Science.gov

Sample records for amorphous metals high-performance

  1. Capillary flow of amorphous metal for high performance electrode.

    PubMed

    Kim, Se Yun; Kim, Suk Jun; Jee, Sang Soo; Park, Jin Man; Park, Keum Hwan; Park, Sung Chan; Cho, Eun Ae; Lee, Jun Ho; Song, In Yong; Lee, Sang Mock; Han, In Taek; Lim, Ka Ram; Kim, Won Tae; Park, Ju Cheol; Eckert, Jürgen; Kim, Do Hyang; Lee, Eun-Sung

    2013-01-01

    Metallic glass (MG) assists electrical contact of screen-printed silver electrodes and leads to comparable electrode performance to that of electroplated electrodes. For high electrode performance, MG needs to be infiltrated into nanometer-scale cavities between Ag particles and reacts with them. Here, we show that the MG in the supercooled state can fill the gap between Ag particles within a remarkably short time due to capillary effect. The flow behavior of the MG is revealed by computational fluid dynamics and density funtional theory simulation. Also, we suggest the formation mechanism of the Ag electrodes, and demonstrate the criteria of MG for higher electrode performance. Consequently, when Al85Ni5Y8Co2 MG is added in the Ag electrodes, cell efficiency is enhanced up to 20.30% which is the highest efficiency reported so far for screen-printed interdigitated back contact solar cells. These results show the possibility for the replacement of electroplating process to screen-printing process.

  2. Capillary flow of amorphous metal for high performance electrode

    NASA Astrophysics Data System (ADS)

    Kim, Se Yun; Kim, Suk Jun; Jee, Sang Soo; Park, Jin Man; Park, Keum Hwan; Park, Sung Chan; Cho, Eun Ae; Lee, Jun Ho; Song, In Yong; Lee, Sang Mock; Han, In Taek; Lim, Ka Ram; Kim, Won Tae; Park, Ju Cheol; Eckert, Jürgen; Kim, Do Hyang; Lee, Eun-Sung

    2013-07-01

    Metallic glass (MG) assists electrical contact of screen-printed silver electrodes and leads to comparable electrode performance to that of electroplated electrodes. For high electrode performance, MG needs to be infiltrated into nanometer-scale cavities between Ag particles and reacts with them. Here, we show that the MG in the supercooled state can fill the gap between Ag particles within a remarkably short time due to capillary effect. The flow behavior of the MG is revealed by computational fluid dynamics and density funtional theory simulation. Also, we suggest the formation mechanism of the Ag electrodes, and demonstrate the criteria of MG for higher electrode performance. Consequently, when Al85Ni5Y8Co2 MG is added in the Ag electrodes, cell efficiency is enhanced up to 20.30% which is the highest efficiency reported so far for screen-printed interdigitated back contact solar cells. These results show the possibility for the replacement of electroplating process to screen-printing process.

  3. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development

    SciTech Connect

    Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

    2008-01-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  4. Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program

    SciTech Connect

    Farmer, J

    2007-07-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  5. Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development

    NASA Astrophysics Data System (ADS)

    Farmer, Joseph; Choi, Jor-Shan; Saw, Cheng; Haslam, Jeffrey; Day, Dan; Hailey, Phillip; Lian, Tiangan; Rebak, Raul; Perepezko, John; Payer, Joe; Branagan, Daniel; Beardsley, Brad; D'Amato, Andy; Aprigliano, Lou

    2009-06-01

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was cosponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the U.S. Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition, materials synthesis, thermal stability, corrosion resistance, environmental cracking, mechanical properties, damage tolerance, radiation effects, and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as meltspun ribbons (MSRs), dropcast ingots, and thermal-spray coatings. Chromium (Cr), molybdenum (Mo), and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of MSRs and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently, thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests; good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while the open-circuit corrosion potentials (OCPs) were simultaneously monitored; reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber and suitable for criticality-control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and Ni-based materials, and are proving to have excellent wear

  6. Corrosion Characterization of Iron-Based High-Performance Amorphous-Metal Thermal-Spray Coatings

    SciTech Connect

    Farmer, J C; Haslam, J J; Day, S D; Branagan, D J; Blue, C A; Rivard, J K; Aprigliano, L F; Yang, N; Perepezko, J H; Beardsley, M B

    2005-03-21

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. One of these compositions, SAM1651, is discussed in detail to illustrate the promise of this general class of materials.

  7. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report

    SciTech Connect

    Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

    2009-03-16

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  8. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    SciTech Connect

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-09-20

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  9. Amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  10. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  11. Structural analysis of amorphous phosphates using high performance liquid chromatography

    SciTech Connect

    Sales, B.C.; Boatner, L.A.; Chakoumakos, B.C.; McCallum, J.C.; Ramey, J.O.; Zuhr, R.A.

    1993-12-31

    Determining the atomic-scale structure of amorphous solids has proven to be a formidable scientific and technological problem for the past 100 years. The technique of high-performance liquid chromatography (HPLC) provides unique detailed information regarding the structure of partially disordered or amorphous phosphate solids. Applications of the experimental technique of HPLC to phosphate solids are reviewed, and examples of the type of information that can be obtained with HPLC are presented. Inorganic phosphates encompass a large class of important materials whose applications include: catalysts, ion-exchange media, solid electrolytes for batteries, linear and nonlinear optical components, chelating agents, synthetic replacements for bone and teeth, phosphors, detergents, and fertilizers. Phosphate ions also represent a unique link between living systems and the inorganic world.

  12. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    SciTech Connect

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  13. High Performance Molybdenum Disulfide Amorphous Silicon Heterojunction Photodetector

    PubMed Central

    Esmaeili-Rad, Mohammad R.; Salahuddin, Sayeef

    2013-01-01

    One important use of layered semiconductors such as molybdenum disulfide (MoS2) could be in making novel heterojunction devices leading to functionalities unachievable using conventional semiconductors. Here we demonstrate a metal-semiconductor-metal heterojunction photodetector, made of MoS2 and amorphous silicon (a-Si), with rise and fall times of about 0.3 ms. The transient response does not show persistent (residual) photoconductivity, unlike conventional a-Si devices where it may last 3–5 ms, thus making this heterojunction roughly 10X faster. A photoresponsivity of 210 mA/W is measured at green light, the wavelength used in commercial imaging systems, which is 2−4X larger than that of a-Si and best reported MoS2 devices. The device could find applications in large area electronics, such as biomedical imaging, where a fast response is critical. PMID:23907598

  14. Amorphous metallic foam

    NASA Astrophysics Data System (ADS)

    Schroers, Jan; Veazey, Chris; Johnson, William L.

    2003-01-01

    The bulk glass forming alloy Pd43Ni10Cu27P20 is processed into a low-density amorphous metallic foam. Pd43Ni10Cu27P20 is mixed with hydrated B2O3, which releases gas at elevated temperature and/or low pressure. Very homogeneous foams are achieved due to the high viscosity of the alloy even at its liquidus temperature. By processing at the liquidus temperature and decreasing the pressure to 10-2 mbar, well-distributed bubbles expand to foam the material. Foam densities as low as 1.4×103 kg/m3 were obtained, corresponding to a bubble volume fraction of 84%. The bubble diameter ranges between 2×10-4 and 1×10-3 m. Thermal analysis by differential scanning calorimetry confirms the amorphous nature of the foam. Furthermore, it reveals that the foam's thermal stability is comparable to the bulk material.

  15. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  16. Defects in Amorphous Metals.

    DTIC Science & Technology

    1982-07-01

    this map with a similar plot of the experimental data. An experimental deformation data map for Pd-based amorphous al- loys is shown in fig. 10. In the...Masumoto. I Mat. Sci. 12 (1977) 1927, [IgI T M Ha.es. J. W Allen. J. Tauc . B. C. Giessen and J. J. Hauser. Phys. Re. Lett. 41 i197s) 1282 [191 J

  17. Amorphous metallic films in silicon metallization systems

    NASA Astrophysics Data System (ADS)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-06-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  18. Amorphous metallic films in silicon metallization systems

    NASA Technical Reports Server (NTRS)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-01-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  19. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings Evaluation of Corrosion Reistance FY05 HPCRM Annual Report # Rev. 1DOE-DARPA Co-Sponsored Advanced Materials Program

    SciTech Connect

    Farmer, J C; Haslam, J J; Day, S D

    2007-09-19

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  20. Flexible amorphous metal films with high stability

    NASA Astrophysics Data System (ADS)

    Liu, M.; Cao, C. R.; Lu, Y. M.; Wang, W. H.; Bai, H. Y.

    2017-01-01

    We report the formation of amorphous Cu50Zr50 films with a large-area of more than 100 cm2. The films were fabricated by ion beam assisted deposition with a slow deposition rate at moderate temperature. The amorphous films have markedly enhanced thermal stability, excellent flexibility, and high reflectivity with atomic level smoothness. The multifunctional properties of the amorphous films are favorites in the promising applications of smart skin or wearable devices. The method of preparing highly stable amorphous metal films by tuning the deposition rate instead of deposition temperature could pave a way for exploring amorphous metal films with unique properties.

  1. Method of making amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1982-01-01

    The process comprises placing an amorphous metal in particulate form and a low molecular weight (e.g., 1000-5000) thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  2. Mechanics of Metals with Grain Sizes Approaching the Amorphous Limit

    DTIC Science & Technology

    2009-10-31

    the structural and mechanical similarities and differences between amorphous and nanocrystalline metals. Both have exceptionally high strength , but...structure and mechanics of these materials, with the ultimate aim of consciously designing the next generation of high-performance structural metals... multiaxial loading conditions. We showed that neither of these materials obey the classical von Mises criterion, but must use a different criterion that is

  3. CORROSION STUDY OF AMORPHOUS METAL RIBBONS

    SciTech Connect

    Lian, T; Day, S D; Farmer, J C

    2006-07-31

    Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The potential advantages of amorphous metals have been recognized for some time [Latanison 1985]. Iron-based corrosion-resistant, amorphous-metal coatings under development may prove important for maritime applications [Farmer et al. 2005]. Such materials could also be used to coat the entire outer surface of containers for the transportation and long-term storage of spent nuclear fuel, or to protect welds and heat affected zones, thereby preventing exposure to environments that might cause stress corrosion cracking [Farmer et al. 1991, 2000a, 2000b]. In the future, it may be possible to substitute such high-performance iron-based materials for more-expensive nickel-based alloys, thereby enabling cost savings in a wide variety of industrial applications. It should be noted that thermal-spray ceramic coatings have also been investigated for such applications [Haslam et al. 2005]. This report focuses on the corrosion resistance of iron-based melt-spun amorphous metal ribbons. Melt-Spun ribbon is made by rapid solidification--a stream of molten metal is dropped onto a spinning copper wheel, a process that enables the manufacture of amorphous metals which are unable to be manufactured by conventional cold or hot rolling techniques. The study of melt-spun ribbon allows quick evaluation of amorphous metals corrosion resistance. The melt-spun ribbons included in this study are DAR40, SAM7, and SAM8, SAM1X series, and SAM2X series. The SAM1X series ribbons have

  4. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  5. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  6. Influence of amorphous silica on the hydration in ultra-high performance concrete

    SciTech Connect

    Oertel, Tina; Helbig, Uta; Hutter, Frank; Kletti, Holger; Sextl, Gerhard

    2014-04-01

    Amorphous silica particles (silica) are used in ultra-high performance concretes to densify the microstructure and accelerate the clinker hydration. It is still unclear whether silica predominantly increases the surface for the nucleation of C–S–H phases or dissolves and reacts pozzolanically. Furthermore, varying types of silica may have different and time dependent effects on the clinker hydration. The effects of different silica types were compared in this study by calorimetric analysis, scanning and transmission electron microscopy, in situ X-ray diffraction and compressive strength measurements. The silica component was silica fume, pyrogenic silica or silica synthesized by a wet-chemical route (Stoeber particles). Water-to-cement ratios were 0.23. Differences are observed between the silica for short reaction times (up to 3 days). Results indicate that silica fume and pyrogenic silica accelerate alite hydration by increasing the surface for nucleation of C–S–H phases whereas Stoeber particles show no accelerating effect.

  7. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, R.C.

    1985-02-11

    Disclosed are: amorphous metallic precipitates having the formula (M/sub 1/)/sub a/(M/sub 2/)/sub b/ wherein M/sub 1/ is at least one transition metal, M/sub 2/ is at least one main group metal and the integers ''a'' and ''b'' provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  8. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, Robert C.

    1988-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  9. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, Robert C.

    1986-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  10. Atomic Bond Deficiency Defects in Amorphous Metals

    NASA Astrophysics Data System (ADS)

    Zhu, Aiwu; Shiflet, Gary J.; Poon, S. Joseph

    2012-10-01

    Atomic bond deficiency (BD) is considered to be characteristic structural defects in amorphous metals. They are the necessary feature of local atomic configurations that facilitate various atomic transports under different driving forces. Compared with vacancies in crystalline solids, they are "small" in terms of their formation energies, volume costs, and elementary steps involved in atomic transport. This article reviews the authors' recent efforts made to analyze how various local configurations containing BD are related to amorphous metal's unique characteristics, such as glass transition, diffusion, shear flow, and structural relaxation.

  11. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, Auda K.

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  12. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, A.K.

    1979-07-18

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  13. Metal electrode for amorphous silicon solar cells

    DOEpatents

    Williams, Richard

    1983-01-01

    An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

  14. Development of High Performance CFRP/Metal Active Laminates

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi; Haga, Osamu; Imori, Masataka

    This paper describes development of high performance CFRP/metal active laminates mainly by investigating the kind and thickness of the metal. Various types of the laminates were made by hot-pressing of an aluminum, aluminum alloys, a stainless steel and a titanium for the metal layer as a high CTE material, a unidirectional CFRP prepreg as a low CTE/electric resistance heating material, a unidirectional KFRP prepreg as a low CTE/insulating material. The aluminum and its alloy type laminates have almost the same and the highest room temperature curvatures and they linearly change with increasing temperature up to their fabrication temperature. The curvature of the stainless steel type jumps from one to another around its fabrication temperature, whereas the titanium type causes a double curvature and its change becomes complicated. The output force of the stainless steel type attains the highest of the three under the same thickness. The aluminum type successfully increased its output force by increasing its thickness and using its alloys. The electric resistance of the CFRP layer can be used to monitor the temperature, that is, the curvature of the active laminate because the curvature is a function of temperature.

  15. Vapor-phase atomic-controllable growth of amorphous Li2S for high-performance lithium-sulfur batteries.

    PubMed

    Meng, Xiangbo; Comstock, David J; Fister, Timothy T; Elam, Jeffrey W

    2014-10-28

    Lithium-sulfur (Li-S) batteries hold great promise to meet the formidable energy storage requirements of future electrical vehicles but are prohibited from practical implementation by their severe capacity fading and the risks imposed by Li metal anodes. Nanoscale Li(2)S offers the possibility to overcome these challenges, but no synthetic technique exists for fine-tailoring Li(2)S at the nanoscale. Herein we report a vapor-phase atomic layer deposition (ALD) method for the atomic-scale-controllable synthesis of Li(2)S. Besides a comprehensive investigation of the ALD Li(2)S growth mechanism, we further describe the high performance of the resulting amorphous Li(2)S nanofilms as cathodes in Li-S batteries, achieving a stable capacity of ∼ 800 mA · h/g, nearly 100% Coulombic efficiency, and excellent rate capability. Nanoscale Li(2)S holds great potential for both bulk-type and thin-film high-energy Li-S batteries.

  16. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    SciTech Connect

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin

    2014-11-10

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles.

  17. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    SciTech Connect

    Ou-Yang, Wei E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Nabatame, Toshihide

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  18. Amorphous vanadyl phosphate/graphene composites for high performance supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Chen, Ningna; Zhou, Jinhua; Kang, Qi; Ji, Hongmei; Zhu, Guoyin; Zhang, Yu; Chen, Shanyong; Chen, Jing; Feng, Xiaomiao; Hou, Wenhua

    2017-03-01

    Amorphous vanadyl phosphate/graphene nanohybrids is successfully synthesized by first exfoliating bulk layered vanadyl phosphate (VOPO4·2H2O) into nanosheets, and then hydrothermal treatment with graphene oxide (GO). The electrochemical properties of the resulted materials are systematically investigated. It is found that a phase transformation from crystalline to amorphous is occurred to VOPO4·2H2O. As supercapacitor electrode material, the amorphous VOPO4/graphene composite exhibits a high specific capacitance (508 F g-1 at 0.5 A g-1), an excellent rate capability (359 F g-1 at 10 A g-1), and a good cycling stability (retention 80% after 5000 cycles at 2 A g-1). Particularly, it simultaneously has a greatly enhanced energy density of 70.6 Wh·kg-1 with a power density of 250 W kg-1. The outstanding energy storage performance mainly originates from the generation of amorphous VOPO4 phase that facilitates ion transport by shortening ion diffusion paths and provides more reversible and fast faradic reaction sites, the hybridization with graphene that greatly improves the electric conductivity and structure stability, and the unique layer-on-sheet nanohybrid structure that effectively enhances the structure integrity. This work not only provides a facile method for the preparation of amorphous VOPO4/graphene composites, but also demonstrates the enhanced energy density and rate capability of amorphous VOPO4-based materials for potential application in supercapacitors.

  19. Development of high performance sodium/metal chloride cells

    NASA Astrophysics Data System (ADS)

    Vissers, D. R.; Bloom, I. D.; Hash, M. C.; Redey, L.; Hammer, C. L.; Dees, D. W.; Nelson, P. A.

    Sodium/metal chloride (MCl2) cells and batteries are being studied at Argonne National Laboratory (ANL) for stationary energy storage and transportation applications. The work is being directed toward (1) development of thin, high capacity density electrodes and inexpensive beta double prime alumina-glass composite electrolyte materials to replace beta double prime alumina, and (2) the development of models to project MCl2 system performances. In our NiCl2 electrode work, the effects of charge/discharge rates, temperature, electrode porosity, and sulfur content on electrode performance were determined using annular electrodes fabricated in the uncharged state. Of all electrode design parameters mentioned, electrode porosity, sulfur content, and charge rates have the greatest effect on utilization and on the area-specific impedance. The beta double prime alumina-glass composite electrolyte work has led to the development of a highly conductive (3.3 x 10(exp -2)S/cm at 250 C) composite material. Preliminary modeling studies indicate that the performance of the MCl2 electrodes can be fitted by a mathematic model very successfully and that cell electrolyte configurations of either multiple tubes joined at a header or compartmented flat structures of either beta double prime alumina or of the composite material would result in high performance batteries with power-to-energy ratios of about 5.

  20. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    DOEpatents

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  1. Castable Amorphous Metal Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Davis, Gregory L.; Agnes, Gregory S.; Shapiro, Andrew A.

    2013-01-01

    A revolutionary way to produce a mirror and mirror assembly is to cast the entire part at once from a metal alloy that combines all of the desired features into the final part: optical smoothness, curvature, flexures, tabs, isogrids, low CTE, and toughness. In this work, it has been demonstrated that castable mirrors are possible using bulk metallic glasses (BMGs, also called amorphous metals) and BMG matrix composites (BMGMCs). These novel alloys have all of the desired mechanical and thermal properties to fabricate an entire mirror assembly without machining, bonding, brazing, welding, or epoxy. BMGs are multi-component metal alloys that have been cooled in such a manner as to avoid crystallization leading to an amorphous (non-crystalline) microstructure. This lack of crystal structure and the fact that these alloys are glasses, leads to a wide assortment of mechanical and thermal properties that are unlike those observed in crystalline metals. Among these are high yield strength, carbide-like hardness, low melting temperatures (making them castable like aluminum), a thermoplastic processing region (for improving smoothness), low stiffness, high strength-to-weight ratios, relatively low CTE, density similar to titanium alloys, high elasticity and ultra-smooth cast parts (as low as 0.2-nm surface roughness has been demonstrated in cast BMGs). BMGMCs are composite alloys that consist of a BMG matrix with crystalline dendrites embedded throughout. BMGMCs are used to overcome the typically brittle failure observed in monolithic BMGs by adding a soft phase that arrests the formation of cracks in the BMG matrix. In some cases, BMGMCs offer superior castability, toughness, and fatigue resistance, if not as good a surface finish as BMGs. This work has demonstrated that BMGs and BMGMCs can be cast into prototype mirrors and mirror assemblies without difficulty.

  2. Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sourice, Julien; Bordes, Arnaud; Boulineau, Adrien; Alper, John P.; Franger, Sylvain; Quinsac, Axelle; Habert, Aurélie; Leconte, Yann; De Vito, Eric; Porcher, Willy; Reynaud, Cécile; Herlin-Boime, Nathalie; Haon, Cédric

    2016-10-01

    Core-shell silicon-carbon nanoparticles are attractive candidates as active material to increase the capacity of Li-ion batteries while mitigating the detrimental effects of volume expansion upon lithiation. However crystalline silicon suffers from amorphization upon the first charge/discharge cycle and improved stability is expected in starting with amorphous silicon. Here we report the synthesis, in a single-step process, of amorphous silicon nanoparticles coated with a carbon shell (a-Si@C), via a two-stage laser pyrolysis where decomposition of silane and ethylene are conducted in two successive reaction zones. Control of experimental conditions mitigates silicon core crystallization as well as formation of silicon carbide. Auger electron spectroscopy and scanning transmission electron microscopy show a carbon shell about 1 nm in thickness, which prevents detrimental oxidation of the a-Si cores. Cyclic voltammetry demonstrates that the core-shell composite reaches its maximal lithiation during the first sweep, thanks to its amorphous core. After 500 charge/discharge cycles, it retains a capacity of 1250 mAh.g-1 at a C/5 rate and 800 mAh.g-1 at 2C, with an outstanding coulombic efficiency of 99.95%. Moreover, post-mortem observations show an electrode volume expansion of less than 20% and preservation of the nanostructuration.

  3. An amorphous mesophase generated by thermal annealing for high-performance organic photovoltaic devices.

    PubMed

    Tanaka, Hideyuki; Abe, Yoko; Matsuo, Yutaka; Kawai, Junya; Soga, Iwao; Sato, Yoshiharu; Nakamura, Eiichi

    2012-07-10

    Thermal annealing of a p-i-n organic photovoltaic device containing a crystalline benzoporphyrin donor and solvated crystals of a silylmethylfullerene acceptor increases the device performance at a temperature where partial desolvation of the acceptor produces an amorphous mesophase. This suggests that the mesophase improves the hierarchical ordering of the materials, that is, the morphology of the n-layer and the interfacial contact and, hence, the carrier generation efficiency at the donor-acceptor interface.

  4. High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance.

    PubMed

    Kim, S-Y; Kim, K; Hwang, Y H; Park, J; Jang, J; Nam, Y; Kang, Y; Kim, M; Park, H J; Lee, Z; Choi, J; Kim, Y; Jeong, S; Bae, B-S; Park, J-U

    2016-10-06

    As demands for high pixel densities and wearable forms of displays increase, high-resolution printing technologies to achieve high performance transistors beyond current amorphous silicon levels and to allow low-temperature solution processability for plastic substrates have been explored as key processes in emerging flexible electronics. This study describes electrohydrodynamic inkjet (e-jet) technology for direct printing of oxide semiconductor thin film transistors (TFTs) with high resolution (minimum line width: 2 μm) and superb performance, including high mobility (∼230 cm(2) V(-1) s(-1)). Logic operations of the amplifier circuits composed of these e-jet-printed metal oxide semiconductor (MOS) TFTs demonstrate their high performance. Printed In2O TFTs with e-jet printing-assisted high-resolution S/D electrodes were prepared, and the direct printing of passivation layers on these channels enhanced their gate-bias stabilities significantly. Moreover, low process temperatures (<250 °C) enable the use of thin plastic substrates; highly flexible and stretchable TFT arrays have been demonstrated, suggesting promise for next-generation printed electronics.

  5. High performance uncooled amorphous silicon VGA IRFPA with 17-µm pixel-pitch

    NASA Astrophysics Data System (ADS)

    Tissot, J. L.; Durand, A.; Garret, Th.; Minassian, C.; Robert, P.; Tinnes, S.; Vilain, M.

    2010-04-01

    The high level of accumulated expertise by ULIS and CEA/LETI on uncooled microbolometers made from amorphous silicon enables ULIS to develop VGA IRFPA formats with 17μm pixel-pitch to build up the currently available product catalog. This detector keeps all the innovations developed on the 25 μm pixel-pitch ROIC (detector configuration by serial link, low power consumption and wide electrical dynamic range). The specific appeal of this unit lies in the high spatial resolution it provides. The reduction of the pixel-pitch turns this TEC-less VGA array into a product well adapted for high resolution and compact systems. In the last part of the paper, we will look more closely at the high electro-optical performances of this IRFPA and the rapid performance enhancement. We will insist on NETD trade-off with wide thermal dynamic range, as well as the high characteristics uniformity, achieved thanks to the mastering of the amorphous silicon technology coupled with the ROIC design. This technology node paves the way to high end products as well as low end compact smaller formats like 160 x 120 or smaller.

  6. High-Performance Corrosion-Resistant Iron-Based Amorphous Metals - The Effects of Composition, Structure and Environment: Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4

    SciTech Connect

    Farmer, J; Haslam, J; Day, S; Lian, T; Saw, C; Hailey, P; Choi, J; Yang, N; Bayles, R; Aprigliano, L; Payer, J; Perepezko, J; Hildal, K; Lavernia, E; Ajdelsztajn, L; Branagan, D J; Beardsely, M B

    2006-10-20

    Several Fe-based amorphous metal formulations have been identified that appear to have corrosion resistance comparable to (or better than) that of Ni-based Alloy C-22 (UNS No. N06022), based on measurements of breakdown potential and corrosion rate in seawater. Both chromium (Cr) and molybdenum (Mo) provide corrosion resistance, boron (B) enables glass formation, and rare earths such as yttrium (Y) lower critical cooling rate (CCR). SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) has no yttrium, and is characterized by relatively high critical cooling rates of approximately 600 Kelvin per second. Data for the SAM2X5 formulation is reported here. In contrast to yttrium-containing iron-based amorphous metals, SAM2X5 can be readily gas atomized to produce spherical powders which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer or inhibitor. SAM2X5 also experiences crevice corrosion under sufficiently harsh conditions. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying, due to the formation of deleterious intermetallic phases which depletes the matrix of key alloy elements, whereas SAM2X5 can be applied as coatings with the same corrosion resistance as a fully-dense completely amorphous melt-spun ribbon, provided that its amorphous nature is preserved during thermal spraying. The hardness of Type 316L Stainless Steel is approximately 150 VHN, that of Alloy C-22 is approximately 250 VHN, and that of HVOF SAM2X5 ranges from 1100-1300 VHN [MRS12-13]. Such hardness makes these materials particularly attractive for applications where corrosion-erosion and wear are also issues. Since SAM2X5 has high boron content, it can absorb neutrons efficiently, and may therefore find

  7. Determination of a Jet Fuel Metal Deactivator by High Performance Liquid Chromatography

    DTIC Science & Technology

    1983-06-01

    HIGH PERFORMANCE LIQUID CHROMATOGRAPHY Paul C. Hayes, Jr. Fuels Branch...SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) High Performance Liquid Chromatography absorbance...SYMBOL HPLC High Performance Liquid Chromatography P-4 jet propulsion fuel, wide-boiling range, conforming to MIL-T-5624L MDA metal deactivator,

  8. Amorphous silica in ultra-high performance concrete: First hour of hydration

    SciTech Connect

    Oertel, Tina; Hutter, Frank; Helbig, Uta; Sextl, Gerhard

    2014-04-01

    Amorphous silica in the sub-micrometer size range is widely used to accelerate cement hydration. Investigations including properties of silica which differ from the specific surface area are rare. In this study, the reactivity of varying types of silica was evaluated based on their specific surface area, surface silanol group density, content of silanol groups and solubility in an alkaline suspension. Pyrogenic silica, silica fume and silica synthesized by hydrolysis and condensation of alkoxy silanes, so-called Stoeber particles, were employed. Influences of the silica within the first hour were further examined in pastes with water/cement ratios of 0.23 using in-situ X-ray diffraction, cryo scanning electron microscopy and pore solution analysis. It was shown that Stoeber particles change the composition of the pore solution. Na{sup +}, K{sup +}, Ca{sup 2+} and silicate ions seem to react to oligomers. The extent of this reaction might be highest for Stoeber particles due to their high reactivity.

  9. Atmospheric Pressure Micro-Thermal-Plasma-Jet Crystallization of Amorphous Silicon Strips for High-Performance Thin Film Transistor Fabrication

    NASA Astrophysics Data System (ADS)

    Morisaki, Seiji; Nakatani, Taichi; Shin, Ryota; Higashi, Seiichiro

    2015-09-01

    Zone melting recrystallization (ZMR) of amorphous silicon (a-Si) strips by micro-thermal-plasma-jet (u-TPJ) irradiation is quite effective to suppress grain boundaries (GBs) except sigma 3 coincidence site lattice (CSL). Intra-grain defects in 1 μm wide strips were significantly reduced by suppressing the agglomeration of molten Si with low temperature condition around melting point of crystalline Si. Thin film transistors (TFTs), using optimized ZMR condition by scanning speed of 1500 mm/s demonstrated extremely high performance with field effect mobility (uFE) of 443 cm2/Vs and swing factor (S) of 210 mV/dec. Part of this work was supported by the Research Institute for Nanodevice and Bio Systems (RNBS), Hiroshima University.

  10. Laser surface treatment of amorphous metals

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  11. Transmissive metallic contact for amorphous silicon solar cells

    DOEpatents

    Madan, A.

    1984-11-29

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  12. Amorphous Ternary Diffusion Barriers for Silicon Metallizations

    NASA Astrophysics Data System (ADS)

    Reid, Jason Sven

    1995-01-01

    Reactively sputtered from transition-metal silicide or boride targets in Ar/N_2 discharges, thin amorphous films of TM-Si-N (TM = Mo, Ta, Ti, or W) and W-B-N are investigated. Resistivity, density, stress, and structure are given as functions of composition, and in some cases, temperature. Transmission electron microscopy shows that most of the films are marginally amorphous with the scale of local order ranging from 0.5 to 1.5 nm. Small -angle scattering measurements reveal chemically dissimilary regions in the films. When fully nitrided, Si appears to be preferentially bonded to nitrogen in the form of Si_3N_4 in the TM-Si-N films, according to extended energy loss fine structure (EXELFS) measurements. By tests on shallow-junction diodes, 100-nm thick TM-Si-N barriers are able to prevent aluminum overlayers from spiking the Si substrate at temperatures above aluminum's melting point, 660^circC. The exceptional stability is partly attributable to a 3 nm, self-sealing AlN layer which grows at the TM-Si-N/Al interface. The performance of the TM-Si-N and W-B-N barriers with copper overlayers is equally impressive. At the proper compositions, 100-nm barriers prevent copper from diffusing into the junction at 800^circC or higher for a 30-min vacuum annealing. Diode failure typically corresponds to the crystallization temperature of the barrier, which can be reduced by the presence of copper. Preliminary diffusion measurements of Cu in Ta _{36}Si_ {14}N_{50} films by SIMS yield an approximate diffusivity constant of D_{CU} = (0.014 cm ^2/s) times exp(-2.7 eV/kT). A 10-nm-thick TM-Si-N barrier with a Cu overlayer on MOS capacitors reveals no penetration of Cu into SiO_2 during an 80 h bias-thermal-stress at 300^circ C and 1 MV/cm applied field. Through a microscopic four-point probe lithographically defined on a Cu/barrier/Cu trilayer stack, the specific contact resistances of barrier/Cu interfaces are determined for TM-Si-N, TiN, and W barriers. In all instances, the

  13. Amorphous Metals and Composites as Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Davis, Gregory L. (Inventor); Agnes, Gregory S. (Inventor); Shapiro, Andrew A. (Inventor)

    2016-01-01

    A mirror or mirror assembly fabricated by molding, pressing, assembling, or depositing one or more bulk metal glass (BMG), bulk metal glass composite (BMGMC), or amorphous metal (AM) parts and where the optical surface and backing of the mirror can be fabricated without machining or polishing by utilizing the unique molding capabilities of this class of materials.

  14. Origin of Magnetic Properties in Amorphous Metals.

    DTIC Science & Technology

    1979-12-01

    Magnetic Properties of Fe-Ni-B Amorphous Alloys," F. E. Luborsky, J. L. Walter, and H. H. Liebermann , IEEE Trans. on Magnetics MAG-15, 909 (1979). Also GE...Report 78CRD132. 2. "Formation and Magnetic Properties of Fe-B-Si Amorphous Alloys," F. E. Luborsky, J. J. Becker, J. L. Walter, and H. H. Liebermann ...Amorphous Alloys," F. E. Luborsky and H. H. Liebermann , J. Appl. Phys., to appear. Also GE Report 79CRD177. 4. "The Effect of Temperature on Magnetic

  15. Amorphous metallizations for high-temperature semiconductor device applications

    NASA Technical Reports Server (NTRS)

    Wiley, J. D.; Perepezko, J. H.; Nordman, J. E.; Kang-Jin, G.

    1981-01-01

    The initial results of work on a class of semiconductor metallizations which appear to hold promise as primary metallizations and diffusion barriers for high temperature device applications are presented. These metallizations consist of sputter-deposited films of high T sub g amorphous-metal alloys which (primarily because of the absence of grain boundaries) exhibit exceptionally good corrosion-resistance and low diffusion coefficients. Amorphous films of the alloys Ni-Nb, Ni-Mo, W-Si, and Mo-Si were deposited on Si, GaAs, GaP, and various insulating substrates. The films adhere extremely well to the substrates and remain amorphous during thermal cycling to at least 500 C. Rutherford backscattering and Auger electron spectroscopy measurements indicate atomic diffussivities in the 10 to the -19th power sq cm/S range at 450 C.

  16. Amorphous metal distribution transformers: The energy-efficient alternative

    SciTech Connect

    Garrity, T.F.

    1994-12-31

    Amorphous metal distribution transformers have been commercially available for the past 13 years. During that time, they have realized the promise of exceptionally high core efficiency as compared to silicon steel transformer cores. Utility planners today must consider all options available to meet the requirements of load growth. While additional generation capacity will be added, many demand-side initiatives are being undertaken as complementary programs to generation expansion. The efficiency improvement provided by amorphous metal distribution transformers deserves to be among the demand-side options. The key to understanding the positive impact of amorphous metal transformer efficiency is to consider the aggregate contribution those transformers can make towards demand reduction. It is estimated that distribution transformer core losses comprise at least 1% of the utility`s peak demand. Because core losses are continuous, any significant reduction in their magnitude is of great significance to the planner. This paper describes the system-wide economic contributions amorphous metal distribution transformers can make to a utility and suggests evaluation techniques that can be used. As a conservation tool, the amorphous metal transformer contributes to reduced power plant emissions. Calibration of those emissions reductions is also discussed in the paper.

  17. Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric.

    PubMed

    Tsai, Shu-Ju; Wang, Chiang-Lun; Lee, Hung-Chun; Lin, Chun-Yeh; Chen, Jhih-Wei; Shiu, Hong-Wei; Chang, Lo-Yueh; Hsueh, Han-Ting; Chen, Hung-Ying; Tsai, Jyun-Yu; Lu, Ying-Hsin; Chang, Ting-Chang; Tu, Li-Wei; Teng, Hsisheng; Chen, Yi-Chun; Chen, Chia-Hao; Wu, Chung-Lin

    2016-06-21

    In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator.

  18. Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric

    PubMed Central

    Tsai, Shu-Ju; Wang, Chiang-Lun; Lee, Hung-Chun; Lin, Chun-Yeh; Chen, Jhih-Wei; Shiu, Hong-Wei; Chang, Lo-Yueh; Hsueh, Han-Ting; Chen, Hung-Ying; Tsai, Jyun-Yu; Lu, Ying-Hsin; Chang, Ting-Chang; Tu, Li-Wei; Teng, Hsisheng; Chen, Yi-Chun; Chen, Chia-Hao; Wu, Chung-Lin

    2016-01-01

    In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator. PMID:27325155

  19. Structure and properties of an amorphous metal-organic framework.

    PubMed

    Bennett, Thomas D; Goodwin, Andrew L; Dove, Martin T; Keen, David A; Tucker, Matthew G; Barney, Emma R; Soper, Alan K; Bithell, Erica G; Tan, Jin-Chong; Cheetham, Anthony K

    2010-03-19

    ZIF-4, a metal-organic framework (MOF) with a zeolitic structure, undergoes a crystal-amorphous transition on heating to 300 degrees C. The amorphous form, which we term a-ZIF, is recoverable to ambient conditions or may be converted to a dense crystalline phase of the same composition by heating to 400 degrees C. Neutron and x-ray total scattering data collected during the amorphization process are used as a basis for reverse Monte Carlo refinement of an atomistic model of the structure of a-ZIF. The structure is best understood in terms of a continuous random network analogous to that of a-SiO2. Optical microscopy, electron diffraction and nanoindentation measurements reveal a-ZIF to be an isotropic glasslike phase capable of plastic flow on its formation. Our results suggest an avenue for designing broad new families of amorphous and glasslike materials that exploit the chemical and structural diversity of MOFs.

  20. Structure and Properties of an Amorphous Metal-Organic Framework

    NASA Astrophysics Data System (ADS)

    Bennett, Thomas D.; Goodwin, Andrew L.; Dove, Martin T.; Keen, David A.; Tucker, Matthew G.; Barney, Emma R.; Soper, Alan K.; Bithell, Erica G.; Tan, Jin-Chong; Cheetham, Anthony K.

    2010-03-01

    ZIF-4, a metal-organic framework (MOF) with a zeolitic structure, undergoes a crystal-amorphous transition on heating to 300°C. The amorphous form, which we term a-ZIF, is recoverable to ambient conditions or may be converted to a dense crystalline phase of the same composition by heating to 400°C. Neutron and x-ray total scattering data collected during the amorphization process are used as a basis for reverse Monte Carlo refinement of an atomistic model of the structure of a-ZIF. The structure is best understood in terms of a continuous random network analogous to that of a-SiO2. Optical microscopy, electron diffraction and nanoindentation measurements reveal a-ZIF to be an isotropic glasslike phase capable of plastic flow on its formation. Our results suggest an avenue for designing broad new families of amorphous and glasslike materials that exploit the chemical and structural diversity of MOFs.

  1. Systems and Methods for Fabricating Objects Including Amorphous Metal Using Techniques Akin to Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention fabricate objects including amorphous metals using techniques akin to additive manufacturing. In one embodiment, a method of fabricating an object that includes an amorphous metal includes: applying a first layer of molten metallic alloy to a surface; cooling the first layer of molten metallic alloy such that it solidifies and thereby forms a first layer including amorphous metal; subsequently applying at least one layer of molten metallic alloy onto a layer including amorphous metal; cooling each subsequently applied layer of molten metallic alloy such that it solidifies and thereby forms a layer including amorphous metal prior to the application of any adjacent layer of molten metallic alloy; where the aggregate of the solidified layers including amorphous metal forms a desired shape in the object to be fabricated; and removing at least the first layer including amorphous metal from the surface.

  2. Caltech Center for Structural and Amorphous Metals

    DTIC Science & Technology

    2005-05-10

    fracture resistance and subcritical-crack growth behavior in BMG’s and their composites. We have shown that hydrogen significantly increases the glass...Science des Materiaux , 2713], 2002 L. Shadowspeaker, M. B. Shah and R. Busch, "On the crystalline equilibrium phases of the Zr5 7 Nb 5 Cu 15 .4Ni12.6 A lI0...Lowhaphandu, L.A. Ludrosky, and J.J. Lewandowski "Fracture Resistance of Zr-Ti-Ni-Cu-Be Bulk Amorphous Alloy",, TMS-AIME Fall Meeting, Cincinnati, OH

  3. Unveiling the complex electronic structure of amorphous metal oxides

    PubMed Central

    Århammar, C.; Pietzsch, Annette; Bock, Nicolas; Holmström, Erik; Araujo, C. Moyses; Gråsjö, Johan; Zhao, Shuxi; Green, Sara; Peery, T.; Hennies, Franz; Amerioun, Shahrad; Föhlisch, Alexander; Schlappa, Justine; Schmitt, Thorsten; Strocov, Vladimir N.; Niklasson, Gunnar A.; Wallace, Duane C.; Rubensson, Jan-Erik; Johansson, Börje; Ahuja, Rajeev

    2011-01-01

    Amorphous materials represent a large and important emerging area of material’s science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al2O3-Si3N4-SiO2-Silicon) flash memories. These technologies are required for the high packing density of today’s integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5–10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.

  4. Relationship between amorphous silica and precious metal in quartz veins

    NASA Astrophysics Data System (ADS)

    Harrichhausen, N.; Rowe, C. D.; Board, W. S.; Greig, C. J.

    2015-12-01

    Super-saturation of silica is common in fault fluids, due to pressure changes associated with fracture, fault slip, or temperature gradients in hydrothermal systems. These mechanisms lead to precipitation of amorphous silica, which will recrystallize to quartz under typical geologic conditions. These conditions may also promote the saturation of precious metals, such as gold, and the precipitation of nanoparticles. Previous experiments show that charged nanoparticles of gold can attach to the surface of amorphous silica nanoparticles. Thus, gold and silica may be transported as a colloid influencing mineralization textures during amorphous silica recrystallization to quartz. This may enrich quartz vein hosted gold deposits, but the instability of hydrous silica during subsequent deformation means that the microstructural record of precipitation of gold is lost. We investigate a recent, shallow auriferous hydrothermal system at Dixie Valley, Nevada to reveal the nano- to micro-scale relationships between gold and silica in fresh veins. Fault slip surfaces at Dixie Valley exhibit layers of amorphous silica with partial recrystallization to quartz. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) show amorphous silica can contain a few wt. % gold while areas recrystallized to quartz are barren. At the Jurassic Brucejack deposit in British Columbia, Canada we observe the cryptocrystalline quartz textures that may indicate recrystallization from amorphous silica within quartz-carbonate veins containing high grade gold. Comb quartz within syntaxial veins, vugs, and coating breccia clasts indicate structural dilation. Vein geometry is investigated to determine relative importance of fault slip in creating dilational sites. By comparing quartz-carbonate veins from the Dixie Valley to Brucejack, we can determine whether amorphous silica formed in different environments show similar potential to affect precious metal mineralization.

  5. Interference Function of Crystalline Embryo Model of Amorphous Metals. I

    NASA Astrophysics Data System (ADS)

    Hamada, Tadashi; Fujita, Francisco Eiichi

    1982-07-01

    A simple and possible structural model of amorphous metals based on the concept of crystalline embryos is proposed. The quasi-crystalline clusters are supposed to exist in the liquid state, be enhanced during supercooling, and be frozen as the crystalline embryos in the amorphous state by rapid quenching. A model assembly of atoms containing the crystalline embryos and the boundary regions is constructed, and the pair correlation function and the interference function are calculated. The interference function of the b.c.c. embryo model is in good agreement with experimental ones. It is concluded that the structure of the boundary connecting the embryos plays an essential role as well as the ordered part in the embryos in the diffraction phenomena of the amorphous structures. The importance of chemical clusters and metalloid atoms is also suggested and discussed.

  6. Homochiral metal-organic framework used as a stationary phase for high-performance liquid chromatography.

    PubMed

    Kong, Jiao; Zhang, Mei; Duan, Ai-Hong; Zhang, Jun-Hui; Yang, Rui; Yuan, Li-Ming

    2015-02-01

    Metal-organic frameworks are promising porous materials. Chiral metal-organic frameworks have attracted considerable attention in controlling enantioselectivity. In this study, a homochiral metal-organic framework [Co(2) (D-cam)(2) (TMDPy)] (D-cam = D-camphorates, TMDPy = 4,4'-trimethylenedipyridine) with a non-interpenetrating primitive cubic net has been used as a chiral stationary phase in high-performance liquid chromatography. It has allowed the successful separation of six positional isomers and six chiral compounds. The good selectivity and baseline separation, or at least 60% valley separation, confirmed its excellent molecular recognition characteristics. The relative standard deviations for the retention time of run-to-run and column-to-column were less than 1.8 and 3.1%, respectively. These results demonstrate that [Co(2) (D-cam)(2) (TMDPy)] may represent a promising chiral stationary phase for use in high-performance liquid chromatography.

  7. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOEpatents

    Farmer, Joseph C [Tracy, CA

    2011-12-13

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  8. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOEpatents

    Farmer, Joseph C.

    2014-07-15

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  9. Apparatus for production of ultrapure amorphous metals utilizing acoustic cooling

    NASA Technical Reports Server (NTRS)

    Lee, M. C. (Inventor)

    1985-01-01

    Amorphous metals are produced by forming a molten unit of metal and deploying the unit into a bidirectional acoustical levitating field or by dropping the unit through a spheroidizing zone, a slow quenching zone, and a fast quenching zone in which the sphere is rapidly cooled by a bidirectional jet stream created in the standing acoustic wave field produced between a half cylindrical acoustic driver and a focal reflector or a curved driver and a reflector. The cooling rate can be further augmented first by a cryogenic liquid collar and secondly by a cryogenic liquid jacket surrounding a drop tower. The molten unit is quenched to an amorphous solid which can survive impact in a unit collector or is retrieved by a vacuum chuck.

  10. Controlled rejuvenation of amorphous metals with thermal processing.

    PubMed

    Wakeda, Masato; Saida, Junji; Li, Ju; Ogata, Shigenobu

    2015-05-26

    Rejuvenation is the configurational excitation of amorphous materials and is one of the more promising approaches for improving the deformability of amorphous metals that usually exhibit macroscopic brittle fracture modes. Here, we propose a method to control the level of rejuvenation through systematic thermal processing and clarify the crucial feasibility conditions by means of molecular dynamics simulations of annealing and quenching. We also experimentally demonstrate rejuvenation level control in Zr(55)Al(10)Ni(5)Cu(30) bulk metallic glass. Our local heat-treatment recipe (rising temperature above 1.1T(g), followed by a temperature quench rate exceeding the previous) opens avenue to modifying the glass properties after it has been cast and processed into near component shape, where a higher local cooling rate may be afforded by for example transient laser heating, adding spatial control and great flexibility to the processing.

