    Ni based amorphous materials have great potential as hydrogen purification membranes. In the present work the melt spun (Ni 0.6Nb 0.4-yTa y) 100-xZr x with y=0, 0.1 and x=20, 30 was studied. Our result of X-ray diffraction spectra of the ribbons showed an amorphous nature of the alloys. Heating these ribbons below T < 400 °C, even in a hydrogen atmosphere (1-10 bar), the amorphous structure was retained. Furthermore, the crystallization process was characterized by differential thermal analysis and the activation energy of such process was obtained. The hydrogen absorption properties of the samples in their amorphous state were studiedmore » by the volumetric method, and the results showed that the addition of Ta did not significantly influence the absorption properties, a clear change of the hydrogen solubility was observed with the variation of the Zr content. The values of the hydrogenation enthalpy changed from ~37 kJ/mol for x=30 to ~9 kJ/mol for x=20. Our analysis of the volumetric data provides the indications about the hydrogen occupation sites during hydrogenation, suggesting that at the beginning of the absorption process the deepest energy levels are occupied, while only shallower energy levels are available at higher hydrogen content, with the available interstitial sites forming a continuum of energy levels.« less

  15. Interactions of hydrogen with amorphous hafnium oxide

    NASA Astrophysics Data System (ADS)

    Kaviani, Moloud; Afanas'ev, Valeri V.; Shluger, Alexander L.

    2017-02-01

    We used density functional theory (DFT) calculations to study the interaction of hydrogen with amorphous hafnia (a -HfO2 ) using a hybrid exchange-correlation functional. Injection of atomic hydrogen, its diffusion towards electrodes, and ionization can be seen as key processes underlying charge instability of high-permittivity amorphous hafnia layers in many applications. Hydrogen in many wide band gap crystalline oxides exhibits negative-U behavior (+1 and -1 charged states are thermodynamically more stable than the neutral state) . Our results show that in a -HfO2 hydrogen is also negative-U, with charged states being the most thermodynamically stable at all Fermi level positions. However, metastable atomic hydrogen can share an electron with intrinsic electron trapping precursor sites [Phys. Rev. B 94, 020103 (2016)., 10.1103/PhysRevB.94.020103] forming a [etr -+O -H ] center, which is lower in energy on average by about 0.2 eV. These electron trapping sites can affect both the dynamics and thermodynamics of the interaction of hydrogen with a -HfO2 and the electrical behavior of amorphous hafnia films in CMOS devices.

  16. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Krishna

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3He will be very desirable. Tomore » address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron ( 10B) and enriched lithium ( 6Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (t g ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10 -24 cm 2), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.« less

  17. In situ TEM study of electron-beam radiation induced boron diffusion and effects on phase and microstructure evolution in nanostructured CoFeB/SiO2 thin film

    NASA Astrophysics Data System (ADS)

    Liu, B. H.; Teo, H. W.; Mo, Z. H.; Mai, Z. H.; Lam, J.; Xue, J. M.; Zhao, Y. Z.; Tan, P. K.

    2017-01-01

    Using in situ transmission electron microscopy (TEM), we studied boron diffusion and segregation in CoFeB/SiO2 nanostructured thin film stacks. We also investigated how these phenomena affected the phase and microstructure of CoFeB thin films under electron beam irradiation at 300 kV. A unique phase transformation was observed in CoFeB thin films under high-dose electron irradiation, from a polycrystalline Co3Fe to a unilateral amorphous phase of Co3Fe and nanocrystalline FexCo23-xB6. The unilateral amorphization of the Co3Fe film showed an electron-dose-rate sensitivity with a threshold dose rate. Detailed in situ TEM studies revealed that the unilateral amorphization of the Co3Fe film arose from boron segregation at the bottom of the Co3Fe thin film induced by radiation-enhanced diffusion of boron atoms that were displaced by electron knock-on effects. The radiation-induced nanocrystallization of FexCo23-xB6 was also found to be dose-rate sensitive with a higher electron beam current leading to earlier nucleation and more rapid grain growth. The nanocrystallization of FexCo23-xB6 occurred preferentially at the CoFeB/SiO2 interface. Kinetic studies by in situ TEM revealed the surface crystallization and diffusion-controlled nucleation and grain growth mechanisms. The radiation-enhanced atomic diffusivity and high-concentration of radiation-induced point defects at the Co3Fe/SiO2 interface enhanced the local short-range ordering of Fe, Co, and B atoms, favoring nucleation and grain growth of FexCo23-xB6 at the interface.

  18. Synthesis, spectroscopic and catalytic properties of some new boron hybrid molecule derivatives by BF2 and BPh2 chelation

    NASA Astrophysics Data System (ADS)

    Kilic, Ahmet; Alcay, Ferhat; Aydemir, Murat; Durgun, Mustafa; Keles, Armagan; Baysal, Akın

    2015-05-01

    A new series of Schiff base ligands (L1-L3) and their corresponding fluorine/phenyl boron hybrid complexes [LnBF2] and [LnBPh2] (n = 1, 2 or 3) have been synthesized and well characterized by both analytical and spectroscopic methods. The Schiff base ligands and their corresponding fluorine/phenyl boron hybrid complexes have been characterized by NMR (1H, 13C and 19F), FT-IR, UV-Vis, LC-MS, and fluorescence spectroscopy as well as melting point and elemental analysis. The fluorescence efficiencies of phenyl chelate complexes are greatly red-shifted compared to those of the fluorine chelate analogs based on the same ligands, presumably due to the large steric hindrance and hard π → π∗ transition of the diphenyl boron chelation, which can effectively prevent molecular aggregation. The boron hybrid complexes were applied to the transfer hydrogenation of acetophenone derivatives to 1-phenylethanol derivatives in the presence of 2-propanol as the hydrogen source. The catalytic studies showed that boron hybrid complexes are good catalytic precursors for transfer hydrogenation of aromatic ketones in 0.1 M iso-PrOH solution. Also, we have found that both steric and electronic factors have a significant impact on the catalytic properties of this class of molecules.

  19. The role of boron nitride nanotube as a new chemical sensor and potential reservoir for hydrogen halides environmental pollutants

    NASA Astrophysics Data System (ADS)

    Yoosefian, Mehdi; Etminan, Nazanin; Moghani, Maryam Zeraati; Mirzaei, Samaneh; Abbasi, Shima

    2016-10-01

    Density functional theory (DFT) studies on the interaction of hydrogen halides (HX) environmental pollutants and the boron nitride nanotubes (BNNTs) have been reported. To exploit the possibility of BNNTs as gas sensors, the adsorption of hydrogen fluoride (HF), hydrogen chloride (HCl) and hydrogen bromide (HBr) on the side wall of armchair (5,5) boron nitride nanotubes have been investigated. B3LYP/6-31G (d) level were used to analyze the structural and electronic properties of investigate sensor. The adsorption process were interpreted by highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO), quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO) and molecular electrostatic potential (MEP) analysis. Topological parameters of bond critical points have been used to calculate as measure of hydrogen bond (HB) strength. Stronger binding energy, larger charge transfer and charge density illustrate that HF gas possesses chemisorbed adsorption process. The obtained results also show the strongest HB in HF/BNNT complex. We expect that results could provide helpful information for the design of new BNNTs based sensing devices.

  20. Molecular dynamics simulations of trihalomethanes removal from water using boron nitride nanosheets.

    PubMed

    Azamat, Jafar; Khataee, Alireza; Joo, Sang Woo

    2016-04-01

    Molecular dynamics simulations were performed to investigate the separation of trihalomethanes (THMs) from water using boron nitride nanosheets (BNNSs). The studied systems included THM molecules and a functionalized BNNS membrane immersed in an aqueous solution. An external pressure was applied to the z axis of the systems. Two functionalized BNNSs with large fluorinated-hydrogenated pore (F-H-pores) and small hydrogen-hydroxyl pore (H-OH-pores) were used. The pores of the BNNS membrane were obtained by passivating each nitrogen and boron atoms at the pore edges with fluorine and hydrogen atoms in the large pore or with hydroxyl and hydrogen atoms in the small pore. The results show that the BNNS with a small functionalized pore was impermeable to THM molecules, in contrast to the BNNS with a large functionalized pore. Using these membranes, water contaminants can be removed at lower cost.

  1. Effects of hydrogenation on thermal conductivity of ultrananocrystalline diamond/amorphous carbon composite films prepared via coaxial arc plasma deposition

    NASA Astrophysics Data System (ADS)

    Takeichi, Satoshi; Nishiyama, Takashi; Tabara, Mitsuru; Kawawaki, Shuichi; Kohno, Masamichi; Takahashi, Koji; Yoshitake, Tsuyoshi

    2018-06-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite (UNCD/a-C:H) and UNCD/non-hydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were prepared via coaxial arc plasma deposition, and their thermal conductivity and interfacial conductance in grain boundaries were measured using a time-domain thermoreflectance method. The interfacial conductance was estimated to be 1,010 and 4,892 MW/(m2·K) for UNCD/a-C:H and UNCD/a-C films, respectively. The reasons for the hydrogenated film having lower interfacial conductance than the non-hydrogenated film are 1) the reduced number of carriers that contribute to heat transport and 2) the hydrogen atoms, which are preferentially located at the grain boundaries and enhance phonon scattering.

  2. Linking hydrogen-mediated boron toxicity tolerance with improvement of root elongation, water status and reactive oxygen species balance: a case study for rice.

    PubMed

    Wang, Yu; Duan, Xingliang; Xu, Sheng; Wang, Ren; Ouyang, Zhaozeng; Shen, Wenbiao

    2016-12-01

    Boron is essential for plant growth but hazardous when present in excess. As the antioxidant properties of hydrogen gas (H 2 ) were recently described in plants, oxidative stress induced by excess boron was investigated along with other biological responses during rice (Oryza sativa) seed germination to study the beneficial role of H 2 METHODS: Rice seeds were pretreated with exogenous H 2 Using physiological, pharmacological and molecular approaches, the production of endogenous H 2 , growth status, reactive oxygen species (ROS) balance and relative gene expression in rice were measured under boron stress to investigate mechanisms of H 2 -mediated boron toxicity tolerance. In our test, boron-inhibited seed germination and seedling growth, and endogenous H 2 production, were obviously blocked by exogenously applying H 2 The re-establishment of ROS balance was confirmed by reduced lipid peroxidation and ROS accumulation. Meanwhile, activities of catalase (CAT) and peroxidase (POX) were increased. Suppression of pectin methylesterase (PME) activity and downregulation of PME transcripts by H 2 were consistent with the alleviation of root growth inhibition caused by boron. Water status was improved as well. This result was confirmed by the upregulation of genes encoding specific aquaporins (AQPs), the maintenance of low osmotic potential and high content of soluble sugar. Increased transcription of representative AQP genes (PIP2;7 in particular) and BOR2 along with decreased BOR1 mRNA may contribute to lowering boron accumulation. Hydrogen provides boron toxicity tolerance mainly by improving root elongation, water status and ROS balance. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Linking hydrogen-mediated boron toxicity tolerance with improvement of root elongation, water status and reactive oxygen species balance: a case study for rice

    PubMed Central

    Wang, Yu; Duan, Xingliang; Xu, Sheng; Wang, Ren; Ouyang, Zhaozeng; Shen, Wenbiao

    2016-01-01

    Background and aims Boron is essential for plant growth but hazardous when present in excess. As the antioxidant properties of hydrogen gas (H2) were recently described in plants, oxidative stress induced by excess boron was investigated along with other biological responses during rice (Oryza sativa) seed germination to study the beneficial role of H2. Methods Rice seeds were pretreated with exogenous H2. Using physiological, pharmacological and molecular approaches, the production of endogenous H2, growth status, reactive oxygen species (ROS) balance and relative gene expression in rice were measured under boron stress to investigate mechanisms of H2-mediated boron toxicity tolerance. Key Results In our test, boron-inhibited seed germination and seedling growth, and endogenous H2 production, were obviously blocked by exogenously applying H2. The re-establishment of ROS balance was confirmed by reduced lipid peroxidation and ROS accumulation. Meanwhile, activities of catalase (CAT) and peroxidase (POX) were increased. Suppression of pectin methylesterase (PME) activity and downregulation of PME transcripts by H2 were consistent with the alleviation of root growth inhibition caused by boron. Water status was improved as well. This result was confirmed by the upregulation of genes encoding specific aquaporins (AQPs), the maintenance of low osmotic potential and high content of soluble sugar. Increased transcription of representative AQP genes (PIP2;7 in particular) and BOR2 along with decreased BOR1 mRNA may contribute to lowering boron accumulation. Conclusions Hydrogen provides boron toxicity tolerance mainly by improving root elongation, water status and ROS balance. PMID:27616208

  4. Microplasma Processed Ultrathin Boron Nitride Nanosheets for Polymer Nanocomposites with Enhanced Thermal Transport Performance.

    PubMed

    Zhang, Ri-Chao; Sun, Dan; Lu, Ai; Askari, Sadegh; Macias-Montero, Manuel; Joseph, Paul; Dixon, Dorian; Ostrikov, Kostya; Maguire, Paul; Mariotti, Davide

    2016-06-01

    This Research Article reports on the enhancement of the thermal transport properties of nanocomposite materials containing hexagonal boron nitride in poly(vinyl alcohol) through room-temperature atmospheric pressure direct-current microplasma processing. Results show that the microplasma treatment leads to exfoliation of the hexagonal boron nitride in isopropyl alcohol, reducing the number of stacks from >30 to a few or single layers. The thermal diffusivity of the resulting nanocomposites reaches 8.5 mm(2) s(-1), 50 times greater than blank poly(vinyl alcohol) and twice that of nanocomposites containing nonplasma treated boron nitride nanosheets. From TEM analysis, we observe much less aggregation of the nanosheets after plasma processing along with indications of an amorphous carbon interfacial layer, which may contribute to stable dispersion of boron nitride nanosheets in the resulting plasma treated colloids.

  5. Status and applications of diamond and diamond-like materials: An emerging technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Recent discoveries that make possible the growth of crystalline diamond by chemical vapor deposition offer the potential for a wide variety of new applications. This report takes a broad look at the state of the technology following from these discoveries in relation to other allied materials, such as high-pressure diamond and cubic boron nitride. Most of the potential defense, space, and commercial applications are related to diamond's hardness, but some utilize other aspects such as optical or electronic properties. The growth processes are reviewed, and techniques for characterizing the resulting materials' properties are discussed. Crystalline diamond is emphasized, but other diamond-like materials (silicon carbide, amorphous carbon containing hydrogen) are also examined. Scientific, technical, and economic problem areas that could impede the rapid exploitation of these materials are identified. Recommendations are presented covering broad areas of research and development.

  6. Decomposition of silane on tungsten or other materials

    DOEpatents

    Wiesmann, H.J.

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, from a W or foil heated to a temperature of about 1400 to 1600/sup 0/C, in a vacuum of about 10-/sup 6/ to 10-/sup 4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate independent of and outside the source of thermal decomposition. Hydrogenated amorphous silicon is formed. The presence of an ammonia atmosphere in the vacuum chamber enhances the photoconductivity of the hydrogenated amorphous silicon film.

  7. Catalyzed Preparation of Amorphous Chalcogenides

    DTIC Science & Technology

    1998-01-30

    hydrogen sulfide through lanthanum isopropoxide in dry benzene, as the solvent. The powder obtained was heat-treated in hydrogen sulfide finally 15...producing single-phase crystalline lanthanum sulfide (La2S3) . Amorphous particles were also prepared by reacting titanium tetrapropoxide [Ti...OC3H7)4] and hydrogen sulfide. Resulting powder was heat-treated in flowing hydrogen sulfide to produce crystalline titanium sulfide (TiS2) . 20

  8. Super-hard cubic BN layer formation by nitrogen ion implantation

    NASA Astrophysics Data System (ADS)

    Komarov, F. F.; Pilko, V. V.; Yakushev, V. A.; Tishkov, V. S.

    1994-11-01

    Microcrystalline and amorphous boron thin films were implanted with nitrogen ions at energies from 25 to 125 keV and with doses from 2 × 10 17 to 1 × 10 18 at.cm 2 at temperatures below 200°C. The structure of boron nitride phases after ion implantation, formation of phases and phase transformations were investigated by TEM and TED methods. The cubic boron nitride phase is revealed. The microhardness of the formed films was satisfactorily explained in terms of chemical compound formation by polyenergetic ion implantation. The influence of the copper impurity on the formation of the cubic boron nitride phase is demonstrated. It has also been shown that low concentrations of copper promote cubic BN boundary formation.

  9. Mechanism for amorphization of boron carbide under complex stress conditions

    NASA Astrophysics Data System (ADS)

    Li, Jun; Xu, Shuang; Liu, Lisheng; Wang, Zhen; Zhang, Jinyong; Liu, Qiwen

    2018-05-01

    As an excellent material, the application of boron carbide (B4C) is limited by pressure-induced amorphization. To understand the mechanism for amorphization in B4C, first-principles methods based on density functional theory were employed to investigate the mechanical behaviors and the deformation process in B4C under complex stress conditions with six different biaxial perpendicular compression directions. The angle (θ) between one of the loading directions and the [0 0 0 1] c-axis ranged from 0° to 75° with every 15° interval. We found that the maximum stress at θ = 30° is 124.5 GPa, which is the lowest among six biaxial compressions. Simulation results show that the mechanism for amorphization in B4C under complex stress conditions is complicated. We take the θ = 30° biaxial compression as an example to explain the complicated deformation process. In the elastic deformation region, sudden bending of three-atom chains occurs and results in a stress fluctuation. Then the formation of new B–B bonds between the three-atom chains and the icosahedra leads to the first stress drop. After that, the B–C bonds in the chains are broken, resulting in the second stress drop. In this process, the icosahedra are partially destroyed. The stress increases continuously and then drops at the critical failure strain. Finally, the fully destruction of icosahedra leads to amorphization in B4C. However, under other five biaxial compressions, the B–C bonds in three-atom chains are not fractured before structural failure. Understanding the deformation mechanism for amorphization of B4C in real applications is prime important for proposing how to resist amorphization and enhance the toughness of B4C.

  10. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    PubMed

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  11. Method for improving the stability of amorphous silicon

    DOEpatents

    Branz, Howard M.

    2004-03-30

    A method of producing a metastable degradation resistant amorphous hydrogenated silicon film is provided, which comprises the steps of growing a hydrogenated amorphous silicon film, the film having an exposed surface, illuminating the surface using an essentially blue or ultraviolet light to form high densities of a light induced defect near the surface, and etching the surface to remove the defect.

  12. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  13. On the amorphization behavior and hydrogenation performance of high-energy ball-milled Mg{sub 2}Ni alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kou, Hongchao; Hou, Xiaojiang; Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn

    2013-06-15

    Amorphous Mg{sub 2}Ni alloy was prepared by high energy ball-milling starting with polycrystalline Mg{sub 2}Ni which was prepared with the help of a metallurgy method by using a SPEX 8000D mill. The microstructural and phase structure characterization of the prepared materials was performed via scanning electron microscopy, transition electron microscope and X-ray diffraction. The thermal stabilities were investigated by differential scanning calorimetry. The apparent activation energies were determined by means of the Kissinger method. The first and second crystallization reactions take place at ∼ 255 °C and ∼ 410 °C, and the corresponding activation energy of crystallization is E{sub a1}more » = 276.9 and E{sub a2} = 382.4 kJ/mol, respectively. At 3 MPa hydrogen pressure and 250 °C, the hydrogen absorption capacities of crystalline, partially and fully amorphous Mg{sub 2}Ni alloy are 2.0 wt.%, 3.2 wt.% and 3.5 wt.% within 30 min, respectively. - Graphical Abstract: We mainly focus on the amorphization behavior of crystalline Mg{sub 2}Ni alloy in the high energy ball-milling process and the crystallization behavior of the amorphous Mg{sub 2}Ni alloy in a follow-up heating process. The relationship of milling, microstructure and hydrogenation properties is established and explained by models. - Highlights: • Amorphous Mg{sub 2}Ni has been obtained by high energy ball milling the as-cast alloy. • The amorphization behavior of polycrystalline Mg{sub 2}Ni is presented. • The crystallization behavior of the amorphous Mg{sub 2}Ni alloy is illustrated. • Establish the relationship of milling, microstructure and hydrogenation properties.« less

  14. Launch Vehicle Performance for Bipropellant Propulsion Using Atomic Propellants With Oxygen

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2000-01-01

    Atomic propellants for bipropellant launch vehicles using atomic boron, carbon, and hydrogen were analyzed. The gross liftoff weights (GLOW) and dry masses of the vehicles were estimated, and the 'best' design points for atomic propellants were identified. Engine performance was estimated for a wide range of oxidizer to fuel (O/F) ratios, atom loadings in the solid hydrogen particles, and amounts of helium carrier fluid. Rocket vehicle GLOW was minimized by operating at an O/F ratio of 1.0 to 3.0 for the atomic boron and carbon cases. For the atomic hydrogen cases, a minimum GLOW occurred when using the fuel as a monopropellant (O/F = 0.0). The atomic vehicle dry masses are also presented, and these data exhibit minimum values at the same or similar O/F ratios as those for the vehicle GLOW. A technology assessment of atomic propellants has shown that atomic boron and carbon rocket analyses are considered to be much more near term options than the atomic hydrogen rockets. The technology for storing atomic boron and carbon has shown significant progress, while atomic hydrogen is not able to be stored at the high densities needed for effective propulsion. The GLOW and dry mass data can be used to estimate the cost of future vehicles and their atomic propellant production facilities. The lower the propellant's mass, the lower the overall investment for the specially manufactured atomic propellants.

  15. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    DOEpatents

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  16. Integration of Detectors with Optical Waveguide Structures.

    DTIC Science & Technology

    1983-05-15

    OECLASSIFICATION/DOWNGRADING SCHEDULE ____ ___ ___ ___ __ ___ ____ ___ ___ ___ ___ ___ ___ None If. DISTRIBUTION STATEMNT (of Ole RepOr) Approved for public...The polysilicon gate of the depletion mode MOSFET is boron doped and it is covered by a thermally grown silicon dioxide layer on the top. of the... polysilicon electrode. The wafer then undergoes hydrogen annealing with 24 1/min. hydrogen at 10000C for 30 minutes. The boron impurities which are already

  17. Electrochemical hydrogen Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy.more » A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to their hydride form. In addition to this experimental work, a parallel project was carried out to develop a new model of electrochemical impedance spectroscopy (EIS) that could be used to define the mechanisms of the electrochemical hydrogenation reactions. The EIS technique is capable of probing complex chemical and electrochemical reactions, and our model was written into a computer code that allowed the input of experimental EIS data and the extraction of kinetic parameters based on a best-fit analysis of theoretical reaction schemes. Finally, electrochemical methods for hydrogenating organic and metallo-organic materials have been explored.« less

  18. Hydrogenated amorphous silicon formation by flux control and hydrogen effects on the growth mechanism

    NASA Astrophysics Data System (ADS)

    Toyoda, H.; Sugai, H.; Kato, K.; Yoshida, A.; Okuda, T.

    1986-06-01

    The composition of particle flux to deposit hydrogenated amorphous silicon films in a glow discharge is controlled by a combined electrostatic-magnetic deflection technique. As a result, the films are formed firstly without hydrogen ion flux, secondly by neutral flux only, and thirdly by all species fluxes. Comparison of these films reveals the significant role of hydrogen in the surface reactions. Hydrogen breaks the Si-Si bond, decreases the sticking probability of the Si atom, and replaces the SiH bond by a SiH2 bond to increase the hydrogen content of the films.

  19. A study on the formation of solid state nanoscale materials using polyhedral borane compounds

    NASA Astrophysics Data System (ADS)

    Romero, Jennifer V.

    The formation of boron containing materials using a variety of methods was explored. The pyrolysis of a metal boride precursor solution can be accomplished using a one-source method by combining TiCl4, B10H 14 and CH3CN in one reaction vessel and pyrolyzing it at temperatures above 900 °C. Amorphous dark blue colored films were obtained after the pyrolysis reactions. Well-defined spherical shaped grains or particles were observed by SEM. The amorphous films generated contained titanium, however, the determination of the boron content of the films was inconclusive. This one pot method making metal boride thin films has the advantage of being able to dictate the stoichiometry of the reactants. Another part of this work represents the first report of both the use of metal boride materials and the use of a titanium-based compound for the formation of nanotubes. This method provides a facile method for generating well-formed boron-containing carbon nanotubes in a "one-pot" process through an efficient aerosol process. The formation of metal boride corrosion resistant layers was also explored. It was shown that metallic substrates can be effectively boronized using paste mixtures containing boron carbide and borax. The formation of a Fe4B 2 iron boride phase was achieved, however, this iron boride phase does not give enough corrosion protection. The formation of a corrosion resistant metal boride coating with strong adhesion was accomplished by boronization of a thermal sprayed nickel layer on the surface of steel. Surfactants were explored as possible nanoreactors in which metal boride nanoparticles could be formed to use as nanotube growth catalyst via room temperature reaction. Different surfactants were used, but none of them successfully generated very well dispersed metal boride nanoparticles. Nanoparticles with varying shapes and sizes were generated which were highly amorphous. The carboxylic acid derivative of closo-C2B 10 cages was explored as a ligand in the hydrothermal preparation of coordination polymers with zinc salts. It was found that the stability of the cage is apparently insufficient under these conditions and cage degradation was observed. Consequently, a preliminary investigation of the preparation of dipyridyl derivatives of both the closo-C2B 10 and the closo-B12 cages was performed.

  20. Breaking the icosahedra in boron carbide

    PubMed Central

    Xie, Kelvin Y.; An, Qi; Sato, Takanori; Breen, Andrew J.; Ringer, Simon P.; Goddard, William A.; Cairney, Julie M.; Hemker, Kevin J.

    2016-01-01

    Findings of laser-assisted atom probe tomography experiments on boron carbide elucidate an approach for characterizing the atomic structure and interatomic bonding of molecules associated with extraordinary structural stability. The discovery of crystallographic planes in these boron carbide datasets substantiates that crystallinity is maintained to the point of field evaporation, and characterization of individual ionization events gives unexpected evidence of the destruction of individual icosahedra. Statistical analyses of the ions created during the field evaporation process have been used to deduce relative atomic bond strengths and show that the icosahedra in boron carbide are not as stable as anticipated. Combined with quantum mechanics simulations, this result provides insight into the structural instability and amorphization of boron carbide. The temporal, spatial, and compositional information provided by atom probe tomography makes it a unique platform for elucidating the relative stability and interactions of primary building blocks in hierarchically crystalline materials. PMID:27790982

  1. Influence of point defects on the near edge structure of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.

    2017-10-01

    Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.

  2. High quality boron carbon nitride/ZnO-nanorods p-n heterojunctions based on magnetron sputtered boron carbon nitride films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, J. C.; Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec H3A 3A7; Jha, S. K., E-mail: skylec@gmail.com, E-mail: apwjzh@cityu.edu.hk

    2014-11-10

    Boron carbon nitride (BCN) films were synthesized on Si (100) and fused silica substrates by radio-frequency magnetron sputtering from a B{sub 4}C target in an Ar/N{sub 2} gas mixture. The BCN films were amorphous, and they exhibited an optical band gap of ∼1.0 eV and p-type conductivity. The BCN films were over-coated with ZnO nanorod arrays using hydrothermal synthesis to form BCN/ZnO-nanorods p-n heterojunctions, exhibiting a rectification ratio of 1500 at bias voltages of ±5 V.

  3. Raman effect in icosahedral boron-rich solids

    PubMed Central

    Werheit, Helmut; Filipov, Volodymyr; Kuhlmann, Udo; Schwarz, Ulrich; Armbrüster, Marc; Leithe-Jasper, Andreas; Tanaka, Takaho; Higashi, Iwami; Lundström, Torsten; Gurin, Vladimir N; Korsukova, Maria M

    2010-01-01

    We present Raman spectra of numerous icosahedral boron-rich solids having the structure of α-rhombohedral, β-rhombohedral, α-tetragonal, β-tetragonal, YB66, orthorhombic or amorphous boron. The spectra were newly measured and, in some cases, compared with reported data and discussed. We emphasize the importance of a high signal-to-noise ratio in the Raman spectra for detecting weak effects evoked by the modification of compounds, accommodation of interstitial atoms and other structural defects. Vibrations of the icosahedra, occurring in all the spectra, are interpreted using the description of modes in α-rhombohedral boron by Beckel et al. The Raman spectrum of boron carbide is largely clarified. Relative intra- and inter-icosahedral bonding forces are estimated for the different structural groups and for vanadium-doped β-rhombohedral boron. The validity of Badger's rule is demonstrated for the force constants of inter-icosahedral B–B bonds, whereas the agreement is less satisfactory for the intra-icosahedral B–B bonds. PMID:27877328

  4. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOEpatents

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  5. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan; Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.

    2013-07-09

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  6. Infrared emission from hydrogenated amorphous carbon and amorphous carbon grains in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Duley, W. W.; Jones, A. P.; Taylor, S. D.; Williams, D. A.

    1993-01-01

    The correlations deduced by Boulanger et al. (1990) from IRAS maps of the Chamaeleon, Taurus and Ursa Major molecular cloud complexes are interpreted in terms of the evolutionary hydrogenated amorphous carbon model of interstellar dust. In particular, regions of relatively strong 12-micron emission may be regions where recently accreted carbon is being converted by ambient UV to small PAHs in situ. Regions of weak 12-micron emission are probably quiescent regions where carbon has been annealed to amorphous carbon. Observational consequences of these inferences are briefly described.

  7. Defects in Amorphous Semiconductors: The Case of Amorphous Indium Gallium Zinc Oxide

    NASA Astrophysics Data System (ADS)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-05-01

    Based on a rational classification of defects in amorphous materials, we propose a simplified model to describe intrinsic defects and hydrogen impurities in amorphous indium gallium zinc oxide (a -IGZO). The proposed approach consists of organizing defects into two categories: point defects, generating structural anomalies such as metal—metal or oxygen—oxygen bonds, and defects emerging from changes in the material stoichiometry, such as vacancies and interstitial atoms. Based on first-principles simulations, it is argued that the defects originating from the second group always act as perfect donors or perfect acceptors. This classification simplifies and rationalizes the nature of defects in amorphous phases. In a -IGZO, the most important point defects are metal—metal bonds (or small metal clusters) and peroxides (O - O single bonds). Electrons are captured by metal—metal bonds and released by the formation of peroxides. The presence of hydrogen can lead to two additional types of defects: metal-hydrogen defects, acting as acceptors, and oxygen-hydrogen defects, acting as donors. The impact of these defects is linked to different instabilities observed in a -IGZO. Specifically, the diffusion of hydrogen and oxygen is connected to positive- and negative-bias stresses, while negative-bias illumination stress originates from the formation of peroxides.

  8. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  9. Measurements of the electrical resistance and the hydrogen depth distribution for Ni 60Nb 20Zr 20 amorphous alloy before and after hydrogen charging

    NASA Astrophysics Data System (ADS)

    Nakano, Sumiaki; Ohtsu, Naofumi; Nagata, Shinji; Yamaura, Shin-ichi; Uchinashi, Sakae; Kimura, Hisamichi; Shikama, Tatsuo; Inoue, Akihisa

    2005-02-01

    A Ni 60Nb 20Zr 20 amorphous alloy was prepared by the single-roller melt-spinning technique. The change in the electrical resistance of the alloy after electrochemical hydrogen charging in 6 N KOH solution was investigated. The change in the hydrogen depth distribution in the alloy was also investigated by elastic recoil detection. As a result, we found that the electrical resistance of the alloy increases with increasing the hydrogen content in the alloy and that a large number of hydrogen atoms are remained in the surface area of the hydrogen-charged alloy.

  10. Investigation for the amorphous state of ER-34122, a dual 5-lipoxygenase/cyclooxygenase inhibitor with poor aqueous solubility, in HPMC solid dispersion prepared by the solvent evaporation method.

    PubMed

    Kushida, Ikuo; Gotoda, Masaharu

    2013-10-01

    ER-34122, a poorly water-soluble dual 5-lipoxygenase/cyclooxygenase inhibitor, exists as a crystalline form. According to an Oak Ridge thermal ellipsoid plot drawing, carbonyl oxygen O (5) makes an intermolecular hydrogen bond with the hydrogen bonded to N (3) in the crystal structure. The FTIR and the solid-state ¹³C NMR spectra suggest that the network is spread out in the amorphous state and the hydrogen bonding gets weaker than that in the crystalline phase, because the carbonyl signals significantly shift in both spectra. When amorphous ER-34122 was heated, crystallization occurred at around 140°C. Similar crystallization happened in the solid dispersion; however, the degree of crystallization was much lower than that observed in the pure amorphous material. Also, the DSC thermogram of the solid dispersion did not show any exothermic peaks implying crystallization. The heat of fusion (ΔHf) determined in the pure amorphous material was nearly equal to that for the crystalline form, whereas the ΔHf value obtained in the solid dispersion was less than a third of them. These data prove that crystallization of the amorphous form is dramatically restrained in the solid dispersion system. The carbonyl wavenumber shifts in the FTIR spectra indicate that the average hydrogen bond in the solid dispersion is lower than that in the pure amorphous material. Therefore, HPMC will suppress formation of the intermolecular network observed in ER-34122 crystal and preserve the amorphous state, which is thermodynamically less stable, in the solid dispersed system.

  11. High Energy Advanced Thermal Storage for Spacecraft Solar Thermal Power and Propulsion Systems

    DTIC Science & Technology

    2011-10-12

    Vol. 108, No. 6, June 1961, pp. 568-572. 38. Storms, E. and Mueller, B., "Phase Relations and Thermodynamic Properties of Transition Metal Borides ...T., and Naka, S., "Formation Process of Tungsten Borides by Solid State Reaction Between Tungsten and Amorphous Boron," Journal of Materials...Molybdenum- Borides ," Journal of Metals, September 1952, pp. 983-988. 41. Ellis, R.C., “Various Preparations of Elemental Boron,” Proceedings of the 1st

  12. Photovoltaic Device Including A Boron Doping Profile In An I-Type Layer

    DOEpatents

    Yang, Liyou

    1993-10-26

    A photovoltaic cell for use in a single junction or multijunction photovoltaic device, which includes a p-type layer of a semiconductor compound including silicon, an i-type layer of an amorphous semiconductor compound including silicon, and an n-type layer of a semiconductor compound including silicon formed on the i-type layer. The i-type layer including an undoped first sublayer formed on the p-type layer, and a boron-doped second sublayer formed on the first sublayer.

  13. Density functional theory (DFT) studies of hydrogen rich solids and boron carbide under extreme conditions

    NASA Astrophysics Data System (ADS)

    Shamp, Andrew James

    Since the first prediction that compressed hydrogen would metallize in 1935 and the further prediction that the metallic allotrope would be a superconductor at high temperatures, metallic hydrogen has been termed the "holy grail" of high-pressure science. A tremendous amount of theoretical and experimental research has been carried out, with the ultimate goal of metallizing hydrogen via the application of external pressure. It has been previously proposed that doping hydrogen with another element can lower the pressure at which metallization occurs. A number of experimental and theoretical studies have investigated doping hydrogen by either a group XIII or XIV element. Experiments in diamond anvil cells have illustrated that it is indeed possible to synthesize hydrogen-rich phases under conditions of extreme pressures, and SiH4 (H2)2, GeH4(H2) n, and Xe(H2)n have been shown to behave as true compounds. The focus herein is on the theoretical exploration of hydrogen-rich phases with novel stoichiometries, which contain a dopant element up to pressures of 350 GPa. In particular, the alkali-metal and alkaline Earth metal polyhydrides (MHn where n > 1) have been considered. Within this thesis the XtalOpt evolutionary algorithm was employed in order to complete this work, and predict the most stable structures of cesium and beryllium polyhydrides under pressure. In addition, we explore the possibility of mixing excess hydrogen with an electronegative element, iodine and phosphorus. The phases found are examined via detailed first principles calculations. In addition, because of its outstanding hardness, thermodynamic stability, low density, electronic properties, thermal stability, and high melting point boron carbide has many uses: i.e. as a refractory material, in abrasive powders and ballistics, as a neutron radiation absorbent, and in electronic applications. However, little is known about the behavior of boron carbide when under the external stress of pressure. The shock compression of boron carbide has been widely studied for decades both experimentally and theoretically. Due to its low density and high shock strength boron carbide is a candidate for use in ballistic applications, such as armor. However, even with the 40 years of boron carbide shocks, its properties and response while in a shocked state have remained difficult to ascertain. A series of first-principles equation of state (EOS) calculations of B4 C that are in excellent agreement with existing Omega laser measurements have been conducted. Furthermore, in the P-T range to 1.5 TPa and 60,000 K the EOS has been extended. These results are relevant for ongoing and future experimental efforts at high-energy laser facilities such as the National Ignition Facility at Lawrence Livermore National Laboratory.

  14. Effect of characteristics of compounds on maintenance of an amorphous state in solid dispersion with crospovidone.

    PubMed

    Shibata, Yusuke; Fujii, Makiko; Kokudai, Makiko; Noda, Shinobu; Okada, Hideko; Kondoh, Masuo; Watanabe, Yoshiteru

    2007-06-01

    Solid dispersion (SD) of indomethacin with crospovidone (CrosPVP) shows useful characteristics for preparation of dosage forms. This study aimed to determine the types of drugs that could adopt a stable amorphous form in SD. Twenty compounds with various melting points (70-218 degrees C), molecular weights (135-504) and functional groups (amide, amino, carbonyl, hydroxyl, ketone etc.) were prepared in SD with CrosPVP. The CrosPVP SDs were prepared using a mechanical mixing and heating method. Melting point and molecular weight were found to have no influence on the ability of a compound to maintain an amorphous state in SD. All compounds containing hydrogen-bond-donor functional groups existed in an amorphous state in SD for at least 6 months. Infrared spectra suggested an interaction between the functional groups of these compounds and amide carbonyl group of CrosPVP. Compounds without hydrogen-bond-donor groups could not maintain an amorphous state and underwent recrystallization within 1 month. It was suggested that the presence of a hydrogen-bond-donor functional group in a compound is an important factor affecting the stable formation of SD with CrosPVP, which contains a hydrogen-bond acceptor.

  15. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminum oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  16. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  17. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.

    2015-01-15

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework withmore » an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup −1} at 100 mA g{sup −1} after 30th cycles. At high current density value of 1 A g{sup −1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.« less

  18. Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production [Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production directly observed using environmental transmission electron microscopy

    DOE PAGES

    Lee, Sang Chul; Benck, Jesse D.; Tsai, Charlie; ...

    2015-12-01

    Amorphous MoS x is a highly active, earth-abundant catalyst for the electrochemical hydrogen evolution reaction. Previous studies have revealed that this material initially has a composition of MoS 3, but after electrochemical activation, the surface is reduced to form an active phase resembling MoS 2 in composition and chemical state. However, structural changes in the Mo Sx catalyst and the mechanism of the activation process remain poorly understood. In this study, we employ transmission electron microscopy (TEM) to image amorphous MoS x catalysts activated under two hydrogen-rich conditions: ex situ in an electrochemical cell and in situ in an environmentalmore » TEM. For the first time, we directly observe the formation of crystalline domains in the MoS x catalyst after both activation procedures as well as spatially localized changes in the chemical state detected via electron energy loss spectroscopy. Using density functional theory calculations, we investigate the mechanisms for this phase transformation and find that the presence of hydrogen is critical for enabling the restructuring process. Our results suggest that the surface of the amorphous MoS x catalyst is dynamic: while the initial catalyst activation forms the primary active surface of amorphous MoS 2, continued transformation to the crystalline phase during electrochemical operation could contribute to catalyst deactivation. Finally, these results have important implications for the application of this highly active electrocatalyst for sustainable H 2 generation.« less

  19. Borazine-boron nitride hybrid hydrogen storage system

    DOEpatents

    Narula, Chaitanya K [Knoxville, TN; Simonson, J Michael [Knoxville, TN; Maya, Leon [Knoxville, TN; Paine, Robert T [Albuquerque, NM

    2008-04-22

    A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

  20. Structural stability and electronic properties of an octagonal allotrope of two dimensional boron nitride.

    PubMed

    Takahashi, Lauren; Takahashi, Keisuke

    2017-03-27

    An octagonal allotrope of two dimensional boron nitride is explored through first principles calculations. Calculations show that two dimensional octagonal boron nitride can be formed with a binding energy comparable to two dimensional hexagonal boron nitride. In addition, two dimensional octagonal boron nitride is found to have a band gap smaller than two dimensional hexagonal boron nitride, suggesting the possibility of semiconductive attributes. Two dimensional octagonal boron nitride also has the ability to layer through physisorption. Defects present within two dimensional octagonal boron nitride also lead toward the introduction of a magnetic moment through the absence of boron atoms. The presence of defects is also found to render both hexagonal and octagonal boron nitrides reactive against hydrogen, where greater reactivity is seen in the presence of nitrogen. Thus, two dimensional octagonal boron nitride is confirmed with potential to tailor properties and reactivity through lattice shape and purposeful introduction of defects.

  1. Preparation of TiO2-Decorated Boron Particles by Wet Ball Milling and their Photoelectrochemical Hydrogen and Oxygen Evolution Reactions

    PubMed Central

    Jung, Hye Jin; Nam, Kyusuk; Sung, Hong-Gye; Hyun, Hyung Soo; Sohn, Youngku; Shin, Weon Gyu

    2016-01-01

    TiO2-coated boron particles were prepared by a wet ball milling method, with the particle size distribution and average particle size being easily controlled by varying the milling operation time. Based on the results from X-ray photoelectron spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis, and Fourier transform infrared spectroscopy, it was confirmed that the initial oxide layer on the boron particles surface was removed by the wet milling process, and that a new B–O–Ti bond was formed on the boron surface. The uniform TiO2 layer on the 150 nm boron particles was estimated to be 10 nm thick. Based on linear sweep voltammetry, cyclic voltammetry, current-time amperometry, and electrochemical impedance analyses, the potential for the application of TiO2-coated boron particles as a photoelectrochemical catalyst was demonstrated. A current of 250 μA was obtained at a potential of 0.5 V for hydrogen evolution, with an onset potential near to 0.0 V. Finally, a current of 220 μA was obtained at a potential of 1.0 V for oxygen evolution. PMID:28774132

  2. Studies of lithiumization and boronization of ATJ graphite PFCs for NSTX-U

    NASA Astrophysics Data System (ADS)

    Dominguez, Javier; Bedoya, Felipe; Krstic, Predrag; Allain, Jean Paul; Neff, Anton; Luitjohan, Kara

    2016-10-01

    We examine and compare the effects of boron and lithium conditioning on ATJ graphite surfaces bombarded by low-energy deuterium atoms on deuterium retention and chemical sputtering. We use atomistic simulations and compare them with experimental in-situ ex-tempore studies with X-ray photoelectron spectroscopy (XPS), to understand the effects of deuterium exposure on the chemistry in lithiated, boronized and oxidized amorphous carbon surfaces. Our results are validated qualitatively by comparison with experiments and with classical-quantum molecular dynamic simulations. We explain the important role of oxygen in D retention for lithiated surfaces and the suppression of the oxygen role by boron in boronized surfaces. The calculated increase of the oxygen role in deuterium uptake after D accumulation in a B-C-O surface configuration is discussed. The sputtering yield per low-energy D impact is significantly smaller in boronized surfaces than in lithiated surfaces. This work was supported by the USDOE Grants DE-SC0013752 (PSK), DE-SC0010717 (JPA and FB) and DE-SC0010719 (AN) and by National council for Science and Technology of Mexico (CONACyT) through postdoctoral fellowship # 267898 (JD).

  3. Al2O3/SiON stack layers for effective surface passivation and anti-reflection of high efficiency n-type c-Si solar cells

    NASA Astrophysics Data System (ADS)

    Thi Thanh Nguyen, Huong; Balaji, Nagarajan; Park, Cheolmin; Triet, Nguyen Minh; Le, Anh Huy Tuan; Lee, Seunghwan; Jeon, Minhan; Oh, Donhyun; Dao, Vinh Ai; Yi, Junsin

    2017-02-01

    Excellent surface passivation and anti-reflection properties of double-stack layers is a prerequisite for high efficiency of n-type c-Si solar cells. The high positive fixed charge (Q f) density of N-rich hydrogenated amorphous silicon nitride (a-SiNx:H) films plays a poor role in boron emitter passivation. The more the refractive index ( n ) of a-SiNx:H is decreased, the more the positive Q f of a-SiNx:H is increased. Hydrogenated amorphous silicon oxynitride (SiON) films possess the properties of amorphous silicon oxide (a-SiOx) and a-SiNx:H with variable n and less positive Q f compared with a-SiNx:H. In this study, we investigated the passivation and anti-reflection properties of Al2O3/SiON stacks. Initially, a SiON layer was deposited by plasma enhanced chemical vapor deposition with variable n and its chemical composition was analyzed by Fourier transform infrared spectroscopy. Then, the SiON layer was deposited as a capping layer on a 10 nm thick Al2O3 layer, and the electrical and optical properties were analyzed. The SiON capping layer with n = 1.47 and a thickness of 70 nm resulted in an interface trap density of 4.74 = 1010 cm-2 eV-1 and Q f of -2.59 = 1012 cm-2 with a substantial improvement in lifetime of 1.52 ms after industrial firing. The incorporation of an Al2O3/SiON stack on the front side of the n-type solar cells results in an energy conversion efficiency of 18.34% compared to the one with Al2O3/a-SiNx:H showing 17.55% efficiency. The short circuit current density and open circuit voltage increase by up to 0.83 mA cm-2 and 12 mV, respectively, compared to the Al2O3/a-SiNx:H stack on the front side of the n-type solar cells due to the good anti-reflection and front side surface passivation.

  4. Fine Structure Study of the Plasma Coatings B4C-Ni-P

    NASA Astrophysics Data System (ADS)

    Kornienko, E. E.; Bezrukova, V. A.; Kuz'min, V. I.; Lozhkin, V. S.; Tutunkova, M. K.

    2017-12-01

    The article considers structure of coatings formed of the B4C-Ni-P powder. The coatings were deposited using air-plasma spraying with the unit for annular injection of powder. The pipes from steel 20 (0.2 % C) were used as a substrate. The structure and phase composition of the coatings were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. It is shown that high-density composite coatings consisting of boron carbide particles distributed in the nickel boride metal matrix are formed using air-plasma spraying. The areas with round inclusions characterized by the increased amount of nickel, phosphorus and boron are located around the boron carbide particles. Boron oxides and nickel oxides are also present in the coatings. Thin interlayers with amorphous-crystalline structure are formed around the boron carbide particles. The thickness of these interlayers does not exceed 1 μm. The metal matrix material represents areas with nanocrystalline structure and columnar crystals.

  5. Synthesis of boron nitride nanostructures from catalyst of iron compounds via thermal chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    da Silva, Wellington M.; Ribeiro, Hélio; Ferreira, Tiago H.; Ladeira, Luiz O.; Sousa, Edésia M. B.

    2017-05-01

    For the first time, patterned growth of boron nitride nanostructures (BNNs) is achieved by thermal chemical vapor deposition (TCVD) technique at 1150 °C using a mixture of FeS/Fe2O3 catalyst supported in alumina nanostructured, boron amorphous and ammonia (NH3) as reagent gas. This innovative catalyst was synthesized in our laboratory and systematically characterized. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The X-ray diffraction profile of the synthesized catalyst indicates the coexistence of three different crystal structures showing the presence of a cubic structure of iron oxide and iron sulfide besides the gamma alumina (γ) phase. The results show that boron nitride bamboo-like nanotubes (BNNTs) and hexagonal boron nitride (h-BN) nanosheets were successfully synthesized. Furthermore, the important contribution of this work is the manufacture of BNNs from FeS/Fe2O3 mixture.

  6. Hydrogenation and hydrogen intercalation of hexagonal boron nitride on Ni(1 1 1): reactivity and electronic structure

    NASA Astrophysics Data System (ADS)

    Späth, F.; Gebhardt, J.; Düll, F.; Bauer, U.; Bachmann, P.; Gleichweit, C.; Görling, A.; Steinrück, H.-P.; Papp, C.

    2017-09-01

    We investigate the reactivity of hexagonal boron nitride (h-BN) on a Ni(1 1 1) single crystal towards atomic hydrogen over a wide exposure range. Near edge x-ray absorption fine structure and x-ray photoelectron spectroscopy (XPS) show that for low hydrogen exposures hydrogenation of the h-BN sheet is found. In contrast, intercalation of hydrogen between h-BN and the Ni(1 1 1) substrate occurs for high exposures. For intermediate regimes, a mixture of intercalation and hydrogenation is observed. From temperature-programmed desorption and temperature-programmed XPS experiments, we conclude that the hydrogen covalently bound to h-BN is rather stable with a desorption temperature of 600 K, while intercalated hydrogen is desorbing already at 390 K. Further insight into the structural arrangements and the thermodynamics of the system is obtained by comparing our experimental results with extensive density-functional theory calculations. Together with ultraviolet photoelectron spectroscopy measurements, the calculations provide detailed insight into the influence of hydrogenation on the electronic structure of h-BN.

  7. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  8. Continuous method of producing silicon carbide fibers

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Nguyen, Kimmai Thi (Inventor); Rabe, James Alan (Inventor)

    1999-01-01

    This invention pertains to a method for production of polycrystalline ceramic fibers from silicon oxycarbide (SiCO) ceramic fibers wherein the method comprises heating an amorphous ceramic fiber containing silicon and carbon in an inert environment comprising a boron oxide and carbon monoxide at a temperature sufficient to convert the amorphous ceramic fiber to a polycrystalline ceramic fiber. By having carbon monoxide present during the heating of the ceramic fiber, it is possible to achieve higher production rates on a continuous process.

  9. Synthesis and properties of nickel cobalt boron nanoparticles

    NASA Astrophysics Data System (ADS)

    Patel, J.; Pankhurst, Q. A.; Parkin, I. P.

    2005-01-01

    Amorphous cobalt nickel boride nanoparticles were synthesised by chemical reduction synthesis in aqueous solution. Careful control of synthesis conditions and post reaction oxidation enabled the nanoparticles to be converted into a core-shell structure comprising of an amorphous Co-Ni-B core and an outer metal oxide sheet. These particles had interesting magnetic properties including saturation magnetisations and coercivities of the order of 80 emu/g and 170 Oe respectively, making them suitable for a potential use as an exchange-pinned magnetic material.

  10. Tritiated amorphous silicon for micropower applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kherani, N.P.; Kosteski, T.; Zukotynski, S.

    1995-10-01

    The application of tritiated amorphous silicon as an intrinsic energy conversion semiconductor for radioluminescent structures and betavoltaic devices is presented. Theoretical analysis of the betavoltaic application shows an overall efficiency of 18% for tritiated amorphous silicon. This is equivalent to a 330 Ci intrinsic betavoltaic device producing 1 mW of power for 12 years. Photoluminescence studies of hydrogenated amorphous silicon, a-Si:H, show emission in the infra-red with a maximum quantum efficiency of 7.2% at 50 K; this value drops by 3 orders of magnitude at a temperature of 300 K. Similar studies of hydrogenated amorphous carbon show emission in themore » visible with an estimated quantum efficiency of 1% at 300 K. These results suggest that tritiated amorphous carbon may be the more promising candidate for room temperature radioluminescence in the visible. 18 refs., 5 figs.« less

  11. Ion beam deposition of amorphous carbon films with diamond like properties

    NASA Technical Reports Server (NTRS)

    Angus, John C.; Mirtich, Michael J.; Wintucky, Edwin G.

    1982-01-01

    Carbon films were deposited on silicon, quartz, and potassium bromide substrates from an ion beam. Growth rates were approximately 0.3 micron/hour. The films were featureless and amorphous and contained only carbon and hydrogen in significant amounts. The density and carbon/hydrogen ratio indicate the film is a hydrogen deficient polymer. One possible structure, consistent with the data, is a random network of methylene linkages and tetrahedrally coordinated carbon atoms.

  12. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  13. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  14. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study. Phase I

    NASA Technical Reports Server (NTRS)

    Thibeault, Sheila A.; Fay, Catharine C.; Lowther, Sharon E.; Earle, Kevin D.; Sauti, Godfrey; Kang, Jin Ho; Park, Cheol; McMullen, Amelia M.

    2012-01-01

    The key objectives of this study are to investigate, both computationally and experimentally, which forms, compositions, and layerings of hydrogen, boron, and nitrogen containing materials will offer the greatest shielding in the most structurally robust combination against galactic cosmic radiation (GCR), secondary neutrons, and solar energetic particles (SEP). The objectives and expected significance of this research are to develop a space radiation shielding materials system that has high efficacy for shielding radiation and that also has high strength for load bearing primary structures. Such a materials system does not yet exist. The boron nitride nanotube (BNNT) can theoretically be processed into structural BNNT and used for load bearing structures. Furthermore, the BNNT can be incorporated into high hydrogen polymers and the combination used as matrix reinforcement for structural composites. BNNT's molecular structure is attractive for hydrogen storage and hydrogenation. There are two methods or techniques for introducing hydrogen into BNNT: (1) hydrogen storage in BNNT, and (2) hydrogenation of BNNT (hydrogenated BNNT). In the hydrogen storage method, nanotubes are favored to store hydrogen over particles and sheets because they have much larger surface areas and higher hydrogen binding energy. The carbon nanotube (CNT) and BNNT have been studied as potentially outstanding hydrogen storage materials since 1997. Our study of hydrogen storage in BNNT - as a function of temperature, pressure, and hydrogen gas concentration - will be performed with a hydrogen storage chamber equipped with a hydrogen generator. The second method of introducing hydrogen into BNNT is hydrogenation of BNNT, where hydrogen is covalently bonded onto boron, nitrogen, or both. Hydrogenation of BN and BNNT has been studied theoretically. Hyper-hydrogenated BNNT has been theoretically predicted with hydrogen coverage up to 100% of the individual atoms. This is a higher hydrogen content than possible with hydrogen storage; however, a systematic experimental hydrogenation study has not been reported. A combination of the two approaches may be explored to provide yet higher hydrogen content. The hydrogen containing BNNT produced in our study will be characterized for hydrogen content and thermal stability in simulated space service environments. These new materials systems will be tested for their radiation shielding effectiveness against high energy protons and high energy heavy ions at the HIMAC facility in Japan, or a comparable facility. These high energy particles simulate exposure to SEP and GCR environments. They will also be tested in the LaRC Neutron Exposure Laboratory for their neutron shielding effectiveness, an attribute that determines their capability to shield against the secondary neutrons found inside structures and on lunar and planetary surfaces. The potential significance is to produce a radiation protection enabling technology for future exploration missions. Crew on deep space human exploration missions greater than approximately 90 days cannot remain below current crew Permissible Exposure Limits without shielding and/or biological countermeasures. The intent of this research is to bring the Agency closer to extending space missions beyond the 90-day limit, with 1 year as a long-term goal. We are advocating a systems solution with a structural materials component. Our intent is to develop the best materials system for that materials component. In this Phase I study, we have shown, computationally, that hydrogen containing BNNT is effective for shielding against GCR, SEP, and neutrons over a wide range of energies. This is why we are focusing on hydrogen containing BNNT as an innovative advanced concept. In our future work, we plan to demonstrate, experimentally, that hydrogen, boron, and nitrogen based materials can provide mechanically strong, thermally stable, structural materials with effective radiation shielding against GCR, SEP, and neutrons.

  15. Boron nitride nanotube as a delivery system for platinum drugs: Drug encapsulation and diffusion coefficient prediction.

    PubMed

    Khatti, Zahra; Hashemianzadeh, Seyed Majid

    2016-06-10

    Molecular dynamics (MD) simulation has been applied to investigate a drug delivery system based on boron nitride nanotubes, particularly the delivery of platinum-based anticancer drugs. For this propose, the behavior of carboplatin drugs inserted in boron nitride nanotubes (BNNT) as a carrier was studied. The diffusion rate of water molecules and carboplatin was investigated inside functionalized and pristine boron nitride nanotubes. The penetration rate of water and drug in functionalized BNNT was higher than that in pristine BNNT due to favorable water-mediated hydrogen bonding in hydroxyl edge-functionalized BNNT. Additionally, the encapsulation of multiple carboplatin drugs inside functionalized boron nitride nanotubes with one to five drug molecules confined inside the nanotube cavity was examined. At high drug loading, the hydrogen bond formation between adjacent drugs and the non-bonded van der Waals interaction between carboplatin and functionalized BNNT inner surface were found to be influential in drug displacement within the functionalized BNNT cavity for higher drug-loading capacity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Boronate-Based Fluorescent Probes: Imaging Hydrogen Peroxide in Living Systems

    PubMed Central

    Lin, Vivian S.; Dickinson, Bryan C.; Chang, Christopher J.

    2014-01-01

    Hydrogen peroxide, a reactive oxygen species with unique chemical properties, is produced endogenously in living systems as a destructive oxidant to ward off pathogens or as a finely tuned second messenger in dynamic cellular signaling pathways. In order to understand the complex roles that hydrogen peroxide can play in biological systems, new tools to monitor hydrogen peroxide in its native settings, with high selectivity and sensitivity, are needed. Knowledge of organic synthetic reactivity provides the foundation for the molecular design of selective, functional hydrogen peroxide probes. A palette of fluorescent and luminescent probes that react chemoselectively with hydrogen peroxide has been developed, utilizing a boronate oxidation trigger. These indicators offer a variety of colors and in cellulo characteristics and have been used to examine hydrogen peroxide in a number of experimental setups, including in vitro fluorometry, confocal fluorescence microscopy, and flow cytometry. In this chapter, we provide an overview of the chemical features of these probes and information on their behavior to help researchers select the optimal probe and application. PMID:23791092

  17. High sensitivity, solid state neutron detector

    DOEpatents

    Stradins, Pauls; Branz, Howard M; Wang, Qi; McHugh, Harold R

    2015-05-12

    An apparatus (200) for detecting slow or thermal neutrons (160). The apparatus (200) includes an alpha particle-detecting layer (240) that is a hydrogenated amorphous silicon p-i-n diode structure. The apparatus includes a bottom metal contact (220) and a top metal contact (250) with the diode structure (240) positioned between the two contacts (220, 250) to facilitate detection of alpha particles (170). The apparatus (200) includes a neutron conversion layer (230) formed of a material containing boron-10 isotopes. The top contact (250) is pixilated with each contact pixel extending to or proximate to an edge of the apparatus to facilitate electrical contacting. The contact pixels have elongated bodies to allow them to extend across the apparatus surface (242) with each pixel having a small surface area to match capacitance based upon a current spike detecting circuit or amplifier connected to each pixel. The neutron conversion layer (860) may be deposited on the contact pixels (830) such as with use of inkjet printing of nanoparticle ink.

  18. High sensitivity, solid state neutron detector

    DOEpatents

    Stradins, Pauls; Branz, Howard M.; Wang, Qi; McHugh, Harold R.

    2013-10-29

    An apparatus (200) for detecting slow or thermal neutrons (160) including an alpha particle-detecting layer (240) that is a hydrogenated amorphous silicon p-i-n diode structure. The apparatus includes a bottom metal contact (220) and a top metal contact (250) with the diode structure (240) positioned between the two contacts (220, 250) to facilitate detection of alpha particles (170). The apparatus (200) includes a neutron conversion layer (230) formed of a material containing boron-10 isotopes. The top contact (250) is pixilated with each contact pixel extending to or proximate to an edge of the apparatus to facilitate electrical contacting. The contact pixels have elongated bodies to allow them to extend across the apparatus surface (242) with each pixel having a small surface area to match capacitance based upon a current spike detecting circuit or amplifier connected to each pixel. The neutron conversion layer (860) may be deposited on the contact pixels (830) such as with use of inkjet printing of nanoparticle ink.

  19. Characterization of Doped Amorphous Silicon Thin Films through the Investigation of Dopant Elements by Glow Discharge Spectrometry. A Correlation of Conductivity and Bandgap Energy Measurements

    PubMed Central

    Sánchez, Pascal; Lorenzo, Olaya; Menéndez, Armando; Menéndez, Jose Luis; Gomez, David; Pereiro, Rosario; Fernández, Beatriz

    2011-01-01

    The determination of optical parameters, such as absorption and extinction coefficients, refractive index and the bandgap energy, is crucial to understand the behavior and final efficiency of thin film solar cells based on hydrogenated amorphous silicon (a-Si:H). The influence of small variations of the gas flow rates used for the preparation of the p-a-SiC:H layer on the bandgap energy, as well as on the dopant elements concentration, thickness and conductivity of the p-layer, is investigated in this work using several complementary techniques. UV-NIR spectrophotometry and ellipsometry were used for the determination of bandgap energies of four p-a-SiC:H thin films, prepared by using different B2H6 and SiH4 fluxes (B2H6 from 12 sccm to 20 sccm and SiH4 from 6 sccm to 10 sccm). Moreover, radiofrequency glow discharge optical emission spectrometry technique was used for depth profiling characterization of p-a-SiC:H thin films and valuable information about dopant elements concentration and distribution throughout the coating was found. Finally, a direct relationship between the conductivity of p-a-SiC:H thin films and the dopant elements concentration, particularly boron and carbon, was observed for the four selected samples. PMID:21731436

  20. Metal-Element Compounds of Titanium, Zirconium, and Hafnium as Pyrotechnic Fuels

    DTIC Science & Technology

    2015-05-04

    including ceramic materials in this role has been far less common. Following the development of boron carbide-based pyrotechnics in our laboratories, we...ameliorate these problems. Commercially available group 4 compounds containing hydrogen, boron , carbon, nitrogen, silicon, and phosphorus were obtained for...predicted behavior suggests that these compounds may be useful for a variety of pyrotechnic applications. 1. INTRODUCTION The recent use of boron

  1. Interaction of acetonitrile with the surfaces of amorphous and crystalline ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaff, J.E.; Roberts, J.T.

    1999-10-12

    The adsorption of acetonitrile (CH{sub 3}CN) on ultrathin films of ice under ultrahigh vacuum was investigated with temperature-programmed desorption ass spectrometry (TPD) and Fourier transform infrared reflection absorption spectroscopy (FTIRAS). Two types of film were studied, amorphous and crystalline. On the amorphous films, two sates of adsorbed acetonitrile were observed by TPD and FTIRAS. One of the states is attributed to acetonitrile that is hydrogen bonded to agree OH group at the ice surface; the other state is assigned to acetonitrile that is purely physiorbed. Evidence for the hydrogen-bonded state is two-fold. First, there is a large kinetic isotope effectmore » for desorption from H{sub 2}O-and D{sub 2}O-ice: the desorption temperatures from ice-h{sub 2} and ice-d{sub 2} are {approximately}161 and {approximately}176 K, respectively. Second, the C{triple{underscore}bond}N stretching frequency (2,265 cm{sup {minus}1}) is 16 cm{sup {minus}1} is greater than that of physisorbed acetonitrile, and it is roughly equal to that of acetonitrile which is hydrogen bonded to an OH group at the air-liquid water interface. On the crystalline films, there is no evidence for a hydrogen-bonded state in the TPD spectra. The FTIRAS spectra do show that some hydrogen-bonded acetonitrile is present but at a maximum coverage that is roughly one-sixth of that on the amorphous surface. The difference between the amorphous and crystalline surfaces cannot be attributed to a difference n surface areas. Rather, this work provides additional evidence that the surface chemical properties of amorphous ice are different from those of crystalline ice.« less

  2. Method of enhancing the electronic properties of an undoped and/or N-type hydrogenated amorphous silicon film

    DOEpatents

    Carlson, David E.

    1980-01-01

    The dark conductivity and photoconductivity of an N-type and/or undoped hydrogenated amorphous silicon layer fabricated by an AC or DC proximity glow discharge in silane can be increased through the incorporation of argon in an amount from 10 to about 90 percent by volume of the glow discharge atmosphere which contains a silicon-hydrogen containing compound in an amount of from about 90 to about 10 volume percent.

  3. Dynamic response of laser ablative shock waves from coated and uncoated amorphous Boron nanoparticles

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; Chelikani, Leela; Pinnoju, Venkateshwarlu; Verma, Pankaj; Singh, Raja V.; Acrhem Collaboration; Hemrl Collaboration

    2015-06-01

    Nanoparticles (NP) improve the performance of solid rocket motors with increased burning rate and lower ignition threshold owing to their larger surface area. We present spatio-temporal evolution of laser ablative shock waves (LASWs) from compacted amorphous Boron (B) and Lithium Fluoride coated Boron (LiF-B) of 70-110nm sizes that were compacted to form pellets. Thickness of the LiF coating is 5.5 +/- 1 nm in LiF-B. Laser pulses from second harmonic of Nd:YAG laser (532 nm, 7 ns) are used to generate LASWs expanding in ambient air. The precise time of energy release from the pellets under extreme ablative pressures is studied using shadowgraphy with a temporal resolution of 1.5 ns. Different nature of the shock front (SF) following Sedov-Taylor theory, before and after detachment, indicated two specific time dependent stages of energy release. From the position of SF, velocity behind the SF, similar to that of exhaust velocity is measured. Specific impulse of 241 +/- 5 and 201 +/- 4 sec for LiF-B and B, respectively, at a delay of 0.8 μs from shock inducing laser pulse makes them potential candidates for laser based micro thruster applications. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program.

  4. Modulating the spin transport behaviors in ZBNCNRs by edge hydrogenation and position of BN chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Jun; Long, Mengqiu, E-mail: mqlong@csu.edu.cn, E-mail: ygao@csu.edu.cn; Zhang, Dan

    2016-03-15

    Using the density functional theory and the nonequilibrium Green’s function method, we study the spin transport behaviors in zigzag boron-nitrogen-carbon nanoribbons (ZBNCNRs) by modulating the edge hydrogenation and the position of B-N nanoribbons (BNNRs) chain. The different edge hydrogenations of the ZBNCNRs and the different position relationships of the BNNRs have been considered systematically. Our results show that the metallic, semimetallic and semiconductive properties of the ZBNCNRs can be modulated by the different edge hydrogenations and different position relationships of BN chains. And our proposaled ZBNCNRs devices act as perfect spin-filters with nearly 100% spin polarization. These effects would havemore » potential applications for boron-nitrogen-carbon-based nanomaterials in spintronics nano-devices.« less

  5. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation

    NASA Astrophysics Data System (ADS)

    Chan, Chun Wong Aaron; Mahadi, Abdul Hanif; Li, Molly Meng-Jung; Corbos, Elena Cristina; Tang, Chiu; Jones, Glenn; Kuo, Winson Chun Hsin; Cookson, James; Brown, Christopher Michael; Bishop, Peter Trenton; Tsang, Shik Chi Edman

    2014-12-01

    Lindlar catalysts comprising of palladium/calcium carbonate modified with lead acetate and quinoline are widely employed industrially for the partial hydrogenation of alkynes. However, their use is restricted, particularly for food, cosmetic and drug manufacture, due to the extremely toxic nature of lead, and the risk of its leaching from catalyst surface. In addition, the catalysts also exhibit poor selectivities in a number of cases. Here we report that a non-surface modification of palladium gives rise to the formation of an ultra-selective nanocatalyst. Boron atoms are found to take residence in palladium interstitial lattice sites with good chemical and thermal stability. This is favoured due to a strong host-guest electronic interaction when supported palladium nanoparticles are treated with a borane tetrahydrofuran solution. The adsorptive properties of palladium are modified by the subsurface boron atoms and display ultra-selectivity in a number of challenging alkyne hydrogenation reactions, which outclass the performance of Lindlar catalysts.

  6. Surface Modification of Boron-Doped Diamond with Microcrystalline Copper Phthalocyanine: Oxygen Reduction Catalysis.

    PubMed

    Gan, Patrick; Foord, John S; Compton, Richard G

    2015-10-01

    Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur.

  7. Germanium detector passivated with hydrogenated amorphous germanium

    DOEpatents

    Hansen, William L.; Haller, Eugene E.

    1986-01-01

    Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.

  8. In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Luo, Wei; Mo, Yanping; Yu, Huogen; Cheng, Bei

    2018-02-01

    Cocatalyst modification of photocatalysts is an important strategy to enhance the photocatalytic performance by promoting effective separation of photoinduced electron-hole pairs and providing abundant active sites. In this study, a facile in situ photodeposition method was developed to prepare amorphous CoSx-modified TiO2 photocatalysts. It was found that amorphous CoSx nanoparticles were solidly loaded on the TiO2 surface, resulting in a greatly improved photocatalytic H2-evolution performance. When the amount of amorphous CoSx was 10 wt%, the hydrogen evolution rate of the CoSx/TiO2 reached 119.7 μmol h-1, which was almost 16.7 times that of the pure TiO2. According to the above experimental results, a reasonable mechanism of improved photocatalytic performance is proposed for the CoSx/TiO2 photocatalysts, namely, the photogenerated electrons of TiO2 can rapidly transfer to amorphous CoSx nanoparticles due to the solid contact between them, and then amorphous CoSx can provide plenty of sulfur active sites to rapidly adsorb protons from solution to produce hydrogen by the photogenerated electrons. Considering the facile synthesis method, the present cheap and highly efficient amorphous CoSx-modified TiO2 photocatalysts would have great potential for practical use in photocatalytic H2 production.

  9. Influence of the formation- and passivation rate of boron-oxygen defects for mitigating carrier-induced degradation in silicon within a hydrogen-based model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallam, Brett, E-mail: brett.hallam@unsw.edu.au; Abbott, Malcolm; Nampalli, Nitin

    2016-02-14

    A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead tomore » a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation.« less

  10. Hydrogen content and mechanical stress in glow discharge amorphous silicon

    NASA Astrophysics Data System (ADS)

    Paduschek, P.; Eichinger, P.; Kristen, G.; Mitlehner, H.

    1982-08-01

    The hydrogen content of plasma deposited amorphous silicon thin films on silicon has been determined as a function of annealing parameters (200-700°C, 12 h) using the proton-proton scattering method. It is shown that hydrogen is released with an activation energy of 1.3 eV. Different deposition temperatures are compared with respect to the hydrogen evolution. The mechanical stress of the layers on silicon substrates has been measured by interferometric techniques for each annealing step. As the hydrogen content decreases monotonically with rising annealing temperature the mechanical stress converts from compressive to tensile. While only a weak correlation exists between the total hydrogen content and the mechanical stress, the bound hydrogen as determined by IR absorption displays a linear relation with the measured mechanical stress.

  11. Surface Chemistry, Microstructure, and Tribological Properties of Cubic Boron Nitride Films

    NASA Technical Reports Server (NTRS)

    Watanabe, Shuichi; Wheeler, Donald R.; Abel, Phillip B.; Street, Kenneth W.; Miyoshi, Kazuhisa; Murakawa, Masao; Miyake, Shojiro

    1998-01-01

    This report deals with the surface chemistry, microstructure, bonding state, morphology, and friction and wear properties of cubic boron nitride (c-BN) films that were synthesized by magnetically enhanced plasma ion plating. Several analytical techniques - x-ray photoelectron spectroscopy, transmission electron microscopy and electron diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, and surface profilometry - were used to characterize the films. Sliding friction experiments using a ball-on-disk configuration were conducted for the c-BN films in sliding contact with 440C stainless-steel balls at room temperature in ultrahigh vacuum (pressure, 10(exp -6), in ambient air, and under water lubrication. Results indicate that the boron-to-nitrogen ratio on the surface of the as-deposited c-BN film is greater than 1 and that not all the boron is present as boron nitride but a small percentage is present as an oxide. Both in air and under water lubrication, the c-BN film in sliding contact with steel showed a low wear rate, whereas a high wear rate was observed in vacuum. In air and under water lubrication, c-BN exhibited wear resistance superior to that of amorphous boron nitride, titanium nitride, and titanium carbide.

  12. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles

    PubMed Central

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-01-01

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air. PMID:26831205

  13. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles.

    PubMed

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-02

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  14. Amorphous MoS{sub x} on CdS nanorods for highly efficient photocatalytic hydrogen evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaofang; Tang, Chaowan; Zheng, Qun

    Loading cocatalyst on semiconductors was crucially necessary for improving the photocatalytic hydrogen evolution. Amorphous MoS{sub x} as a novel and noble metal-free cocatalyst was loaded on CdS nanorods by a simple photodeposition method. Efficient hydrogen evolution with amount of 15 mmol h{sup −1} g{sup −1} was observed over the MoS{sub x} modified CdS nanorods, which was about 6 times higher than that by using Pt as cocatalyst. Meanwhile, with MoS{sub x} cocatalyst, the efficiency of CdS nanorods was superior to that of CdS nanoparticles and bulk CdS. No deactivation could be observed in the efficiency of MoS{sub x} modified CdSmore » nanorods under irradiation for successive 10 h. Further experimental results indicated that the efficient electrons transfer, low overpotential of hydrogen evolution and active S atoms over the MoS{sub x} modified CdS nanorods were responsible for the higher efficiency. Our results provided guidance for synthesizing noble metal-free materials as cocatalyst for photocatalytic hydrogen evolution. - Graphical abstract: Photodeposition of amorphous MoS{sub x} on CdS nanorods for highly efficient photocatalytic hydrogen evolution. - Highlights: • Amorphous MoSx cocatalyst was loaded on CdS NRs by a simple photodeposition. • MoS{sub x}/CdS NRs exhibited 6 times higher hydrogen evolution efficiency than Pt/CdS NRs. • The hydrogen evolution of MoS{sub x}/CdS NRs linearly increased with prolonging time. • Lower overpotential and efficient electron transfer were observed over MoS{sub x}/CdS NRs.« less

  15. Structural and electrical properties of trimethylboron-doped silicon nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, K.-K.; Pan Ling; Bogart, Timothy E.

    2004-10-11

    Trimethylboron (TMB) was investigated as a p-type dopant source for the vapor-liquid-solid growth of boron-doped silicon nanowires (SiNWs). The boron concentration in the nanowires was measured using secondary ion mass spectrometry and results were compared for boron-doping using TMB and diborane (B{sub 2}H{sub 6}) sources. Boron concentrations ranging from 1x10{sup 18} to 4x10{sup 19} cm{sup -3} were obtained by varying the inlet dopant/SiH{sub 4} gas ratio. TEM characterization revealed that the B{sub 2}H{sub 6}-doped SiNWs consisted of a crystalline core with a thick amorphous Si coating, while the TMB-doped SiNWs were predominantly single crystal even at high boron concentrations. Themore » difference in structural properties was attributed to the higher thermal stability and reduced reactivity of TMB compared to B{sub 2}H{sub 6}. Four-point resistivity and gate-dependent conductance measurements were used to confirm p-type conductivity in the TMB-doped nanowires and to investigate the effect of dopant concentration on nanowire resistivity.« less

  16. High-pressure, high-temperature synthesis of superhard boron suboxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubert, H.; Garvie, L.A.J.; Leinenweber, K.

    A multianvil device was used to investigate the formation of B{sub x}O phases produced in the 2 to 10 GPa pressure range with temperatures between 1,000 and 1,800 C. Amorphous and crystalline B and BP were oxidized using B{sub 2}O{sub 3} and CrO{sub 3}. Using powder X-ray diffraction and parallel electron energy-loss spectroscopy (PEELS), the authors were unable to detect graphitic or diamond-structured B{sub 2}O, reported in previous studies. The refractory boride B{sub 6}O, which has the {alpha}-rhombohedral boron structure, is the dominant suboxide in the P and T range of the investigation. PEELS with a transmission electron microscope wasmore » used to characterize the boron oxides.« less

  17. Compensated amorphous silicon solar cell

    DOEpatents

    Carlson, David E.

    1980-01-01

    An amorphous silicon solar cell incorporates a region of intrinsic hydrogenated amorphous silicon fabricated by a glow discharge wherein said intrinsic region is compensated by P-type dopants in an amount sufficient to reduce the space charge density of said region under illumination to about zero.

  18. Variations on a theme - the evolution of hydrocarbon solids. I. Compositional and spectral modelling - the eRCN and DG models

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    2012-04-01

    Context. The compositional properties of hydrogenated amorphous carbons are known to evolve in response to the local conditions. Aims: We present a model for low-temperature, amorphous hydrocarbon solids, based on the microphysical properties of random and defected networks of carbon and hydrogen atoms, that can be used to study and predict the evolution of their properties in the interstellar medium. Methods: We adopt an adaptable and prescriptive approach to model these materials, which is based on a random covalent network (RCN) model, extended here to a full compositional derivation (the eRCN model), and a defective graphite (DG) model for the hydrogen poorer materials where the eRCN model is no longer valid. Results: We provide simple expressions that enable the determination of the structural, infrared and spectral properties of amorphous hydrocarbon grains as a function of the hydrogen atomic fraction, XH. Structural annealing, resulting from hydrogen atom loss, results in a transition from H-rich, aliphatic-rich to H-poor, aromatic-rich materials. Conclusions: The model predicts changes in the optical properties of hydrogenated amorphous carbon dust in response to the likely UV photon-driven and/or thermal annealing processes resulting, principally, from the radiation field in the environment. We show how this dust component will evolve, compositionally and structurally in the interstellar medium in response to the local conditions. Appendices A and B are available in electronic form at http://www.aanda.org

  19. Electric measurements of PV heterojunction structures a-SiC/c-Si

    NASA Astrophysics Data System (ADS)

    Perný, Milan; Šály, Vladimír; Janíček, František; Mikolášek, Miroslav; Váry, Michal; Huran, Jozef

    2018-01-01

    Due to the particular advantages of amorphous silicon or its alloys with carbon in comparison to conventional crystalline materials makes such a material still interesting for study. The amorphous silicon carbide may be used in a number of micro-mechanical and micro-electronics applications and also for photovoltaic energy conversion devices. Boron doped thin layers of amorphous silicon carbide, presented in this paper, were prepared due to the optimization process for preparation of heterojunction solar cell structure. DC and AC measurement and subsequent evaluation were carried out in order to comprehensively assess the electrical transport processes in the prepared a-SiC/c-Si structures. We have investigated the influence of methane content in deposition gas mixture and different electrode configuration.

  20. Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development

    NASA Astrophysics Data System (ADS)

    Farmer, Joseph; Choi, Jor-Shan; Saw, Cheng; Haslam, Jeffrey; Day, Dan; Hailey, Phillip; Lian, Tiangan; Rebak, Raul; Perepezko, John; Payer, Joe; Branagan, Daniel; Beardsley, Brad; D'Amato, Andy; Aprigliano, Lou

    2009-06-01

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was cosponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the U.S. Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition, materials synthesis, thermal stability, corrosion resistance, environmental cracking, mechanical properties, damage tolerance, radiation effects, and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as meltspun ribbons (MSRs), dropcast ingots, and thermal-spray coatings. Chromium (Cr), molybdenum (Mo), and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of MSRs and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently, thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests; good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while the open-circuit corrosion potentials (OCPs) were simultaneously monitored; reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber and suitable for criticality-control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and Ni-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling, and tunnel-boring applications. Large areas have been successfully coated with these materials, with thicknesses of approximately 1 cm. The observed corrosion resistance may enable applications of importance in industries such as oil and gas production, refining, nuclear power generation, shipping, etc.

  1. Boron-doped nanodiamonds as possible agents for local hyperthermia

    NASA Astrophysics Data System (ADS)

    Vervald, A. M.; Burikov, S. A.; Vlasov, I. I.; Ekimov, E. A.; Shenderova, O. A.; Dolenko, T. A.

    2017-04-01

    In this work, the effective heating of surrounding water by heavily-boron-doped nanodiamonds (NDs) under laser irradiation of visible wavelength was found. Using Raman scattering spectroscopy of aqueous suspensions of boron-doped NDs, it was found that this abnormally high heating results in the weakening of hydrogen bonds much more so (2-5 times stronger) than for undoped NDs. The property of boron-doped NDs to heat a solvent under the influence of laser radiation (1-5 W cm-2) opens broad prospects for their use to create nanoagents for medical oncology and local hyperthermia.

  2. The electronic and optical properties of amorphous silica with hydrogen defects by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ren, Dahua; Xiang, Baoyan; Hu, Cheng; Qian, Kai; Cheng, Xinlu

    2018-04-01

    Hydrogen can be trapped in the bulk materials in four forms: interstitial molecular H2, interstitial atom H, O‑H+(2Si=O–H)+, Si‑H‑( {{4O}}\\bar \\equiv {{Si&x2212H}})‑ to affect the electronic and optical properties of amorphous silica. Therefore, the electronic and optical properties of defect-free and hydrogen defects in amorphous silica were performed within the scheme of density functional theory. Initially, the negative charged states hydrogen defects introduced new defect level between the valence band top and conduction band bottom. However, the neutral and positive charged state hydrogen defects made both the valence band and conduction band transfer to the lower energy. Subsequently, the optical properties such as absorption spectra, conductivity and loss functions were analyzed. It is indicated that the negative hydrogen defects caused the absorption peak ranging from 0 to 2.0 eV while the positive states produced absorption peaks at lower energy and two strong absorption peaks arose at 6.9 and 9.0 eV. However, the neutral hydrogen defects just improved the intensity of absorption spectrum. This may give insights into understanding the mechanism of laser-induced damage for optical materials. Project supported by the Science and Technology of Hubei Provincial Department of Education (No. B2017098).

  3. RF Sputtering for preparing substantially pure amorphous silicon monohydride

    DOEpatents

    Jeffrey, Frank R.; Shanks, Howard R.

    1982-10-12

    A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  4. Core-level photoabsorption study of defects and metastable bonding configurations in boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, I.; Jankowski, A.F.; Terminello, L.J.

    1997-04-01

    Boron nitride is an interesting material for technological applications and for fundamental solid state physics investigations. It is a compound isoelectronic with carbon and, like carbon can possess sp{sup 2} and sp{sup 3} bonded phases resembling graphite and diamond. BN crystallizes in the sp{sup 2}-bonded hexagonal (h-BN), rhombohedral (r-BN) and turbostratic phases, and in the sp{sup 3}-bonded cubic (c-BN) and wurtzite (w-BN) phases. A new family of materials is obtained when replacing C-C pairs in graphite with isoelectronic B-N pairs, resulting in C{sub 2}BN compounds. Regarding other boron compounds, BN is exceptional in the sense that it has standard two-centermore » bonds with conventional coordination numbers, while other boron compounds (e.g. B{sub 4}C) are based on the boron icosahedron unit with three-center bonds and high coordination numbers. The existence of several allotropic forms and fullerene-like structures for BN suggests a rich variety of local bonding and poses the questions of how this affects the local electronic structure and how the material accommodates the stress induced in the transition regions between different phases. One would expect point defects to play a crucial role in stress accommodation, but these must also have a strong influence in the electronic structure, since the B-N bond is polar and a point defect will thus be a charged structure. The study of point defects in relationship to the electronic structure is of fundamental interest in these materials. Recently, the authors have shown that Near-Edge X-ray Absorption Fine Structure (NEXAFS) is sensitive to point defects in h-BN, and to the formation of metastable phases even in amorphous materials. This is significant since other phase identification techniques like vibrational spectroscopies or x-ray diffraction yield ambiguous results for nanocrystalline and amorphous samples. Serendipitously, NEXAFS also combines chemical selectivity with point defect sensitivity.« less

  5. A Soluble Dynamic Complex Strategy for the Solution-Processed Fabrication of Organic Thin-Film Transistors of a Boron-Containing Polycyclic Aromatic Hydrocarbon.

    PubMed

    Matsuo, Kyohei; Saito, Shohei; Yamaguchi, Shigehiro

    2016-09-19

    The solution-processed fabrication of thin films of organic semiconductors enables the production of cost-effective, large-area organic electronic devices under mild conditions. The formation/dissociation of a dynamic B-N coordination bond can be used for the solution-processed fabrication of semiconducting films of polycyclic aromatic hydrocarbon (PAH) materials. The poor solubility of a boron-containing PAH in chloroform, toluene, and chlorobenzene was significantly improved by addition of minor amounts (1 wt % of solvent) of pyridine derivatives, as their coordination to the boron atom suppresses the inherent propensity of the PAHs to form π-stacks. Spin-coating solutions of the thus formed Lewis acid-base complexes resulted in the formation of amorphous thin films, which could be converted into polycrystalline films of the boron-containing PAH upon thermal annealing. Organic thin-film transistors prepared by this solution process displayed typical p-type characteristics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  7. Modeling Issues and Results for Hydrogen Isotopes in NIF Materials

    NASA Astrophysics Data System (ADS)

    Grossman, Arthur A.; Doerner, R. P.; Luckhardt, S. C.; Seraydarian, R.; Sze, D.; Burnham, A.

    1998-11-01

    The TMAP4 (G. Longhurst, et al. INEL 1992) model of hydrogen isotope transport in solid materials includes a particle diffusion calculation with Fick's Law modified for Soret Effect (Thermal Diffusion or Thermomigration), coupled to heat transport calculations which are needed because of the strong temperature dependence of diffusivity. These TMAP4 calculations applied to NIF show that high temperatures approaching the melting point and strong thermal gradients of 10^6 K/cm are reached in the first micron of wall material during the SXR pulse. These strong thermal gradients can drive hydrogen isotope migration up or down the thermal gradient depending on the sign of the heat of transport (Soret coefficient) which depends on whether the material dissolves hydrogen endothermically or exothermically. Two candidates for NIF wall material-boron carbide and stainless steel are compared. Boron carbide dissolves hydrogen exothermically so it may drive Soret migration down the thermal gradient deeper into the material, although the thermal gradient is not as large and hydrogen is not as mobile as in stainless steel. Stainless steel dissolves hydrogen endothermically, with a negative Soret coefficient which can drive hydrogen up the thermal gradient and out of the wall.

  8. Surface Modification of Boron-Doped Diamond with Microcrystalline Copper Phthalocyanine: Oxygen Reduction Catalysis

    PubMed Central

    Gan, Patrick; Foord, John S; Compton, Richard G

    2015-01-01

    Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur. PMID:26491640

  9. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthu, R. Naresh, E-mail: rnaresh7708@gmail.com; Rajashabala, S.; Kannan, R.

    2016-05-23

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% atmore » 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.« less

  10. A Molecular-Level View of the Physical Stability of Amorphous Solid Dispersions

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoda

    Many pharmaceutical compounds being developed in recent years are poorly soluble in water. This has led to insufficient oral bioavailability of many compounds in vitro. The amorphous formulation is one of the promising techniques to increase the oral bioavailability of these poorly water-soluble compounds. However, an amorphous drug substance is inherently unstable because it is a high energy form. In order to increase the physical stability, the amorphous drug is often formulated with a suitable polymer to form an amorphous solid dispersion. Previous research has suggested that the formation of an intimately mixed drug-polymer mixture contributes to the stabilization of the amorphous drug compound. The goal of this research is to better understand the role of miscibility, molecular interactions and mobility on the physical stability of amorphous solid dispersions. Methods were developed to detect different degrees of miscibility on nanometer scale and to quantify the extent of hydrogen-bonding interactions between the drug and the polymer. Miscibility, hydrogen-bonding interactions and molecular mobility were correlated with physical stability during a six-month period using three model systems. Overall, this research provides molecular-level insights into many factors that govern the physical stability of amorphous solid dispersions which can lead to a more effective design of stable amorphous formulations.

  11. Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source.

    PubMed

    Dave, Utsav D; Uvin, Sarah; Kuyken, Bart; Selvaraja, Shankar; Leo, Francois; Roelkens, Gunther

    2013-12-30

    A 1,000 nm wide supercontinuum, spanning from 1470 nm in the telecom band to 2470 nm in the mid-infrared is demonstrated in a 800 nm x 220 nm 1 cm long hydrogenated amorphous silicon strip waveguide. The pump source was a picosecond Thulium doped fiber laser centered at 1950 nm. The real part of the nonlinear parameter of this waveguide at 1950 nm is measured to be 100 ± 10 W -1m-1, while the imaginary part of the nonlinear parameter is measured to be 1.2 ± 0.2 W-1m-1. The supercontinuum is stable over a period of at least several hours, as the hydrogenated amorphous silicon waveguides do not degrade when exposed to the high power picosecond pulse train.

  12. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  13. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yimao, E-mail: yimao.wan@anu.edu.au; Yan, Di; Bullock, James

    2015-12-07

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiN{sub x}) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiN{sub x} stack, recombination current density J{sub 0} values of 9, 11, 47, and 87 fA/cm{sup 2} are obtained on 10 Ω·cm n-type, 0.8 Ω·cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J{sub 0} on n-type 10 Ω·cm wafers is further reduced to 2.5 ± 0.5 fA/cm{sup 2} when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiN{sub x} stack is thermally stable at 400 °C in N{sub 2} formore » 60 min on all four c-Si surfaces. Capacitance–voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiN{sub x} stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.« less

  14. Feasibility studies of the growth of 3-5 compounds of boron by MOCVD

    NASA Technical Reports Server (NTRS)

    Manasevit, H. M.

    1988-01-01

    Boron-arsenic and boron-phosphorus films have been grown on Si sapphire and silicon-on-sapphire (SOS) by pyrolyzing Group 3 alkyls of boron, i.e., trimethylborane (TMB) and triethylborane (TEB), in the presence of AsH3 and PH3, respectively, in an H2 atmosphere. No evidence for reaction between the alkyls and the hydrides on mixing at room temperature was found. However, the films were predominantly amorphous. The film growth rate was found to depend on the concentration of alkyl boron compound and was essentially constant when TEB and AsH3 were pyrolyzed over the temperature range 550 C to 900 C. The films were found to contain mainly carbon impurities (the amount varying with growth temperature), some oxygen, and were highly stressed and bowed on Si substrates, with some crazing evident in thin (2 micron) B-P and thick (5 micron) B-As films. The carbon level was generally higher in films grown using TEB as the boron source. Films grown from PH3 and TMB showed a higher carbon content than those grown from AsH3 and TMB. Based on their B/As and B/P ratios, films with nominal compositions B sub12-16 As2 and B sub1.1-1.3 P were grown using TMB as the boron source.

  15. Magnetron-Sputtered Amorphous Metallic Coatings

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Mehra, M.; Khanna, S. K.

    1985-01-01

    Amorphous coatings of refractory metal/metalloid-based alloys deposited by magnetron sputtering provide extraordinary hardness and wear resistance. Sputtering target fabricated by thoroughly mixing powders of tungsten, rhenium, and boron in stated proportions and pressing at 1,200 degrees C and 3,000 lb/in. to second power (21 MPa). Substrate lightly etched by sputtering before deposition, then maintained at bias of - 500 V during initial stages of film growth while target material sputtered onto it. Argon gas at pressure used as carrier gas for sputter deposition. Coatings dense, pinhole-free, extremely smooth, and significantly resistant to chemical corrosion in acidic and neutral aqueous environments.

  16. 14. DETAIL SHOWING HYDROGEN (LEFT) AND OXYGEN (RIGHT) PREVALVES. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL SHOWING HYDROGEN (LEFT) AND OXYGEN (RIGHT) PREVALVES. Looking southeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  17. Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: Mechanisms and limitations.