  11. Formation of amorphous metal alloys by chemical vapor deposition

    DOEpatents

    Mullendore, Arthur W.

    1990-01-01

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.

  12. Formation of amorphous metal alloys by chemical vapor deposition

    DOEpatents

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  13. High performance fibers for structurally reliable metal and ceramic composites. [advanced gas turbine engine materials

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    Very few of the commercially available high performance fibers with low densities, high Young's moduli, and high tensile strengths possess all the necessary property requirements for providing either metal matrix composites (MMC) or ceramic matrix composites (CMC) with high structural reliability. These requirements are discussed in general and examples are presented of how these property guidelines are influencing fiber evaluation and improvement studies at NASA aimed at developing structurally reliable MMC and CMC for advanced gas turbine engines.

  14. Metal chloride-treated graphene oxide to produce high-performance polymer solar cells

    SciTech Connect

    Choi, Eun-Su; Noh, Yong-Jin; Kwon, Sung-Nam; Na, Seok-In; Jeon, Ye-Jin; Kim, Seok-Soon; Kim, Tae-Wook

    2015-07-13

    We introduce a simple but effective graphene oxide (GO) modification with metal chloride treatments to produce high-performance polymer solar cells (PSCs). The role of various metal chlorides on GO and their effects on device performances of PSCs was investigated. X-ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy, and current-voltage measurement studies demonstrated that metal chloride can induce a p-doping effect and increase the GO work-function, thus resulting in an improved built-in potential and interfacial resistance in PSCs. The resultant PSCs with metal chloride exhibited improved device efficiency than those with the neat GO. Furthermore, with the metal chloride-doped GO, we finally achieved an excellent PSC-efficiency of 6.58% and a very desirable device stability, which constitute a highly similar efficiency but much better PSC life-time to conventional device with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). This study could be a valuable way to produce various PEDOT:PSS alternatives and beneficial for producing high-performance and cost-efficient polymeric devices.

  15. Excimer laser crystallization of amorphous silicon on metallic substrate

    NASA Astrophysics Data System (ADS)

    Delachat, F.; Antoni, F.; Slaoui, A.; Cayron, C.; Ducros, C.; Lerat, J.-F.; Emeraud, T.; Negru, R.; Huet, K.; Reydet, P.-L.

    2013-06-01

    An attempt has been made to achieve the crystallization of silicon thin film on metallic foils by long pulse duration excimer laser processing. Amorphous silicon thin films (100 nm) were deposited by radiofrequency magnetron sputtering on a commercial metallic alloy (N42-FeNi made of 41 % of Ni) coated by a tantalum nitride (TaN) layer. The TaN coating acts as a barrier layer, preventing the diffusion of metallic impurities in the silicon thin film during the laser annealing. An energy density threshold of 0.3 J cm-2, necessary for surface melting and crystallization of the amorphous silicon, was predicted by a numerical simulation of laser-induced phase transitions and witnessed by Raman analysis. Beyond this fluence, the melt depth increases with the intensification of energy density. A complete crystallization of the layer is achieved for an energy density of 0.9 J cm-2. Scanning electron microscopy unveils the nanostructuring of the silicon after laser irradiation, while cross-sectional transmission electron microscopy reveals the crystallites' columnar growth.

  16. Bulk amorphous metallic alloys: Synthesis by fluxing techniques and properties

    SciTech Connect

    He, Yi; Shen, Tongde; Schwarz, R.B.

    1997-05-01

    Bulk amorphous alloys having dimensions of at least 1 cm diameter have been prepared in the Pd-Ni-P, Pd-Cu-P, Pd-Cu-Ni-P, and Pd-Ni-Fe-P systems using a fluxing and water quenching technique. The compositions for bulk glass formation have been determined in these systems. For these bulk metallic glasses, the difference between the crystallization temperature T{sub x}, and the glass transition temperature T{sub g}, {Delta}T = T{sub x} - T{sub g}, ranges from 60 to 1 10 K. These large values of {Delta}T open the possibility for the fabrication of amorphous near net-shape components using techniques such as injection molding. The thermal, elastic, and magnetic properties of these alloys have been studied, and we have found that bulk amorphous Pd{sub 40}Ni{sub 22.5}Fe{sub 17.5}P{sub 20} has spin glass behavior for temperatures below 30 K. 65 refs., 14 figs., 3 tabs.

  17. High-performance amorphous gallium indium zinc oxide thin-film transistors through N2O plasma passivation

    NASA Astrophysics Data System (ADS)

    Park, Jaechul; Kim, Sangwook; Kim, Changjung; Kim, Sunil; Song, Ihun; Yin, Huaxiang; Kim, Kyoung-Kok; Lee, Sunghoon; Hong, Kiha; Lee, Jaecheol; Jung, Jaekwan; Lee, Eunha; Kwon, Kee-Won; Park, Youngsoo

    2008-08-01

    Amorphous-gallium-indium-zinc-oxide (a-GIZO) thin filmtransistors (TFTs) are fabricated without annealing, using processes and equipment for conventional a-Si :H TFTs. It has been very difficult to obtain sound TFT characteristics, because the a-GIZO active layer becomes conductive after dry etching the Mo source/drain electrode and depositing the a-SiO2 passivation layer. To prevent such damages, N2O plasma is applied to the back surface of the a-GIZO channel layer before a-SiO2 deposition. N2O plasma-treated a-GIZO TFTs exhibit excellent electrical properties: a field effect mobility of 37cm2/Vs, a threshold voltage of 0.1V, a subthreshold swing of 0.25V/decade, and an Ion/off ratio of 7.

  18. High-performance amorphous gallium indium zinc oxide thin-film transistors through N{sub 2}O plasma passivation

    SciTech Connect

    Park, Jaechul; Kim, Sangwook; Kim, Changjung; Kim, Sunil; Song, Ihun; Yin, Huaxiang; Kim, Kyoung-Kok; Lee, Sunghoon; Hong, Kiha; Park, Youngsoo; Lee, Jaecheol; Jung, Jaekwan; Lee, Eunha; Kwon, Kee-Won

    2008-08-04

    Amorphous-gallium-indium-zinc-oxide (a-GIZO) thin filmtransistors (TFTs) are fabricated without annealing, using processes and equipment for conventional a-Si:H TFTs. It has been very difficult to obtain sound TFT characteristics, because the a-GIZO active layer becomes conductive after dry etching the Mo source/drain electrode and depositing the a-SiO{sub 2} passivation layer. To prevent such damages, N{sub 2}O plasma is applied to the back surface of the a-GIZO channel layer before a-SiO{sub 2} deposition. N{sub 2}O plasma-treated a-GIZO TFTs exhibit excellent electrical properties: a field effect mobility of 37 cm{sup 2}/V s, a threshold voltage of 0.1 V, a subthreshold swing of 0.25 V/decade, and an I{sub on/off} ratio of 7.

  19. Codoping of zinc and tungsten for practical high-performance amorphous indium-based oxide thin film transistors

    SciTech Connect

    Kizu, Takio E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Miyanaga, Miki; Awata, Hideaki; Nabatame, Toshihide

    2015-09-28

    Using practical high-density sputtering targets, we investigated the effect of Zn and W codoping on the thermal stability of the amorphous film and the electrical characteristics in thin film transistors. zinc oxide is a potentially conductive component while W oxide is an oxygen vacancy suppressor in oxide films. The oxygen vacancy from In-O and Zn-O was suppressed by the W additive because of the high oxygen bond dissociation energy. With controlled codoping of W and Zn, we demonstrated a high mobility with a maximum mobility of 40 cm{sup 2}/V s with good stability under a negative bias stress in InWZnO thin film transistors.

  20. Sub-100 °C solution processed amorphous titania nanowire thin films for high-performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Wu-Qiang; Chen, Dehong; Huang, Fuzhi; Cheng, Yi-Bing; Caruso, Rachel A.

    2016-10-01

    The present work demonstrates a facile one-step process to fabricate thin films of amorphous titania nanowires on transparent conducting oxide substrates via hydrolysis of potassium titanium oxide oxalate in an aqueous solution at 90 °C. The resultant titania nanowire thin films (that have not undergone further annealing) are efficient electron transport layers in CH3NH3PbI3 perovskite solar cells, yielding full sun solar-to-electricity conversion efficiencies of up to 14.67% and a stabilized efficiency of 14.00% under AM 1.5G one sun illumination, comparable to high temperature sintered TiO2 counterparts. The high photovoltaic performance is attributed to the porous nanowire network that facilitates perovskite infiltration, its unique 1D geometry and excellent surface coverage for efficient electron transport, as well as suppressed charge recombination between FTO and perovskite.

  1. Preparation of AgI sensitized amorphous TiO₂ as novel high-performance photocatalyst for environmental applications.

    PubMed

    Wang, Qi; Chen, Meimei; Zhu, Naxin; Shi, Xiaodong; Jin, Huan; Zhang, Yi; Cong, Yanqing

    2015-06-15

    A novel visible-light-active material was prepared by dispersion of AgI on amorphous TiO2 through simple one-pot process (AgI/Am-TiO2-S). For comparison, AgI sensitized TiO2 (amorphous, anatase and P25) were also prepared via traditional deposition-precipitation method. The samples were characterized by XRD, XPS, TGA-DSC, UV-Vis-DRS, BET, and etc. Larger specific surface area, negative shift of flat band potential, as well as greatly reduced charge transfer resistance were observed for AgI/Am-TiO2-S comparing to other samples. Moreover, with the same molar of initial Ti and Ag, the weight of AgI/Am-TiO2-S obtained was the heaviest, due to large amount of surface titania hydrate. The photocatalytic activity of the as-prepared AgI/titania samples were evaluated by the reduction of Cr(VI) in the absence or presence of organic pollutants (dyes, phenol). AgI/Am-TiO2-S always presented the highest photocatalytic activity. The estimated k(Cr(VI)) on AgI/Am-TiO2-S was about 2 times that on AgI/P25-TiO2 in the absence/presence of RhB. Superior stability was also observed in the cyclic runs indicating that the as-prepared AgI/Am-TiO2-S is highly desirable for the remediation of Cr(VI)-organic co-contaminated wastewaters.

  2. A Photochromic Sensor Microchip for High-performance Multiplex Metal Ions Detection

    PubMed Central

    Huang, Yu; Li, Fengyu; Ye, Changqing; Qin, Meng; Ran, Wei; Song, Yanlin

    2015-01-01

    Current multi-analytes chips are limited with requiring numbers of sensors, complex synthesis and compounds screen. It is expected to develop new principles and techniques to achieve high-performance multi-analytes testing with facile sensors. Here, we investigated the correlative multi-states properties of a photochromic sensor (spirooxazine), which is capable of a selective and cross-reactive sensor array for discriminated multi-analytes (11 metal ions) detection by just one sensing compound. The multi-testing sensor array performed in dark, ultraviolet or visual stimulation, corresponding to different molecular states of spirooxazine metal ions coordination. The facile photochromic microchip contributes a multi-states array sensing method, and will open new opportunities for the development of advanced discriminant analysis for complex analytes. PMID:25853794

  3. A Photochromic Sensor Microchip for High-performance Multiplex Metal Ions Detection

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Li, Fengyu; Ye, Changqing; Qin, Meng; Ran, Wei; Song, Yanlin

    2015-04-01

    Current multi-analytes chips are limited with requiring numbers of sensors, complex synthesis and compounds screen. It is expected to develop new principles and techniques to achieve high-performance multi-analytes testing with facile sensors. Here, we investigated the correlative multi-states properties of a photochromic sensor (spirooxazine), which is capable of a selective and cross-reactive sensor array for discriminated multi-analytes (11 metal ions) detection by just one sensing compound. The multi-testing sensor array performed in dark, ultraviolet or visual stimulation, corresponding to different molecular states of spirooxazine metal ions coordination. The facile photochromic microchip contributes a multi-states array sensing method, and will open new opportunities for the development of advanced discriminant analysis for complex analytes.

  4. Application of Neutron-Absorbing Structural-Amorphous Metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Control

    SciTech Connect

    Choi, J

    2007-01-12

    This report describes the analysis and modeling approaches used in the evaluation for criticality-control applications of the neutron-absorbing structural-amorphous metal (SAM) coatings. The applications of boron-containing high-performance corrosion-resistant material (HPCRM)--amorphous metal as the neutron-absorbing coatings to the metallic support structure can enhance criticality safety controls for spent nuclear fuel in baskets inside storage containers, transportation casks, and disposal containers. The use of these advanced iron-based, corrosion-resistant materials to prevent nuclear criticality in transportation, aging, and disposal containers would be extremely beneficial to the nuclear waste management programs.

  5. High-Performance, Solution-Processed, Embedded Multiscale Metallic Transparent Conductors.

    PubMed

    Oh, Yong Suk; Lee, Hyunwoo; Choi, Dong Yun; Lee, Sung-Uk; Kim, Hojin; Yoo, Seunghyup; Park, Inkyu; Sung, Hyung Jin

    2016-05-04

    High-performance multiscale metallic transparent conductors (TCs) are demonstrated by incorporating Ag nanowire (NW) networks into microscale Ag grid structures. Highly conductive Ag grids are fabricated via direct imprinting of an Ag ion ink using a reservoir-assisted mold. In this mold, a macroscale cavity, called the "reservoir", is designed to connect to a grid-patterned cavity. The reservoir has a large cavity volume, which reduces unwanted residual layers within the grid spacings by introducing a thinner liquid film. The reservoir undergoes a large volume reduction during mold deformation, which improves ink filling within the grid-patterned cavity through deformation-induced ink injection. The multiscale metallic TCs show a sheet resistance (Rs) of <1.5 Ω/sq and a transmittance (T) of 86% at 550 nm, superior to the corresponding values of Ag NW networks (Rs of 15.6 Ω/sq at a similar T). We estimate the Rs-T performances of the Ag grids using geometrical calculations and demonstrate that their integration can enhance the opto-electrical properties of the Ag NW networks. Multiscale metallic TCs are successfully transferred and embedded into a transparent, flexible, and UV-curable polymer matrix. The embedded multiscale metallic TCs show reasonable electromechanical and chemical stability. The utility of these TCs is demonstrated by fabricating flexible organic solar cells.

  6. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-07-01

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm2, which is 48.76% higher than that of flat system.

  7. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells

    PubMed Central

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-01-01

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm2, which is 48.76% higher than that of flat system. PMID:27455911

  8. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells.

    PubMed

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-07-26

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm(2), which is 48.76% higher than that of flat system.

  9. Amorphous Ti-Zr; Base Metglas brazing filler metals

    SciTech Connect

    Rabinkin, A.; Liebermann, H.; Pounds, S.; Taylor, T. )

    1991-01-01

    This paper is the first report on processing, properties and potential application of amorphous titanium/zirconium-base alloys produced in the form of a good quality continuous and ductile ribbon having up to 12.5 mm width. To date, the majority of titanium brazing is accomplished using cooper and aluminum-base brazing filler metals. The brazements produced with these filler metals have rather low ({approximately}300{degrees} C) service temperature, thus impeding progress in aircraft and other technologies and industries. The attempt to develop a generation of high temperature brazing filler metals was made in the late sixties-early seventies studies in detail were a large number of Ti-, Zr-Ti-Zr, Ti-V and Zr-V-Ti based alloys. The majority of these alloys has copper and nickel as melting temperature depressants. The presence of nickel and copper converts them into eutectic alloys having (Ti(Zr)) (Cu(Ni)), intermetallic phases as major structural constituents. This, in turn, results in high alloy brittleness and poor, if any, processability by means of conventional, i.e. melting-ingot casting-deformation technology. In spite of good wettability and high joint strength achieved in dozens of promising alloys, only Ti-15Cu-15Ni is now widely used as a brazing filler metal for high service temperature. Up until now this material could not be produced as a homogeneous foil and is instead applied as a clad strip consisting of three separate metallic layers.

  10. Direct selective laser sintering of high performance metals: Machine design, process development and process control

    NASA Astrophysics Data System (ADS)

    Das, Suman

    1998-11-01

    This dissertation describes the development of an advanced manufacturing technology known as Direct Selective Laser Sintering (Direct SLS). Direct SLS is a laser based rapid manufacturing technology that enables production of functional, fully dense, metal and cermet components via the direct, layerwise consolidation of constituent powders. Specifically, this dissertation focuses on a new, hybrid net shape manufacturing technique known as Selective Laser Sintering/Hot Isostatic Pressing (SLS/HIP). The objective of research presented in this dissertation was to establish the fundamental machine technology and processing science to enable direct SLS fabrication of metal components composed of high performance, high temperature metals and alloys. Several processing requirements differentiate direct SLS of metals from SLS of polymers or polymer coated powders. Perhaps the most important distinguishing characteristic is the regime of high temperatures involved in direct SLS of metals. Biasing the temperature of the feedstock powder via radiant preheat prior to and during SLS processing was shown to be beneficial. Preheating the powder significantly influenced the flow and wetting characteristics of the melt. During this work, it was conclusively established that powder cleanliness is of paramount importance for successful layerwise consolidation of metal powders by direct SLS. Sequential trials were conducted to establish optimal bake-out and degas cycles under high vacuum. These cycles agreed well with established practices in the powder metallurgy industry. A study of some of the important transport mechanisms in direct SLS of metals was undertaken to obtain a fundamental understanding of the underlying process physics. This study not only provides an explanation of phenomena observed during SLS processing of a variety of metallic materials but also helps in developing selection schemes for those materials that are most amenable to direct SLS processing. The

  11. Advanced use of high-performance liquid chromatography for synthesis of controlled metal clusters

    NASA Astrophysics Data System (ADS)

    Niihori, Yoshiki; Matsuzaki, Miku; Uchida, Chihiro; Negishi, Yuichi

    2014-06-01

    Because the synthesis of metal clusters with multiple ligand types results in a distribution of ligands, high-resolution separation of each unique cluster from the mixture is required for precise control of the ligand composition. Reverse-phase high-performance liquid chromatography combined with appropriate transitioning of the mobile phase composition is an extremely effective means of separating ligand combinations when working with metal clusters protected by two different types of thiolates. We report herein advanced use of this method. The studies involving Au24Pd(SR1)18-x(SR2)x and Au24Pd(SR1)18-x(SeR2)x (SR1, SR2 = thiolate, SeR2 = selenolate) revealed the following. (1) In general, an increase in the difference between the polarities of the functional groups incorporated in the two types of ligands improves the separation resolution. A suitable ligand combination for separation can be predicted from the retention times of Au24Pd(SR1)18 and Au24Pd(SR2)18, which cause the terminal peaks in a series of peaks. (2) The use of a step-gradient program during the mobile phase substitution results in improved resolution compared to that achievable with the linear gradients applied in prior work. (3) This technique is also useful for the evaluation of the chemical compositions of metal clusters protected by two different types of ligands with similar molecular weights. These findings will provide clear design guidelines for the functionalization of metal clusters via control of the ligand composition, and will also improve our understanding of the high-resolution isolation of metal clusters.Because the synthesis of metal clusters with multiple ligand types results in a distribution of ligands, high-resolution separation of each unique cluster from the mixture is required for precise control of the ligand composition. Reverse-phase high-performance liquid chromatography combined with appropriate transitioning of the mobile phase composition is an extremely effective

  12. Advanced use of high-performance liquid chromatography for synthesis of controlled metal clusters.

    PubMed

    Niihori, Yoshiki; Matsuzaki, Miku; Uchida, Chihiro; Negishi, Yuichi

    2014-07-21

    Because the synthesis of metal clusters with multiple ligand types results in a distribution of ligands, high-resolution separation of each unique cluster from the mixture is required for precise control of the ligand composition. Reverse-phase high-performance liquid chromatography combined with appropriate transitioning of the mobile phase composition is an extremely effective means of separating ligand combinations when working with metal clusters protected by two different types of thiolates. We report herein advanced use of this method. The studies involving Au₂₄Pd(SR₁)₁₈-x(SR₂)x and Au₂₄Pd(SR₁)₁₈-x(SeR₂)x (SR₁, SR₂ = thiolate, SeR₂ = selenolate) revealed the following. (1) In general, an increase in the difference between the polarities of the functional groups incorporated in the two types of ligands improves the separation resolution. A suitable ligand combination for separation can be predicted from the retention times of Au₂₄Pd(SR₁)₁₈ and Au₂₄Pd(SR₂)₁₈, which cause the terminal peaks in a series of peaks. (2) The use of a step-gradient program during the mobile phase substitution results in improved resolution compared to that achievable with the linear gradients applied in prior work. (3) This technique is also useful for the evaluation of the chemical compositions of metal clusters protected by two different types of ligands with similar molecular weights. These findings will provide clear design guidelines for the functionalization of metal clusters via control of the ligand composition, and will also improve our understanding of the high-resolution isolation of metal clusters.

  13. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction.

    PubMed

    Zhao, Shenlong; Yin, Huajie; Du, Lei; He, Liangcan; Zhao, Kun; Chang, Lin; Yin, Geping; Zhao, Huijun; Liu, Shaoqin; Tang, Zhiyong

    2014-12-23

    The oxygen reduction reaction (ORR) is one of the key steps in clean and efficient energy conversion techniques such as in fuel cells and metal-air batteries; however, several disadvantages of current ORRs including the kinetically sluggish process and expensive catalysts hinder mass production of these devices. Herein, we develop carbonized nanoparticles, which are derived from monodisperse nanoscale metal organic frameworks (MIL-88B-NH3), as the high performance ORR catalysts. The onset potential and the half-wave potential for the ORR at these carbonized nanoparticles is up to 1.03 and 0.92 V (vs RHE) in 0.1 M KOH solution, respectively, which represents the best ORR activity of all the non-noble metal catalysts reported so far. Furthermore, when used as the cathode of the alkaline direct fuel cell, the power density obtained with the carbonized nanoparticles reaches 22.7 mW/cm2, 1.7 times higher than the commercial Pt/C catalysts.

  14. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    DOE PAGES

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less

  15. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    SciTech Connect

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; Ovchinnikova, Olga S.; Haglund, Amanda V.; Dai, Sheng; Ward, Thomas Zac; Mandrus, David; Rack, Philip D.

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistor can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.

  16. A Class of High Performance Metal-Free Oxygen Reduction Electrocatalysts based on Cheap Carbon Blacks

    PubMed Central

    Sun, Xiujuan; Song, Ping; Zhang, Yuwei; Liu, Changpeng; Xu, Weilin; Xing, Wei

    2013-01-01

    For the goal of practical industrial development of fuel cells, cheap, sustainable and high performance electrocatalysts for oxygen reduction reactions (ORR) which rival those based on platinum (Pt) and other rare materials are highly desirable. In this work, we report a class of cheap and high-performance metal-free oxygen reduction electrocatalysts obtained by co-doping carbon blacks with nitrogen and fluorine (CB-NF).The CB-NF electrocatalysts are highly active and exhibit long-term operation stability and tolerance to poisons during oxygen reduction process in alkaline medium. The alkaline direct methanol fuel cell with the best CB-NF as cathode (3 mg/cm2) outperforms the one with commercial platinum-based cathode (3 mg Pt/cm2). To the best of our knowledge, these are among the most efficient non-Pt based electrocatalysts. Since carbon blacks are 10,000 times cheaper than Pt, these CB-NF electrocatalysts possess the best price/performance ratio for ORR, and are the most promising alternatives to Pt-based ones to date. PMID:23974295

  17. Rare-metal-free high-performance Ga-Sn-O thin film transistor

    NASA Astrophysics Data System (ADS)

    Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi

    2017-03-01

    Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm2/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds.

  18. Rare-metal-free high-performance Ga-Sn-O thin film transistor.

    PubMed

    Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi

    2017-03-14

    Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm(2)/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds.

  19. Rare-metal-free high-performance Ga-Sn-O thin film transistor

    PubMed Central

    Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi

    2017-01-01

    Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm2/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds. PMID:28290547

  20. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass

    PubMed Central

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-01-01

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant. PMID:26658671

  1. A high-performance complementary inverter based on transition metal dichalcogenide field-effect transistors.

    PubMed

    Cho, Ah-Jin; Park, Kee Chan; Kwon, Jang-Yeon

    2015-01-01

    For several years, graphene has been the focus of much attention due to its peculiar characteristics, and it is now considered to be a representative 2-dimensional (2D) material. Even though many research groups have studied on the graphene, its intrinsic nature of a zero band-gap, limits its use in practical applications, particularly in logic circuits. Recently, transition metal dichalcogenides (TMDs), which are another type of 2D material, have drawn attention due to the advantage of having a sizable band-gap and a high mobility. Here, we report on the design of a complementary inverter, one of the most basic logic elements, which is based on a MoS2 n-type transistor and a WSe2 p-type transistor. The advantages provided by the complementary metal-oxide-semiconductor (CMOS) configuration and the high-performance TMD channels allow us to fabricate a TMD complementary inverter that has a high-gain of 13.7. This work demonstrates the operation of the MoS2 n-FET and WSe2 p-FET on the same substrate, and the electrical performance of the CMOS inverter, which is based on a different driving current, is also measured.

  2. PREFACE: 13th International Conference on Liquid and Amorphous Metals

    NASA Astrophysics Data System (ADS)

    Popel, Pjotr; Gelchinskii, Boris; Sidorov, Valeriy; Son, Leonid; Sabirzjanov, Alexandre

    2007-06-01

    The state of the art in the field of liquid and amorphous metals and alloys is regularly updated through two series of complementary international conferences, the LAM (Liquid and Amorphous Metals) and the RQ (Rapidly Quenched Materials). The first series of the conferences started as LM-1 in 1966 at Brookhaven for the basic understanding of liquid metals. The subsequent LM conferences were held in Tokyo (1972) and Bristol (1976). The conference was renewed in Grenoble (1980) as a LAM conference including amorphous metals and continued in Los Angeles (1983), Garmisch-Partenkirchen (1986), Kyoto (1989), Vienna (1992), Chicago (1995), Dortmund (1998), Yokohama (2001) and Metz (2004). The conferences are mainly devoted to liquid and amorphous metals and alloys. However, communications on some non-metallic systems such as semi conductors, quasicrystals etc, were accepted as well. The conference tradition strongly encourages the participation of junior researchers and graduate students. The 13th conference of the LAM series was organized in Ekaterinburg, Russia, by the Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMet UB RAS) and Ural State Pedagogical University (USPU) and held on 8-13 July 2007 under the chairmanship of Professors Pjotr Popel (USPU) and Boris Gelchinskii (IMet UB RAS). There were 242 active and about 60 guest participants from 20 countries who attended the conference. There were no parallel sessions and all oral reports were separated into three groups: invited talks (40 min), full-scale (25 min) and brief (15 min) oral reports. The program included 10 sessions, ranging from purely theoretical subjects to technological application of molten and amorphous alloys. The following sessions took place: A) Electronic structure and transport, magnetic properties; B) Phase transitions; C) Structure; D) Atomic dynamics and transport; E) Thermodynamics; F) Modelling, simulation; G) Surface and interface; H) Mechanical properties

  3. Large-scale synthesis of hybrid metal oxides through metal redox mechanism for high-performance pseudocapacitors

    PubMed Central

    Ren, Zhonghua; Li, Jianpeng; Ren, Yaqi; Wang, Shuguang; Qiu, Yejun; Yu, Jie

    2016-01-01

    Electrochemical performance and production cost are the main concerns for the practical application of supercapacitors. Here we report a simple and universally applicable method to prepare hybrid metal oxides by metal redox reaction utilizing the inherent reducibility of metals and oxidbility of for the first time. As an example, Ni(OH)2/MnO2 hybrid nanosheets (NMNSs) are grown for supercapacitor application by self-reaction of Ni foam substrates in KMnO4 solution at room temperature. The obtained hybrid nanosheets exhibit high specific capacitance (2,937 F g−1). The assembled solid-state asymmetric pseudocapacitors possess ultrahigh energy density of 91.13 Wh kg−1 (at the power density of 750 W kg−1) and extraordinary cycling stability with 92.28% capacitance retention after 25,000 cycles. Co(OH)2/MnO2 and Fe2O3/MnO2 hybrid oxides are also synthesized through this metal redox mechanism. This green and low-cost method is capable of large-scale production and one-step preparation of the electrodes, holding promise for practical application of high-performance pseudocapacitors. PMID:26805027

  4. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis.

    PubMed

    Smith, Rodney D L; Prévot, Mathieu S; Fagan, Randal D; Zhang, Zhipan; Sedach, Pavel A; Siu, Man Kit Jack; Trudel, Simon; Berlinguette, Curtis P

    2013-04-05

    Large-scale electrolysis of water for hydrogen generation requires better catalysts to lower the kinetic barriers associated with the oxygen evolution reaction (OER). Although most OER catalysts are based on crystalline mixed-metal oxides, high activities can also be achieved with amorphous phases. Methods for producing amorphous materials, however, are not typically amenable to mixed-metal compositions. We demonstrate that a low-temperature process, photochemical metal-organic deposition, can produce amorphous (mixed) metal oxide films for OER catalysis. The films contain a homogeneous distribution of metals with compositions that can be accurately controlled. The catalytic properties of amorphous iron oxide prepared with this technique are superior to those of hematite, whereas the catalytic properties of a-Fe(100-y-z)Co(y)Ni(z)O(x) are comparable to those of noble metal oxide catalysts currently used in commercial electrolyzers.

  5. High performance felt-metal-wick heat pipe for solar receivers

    NASA Astrophysics Data System (ADS)

    Andraka, Charles E.; Moss, Timothy A.; Baturkin, Volodymyr; Zaripov, Vladlen; Nishchyk, Oleksandr

    2016-05-01

    Sodium heat pipes have been identified as a potentially effective heat transport approach for CSP systems that require near-isothermal input to power cycles or storage, such as dish Stirling and highly recuperated reheat-cycle supercritical CO2 turbines. Heat pipes offer high heat flux capabilities, leading to small receivers, as well as low exergetic losses through isothermal coupling with the engine. Sandia developed a felt metal wick approach in the 1990's, and demonstrated very high performance1. However, multiple durability issues arose, primarily the structural collapse of the wick at temperature over short time periods. NTUU developed several methods of improving robustness of the wick2, but the resulting wick had limited performance capabilities. For application to CSP systems, the wick structures must retain high heat pipe performance with robustness for long term operation. In this paper we present our findings in developing an optimal balance between performance and ruggedness, including operation of a laboratory-scale heat pipe for over 5500 hours so far. Application of heat pipes to dish-Stirling systems has been shown to increase performance as much as 20%3, and application to supercritical CO2 systems has been proposed.

  6. All-metal meta-surfaces for narrowband light absorption and high performance sensing

    NASA Astrophysics Data System (ADS)

    Liu, Zhengqi; Liu, Guiqiang; Fu, Guolan; Liu, Xiaoshan; Huang, Zhenping; Gu, Gang

    2016-11-01

    We report an experimental scheme for high performance sensing by an all-metal meta-surface (AMMS) platform. A dual-band resonant absorption spectrum with a bandwidth down to a single-digit nanometer level and an absorbance up to 89% is achieved due to the surface lattice resonances supported by the resonators array and their hybridization coupling with the particle plasmon resonances. The sensing application in the analysis of the sodium chloride solution has been demonstrated, where remarkable changes from a spectral ‘dark state’ to ‘bright state’ and vice versa are observed. Sensing performance factors of the figure of merit exceeding 50 and the spectral intensity change related FoM* up to 1075 are simultaneously achieved. The corresponding detection limit is as low as 8.849  ×  10-6 RIU. These features make such an AMMS-based sensor a promising route for efficient bio-chemical sensing, etc.

  7. Laser rapid forming technology of high-performance dense metal components with complex structure

    NASA Astrophysics Data System (ADS)

    Huang, Weidong; Chen, Jing; Li, Yanming; Lin, Xin

    2005-01-01

    Laser rapid forming (LRF) is a new and advanced manufacturing technology that has been developed on the basis of combining high power laser cladding technology with rapid prototyping (RP) to realize net shape forming of high performance dense metal components without dies. Recently we have developed a set of LRF equipment. LRF experiments were carried out on the equipment to investigate the influences of processing parameters on forming characterizations systematically with the cladding powder materials as titanium alloys, superalloys, stainless steel, and copper alloys. The microstructure of laser formed components is made up of columnar grains or columnar dendrites which grow epitaxially from the substrate since the solid components were prepared layer by layer additionally. The result of mechanical testing proved that the mechanical properties of laser formed samples are similar to or even over that of forging and much better than that of casting. It is shown in this paper that LRF technology is providing a new solution for some difficult processing problems in the high tech field of aviation, spaceflight and automobile industries.

  8. Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.

    1987-01-01

    Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.

  9. Exploring Two-Dimensional Transport Phenomena in Metal Oxide Heterointerfaces for Next-Generation, High-Performance, Thin-Film Transistor Technologies.

    PubMed

    Labram, John G; Lin, Yen-Hung; Anthopoulos, Thomas D

    2015-11-04

    In the last decade, metal oxides have emerged as a fascinating class of electronic material, exhibiting a wide range of unique and technologically relevant characteristics. For example, thin-film transistors formed from amorphous or polycrystalline metal oxide semiconductors offer the promise of low-cost, large-area, and flexible electronics, exhibiting performances comparable to or in excess of incumbent silicon-based technologies. Atomically flat interfaces between otherwise insulating or semiconducting complex oxides, are also found to be highly conducting, displaying 2-dimensional (2D) charge transport properties, strong correlations, and even superconductivity. Field-effect devices employing such carefully engineered interfaces are hoped to one day compete with traditional group IV or III-V semiconductors for use in the next-generation of high-performance electronics. In this Concept article we provide an overview of the different metal oxide transistor technologies and potential future research directions. In particular, we look at the recent reports of multilayer oxide thin-film transistors and the possibility of 2D electron transport in these disordered/polycrystalline systems and discuss the potential of the technology for applications in large-area electronics.

  10. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  11. Self-diffusion and macroscopic diffusion of hydrogen in amorphous metals from first-principles calculations.

    PubMed

    Hao, Shiqiang; Sholl, David S

    2009-06-28

    Diffusion of interstitial hydrogen plays a key role in potential uses for amorphous metals as membranes for hydrogen purification. We show how first principles-based methods can be used to characterize diffusion of interstitial H in amorphous metals using amorphous Fe(3)B as an example. Net transport of interstitial H is governed by the transport diffusion coefficient that appears in Fick's law. This diffusion coefficient is strongly dependent on the interstitial concentration, and is not equal to the self-diffusion coefficient except at dilute interstitial concentrations. Under conditions of practical interest, the concentrations of interstitial H in amorphous metals are nondilute so methods to determine the transport diffusion coefficient must be used if net mass transport is to be described. We show how kinetic Monte Carlo simulations of interstitial H diffusion that use rates derived from first-principles calculations can be used to assess both self- and transport diffusion coefficients of H in amorphous metals. These methods will be helpful in efforts to screen amorphous metal alloys as potential membranes for hydrogen purification.

  12. Structural modulation of lithium metal-electrolyte interface with three-dimensional metallic interlayer for high-performance lithium metal batteries

    PubMed Central

    Lee, Hongkyung; Song, Jongchan; Kim, Yun-Jung; Park, Jung-Ki; Kim, Hee-Tak

    2016-01-01

    The use of lithium (Li) metal anodes has been reconsidered because of the necessity for a higher energy density in secondary batteries. However, Li metal anodes suffer from ‘dead’ Li formation and surface deactivation which consequently form a porous layer of redundant Li aggregates. In this work, a fibrous metal felt (FMF) as a three-dimensional conductive interlayer was introduced between the separator and the Li metal anode to improve the reversibility of the Li metal anode. The FMF can facilitate charge transfer in the porous layer, rendering it electrochemically more active. In addition, the FMF acted as a robust scaffold to accommodate Li deposits compactly in its interstitial sites. The FMF-integrated Li metal (FMF/Li) electrode operated with a small polarisation even at a current density of 10 mA cm−2, and it exhibited a seven times longer cycle-life than that of an FMF-free Li electrode in a symmetric cell configuration. A Li metal battery (LMB) using the FMF/Li electrode and a LiFePO4 electrode exhibited a two-fold increase in cycling stability compared with that of a bare Li metal electrode, demonstrating the practical effectiveness of this approach for high performance LMBs. PMID:27484160

  13. Structural modulation of lithium metal-electrolyte interface with three-dimensional metallic interlayer for high-performance lithium metal batteries

    NASA Astrophysics Data System (ADS)

    Lee, Hongkyung; Song, Jongchan; Kim, Yun-Jung; Park, Jung-Ki; Kim, Hee-Tak

    2016-08-01

    The use of lithium (Li) metal anodes has been reconsidered because of the necessity for a higher energy density in secondary batteries. However, Li metal anodes suffer from ‘dead’ Li formation and surface deactivation which consequently form a porous layer of redundant Li aggregates. In this work, a fibrous metal felt (FMF) as a three-dimensional conductive interlayer was introduced between the separator and the Li metal anode to improve the reversibility of the Li metal anode. The FMF can facilitate charge transfer in the porous layer, rendering it electrochemically more active. In addition, the FMF acted as a robust scaffold to accommodate Li deposits compactly in its interstitial sites. The FMF-integrated Li metal (FMF/Li) electrode operated with a small polarisation even at a current density of 10 mA cm‑2, and it exhibited a seven times longer cycle-life than that of an FMF-free Li electrode in a symmetric cell configuration. A Li metal battery (LMB) using the FMF/Li electrode and a LiFePO4 electrode exhibited a two-fold increase in cycling stability compared with that of a bare Li metal electrode, demonstrating the practical effectiveness of this approach for high performance LMBs.

  14. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOEpatents

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  15. Role of Metal Oxide Electron-Transport Layer Modification on the Stability of High Performing Perovskite Solar Cells.

    PubMed

    Singh, Trilok; Singh, Jai; Miyasaka, Tsutomu

    2016-09-22

    Organic-inorganic hybrid perovskite light absorbers have recently emerged as a "holy grail" for next generation thin-film photovoltaics with excellent optoelectronics properties and low fabrication cost. In a very short span of time, we have witnessed a pronounced and unexpected progress in organic- inorganic perovskite solar cells (PSCs) with a vertical rise in power conversion efficiency from 3.8 to 22.1 %. In this manuscript we focus specifically on the recent development of metal oxide-based electron-transporting layer (ETL) modification for high performing PSCs and their stability. This review highlights various methodologies to modify existing compact/scaffold layers for improving device performance and stability. Various aspects of the ETL are discussed with different metal oxide compact layers in their relation to modification in mesoporous layers towards the design of a cell structure with high performance and stability.

  16. High performance, high durability non-precious metal fuel cell catalysts

    DOEpatents

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  17. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing

    NASA Astrophysics Data System (ADS)

    Llordés, Anna; Wang, Yang; Fernandez-Martinez, Alejandro; Xiao, Penghao; Lee, Tom; Poulain, Agnieszka; Zandi, Omid; Saez Cabezas, Camila A.; Henkelman, Graeme; Milliron, Delia J.

    2016-12-01

    Amorphous transition metal oxides are recognized as leading candidates for electrochromic window coatings that can dynamically modulate solar irradiation and improve building energy efficiency. However, their thin films are normally prepared by energy-intensive sputtering techniques or high-temperature solution methods, which increase manufacturing cost and complexity. Here, we report on a room-temperature solution process to fabricate electrochromic films of niobium oxide glass (NbOx) and `nanocrystal-in-glass’ composites (that is, tin-doped indium oxide (ITO) nanocrystals embedded in NbOx glass) via acid-catalysed condensation of polyniobate clusters. A combination of X-ray scattering and spectroscopic characterization with complementary simulations reveals that this strategy leads to a unique one-dimensional chain-like NbOx structure, which significantly enhances the electrochromic performance, compared to a typical three-dimensional NbOx network obtained from conventional high-temperature thermal processing. In addition, we show how self-assembled ITO-in-NbOx composite films can be successfully integrated into high-performance flexible electrochromic devices.

  18. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing.

    PubMed

    Llordés, Anna; Wang, Yang; Fernandez-Martinez, Alejandro; Xiao, Penghao; Lee, Tom; Poulain, Agnieszka; Zandi, Omid; Saez Cabezas, Camila A; Henkelman, Graeme; Milliron, Delia J

    2016-12-01

    Amorphous transition metal oxides are recognized as leading candidates for electrochromic window coatings that can dynamically modulate solar irradiation and improve building energy efficiency. However, their thin films are normally prepared by energy-intensive sputtering techniques or high-temperature solution methods, which increase manufacturing cost and complexity. Here, we report on a room-temperature solution process to fabricate electrochromic films of niobium oxide glass (NbOx) and 'nanocrystal-in-glass' composites (that is, tin-doped indium oxide (ITO) nanocrystals embedded in NbOx glass) via acid-catalysed condensation of polyniobate clusters. A combination of X-ray scattering and spectroscopic characterization with complementary simulations reveals that this strategy leads to a unique one-dimensional chain-like NbOx structure, which significantly enhances the electrochromic performance, compared to a typical three-dimensional NbOx network obtained from conventional high-temperature thermal processing. In addition, we show how self-assembled ITO-in-NbOx composite films can be successfully integrated into high-performance flexible electrochromic devices.

  19. A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels

    NASA Astrophysics Data System (ADS)

    Im, Hyeon-Gyun; An, Byeong Wan; Jin, Jungho; Jang, Junho; Park, Young-Geun; Park, Jang-Ung; Bae, Byeong-Soo

    2016-02-01

    We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms < 1 nm) and excellent opto-electrical properties. A flexible touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband.We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms < 1 nm) and excellent opto-electrical properties. A flexible touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07657a

  20. Interphase Thermomechanical Reliability and Optimization for High-Performance Ti Metal Laminates

    DTIC Science & Technology

    2011-12-19

    developing a mixed metal/epoxysilane sol - gel hybrid coupling layer. These hybird materials exhibit excellent properties but there was a deficiency in...hybrid laminates that are critical to their performance. We achieved this by developing a mixed metal/epoxysilane sol - gel hybrid coupling layer. These...hybrid film synthesis. The weight percentage of porogen was varied in the sol - gel solution during the synthesis of our hybrid films, with an

  1. High performance organic photovoltaics with plasmonic-coupled metal nanoparticle clusters.

    PubMed

    Park, Hyung Il; Lee, Seunghoon; Lee, Ju Min; Nam, Soo Ah; Jeon, Taewoo; Han, Sang Woo; Kim, Sang Ouk

    2014-10-28

    Performance enhancement of organic photovoltaics using plasmonic nanoparticles has been limited without interparticle plasmon coupling. We demonstrate high performance organic photovoltaics employing gold nanoparticle clusters with controlled morphology as a plasmonic component. Near-field coupling at the interparticle gaps of nanoparticle clusters gives rise to strong enhancement in localized electromagnetic field, which led to the significant improvement of exciton generation and dissociation in the active layer of organic solar cells. A power conversion efficiency of 9.48% is attained by employing gold nanoparticle clusters at the bottom of the organic active layer. This is one of the highest efficiency values reported thus far for the single active layer organic photovoltaics.

  2. High-Performance Metal/Carbide Composites with Far-From-Equilibrium Compositions and Controlled Microstructures

    PubMed Central

    Hu, Liangfa; O’Neil, Morgan; Erturun, Veysel; Benitez, Rogelio; Proust, Gwénaëlle; Karaman, Ibrahim; Radovic, Miladin

    2016-01-01

    The prospect of extending existing metal-ceramic composites to those with the compositions that are far from thermodynamic equilibrium is examined. A current and pressure-assisted, rapid infiltration is proposed to fabricate composites, consisting of reactive metallic and ceramic phases with controlled microstructure and tunable properties. An aluminum (Al) alloy/Ti2AlC composite is selected as an example of the far-from-equilibrium systems to fabricate, because Ti2AlC exists only in a narrow region of the Ti-Al-C phase diagram and readily reacts with Al. This kind of reactive systems challenges conventional methods for successfully processing corresponding metal-ceramic composites. Al alloy/Ti2AlC composites with controlled microstructures, various volume ratios of constituents (40/60 and 27/73) and metallic phase sizes (42–83 μm, 77–276 μm, and 167–545 μm), are obtained using the Ti2AlC foams with different pore structures as preforms for molten metal (Al alloy) infiltration. The resulting composites are lightweight and display exceptional mechanical properties at both ambient and elevated temperatures. These structures achieve a compressive strength that is 10 times higher than the yield strength of the corresponding peak-aged Al alloy at ambient temperature and 14 times higher at 400 °C. Possible strengthening mechanisms are described, and further strategies for improving properties of those composites are proposed. PMID:27752106

  3. High-Performance Metal/Carbide Composites with Far-From-Equilibrium Compositions and Controlled Microstructures

    NASA Astrophysics Data System (ADS)

    Hu, Liangfa; O’Neil, Morgan; Erturun, Veysel; Benitez, Rogelio; Proust, Gwénaëlle; Karaman, Ibrahim; Radovic, Miladin

    2016-10-01

    The prospect of extending existing metal-ceramic composites to those with the compositions that are far from thermodynamic equilibrium is examined. A current and pressure-assisted, rapid infiltration is proposed to fabricate composites, consisting of reactive metallic and ceramic phases with controlled microstructure and tunable properties. An aluminum (Al) alloy/Ti2AlC composite is selected as an example of the far-from-equilibrium systems to fabricate, because Ti2AlC exists only in a narrow region of the Ti-Al-C phase diagram and readily reacts with Al. This kind of reactive systems challenges conventional methods for successfully processing corresponding metal-ceramic composites. Al alloy/Ti2AlC composites with controlled microstructures, various volume ratios of constituents (40/60 and 27/73) and metallic phase sizes (42–83 μm, 77–276 μm, and 167–545 μm), are obtained using the Ti2AlC foams with different pore structures as preforms for molten metal (Al alloy) infiltration. The resulting composites are lightweight and display exceptional mechanical properties at both ambient and elevated temperatures. These structures achieve a compressive strength that is 10 times higher than the yield strength of the corresponding peak-aged Al alloy at ambient temperature and 14 times higher at 400 °C. Possible strengthening mechanisms are described, and further strategies for improving properties of those composites are proposed.

  4. High-performance heterogeneous catalysis with surface-exposed stable metal nanoparticles.

    PubMed

    Huang, Ning; Xu, Yanhong; Jiang, Donglin

    2014-11-27

    Protection of metal nanoparticles from agglomeration is critical for their functions and applications. The conventional method for enhancing their stability is to cover them with passivation layers to prevent direct contact. However, the presence of a protective shell blocks exposure of the metal species to reactants, thereby significantly impeding the nanoparticles' utility as catalysts. Here, we report that metal nanoparticles can be prepared and used in a surface-exposed state that renders them inherently catalytically active. This strategy is realised by spatial confinement and electronic stabilisation with a dual-module mesoporous and microporous three-dimensional π-network in which surface-exposed nanoparticles are crystallised upon in situ reduction. The uncovered palladium nanoparticles serve as heterogeneous catalysts that are exceptionally active in water, catalyse unreactive aryl chlorides for straightforward carbon-carbon bond formation and are stable for repeated use in various types of cross couplings. Therefore, our results open new perspectives in developing practical heterogeneous catalysts.

  5. A novel biomimetic approach to the design of high-performance ceramic–metal composites

    PubMed Central

    Launey, Maximilien E.; Munch, Etienne; Alsem, Daan Hein; Saiz, Eduardo; Tomsia, Antoni P.; Ritchie, Robert O.

    2010-01-01

    The prospect of extending natural biological design to develop new synthetic ceramic–metal composite materials is examined. Using ice-templating of ceramic suspensions and subsequent metal infiltration, we demonstrate that the concept of ordered hierarchical design can be applied to create fine-scale laminated ceramic–metal (bulk) composites that are inexpensive, lightweight and display exceptional damage-tolerance properties. Specifically, Al2O3/Al–Si laminates with ceramic contents up to approximately 40 vol% and with lamellae thicknesses down to 10 µm were processed and characterized. These structures achieve an excellent fracture toughness of 40 MPa√m at a tensile strength of approximately 300 MPa. Salient toughening mechanisms are described together with further toughening strategies. PMID:19828498

  6. A novel biomimetic approach to the design of high-performance ceramic/metal composites

    SciTech Connect

    Launey, Maximilien E.; Munch, Etienne; Alsem, Daan Hein; Saiz, Eduardo; Tomsia, Antoni P.; Ritchie, Robert O.

    2009-08-01

    The prospect of extending natural biological design to develop new synthetic ceramic-metal composite materials is examined. Using ice-templating of ceramic suspensions and subsequent metal infiltration, we demonstrate that the concept of ordered hierarchical design can be applied to create fine-scale laminated ceramic-metal (bulk) composites that are inexpensive, lightweight and display exceptional damage-tolerance properties. Specifically, Al{sub 2}O{sub 3}/Al-Si laminates with ceramic contents up to approximately 40 vol% and with lamellae thicknesses down to 10 {micro}m were processed and characterized. These structures achieve an excellent fracture toughness of 40 MPa{radical}m at a tensile strength of approximately 300 MPa. Salient toughening mechanisms are described together with further toughening strategies.

  7. Characterization of interfaces of metal/amorphized (by implantation) Si/c-Si structures

    NASA Astrophysics Data System (ADS)

    Golan, A.; Fastow, R.; Eizenberg, M.

    1990-02-01

    The electrical properties of metal/implanted (amorphous) Si contacts were studied, emphasizing the effects of the doping level, of the metal type, and of the heat treatments applied prior to the metal deposition. The implantation was carried out using 60-keV Ar+ ions at a dose of 1016 cm-2, and resulted in the formation of a thin (1000-Å-thick) amorphous layer on top of the crystalline substrate. The doping level of the implanted Si affected the current-voltage (I-V) characteristics of the contacts mainly in the reverse bias (low doping-low currents), while the forward bias characteristics were quite independent of this parameter. The device characteristics were very sensitive to the metal type, Al, Ti-W, or Pt. Thermal treatments applied prior to the metal deposition affected the characteristics by lowering the device resistance in correspondence with the thinning of the amorphous layer as a result of epitaxial regrowth. The I-V characteristics, as well as their dependence on the different process parameters, are explained using a model of charge injection into a thin layer of trap rich amorphous Si bounded by a metal/a-Si interface on one side and by an a-Si/c-Si heterojunction on the other side.

  8. Coexistence of high performance resistance and capacitance memory based on multilayered metal-oxide structures

    PubMed Central

    Yan, Z. B.; Liu, J. -M.

    2013-01-01

    The Au/DyMnO3/Nb:SrTiO3/Au stack was demonstrated to be not only a high performance memristor but also a good memcapacitor. The switching time is below 10 ns, the retention is longer than 105 s, and the change ratio of resistance (or capacitance) is larger than 100 over the 108 switching cycles. Moreover, this stack has a broad range of intermediate states that are tunable by the operating voltages. It is indicated that the memory effects originate from the Nb:SrTiO3/Au junction where the barrier profile is electrically modulated. The serial connected Au/DyMnO3/Nb:SrTiO3 stack behaves as a high nonlinear resistor paralleling with a capacitor, which raises the capacitance change ratio and enhances the memory stability of the device. PMID:23963467

  9. Separation of some platinum metal 8-hydroxyquinolinates by normal phase high-performance liquid chromatography.

    PubMed

    Alimarinod, I P; Basova, E M; Malykhin, A Y; Bol'shova, T A

    1990-05-01

    The method of normal phase high-performance liquid chromatography has been applied to the separation and determination of Pd(II), Pt(II), Rh(III), Ir(IV), Ru(III) and Os(IV) as chelates with 8-hydroxyquinoline on a 62 x 2 mm column packed with Silasorb 600 5 mu silica gel by elution with methylene chloride-isopropyl alcohol mixture (97:3 v/v). The detection limits (ng per 5 mul), were Pd 0.3, Pt 1.0, Rh 1.0, Ir 5.0, Ru 1.5, Os 25. The separation time was 12 min at a flow-rate of 0.1 ml/min.

  10. Coexistence of high performance resistance and capacitance memory based on multilayered metal-oxide structures.

    PubMed

    Yan, Z B; Liu, J-M

    2013-01-01

    The Au/DyMnO₃/Nb:SrTiO₃/Au stack was demonstrated to be not only a high performance memristor but also a good memcapacitor. The switching time is below 10 ns, the retention is longer than 10(5) s, and the change ratio of resistance (or capacitance) is larger than 100 over the 10(8) switching cycles. Moreover, this stack has a broad range of intermediate states that are tunable by the operating voltages. It is indicated that the memory effects originate from the Nb:SrTiO₃/Au junction where the barrier profile is electrically modulated. The serial connected Au/DyMnO₃/Nb:SrTiO₃ stack behaves as a high nonlinear resistor paralleling with a capacitor, which raises the capacitance change ratio and enhances the memory stability of the device.

  11. Atomic mobility and strain localization in amorphous metals.

    PubMed

    Delogu, Francesco

    2008-02-22

    Molecular dynamics simulations are employed to investigate the atomic mobility in Ni(50)Zr(50) amorphous alloys under both static conditions and shearing. Diffusion occurs under static conditions via cooperative stringlike motion involving atoms with large volumes. Atomic mobility is instead governed by rearrangements localized in shear transformation zones (STZs) under shearing. Local atomic volume plays in both cases a key role, the atomic ensembles involved in diffusion and STZ activity being strongly correlated.

  12. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOEpatents

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  13. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan; Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.

    2013-07-09

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  14. Replication of surface features from a master model to an amorphous metallic article

    DOEpatents

    Johnson, William L.; Bakke, Eric; Peker, Atakan

    1999-01-01

    The surface features of an article are replicated by preparing a master model having a preselected surface feature thereon which is to be replicated, and replicating the preselected surface feature of the master model. The replication is accomplished by providing a piece of a bulk-solidifying amorphous metallic alloy, contacting the piece of the bulk-solidifying amorphous metallic alloy to the surface of the master model at an elevated replication temperature to transfer a negative copy of the preselected surface feature of the master model to the piece, and separating the piece having the negative copy of the preselected surface feature from the master model.

  15. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Gao, Y. Q.; Liu, X. Y.; Yang, G. W.

    2016-02-01

    The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm-2 at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec-1, while no deactivation is detected in the CV testing even up to 30 000 cycles, which suggests the promising application of these amorphous nanomaterials in electrochemical oxidation. Meanwhile, the distinct catalytic activities among these amorphous Ni-Fe hydroxide nanostructures prompts us to take notice of the composition of the alloy hydroxides/oxides when studying their catalytic properties, which opens an avenue for the rational design and controllable preparation of such amorphous nanomaterials as advanced OER electrocatalysts.The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm-2 at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec-1, while no deactivation is detected in the CV

  16. Metal- and Polymer-Matrix Composites: Functional Lightweight Materials for High-Performance Structures

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Paramsothy, Muralidharan

    2014-06-01

    The special topic "Metal- and Polymer-Matrix Composites" is intended to capture the state of the art in the research and practice of functional composites. The current set of articles related to metal-matrix composites includes reviews on functionalities such as self-healing, self-lubricating, and self-cleaning capabilities; research results on a variety of aluminum-matrix composites; and investigations on advanced composites manufacturing methods. In addition, the processing and properties of carbon nanotube-reinforced polymer-matrix composites and adhesive bonding of laminated composites are discussed. The literature on functional metal-matrix composites is relatively scarce compared to functional polymer-matrix composites. The demand for lightweight composites in the transportation sector is fueling the rapid development in this field, which is captured in the current set of articles. The possibility of simultaneously tailoring several desired properties is attractive but very challenging, and it requires significant advancements in the science and technology of composite materials. The progress captured in the current set of articles shows promise for developing materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications.

  17. Growth of copper oxide nanocrystals in metallic nanotubes for high performance battery anodes.

    PubMed

    Zhao, Yuxin; Mu, Shanjun; Sun, Wanfu; Liu, Quanzhen; Li, Yanpeng; Yan, Zifeng; Huo, Ziyang; Liang, Wenjie

    2016-12-08

    A rational integration of 1D metallic nanotubes and oxide nanoparticles has been demonstrated as a viable strategy for the production of both highly stable and efficient anodes for lithium ion batteries. We encapsulated copper oxide (CuO) nanoparticles in ultra-long metallic copper nanotubes with engineered interspaces, and explored their electrochemical properties. Such a hierarchical architecture provides three important features: (i) a continuous nanoscale metallic Cu shell to minimize electronic/ionic transmitting impedance; (ii) a unique quasi-one-dimensional structure with a large aspect ratio to reduce self-aggregation; (iii) free space for volume expansion of CuO nanoparticles and stable solid-electrolyte interphase (SEI) formation. The anode materials with such hierarchical structures have high specific capacity (around 600 mA h g(-1) at a current density of 0.1 A g(-1)), excellent cycling stability (over 94% capacity retention after 200 cycles) and superb reversible capacity of 175 mA h g(-1) at a high charging rate of 15 A g(-1).

  18. Electrochemically Formed Ultrafine Metal Oxide Nanocatalysts for High-Performance Lithium–Oxygen Batteries

    SciTech Connect

    Liu, Bin; Yan, Pengfei; Xu, Wu; Zheng, Jianming; He, Yang; Luo, Langli; Bowden, Mark E.; Wang, Chong-Min; Zhang, Ji-Guang

    2016-08-10

    Lithium-oxygen (Li-O2) battery has an extremely high theoretical specific energy density as compared with conventional energy storage systems. However, practical application of Li-O2 battery system still faces significant challenges, especially its poor cyclability. In this work, we report a new approach to synthesis ultrafine metal oxide nanocatalysts through an electrochemical pre-lithiation process. This process reduces the size of NiCo2O4 (NCO) particles from 20~30 nm to a uniformly distributed domain of ~ 2 nm and largely improved their catalytic activity. Structurally, the pre-lithiated NCO NWs are featured by ultrafine NiO/CoO nanoparticles, which show high stability during prolonged cycles in terms of morphology and the particle size, therefore maintaining an excellent catalytic effect to oxygen reduction and evolution reactions. Li-O2 battery using this catalyst has demonstrated an initial capacity of 29,280 mAh g-1 and has retained a stable capacity of over 1,000 mAh g-1 after 100 cycles based on the weight of NCO active material. Direct in-situ TEM observation conclusively reveals the lithiation/delithiation process of as-prepared NCO NWs, clarifying the NCO/Li electrochemical reaction mechanism that can be extended to other transition-metal oxides and providing the in depth understandings on the catalysts and battery chemistries of other ternary transition-metal oxides.

  19. Synthesis of high performance ceramic fibers by chemical vapor deposition for advanced metallics reinforcing

    NASA Technical Reports Server (NTRS)

    Revankar, Vithal; Hlavacek, Vladimir

    1991-01-01

    The chemical vapor deposition (CVD) synthesis of fibers capable of effectively reinforcing intermetallic matrices at elevated temperatures which can be used for potential applications in high temperature composite materials is described. This process was used due to its advantage over other fiber synthesis processes. It is extremely important to produce these fibers with good reproducible and controlled growth rates. However, the complex interplay of mass and energy transfer, blended with the fluid dynamics makes this a formidable task. The design and development of CVD reactor assembly and system to synthesize TiB2, CrB, B4C, and TiC fibers was performed. Residual thermal analysis for estimating stresses arising form thermal expansion mismatch were determined. Various techniques to improve the mechanical properties were also performed. Various techniques for improving the fiber properties were elaborated. The crystal structure and its orientation for TiB2 fiber is discussed. An overall view of the CVD process to develop CrB2, TiB2, and other high performance ceramic fibers is presented.

  20. Metal-dielectric frequency-selective surface for high performance solar window coatings

    NASA Astrophysics Data System (ADS)

    Toor, Fatima; Guneratne, Ananda C.; Temchenko, Marina

    2016-03-01

    We demonstrate a solar control window film consisting of metallic nanoantennas designed to reflect infrared (IR) light while allowing visible light to pass through. The film consists of a capacitive frequency-selective surface (CFSS) which acts as a band-stop filter, reflecting only light at target wavelengths. The designed CFSS when installed on windows will lower air conditioning costs by reflecting undesired wavelengths of light and thus reduce the amount of heat that enters a building. State-of-the-art commercial solar control films consist of a multilayer stack which is costly ( 13/m2 to 40/m2) to manufacture and absorbs IR radiation, causing delamination or glass breakage when attached to windows. Our solar control film consists of a nanostructured metallic layer on a polyethylene terephthalate (PET) substrate that reflects IR radiation instead of absorbing it, solving the delamination problem. The CFSS is also easy to manufacture with roll-to-roll nanoimprint lithography at a cost of <$12/m2. We design the CFSS using the COMSOL Wave Optics module to solve for electromagnetic wave propagation in optical media via the finite element method. The simulation domain is reduced to a single unit cell with periodic boundary conditions to account for the symmetries of the planar, periodic CFSS. The design is optimized using parametric sweeps around the various geometric components of the metallic nanoantenna. Our design achieves peak reflection of 80% at 1000 nm and has a broadband IR response that will allow for optimum solar control without significantly affecting the transmission of visible light.

  1. Castable Bulk Metallic Glass Strain Wave Gears: Towards Decreasing the Cost of High-Performance Robotics

    PubMed Central

    Hofmann, Douglas C.; Polit-Casillas, Raul; Roberts, Scott N.; Borgonia, John-Paul; Dillon, Robert P.; Hilgemann, Evan; Kolodziejska, Joanna; Montemayor, Lauren; Suh, Jong-ook; Hoff, Andrew; Carpenter, Kalind; Parness, Aaron; Johnson, William L.; Kennett, Andrew; Wilcox, Brian

    2016-01-01

    The use of bulk metallic glasses (BMGs) as the flexspline in strain wave gears (SWGs), also known as harmonic drives, is presented. SWGs are unique, ultra-precision gearboxes that function through the elastic flexing of a thin-walled cup, called a flexspline. The current research demonstrates that BMGs can be cast at extremely low cost relative to machining and can be implemented into SWGs as an alternative to steel. This approach may significantly reduce the cost of SWGs, enabling lower-cost robotics. The attractive properties of BMGs, such as hardness, elastic limit and yield strength, may also be suitable for extreme environment applications in spacecraft. PMID:27883054

  2. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals.

    PubMed

    Muller, Guillaume A; Cook, John B; Kim, Hyung-Seok; Tolbert, Sarah H; Dunn, Bruce

    2015-03-11

    Single-layer and few-layer transition metal dichalcogenides have been extensively studied for their electronic properties, but their energy-storage potential has not been well explored. This paper describes the structural and electrochemical properties of few-layer TiS2 nanocrystals. The two-dimensional morphology leads to very different behavior, compared to corresponding bulk materials. Only small structural changes occur during lithiation/delithiation and charge storage characteristics are consistent with intercalation pseudocapacitance, leading to materials that exhibit both high energy and power density.

  3. Castable Bulk Metallic Glass Strain Wave Gears: Towards Decreasing the Cost of High-Performance Robotics.

    PubMed

    Hofmann, Douglas C; Polit-Casillas, Raul; Roberts, Scott N; Borgonia, John-Paul; Dillon, Robert P; Hilgemann, Evan; Kolodziejska, Joanna; Montemayor, Lauren; Suh, Jong-Ook; Hoff, Andrew; Carpenter, Kalind; Parness, Aaron; Johnson, William L; Kennett, Andrew; Wilcox, Brian

    2016-11-24

    The use of bulk metallic glasses (BMGs) as the flexspline in strain wave gears (SWGs), also known as harmonic drives, is presented. SWGs are unique, ultra-precision gearboxes that function through the elastic flexing of a thin-walled cup, called a flexspline. The current research demonstrates that BMGs can be cast at extremely low cost relative to machining and can be implemented into SWGs as an alternative to steel. This approach may significantly reduce the cost of SWGs, enabling lower-cost robotics. The attractive properties of BMGs, such as hardness, elastic limit and yield strength, may also be suitable for extreme environment applications in spacecraft.

  4. Castable Bulk Metallic Glass Strain Wave Gears: Towards Decreasing the Cost of High-Performance Robotics

    NASA Astrophysics Data System (ADS)

    Hofmann, Douglas C.; Polit-Casillas, Raul; Roberts, Scott N.; Borgonia, John-Paul; Dillon, Robert P.; Hilgemann, Evan; Kolodziejska, Joanna; Montemayor, Lauren; Suh, Jong-Ook; Hoff, Andrew; Carpenter, Kalind; Parness, Aaron; Johnson, William L.; Kennett, Andrew; Wilcox, Brian

    2016-11-01

    The use of bulk metallic glasses (BMGs) as the flexspline in strain wave gears (SWGs), also known as harmonic drives, is presented. SWGs are unique, ultra-precision gearboxes that function through the elastic flexing of a thin-walled cup, called a flexspline. The current research demonstrates that BMGs can be cast at extremely low cost relative to machining and can be implemented into SWGs as an alternative to steel. This approach may significantly reduce the cost of SWGs, enabling lower-cost robotics. The attractive properties of BMGs, such as hardness, elastic limit and yield strength, may also be suitable for extreme environment applications in spacecraft.

  5. Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Qiao, Hang; Wang, Haiyan; Zhou, Nan; Chen, Jiajie; Tang, Yougen; Li, Jingsha; Huang, Chenghuan

    2014-08-01

    High-performance, low cost catalyst for oxygen reduction reaction (ORR) remains a big challenge. Herein, nanostructured NiCo2O4/CNTs hybrid was proposed as a high-performance catalyst for metal/air battery for the first time. The well-formed NiCo2O4/CNTs hybrid was studied by steady-state linear polarization curves and galvanostatic discharge curves in comparison with CNTs-free NiCo2O4 and commercial carbon-supported Pt. Because of the synergistic effect, NiCo2O4/CNTs hybrid exhibited significant improvement of catalytic performance in comparison with NiCo2O4 or CNTs alone, even outperforming Pt/C hybrid in ORR process. In addition, the benefits of Ni incorporation were demonstrated by the improved catalytic performance of NiCo2O4/CNTs compared to Co3O4/CNTs, which should be attributed to improved electrical conductivity and new, highly efficient, active sites created by Ni cation incorporation into the spinel structure. NiCo2O4/CNTs hybrid could be used as a promising catalyst for high power metal/air battery.High-performance, low cost catalyst for oxygen reduction reaction (ORR) remains a big challenge. Herein, nanostructured NiCo2O4/CNTs hybrid was proposed as a high-performance catalyst for metal/air battery for the first time. The well-formed NiCo2O4/CNTs hybrid was studied by steady-state linear polarization curves and galvanostatic discharge curves in comparison with CNTs-free NiCo2O4 and commercial carbon-supported Pt. Because of the synergistic effect, NiCo2O4/CNTs hybrid exhibited significant improvement of catalytic performance in comparison with NiCo2O4 or CNTs alone, even outperforming Pt/C hybrid in ORR process. In addition, the benefits of Ni incorporation were demonstrated by the improved catalytic performance of NiCo2O4/CNTs compared to Co3O4/CNTs, which should be attributed to improved electrical conductivity and new, highly efficient, active sites created by Ni cation incorporation into the spinel structure. NiCo2O4/CNTs hybrid could be used as a

  6. (Metal-Organic Framework)-Polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Guo, ShuaiNan; Zhu, Yong; Yan, YunYun; Min, YuLin; Fan, JinChen; Xu, QunJie; Yun, Hong

    2016-06-01

    Carbonized Zn-(Metal-Organic Framework)MOF- polyaniline composites for high performance of supercapacitor have been developed from zinc acetate, 8-Hydroxyquinoline, and aniline via a simple process. The as-synthesized product has been characterized by X-ray powder diffraction (XRD), Scanning electron microscopy(SEM), Fourier transform infrared spectra (FT-IR), Transmission electron microscope (TEM). The electrochemical properties of carbonized Zn-MOF/polyaniline electrode were investigated by current charge-discharge and cyclic voltammetry. The specific capacitance of MOF/PANI has been approach to be as high as 477 F g-1 at a current density of 1 A g-1.

  7. High-performance electrocatalysis using metallic cobalt pyrite (CoS₂) micro- and nanostructures.

    PubMed

    Faber, Matthew S; Dziedzic, Rafal; Lukowski, Mark A; Kaiser, Nicholas S; Ding, Qi; Jin, Song

    2014-07-16

    The development of efficient and robust earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) is an ongoing challenge. We report metallic cobalt pyrite (cobalt disulfide, CoS2) as one such high-activity candidate material and demonstrate that its specific morphology--film, microwire, or nanowire, made available through controlled synthesis--plays a crucial role in determining its overall catalytic efficacy. The increase in effective electrode surface area that accompanies CoS2 micro- and nanostructuring substantially boosts its HER catalytic performance, with CoS2 nanowire electrodes achieving geometric current densities of -10 mA cm(-2) at overpotentials as low as -145 mV vs the reversible hydrogen electrode. Moreover, micro- and nanostructuring of the CoS2 material has the synergistic effect of increasing its operational stability, cyclability, and maximum achievable rate of hydrogen generation by promoting the release of evolved gas bubbles from the electrode surface. The benefits of catalyst micro- and nanostructuring are further demonstrated by the increased electrocatalytic activity of CoS2 nanowire electrodes over planar film electrodes toward polysulfide and triiodide reduction, which suggests a straightforward way to improve the performance of quantum dot- and dye-sensitized solar cells, respectively. Extension of this micro- and nanostructuring strategy to other earth-abundant materials could similarly enable inexpensive electrocatalysts that lack the high intrinsic activity of the noble metals.

  8. Electrochemically Formed Ultrafine Metal Oxide Nanocatalysts for High-Performance Lithium-Oxygen Batteries.

    PubMed

    Liu, Bin; Yan, Pengfei; Xu, Wu; Zheng, Jianming; He, Yang; Luo, Langli; Bowden, Mark E; Wang, Chong-Min; Zhang, Ji-Guang

    2016-08-10

    Lithium-oxygen (Li-O2) batteries have an extremely high theoretical specific energy density when compared with conventional energy-storage systems. However, practical application of the Li-O2 battery system still faces significant challenges. In this work, we report a new approach for synthesis of ultrafine metal oxide nanocatalysts through an electrochemical prelithiation process. This process reduces the size of NiCo2O4 (NCO) particles from 20-30 nm to a uniformly distributed domain of ∼2 nm and significantly improves their catalytic activity. Structurally, the prelithiated NCO nanowires feature ultrafine NiO/CoO nanoparticles that are highly stable during prolonged cycles in terms of morphology and particle size, thus maintaining an excellent catalytic effect to oxygen reduction and evolution reactions. A Li-O2 battery using this catalyst demonstrated an initial capacity of 29 280 mAh g(-1) and retained a capacity of >1000 mAh g(-1) after 100 cycles based on the weight of the NCO active material. Direct in situ transmission electron microscopy observations conclusively revealed the lithiation/delithiation process of as-prepared NCO nanowires and provided in-depth understanding for both catalyst and battery chemistries of transition-metal oxides. This unique electrochemical approach could also be used to form ultrafine nanoparticles of a broad range of materials for catalyst and other applications.

  9. Near-infrared–driven decomposition of metal precursors yields amorphous electrocatalytic films

    PubMed Central

    Salvatore, Danielle A.; Dettelbach, Kevan E.; Hudkins, Jesse R.; Berlinguette, Curtis P.

    2015-01-01

    Amorphous metal-based films lacking long-range atomic order have found utility in applications ranging from electronics applications to heterogeneous catalysis. Notwithstanding, there is a limited set of fabrication methods available for making amorphous films, particularly in the absence of a conducting substrate. We introduce herein a scalable preparative method for accessing oxidized and reduced phases of amorphous films that involves the efficient decomposition of molecular precursors, including simple metal salts, by exposure to near-infrared (NIR) radiation. The NIR-driven decomposition process provides sufficient localized heating to trigger the liberation of the ligand from solution-deposited precursors on substrates, but insufficient thermal energy to form crystalline phases. This method provides access to state-of-the-art electrocatalyst films, as demonstrated herein for the electrolysis of water, and extends the scope of usable substrates to include nonconducting and temperature-sensitive platforms. PMID:26601148

  10. Near-infrared-driven decomposition of metal precursors yields amorphous electrocatalytic films.

    PubMed

    Salvatore, Danielle A; Dettelbach, Kevan E; Hudkins, Jesse R; Berlinguette, Curtis P

    2015-03-01

    Amorphous metal-based films lacking long-range atomic order have found utility in applications ranging from electronics applications to heterogeneous catalysis. Notwithstanding, there is a limited set of fabrication methods available for making amorphous films, particularly in the absence of a conducting substrate. We introduce herein a scalable preparative method for accessing oxidized and reduced phases of amorphous films that involves the efficient decomposition of molecular precursors, including simple metal salts, by exposure to near-infrared (NIR) radiation. The NIR-driven decomposition process provides sufficient localized heating to trigger the liberation of the ligand from solution-deposited precursors on substrates, but insufficient thermal energy to form crystalline phases. This method provides access to state-of-the-art electrocatalyst films, as demonstrated herein for the electrolysis of water, and extends the scope of usable substrates to include nonconducting and temperature-sensitive platforms.

  11. High-performance resistive switching characteristics of programmable metallization cell with oxidized Cu-Ti electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Chih; Chou, Chia-Hsin; Liao, Chan-Yu; Tsai, Wan-Lin; Cheng, Huang-Chung

    2013-09-01

    Programmable metallization cell (PMC) memory devices with oxidized Cu-Ti alloy films as the bottom electrodes have been shown to exhibit a superior on/off state current ratio (memory window) of as high as 103 and endurance of 3000 cycles as compared to conventional pure copper and unoxidized Cu-Ti alloy electrodes. It was conjectured that the Cu-Ti alloy electrodes could obtain the appropriate amount of copper atoms to format and rupture the conductive filaments in the resistive switching layer. Furthermore, the oxidized Cu-Ti alloys could control the Cu cations from the Cu and Cu2O to the appropriate amountto achieve the most favorable PMC characteristics.

  12. Metal-organic framework nanoparticles decorated with graphene: A high-performance electromagnetic wave absorber

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, Wenzhi; Wu, Xinming; Luo, Chunyan; Liang, Tan; Yan, Gang

    2016-10-01

    A novel metal organic framework (MOF) coated RGO was fabricated by a one-step method. The morphology and microstructure of MOF-53(Fe)/RGO composite were characterized by XRD and TEM. The electromagnetic parameters indicate that MOF-53(Fe)/RGO composite shows enhanced electromagnetic absorption properties compared with MOF-53(Fe). The maximum RL can reach -25.8 dB at 15.4 GHz and the absorption bandwidth with the reflection loss exceeding -10 dB is 5.9 GHz (from 12.1 to 18 GHz) with the thickness of 2 mm. The possible absorption mechanism was also investigated in detail. Our results indicate the potential application of MOF/RGO composite as a more efficient microwave absorber.

  13. Bacterial adhesion on amorphous and crystalline metal oxide coatings.

    PubMed

    Almaguer-Flores, Argelia; Silva-Bermudez, Phaedra; Galicia, Rey; Rodil, Sandra E

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO2 and ZrO2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical-chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO2>ZrO2) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO2, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion.

  14. Bulk formation of metallic glasses and amorphous silicon from the melt

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1984-01-01

    Procedures and compositions for producing metallic glasses in bulk at slow cooling rates were investigated. An attempt was made to form the amorphous phase of the tetrahedrally coordinated elements (Si or Ge) by undercooling the melt. The crystal nucleation behavior of pure liquids and glass formers were examined.

  15. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    SciTech Connect

    Blink, J; Choi, J; Farmer, J

    2007-07-09

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Iron-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials.

  16. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    SciTech Connect

    Farmer, J; Choi, J

    2007-07-18

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials.

  17. Studies of High Performance Indium Gallium Arsenide Metal-Semiconductor Photodiodes.

    NASA Astrophysics Data System (ADS)

    Gao, Wei

    1995-01-01

    The purpose of this study is to achieve high speed and high responsivity metal-semiconductor-metal (MSM) photodiodes, which includes material growth, device design, fabrication, and testing. Liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) growth were used to grow high purity InGaAs layers. To obtain high purity InGaAs layers, rare-earth elements (Yb, Ga, and Er) were used during LPE growth. The rare-earth elements react strongly with donor impurities to purify the epitaxial layers, resulting in higher mobility, lower carrier concentration, and higher photoluminescence efficiency in the rare-earth doped melt grown InGaAs layer. Unfortunately, rare-earth elements have high impurity levels and hardly interact with acceptor impurities; thus, causing undesired deep levels. Both abrupt and digital superlattice InAlAs barrier enhancement InGaAs MSM photodiodes were grown by MBE. To improve the photoresponsivity, a transparent conductive material, cadmium tin oxide (CTO) was used as the MSM contacts. The CTO functions as a Schottky contact, an optical window and an anti-reflection coating. The Schottky barrier height, which is vitally important for MSM photodiodes, was studied with CTO, ITO, Au, Ti, and Pt on InAlAs using the Norde method. The CTO MSM photodiodes showed a factor of almost two improvement in responsivity over conventional Ti/Au MSM photodiodes. Abrupt barrier enhancement MSM photodiodes using CTO and Ti/Au electrodes demonstrated 3-dB bandwidths of 0.3 and 0.8 GHz, respectively. However, digital grading of the heterojunction facilitated better carrier extraction resulting in increased bandwidths of 1.3 and 7.1 GHz, respectively, for CTO and Ti/Au. It was demonstrated that CTO possesses a low resistivity, high transparency, and good Schottky barrier height, which makes CTO a very attractive transparent conductor suitable for optoelectronic applications. Lastly, four novel structures were proposed to improve the responsivity and the bandwidth of

  18. Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery.

    PubMed

    Zhang, Hui; Qiao, Hang; Wang, Haiyan; Zhou, Nan; Chen, Jiajie; Tang, Yougen; Li, Jingsha; Huang, Chenghuan

    2014-09-07

    High-performance, low cost catalyst for oxygen reduction reaction (ORR) remains a big challenge. Herein, nanostructured NiCo2O4/CNTs hybrid was proposed as a high-performance catalyst for metal/air battery for the first time. The well-formed NiCo2O4/CNTs hybrid was studied by steady-state linear polarization curves and galvanostatic discharge curves in comparison with CNTs-free NiCo2O4 and commercial carbon-supported Pt. Because of the synergistic effect, NiCo2O4/CNTs hybrid exhibited significant improvement of catalytic performance in comparison with NiCo2O4 or CNTs alone, even outperforming Pt/C hybrid in ORR process. In addition, the benefits of Ni incorporation were demonstrated by the improved catalytic performance of NiCo2O4/CNTs compared to Co3O4/CNTs, which should be attributed to improved electrical conductivity and new, highly efficient, active sites created by Ni cation incorporation into the spinel structure. NiCo2O4/CNTs hybrid could be used as a promising catalyst for high power metal/air battery.

  19. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts.

    PubMed

    Gao, Y Q; Liu, X Y; Yang, G W

    2016-03-07

    The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm(-2) at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec(-1), while no deactivation is detected in the CV testing even up to 30 000 cycles, which suggests the promising application of these amorphous nanomaterials in electrochemical oxidation. Meanwhile, the distinct catalytic activities among these amorphous Ni-Fe hydroxide nanostructures prompts us to take notice of the composition of the alloy hydroxides/oxides when studying their catalytic properties, which opens an avenue for the rational design and controllable preparation of such amorphous nanomaterials as advanced OER electrocatalysts.

  20. High performance hydrogen storage from Be-BTB metal-organic framework at room temperature.

    PubMed

    Lim, Wei-Xian; Thornton, Aaron W; Hill, Anita J; Cox, Barry J; Hill, James M; Hill, Matthew R

    2013-07-09

    The metal-organic framework beryllium benzene tribenzoate (Be-BTB) has recently been reported to have one of the highest gravimetric hydrogen uptakes at room temperature. Storage at room temperature is one of the key requirements for the practical viability of hydrogen-powered vehicles. Be-BTB has an exceptional 298 K storage capacity of 2.3 wt % hydrogen. This result is surprising given that the low adsorption enthalpy of 5.5 kJ mol(-1). In this work, a combination of atomistic simulation and continuum modeling reveals that the beryllium rings contribute strongly to the hydrogen interaction with the framework. These simulations are extended with a thermodynamic energy optimization (TEO) model to compare the performance of Be-BTB to a compressed H2 tank and benchmark materials MOF-5 and MOF-177 in a MOF-based fuel cell. Our investigation shows that none of the MOF-filled tanks satisfy the United States Department of Energy (DOE) storage targets within the required operating temperatures and pressures. However, the Be-BTB tank delivers the most energy per volume and mass compared to the other material-based storage tanks. The pore size and the framework mass are shown to be contributing factors responsible for the superior room temperature hydrogen adsorption of Be-BTB.

  1. A new high-performance ionic polymer–metal composite based on Nafion/polyimide blends

    NASA Astrophysics Data System (ADS)

    Nam, Jungsoo; Hwang, Taeseon; Kim, Kwang Jin; Lee, Dong-Chan

    2017-03-01

    For the first time, we report ion-exchange membranes based on Nafion and polyimide (PI, Kapton) blends to fabricate ionic polymer–metal composites (IPMCs). Polyamic acid [PAA, poly(pyromellitic dianhydride-co-4,4‧-oxydianiline), as a precursor of PI] solution was blended with Nafion solution using physical blending method to provide PAA–Nafion blend membrane. This work demonstrates that, by simple physical blending method, the thermal and mechanical properties of Nafion can be improved while maintaining the excellent actuating performance. After thermal imidization, PAA converted into PI, resulting in PI–Nafion blend membrane. Optimum conditions to cast PAA–Nafion blends and thermal imidization have been established, and blend membranes with PI wt% of 6, 12, 18, and 30 were prepared. Fourier transform infrared spectroscopy confirmed the incorporation of PI in the Nafion matrix. Thermal decomposition unique to the PI became more noticeable as the content of PI increased, which was measured by thermogravimetric analysis. Dynamic mechanical analysis showed that the storage modulus (E‧) increased as a function of PI content while loss modulus (E″) exhibited only a minor change, which resulted in the decrease in the damping properties (tan δ). The blend membranes were fabricated into IPMCs by deposition of platinum electrode onto the membrane surface through electroless plating process. Among tested, NPI-18 IPMC actuator, which has 18 wt% of PI in Nafion, showed comparable electromechanical performance to the commercially available Nafion 117 IPMC actuator.

  2. Localized corrosion of high performance metal alloys in an acid/salt environment

    NASA Technical Reports Server (NTRS)

    Macdowell, L. G.; Ontiveros, C.

    1991-01-01

    Various vacuum jacketed cryogenic supply lines at the Space Shuttle launch site at Kennedy Space Center use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the thin walled 304L stainless steel flex hoses. A search was done to find a more corrosion resistant replacement material. The study focussed on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, and long term exposure at a beach corrosion testing site. Based on the results of these tests, several nickel based alloys were found to have very high resistance to this corrosive environment. Also, there was excellent agreement between the electrochemical tests and the actual beach exposure tests. This suggests that electrochemical testing may be useful for narrowing the field of potential candidate alloys before subjecting samples to long term beach exposure.

  3. Metal-based anode for high performance bioelectrochemical systems through photo-electrochemical interaction

    NASA Astrophysics Data System (ADS)

    Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Long, Yuyang; Li, Na; Zhou, Yuyang; Ying, Xianbin; Gu, Yuan; Wang, Yanfeng

    2016-08-01

    This paper introduces a novel composite anode that uses light to enhance current generation and accelerate biofilm formation in bioelectrochemical systems. The composite anode is composed of 316L stainless steel substrate and a nanostructured α-Fe2O3 photocatalyst (PSS). The electrode properties, current generation, and biofilm properties of the anode are investigated. In terms of photocurrent, the optimal deposition and heat-treatment times are found to be 30 min and 2 min, respectively, which result in a maximum photocurrent of 0.6 A m-2. The start-up time of the PSS is 1.2 days and the maximum current density is 2.8 A m-2, twice and 25 times that of unmodified anode, respectively. The current density of the PSS remains stable during 20 days of illumination. Confocal laser scanning microscope images show that the PSS could benefit biofilm formation, while electrochemical impedance spectroscopy indicates that the PSS reduce the charge-transfer resistance of the anode. Our findings show that photo-electrochemical interaction is a promising way to enhance the biocompatibility of metal anodes for bioelectrochemical systems.

  4. Working from Both Sides: Composite Metallic Semitransparent Top Electrode for High Performance Perovskite Solar Cells.

    PubMed

    Dai, Xuezeng; Zhang, Ye; Shen, Heping; Luo, Qiang; Zhao, Xingyue; Li, Jianbao; Lin, Hong

    2016-02-01

    We report herein perovskite solar cells using solution-processed silver nanowires (AgNWs) as transparent top electrode with markedly enhanced device performance, as well as stability by evaporating an ultrathin transparent Au (UTA) layer beneath the spin-coated AgNWs forming a composite transparent metallic electrode. The interlayer serves as a physical separation sandwiched in between the perovskite/hole transporting material (HTM) active layer and the halide-reactive AgNWs top-electrode to prevent undesired electrode degradation and simultaneously functions to significantly promote ohmic contact. The as-fabricated semitransparent PSCs feature a Voc of 0.96 V, a Jsc of 20.47 mA cm(-2), with an overall PCE of over 11% when measured with front illumination and a Voc of 0.92 V, a Jsc of 14.29 mA cm(-2), and an overall PCE of 7.53% with back illumination, corresponding to approximately 70% of the value under normal illumination conditions. The devices also demonstrate exceptional fabrication repeatability and air stability.

  5. Electron beam-induced nanopatterning of multilayer graphene and amorphous carbon films with metal layers

    SciTech Connect

    Rodriguez-Manzo, Julio A.; Banhart, Florian

    2011-05-02

    Thin Co and Ni lamellae grow under electron irradiation of metal crystals supported on multilayer graphene or amorphous carbon films. The lateral growth of a lamella from a source crystal is achieved by directing an electron beam to the periphery of the metal crystal and moving the beam over the surrounding carbon. Patterns of linear, branched, or ringlike metal lamellae can be created. The patterning is carried out in situ in a transmission electron microscope, allowing simultaneous structuring and imaging. The process is driven by the metal-carbon interaction at a beam-activated carbon surface.

  6. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    SciTech Connect

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  7. Designing high performance metal-mMoS2 interfaces by two-dimensional insertions with suitable thickness.

    PubMed

    Su, Jie; Feng, Liping; Zeng, Wei; Liu, Zhengtang

    2016-11-16

    Thickness has been proved to have significant influence on the physical properties of two-dimensional (2D) materials and their corresponding devices. Understanding the effect of the thickness of 2D insertions on the contact properties of metal-monolayer MoS2 interfaces (viz. metal-mMoS2 interfaces) is vital to designing high performance mMoS2 devices. In this work, the electronic structures, Schottky barriers, contact resistance, and tunneling barriers of scandium-mMoS2 (Sc-mMoS2) interfaces with BN and graphene insertions have been comparatively studied by density functional theory. No Schottky barriers are found at Sc-mMoS2 interfaces with monolayer 2D insertions. Although the contact resistance and charge injection efficiency of Sc-mMoS2 interfaces with monolayer insertions deteriorate relatively to those of the Sc-mMoS2 interface, they are still sufficient to realize high-performance mMoS2-based devices. Note that, upon increasing the number of layers of 2D insertions, these contact properties are further deteriorated with the increasing number of layers of insertions. Moreover, additional significant Schottky barriers are introduced into Sc-mMoS2 interfaces with multilayer BN; the nature Dirac points of graphene insertions are opened, suggesting low performances of Sc-mMoS2 interfaces with multilayer BN and graphene insertions. These variations can be understood on the basis of the orbital hybridization and charge redistribution between the Sc slab and mMoS2 layer. In addition, these characteristics are expected to occur in other metal-mMoS2 interfaces with two-dimensional material insertions. Overall, monolayer rather than multilayer two-dimensional insertions can be used to improve the transport properties of mMoS2-based devices.

  8. Superior Tensile Ductility in Bulk Metallic Glass with Gradient Amorphous Structure

    PubMed Central

    Wang, Q.; Yang, Y.; Jiang, H.; Liu, C. T.; Ruan, H. H.; Lu, J.

    2014-01-01

    Over centuries, structural glasses have been deemed as a strong yet inherently ‘brittle’ material due to their lack of tensile ductility. However, here we report bulk metallic glasses exhibiting both a high strength of ~2 GPa and an unprecedented tensile elongation of 2–4% at room temperature. Our experiments have demonstrated that intense structural evolution can be triggered in theses glasses by the carefully controlled surface mechanical attrition treatment, leading to the formation of gradient amorphous microstructures across the sample thickness. As a result, the engineered amorphous microstructures effectively promote multiple shear banding while delay cavitation in the bulk metallic glass, thus resulting in superior tensile ductility. The outcome of our research uncovers an unusual work-hardening mechanism in monolithic bulk metallic glasses and demonstrates a promising yet low-cost strategy suitable for producing large-sized, ultra-strong and stretchable structural glasses. PMID:24755683

  9. Superior Tensile Ductility in Bulk Metallic Glass with Gradient Amorphous Structure

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Yang, Y.; Jiang, H.; Liu, C. T.; Ruan, H. H.; Lu, J.

    2014-04-01

    Over centuries, structural glasses have been deemed as a strong yet inherently `brittle' material due to their lack of tensile ductility. However, here we report bulk metallic glasses exhibiting both a high strength of ~2 GPa and an unprecedented tensile elongation of 2-4% at room temperature. Our experiments have demonstrated that intense structural evolution can be triggered in theses glasses by the carefully controlled surface mechanical attrition treatment, leading to the formation of gradient amorphous microstructures across the sample thickness. As a result, the engineered amorphous microstructures effectively promote multiple shear banding while delay cavitation in the bulk metallic glass, thus resulting in superior tensile ductility. The outcome of our research uncovers an unusual work-hardening mechanism in monolithic bulk metallic glasses and demonstrates a promising yet low-cost strategy suitable for producing large-sized, ultra-strong and stretchable structural glasses.

  10. Predicting catalyst-support interactions between metal nanoparticles and amorphous silica supports

    NASA Astrophysics Data System (ADS)

    Ewing, Christopher S.; Veser, Götz; McCarthy, Joseph J.; Lambrecht, Daniel S.; Johnson, J. Karl

    2016-10-01

    Metal-support interactions significantly affect the stability and activity of supported catalytic nanoparticles (NPs), yet there is no simple and reliable method for estimating NP-support interactions, especially for amorphous supports. We present an approach for rapid prediction of catalyst-support interactions between Pt NPs and amorphous silica supports for NPs of various sizes and shapes. We use density functional theory calculations of 13 atom Pt clusters on model amorphous silica supports to determine linear correlations relating catalyst properties to NP-support interactions. We show that these correlations can be combined with fast discrete element method simulations to predict adhesion energy and NP net charge for NPs of larger sizes and different shapes. Furthermore, we demonstrate that this approach can be successfully transferred to Pd, Au, Ni, and Fe NPs. This approach can be used to quickly screen stability and net charge transfer and leads to a better fundamental understanding of catalyst-support interactions.

  11. High-Performance Thin Film Transistor with Amorphous In2O3-SnO2-ZnO Channel Layer

    NASA Astrophysics Data System (ADS)

    Tomai, Shigekazu; Nishimura, Mami; Itose, Masayuki; Matuura, Masahide; Kasami, Masashi; Matsuzaki, Shigeo; Kawashima, Hirokazu; Utsuno, Futoshi; Yano, Koki

    2012-03-01

    We have developed a high-mobility and high-processability oxide semiconductor using amorphous In2O3-SnO2-ZnO (a-ITZO) as the channel material. An a-ITZO thin-film transistor (TFT) was fabricated by a back-channel-etch process. Its field effect mobility was more than 20 cm2 V-1 s-1 and its subthreshold swing was 0.4 V s-1, which makes it a promising candidate for next-generation TFTs.