    PubMed

    Chorghe, Darpan; Sari, Mutiara Ayu; Chellam, Shankararaman

    2017-12-01

    One promising water management strategy during hydraulic fracturing is treatment and reuse of flowback/produced water. In particular, the saline flowback water contains many of the chemicals employed for fracking, which need to be removed before possible reuse as "frac water." This manuscript targets turbidity along with one of the additives; borate-based cross-linkers used to adjust the rheological characteristics of the frac-fluid. Alum and ferric chloride were evaluated as coagulants for clarification and boron removal from saline flowback water obtained from a well in the Eagle Ford shale. Extremely high dosages (> 9000 mg/L or 333 mM Al and 160 mM Fe) corresponding to Al/B and Fe/B mass ratios of ∼70 and molar ratios of ∼28 and 13 respectively were necessary to remove ∼80% boron. Hence, coagulation does not appear to be feasible for boron removal from high-strength waste streams. X-ray photoelectron spectroscopy revealed BO bonding on surfaces of freshly precipitated Al(OH) 3 (am) and Fe(OH) 3 (am) suggesting boron uptake was predominantly via ligand exchange. Attenuated total reflection-Fourier transform infrared spectroscopy provided direct evidence of inner-sphere boron complexation with surface hydroxyl groups on both amorphous aluminum and iron hydroxides. Only trigonal boron was detected on aluminum flocs since possible presence of tetrahedral boron was masked by severe AlO interferences. Both trigonal and tetrahedral conformation of boron complexes were identified on Fe(OH) 3 surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Activation of extended red emission photoluminescence in carbon solids by exposure to atomic hydrogen and UV radiation

    NASA Technical Reports Server (NTRS)

    Furton, Douglas G.; Witt, Adolf N.

    1993-01-01

    We report on new laboratory results which relate directly to the observation of strongly enhanced extended red emission (ERE) by interstellar dust in H2 photodissociation zones. The ERE has been attributed to photoluminescence by hydrogenated amorphous carbon (HAC). We are demonstrating that exposure to thermally dissociated atomic hydrogen will restore the photoluminescence efficiency of previously annealed HAC. Also, pure amorphous carbon (AC), not previously photoluminescent, can be induced to photoluminesce by exposure to atomic hydrogen. This conversion of AC into HAC is greatly enhanced by the presence of UV irradiation. The presence of dense, warm atomic hydrogen and a strong UV radiation field are characteristic environmental properties of H2 dissociation zones. Our results lend strong support to the HAC photoluminescence explanation for ERE.

  19. Thermally induced evolution of hydrogenated amorphous carbon

    NASA Astrophysics Data System (ADS)

    Mangolini, Filippo; Rose, Franck; Hilbert, James; Carpick, Robert W.

    2013-10-01

    The thermally induced structural evolution of hydrogenated amorphous carbon (a-C:H) films was investigated in situ by X-ray photoelectron spectroscopy for annealing temperatures up to 500 °C. A model for the conversion of sp3- to sp2-hybridized carbon in a-C:H vs. temperature and time was developed and applied to determine the ranges of activation energies for the thermally activated processes occurring. The energies are consistent with ordering and clustering of sp2 carbon, scission of sp3 carbon-hydrogen bonds and formation of sp2 carbon, and direct transformation of sp3- to sp2-hybridized carbon.

  20. Preparation of nanocrystalline TiN coated cubic boron nitride powders by a sol-gel process.

    PubMed

    Park, Hee S; Umer, M Adeel; Ryu, Ho J; Hong, Soon H

    2011-01-01

    Cubic boron nitride (cBN) particles coated with 20 wt% nanocrystalline TiN were prepared by coating the surface of cBN particles with TiO2, followed by nitridation with NH3 gas at 900 degrees C. Coating of TiO2 on cBN powders was accomplished by a sol-gel process from a solution of titanium (IV) isopropoxide and anhydrous ethanol. An amorphous TiO(x) layer of 50 nm thickness was homogenously formed on the surface of the cBN particles by the sol-gel process. The amorphous layer was then crystallized to an anatase TiO2 phase through calcination in air at 400 degrees C. The crystallized TiO2 layer was 50 nm in thickness, and the size of TiO2 particles comprising the layer was nearly 10 nm. The TiO2 on cBN surfaces was completely converted into nanocrystalline TiN of uniform particles 20 nm in size on cBN particles by nitridation under flowing NH3 gas.

  1. Photo-oxidation of polymer-like amorphous hydrogenated carbon under visible light illumination

    DOE PAGES

    Baxamusa, Salmaan; Laurence, Ted; Worthington, Matthew; ...

    2015-11-10

    Amorphous hydrogenated carbon (a-C:H), a polymer-like network typically synthesized by plasma chemical vapor deposition, has long been understood to exhibit optical absorption of visible light (λ > 400 nm). In this report we explain that this absorption is accompanied by rapid photo-oxidation (within minutes) that behaves in most respects like classic polymer photo-oxidation with the exception that it occurs under visible light illumination rather than ultraviolet illumination.

  2. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  3. Corrosion resistance and cytocompatibility of biodegradable surgical magnesium alloy coated with hydrogenated amorphous silicon.

    PubMed

    Xin, Yunchang; Jiang, Jiang; Huo, Kaifu; Tang, Guoyi; Tian, Xiubo; Chu, Paul K

    2009-06-01

    The fast degradation rates in the physiological environment constitute the main limitation for the applications of surgical magnesium alloys as biodegradable hard-tissue implants. In this work, a stable and dense hydrogenated amorphous silicon coating (a-Si:H) with desirable bioactivity is deposited on AZ91 magnesium alloy using magnetron sputtering deposition. Raman spectroscopy and Fourier transform infrared spectroscopy reveal that the coating is mainly composed of hydrogenated amorphous silicon. The hardness of the coated alloy is enhanced significantly and the coating is quite hydrophilic as well. Potentiodynamic polarization results show that the corrosion resistance of the coated alloy is enhanced dramatically. In addition, the deterioration process of the coating in simulated body fluids is systematically investigated by open circuit potential evolution and electrochemical impedance spectroscopy. The cytocompatibility of the coated Mg is evaluated for the first time using hFOB1.19 cells and favorable biocompatibility is observed. 2008 Wiley Periodicals, Inc.

  4. Theoretical Combustion Performance of Several High-Energy Fuels for Ramjet Engines

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Breitwieser, Roland; Gammon, Benson E

    1958-01-01

    An analytical evaluation of the air and fuel specific-impulse characteristics of magnesium, magnesium octene-1 slurries, aluminum, aluminum octene-1 slurries, boron, boron octene-1 slurries, carbon, hydrogen, alpha-methylnaphthalene, diborane, pentaborane, and octene-1 is presented. While chemical equilibrium was assumed in the combustion process, the expansion was assumed to occur at fixed composition.

  5. Hydrogen anion and subgap states in amorphous In-Ga-Zn-O thin films for TFT applications

    NASA Astrophysics Data System (ADS)

    Bang, Joonho; Matsuishi, Satoru; Hosono, Hideo

    2017-06-01

    Hydrogen is an impurity species having an important role in the physical properties of semiconductors. Despite numerous studies, the role of hydrogen in oxide semiconductors remains an unsolved puzzle. This situation arises from insufficient information about the chemical state of the impurity hydrogen. Here, we report direct evidence for anionic hydrogens bonding to metal cations in amorphous In-Ga-Zn-O (a-IGZO) thin films for thin-film transistors (TFT) applications and discuss how the hydrogen impurities affect the electronic structure of a-IGZO. Infrared absorption spectra of self-standing a-IGZO thin films prepared by sputtering reveal the presence of hydrogen anions as a main hydrogen species (concentration is ˜1020 cm-3) along with the hydrogens in the form of the hydroxyl groups (˜1020 cm-3). Density functional theory calculations show that bonds between these hydride ions with metal centers give rise to subgap states above the top of the valence band, implying a crucial role of anionic hydrogen in the negative bias illumination stress instability commonly observed in a-IGZO TFTs.

  6. RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride

    DOEpatents

    Jeffery, F.R.; Shanks, H.R.

    1980-08-26

    A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  7. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive.more » Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.« less

  8. Optimization of chemical compositions in low-carbon Al-killed enamel steel produced by ultra-fast continuous annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Futao, E-mail: dongft@sina.com; Du, Linxiu; Liu, Xianghua

    2013-10-15

    The influence of Mn,S and B contents on microstructural characteristics, mechanical properties and hydrogen trapping ability of low-carbon Al-killed enamel steel was investigated. The materials were produced and processed in a laboratory and the ultra-fast continuous annealing processing was performed using a continuous annealing simulator. It was found that increasing Mn,S contents in steel can improve its hydrogen trapping ability which is attributed by refined ferrite grains, more dispersed cementite and added MnS inclusions. Nevertheless, it deteriorates mechanical properties of steel sheet. Addition of trace boron results in both good mechanical properties and significantly improved hydrogen trapping ability. The boronmore » combined with nitrogen segregating at grain boundaries, cementite and MnS inclusions, provides higher amount of attractive hydrogen trapping sites and raises the activation energy for hydrogen desorption from them. - Highlights: • We study microstructures and properties in low-carbon Al-killed enamel steel. • Hydrogen diffusion coefficients are measured to reflect fish-scale resistance. • Manganese improves hydrogen trapping ability but decrease deep-drawing ability. • Boron improves both hydrogen trapping ability and deep-drawing ability. • Both excellent mechanical properties and fish-scale resistance can be matched.« less

  9. Magnetocaloric effect in amorphous and partially crystallized Fe{sub 40}Ni{sub 38}Mo{sub 4}B{sub 18} alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanveer, T.; Thomas, S., E-mail: senoythomas@gmail.com; Ramanujan, R. V.

    A study of magnetocaloric effect in amorphous and partially crystallized Fe{sub 40}Ni{sub 38}Mo{sub 4}B{sub 18} alloys is reported. Amorphous Fe{sub 40}Ni{sub 38}Mo{sub 4}B{sub 18}, near its magnetic ordering temperature (600 K) showed a magnetic entropy change ΔS{sub M} of 1.1 J/KgK and a relative cooling power of 36 J/Kg in a field change of 10 kOe. Amorphous samples were partially crystallized by annealing at 700 K at different time intervals. Partially crystallized samples showed two distinct magnetic ordering temperature, one corresponding to the precipitated FeNi nanocrystals and the other one corresponding to the boron rich amorphous matrix. Magnetic ordering temperaturemore » of the residual amorphous matrix got shifted to the lower temperatures on increasing the annealing duration. Partially crystallised samples showed a magnetic entropy change of about 0.27 J/kgK near the magnetic ordering temperature of the amorphous matrix (540 K) in a field change of 10 kOe. The decrease in ΔS{sub M} on partial crystallisation is attributed to the biphasic magnetic nature of the sample.« less

  10. Modeling and Simulation of Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Pandey, Anup

    The general and practical inversion of diffraction data - producing a computer model correctly representing the material explored - is an important unsolved problem for disordered materials. Such modeling should proceed by using our full knowledge base, both from experiment and theory. In this dissertation, we introduce a robust method, Force-Enhanced Atomic Refinement (FEAR), which jointly exploits the power of ab initio atomistic simulation along with the information carried by diffraction data. As a preliminary trial, the method has been implemented using empirical potentials for amorphous silicon (a-Si) and silica ( SiO2). The models obtained are comparable to the ones prepared by the conventional approaches as well as the experiments. Using ab initio interactions, the method is applied to two very different systems: amorphous silicon (a-Si) and two compositions of a solid electrolyte memory material silver-doped GeSe3. It is shown that the method works well for both the materials. Besides that, the technique is easy to implement, is faster and yields results much improved over conventional simulation methods for the materials explored. It offers a means to add a priori information in first principles modeling of materials, and represents a significant step toward the computational design of non-crystalline materials using accurate interatomic interactions and experimental information. Moreover, the method has also been used to create a computer model of a-Si, using highly precise X-ray diffraction data. The model predicts properties that are close to the continuous random network models but with no a priori assumptions. In addition, using the ab initio molecular dynamics simulations (AIMD) we explored the doping and transport in hydrogenated amorphous silicon a-Si:H with the most popular impurities: boron and phosphorous. We investigated doping for these impurities and the role of H in the doping process. We revealed the network motion and H hopping induced by the thermal fluctuations significantly impacts conduction in this material. In the last section of the dissertation, we employed AIMD to model the structure of amorphous zinc oxide (a-ZnO) and trivalent elements (Al, Ga and In) doped a-ZnO. We studied the structure and electronic structure of these models as well as the effect of trivalent dopants in both the structure and electronic structure of a-ZnO.

  11. Improved characteristics of amorphous indium-gallium-zinc-oxide-based resistive random access memory using hydrogen post-annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Dae Yun; Lee, Tae-Ho; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr

    The authors report an improvement in resistive switching (RS) characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO)-based resistive random access memory devices using hydrogen post-annealing. Because this a-IGZO thin film has oxygen off-stoichiometry in the form of deficient and excessive oxygen sites, the film properties can be improved by introducing hydrogen atoms through the annealing process. After hydrogen post-annealing, the device exhibited a stable bipolar RS, low-voltage set and reset operation, long retention (>10{sup 5 }s), good endurance (>10{sup 6} cycles), and a narrow distribution in each current state. The effect of hydrogen post-annealing is also investigated by analyzing the sample surface using X-raymore » photon spectroscopy and atomic force microscopy.« less

  12. The role of hydrogenated amorphous silicon oxide buffer layer on improving the performance of hydrogenated amorphous silicon germanium single-junction solar cells

    NASA Astrophysics Data System (ADS)

    Sritharathikhun, Jaran; Inthisang, Sorapong; Krajangsang, Taweewat; Krudtad, Patipan; Jaroensathainchok, Suttinan; Hongsingtong, Aswin; Limmanee, Amornrat; Sriprapha, Kobsak

    2016-12-01

    Hydrogenated amorphous silicon oxide (a-Si1-xOx:H) film was used as a buffer layer at the p-layer (μc-Si1-xOx:H)/i-layer (a-Si1-xGex:H) interface for a narrow band gap hydrogenated amorphous silicon germanium (a-Si1-xGex:H) single-junction solar cell. The a-Si1-xOx:H film was deposited by plasma enhanced chemical vapor deposition (PECVD) at 40 MHz in a same processing chamber as depositing the p-type layer. An optimization of the thickness of the a-Si1-xOx:H buffer layer and the CO2/SiH4 ratio was performed in the fabrication of the a-Si1-xGex:H single junction solar cells. By using the wide band gap a-Si1-xOx:H buffer layer with optimum thickness and CO2/SiH4 ratio, the solar cells showed an improvement in the open-circuit voltage (Voc), fill factor (FF), and short circuit current density (Jsc), compared with the solar cells fabricated using the conventional a-Si:H buffer layer. The experimental results indicated the excellent potential of the wide-gap a-Si1-xOx:H buffer layers for narrow band gap a-Si1-xGex:H single junction solar cells.

  13. Protecting hydrogenation-generated oxygen vacancies in BiVO4 photoanode for enhanced water oxidation with conformal ultrathin amorphous TiO2 layer

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Zhang, Xintong; Wang, Dan; Wan, Fangxu; Liu, Yichun

    2017-05-01

    Introducing appropriate amount of oxygen vacancies by hydrogenation treatment is a simple and efficient way to improve the photoelectrochemical performance of nanostructured oxide photoanodes. However, the hydrogenation effect is often not durable due to the gradual healing of oxygen vacancies at or close to surface of photoanodes. Herein, we tackled the problem by conformal coating the hydrogenated nanoporous BiVO4 (H-BiVO4) photoanode with an ultrathin layer of amorphous TiO2. Photoelectrochemical measurements showed that a 4 nm-thick TiO2 layer could significantly improve the stability of H-BiVO4 photoanode for repeated working test, with negligible influence on the initial photocurrent compared to the uncoated one. Mott-Schottky and linear sweep voltammetry measurements showed that donor density and photocurrent density of the H-BiVO4 electrode almost decayed to the values of pristine BiVO4 electrode after 3 h test, while the amorphous TiO2-coated electrode only degraded by 6% and 5% of the initial values respectively in the same period. The investigation thus suggested that the amorphous TiO2 layer did protect the oxygen vacancies in H-BiVO4 photoanode by isolating these oxygen vacancies from environmental oxygen, while at the same time not impeding the interfacial charge transfer to water molecules due to its leaky nature.

  14. Mechanical contact induced transformation from the amorphous to the crystalline state in metallic glass

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Friction and wear tests were conducted with 3.2- and 6.4-millimeter-diameter aluminum oxide spheres sliding, in reciprocating motion, on a Fe67Co18B14Si1 metallic foil. Crystallites with a size range of 10 to 150 nanometers were produced on the wear surface of the amorphous alloy. A strong interaction between transition metals and metalloids such as silicon and boron results in strong segregation during repeated sliding, provides preferential transition metal-metalloid clustering in the amorphous alloy, and subsequently produces the diffused honeycomb structure formed by dark grey bands and primary crystals, that is, alpha-Fe in the matrix. Large plastic flow occurs on an amorphous alloy surface with sliding and the flow film of the alloy transfers to the aluminum oxide pin surface. Multiple slip bands due to shear deformation are observed on the side of the wear track. Two distinct types of wear debris were observed as a result of sliding: an alloy wear debris, and/or powdery-whiskery oxide debris.

  15. A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Yisu; Zhuang, Linzhou; Lin, Rijia; Li, Mengran; Xu, Xiaoyong; Rufford, Thomas E.; Zhu, Zhonghua

    2017-05-01

    We report a novel magnetic field assisted chemical reduction method for the synthesis of boron-doped Ni/Fe nano-chains as promising catalysts for the oxygen evolution reaction (OER). The boron-doped Ni/Fe nano-chains were synthesised in a one step process at room temperature using NaBH4 as a reducing agent. The addition of boron reduced the magnetic moment of the intermediate synthesis products and produced nano-chains with a high specific surface area of 73.4 m2 g-1. The boron-doped Ni/Fe nano-chains exhibited catalytic performance superior to state-of-the-art Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and RuO2 noble metal oxide catalysts. The mass normalized activity of the boron-doped Ni/Fe nano-chains measured at an overpotential of 0.35 V was 64.0 A g-1, with a Tafel slope of only 40 mV dec-1. The excellent performance of the boron-doped Ni/Fe nano-chains can be attributed to the uniform elemental distribution and highly amorphous structure of the B-doped nano-chains. These results provide new insights into the effect of doping transition-metal based OER catalysts with non-metallic elements. The study demonstrates a facile approach to prepare transition metal nano-chains using magnetic field assisted chemical reduction method as cheap and highly active catalysts for electrochemical water oxidation.

  16. Boron Nitride Obtained from Molecular Precursors: Aminoboranes Used as a BN Source for Coatings, Matrix, and Si 3N 4-BN Composite Ceramic Preparation

    NASA Astrophysics Data System (ADS)

    Thévenot, F.; Doche, C.; Mongeot, H.; Guilhon, F.; Miele, P.; Cornu, D.; Bonnetot, B.

    1997-10-01

    Aminoboranes, pure or partially converted into aminoborazines using thermal or aminolysis polymerization, have been used as boron nitride precursors. An amorphous BN preceramic is obtained when pyrolysed up to 1000°C that can be stabilized using further annealing up to 1400°C or crystallized into h-BN above 1700°C. These molecular precursors have been used to prepare carbon fiber/BN matrix microcomposites to get an efficient BN coating on graphite and as a BN source in Si3N4/BN composite ceramic. The properties of these new types of samples have been compared with those obtained by classical processes. The boron nitride obtained from these precursors is a good sintering agent during the hot-pressing of the samples. However, the crystallinity of BN, even sintered up to 1800°C, remains poor. In fact, most of the mechanical properties of the composite ceramic (density, porosity, hardness) are clearly improved and the aminoboranes can be considered as convenient boron nitride sources and helpful sintering agents in hot-pressing technology.

  17. The effect of hydrogen on B4C coatings fabrication in inductively coupled plasma torch

    NASA Astrophysics Data System (ADS)

    Guo, Q. J.; Zhao, P.; Li, L.; Zhou, Q. J.; Ni, G. H.; Meng, Y. D.

    2018-02-01

    Boron carbide (B4C) coatings are prepared by an RF inductively coupled plasma (ICP) torch with different amounts of hydrogen introduced into the sheath gas. The effects of the added hydrogen on the characteristics of the plasma are diagnosed by optical emission spectroscopy and high speed photography. The effects on the melting of B4C particles in the plasma are studied by scanning electron microscopy (SEM). The microstructure of the B4C coatings was determined with SEM imaging and x-ray diffraction analysis. The results show that adding hydrogen to the sheath gas leads to plasma contraction, which results in higher gas temperature of plasma. It also enhances B4C particles spheroidizing and improves the compactness of B4C coatings. Plasma processing does not change the main phase of boron carbide. The obtained results on B4C coatings on Cu substrates allows for improving the B4C coatings fabrication process.

  18. Rapid Annealing Of Amorphous Hydrogenated Carbon

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.

    1989-01-01

    Report describes experiments to determine effects of rapid annealing on films of amorphous hydrogenated carbon. Study represents first efforts to provide information for applications of a-C:H films where rapid thermal processing required. Major finding, annealing causes abrupt increase in absorption and concomitant decrease in optical band gap. Most of change occurs during first 20 s, continues during longer annealing times. Extend of change increases with annealing temperature. Researchers hypothesize abrupt initial change caused by loss of hydrogen, while gradual subsequent change due to polymerization of remaining carbon into crystallites or sheets of graphite. Optical band gaps of unannealed specimens on silicon substrates lower than those of specimens on quartz substrates.

  19. Bond topography and nanostructure of hydrogenated fullerene-like carbon films: A comparative study

    NASA Astrophysics Data System (ADS)

    Wang, Yongfu; Gao, Kaixiong; Shi, Jing; Zhang, Junyan

    2016-09-01

    Fullerene-like nanostructural hydrogenated amorphous carbon (FL-C:H) films were prepared by dc- and pulse- plasma enhanced chemical vapor deposition technique (PECVD). Both the films exhibit relatively stresses (0.63 GPa) in spite of their FL features and nanostructural bonding configurations, especially the pentagonal carbon rings. The creation of pentagonal rings is not fully driven by thermodynamics, but is closely related to compressive stress determined by the ion bombardment at the discharged state of the pulse- and dc- discharged plasmas methods. The dc method leads to FL's basal planes which contain less cross-linkages, and causes amorphous strongly hydrogenated structures.

  20. Origins of hole traps in hydrogenated nanocrystalline and amorphous silicon revealed through machine learning

    NASA Astrophysics Data System (ADS)

    Mueller, Tim; Johlin, Eric; Grossman, Jeffrey C.

    2014-03-01

    Genetic programming is used to identify the structural features most strongly associated with hole traps in hydrogenated nanocrystalline silicon with very low crystalline volume fraction. The genetic programming algorithm reveals that hole traps are most strongly associated with local structures within the amorphous region in which a single hydrogen atom is bound to two silicon atoms (bridge bonds), near fivefold coordinated silicon (floating bonds), or where there is a particularly dense cluster of many silicon atoms. Based on these results, we propose a mechanism by which deep hole traps associated with bridge bonds may contribute to the Staebler-Wronski effect.

  1. Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics

    DTIC Science & Technology

    2015-03-01

    interest include metals, ceramics , minerals, and energetic materials . Accurate, efficient, stable, and thermodynamically consistent models for...Clayton JD. Phase field theory and analysis of pressure-shear induced amorphization and failure in boron carbide ceramic . AIMS Materials Science. 2014;1...of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics by JD Clayton Weapons and Materials Research Directorate, ARL

  2. In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.

    PubMed

    Ganguly, Gaurab; Malakar, Tanmay; Paul, Ankan

    2016-06-22

    Using well calibrated DFT studies we predict that experimentally synthesized B24 N24 fullerene can serve as a potential reversible chemical hydrogen storage material with hydrogen-gas storage capacity up to 5.13 wt %. Our theoretical studies show that hydrogenation and dehydrogenation of the fullerene framework can be achieved at reasonable rates using existing metal-free hydrogenating agents and base metal-containing dehydrogenation catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Interaction of boron cluster ions with water: Single collision dynamics and sequential etching

    NASA Astrophysics Data System (ADS)

    Hintz, Paul A.; Ruatta, Stephen A.; Anderson, Scott L.

    1990-01-01

    Reactions of mass-selected, cooled, boron cluster ions (B+n, n=1-14) with water have been studied for collision energies from 0.1 to 6.0 eV. Most work was done with D2O, however isotope effects were examined for selected reactant cluster ions. For all size clusters there are exoergic product channels, which in most cases have no activation barriers. Cross sections are generally large, however there are fluctuations with cluster size in total reactivity, collision energy dependences, and in product distributions. For small cluster ions, there is a multitude of product channels. For clusters larger than B+6, the product distributions are dominated by a single channel: Bn-1D++DBO. Under multiple collision conditions, the primary products undergo a remarkable sequence of secondary ``etching'' reactions. As these occur, boron atoms are continuously replaced by hydrogen, and the intermediate products retain the composition: Bn-mH+m. This highly efficient chemistry appears to continue unchanged as the composition changes from pure boron to mostly hydrogen. Comparison of these results is made with boron cluster ion reactions with O2 and D2, as well as reactions with water of aluminum and silicon cluster ions. Some discussion is given of the thermochemistry for these reactions, and a possible problem with the thermochemical data in the BOD/DBO system is discussed.

  4. Mechanisms of boron removal from hydraulic fracturing wastewater by aluminum electrocoagulation.

    PubMed

    Sari, Mutiara Ayu; Chellam, Shankararaman

    2015-11-15

    Boron uptake from highly saline hydraulic fracturing wastewater by freshly precipitated amorphous Al(OH)3 precipitates is due to ligand exchange and complexation with surface hydroxyl groups. Consequently, aluminum electrocoagulation can be a feasible approach to remove boron from flowback/produced water. Actual hydraulic fracturing wastewater containing ∼120mg/L boron from the Eagle Ford shale play was employed. Electrocoagulation was performed over a range of aluminum dosages (0-1350mg/L), pH 6.4 and 8, and high current densities (20-80mA/cm(2)) using a cylindrical aluminum anode encompassed by a porous cylindrical 316-stainless steel cathode. Direct measurements of boron uptake along with its chemical state and coordination were made using Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-Ray Photoelectron Spectroscopy. Boron removal increased monotonically with aluminum dosage and was higher at pH 8, but remained relatively constant at ⩾20mA/cm(2). Chloride ions induced anodic pitting and super-Faradaic (131% efficiency) aluminum dissolution and their electrooxidation produced free chlorine. ATR-FTIR suggested outer-sphere and inner-sphere complexation of trigonal B(OH)3 with Al(OH)3, which was confirmed by the BO bond shifting toward lower binding energies in XPS. Severe AlO interferences precluded evidence for tetrahedral B(OH)4(-) complexation. No evidence for co-precipitation was obtained. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-Impact of different polymers.

    PubMed

    Wegiel, Lindsay A; Mauer, Lisa J; Edgar, Kevin J; Taylor, Lynne S

    2013-01-01

    The objective of this study was to investigate intermolecular interactions between resveratrol and polymers in amorphous blends and to study the potential correlations between compound-polymer interactions, manufacturability, and stability of the amorphous system to crystallization during storage. Polymers included two grades of poly (vinylpyrrolidone) (PVP), Eudragit E100 (E100), hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl cellulose acetate butyrate, and poly (acrylic acid) (PAA). Amorphous blends ("solid dispersions") were prepared by dissolving both resveratrol and polymer in a solvent followed by rotary evaporation. Crystallinity was evaluated using X-ray powder diffraction and was studied as a function of time. Mid-infrared (IR) spectroscopy was used to investigate resveratrol-polymer interactions. Polymer influence on the crystallization behavior of resveratrol varied and could be correlated to the polymer structure, whereby polymers with good hydrogen bond acceptor groups performed better as crystallization inhibitors. Resveratrol-polymer hydrogen bonding interactions could be inferred from the IR spectra. Somewhat surprisingly, E100 and resveratrol showed evidence of an acid-base reaction, in addition to intermolecular hydrogen bonding interactions. PVP K29/32 appeared to form stronger hydrogen bond interactions with resveratrol relative to HPMC, HPMCAS, and PAA, consistent with acceptor group chemistry. Long-term stability of the systems against crystallization suggested that stability is linked to the type and strength of intermolecular interactions present. whereby resveratrol blended with E100 and PVP K29/32 showed the greatest stability to crystallization. In conclusion, amorphous resveratrol is unstable and difficult to form, requiring the assistance of a polymeric crystallization inhibitor to facilitate the formation of an amorphous solid dispersion. Polymers effective at inhibiting crystallization were identified, and it is rationalized that their effectiveness is based on the type and strength of their intermolecular interactions with resveratrol. Copyright © 2012 Wiley Periodicals, Inc.

  6. 13. DETAIL SHOWING OXYGEN (LEFT) AND HYDROGEN (RIGHT) PREVALVES ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL SHOWING OXYGEN (LEFT) AND HYDROGEN (RIGHT) PREVALVES ON SECOND DECK OF SUPERSTRUCTURE, ABOVE THE ENGINE. Looking northwest. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  7. 12. DETAIL SHOWING EAST SIDE OF THE OXYGEN AND HYDROGEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL SHOWING EAST SIDE OF THE OXYGEN AND HYDROGEN PRE-VALVE DECK (2ND LEVEL). Looking south. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  8. Understanding the corrosion behavior of amorphous multiple-layer carbon coating

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Gao, Ying; Xu, Yongxian; Zhang, Renhui; Madkour, Loutfy H.; Yang, Yingchang

    2018-04-01

    The corrosion behavior of multiple-layer carbon coating that contained hydrogen, fluorine and silicon, possessed dual amorphous structure with sutured interfaces was investigated using potentiodynamic polarization and electrochemical impedances (ETS) in 3.5 wt.% NaCl solution. The coating exhibited good resistance to corrosion in 3.5 wt.% NaCl solution due to its amorphous and dense structures.

  9. The Interplay of Quantum Confinement and Hydrogenation in Amorphous Silicon Quantum Dots.

    PubMed

    Askari, Sadegh; Svrcek, Vladmir; Maguire, Paul; Mariotti, Davide

    2015-12-22

    Hydrogenation in amorphous silicon quantum dots (QDs) has a dramatic impact on the corresponding optical properties and band energy structure, leading to a quantum-confined composite material with unique characteristics. The synthesis of a-Si:H QDs is demonstrated with an atmospheric-pressure plasma process, which allows for accurate control of a highly chemically reactive non-equilibrium environment with temperatures well below the crystallization temperature of Si QDs. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Method of controllong the deposition of hydrogenated amorphous silicon and apparatus therefor

    DOEpatents

    Hanak, Joseph J.

    1985-06-25

    An improved method and apparatus for the controlled deposition of a layer of hydrogenated amorphous silicon on a substrate. Means is provided for the illumination of the coated surface of the substrate and measurement of the resulting photovoltage at the outermost layer of the coating. Means is further provided for admixing amounts of p type and n type dopants to the reactant gas in response to the measured photovoltage to achieve a desired level and type of doping of the deposited layer.

  11. Composition and properties of the so-called 'diamond-like' amorphous carbon films

    NASA Technical Reports Server (NTRS)

    Angus, J. C.; Stultz, J. E.; Shiller, P. J.; Macdonald, J. R.; Mirtich, M. J.

    1984-01-01

    The composition of amorphous 'diamond-like' films made by direct low energy ion beam deposition, R.F. discharge and sputtering was determined by nuclear reaction analysis, IR spectroscopy and microcombustion chemical analysis. The nuclear reaction analysis showed very similar hydrogen depth profiles for all three types of samples. The atomic ratio of hydrogen to carbon was approximately 0.2 at the film surface and rose to approximately 1.0 at a depth of 500 A. The integrated intensity of the C-H stretching band at about 2900 per cm indicates that the amount of chemically bonded hydrogen is less than the total hydrogen content. Combustion analysis confirmed the overall atomic ratio of hydrogen to carbon determined by nuclear reaction analysis. The chemical state of the non-bonded hydrogen was not determined; however, the effective diffusion coefficient computed from the hydrogen depth profile was extremely low. This indicates either that the films are exceedingly impermeable or that the non-bonded hydrogen requires an additional activated step to leave the films, e.g., desorption or chemical reaction.

  12. Chemically synthesized boron carbon oxynitride as a new cold cathode material

    NASA Astrophysics Data System (ADS)

    Banerjee, Diptonil; Maity, Supratim; Chattopadhyay, K. K.

    2015-11-01

    Synthesis of boron carbon oxynitride (BCNO) nanosheets at different temperature from amorphous to crystalline regime has been reported. The synthesis was done by a simple molten salt process using sodium borohydride and urea as precursors. Transmission electron microscopic study confirms the formation of sheet-like structure of the as-synthesized material. The performances of the as-synthesized BCNO nanosheets as cold cathode materials have been studied for the first time in the high vacuum electron field emission set up. It has been seen that the material gives considerable field emission current with turn on field as low as 2.95 V/μm with good stability and thus a new cold cathode material can be postulated.

  13. Adhesion, friction, and deformation of ion-beam-deposited boron nitride films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Buckley, Donald H.; Alterovitz, Samuel A.; Pouch, John J.; Liu, David C.

    1987-01-01

    The tribological properties and mechanical strength of boron nitride films were investigated. The BN films were predominantly amorphous and nonstoichiometric and contained small amounts of oxides and carbides. It was found that the yield pressure at full plasticity, the critical load to fracture, and the shear strength of interfacial adhesive bonds (considered as adhesion) depended on the type of metallic substrate on which the BN was deposited. The harder the substrate, the greater the critical load and the adhesion. The yield pressures of the BN film were 12 GPa for the 440C stainless steel substrate, 4.1 GPa for the 304 stainless steel substrate, and 3.3 GPa for the titanium substrate.

  14. Adhesion, friction and deformation of ion-beam-deposited boron nitride films

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Alterovitz, S. A.; Pouch, J. J.; Liu, D. C.

    1987-01-01

    The tribological properties and mechanical strength of boron nitride films were investigated. The BN films were predominantly amorphous and nonstoichiometric and contained small amounts of oxides and carbides. It was found that the yield pressure at full plasticity, the critical load to fracture, and the shear strength of interfacial adhesive bonds (considered as adhesion) depended on the type of metallic substrate on which the BN was deposited. The harder the substrate, the greater the critical load and the adhesion. The yield pressures of the BN film were 12 GPa for the 440C stainless steel substrate, 4.1 GPa for the 304 stainless steel substrate, and 3.3 GPa for the titanium substrate.

  15. Structure of Boron Nitride Nanotubes: Tube Closing Vs. Chirality

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu

    1998-01-01

    The structure of boron nitride nanotubes is investigated using a generalized tight-binding molecular dynamics method. It is shown that dynamic relaxation results in a wavelike or "rippled" surface in which the B atoms rotate inward and the N atoms move outward, reminiscent of the surface relaxation of the III-V semiconductors. More importantly, the three different morphologies of the tube closing with flat, conical and amorphous ends, as observed in experiments, are shown to be directly related to the tube chiralities. The abundance of flat end tubes observed in experiments is, thus, shown to be an indication of the greater stability of "zig-zag" BN tubes over the "arm-chair" tubes under experimental conditions.

  16. Shock induced polymorphic transition in quartz, carbon, and boron nitride

    NASA Technical Reports Server (NTRS)

    Tan, Hua; Ahrens, Thomas J.

    1990-01-01

    The model proposed by Ahrens (1988) to explain the mechanism of the polymorphism in silicates is revised, and the revised model is applied to the quartz/stishovite, graphite/diamond, and graphite-boron nitride (g-BN) phase transformations. In this model, a key assumption is that transformation to a high-density amorphous or possibly liquid phase which rapidly crystallized to the high-pressure phase is triggered by the high temperatures in the shear band and upon crossing the metastable extension of a melting curve. Good agreement between the calcualted results and published data is obtained. The present theory predicts the standard entropy for cubic BN to be 0.4-0.5 J/g K.

  17. Hydrogenated borophene as a stable two-dimensional Dirac material with an ultrahigh Fermi velocity.

    PubMed

    Xu, Li-Chun; Du, Aijun; Kou, Liangzhi

    2016-10-05

    The recent synthesis of monolayer borophene (triangular boron monolayer) on a substrate has opened the era of boron nanosheets (Science, 2015, 350, 1513), but the structural instability and a need to explore the novel physical properties are still open issues. Here we demonstrated that borophene can be stabilized by full surface hydrogenation (borophane), from first-principles calculations. Most interestingly, our calculations show that borophane has direction-dependent Dirac cones, which are mainly caused by the in-plane p x and p y orbitals of boron atoms. The Dirac fermions possess an ultrahigh Fermi velocity of up to 3.5 × 10 6 m s -1 under the HSE06 level, which is 4 times higher than that of graphene. The Young's moduli are calculated to be 190 and 120 GPa nm along two different directions, which are comparable to those of steel. The ultrahigh Fermi velocity and good mechanical features render borophane ideal for nanoelectronic applications.

  18. 20. DECOMMISIONED HYDROGEN TANK IN FORMER LIQUID OXYGEN STORAGE AREA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DECOMMISIONED HYDROGEN TANK IN FORMER LIQUID OXYGEN STORAGE AREA, BETWEEN TEST STAND 1-A AND INSTRUMENTATION AND CONTROL BUILDING. Looking northwest. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  19. Simple Hydrogen Plasma Doping Process of Amorphous Indium Gallium Zinc Oxide-Based Phototransistors for Visible Light Detection.

    PubMed

    Kang, Byung Ha; Kim, Won-Gi; Chung, Jusung; Lee, Jin Hyeok; Kim, Hyun Jae

    2018-02-28

    A homojunction-structured amorphous indium gallium zinc oxide (a-IGZO) phototransistor that can detect visible light is reported. The key element of this technology is an absorption layer composed of hydrogen-doped a-IGZO. This absorption layer is fabricated by simple hydrogen plasma doping, and subgap states are induced by increasing the amount of hydrogen impurities. These subgap states, which lead to a higher number of photoexcited carriers and aggravate the instability under negative bias illumination stress, enabled the detection of a wide range of visible light (400-700 nm). The optimal condition of the hydrogen-doped absorption layer (HAL) is fabricated at a hydrogen partial pressure ratio of 2%. As a result, the optimized a-IGZO phototransistor with the HAL exhibits a high photoresponsivity of 1932.6 A/W, a photosensitivity of 3.85 × 10 6 , and a detectivity of 6.93 × 10 11 Jones under 635 nm light illumination.

  20. A Comparison of Photo-Induced Hysteresis Between Hydrogenated Amorphous Silicon and Amorphous IGZO Thin-Film Transistors.

    PubMed

    Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo

    2015-09-01

    We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition.

  1. Method of produce ultra-low friction carbon films

    DOEpatents

    Erdemir, Ali; Fenske, George R.; Eryilmaz, Osman Levent; Lee, Richard H.

    2003-04-15

    A method and article of manufacture of amorphous diamond-like carbon. The method involves providing a substrate in a chamber, providing a mixture of a carbon containing gas and hydrogen gas with the mixture adjusted such that the atomic molar ratio of carbon to hydrogen is less than 0.3, including all carbon atoms and all hydrogen atoms in the mixture. A plasma is formed of the mixture and the amorphous diamond-like carbon film is deposited on the substrate. To achieve optimum bonding an intervening bonding layer, such as Si or SiO.sub.2, can be formed from SiH.sub.4 with or without oxidation of the layer formed.

  2. Mechanism of wiggling enhancement due to HBr gas addition during amorphous carbon etching

    NASA Astrophysics Data System (ADS)

    Kofuji, Naoyuki; Ishimura, Hiroaki; Kobayashi, Hitoshi; Une, Satoshi

    2015-06-01

    The effect of gas chemistry during etching of an amorphous carbon layer (ACL) on wiggling has been investigated, focusing especially on the changes in residual stress. Although the HBr gas addition reduces critical dimension loss, it enhances the surface stress and therefore increases wiggling. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the increase in surface stress was caused by hydrogenation of the ACL surface with hydrogen radicals. Three-dimensional (3D) nonlinear finite element method analysis confirmed that the increase in surface stress is large enough to cause the wiggling. These results also suggest that etching with hydrogen compound gases using an ACL mask has high potential to cause the wiggling.

  3. Impact Ignition and Combustion Behavior of Amorphous Metal-Based Reactive Composites

    NASA Astrophysics Data System (ADS)

    Mason, Benjamin; Groven, Lori; Son, Steven

    2013-06-01

    Recently published molecular dynamic simulations have shown that metal-based reactive powder composites consisting of at least one amorphous component could lead to improved reaction performance due to amorphous materials having a zero heat of fusion, in addition to having high energy densities and potential uses such as structural energetic materials and enhanced blast materials. In order to investigate the feasibility of these systems, thermochemical equilibrium calculations were performed on various amorphous metal/metalloid based reactive systems with an emphasis on commercially available or easily manufactured amorphous metals, such as Zr and Ti based amorphous alloys in combination with carbon, boron, and aluminum. Based on the calculations and material availability material combinations were chosen. Initial materials were either mixed via a Resodyn mixer or mechanically activated using high energy ball milling where the microstructure of the milled material was characterized using x-ray diffraction, optical microscopy and scanning electron microscopy. The mechanical impact response and combustion behavior of select reactive systems was characterized using the Asay shear impact experiment where impact ignition thresholds, ignition delays, combustion velocities, and temperatures were quantified, and reported. Funding from the Defense Threat Reduction Agency (DTRA), Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged.

  4. Bringing nanomagnetism to the mesoscale with artificial amorphous structures

    NASA Astrophysics Data System (ADS)

    Muscas, G.; Brucas, R.; Jönsson, P. E.

    2018-05-01

    In the quest for materials with emergent or improved properties, an effective route is to create artificial superstructures. Novel properties emerge from the coupling between the phases, but the strength of this coupling depends on the quality of the interfaces. Atomic control of crystalline interfaces is notoriously complicated and to elude that obstacle, we suggest here an all-amorphous design. Starting from a model amorphous iron alloy, we locally tune the magnetic behavior by creating boron-doped regions by means of ion implantation through a lithographic mask. This process preserves the amorphous environment, creating a non-topographic magnetic superstructure with smooth interfaces and no structural discontinuities. The absence of inhomogeneities acting as pinning centers for the magnetization reversal is demonstrated by the formation of magnetic vortexes for ferromagnetic disks as large as 20 µm in diameter embedded within a paramagnetic matrix. Rigid exchange coupling between two amorphous ferromagnetic phases in a microstructured sample is evidenced by an investigation involving first-order reversal curves. The sample consists of a soft matrix with embedded elements constituting a hard phase where the anisotropy originates from an elongated shape of the elements. We provide an intuitive explanation for the micrometer-range exchange coupling mechanism and discuss how to tailor the properties of all-amorphous superstructures.

  5. Metal (Ag/Ti)-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics.

    PubMed

    Constantinou, Marios; Nikolaou, Petros; Koutsokeras, Loukas; Avgeropoulos, Apostolos; Moschovas, Dimitrios; Varotsis, Constantinos; Patsalas, Panos; Kelires, Pantelis; Constantinides, Georgios

    2018-03-30

    This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a-C:H:Me) of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD) and Physical Vapor Deposition (PVD) technologies. The a-C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF) plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC) technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti). The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a-C:H:Ag and a-C:H:Ti) exhibited enhanced nanoscratch resistance (up to +50%) and low values of friction coefficient (<0.05), properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  6. Measuring the dielectric and optical response of millimeter-scale amorphous and hexagonal boron nitride films grown on epitaxial graphene.

    PubMed

    Rigosi, Albert F; Hill, Heather M; Glavin, Nicholas R; Pookpanratana, Sujitra J; Yang, Yanfei; Boosalis, Alexander G; Hu, Jiuning; Rice, Anthony; Allerman, Andrew A; Nguyen, Nhan V; Hacker, Christina A; Elmquist, Randolph E; Hight Walker, Angela R; Newell, David B

    2018-01-01

    Monolayer epitaxial graphene (EG), grown on the Si face of SiC, is an advantageous material for a variety of electronic and optical applications. EG forms as a single crystal over millimeter-scale areas and consequently, the large scale single crystal can be utilized as a template for growth of other materials. In this work, we present the use of EG as a template to form millimeter-scale amorphous and hexagonal boron nitride ( a -BN and h -BN) films. The a -BN is formed with pulsed laser deposition and the h -BN is grown with triethylboron (TEB) and NH 3 precursors, making it the first metal organic chemical vapor deposition (MOCVD) process of this growth type performed on epitaxial graphene. A variety of optical and non-optical characterization methods are used to determine the optical absorption and dielectric functions of the EG, a -BN, and h -BN within the energy range of 1 eV to 8.5 eV. Furthermore, we report the first ellipsometric observation of high-energy resonant excitons in EG from the 4H polytype of SiC and an analysis on the interactions within the EG and h -BN heterostructure.

  7. The U.S. and Japanese amorphous silicon technology programs A comparison

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1984-01-01

    The U.S. Department of Energy/Solar Energy Research Institute Amorphous Silicon (a-Si) Solar Cell Program performs R&D on thin-film hydrogenated amorphous silicon for eventual development of stable amorphous silicon cells with 12 percent efficiency by 1988. The Amorphous Silicon Solar Cell Program in Japan is sponsored by the Sunshine Project to develop an alternate energy technology. While the objectives of both programs are to eventually develop a-Si photovoltaic modules and arrays that would produce electricity to compete with utility electricity cost, the U.S. program approach is research oriented and the Japanese is development oriented.

  8. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, Auda K.

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  9. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, A.K.

    1979-07-18

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  10. Improving the photoresponse spectra of BaSi2 layers by capping with hydrogenated amorphous Si layers prepared by radio-frequency hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Xu, Zhihao; Gotoh, Kazuhiro; Deng, Tianguo; Sato, Takuma; Takabe, Ryota; Toko, Kaoru; Usami, Noritaka; Suemasu, Takashi

    2018-05-01

    We studied the surface passivation effect of hydrogenated amorphous silicon (a-Si:H) layers on BaSi2 films. a-Si:H was formed by an electron-beam evaporation of Si, and a supply of atomic hydrogen using radio-frequency plasma. Surface passivation effect was first investigated on a conventional n-Si(111) substrate by capping with 20 nm-thick a-Si:H layers, and next on a 0.5 μm-thick BaSi2 film on Si(111) by molecular beam epitaxy. The internal quantum efficiency distinctly increased by 4 times in a wide wavelength range for sample capped in situ with a 3 nm-thick a-Si:H layer compared to those capped with a pure a-Si layer.