  12. High-performance back-channel-etched thin-film transistors with amorphous Si-incorporated SnO2 active layer

    NASA Astrophysics Data System (ADS)

    Liu, Xianzhe; Ning, Honglong; Chen, Jianqiu; Cai, Wei; Hu, Shiben; Tao, Ruiqiang; Zeng, Yong; Zheng, Zeke; Yao, Rihui; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao

    2016-03-01

    In this report, back-channel-etched (BCE) thin-film transistors (TFTs) were achieved by using Si-incorporated SnO2 (silicon tin oxide (STO)) film as active layer. It was found that the STO film was acid-resistant and in amorphous state. The BCE-TFT with STO active layer exhibited a mobility of 5.91 cm2/V s, a threshold voltage of 0.4 V, an on/off ratio of 107, and a steep subthreshold swing of 0.68 V/decade. Moreover, the device had a good stability under the positive/negative gate-bias stress.

  13. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Bao, Weizhai; Mondal, Anjon Kumar; Xu, Jing; Wang, Chengyin; Su, Dawei; Wang, Guoxiu

    2016-09-01

    We report a rational design and synthesis of 3D hybrid-porous carbon with a hierarchical pore architecture for high performance supercapacitors. It contains micropores (<2 nm diameter) and mesopores (2-4 nm), derived from carbonization of unique porous metal organic frameworks (MOFs). Owning to the synergistic effect of micropores and mesopores, the hybrid-porous carbon has exceptionally high ion-accessible surface area and low ion diffusion resistance, which is desired for supercapacitor applications. When applied as electrode materials in supercapacitors, 3D hybrid-porous carbon demonstrates a specific capacitance of 332 F g-1 at a constant charge/discharge current of 500 mA g-1. The supercapacitors can endure more than 10,000 cycles without degradation of capacitance.

  14. High-performance transparent film heater with an embedded Ni metal-mesh based on selected metal electrodeposition process

    NASA Astrophysics Data System (ADS)

    Liu, Yanhua; Shen, Su; Chen, LinSen; Zhou, Yun; Ye, Yan; Wang, Yanyan; Qiao, Wen; Huang, Wenbin

    2016-10-01

    An ultra-flexible and low-sheet resistance transparent conductive film is developed from nickel metal-mesh (Ni metal-mesh) embedded in a polyimide (PI) by exploiting selective deposition technique coupled with photolithography and subsequent inverted film-processing method. The fabricated conductive film achieved sheet resistance values as low as 0.15 Ω sq-1, with corresponding optical transmittance as 80% at 550 nm corresponding the figure of merit up to 1.1×104. The film shows excellent adhesion and also preserves its structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 104 cycles. Finally, employing the fabricated Ni metal-mesh/PI conductive film, a hybrid transparent thin-film heater is demonstrated, which exhibited higher heating temperatures (110°C) under the lower operating voltage (1 V), lower power consumption (79.1°C cm2 W-1), and shorter response time (T < 2 s) than other heaters, as well as stability after repeated test.

  15. High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization

    NASA Astrophysics Data System (ADS)

    Wang, Dingsheng; Gao, Mingxia; Pan, Hongge; Wang, Junhua; Liu, Yongfeng

    2014-06-01

    Amorphous-Si@SiOx/C composites with amorphous Si particles as core and coated with a double layer of SiOx and carbon are prepared by ball-milling crystal micron-sized silicon powders and carbonization of the citric acid intruded in the ball-milled Si. Different ratios of Si to citric acid are used in order to optimize the electrochemical performance. It is found that SiOx exists naturally at the surfaces of raw Si particles and its content increases to ca. 24 wt.% after ball-milling. With an optimized Si to citric acid weight ratio of 1/2.5, corresponding to 8.4 wt.% C in the composite, a thin carbon layer is coated on the surfaces of a-Si@SiOx particles, moreover, floc-like carbon also forms and connects the carbon coated a-Si@SiOx particles. The composite provides a capacity of 1450 mA h g-1 after 100 cycles at a current density of 100 mA g1, and a capacity of 1230 mA h g-1 after 100 cycles at 500 mA g1 as anode material for lithium-ion batteries. Effects of ball-milling and the addition of citric acid on the microstructure and electrochemical properties of the composites are revealed and the mechanism of the improvement in electrochemical properties is discussed.

  16. Anomalous small angle x-ray scattering studies of amorphous metal-germanium alloys

    SciTech Connect

    Rice, M.

    1993-12-01

    This dissertation addresses the issue of composition modulation in sputtered amorphous metal-germanium thin films with the aim of understanding the intermediate range structure of these films as a function of composition. The investigative tool used in this work is anomalous small-angle X-ray scattering (ASAXS). The primary focus of this investigation is the amorphous iron-germanium (a-Fe{sub x}Ge{sub 100-x}) system with particular emphasis on the semiconductor-rich regime. Brief excursions are made into the amorphous tungsten-germanium (a-W{sub x}Ge{sub 100-x}) and the amorphous molybdenum-germanium (a-Mo{sub x}Ge{sub 100-x}) systems. All three systems exhibit an amorphous structure over a broad composition range extending from pure amorphous germanium to approximately 70 atomic percent metal when prepared as sputtered films. Across this composition range the structures change from the open, covalently bonded, tetrahedral network of pure a-Ge to densely packed metals. The structural changes are accompanied by a semiconductor-metal transition in all three systems as well as a ferromagnetic transition in the a-Fe{sub x}Ge{sub 100-x} system and a superconducting transition in the a-Mo{sub x}Ge{sub 100-x} system. A long standing question, particularly in the a-Fe{sub x}Ge{sub 100-x} and the a-Mo{sub x}Ge{sub 100-x} systems, has been whether the structural changes (and therefore the accompanying electrical and magnetic transitions) are accomplished by homogeneous alloy formation or phase separation. The application of ASAXS to this problem proves unambiguously that fine scale composition modulations, as distinct from the simple density fluctuations that arise from cracks and voids, are present in the a-Fe{sub x}Ge{sub 100-x}, a-W{sub x}Ge{sub 100-x}, and a-Mo{sub x}Ge{sub 100-x} systems in the semiconductor-metal transition region. Furthermore, ASAXS shows that germanium is distributed uniformly throughout each sample in the x<25 regime of all three systems.

  17. Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts.

    PubMed

    Palanchoke, Ujwol; Jovanov, Vladislav; Kurz, Henning; Obermeyer, Philipp; Stiebig, Helmut; Knipp, Dietmar

    2012-03-12

    Plasmonic effects in amorphous silicon thin film solar cells with randomly textured metal back contact were investigated experimentally and numerically. The influence of different metal back contacts with and without ZnO interlayer was studied and losses in the individual layers of the solar cell were quantified. The amorphous silicon thin film solar cells were prepared on randomly textured substrates using large area production equipment and exhibit conversion efficiencies approaching 10%. The optical wave propagation within the solar cells was studied by Finite Difference Time Domain simulations. The quantum efficiency of solar cells with and without ZnO interlayer was simulated and the interplay between the reflection, quantum efficiency and absorption in the back contact will be discussed.

  18. Amorphous formation on metal surfaces by an intense pulsed ion beam irradiation

    SciTech Connect

    Yatsuzuka, M.; Yamasaki, T.; Uchida, H.; Hashimoto, Y.

    1995-12-31

    Recently, intense pulsed ion beams (PIBs) have been interested as a tool for surface modification of metals, because irradiation of PIBs to metals leads to rapid heating of the near surface which is immediately followed by rapid cooling and resolidification. In this paper formation of an amorphous layer on a Ni{sub 65}Cr{sub 15}P{sub 16}B{sub 4} alloy by a PIB irradiation is successfully demonstrated. A shot of the mixed carbon and fluorine PIB was irradiated on a Ni{sub 65}Cr{sub 15}P{sub 16}B{sub 4} alloy to make amorphous structure. The amorphous nature of the PIB-processed surface was examined by the X-ray diffractometry. The diffraction pattern of the non-processed substrate reveals the crystalline phase which is characterized by the narrow spectrum. On the other hand, the PIB-processed Ni{sub 65}Cr{sub 15}P{sub 16}B{sub 4} alloy surface exhibit the typical diffraction pattern of the amorphous structure, when the maximum X-ray diffraction depth is within 0.66 {micro}m. Assuming that a single species of carbon of fluorine ions is injected into the nickel target, ion range, heating temperature and cooling rate for a nickel substrate are estimated to be 0.23 {micro}m, 3,150 K and 3.8 {times} 10{sup 5}K/sec, respectively. The cooling rate estimated above is enough for producing amorphous structure of nickel alloys.

  19. Ultra-Flexible, Invisible Thin-Film Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends

    DTIC Science & Technology

    2015-02-25

    Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends Xinge Yu , Li Zeng , Nanjia Zhou , Peijun Guo , Fengyuan Shi , Donald B...chemical vapor deposition processes. Thus, a key issue for inexpensive large-scale roll-to-roll production is to enable MO TFT manu- facturing with...4. TITLE AND SUBTITLE Ultra-Flexible, ’Invisible’ Thin-Film Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends 5a. CONTRACT

  20. Optical properties of surface layers of Co-based amorphous metallic alloys

    NASA Astrophysics Data System (ADS)

    Poperenko, L. V.; Kravets, V. G.; Lysenko, S. I.; Vinnichenko, K. L.

    2005-04-01

    The modification of roughness and structure of the surface layers of a cobalt-based amorphous metal alloy after thermal treatment at elevated and cryogenic temperatures and under the influence of an external magnetic field is studied by light scattering and atomic force microscopy. The parameters of the surface roughness were calculated from the measured indicatrices of light scattering. It is shown that heating of the metal ribbons to T=350-475 °C partially relieves stresses arising in the course of the ribbon preparation and increases the surface roughness compared to freshly prepared samples.

  1. In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries.

    PubMed

    Chen, Yuming; Lu, Zhouguang; Zhou, Limin; Mai, Yiu-Wing; Huang, Haitao

    2012-11-07

    We report on in situ formation of hollow graphitic carbon nanospheres (HGCNs) in amorphous carbon nanofibers (ACNFs) by a combination of electrospinning, calcination and acid treatment. The prepared carbon nanofibers contain many HGCNs on which defects such as discontinuous graphene sheets with a large d-spacing in their wall exist and provide extra sites for Li(+) storage and serve as buffers for withstanding large volume expansion and shrinkage during the Li insertion and extraction procedure. Furthermore, some exposed HGCNs on the surface of the ACNFs as well as hollow structures are favorable for lithium ion diffusion from different orientations and sufficient contact between active material and electrolyte. In addition, the high conductivity architectures facilitate collection and transport of electrons during the cycling process. As a result, the ACNFs/HGCNs display a high reversible specific gravimetric capacity of ∼750 mA h g(-1) and volumetric capacity of ∼1.1 A h cm(-3) with outstanding rate capability and good cycling stability, which is superior to those of carbon nanofibers (CNFs), carbon nanotubes (CNTs), porous ACNFs, graphene nanosheets (GNSs), GNSs/CNFs, hollow carbon nanospheres and graphite. The synthesis process is simple, low-cost and environmentally friendly, providing new avenues for the rational engineering of high-energy carbon-based anode materials.

  2. High-performance metal/SiO2/InSb capacitor fabricated by photoenhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Sun, Tai Ping; Lee, Si-Chen; Liu, Kou-Chen; Pang, Yen-Ming; Yang, Sheng-Jehn

    1991-03-01

    The high performance AuCr/Si02/InSb metal-oxidesemiconductor capacitor was fabricated successfully using photo-enhanced chemical vapor deposition. The 1200 A thick Si02 layer was deposited on the InSb substrate at the temperature below 200 °C. Their electrical and structural properties were analyzed by capacitance-voltage and Auger electron spectroscopy, respectively. The capacitance-voltage results show that the optimal growth temperature of Si02 is 150 °C at which the fiat-band voltage of the capacitor is close to ideal and slow interface state density is less than 5 x 1O'° cm2. For Si02 deposited at lower temperature, although the flatband voltage and interface state are poorer, the subsequent thermal annealing at 150 °C for 12 hours improves both quantities to the level as the optimal condition. However, for Si02 deposited at higher temperature (190 °C), the flatband voltage shifts to -4 V and the slow state density increases to 1.1 x 1011 cm2. It is found from Auger depth profile that whatever the deposition temperature was a Si-rich region followed by an oxygen-rich region was formed at the 5i02/InSb interface. These observations are shown to be consistent with the electrical characteristics of the capacitor.

  3. Model for determination of mid-gap states in amorphous metal oxides from thin film transistors

    NASA Astrophysics Data System (ADS)

    Bubel, S.; Chabinyc, M. L.

    2013-06-01

    The electronic density of states in metal oxide semiconductors like amorphous zinc oxide (a-ZnO) and its ternary and quaternary oxide alloys with indium, gallium, tin, or aluminum are different from amorphous silicon, or disordered materials such as pentacene, or P3HT. Many ZnO based semiconductors exhibit a steep decaying density of acceptor tail states (trap DOS) and a Fermi level (EF) close to the conduction band energy (EC). Considering thin film transistor (TFT) operation in accumulation mode, the quasi Fermi level for electrons (Eq) moves even closer to EC. Classic analytic TFT simulations use the simplification EC-EF> `several'kT and cannot reproduce exponential tail states with a characteristic energy smaller than 1/2 kT. We demonstrate an analytic model for tail and deep acceptor states, valid for all amorphous metal oxides and include the effect of trap assisted hopping instead of simpler percolation or mobility edge models, to account for the observed field dependent mobility.

  4. Deformation analysis of amorphous metals based on atomic elastic stiffness coefficients

    NASA Astrophysics Data System (ADS)

    Yashiro, K.; Nishimura, M.; Tomita, Y.

    2006-06-01

    The elastic limit of a crystal can be evaluated by the positiveness of elastic stiffness coefficients, Bijkl. We had demonstrated that the nucleation of lattice defects such as dislocation and cleavage cracking can be predicted by the atomic Bijkl at each atom point. Amorphous metals and bulk metallic glasses draw intense interest whether the criteria are applicable or not since they are regarded as the ultimate of lattice defects. In the present study, an amorphous Ni-Al binary alloy is made by a usual melt-quench simulation and subjected to tension by means of molecular dynamics simulation. During simulations, the positiveness of atomic Bijkl is discussed for all atoms. Contrary to an Ni-Al crystal, many atoms show negative value even in the initial equilibrium of the amorphous before loading. These unstable atoms turn out to be the non-clustered atom or the outer-shell of the local cluster such as 12(0, 0, 12, 0) icosahedron. On the other hand, the centre atoms of the local clusters show high stability resulting in the positive Bijkl of the whole system. It is also demonstrated that the change in the atomic Bijkl can reveal the collapse and re-configuration of local clusters during the deformation.

  5. Magnetic sensors using amorphous metal materials: detection of premature ventricular magnetic waves

    PubMed Central

    Uchiyama, Tsuyoshi; Nakayama, Shinsuke

    2013-01-01

    The detection of magnetic activity enables noncontact and noninvasive evaluation of electrical activity in humans. We review the detection of biomagnetic fields using amorphous metal wire-based magnetic sensors with the sensitivity of a pico-Tesla (pT) level. We measured magnetic fields close to the thoracic wall in a healthy subject sitting on a chair. The magnetic sensor head was mounted perpendicularly against the thoracic wall. Simultaneous measurements with ECG showed that changes in the magnetic field were synchronized with the cardiac electric activity, and that the magnetic wave pattern changed reflecting electrical activity of the atrium and ventricle, despite a large variation. Furthermore, magnetic waves reflecting ventricular arrhythmia were recorded in the same healthy subject. These results suggest that this magnetic sensor technology is applicable to human physiology and pathophysiology research. We also discuss future applications of amorphous wire-based magnetic sensors as well as possible improvements. PMID:24303116

  6. Magnetic sensors using amorphous metal materials: detection of premature ventricular magnetic waves.

    PubMed

    Uchiyama, Tsuyoshi; Nakayama, Shinsuke

    2013-07-01

    The detection of magnetic activity enables noncontact and noninvasive evaluation of electrical activity in humans. We review the detection of biomagnetic fields using amorphous metal wire-based magnetic sensors with the sensitivity of a pico-Tesla (pT) level. We measured magnetic fields close to the thoracic wall in a healthy subject sitting on a chair. The magnetic sensor head was mounted perpendicularly against the thoracic wall. Simultaneous measurements with ECG showed that changes in the magnetic field were synchronized with the cardiac electric activity, and that the magnetic wave pattern changed reflecting electrical activity of the atrium and ventricle, despite a large variation. Furthermore, magnetic waves reflecting ventricular arrhythmia were recorded in the same healthy subject. These results suggest that this magnetic sensor technology is applicable to human physiology and pathophysiology research. We also discuss future applications of amorphous wire-based magnetic sensors as well as possible improvements.

  7. Oxidation induced amorphous stabilization of the subsurface region in Zr-Cu metallic glass

    SciTech Connect

    Lim, K. R.; Park, J. M.; Park, S. H.; Na, M. Y.; Kim, K. C.; Kim, D. H.; Kim, W. T.

    2014-01-20

    In the present study, we demonstrate that selective surface oxidation of Zr{sub 70}Cu{sub 30} metallic glass can stabilize the amorphous structure in the subsurface region of the matrix. The oxidation proceeds by selective oxidation of Zr, forming monoclinic ZrO{sub 2} layer on the surface, and the subsurface layer becomes Cu-enriched due to back diffusion of Cu atoms from the oxide layer. Interestingly, in this system, the composition change in the subsurface region leads to enhancement of glass stability, forming of a double layered surface structure consisted of inner amorphous layer and outer monoclinic ZrO{sub 2} layer even when the remaining matrix is completely crystallized.

  8. Selective heavy metals removal from waters by amorphous zirconium phosphate: behavior and mechanism.

    PubMed

    Pan, Bingcai; Zhang, Qingrui; Du, Wei; Zhang, Weiming; Pan, Bingjun; Zhang, Qingjian; Xu, Zhengwen; Zhang, Quanxing

    2007-07-01

    Selective removal of heavy metals from water has been of considerable concern for several decades. In the present study, the amorphous zirconium phosphate (ZrP) was synthesized and characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron micrography (SEM), thermogravimetric analysis (TGA) as well as pH-titration experiments. Uptake of heavy metals including lead, cadmium, and zinc onto ZrP was studied by using a polystyrene sulfonic-acid exchanger D-001 as a reference sorbent and Ca(2+) as a competing cation due to its ubiquity in natural or industrial waters. The results indicated that the uptake of heavy metals onto ZrP is essentially an ion-exchange process and dependent upon solution pH. In comparison with D-001, ZrP exhibited more favorable sorption of heavy metals particularly in terms of high selectivity, as indicated by the distribution coefficients of ZrP even several orders higher than D-001 towards heavy metals when calcium ion coexisted at a high level in solution. The Fourier transform-infrared (FT-IR) spectroscopic investigation indicated that the uptake of calcium, cadmium, and zinc ions onto ZrP is only driven by the electrostatic interaction, while that of lead ion is possibly dependent upon the inner-sphere complex formation with ZrP. XPS results further elucidated that ZrP displays different sorption affinity towards heavy metals in the same order as selectivity sequence of Pb(2+)>Zn(2+) approximately Cd(2+)>Ca(2+), which can be explained by hard and soft acids and bases (HASB) theory. Moreover, uptake of heavy metals onto ZrP approached to equilibrium quickly and the used ZrP could be readily regenerated for reuse by the dilute HCl solution. Thus, all the results suggest that amorphous ZrP has excellent potential as a sorption material for water treatment.

  9. Application of amorphous filler metals in production of fusion reactor high heat flux components

    SciTech Connect

    Kalin, B.A.; Fedotov, V.T.; Grigoriev, A.E.

    1994-12-31

    The technology of Al-Si, Zr-Ti-Be and Ti-Zr-Cu-Ni amorphous filler metals for Be and graphite brazing with Cu, Mo and V was developed. The fusion reactor high heat flux components from Cu-Be, Cu-graphite, Mo-Be, Mo-graphite, V-Re and V-graphite materials were produced by brazing. Every component represents metallic base, to which Be or graphite plates are brazed. The distance between plates was equal 0.2 times the plate height. These components were irradiated by hydrogen plasma with 5 x 10{sup 6} W/m{sup 2} power. The microstructure and the element distribution in the brazed zone were investigated before and after heat plasma irradiation. Topography graphite plate surfaces and topography of metal surfaces between plates were also investigated after heat plasma irradiation. The results of microstructure investigation and material erosion are discussed.

  10. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses

    NASA Astrophysics Data System (ADS)

    Lan, S.; Ren, Y.; Wei, X. Y.; Wang, B.; Gilbert, E. P.; Shibayama, T.; Watanabe, S.; Ohnuma, M.; Wang, X.-L.

    2017-03-01

    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clusters over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase, which forms the room-temperature glass phase on quenching. The outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat treatment.

  11. Stoichiometry determined exchange interactions in amorphous ternary transition metal oxides: Theory and experiment

    SciTech Connect

    Hu, Shu-jun; Yan, Shi-shen Zhang, Yun-peng; Zhao, Ming-wen; Kang, Shi-shou; Mei, Liang-mo

    2014-07-28

    Amorphous transition metal oxides exhibit exotic transport and magnetic properties, while the absence of periodic structure has long been a major obstacle for the understanding of their electronic structure and exchange interaction. In this paper, we have formulated a theoretical approach, which combines the melt-quench approach and the spin dynamic Monte-Carlo simulations, and based on it, we explored amorphous Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} ternary transition metal oxides. Our theoretical results reveal that the microstructure, the magnetic properties, and the exchange interactions of Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} are strongly determined by the oxygen stoichiometry. In the oxygen-deficient sample (y > 0), we have observed the long-range ferromagnetic spin ordering which is associated with the non-stoichiometric cobalt-rich region rather than metallic clusters. On the other hand, the microstructure of stoichiometric sample takes the form of continuous random networks, and no long-range ferromagnetism has been observed in it. Magnetization characterization of experimental synthesized Co{sub 0.61}Zn{sub 0.39}O{sub 1−y} films verifies the relation between the spin ordering and the oxygen stoichiometry. Furthermore, the temperature dependence of electrical transport shows a typical feature of semiconductors, in agreement with our theoretical results.

  12. Novel High-Performance Analog Devices for Advanced Low-Power High-k Metal Gate Complementary Metal-Oxide-Semiconductor Technology

    NASA Astrophysics Data System (ADS)

    Han, Jin-Ping; Shimizu, Takashi; Pan, Li-Hong; Voelker, Moritz; Bernicot, Christophe; Arnaud, Franck; Mocuta, Anda; Stahrenberg, Knut; Azuma, Atsushi; Eller, Manfred; Yang, Guoyong; Jaeger, Daniel; Zhuang, Haoren; Miyashita, Katsura; Stein, Kenneth; Nair, Deleep; Hoo Park, Jae; Kohler, Sabrina; Hamaguchi, Masafumi; Li, Weipeng; Kim, Kisang; Chanemougame, Daniel; Kim, Nam Sung; Uchimura, Sadaharu; Tsutsui, Gen; Wiedholz, Christian; Miyake, Shinich; van Meer, Hans; Liang, Jewel; Ostermayr, Martin; Lian, Jenny; Celik, Muhsin; Donaton, Ricardo; Barla, Kathy; Na, MyungHee; Goto, Yoshiro; Sherony, Melanie; Johnson, Frank S.; Wachnik, Richard; Sudijono, John; Kaste, Ed; Sampson, Ron; Ku, Ja-Hum; Steegen, An; Neumueller, Walter

    2011-04-01

    High performance analog (HPA) devices in high-k metal gate (HKMG) scheme with innovative halo engineering have been successfully demonstrated to produce superior analog and digital performance for low power applications. HPA device was processed “freely” with no extra mask, no extra litho, and no extra process step. This paper details a comprehensive study of the analog and digital characteristics of these HPA devices in comparison with analog control (conventional digital devices with matched geometry). Analog properties such as output voltage gain (also called self-gain), trans-conductance Gm, conductance Gds, Gm/Id, mismatching (MM) behavior, flicker noise (1/f noise) and current linearity have clearly reflected the advantage of HPA devices over analog control, while DC performance (e.g., Ion-Ioff, Ioff-Vtsat, DIBL, Cjswg) and reliability (HCI) have also shown the comparability of HPA devices over control.

  13. Ohmic contact formation of metal/amorphous-Ge/n-Ge junctions with an anomalous modulation of Schottky barrier height

    SciTech Connect

    Liu, Hanhui; Wang, Peng; Qi, Dongfeng; Li, Xin; Han, Xiang; Wang, Chen; Chen, Songyan Li, Cheng; Huang, Wei

    2014-11-10

    The modulation of Schottky barrier height of metal/Ge inserting an amorphous Ge layer has been demonstrated. It is interested that the Schottky barrier height of Al/amorphous-Ge/n-Ge junctions is oscillated with increase of the a-Ge thickness from 0 to 10 nm, and when the thickness reaches above 10 nm, the Al/amorphous-Ge/n-Ge shows ohmic characteristics. Electron hopping through localized states of a-Ge layer, the alleviation of metal induced gap states, as well as the termination of dangling bonds at the amorphous-Ge/n-Ge interface are proposed to explain the anomalous modulation of Schottky barrier height.

  14. Synchrotron radiation photoemission study of metal overlayers on hydrogenated amorphous silicon at room temperature

    SciTech Connect

    Pi, J.

    1990-09-21

    In this dissertation, metals deposited on a hydrogenated amorphous silicon (a-Si:H) film at room temperature are studied. The purpose of this work is mainly understanding the electronic properties of the interface, using high-resolution synchrotron radiation photoemission techniques as a probe. Atomic hydrogen plays an important role in passivating dangling bonds of a-Si:H films, thus reducing the gap-state distribution. In addition, singly bonded hydrogen also reduces states at the top of the valence band which are now replaced by deeper Si-H bonding states. The interface is formed by evaporating metal on an a-Si:H film in successive accumulations at room temperature. Au, Ag, and Cr were chosen as the deposited metals. Undoped films were used as substrates. Since some unique features can be found in a-Si:H, such as surface enrichment of hydrogen diffused from the bulk and instability of the free surface, we do not expect the metals/a-Si:H interface to behave exactly as its crystalline counterpart. Metal deposits, at low coverages, are found to gather preferentially around regions deficient in hydrogen. As the thickness is increased, some Si atoms in those regions are likely to leave their sites to intermix with metal overlayers like Au and Cr. 129 refs., 30 figs.

  15. Application of metal nanowire networks on hydrogenated amorphous silicon thin film solar cells

    NASA Astrophysics Data System (ADS)

    Xie, Shouyi; Hou, Guofu; Chen, Peizhuan; Jia, Baohua; Gu, Min

    2017-02-01

    We demonstrate the application of metal nanowire (NW) networks as a transparent electrode on hydrogenated amorphous Si (a-Si:H) solar cells. We first systematically investigate the optical performances of the metal NW networks on a-Si:H solar cells in different electrode configurations through numerical simulations to fully understand the mechanisms to guide the experiments. The theoretically optimized configuration is discovered to be metal NWs sandwiched between a 40 nm indium tin oxide (ITO) layer and a 20 nm ITO layer. The overall performances of the solar cells integrated with the metal NW networks are experimentally studied. It has been found the experimentally best performing NW integrated solar cell deviates from the theoretically predicated design due to the performance degradation induced by the fabrication complicity. A 6.7% efficiency enhancement was achieved for the solar cell with metal NW network integrated on top of a 60 nm thick ITO layer compared to the cell with only the ITO layer due to enhanced electrical conductivity by the metal NW network.

  16. Application of metal nanowire networks on hydrogenated amorphous silicon thin film solar cells.

    PubMed

    Xie, Shouyi; Hou, Guofu; Chen, Peizhuan; Jia, Baohua; Gu, Min

    2017-02-24

    We demonstrate the application of metal nanowire (NW) networks as a transparent electrode on hydrogenated amorphous Si (a-Si:H) solar cells. We first systematically investigate the optical performances of the metal NW networks on a-Si:H solar cells in different electrode configurations through numerical simulations to fully understand the mechanisms to guide the experiments. The theoretically optimized configuration is discovered to be metal NWs sandwiched between a 40 nm indium tin oxide (ITO) layer and a 20 nm ITO layer. The overall performances of the solar cells integrated with the metal NW networks are experimentally studied. It has been found the experimentally best performing NW integrated solar cell deviates from the theoretically predicated design due to the performance degradation induced by the fabrication complicity. A 6.7% efficiency enhancement was achieved for the solar cell with metal NW network integrated on top of a 60 nm thick ITO layer compared to the cell with only the ITO layer due to enhanced electrical conductivity by the metal NW network.

  17. Bulk Formation of Metallic Glasses and Amorphous Silicon from the Melt

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1985-01-01

    By using metallic glass compositions with a high relative glass transition temperature, such as Pd40Ni40P20, homogeneous nucleation also becomes negligible. Large (5g) masses of this alloys were obtained using a molten B2O3 flux. Presently, bulk glass formation in iron based glasses is being investigated. It is expected that if an undercooling of about 250K can be achieved in a Ge or Si melt, formation of the amorphous semiconductor phase (rather than the crystal) may be kinetically favored. The volumetric behavior of undercooled liquid Ga droplet dispersion is investigated by dilatometry. A theoretical model (both analytical and numerical) was developed for transient nucleation in glass forming melts. The model, originally designed for isothermal conditions, was extended to continuous quenching. It is being applied to glass formation in various metallic and oxide systems. A further refinement will be the inclusion of diffusion controlled interfacial rearrangements governing the growth of the crystal embryos.

  18. Direct observation of small cluster mobility and ripening. [during annealing of metal films on amorphous substrates

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1975-01-01

    Direct evidence is reported for the simultaneous occurrence of Ostwald ripening and short-distance cluster mobility during annealing of discontinuous metal films on clean amorphous substrates. The annealing characteristics of very thin particulate deposits of silver on amorphized clean surfaces of single crystalline thin graphite substrates were studied by in-situ transmission electron microscopy (TEM) under controlled environmental conditions (residual gas pressure of 10 to the minus 9th power torr) in the temperature range from 25 to 450 C. Sputter cleaning of the substrate surface, metal deposition, and annealing were monitored by TEM observation. Pseudostereographic presentation of micrographs in different annealing stages, the observation of the annealing behavior at cast shadow edges, and measurements with an electronic image analyzing system were employed to aid the visual perception and the analysis of changes in deposit structure recorded during annealing. Slow Ostwald ripening was found to occur in the entire temperature range, but the overriding surface transport mechanism was short-distance cluster mobility.

  19. Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device.

    PubMed

    Feng, Jin-Xian; Ye, Sheng-Hua; Lu, Xue-Feng; Tong, Ye-Xiang; Li, Gao-Ren

    2015-06-03

    Here we synthesize novel asymmetric all-solid-state paper supercapacitors (APSCs) based on amorphous porous Mn3O4 grown on conducting paper (NGP) (Mn3O4/NGP) negative electrode and Ni(OH)2 grown on NGP (Ni(OH)2/NGP) as positive electrode, and they have attracted intensive research interest owing to their outstanding properties such as being flexible, ultrathin, and lightweight. The fabricated APSCs exhibit a high areal Csp of 3.05 F/cm3 and superior cycling stability. The novel asymmetric APSCs also exhibit high energy density of 0.35 mW h/cm3, high power density of 32.5 mW/cm3, and superior cycling performance (<17% capacitance loss after 12,000 cycles at a high scan rate of 100 mV/s). This work shows the first example of amorphous porous metal oxide/NGP electrodes for the asymmetric APSCs, and these systems hold great potential for future flexible electronic devices.

  20. Helium-3 in nickel-base amorphous metals: Surface features, subsurface microstructure, migration, and release upon annealing

    SciTech Connect

    Uenleu, K.

    1989-01-01

    The amorphous alloys Ni{sub 75.1}Cr{sub 14}P{sub 10.1}C{sub 0.08}, Ni{sub 63.5}Zr{sub 36.5}, and Ni{sub 87.7}P{sub 12.3} have been implanted with 150 keV helium-3 ions with doses 1 {times} 10{sup 16} He{sup 3}/cm{sup 2} and 5 {times} 10{sup 16} He{sup 3}/cm{sup 2}. The samples were isochronally annealed at several consecutive stages up t their crystallization temperatures. The surface features were examined by scanning electron microscope, subsurface microstructural changes were investigated by electron diffraction using a scanning transmission electron microscope, and helium-3 depth profiles were measured by a thermal neutron induced nuclear reaction technique called neutron depth profiling (NDP). It was confirmed that for amorphous metals: (a) the helium-3 release is concentration dependent; (b) the migration and the release of helium-3 is controlled by detrapping mechanism; and (c) the crystallization temperatures obtained in this study are in agreement with the reported values. The penetration depth or the projected depth of helium-3 ions with an initial energy of 150 keV is measured here for the first time after obtaining the depth profiles by using the NDP technique. The most probable range values are: 320 nm for Ni{sub 75.1}Cr{sub 14}P{sub 10.1}C{sub 0.08}, 378 nm for Ni{sub 63.5}Zr{sub 36.5} and 375 nm for Ni{sub 87.7}P{sub 12.3}. No blisters, bubbles or pitting were observed on the samples when they were annealed up to their crystallization temperature. Some of the helium-3 trapped in amorphous metals seems not to be as strongly bound as in single crystal nickel. More helium-3 release was observed for the metal-metal amorphous metal samples than the metal-metalloid amorphous metal. For metal-metal amorphous alloy the helium-3 release behavior can be correlated with the partial or full crystallization. For metal-metalloid amorphous alloys this correlation may depend on the chemical composition.

  1. Cluster model of amorphized particles formation by plasma spraying of metallic powder

    NASA Astrophysics Data System (ADS)

    Barakhtin, Boris K.; Nesterova, E. V.

    1999-05-01

    Multifunctional coatings from materials with amorphized microcrystalline or nano-phase structure cause a considerable scientific and practical interest. With their help it is to manufacture heat resistant neutralizers of harmful ejections, to produce ecologically clean sources of electric current, to design electromagnetic protective shields and to fabricate a lot of other technical products. The variety of application and a unique complex of operating characteristics (ductility, strength, magnetic and chemical properties) are governed by the basic peculiarity of material in amorphized state - its thermodynamic instability. In comparison with traditional thermodynamically equilibrium metallic alloys, the kinetics of structure changes in amorphous materials is quite different. Thus, it is suggested, that they have peculiar defects (phasonics) which are not typical of materials in crystalline state, they have no translational symmetry and elementary cells. In the process of coatings forming with non-equilibrium structure states can be realized in them, which are characterized by a fluctuation type of origin, entropy export, appearance of space or temporary symmetry uncertainty of the transition direction 'order $ARLR disorder' in bifurcation points. The aforesaid explains a great scientific (not only practical) interest in the structure study of disordered medium. Functional coatings with amorphized, nano- and microcrystalline structure components formed on copper substrate by plasma spraying of dispersed (to 50 mcm) Ni-Al powder. According to the constitutional diagram it was expected to obtain a mixture from equilibrium intermetallide phases NiAl3 + Ni2Al3. The experimental results and investigations performed by X-ray structure, X-ray spectrum and electron microscopy techniques have shown it is possible to obtain phases of variable composition (Ni)m(Al)n with Ni content from 25 to 75 vol.%, including NiAl. It turned out that in the process of spraying the

  2. Electronic structure and conductivity of nanocomposite metal (Au,Ag,Cu,Mo)-containing amorphous carbon films

    SciTech Connect

    Endrino, Jose L.; Horwat, David; Gago, Raul; Andersson, Joakim; Liu, Y.S.; Guo, Jinghua; Anders, Andre

    2008-05-14

    In this work, we study the influence of the incorporation of different metals (Me = Au, Ag, Cu, Mo) on the electronic structure of amorphous carbon (a-C:Me) films. The films were produced at room temperature using a novel pulsed dual-cathode arc deposition technique. Compositional analysis was performed with secondary neutral mass spectroscopy whereas X-ray diffraction was used to identify the formation of metal nanoclusters in the carbon matrix. The metal content incorporated in the nanocomposite films induces a drastic increase in the conductivity, in parallel with a decrease in the band gap corrected from Urbach energy. The electronic structure as a function of the Me content has been monitored by x-ray absorption near edge structure (XANES) at the C K-edge. XANES showed that the C host matrix has a dominant graphitic character and that it is not affected significantly by the incorporation of metal impurities, except for the case of Mo, where the modifications in the lineshape spectra indicated the formation of a carbide phase. Subtle modifications of the spectral lineshape are discussed in terms of nanocomposite formation.

  3. Probing Stochastic Nano-Scale Inelastic Events in Stressed Amorphous Metal

    PubMed Central

    Yang, Y.; Fu, X. L.; Wang, S.; Liu, Z. Y.; Ye, Y. F.; Sun, B. A.; Liu, C. T.

    2014-01-01

    One fundamental yet longstanding issue in materials science is how local inelasticity arises within an amorphous structure before yielding occurs. Although many possible scenarios were postulated or predicted by theories and simulations,however, direct experimental evidence has been lacking today due to the lack of a sensitive way to detect nano-scale inelasticity. Through the carefully designed microcompression method as coupled with the state-of-art nano-scale electric resistance measurement, we here unfold a stochastic inelastic deformation process in a Zr-based metallic glass, which takes place via the recurrence of two types of short-lived inelastic events causing structural damage and recovery, respectively, prior to yielding. Our current findings reveal that these stochastic events not only self-organize into sub-critical events due to elastic coupling, but also compete with each other in a way that enables the whole amorphous structure to self-heal as well as to sustain local damage. PMID:25331932

  4. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    SciTech Connect

    Ha, Tae-Jun

    2014-10-15

    We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (V{sub th}). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (≈3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger V{sub th} shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  5. Real-time Measurement of Biomagnetic Vector Fields in Functional Syncytium Using Amorphous Metal

    PubMed Central

    Nakayama, Shinsuke; Uchiyama, Tusyoshi

    2015-01-01

    Magnetic field detection of biological electric activities would provide a non-invasive and aseptic estimate of the functional state of cellular organization, namely a syncytium constructed with cell-to-cell electric coupling. In this study, we investigated the properties of biomagnetic waves which occur spontaneously in gut musculature as a typical functional syncytium, by applying an amorphous metal-based gradio-magneto sensor operated at ambient temperature without a magnetic shield. The performance of differentiation was improved by using a single amorphous wire with a pair of transducer coils. Biomagnetic waves of up to several nT were recorded ~1 mm below the sample in a real-time manner. Tetraethyl ammonium (TEA) facilitated magnetic waves reflected electric activity in smooth muscle. The direction of magnetic waves altered depending on the relative angle of the muscle layer and magneto sensor, indicating the existence of propagating intercellular currents. The magnitude of magnetic waves rapidly decreased to ~30% by the initial and subsequent 1 mm separations between sample and sensor. The large distance effect was attributed to the feature of bioelectric circuits constructed by two reverse currents separated by a small distance. This study provides a method for detecting characteristic features of biomagnetic fields arising from a syncytial current. PMID:25744476

  6. New chelating reagents for preconcentration, separation, determination of metal complexes by high performance liquid chromatography and solid phase extraction

    SciTech Connect

    Qian, Yan wen

    1991-12-03

    A general scheme is outlined for rapid determination of metal cations by complexation and subsequent HPLC separation. The synthesis and general properties are described for several new thiohydrazone chelating reagents. Solubility considerations suggest that the metal complexes have a positive charge. Excellent chromatographic separations are obtained for mixtures of up to seven metal complexes. Addition of a positively charged additive to the eluent is shown to have a significant effect on both the retention times and sharpness of the chromatographic peaks. Separation of the metal complexes on resins with a permanent charge is also shown to be feasible. Two new hydrazone reagents have been synthesized and characterized. Trace metal ions in aqueous solution are complexed by one of the hydrazones and the resulting metal complexes are solid phase extracted onto a mini cation-exchange or polymeric column. The uptake of metal complexes is complete and the elution step is fast and complete. The quantitative recoveries of metal ions determined by both spectrophotometric method and ICP-MS are very satisfactory and agree with each other.

  7. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries.

    PubMed

    Jia, Xilai; Chen, Zheng; Cui, Xia; Peng, Yiting; Wang, Xiaolei; Wang, Ge; Wei, Fei; Lu, Yunfeng

    2012-11-27

    Design and fabrication of effective electrode structure is essential but is still a challenge for current lithium-ion battery technology. Herein we report the design and fabrication of a class of high-performance robust nanocomposites based on iron oxide spheres and carbon nanotubes (CNTs). An efficient aerosol spray process combined with vacuum filtration was used to synthesize such composite architecture, where oxide nanocrystals were assembled into a continuous carbon skeleton and entangled in porous CNT networks. This material architecture offers many critical features that are required for high-performance anodes, including efficient ion transport, high conductivity, and structure durability, therefore enabling an electrode with outstanding lithium storage performance. For example, such an electrode with a thickness of ∼35 μm could deliver a specific capacity of 994 mA h g(-1) (based on total electrode weight) and high recharging rates. This effective strategy can be extended to construct many other composite electrodes for high-performance lithium-ion batteries.

  8. High-Performance, Superparamagnetic, Nanoparticle-Based Heavy Metal Sorbents for Removal of Contaminants from Natural Waters

    SciTech Connect

    Warner, Cynthia L.; Addleman, Shane; Cinson, Anthony D.; Droubay, Timothy C.; Engelhard, Mark H.; Nash, Michael A.; Yantasee, Wassana; Warner, Marvin G.

    2010-06-01

    We describe the synthesis and characterization of superparamagnetic iron oxide nanoparticle based heavy metal sorbents with various surface chemistries that demonstrate an excellent affinity for the separation of heavy metals in contaminated water systems (i.e. spiked Columbia river water). The magnetic nanoparticle sorbents are prepared from an easy to synthesize iron oxide precursor, followed by a simple, one-step ligand exchange technique to introduce the organic surface functionality of interest chosen to target either specific or broader classes of heavy metals. Functionalized superparamagnetic nanoparticles are excellent sorbent materials for the extraction of heavy metal contaminants from environmental and clinical samples since they are easily removed from the media once bound to the contaminant by simply applying a magnetic field. These engineered magnetic nanoparticle sorbents have an inherently high active surface area (often > 100 m2/g), allowing for increased binding capacity. To demonstrate the potential sorbent performance of each of the surface modified magnetic nanoparticles, river water was spiked with Hg, Pb, Cd, Ag, Co, Cu, and Tl and exposed to low concentrations of the functionalized nanoparticles. The samples were analyzed to determine the metal content before and after exposure to the magnetic nanoparticle sorbents. In almost all cases reported here the nanoparticles were found to be superior to commercially available sorbents binding a wide range of different heavy metals with extremely high affinity. Detailed characterization of the functionalized magnetic nanoparticle sorbents including FT-IR, BET surface analysis, TGA, XPS and VSM as well as the heavy metal removal experiments are presented.

  9. Digital image processing of nanometer-size metal particles on amorphous substrates

    NASA Technical Reports Server (NTRS)

    Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.

    1989-01-01

    The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.

  10. Pressure-induced Transformations of Dense Carbonyl Sulfide to Singly Bonded Amorphous Metallic Solid

    PubMed Central

    Kim, Minseob; Dias, Ranga; Ohishi, Yasuo; Matsuoka, Takehiro; Chen, Jing-Yin; Yoo, Choong-Shik

    2016-01-01

    The application of pressure, internal or external, transforms molecular solids into non-molecular extended network solids with diverse crystal structures and electronic properties. These transformations can be understood in terms of pressure-induced electron delocalization; however, the governing mechanisms are complex because of strong lattice strains, phase metastability and path dependent phase behaviors. Here, we present the pressure-induced transformations of linear OCS (R3m, Phase I) to bent OCS (Cm, Phase II) at 9 GPa; an amorphous, one-dimensional (1D) polymer at 20 GPa (Phase III); and an extended 3D network above ~35 GPa (Phase IV) that metallizes at ~105 GPa. These results underscore the significance of long-range dipole interactions in dense OCS, leading to an extended molecular alloy that can be considered a chemical intermediate of its two end members, CO2 and CS2. PMID:27527241

  11. What Can Plasticity of Amorphous Silicon Tell Us about Plasticity of Metallic Glasses?

    NASA Astrophysics Data System (ADS)

    Argon, A. S.; Demkowicz, M. J.

    2008-08-01

    In a recent set of computer simulations, we have analyzed the atomic-level kinematics and kinetics of the plastic relaxations that constitute shear transformations (STs) responsible for plasticity in amorphous silicon (a-Si). Here, we summarize the rich mechanistic details of the triggering of these transformations from “fertile” sites having a slight excess of liquidlike atomic environments and develop analytical models for the evolution of liquidlike material with plastic strain, leading to a unique flow state. Furthermore, a kinetic model of flow is developed, which accounts for the stress-strain curves with broad yield phenomena as well as for the temperature dependence of the plastic resistance found in the simulations. While the details of these findings apply specifically to network glasses of a-Si, we find far-reaching parallels to the flow mechanisms in metallic and polymeric glasses.

  12. Coercivity of domain wall motion in thin films of amorphous rare earth-transition metal alloys

    NASA Technical Reports Server (NTRS)

    Mansuripur, M.; Giles, R. C.; Patterson, G.

    1991-01-01

    Computer simulations of a two dimensional lattice of magnetic dipoles are performed on the Connection Machine. The lattice is a discrete model for thin films of amorphous rare-earth transition metal alloys, which have application as the storage media in erasable optical data storage systems. In these simulations, the dipoles follow the dynamic Landau-Lifshitz-Gilbert equation under the influence of an effective field arising from local anisotropy, near-neighbor exchange, classical dipole-dipole interactions, and an externally applied field. Various sources of coercivity, such as defects and/or inhomogeneities in the lattice, are introduced and the subsequent motion of domain walls in response to external fields is investigated.