  11. Use of low-energy hydrogen ion implants in high-efficiency crystalline-silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.; Sigh, R.; Mu, H. C.

    1986-01-01

    The use of low-energy hydrogen implants in the fabrication of high-efficiency crystalline silicon solar cells was investigated. Low-energy hydrogen implants result in hydrogen-caused effects in all three regions of a solar cell: emitter, space charge region, and base. In web, Czochralski (Cz), and floating zone (Fz) material, low-energy hydrogen implants reduced surface recombination velocity. In all three, the implants passivated the space charge region recombination centers. It was established that hydrogen implants can alter the diffusion properties of ion-implanted boron in silicon, but not ion-implated arsenic.

  12. Development of spray-dried co-precipitate of amorphous celecoxib containing storage and compression stabilizers.

    PubMed

    Dhumal, Ravindra S; Shimpi, Shamkant L; Paradkar, Anant R

    2007-09-01

    The purpose of this study was to obtain an amorphous system with minimum unit operations that will prevent recrystallization of amorphous drugs since preparation, during processing (compression) and further storage. Amorphous celecoxib, solid dispersion (SD) of celecoxib with polyvinyl pyrrollidone (PVP) and co-precipitate with PVP and carrageenan (CAR) in different ratios were prepared by the spray drying technique and compressed into tablets. Saturation solubility and dissolution studies were performed to differentiate performance after processing. Differential scanning calorimetry and X-ray powder difraction revealed the amorphous form of celecoxib, whereas infrared spectroscopy revealed hydrogen bonding between celecoxib and PVP. The dissolution profile of the solid dispersion and co-precipitate improved compared to celecoxib and amorphous celecoxib. Amorphous celecoxib was not stable on storage whereas the solid dispersion and co-precipitate powders were stable for 3 months. Tablets of the solid dispersion of celecoxib with PVP and physical mixture with PVP and carrageenan showed better resistance to recrystallization than amorphous celecoxib during compression but recrystallized on storage. However, tablets of co-precipitate with PVP and carageenan showed no evidence of crystallinity during stability studies with comparable dissolution profiles. This extraordinary stability of spray-dried co-precipitate tablets may be attributed to the cushioning action provided by the viscoelastic polymer CAR and hydrogen bonding interaction between celecoxib and PVP. The present study demonstrates the synergistic effect of combining two types of stabilizers, PVP and CAR, on the stability of amorphous drug during compression and storage as compared to their effect when used alone.

  13. Thermal conductivity of electron-irradiated graphene

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    2017-10-01

    We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c < 1%, in the graphene lattice, further reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.

  14. The use of metalorganics in the preparation of semiconductor materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manasevit, H.M.; Hewitt, W.B.; Nelson, A.J.

    1989-10-01

    The authors describe boron-arsenic and boron-phosphorus films grown on Si, sapphire, and silicon-on-sapphire (SOS) by pyrolyzing Group III alkyls of boron, i.e., trimethylborane (TMB) and triethylborane (TEB) in the presence of AsH/sub 3/ and PH/sub 3/, respectively, in a H/sub 2/ atmosphere. No evidence for reaction between the alkyls and the hydrides on mixing at room temperature was found. The films were predominantly amorphous. The film growth rate was found to depend on the concentration of alkyl boron compound and was essentially constant when TEB and AsH/sub 3/ were pyrolyzed over the temperature range of 550{sup 0}-900{sup 0}C. The filmsmore » were found to contain mainly carbon impurities (the amount varying with growth temperature), some oxygen, and were highly stressed and bowed on Si substrates, with some crazing evident in thin (2 {mu}m) B-P and thick (5 {mu}m) B-As films. The carbon level was generally higher in films grown using TEB as the boron source. Films grown from PH/sub 3/ and TMB showed a higher carbon content than those grown from AsH/sub 3/ and TMB. Based on their B/As and B/P ratios, films with nominal compositions B/sub 12-16/As/sub 2/P and B/sub 1.1-1.3/P were grown using TMB as the boron source.« less

  15. Increasing Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou

    1999-08-24

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  16. Increased Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou

    1997-07-08

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  17. Midinfrared wavelength conversion in hydrogenated amorphous silicon waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Wang, Zhaolu; Huang, Nan; Han, Jing; Li, Yongfang; Liu, Hongjun

    2017-10-01

    Midinfrared (MIR) wavelength conversion based on degenerate four-wave mixing is theoretically investigated in hydrogenated amorphous silicon (a-Si:H) waveguides. The broadband phase mismatch is achieved in the normal group-velocity dispersion regime. The conversion bandwidth is extended to 900 nm, and conversion efficiency of up to -14 dB with a pump power of 70 mW in a 2-mm long a-Si:H rib waveguides is obtained. This low-power on-chip wavelength converter will have potential for application in a wide range of MIR nonlinear optic devices.

  18. Plasma-deposited amorphous hydrogenated carbon films and their tribological properties

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Pouch, John J.; Alterovitz, Samuel A.

    1989-01-01

    Recent work on the properties of diamondlike carbon films and their dependence on preparation conditions are reviewed. The results of the study indicate that plasma deposition enables one to deposit a variety of amorphous hydrogenated carbon (a-C:H ) films exhibiting more diamondlike behavior to more graphitic behavior. The plasma-deposited a-C:H can be effectively used as hard, wear-resistant, and protective lubricating films on ceramic materials such as Si(sub 3)N(sub 4) under a variety of environmental conditions such as moist air, dry nitrogrn, and vacuum.

  19. An investigation of hydrogenized amorphous Si structures with Doppler broadening positron annihilation techniques

    NASA Astrophysics Data System (ADS)

    Petkov, M. P.; Marek, T.; Asoka-Kumar, P.; Lynn, K. G.; Crandall, R. S.; Mahan, A. H.

    1998-07-01

    In this letter, we examine the feasibility of applying positron annihilation spectroscopy to the study of hydrogenized amorphous silicon (a-Si:H)-based structures produced by chemical vapor deposition techniques. The positron probe, sensitive to open volume formations, is used to characterize neutral and negatively charged silicon dangling bonds, typical for undoped and n-doped a-Si:H, respectively. Using depth profiling along the growth direction a difference was observed in the electronic environment of these defects, which enables their identification in a p-i-n device.

  20. 15. DETAIL SHOWING HYDROGEN (LEFT) AND OXYGEN (RIGHT) SPHERICAL TANKS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. DETAIL SHOWING HYDROGEN (LEFT) AND OXYGEN (RIGHT) SPHERICAL TANKS ON RUN LINE DECK, THIRD LEVEL. DARK TONED PIPING IS THE FIRE EXTINGUISHING SYSTEM. Looking south southwest. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  1. H and H2 NMR properties in amorphous hydrogenated silicon (a-Si:H)

    NASA Astrophysics Data System (ADS)

    Lee, Sook

    1986-07-01

    It is shown that the basic NMR properties of ortho-H2 molecules with a rotational angular momentum J and a spin angular momentum I under the influence of a completely asymmetric crystalline field in an amorphous matrix can be described by an effective nuclear spin Hamiltonian which contains only the nuclear spin angular momentum operators (Ii), but is independent of the molecular rotational angular momentum operators (Ji). By directly applying the existing magnetic-resonance theories to this effective nuclear spin Hamiltonian, a simple description is presented for various static and dynamic NMR properties of the ortho-H2 NMR centers in amorphous hydrogenated silicon (a-Si:H), thereby resolving many difficulties and uncertainties encountered in understanding and explaining the H and H2 NMR observations in a-Si:H.

  2. Interfacial interaction track of amorphous solid dispersions established by water-soluble polymer and indometacin.

    PubMed

    Li, Jing; Fan, Na; Wang, Xin; Li, Chang; Sun, Mengchi; Wang, Jian; Fu, Qiang; He, Zhonggui

    2017-08-30

    The present work studied interfacial interactions of amorphous solid dispersions matrix of indometacin (IMC) that established using PVP K30 (PVP) and PEG 6000 (PEG) by focusing on their interaction forces and wetting process. Infrared spectroscopy (IR), raman spectroscopy, X-ray photoelectron spectra and contact angle instrument were used throughout the study. Hydrogen bond energy formed between PEG and IMC were stronger than that of PVP and IMC evidenced by molecular modeling measurement. The blue shift of raman spectroscopy confirmed that hydrogen bonding forces were formed between IMC and two polymers. The contact angle study can be used as an easy method to determine the dissolution mechanism of amorphous solid dispersions through fitting the profile of contact angle of water on a series of tablets. It is believed that the track of interfacial interactions will certainly become powerful tools to for designing and evaluating amorphous solid dispersions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Graphite carbon nitride/boron-doped graphene hybrid for efficient hydrogen generation reaction.

    PubMed

    Yang, Liang; Wang, Xin; Wang, Juan; Cui, Guomin; Liu, Daoping

    2018-08-24

    Metal-free carbon materials, with tuned surface chemical and electronic properties, hold great potential for the hydrogen evolution reaction (HER). We designed and synthesized a CN/BG hybrid electrocatalytic system with a porous and active graphite carbon nitride (CN) layer on boron-doped graphene (BG). A porous CN layer on graphene could provide exposed defects and edges that act as active sites for proton adsorption and reduction. The composition, structure, surface electronics, and chemical properties of this CN/BG hybrid system were tuned to obtain excellent HER activity and stability. Detailed surface chemical, morphological, and structural analyses demonstrated the synergetic effect arising from the electronic interaction between CN and BG, which contributed to the enhanced electrocatalytic performances.

  4. Interactions of atomic hydrogen with amorphous SiO2

    NASA Astrophysics Data System (ADS)

    Yue, Yunliang; Wang, Jianwei; Zhang, Yuqi; Song, Yu; Zuo, Xu

    2018-03-01

    Dozens of models are investigated by the first-principles calculations to simulate the interactions of an atomic hydrogen with a defect-free random network of amorphous SiO2 (a-SiO2) and oxygen vacancies. A wide variety of stable configurations are discovered due to the disorder of a-SiO2, and their structures, charges, magnetic moments, spin densities, and density of states are calculated. The atomic hydrogen interacts with the defect-free a-SiO2 in positively or negatively charged state, and produces the structures absent in crystalline SiO2. It passivates the neutral oxygen vacancies and generates two neutral hydrogenated E‧ centers with different Si dangling bond projections. Electron spin resonance parameters, including Fermi contacts, and g-tensors, are calculated for these centers. The atomic hydrogen interacts with the positive oxygen vacancies in dimer configuration, and generate four different positive hydrogenated defects, two of which are puckered like the Eγ‧ centers. This research helps to understand the interactions between an atomic hydrogen, and defect-free a-SiO2 and oxygen vacancies, which may generate the hydrogen-complexed defects that play a key role in the degeneration of silicon/silica-based microelectronic devices.

  5. Growth of boron doped hydrogenated nanocrystalline cubic silicon carbide (3C-SiC) films by Hot Wire-CVD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawbake, Amit; Tata Institute of Fundamental Research, Colaba, Mumbai 400 005; Mayabadi, Azam

    Highlights: • Boron doped nc-3C-SiC films prepared by HW-CVD using SiH{sub 4}/CH{sub 4}/B{sub 2}H{sub 6}. • 3C-Si-C films have preferred orientation in (1 1 1) direction. • Introduction of boron into SiC matrix retard the crystallanity in the film structure. • Film large number of SiC nanocrystallites embedded in the a-Si matrix. • Band gap values, E{sub Tauc} and E{sub 04} (E{sub 04} > E{sub Tauc}) decreases with increase in B{sub 2}H{sub 6} flow rate. - Abstract: Boron doped nanocrystalline cubic silicon carbide (3C-SiC) films have been prepared by HW-CVD using silane (SiH{sub 4})/methane (CH{sub 4})/diborane (B{sub 2}H{sub 6}) gasmore » mixture. The influence of boron doping on structural, optical, morphological and electrical properties have been investigated. The formation of 3C-SiC films have been confirmed by low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy and high resolution-transmission electron microscopy (HR-TEM) analysis whereas effective boron doping in nc-3C-SiC have been confirmed by conductivity, charge carrier activation energy, and Hall measurements. Raman spectroscopy and HR-TEM analysis revealed that introduction of boron into the SiC matrix retards the crystallanity in the film structure. The field emission scanning electron microscopy (FE-SEM) and non contact atomic force microscopy (NC-AFM) results signify that 3C-SiC film contain well resolved, large number of silicon carbide (SiC) nanocrystallites embedded in the a-Si matrix having rms surface roughness ∼1.64 nm. Hydrogen content in doped films are found smaller than that of un-doped films. Optical band gap values, E{sub Tauc} and E{sub 04} decreases with increase in B{sub 2}H{sub 6} flow rate.« less

  6. Deposition of amorphous silicon using a tubular reactor with concentric-electrode confinement

    NASA Astrophysics Data System (ADS)

    Conde, J. P.; Chan, K. K.; Blum, J. M.; Arienzo, M.; Cuomo, J. J.

    1992-04-01

    High-quality, hydrogenated amorphous silicon (a-Si:H) is deposited at room temperature by rf glow discharge at a high deposition rate using a tubular reactor with cylindrical symmetry (concentric-electrode plasma-enhanced chemical vapor deposition, CE-PECVD). Using the novel CE-PECVD design, room-temperature deposition of a-Si:H with growth rates up to 14 Å s-1, low hydrogen concentration (≲10%), and the bonded hydrogen in the Si-H monohydride configuration, is achieved for the first time using an rf glow-discharge technique. The influence of the deposition parameters (silane flow rate, pressure, and power density) on the growth rate, optical band gap, and silicon-hydrogen bonding configuration, is quantitatively predicted using a deposition mechanism based on the additive contribution of three growth precursors, SiH2, SiH3, and Si2H6, with decreasing sticking coefficients of 0.7, 0.1, and 0.001, respectively. The low hydrogen concentration is due to the enhanced ion bombardment resulting from the concentric electrode design.

  7. An amorphous FeMoS4 nanorod array toward efficient hydrogen evolution electrocatalysis under neutral conditions.

    PubMed

    Ren, Xiang; Wang, Weiyi; Ge, Ruixiang; Hao, Shuai; Qu, Fengli; Du, Gu; Asiri, Abdullah M; Wei, Qin; Chen, Liang; Sun, Xuping

    2017-08-08

    It is highly attractive to develop efficient hydrogen-evolving electrocatalysts under neutral conditions. In this communication, we report an amorphous FeMoS 4 nanorod array on carbon cloth (FeMoS 4 NRA/CC) prepared by hydrothermal treatment of an FeOOH nanorod array on carbon cloth (FeOOH NRA/CC) in (NH 4 ) 2 MoS 4 solution. As a 3D electrode for hydrogen evolution electrocatalysis, this FeMoS 4 NRA/CC demonstrates superior catalytic activity and strong long-term electrochemical durability in 1.0 M phosphate buffered saline (pH: 7). It needs an overpotential of 204 mV to drive a geometrical current density of 10 mA cm -2 , which is 450 mV less than that for FeOOH NRA/CC. Density functional theory calculations suggest that FeMoS 4 has a more favourable hydrogen adsorption free energy than FeOOH.

  8. Modulation of the electrical properties in amorphous indium-gallium zinc-oxide semiconductor films using hydrogen incorporation

    NASA Astrophysics Data System (ADS)

    Song, Aeran; Park, Hyun-Woo; Chung, Kwun-Bum; Rim, You Seung; Son, Kyoung Seok; Lim, Jun Hyung; Chu, Hye Yong

    2017-12-01

    The electrical properties of amorphous-indium-gallium-zinc-oxide (a-IGZO) thin films were investigated after thermal annealing and plasma treatment under different gas conditions. The electrical resistivity of a-IGZO thin films post-treated in a hydrogen ambient were lower than those without treatment and those annealed in air, regardless of the methods used for both thermal annealing and plasma treatment. The electrical properties can be explained by the quantity of hydrogen incorporated into the samples and the changes in the electronic structure in terms of the chemical bonding states, the distribution of the near-conduction-band unoccupied states, and the band alignment. As a result, the carrier concentrations of the hydrogen treated a-IGZO thin films increased, while the mobility decreased, due to the increase in the oxygen vacancies from the occurrence of unoccupied states in both shallow and deep levels.

  9. Development and Characterization of Titanium Dioxide Gel with Encapsulated Bacteriorhodopsin for Hydrogen Production.

    PubMed

    Johnson, Kaitlin E; Gakhar, Sukriti; Risbud, Subhash H; Longo, Marjorie L

    2018-06-06

    We study bacteriorhodopsin (BR) in its native purple membrane encapsulated within amorphous titanium dioxide, or titania, gels and in the presence of titania sol-particles to explore this system for hydrogen production. Förster resonance energy transfer between BR and titanium dioxide sol particles was used to conclude that there is nanometer-scale proximity of bacteriorhodopsin to the titanium dioxide. The detection of BR-titania sol aggregates by fluorescence anisotropy and particle sizing indicated the affinity amorphous titania has for BR without the use of additional cross-linkers. UV-Visible spectroscopy of BR-titania gels show that methanol addition did not denature BR at a 25 mM concentration presence as a sacrificial electron donor. Additionally, confinement of BR in the gels significantly limited protein denaturation at higher concentration of added methanol or ethanol. Subsequently, titania gels fabricated through the sol-gel process using a titanium ethoxide precursor, water and the addition of 25 mM methanol were used to encapsulate BR and a platinum reduction catalyst for the production of hydrogen gas under white light irradiation. The inclusion of 5 µM bacteriorhodopsin resulted in a hydrogen production rate of about 3.8 µmole hydrogen mL -1 hr -1 , an increase of 52% compared to gels containing no protein. Electron transfer and proton pumping by BR in close proximity to the titania gel surface are feasible explanations for the enhanced production of hydrogen without the need to crosslink BR to the titania gel. This work sets the stage for further developments of amorphous, rather than crystalline, titania-encapsulated bacteriorhodopsin for solar-driven hydrogen production through water-splitting.

  10. Investigation of isochronal annealing on the optical properties of HWCVD amorphous silicon nitride deposited at low temperatures and low gas flow rates

    NASA Astrophysics Data System (ADS)

    Muller, T. F. G.; Jacobs, S.; Cummings, F. R.; Oliphant, C. J.; Malgas, G. F.; Arendse, C. J.

    2015-06-01

    Hydrogenated amorphous silicon nitride (a-SiNx:H) is used as anti-reflection coatings in commercial solar cells. A final firing step in the production of micro-crystalline silicon solar cells allows hydrogen effusion from the a-SiNx:H into the solar cell, and contributes to bulk passivation of the grain boundaries. In this study a-SiNx:H deposited in a hot-wire chemical vapour deposition (HWCVD) chamber with reduced gas flow rates and filament temperature compared to traditional deposition regimes, were annealed isochronally. The UV-visible reflection spectra of the annealed material were subjected to the Bruggeman Effective Medium Approximation (BEMA) treatment, in which a theoretical amorphous semiconductor was combined with particle inclusions due to the structural complexities of the material. The extraction of the optical functions and ensuing Wemple-DeDomenici analysis of the wavelength-dependent refractive index allowed for the correlation of the macroscopic optical properties with the changes in the local atomic bonding configuration, involving silicon, nitrogen and hydrogen.

  11. Ionization equilibrium at the transition from valence-band to acceptor-band migration of holes in boron-doped diamond

    NASA Astrophysics Data System (ADS)

    Poklonski, N. A.; Vyrko, S. A.; Poklonskaya, O. N.; Kovalev, A. I.; Zabrodskii, A. G.

    2016-06-01

    A quasi-classical model of ionization equilibrium in the p-type diamond between hydrogen-like acceptors (boron atoms which substitute carbon atoms in the crystal lattice) and holes in the valence band (v-band) is proposed. The model is applicable on the insulator side of the insulator-metal concentration phase transition (Mott transition) in p-Dia:B crystals. The densities of the spatial distributions of impurity atoms (acceptors and donors) and of holes in the crystal are considered to be Poissonian, and the fluctuations of their electrostatic potential energy are considered to be Gaussian. The model accounts for the decrease in thermal ionization energy of boron atoms with increasing concentration, as well as for electrostatic fluctuations due to the Coulomb interaction limited to two nearest point charges (impurity ions and holes). The mobility edge of holes in the v-band is assumed to be equal to the sum of the threshold energy for diffusion percolation and the exchange energy of the holes. On the basis of the virial theorem, the temperature Tj is determined, in the vicinity of which the dc band-like conductivity of holes in the v-band is approximately equal to the hopping conductivity of holes via the boron atoms. For compensation ratio (hydrogen-like donor to acceptor concentration ratio) K ≈ 0.15 and temperature Tj, the concentration of "free" holes in the v-band and their jumping (turbulent) drift mobility are calculated. Dependence of the differential energy of thermal ionization of boron atoms (at the temperature 3Tj/2) as a function of their concentration N is calculated. The estimates of the extrapolated into the temperature region close to Tj hopping drift mobility of holes hopping from the boron atoms in the charge states (0) to the boron atoms in the charge states (-1) are given. Calculations based on the model show good agreement with electrical conductivity and Hall effect measurements for p-type diamond with boron atom concentrations in the range from 3 × 1017 to 3 × 1020 cm-3, i.e., up to the Mott transition. The model uses no fitting parameters.

  12. Geothermal constraints on enrichment of boron and lithium in salt lakes: An example from a river-salt lake system on the northern slope of the eastern Kunlun Mountains, China

    NASA Astrophysics Data System (ADS)

    Tan, Hongbing; Chen, Jun; Rao, Wenbo; Zhang, Wenjie; Zhou, Huifang

    2012-06-01

    Some rivers on the northern slope of the eastern Kunlun Mountains in the Qaidam Basin, China, show very high concentrations of boron and lithium. Correspondingly, the salt lakes fed by these rivers show an unusual enrichment of boron and lithium, and become an important economic resource. The origin of boron and lithium has long been debated. The aim of this study is to analyze the water chemistry and hydrogen and oxygen isotopic composition of river water to understand the unusual enrichment of boron and lithium in the salt lakes of the Qaidam Basin. Oxygen and hydrogen isotope data show that the source of river water in the winter and summer originates from the Kunlun Mountain ice and snow melt water, respectively. The water chemistry shows that boron and lithium contents are high but little variable with seasons in the Nalenggele River and Wutumeiren River waters. By contrast, other rivers have much lower lithium and boron contents. Moreover, the contents of B3+ and Li+ in the river loads or bed sands show little difference amongst the rivers. This indicates that removal by adsorption or input by surface rock weathering is not the main controlling factor of the B3+ and Li+ variation in the rivers. Rivers with high B3+ and Li+ content are chemically similar to geothermal waters in the Tibetan Plateau. In addition, the source area of the Nalenggele River is located in a collision zone of the Kunlun Mountains and Altun Mountains. Large and deep faults can serve as conduits for geothermal fluids. Thus, deep geothermal waters in the source area can easily migrate to the surface and discharge as springs feeding the rivers. They are an important source of B3+ and Li+ to the rivers. The abnormally high contents of B3+ and Li+ in the Nalenggele and Wutumeiren Rivers also suggest that the geothermal source area may be a future target for boron and lithium resources.

  13. Hydrogen content estimation of hydrogenated amorphous carbon by visible Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Adamopoulos, G.; Robertson, J.; Morrison, N. A.; Godet, C.

    2004-12-01

    In the present study, we report the hydrogen content estimation of the hydrogenated amorphous carbon (a-C:H) films using visible Raman spectroscopy in a fast and nondestructive way. Hydrogenated diamondlike carbon films were deposited by the plasma enhanced chemical vapor deposition, plasma beam source, and integrated distributed electron cyclotron resonance techniques. Methane and acetylene were used as source gases resulting in different hydrogen content and sp2/sp3 fraction. Ultraviolet-visible (UV-Vis) spectroscopic ellipsometry (1.5-5eV ) as well as UV-Vis spectroscopy were provided with the optical band gap (Tauc gap). The sp2/sp3 fraction and the hydrogen content were independently estimated by electron energy loss spectroscopy and elastic recoil detection analysis-Rutherford back scattering, respectively. The Raman spectra that were acquired in the visible region using the 488nm line shows the superposition of Raman features on a photoluminescence (PL) background. The direct relationship of the sp2 content and the optical band gap has been confirmed. The difference in the PL background for samples of the same optical band gap (sp2 content) and different hydrogen content was demonstrated and an empirical relationship between the visible Raman spectra PL background slope and the corresponding hydrogen content was extracted.

  14. Synthon preference in the cocrystal of 3,4,5-trifluorophenylboronic acid with urea.

    PubMed

    Kopczyńska, Karolina; Marek, Paulina H; Banaś, Bartłomiej; Madura, Izabela D

    2017-11-01

    The comprehensive description of the crystal structure of a novel 1:1 cocrystal of 3,4,5-trifluorophenylboronic acid with urea, C 6 H 4 BF 3 O 2 ·CH 4 N 2 O, is presented. Both components are good candidates for crystal engineering as they can create a variety of supramolecular synthons. The preference for the formation of different hetrosynthons is verified based on theoretical calculations. The syn-anti conformation of boronic acid has been found to be the most favourable in the formation of intermolecular interactions with urea. Moreover, the distortions present in the boron coordination sphere have been described quantitatively based on experimental data according to bond-valence vector model calculations. The results revealed that the deformation of the sphere is typical for a syn-anti conformation of boronic acids. The supramolecular structure of the cocrystal is composed of large synthons in the form of layers made up of O-H...O and N-H...O hydrogen bonds. The layers are joined via N-H...F hydrogen bonds which are unusual for urea cocrystal structures.

  15. Carbon atom clusters in random covalent networks: PAHs as an integral component of interstellar HAC

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    1990-11-01

    Using a random covalent network (RCN) model for the structure of hydrogenated amorphorous carbon (HAC) and the available laboratory data, it is shown that aromatic species are a natural consequence of the structure of amorphous carbons formed in the laboratory. Amorphous carbons in the interstellar medium are therefore likely to contain a significant fraction of Polycyclic aromatic hydrocarbons (PAH) species within the 'amorphous' matrix making up these materials. This aromatic component can be produced in situ during the accretion of gas phase carbon species on to grains in the interstellar medium under hydrogen-poor conditions, or subsequent to deposition as a result of photolysis (photodarkening). The fraction of interstellar carbon present in HAC in the form of PAHs, based upon a RCN model, is consistent with the observed Unidentified infrared (UIR) emission features.

  16. Transition-metal dispersion on carbon-doped boron nitride nanostructures: Applications for high-capacity hydrogen storage

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Zhao, Yu-Jun; Liao, Ji-Hai; Yang, Xiao-Bao

    2012-07-01

    Using density-functional theory calculations, we investigated the adsorption of transition-metal (TM) atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) on carbon doped hexagonal boron nitride (BN) sheet and the corresponding cage (B12N12). With carbon substitution of nitrogen, Sc, V, Cr, and Mn atoms were energetically favorable to be dispersed on the BN nanostructures without clustering or the formation of TM dimers, due to the strong binding between TM atoms and substrate, which contains the half-filled levels above the valence bands maximum. The carbon doped BN nanostructures with dispersed Sc could store up to five and six H2, respectively, with the average binding energy of 0.3 ˜ 0.4 eV, indicating the possibility of fabricating hydrogen storage media with high capacity. We also demonstrated that the geometrical effect is important for the hydrogen storage, leading to a modulation of the charge distributions of d levels, which dominates the binding between H2 and TM atoms.

  17. Structural evolution and electronic properties of n-type doped hydrogenated amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    He, Jian; Li, Wei; Xu, Rui; Qi, Kang-Cheng; Jiang, Ya-Dong

    2011-12-01

    The relationship between structure and electronic properties of n-type doped hydrogenated amorphous silicon (a-Si:H) thin films was investigated. Samples with different features were prepared by plasma enhanced chemical vapor deposition (PECVD) at various substrate temperatures. Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to evaluate the structural evolution, meanwhile, electronic-spin resonance (ESR) and optical measurement were applied to explore the electronic properties of P-doped a-Si:H thin films. Results reveal that the changes in materials structure affect directly the electronic properties and the doping efficiency of dopant.

  18. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.

    PubMed

    Wang, Ke-Yao; Foster, Amy C

    2012-04-15

    We demonstrate wavelength conversion through nonlinear parametric processes in hydrogenated amorphous silicon (a-Si:H) with maximum conversion efficiency of -13 dB at telecommunication data rates (10 GHz) using only 15 mW of pump peak power. Conversion bandwidths as large as 150 nm (20 THz) are measured in continuous-wave regime at telecommunication wavelengths. The nonlinear refractive index of the material is determined by four-wave mixing (FWM) to be n(2)=7.43×10(-13) cm(2)/W, approximately an order of magnitude larger than that of single crystal silicon. © 2012 Optical Society of America

  19. Flexible neutron shielding composite material of EPDM rubber with boron trioxide: Mechanical, thermal investigations and neutron shielding tests

    NASA Astrophysics Data System (ADS)

    Özdemir, T.; Güngör, A.; Reyhancan, İ. A.

    2017-02-01

    In this study, EPDM and boron trioxide composite was produced and mechanical, thermal and neutron shielding tests were performed. EPDM rubber (Ethylene Propylene Diene Monomer) having a considerably high hydrogen content is an effective neutron shielding material. On the other hand, the materials containing boron components have effective thermal neutron absorption crossection. The composite of EPDM and boron trioxide would be an effective solution for both respects of flexibility and effectiveness for developing a neutron shielding material. Flexible nature of EPDM would be a great asset for the shielding purpose in case of intervention action to a radiation accident. The theoretical calculations and experimental neutron absorption tests have shown that the results were in parallel and an effective neutron shielding has been achieved with the use of the developed composite material.

  20. Reversible Hydrogen Activation by a Pyridonate Borane Complex: Combining Frustrated Lewis Pair Reactivity with Boron-Ligand Cooperation.

    PubMed

    Gellrich, Urs

    2018-04-16

    A pyridone borane complex that liberates dihydrogen under mild conditions is described. The reverse reaction, dihydrogen activation by the formed pyridonate borane complex, is achieved under moderate H 2 pressure (2 bar) at room temperature. DFT and DLPNO-CCSD(T) computations reveal that the active form of the pyridonate borane complex is a boroxypyridine that can be described as a single component frustrated Lewis pair (FLP). Significantly, the boroxypyridine undergoes a chemical transformation to a neutral pyridone donor ligand in the course of the hydrogen activation. This unprecedented mode of action may thus, in analogy to metal-ligand cooperation, be regarded as an example of boron-ligand cooperation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Characterization of Two Distinct Amorphous Forms of Valsartan by Solid-State NMR.

    PubMed

    Skotnicki, Marcin; Apperley, David C; Aguilar, Juan A; Milanowski, Bartłomiej; Pyda, Marek; Hodgkinson, Paul

    2016-01-04

    Valsartan (VAL) is an antihypertensive drug marketed in an amorphous form. Amorphous materials can have different physicochemical properties depending on preparation method, thermal history, etc., but the nature of such materials is difficult to study by diffraction techniques. This study characterizes two different amorphous forms of valsartan (AR and AM) using solid-state NMR (SSNMR) as a primary investigation tool, supported by solution-state NMR, FT-IR, TMDSC, and dissolution tests. The two forms are found to be clearly distinct, with a significantly higher level of structural arrangement in the AR form, as observed in (13)C, (15)N, and (1)H SSNMR. (13)C and (15)N NMR indicates that the fully amorphous material (AM) contains an approximately equal ratio of cis-trans conformers about the amide bond, whereas the AR form exists mainly as one conformer, with minor conformational "defects". (1)H ultrafast MAS NMR shows significant differences in the hydrogen bonding involving the tetrazole and acid hydrogens between the two materials, while (15)N NMR shows that both forms exist as a 1,2,3,4-tetrazole tautomer. NMR relaxation times show subtle differences in local and bulk molecular mobility, which can be connected with the glass transition, the stability of the glassy material, and its response to aging. Counterintuitively the fully amorphous material is found to have a significantly lower dissolution rate than the apparently more ordered AR material.

  2. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricating Diamond Films and Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    The tribological properties of chemical-vapor-deposited (CVD) diamond films vary with the environment, possessing a Jekyll-and-Hyde character. CVD diamond has low coefficient of friction and high wear resistance in air but high coefficient of friction and low wear resistance in vacuum. Improving the tribological functionality of materials (such as achieving low friction and good wear resistance) was an aim of this investigation. Three studies on the surface design, surface engineering, and tribology of CVD diamond have shown that its friction and wear are significantly reduced in ultrahigh vacuum. The main criteria for judging whether diamond films are an effective wear-resistant, self-lubricating material were coefficient of friction and wear rate, which must be less than 0.1 and on the order of 10(exp 6) cu mm/N(dot)m, respectively. In the first study the presence of a thin film (less than 1 micron thick) of amorphous, nondiamond carbon (hydrogenated carbon, also called diamondlike carbon or DLC) on CVD diamond greatly decreased the coefficient of friction and the wear rate. Therefore, a thin DLC film on CVD diamond can be an effective wear-resistant, lubricating coating in ultrahigh vacuum. In the second study the presence of an amorphous, nondiamond carbon surface layer formed on CVD diamond by ion implantation significantly reduced the coefficient of friction and the wear rate in ultrahigh vacuum. Therefore, such surface layers are acceptable for effective self-lubricating, wear-resistant applications of CVD diamond. In the third study CVD diamond in contact with cubic boron nitride exhibited low coefficient of friction in ultra high vacuum. Therefore, this materials combination can provide an effective self-lubricating, wear-resistant couple in ultrahigh vacuum.

  3. Effect of silane dilution on intrinsic stress in glow discharge hydrogenated amorphous silicon films

    NASA Astrophysics Data System (ADS)

    Harbison, J. P.; Williams, A. J.; Lang, D. V.

    1984-02-01

    Measurements of the intrinsic stress in hydrogenated amorphous silicon (a-Si : H) films grown by rf glow discharge decomposition of silane diluted to varying degrees in argon are presented. Films are found to grow under exceedingly high compressive stress. Low values of macroscopic film density and low stress values are found to correlate with high growth rate. An abrupt drop in stress occurs between 2 and 3% silane at precisely the point where columnar growth morphology appears. No corresponding abrupt change is noted in density, growth rate, or plasma species concentrations as determined by optical emissioin spectroscopy. Finally a model of diffusive incorporation of hydrogen or some gaseous impurity during growth into the bulk of the film behind the growing interface is proposed to explain the results.

  4. Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals

    DTIC Science & Technology

    2013-05-01

    reported later. Recrystallization has not been reported in the literature and is precluded by the model, meaning : 0 →1 is irreversible. Following...average HEL, above which a measurable strength loss is evident (Vogler et al., 2004), though amorphization has not been definitively proven to cause... definition (A.7) is exact when ı2 E→ 0 (Clayton, 2012). This criterion agrees exactly with that for classical stability under hydrostatic loading

  5. The shocking development of lithium (and boron) in supernovae

    NASA Technical Reports Server (NTRS)

    Dearborn, David S. P.; Schramm, David N.; Steigman, Gary; Truran, James

    1989-01-01

    It is shown that significant amounts of Li-7 and B-11 are produced in Type 2 supernovae. The synthesis of these rare elements occurs as the supernova shock traverses the base of the hydrogen envelope burning He-3 to masses 7 and 11 via alpha capture. The yields in this process are sufficient to account for the difference in lithium abundance observed between Pop 2 and Pop 1 stars. Since lithium (and boron) would, in this manner, be created in the same stars that produce the bulk of the heavy elements, the lithium abundance even in old Pop 1 stars would be high (as observed). The B-11 production may remedy the long-standing problem of the traditional spallation scenario to account for the observed isotopic ratio of boron. Observational consequences of this mechanism are discussed, including the evolution of lithium and boron isotope ratios in the Galaxy and the possible use of the boron yields to constrain the number of blue progenitor Type 2 supernovae.

  6. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    NASA Astrophysics Data System (ADS)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  7. Edge-Hydroxylated Boron Nitride Nanosheets as an Effective Additive to Improve the Thermal Response of Hydrogels.

    PubMed

    Xiao, Feng; Naficy, Sina; Casillas, Gilberto; Khan, Majharul H; Katkus, Tomas; Jiang, Lei; Liu, Huakun; Li, Huijun; Huang, Zhenguo

    2015-11-25

    Upon flowing hot steam over hexagonal boron nitride (h-BN) bulk powder, efficient exfoliation and hydroxylation of BN occur simultaneously. Through effective hydrogen bonding with water and N-isopropylacrylamide, edge-hydroxylated BN nanosheets dramatically improve the dimensional change and dye release of this temperature-sensitive hydrogel and thereby enhance its efficacy in bionic, soft robotic, and drug-delivery applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Boron-capped tris(glyoximato) cobalt clathrochelate as a precursor for the electrodeposition of nanoparticles catalyzing H2 evolution in water.

    PubMed

    Anxolabéhère-Mallart, Elodie; Costentin, Cyrille; Fournier, Maxime; Nowak, Sophie; Robert, Marc; Savéant, Jean-Michel

    2012-04-11

    Electrochemical investigation of a boron-capped tris(glyoximato)cobalt clathrochelate complex in the presence of acid reveals that the catalytic activity toward hydrogen evolution results from an electrodeposition of cobalt-containing nanoparticles on the electrode surface at a modest cathodic potential. The deposited particles act as remarkably active catalysts for H(2) production in water at pH 7. © 2012 American Chemical Society

  9. Effective binding of perhalogenated closo-borates to serum albumins revealed by spectroscopic and ITC studies

    NASA Astrophysics Data System (ADS)

    Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.

    2017-08-01

    The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.

  10. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate-borax

    NASA Astrophysics Data System (ADS)

    Shen, M. J.; Wang, X. J.; Zhang, M. F.

    2012-10-01

    A ceramic coating was formed on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation (PEO) in the silicate solution with and without borax doped. The composition, morphology, elements and roughness as well as mechanical property of the coating were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and reciprocal-sliding tribometer. The results show that the PEO coating is mainly composed of magnesia. When using borax dope, boron element is permeating into the coating and the boron containing phase exist in the form of amorphous. In addition, the microhardness and compactness of the PEO coating are improved significantly due to doped borax.

  11. Determination of the charge radii of several light nuclei from precision, high-energy electron elastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabir, Al Amin

    2015-12-01

    Analysis of high-energy electron scattering has been used to determine the charge radii of nuclei for several decades. Recent analysis of the Lamb shift in muonic hydrogen found an r.m.s. radius significantly different than the electron scattering result. To understand this puzzle we have analyzed the "LEDEX" data for the (e, e'p) reaction. This experiment includes measurements on several light nuclei, hydrogen, deuterium, lithium, boron, and carbon. To test our ability to measure absolute cross sections, as well as our ability to extract the charge radius, we tested our technique against the extremely well-measured carbon case and found excellent agreementmore » using the Fourier-Bessel parametrization. We then extended the procedure to boron and lithium, which show nice agreement with the latest theoretical calculations. For hydrogen, we see clearly the limits of this technique and therefore, the charge radius is determined from the traditional extrapolation to q 2 = 0. We will show that there is a model dependence in extracting the charge radius of hydrogen and its unambiguous determination is very difficult with available electron-scattering measurements.« less

  12. Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics.

    PubMed

    Rao, Sandro; Pangallo, Giovanni; Della Corte, Francesco Giuseppe

    2016-01-06

    Hydrogenated amorphous silicon (a-Si:H) shows interesting optoelectronic and technological properties that make it suitable for the fabrication of passive and active micro-photonic devices, compatible moreover with standard microelectronic devices on a microchip. A temperature sensor based on a hydrogenated amorphous silicon p-i-n diode integrated in an optical waveguide for silicon photonics applications is presented here. The linear dependence of the voltage drop across the forward-biased diode on temperature, in a range from 30 °C up to 170 °C, has been used for thermal sensing. A high sensitivity of 11.9 mV/°C in the bias current range of 34-40 nA has been measured. The proposed device is particularly suitable for the continuous temperature monitoring of CMOS-compatible photonic integrated circuits, where the behavior of the on-chip active and passive devices are strongly dependent on their operating temperature.

  13. Low temperature production of large-grain polycrystalline semiconductors

    DOEpatents

    Naseem, Hameed A [Fayetteville, AR; Albarghouti, Marwan [Loudonville, NY

    2007-04-10

    An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.

  14. Electronic, thermodynamics and mechanical properties of LaB6 from first-principles

    NASA Astrophysics Data System (ADS)

    Ivashchenko, V. I.; Turchi, P. E. A.; Shevchenko, V. I.; Medukh, N. R.; Leszczynski, Jerzy; Gorb, Leonid

    2018-02-01

    Up to date, the electronic structure properties of amorphous lanthanum hexaboride, a-LaB6, were not yet investigated, and the thermodynamic and mechanical properties of crystalline lanthanum hexaboride (c-LaB6) were studied incompletely. The goal of this work was to fill these gaps in the study of lanthanum hexaborides. The electronic and phonon structures, thermodynamic and mechanical properties of both crystalline and amorphous lanthanum hexaborides (c-LaB6, a-LaB6, respectively) were investigated within the density functional theory. An amorphyzation of c-LaB6 gives rise to the metal - semiconductor transition. The thermal conductivity decreases on going from c-LaB6 to a-LaB6. The elastic moduli, hardness, ideal tensile and shear strengths of a-LaB6 are significantly lower compared to those of the crystalline counterpart, despite the formation of the icosahedron-like boron network in the amorphous phase. For c-LaB6, the stable boron octahedrons are preserved after the failure under tensile and shear strains. The peculiarity in the temperature dependence of heat capacity, Cp(T), at 50 K is explained by the availability of a sharp peak at 100 cm-1 in the phonon density of states of c-LaB6. An analysis of the Fermi surface indicates that this peak is not related to the shape of the Fermi surface, and is caused by the vibration of lanthanum atoms. In the phonon spectrum of a-LaB6, the peak at 100 cm-1 is significantly broader than in the spectrum of c-LaB6, for which reason the anomaly in the Cp(T) dependence of a-LaB6 does not appear. The calculated characteristics are in good agreement with the available experimental data.

  15. Natural cotton as precursor for the refractory boron carbide—a hydrothermal synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Saritha Devi, H. V.; Swapna, M. S.; Raj, Vimal; Ambadas, G.; Sankararaman, S.

    2018-01-01

    Boron carbide (B4C) is an excellent covalent carbide that finds applications in industries and nuclear power plants. The present synthesis methods of boron carbide are expensive and involve the use of toxic chemicals that adversely affect environment. In the present work, we report for the first time the use of the hydrothermal method for converting the cellulose from cotton as the carbon precursor for B4C. The carbon precursor is converted into functionalized porous carbonaceous material by hydrothermal treatment followed by sodium borohydride. It is further treated with boric acid to make it a B4C precursor. The precursor is characterized by UV-visible diffuse reflectance, Raman, Fourier transform infrared, photoluminescent and energy dispersive spectroscopy. The morphology and structure analysis is carried out using field emission scanning electron microscopy and x-ray diffraction techniques. The results of structural and optical characterization of the sample synthesized are compared with the commercial B4C. The thermal stability of the sample is studied by thermogravimetric analysis. The sample annealed at 700 °C is found to be B4C devoid of amorphous carbon with a yield of 44.7%. The analysis reveals the formation of boron carbide from the sample.

  16. Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions

    DOE PAGES

    Mangolini, Filippo; Krick, Brandon A.; Jacobs, Tevis D. B.; ...

    2017-12-27

    Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has beenmore » inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. In conclusion, these findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.« less

  17. Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangolini, Filippo; Krick, Brandon A.; Jacobs, Tevis D. B.

    Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has beenmore » inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. In conclusion, these findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.« less

  18. Study on glass-forming ability and hydrogen storage properties of amorphous Mg{sub 60}Ni{sub 30}La{sub 10−x}Co{sub x} (x = 0, 4) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Peng; Wang, Zhong-min, E-mail: zmwang@guet.edu.cn; Zhang, Huai-gang

    2013-12-15

    Mg{sub 60}Ni{sub 30}La{sub 10−x}Co{sub x} (x = 0, 4) amorphous alloys were prepared by rapid solidification, using a melt-spinning technique. X-ray diffraction and differential scanning calorimetry analysis were employed to measure their microstructure, thermal stability and glass-forming ability, and hydrogen storage properties were studied by means of PCTPro2000. Based on differential scanning calorimetry results, their glass-forming ability and thermal stability were investigated by Kissinger method, Lasocka curves and atomic cluster model, respectively. The results indicate that glass-forming ability, thermal properties and hydrogen storage properties in the Mg-rich corner of Mg–Ni–La–Co system alloys were enhanced by Co substitution for La. Itmore » can be found that the smaller activation energy (ΔΕ) and frequency factor (υ{sub 0}), the bigger value of B (glass transition point in Lasocka curves), and higher glass-forming ability of Mg–Ni–La–Co alloys would be followed. In addition, atomic structure parameter (λ), deduced from atomic cluster model is valuable in the design of Mg–Ni–La–Co system alloys with good glass-forming ability. With an increase of Co content from 0 to 4, the hydrogen desorption capacity within 4000 s rises from 2.25 to 2.85 wt.% at 573 K. - Highlights: • Amorphous Mg{sub 60}Ni{sub 30}La{sub 10−x}Co{sub x} (x = 0 and 4) alloys were produced by melt spinning. • The GFA and hydrogen storage properties were enhanced by Co substitution for La. • With an increase of Co content, the hydrogen desorption capacity rises at 573 K.« less

  19. Hydrogen Storage Characteristics of Nanocrystalline and Amorphous Nd-Mg-Ni-Based NdMg12-Type Alloys Synthesized via Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Zhang, Yanghuan; Shang, Hongwei; Hou, Zhonghui; Yuan, Zeming; Yang, Tai; Qi, Yan

    2016-12-01

    In this study, Mg was partially substituted by Ni with the intent of improving the hydrogen storage kinetics performance of NdMg12-type alloy. Mechanical milling technology was adopted to fabricate the nanocrystalline and amorphous NdMg11Ni + x wt pct Ni ( x = 100, 200) alloys. The effects of Ni content and milling duration on the microstructures and hydrogen storage kinetics of as-milled alloys have been systematically investigated. The structures were characterized by XRD and HRTEM. The electrochemical hydrogen storage properties were tested by an automatic galvanostatic system. Moreover, the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter connected with a H2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. The results reveal that the increase of Ni content dramatically ameliorates the gaseous and electrochemical hydrogen storage kinetics performance of the as-milled alloys. Furthermore, high rate discharge ability (HRD) reach the maximum value with the variation of milling time. The maximum HRDs of the NdMg11Ni + x wt pct Ni ( x = 100, 200) alloys are 80.24 and 85.17 pct. The improved gaseous hydrogen storage kinetics of alloys via increasing Ni content and milling time can be attributed to a decrease in the hydrogen desorption activation energy.