  13. Pressure-induced Transformations of Dense Carbonyl Sulfide to Singly Bonded Amorphous Metallic Solid

    NASA Astrophysics Data System (ADS)

    Kim, Minseob; Dias, Ranga; Ohishi, Yasuo; Matsuoka, Takehiro; Chen, Jing-Yin; Yoo, Choong-Shik

    2016-08-01

    The application of pressure, internal or external, transforms molecular solids into non-molecular extended network solids with diverse crystal structures and electronic properties. These transformations can be understood in terms of pressure-induced electron delocalization; however, the governing mechanisms are complex because of strong lattice strains, phase metastability and path dependent phase behaviors. Here, we present the pressure-induced transformations of linear OCS (R3m, Phase I) to bent OCS (Cm, Phase II) at 9 GPa an amorphous, one-dimensional (1D) polymer at 20 GPa (Phase III); and an extended 3D network above ~35 GPa (Phase IV) that metallizes at ~105 GPa. These results underscore the significance of long-range dipole interactions in dense OCS, leading to an extended molecular alloy that can be considered a chemical intermediate of its two end members, CO2 and CS2.

  14. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses.

    PubMed

    Lan, S; Ren, Y; Wei, X Y; Wang, B; Gilbert, E P; Shibayama, T; Watanabe, S; Ohnuma, M; Wang, X-L

    2017-03-17

    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clusters over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase, which forms the room-temperature glass phase on quenching. The outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat treatment.

  15. Room temperature phosphorescence of metal-free organic materials in amorphous polymer matrices.

    PubMed

    Lee, Dongwook; Bolton, Onas; Kim, Byoung Choul; Youk, Ji Ho; Takayama, Shuichi; Kim, Jinsang

    2013-04-24

    Developing metal-free organic phosphorescent materials is promising but challenging because achieving emissive triplet relaxation that outcompetes the vibrational loss of triplets, a key process to achieving phosphorescence, is difficult without heavy metal atoms. While recent studies reveal that bright room temperature phosphorescence can be realized in purely organic crystalline materials through directed halogen bonding, these organic phosphors still have limitations to practical applications due to the stringent requirement of high quality crystal formation. Here we report bright room temperature phosphorescence by embedding a purely organic phosphor into an amorphous glassy polymer matrix. Our study implies that the reduced beta (β)-relaxation of isotactic PMMA most efficiently suppresses vibrational triplet decay and allows the embedded organic phosphors to achieve a bright 7.5% phosphorescence quantum yield. We also demonstrate a microfluidic device integrated with a novel temperature sensor based on the metal-free purely organic phosphors in the temperature-sensitive polymer matrix. This unique system has many advantages: (i) simple device structures without feeding additional temperature sensing agents, (ii) bright phosphorescence emission, (iii) a reversible thermal response, and (iv) tunable temperature sensing ranges by using different polymers.

  16. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses

    PubMed Central

    Lan, S.; Ren, Y.; Wei, X. Y.; Wang, B.; Gilbert, E. P.; Shibayama, T.; Watanabe, S.; Ohnuma, M.; Wang, X. -L.

    2017-01-01

    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clusters over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase, which forms the room-temperature glass phase on quenching. The outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat treatment. PMID:28303882

  17. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  18. Amorphous carbon enriched with pyridinic nitrogen as an efficient metal-free electrocatalyst for oxygen reduction reaction.

    PubMed

    Chen, Jingyan; Wang, Xin; Cui, Xiaoqiang; Yang, Guangmin; Zheng, Weitao

    2014-01-18

    An amorphous metal-free N-doped carbon film prepared by sputtering and annealing exhibits comparable electrocatalytic activity and superior stability and methanol tolerance to the commercial Pt/C catalyst via a four-electron pathway for oxygen reduction reaction (ORR). Pyridinic nitrogen in films plays a key role in electrocatalytic activity for ORR.

  19. High-performance a-In-Ga-Zn-O Schottky diode with oxygen-treated metal contacts

    NASA Astrophysics Data System (ADS)

    Chasin, Adrian; Steudel, Soeren; Myny, Kris; Nag, Manoj; Ke, Tung-Huei; Schols, Sarah; Genoe, Jan; Gielen, Georges; Heremans, Paul

    2012-09-01

    High-performance Schottky diodes based on palladium blocking contacts were fabricated upon depositing indium-gallium-zinc oxide (IGZO) with high oxygen content. We find that an oxygen treatment of the palladium contact is needed to achieve low off currents in the Schottky diode, and rationalize this by relating an increased oxygen content at the Pd/IGZO interface to a lower interfacial trap density. Optimized IGZO films were obtained with a record high ratio of free charge carrier density to subgap traps. The rectification ratios of diodes with such films are higher than 107 with current densities exceeding 103 A/cm2 at low forward bias of 2 V.

  20. A possible method for the characterization of amorphous slags: Recovery of refractory metal oxides from tin slags

    NASA Astrophysics Data System (ADS)

    Gaballah, I.; Allain, E.; Meyer-Joly, M.-Ch.; Malau, K.

    1992-06-01

    As X-ray, neutron scattering, and vibrational spectroscopy are not useful for amorphous solids characterization, microprobe analysis is used in determining the composition of these materials. The correlation coefficient matrix between the slag’s elements is obtained by a simple computer program which is commercially available. This matrix is employed for the constitution of the neighborhood of an element, which may be called the “pseudo-structure” (PS). The proposed method is a statistical view of the probable associations between the elements. It gives an insight into the amorphous solids' structure. The lixiviation of tin slags in order to recover the refractory metals they contain is used to illustrate the importance of the PS. A multistage acid-basic (AB) leaching leads to the dissolution of the matrix composed of Ca, Al, Fe, Mn, Si, ... oxides and the concentration of refractory metal oxides in the residues. The optimum tantalum and niobium recovery rates are 93 and 78 pct, respectively. The results of this research indicate that the leaching of the amorphous tin slag is a structure-sensitive operation. However, one may emphasize that the PS of amorphous solids is a simplification of the real neighborhood of ele-ments. It may be considered as a complement to other methods of investigation of the amorphous solids and may facilitate the hydrometallurgical process planning.

  1. Nanopattern-guided growth of single-crystal silicon on amorphous substrates and high-performance sub-100 nm thin-film transistors for three-dimensional integrated circuits

    NASA Astrophysics Data System (ADS)

    Gu, Jian

    /off current ratio, device-to-device uniformity etc. Two-dimensional device simulations show that PaTH TFTs are comparable to silicon-on-insulator (SOI) devices, making it a promising candidate for the fabrication of future high performance, low-power 3D integrated circuits. Finally, an ultrafast nanolithography technique, laser-assisted direct imprint (LADI) is introduced. LADI shows the ability of patterning nanostructures directly in silicon in nanoseconds with sub-10 nm resolution. The process has potential applications in multiple disciplines, and could be extended to other materials and processes.

  2. Effects of solution temperature on solution-processed high-performance metal oxide thin-film transistors.

    PubMed

    Lee, Keun Ho; Park, Jee Ho; Yoo, Young Bum; Jang, Woo Soon; Oh, Jin Young; Chae, Soo Sang; Moon, Kyeong Ju; Myoung, Jae Min; Baik, Hong Koo

    2013-04-10

    Herein, we report a novel and easy strategy for fabricating solution-processed metal oxide thin-film transistors by controlling the dielectric constant of H2O through manipulation of the metal precursor solution temperature. As a result, indium zinc oxide (IZO) thin-film transistors (TFTs) fabricated from IZO solution at 4 °C can be operated after annealing at low temperatures (∼250 °C). In contrast, IZO TFTs fabricated from IZO solutions at 25 and 60 °C must be annealed at 275 and 300 °C, respectively. We also found that IZO TFTs fabricated from the IZO precursor solution at 4 °C had the highest mobility of 12.65 cm2/(V s), whereas the IZO TFTs fabricated from IZO precursor solutions at 25 and 60 °C had field-effect mobility of 5.39 and 4.51 cm2/(V s), respectively, after annealing at 350 °C. When the IZO precursor solution is at 4 °C, metal cations such as indium (In3+) and zinc ions (Zn2+) can be fully surrounded by H2O molecules, because of the higher dielectric constant of H2O at lower temperatures. These chemical complexes in the IZO precursor solution at 4 °C are advantageous for thermal hydrolysis and condensation reactions yielding a metal oxide lattice, because of their high potential energies. The IZO TFTs fabricated from the IZO precursor solution at 4 °C had the highest mobility because of the formation of many metal-oxygen-metal (M-O-M) bonds under these conditions. In these bonds, the ns-orbitals of the metal cations overlap each other and form electron conduction pathways. Thus, the formation of a high proportion of M-O-M bonds in the IZO thin films is advantageous for electron conduction, because oxide lattices allow electrons to travel easily through the IZO.

  3. Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution

    NASA Astrophysics Data System (ADS)

    Lai, Qingxue; Gao, Qingwen; Su, Qi; Liang, Yanyu; Wang, Yuxi; Yang, Zhi

    2015-08-01

    Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition metal phthalocyanine (TMPc) in the two-dimensional confined space of in situ generated g-C3N4 and a subsequent pyrolysis. Such a space-confined bottom-up synthesis route successfully constructs a strongly-coupled triple junction of transition metal-graphitic carbon-nitrogen-doped graphene (TM-GC-NG) with extensive controllability over the specific surface area, nitrogen content/types as well as the states of metal. As a result, the optimized N-Fe/G materials have promising potential as high-performance NPMCs towards ORR both in alkaline and acidic solution.Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition

  4. High-Performance Flexible Transparent Electrode with an Embedded Metal Mesh Fabricated by Cost-Effective Solution Process.

    PubMed

    Khan, Arshad; Lee, Sangeon; Jang, Taehee; Xiong, Ze; Zhang, Cuiping; Tang, Jinyao; Guo, L Jay; Li, Wen-Di

    2016-06-01

    A new structure of flexible transparent electrodes is reported, featuring a metal mesh fully embedded and mechanically anchored in a flexible substrate, and a cost-effective solution-based fabrication strategy for this new transparent electrode. The embedded nature of the metal-mesh electrodes provides a series of advantages, including surface smoothness that is crucial for device fabrication, mechanical stability under high bending stress, strong adhesion to the substrate with excellent flexibility, and favorable resistance against moisture, oxygen, and chemicals. The novel fabrication process replaces vacuum-based metal deposition with an electrodeposition process and is potentially suitable for high-throughput, large-volume, and low-cost production. In particular, this strategy enables fabrication of a high-aspect-ratio (thickness to linewidth) metal mesh, substantially improving conductivity without considerably sacrificing transparency. Various prototype flexible transparent electrodes are demonstrated with transmittance higher than 90% and sheet resistance below 1 ohm sq(-1) , as well as extremely high figures of merit up to 1.5 × 10(4) , which are among the highest reported values in recent studies. Finally using our embedded metal-mesh electrode, a flexible transparent thin-film heater is demonstrated with a low power density requirement, rapid response time, and a low operating voltage.

  5. Electron Irradiation Induced Phase Transition of an Amorphous Phase and Face-Centered Cubic Solid Solutions in Zr66.7Pd33.3 Metallic Glass

    NASA Astrophysics Data System (ADS)

    Nagase, Takeshi; Hosokawa, Takashi; Umakoshi, Yukichi

    2007-02-01

    Both amorphization and crystallization were observed in Zr66.7Pd33.3 metallic glass under electron irradiation. The melt-spun amorphous phase was not stable under 2.0 MV electron irradiation and two kinds of fcc-solid solution were precipitated through electron irradiation induced crystallization at 103 and 298 K. The fcc-solid solution obtained by electron irradiation induced crystallization at 298 K transformed to an amorphous phase during irradiation at 103 K. Electron irradiation induced phase transformation behavior in Zr66.7Pd33.3 metallic glass can be explained by phase stability of an amorphous phase and crystalline phases against electron irradiation.

  6. High-performance hydrogen production and oxidation electrodes with hydrogenase supported on metallic single-wall carbon nanotube networks.

    PubMed

    Svedružić, Draženka; Blackburn, Jeffrey L; Tenent, Robert C; Rocha, John-David R; Vinzant, Todd B; Heben, Michael J; King, Paul W

    2011-03-30

    We studied the electrocatalytic activity of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaH2ase) immobilized on single-wall carbon nanotube (SWNT) networks. SWNT networks were prepared on carbon cloth by ultrasonic spraying of suspensions with predetermined ratios of metallic and semiconducting nanotubes. Current densities for both proton reduction and hydrogen oxidation electrocatalytic activities were at least 1 order of magnitude higher when hydrogenase was immobilized onto SWNT networks with high metallic tube (m-SWNT) content in comparison to hydrogenase supported on networks with low metallic tube content or when SWNTs were absent. We conclude that the increase in electrocatalytic activities in the presence of SWNTs was mainly due to the m-SWNT fraction and can be attributed to (i) substantial increases in the active electrode surface area, and (ii) improved electronic coupling between CaH2ase redox-active sites and the electrode surface.

  7. Rational Design of a Low-Cost, High-Performance Metal-Organic Framework for Hydrogen Storage and Carbon Capture.

    PubMed

    Witman, Matthew; Ling, Sanliang; Gladysiak, Andrzej; Stylianou, Kyriakos C; Smit, Berend; Slater, Ben; Haranczyk, Maciej

    2017-01-19

    We present the in silico design of a MOF-74 analogue, hereon known as M2(DHFUMA) [M = Mg, Fe, Co, Ni, Zn], with enhanced small-molecule adsorption properties over the original M2(DOBDC) series. Constructed from 2,3-dihydroxyfumarate (DHFUMA), an aliphatic ligand which is smaller than the aromatic 2,5-dioxidobenzene-1,4-dicarboxylate (DOBDC), the M2(DHFUMA) framework has a reduced channel diameter, resulting in higher volumetric density of open metal sites and significantly improved volumetric hydrogen (H2) storage potential. Furthermore, the reduced distance between two adjacent open metal sites in the pore channel leads to a CO2 binding mode of one molecule per two adjacent metals with markedly stronger binding energetics. Through dispersion-corrected density functional theory (DFT) calculations of guest-framework interactions and classical simulation of the adsorption behavior of binary CO2:H2O mixtures, we theoretically predict the M2(DHFUMA) series as an improved alternative for carbon capture over the M2(DOBDC) series when adsorbing from wet flue gas streams. The improved CO2 uptake and humidity tolerance in our simulations is tunable based upon metal selection and adsorption temperature which, combined with the significantly reduced ligand expense, elevates this material's potential for CO2 capture and H2 storage. The dynamical and elastic stabilities of Mg2(DHFUMA) were verified by hybrid DFT calculations, demonstrating its significant potential for experimental synthesis.

  8. High-Performance Energy Storage and Conversion Materials Derived from a Single Metal-Organic Framework/Graphene Aerogel Composite.

    PubMed

    Xia, Wei; Qu, Chong; Liang, Zibin; Zhao, Bote; Dai, Shuge; Qiu, Bin; Jiao, Yang; Zhang, Qiaobao; Huang, Xinyu; Guo, Wenhan; Dang, Dai; Zou, Ruqiang; Xia, Dingguo; Xu, Qiang; Liu, Meilin

    2017-04-13

    Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co(mIM)2 (mIM = 2-methylimidazole). The presence of cobalt oxide (CoOx) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoOx/NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon-graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities.

  9. Reduction experiment of FeO-bearing amorphous silicate: application to origin of metallic iron in GEMS

    SciTech Connect

    Matsuno, Junya; Tsuchiyama, Akira; Miyake, Akira; Noguchi, Ryo; Ichikawa, Satoshi

    2014-09-10

    Glass with embedded metal and sulfides (GEMS) are amorphous silicates included in anhydrous interplanetary dust particles (IDPs) and can provide information about material evolution in our early solar system. Several formation processes for GEMS have been proposed so far, but these theories are still being debated. To investigate a possible GEMS origin by reduction of interstellar silicates, we synthesized amorphous silicates with a mean GEMS composition and performed heating experiments in a reducing atmosphere. FeO-bearing amorphous silicates were heated at 923 K and 973 K for 3 hr, and at 1023 K for 1-48 hr at ambient pressure in a reducing atmosphere. Fe grains formed at the interface between the silicate and the reducing gas through a reduction. In contrast, TEM observations of natural GEMS show that metallic grains are uniformly embedded in amorphous silicates. Therefore, the present study suggests that metallic inclusions in GEMS could not form as reduction products and that other formation process such as condensation or irradiation are more likely.

  10. Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture

    SciTech Connect

    2010-07-01

    IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

  11. Lateral amorphous selenium metal-insulator-semiconductor-insulator-metal photodetectors using ultrathin dielectric blocking layers for dark current suppression

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Yi; Pan, Fu-Ming; Lin, Jian-Siang; Yu, Tung-Yuan; Li, Yi-Ming; Chen, Chieh-Yang

    2016-12-01

    We fabricated amorphous selenium (a-Se) photodetectors with a lateral metal-insulator-semiconductor-insulator-metal (MISIM) device structure. Thermal aluminum oxide, plasma-enhanced chemical vapor deposited silicon nitride, and thermal atomic layer deposited (ALD) aluminum oxide and hafnium oxide (ALD-HfO2) were used as the electron and hole blocking layers of the MISIM photodetectors for dark current suppression. A reduction in the dark current by three orders of magnitude can be achieved at electric fields between 10 and 30 V/μm. The effective dark current suppression is primarily ascribed to electric field lowering in the dielectric layers as a result of charge trapping in deep levels. Photogenerated carriers in the a-Se layer can be transported across the blocking layers to the Al electrodes via Fowler-Nordheim tunneling because a high electric field develops in the ultrathin dielectric layers under illumination. Since the a-Se MISIM photodetectors have a very low dark current without significant degradation in the photoresponse, the signal contrast is greatly improved. The MISIM photodetector with the ALD-HfO2 blocking layer has an optimal signal contrast more than 500 times the contrast of the photodetector without a blocking layer at 15 V/μm.

  12. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    NASA Astrophysics Data System (ADS)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2007-11-01

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO2). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer etal . [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kho≪1, where k is the wavenumber of the perturbation and ho is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface

  13. Ammonium Fluoride Mediated Synthesis of Anhydrous Metal Fluoride-Mesoporous Carbon Nanocomposites for High-Performance Lithium Ion Battery Cathodes.

    PubMed

    Chun, Jinyoung; Jo, Changshin; Sahgong, Sunhye; Kim, Min Gyu; Lim, Eunho; Kim, Dong Hyeon; Hwang, Jongkook; Kang, Eunae; Ryu, Keun Ah; Jung, Yoon Seok; Kim, Youngsik; Lee, Jinwoo

    2016-12-28

    Metal fluorides (MFx) are one of the most attractive cathode candidates for Li ion batteries (LIBs) due to their high conversion potentials with large capacities. However, only a limited number of synthetic methods, generally involving highly toxic or inaccessible reagents, currently exist, which has made it difficult to produce well-designed nanostructures suitable for cathodes; consequently, harnessing their potential cathodic properties has been a challenge. Herein, we report a new bottom-up synthetic method utilizing ammonium fluoride (NH4F) for the preparation of anhydrous MFx (CuF2, FeF3, and CoF2)/mesoporous carbon (MSU-F-C) nanocomposites, whereby a series of metal precursor nanoparticles preconfined in mesoporous carbon were readily converted to anhydrous MFx through simple heat treatment with NH4F under solventless conditions. We demonstrate the versatility, lower toxicity, and efficiency of this synthetic method and, using XRD analysis, propose a mechanism for the reaction. All MFx/MSU-F-C prepared in this study exhibited superior electrochemical performances, through conversion reactions, as the cathode for LIBs. In particular, FeF3/MSU-F-C maintained a capacity of 650 mAh g(-1)FeF3 across 50 cycles, which is ∼90% of its initial capacity. We expect that this facile synthesis method will trigger further research into the development of various nanostructured MFx for use in energy storage and other applications.

  14. Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors

    NASA Astrophysics Data System (ADS)

    Kwon, Jang Yeon; Kyeong Jeong, Jae

    2015-02-01

    This review gives an overview of the recent progress in vacuum-based n-type transition metal oxide (TMO) thin film transistors (TFTs). Several excellent review papers regarding metal oxide TFTs in terms of fundamental electron structure, device process and reliability have been published. In particular, the required field-effect mobility of TMO TFTs has been increasing rapidly to meet the demands of the ultra-high-resolution, large panel size and three dimensional visual effects as a megatrend of flat panel displays, such as liquid crystal displays, organic light emitting diodes and flexible displays. In this regard, the effects of the TMO composition on the performance of the resulting oxide TFTs has been reviewed, and classified into binary, ternary and quaternary composition systems. In addition, the new strategic approaches including zinc oxynitride materials, double channel structures, and composite structures have been proposed recently, and were not covered in detail in previous review papers. Special attention is given to the advanced device architecture of TMO TFTs, such as back-channel-etch and self-aligned coplanar structure, which is a key technology because of their advantages including low cost fabrication, high driving speed and unwanted visual artifact-free high quality imaging. The integration process and related issues, such as etching, post treatment, low ohmic contact and Cu interconnection, required for realizing these advanced architectures are also discussed.

  15. High-Performance Coral Reef-like Carbon Nitrides: Synthesis and Application in Photocatalysis and Heavy Metal Ion Adsorption.

    PubMed

    Tan, Jeannie Z Y; Nursam, Natalita M; Xia, Fang; Sani, Marc-Antoine; Li, Wei; Wang, Xingdong; Caruso, Rachel A

    2017-02-08

    Synthesis of carbon nitrides (CNx) by refluxing under nitrogen exhibited mixed growth mechanisms of oriented attachment and Ostwald ripening, leading to the formation of coral reef-like microstructures from spherical agglomerates. Some phase transformation from β-phase to α-phase CNx occurred upon refluxing for 1.5 h, producing a biphasic CNx. The N content relative to C was determined from CHN elemental analysis, and the presence of C═N and terminal groups (i.e., COOH and NH2) was consistent with the Fourier transform infrared, nuclear magnetic resonance, and X-ray photoelectron spectroscopic results. The sample refluxed for 2.0 h (CNx/2.0 h) had the highest surface area of 24.5 m(2)·g(-1) and displayed enhanced adsorption capacities for methylene blue (MB) molecules and heavy metal ions Pb(2+) (720 mg·g(-1)), Cd(2+) (480 mg·g(-1)), and As(V) (220 mg·g(-1)), which was attributed to the presence of COOH functional groups. CNx samples had a negative surface charge that electrostatically attracted the cationic heavy metal ions as well as MB molecules for subsequent photodecomposition under visible-light illumination. The photocatalytic activity of CNx/2.0 h toward phenol, a common pollutant in aqueous waste, was also demonstrated and a possible photocatalytic route was proposed.

  16. Spinodal decomposition in amorphous metal-silicate thin films: Phase diagram analysis and interface effects on kinetics

    NASA Astrophysics Data System (ADS)

    Kim, H.; McIntyre, P. C.

    2002-11-01

    Among several metal silicate candidates for high permittivity gate dielectric applications, the mixing thermodynamics of the ZrO2-SiO2 system were analyzed, based on previously published experimental phase diagrams. The driving force for spinodal decomposition was investigated in an amorphous silicate that was treated as a supercooled liquid solution. A subregular model was used for the excess free energy of mixing of the liquid, and measured invariant points were adopted for the calculations. The resulting simulated ZrO2-SiO2 phase diagram matched the experimental results reasonably well and indicated that a driving force exists for amorphous Zr-silicate compositions between approx40 mol % and approx90 mol % SiO2 to decompose into a ZrO2-rich phase (approx20 mol % SiO2) and SiO2-rich phase (>98 mol % SiO2) through diffusional phase separation at a temperature of 900 degC. These predictions are consistent with recent experimental reports of phase separation in amorphous Zr-silicate thin films. Other metal-silicate systems were also investigated and composition ranges for phase separation in amorphous Hf, La, and Y silicates were identified from the published bulk phase diagrams. The kinetics of one-dimensional spinodal decomposition normal to the plane of the film were simulated for an initially homogeneous Zr-silicate dielectric layer. We examined the effects that local stresses and the capillary driving force for component segregation to the interface have on the rate of spinodal decomposition in amorphous metal-silicate thin films.

  17. Corrosion-resistant amorphous metallic films of Mo/sub 49/Cr/sub 33/B/sub 18/ alloy

    SciTech Connect

    Ramesham, R.; DiStefano, S.; Fitzgerald, D.; Thakoor, A.P.; Khanna, S.K.

    1987-09-01

    Amorphous metallic films of Mo/sub 49/Cr/sub 33/B/sub 18/ have been deposited onto glass and quartz substrates by the magnetron sputter quenching technique. The amorphous nature of the as-deposited films was confirmed by their diffuse x-ray diffraction patterns. The crystallization temperature of the as-deposited films was 590/sup 0/C, according to the differential scanning calorimetry studies. Surface texture and cross-sectional features of the coatings were examined by scanning electron microscopy. Electron microprobe analysis was used to determine the chemical composition of the films. Chemical compositional uniformity of the as-deposited amorphous metallic films was verified by secondary ion mass spectrometry. As-deposited films exhibited microhardness of the order of 600-850 HV. Kinetics of corrosion of the alloy films in H/sub 2/SO/sub 4/ (1N) solution has been studied by potentiodynamic and galvanostatic techniques. As-deposited amorphous films exhibited corrosion current density three orders of magnitude less than the corrosion current density of 304 stainless steel in H/sub 2/SO/sub 4/ (1N) solution. A reaction mechanism at the corrosion potential is proposed.

  18. High-performance ab initio density matrix renormalization group method: Applicability to large-scale multireference problems for metal compounds

    NASA Astrophysics Data System (ADS)

    Kurashige, Yuki; Yanai, Takeshi

    2009-06-01

    This article presents an efficient and parallelized implementation of the density matrix renormalization group (DMRG) algorithm for quantum chemistry calculations. The DMRG method as a large-scale multireference electronic structure model is by nature particularly efficient for one-dimensionally correlated systems, while the present development is oriented toward applications for polynuclear transition metal compounds, in which the macroscopic one-dimensional structure of electron correlation is absent. A straightforward extension of the DMRG algorithm is proposed with further improvements and aggressive optimizations to allow its application with large multireference active space, which is often demanded for metal compound calculations. Special efficiency is achieved by making better use of sparsity and symmetry in the operator and wave function representations. By accomplishing computationally intensive DMRG calculations, the authors have found that a large number of renormalized basis states are required to represent high entanglement of the electron correlation for metal compound applications, and it is crucial to adopt auxiliary perturbative correction to the projected density matrix during the DMRG sweep optimization in order to attain proper convergence to the solution. Potential energy curve calculations for the Cr2 molecule near the known equilibrium precisely predicted the full configuration interaction energies with a correlation space of 24 electrons in 30 orbitals [denoted by (24e,30o)]. The energies are demonstrated to be accurate to 0.6mEh (the error from the extrapolated best value) when as many as 10 000 renormalized basis states are employed for the left and right DMRG block representations. The relative energy curves for [Cu2O2]2+ along the isomerization coordinate were obtained from DMRG and other correlated calculations, for which a fairly large orbital space (32e,62o) is modeled as a full correlation space. The DMRG prediction nearly overlaps

  19. Nitrogen-doped Carbon Derived from ZIF-8 as a High-performance Metal-free Catalyst for Acetylene Hydrochlorination

    PubMed Central

    Chao, Songlin; Zou, Fang; Wan, Fanfan; Dong, Xiaobin; Wang, Yanlin; Wang, Yuxuan; Guan, Qingxin; Wang, Guichang; Li, Wei

    2017-01-01

    Acetylene hydrochlorination is a major industrial technology for manufacturing vinyl chloride monomer in regions with abundant coal resources; however, it is plagued by the use of mercury(II) chloride catalyst. The development of a nonmercury catalyst has been extensively explored. Herein, we report a N-doped carbon catalyst derived from ZIF-8 with both high activity and quite good stability. The acetylene conversion reached 92% and decreased slightly during a 200 h test at 220 °C and atmospheric pressure. Experimental studies and theoretical calculations indicate that C atoms adjacent to the pyridinic N are the active sites, and coke deposition covering pyridinic N is the main reason for catalyst deactivation. The performance of those N-doped carbons makes it possible for practical applications with further effort. Furthermore, the result also provides guidance for designing metal-free catalysts for similar reactions. PMID:28051131

  20. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding

    NASA Astrophysics Data System (ADS)

    Han, Yu; Lin, Jie; Liu, Yuxuan; Fu, Hao; Ma, Yuan; Jin, Peng; Tan, Jiubin

    2016-05-01

    Our daily electromagnetic environment is becoming increasingly complex with the rapid development of consumer electronics and wireless communication technologies, which in turn necessitates the development of electromagnetic interference (EMI) shielding, especially for transparent components. We engineered a transparent EMI shielding film with crack-template based metallic mesh (CT-MM) that shows highly homogeneous light transmission and strong microwave shielding efficacy. The CT-MM film is fabricated using a cost-effective lift-off method based on a crackle template. It achieves a shielding effectiveness of ~26 dB, optical transmittance of ~91% and negligible impact on optical imaging performance. Moreover, high–quality CT-MM film is demonstrated on a large–calibre spherical surface. These excellent properties of CT-MM film, together with its advantages of facile large-area fabrication and scalability in processing on multi-shaped substrates, make CT-MM a powerful technology for transparent EMI shielding in practical applications.

  1. Stretchable and transparent electrodes using hybrid structures of graphene-metal nanotrough networks with high performances and ultimate uniformity.

    PubMed

    An, Byeong Wan; Hyun, Byung Gwan; Kim, So-Yun; Kim, Minji; Lee, Mi-Sun; Lee, Kyongsoo; Koo, Jae Bon; Chu, Hye Yong; Bae, Byeong-Soo; Park, Jang-Ung

    2014-11-12

    Transparent electrodes that can maintain their electrical and optical properties stably against large mechanical deformations are essential in numerous applications of flexible and wearable electronics. In this paper, we report a comprehensive analysis of the electrical, optical, and mechanical properties of hybrid nanostructures based on graphene and metal nanotrough networks as stretchable and transparent electrodes. Compared to the single material of graphene or the nanotrough, the formation of this hybrid can improve the uniformity of sheet resistance significantly, that is, a very low sheet resistance (1 Ω/sq) with a standard deviation of less than ±0.1 Ω/sq, high transparency (91% in the visible light regime), and superb stretchability (80% in tensile strain). The successful demonstration of skin-attachable, flexible, and transparent arrays of oxide semiconductor transistors fabricated using hybrid electrodes suggests substantial promise for the next generation of electronic devices.

  2. Nitrogen-doped Carbon Derived from ZIF-8 as a High-performance Metal-free Catalyst for Acetylene Hydrochlorination.

    PubMed

    Chao, Songlin; Zou, Fang; Wan, Fanfan; Dong, Xiaobin; Wang, Yanlin; Wang, Yuxuan; Guan, Qingxin; Wang, Guichang; Li, Wei

    2017-01-04

    Acetylene hydrochlorination is a major industrial technology for manufacturing vinyl chloride monomer in regions with abundant coal resources; however, it is plagued by the use of mercury(II) chloride catalyst. The development of a nonmercury catalyst has been extensively explored. Herein, we report a N-doped carbon catalyst derived from ZIF-8 with both high activity and quite good stability. The acetylene conversion reached 92% and decreased slightly during a 200 h test at 220 °C and atmospheric pressure. Experimental studies and theoretical calculations indicate that C atoms adjacent to the pyridinic N are the active sites, and coke deposition covering pyridinic N is the main reason for catalyst deactivation. The performance of those N-doped carbons makes it possible for practical applications with further effort. Furthermore, the result also provides guidance for designing metal-free catalysts for similar reactions.

  3. Nitrogen-doped Carbon Derived from ZIF-8 as a High-performance Metal-free Catalyst for Acetylene Hydrochlorination

    NASA Astrophysics Data System (ADS)

    Chao, Songlin; Zou, Fang; Wan, Fanfan; Dong, Xiaobin; Wang, Yanlin; Wang, Yuxuan; Guan, Qingxin; Wang, Guichang; Li, Wei

    2017-01-01

    Acetylene hydrochlorination is a major industrial technology for manufacturing vinyl chloride monomer in regions with abundant coal resources; however, it is plagued by the use of mercury(II) chloride catalyst. The development of a nonmercury catalyst has been extensively explored. Herein, we report a N-doped carbon catalyst derived from ZIF-8 with both high activity and quite good stability. The acetylene conversion reached 92% and decreased slightly during a 200 h test at 220 °C and atmospheric pressure. Experimental studies and theoretical calculations indicate that C atoms adjacent to the pyridinic N are the active sites, and coke deposition covering pyridinic N is the main reason for catalyst deactivation. The performance of those N-doped carbons makes it possible for practical applications with further effort. Furthermore, the result also provides guidance for designing metal-free catalysts for similar reactions.

  4. High-performance GaN metal-insulator-semiconductor ultraviolet photodetectors using gallium oxide as gate layer.

    PubMed

    Lee, Ming-Lun; Mue, T S; Huang, F W; Yang, J H; Sheu, J K

    2011-06-20

    In this study, gallium nitride (GaN)-based metal-insulator-semiconductor (MIS) ultraviolet (UV) photodetectors (PDs) with a gallium oxide (GaO(x)) gate layer formed by alternating current bias-assisted photoelectrochemical oxidation of n-GaN are presented. By introducing the GaO(x) gate layer to the GaN MIS UV PDs, the leakage current is reduced and a much larger UV-to-visible rejection ratio (R(UV/vis)) of spectral responsivity is achieved. In addition, a bias-dependent spectral response results in marked increase of the R(UV/vis) with bias voltage up to ~10(5). The bias-dependent responsivity suggests the possible existence of internal gain in of the GaN MIS PDs.

  5. Metallic amorphous electrodeposited molybdenum coating from aqueous electrolyte: Structural, electrical and morphological properties under current density

    NASA Astrophysics Data System (ADS)

    Nemla, Fatima; Cherrad, Djellal

    2016-07-01

    Molybdenum coatings are extensively utilized as back contact for CIGS-based solar cells. However, their electrodeposition from aqueous electrolyte still sophisticates, since long time, owing to the high reactivity with oxygen. In this study, we present a successful 30 min electrodeposition experiment of somewhat thick (∼0.98-2.9 μm) and of moderate surface roughness RMS (∼47-58 nm), metallic bright Mo coating from aqueous electrolyte containing molybdate ions. XRD analysis and Hall Effect measurements have been used to confirm the presence of Mo. The crystal structure of deposits was slightly amorphous in nature to body centred cubic structure (bcc) Mo (110), (211) and (220) face. Lattice parameters exhibit some weak fluctuated tensile stress when compared to the reference lattice parameter. Additionally, our calculated lattice parameters are in good agreement with some previous works from literature. Discussions on the grain growth prove that they are constrained by grain boundary energy not the thickness effect. Further discussions were made on the electrical resistivity and surface morphology. Resonance scattering of Fermi electrons are expected to contribute towards the variation in the film resistivity through the carrier mobility limitation. However, studied samples might be qualified as candidates for solar cell application.

  6. Effect of patch borders on coercivity in amorphous rare earth-transition metal thin films

    NASA Technical Reports Server (NTRS)

    Patterson, G.; Fu, H.; Giles, R. C.; Mansuripur, M.

    1991-01-01

    The coercivity at the micron scale is a very important property of magneto-optical media. It is a key factor that determines the magnetic domain wall movement and domain reversal. How the coercivity is influenced by a special type of patch borders is discussed. Patch formation is a general phenomenon in growth processes of amorphous rare earth transition metal thin films. Different patches may stem from different seeds and the patch borders are formed when they merge. Though little is known about the exact properties of the borders, we may expect that the exchange interaction at the patch border is weaker than that within a patch, since there is usually a spatial gap between two patches. Computer simulations were performed on a 2-D hexagonal lattice consisting of 37 complete patches with random shape and size. From the series of simulations we may conclude that the domain in the patch with borders of 30 percent exchange strength can expand most easily to the whole lattice, because the exchange strength can expand most easily to the whole lattice, because the exchange strength of the border is not too high to prevent the domain from growing within the patch and it is not too low to prevent the domain from expanding beyond the patch.

  7. Corrosion-resistant amorphous metallic coatings: Engineering development: Progress report, October 1, 1985-October 1, 1986

    SciTech Connect

    Fitzgerald, D.J.; DiStefano, S.; Rameshan, R.

    1986-12-01

    Objective is to use sputter-deposited amorphous metallic coatings on alloys in heat recovery systems in power plants. It was found that chromium could be used as a substitute for ruthenium in MoRuB. The new alloy, MoCrB, has corrosion current two orders of magnitude lower than MoRuB. The effort to develop the parameters for depositing FeCrPC on steel was frustrated by a persistent pinhole problem. Two titanium-based alloys were developed which are equal to or better than the optimized FeCrPC alloy in terms of corrosion resistance. The potentiodynamic polarization characteristics of MoCrB and TiCrBC were measured over a range in temperature from 25 to 100/sup 0/C. The corrosion current increased with temperature as predicted by theory. The corrosion characteristics of MoCrB and TiCrPC were also tested in 1.0N HC1. Cost analysis of the magnetron sputtering coating process indicates that the process cost is in the range of $2.50 to $3.00 per square foot steel.

  8. Improved manufacturing technology for producing porous Nafion for high-performance ionic polymer-metal composite actuators

    NASA Astrophysics Data System (ADS)

    Zhao, Dongxu; Li, Dichen; Wang, Yanjie; Chen, Hualing

    2016-07-01

    The current actuation performance of ionic polymer-metal composites (IPMCs) limits their further application in the aerospace, energy, and optics fields, among others. To overcome this issue, we developed a freeze-drying process to generate Nafion membranes with a porous structure, the characteristics of which were investigated using thermogravimetric analysis, Fourier transform infrared spectrometry, field-emission scanning electron microscopy, and water uptake tests. The pores fabricated using the developed freeze-drying process had a diameter of approximately 270 nm, and a porosity of nearly 40.45%. The displacement and the central angle were introduced as variables to evaluate the bending deformation of an IPMC actuator based on the porous Nafion membrane. Compared with conventional actuators, this IPMC actuator showed an increase in displacement of 4963.6% at 2 V, and an increase in central angle of 73.35% at 3 V. Although the blocking forces of this IPMC actuator decreased to some extent, it was confirmed that the integrated actuation performance, which was evaluated using the strain energy density increment, was improved. The performance of the IPMC actuator was enhanced as a result of the porous Nafion structure manufactured using the developed freeze-drying process.

  9. Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes.

    PubMed

    Wang, Fei; Seo, Jung-Hun; Li, Zhaodong; Kvit, Alexander V; Ma, Zhenqiang; Wang, Xudong

    2014-01-22

    Doping semiconductor nanowires (NWs) for altering their electrical and optical properties is a critical strategy for tailoring the performance of nanodevices. ZnO NWs grown by hydrothermal method are pervasively used in optoelectronic, photovoltaic, and piezoelectric energy-harvesting devices. We synthesized in situ Cl-doped ZnO NWs with metallic conductivity that would fit seamlessly with these devices and improve their performance. Possible Cl doping mechanisms were discussed. UV-visible absorption spectroscopy confirmed the visible light transparency of Cl-doped ZnO NWs. Cl-doped ZnO NW/TiO2 core/shell-structured photoelectrochemical (PEC) anode was fabricated to demonstrate the application potential of highly conductive ZnO NWs. Higher photocurrent density and overall PEC efficiency compared with the undoped ZnO NW-based device were achieved. The successful doping and low resistivity of ZnO could unlock the potential of ZnO NWs for applications in low-cost flexible transparent electrodes.

  10. Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane

    NASA Astrophysics Data System (ADS)

    Wahiduzzaman; Allmond, Kelsey; Stone, John; Harp, Spencer; Mujibur, Khan

    2017-01-01

    We report the sonochemical synthesis of MOF (metal organic framework) nanoparticles of 30-200 nm in size and electrospraying of those particles on electrospun nanofibers to process a MOF-attached nanofibrous membrane. This membrane displayed significant selectivity towards CO2 and capacity of adsorbing with 4000-5000 ppm difference from a mixed gas flow of 1% CO2 and 99% N2. Applying ultrasonic waves during the MOF synthesis offered rapid dispersion and formation of crystalline MOF nanoparticles in room temperature. The MOF nanoparticles of 100-200 nm in size displayed higher surface area and adsorption capacity comparing to that of 30-60 nm in size. Nanofibrous membrane was produced by electrospinning of MOF blended PAN solution followed by electrospraying of additional MOF nanoparticles. This yielded uniform MOF deposition on nanofibers, occurred due to electrostatic attraction between highly charged nanoparticles and conductive nanofibers. A test bench for real-time CO2 adsorption at room temperature was built with non-dispersive Infrared (NDIR) CO2 sensors. Comparative tests were performed on the membrane to investigate its enhanced adsorption capacity. Three layers of the as-produced membranes displayed CO2 adsorption for approximately 2 h. Thermogravimetric analysis (TGA) of the membrane showed the thermal stability of the MOF and PAN up to 290 and 425 °C, respectively.

  11. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding

    PubMed Central

    Han, Yu; Lin, Jie; Liu, Yuxuan; Fu, Hao; Ma, Yuan; Jin, Peng; Tan, Jiubin

    2016-01-01

    Our daily electromagnetic environment is becoming increasingly complex with the rapid development of consumer electronics and wireless communication technologies, which in turn necessitates the development of electromagnetic interference (EMI) shielding, especially for transparent components. We engineered a transparent EMI shielding film with crack-template based metallic mesh (CT-MM) that shows highly homogeneous light transmission and strong microwave shielding efficacy. The CT-MM film is fabricated using a cost-effective lift-off method based on a crackle template. It achieves a shielding effectiveness of ~26 dB, optical transmittance of ~91% and negligible impact on optical imaging performance. Moreover, high–quality CT-MM film is demonstrated on a large–calibre spherical surface. These excellent properties of CT-MM film, together with its advantages of facile large-area fabrication and scalability in processing on multi-shaped substrates, make CT-MM a powerful technology for transparent EMI shielding in practical applications. PMID:27151578

  12. Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane.

    PubMed

    Wahiduzzaman; Allmond, Kelsey; Stone, John; Harp, Spencer; Mujibur, Khan

    2017-12-01

    We report the sonochemical synthesis of MOF (metal organic framework) nanoparticles of 30-200 nm in size and electrospraying of those particles on electrospun nanofibers to process a MOF-attached nanofibrous membrane. This membrane displayed significant selectivity towards CO2 and capacity of adsorbing with 4000-5000 ppm difference from a mixed gas flow of 1% CO2 and 99% N2. Applying ultrasonic waves during the MOF synthesis offered rapid dispersion and formation of crystalline MOF nanoparticles in room temperature. The MOF nanoparticles of 100-200 nm in size displayed higher surface area and adsorption capacity comparing to that of 30-60 nm in size. Nanofibrous membrane was produced by electrospinning of MOF blended PAN solution followed by electrospraying of additional MOF nanoparticles. This yielded uniform MOF deposition on nanofibers, occurred due to electrostatic attraction between highly charged nanoparticles and conductive nanofibers. A test bench for real-time CO2 adsorption at room temperature was built with non-dispersive Infrared (NDIR) CO2 sensors. Comparative tests were performed on the membrane to investigate its enhanced adsorption capacity. Three layers of the as-produced membranes displayed CO2 adsorption for approximately 2 h. Thermogravimetric analysis (TGA) of the membrane showed the thermal stability of the MOF and PAN up to 290 and 425 °C, respectively.

  13. One-Dimensional Assembly of Conductive and Capacitive Metal Oxide Electrodes for High-Performance Asymmetric Supercapacitors.

    PubMed

    Harilal, Midhun; Vidyadharan, Baiju; Misnon, Izan Izwan; Anilkumar, Gopinathan M; Lowe, Adrian; Ismail, Jamil; Yusoff, Mashitah M; Jose, Rajan

    2017-03-29

    A one-dimensional morphology comprising nanograins of two metal oxides, one with higher electrical conductivity (CuO) and the other with higher charge storability (Co3O4), is developed by electrospinning technique. The CuO-Co3O4 nanocomposite nanowires thus formed show high specific capacitance, high rate capability, and high cycling stability compared to their single-component nanowire counterparts when used as a supercapacitor electrode. Practical symmetric (SSCs) and asymmetric (ASCs) supercapacitors are fabricated using commercial activated carbon, CuO, Co3O4, and CuO-Co3O4 composite nanowires, and their properties are compared. A high energy density of ∼44 Wh kg(-1) at a power density of 14 kW kg(-1) is achieved in CuO-Co3O4 ASCs employing aqueous alkaline electrolytes, enabling them to store high energy at a faster rate. The current methodology of hybrid nanowires of various functional materials could be applied to extend the performance limit of diverse electrical and electrochemical devices.

  14. Pathways to a family of low-cost, high-performance, metal matrix composites based on aluminum diboride in aluminum

    NASA Astrophysics Data System (ADS)

    Hall, Aaron Christopher

    The continued development of a new family of metal matrix composites based on the in-situ formation of AlB2 flakes in liquid aluminum is described. First, a new synthesis technique for the preparation of high aspect ratio AlB2 is demonstrated. Borax and B2O 3 were reacted with molten aluminum to prepare high aspect ratio AlB 2. The focus then shifts to further understanding the Al-B alloy system. Work on the Al-B alloy system concentrated on the Al(L) + AlB 2 → Al(L) + AlB12 peritectic transformation and the growth of AlB2 in aluminum. The equilibrium peritectic transformation temperature was redetermined and found to be 950 +/- 5°C. The kinetics of the peritectic transformation were measured and reported for the first time. Cu, Fe, and Si additions were made to the alloy, and their effect on the peritectic reaction was investigated. All three elements shorten the time required for the peritectic reaction to occur. The effect of these three elements on flake growth was also investigated. They each caused a reduction in the size of growing AlB2 flakes. Finally two samples containing more than 30v% AlB2 in aluminum were prepared. Their properties were measured. The sample containing 40v% AlB2 exhibited a flexural strength of 200 MPa. The 35v% sample exhibited a flexural strength of 150 MPa. When the 35v% sample was tested in compression, it exhibited an ultimate strength close to 200 MPa. Its modulus varied from 200--300 GPa depending on the orientation of the loading axis with respect to the flake reinforcement.