  20. Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K.

    PubMed

    Tian, Bin; Tian, Bining; Smith, Bethany; Scott, M C; Hua, Ruinian; Lei, Qin; Tian, Yue

    2018-04-11

    Solar-driven water splitting using powdered catalysts is considered as the most economical means for hydrogen generation. However, four-electron-driven oxidation half-reaction showing slow kinetics, accompanying with insufficient light absorption and rapid carrier combination in photocatalysts leads to low solar-to-hydrogen energy conversion efficiency. Here, we report amorphous cobalt phosphide (Co-P)-supported black phosphorus nanosheets employed as photocatalysts can simultaneously address these issues. The nanosheets exhibit robust hydrogen evolution from pure water (pH = 6.8) without bias and hole scavengers, achieving an apparent quantum efficiency of 42.55% at 430 nm and energy conversion efficiency of over 5.4% at 353 K. This photocatalytic activity is attributed to extremely efficient utilization of solar energy (~75% of solar energy) by black phosphorus nanosheets and high-carrier separation efficiency by amorphous Co-P. The hybrid material design realizes efficient solar-to-chemical energy conversion in suspension, demonstrating the potential of black phosphorus-based materials as catalysts for solar hydrogen production.

  1. Heterogeneous Metal-Free Hydrogenation over Defect-Laden Hexagonal Boron Nitride

    DOE PAGES

    Nash, David J.; Restrepo, David T.; Parra, Natalia S.; ...

    2016-12-21

    Catalytic hydrogenation is an important process used for the production of everything from foods to fuels. Current heterogeneous implementations of this process utilize metals as the active species. Until recently, catalytic heterogeneous hydrogenation over a metal-free solid was unknown; implementation of such a system would eliminate the health, environmental, and economic concerns associated with metal-based catalysts. We report good hydrogenation rates and yields for a metal-free heterogeneous hydrogenation catalyst as well as its unique hydrogenation mechanism. We achieved catalytic hydrogenation of olefins over defect-laden h-BN (dh-BN) in a reactor designed to maximize the defects in h-BN sheets. Good yields (>90%)more » and turnover frequencies (6 × 10 –5–4 × 10 –3) were obtained for the hydrogenation of propene, cyclohexene, 1,1-diphenylethene, (E)- and (Z)-1,2-diphenylethene, octadecene, and benzylideneacetophenone. Temperature-programmed desorption of ethene over processed h-BN indicates the formation of a highly defective structure. Solid-state NMR (SSNMR) measurements of dh-BN with high and low propene surface coverages show four different binding modes. The introduction of defects into h-BN creates regions of electronic deficiency and excess. Density functional theory calculations show that both the alkene and hydrogen-bond order are reduced over four specific defects: boron substitution for nitrogen (B N), vacancies (V B and V N), and Stone–Wales defects. SSNMR and binding-energy calculations show that V N are most likely the catalytically active sites. Our work shows that catalytic sites can be introduced into a material previously thought to be catalytically inactive through the production of defects.« less

  2. Impact of hydrogen dilution on optical properties of intrinsic hydrogenated amorphous silicon films prepared by high density plasma chemical vapor deposition for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui

    2013-01-01

    P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.

  3. Preparation of hydrogenated amorphous carbon films using a microsecond-pulsed DC capacitive-coupled plasma chemical vapor deposition system operated at high frequency up to 400 kHz

    NASA Astrophysics Data System (ADS)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-06-01

    Hydrogenated amorphous carbon (a-C:H) films are deposited on silicon (Si) substrates using a high-repetition microsecond-pulsed DC plasma chemical vapor deposition (CVD) system from acetylene (C2H2) at a gas pressure of 15 Pa inside a custom-made vacuum chamber. The plasma discharge characteristics, hydrocarbon species, and the microstructure of the resulting films are examined at various pulse repetition rates from 50 to 400 kHz and a fixed duty cycle of 50%. The optical emission spectra confirmed the increase in electron excitation energy from 1.09 to 1.82 eV and the decrease in the intensity ratio of CH/C2 from 1.04 to 0.75 with increasing pulse frequency, indicating the enhanced electron impact dissociation of C2H2 gas. With increasing pulse frequency, the deposition rate gradually increased, reaching a maximum rate of 60 nm/min at 200 kHz, after which a progressive decrease was noted, whereas the deposition area was almost uniform for all the prepared films. Clear trends of increasing sp3 content (amorphization) and decreasing hydrogen (H) content in the films were observed as the pulse repetition rate increased, while most of the hydrogen atoms bonded to carbon atoms by sp3 hybridization rather than by sp2 hybridization.

  4. Extended electron energy loss fine structure simulation of the local boron environment in sodium aluminoborosilicate glasses containing gadolinium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Morris; Li, Hong; Li, Liyu

    Gadolinium can be dissolved in sodium-alumino-borosilicate glasses up to 47 wt% in a baseline borosilicate glass (mol%) 20 B2O3, 5 Al2O3, 60 SiO2,and 20 Na2O. Understanding of Gd dissolution in borosilicate melts is important in glass formulation optimization. Electron energy loss fine structure (ELFS) spectroscopy is chosen, which provides well resolved local atomic structure information for both amorphous and crystalline materials with high sensitivity to low Z elements such as Al, B, Na, O, and Si where the x-ray absorption fine structure (XAFS) technique faces experimental difficulty. In this study, we report our results of boron K-edge ELFS study. Twomore » borosilicate glass samples with 30 and 47 mass% Gd2O3, B20Gd30 and B20Gd47were chosen for B K-edge ELFS study. EEL spectra were acquired on a Philips 430 TEM equipped with Gatan PEELS system 666 and EL/P 2.1 software with Custom function AcqLong. The ELFS data analysis was performed using UWELFS, UWXAFS and FEFF software. From our Gd solubility study, the local structure of Gd in the borate environment possibly resembles double chain structure found in crystalline Gd(BO2)3 as proposed by Chakraborty et al. The B/Gd ratio's in both glasses are smaller then 3, which means the excess Gd atoms in the Si-sites would be 17 and 60 mol% of the total Gd atoms, respectively according to the model, yet the local environment of borate sites saturated with Gd should be remained. To verity above hypothesis, the double chain structure model was applied to fit boron K-edge. The model was shown to well fit experimental boron K-edge EELS spectra for both glasses with some degree of distance distortion which is understandable in amorphous structure. Therefore, it is very likely that Gd stabilized in borate sites has a local structure resembling the double chain Gd(BO2)3 structure as proposed by our solubility study and literature.« less

  5. Molecular dynamics simulations of hydrogen bombardment of tungsten carbide surfaces

    NASA Astrophysics Data System (ADS)

    Träskelin, P.; Juslin, N.; Erhart, P.; Nordlund, K.

    2007-05-01

    The interaction between energetic hydrogen and tungsten carbide (WC) is of interest both due to the use of hydrogen-containing plasmas in thin-film manufacturing and due to the presence of WC in the divertor of fusion reactors. In order to study this interaction, we have carried out molecular dynamics simulations of the low-energy bombardment of deuterium impinging onto crystalline as well as amorphous WC surfaces. We find that prolonged bombardment leads to the formation of an amorphous WC surface layer, regardless of the initial structure of the WC sample. Loosely bound hydrocarbons, which can erode by swift chemical sputtering, are formed at the surface. Carbon-terminated surfaces show larger sputtering yields than tungsten-terminated surfaces. In both cumulative and noncumulative simulations, C is seen to sputter preferentially. Implications for mixed material erosion in ITER are discussed.

  6. Enhanced photoluminescence from ring resonators in hydrogenated amorphous silicon thin films at telecommunications wavelengths.

    PubMed

    Patton, Ryan J; Wood, Michael G; Reano, Ronald M

    2017-11-01

    We report enhanced photoluminescence in the telecommunications wavelength range in ring resonators patterned in hydrogenated amorphous silicon thin films deposited via low-temperature plasma enhanced chemical vapor deposition. The thin films exhibit broadband photoluminescence that is enhanced by up to 5 dB by the resonant modes of the ring resonators due to the Purcell effect. Ellipsometry measurements of the thin films show a refractive index comparable to crystalline silicon and an extinction coefficient on the order of 0.001 from 1300 nm to 1600 nm wavelengths. The results are promising for chip-scale integrated optical light sources.

  7. Threshold-Voltage-Shift Compensation and Suppression Method Using Hydrogenated Amorphous Silicon Thin-Film Transistors for Large Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Oh, Kyonghwan; Kwon, Oh-Kyong

    2012-03-01

    A threshold-voltage-shift compensation and suppression method for active matrix organic light-emitting diode (AMOLED) displays fabricated using a hydrogenated amorphous silicon thin-film transistor (TFT) backplane is proposed. The proposed method compensates for the threshold voltage variation of TFTs due to different threshold voltage shifts during emission time and extends the lifetime of the AMOLED panel. Measurement results show that the error range of emission current is from -1.1 to +1.7% when the threshold voltage of TFTs varies from 1.2 to 3.0 V.

  8. Reduction in number of crystal defects in a p+Si diffusion layer by germanium and boron cryogenic implantation combined with sub-melt laser spike annealing

    NASA Astrophysics Data System (ADS)

    Murakoshi, Atsushi; Harada, Tsubasa; Miyano, Kiyotaka; Harakawa, Hideaki; Aoyama, Tomonori; Yamashita, Hirofumi; Kohyama, Yusuke

    2017-09-01

    To reduce the number of crystal defects in a p+Si diffusion layer by a low-thermal-budget annealing process, we have examined crystal recovery in the amorphous layer formed by the cryogenic implantation of germanium and boron combined with sub-melt laser spike annealing (LSA). The cryogenic implantation at -150 °C is very effective in suppressing vacancy clustering, which is advantageous for rapid crystal recovery during annealing. The crystallinity after LSA is shown to be very high and comparable to that after rapid thermal annealing (RTA) owing to the cryogenic implantation, although LSA is a low-thermal-budget annealing process that can suppress boron diffusion effectively. It is also shown that in the p+Si diffusion layer, there is high contact resistance due to the incomplete formation of a metal silicide contact, which originates from insufficient outdiffusion of surface contaminants such as fluorine. To widely utilize the marked reduction in the number of crystal defects, sufficient removal of surface contaminants will be required in the low-thermal-budget process.

  9. Dynamic Failure and Fragmentation of a Hot-Pressed Boron Carbide

    NASA Astrophysics Data System (ADS)

    Sano, Tomoko; Vargas-Gonzalez, Lionel; LaSalvia, Jerry; Hogan, James David

    2017-12-01

    This study investigates the failure and fragmentation of a hot-pressed boron carbide during high rate impact experiments. Four impact experiments are performed using a composite-backed target configuration at similar velocities, where two of the impact experiments resulted in complete target penetration and two resulted in partial penetration. This paper seeks to evaluate and understand the dynamic behavior of the ceramic that led to either the complete or partial penetration cases, focusing on: (1) surface and internal failure features of fragments using optical, scanning electron, and transmission electron microscopy, and (2) fragment size analysis using state-of-the-art particle-sizing technology that informs about the consequences of failure. Detailed characterization of the mechanical properties and the microstructure is also performed. Results indicate that transgranular fracture was the primary mode of failure in this boron carbide material, and no stress-induced amorphization features were observed. Analysis of the fragment sizes for the partial and completely penetrated experiments revealed a possible correlation between larger fragment sizes and impact performance. The results will add insight into designing improved advanced ceramics for impact protection applications.

  10. Synthesis and formation mechanism of pinnoite in sulfated-type boron concentrated brine by dilution method

    NASA Astrophysics Data System (ADS)

    Peng, Jiaoyu; Bian, Shaoju; Lin, Feng; Wang, Liping; Dong, Yaping; Li, Wu

    2017-10-01

    The synthesis of pinnoite (MgB2O(OH)6) in boron-containing brine was established with a novel dilution method. Effects of temperature, precipitation time, boron concentration and mass dilution ratio on the formation of pinnoite were investigated. The products obtained were characterized by X-ray diffraction (XRD), Raman, thermogravimetric and differential scanning calorimeter (TG-DSC), and scanning electron microscopy. The transformation mechanism of pinnoite with different dilution ratios was assumed by studying the crystal growth of pinnoite. The results showed that pinnoite was synthesized above 60 °C in the diluted brine. There were two reaction steps - precipitation of amorphous solid and the formation of pinnoite crystals - during the whole reaction process of pinnoite when the dilution ratio is more than 1.0 at 80 °C. While in the 0.5 diluted brine, only one reaction step of pinnoite crystal formation was observed and its transformation mechanism was discussed based on dissociation of polyborates in brine. Besides, the origin of pinnoite mineral deposited on salt lake bottom was proposed.

  11. Polyamorphism of D-mannitol

    NASA Astrophysics Data System (ADS)

    Zhu, Men; Yu, Lian

    2017-06-01

    Polymorphism is common in the crystalline state but rare and even controversial in the liquid or glassy state. Among molecular substances, only two are major contenders for materials that exhibit the phenomenon, including the famous case of water with its low- and high-density amorphous (LDA and HDA) ices . We report that the same phenomenon exists in another extensively hydrogen-bonded system, D-mannitol. Under the ambient pressure, D-mannitol's supercooled liquid spontaneously transforms to another amorphous phase of lower energy, larger volume (2.1%), and stronger hydrogen bonds. This transition is similar to water's HDA to LDA transition and shows the same anomaly of heat release coupled with volume expansion. In both systems, polyamorphism appears to arise from the competing demands of hydrogen bonds (loose packing) and van der Waals forces (close packing). D-mannitol is expected to play an important role as a new system for investigating polyamorphic transitions and suggests a more general occurrence of the phenomenon than the current literature indicates in systems with extensive hydrogen bonds (network bonds in general).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jing; Aguiar, Jeffery A.; Ferrere, Suzanne

    Achieving solar-to-hydrogen efficiencies above 15% is key for the commercial success of photoelectrochemical water splitting devices. While tandem cells can reach those efficiencies, increasing the catalytic activity and long-term stability remains a significant challenge. We show that annealing a bilayer of amorphous titanium dioxide (TiO x) and molybdenum sulfide (MoS x) deposited onto GaInP 2 results in a photocathode with high catalytic activity (current density of 11 mA/cm -2 at 0 V vs. the reversible hydrogen electrode under 1 sun illumination) and stability (retention of 80% of initial photocurrent density over a 20 h durability test) for the hydrogen evolutionmore » reaction. Microscopy and spectroscopy reveal that annealing results in a graded MoS x/MoO x/TiO 2 layer that retains much of the high catalytic activity of amorphous MoS x but with stability similar to crystalline MoS 2. These findings demonstrate the potential of utilizing a hybridized, heterogeneous surface layer as a cost-effective catalytic and protective interface for solar hydrogen production.« less

  13. Amorphous Boron Nitride: A Universal, Ultrathin Dielectric for 2D Nanoelectronics (Postprint)

    DTIC Science & Technology

    2015-03-21

    the C-AFM technique using the linear breakdown method when the current reaches 1 nA. [ 44 ] The breakdown is characterized by a sharp increase in...423 . [15] K. Watanabe , T. Taniguchi , H. Kanda , Nat. Mater. 2004 , 3 , 404 . [16] A. Soltani , A. Talbi , V. Mortet , A...Phys. Lett. 2011 , 99 , 243114 . [36] Y. Hattori , T. Taniguchi , K. Watanabe , K. Nagashio , ACS Nano 2014 , 9 , 916 . [37] S. N

  14. Lifetime of excitons localized in Si nanocrystals in amorphous silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusev, O. B.; Belolipetskiy, A. V., E-mail: alexey.belolipetskiy@mail.ioffe.ru; Yassievich, I. N.

    2016-05-15

    The introduction of nanocrystals plays an important role in improving the stability of the amorphous silicon films and increasing the carrier mobility. Here we report results of the study on the photoluminescence and its dynamics in the films of amorphous hydrogenated silicon containing less than 10% of silicon nanocrystals. The comparing of the obtained experimental results with the calculated probability of the resonant tunneling of the excitons localized in silicon nanocrystals is presented. Thus, it has been estimated that the short lifetime of excitons localized in Si nanocrystal is controlled by the resonant tunneling to the nearest tail state ofmore » the amorphous matrix.« less

  15. Amorphous and nanocrystalline luminescent Si and Ge obtained via a solid-state chemical metathesis synthesis route

    NASA Astrophysics Data System (ADS)

    McMillan, Paul F.; Gryko, Jan; Bull, Craig; Arledge, Richard; Kenyon, Anthony J.; Cressey, Barbara A.

    2005-03-01

    A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr 2) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300 °C. Syntheses at higher temperatures gave rise to microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.

  16. Hybrid method of making an amorphous silicon P-I-N semiconductor device

    DOEpatents

    Moustakas, Theodore D.; Morel, Don L.; Abeles, Benjamin

    1983-10-04

    The invention is directed to a hydrogenated amorphous silicon PIN semiconductor device of hybrid glow discharge/reactive sputtering fabrication. The hybrid fabrication method is of advantage in providing an ability to control the optical band gap of the P and N layers, resulting in increased photogeneration of charge carriers and device output.

  17. Role of Hydrogen in High-Yield Growth of Boron Nitride Nanotubes at Atmospheric Pressure by Induction Thermal Plasma.

    PubMed

    Kim, Keun Su; Couillard, Martin; Shin, Homin; Plunkett, Mark; Ruth, Dean; Kingston, Christopher T; Simard, Benoit

    2018-01-23

    We recently demonstrated scalable manufacturing of boron nitride nanotubes (BNNTs) directly from hexagonal BN (hBN) powder by using induction thermal plasma, with a high-yield rate approaching 20 g/h. The main finding was that the presence of hydrogen is crucial for the high-yield growth of BNNTs. Here we investigate the detailed role of hydrogen by numerical modeling and in situ optical emission spectroscopy (OES) and reveal that both the thermofluidic fields and chemical pathways are significantly altered by hydrogen in favor of rapid growth of BNNTs. The numerical simulation indicated improved particle heating and quenching rates (∼10 5 K/s) due to the high thermal conductivity of hydrogen over the temperature range of 3500-4000 K. These are crucial for the complete vaporization of the hBN feedstock and rapid formation of nanosized B droplets for the subsequent BNNT growth. Hydrogen is also found to extend the active BNNT growth zone toward the reactor downstream, maintaining the gas temperature above the B solidification limit (∼2300 K) by releasing the recombination heat of H atoms, which starts at 3800 K. The OES study revealed that H radicals also stabilize B or N radicals from dissociation of the feedstock as BH and NH radicals while suppressing the formation of N 2 or N 2 + species. Our density functional theory calculations showed that such radicals can provide faster chemical pathways for the formation of BN compared with relatively inert N 2 .

  18. Kinetic Modeling of a Silicon Refining Process in a Moist Hydrogen Atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyuan; Morita, Kazuki

    2018-03-01

    We developed a kinetic model that considers both silicon loss and boron removal in a metallurgical grade silicon refining process. This model was based on the hypotheses of reversible reactions. The reaction rate coefficient kept the same form but error of terminal boron concentration could be introduced when relating irreversible reactions. Experimental data from published studies were used to develop a model that fit the existing data. At 1500 °C, our kinetic analysis suggested that refining silicon in a moist hydrogen atmosphere generates several primary volatile species, including SiO, SiH, HBO, and HBO2. Using the experimental data and the kinetic analysis of volatile species, we developed a model that predicts a linear relationship between the reaction rate coefficient k and both the quadratic function of p(H2O) and the square root of p(H2). Moreover, the model predicted the partial pressure values for the predominant volatile species and the prediction was confirmed by the thermodynamic calculations, indicating the reliability of the model. We believe this model provides a foundation for designing a silicon refining process with a fast boron removal rate and low silicon loss.

  19. Kinetic Modeling of a Silicon Refining Process in a Moist Hydrogen Atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyuan; Morita, Kazuki

    2018-06-01

    We developed a kinetic model that considers both silicon loss and boron removal in a metallurgical grade silicon refining process. This model was based on the hypotheses of reversible reactions. The reaction rate coefficient kept the same form but error of terminal boron concentration could be introduced when relating irreversible reactions. Experimental data from published studies were used to develop a model that fit the existing data. At 1500 °C, our kinetic analysis suggested that refining silicon in a moist hydrogen atmosphere generates several primary volatile species, including SiO, SiH, HBO, and HBO2. Using the experimental data and the kinetic analysis of volatile species, we developed a model that predicts a linear relationship between the reaction rate coefficient k and both the quadratic function of p(H2O) and the square root of p(H2). Moreover, the model predicted the partial pressure values for the predominant volatile species and the prediction was confirmed by the thermodynamic calculations, indicating the reliability of the model. We believe this model provides a foundation for designing a silicon refining process with a fast boron removal rate and low silicon loss.

  20. Boron Nitride-supported Sub-nanometer Pd 6 Clusters for Formic Acid Decomposition: A DFT Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimmenti, Roberto; Cortese, Remedios; Duca, Dario

    A periodic, self-consistent planewave DFT study was carried out to explore the potential use of Pd 6 clusters supported on a boron nitride sheet as a catalyst for the selective decomposition of formic acid (HCOOH) to CO 2 and H 2. The competition between formate (HCOO) and carboxyl (COOH) paths on catalytic sites, with different proximities to the support, was studied. Based on energetics alone, the reaction may mainly follow the HCOO route. Slightly lower activation energies were found at the lateral sites of the cluster as compared to top face sites. This is particularly true for the bidentate tomore » monodentate HCOO conversion. Through comparison of results with similar studies on HCOOH decomposition on extended Pd surfaces, it was demonstrated that the existence of undercoordinated sites in the sub-nanometer cluster could play a key role in preferentially stabilizing HCOO over COOH, which is a common CO precursor in this reaction. A hydrogen spillover mechanism was also investigated; migration toward the boron nitride support is not favorable, at least in the early stages of the reaction. However, hydrogen diffusion on the cluster has low barriers compared to those involved in formic acid decomposition.« less

  1. Boron Nitride-supported Sub-nanometer Pd 6 Clusters for Formic Acid Decomposition: A DFT Study

    DOE PAGES

    Schimmenti, Roberto; Cortese, Remedios; Duca, Dario; ...

    2017-04-25

    A periodic, self-consistent planewave DFT study was carried out to explore the potential use of Pd 6 clusters supported on a boron nitride sheet as a catalyst for the selective decomposition of formic acid (HCOOH) to CO 2 and H 2. The competition between formate (HCOO) and carboxyl (COOH) paths on catalytic sites, with different proximities to the support, was studied. Based on energetics alone, the reaction may mainly follow the HCOO route. Slightly lower activation energies were found at the lateral sites of the cluster as compared to top face sites. This is particularly true for the bidentate tomore » monodentate HCOO conversion. Through comparison of results with similar studies on HCOOH decomposition on extended Pd surfaces, it was demonstrated that the existence of undercoordinated sites in the sub-nanometer cluster could play a key role in preferentially stabilizing HCOO over COOH, which is a common CO precursor in this reaction. A hydrogen spillover mechanism was also investigated; migration toward the boron nitride support is not favorable, at least in the early stages of the reaction. However, hydrogen diffusion on the cluster has low barriers compared to those involved in formic acid decomposition.« less

  2. Synthesis and characterization of a novel polyborosilazane for SiBNC ceramic

    NASA Astrophysics Data System (ADS)

    Zhang, C. Y.; Liu, Y.; Han, K. Q.; Chang, X. F.; Yu, M. H.

    2018-05-01

    A novel polyborosilazane (PBSZ) for preparing SiBNC ceramics was successfully synthesized via co-condensation approach using tetrachlorosilan (SiCl4), trichloride (BCl3) and propylamine (C3H7NH2) as starting materials. After pyrolysis of these precursors, amorphous SiBNC ceramics were obtained. The chemical composition, structure and thermal stability of the synthesized PBSZ precursor and SiBNC ceramics were analyzed by using FT-IR, NMR, TGA and XRD methods. The results indicated that the PBSZ contained the major framework of –Si-N-B- and six-membered boron-nitrogen rings. The PBSZ precursor had an approximately ceramic yield of 63 wt% prolyzed at 900°C in nitrogen atmosphere. The SiBNC ceramics shows excellent oxidation resistance and maintained amorphous up to 1600°C.

  3. High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors

    DOEpatents

    Deligianni, Hariklia; Gallagher, William J.; Mason, Maurice; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang

    2017-03-07

    An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.

  4. Method utilizing laser-processing for the growth of epitaxial p-n junctions

    DOEpatents

    Young, R.T.; Narayan, J.; Wood, R.F.

    1979-11-23

    This invention is a new method for the formation of epitaxial p-n junctions in silicon. The method is relatively simple, rapid, and reliable. It produces doped epitaxial layers which are of well-controlled thickness and whose electrical properties are satisfactory. An illustrative form of the method comprises co-depositing a selected dopant and amorphous silicon on a crystalline silicon substrate to form a doped layer of amorphous silicon thereon. This layer then is irradiated with at least one laser pulse to generate a melt front which moves through the layer, into the silicon body to a depth effecting melting of virginal silicon, and back to the surface of the layer. The method may be conducted with dopants (e.g., boron and phosphorus) whose distribution coefficients approximate unity.

  5. Ionization equilibrium at the transition from valence-band to acceptor-band migration of holes in boron-doped diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poklonski, N. A., E-mail: poklonski@bsu.by; Vyrko, S. A.; Poklonskaya, O. N.

    A quasi-classical model of ionization equilibrium in the p-type diamond between hydrogen-like acceptors (boron atoms which substitute carbon atoms in the crystal lattice) and holes in the valence band (v-band) is proposed. The model is applicable on the insulator side of the insulator–metal concentration phase transition (Mott transition) in p-Dia:B crystals. The densities of the spatial distributions of impurity atoms (acceptors and donors) and of holes in the crystal are considered to be Poissonian, and the fluctuations of their electrostatic potential energy are considered to be Gaussian. The model accounts for the decrease in thermal ionization energy of boron atomsmore » with increasing concentration, as well as for electrostatic fluctuations due to the Coulomb interaction limited to two nearest point charges (impurity ions and holes). The mobility edge of holes in the v-band is assumed to be equal to the sum of the threshold energy for diffusion percolation and the exchange energy of the holes. On the basis of the virial theorem, the temperature T{sub j} is determined, in the vicinity of which the dc band-like conductivity of holes in the v-band is approximately equal to the hopping conductivity of holes via the boron atoms. For compensation ratio (hydrogen-like donor to acceptor concentration ratio) K ≈ 0.15 and temperature T{sub j}, the concentration of “free” holes in the v-band and their jumping (turbulent) drift mobility are calculated. Dependence of the differential energy of thermal ionization of boron atoms (at the temperature 3T{sub j}/2) as a function of their concentration N is calculated. The estimates of the extrapolated into the temperature region close to T{sub j} hopping drift mobility of holes hopping from the boron atoms in the charge states (0) to the boron atoms in the charge states (−1) are given. Calculations based on the model show good agreement with electrical conductivity and Hall effect measurements for p-type diamond with boron atom concentrations in the range from 3 × 10{sup 17} to 3 × 10{sup 20 }cm{sup −3}, i.e., up to the Mott transition. The model uses no fitting parameters.« less

  6. Hugoniot equation of state and dynamic strength of boron carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grady, Dennis E.

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Losmore » Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic difference in the processes of shock compression between the LANL data and that of the other studies is the markedly larger inelastic deformation and dissipation experienced in the shock event brought about by compaction of the substantially larger porosity LANL test ceramics. High-pressure diamond anvil cell experiments reveal extensive amorphization, reasoned to be a reversion product of a higher-pressure crystallographic phase, which is a consequence of application of both high pressure and shear deformation to the boron carbide crystal structure. A dependence of shock-induced high-pressure phase transformation in boron carbide on the extent of shear deformation experienced in the shock process offers a plausible explanation for the differences observed in the LANL Hugoniot data on porous ceramic and that of other shock data on near-full-density boron carbide.« less

  7. Boroxol rings from diffraction data on vitreous boron trioxide.

    PubMed

    Soper, Alan K

    2011-09-14

    There has been a considerable debate about the nature of the short range atomic order in vitreous B(2)O(3). Some authorities state that it is not possible to build a model of glassy boron oxide of the correct density containing a large number of six-membered rings which also fits experimental diffraction data, but recent computer simulations appear to overrule that view. To discover which view is correct I use empirical potential structure refinement (EPSR) on existing neutron and x-ray diffraction data to build two models of vitreous B(2)O(3). One of these consists only of single boron and oxygen atoms arranged in a network to reproduce the diffraction data as closely as possible. This model has less than 10% of boron atoms in boroxol rings. The second model is made up of an equimolar mixture of B(3)O(3) hexagonal ring 'molecules' and BO(3) triangular molecules, with no free boron or oxygen atoms. This second model therefore has 75% of the boron atoms in boroxol rings. It is found that both models give closely similar diffraction patterns, suggesting that the diffraction data in this case are not sensitive to the number of boroxol rings present in the structure. This reinforces recent Raman, ab initio, and NMR claims that the percentage of boroxol rings in this material may be as high as 75%. The findings of this study probably explain why some interpretations based on different simulation techniques only find a small fraction of boroxol rings. The results also highlight the power of EPSR for the extraction of accurate atomistic representations of amorphous structures, provided adequate additional, non-scattering data (such as Raman and NMR in this case) are available.

  8. Tribo-mechanical and electrical properties of boron-containing coatings

    NASA Astrophysics Data System (ADS)

    Qian, Jincheng

    The development of new hard protective coatings with advanced performance is very important for progress in a variety of scientific and industrial fields. Application of hard protective coatings can significantly improve the performance of parts and components, extend their service life, and save energy in many industrial applications including aerospace, automotive, manufacturing, and other industries. In addition, the multifunctionality of protective coatings is also required in many other application fields such as optics, microelectronics, biomedical, magnetic storage media, etc. Therefore, protective coatings with enhanced tribo-mechanical and corrosion properties as well as other functions are in demand. The coating characteristics can be adjusted by controlling the microstructure at different scales. For example, films with nanostructures, such as superlattice, nanocolumn, and nanocomposite systems, exhibit distinctive characteristics compared to single-phase materials. They show superior tribo-mechanical properties due to the presence of strong interfaces, and different functions can be achieved due to the multi-phase characteristics. Boron-containing materials with their excellent mechanical properties and interesting electronic characteristics are good candidates for functional hard protective coatings. For instance, cubic boron nitride (c-BN), boron carbide (B1-xCx), and titanium diboride (TiB 2) are well known for their high hardness, high thermal stability, and high chemical inertness. An interesting example is the boron carbon nitride (BCN) compound that possesses many attractive properties because its structure is similar to that of carbon (graphite and diamond) and of boron nitride (BN in hexagonal and cubic phases). The main goal of this work is to further develop the family of Boron-containing films including B1-xCx, Ti-B-C, and BCN films fabricated by magnetron sputtering, and to enhance their performance by controlling their microstructure on the nanoscale. Their tribo-mechanical, corrosion, and electrical properties are studied in relation to the composition and microstructure, aiming at enhancing their performance for multi-functional protective coating applications via microstructural design. First, B1-xCx (0 < x < 1) films with tailored tribo-mechanical properties were deposited by magnetron sputtering using one graphite and two boron targets. The hardness of the B1-xC x films was found to reach 25 GPa both for boron-rich and carbon-rich films, and the friction coefficient and wear rate can be adjusted from 0.66 to 0.13 and from 6.4x10-5 mm3/Nm to 1.3x10 -7 mm3/Nm, respectively, by changing the carbon content from 19 to 76 at.%. The hardness variation is closely related to the microstructure, and the low friction and wear rate of the B0.24C0.76 film are due to the high portion of an amorphous carbon phase. Moreover, application of the B0.81C0.19 film improves the corrosion resistance of the M2 steel substrate significantly, indicated by the decrease of the corrosion current by almost four orders of magnitude. Based on the optimization of the B1-xCx films, nanostructured Ti-B-C films with different compositions were deposited by adding titanium by simultaneously sputtering a titanium diboride target. We found that the film microstructure features TiB2 nanocrystallites embedded in an amorphous boron carbide matrix. The film hardness varies from 33 to 42 GPa with different titanium contents, which is related to the changes in microstructure, namely, the size and concentration of the TiB2 nanocrystallites. The friction coefficient and wear rate are in the ranges of 0.37-0.73 and of 3.3x10-6-5.7x10-5 mm3/Nm, respectively, which are affected by the mechanical properties and the surface chemical states of the films. By applying the Ti-B-C films, the corrosion resistance of the M2 steel substrate is significantly enhanced as documented by a reduction of the corrosion current density by two orders of magnitude. BCN films were synthesized by magnetron sputtering using a single B 4C target in an N2: Ar gas mixture. The BCN films exhibit an amorphous structure and contain a mixture of B-C, B-N, and C-N bonds. The films show p-type conductivity with an optical band gap of 1.0 eV. Subsequently, ZnO nanorods were grown on the BCN films using hydrothermal synthesis to form BCN/ZnO nanorods p-n heterojunctions. The performance of the junctions is evaluated by the I-V characterization, which shows a rectification behavior with a rectification ratio of 1500 at the bias voltages of +/-5 V.

  9. Rapid feedback of chemical vapor deposition growth mechanisms by operando X-ray diffraction

    DOE PAGES

    Martin, Aiden A.; Depond, Philip J.; Bagge-Hansen, Michael; ...

    2018-03-14

    An operando x-ray diffraction system is presented for elucidating optimal laser assisted chemical vapor deposition growth conditions. The technique is utilized to investigate deposition dynamics of boron-carbon materials using trimethyl borate precursor. Trimethyl borate exhibits vastly reduced toxicological and flammability hazards compared to existing precursors, but has previously not been applied to boron carbide growth. Crystalline boron-rich carbide material is produced in a narrow growth regime on addition of hydrogen during the growth phase at high temperature. Finally, the use of the operando x-ray diffraction system allows for the exploration of highly nonequilibrium conditions and rapid process control, which aremore » not possible using ex situ diagnostics.« less

  10. Rapid feedback of chemical vapor deposition growth mechanisms by operando X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Aiden A.; Depond, Philip J.; Bagge-Hansen, Michael

    An operando x-ray diffraction system is presented for elucidating optimal laser assisted chemical vapor deposition growth conditions. The technique is utilized to investigate deposition dynamics of boron-carbon materials using trimethyl borate precursor. Trimethyl borate exhibits vastly reduced toxicological and flammability hazards compared to existing precursors, but has previously not been applied to boron carbide growth. Crystalline boron-rich carbide material is produced in a narrow growth regime on addition of hydrogen during the growth phase at high temperature. Finally, the use of the operando x-ray diffraction system allows for the exploration of highly nonequilibrium conditions and rapid process control, which aremore » not possible using ex situ diagnostics.« less

  11. Photoelectron emission yield experiments on evolution of sub-gap states in amorphous In-Ga-Zn-O thin films with post deposition hydrogen treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Kazushi, E-mail: hayashi.kazushi@kobelco.com; Hino, Aya; Tao, Hiroaki

    Total photoyield emission spectroscopy (TPYS) was applied to study the evolution of sub-gap states in hydrogen-treated amorphous In-Ga-Zn-O (a-IGZO) thin films. The a-IGZO thin films were subjected to hydrogen radicals and subsequently annealed in ultra-high vacuum (UHV) conditions. A clear onset of the electron emission was observed at around 4.3 eV from the hydrogen-treated a-IGZO thin films. After successive UHV annealing at 300 °C, the onset in the TPYS spectra was shifted to 4.15 eV, and the photoelectron emission from the sub-gap states was decreased as the annealing temperature was increased. In conjunction with the results of thermal desorption spectrometer, it was deducedmore » that the hydrogen atoms incorporated in the a-IGZO thin films induced metastable sub-gap states at around 4.3 eV from vacuum level just after the hydrogenation. It was also suggested that the defect configuration was changed due to the higher temperature UHV annealing, and that the hydrogen atoms desorbed with the involvement of Zn atoms. These experiments produced direct evidence to show the formation of sub-gap states as a result of hydrogen incorporation into the a-IGZO thin films.« less

  12. Use of Atomic Fuels for Rocket-Powered Launch Vehicles Analyzed

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1999-01-01

    At the NASA Lewis Research Center, the launch vehicle gross lift-off weight (GLOW) was analyzed for solid particle feed systems that use high-energy density atomic propellants (ref. 1). The analyses covered several propellant combinations, including atoms of aluminum, boron, carbon, and hydrogen stored in a solid cryogenic particle, with a cryogenic liquid as the carrier fluid. Several different weight percents for the liquid carrier were investigated, and the GLOW values of vehicles using the solid particle feed systems were compared with that of a conventional oxygen/hydrogen (O2/H2) propellant vehicle. Atomic propellants, such as boron, carbon, and hydrogen, have an enormous potential for high specific impulse Isp operation, and their pursuit has been a topic of great interest for decades. Recent and continuing advances in the understanding of matter, the development of new technologies for simulating matter at its most basic level, and manipulations of matter through microtechnology and nanotechnology will no doubt create a bright future for atomic propellants and an exciting one for the researchers exploring this technology.

  13. Ferrous Analysis.

    ERIC Educational Resources Information Center

    Straub, William A.

    1989-01-01

    Elements covered in this review include: aluminum, antimony, arsenic, bismuth, boron, calcium, carbon, chromium, cobalt, copper, hydrogen, iron, lead, magnesium, manganese, molybdenum, nickel, niobium, nitrogen, oxygen, phosphorus, platinum, rare earths, silicons, sulfur, tin, titanium, tungsten, vanadium, zinc, and zirconium. Analytical methods…

  14. Availability of surface boron species in improved oxygen reduction activity of Pt catalysts: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Libo; Zhou, Gang, E-mail: gzhou@mail.buct.edu.cn

    2016-04-14

    The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO{sub 2} is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximatemore » to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs.« less

  15. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    PubMed

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  16. Investigation of Deteriorated Dissolution of Amorphous Itraconazole: Description of Incompatibility with Magnesium Stearate and Possible Solutions.

    PubMed

    Démuth, B; Galata, D L; Szabó, E; Nagy, B; Farkas, A; Balogh, A; Hirsch, E; Pataki, H; Rapi, Z; Bezúr, L; Vigh, T; Verreck, G; Szalay, Z; Demeter, Á; Marosi, G; Nagy, Z K

    2017-11-06

    Disadvantageous crystallization phenomenon of amorphous itraconazole (ITR) occurring in the course of dissolution process was investigated in this work. A perfectly amorphous form (solid dispersion) of the drug was generated by the electroblowing method (with vinylpyrrolidone-vinyl acetate copolymer), and the obtained fibers were formulated into tablets. Incomplete dissolution of the tablets was noticed under the circumstances of the standard dissolution test, after which a precipitated material could be filtered. The filtrate consisted of ITR and stearic acid since no magnesium content was detectable in it. In parallel with dissolution, ITR forms an insoluble associate, stabilized by hydrogen bonding, with stearic acid deriving from magnesium stearate. This is why dissolution curves do not have the plateaus at 100%. Two ways are viable to tackle this issue: change the lubricant (with sodium stearyl fumarate >95% dissolution can be accomplished) or alter the polymer in the solid dispersion to a type being able to form hydrogen bonds with ITR (e.g., hydroxypropyl methylcellulose). This work draws attention to one possible phenomenon that can lead to a deterioration of originally good dissolution of an amorphous solid dispersion.

  17. Amorphous and nanocrystalline luminescent Si and Ge obtained via a solid-state chemical metathesis synthesis route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, Paul F.; Gryko, Jan; Bull, Craig

    A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr{sub 2}) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300{sup o}C. Syntheses at higher temperatures gave rise tomore » microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.« less

  18. Passivation mechanism in silicon heterojunction solar cells with intrinsic hydrogenated amorphous silicon oxide layers

    NASA Astrophysics Data System (ADS)

    Deligiannis, Dimitrios; van Vliet, Jeroen; Vasudevan, Ravi; van Swaaij, René A. C. M. M.; Zeman, Miro

    2017-02-01

    In this work, we use intrinsic hydrogenated amorphous silicon oxide layers (a-SiOx:H) with varying oxygen content (cO) but similar hydrogen content to passivate the crystalline silicon wafers. Using our deposition conditions, we obtain an effective lifetime (τeff) above 5 ms for cO ≤ 6 at. % for passivation layers with a thickness of 36 ± 2 nm. We subsequently reduce the thickness of the layers using an accurate wet etching method to ˜7 nm and deposit p- and n-type doped layers fabricating a device structure. After the deposition of the doped layers, τeff appears to be predominantly determined by the doped layers themselves and is less dependent on the cO of the a-SiOx:H layers. The results suggest that τeff is determined by the field-effect rather than by chemical passivation.

  19. Covalently Bonded Three-Dimensional Carbon Nanotube Solids via Boron Induced Nanojunctions

    DTIC Science & Technology

    2012-04-13

    Novel Carbon Morphologies: From Covalent Y-Junctions to Sea - Urchin -Like Structures. Adv. Func. Mater. 19, 1193–1199 (2009). 15. Sumpter, B. G. et al...amorphous carbon as depicted from SEM (Fig. 1c). The X-ray powder diffraction pattern shows that as-produced CBXMWNT sponges are indeed crystalline and...material as-produced; (b) shows photograph of the flexibility and mechanical stablility upon bending the sample (a) by hand; (c) SEM image after ion

  20. JPRS Report, Science & Technology, USSR: Materials Science

    DTIC Science & Technology

    1988-03-11

    crystallization of the amorphous phase, and subsequent growth of ß-boron grains. References 5: all Russian. 2415/9835 UDC 621.033.67 Erosion of Materials in...Weightlessness and Effect of Magnetic Field on Liquation Processes in InSb Crystals (V. S. Zemskov, M. R. Raukhman; FIZIKA I KHIMIYA OBRABOTKI MATERIALOV, No...No 7, Jul 87) 13 Production of CdP2^CdAs2 Solid-Solution Single Crystals and Measurement of Their Cathodoluminescence Spectra (V, B, Lazarev, S

  1. Fuels and Lubricants for Aircraft

    DTIC Science & Technology

    1975-02-27

    probable but fundamentally possible is the use of hydrides, i.e., compounds of hydrogen "with other elements .(boranes, hydra-zine, ammonia ), alcohols...mixtures; 24. Liquid hydrogen; 25. Nitrogen hydrides and their derivatives ( ammonia , hydrazine, amines, DMH); 26. Boron, Al, Mg, Li, Be and other metals... method . For inflammation to occur, it is necessary that th’e rate of liberation of heat due to exochermic reactions in an initially heated volume of

  2. Reactive formulations for a neutralization of toxic industrial chemicals

    DOEpatents

    Tucker, Mark D [Albuqueruqe, NM; Betty, Rita G [Rio Rancho, NM

    2006-10-24

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  3. Effect of amorphous Mg{sub 50}Ni{sub 50} on hydriding and dehydriding behavior of Mg{sub 2}Ni alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzman, D., E-mail: danny.guzman@uda.cl; Ordonez, S.; Fernandez, J.F.

    Composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50} was prepared by mechanical milling starting with nanocrystalline Mg{sub 2}Ni and amorphous Mg{sub 50}Ni{sub 50} powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg{submore » 50}Ni{sub 50} improved the hydriding and dehydriding kinetics of Mg{sub 2}Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: {yields} First study of the hydriding behavior of composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50}. {yields} Microstructural characterization of composite material using XRD and SEM was obtained. {yields} An improved effect of Mg{sub 50}Ni{sub 50} on the Mg{sub 2}Ni hydriding behavior was verified. {yields} The apparent activation energy for the hydrogen desorption of composite was obtained.« less

  4. Chemical modification of the electrical properties of hydrogenated amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Meyerson, B.; Smith, F. W.

    1980-05-01

    Semiconducting films of hydrogenated amorphous carbon (a-C:H), prepared via the dc glow discharge decomposition of C 2H 2, have been successfully doped via incorporation of B and P during growth. The doping efficiency achieved was comparable to that achieved in a-Si:H produced in a like manner. For a-C:H films deposited at Td=250 C, ?(RT) increased from 10 -12 to 10 -7 ohm -1 cm -1 when either 1% PH 3 or 10% B 2H 6 were added to the C 2H 2. A shift of the Fermi level E F of about 0.7 eV is inferred from changes in the "activation" energy of conduction.

  5. The correlation between nano-hardness and elasticity and fullerene-like clusters in hydrogenated amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Wang, Yongfu; Gao, Kaixiong; Wang, Qi; Zhang, Junyan

    2018-01-01

    Fullerene-like hydrogenated carbon films have outstanding mechanical and frictional properties, but their structures have never enjoyed elaboration. In this study, we investigate the relation between nano-hardness and elasticity and fullerene-like clusters by changing energy supply form (direct current and pulse) and H2 concentration in the feedstock. It is found that the films have a network of H-rich amorphous carbon and H-poor or -deficient fullerene-like carbon, and the network change can affect hardness and elastic recovery. This is due to the energy minimization process of the film growing system in a very short pulse period at low temperature.

  6. Broadband wavelength conversion in hydrogenated amorphous silicon waveguide with silicon nitride layer

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Li, Yongfang; Wang, Zhaolu; Han, Jing; Huang, Nan; Liu, Hongjun

    2018-01-01

    Broadband wavelength conversion based on degenerate four-wave mixing is theoretically investigated in a hydrogenated amorphous silicon (a-Si:H) waveguide with silicon nitride inter-cladding layer (a-Si:HN). We have found that enhancement of the non-linear effect of a-Si:H waveguide nitride intermediate layer facilitates broadband wavelength conversion. Conversion bandwidth of 490 nm and conversion efficiency of 11.4 dB were achieved in a numerical simulation of a 4 mm-long a-Si:HN waveguide under 1.55 μm continuous wave pumping. This broadband continuous-wave wavelength converter has potential applications in photonic networks, a type of readily manufactured low-cost highly integrated optical circuits.

  7. Permeability of two-dimensional graphene and hexagonal-boron nitride to hydrogen atom

    NASA Astrophysics Data System (ADS)

    Gupta, Varun; Kumar, Ankit; Ray, Nirat

    2018-05-01

    The permeability of atomic hydrogen in monolayer hexagonal Boron Nitride(h-BN) and graphene has been studied using first-principles density functional theory based simulations. For the specific cases of physisorption and chemisoroption, barrier heights are calculated using the nudged elastic band approach. We find that the barrier potential for physisorption through the ring is lower for graphene than h-BN. In the case of chemisorption, where the H atom passes through by making bonds with the atoms in the ring, the barrier potential for the graphene was found to be higher than that of h-BN. We conclude that the penetration of H atom with notable kinetic energy (<3eV) through physiosorption is more probable for graphene as compared to h-BN. Whereas through chemisorption, lower kinetic energy (>3eV) H-atoms have a higher chance to penetrate through h-BN than graphene.

  8. A Stable Polymer Burnable Poison Material With Special Attributes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tulenko, James S.; Baney, Ronald H.; Pressley, Linda

    2002-07-01

    The University of Florida (UF) is carrying out basic research on a new class of thermally stable boron containing materials which appear to have special properties that will greatly enhance the performance of Burnable Poison Rod Assemblies (BPRA) and also Spent Fuel Containers (SFC). This new material ('Carborane') has the special properties of containing a tailored amount of boron, an extremely high hydrogen content, and being extremely stable to high temperatures. 'Carborane' reduces the water displacement penalty by 59% by the hydrogen present in the 'Carborane'. In addition to increasing safety margins, a cost benefit of approximately $500,000 per two-yearmore » cycle is projected from reduced enrichments, resulting from the use of this burnable poison material, making it no longer necessary to offset the water displacement reactivity penalty. This research program is supported by a Department of Energy NEER grant. (authors)« less

  9. A Neutral Silicon/Phosphorus Frustrated Lewis Pair.

    PubMed

    Waerder, Benedikt; Pieper, Martin; Körte, Leif A; Kinder, Timo A; Mix, Andreas; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W

    2015-11-02

    Frustrated Lewis pairs (FLPs) have a great potential for activation of small molecules. Most known FLP systems are based on boron or aluminum atoms as acid functions, few on zinc, and only two on boron-isoelectronic silicenium cation systems. The first FLP system based on a neutral silane, (C2F5)3SiCH2P(tBu)2 (1), was prepared from (C2F5)3SiCl with C2F5 groups of very high electronegativity and LiCH2P(tBu)2. 1 is capable of cleaving hydrogen, and adds CO2 and SO2. Hydrogen splitting was confirmed by H/D scrambling reactions. The structures of 1, its CO2 and SO2 adducts, and a decomposition product with CO2 were elucidated by X-ray diffraction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Spectroscopic Ellipsometry Studies of n-i-p Hydrogenated Amorphous Silicon Based Photovoltaic Devices

    PubMed Central

    Karki Gautam, Laxmi; Junda, Maxwell M.; Haneef, Hamna F.; Collins, Robert W.; Podraza, Nikolas J.

    2016-01-01

    Optimization of thin film photovoltaics (PV) relies on characterizing the optoelectronic and structural properties of each layer and correlating these properties with device performance. Growth evolution diagrams have been used to guide production of materials with good optoelectronic properties in the full hydrogenated amorphous silicon (a-Si:H) PV device configuration. The nucleation and evolution of crystallites forming from the amorphous phase were studied using in situ near-infrared to ultraviolet spectroscopic ellipsometry during growth of films prepared as a function of hydrogen to reactive gas flow ratio R = [H2]/[SiH4]. In conjunction with higher photon energy measurements, the presence and relative absorption strength of silicon-hydrogen infrared modes were measured by infrared extended ellipsometry measurements to gain insight into chemical bonding. Structural and optical models have been developed for the back reflector (BR) structure consisting of sputtered undoped zinc oxide (ZnO) on top of silver (Ag) coated glass substrates. Characterization of the free-carrier absorption properties in Ag and the ZnO + Ag interface as well as phonon modes in ZnO were also studied by spectroscopic ellipsometry. Measurements ranging from 0.04 to 5 eV were used to extract layer thicknesses, composition, and optical response in the form of complex dielectric function spectra (ε = ε1 + iε2) for Ag, ZnO, the ZnO + Ag interface, and undoped a-Si:H layer in a substrate n-i-p a-Si:H based PV device structure. PMID:28773255

  11. Near-infrared analysis of hydrogen-bonding in glass- and rubber-state amorphous saccharide solids.

    PubMed

    Izutsu, Ken-ichi; Hiyama, Yukio; Yomota, Chikako; Kawanishi, Toru

    2009-01-01

    Near-infrared (NIR) spectroscopic analysis of noncrystalline polyols and saccharides (e.g., glycerol, sorbitol, maltitol, glucose, sucrose, maltose) was performed at different temperatures (30-80 degrees C) to elucidate the effect of glass transition on molecular interaction. Transmission NIR spectra (4,000-12,000 cm(-1)) of the liquids and cooled-melt amorphous solids showed broad absorption bands that indicate random configuration of molecules. Heating of the samples decreased an intermolecular hydrogen-bonding OH vibration band intensity (6,200-6,500 cm(-1)) with a concomitant increase in a free and intramolecular hydrogen-bonding OH group band (6,600-7,100 cm(-1)). Large reduction of the intermolecular hydrogen-bonding band intensity at temperatures above the glass transition (T(g)) of the individual solids should explain the higher molecular mobility and lower viscosity in the rubber state. Mixing of the polyols with a high T(g) saccharide (maltose) or an inorganic salt (sodium tetraborate) shifted both the glass transition and the inflection point of the hydrogen-bonding band intensity to higher temperatures. The implications of these results for pharmaceutical formulation design and process monitoring (PAT) are discussed.

  12. Probing hydrogen bonding in cocrystals and amorphous dispersions using (14)N-(1)H HMQC solid-state NMR.

    PubMed

    Tatton, Andrew S; Pham, Tran N; Vogt, Frederick G; Iuga, Dinu; Edwards, Andrew J; Brown, Steven P

    2013-03-04

    Cocrystals and amorphous solid dispersions have generated interest in the pharmaceutical industry as an alternative to more established solid delivery forms. The identification of intermolecular hydrogen bonding interactions in a nicotinamide palmitic acid cocrystal and a 50% w/w acetaminophen-polyvinylpyrrolidone solid dispersion are reported using advanced solid-state magic-angle spinning (MAS) NMR methods. The application of a novel (14)N-(1)H HMQC experiment, where coherence transfer is achieved via through-space couplings, is shown to identify specific hydrogen bonding motifs. Additionally, (1)H isotropic chemical shifts and (14)N electric field gradient (EFG) parameters, both accessible from (14)N-(1)H HMQC experiments, are shown to be sensitive to changes in hydrogen bonding geometry. Numerous indicators of molecular association are accessible from this experiment, including NH cross-peaks occurring from intermolecular hydrogen bonds and changes in proton chemical shifts or electric field gradient parameters. First-principles calculations using the GIPAW approach that yield accurate estimates of isotropic chemical shifts, and EFG parameters were used to assist in assignment. It is envisaged that (14)N-(1)H HMQC solid state NMR experiments could become a valuable screening technique of solid delivery forms in the pharmaceutical industry.

  13. Microstructural evolution of ion-irradiated sol–gel-derived thin films

    DOE PAGES

    Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; ...

    2017-07-17

    In this paper, the effects of ion irradiation on the microstructural evolution of sol–gel-derived silica-based thin films were examined by combining the results from Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and elastic recoil detection. Variations in the chemical composition, density, and structure of the constituent phases and interfaces were studied, and the results were used to propose a microstructural model for the irradiated films. It was discovered that the microstructure of the films after ion irradiation and decomposition of the starting organic materials consisted of isolated hydrogenated amorphous carbon clusters within an amorphous and carbon-incorporatedmore » silica network. A decrease in the bond angle of Si–O–Si bonds in amorphous silica network along with an increase in the concentration of carbon-rich SiO x C y tetrahedra were the major structural changes caused by ion irradiation. Finally, in addition, hydrogen release from free carbon clusters was observed with increasing ion energy and fluence.« less

  14. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics

    NASA Astrophysics Data System (ADS)

    Ji, Xiaoyu; Cheng, Hiu Yan; Grede, Alex J.; Molina, Alex; Talreja, Disha; Mohney, Suzanne E.; Giebink, Noel C.; Badding, John V.; Gopalan, Venkatraman

    2018-04-01

    Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (˜30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shojaee, S. A.; Qi, Y.; Wang, Y. Q.

    In this paper, the effects of ion irradiation on the microstructural evolution of sol–gel-derived silica-based thin films were examined by combining the results from Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and elastic recoil detection. Variations in the chemical composition, density, and structure of the constituent phases and interfaces were studied, and the results were used to propose a microstructural model for the irradiated films. It was discovered that the microstructure of the films after ion irradiation and decomposition of the starting organic materials consisted of isolated hydrogenated amorphous carbon clusters within an amorphous and carbon-incorporatedmore » silica network. A decrease in the bond angle of Si–O–Si bonds in amorphous silica network along with an increase in the concentration of carbon-rich SiO x C y tetrahedra were the major structural changes caused by ion irradiation. Finally, in addition, hydrogen release from free carbon clusters was observed with increasing ion energy and fluence.« less

  16. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouro, J.; Gualdino, A.; Chu, V.

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three differentmore » types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.« less

  17. Three-dimensional atomic mapping of hydrogenated polymorphous silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wanghua, E-mail: wanghua.chen@polytechnique.edu; Roca i Cabarrocas, Pere; Pareige, Philippe

    Hydrogenated polymorphous silicon (pm-Si:H) is a nanostructured material consisting of silicon nanocrystals embedded in an amorphous silicon matrix. Its use as the intrinsic layer in thin film p-i-n solar cells has led to good cell properties in terms of stability and efficiency. Here, we have been able to assess directly the concentration and distribution of nanocrystals and impurities (dopants) in p-i-n solar cells, by using femtosecond laser-assisted atom probe tomography (APT). An effective sample preparation method for APT characterization is developed. Based on the difference in atomic density between hydrogenated amorphous and crystalline silicon, we are able to distinguish themore » nanocrystals from the amorphous matrix by using APT. Moreover, thanks to the three-dimensional reconstruction, we demonstrate that Si nanocrystals are homogeneously distributed in the entire intrinsic layer of the solar cell. The influence of the process pressure on the incorporation of nanocrystals and their distribution is also investigated. Thanks to APT we could determine crystalline fractions as low as 4.2% in the pm-Si:H films, which is very difficult to determine by standard techniques, such as X-ray diffraction, Raman spectroscopy, and spectroscopic ellipsometry. Moreover, we also demonstrate a sharp p/i interface in our solar cells.« less

  18. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction

    DOE PAGES

    Gong, Yongji; Fei, Huilong; Zou, Xiaolong; ...

    2015-02-02

    Here, we show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Moreover, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. Finally, first-principles calculations suggest that such excellent electrocatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energymore » barriers of the rate-determining steps of the ORR reaction.« less

  19. Conductive Boron-Doped Graphene as an Ideal Material for Electrocatalytically Switchable and High-Capacity Hydrogen Storage.

    PubMed

    Tan, Xin; Tahini, Hassan A; Smith, Sean C

    2016-12-07

    Electrocatalytic, switchable hydrogen storage promises both tunable kinetics and facile reversibility without the need for specific catalysts. The feasibility of this approach relies on having materials that are easy to synthesize, possessing good electrical conductivities. Graphitic carbon nitride (g-C 4 N 3 ) has been predicted to display charge-responsive binding with molecular hydrogen-the only such conductive sorbent material that has been discovered to date. As yet, however, this conductive variant of graphitic carbon nitride is not readily synthesized by scalable methods. Here, we examine the possibility of conductive and easily synthesized boron-doped graphene nanosheets (B-doped graphene) as sorbent materials for practical applications of electrocatalytically switchable hydrogen storage. Using first-principle calculations, we find that the adsorption energy of H 2 molecules on B-doped graphene can be dramatically enhanced by removing electrons from and thereby positively charging the adsorbent. Thus, by controlling charge injected or depleted from the adsorbent, one can effectively tune the storage/release processes which occur spontaneously without any energy barriers. At full hydrogen coverage, the positively charged BC 5 achieves high storage capacities up to 5.3 wt %. Importantly, B-doped graphene, such as BC 49 , BC 7 , and BC 5 , have good electrical conductivity and can be easily synthesized by scalable methods, which positions this class of material as a very good candidate for charge injection/release. These predictions pave the route for practical implementation of electrocatalytic systems with switchable storage/release capacities that offer high capacity for hydrogen storage.

  20. Cryogenic ion implantation near amorphization threshold dose for halo/extension junction improvement in sub-30 nm device technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Hugh; Todorov, Stan; Colombeau, Benjamin

    2012-11-06

    We report on junction advantages of cryogenic ion implantation with medium current implanters. We propose a methodical approach on maximizing cryogenic effects on junction characteristics near the amorphization threshold doses that are typically used for halo implants for sub-30 nm technologies. BF{sub 2}{sup +} implant at a dose of 8 Multiplication-Sign 10{sup 13}cm{sup -2} does not amorphize silicon at room temperature. When implanted at -100 Degree-Sign C, it forms a 30 - 35 nm thick amorphous layer. The cryogenic BF{sub 2}{sup +} implant significantly reduces the depth of the boron distribution, both as-implanted and after anneals, which improves short channelmore » rolloff characteristics. It also creates a shallower n{sup +}-p junction by steepening profiles of arsenic that is subsequently implanted in the surface region. We demonstrate effects of implant sequences, germanium preamorphization, indium and carbon co-implants for extension/halo process integration. When applied to sequences such as Ge+As+C+In+BF{sub 2}{sup +}, the cryogenic implants at -100 Degree-Sign C enable removal of Ge preamorphization, and form more active n{sup +}-p junctions and steeper B and In halo profiles than sequences at room temperature.« less

  1. High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deligianni, Hariklia; Gallagher, William J.; Mason, Maurice

    An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magneticmore » material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.« less

  2. Effect of hydrogen on the device performance and stability characteristics of amorphous InGaZnO thin-film transistors with a SiO2/SiNx/SiO2 buffer

    NASA Astrophysics Data System (ADS)

    Han, Ki-Lim; Ok, Kyung-Chul; Cho, Hyeon-Su; Oh, Saeroonter; Park, Jin-Seong

    2017-08-01

    We investigate the influence of the multi-layered buffer consisting of SiO2/SiNx/SiO2 on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs). The multi-layered buffer inhibits permeation of water from flexible plastic substrates and prevents degradation of overlying organic layers. The a-IGZO TFTs with a multi-layered buffer suffer less positive bias temperature stress instability compared to the device with a single SiO2 buffer layer after annealing at 250 °C. Hydrogen from the SiNx layer diffuses into the active layer and reduces electron trapping at loosely bound oxygen defects near the SiO2/a-IGZO interface. Quantitative analysis shows that a hydrogen density of 1.85 × 1021 cm-3 is beneficial to reliability. However, the multi-layered buffer device annealed at 350 °C resulted in conductive characteristics due to the excess carrier concentration from the higher hydrogen density of 2.12 × 1021 cm-3.

  3. Evaluation of stress stabilities in amorphous In-Ga-Zn-O thin-film transistors: Effect of passivation with Si-based resin

    NASA Astrophysics Data System (ADS)

    Ochi, Mototaka; Hino, Aya; Goto, Hiroshi; Hayashi, Kazushi; Fujii, Mami N.; Uraoka, Yukiharu; Kugimiya, Toshihiro

    2018-02-01

    Fabrication process conditions of a passivation (PV) layer correlated with stress stabilities of amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs). In etch-stop layer (ESL)-TFTs, by inserting a Si-based resin between SiN x and SiO x PV layers, the peak intensity in the photoinduced transient spectroscopy (PITS) spectrum was notably reduced. This suggested the suppression of hydrogen incorporation into a-IGZO, which led to the improvement of stability under negative bias thermal illumination stress (NBTIS). In contrast, the hydrogen-related defects in the a-IGZO were easily formed by the back-channel etch (BCE) process. Furthermore, it was found that, under NBTIS, the transfer curves of the BCE-TFTs shifted in parallel owing to the positive fixed charge located in the back channel of the a-IGZO TFTs. The hump-shaped shift increased with stress time. This is because hydrogen atoms located at the back-channel surfaces of the a-IGZO and/or PV layers were incorporated into the channel region of the BCE-TFTs and induced the hydrogen-related defects.

  4. Confined high-pressure chemical deposition of hydrogenated amorphous silicon.

    PubMed

    Baril, Neil F; He, Rongrui; Day, Todd D; Sparks, Justin R; Keshavarzi, Banafsheh; Krishnamurthi, Mahesh; Borhan, Ali; Gopalan, Venkatraman; Peacock, Anna C; Healy, Noel; Sazio, Pier J A; Badding, John V

    2012-01-11

    Hydrogenated amorphous silicon (a-Si:H) is one of the most technologically important semiconductors. The challenge in producing it from SiH(4) precursor is to overcome a significant kinetic barrier to decomposition at a low enough temperature to allow for hydrogen incorporation into a deposited film. The use of high precursor concentrations is one possible means to increase reaction rates at low enough temperatures, but in conventional reactors such an approach produces large numbers of homogeneously nucleated particles in the gas phase, rather than the desired heterogeneous deposition on a surface. We report that deposition in confined micro-/nanoreactors overcomes this difficulty, allowing for the use of silane concentrations many orders of magnitude higher than conventionally employed while still realizing well-developed films. a-Si:H micro-/nanowires can be deposited in this way in extreme aspect ratio, small-diameter optical fiber capillary templates. The semiconductor materials deposited have ~0.5 atom% hydrogen with passivated dangling bonds and good electronic properties. They should be suitable for a wide range of photonic and electronic applications such as nonlinear optical fibers and solar cells. © 2011 American Chemical Society

  5. A graded catalytic–protective layer for an efficient and stable water-splitting photocathode

    DOE PAGES

    Gu, Jing; Aguiar, Jeffery A.; Ferrere, Suzanne; ...

    2017-01-09

    Achieving solar-to-hydrogen efficiencies above 15% is key for the commercial success of photoelectrochemical water splitting devices. While tandem cells can reach those efficiencies, increasing the catalytic activity and long-term stability remains a significant challenge. We show that annealing a bilayer of amorphous titanium dioxide (TiO x) and molybdenum sulfide (MoS x) deposited onto GaInP 2 results in a photocathode with high catalytic activity (current density of 11 mA/cm -2 at 0 V vs. the reversible hydrogen electrode under 1 sun illumination) and stability (retention of 80% of initial photocurrent density over a 20 h durability test) for the hydrogen evolutionmore » reaction. Microscopy and spectroscopy reveal that annealing results in a graded MoS x/MoO x/TiO 2 layer that retains much of the high catalytic activity of amorphous MoS x but with stability similar to crystalline MoS 2. These findings demonstrate the potential of utilizing a hybridized, heterogeneous surface layer as a cost-effective catalytic and protective interface for solar hydrogen production.« less

  6. Magnetic iron oxides in the cementation technology of the boron-containing radioactive waste

    NASA Astrophysics Data System (ADS)

    Fedotov, M. A.; Gorbunova, O. A.; Fedorova, O. V.; Folmanis, G. E.; Kovalenko, L. V.

    2015-04-01

    Two ways of synthesis of non-detachable dispersed particles of magnetic materials useful for the boron-containing waste cementation process regulation were developed. Powder XRD showed that the method of carbothermic recovery of nanoscale iron hydroxide allows obtaining a mixture of iron oxides with content of the magnetic phase up to 70%. Method of low-temperature hydrogen reduction of the raw materials allows obtaining various compositions of a-iron and iron oxides with the possibility to change the size of the final particles in a wide range. The possibility of using composites of magnetic iron oxides and metal oxide compositions instead of ferromagnetic rods with VEP of boron-containing liquid radioactive waste in the fluidized field was studied. It was shown that the use of fine and nano particles of the iron oxides in the pre-treatment of the boron-containing LRW increases the strength of the final compounds and accelerates the cement setting compounds from 13 to 5-9 days.

  7. Investigation of the Atypical Glass Transition and Recrystallization Behavior of Amorphous Prazosin Salts

    PubMed Central

    Kumar, Lokesh; Popat, Dharmesh; Bansal, Arvind K.

    2011-01-01

    This manuscript studied the effect of counterion on the glass transition and recrystallization behavior of amorphous salts of prazosin. Three amorphous salts of prazosin, namely, prazosin hydrochloride, prazosin mesylate and prazosin tosylate were prepared by spray drying, and characterized by optical-polarized microscopy, differential scanning calorimetry and powder X-ray diffraction. Modulated differential scanning calorimetry was used to determine the glass transition and recrystallization temperature of amorphous salts. Glass transition of amorphous salts followed the order: prazosin mesylate > prazosin tosylate ∼ prazosin hydrochloride. Amorphous prazosin mesylate and prazosin tosylate showed glass transition, followed by recrystallization. In contrast, amorphous prazosin hydrochloride showed glass transition and recrystallization simultaneously. Density Functional Theory, however, suggested the expected order of glass transition as prazosin hydrochloride > prazosin mesylate > prazosin tosylate. The counterintuitive observation of amorphous prazosin hydrochloride having lower glass transition was explained in terms of its lower activation energy (206.1 kJ/mol) for molecular mobility at Tg, compared to that for amorphous prazosin mesylate (448.5 kJ/mol) and prazosin tosylate (490.7 kJ/mol), and was further correlated to a difference in hydrogen bonding strength of the amorphous and the corresponding recrystallized salts. This study has implications in selection of an optimal amorphous salt form for pharmaceutical development. PMID:24310595

  8. Investigation of the atypical glass transition and recrystallization behavior of amorphous prazosin salts.

    PubMed

    Kumar, Lokesh; Popat, Dharmesh; Bansal, Arvind K

    2011-08-25

    This manuscript studied the effect of counterion on the glass transition and recrystallization behavior of amorphous salts of prazosin. Three amorphous salts of prazosin, namely, prazosin hydrochloride, prazosin mesylate and prazosin tosylate were prepared by spray drying, and characterized by optical-polarized microscopy, differential scanning calorimetry and powder X-ray diffraction. Modulated differential scanning calorimetry was used to determine the glass transition and recrystallization temperature of amorphous salts. Glass transition of amorphous salts followed the order: prazosin mesylate > prazosin tosylate ~ prazosin hydrochloride. Amorphous prazosin mesylate and prazosin tosylate showed glass transition, followed by recrystallization. In contrast, amorphous prazosin hydrochloride showed glass transition and recrystallization simultaneously. Density Functional Theory, however, suggested the expected order of glass transition as prazosin hydrochloride > prazosin mesylate > prazosin tosylate. The counterintuitive observation of amorphous prazosin hydrochloride having lower glass transition was explained in terms of its lower activation energy (206.1 kJ/mol) for molecular mobility at Tg, compared to that for amorphous prazosin mesylate (448.5 kJ/mol) and prazosin tosylate (490.7 kJ/mol), and was further correlated to a difference in hydrogen bonding strength of the amorphous and the corresponding recrystallized salts. This study has implications in selection of an optimal amorphous salt form for pharmaceutical development.

  9. A Comprehensive Study of Hydrogen Adsorbing to Amorphous Water ice: Defining Adsorption in Classical Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Dupuy, John L.; Lewis, Steven P.; Stancil, P. C.

    2016-11-01

    Gas-grain and gas-phase reactions dominate the formation of molecules in the interstellar medium (ISM). Gas-grain reactions require a substrate (e.g., a dust or ice grain) on which the reaction is able to occur. The formation of molecular hydrogen (H2) in the ISM is the prototypical example of a gas-grain reaction. In these reactions, an atom of hydrogen will strike a surface, stick to it, and diffuse across it. When it encounters another adsorbed hydrogen atom, the two can react to form molecular hydrogen and then be ejected from the surface by the energy released in the reaction. We perform in-depth classical molecular dynamics simulations of hydrogen atoms interacting with an amorphous water-ice surface. This study focuses on the first step in the formation process; the sticking of the hydrogen atom to the substrate. We find that careful attention must be paid in dealing with the ambiguities in defining a sticking event. The technical definition of a sticking event will affect the computed sticking probabilities and coefficients. Here, using our new definition of a sticking event, we report sticking probabilities and sticking coefficients for nine different incident kinetic energies of hydrogen atoms [5-400 K] across seven different temperatures of dust grains [10-70 K]. We find that probabilities and coefficients vary both as a function of grain temperature and incident kinetic energy over the range of 0.99-0.22.

  10. Hydrogen-based electrochemical energy storage

    DOEpatents

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  11. Blending materials composed of boron, nitrogen and carbon to transform approaches to liquid hydrogen stores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittemore, Sean M.; Bowden, Mark; Karkamkar, Abhijeet

    2015-12-02

    Energy storage remains a key challenge for the advancement of fuel cell applications. Because of this, hydrogen has garnered much research attention for its potential as an energy carrier. This can be attributed to its abundance from non-petroleum sources, and its energy conversion efficiency. Our group, among others, has been studying the use of ammonia borane as a chemical hydrogen storage material for the past several years. Ammonia borane (AB, NH3BH3), a solid state complex composed of the light weight main group elements of nitrogen and boron, is isoelectronic with ethane and as such is an attractive hydrogen storage materialmore » with a high gravimetric capacity of H2 (19.6 wt%). However, the widespread use of AB as a chemical hydrogen storage material has been stalled by some undesirable properties and reactivity. Most notably, AB is a solid and this presents compatibility issues with the existing liquid fuel infrastructure. The thermal release of H2 from AB also results in the formation of volatile impurities (borazine and ammonia) that are detrimental to operation of the fuel cell. Additionally, the major products in the spent fuel are polyborazylene and amine borane oligomers that present challenges in regenerating AB. This research was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. The Pacific Northwest National Laboratory is operated by Battelle for DOE.« less

  12. Structural Evolution of Silicon Oxynitride Fiber Reinforced Boron Nitride Matrix Composite at High Temperatures

    NASA Astrophysics Data System (ADS)

    Zou, Chunrong; Li, Bin; Zhang, Changrui; Wang, Siqing; Xie, Zhengfang; Shao, Changwei

    2016-02-01

    The structural evolution of a silicon oxynitride fiber reinforced boron nitride matrix (Si-N-Of/BN) wave-transparent composite at high temperatures was investigated. When heat treated at 1600 °C, the composite retained a favorable bending strength of 55.3 MPa while partially crystallizing to Si2N2O and h-BN from the as-received amorphous structure. The Si-N-O fibers still performed as effective reinforcements despite the presence of small pores due to fiber decomposition. Upon heat treatment at 1800 °C, the Si-N-O fibers already lost their reinforcing function and rough hollow microstructure formed within the fibers because of the accelerated decomposition. Further heating to 2000 °C led to the complete decomposition of the reinforcing fibers and only h-BN particles survived. The crystallization and decomposition behaviors of the composite at high temperatures are discussed.

  13. In Situ Formation of Carbon Nanotubes Encapsulated within Boron Nitride Nanotubes via Electron Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenal, Raul; Lopez-Bezanilla, Alejandro

    2014-07-25

    We report experimental evidence of the formation by in situ electron-irradiation of single-walled carbon nanotubes (C NT) confined within boron nitride nanotubes (BN-NT). The electron radiation stemming from the microscope supplies the energy required by the amorphous carbonaceous structures to crystallize in a tubular form in a catalyst free procedure, at room temperature and high vacuum. The structural defects resulting from the interaction of the shapeless carbon with the BN nanotube are corrected in a self-healing process throughout the crystallinization. Structural changes developed during the irradiation process such as defects formation and evolution, shrinkage, and shortness of the BN-NT weremore » in situ monitored. The outer BN wall provides a protective and insulating shell against environmental Perturbations to the inner C-NT without affecting their electronic properties, as demonstrated by first principles calculations.« less

  14. Reactive Materials for Evaporating Samarium (Pre-Print)

    DTIC Science & Technology

    2016-04-15

    Nanocomposites  Titanium powder,   ‐325 mesh  Ti  Alfa  Aesar 99% 2B‐Ti, Ti‐C  Amorphous boron  powder, < 1 µm  B  SB Boron 93‐96% 2B‐Ti, 2B‐Zr  Carbon black powder...FE‐603, 1‐5 µm  C  Atlantic Equipment  Engineers  99.9% Ti‐C  Zirconium powder,  APS, 2‐3 µm  Zr  Alfa  Aesar 97.2% 2B‐Zr, Zr‐C  Magnesium powder...Mg  Alfa  Aesar 99.8% Mg‐S  Sulfur, powder,   ‐100 mesh  S  Sigma‐Aldrich Reagent  Grade  Mg‐S  Aluminum powder,   ‐325 mesh  Al  Atlantic Equipment

  15. Mossbauer spectroscopic studies in ferroboron

    NASA Astrophysics Data System (ADS)

    Yadav, Ravi Kumar; Govindaraj, R.; Amarendra, G.

    2017-05-01

    Mossbauer spectroscopic studies have been carried out in a detailed manner on ferroboron in order to understand the local structure and magnetic properties of the system. Evolution of the local structure and magnetic properties of the amorphous and crystalline phases and their thermal stability have been addressed in a detailed manner in this study. Role of bonding between Fe 4s and/or 4p electrons with valence electrons of boron (2s,2p) in influencing the stability and magnetic properties of Fe-B system is elucidated.

  16. Spatial Distribution of Amorphization Intensity in B4C during Rate-Dependent Indentation and Ballistic Impact Processes [1.2 Solid Mechanics

    DTIC Science & Technology

    2017-11-17

    SECURITY CLASSIFICATION OF: At high pressures, such as those encountered in ballistic impact, boron carbide (B4C) suffers from loss of crystallinity...ELEMENT NUMBER 5b. GRANT NUMBER 5a. CONTRACT NUMBER Form Approved OMB NO . 0704-0188 3. DATES COVERED (From - To) - Approved for public release...Highway, Suite 1204, Arlington VA, 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject

  17. Synthesis of Few-Layer, Large Area Hexagonal-Boron Nitride by Pulsed Laser Deposition (POSTPRINT)

    DTIC Science & Technology

    2014-09-01

    methods. Analysis of the as-deposited films reveals epitaxial- like growth on the nearly lattice matched HOPG substrate, resulting in a polycrystalline ɦ...epitaxial like growth on the nearly lattice matched HOPG substrate, resulting in a polycrystalline h BN film, and amorphous BN (a BN) on the sapphire...BNxOy observed as a shoulder on the B 1s spectra is seen in other polycrystalline h BN films [16], and is most likely due to exposure to ambient

  18. Improved electrochemical performance of boron-doped SiO negative electrode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Woo, Jihoon; Baek, Seong-Ho; Park, Jung-Soo; Jeong, Young-Min; Kim, Jae Hyun

    2015-12-01

    We introduce a one-step process that consists of thermal disproportionation and impurity doping to enhance the reversible capacity and electrical conductivity of silicon monoxide (SiO)-based negative electrode materials in Li-ion batteries. Transmission electron microscope (TEM) results reveal that thermally treated SiO at 900 °C (H-SiO) consists of uniformly dispersed nano-crystalline Si (nc-Si) in an amorphous silicon oxide (SiOx) matrix. Compared to that of prinstine SiO, the electrochemical performance of H-SiO shows improved specific capacity, due mainly to the increased reversible capacity by nc-Si and to the reduced volume expansion by thermally disproportionated SiOx matrix. Further electrochemical improvements can be obtained by boron-doping on SiO (HB-SiO) using solution dopant during thermal disproportionation. HB-SiO electrode without carbon coating exhibits significantly enhanced specific capacity superior to that of undoped H-SiO electrode, having 947 mAh g-1 at 0.5C rate and excellent capacity retention of 93.3% over 100 cycles. Electrochemical impedance spectroscopy (EIS) measurement reveals that the internal resistance of the HB-SiO electrode is significantly reduced by boron doping.

  19. Coaxial microwave electrothermal thruster performance in hydrogen

    NASA Technical Reports Server (NTRS)

    Richardson, W.; Asmussen, J.; Hawley, M.

    1994-01-01

    The microwave electro thermal thruster (MET) is an electric propulsion concept that offers the promise of high performance combined with a long lifetime. A unique feature of this electric propulsion concept is its ability to create a microwave plasma discharge separated or floating away from any electrodes or enclosing walls. This allows propellant temperatures that are higher than those in resistojets and reduces electrode and wall erosion. It has been demonstrated that microwave energy is coupled into discharges very efficiently at high input power levels. As a result of these advantages, the MET concept has been identified as a future high power electric propulsion possibility. Recently, two additional improvements have been made to the coaxial MET. The first was concerned with improving the microwave matching. Previous experiments were conducted with 10-30 percent reflected power when incident power was in excess of 600 W(exp 6). Power was reflected back to the generator because the impedance of the MET did not match the 50 ohm impedance of the microwave circuit. To solve this problem, a double stub tuning system has been inserted between the MET and the microwave power supply. The addition of the double stub tuners reduces the reflected power below 1 percent. The other improvement has prepared the coaxial MET for hydrogen experiments. To operate with hydrogen, the vacuum window which separates the coaxial line from the discharge chamber has been changed from teflon to boron nitride. All the microwave energy delivered to the plasma discharge passes through this vacuum window. This material change had caused problems in the past because of the increased microwave reflection coefficients associated with the electrical properties of boron nitride. However, by making the boron nitride window electrically one-half of a wavelength long, power reflection in the window has been eliminated. This technical note summarizes the experimental performance of the improved coaxial MET when operating in nitrogen, helium, and hydrogen gases.

  20. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F.

    2014-09-01

    Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitivemore » substrates.« less

  1. Bi-axial grown amorphous MoSx bridged with oxygen on r-GO as a superior stable and efficient nonprecious catalyst for hydrogen evolution

    PubMed Central

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Eom, KwangSup; Lee, Doh C.; Joh, Han-Ik; Fuller, Thomas F.

    2017-01-01

    Amorphous molybdenum sulfide (MoSx) is covalently anchored to reduced graphene oxide (r-GO) via a simple one-pot reaction, thereby inducing the reduction of GO and simultaneous doping of heteroatoms on the GO. The oxygen atoms form a bridged between MoSx and GO and play a crucial role in the fine dispersion of the MoSx particles, control of planar MoSx growth, and increase of exposed active sulfur sites. This bridging leads to highly efficient (−157 mV overpotential and 41 mV/decade Tafel slope) and stable (95% versus initial activity after 1000 cycles) electrocatalyst for hydrogen evolution. PMID:28106126

  2. Disorder and Urbach energy in hydrogenated amorphous carbon: A phenomenological model

    NASA Astrophysics Data System (ADS)

    Fanchini, G.; Tagliaferro, A.

    2004-08-01

    We develop a phenomenological model describing the structural and topological effects of the disorder in hydrogenated amorphous carbons (a-C :H), through the analysis of the Raman G-peak width and the optical absorption spectra, providing information on the densities of electronic π ad π* states (πDOS). We show that the Urbach energy is not related to topological disorder but to the Gaussian width (σπ) of the πDOS, peaked at ±Eπ energies above/below the Fermi level. σπ, on its turn, is not related in a straightforward manner to the disorder. The disorder is better represented by the σπ/Eπ ratio, expressing the disorder-induced narrowing of the Tauc optical gap.

  3. Semiconductor with protective surface coating and method of manufacture thereof. [Patent application

    DOEpatents

    Hansen, W.L.; Haller, E.E.

    1980-09-19

    Passivation of predominantly crystalline semiconductor devices is provided for by a surface coating of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating of amorphous germanium onto the etched and quenched diode surface in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices, which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating compensates for pre-existing undesirable surface states as well as protecting the semiconductor device against future impregnation with impurities.

  4. Degradation process by effect of water molecules during negative bias temperature stress in amorphous-InGaZnO thin-film transistor

    NASA Astrophysics Data System (ADS)

    Lee, Yeol-Hyeong; Cho, Yong-Jung; Kim, Woo-Sic; Park, Jeong Ki; Kim, Geon Tae; Kim, Ohyun

    2017-10-01

    We explained how H2O degrades amorphous-InGaZnO thin-film transistors. H2O caused serious degradation only during negative bias temperature stress (NBTS). Degradation was caused by molecules that were absorbed or diffused from the outside. We suggest that degradation under NBTS is caused by the migration of hydrogen ions among oxygen vacancies. Under illumination, the soaking time t S did not affect the threshold voltage shift ΔV th. We consider that this independence occurred because illumination caused ionization from the oxygen vacancy VO state to VO 2+, which impeded hydrogen migration induced by electric field and thereby protected the device from degradation after exposure to water.

  5. Production and reactions of silicon atoms in hot wire deposition of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Zheng, Wengang; Gallagher, Alan

    2003-10-01

    Decomposing silane and hydrogen molecules on a hot tungsten filament is an alternative method of depositing hydrogenated microcrystal and amorphous Si for thin-film semmiconductor devices. This "hot-wire" method can have significant advantages, such as high film deposition rates. The deposition chemistry involves Si and H atoms released from the filament, followed by their reactions with the vapor and surfaces. To establish these deposition pathways, we measure radicals at the substrate with a home built, threshold ionization mass spectrometer. The design and operation of this mass spectrometer for radical detection, and the behavior of Si atom production and reactions, will be presented. This work is supported by the National Renewable Energy Laboratory, Golden, CO 80401

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuo, Y.S.; Smith, E.B.; Deb, S.K.

    A Kaufman ion beam source was used to implant hydrogen atoms into glow-discharge-deposited amorphous silicon materials in which the hydrogen content had been driven out by heating. We found that the hydrogen atoms introduced by this low-energy (less than 700 eV) ion implantation method bonded predominantly as SiH. An air mass one, photo-to-dark-conductivity ratio as high as 5.6 x 10/sup 5/ has been obtained with hydrogen-implanted materials. No light-induced reduction of the photo- and dark conductivities has been observed in these materials after 20 h of AMl illumnination.

  7. Self-association of plant wax components: a thermodynamic analysis.

    PubMed

    Casado, C G; Heredia, A

    2001-01-01

    Excess specific heat, C(p)()(E), of binary mixtures of selected components of plant cuticular waxes has been determined. This thermodynamic parameter gives an explanation of the special molecular arrangement in crystalline and amorphous zones of plant waxes. C(p)()(E) values indicate that hydrogen bonding between chains results in the formation of amorphous zones. Conclusions on the self-asembly process of plant waxes have been also made.

  8. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: multi-parameter measurement reliability and precision studies.

    PubMed

    Zhang, Y; Melnikov, A; Mandelis, A; Halliop, B; Kherani, N P; Zhu, R

    2015-03-01

    A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results were studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.

  9. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: Multi-parameter measurement reliability and precision studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094; Melnikov, A.

    2015-03-15

    A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results weremore » studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.« less

  10. Raman studied of undoped amorphous carbon thin film deposited by bias assisted-CVD

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Fadzilah, A. N.; Dayana, K.; Saurdi, I.; Malek, M. F.; Nurbaya, Z.; Shafura, A. K.; Rusop, M.

    2018-05-01

    The undoped amorphous carbon thin film carbon was deposited at 200°C-350°C by bias assisted-CVD using palm oil as a precursor material. The effect of different substrate deposition temperatures on structural and electrical properties of undoped doped amorphous carbon film was discussed. The structural of undoped amorphous carbon films were correlated with Raman analysis through the evolution of D and G bands, Fourier spectra, and conductivity measurement. The spectral evolution observed showed the increase of upward shift of D and G peaks as substrate deposition temperatures increased. The spectral evolution observed at different substrate deposition temperatures show progressive formation of crystallites. It was predicted that small number of hydrogen is terminated with carbon at surface of thin film as shown by FTIR spectra since palm oil has high number of hydrogen (C67H127O8). These structural changes were further correlated with conductivity and the results obtained are discussed and compared. The conductivity is found in the range of 10-8 Scm-1. The increase of conductivity is correlated by the change of structural properties as correlated with characteristic parameters of Raman spectra including the position of G peak, full width at half maximum of G peak, and ID/IG and FTIR result.

  11. Characterization of the distribution of the sintering activator boron in powder metallurgical steels with SIMS.

    PubMed

    Krecar, Dragan; Vassileva, Vassilka; Danninger, Herbert; Hutter, Herbert

    2004-06-01

    Powder metallurgy is a well-established method for manufacturing ferrous precision parts. A very important step is sintering, which can be strongly enhanced by the formation of a liquid phase during the sintering process. Boron activates this process by forming such a liquid phase at about 1200 degrees C. In this work, the sintering of Fe-B was performed under the protective atmospheres of hydrogen, argon or nitrogen. Using different grain sizes of the added ferroboron leads to different formations of pores and to the formation of secondary pores. The effect of boron was investigated by means of Secondary Ion Mass Spectrometry (SIMS) supported by Scanning Electron Microscopy (SEM) and Light Microscopy (LM). To verify the influence of the process parameters on the mechanical properties, the microstructure (pore shape) was examined and impact energy measurements were performed. The concentrations of B in different samples were varied from 0.03-0.6 weight percent (wt%). Higher boron concentrations are detectable by EPMA, whereas the distributions of boron in the samples with interesting overall concentration in the low wt% range are only detectable by means of SIMS. This work shows that the distribution of boron strongly depends on its concentration and the sintering atmosphere used. At low concentration (up to 0.1 wt%) there are boride precipitations; at higher concentration there is a eutectic iron-boron grain boundary network. There is a decrease of the impact energy observed that correlates with the amount of eutectic phase.

  12. Designing of spin-filtering devices in zigzag graphene nanoribbons heterojunctions by asymmetric hydrogenation and B-N doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dan; Zhang, Xiaojiao; Ouyang, Fangping

    2015-01-07

    Using nonequilibrium Green's function in combination with the spin-polarized density functional theory, the spin-dependent transport properties of boron and nitrogen doped zigzag graphene nanoribbons (ZGNRs) heterojunctions with single or double edge-saturated hydrogen have been investigated. Our results show that the perfect spin-filtering effect (100%), rectifying behavior and negative differential resistance can be realized in the ZGNRs-based systems. And the corresponding physical analysis has been given.

  13. Hydrogenated amorphous silicon coatings may modulate gingival cell response

    NASA Astrophysics Data System (ADS)

    Mussano, F.; Genova, T.; Laurenti, M.; Munaron, L.; Pirri, C. F.; Rivolo, P.; Carossa, S.; Mandracci, P.

    2018-04-01

    Silicon-based materials present a high potential for dental implant applications, since silicon has been proven necessary for the correct bone formation in animals and humans. Notably, the addition of silicon is effective to enhance the bioactivity of hydroxyapatite and other biomaterials. The present work aims to expand the knowledge of the role exerted by hydrogen in the biological interaction of silicon-based materials, comparing two hydrogenated amorphous silicon coatings, with different hydrogen content, as means to enhance soft tissue cell adhesion. To accomplish this task, the films were produced by plasma enhanced chemical vapor deposition (PECVD) on titanium substrates and their surface composition and hydrogen content were analyzed by means of X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectrophotometry (FTIR) respectively. The surface energy and roughness were measured through optical contact angle analysis (OCA) and high-resolution mechanical profilometry respectively. Coated surfaces showed a slightly lower roughness, compared to bare titanium samples, regardless of the hydrogen content. The early cell responses of human keratinocytes and fibroblasts were tested on the above mentioned surface modifications, in terms of cell adhesion, viability and morphometrical assessment. Films with lower hydrogen content were endowed with a surface energy comparable to the titanium surfaces. Films with higher hydrogen incorporation displayed a lower surface oxidation and a considerably lower surface energy, compared to the less hydrogenated samples. As regards mean cell area and focal adhesion density, both a-Si coatings influenced fibroblasts, but had no significant effects on keratinocytes. On the contrary, hydrogen-rich films increased manifolds the adhesion and viability of keratinocytes, but not of fibroblasts, suggesting a selective biological effect on these cells.

  14. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.