  15. Evaluation of drug loading capabilities of γ-cyclodextrin-metal organic frameworks by high performance liquid chromatography.

    PubMed

    Xu, Xiaonan; Wang, Caifen; Li, Haiyan; Li, Xue; Liu, Botao; Singh, Vikramjeet; Wang, Shuxia; Sun, Lixin; Gref, Ruxandra; Zhang, Jiwen

    2017-03-10

    Drug loading into γ-cyclodextrin-metal organic frameworks (γ-CD-MOFs) using the impregnation approach is a laborious process. In this study, a γ-CD-MOF construct (2-5μm particle diameter) was used as the stationary phase under HPLC conditions with the aim to correlate retention properties and drug loading capability of the CD-based structure. Ketoprofen, fenbufen and diazepam were chosen as model drugs with m-xylene as a control analyte to investigate the correlation of drug loading and their chromatographic behaviour in the γ-CD-MOF column. Furthermore, γ-CD itself was also prepared as the stationary phase by coupling with silica in the column to illustrate the enhanced interaction between drugs and γ-CD-MOF as a reference. The retention and loading efficiency of the drugs were determined with different ratios of hexane and ethanol (10:90, 20:80, 50:50, 80:20, 90:10, v/v) at temperatures of 20, 25, 30 and 37°C. With the increment in hexane content, the loading efficiency of ketoprofen and fenbufen increased from 2.39±0.06% to 4.38±0.04% and from 5.82±0.94% to 6.37±0.29%, respectively. The retention time and loading efficiency of ketoprofen and diazepam were the lowest at 30°C while those of fenbufen had the different tendency. The excellent relation between the retention and loading efficiency onto γ-CD-MOF could be clearly observed through mobile phase and temperature investigation. In conclusion, a highly efficient chromatographic method has been established to evaluate the drug loading capability of γ-CD-MOF.

  16. High Performance Ceramic Interconnect Material for Solid Oxide Fuel Cells (SOFCs): Ca- and Transition Metal-doped Yttrium Chromite

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2011-10-15

    The effect of transition metal substitution on thermal and electrical properties of Ca-doped yttrium chromite was investigated in relation to use as a ceramic interconnect in high temperature solid oxide fuel cells (SOFCs). 10 at% Co, 4 at% Ni, and 1 at% Cu substitution on B-site of 20 at% Ca-doped yttrium chromite led to a close match of thermal expansion coefficient (TEC) with that of 8 mol% yttria-stabilized zirconia (YSZ), and a single phase Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 remained stable between 25 and 1100 degree C over a wide oxygen partial pressure range. Doping with Cu significantly facilitated densification of yttrium chromite. Ni dopant improved both electrical conductivity and dimensional stability in reducing environments, likely through diminishing the oxygen vacancy formation. Substitution with Co substantially enhanced electrical conductivity in oxidizing atmosphere, which was attributed to an increase in charge carrier density and hopping mobility. Electrical conductivity of Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 at 900 degree C is 57 S/cm in air and 11 S/cm in fuel (pO2=5×10^-17 atm) environments. Chemical compatibility of doped yttrium chromite with other cell components was verified at the processing temperatures. Based on the chemical and dimensional stability, sinterability, and thermal and electrical properties, Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 is suggested as a promising SOFC ceramic interconnect to potentially overcome technical limitations of conventional acceptor-doped lanthanum chromites.

  17. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    SciTech Connect

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation

  18. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hu, Lin; Chen, Qianwang

    2014-01-01

    Lithium-ion batteries (LIBs), owing to their high energy density, light weight, and long cycle life, have shown considerable promise for storage devices. The successful utilization of LIBs depends strongly on the preparation of nanomaterials with outstanding lithium storage properties. Recent progress has demonstrated that hollow/porous nanostructured oxides are very attractive candidates for LIBs anodes due to their high storage capacities. Here, we aim to provide an overview of nanoscale metal-organic frameworks (NMOFs)-templated synthesis of hollow/porous nanostructured oxides and their LIBs applications. By choosing some typical NMOFs as examples, we present a comprehensive summary of synthetic procedures for nanostructured oxides, such as binary, ternary and composite oxides. Hollow/porous structures are readily obtained due to volume loss and release of internally generated gas molecules during the calcination of NMOFs in air. Interestingly, the NMOFs-derived hollow/porous structures possess several special features: pores generated from gas molecules release will connect to each other, which are distinct from ``dead pores'' pore size often appears to be <10 nm; in terms of surface chemistry, the pore surface is hydrophobic. These structural features are believed to be the most critical factors that determine LIBs' performance. Indeed, it has been shown that these NMOFs-derived hollow/porous oxides exhibit excellent electrochemical performance as anode materials for LIBs, including high storage capacity, good cycle stability, and so on. For example, a high charge capacity of 1465 mA h g-1 at a rate of 300 mA g-1 was observed after 50 cycles for NMOFs-derived Co3O4 porous nanocages, which corresponds to 94.09% of the initial capacity (1557 mA h g-1), indicating excellent stability. The capacity of NMOFs-derived Co3O4 is higher than that of other Co3O4 nanostructures obtained by a conventional two-step route, including nanosheets (1450 mA h g-1 at 50 mA g-1

  19. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.

    PubMed

    Hu, Lin; Chen, Qianwang

    2014-01-01

    Lithium-ion batteries (LIBs), owing to their high energy density, light weight, and long cycle life, have shown considerable promise for storage devices. The successful utilization of LIBs depends strongly on the preparation of nanomaterials with outstanding lithium storage properties. Recent progress has demonstrated that hollow/porous nanostructured oxides are very attractive candidates for LIBs anodes due to their high storage capacities. Here, we aim to provide an overview of nanoscale metal-organic frameworks (NMOFs)-templated synthesis of hollow/porous nanostructured oxides and their LIBs applications. By choosing some typical NMOFs as examples, we present a comprehensive summary of synthetic procedures for nanostructured oxides, such as binary, ternary and composite oxides. Hollow/porous structures are readily obtained due to volume loss and release of internally generated gas molecules during the calcination of NMOFs in air. Interestingly, the NMOFs-derived hollow/porous structures possess several special features: pores generated from gas molecules release will connect to each other, which are distinct from "dead pores"; pore size often appears to be <10 nm; in terms of surface chemistry, the pore surface is hydrophobic. These structural features are believed to be the most critical factors that determine LIBs' performance. Indeed, it has been shown that these NMOFs-derived hollow/porous oxides exhibit excellent electrochemical performance as anode materials for LIBs, including high storage capacity, good cycle stability, and so on. For example, a high charge capacity of 1465 mA h g(-1) at a rate of 300 mA g(-1) was observed after 50 cycles for NMOFs-derived Co3O4 porous nanocages, which corresponds to 94.09% of the initial capacity (1557 mA h g(-1)), indicating excellent stability. The capacity of NMOFs-derived Co3O4 is higher than that of other Co3O4 nanostructures obtained by a conventional two-step route, including nanosheets (1450 mA h g(-1) at 50 m

  20. Carbon-Coated Fe3O4/VOx Hollow Microboxes Derived from Metal-Organic Frameworks as a High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Zhao, Zhi-Wei; Wen, Tao; Liang, Kuang; Jiang, Yi-Fan; Zhou, Xiao; Shen, Cong-Cong; Xu, An-Wu

    2017-02-01

    As the ever-growing demand for high-performance power sources, lithium-ion batteries with high storage capacities and outstanding rate performance have been widely considered as a promising storage device. In this work, starting with metal-organic frameworks, we have developed a facile approach to the synthesis of hybrid Fe3O4/VOx hollow microboxes via the process of hydrolysis and ion exchange and subsequent calcination. In the constructed architecture, the hollow structure provides an efficient lithium ion diffusion pathway and extra space to accommodate the volume expansion during the insertion and extraction of Li(+). With the assistance of carbon coating, the obtained Fe3O4/VOx@C microboxes exhibit excellent cyclability and enhanced rate performance when employed as an anode material for lithium-ion batteries. As a result, the obtained Fe3O4/VOx@C delivers a high Coulombic efficiency (near 100%) and outstanding reversible specific capacity of 742 mAh g(-1) after 400 cycles at a current density of 0.5 A g(-1). Moreover, a remarkable reversible capacity of 556 mAh g(-1) could be retained even at a current density of 2 A g(-1). This study provides a fundamental understanding for the rational design of other composite oxides as high-performance electrode materials for lithium-ion batteries.

  1. Amorphization and Directional Crystallization of Metals Confined in Carbon Nanotubes Investigated by in Situ Transmission Electron Microscopy.

    PubMed

    Tang, Dai-Ming; Ren, Cui-Lan; Lv, Ruitao; Yu, Wan-Jing; Hou, Peng-Xiang; Wang, Ming-Sheng; Wei, Xianlong; Xu, Zhi; Kawamoto, Naoyuki; Bando, Yoshio; Mitome, Masanori; Liu, Chang; Cheng, Hui-Ming; Golberg, Dmitri

    2015-08-12

    The hollow core of a carbon nanotube (CNT) provides a unique opportunity to explore the physics, chemistry, biology, and metallurgy of different materials confined in such nanospace. Here, we investigate the nonequilibrium metallurgical processes taking place inside CNTs by in situ transmission electron microscopy using CNTs as nanoscale resistively heated crucibles having encapsulated metal nanowires/crystals in their channels. Because of nanometer size of the system and intimate contact between the CNTs and confined metals, an efficient heat transfer and high cooling rates (∼10(13) K/s) were achieved as a result of a flash bias pulse followed by system natural quenching, leading to the formation of disordered amorphous-like structures in iron, cobalt, and gold. An intermediate state between crystalline and amorphous phases was discovered, revealing a memory effect of local short-to-medium range order during these phase transitions. Furthermore, subsequent directional crystallization of an amorphous iron nanowire formed by this method was realized under controlled Joule heating. High-density crystalline defects were generated during crystallization due to a confinement effect from the CNT and severe plastic deformation involved.

  2. Anisotropic phase separation through the metal-insulator transition in amorphous Mo-Ge and Fe-Ge alloys

    SciTech Connect

    Regan, Michael J.

    1993-12-01

    Since an amorphous solid is often defined as that which lacks long-range order, the atomic structure is typically characterized in terms of the high-degree of short-range order. Most descriptions of vapor-deposited amorphous alloys focus on characterizing this order, while assuming that the material is chemically homogeneous beyond a few near neighbors. By coupling traditional small-angle x-ray scattering which probes spatial variations of the electron density with anomalous dispersion which creates a species-specific contrast, one can discern cracks and voids from chemical inhomogeneity. In particular, one finds that the chemical inhomogeneities which have been previously reported in amorphous FexGe1-x and MoxGe1-x are quite anisotropic, depending significantly on the direction of film growth. With the addition of small amounts of metal atoms (x<0.2), no films appear isotropic nor homogeneous through the metal/insulator transition. The results indicate that fluctuations in the growth direction play a pivotal role in preventing simple growth models of a columnar structure or one that evolves systematically as it grows. The anomalous scattering measurements identify the metal atoms (Fe or Mo) as the source of the anisotropy, with the Ge atoms distributed homogeneously. The author has developed a method for using these measurements to determine the compositions of the phase-separating species. The results indicate phase separation into an amorphous Ge and an intermetallic phase of stoichiometry close to FeGe2or MoGe3. Finally, by manipulating the deposited power flux and rates of growth, FexGe1-x films which have the same Fe composition x can be grown to different states of phase separation. These results may help explain the difficulty workers have had in isolating the metal/insulator transition for these and other vapor-deposited amorphous alloys.

  3. Very thin ITO/metal mesh hybrid films for a high-performance transparent conductive layer in GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Min, Jung-Hong; Kwak, Hoe-Min; Kim, Kiyoung; Jeong, Woo-Lim; Lee, Dong-Seon

    2017-01-01

    In this paper, we introduce very thin Indium tin oxide (ITO) layers (5, 10, and 15 nm) hybridized with a metal mesh to produce high-performance transparent conductive layers (TCLs) in near-ultraviolet light-emitting diodes (NUV LEDs). Using UV-vis-IR spectrometry, Hall measurement, and atomic force microscopy, we found that 10 nm was the optimal thickness for the very thin ITO layers in terms of outstanding transmittance and sheet resistance values as well as stable contact properties when hybridized with the metal mesh. The proposed layers showed a value of 4.56 Ω/□ for sheet resistance and a value of 89.1% for transmittance. Moreover, the NUV LEDs fabricated with the hybrid TCLs achieved ˜140% enhanced light output power compared to that of 150 nm thick ITO layers. Finally, to verify the practical usage of the TCLs for industrial applications, we packaged the NUV LED chips and obtained improved turn-on voltage (3.48 V) and light output power (˜116%) performance.

  4. Very thin ITO/metal mesh hybrid films for a high-performance transparent conductive layer in GaN-based light-emitting diodes.

    PubMed

    Min, Jung-Hong; Kwak, Hoe-Min; Kim, Kiyoung; Jeong, Woo-Lim; Lee, Dong-Seon

    2017-01-27

    In this paper, we introduce very thin Indium tin oxide (ITO) layers (5, 10, and 15 nm) hybridized with a metal mesh to produce high-performance transparent conductive layers (TCLs) in near-ultraviolet light-emitting diodes (NUV LEDs). Using UV-vis-IR spectrometry, Hall measurement, and atomic force microscopy, we found that 10 nm was the optimal thickness for the very thin ITO layers in terms of outstanding transmittance and sheet resistance values as well as stable contact properties when hybridized with the metal mesh. The proposed layers showed a value of 4.56 Ω/□ for sheet resistance and a value of 89.1% for transmittance. Moreover, the NUV LEDs fabricated with the hybrid TCLs achieved ∼140% enhanced light output power compared to that of 150 nm thick ITO layers. Finally, to verify the practical usage of the TCLs for industrial applications, we packaged the NUV LED chips and obtained improved turn-on voltage (3.48 V) and light output power (∼116%) performance.

  5. THz-Driven Ultrafast Spin-Lattice Scattering in Amorphous Metallic Ferromagnets

    NASA Astrophysics Data System (ADS)

    Bonetti, S.; Hoffmann, M. C.; Sher, M.-J.; Chen, Z.; Yang, S.-H.; Samant, M. G.; Parkin, S. S. P.; Dürr, H. A.

    2016-08-01

    We use single-cycle THz fields and the femtosecond magneto-optical Kerr effect to, respectively, excite and probe the magnetization dynamics in two thin-film ferromagnets with different lattice structures: crystalline Fe and amorphous CoFeB. We observe Landau-Lifshitz-torque magnetization dynamics of comparable magnitude in both systems, but only the amorphous sample shows ultrafast demagnetization caused by the spin-lattice depolarization of the THz-induced ultrafast spin current. Quantitative modeling shows that such spin-lattice scattering events occur on similar time scales than the conventional spin conserving electronic scattering (˜30 fs ). This is significantly faster than optical laser-induced demagnetization. THz conductivity measurements point towards the influence of lattice disorder in amorphous CoFeB as the driving force for enhanced spin-lattice scattering.

  6. Application of Neutron-Absorbing Structural-Amorphous Metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Controls

    SciTech Connect

    Choi, J; Lee, C; Day, D; Wall, M; Saw, C; MoberlyChan, W; Farmer, J; Boussoufl, M; Liu, B; Egbert, H; Branagan, D; D'Amato, A

    2006-11-13

    Spent nuclear fuel contains fissionable materials ({sup 235}U, {sup 239}Pu, {sup 241}Pu, etc.). Neutron multiplication and the potential for criticality are enhanced by the presence of a moderator during cask loading in water, water incursion in accidents conditions during spent fuel storage or transport. To prevent nuclear criticality in spent fuel storage, transportation, and during disposal, neutron-absorbing materials (or neutron poisons, such as borated stainless steel, Boral{trademark}, Metamic{trademark}, Ni-Gd, and others) would have to be applied. The success in demonstrating that the High-Performance Corrosion-Resistant material (HPCRM) can be thermally applied as coating onto base metal to provide for corrosion resistance for many naval applications raises the interest in applying the HPCRM to USDOE/OCRWM spent fuel management program. The fact that the HPCRM relies on the high content of boron to make the material amorphous--an essential property for corrosion resistance--and that the boron has to be homogeneously distributed in the HPCRM qualify the material to be a neutron poison.

  7. Effective passivation and high-performance metal-oxide-semiconductor devices using ultra-high-vacuum deposited high- κ dielectrics on Ge without interfacial layers

    NASA Astrophysics Data System (ADS)

    Chu, L. K.; Chu, R. L.; Lin, T. D.; Lee, W. C.; Lin, C. A.; Huang, M. L.; Lee, Y. J.; Kwo, J.; Hong, M.

    2010-09-01

    Without using any interfacial passivation layers, high- κ dielectric Y 2O 3, HfO 2, and Ga 2O 3(Gd 2O 3) [GGO], by electron beam evaporation in ultra-high-vacuum (UHV), have been directly deposited on Ge substrate. Comprehensive investigations have been carried out to study the oxide/Ge interfaces chemically, structurally, and electronically: hetero-structures of all the studied oxides on Ge are highly thermally stable with annealing to 500 °C, and their interfaces remain atomically sharp. The electrical analyses have been conducted on metal-oxide-semiconductor (MOS) devices, i.e. MOS capacitors (MOSCAPs) and MOS field-effect-transistors (MOSFETs). Dielectrics constants of the Y 2O 3, HfO 2, and GGO have been extracted to be ˜17, 20, and 13-15, respectively, indicating no interfacial layer formation with 500 °C annealing. A low interfacial density of states ( Dits), as low as 3 × 10 11 cm -2 eV -1, has been achieved for GGO/Ge near mid-gap along with a high Fermi-level movement efficiency as high as 80%. The GGO/Ge pMOSFETs with TiN as the metal gate have yielded very high-performances, in terms of 496 μA/μm, 178 μS/μm, and 389 cm 2/V s in saturation drain current density, maximum transconductance, and effective hole mobility, respectively. The gate width and gate length of the MOSFET are 10 μm and 1 μm.

  8. Metal-Organic Coordination Polymer to Prepare Density Controllable and High Nitrogen-Doped Content Carbon/Graphene for High Performance Supercapacitors.

    PubMed

    Luo, Jinwei; Zhong, Wenbin; Zou, Yubo; Xiong, Changlun; Yang, Wantai

    2017-01-11

    Design and preparation of carbon-based electrode material with high nitrogen-doping ratio and appropriate density attract much interest for supercapacitors in practical application. Herein, three porous carbon/graphene (NCGCu, NCGFe, and NCGZn) with high doping ratio of nitrogen have been prepared via directly pyrolysis of graphene oxide (GO)/metal-organic coordination polymer (MOCP) composites, which were formed by reacting 4,4'-bipyridine (BPD) with CuCl2, FeCl3, and ZnCl2, respectively. As-prepared NCGCu, NCGFe and NCGZn showed high nitrogen doping ratio of 10.68, 12.99, and 11.21 at. %; and high density of 1.52, 0.84, and 1.15 g cm(-3), respectively. When as-prepared samples were used as supercapacitor electrodes, NCGCu, NCGFe and NCGZn exhibited high gravimetric specific capacitances of 369, 298.5, 309.5 F g(-1), corresponding to high volumetric specific capacitances of 560.9, 250.7, 355.9 F cm(-3) at a current density of 0.5 A g(-1), as well as good cycling stability, nearly 100% of the capacitance retained after 1000 cycles even at a large current density of 10 A g(-1). It is expected that the provided novel strategy can be used to develop electrode materials in high performance energy conversion/storage devices.

  9. Porous CuO/reduced graphene oxide composites synthesized from metal-organic frameworks as anodes for high-performance sodium-ion batteries.

    PubMed

    Li, Dongsheng; Yan, Dong; Zhang, Xiaojie; Li, Jiabao; Lu, Ting; Pan, Likun

    2017-07-01

    Currently, metal-organic frameworks (MOFs) and their derivates have attracted great interest as a new kind of electrode material for energy storage devices, mainly due to their designable framework structures, abundant pore structures, adjustable pore and particle sizes. In this work, porous CuO/reduced graphene oxide (RGO) composites were obtained through the pyrolysis of Cu-based MOFs/graphene oxide under microwave irradiation, and investigated as anode materials for sodium-ion batteries (SIBs). CuO/RGO composites exhibit a maximum specific capacity of 466.6mAhg(-1) after 50 galvanostatic charge/discharge cycles at a current density of 100mAg(-1). Even at a high current density of 2Ag(-1), a capacity of 347.6mAhg(-1) is still maintained with stable cycling. The superior electrochemical performance, which is better than those of CuO-based electrodes reported previously, makes the CuO/RGO composites to be applied promisingly as anodes for high-performance SIBs.

  10. Refractive-index change caused by electrons in amorphous AsS and AsSe thin films doped with different metals by photodiffusion

    SciTech Connect

    Nordman, Olli; Nordman, Nina; Pashkevich, Valfrid

    2001-08-01

    The refractive-index change caused by electrons was measured in amorphous AsS and AsSe thin films. Films were coated with different metals. Diffraction gratings were written by electron-beam lithography. The interactions of electrons in films with and without the photodiffusion of overcoated metal were compared. Incoming electrons caused metal atom and ion diffusion in both investigated cases. The metal diffusion was dependent on the metal and it was found to influence the refractive index. In some cases lateral diffusion of the metal was noticed. The conditions for applications were verified. {copyright} 2001 Optical Society of America

  11. Indium (In)- and tin (Sn)-based metal induced crystallization (MIC) on amorphous germanium (α-Ge)

    SciTech Connect

    Kang, Dong-Ho; Park, Jin-Hong

    2014-12-15

    Highlights: • In- and Sn-based MIC phenomenon on amorphous (α)-Ge is newly reported. • The In- and Sn-MIC phenomenon respectively started at 250 °C and 400 °C. • The Sn-MIC process presents higher sheet resistance and bigger crystal grains. - Abstract: In this paper, metal-induced crystallization (MIC) phenomenon on α-Ge by indium (In) and tin (Sn) are thoroughly investigated. In- and Sn-MIC process respectively started at 250 °C and 400 °C. Compared to the previously reported MIC samples including In-MIC, Sn-MIC process presented higher sheet resistance (similar to that of SPC) and bigger crystal grains above 50 nm (slightly smaller than that of SPC). According to SIMS analysis, Sn atoms diffused more slowly into Ge than In at 400 °C, providing lower density of heterogeneous nuclei induced by metals and consequently larger crystal grains.

  12. P-type conductive amorphous oxides of transition metals from solution processing

    NASA Astrophysics Data System (ADS)

    Li, Jinwang; Kaneda, Toshihiko; Tokumitsu, Eisuke; Koyano, Mikio; Mitani, Tadaoki; Shimoda, Tatsuya

    2012-07-01

    We report a series of solution-processed p-type conductive amorphous Ln-M-O (a-Ln-M-O, where M = Ru, Ir, and Ln is a lanthanide element except Ce) having low resistivities (10-3 to 10-2 Ω cm). These oxides are thermally stable to a high degree, being amorphous up to 800 °C, and processable below 400 °C. Their film surfaces are smooth on the atomic scale, and the process allows patterning simply by direct imprinting without distortion of the pattern after annealing. These properties have high potential for use in printed electronics. The electron configurations of these oxides are apparently different from existing p-type oxides.

  13. Study the formation of metastable crystalline phases from amorphous metallic systems with an integrated approach

    NASA Astrophysics Data System (ADS)

    Ye, Zhuo; Zhang, Feng; Sun, Yang; Mendelev, Mikhail; Ott, Ryan; Park, Eun-Soo; Besser, Matt; Kramer, Matt; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-03-01

    An efficient genetic algorithm (GA) is integrated with experimental diffraction data to solve a metastable Al20Sm4 phase that evolves during rapid solidification of an amorphous Al-10%Sm alloy produced by magnetron sputtering. The excellent match between calculated and experimental X-ray diffraction patterns confirms that this new phase appeared in the crystallization of the alloy. We discover the strong similarity of the underlying atomic structure between the amorphous alloy and this phase. Both phases share the same Sm-centered motif, providing a low-barrier pathway to form this Al20Sm4phase in the glass matrix at low temperatures. Molecular dynamic simulations of crystal growth from the liquid phase predict the formation of disordered anti-site defects in the devitrified crystal.

  14. Field Performance of Three-Phase Amorphous Metal Core Distribution Transformers at Pearl Harbor, Hawaii

    DTIC Science & Technology

    1990-08-01

    37 Waste water management and sanitary engineering Airfields and pavements 38 O1 pollution removal and recovery3 Air polution ADVANCED BASE AND...utility systems at Ford Island, Barbers Point Naval Air Station, the Naval Shipyard, and the Naval Supply Center at Pearl Harbor, Hawaii. The main...Power Meter connected to a three-phase 4-wire amorphous core transformer under test at Barbers Point Naval Air Station. This testing procedure was

  15. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  16. Analysis of amorphous indium-gallium-zinc-oxide thin-film transistor contact metal using Pilling-Bedworth theory and a variable capacitance diode model

    NASA Astrophysics Data System (ADS)

    Kiani, Ahmed; Hasko, David G.; Milne, William I.; Flewitt, Andrew J.

    2013-04-01

    It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation.

  17. High performance liquid chromatography of substituted aromatics with the metal-organic framework MIL-100(Fe): Mechanism analysis and model-based prediction.

    PubMed

    Qin, Weiwei; Silvestre, Martin Eduardo; Li, Yongli; Franzreb, Matthias

    2016-02-05

    Metal-organic framework (MOF) MIL-100(Fe) with well-defined thickness was homogenously coated onto the outer surface of magnetic microparticles via a liquid-phase epitaxy method. The as-synthesized MIL-100(Fe) was used as stationary phase for high-performance liquid chromatography (HPLC) and separations of two groups of mixed aromatic hydrocarbons (toluene, styrene and p-xylene; acetanilide, 2-nirtoaniline and 1-naphthylamine) using methanol/water as mobile phase were performed to evaluate its performance. Increasing water content of the mobile phase composition can greatly improve the separations on the expense of a longer elution time. Stepwise elution significantly shortens the elution time of acetanilide, 2-nirtoaniline and 1-naphthylamine mixtures, while still achieving a baseline separation. Combining the experimental results and in-depth modeling using a recently developed chromatographic software (ChromX), adsorption equilibrium parameters, including the affinities and maximum capacities, for each analyte toward the MIL-100(Fe) are obtained. In addition, the pore diffusivity of aromatic hydrocarbons within MIL-100(Fe) was determined to be 5×10(-12)m(2)s(-1). While the affinities of MIL-100(Fe) toward the analyte molecules differs much, the maximum capacities of the analytes are in a narrow range with q*MOFmax,toluene=3.55molL(-1), q*MOFmax,styrene or p-xylene=3.53molL(-1), and q*MOFmax,anilines=3.12molL(-1) corresponding to approximately 842 toluene and 838 styrene or p-xylene, and 740 aniline molecules per MIL-100(Fe) unit cell, respectively.

  18. Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to high performance liquid chromatography-ultraviolet detector for the determination of estrogens in environmental water samples.

    PubMed

    Hu, Cong; He, Man; Chen, Beibei; Zhong, Cheng; Hu, Bin

    2013-10-04

    In this work, three kinds of metal-organic frameworks (MOFs), MOF-5, MOF-199 and IRMOF-3, were introduced in stir bar sorptive extraction (SBSE) and novel polydimethylsiloxane (PDMS)/MOFs (including PDMS/MOF-5, PDMS/MOF-199 and PDMS/IRMOF-3) coated stir bars were prepared by sol-gel technique. These PDMS/MOFs coatings were characterized and critically compared for the extraction of seven target estrogens (17-β-estradiol, dienestrol, diethylstilbestrol, estrone, 4-t-octylphenol, bisphenol-A and 17α-ethynylestradiol) by SBSE, and the results showed that PDMS/IRMOF-3 exhibited highest extraction efficiency. Based on the above facts, a novel method of PDMS/IRMOF-3 coating SBSE-high performance liquid chromatography ultraviolet (HPLC-UV) detection was developed for the determination of seven target estrogens in environmental waters. Several parameters affecting extraction of seven target estrogens by SBSE (PDMS/IRMOF-3) including extraction time, stirring rate, pH, ionic strength, desorption solvent and desorption time were investigated. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) were found to be in the range of 0.15-0.35 μg/L. The linear range was 2-2,500 μg/L for 17α-ethynylestradiol and 1-2,500 μg/L for other estrogens. The relative standard deviations (RSDs) were in the range of 3.7-9.9% (n=8, c=20 μg/L) and the enrichment factors were from 30.3 to 55.6-fold (theoretical enrichment factor was 100-fold). The proposed method was successfully applied to the analysis of estrogens in environmental water samples, and quantitative recoveries were obtained for the spiking experiments.

  19. Selective wet etch of a TaN metal gate with an amorphous-silicon hard mask

    NASA Astrophysics Data System (ADS)

    Yongliang, Li; Qiuxia, Xu

    2010-11-01

    The appropriate wet etch process for the selective removal of TaN on the HfSiON dielectric with an amorphous-silicon (a-Si) hardmask is presented. SC1 (NH4OH: H2O2: H2O), which can achieve reasonable etch rates for metal gates and very high selectivity to high-k dielectrics and hardmask materials, is chosen as the TaN etchant. Compared with the photoresist mask and the tetraethyl orthosilicate (TEOS) hardmask, the a-Si hardmask is a better choice to achieve selective removal of TaN on the HfSiON dielectric because it is impervious to the SC1 etchant and can be readily etched with NH4OH solution without attacking the TaN and the HfSiON film. In addition, the surface of the HfSiON dielectric is smooth after the wet etching of the TaN metal gate and a-Si hardmask removal, which could prevent device performance degradation. Therefore, the wet etching of TaN with the a-Si hardmask can be applied to dual metal gate integration for the selective removal of the first TaN metal gate deposition.

  20. Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries

    NASA Astrophysics Data System (ADS)

    Wang, Liping; Wang, Qingji; Jia, Weishang; Chen, Shulin; Gao, Peng; Li, Jingze

    2017-02-01

    Lithium metal with high theoretical capacity (3860 mAh/g) and low operational voltage (-3.04 V vs. standard hydrogen electrode) reflects to be one of the most high energy density anodes for energy storage devices. While, its high chemical activity to continuously react with electrolytes causing low coulombic efficiency and formation of lithium dendrites leading safety concern limits practical applications. To conquer these challenges, amorphous Li3PO4 thin films with thickness of 0-200 nm are directly coated on the surface of Li metal foil via magnetron sputtering. The as-prepared Li3PO4 has almost insulated property with electronic conductivity of 1.4 × 10-10 S/cm and ionic conductivity of 2.8 × 10-8 S/cm. The conformal coating layer Li3PO4 can successfully suppress the lithium dendrites growth and improve its life span. The remarkable improvements of the Li3PO4-coated Li electrodes are mainly attributed to high chemical stability as well as amorphous nature of Li3PO4, which leads layer-by-layer growth Li film rather than islands form dendrites.

  1. Thin metal layer as transparent electrode in n-i-p amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Theuring, Martin; Geissendörfer, Stefan; Vehse, Martin; von Maydell, Karsten; Agert, Carsten

    2014-07-01

    In this paper, transparent electrodes, based on a thin silver film and a capping layer, are investigated. Low deposition temperature, flexibility and low material costs are the advantages of this type of electrode. Their applicability in structured n-i-p amorphous silicon solar cells is demonstrated in simulation and experiment. The influence of the individual layer thicknesses on the solar cell performance is discussed and approaches for further improvements are given. For the silver film/capping layer electrode, a higher solar cell efficiency could be achieved compared to a reference ZnO:Al front contact.

  2. Connecting defects and amorphization in UiO-66 and MIL-140 metal-organic frameworks: a combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Bennett, Thomas D.; Todorova, Tanya K.; Baxter, Emma F.; Reid, David G.; Gervais, Christel; Bueken, Bart; Van de Voorde, B.; De Vos, Dirk; Keen, David A.; Mellot-Draznieks, Caroline

    The mechanism and products of the structural collapse of the metal-organic frameworks (MOFs) UiO-66, MIL-140B and MIL-140C upon ball-milling are investigated through solid state 13C NMR and pair distribution function (PDF) studies, finding amorphization to proceed by the breaking of a fraction of metal-ligand bonding in each case. The amorphous products contain inorganic-organic bonding motifs reminiscent of the crystalline phases. Whilst the inorganic Zr6O4(OH)4 clusters of UiO-66 remain intact upon structural collapse, the ZrO backbone of the MIL-140 frameworks undergoes substantial distortion. Density functional theory calculations have been performed to investigate defective models of MIL-140B and show, through comparison of calculated and experimental 13C NMR spectra, that amorphization and defects in the materials are linked.

  3. High performance cermet electrodes

    DOEpatents

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  4. Modification of semiconductor or metal nanoparticle lattices in amorphous alumina by MeV heavy ions

    NASA Astrophysics Data System (ADS)

    Bogdanović Radović, I.; Buljan, M.; Karlušić, M.; Jerčinović, M.; Dražič, G.; Bernstorff, S.; Boettger, R.

    2016-09-01

    In the present work we investigate effects of MeV heavy ions (from 0.4 MeV Xe to 15 MeV Si) on regularly ordered nanoparticle (NP) lattices embedded in amorphous alumina matrix. These nanostructures were produced by self-assembling growth using magnetron-sputtering deposition. From grazing incidence small-angle x-ray scattering measurements we have found that the used MeV heavy ions do not change the NP sizes, shapes or distances among them. However, ions cause a tilt of the entire NP lattice in the direction parallel to the surface. The tilt angle depends on the incident ion energy, type and the applied fluence and a nearly linear increase of the tilt angle with the ion fluence and irradiation angle was found. This way, MeV heavy ion irradiation can be used to design custom-made NP lattices. In addition, grazing incidence small-angle x-ray scattering can be effectively used as a method for the determination of material redistribution/shift caused by the ion hammering effect. For the first time, the deformation yield in amorphous alumina was determined for irradiation performed at the room temperature.

  5. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  6. Preface: Proceedings of the 13th Conference on Liquid and Amorphous Metals (LAM13) (Ekaterinburg, Russia, 8 14 July 2007)

    NASA Astrophysics Data System (ADS)

    Popel, Pjotr; Gelchinskii, Boris; Sidorov, Valeriy

    2008-03-01

    The most recent developments in the field of liquid and amorphous metals and alloys are regularly updated through two complementary international conferences: the liquid and amorphous metals conference (LAM) and the rapidly quenched materials (RQ) conference. The first series of conferences started as LM1 in 1966 at Brookhaven for the basic understanding of liquid metals. The subsequent LM conferences were held in Tokyo (1972) and Bristol (1976). The conference was renewed in Grenoble (1980) as a LAM conference including amorphous metals and continued in Los Angeles (1983), Garmisch-Partenkirchen (1986), Kyoto (1989), Vienna (1992), Chicago (1995), Dortmund (1998), Yokohama (2001) and Metz (2004). The conferences are mainly devoted to liquid and amorphous metals and alloys. However, communications on some non-metallic systems such as semiconductors, quasicrystals etc, are also accepted. The conference tradition strongly encourages participation from junior researchers and graduate students. The 13th conference of the LAM series was organized in Ekaterinburg, Russia, by the Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMet UB RAS) and the Ural State Pedagogical University (USPU), and held from 8-14 July 2007 under the chairmanship of Professors Pjotr Popel (USPU) and Boris Gelchinskii (IMet UB RAS). Two hundred and forty two active participants and about 60 guest participants from 20 countries attended the conference. There were no parallel sessions and all oral reports were separated into three groups: invited talks (40 min), full-scale oral reports (25 min), and brief oral reports (15 min). The program included ten sessions, ranging from purely theoretical subjects to the technological application of molten and amorphous alloys. The following sessions took place: A: Electronic structure and transport, magnetic properties; B: Phase transitions; C: Structure; D: Atomic dynamics and transport; E: Thermodynamics; F: Modelling

  7. Permanent optical doping of amorphous metal oxide semiconductors by deep ultraviolet irradiation at room temperature

    SciTech Connect

    Seo, Hyungtak; Cho, Young-Je; Bobade, Santosh M.; Park, Kyoung-Youn; Choi, Duck-Kyun; Kim, Jinwoo; Lee, Jaegab

    2010-05-31

    We report an investigation of two photon ultraviolet (UV) irradiation induced permanent n-type doping of amorphous InGaZnO (a-IGZO) at room temperature. The photoinduced excess electrons were donated to change the Fermi-level to a conduction band edge under the UV irradiation, owing to the hole scavenging process at the oxide interface. The use of optically n-doped a-IGZO channel increased the carrier density to approx10{sup 18} cm{sup -3} from the background level of 10{sup 16} cm{sup -3}, as well as the comprehensive enhancement upon UV irradiation of a-IGZO thin film transistor parameters, such as an on-off current ratio at approx10{sup 8} and field-effect mobility at 22.7 cm{sup 2}/V s.

  8. High performance polymer development

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1991-01-01

    The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications.

  9. Influence of laser irradiation on change properties of bulk amorphous Zr-Pd metallic alloys

    NASA Astrophysics Data System (ADS)

    Fedorov, V. A.; Yakovlev, A. V.; Pluzhnikova, T. N.; Shlikova, A. A.; Berezner, A. D.

    2017-01-01

    We study the morphological features of laser irradiation zones formed on the surface of the bulk metallic glasses. We use the nanoindentation method for estimation alloys properties caused by impulse heating during irradiation.

  10. High Performance Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2003-01-01

    This report summarizes results from research on high performance polymers. The research areas proposed in this report include: 1) Effort to improve the synthesis and to understand and replicate the dielectric behavior of 6HC17-PEK; 2) Continue preparation and evaluation of flexible, low dielectric silicon- and fluorine- containing polymers with improved toughness; and 3) Synthesis and characterization of high performance polymers containing the spirodilactam moiety.

  11. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    SciTech Connect

    Chun, Minkyu; Chowdhury, Md Delwar Hossain; Jang, Jin

    2015-05-15

    We investigated the effects of top gate voltage (V{sub TG}) and temperature (in the range of 25 to 70 {sup o}C) on dual-gate (DG) back-channel-etched (BCE) amorphous-indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs) characteristics. The increment of V{sub TG} from -20V to +20V, decreases the threshold voltage (V{sub TH}) from 19.6V to 3.8V and increases the electron density to 8.8 x 10{sup 18}cm{sup −3}. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on V{sub TG}. At V{sub TG} of 20V, the mobility decreases from 19.1 to 15.4 cm{sup 2}/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at V{sub TG} of - 20V, the mobility increases from 6.4 to 7.5cm{sup 2}/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  12. High-throughput exploration of thermoelectric and mechanical properties of amorphous NbO2 with transition metal additions

    NASA Astrophysics Data System (ADS)

    Music, Denis; Geyer, Richard W.; Hans, Marcus

    2016-07-01

    To increase the thermoelectric efficiency and reduce the thermal fatigue upon cyclic heat loading, alloying of amorphous NbO2 with all 3d and 5d transition metals has systematically been investigated using density functional theory. It was found that Ta fulfills the key design criteria, namely, enhancement of the Seebeck coefficient and positive Cauchy pressure (ductility gauge). These quantum mechanical predictions were validated by assessing the thermoelectric and elastic properties on combinatorial thin films, which is a high-throughput approach. The maximum power factor is 2813 μW m-1 K-2 for the Ta/Nb ratio of 0.25, which is a hundredfold increment compared to pure NbO2 and exceeds many oxide thermoelectrics. Based on the elasticity measurements, the consistency between theory and experiment for the Cauchy pressure was attained within 2%. On the basis of the electronic structure analysis, these configurations can be perceived as metallic, which is consistent with low electrical resistivity and ductile behavior. Furthermore, a pronounced quantum confinement effect occurs, which is identified as the physical origin for the Seebeck coefficient enhancement.

  13. Comparison of Crevice Corrosion of Fe-Based Amorphous Metal and Crystalline Ni-Cr-Mo Alloy

    SciTech Connect

    Shan, X; Ha, H; Payer, J H

    2008-07-24

    The crevice corrosion behaviors of an Fe-based bulk metallic glass alloy (SAM1651) and a Ni-Cr-Mo crystalline alloy (C-22) were studied in 4M NaCl at 100 C with cyclic potentiodynamic polarization and constant potential tests. The corrosion damage morphologies, corrosion products and the compositions of corroded surfaces of these two alloys were studied with optical 3D reconstruction, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Auger Electron Spectroscopy (AES). It was found that the Fe-based bulk metallic glass (amorphous alloy) SAM1651 had a more positive breakdown potential and repassivation potential than crystalline alloy C-22 in cyclic potentiodynamic polarization tests and required a more positive oxidizing potential to initiate crevice corrosion in constant potential test. Once crevice corrosion initiated, the corrosion propagation of C-22 was more localized near the crevice border compared to SAM1651, and SAM1651 repassivated more readily than C-22. The EDS results indicated that the corrosion products of both alloys contained high amount of O and were enriched in Mo and Cr. The AES results indicated that a Cr-rich oxide passive film was formed on the surfaces of both alloys, and both alloys were corroded congruently.

  14. High-strength and high-ductility nanostructured and amorphous metallic materials.

    PubMed

    Kou, Hongning; Lu, Jian; Li, Ying

    2014-08-20

    The development of materials with dual properties of high strength and high ductility has been a constant challenge since the foundation of the materials science discipline. The rapid progress of nanotechnology in recent decades has further brought this challenge to a new era. This Research News highlights a few newly developed strategies to optimize advanced nanomaterials and metallic glasses with exceptional dual mechanical properties of high strength and high ductility. A general concept of strain non-localization is presented to describe the role of multiscale (i.e., macroscale, microscale, nanoscale, and atomic scale) heterogeneities in the ductility enhancement of materials reputed to be intrinsically brittle, such as nanostructured metallic materials and bulk metallic glasses. These nanomaterials clearly form a new group of materials that display an extraordinary relationship between yield strength and the uniform elongation with the same chemical composition. Several other examples of nanomaterials such as those reinforced by nanoprecipitates will also be described.

  15. Electrochemical Studies of Passive Film Stability on Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 Amorphous Metal in Seawater at 90oCElectrochemical Studies of Passive Film Stability on Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 Amorphous Metal in Seawater at 9

    SciTech Connect

    Farmer, J C; Haslam, J; Day, S D; Lian, T; Saw, C K; Hailey, P D; Choi, J S; Rebak, R B; Yang, N; Payer, J H; Perepezko, J H; Hildal, K; Lavernia, E J; Ajdelsztajn, L; Branagan, D J; Buffa, E J; Aprigliano, L F

    2007-04-25

    An iron-based amorphous metal, Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5), with very good corrosion resistance was developed. This material was prepared as a melt-spun ribbon, as well as gas atomized powder and a thermal-spray coating. During electrochemical testing in several environments, including seawater at 90 C, the passive film stability was found to be comparable to that of high-performance nickel-based alloys, and superior to that of stainless steels, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. This material also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. This material and its parent alloy maintained corrosion resistance up to the glass transition temperature, and remained in the amorphous state during exposure to relatively high neutron doses.

  16. Metal Acetylacetonate Series in Interface Engineering for Full Low-Temperature-Processed, High-Performance, and Stable Planar Perovskite Solar Cells with Conversion Efficiency over 16% on 1 cm(2) Scale.

    PubMed

    Chen, Wei; Xu, Leiming; Feng, Xiyuan; Jie, Jiansheng; He, Zhubing

    2017-02-14

    A series of metal acetylacetonates produced by a full low-temperature (below 100 °C) process are successfully employed to obtain both "multistable" and high-performance planar-inverted perovskite solar cells. All the three kinds of champion cells in small area exhibit over 18% in conversion-efficiency with negligible hysteresis, along with above 16% in conversion-efficiency for planar PSCs in an aperture area of over 1 cm(2) .

  17. Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Plutonium Metals, Oxides, and Solutions on the High Performance Computing Platform Moonlight

    SciTech Connect

    Chapman, Bryan Scott; Gough, Sean T.

    2016-12-05

    This report documents a validation of the MCNP6 Version 1.0 computer code on the high performance computing platform Moonlight, for operations at Los Alamos National Laboratory (LANL) that involve plutonium metals, oxides, and solutions. The validation is conducted using the ENDF/B-VII.1 continuous energy group cross section library at room temperature. The results are for use by nuclear criticality safety personnel in performing analysis and evaluation of various facility activities involving plutonium materials.

  18. High performance systems

    SciTech Connect

    Vigil, M.B.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  19. High performance parallel architectures

    SciTech Connect

    Anderson, R.E. )

    1989-09-01

    In this paper the author describes current high performance parallel computer architectures. A taxonomy is presented to show computer architecture from the user programmer's point-of-view. The effects of the taxonomy upon the programming model are described. Some current architectures are described with respect to the taxonomy. Finally, some predictions about future systems are presented. 5 refs., 1 fig.