    PubMed

    Alaal, Naresh; Medhekar, Nikhil; Shukla, Alok

    2018-04-18

    We employ a first-principles calculations based density-functional-theory (DFT) approach to study the electronic properties of partially and fully edge-hydrogenated armchair boron-nitrogen-carbon (BNC) nanoribbons (ABNCNRs), with widths between 0.85 nm to 2.3 nm. Due to the partial passivation of edges, the electrons, which do not participate in the bonding, form new energy states located near the Fermi-level. Because of these additional bands, some ABNCNRs exhibit metallic behavior, which is quite uncommon in armchair nanoribbons. Our calculations reveal that metallic behavior is observed for the following passivation patterns: (i) when the B atom from one edge and the N atom from another edge are unpassivated. (ii) when the N atoms from both the edges are unpassivated. (iii) when the C atom from one edge and the N atom from another edge are unpassivated. Furthermore, spin-polarization is also observed for certain passivation schemes, which is also quite uncommon for armchair nanoribbons. Thus, our results suggest that the ABNCNRs exhibit a wide range of electronic and magnetic properties in that the fully edge-hydrogenated ABNCNRs are direct band gap semiconductors, while the partially edge-hydrogenated ones are either semiconducting, or metallic, while simultaneously exhibiting spin polarization, based on the nature of passivation. We also find that the ribbons with larger widths are more stable as compared to the narrower ones.

  15. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis.

    PubMed

    Smith, Rodney D L; Prévot, Mathieu S; Fagan, Randal D; Zhang, Zhipan; Sedach, Pavel A; Siu, Man Kit Jack; Trudel, Simon; Berlinguette, Curtis P

    2013-04-05

    Large-scale electrolysis of water for hydrogen generation requires better catalysts to lower the kinetic barriers associated with the oxygen evolution reaction (OER). Although most OER catalysts are based on crystalline mixed-metal oxides, high activities can also be achieved with amorphous phases. Methods for producing amorphous materials, however, are not typically amenable to mixed-metal compositions. We demonstrate that a low-temperature process, photochemical metal-organic deposition, can produce amorphous (mixed) metal oxide films for OER catalysis. The films contain a homogeneous distribution of metals with compositions that can be accurately controlled. The catalytic properties of amorphous iron oxide prepared with this technique are superior to those of hematite, whereas the catalytic properties of a-Fe(100-y-z)Co(y)Ni(z)O(x) are comparable to those of noble metal oxide catalysts currently used in commercial electrolyzers.

  16. Synthesis of boron nitride nanotubes and their applications

    PubMed Central

    Kalay, Saban; Yilmaz, Zehra; Sen, Ozlem; Emanet, Melis; Kazanc, Emine

    2015-01-01

    Summary Boron nitride nanotubes (BNNTs) have been increasingly investigated for use in a wide range of applications due to their unique physicochemical properties including high hydrophobicity, heat and electrical insulation, resistance to oxidation, and hydrogen storage capacity. They are also valued for their possible medical and biomedical applications including drug delivery, use in biomaterials, and neutron capture therapy. In this review, BNNT synthesis methods and the surface modification strategies are first discussed, and then their toxicity and application studies are summarized. Finally, a perspective for the future use of these novel materials is discussed. PMID:25671154

  17. Formation of CaB6 in the thermal decomposition of the hydrogen storage material Ca(BH4)2.

    PubMed

    Sahle, Christoph J; Sternemann, Christian; Giacobbe, Carlotta; Yan, Yigang; Weis, Christopher; Harder, Manuel; Forov, Yury; Spiekermann, Georg; Tolan, Metin; Krisch, Michael; Remhof, Arndt

    2016-07-20

    Using a combination of high resolution X-ray powder diffraction and X-ray Raman scattering spectroscopy at the B K- and Ca L2,3-edges, we analyzed the reaction products of Ca(BH4)2 after annealing at 350 °C and 400 °C under vacuum conditions. We observed the formation of nanocrystalline/amorphous CaB6 mainly and found only small contributions from amorphous B for annealing times larger than 2 h. For short annealing times of 0.5 h at 400 °C we observed neither CaB12H12 nor CaB6. The results indicate a reaction pathway in which Ca(BH4)2 decomposes to B and CaH2 and finally reacts to form CaB6. These findings confirm the potential of using Ca(BH4)2 as a hydrogen storage medium and imply the desired cycling capabilities for achieving high-density hydrogen storage materials.

  18. Characterization of hydrogenated amorphous silicon films obtained from rice husk

    NASA Astrophysics Data System (ADS)

    Nandi, K. C.; Mukherjee, D.; Biswas, A. K.; Acharya, H. N.

    1991-08-01

    Hydrogenated amorphous silicon ( a-Si: H) films were prepared by chemical vapour deposition (CVD) of silanes generated by the acid hydrolysis of magnesium silicide (Mg 2Si) obtained from rice husk. The films were deposited at various substrate temperatures ( Ts) ranging from 430 to 520°C. The results show that the films have room temperature (294 K) dark conductivity (σ d) of the order of 10 -8 - 10 -10 (ohm-cm) -1 with single activation energy (Δ Ed) and the photoconductivity (σ ph) decreases with increase of Ts. Optical band gap ( Eopt) lies between 1.60-1.73 eV and hydrogen content ( CH) in the films is at best 8.3 at %. Au/ a-Si: H junction shows that it acts as a rectifier contact with Schottky barrier height ( VB) 0.69 eV. The films are contaminated by traces of impurities like Na, K, Al, Cl and O as revealed by secondary ion mass spectrometric (SIMS) analysis.

  19. Amorphization of Indomethacin by Co-Grinding with Neusilin US2: amorphization kinetics, physical stability and mechanism.

    PubMed

    Bahl, Deepak; Bogner, Robin H

    2006-10-01

    To quantify the effects of the ratio of indomethacin to Neusilin US2 and the processing humidity on the amorphization kinetics, stability and nature of the interaction. A porcelain jar mill with zirconia balls was used to affect conversion of the physical mixtures (48 g) of indomethacin and Neusilin US2 (in the ratios 1:1 to 1:5) to amorphous states at room temperature (25 degrees C) employing either 0% RH or 75% RH. The percent crystallinity in the samples was determined from ATR-FTIR scans chemometrically. The physical stability of these co-ground amorphous powders was evaluated at 40 degrees C/75% RH and 40 degrees C/0% RH. The lower the ratio of indomethacin to Neusilin US2, the faster is the amorphization during co-grinding. Higher humidity facilitates amorphization with a more pronounced effect at the lower ratio of indomethacin to Neusilin US2. There is further amorphization of some of the partially amorphized samples on storage at 40 degrees C/75% RH for 3 months. Hydrogen bonding and surface interaction between metal ions of Neusilin US2 and indomethacin can explain changes in the FTIR spectra. The processing humidity and the ratio of indomethacin to Neusilin US2 are important factors to be considered to affect amorphization during ball milling. Amorphous indomethacin can be stabilized by co-grinding with Neusilin US2.

  20. Multi-stimuli responsive luminescent azepane-substituted β-diketones and difluoroboron complexes.

    PubMed

    Wang, Fang; DeRosa, Christopher A; Daly, Margaret L; Song, Daniel; Fraser, Cassandra L

    2017-09-01

    Difluoroboron β-diketonate (BF 2 bdk) compounds show environment-sensitive optical properties in solution, aggregation-induced emission (AIE) and multi-stimuli responsive fluorescence switching in the solid state. Here, a series of 4-azepane-substituted β-diketone (bdk) ligands ( L-H , L-OMe , L-Br ) and their corresponding difluoroboron dyes ( D-H , D-OMe , D-Br ) were synthesized, and various responsive fluorescence properties of the compounds were studied, including solvatochromism, viscochromism, AIE, mechanochromic luminescence (ML) and halochromism. Compared to the β-diketones, the boron complexes exhibited higher extinction coefficients but lower quantum yields, and red-shifted absorption and emission in CH 2 Cl 2 . Computational studies showed that intramolecular charge transfer (ICT) dominated rather than π-π* transitions in all the compounds regardless of boron coordination. In solution, all the bdk ligands and boron dyes showed red-shifted emission in more polar solvents and increased fluorescence intensity in more viscous media. Upon aggregation, the emission of the β-diketones was quenched, however, the boronated dyes showed increased emission, indicative of AIE. Solid-state emission properties, ML and halochromism, were investigated on spin cast films. For ML, smearing caused a bathochromic emission shift for L-Br , and powder X-ray diffraction (XRD) patterns showed that the "as spun" and thermally annealed states were more crystalline and the smeared state was amorphous. No obvious ML emission shift was observed for L-H or L-OMe , and the boronated dyes were not mechano-active. Trifluoroacetic acid (TFA) and triethylamine (TEA) vapors were used to study halochromism. Large hypsochromic emission shifts were observed for all the compounds after TFA vapor was applied, and reversible fluorescence switching was achieved using the acid/base pair.

  1. Continuum modeling of twinning, amorphization, and fracture: theory and numerical simulations

    NASA Astrophysics Data System (ADS)

    Clayton, J. D.; Knap, J.

    2018-03-01

    A continuum mechanical theory is used to model physical mechanisms of twinning, solid-solid phase transformations, and failure by cavitation and shear fracture. Such a sequence of mechanisms has been observed in atomic simulations and/or experiments on the ceramic boron carbide. In the present modeling approach, geometric quantities such as the metric tensor and connection coefficients can depend on one or more director vectors, also called internal state vectors. After development of the general nonlinear theory, a first problem class considers simple shear deformation of a single crystal of this material. For homogeneous fields or stress-free states, algebraic systems or ordinary differential equations are obtained that can be solved by numerical iteration. Results are in general agreement with atomic simulation, without introduction of fitted parameters. The second class of problems addresses the more complex mechanics of heterogeneous deformation and stress states involved in deformation and failure of polycrystals. Finite element calculations, in which individual grains in a three-dimensional polycrystal are fully resolved, invoke a partially linearized version of the theory. Results provide new insight into effects of crystal morphology, activity or inactivity of different inelasticity mechanisms, and imposed deformation histories on strength and failure of the aggregate under compression and shear. The importance of incorporation of inelastic shear deformation in realistic models of amorphization of boron carbide is noted, as is a greater reduction in overall strength of polycrystals containing one or a few dominant flaws rather than many diffusely distributed microcracks.

  2. Features of surface phase formation during case-hardening of iron- and titanium-based alloys

    NASA Astrophysics Data System (ADS)

    Vintaikin, B. E.; Kamynin, A. V.; Kraposhin, V. S.; Smirnov, A. E.; Terezanova, K. V.; Cherenkova, S. A.; Sheykina, V. I.

    2017-11-01

    The article provides a detailed analysis of formation features for surface phases in technical iron and Cr20-Ni80 alloy samples that undergo case-hardening at a temperature of 850°C for 2, 4 and 6 hours of saturation in two different environments: acetylene, and molten salt consisting of sodium tetraborate and amorphous boron. We carried out an X-ray phase analysis to determine the phase structure of surface material layers that formed as a result of the case-hardening process. We discovered that after carburising it was possible to detect Fe3C and Fe-α phases on the surface of technical iron samples, and after boriding we found FeB, Fe2B and Fe3B phases; we noted a lack of characteristic Fe-α and Fe-γ peaks on the X-ray diffraction pattern. We detected many different phases in the Cr20-Ni80 alloy after the same type of case-hardening. Titanium oxides appeared after case-hardening of titanium in air at 800°C. We provide data on surface structure of samples subjected to vacuum carburising: over a 2 to 6 hour interval, the layer thickness is a parabolic function of time. When carrying out electrolysis-free liquid boriding, increasing exposure time from 2 to 6 hours alters the thickness of the strengthened layer only slightly, so, when carrying out case-hardening, it is less efficient to increase saturation time in molten salt containing sodium tetraborate and amorphous boron.

  3. Exploring Molecular Speciation and Crystallization Mechanism of Amorphous 2-Phenylamino Nicotinic Acid.

    PubMed

    Kalra, Arjun; Lubach, Joseph W; Munson, Eric J; Li, Tonglei

    2018-02-07

    Molecular understanding of phase stability and transition of the amorphous state helps in formulation and manufacturing of poorly-soluble drugs. Crystallization of a model compound, 2-phenylamino nicotinic acid (2PNA), from the amorphous state was studied using solid-state analytical methods. Our previous report suggests that 2PNA molecules mainly develop intermolecular -COOH∙∙∙pyridine N (acid-pyridine) interactions in the amorphous state. In the current study, the molecular speciation is explored with regard to the phase transition from the amorphous to the crystalline state. Using spectroscopic techniques, the molecular interactions and structural evolvement during the recrystallization from the glassy state were investigated. The results unveiled that the structurally heterogeneous amorphous state contains acid-pyridine aggregates - either as hydrogen-bonded neutral molecules or as zwitterions - as well as a population of carboxylic acid dimers. Phase transition from the amorphous state results in crystal structures composed of carboxylic acid dimer (acid-acid) synthon or acid-pyridine chains depending on the crystallization conditions employed. The study underlines the structural evolvement, as well as its impact on the metastability, of amorphous samples from local, supramolecular assemblies to long-range intermolecular ordering through crystallization.

  4. Radiation damage in dielectric and semiconductor single crystals (direct observation)

    NASA Astrophysics Data System (ADS)

    Adawi, M. A.; Didyk, A. Yu.; Varichenko, V. S.; Zaitsev, A. M.

    1998-11-01

    The surfaces of boron-doped synthetic and natural diamonds have been investigated by using the scanning tunnelling microscope (STM) and the scanning electronic microscope (SEM) before and after irradiating the samples with 40Ar (25 MeV), 84Kr (210 MeV) and 125Xe (124 MeV) ions. The structures observed after irradiation showed craters with diameters ranging from 3 nm up to 20 nm, which could be interpreted as single ion tracks and multiple hits of ions at the nearest positions of the surface. In the case of argon ion irradiation, the surface was found to be completely amorphous, but after xenon irradiation one could see parts of surface without amorphism. This can be explained by the influence of high inelastic energy losses. The energy and temperature criteria of crater formation as a result of heavy ion irradiation are introduced.

  5. Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures

    NASA Astrophysics Data System (ADS)

    Sankaran, Kamatchi Jothiramalingam; Hoang, Duc Quang; Kunuku, Srinivasu; Korneychuk, Svetlana; Turner, Stuart; Pobedinskas, Paulius; Drijkoningen, Sien; van Bael, Marlies K.; D' Haen, Jan; Verbeeck, Johan; Leou, Keh-Chyang; Lin, I.-Nan; Haenen, Ken

    2016-07-01

    Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/μm, a high FEE current density of 1.48 mA/cm2 and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/μm with 0.21 mA/cm2 FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.

  6. An amorphous silicon photodiode microfluidic chip to detect nanomolar quantities of HIV-1 virion infectivity factor.

    PubMed

    Vistas, Cláudia R; Soares, Sandra S; Rodrigues, Rogério M M; Chu, Virginia; Conde, João P; Ferreira, Guilherme N M

    2014-08-07

    A hydrogenated amorphous silicon (a-Si:H) photosensor was explored for the quantitative detection of a HIV-1 virion infectivity factor (Vif) at a detection limit in the single nanomolar range. The a-Si:H photosensor was coupled with a microfluidic channel that was functionalized with a recombinant single chain variable fragment antibody. The biosensor selectively recognizes HIV-1 Vif from human cell extracts.

  7. Annealing optimization of hydrogenated amorphous silicon suboxide film for solar cell application

    NASA Astrophysics Data System (ADS)

    Guangzhi, Jia; Honggang, Liu; Hudong, Chang

    2011-05-01

    We investigate a passivation scheme using hydrogenated amorphous silicon suboxide (a-SiOx:H) film for industrial solar cell application. The a-SiOx:H films were deposited using plasma-enhanced chemical vapor deposition (PECVD) by decomposing nitrous oxide, helium and silane at a substrate temperature of around 250 °C. An extensive study has been carried out on the effect of thermal annealing on carrier lifetime and surface recombination velocity, which affect the final output of the solar cell. Minority carrier lifetimes for the deposited a-SiOx:H films without and with the thermal annealing on 4 Ω·cm p-type float-zone silicon wafers are 270 μs and 670 μs, respectively, correlating to surface recombination velocities of 70 cm/s and 30 cm/s. Optical analysis has revealed a distinct decrease of blue light absorption in the a-SiOx:H films compared to the commonly used intrinsic amorphous silicon passivation used in solar cells. This paper also reports that the low cost and high quality passivation fabrication sequences employed in this study are suitable for industrial processes.

  8. Band gap engineering of hydrogenated amorphous carbon thin films for solar cell application

    NASA Astrophysics Data System (ADS)

    Dwivedi, Neeraj; Kumar, Sushil; Dayal, Saurabh; Rauthan, C. M. S.; Panwar, O. S.; Malik, Hitendra K.

    2012-10-01

    In this work, self bias variation, nitrogen introduction and oxygen plasma (OP) treatment approaches have been used for tailoring the band gap of hydrogenated amorphous carbon (a-C:H) thin films. The band gap of a-C:H and modified a- C:H films is varied in the range from 1.25 eV to 3.45 eV, which is found to be nearly equal to the full solar spectrum (1 eV- 3.5 eV). Hence, such a-C:H and modified a-C:H films are found to be potential candidate for the development of full spectrum solar cells. Besides this, computer aided simulation with considering variable band gap a-C:H and modified a- C:H films as window layer for amorphous silicon p-i-n solar cells is also performed by AFORS-HET software and maximum efficiency as ~14 % is realized. Since a-C:H is hard material, hence a-C:H and modified a-C:H films as window layer may avoid the use of additional hard and protective coating particularly in n-i-p configuration.

  9. Doping reaction of PH3 and B2H6 with Si(100)

    NASA Astrophysics Data System (ADS)

    Yu, Ming L.; Vitkavage, D. J.; Meyerson, B. S.

    1986-06-01

    The reaction of phosphine PH3 and diborane B2H6 on Si(100) surfaces was studied by surface analytical techniques in relation to the in situ doping process in the chemical vapor deposition of silicon. Phosphine chemisorbs readily either nondissociatively at room temperature or dissociatively with the formation of silicon-hydrogen bonds at higher temperatures. Hydrogen can be desorbed at temperatures above 400 °C to generate a phosphorus layer. Phosphorus is not effective in shifting the Fermi level until the coverage reaches 2×1014/cm2. A maximum shift of 0.45 eV toward the conduction band was observed. In contrast, diborane has a very small sticking coefficient and the way to deposit boron is to decompose diborane directly on the silicon surface at temperatures above 600 °C. Boron at coverages less than 2×1014/cm2 is very effective in shifting the Fermi level toward the valence band and a maximum change of 0.4 eV was observed.

  10. Size-dependent electrocatalytic activity of gold nanoparticles on HOPG and highly boron-doped diamond surfaces.

    PubMed

    Brülle, Tine; Ju, Wenbo; Niedermayr, Philipp; Denisenko, Andrej; Paschos, Odysseas; Schneider, Oliver; Stimming, Ulrich

    2011-12-06

    Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.

  11. Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains.

    PubMed

    Wu, Qinke; Lee, Joohyun; Park, Sangwoo; Woo, Hwi Je; Lee, Sungjoo; Song, Young Jae

    2018-03-23

    In this study, we demonstrate a new method to selectively etch the point defects or the boundaries of as-grown hexagonal boron nitride (hBN) films and flakes in situ on copper substrates using hydrogen and argon gases. The initial quality of the chemical vapor deposition-grown hBN films and flakes was confirmed by UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy. Different gas flow ratios of Ar/H 2 were then employed to etch the same quality of samples and it was found that etching with hydrogen starts from the point defects and grows epitaxially, which helps in confirming crystalline orientations. However, etching with argon is sensitive to line defects (boundaries) and helps in visualizing the domain size. Finally, based on this defect-selective dry etching technique, it could be visualized that the domains of a polycrystalline hBN monolayer merged together with many parts, even with those that grew from a single nucleation seed.

  12. Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains

    NASA Astrophysics Data System (ADS)

    Wu, Qinke; Lee, Joohyun; Park, Sangwoo; Woo, Hwi Je; Lee, Sungjoo; Song, Young Jae

    2018-03-01

    In this study, we demonstrate a new method to selectively etch the point defects or the boundaries of as-grown hexagonal boron nitride (hBN) films and flakes in situ on copper substrates using hydrogen and argon gases. The initial quality of the chemical vapor deposition-grown hBN films and flakes was confirmed by UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy. Different gas flow ratios of Ar/H2 were then employed to etch the same quality of samples and it was found that etching with hydrogen starts from the point defects and grows epitaxially, which helps in confirming crystalline orientations. However, etching with argon is sensitive to line defects (boundaries) and helps in visualizing the domain size. Finally, based on this defect-selective dry etching technique, it could be visualized that the domains of a polycrystalline hBN monolayer merged together with many parts, even with those that grew from a single nucleation seed.

  13. Removal of a hazardous heavy metal from aqueous solution using functionalized graphene and boron nitride nanosheets: Insights from simulations.

    PubMed

    Azamat, Jafar; Sattary, Batoul Shirforush; Khataee, Alireza; Joo, Sang Woo

    2015-09-01

    A computer simulation was performed to investigate the removal of Zn(2+) as a heavy metal from aqueous solution using the functionalized pore of a graphene nanosheet and boron nitride nanosheet (BNNS). The simulated systems were comprised of a graphene nanosheet or BNNS with a functionalized pore containing an aqueous ionic solution of zinc chloride. In order to remove heavy metal from an aqueous solution using the functionalized pore of a graphene nanosheet and BNNS, an external voltage was applied along the z-axis of the simulated box. For the selective removal of zinc ions, the pores of graphene and BNNS were functionalized by passivating each atom at the pore edge with appropriate atoms. For complete analysis systems, we calculated the potential of the mean force of ions, the radial distribution function of ion-water, the residence time of ions, the hydrogen bond, and the autocorrelation function of the hydrogen bond. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The Effects of Hydrogen on the Potential-Energy Surface of Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Joly, Jean-Francois; Mousseau, Normand

    2012-02-01

    Hydrogenated amorphous silicon (a-Si:H) is an important semiconducting material used in many applications from solar cells to transistors. In 2010, Houssem et al. [1], using the open-ended saddle-point search method, ART nouveau, studied the characteristics of the potential energy landscape of a-Si as a function of relaxation. Here, we extend this study and follow the impact of hydrogen doping on the same a-Si models as a function of doping level. Hydrogen atoms are first attached to dangling bonds, then are positioned to relieve strained bonds of fivefold coordinated silicon atoms. Once these sites are saturated, further doping is achieved with a Monte-Carlo bond switching method that preserves coordination and reduces stress [2]. Bonded interactions are described with a modified Stillinger-Weber potential and non-bonded Si-H and H-H interactions with an adapted Slater-Buckingham potential. Large series of ART nouveau searches are initiated on each model, resulting in an extended catalogue of events that characterize the evolution of potential energy surface as a function of H-doping. [4pt] [1] Houssem et al., Phys Rev. Lett., 105, 045503 (2010)[0pt] [2] Mousseau et al., Phys Rev. B, 41, 3702 (1990)

  15. Growth process of hydrogenated amorphous carbon films synthesized by atmospheric pressure plasma enhanced CVD using nitrogen and helium as a dilution gas

    NASA Astrophysics Data System (ADS)

    Mori, Takanori; Sakurai, Takachika; Sato, Taiki; Shirakura, Akira; Suzuki, Tetsuya

    2016-04-01

    Hydrogenated amorphous carbon films with various thicknesses were synthesized by dielectric barrier discharge-based plasma deposition under atmospheric pressure diluted with nitrogen (N2) and helium (He) at various pulse frequencies. The C2H2/N2 film showed cauliflower-like-particles that grew bigger with the increase in film’s thickness. At 5 kHz, the film with a thickness of 2.7 µm and smooth surface was synthesized. On the other hand, the films synthesized from C2H2/He had a smooth surface and was densely packed with domed particles. The domed particles extended with the increase in the film thickness, enabling it to grow successfully to 37 µm with a smooth surface.

  16. Magnetic field effect on the optoelectronic response of amorphous hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    McLaughlin, Ryan; Sun, Dali; Zhang, Chuang; Ehrenfreund, Eitan; Vardeny, Zeev Valy

    We have studied the magneto-photoluminescence and magneto photoconductivity in amorphous hydrogenated silicon (a-Si:H) thin films and devices as a function of temperature up to field of 5 Tesla. The magnetic field effects (MFE) are interpreted as spin mixing between spin-singlet and spin-triplet charge pairs due to the ''delta- g'' mechanism that is based on the g-value difference between the paired electron and hole, which directly affects the rate of radiative recombination and charge carrier separation, respectively. We found that the MFE(B) response does not form a Lorentzian (that is expected from the ''delta- g'' mechanism) due to disorder in the film that results in a broad distribution of e-h recombination rates, which could be extracted directly by time-resolved photoluminescence.

  17. Boron isotopic constraints on the source of Hawaiian shield lavas

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryoji; Nakamura, Eizo

    2005-07-01

    Boron isotopic compositions of lavas from three representative Hawaiian shield volcanoes (Kilauea, Mauna Loa, and Koolau) were analyzed by thermal ionization mass spectrometry. The boron isotopic composition of each sample was analyzed twice, once with and once without acid leaching to evaluate the effect of posteruptive boron contamination. Our acid-leaching procedure dissolved glass, olivine, secondary zeolite, and adsorbed boron; this dissolved boron was completely removed from the residue, which was comprised of plagioclase, pyroxenes, and newly formed amorphous silica. We confirmed that an appropriate acid-leaching process can eliminate adsorbed and incorporated boron contamination from all submarine samples without modifying the original 11B/ 10B ratio. On the other hand, when the sample was weathered, i.e., the olivine had an iddingsite rim, 11B/ 10B of the acid-resistant minerals are also modified, thus it is impossible to get the preeruptive 11B/ 10B value from the weathered samples. Through this elimination and evaluation procedure of posteruptive contamination, preeruptive δ 11B values for the shield lavas are -4.5 to -5.4‰ for Koolau ( N = 8), -3.6 to -4.6‰ for Kilauea ( N = 11), and -3.0 to -3.8‰ for Mauna Loa ( N = 6). Historical Kilauea lavas show a systematic temporal trend for B content and Nb/B coupled with other radiogenic isotopic ratios and trace element ratios, at constant δ 11B, indicating little or no assimilation of crustal materials in these lavas. Uncorrelated B content and δ 11B in Koolau and Mauna Loa lavas may also indicate little or no effect of crustal assimilation in these lavas. The source of KEA-component (identical to the so-called Kea end member in Hawaiian lavas) of the Hawaiian source mantle, represented by Kilauea, should be derived from lower part of subducted oceanic crust or refractory peridotite in the recycled subducted slab. The systematic trend from Kilauea to Koolau—decreasing δ 11B coupled with decreasing ɛNd as well as increasing 87Sr/ 86Sr and 206Pb/ 204Pb—is consistent with involvement of subducted sediment components in the EMK(enriched Makapuu)-component, represented by Makapuu-stage of Koolau lavas.

  18. Synthesis, conductivity and high-pressure phase transition of amorphous boron carbon nitride

    NASA Astrophysics Data System (ADS)

    Bai, Suo Zhu; Yao, Bin; Xing, Guo Zhong; Zhang, Ke; Su, Wen-Hui

    2007-06-01

    Amorphous BCN was prepared by chemical solid-state reaction between boracic acid (H 3BO 3) and melamine (C 3N 6H 6) in mass ratios of H 3BO 3 to C 3N 6H 6 of 1:2-1:4 and heat treatment at 1273 K under 10 -3 Pa. The amorphous B sbnd C sbnd N behave insulating property below 890 K, but semiconductor conductivity above 890 K and show different conductivity-temperature relationships in temperature ranges of 913-963 and 963-1083 K. The conductive activation energy was calculated to be 0.26-0.34 eV at 913-963 K and 1.02-1.10 eV at 963-1083 K, implying that the conduction mechanisms are different in the different temperature ranges. Annealed for 40 min at 1473 K under 4.0 GPa, the amorphous BCN with the chemical composition B 0.48C 0.29N 0.23 was prepared in the mass ratio of 1:3 crystallizes into single-phase hexagonal (h-BCN) compound with lattice constants of a=0.2506 nm and c=0.6652 nm. Raman scattering peaks were observed at 1330, 1364,1584 and 1617 cm -1 in the Raman spectrum (RS) of h-BCN, of which the peaks located at 1330 and 1617 cm -1 are assigned to characteristic peaks of the h-BCN.

  19. Application of low-temperature plasma for the synthesis of hydrogenated graphene (graphane)

    NASA Astrophysics Data System (ADS)

    Shavelkina, M. B.; Amirov, R. H.; Katarzhis, V. A.; Kiselev, V. I.

    2017-12-01

    The possibility of a direct synthesis of hydrogenated graphene in decomposition of methane by means of low-temperature plasma was investigated. A DC plasma torch with an expanding channel-anode, a vortex gas supply and a self-setting arc length was used as a generator of low-temperature plasma. Argon was used as the plasma-forming gas. The temperatures of argon plasma and with methane addition to it were determined on the basis of spectral measurements. The synthesis products were characterized by electron microscopy and thermogravimetry. The effect of hydrogenated graphene as a nanomodifier on the properties of the cubic boron nitride based functional ceramics was investigated.

  20. Mechanism-based selection of stabilization strategy for amorphous formulations: Insights into crystallization pathways.

    PubMed

    Edueng, Khadijah; Mahlin, Denny; Larsson, Per; Bergström, Christel A S

    2017-06-28

    We developed a step-by-step experimental protocol using differential scanning calorimetry (DSC), dynamic vapour sorption (DVS), polarized light microscopy (PLM) and a small-scale dissolution apparatus (μDISS Profiler) to investigate the mechanism (solid-to-solid or solution-mediated) by which crystallization of amorphous drugs occurs upon dissolution. This protocol then guided how to stabilize the amorphous formulation. Indapamide, metolazone, glibenclamide and glipizide were selected as model drugs and HPMC (Pharmacoat 606) and PVP (K30) as stabilizing polymers. Spray-dried amorphous indapamide, metolazone and glibenclamide crystallized via solution-mediated nucleation while glipizide suffered from solid-to-solid crystallization. The addition of 0.001%-0.01% (w/v) HPMC into the dissolution medium successfully prevented the crystallization of supersaturated solutions of indapamide and metolazone whereas it only reduced the crystallization rate for glibenclamide. Amorphous solid dispersion (ASD) formulation of glipizide and PVP K30, at a ratio of 50:50% (w/w) reduced but did not completely eliminate the solid-to-solid crystallization of glipizide even though the overall dissolution rate was enhanced both in the absence and presence of HPMC. Raman spectroscopy indicated the formation of a glipizide polymorph in the dissolution medium with higher solubility than the stable polymorph. As a complementary technique, molecular dynamics (MD) simulations of indapamide and glibenclamide with HPMC was performed. It was revealed that hydrogen bonding patterns of the two drugs with HPMC differed significantly, suggesting that hydrogen bonding may play a role in the greater stabilizing effect on supersaturation of indapamide, compared to glibenclamide. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Possible existence of two amorphous phases of d-mannitol related by a first-order transition

    NASA Astrophysics Data System (ADS)

    Zhu, Men; Wang, Jun-Qiang; Perepezko, John H.; Yu, Lian

    2015-06-01

    We report that the common polyalcohol d-mannitol may have two amorphous phases related by a first-order transition. Slightly above its glass transition temperature Tg (284 K), the supercooled liquid (SCL) of d-mannitol transforms to a low-energy, apparently amorphous phase with stronger hydrogen bonds. The enthalpy of this so-called Phase X is approximately halfway between those of the known amorphous and crystalline phases, a position low for glass aging and high for crystal polymorphs. Similar to the SCL, Phase X is transparent with broad X-ray diffraction and Raman scattering; upon temperature cycling, it exhibits a glass-transition-like change of heat capacity. On fast heating, Phase X transforms back to the SCL near Tg + 50 K, enabling a determination of their equilibrium temperature. The presence of d-sorbitol as a plasticizer enables observation of a first-order transition from the SCL to Phase X entirely in the liquid state (liquid-liquid transition). The transition from d-mannitol's SCL to Phase X has intriguing similarities with the formation of the glacial phase of triphenyl phosphite (TPP) and the conversion from high-density to low-density amorphous ice, both studied intensely in the context of polyamorphism. All three processes occur near Tg with substantial enthalpy decrease toward the crystalline phases; the processes in water and d-mannitol both strengthen the hydrogen bonds. In contrast to TPP, d-mannitol's Phase X forms more rapidly and can transform back to the SCL. These features make d-mannitol a valuable new model for understanding polyamorphism.

  2. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art.

    PubMed

    Lai, Qiwen; Paskevicius, Mark; Sheppard, Drew A; Buckley, Craig E; Thornton, Aaron W; Hill, Matthew R; Gu, Qinfen; Mao, Jianfeng; Huang, Zhenguo; Liu, Hua Kun; Guo, Zaiping; Banerjee, Amitava; Chakraborty, Sudip; Ahuja, Rajeev; Aguey-Zinsou, Kondo-Francois

    2015-09-07

    One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Co-modification of amorphous-Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst for enhanced photocatalytic H2-production performance of TiO2

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Lu, Yanggang; Wang, Xuefei; Yu, Huogen

    2017-01-01

    Highly efficient TiO2 photocatalysts co-modified by amorphous-Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst (referred to as Ni(OH)2-Ti(IV)/TiO2) were prepared by facile two-step process which was the initial formation of amorphous Ti(IV) on the TiO2 surface via hydrolysis method and the following formation of Ni(OH)2 via precipitation reaction. It was found that the Ni(OH)2-Ti(IV)/TiO2 showed obviously high hydrogen-production performance. When the amount of Ni(OH)2 and Ti(IV) was 1 wt% and 0.1 wt%, respectively, the hydrogen-production rate of the resultant Ni(OH)2-Ti(IV)/TiO2 reached 7280.04 μmol h-1 g-1, which was significantly higher than that of TiO2, Ti(IV)/TiO2 and Ni(OH)2/TiO2 by a factor of 215, 63 and 1.8, respectively. Moreover, it was found that Ni(OH)2-Ti(IV)/TiO2 photocatalyst preserved a steady and highly efficient H2-production performance during repeated tests and also exhibited a high transient photocurrent density. The enhanced hydrogen-production performance of Ni(OH)2-Ti(IV)/TiO2 can be attributed to the synergistic effect of Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst to simultaneously accelerate the interfacial transfer of photogenerated holes and electrons. The present surface modification of dual cocatalysts can be regarded as one of the ideal strategies for the preparation of highly efficient hydrogen-production materials in view of their abundance, low cost and facile method.

  4. Microalloying Boron Carbide with Silicon to Achieve Dramatically Improved Ductility

    DTIC Science & Technology

    2014-11-18

    measuring XPS, XANES, NMR, Raman, and IR for Figure 2. Stress−strain relation of various structures shearing along the (011 ̅1 ̅)/ə ̅101> amorphous slip...Philos. Mag. 1954, 45, 823− 843. (35) Becke, A. D.; Edgecombe, K. E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. J. Chem...10.1021/jz5022697 | J. Phys. Chem. Lett. 2014, 5, 4169−41744173 (46) Roundy, D.; Krenn, C. R.; Cohen, M. L.; Morris, J. W., Jr. Ideal Shear Strengths of fcc

  5. The Synthesis and Organic Chemistry of the Boron-Silicon Bond.

    DTIC Science & Technology

    1985-12-12

    o . ikaline hydrogen peroxide and slowly in air, but was Inert to methanol, water, bromine and tributyltin hydride. In addition it . did not...with methanol, water, bromine or tributyltin hydride. Interestingly 2 did react with organolithium and organomagnesium reagents to give the B-alkyl-9

  6. Coamorphous Loratadine-Citric Acid System with Enhanced Physical Stability and Bioavailability.

    PubMed

    Wang, Jin; Chang, Ruimiao; Zhao, Yanan; Zhang, Jiye; Zhang, Ting; Fu, Qiang; Chang, Chun; Zeng, Aiguo

    2017-10-01

    Coamorphous systems using citric acid as a small molecular excipient were studied for improving physical stability and bioavailability of loratadine, a BCS class II drug with low water solubility and high permeability. Coamorphous loratadine-citric acid systems were prepared by solvent evaporation technique and characterized by differential scanning calorimetry, X-ray powder diffraction, and Fourier transform infrared spectroscopy. Solid-state analysis proofed that coamorphous loratadine-citric acid system (1:1) was amorphous and homogeneous, had a higher T g over amorphous loratadine, and the intermolecular hydrogen bond interactions between loratadine and citric acid exist. The solubility and dissolution of coamorphous loratadine-citric acid system (1:1) were found to be significantly greater than those of crystalline and amorphous form. The pharmacokinetic study in rats proved that coamorphous loratadine-citric acid system (1:1) could significantly improve absorption and bioavailability of loratadine. Coamorphous loratadine-citric acid system (1:1) showed excellently physical stability over a period of 3 months at 25°C under 0% RH and 25°C under 60% RH conditions. The improved stability of coamorphous loratadine-citric acid system (1:1) could be related to an elevated T g over amorphous form and the intermolecular hydrogen bond interactions between loratadine and citric acid. These studies demonstrate that the developed coamorphous loratadine-citric acid system might be a promising oral formulation for improving solubility and bioavailability of loratadine.

  7. Semiconducting boron carbide thin films: Structure, processing, and diode applications

    NASA Astrophysics Data System (ADS)

    Bao, Ruqiang

    The high energy density and long lifetime of betavoltaic devices make them very useful to provide the power for applications ranging from implantable cardiac pacemakers to deep space satellites and remote sensors. However, when made with conventional semiconductors, betavoltaic devices tend to suffer rapid degradation as a result of radiation damage. It has been suggested that the degradation problem could potentially be alleviated by replacing conventional semiconductors with a radiation hard semiconducting material like icosahedral boron carbide. The goal of my dissertation was to better understand the fundamental properties and structure of boron carbide thin films and to explore the processes to fabricate boron carbide based devices for voltaic applications. A pulsed laser deposition system and a radio frequency (RF) magnetron sputtering deposition system were designed and built to achieve the goals. After comparing the experimental results obtained using these two techniques, it was concluded that RF magnetron sputtering deposition technique is a good method to make B4C boron carbide thin films to fabricate repeatable and reproducible voltaic devices. The B4C thin films deposited by RF magnetron sputtering require in situ dry pre-cleaning to make ohmic contacts for B4C thin films to fabricate the devices. By adding another RF sputtering to pre-clean the substrate and thin films, a process to fabricate B4C / n-Si heterojunctions has been established. In addition, a low energy electron accelerator (LEEA) was built to mimic beta particles emitted from Pm147 and used to characterize the betavoltaic performance of betavoltaic devices as a function of beta energy and beta flux as well as do accelerated lifetime testing for betavoltaic devices. The energy range of LEEA is 20 - 250 keV with the current from several nA to 50 muA. High efficiency Si solar cells were used to demonstrate the powerful capabilities of LEEA, i.e., the characterization of betavoltaic performance and the accelerated lifetime test of betavoltaic devices. Structural analysis by X-ray diffraction and high resolution transmission electron microscopy showed that the prepared B4C thin films are amorphous. The presence of icosahedrons, which account for the radiation hardness of icosahedral boron rich solids, in the amorphous B4C thin films was supported by Fourier transform infrared spectroscopy. The pair distribution functions derived from selected area diffraction pattern of amorphous B 4C thin films showed that the short range order structure of amorphous B4C thin films is similar to beta-rhombohedral boron but with a shorter distance. The investigation of electrical properties of B4 C thin films showed that the resistivity of B4C thin films ranges from 695 O-cm to 9650 O-cm depending on the deposition temperature; the direct and indirect bandgaps for B4C thin films are 2.776 - 2.898 eV and 1.148 - 1.327 eV, respectively; the effective lifetime of excess charge carrier is close to 0.1 ms for B4C thin film deposited at room temperature and approximates to 1 ms for those deposited at 175 °C to 500 °C. Based on structural characterization and electrical properties of B4C thin films, a structural model of B4C thin films was proposed and supported by nanoindenter experiments, i.e., the hardness of thin films deposited at temperature in the range of 275 °C to 350 °C is lower than that of the films deposited at RT and 650 °C. Heterojunctions of B4C / n-Si (100) possessing photovoltaic response have been fabricated. The suitable deposition temperature for B 4C thin film to fabricate photovoltaic device is from 175 °C to 350 °C. When the Si substrate surface was not pre-cleaned before depositing B4C thin film, the B4C / n-Si (100) heterojunction has better photovoltaic responses, presumably because there were no sputter-produced defects on the surface of Si (100) substrate. Until now, the best achievable photovoltaic performance is B4C / n-Si (100) heterojunction with 200 nm thick B4C thin film when the Si (100) substrate surface was not pre-cleaned by RF sputtering. When this heterojunction was characterized using solar simulator with air mass 1.5 spectra, the short circuit current density is 1.484 mA/cm2, the open circuit voltage is about 0.389 V, and the power conversion efficiency is about 0.214 %. In addition, B5C thin films deposited by plasma enhanced chemical vapor deposition were used to make some of the devices studied in this dissertation. It was found that the Si-doped BC / n-Si (111) heterojunctions also demonstrates their photovoltaic and betavoltaic responses. Even after irradiated by a 120 keV electron beam to a fluence of 4.38x1017 electrons/cm 2, the heterojunctions still posses betavoltaic behavior and their responses to the incident irradiance density are similar to that before irradiation.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Richa Naja, E-mail: ltprichanaja@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    The electronic structure and hydrogen storage capability of Yttrium-doped BNNTs has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom prefers the hollow site in the center of the hexagonal ring with a binding energy of 0.8048eV. Decorating by Y makes the system half-metallic and magnetic with a magnetic moment of 1.0µ{sub B}. Y decorated Boron-Nitride (8,0) nanotube can adsorb up to five hydrogen molecules whose average binding energy is computed as 0.5044eV. All the hydrogen molecules are adsorbed with an average desorption temperature of 644.708 K. Taking that the Y atoms can be placed only in alternatemore » hexagons, the implied wt% comes out to be 5.31%, a relatively acceptable value for hydrogen storage materials. Thus, this system can serve as potential hydrogen storage medium.« less

  9. Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg₂Ni-type Alloy by Melt Spinning.

    PubMed

    Zhang, Yang-Huan; Li, Bao-Wei; Ren, Hui-Ping; Li, Xia; Qi, Yan; Zhao, Dong-Liang

    2011-01-18

    Mg₂Ni-type Mg₂Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning technique. The structures of the as-spun alloys were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys was tested by an automatic galvanostatic system. The results show that the as-spun (x = 0.1) alloy exhibits a typical nanocrystalline structure, while the as-spun (x = 0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni notably intensifies the glass forming ability of the Mg₂Ni-type alloy. The melt spinning treatment notably improves the hydriding and dehydriding kinetics as well as the high rate discharge ability (HRD) of the alloys. With an increase in the spinning rate from 0 (as-cast is defined as spinning rate of 0 m/s) to 30 m/s, the hydrogen absorption saturation ratio () of the (x = 0.4) alloy increases from 77.1 to 93.5%, the hydrogen desorption ratio () from 54.5 to 70.2%, the hydrogen diffusion coefficient (D) from 0.75 × 10 - 11 to 3.88 × 10 - 11 cm²/s and the limiting current density I L from 150.9 to 887.4 mA/g.

  10. Effect of fuel density and heating value on ram-jet airplane range

    NASA Technical Reports Server (NTRS)

    Henneberry, Hugh M

    1952-01-01

    An analytical investigation of the effects of fuel density and heating value on the cruising range of a ram-jet airplane was made. Results indicate that with present-day knowledge of chemical fuels, neither very high nor very low fuel densities have any advantages for long-range flight. Of the fuels investigated, the borohydrides and metallic boron have the greatest range potential. Aluminum and aluminum hydrocarbon slurries were inferior to pure hydrocarbon fuel and boron-hydrocarbon slurries were superior on a range basis. It was concluded that the practical difficulties associated with the use of liquid hydrogen fuel cannot be justified on a range basis.

  11. Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Liao, Yunlong; Chen, Zhongfang; Connell, John W.; Fay, Catharine C.; Park, Cheol; Kim, Jae-Woo; Lin, Yi

    2014-01-01

    Boron nitride nanotubes (BNNTs), the one-dimensional member of the boron nitride nanostructure family, are generally accepted to be highly inert to oxidative treatments and can only be covalently modifi ed by highly reactive species. Conversely, it is discovered that the BNNTs can be chemically dispersed and their morphology modifi ed by a relatively mild method: simply sonicating the nanotubes in aqueous ammonia solution. The dispersed nanotubes are significantly corroded, with end-caps removed, tips sharpened, and walls thinned. The sonication treatment in aqueous ammonia solution also removes amorphous BN impurities and shortened BNNTs, resembling various oxidative treatments of carbon nanotubes. Importantly, the majority of BNNTs are at least partially longitudinally cut, or "unzipped". Entangled and freestanding BN nanoribbons (BNNRs), resulting from the unzipping, are found to be approximately 5-20 nm in width and up to a few hundred nanometers in length. This is the fi rst chemical method to obtain BNNRs from BNNT unzipping. This method is not derived from known carbon nanotube unzipping strategies, but is unique to BNNTs because the use of aqueous ammonia solutions specifi cally targets the B-N bond network. This study may pave the way for convenient processing of BNNTs, previously thought to be highly inert, toward controlling their dispersion, purity, lengths, and electronic properties.