  20. High-Performance Happy

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2007-01-01

    Traditionally, the high-performance computing (HPC) systems used to conduct research at universities have amounted to silos of technology scattered across the campus and falling under the purview of the researchers themselves. This article reports that a growing number of universities are now taking over the management of those systems and…

  1. Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

    SciTech Connect

    Bullock, J. Cuevas, A.; Yan, D.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-10-28

    Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n{sup +} and p{sup +} surfaces are passivated with SiO{sub 2}/a-Si:H and Al{sub 2}O{sub 3}/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n{sup +}) contacts, with SiO{sub 2} thicknesses of ∼1.55 nm, achieve the best carrier-selectivity producing a contact resistivity ρ{sub c} of ∼3 mΩ cm{sup 2} and a recombination current density J{sub 0c} of ∼40 fA/cm{sup 2}. These characteristics are shown to be stable at temperatures up to 350 °C. The MIS(p{sup +}) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

  2. Localized surface plasmon-enhanced photoluminescence of amorphous silicon quantum dots through plasmonic subwavelength crossed metallic gratings

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han; Lin, Ming-Yi; Hsiao, Li-Jen; Choi, Wing-Kit; Lin, Hoang Yan

    2016-04-01

    We investigate experimentally the enhancing effect of plasmonic subwavelength crossed Ag gratings on photoluminescence (PL) from the amorphous silicon quantum dots (a-Si QDs) embedded in a central silicon-rich SiO x film of the Ag/SiO x :a-Si QDs/Ag sandwich nanostructures. The use of the crossed Ag grating structure as the top layer in the sandwich nanostructures results in a 2-fold increase in the PL peak intensity and a 1.34-fold increase in the integrated emission intensity compared with the use of a one-dimensional (1D) Ag grating top layer, and a 1.53-fold peak intensity increase compared with that of a SiO x :a-Si QDs/Ag structure without a Ag top layer. These significant PL enhancements can be attributed to the high light-extraction efficiency of the polarization-independent crossed metallic grating structure, the strong out-coupling of localized surface plasmons (LSPs), and the strong a-Si QD-LSP coupling.

  3. Variable-range hopping conduction and metal-insulator transition in amorphous RexSi1-x thin films

    NASA Astrophysics Data System (ADS)

    Lisunov, K. G.; Vinzelberg, H.; Arushanov, E.; Schumann, J.

    2011-09-01

    Resistivity, ρ(T), of the amorphous RexSi1-x thin films with x = 0.285-0.351 is investigated in the interval of T ~ 300-0.03 K. At x = 0.285-0.324 the activated behavior of ρ(T) is governed by the Mott and the Shklovskii-Efros variable-range hopping (VRH) conduction mechanisms in different temperature intervals and the three-dimensional regime of the hopping. Between x = 0.328 and 0.351 the activationless dependence of ρ(T) takes place. The critical behavior of the characteristic VRH temperatures and of the Coulomb gap, Δ, pertinent to proximity to the metal-insulator transition at the critical value of xc ≈ 0.327, is observed. The analysis of the critical behavior of Δ yields directly the critical exponent of the dielectric permittivity, η = 2.1 ± 0.2, in agreement with the theoretical prediction, η = 2. On the other hand, the values of the critical exponent of the correlation length ν ~ 0.8-1.1 close to the expected value of unity can be obtained from the analysis of the critical behavior of the VRH characteristic temperatures under an additional assumption of a strong underbarrier scattering of hopping charge carriers in conditions, when the concentration of scattering centers considerably exceeds the concentration of sites involved in the hopping.

  4. The influence of Sc addition on the welding microstructure of Zr-based bulk metallic glass: The stability of the amorphous phase

    NASA Astrophysics Data System (ADS)

    Wang, Shing Hoa; Kuo, Pei Hung; Tsang, Hsiao Tsung; Jeng, Rong Ruey; Lin, Yu Lon

    2007-10-01

    Pulsed direct current autogeneous tungsten inert gas arc welding was conducted on rods of bulk metallic glasses (BMGs) Zr55Cu30Ni5Al10 and (Zr55Cu30Ni5Al10)99.98Sc0.02 under two different cooling conditions. The crystalline precipitates in the fusion zone of BMG Zr55Cu30Ni5Al10 were confirmed by microfocused x-ray diffraction pattern analysis as Zr2Ni and Zr2(Cu,Al) intermetallic compounds. In contrast, BMG with Sc addition (Zr55Cu30Ni5Al10)99.98Sc0.02 shows an excellent stable glass forming ability. The fusion zone of BMG (Zr55Cu30Ni5Al10)99.98Sc0.02 remains in the same amorphous state as that of the amorphous base metal when the weld is cooled with accelerated cooling.

  5. Itinerant magnetic properties of amorphous metallic systems II: Magnetic moment distribution in the Fe-B alloys and the magnetism of amorphous Fe

    NASA Astrophysics Data System (ADS)

    Krompiewski, S.; Krey, U.; Krauss, U.; Ostermeier, H.

    1988-05-01

    For realistic structural models of amorphous Fe 1- xB x with 0.2⩽x⩽0.6 and for the fictitious case of x = 0 (amorphous iron, a-Fe), we calculate the distribution function p( ml) of the local magnetic moments ml by means of a self-consistent itinerant electron approach. Generally, p( ml) is rather broad and agrees with experimental hyperfine field distributions. For x→0 and x > 0.5, even negative moments appear, although overlinem remains positive. Additionally we find that for a-Fe a rather drastic transition from paramagnetic behaviour at densities ρ<ρ c(≈8.3 g/cm 3) to ferromagnetism at ρ > ρ c would happen, if the magnetization could be forced to remain homogeneous. However, if the ml are allowed to relax to their local values, no such transition happens. Finally, we study the question whether the spread of the local moments is important for the density of states and find that this is the case except for 0.2⩽x⩽0.35.

  6. Development of a low loss magnetic composite utilizing amorphous metal flake. Third semi-annual progress report, 19 September 1979-18 March 1980

    SciTech Connect

    Johnson, L.

    1980-04-01

    The objective of this project is to determine the feasibility of casting amorphous metal ribbon in the shape of a helix with properties suitable for motor applications. The tasks include (1) determination of the casting parameters required to produce a helical ribbon, (2) evaluation of magnetic properties and methods for bonding, and (3) developing methods for patterning a wheel for producing motor slots in as-cast ribbon.

  7. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films. [FEPC; TIPC; TIBC; CR

    SciTech Connect

    DiStefano, S.; Ramesham, R.; Fitzgerald, D.J. )

    1991-07-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. We report some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique. The films were characterized using differential scanning calorimetry (DSC), stress analysis, scanning electron microscopy (SEM), x-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), electron microprobe, and potentiodynamic polarization technique.

  8. High Performance, Dependable Multiprocessor

    NASA Technical Reports Server (NTRS)

    Ramos, Jeremy; Samson, John R.; Troxel, Ian; Subramaniyan, Rajagopal; Jacobs, Adam; Greco, James; Cieslewski, Grzegorz; Curreri, John; Fischer, Michael; Grobelny, Eric; George, Alan; Aggarwal, Vikas; Patel, Minesh; Some, Raphael

    2006-01-01

    With the ever increasing demand for higher bandwidth and processing capacity of today's space exploration, space science, and defense missions, the ability to efficiently apply commercial-off-the-shelf (COTS) processors for on-board computing is now a critical need. In response to this need, NASA's New Millennium Program office has commissioned the development of Dependable Multiprocessor (DM) technology for use in payload and robotic missions. The Dependable Multiprocessor technology is a COTS-based, power efficient, high performance, highly dependable, fault tolerant cluster computer. To date, Honeywell has successfully demonstrated a TRL4 prototype of the Dependable Multiprocessor [I], and is now working on the development of a TRLS prototype. For the present effort Honeywell has teamed up with the University of Florida's High-performance Computing and Simulation (HCS) Lab, and together the team has demonstrated major elements of the Dependable Multiprocessor TRLS system.

  9. High performance polymeric foams

    SciTech Connect

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-08-28

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy.

  10. High-performance permanent magnets.

    PubMed

    Goll, D; Kronmüller, H

    2000-10-01

    High-performance permanent magnets (pms) are based on compounds with outstanding intrinsic magnetic properties as well as on optimized microstructures and alloy compositions. The most powerful pm materials at present are RE-TM intermetallic alloys which derive their exceptional magnetic properties from the favourable combination of rare earth metals (RE = Nd, Pr, Sm) with transition metals (TM = Fe, Co), in particular magnets based on (Nd.Pr)2Fe14B and Sm2(Co,Cu,Fe,Zr)17. Their development during the last 20 years has involved a dramatic improvement in their performance by a factor of > 15 compared with conventional ferrite pms therefore contributing positively to the ever-increasing demand for pms in many (including new) application fields, to the extent that RE-TM pms now account for nearly half of the worldwide market. This review article first gives a brief introduction to the basics of ferromagnetism to confer an insight into the variety of (permanent) magnets, their manufacture and application fields. We then examine the rather complex relationship between the microstructure and the magnetic properties for the two highest-performance and most promising pm materials mentioned. By using numerical micromagnetic simulations on the basis of the Finite Element technique the correlation can be quantitatively predicted, thus providing a powerful tool for the further development of optimized high-performance pms.

  11. High-performance permanent magnets

    NASA Astrophysics Data System (ADS)

    Goll, D.; Kronmüller, H.

    High-performance permanent magnets (pms) are based on compounds with outstanding intrinsic magnetic properties as well as on optimized microstructures and alloy compositions. The most powerful pm materials at present are RE-TM intermetallic alloys which derive their exceptional magnetic properties from the favourable combination of rare earth metals (RE=Nd, Pr, Sm) with transition metals (TM=Fe, Co), in particular magnets based on (Nd,Pr)2Fe14B and Sm2(Co,Cu,Fe,Zr)17. Their development during the last 20 years has involved a dramatic improvement in their performance by a factor of >15 compared with conventional ferrite pms therefore contributing positively to the ever-increasing demand for pms in many (including new) application fields, to the extent that RE-TM pms now account for nearly half of the worldwide market. This review article first gives a brief introduction to the basics of ferromagnetism to confer an insight into the variety of (permanent) magnets, their manufacture and application fields. We then examine the rather complex relationship between the microstructure and the magnetic properties for the two highest-performance and most promising pm materials mentioned. By using numerical micromagnetic simulations on the basis of the Finite Element technique the correlation can be quantitatively predicted, thus providing a powerful tool for the further development of optimized high-performance pms.

  12. Comparison of the corrosion behavior of a bulk amorphous metal, Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5}, with its crystallized form

    SciTech Connect

    Schroeder, V.; Gilbert, C.J.; Ritchie, R.O.

    1998-04-14

    Amorphous metals have generated much interest, both in basic research and for structural applications, because of their near-theoretical strength to stiffness ratio and extremely low damping characteristics. In addition, a number of amorphous metals exhibit excellent corrosion resistance, which has been explained in terms of their structural homogeneity. Since amorphous metals are in principle structurally and chemically homogeneous and thus lack any microstructure, such as grain boundaries, which could act as local electrochemically-active sites, many researchers attribute good corrosion resistance to the entire class of amorphous metals. It is this point, whether the amorphous condition itself confers improved corrosion resistance, that the authors examine in the present note.

  13. JOINING OF MOLYBDENUM DISILICIDE TO STAINLESS STEEL USING AMORPHOUS METAL BRAZES-RESIDUAL STRESS ANALYSIS

    SciTech Connect

    VAIDYA, RAJENDRA U; KAUTZ, DOUGLAS D.; GALLEGOS, DAVID E.

    2007-01-30

    Molybdenum disilicide (MoSi{sub 2})/stainless steel 316 L jOints were produced by high temperature brazing using a cobalt-based metallic-glass (METGLAS{trademark} 2714A). Successful joining was completed in two different ways; either by feeding excess braze into the braze gap upon heating or by constraining the MoSi{sub 2}/stainiess steel assembly with an alumina (Al{sub 2}O{sub 3}) fixture during the heating cycle. These steps were necessary to ensure the production of a high quality void free joint. Residual stress measurements were completed on these joints. Indentation results show higher tensile residual stresses in the stainless steel for the joint with the external constraint, in comparison to the unconstrained state. In contrast, the compressive residual stresses In the MoSi{sub 2} (as measured by X-ray diffraction) were lower in the constrained state relative to the unconstrained state. These results and a lack of residual stress balance indicate that the stress state in the braze is significantly different under the two joining conditions and the volume of the braze plays an important role in the development of the residual stresses. Push-out tests carried out on these joints gave higher joint strengths in the unconstrained as compared to the constrained condition. The results of this study have important implications on the selection of the appropriate joining process (use of constraint versus extra braze).

  14. Composite films of metal doped CoS/carbon allotropes; efficient electrocatalyst counter electrodes for high performance quantum dot-sensitized solar cells.

    PubMed

    Khalili, Seyede Sara; Dehghani, Hossein; Afrooz, Malihe

    2017-05-01

    This study reports the enhanced catalytic ability of metal ions-doped CoS and CoS/carbon allotrope counter electrodes (CEs) (synthesized using a successive ionic layer adsorption and reaction (SILAR) method) to improve the power conversion efficiency (η) in quantum dot-sensitized solar cells (QDSSCs). Firstly, doping effects of different metal ions (Mg(2+), Ca(2+), Sr(2+) and Ba(2+)) in the CoS CE on the QDSSCs performance have been investigated. Overall, among the different metal doped CoS CEs, the best energy conversion efficiency of 2.19%, achieved for Sr, is the highest reported for QDSSCs constructed with metal doped CoS. A sandwich structural Sr- and Ba-CoS/carbon allotrope (graphene sheet (GS), graphene oxide (GO) and carbon nanotube (CNT)) composite CEs have been prepared by repeating electrophoretic deposition (EPD) of carbon materials and deposition of CoS nanoparticles. Dramatic enhancements of η have been observed with the Sr- and Ba-CoS/GO CEs based QDSSCs (∼76% and ∼41%, respectively), which is higher than that of the bare CoS CE. Because of the large specific surface area and superior electrical conductivity of GS, GO and CNT and the high electrocatalytic activity of CoS, these CEs show an improvement in the photocurrent density in the cells, as revealed from electrochemical and spectral data.

  15. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-12-31

    DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

  16. High Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  17. High Performance FORTRAN

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush

    1994-01-01

    High performance FORTRAN is a set of extensions for FORTRAN 90 designed to allow specification of data parallel algorithms. The programmer annotates the program with distribution directives to specify the desired layout of data. The underlying programming model provides a global name space and a single thread of control. Explicitly parallel constructs allow the expression of fairly controlled forms of parallelism in particular data parallelism. Thus the code is specified in a high level portable manner with no explicit tasking or communication statements. The goal is to allow architecture specific compilers to generate efficient code for a wide variety of architectures including SIMD, MIMD shared and distributed memory machines.

  18. High Performance Buildings Database

    DOE Data Explorer

    The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

  19. High Performance Window Retrofit

    SciTech Connect

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  20. Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Song, Zhaoning; Watthage, Suneth C.; Phillips, Adam B.; Heben, Michael J.

    2016-04-01

    Organo-metal halide perovskite-based solar cells have been the focus of intense research over the past five years, and power conversion efficiencies have rapidly been improved from 3.8 to >21%. This article reviews major advances in perovskite solar cells that have contributed to the recent efficiency enhancements, including the evolution of device architecture, the development of material deposition processes, and the advanced device engineering techniques aiming to improve control over morphology, crystallinity, composition, and the interface properties of the perovskite thin films. The challenges and future directions for perovskite solar cell research and development are also discussed.

  1. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability.

    PubMed

    Mieszala, Maxime; Hasegawa, Madoka; Guillonneau, Gaylord; Bauer, Jens; Raghavan, Rejin; Frantz, Cédric; Kraft, Oliver; Mischler, Stefano; Michler, Johann; Philippe, Laetitia

    2017-02-01

    By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations.

  2. Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries.

    PubMed

    Dong, Caifu; Xu, Liqiang

    2017-03-01

    Two multifunctional metal-organic frameworks (MOFs) with the same coordination mode, [Co(L)(H2O)]n·2nH2O [defined as "Co(L) MOF"] and [Cd(L)(H2O)]n·2nH2O [defined as "Cd(L) MOF"] (L = 5-aminoisophthalic acid) have been fabricated via a simple and versatile scalable solvothermal approach at 85 °C for 24 h. The relationship between the structure of the electrode materials (especially the coordination water and different metal ions) and the electrochemical properties of MOFs have been investigated for the first time. And then the possible electrochemical mechanisms of the electrodes have been studied and proposed. In addition, MOFs/RGO hybrid materials were prepared via ball milling, which demonstrated better electrochemical performances than those of individual Co(L) MOF and Cd(L) MOF. For example, when Co(L) MOF/RGO was applied as anode for sodium ion batteries (SIBs), it retained 206 mA h g(-1) after 330 cycles at 500 mA g(-1) and 1185 mA h g(-1) could be obtained after 50 cycles at 100 mA g(-1) for lithium-ion batteries (LIBs). The high-discharge capacity, excellent cyclic stability combined with the facile synthesis procedure enable Co(L) MOF- and Cd(L) MOF-based materials to be prospective anode materials for SIBs and LIBs.

  3. High Performance Flexible Thermal Link

    NASA Astrophysics Data System (ADS)

    Sauer, Arne; Preller, Fabian

    2014-06-01

    The paper deals with the design and performance verification of a high performance and flexible carbon fibre thermal link.Project goal was to design a space qualified thermal link combining low mass, flexibility and high thermal conductivity with new approaches regarding selected materials and processes. The idea was to combine the advantages of existing metallic links regarding flexibility and the thermal performance of high conductive carbon pitch fibres. Special focus is laid on the thermal performance improvement of matrix systems by means of nano-scaled carbon materials in order to improve the thermal performance also perpendicular to the direction of the unidirectional fibres.One of the main challenges was to establish a manufacturing process which allows handling the stiff and brittle fibres, applying the matrix and performing the implementation into an interface component using unconventional process steps like thermal bonding of fibres after metallisation.This research was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi).

  4. DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review

    SciTech Connect

    Farmer, J; Brown, B; Bayles, B; Lemieux, T; Choi, J; Ajdelsztajn, L; Dannenberg, J; Lavernia, E; Schoenung, J; Branagan, D; Blue, C; Peter, B; Beardsley, B; Graeve, O; Aprigliano, L; Yang, N; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Boudreau, J

    2007-09-21

    The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable life prediction and process design.

  5. Metallic Ca-Rh/C-methanol, a high-performing system for the hydrodechlorination/ring reduction of mono- and poly chlorinated aromatic substrates.

    PubMed

    Mitoma, Yoshiharu; Kakeda, Mitsunori; Simion, Alina Marieta; Egashira, Naoyoshi; Simion, Cristian

    2009-08-01

    We investigated the reduction of some substituted mono- and poly chlorobenzenes bearing functional groups such as methyl, methoxy, hydroxyl, and amino, under mild conditions (80 degrees C and magnetic stirring, for 2 h) using a system consisting of metallic calcium and methanol (as hydrogen donor system) and 5% wt. Rh/C (as hydrodechlorination/ring reduction catalyst). Hydrodechlorination easily took place for methoxy- and alkyl-chlorobenzenes, yielding the corresponding hydrodechlorinated compounds (57-76%) and affording as secondary reaction products the ring-reduced compounds (16-43%). Treatment of hydroxy- and amino-chlorobenzenes under the same conditions, respectively, gave corresponding hydrodechlorinated compounds (over 60%) along with the ring-reduced compounds. Results show that the reaction of substituted polychlorinated benzenes needs a longer reaction time (6 h), the transformation being nevertheless complete.

  6. Strong Influence of Humidity on Low-Temperature Thin-Film Fabrication via Metal Aqua Complex for High Performance Oxide Semiconductor Thin-Film Transistors.

    PubMed

    Lim, Keon-Hee; Huh, Jae-Eun; Lee, Jinwon; Cho, Nam-Kwang; Park, Jun-Woo; Nam, Bu-Il; Lee, Eungkyu; Kim, Youn Sang

    2017-01-11

    Oxide semiconductors thin film transistors (OS TFTs) with good transparency and electrical performance have great potential for future display technology. In particular, solution-processed OS TFTs have been attracted much attention due to many advantages such as continuous, large scale, and low cost processability. Recently, OS TFTs fabricated with a metal aqua complex have been focused because they have low temperature processability for deposition on flexible substrate as well as high field-effect mobility for application of advanced display. However, despite some remarkable results, important factors to optimize their electrical performance with reproducibility and uniformity have not yet been achieved. Here, we newly introduce the strong effects of humidity to enhance the electrical performance of OS TFTs fabricated with the metal aqua complex. Through humidity control during the spin-coating process and annealing process, we successfully demonstrate solution-processed InOx/SiO2 TFTs with a good electrical uniformity of ∼5% standard deviation, showing high average field-effect mobility of 2.76 cm(2)V(-1)s(-1) and 15.28 cm(2)V(-1)s(-1) fabricated at 200 and 250 °C, respectively. Also, on the basis of the systematic analyses, we demonstrate the mechanism for the change in electrical properties of InOx TFTs depending on the humidity control. Finally, on the basis of the mechanism, we extended the humidity control to the fabrication of the AlOx insulator. Subsequently, we successfully achieved humidity-controlled InOx/AlOx TFTs fabricated at 200 °C showing high average field-effect mobility of 9.5 cm(2)V(-1)s(-1).

  7. High performance sapphire windows

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.; Liou, Larry

    1993-01-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  8. High Performance Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek; Kaewpijit, Sinthop

    1998-01-01

    Traditional remote sensing instruments are multispectral, where observations are collected at a few different spectral bands. Recently, many hyperspectral instruments, that can collect observations at hundreds of bands, have been operational. Furthermore, there have been ongoing research efforts on ultraspectral instruments that can produce observations at thousands of spectral bands. While these remote sensing technology developments hold great promise for new findings in the area of Earth and space science, they present many challenges. These include the need for faster processing of such increased data volumes, and methods for data reduction. Dimension Reduction is a spectral transformation, aimed at concentrating the vital information and discarding redundant data. One such transformation, which is widely used in remote sensing, is the Principal Components Analysis (PCA). This report summarizes our progress on the development of a parallel PCA and its implementation on two Beowulf cluster configuration; one with fast Ethernet switch and the other with a Myrinet interconnection. Details of the implementation and performance results, for typical sets of multispectral and hyperspectral NASA remote sensing data, are presented and analyzed based on the algorithm requirements and the underlying machine configuration. It will be shown that the PCA application is quite challenging and hard to scale on Ethernet-based clusters. However, the measurements also show that a high- performance interconnection network, such as Myrinet, better matches the high communication demand of PCA and can lead to a more efficient PCA execution.

  9. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  10. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  11. Self-assembly formation of hollow Ni-Fe-O nanocage architectures by metal-organic frameworks with high-performance lithium storage

    PubMed Central

    Guo, Hong; Li, Tingting; Chen, Weiwei; Liu, Lixiang; Qiao, Jinli; Zhang, Jiujun

    2015-01-01

    A hollow hybrid Ni-Fe-O nanomaterial (NiFe2O4) is synthesized using a precursor of metal-organic frameworks through a simple and cost-effective method. The unique hollow nanocage structures shorten the length of Li-ion diffusion. The hollow structure offers a sufficient void space, which sufficiently alleviates the mechanical stress caused by volume change. Besides, the hybrid elements allow the volume change to take place in a stepwise manner during electrochemical cycle. And thus, the hierarchical hollow NiFe2O4 nanocage electrode exhibits extraordinary electrochemical performance. The stable cyclic performance is obtained for all rates from 1 C to 10 C. Even when the current reaches 10 C, the capacity can also arrive at 652 mAhg−1. Subsequently, a specific capacity of ca. 975 mAhg−1 is recovered when the current rate reduces back to 1 C after 200 cycles. This strategy that derived from NMOFs may shed light on a new route for large-scale synthesis of hollow porous hybrid nanocages for energy storage, environmental remediation and other novel applications. PMID:26347981

  12. Self-assembly formation of hollow Ni-Fe-O nanocage architectures by metal-organic frameworks with high-performance lithium storage

    NASA Astrophysics Data System (ADS)

    Guo, Hong; Li, Tingting; Chen, Weiwei; Liu, Lixiang; Qiao, Jinli; Zhang, Jiujun

    2015-09-01

    A hollow hybrid Ni-Fe-O nanomaterial (NiFe2O4) is synthesized using a precursor of metal-organic frameworks through a simple and cost-effective method. The unique hollow nanocage structures shorten the length of Li-ion diffusion. The hollow structure offers a sufficient void space, which sufficiently alleviates the mechanical stress caused by volume change. Besides, the hybrid elements allow the volume change to take place in a stepwise manner during electrochemical cycle. And thus, the hierarchical hollow NiFe2O4 nanocage electrode exhibits extraordinary electrochemical performance. The stable cyclic performance is obtained for all rates from 1 C to 10 C. Even when the current reaches 10 C, the capacity can also arrive at 652 mAhg-1. Subsequently, a specific capacity of ca. 975 mAhg-1 is recovered when the current rate reduces back to 1 C after 200 cycles. This strategy that derived from NMOFs may shed light on a new route for large-scale synthesis of hollow porous hybrid nanocages for energy storage, environmental remediation and other novel applications.

  13. Electrochemical Fabrication of Monolithic Electrodes with Core/Shell Sandwiched Transition Metal Oxide/Oxyhydroxide for High-Performance Energy Storage.

    PubMed

    Chang, Shaozhong; Pu, Jun; Wang, Jian; Du, Hongxiu; Zhou, Qingwen; Liu, Ziqiang; Zhu, Chao; Li, Jiachen; Zhang, Huigang

    2016-10-05

    Transition metal oxides/oxyhydroxides (TMOs) are promising high-capacity materials for electrochemical energy storage. However, the low rate and poor cyclability hinder practical applications. In this work, we developed a general electrochemical route to fabricate monolithic core/shell sandwiched structures, which are able to significantly improve the electrochemical properties of TMO electrodes by electrically wiring the insulating active materials and alleviating the adverse effects caused by volume changes using engineered porous structures. As an example, a lithium ion battery anode of porous MnO sandwiched between CNT and carbon demonstrates a high capacity of 554 mAh g(-1) even after 1000 cycles at 2 A g(-1). An all-solid-state symmetric pseudocapacitor consisting of CNT@MnOOH@polypyrrole exhibits a high specific capacitance of 148 F g(-1) and excellent capacitance retention (92% after 10000 cycles at 2 A g(-1)). Several other examples and applications have further confirmed the effectiveness of improving the electrochemical properties by core/shell sandwiched structures.

  14. High-performance GaAs metal-oxide-semiconductor capacitor by using NbAlON as high-k gate dielectric

    NASA Astrophysics Data System (ADS)

    Liu, L. N.; Choi, H. W.; Xu, J. P.; Lai, P. T.

    2017-03-01

    A GaAs metal-oxide-semiconductor (MOS) capacitor using NbAlON as a gate dielectric with different Nb contents is fabricated. Experimental results show that the k value and crystallization temperature of the AlON dielectric can be improved by Nb incorporation, together with reduction in negative oxide charges. However, the interface quality and gate leakage become poorer as the Nb content increases, as confirmed by TEM and X-ray photoelectron spectroscopy results. Therefore, through comprehensively considering the advantages and disadvantages, the sample with a Nb/(Al+Nb) atomic ratio of 62.5% exhibits the best characteristics: high k value (23.3), low interface-state density (2.7 × 1012 cm-2/eV), small hysteresis (55 mV), small frequency dispersion, and low gate leakage current (2.66 × 10-5A/cm2 at Vfb + 1 V). By comparing with reported GaAs MOS devices with different high-k gate dielectrics, it can be suggested that NbAlON is a promising gate dielectric material to achieve excellent electrical performance for GaAs MOS devices.

  15. Heated ion implantation for high-performance and highly reliable silicon-on-insulator complementary metal-oxide-silicon fin field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mizubayashi, Wataru; Onoda, Hiroshi; Nakashima, Yoshiki; Ishikawa, Yuki; Matsukawa, Takashi; Endo, Kazuhiko; Liu, Yongxun; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Migita, Shinji; Morita, Yukinori; Ota, Hiroyuki; Masahara, Meishoku

    2015-04-01

    We have investigated the impact of heated ion implantation (I/I) on the performance and reliability of silicon-on-insulator (SOI) complementary metal-oxide-silicon (CMOS) fin field-effect transistors (FinFETs). An implantation temperature equal to and higher than 400 °C is needed to maintain the crystallinity of the Si substrate during I/I within the experimental conditions of ion species, implantation energy, and ion dose in this study. By heated I/I at 500 °C, the 11-nm-thick SOI layer perfectly maintains the crystallinity even after I/I, and a defect-free crystal is obtained by activation annealing. It was clarified that the cap layer is essential for the suppression of the out-diffusion during heated I/I. Heated I/I on the source and drain improves the on-current-off-current (Ion-Ioff), threshold voltage (Vth) variability, and bias temperature instability (BTI) characteristics of nMOS and pMOS FinFETs as compared with those after room-temperature I/I.

  16. Achieving extremely concentrated aqueous dispersions of graphene flakes and catalytically efficient graphene-metal nanoparticle hybrids with flavin mononucleotide as a high-performance stabilizer.

    PubMed

    Ayán-Varela, M; Paredes, J I; Guardia, L; Villar-Rodil, S; Munuera, J M; Díaz-González, M; Fernández-Sánchez, C; Martínez-Alonso, A; Tascón, J M D

    2015-05-20

    The stable dispersion of graphene flakes in an aqueous medium is highly desirable for the development of materials based on this two-dimensional carbon structure, but current production protocols that make use of a number of surfactants typically suffer from limitations regarding graphene concentration or the amount of surfactant required to colloidally stabilize the sheets. Here, we demonstrate that an innocuous and readily available derivative of vitamin B2, namely the sodium salt of flavin mononucleotide (FMNS), is a highly efficient dispersant in the preparation of aqueous dispersions of defect-free, few-layer graphene flakes. Most notably, graphene concentrations in water as high as ∼50 mg mL(-1) using low amounts of FMNS (FMNS/graphene mass ratios of about 0.04) could be attained, which facilitated the formation of free-standing graphene films displaying high electrical conductivity (∼52000 S m(-1)) without the need of carrying out thermal annealing or other types of post-treatment. The excellent performance of FMNS as a graphene dispersant could be attributed to the combined effect of strong adsorption on the sheets through the isoalloxazine moiety of the molecule and efficient colloidal stabilization provided by its negatively charged phosphate group. The FMNS-stabilized graphene sheets could be decorated with nanoparticles of several noble metals (Ag, Pd, and Pt), and the resulting hybrids exhibited a high catalytic activity in the reduction of nitroarenes and electroreduction of oxygen. Overall, the present results should expedite the processing and implementation of graphene in, e.g., conductive inks, composites, and hybrid materials with practical utility in a wide range of applications.

  17. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts.

    PubMed

    Zimnyakov, D A; Sevrugin, A V; Yuvchenko, S A; Fedorov, F S; Tretyachenko, E V; Vikulova, M A; Kovaleva, D S; Krugova, E Y; Gorokhovsky, A V

    2016-06-01

    Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka-Munk function reveals a presence of local maxima in the regions 0.5-1.5 eV and 1.6-3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction.

  18. Carboxyl and negative charge-functionalized superparamagnetic nanochains with amorphous carbon shell and magnetic core: synthesis and their application in removal of heavy metal ions.

    PubMed

    Wang, Hui; Chen, Qian-Wang; Chen, Jian; Yu, Bin-Xing; Hu, Xian-Yi

    2011-11-01

    This communication describes carboxyl-functionalized nanochains with amorphous carbon shell (18 nm) and magnetic core using ferrocene as a single reactant under the induction of an external magnetic field (0.40 T), which shows a superparamagnetic behavior and magnetization saturation of 38.6 emu g(-1). Because of mesoporous structure (3.8 nm) and surface negative charge (-35.18 mV), the nanochains can be used as adsorbent for removing the heavy metal ions (90%) from aqueous solution.

  19. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    NASA Astrophysics Data System (ADS)

    Gelinck, G. H.; van Breemen, A. J. J. M.; Cobb, B.

    2015-03-01

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  20. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    SciTech Connect

    Gelinck, G. H.; Breemen, A. J. J. M. van; Cobb, B.

    2015-03-02

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  1. Optical and structural properties of microcrystalline GaN on an amorphous substrate prepared by a combination of molecular beam epitaxy and metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu; Park, Kwangwook; Kim, Ci-Hyun; Lee, Dong-Seon; Jho, Young-Dahl; Bae, Si-Young; Lee, Yong-Tak

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the other hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.

  2. In vitro metal ion release and biocompatibility of amorphous Mg67Zn28Ca5 alloy with/without gelatin coating.

    PubMed

    Chan, W Y; Chian, K S; Tan, M J

    2013-12-01

    Amorphous zinc-rich Mg-Zn-Ca alloys have exhibited good tissue compatibility and low hydrogen evolution in vivo. However, suboptimal cell-surface interaction on magnesium alloy surface observed in vitro could lead to reduced integration with host tissue for regenerative purpose. This study aims to improve cell-surface interaction of amorphous Mg67Zn28Ca5 alloy by coating a gelatin layer by electrospinning. Coated/uncoated alloys were immersed and extracted for 3 days under different CO2. The immersion results showed that pH and metal ion release in the alloy extracts were affected by gelatin coating and CO2, suggesting their roles in alloy biocorrosion and a mechanism has been proposed for the alloy-CO2 system with/without coating. Cytotoxicity results are evident that gelatin-coated alloy with 2-day crosslinking not only exhibited no indirect cytotoxicity, but also supported attachment of L929 and MG63 cell lines around/on the alloy with high viability. Therefore, amorphous Mg67Zn28Ca5 alloy coated with gelatin by electrospinning technique provides a useful method to improve alloy biocompatibility.

  3. Optical and Structural Properties of Microcrystalline GaN on an Amorphous Substrate Prepared by a Combination of Molecular Beam Epitaxy and Metal-Organic Chemical Vapor Deposition

    SciTech Connect

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu; Park, Kwangwook; Kim, Ci-Hyun; Lee, Dong-Seon; Jho, Young-Dahl; Bae, Si-Young; Lee, Yong-Tak

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the other hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.

  4. Amorphous and Ultradisperse Crystalline Materials,

    DTIC Science & Technology

    The book sums up experimental and theoretical findings on amorphous and ultradisperse crystalline materials , massive and film types. Present-day... crystalline materials of metallic systems are presented. Emphasis is placed on inorganic film materials.

  5. Formation of amorphous materials

    DOEpatents

    Johnson, William L.; Schwarz, Ricardo B.

    1986-01-01

    Metastable amorphous or fine crystalline materials are formed by solid state reactions by diffusion of a metallic component into a solid compound or by diffusion of a gas into an intermetallic compound. The invention can be practiced on layers of metals deposited on an amorphous substrate or by intermixing powders with nucleating seed granules. All that is required is that the diffusion of the first component into the second component be much faster than the self-diffusion of the first component. The method is practiced at a temperature below the temperature at which the amorphous phase transforms into one or more crystalline phases and near or below the temperature at which the ratio of the rate of diffusion of the first component to the rate of self-diffusion is at least 10.sup.4. This anomalous diffusion criteria is found in many binary, tertiary and higher ordered systems of alloys and appears to be found in all alloy systems that form amorphous materials by rapid quenching. The method of the invention can totally convert much larger dimensional materials to amorphous materials in practical periods of several hours or less.

  6. Commoditization of High Performance Storage

    SciTech Connect

    Studham, Scott S.

    2004-04-01

    The commoditization of high performance computers started in the late 80s with the attack of the killer micros. Previously, high performance computers were exotic vector systems that could only be afforded by an illustrious few. Now everyone has a supercomputer composed of clusters of commodity processors. A similar commoditization of high performance storage has begun. Commodity disks are being used for high performance storage, enabling a paradigm change in storage and significantly changing the price point of high volume storage.

  7. Back-channel-etch amorphous indium-gallium-zinc oxide thin-film transistors: The impact of source/drain metal etch and final passivation

    NASA Astrophysics Data System (ADS)

    Nag, Manoj; Bhoolokam, Ajay; Steudel, Soeren; Chasin, Adrian; Myny, Kris; Maas, Joris; Groeseneken, Guido; Heremans, Paul

    2014-11-01

    We report on the impact of source/drain (S/D) metal (molybdenum) etch and the final passivation (SiO2) layer on the bias-stress stability of back-channel-etch (BCE) configuration based amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). It is observed that the BCE configurations TFTs suffer poor bias-stability in comparison to etch-stop-layer (ESL) TFTs. By analysis with transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), as well as by a comparative analysis of contacts formed by other metals, we infer that this poor bias-stability for BCE transistors having Mo S/D contacts is associated with contamination of the back channel interface, which occurs by Mo-containing deposits on the back channel during the final plasma process of the physical vapor deposited SiO2 passivation.

  8. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.

    PubMed

    Kim, Hyungki; Song, Intek; Park, Chibeom; Son, Minhyeok; Hong, Misun; Kim, Youngwook; Kim, Jun Sung; Shin, Hyun-Joon; Baik, Jaeyoon; Choi, Hee Cheul

    2013-08-27

    We report that high-quality single-layer graphene (SLG) has been successfully synthesized directly on various dielectric substrates including amorphous SiO2/Si by a Cu-vapor-assisted chemical vapor deposition (CVD) process. The Cu vapors produced by the sublimation of Cu foil that is suspended above target substrates without physical contact catalyze the pyrolysis of methane gas and assist nucleation of graphene on the substrates. Raman spectra and mapping images reveal that the graphene formed on a SiO2/Si substrate is almost defect-free and homogeneous single layer. The overall quality of graphene grown by Cu-vapor-assisted CVD is comparable to that of the graphene grown by regular metal-catalyzed CVD on a Cu foil. While Cu vapor induces the nucleation and growth of SLG on an amorphous substrate, the resulting SLG is confirmed to be Cu-free by synchrotron X-ray photoelectron spectroscopy. The SLG grown by Cu-vapor-assisted CVD is fabricated into field effect transistor devices without transfer steps that are generally required when SLG is grown by regular CVD process on metal catalyst substrates. This method has overcome two important hurdles previously present when the catalyst-free CVD process is used for the growth of SLG on fused quartz and hexagonal boron nitride substrates, that is, high degree of structural defects and limited size of resulting graphene, respectively.

  9. Metal-induced crystallization of amorphous Si thin films assisted by atomic layer deposition of nickel oxide layers.

    PubMed

    So, Byung-Soo; Bae, Seung-Muk; You, Yil-Hwan; Jo, DaiHui; Lee, Sun Sook; Chung, Taek-Mo; Kim, Chang Gyoun; An, Ki-Seok; Hwang, Jin-Ha

    2011-08-01

    Atomic layer deposition (ALD) of nickel oxide was applied to the nickel-induced crystallization of amorphous Si thin films. The nickel-induced crystallization was monitored as a function of annealing temperature and time using Raman spectroscopy. Since Raman spectroscopy allows for the numerical quantification of structural components, the incubation time and the crystallization rates were estimated as functions of the annealing temperature. The spatial locations of a nickel-based species, probably NiSi2, were investigated using X-ray photoelectron spectrometry. The formed NiSi2 seeds appeared to accelerate the crystallization kinetics in amorphous Si thin films deposited onto glass substrates. The ramifications of the atomic layer deposition are discussed with regard to large-panel displays, with special emphasis on the sophisticated control of the catalytic elements, especially nickel.

  10. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  11. High Performance Fortran: An overview

    SciTech Connect

    Zosel, M.E.

    1992-12-23

    The purpose of this paper is to give an overview of the work of the High Performance Fortran Forum (HPFF). This group of industry, academic, and user representatives has been meeting to define a set of extensions for Fortran dedicated to the special problems posed by a very high performance computers, especially the new generation of parallel computers. The paper describes the HPFF effort and its goals and gives a brief description of the functionality of High Performance Fortran (HPF).

  12. Sorptive extraction using polydimethylsiloxane/metal-organic framework coated stir bars coupled with high performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons in environmental water samples.

    PubMed

    Hu, Cong; He, Man; Chen, Beibei; Zhong, Cheng; Hu, Bin

    2014-08-22

    In this work, metal-organic frameworks (MOFs, Al-MIL-53-NH₂) were synthesized via the hydrothermal method, and novel polydimethylsiloxane/metal-organic framework (PDMS/MOFs, PDMS/Al-MIL-53-NH₂)-coated stir bars were prepared by the sol-gel technique. The preparation reproducibility of the PDMS/MOFs-coated stir bar was good, with relative standard deviations (RSDs) ranging from 4.8% to 14.9% (n=7) within one batch and from 6.2% to 16.9% (n=6) among different batches. Based on this fact, a new method of PDMS/MOFs-coated stir bar sorptive extraction (SBSE) and ultrasonic-assisted liquid desorption (UALD) coupled with high performance liquid chromatography-fluorescence detection (HPLC-FLD) was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. To obtain the best extraction performance for PAHs, several parameters affecting SBSE, such as extraction time, stirring rate, and extraction temperature, were investigated. Under optimal experimental conditions, wide linear ranges and good RSDs (n=7) were obtained. With enrichment factors (EFs) of 16.1- to 88.9-fold (theoretical EF, 142-fold), the limits of detection (LODs, S/N=3) of the developed method for the target PAHs were found to be in the range of 0.05-2.94 ng/L. The developed method was successfully applied to the analysis of PAHs in Yangtze River and East Lake water samples.

  13. Synthesis of Poly-Silicon Thin Films on Glass Substrate Using Laser Initiated Metal Induced Crystallization of Amorphous Silicon for Space Power Application

    NASA Technical Reports Server (NTRS)

    Abu-Safe, Husam H.; Naseem, Hameed A.; Brown, William D.

    2007-01-01

    Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.

  14. High Performance Thin Layer Chromatography.

    ERIC Educational Resources Information Center

    Costanzo, Samuel J.

    1984-01-01

    Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)

  15. Microwave properties of /Fe(0.82)B(0.18)/(0.90)La(0.05)R(0.05) amorphous metal alloys

    NASA Astrophysics Data System (ADS)

    Vittoria, C.; Koon, N. C.; Lubitz, P.; Geohegan, J. A.

    1984-03-01

    Microwave properties of amorphous metal alloys of /Fe(0.82)B(0.18)/(0.90)La(0.05)R(0.05), where R = La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er, are reported. The microwave measurements consisted of fixed (9 GHz) and swept (0.01-18 GHz) frequency magnetic resonance experiments. The ferromagnetic resonance linewidth, Delta H, and g factor were measured. Delta H has a minimum for R = Gd and is equal to 100 Oe. Delta H appears to scale with the product of the spin and orbital angular momentum operators of the R ion. The measured g factor obeys the Wangsness relation as R is varied.

  16. Kinetic Monte Carlo study of activated states and correlated shear-transformation-zone activity during the deformation of an amorphous metal

    NASA Astrophysics Data System (ADS)

    Homer, Eric R.; Rodney, David; Schuh, Christopher A.

    2010-02-01

    Shear transformation zone (STZ) dynamics simulations, which are based on the kinetic Monte Carlo algorithm, are used to model the mechanical response of amorphous metals and provide insight into the collective aspects of the microscopic events underlying deformation. The present analysis details the activated states of STZs in such a model, as well as the statistics of their activation and how these are affected by imposed conditions of stress and temperature. The analysis sheds light on the spatial and temporal correlations between the individual STZ activations that lead to different macroscopic modes of deformation. Three basic STZ correlation behaviors are observed: uncorrelated activity, nearest-neighbor correlation, and self-reactivating STZs. These three behaviors correspond well with the macroscopic deformation modes of homogeneous flow, inhomogeneous deformation, and elastic behavior, respectively. The effect of pre-existing stresses in the simulation cell is also studied and found to have a homogenizing effect on STZ correlations, suppressing the tendency for localization.

  17. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts

    PubMed Central

    Zimnyakov, D.A.; Sevrugin, A.V.; Yuvchenko, S.A.; Fedorov, F.S.; Tretyachenko, E.V.; Vikulova, M.A.; Kovaleva, D.S.; Krugova, E.Y.; Gorokhovsky, A.V.

    2016-01-01

    Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka–Munk function reveals a presence of local maxima in the regions 0.5–1.5 eV and 1.6–3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction. PMID:27158654

  18. Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on magnetostrictive amorphous metal substrate

    SciTech Connect

    Palneedi, Haribabu; Maurya, Deepam; Priya, Shashank; Kim, Gi-Yeop; Choi, Si-Young; Kang, Suk-Joong L.; Kim, Kwang-Ho; Ryu, Jungho

    2015-07-06

    A highly dense, 4 μm-thick Pb(Zr,Ti)O{sub 3} (PZT) film is deposited on amorphous magnetostrictive Metglas foil (FeBSi) by granule spray in vacuum process at room temperature, followed by its localized annealing with a continuous-wave 560 nm ytterbium fiber laser radiation. This longer-wavelength laser radiation is able to anneal the whole of thick PZT film layer without any deteriorative effects, such as chemical reaction and/or atomic diffusion, at the interface and crystallization of amorphous Metglas substrate. Greatly enhanced dielectric and ferroelectric properties of the annealed PZT are attributed to its better crystallinity and grain growth induced by laser irradiation. As a result, a colossal off-resonance magnetoelectric (ME) voltage coefficient that is two orders of magnitude larger than previously reported output from PZT/Metglas film-composites is achieved. The present work addresses the problems involved in the fabrication of PZT/Metglas film-composites and opens up emerging possibilities in employing piezoelectric materials with low thermal budget substrates (suitable for integrated electronics) and designing laminate composites for ME based devices.

  19. Containerless processing of amorphous ceramics

    NASA Technical Reports Server (NTRS)

    Weber, J. K. Richard; Krishnan, Shankar; Schiffman, Robert A.; Nordine, Paul C.

    1990-01-01

    The absence of gravity allows containerless processing of materials which could not otherwise be processed. High melting point, hard materials such as borides, nitrides, and refractory metals are usually brittle in their crystalline form. The absence of dislocations in amorphous materials frequently endows them with flexibility and toughness. Systematic studies of the properties of many amorphous materials have not been carried out. The requirements for their production is that they can be processed in a controlled way without container interaction. Containerless processing in microgravity could permit the control necessary to produce amorphous forms of hard materials.

  20. Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites

    NASA Astrophysics Data System (ADS)

    Hai-Yang, Song; Yu-Long, Li

    2016-02-01

    The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the ‘double hump’ behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

  1. Fe3 N-Co2 N Nanowires Array: A Non-Noble-Metal Bifunctional Catalyst Electrode for High-Performance Glucose Oxidation and H2 O2 Reduction toward Non-Enzymatic Sensing Applications.