  12. Influence of boron content on the microstructure and tribological properties of Cr-B-N coatings in water lubrication

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Zhou, Fei; Gao, Song; Wu, Zhiwei; Wang, Qianzhi; Chen, Kangmin; Zhou, Zhifeng; Li, Lawrence Kwok-Yan

    2016-07-01

    Cr-B-N coatings with different boron contents were deposited on Si(1 0 0) wafers and 316 L stainless steels using unbalanced magnetron sputtering system by way of adjusting the CrB2 target currents. The microstructure and mechanical properties of Cr-B-N coatings were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), white light interferometric three dimensional profilometer and nano-indentation tester, respectively. The tribological properties of Cr-B-N/SiC tribopairs in water were studied using ball-on-disk tribometer. The results showed that the Cr-B-N coatings showed a fine nanocomposite structure consisted of CrN nanograins and amorphous BN phase regardless of boron contents, and the typical columnar structure became featureless with increasing the CrB2 target current. The hardness and reduced elastic modulus first increased to 28.9 GPa and 330 GPa at the CrB2 target current of 2 A, and then decreased gradually with further increasing the CrB2 target current to 4 A. As compared with the CrN/SiC tribopairs, the lowest friction coefficient of Cr-B-N/SiC ball tribopairs in water was 0.15, and the wear resistance of Cr-B-N coatings was effectively enhanced.

  13. Modification of the Near Surface Region Metastable Phases and Ion Induced Reactions

    DTIC Science & Technology

    1984-02-03

    cell Si Dave Lilienfeld - amorphous Si layer thickness Au diffusion in metallic glasses Dave Lilienfeld & - low temperature Cu diffusion in Si Tim...Sullivan Fritz Stafford - defect characterization in implanted & annealed silicon-on-sapphire Peter Zielinski - Composition of CuZr metallic glass...ribbons 5. Prof. Johnson Dave Kuhn - measurement of Pd layer thickness Alexandra Elve - hydrogen profiles in metals Lauren Heitner - hydrogen diffusion in

  14. Organic matter variations in transgressive and regressive shales

    USGS Publications Warehouse

    Pasley, M.A.; Gregory, W.A.; Hart, G.F.

    1991-01-01

    Organic matter in the Upper Cretaceous Mancos Shale adjacent to the Tocito Sandstone in the San Juan Basin of New Mexico was characterized using organic petrology and organic geochemistry. Differences in the organic matter found in these regressive and transgressive offshore marine sediments have been documented and assessed within a sequence stratigraphic framework. The regressive Lower Mancos Shale below the Tocito Sandstone contains abundant well preserved phytoclasts and correspondingly low hydrogen indices. Total organic carbon values for the regressive shale are low. Sediments from the transgressive systems tract (Tocito Sandstone and overlying Upper Mancos Shale) contain less terrestrially derived organic matter, more amorphous non-structured protistoclasts, higher hydrogen indices and more total organic carbon. Advanced stages of degradation are characteristic of the phytoclasts found in the transgressive shale. Amorphous material in the transgressive shale fluoresces strongly while that found in the regressive shale is typically non-fluorescent. Data from pyrolysis-gas chromatography confirm these observations. These differences are apparently related to the contrasting depositional styles that were active on the shelf during regression and subsequent transgression. It is suggested that data from organic petrology and organic geochemistry provide greater resolution in sedimentologic and stratigraphic interpretations, particularly when working with basinward, fine-grained sediments. Petroleum source potential for the regressive Lower Mancos Shale below the Tocito Sandstone is poor. Based on abundant fluorescent amorphous material, high hydrogen indices, and high total organic carbon, the transgressive Upper Mancos Shale above the Tocito Sandstone possesses excellent source potential. This suggests that appreciable source potential can be found in offshore, fine-grained sediments of the transgressive systems tract below the condensed section and associated downlap surface. Organic petrology can be used to accurately predict petroleum source potential. The addition of simple fluorescence microscopy greatly enhances this predictive ability because non-generative amorphous material is generally non-fluorescent. Organic petrology must also be used to properly evaluate the utility of Tmax from programmed pyrolysis as a thermal maturity indicator. Organic matter dominated by autochthonous amorphous protistoclasts exhibits lower Tmax values than that which is composed of mostly phytoclasts. ?? 1991.

  15. Effects of Inductively Coupled Plasma Hydrogen on Long-Wavelength Infrared HgCdTe Photodiodes

    NASA Astrophysics Data System (ADS)

    Boieriu, P.; Buurma, C.; Bommena, R.; Blissett, C.; Grein, C.; Sivananthan, S.

    2013-12-01

    Bulk passivation of semiconductors with hydrogen continues to be investigated for its potential to improve device performance. In this work, hydrogen-only inductively coupled plasma (ICP) was used to incorporate hydrogen into long-wavelength infrared HgCdTe photodiodes grown by molecular-beam epitaxy. Fully fabricated devices exposed to ICP showed statistically significant increases in zero-bias impedance values, improved uniformity, and decreased dark currents. HgCdTe photodiodes on Si substrates passivated with amorphous ZnS exhibited reductions in shunt currents, whereas devices on CdZnTe substrates passivated with polycrystalline CdTe exhibited reduced surface leakage, suggesting that hydrogen passivates defects in bulk HgCdTe and in CdTe.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, K.M.; Al-Jassim, M.M.; Williamson, D.L.

    Over the last two decades extensive studies on the optical and electrical properties of hydrogenated amorphous Si (a-Si:H) have been reported. However, less attention was given to the structural characterization of this material partly due to the insensitivity to hydrogen of structural probes such as x-rays and electron diffraction. From a recent set of experiments, results on the solubility limit of hydrogen in a special type of a-Si:H and the characterization of hydrogen induced complexes or nanobubbles has been reported. In this study, we report TEM observations of the structural morphology of hydrogen related defects that support these recent measurementsmore » obtained by secondary ion mass spectrometry (SIMS) and small-angle x-ray scattering (SAXS).« less

  17. Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment

    DOEpatents

    Pankove, J.I.; Wu, C.P.

    1982-03-30

    A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gassing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen. 2 figs.

  18. Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment

    DOEpatents

    Pankove, Jacques I.; Wu, Chung P.

    1982-01-01

    A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gasing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen.

  19. Deposition of device quality, low hydrogen content, hydrogenated amorphous silicon at high deposition rates with increased stability using the hot wire filament technique

    DOEpatents

    Molenbroek, Edith C.; Mahan, Archie Harvin; Gallagher, Alan C.

    2000-09-26

    A method or producing hydrogenated amorphous silicon on a substrate, comprising the steps of: positioning the substrate in a deposition chamber at a distance of about 0.5 to 3.0 cm from a heatable filament in the deposition chamber; maintaining a pressure in said deposition chamber in the range of about 10 to 100 millitorr and pressure times substrate-filament spacing in the range of about 10 to 100 millitorr-cm, heating the filament to a temperature in the range of about 1,500 to 2,000.degree. C., and heating the substrate to a surface temperature in the range of about 280 to 475.degree. C.; and flowing silicohydride gas into the deposition chamber with said heated filament, decomposing said silicohydride gas into silicon and hydrogen atomic species and allowing products of gas reactions between said atomic species and the silicohydride gas to migrate to and deposit on said substrate while adjusting and maintaining said pressure times substrate-filament spacing in said deposition chamber at a value in said 10 to 100 millitorr range to produce statistically about 3 to 50 atomic collisions between the silicon and hydrogen atomic species migrating to said substrate and undecomposed molecules of the silane or other silicohydride gas in the deposition chamber.

  20. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There weremore » 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. These amorphous alloys appear to maintain their corrosion resistance up to the glass transition temperature. Visionary research is proposed to extend the application of corrosion-resistant iron-based amorphous metal coatings, and variants of these coatings, to protection of the Nation's transportation infrastructure. Specific objectives of the proposed work are: (1) fabrication of appropriate test samples for evaluation of concept; (2) collection of production and test data for coated steel reinforcement bars, enabling systematic comparison of various coating options, based upon performance and economic considerations; and (3) construction and testing of concrete structures with coated steel reinforcement bars, thereby demonstrating the value of amorphous-metal coatings. The benefits of ceramic coatings as thermal barriers will also be addressed.« less

  1. Excess electrons in ice: a density functional theory study.

    PubMed

    Bhattacharya, Somesh Kr; Inam, Fakharul; Scandolo, Sandro

    2014-02-21

    We present a density functional theory study of the localization of excess electrons in the bulk and on the surface of crystalline and amorphous water ice. We analyze the initial stages of electron solvation in crystalline and amorphous ice. In the case of crystalline ice we find that excess electrons favor surface states over bulk states, even when the latter are localized at defect sites. In contrast, in amorphous ice excess electrons find it equally favorable to localize in bulk and in surface states which we attribute to the preexisting precursor states in the disordered structure. In all cases excess electrons are found to occupy the vacuum regions of the molecular network. The electron localization in the bulk of amorphous ice is assisted by its distorted hydrogen bonding network as opposed to the crystalline phase. Although qualitative, our results provide a simple interpretation of the large differences observed in the dynamics and localization of excess electrons in crystalline and amorphous ice films on metals.

  2. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  3. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  4. Surface Temperature Dependence of Hydrogen Ortho-Para Conversion on Amorphous Solid Water.

    PubMed

    Ueta, Hirokazu; Watanabe, Naoki; Hama, Tetsuya; Kouchi, Akira

    2016-06-24

    The surface temperature dependence of the ortho-to-para conversion of H_{2} on amorphous solid water is first reported. A combination of photostimulated desorption and resonance-enhanced multiphoton ionization techniques allowed us to sensitively probe the conversion on the surface of amorphous solid water at temperatures of 9.2-16 K. Within a narrow temperature window of 8 K, the conversion time steeply varied from ∼4.1×10^{3} to ∼6.4×10^{2}  s. The observed temperature dependence is discussed in the context of previously suggested models and the energy dissipation process. The two-phonon process most likely dominates the conversion rate at low temperatures.

  5. Performance and Transient Behavior of Vertically Integrated Thin-film Silicon Sensors

    PubMed Central

    Wyrsch, Nicolas; Choong, Gregory; Miazza, Clément; Ballif, Christophe

    2008-01-01

    Vertical integration of amorphous hydrogenated silicon diodes on CMOS readout chips offers several advantages compared to standard CMOS imagers in terms of sensitivity, dynamic range and dark current while at the same time introducing some undesired transient effects leading to image lag. Performance of such sensors is here reported and their transient behaviour is analysed and compared to the one of corresponding amorphous silicon test diodes deposited on glass. The measurements are further compared to simulations for a deeper investigation. The long time constant observed in dark or photocurrent decay is found to be rather independent of the density of defects present in the intrinsic layer of the amorphous silicon diode. PMID:27873778

  6. From amorphous to nanocrystalline: the effect of nanograins in amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films

    DOE PAGES

    Kearney, B. T.; Jugdersuren, B.; Queen, D. R.; ...

    2017-12-28

    Here, we have measured the thermal conductivity of amorphous and nanocrystalline silicon films with varying crystalline content from 85K to room temperature. The films were prepared by the hot-wire chemical-vapor deposition, where the crystalline volume fraction is determined by the hydrogen (H2) dilution ratio to the processing silane gas (SiH4), R=H2/SiH4. We varied R from 1 to 10, where the films transform from amorphous for R < 3 to mostly nanocrystalline for larger R. Structural analyses show that the nanograins, averaging from 2 to 9nm in sizes with increasing R, are dispersed in the amorphous matrix. The crystalline volume fractionmore » increases from 0 to 65% as R increases from 1 to 10. The thermal conductivities of the two amorphous silicon films are similar and consistent with the most previous reports with thicknesses no larger than a few um deposited by a variety of techniques. The thermal conductivities of the three nanocrystalline silicon films are also similar, but are about 50-70% higher than those of their amorphous counterparts. The heat conduction in nanocrystalline silicon films can be understood as the combined contribution in both amorphous and nanocrystalline phases, where increased conduction through improved nanocrystalline percolation path outweighs increased interface scattering between silicon nanocrystals and the amorphous matrix.« less

  7. From amorphous to nanocrystalline: the effect of nanograins in amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, B. T.; Jugdersuren, B.; Queen, D. R.

    Here, we have measured the thermal conductivity of amorphous and nanocrystalline silicon films with varying crystalline content from 85K to room temperature. The films were prepared by the hot-wire chemical-vapor deposition, where the crystalline volume fraction is determined by the hydrogen (H2) dilution ratio to the processing silane gas (SiH4), R=H2/SiH4. We varied R from 1 to 10, where the films transform from amorphous for R < 3 to mostly nanocrystalline for larger R. Structural analyses show that the nanograins, averaging from 2 to 9nm in sizes with increasing R, are dispersed in the amorphous matrix. The crystalline volume fractionmore » increases from 0 to 65% as R increases from 1 to 10. The thermal conductivities of the two amorphous silicon films are similar and consistent with the most previous reports with thicknesses no larger than a few um deposited by a variety of techniques. The thermal conductivities of the three nanocrystalline silicon films are also similar, but are about 50-70% higher than those of their amorphous counterparts. The heat conduction in nanocrystalline silicon films can be understood as the combined contribution in both amorphous and nanocrystalline phases, where increased conduction through improved nanocrystalline percolation path outweighs increased interface scattering between silicon nanocrystals and the amorphous matrix.« less

  8. Travelling wave resonators fabricated with low-loss hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Lipka, Timo; Amthor, Julia; Trieu, Hoc Khiem; Müller, Jörg

    2013-05-01

    Low-loss hydrogenated amorphous silicon is employed for the fabrication of various planar integrated travelling wave resonators. Microring, racetrack, and disk resonators of different dimensions were fabricated with CMOS-compatible processes and systematically investigated. The key properties of notch filter ring resonators as extinction ratio, Q-factor, free spectral range, and the group refractive index were determined for resonators of varying radius, thereby achieving critically coupled photonic systems with high extinction ratios of about 20 dB for both polarizations. Racetrack resonators that are arranged in add/drop configuration and high quality factor microdisk resonators were optically characterized, with the microdisks exhibiting Q-factors of greater than 100000. Four-channel add/drop wavelength-division multiplexing filters that are based on cascaded racetrack resonators are studied. The design, the fabrication, and the optical characterization are presented.

  9. Removal of a hydrogenated amorphous carbon film from the tip of a micropipette electrode using direct current corona discharge.

    PubMed

    Kakuta, Naoto; Okuyama, Naoki; Yamada, Yukio

    2010-02-01

    Micropipette electrodes are fabricated by coating glass micropipettes first with metal and then with hydrogenated amorphous carbon (a-C:H) as an electrical insulator. Furthermore, at the tip of the micropipette electrode, the deposited a-C:H film needs to be removed to expose the metal-coated surface and hollow for the purposes of electrical measurement and injection. This paper describes a convenient and reliable method for removing the a-C:H film using direct current corona discharge in atmospheric air. The initial film removal occurred at an applied voltage of 1.5-2.0 kV, accompanied by an abrupt increase in the discharge current. The discharge current then became stable at a microampere level in the glow corona mode, and the removed area gradually extended.

  10. Driving Method for Compensating Reliability Problem of Hydrogenated Amorphous Silicon Thin Film Transistors and Image Sticking Phenomenon in Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Shin, Min-Seok; Jo, Yun-Rae; Kwon, Oh-Kyong

    2011-03-01

    In this paper, we propose a driving method for compensating the electrical instability of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) and the luminance degradation of organic light-emitting diode (OLED) devices for large active matrix OLED (AMOLED) displays. The proposed driving method senses the electrical characteristics of a-Si:H TFTs and OLEDs using current integrators and compensates them by an external compensation method. Threshold voltage shift is controlled a using negative bias voltage. After applying the proposed driving method, the measured error of the maximum emission current ranges from -1.23 to +1.59 least significant bit (LSB) of a 10-bit gray scale under the threshold voltage shift ranging from -0.16 to 0.17 V.

  11. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  12. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering.

    PubMed

    Erol, M M; Mouriňo, V; Newby, P; Chatzistavrou, X; Roether, J A; Hupa, L; Boccaccini, Aldo R

    2012-02-01

    The aim of this study was to synthesize and characterize new boron-containing bioactive glass-based scaffolds coated with alginate cross-linked with copper ions. A recently developed bioactive glass powder with nominal composition (wt.%) 65 SiO2, 15 CaO, 18.4 Na2O, 0.1 MgO and 1.5 B2O3 was fabricated as porous scaffolds by the foam replica method. Scaffolds were alginate coated by dipping them in alginate solution. Scanning electron microscopy investigations indicated that the alginate effectively attached on the surface of the three-dimensional scaffolds leading to a homogeneous coating. It was confirmed that the scaffold structure remained amorphous after the sintering process and that the alginate coating improved the scaffold bioactivity and mechanical properties. Copper release studies showed that the alginate-coated scaffolds allowed controlled release of copper ions. The novel copper-releasing composite scaffolds represent promising candidates for bone regeneration. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Physical and optical studies of BaO-TeO2-TiO2-B2O3 glasses containing Cu2+ transition metal ion

    NASA Astrophysics Data System (ADS)

    Srinivas, B.; Kumar, R. Vijaya; Hameed, Abdul; Sagar, D. Karuna; Chary, M. Narasimha; Shareefuddin, Md.

    2018-05-01

    Glasses with the composition xBaO-(30-x) TeO2-10TiO2-59B2O3-1CuO (where x = 10, 15, 20 and 25 mole %) were prepared by melt quenching technique. The XRD studies were made on these glass samples at room temperature. The amorphous nature of the glass samples was confirmed from the XRD patterns. The physical parameters such as density (ρ), molar volume (Vm), average boron-boron separation (dB-B) and oxygen packing density (OPD) were calculated. The change in density and molar volume has been investigated in terms of the variation of BaO in the glass composition. The optical absorption spectra have been recorded at room temperature. The values of optical band gap have been estimated from the ASF and Tauc's methods. Both Tauc's and ASF methods have been showing progressively increasing indirect optical band gap values with the increase of BaO concentrations.

  14. High-Performance and Omnidirectional Thin-Film Amorphous Silicon Solar Cell Modules Achieved by 3D Geometry Design.

    PubMed

    Yu, Dongliang; Yin, Min; Lu, Linfeng; Zhang, Hanzhong; Chen, Xiaoyuan; Zhu, Xufei; Che, Jianfei; Li, Dongdong

    2015-11-01

    High-performance thin-film hydrogenated amorphous silicon solar cells are achieved by combining macroscale 3D tubular substrates and nanoscaled 3D cone-like antireflective films. The tubular geometry delivers a series of advantages for large-scale deployment of photovoltaics, such as omnidirectional performance, easier encapsulation, decreased wind resistance, and easy integration with a second device inside the glass tube. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions.

    PubMed

    Gao, G T; Mikulski, Paul T; Harrison, Judith A

    2002-06-19

    Classical molecular dynamics simulations have been conducted to investigate the atomic-scale friction and wear when hydrogen-terminated diamond (111) counterfaces are in sliding contact with diamond (111) surfaces coated with amorphous, hydrogen-free carbon films. Two films, with approximately the same ratio of sp(3)-to-sp(2) carbon, but different thicknesses, have been examined. Both systems give a similar average friction in the load range examined. Above a critical load, a series of tribochemical reactions occur resulting in a significant restructuring of the film. This restructuring is analogous to the "run-in" observed in macroscopic friction experiments and reduces the friction. The contribution of adhesion between the probe (counterface) and the sample to friction was examined by varying the saturation of the counterface. Decreasing the degree of counterface saturation, by reducing the hydrogen termination, increases the friction. Finally, the contribution of long-range interactions to friction was examined by using two potential energy functions that differ only in their long-range forces to examine friction in the same system.

  16. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting

    NASA Astrophysics Data System (ADS)

    Li, Haoyi; Chen, Shuangming; Jia, Xiaofan; Xu, Biao; Lin, Haifeng; Yang, Haozhou; Song, Li; Wang, Xun

    2017-05-01

    Highly active and robust eletcrocatalysts based on earth-abundant elements are desirable to generate hydrogen and oxygen as fuels from water sustainably to replace noble metal materials. Here we report an approach to synthesize porous hybrid nanostructures combining amorphous nickel-cobalt complexes with 1T phase molybdenum disulfide (MoS2) via hydrazine-induced phase transformation for water splitting. The hybrid nanostructures exhibit overpotentials of 70 mV for hydrogen evolution and 235 mV for oxygen evolution at 10 mA cm-2 with long-term stability, which have superior kinetics for hydrogen- and oxygen-evolution with Tafel slope values of 38.1 and 45.7 mV dec-1. Moreover, we achieve 10 mA cm-2 at a low voltage of 1.44 V for 48 h in basic media for overall water splitting. We propose that such performance is likely due to the complete transformation of MoS2 to metallic 1T phase, high porosity and stabilization effect of nickel-cobalt complexes on 1T phase MoS2.

  17. Solar cell structure incorporating a novel single crystal silicon material

    DOEpatents

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  18. Improving the catalytic activity of amorphous molybdenum sulfide for hydrogen evolution reaction using polydihydroxyphenylalanine modified MWCNTs

    NASA Astrophysics Data System (ADS)

    Li, Maoguo; Yu, Muping; Li, Xiang

    2018-05-01

    Molybdenum sulfides are promising electrocatalysts for hydrogen evolution reaction (HER) in acid medium due to their unique properties. In order to improve their HER activity, different strategies have been developed. In this study, amorphous molybdenum sulfide was prepared by a simple wet chemical method and its HER activity was further improved by using polydihydroxyphenylalanine (PDOPA) modified MWCNTs as supports. It was found that the PDOPA can effectively improve the hydrophilic properties of multiwalled carbon nanotubes (MWCNTs) and amorphous MoSx can uniformly grow on the surface of PDOPA@MWCNTs. Compared with MoSx and MoSx/MWCNTs, MoSx/PDOPA@MWCNTs show obviously enhanced HER activities due to the superior electrical conductivity and more exposed active sites. In addition, the effect of the ratio of MoSx and PDOPA@MWCNTs and the loading amount of catalysts on the electrodes are also investigated in detail. At the optimum conditions, MoSx/PDOPA@MWCNTs display an overpotential of 198 mV at 10 mA/cm2, a Tafel slope of 53 mV/dec and a good long-term stability in 0.5 M H2SO4, which make them promising candidates for HER application.

  19. Understanding the amorphous-to-microcrystalline silicon transition in SiF{sub 4}/H{sub 2}/Ar gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dornstetter, Jean-Christophe; LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau; Bruneau, Bastien

    2014-06-21

    We report on the growth of microcrystalline silicon films from the dissociation of SiF{sub 4}/H{sub 2}/Ar gas mixtures. For this growth chemistry, the formation of HF molecules provides a clear signature of the amorphous to microcrystalline growth transition. Depositing films from silicon tetrafluoride requires the removal of F produced by SiF{sub 4} dissociation, and this removal is promoted by the addition of H{sub 2} which strongly reacts with F to form HF molecules. At low H{sub 2} flow rates, the films grow amorphous as all the available hydrogen is consumed to form HF. Above a critical flow rate, corresponding tomore » the full removal of F, microcrystalline films are produced as there is an excess of atomic hydrogen in the plasma. A simple yet accurate phenomenological model is proposed to explain the SiF{sub 4}/H{sub 2} plasma chemistry in accordance with experimental data. This model provides some rules of thumb to achieve high deposition rates for microcrystalline silicon, namely, that increased RF power must be balanced by an increased H{sub 2} flow rate.« less

  20. Nanoplasmonically Engineered Interfaces on Amorphous TiO2 for Highly Efficient Photocatalysis in Hydrogen Evolution.

    PubMed

    Liang, Huijun; Meng, Qiuxia; Wang, Xiaobing; Zhang, Hucheng; Wang, Jianji

    2018-04-25

    The nanoplasmonic metal-driven photocatalytic activity depends heavily on the spacing between metal nanoparticles (NPs) and semiconductors, and this work shows that ethylene glycol (EG) is an ideal candidate for interface spacer. Controlling the synthetic systems at pH 3, the composite of Ag NPs with EG-stabilized amorphous TiO 2 (Ag/TiO 2 -3) was synthesized by the facile light-induced reduction. It is verified that EG spacers can set up suitable geometric arrangement in the composite: the twin hydroxyls act as stabilizers to bind Ag NPs and TiO 2 together and the nonconductive alkyl chains consisting only of two CH 2 are able to separate the two building blocks completely and also provide the shortest channels for an efficient transfer of radiation energies to reach TiO 2 . Employed as photocatalysts in hydrogen evolution under visible light, amorphous TiO 2 hardly exhibits the catalytic activity due to high defect density, whereas Ag/TiO 2 -3 represents a remarkably high catalytic efficiency. The enhancement mechanism of the reaction rate is proposed by the analysis of the compositional, structural, and optical properties from a series of Ag/TiO 2 composites.

  1. Spheroidization of silica powders by radio frequency inductively coupled plasma with Ar-H2 and Ar-N2 as the sheath gases at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Li, Lin; Ni, Guo-hua; Guo, Qi-jia; Lin, Qi-fu; Zhao, Peng; Cheng, Jun-li

    2017-09-01

    Amorphous spherical silica powders were prepared by inductively coupled thermal plasma treatment at a radio frequency of 36.2 MHz. The effects of the added content of hydrogen and nitrogen into argon (serving as the sheath gas), as well as the carrier gas flow rate, on the spheroidization rate of silica powders, were investigated. The prepared silica powders before and after plasma treatment were examined by scanning electron microscopy, X-ray diffraction, and laser granulometric analysis. Results indicated that the average size of the silica particles increased, and the transformation of crystals into the amorphous state occurred after plasma treatment. Discharge image processing was employed to analyze the effect of the plasma temperature field on the spheroidization rate. The spheroidization rate of the silica powder increased with the increase of the hydrogen content in the sheath gas. On the other hand, the spheroidization rate of the silica power first increased and then decreased with the increase of the nitrogen content in the sheath gas. Moreover, the amorphous content increased with the increase of the spheroidization rate of the silica powder.

  2. Valley filters, accumulators, and switches induced in graphene quantum dots by lines of adsorbed hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Azari, Mohammadhadi; Kirczenow, George

    2018-06-01

    We present electronic structure and quantum transport calculations that predict conducting channels induced in graphene quantum dots by lines of adsorbed hydrogen atoms to function as highly efficient, experimentally realizable valley filters, accumulators, and switches. The underlying physics is an interesting property of graphene Dirac point resonances (DPRs) that is revealed here, namely, that an electric current passing through a DPR-mediated conducting channel in a given direction is carried by electrons of only one of the two graphene valleys. Our predictions apply to lines of hydrogen atoms adsorbed on graphene quantum dots that are either free standing or supported on a hexagonal boron nitride substrate.

  3. Study on the Hydrogenated ZnO-Based Thin Film Transistors. Part 1

    DTIC Science & Technology

    2011-04-30

    IGZO film on the performance of thin film transistors 5 Chapter 2. Hydrogenation of a- IGZO channel layer in the thin film transistors 12...effect of substrate temperature during the deposition of a- IGZO film on the performance of thin film transistors Introduction The effect of substrate...temperature during depositing IGZO channel layer on the performance of amorphous indium-gallium-zinc oxide (a- IGZO

  4. Possible existence of two amorphous phases of D-mannitol related by a first-order transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Men; Yu, Lian, E-mail: lian.yu@wisc.edu; Wang, Jun-Qiang

    2015-06-28

    We report that the common polyalcohol D-mannitol may have two amorphous phases related by a first-order transition. Slightly above its glass transition temperature T{sub g} (284 K), the supercooled liquid (SCL) of D-mannitol transforms to a low-energy, apparently amorphous phase with stronger hydrogen bonds. The enthalpy of this so-called Phase X is approximately halfway between those of the known amorphous and crystalline phases, a position low for glass aging and high for crystal polymorphs. Similar to the SCL, Phase X is transparent with broad X-ray diffraction and Raman scattering; upon temperature cycling, it exhibits a glass-transition-like change of heat capacity.more » On fast heating, Phase X transforms back to the SCL near T{sub g} + 50 K, enabling a determination of their equilibrium temperature. The presence of D-sorbitol as a plasticizer enables observation of a first-order transition from the SCL to Phase X entirely in the liquid state (liquid-liquid transition). The transition from D-mannitol’s SCL to Phase X has intriguing similarities with the formation of the glacial phase of triphenyl phosphite (TPP) and the conversion from high-density to low-density amorphous ice, both studied intensely in the context of polyamorphism. All three processes occur near T{sub g} with substantial enthalpy decrease toward the crystalline phases; the processes in water and D-mannitol both strengthen the hydrogen bonds. In contrast to TPP, D-mannitol’s Phase X forms more rapidly and can transform back to the SCL. These features make D-mannitol a valuable new model for understanding polyamorphism.« less

  5. Plasma-initiated rehydrogenation of amorphous silicon to increase the temperature processing window of silicon heterojunction solar cells

    DOE PAGES

    Shi, Jianwei; Boccard, Mathieu; Holman, Zachary

    2016-07-19

    The dehydrogenation of intrinsic hydrogenated amorphous silicon (a-Si:H) at temperatures above approximately 300°C degrades its ability to passivate silicon wafer surfaces. This limits the temperature of post-passivation processing steps during the fabrication of advanced silicon heterojunction or silicon-based tandem solar cells. We demonstrate that a hydrogen plasma can rehydrogenate intrinsic a-Si:H passivation layers that have been dehydrogenated by annealing. The hydrogen plasma treatment fully restores the effective carrier lifetime to several milliseconds in textured crystalline siliconwafers coated with 8-nm-thick intrinsic a-Si:H layers after annealing at temperatures of up to 450°C. Plasma-initiated rehydrogenation also translates to complete solar cells: A silicon heterojunction solar cell subjected to annealing at 450°C (following intrinsic a-Si:H deposition) had an open-circuit voltage of less than 600 mV, but an identical cell that received hydrogen plasma treatment reached a voltagemore » of over 710 mV and an efficiency of over 19%.« less

  6. Plasma-initiated rehydrogenation of amorphous silicon to increase the temperature processing window of silicon heterojunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Jianwei; Boccard, Mathieu; Holman, Zachary

    The dehydrogenation of intrinsic hydrogenated amorphous silicon (a-Si:H) at temperatures above approximately 300°C degrades its ability to passivate silicon wafer surfaces. This limits the temperature of post-passivation processing steps during the fabrication of advanced silicon heterojunction or silicon-based tandem solar cells. We demonstrate that a hydrogen plasma can rehydrogenate intrinsic a-Si:H passivation layers that have been dehydrogenated by annealing. The hydrogen plasma treatment fully restores the effective carrier lifetime to several milliseconds in textured crystalline siliconwafers coated with 8-nm-thick intrinsic a-Si:H layers after annealing at temperatures of up to 450°C. Plasma-initiated rehydrogenation also translates to complete solar cells: A silicon heterojunction solar cell subjected to annealing at 450°C (following intrinsic a-Si:H deposition) had an open-circuit voltage of less than 600 mV, but an identical cell that received hydrogen plasma treatment reached a voltagemore » of over 710 mV and an efficiency of over 19%.« less

  7. High-Density Amorphous Ice, the Frost on Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Blake, D. F.; Wilson, M. A.; Pohorille, A.

    1995-01-01

    Most water ice in the universe is in a form which does not occur naturally on Earth and of which only minimal amounts have been made in the laboratory. We have encountered this 'high-density amorphous ice' in electron diffraction experiments of low-temperature (T less than 30 K) vapor-deposited water and have subsequently modeled its structure using molecular dynamics simulations. The characteristic feature of high-density amorphous ice is the presence of 'interstitial' oxygen pair distances between 3 and 4 A. However, we find that the structure is best described as a collapsed lattice of the more familiar low-density amorphous form. These distortions are frozen in at temperatures below 38 K because, we propose, it requires the breaking of one hydrogen bond, on average, per molecule to relieve the strain and to restructure the lattice to that of low-density amorphous ice. Several features of astrophysical ice analogs studied in laboratory experiments are readily explained by the structural transition from high-density amorphous ice into low-density amorphous ice. Changes in the shape of the 3.07 gm water band, trapping efficiency of CO, CO loss, changes in the CO band structure, and the recombination of radicals induced by low-temperature UV photolysis all covary with structural changes that occur in the ice during this amorphous to amorphous transition. While the 3.07 micrometers ice band in various astronomical environments can be modeled with spectra of simple mixtures of amorphous and crystalline forms, the contribution of the high-density amorphous form nearly always dominates.

  8. Preparation and Characterization of ZnO Nanoparticles Supported on Amorphous SiO2

    PubMed Central

    Chen, Ying; Ding, Hao; Sun, Sijia

    2017-01-01

    In order to reduce the primary particle size of zinc oxide (ZnO) and eliminate the agglomeration phenomenon to form a monodisperse state, Zn2+ was loaded on the surface of amorphous silica (SiO2) by the hydrogen bond association between hydroxyl groups in the hydrothermal process. After calcining the precursors, dehydration condensation among hydroxyl groups occurred and ZnO nanoparticles supported on amorphous SiO2 (ZnO–SiO2) were prepared. Furthermore, the SEM and TEM observations showed that ZnO nanoparticles with a particle size of 3–8 nm were uniformly and dispersedly loaded on the surface of amorphous SiO2. Compared with pure ZnO, ZnO–SiO2 showed a much better antibacterial performance in the minimum inhibitory concentration (MIC) test and the antibacterial properties of the paint adding ZnO–SiO2 composite. PMID:28796157

  9. Room temperature visible photoluminescence of silicon nanocrystallites embedded in amorphous silicon carbide matrix

    NASA Astrophysics Data System (ADS)

    Coscia, U.; Ambrosone, G.; Basa, D. K.

    2008-03-01

    The nanocrystalline silicon embedded in amorphous silicon carbide matrix was prepared by varying rf power in high vacuum plasma enhanced chemical vapor deposition system using silane methane gas mixture highly diluted in hydrogen. In this paper, we have studied the evolution of the structural, optical, and electrical properties of this material as a function of rf power. We have observed visible photoluminescence at room temperature and also have discussed the role played by the Si nanocrystallites and the amorphous silicon carbide matrix. The decrease of the nanocrystalline size, responsible for quantum confinement effect, facilitated by the amorphous silicon carbide matrix, is shown to be the primary cause for the increase in the PL intensity, blueshift of the PL peak position, decrease of the PL width (full width at half maximum) as well as the increase of the optical band gap and the decrease of the dark conductivity.

  10. Peculiar hydrogenation process of Ce2Ni2Ga

    NASA Astrophysics Data System (ADS)

    Iwasieczko, Wacław; Kaczorowski, Dariusz

    2017-02-01

    Hydrogenation studies were carried out on the compound Ce2Ni2Ga that was described in the literature as an intermediate valence system. The alloy was found to absorb hydrogen very easily already at room temperature under pressure less than 0.1 MPa forming hydrides Ce2Ni2GaHx with x up 5.9, which are however multiphase and contain CeH2+δ and some other undisclosed phases. Analyses of the X-ray diffraction and magnetic data revealed that decomposition of the parent compound occurs immediately after its exposure to hydrogen. Synthesis under hydrogen pressure of 3 MPa at 470 K resulted in amorphous material with x=7.3. The Ce2Ni2GaHx system was found to exhibit a HDDR (hydrogenation, disproportionation, desorption, recombination) process.

  11. Constraints on Biogenic Emplacement of Crystalline Calcium Carbonate and Dolomite

    NASA Astrophysics Data System (ADS)

    Colas, B.; Clark, S. M.; Jacob, D. E.

    2015-12-01

    Amorphous calcium carbonate (ACC) is a biogenic precursor of calcium carbonates forming shells and skeletons of marine organisms, which are key components of the whole marine environment. Understanding carbonate formation is an essential prerequisite to quantify the effect climate change and pollution have on marine population. Water is a critical component of the structure of ACC and the key component controlling the stability of the amorphous state. Addition of small amounts of magnesium (1-5% of the calcium content) is known to promote the stability of ACC presumably through stabilization of the hydrogen bonding network. Understanding the hydrogen bonding network in ACC is fundamental to understand the stability of ACC. Our approach is to use Monte-Carlo simulations constrained by X-ray and neutron scattering data to determine hydrogen bonding networks in ACC as a function of magnesium doping. We have already successfully developed a synthesis protocol to make ACC, and have collected X-ray data, which is suitable for determining Ca, Mg and O correlations, and have collected neutron data, which gives information on the hydrogen/deuterium (as the interaction of X-rays with hydrogen is too low for us to be able to constrain hydrogen atom positions with only X-rays). The X-ray and neutron data are used to constrain reverse Monte-Carlo modelling of the ACC structure using the Empirical Potential Structure Refinement program, in order to yield a complete structural model for ACC including water molecule positions. We will present details of our sample synthesis and characterization methods, X-ray and neutron scattering data, and reverse Monte-Carlo simulations results, together with a discussion of the role of hydrogen bonding in ACC stability.

  12. RAILCAR4 Toxic Industrial Chemical Source Characterization Program (Software User’s Manual)

    DTIC Science & Technology

    2011-08-01

    hydroxide (29%) boron trifluoride sulfur trioxide hydrogen chloride methyl bromide phosphine hydrochloric acid (39%) phosphoryl trichloride arsine...Data for Chlorine Trial 05-RC ...............................20 10 Nitric Acid Thermodynamic Properties...Table 1. TICs Available for RAILCAR Simulations chlorine hydrobromic acid (48%) acetylene tetrabromide ammonia OMPA o-anisidine ammonium

  13. Avalanche proton-boron fusion based on elastic nuclear collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliezer, Shalom; Martinez Val, Josè Maria; Hora, Heinrich

    2016-05-15

    Recent experiments done at Prague with the 600 J/0.2 ns PALS laser interacting with a layer of boron dopants in a hydrogen enriched target have produced around 10{sup 9} alphas. We suggest that these unexpected very high fusion reactions of proton with {sup 11}B indicate an avalanche multiplication for the measured anomalously high nuclear reaction yields. This can be explained by elastic nuclear collisions in the broad 600 keV energy band, which is coincident with the high nuclear p-{sup 11}B fusion cross section, by the way of multiplication through generation of three secondary alpha particles from a single primarily produced alpha particle.

  14. Energetics and formation mechanism of borders between hexagonal boron nitride and graphene

    NASA Astrophysics Data System (ADS)

    Sawahata, Hisaki; Yamanaka, Ayaka; Maruyama, Mina; Okada, Susumu

    2018-06-01

    We studied the energetics of two-dimensional heterostructures consisting of hexagonal boron nitride (h-BN) and graphene with respect to the border structure and heterobond species using density functional theory. A BC heterobond is energetically preferable at the border between h-BN and graphene. We also found that the polarization at the zigzag border increases the total energy of the heterostructures. Competition between the bond formation energy and the polarization energy leads to chiral borders at which BC heterobonds are dominant. By taking the formation process of the heterostructures into account, the zigzag border with BC heterobonds is found to be preferentially synthesized from graphene edges under hydrogen-rich conditions.

  15. Effect of ball milling on the physicochemical properties of atorvastatin calcium sesquihydrate: the dissolution kinetic behaviours of milled amorphous solids.

    PubMed

    Kobayashi, Makiko; Hattori, Yusuke; Sasaki, Tetsuo; Otsuka, Makoto

    2017-01-01

    The purposes of this study were to clarify the amorphization by ball milling of atorvastatin calcium sesquihydrate (AT) and to analyse the change in dissolution kinetics. The amorphous AT was prepared from crystal AT by ball milling and analysed in terms of the changes of its physicochemical properties by powder X-ray diffraction analysis (XRD), thermal analysis and infrared spectroscopy (IR). Moreover, to evaluate the usefulness of the amorphous form for pharmaceutical development, intrinsic solubility of the ground product was evaluated using a dissolution kinetic method. The XRD results indicated that crystalline AT was transformed into amorphous solids by more than 30-min milling. The thermal analysis result suggested that chemical potential of the ground AT are changed significantly by milling. The IR spectra of the AT showed the band shift from the amide group at 3406 cm -1 with an intermolecular hydrogen bond to a free amide group at 3365 cm -1 by milling. The dissolution of amorphous AT follows a dissolution kinetic model involving phase transformation. The initial dissolution rate of the ground product increased with the increase in milling time to reflect the increase in the intrinsic solubility based on the amorphous state. © 2016 Royal Pharmaceutical Society.

  16. Composition-Dependent Morphology of Bi- and Trimetallic Phosphides: Construction of Amorphous Pd-Cu-Ni-P Nanoparticles as a Selective and Versatile Catalyst.

    PubMed

    Zhao, Ming; Ji, Yuan; Wang, Mengyue; Zhong, Ning; Kang, Zinan; Asao, Naoki; Jiang, Wen-Jie; Chen, Qiang

    2017-10-11

    Amorphous materials have been widely researched in heterogeneous catalysis and for next-generation batteries. However, the well-defined production of high-quality (e.g., monodisperse and high surface area) amorphous alloy nanomaterials has rarely been reported. In this work, we investigated the correlations among the composition, morphology, and catalysis of various Pd-M-P nanoparticles (NPs) (M = Cu or Ni), which indicated that less Cu (≤20 atom %) was necessary for the formation of an amorphous morphology. The amorphous Pd-Cu-Ni-P NPs were fabricated with a controllable size and characterized carefully, which show excellent selective catalysis in the semihydrogenation of alkynes, hydrogenation of quinoline, and oxidation of primary alcohols. The uniqueness of the catalytic performance was confirmed by control experiments with monometallic Pd, amorphous Pd-Ni-P NPs, crystalline Pd-Cu-P NPs, and a crystalline counterpart of Pd-Cu-Ni-P catalyst. The catalytic selectivity likely arose from improved Pd-M (M = Cu or Ni) synergistic effects in the amorphous phase and the electron deficiency of Pd. The model reactions proceeded under H 2 or O 2 gas without any additives, bases, or metal oxide supports, and the catalyst could be reused several times. This report is expected to shed light on the design of amorphous alloy nanomaterials as green and inexpensive catalysts for atom-economic and selective reactions.

  17. A delta-doped amorphous silicon thin-film transistor with high mobility and stability

    NASA Astrophysics Data System (ADS)

    Kim, Pyunghun; Lee, Kyung Min; Lee, Eui-Wan; Jo, Younjung; Kim, Do-Hyung; Kim, Hong-jae; Yang, Key Young; Son, Hyunji; Choi, Hyun Chul

    2012-12-01

    Ultrathin doped layers, known as delta-doped layers, were introduced within the intrinsic amorphous silicon (a-Si) active layer to fabricate hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) with enhanced field-effect mobility. The performance of the delta-doped a-Si:H TFTs depended on the phosphine (PH3) flow rate and the distance from the n+ a-Si to the deltadoping layer. The delta-doped a-Si:H TFTs fabricated using a commercial manufacturing process exhibited an enhanced field-effect mobility of approximately ˜0.23 cm2/Vs (compared to a conventional a-Si:H TFT with 0.15 cm2/Vs) and a desirable stability under a bias-temperature stress test.

  18. Amorphous In-Ga-Zn-O Thin Film Transistor Current-Scaling Pixel Electrode Circuit for Active-Matrix Organic Light-Emitting Displays

    NASA Astrophysics Data System (ADS)

    Chen, Charlene; Abe, Katsumi; Fung, Tze-Ching; Kumomi, Hideya; Kanicki, Jerzy

    2009-03-01

    In this paper, we analyze application of amorphous In-Ga-Zn-O thin film transistors (a-InGaZnO TFTs) to current-scaling pixel electrode circuit that could be used for 3-in. quarter video graphics array (QVGA) full color active-matrix organic light-emitting displays (AM-OLEDs). Simulation results, based on a-InGaZnO TFT and OLED experimental data, show that both device sizes and operational voltages can be reduced when compare to the same circuit using hydrogenated amorphous silicon (a-Si:H) TFTs. Moreover, the a-InGaZnO TFT pixel circuit can compensate for the drive TFT threshold voltage variation (ΔVT) within acceptable operating error range.

  19. Elasticity, strength, and toughness of single crystal silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amorphous carbon

    NASA Astrophysics Data System (ADS)

    Espinosa, H. D.; Peng, B.; Moldovan, N.; Friedmann, T. A.; Xiao, X.; Mancini, D. C.; Auciello, O.; Carlisle, J.; Zorman, C. A.; Merhegany, M.

    2006-08-01

    In this work, the authors report the mechanical properties of three emerging materials in thin film form: single crystal silicon carbide (3C-SiC), ultrananocrystalline diamond, and hydrogen-free tetrahedral amorphous carbon. The materials are being employed in micro- and nanoelectromechanical systems. Several reports addressed some of the mechanical properties of these materials but they are based in different experimental approaches. Here, they use a single testing method, the membrane deflection experiment, to compare these materials' Young's moduli, characteristic strengths, fracture toughnesses, and theoretical strengths. Furthermore, they analyze the applicability of Weibull theory [Proc. Royal Swedish Inst. Eng. Res. 153, 1 (1939); ASME J. Appl. Mech. 18, 293 (1951)] in the prediction of these materials' failure and document the volume- or surface-initiated failure modes by fractographic analysis. The findings are of particular relevance to the selection of micro- and nanoelectromechanical systems materials for various applications of interest.

  20. Modification of the amorphous carbon films by the ns-laser irradiation

    NASA Astrophysics Data System (ADS)

    Grigonis, Alfonsas; Marcinauskas, Liutauras; Vinciunaite, Vinga; Raciukaitis, Gediminas

    2011-10-01

    The effect of a nanosecond laser irradiation of thin (60 and 145 nm) amorphous, diamond-like carbon films deposited on Si substrate by an ion beam deposition (IBD) from pure acetylene and acetylene/hydrogen (1:2) gas mixture was analyzed in this work. The films were irradiated with the infrared (IR) and ultraviolet (UV) radiation of the nanosecond Nd:YAG lasers working at the first (1.16 eV) and the third (3.48 eV) harmonics, using a multi-shot regime. The IR laser irradiation stimulated a minor increase in the fraction of sp2 bonds, causing a slight decrease in the hardness of the films and initiated SiC formation. Irradiation with the UV laser caused the formation of carbides and increased hydrogenization of the Si substrate and the fraction of sp2 sites. Spalliation and ablation were observed at a higher energy density and with a large number of laser pulses per spot.

Top