    PubMed

    Zhou, Dan; Cao, Xiaoqin; Wang, Zao; Hao, Shuai; Hou, Xiandeng; Qu, Fengli; Du, Gu; Asiri, Abdullah M; Zheng, Chengbin; Sun, Xuping

    2017-03-06

    Among reported electrode materials, a nanoarray is an attractive architecture for molecular detection because of its large specific surface area and easy accessibility for target molecules. Here, a new Fe3 N-Co2 N nanowires array grown on carbon cloth (Fe3 N-Co2 N/CC) is reported as a non-noble-metal bifunctional catalyst electrode for high-performance glucose oxidation and H2 O2 reduction. As an electrochemical non-enzymatic sensor for glucose detection, Fe3 N-Co2 N/CC shows a fast response time of 8 s, a low detection limit (LOD) of 77 nm (signal/noise=3), and a high sensitivity of 4333.7 μA mm(-1)  cm(-2) . As an H2 O2 sensor, it shows a LOD of 59 nm (signal/noise=3) and a sensitivity of 2273.8 μA mm(-1)  cm(-2) with a response time of 2 s. In addition, the proposed sensor is stable with high selectivity, specificity, and reproducibility, and its application for real sample analysis has been successfully demonstrated.

  2. Multilayer high performance insulation materials

    NASA Technical Reports Server (NTRS)

    Stuckey, J. M.

    1971-01-01

    A number of tests are required to evaluate both multilayer high performance insulation samples and the materials that comprise them. Some of the techniques and tests being employed for these evaluations and some of the results obtained from thermal conductivity tests, outgassing studies, effect of pressure on layer density tests, hypervelocity impact tests, and a multilayer high performance insulation ambient storage program at the Kennedy Space Center are presented.

  3. Tough high performance composite matrix

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)

    1994-01-01

    This invention is a semi-interpentrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. Provided is an improved high temperature matrix resin which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance, and moisture and solvent resistances.

  4. In situ direct growth of single crystalline metal (Co, Ni) selenium nanosheets on metal fibers as counter electrodes toward low-cost, high-performance fiber-shaped dye-sensitized solar cells.

    PubMed

    Chen, Liang; Yin, Hexing; Zhou, Yong; Dai, Hui; Yu, Tao; Liu, Jianguo; Zou, Zhigang

    2016-01-28

    Highly crystalline metal (Co, Ni) selenium (Co0.85Se or Ni0.85Se) nanosheets were in situ grown on metal (Co, Ni) fibers (M-M0.85Se). Both M-M0.85Se (Co-Co0.85Se and Ni-Ni0.85Se) fibers prove to function as excellent, low-cost counter electrodes (CEs) in fiber-shaped dye-sensitized solar cells (FDSSCs) with high power conversion efficiency (Co-Co0.85Se 6.55% and Ni-Ni0.85Se 7.07%), comparable or even superior to a Pt fiber CE (6.54%). The good performance of the present Pt-free CE-based solar cell was believed to originate from: (1) the intrinsic electrocatalytic properties of the single-crystalline M-M0.85Se; (2) the enough void space among M0.85Se nanosheets that allows easier redox ion diffusion; (3) the two-dimensional morphology that provides a large contact area between the CE catalytic material and electrolyte; (4) in situ direct growth of the M0.85Se on metal fibers that renders good electrical contact between the active material and the electron collector.

  5. Development, Processing, and Testing of High-Performance Corrosion-Resistant HVOF Coatings

    SciTech Connect

    Farmer, J; Wong, F; Haslam, J; Estill, J; Branagan, D; Yang, N; Blue, C

    2003-08-26

    New amorphous-metal and ceramic coatings applied by the high-velocity oxy-fuel (HVOF) process may reduce the waste package materials cost of the Yucca Mountain high-level nuclear waste repository by over $4 billion (cost reduction of 27 to 42%). Two critical requirements that have been determined from design analysis are protection in brines that may evolve from the evaporative concentration of pore waters and protection for waste package welds, thereby preventing exposure to environments that might cause stress corrosion cracking (SCC). Our efforts are directed towards producing and evaluating these high-performance coatings for the development of lower cost waste packages, and will leverage a cost-effective collaboration with DARPA for applications involving marine corrosion.

  6. The Corrosion Resistance of Fe-Based Amorphous Metals: Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 and Other Compositions

    SciTech Connect

    Farmer, J; Haslam, J; Day, S; Lian, T; Saw, C; Hailey, P; Choi, J; Rebak, R; Payer, J; Blue, C; Peters, W; Branagan, D

    2007-07-09

    Several Fe-based amorphous metals were developed with good corrosion resistance. These materials have been produced as melt-spun ribbons, ingots, and thermal-spray coatings. Cyclic polarization has been conducted in several aggressive environments, at ambient temperature, as well as temperatures approaching the boiling points of the test solutions. The hypothesis that the corrosion resistance of iron-based amorphous metals can be enhanced through application of heuristic principles related to the additions of chromium, molybdenum, tungsten has been tested and found to have merit. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature.

  7. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOEpatents

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  8. Amorphous Silicon Based Neutron Detector

    SciTech Connect

    Xu, Liwei

    2004-12-12

    Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield using low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: · High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; · Various single-junction and double junction detector devices have been fabricated; · The detector devices fabricated have been systematically tested and analyzed. · Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies

  9. Inverted amorphous silicon solar cell utilizing cermet layers

    DOEpatents

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  10. High-Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Reuhs, Bradley L.; Rounds, Mary Ann

    High-performance liquid chromatography (HPLC) developed during the 1960s as a direct offshoot of classic column liquid chromatography through improvements in the technology of columns and instrumental components (pumps, injection valves, and detectors). Originally, HPLC was the acronym for high-pressure liquid chromatography, reflecting the high operating pressures generated by early columns. By the late 1970s, however, high-performance liquid chromatography had become the preferred term, emphasizing the effective separations achieved. In fact, newer columns and packing materials offer high performance at moderate pressure (although still high pressure relative to gravity-flow liquid chromatography). HPLC can be applied to the analysis of any compound with solubility in a liquid that can be used as the mobile phase. Although most frequently employed as an analytical technique, HPLC also may be used in the preparative mode.

  11. High Performance Computing at NASA

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The speaker will give an overview of high performance computing in the U.S. in general and within NASA in particular, including a description of the recently signed NASA-IBM cooperative agreement. The latest performance figures of various parallel systems on the NAS Parallel Benchmarks will be presented. The speaker was one of the authors of the NAS (National Aerospace Standards) Parallel Benchmarks, which are now widely cited in the industry as a measure of sustained performance on realistic high-end scientific applications. It will be shown that significant progress has been made by the highly parallel supercomputer industry during the past year or so, with several new systems, based on high-performance RISC processors, that now deliver superior performance per dollar compared to conventional supercomputers. Various pitfalls in reporting performance will be discussed. The speaker will then conclude by assessing the general state of the high performance computing field.

  12. INL High Performance Building Strategy

    SciTech Connect

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  13. High performance flexible heat pipes

    NASA Technical Reports Server (NTRS)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  14. A magnetic-based dispersive micro-solid-phase extraction method using the metal-organic framework HKUST-1 and ultra-high-performance liquid chromatography with fluorescence detection for determining polycyclic aromatic hydrocarbons in waters and fruit tea infusions.

    PubMed

    Rocío-Bautista, Priscilla; Pino, Verónica; Ayala, Juan H; Pasán, Jorge; Ruiz-Pérez, Catalina; Afonso, Ana M

    2016-03-04

    A hybrid material composed by the metal-organic framework (MOF) HKUST-1 and Fe3O4 magnetic nanoparticles (MNPs) has been synthetized in a quite simple manner, characterized, and used in a magnetic-assisted dispersive micro-solid-phase extraction (M-d-μSPE) method in combination with ultra-high-performance liquid chromatography (UHPLC) and fluorescence detection (FD). The application was devoted to the determination of 8 heavy polycyclic aromatic hydrocarbons (PAHs) in different aqueous samples, specifically tap water, wastewaters, and fruit tea infusion samples. The overall M-d-μSPE-UHPLC-FD method was optimized and validated. The method is characterized by: its simplicity in both the preparation of the hybrid material (simple mixing) and the magnetic-assisted approach (∼10min extraction time), the use of low sorbent amounts (20mg of HKUST-1 and 5mg of Fe3O4 MNPs), and the low organic solvent consumption in the overall M-d-μSPE-UHPLC-FD method (1.5mL of acetonitrile in the M-d-μSPE method and 2.8mL of acetonitrile in the UHPLC-FD run). The resulting method has high sensitivity, with LODs down to 0.8ngL(-1); adequate intermediate precision, with relative standard deviation values (RSD) always lower than 6.3% (being the range 5.9-9.0% in tap water for a spiked level of 45ngL(-1), 6.1-14% in wastewaters for a spiked level of 45ngL(-1), and 7.2-17% in fruit tea infusion samples for a spiked level of 45ngL(-1)); and adequate relative recoveries, with average values of 82% in tap water, and 94% and 75% in wastewater and fruit tea infusion samples, respectively, if using the proper matrix-matched calibration.

  15. Metal-organic framework MIL-101 as sorbent based on double-pumps controlled on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of flavonoids in environmental water samples.

    PubMed

    Liu, Yue; Hu, Jia; Li, Yan; Li, Xiao-Shuang; Wang, Zhong-Liang

    2016-10-01

    A novel method with high sensitivity for the rapid determination of chrysin, apigenin and luteolin in environment water samples was developed by double-pumps controlled on-line solid-phase extraction (SPE) coupled with high-performance liquid chromatography (HPLC). In the developed technique, metal organic framework MIL-101 was synthesized and applied as a sorbent for SPE. The as-synthesized MIL-101 was characterized by scanning electron microscope, X-ray diffraction spectrometry, thermal gravimetric analysis and micropore physisorption analysis. The MIL-101 behaved as a fast kinetics in the adsorption of chrysin, apigenin and luteolin. On-line SPE of chrysin, apigenin and luteolin was processed by loading a sample solution at a flow rate of 1.0 mL/min for 10 min. The extracted analytes were subsequently eluted into a ZORBAX Bonus-RP analytical column (25 cm long × 4.6 mm i.d.) for HPLC separation under isocratic condition with a mobile phase (MeOH: ACN: 0.02 M H3 PO4 = 35:35:30) at a flow rate of 1.0 mL/min. Experimental conditions, including ionic strength, sample pH, sample loading rates, sample loading time and desorption analytes time, were further optimized to obtain efficient preconcentration and high-precision determination of the analytes mentioned above. The method achieved the merits of simplicity, rapidity, sensitivity, wide linear range and high sample throughput. The possible mechanism for the adsorption of flavonoids on MIL-101 was proposed. The developed method has been applied to determine trace chrysin, apigenin and luteolin in a variety of environmental water samples.

  16. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  17. High Performance Bulk Thermoelectric Materials

    SciTech Connect

    Ren, Zhifeng

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  18. High performance channel injection sealant invention abstract

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Basiulis, D. I.; Salisbury, D. P. (Inventor)

    1982-01-01

    High performance channel sealant is based on NASA patented cyano and diamidoximine-terminated perfluoroalkylene ether prepolymers that are thermally condensed and cross linked. The sealant contains asbestos and, in its preferred embodiments, Lithofrax, to lower its thermal expansion coefficient and a phenolic metal deactivator. Extensive evaluation shows the sealant is extremely resistant to thermal degradation with an onset point of 280 C. The materials have a volatile content of 0.18%, excellent flexibility, and adherence properties, and fuel resistance. No corrosibility to aluminum or titanium was observed.

  19. High Performance Polymer Memory and Its Formation

    DTIC Science & Technology

    2007-04-26

    Std. Z39.18 Final Report to AFOSR High Performance Polymer Memory Device and Its Formation Fund No.: FA9550-04-1-0215 Prepared by Prof. Yang Yang...polystyrene (PS). The metal nanoparticles were prepared by the two-phase 10-5 (b) 10𔄁Polymer film 1a CC , 10, Glass 1 -2 -1 0 1 2 3 4 5 Bias (V) Fig. I...such as copper pthalocyanine (CuPc), 24 ൢ zinc pthalocyanine (ZnPc), 27󈧠 tetracene, 29 and pentacene 30 have been used as donors combined with

  20. Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors.

    PubMed

    Wang, Binghao; Zeng, Li; Huang, Wei; Melkonyan, Ferdinand S; Sheets, William C; Chi, Lifeng; Bedzyk, Michael J; Marks, Tobin J; Facchetti, Antonio

    2016-06-08

    Owing to high carrier mobilities, good environmental/thermal stability, excellent optical transparency, and compatibility with solution processing, thin-film transistors (TFTs) based on amorphous metal oxide semiconductors (AOSs) are promising alternatives to those based on amorphous silicon (a-Si:H) and low-temperature (<600 °C) poly-silicon (LTPS). However, solution-processed display-relevant indium-gallium-tin-oxide (IGZO) TFTs suffer from low carrier mobilities and/or inferior bias-stress stability versus their sputtered counterparts. Here we report that three types of environmentally benign carbohydrates (sorbitol, sucrose, and glucose) serve as especially efficient fuels for IGZO film combustion synthesis to yield high-performance TFTs. The results indicate that these carbohydrates assist the combustion process by lowering the ignition threshold temperature and, for optimal stoichiometries, enhancing the reaction enthalpy. IGZO TFT mobilities are increased to >8 cm(2) V(-1) s(-1) on SiO2/Si gate dielectrics with significantly improved bias-stress stability. The first correlations between precursor combustion enthalpy and a-MO densification/charge transport are established.

  1. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  2. High performance bilateral telerobot control.

    PubMed

    Kline-Schoder, Robert; Finger, William; Hogan, Neville

    2002-01-01

    Telerobotic systems are used when the environment that requires manipulation is not easily accessible to humans, as in space, remote, hazardous, or microscopic applications or to extend the capabilities of an operator by scaling motions and forces. The Creare control algorithm and software is an enabling technology that makes possible guaranteed stability and high performance for force-feedback telerobots. We have developed the necessary theory, structure, and software design required to implement high performance telerobot systems with time delay. This includes controllers for the master and slave manipulators, the manipulator servo levels, the communication link, and impedance shaping modules. We verified the performance using both bench top hardware as well as a commercial microsurgery system.

  3. High performance dielectric materials development

    NASA Astrophysics Data System (ADS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-09-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  4. High-performance sports medicine.

    PubMed

    Speed, Cathy

    2013-02-01

    High performance sports medicine involves the medical care of athletes, who are extraordinary individuals and who are exposed to intensive physical and psychological stresses during training and competition. The physician has a broad remit and acts as a 'medical guardian' to optimise health while minimising risks. This review describes this interesting field of medicine, its unique challenges and priorities for the physician in delivering best healthcare.

  5. High performance dielectric materials development

    NASA Technical Reports Server (NTRS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-01-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  6. High Performance Tools And Technologies

    SciTech Connect

    Collette, M R; Corey, I R; Johnson, J R

    2005-01-24

    This goal of this project was to evaluate the capability and limits of current scientific simulation development tools and technologies with specific focus on their suitability for use with the next generation of scientific parallel applications and High Performance Computing (HPC) platforms. The opinions expressed in this document are those of the authors, and reflect the authors' current understanding and functionality of the many tools investigated. As a deliverable for this effort, we are presenting this report describing our findings along with an associated spreadsheet outlining current capabilities and characteristics of leading and emerging tools in the high performance computing arena. This first chapter summarizes our findings (which are detailed in the other chapters) and presents our conclusions, remarks, and anticipations for the future. In the second chapter, we detail how various teams in our local high performance community utilize HPC tools and technologies, and mention some common concerns they have about them. In the third chapter, we review the platforms currently or potentially available to utilize these tools and technologies on to help in software development. Subsequent chapters attempt to provide an exhaustive overview of the available parallel software development tools and technologies, including their strong and weak points and future concerns. We categorize them as debuggers, memory checkers, performance analysis tools, communication libraries, data visualization programs, and other parallel development aides. The last chapter contains our closing information. Included with this paper at the end is a table of the discussed development tools and their operational environment.

  7. Microstructure of Vacuum-Brazed Joints of Super-Ni/NiCr Laminated Composite Using Nickel-Based Amorphous Filler Metal

    NASA Astrophysics Data System (ADS)

    Ma, Qunshuang; Li, Yajiang; Wu, Na; Wang, Juan

    2013-06-01

    Vacuum brazing of super-Ni/NiCr laminated composite and Cr18-Ni8 stainless steel was carried out using Ni-Cr-Si-B amorphous filler metal at 1060, 1080, and 1100 °C, respectively. Microstructure and phase constitution were investigated by means of optical and scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction, and micro-hardness tester. When brazed at 1060-1080 °C, the brazed region can be divided into two distinct zones: isothermally solidified zone (ISZ) consisting of γ-Ni solid solution and athermally solidified zone (ASZ) consisting of Cr-rich borides. Micro-hardness of the Cr-rich borides formed in the ASZ was as high as 809 HV50 g. ASZ decreased with increase of the brazing temperature. Isothermal solidification occurred sufficiently at 1100 °C and an excellent joint composed of γ-Ni solid solution formed. The segregation of boron from ISZ to residual liquid phase is the reason of Cr-rich borides formed in ASZ. The formation of secondary precipitates in diffusion-affected zone is mainly controlled by diffusion of B.

  8. The effect of environment on the fatigue behavior of the amorphous metal, zirconium(41.2)titanium(13.8)copper(12.5)nickel(10)beryllium(22.5)

    NASA Astrophysics Data System (ADS)

    Schroeder, Valeska

    Electrochemical and mechanical experiments were conducted to analyze the environmentally influenced fatigue and fracture behavior of a bulk amorphous metal, Zr41.2Ti13.8Cu12.5Ni10Be 22.5 (at%), This study was motivated by a scientific interest in the mechanisms of fatigue crack propagation in an amorphous metal, and by a practical interest in the use of this amorphous metal in applications that take advantage of its unique properties, including high specific strength, large elastic strains and low damping. The objective of this work was to determine the rate and mechanism of fatigue-crack growth in this zirconium-based amorphous metal in an aggressive environment. To meet this objective, the synergism between mechanical loading and chemical environment was investigated experimentally. Specifically, fatigue crack propagation behavior was investigated at a range of stress intensities in representative service environments: ambient air, de-ionized water, and aerated aqueous sodium chloride solution. Based on these fatigue experiments, it was apparent that although water minimally increased growth rates compared to behavior in air, aerated 0.5 M sodium chloride solution dramatically increased growth rates by over two orders of magnitude near the fatigue threshold. In addition, values of crack velocity under sustained load (stress-corrosion) conditions in sodium chloride solution were comparable to crack-growth rates under cyclic loading in the same solution. Moreover, the effects of potential, concentration, stress intensity, anion type, and aeration on fatigue-crack growth, suggested that crack growth in sodium chloride solution was driven by a strain-assisted anodic reaction at the crack tip. Furthermore, the rate determining step appeared to differ near the fatigue threshold compared to that at higher stress intensities.

  9. High Performance, Low Temperature Solution-Processed Barium and Strontium Doped Oxide Thin Film Transistors

    PubMed Central

    2013-01-01

    Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm2 V–1 s–1. We show that it is possible to solution-process these materials at low process temperature (225–200 °C yielding mobilities up to 4.4 cm2 V–1 s–1) and demonstrate a facile “ink-on-demand” process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium. PMID:24511184

  10. High performance pyroelectric infrared detector

    NASA Astrophysics Data System (ADS)

    Hu, Xu; Luo, Haosu; Ji, Yulong; Yang, Chunli

    2015-10-01

    Single infrared detector made with Relaxative ferroelectric crystal(PMNT) present excellence performance. In this paper include detector capacitance, characteristic of frequency--response, characteristic of detectivity. The measure result show that detectivity of detector made with relaxative ferroelectric crystal(PMNT) exceed three times than made with LT, the D*achieved than 1*109cmHz0.5W-1. The detector will be applied on NDIR spectrograph, FFT spectrograph and so on. The high performance pyroelectric infrared detector be developed that will be broadened application area of infrared detector.

  11. Imprinting bulk amorphous alloy at room temperature

    DOE PAGES

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; ...

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  12. Amorphous Alloy Surpasses Steel and Titanium

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the same way that the inventions of steel in the 1800s and plastic in the 1900s sparked revolutions for industry, a new class of amorphous alloys is poised to redefine materials science as we know it in the 21st century. Welcome to the 3rd Revolution, otherwise known as the era of Liquidmetal(R) alloys, where metals behave similar to plastics but possess more than twice the strength of high performance titanium. Liquidmetal alloys were conceived in 1992, as a result of a project funded by the California Institute of Technology (CalTech), NASA, and the U.S. Department of Energy, to study the fundamentals of metallic alloys in an undercooled liquid state, for the development of new aerospace materials. Furthermore, NASA's Marshall Space Flight Center contributed to the development of the alloys by subjecting the materials to testing in its Electrostatic Levitator, a special instrument that is capable of suspending an object in midair so that researchers can heat and cool it in a containerless environment free from contaminants that could otherwise spoil the experiment.

  13. The cyclic fatigue of high-performance fibers

    NASA Astrophysics Data System (ADS)

    Kerr, M.; Chawla, N.; Chawla, K. K.

    2005-02-01

    High-performance fibers are virtually ubiquitous in our everyday lives. In a variety of structural applications, fibers and fiber-reinforced composites are subjected to cyclic mechanical loading. This paper reviews the fatigue behavior of some common high-performance fibers such as polymer, metal, and ceramic fibers. Fatigue mechanisms unique to each type of fiber are identified and a description of fatigue damage and fracture is provided.

  14. High Performance Perovskite Solar Cells.

    PubMed

    Tong, Xin; Lin, Feng; Wu, Jiang; Wang, Zhiming M

    2016-05-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long-term stable all-solid-state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost-effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole-transporting materials (HTMs) and electron-transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction.

  15. High Performance Perovskite Solar Cells

    PubMed Central

    Tong, Xin; Lin, Feng; Wu, Jiang

    2015-01-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long‐term stable all‐solid‐state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost‐effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole‐transporting materials (HTMs) and electron‐transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction. PMID:27774402

  16. Toward high performance graphene fibers.

    PubMed

    Chen, Li; He, Yuling; Chai, Songgang; Qiang, Hong; Chen, Feng; Fu, Qiang

    2013-07-07

    Two-dimensional graphene and graphene-based materials have attracted tremendous interest, hence much attention has been drawn to exploring and applying their exceptional characteristics and properties. Integration of graphene sheets into macroscopic fibers is a very important way for their application and has received increasing interest. In this study, neat and macroscopic graphene fibers were continuously spun from graphene oxide (GO) suspensions followed by chemical reduction. By varying wet-spinning conditions, a series of graphene fibers were prepared, then, the structural features, mechanical and electrical performances of the fibers were investigated. We found the orientation of graphene sheets, the interaction between inter-fiber graphene sheets and the defects in the fibers have a pronounced effect on the properties of the fibers. Graphene fibers with excellent mechanical and electrical properties will yield great advances in high-tech applications. These findings provide guidance for the future production of high performance graphene fibers.

  17. High Performance Proactive Digital Forensics

    NASA Astrophysics Data System (ADS)

    Alharbi, Soltan; Moa, Belaid; Weber-Jahnke, Jens; Traore, Issa

    2012-10-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  18. High Performance Parallel Computational Nanotechnology

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    At a recent press conference, NASA Administrator Dan Goldin encouraged NASA Ames Research Center to take a lead role in promoting research and development of advanced, high-performance computer technology, including nanotechnology. Manufacturers of leading-edge microprocessors currently perform large-scale simulations in the design and verification of semiconductor devices and microprocessors. Recently, the need for this intensive simulation and modeling analysis has greatly increased, due in part to the ever-increasing complexity of these devices, as well as the lessons of experiences such as the Pentium fiasco. Simulation, modeling, testing, and validation will be even more important for designing molecular computers because of the complex specification of millions of atoms, thousands of assembly steps, as well as the simulation and modeling needed to ensure reliable, robust and efficient fabrication of the molecular devices. The software for this capacity does not exist today, but it can be extrapolated from the software currently used in molecular modeling for other applications: semi-empirical methods, ab initio methods, self-consistent field methods, Hartree-Fock methods, molecular mechanics; and simulation methods for diamondoid structures. In as much as it seems clear that the application of such methods in nanotechnology will require powerful, highly powerful systems, this talk will discuss techniques and issues for performing these types of computations on parallel systems. We will describe system design issues (memory, I/O, mass storage, operating system requirements, special user interface issues, interconnects, bandwidths, and programming languages) involved in parallel methods for scalable classical, semiclassical, quantum, molecular mechanics, and continuum models; molecular nanotechnology computer-aided designs (NanoCAD) techniques; visualization using virtual reality techniques of structural models and assembly sequences; software required to

  19. Theoretical and experimental study of the quasistatic capacitance of metal-insulator-hydrogenated amorphous silicon structures: Strong evidence for the defect-pool model

    NASA Astrophysics Data System (ADS)

    Kleider, J. P.; Dayoub, F.

    1998-10-01

    The density of localized states in hydrogenated amorphous silicon (a-Si:H) is studied by means of the quasistatic capacitance technique applied to metal-insulator a-Si:H structures. Calculations in the framework of the defect-pool model show that the changes in the quasistatic capacitance versus gate bias curves (qs-CV curves) after bias annealing reveal the changes in the density of dangling-bond states predicted by the model, and are sensitive to the defect-pool parameters. The comparison of theoretical qs-CV curves with experimental curves obtained in a wide range of bias-anneal voltages Vba on several kinds of structures (top gate oxide, top gate nitride, and the most commonly used bottom gate nitride structures) strongly support the defect-pool model, and values for the model parameters are deduced. It is shown that for all structures the dominant phenomenon for bias annealing at positive Vba (i.e., under electron accumulation) is the creation of defects in the lower part of the gap in the a-Si:H. Bias annealing under hole accumulation reveals the creation of defects in the upper part of the gap of a-Si:H, but the precise dependence of the qs-CV curves upon Vba depends on the nature of the insulator-a-Si:H interface. In particular, it is affected by a higher density of interface trap levels in the top gate nitride structures, and by hole injection and trapping from the a-Si:H into the nitride layer in the bottom gate nitride structures.

  20. High performance aerated lagoon systems

    SciTech Connect

    Rich, L.

    1999-08-01

    At a time when less money is available for wastewater treatment facilities and there is increased competition for the local tax dollar, regulatory agencies are enforcing stricter effluent limits on treatment discharges. A solution for both municipalities and industry is to use aerated lagoon systems designed to meet these limits. This monograph, prepared by a recognized expert in the field, provides methods for the rational design of a wide variety of high-performance aerated lagoon systems. Such systems range from those that can be depended upon to meet secondary treatment standards alone to those that, with the inclusion of intermittent sand filters or elements of sequenced biological reactor (SBR) technology, can also provide for nitrification and nutrient removal. Considerable emphasis is placed on the use of appropriate performance parameters, and an entire chapter is devoted to diagnosing performance failures. Contents include: principles of microbiological processes, control of algae, benthal stabilization, design for CBOD removal, design for nitrification and denitrification in suspended-growth systems, design for nitrification in attached-growth systems, phosphorus removal, diagnosing performance.

  1. High performance Cu adhesion coating

    SciTech Connect

    Lee, K.W.; Viehbeck, A.; Chen, W.R.; Ree, M.

    1996-12-31

    Poly(arylene ether benzimidazole) (PAEBI) is a high performance thermoplastic polymer with imidazole functional groups forming the polymer backbone structure. It is proposed that upon coating PAEBI onto a copper surface the imidazole groups of PAEBI form a bond with or chelate to the copper surface resulting in strong adhesion between the copper and polymer. Adhesion of PAEBI to other polymers such as poly(biphenyl dianhydride-p-phenylene diamine) (BPDA-PDA) polyimide is also quite good and stable. The resulting locus of failure as studied by XPS and IR indicates that PAEBI gives strong cohesive adhesion to copper. Due to its good adhesion and mechanical properties, PAEBI can be used in fabricating thin film semiconductor packages such as multichip module dielectric (MCM-D) structures. In these applications, a thin PAEBI coating is applied directly to a wiring layer for enhancing adhesion to both the copper wiring and the polymer dielectric surface. In addition, a thin layer of PAEBI can also function as a protection layer for the copper wiring, eliminating the need for Cr or Ni barrier metallurgies and thus significantly reducing the number of process steps.

  2. ALMA high performance nutating subreflector

    NASA Astrophysics Data System (ADS)

    Gasho, Victor L.; Radford, Simon J. E.; Kingsley, Jeffrey S.

    2003-02-01

    For the international ALMA project"s prototype antennas, we have developed a high performance, reactionless nutating subreflector (chopping secondary mirror). This single axis mechanism can switch the antenna"s optical axis by +/-1.5" within 10 ms or +/-5" within 20 ms and maintains pointing stability within the antenna"s 0.6" error budget. The light weight 75 cm diameter subreflector is made of carbon fiber composite to achieve a low moment of inertia, <0.25 kg m2. Its reflecting surface was formed in a compression mold. Carbon fiber is also used together with Invar in the supporting structure for thermal stability. Both the subreflector and the moving coil motors are mounted on flex pivots and the motor magnets counter rotate to absorb the nutation reaction force. Auxiliary motors provide active damping of external disturbances, such as wind gusts. Non contacting optical sensors measure the positions of the subreflector and the motor rocker. The principle mechanical resonance around 20 Hz is compensated with a digital PID servo loop that provides a closed loop bandwidth near 100 Hz. Shaped transitions are used to avoid overstressing mechanical links.

  3. The High Performance Storage System

    SciTech Connect

    Coyne, R.A.; Hulen, H.; Watson, R.

    1993-09-01

    The National Storage Laboratory (NSL) was organized to develop, demonstrate and commercialize technology for the storage system that will be the future repositories for our national information assets. Within the NSL four Department of Energy laboratories and IBM Federal System Company have pooled their resources to develop an entirely new High Performance Storage System (HPSS). The HPSS project concentrates on scalable parallel storage system for highly parallel computers as well as traditional supercomputers and workstation clusters. Concentrating on meeting the high end of storage system and data management requirements, HPSS is designed using network-connected storage devices to transfer data at rates of 100 million bytes per second and beyond. The resulting products will be portable to many vendor`s platforms. The three year project is targeted to be complete in 1995. This paper provides an overview of the requirements, design issues, and architecture of HPSS, as well as a description of the distributed, multi-organization industry and national laboratory HPSS project.

  4. Nanocrystalline high performance permanent magnets

    NASA Astrophysics Data System (ADS)

    Gutfleisch, O.; Bollero, A.; Handstein, A.; Hinz, D.; Kirchner, A.; Yan, A.; Müller, K.-H.; Schultz, L.

    2002-04-01

    Recent developments in nanocrystalline rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated.

  5. HIGH-PERFORMANCE COATING MATERIALS

    SciTech Connect

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  6. Self-sustained cycle of hydrolysis and etching at solution/solid interfaces: a general strategy to prepare metal oxide micro-/nanostructured arrays for high-performance electrodes.

    PubMed

    Zhang, Yingmeng; Zhang, Weixin; Yang, Zeheng; Gu, Heyun; Zhu, Qing; Yang, Shihe; Li, Mei

    2015-03-23

    Assembling micro-/nanostructured arrays on conducting substrates allows the integration of multiple functionalities into modern electronic devices. Herein, a novel self-sustained cycle of hydrolysis and etching (SCHE) is exploited to selectively synthesize an extensive series of metal oxide micro-/nanostructured arrays on a wide range of metal substrates, establishing the generality and efficacy of the strategy. To demonstrate the potential application of this method, the as-prepared NiO porous nanobelt array was directly used as the anode for lithium-ion batteries, exhibiting excellent capacity and rate capability. Conclusively, the SCHE strategy offers a systematic approach to design metal oxide micro-/nanostructured arrays on metal substrates, which are valuable not only for lithium-ion batteries but also for other energy conversion and storage systems and electronic devices at large.

  7. High performance rotational vibration isolator

    NASA Astrophysics Data System (ADS)

    Sunderland, Andrew; Blair, David G.; Ju, Li; Golden, Howard; Torres, Francis; Chen, Xu; Lockwood, Ray; Wolfgram, Peter

    2013-10-01

    We present a new rotational vibration isolator with an extremely low resonant frequency of 0.055 ± 0.002 Hz. The isolator consists of two concentric spheres separated by a layer of water and joined by very soft silicone springs. The isolator reduces rotation noise at all frequencies above its resonance which is very important for airborne mineral detection. We show that more than 40 dB of isolation is achieved in a helicopter survey for rotations at frequencies between 2 Hz and 20 Hz. Issues affecting performance such as translation to rotation coupling and temperature are discussed. The isolator contains almost no metal, making it particularly suitable for electromagnetic sensors.

  8. High performance rotational vibration isolator.

    PubMed

    Sunderland, Andrew; Blair, David G; Ju, Li; Golden, Howard; Torres, Francis; Chen, Xu; Lockwood, Ray; Wolfgram, Peter

    2013-10-01

    We present a new rotational vibration isolator with an extremely low resonant frequency of 0.055 ± 0.002 Hz. The isolator consists of two concentric spheres separated by a layer of water and joined by very soft silicone springs. The isolator reduces rotation noise at all frequencies above its resonance which is very important for airborne mineral detection. We show that more than 40 dB of isolation is achieved in a helicopter survey for rotations at frequencies between 2 Hz and 20 Hz. Issues affecting performance such as translation to rotation coupling and temperature are discussed. The isolator contains almost no metal, making it particularly suitable for electromagnetic sensors.

  9. Increasing Ti-6Al-4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys

    SciTech Connect

    Ganjeh, E.; Sarkhosh, H.; Bajgholi, M.E.; Khorsand, H.; Ghaffari, M.

    2012-09-15

    Microstructural features developed along with mechanical properties in furnace brazing of Ti-6Al-4V alloy using STEMET 1228 (Ti-26.8Zr-13Ni-13.9Cu, wt.%) and STEMET 1406 (Zr-9.7Ti-12.4Ni-11.2Cu, wt.%) amorphous filler alloys. Brazing temperatures employed were 900-950 Degree-Sign C for the titanium-based filler and 900-990 Degree-Sign C for the zirconium-based filler alloys, respectively. The brazing time durations were 600, 1200 and 1800 s. The brazed joints were evaluated by ultrasonic test, and their microstructures and phase constitutions analyzed by metallography, scanning electron microscopy and X-ray diffraction analysis. Since microstructural evolution across the furnace brazed joints primarily depends on their alloying elements such as Cu, Ni and Zr along the joint. Accordingly, existence of Zr{sub 2}Cu, Ti{sub 2}Cu and (Ti,Zr){sub 2}Ni intermetallic compounds was identified in the brazed joints. The chemical composition of segregation region in the center of brazed joints was identical to virgin filler alloy content which greatly deteriorated the shear strength of the joints. Adequate brazing time (1800 s) and/or temperature (950 Degree-Sign C for Ti-based and 990 Degree-Sign C for Zr-based) resulted in an acicular Widmanstaetten microstructure throughout the entire joint section due to eutectoid reaction. This microstructure increased the shear strength of the brazed joints up to the Ti-6Al-4V tensile strength level. Consequently, Ti-6Al-4V can be furnace brazed by Ti and Zr base foils produced excellent joint strengths. - Highlights: Black-Right-Pointing-Pointer Temperature or time was the main factors of controlling braze joint strength. Black-Right-Pointing-Pointer Developing a Widmanstaetten microstructure generates equal strength to base metal. Black-Right-Pointing-Pointer Brittle intermetallic compounds like (Ti,Zr){sub 2}Ni/Cu deteriorate shear strength. Black-Right-Pointing-Pointer Ti and Zr base filler alloys were the best choice for brazing Ti

  10. Electrochemical Studies of Passive Film Stability on Fe48Mo14Cr15Y2C15B Amorphous Metal in Seawater at 90oC and 5M CaCl2 at 105oC

    SciTech Connect

    Farmer, J C; Day, S D; Lian, T; Saw, C K; Hailey, P D; Blue, C A; Peters, W; Payer, J H; Perepezko, J H; Hildal, K; Branagan, D J; Buffa, E J; Aprigliano, L

    2007-04-25

    Several Fe-based amorphous metal formulations have been identified that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22 (UNS N06022), based on measurements of breakdown potential and corrosion rate in seawater. Both chromium (Cr) and molybdenum (Mo) provide corrosion resistance, boron (B) enables glass formation, and rare earths such as yttrium (Y) lower critical cooling rate (CCR). Amorphous Fe{sub 48.0}Cr{sub 15.0}Mo{sub 14.0}B{sub 6.0}C{sub 15.0}Y{sub 2.0} (SAM1651) has a low critical cooling rate (CCR) of less than 80 Kelvin per second, due to the addition of yttrium. The low CCR enables it to be rendered as a completely amorphous material in practical materials processes. While the yttrium enables a low CCR to be achieved, it makes the material relatively difficult to atomize, due to increases in melt viscosity. Consequently, the powders produced thus far have had irregular shape, which had made pneumatic conveyance during thermal spray deposition difficult.

  11. Indoor Air Quality in High Performance Schools

    EPA Pesticide Factsheets

    High performance schools are facilities that improve the learning environment while saving energy, resources, and money. The key is understanding the lifetime value of high performance schools and effectively managing priorities, time, and budget.

  12. Carpet Aids Learning in High Performance Schools

    ERIC Educational Resources Information Center

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  13. Complex Amorphous Dielectrics

    SciTech Connect

    van Dover, Robert Bruce

    2014-11-22

    This work focused on synthesizing a wide range of oxides containing two or more metals, and measuring their properties. Many simple metal oxides such as zirconium oxide, have been extensively studied in the past. We developed a technique in which we create a large number of compositions simultaneously and examine their behavior to understand trends and identify high performance materials. Superior performance generally comes in the form of increased responsiveness; in the materials we have studied this may mean more electrical charge for a given voltage in a capacitor, faster switching for a given drive in a transistor, more current for a given voltage in an ionic conductor, or more current for a given illumination in a solar cell. Some of the materials we have identified may find use in decreasing the power needed to operate integrated circuits, other materials could be useful for solar power or other forms of energy conversion.

  14. Energy Efficient Graphene Based High Performance Capacitors.

    PubMed

    Bae, Joonwon; Lee, Chang-Soo; Kwon, Oh Seok

    2016-10-27

    Graphene (GRP) is an interesting class of nano-structured electronic materials for various cutting-edge applications. To date, extensive research activities have been performed on the investigation of diverse properties of GRP. The incorporation of this elegant material can be very lucrative in terms of practical applications in energy storage/conversion systems. Among various those systems, high performance electrochemical capacitors (ECs) have become popular due to the recent need for energy efficient and portable devices. Therefore, in this article, the application of GRP for capacitors is described succinctly. In particular, a concise summary on the previous research activities regarding GRP based capacitors is also covered extensively. It was revealed that a lot of secondary materials such as polymers and metal oxides have been introduced to improve the performance. Also, diverse devices have been combined with capacitors for better use. More importantly, recent patents related to the preparation and application of GRP based capacitors are also introduced briefly. This article can provide essential information for future study.

  15. Fabricating high performance lithium-ion batteries using bionanotechnology.

    PubMed

    Zhang, Xudong; Hou, Yukun; He, Wen; Yang, Guihua; Cui, Jingjie; Liu, Shikun; Song, Xin; Huang, Zhen

    2015-02-28

    Designing, fabricating, and integrating nanomaterials are key to transferring nanoscale science into applicable nanotechnology. Many nanomaterials including amorphous and crystal structures are synthesized via biomineralization in biological systems. Amongst various techniques, bionanotechnology is an effective strategy to manufacture a variety of sophisticated inorganic nanomaterials with precise control over their chemical composition, crystal structure, and shape by means of genetic engineering and natural bioassemblies. This provides opportunities to use renewable natural resources to develop high performance lithium-ion batteries (LIBs). For LIBs, reducing the sizes and dimensions of electrode materials can boost Li(+) ion and electron transfer in nanostructured electrodes. Recently, bionanotechnology has attracted great interest as a novel tool and approach, and a number of renewable biotemplate-based nanomaterials have been fabricated and used in LIBs. In this article, recent advances and mechanism studies in using bionanotechnology for high performance LIBs studies are thoroughly reviewed, covering two technical routes: (1) Designing and synthesizing composite cathodes, e.g. LiFePO4/C, Li3V2(PO4)3/C and LiMn2O4/C; and (2) designing and synthesizing composite anodes, e.g. NiO/C, Co3O4/C, MnO/C, α-Fe2O3 and nano-Si. This review will hopefully stimulate more extensive and insightful studies on using bionanotechnology for developing high-performance LIBs.

  16. Fabricating high performance lithium-ion batteries using bionanotechnology

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Hou, Yukun; He, Wen; Yang, Guihua; Cui, Jingjie; Liu, Shikun; Song, Xin; Huang, Zhen

    2015-02-01

    Designing, fabricating, and integrating nanomaterials are key to transferring nanoscale science into applicable nanotechnology. Many nanomaterials including amorphous and crystal structures are synthesized via biomineralization in biological systems. Amongst various techniques, bionanotechnology is an effective strategy to manufacture a variety of sophisticated inorganic nanomaterials with precise control over their chemical composition, crystal structure, and shape by means of genetic engineering and natural bioassemblies. This provides opportunities to use renewable natural resources to develop high performance lithium-ion batteries (LIBs). For LIBs, reducing the sizes and dimensions of electrode materials can boost Li+ ion and electron transfer in nanostructured electrodes. Recently, bionanotechnology has attracted great interest as a novel tool and approach, and a number of renewable biotemplate-based nanomaterials have been fabricated and used in LIBs. In this article, recent advances and mechanism studies in using bionanotechnology for high performance LIBs studies are thoroughly reviewed, covering two technical routes: (1) Designing and synthesizing composite cathodes, e.g. LiFePO4/C, Li3V2(PO4)3/C and LiMn2O4/C; and (2) designing and synthesizing composite anodes, e.g. NiO/C, Co3O4/C, MnO/C, α-Fe2O3 and nano-Si. This review will hopefully stimulate more extensive and insightful studies on using bionanotechnology for developing high-performance LIBs.

  17. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors.

    PubMed

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P H; Bedzyk, Michael J; Ferragut, Rafael; Marks, Tobin J; Facchetti, Antonio

    2015-03-17

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.

  18. Spray-combustion synthesis: Efficient solution route to high-performance oxide transistors

    PubMed Central

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P. H.; Bedzyk, Michael J.; Ferragut, Rafael; Marks, Tobin J.; Facchetti, Antonio

    2015-01-01

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations. PMID:25733848

  19. Theory of amorphous ices

    PubMed Central

    Limmer, David T.; Chandler, David

    2014-01-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens. PMID:24858957

  20. Statistical properties of high performance cesium standards

    NASA Technical Reports Server (NTRS)

    Percival, D. B.

    1973-01-01

    The intermediate term frequency stability of a group of new high-performance cesium beam tubes at the U.S. Naval Observatory were analyzed from two viewpoints: (1) by comparison of the high-performance standards to the MEAN(USNO) time scale and (2) by intercomparisons among the standards themselves. For sampling times up to 5 days, the frequency stability of the high-performance units shows significant improvement over older commercial cesium beam standards.

  1. Enhanced mechanical properties and in vitro corrosion behavior of amorphous and devitrified Ti40Zr10Cu38Pd12 metallic glass.

    PubMed

    Fornell, J; Van Steenberge, N; Varea, A; Rossinyol, E; Pellicer, E; Suriñach, S; Baró, M D; Sort, J

    2011-11-01

    The effects of annealing treatments on the microstructure, elastic/mechanical properties, wear resistance and corrosion behavior of rod-shaped Ti40Zr10Cu38Pd12 bulk glassy alloys, synthesized by copper mold casting, are investigated. Formation of ultrafine crystals embedded in an amorphous matrix is observed for intermediate annealing temperatures, whereas a fully crystalline microstructure develops after heating to sufficiently high temperatures. The glassy alloy exhibits large hardness, relatively low Young's modulus, good wear resistance and excellent corrosion behavior. Nanoindentation measurements reveal that the sample annealed in the supercooled liquid region exhibits a hardness value of 9.4 GPa, which is 20% larger than in the completely amorphous state and much larger than the hardness of commercial Ti-6Al-4V alloy. The Young's modulus of the as-cast alloy (around 100 GPa, as determined from acoustic measurements) increases only slightly during partial devitrification. Finally, the anticorrosion performance of the Ti40Zr10Cu38Pd12 alloy in Hank's solution has been shown to ameliorate as crystallization proceeds and is roughly as good as in the commercial Ti-6Al-4V alloy. The outstanding mechanical and corrosion properties of the Ti40Zr10Cu38Pd12 alloy, both in amorphous and crystalline states, are appealing for its use in biomedical applications.

  2. Method of making a high performance ultracapacitor

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.

    2000-07-26

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  3. High performance carbon nanocomposites for ultracapacitors

    DOEpatents

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  4. High-performance supported Ir-oxohydroxide water oxidation electrocatalysts.

    PubMed

    Massue, Cyriac; Pfeifer, Verena; Huang, Xing; Noack, Johannes; Tarasov, Andrey; Cap, Sebastien; Schlögl, Robert

    2017-02-05

    The synthesis of a highly active and yet stable electrocatalyst for the anodic oxygen evolution reaction (OER) remains a major challenge for acidic water splitting on an industrial scale. Addressing this challenge, we obtained an outstanding high-performance OER-electrocatalyst by loading Ir on conductive antimony-doped tin oxide (ATO)-nanoparticles via a microwave (MW)-supported hydrothermal route. The obtained Ir-phase was identified as an XRD-amorphous, highly hydrated Ir(III/IV)-oxohydroxide. In order to identify chemical and structural features responsible for the high activity and exceptional stability under acidic OER-conditions at loadings as low as 20 μg(Ir) cm-2, we used stepwise thermal treatment to gradually alter the XRD-amorphous Ir-phase via dehydroxylation and crystallization of IrO2. This resulted in dramatic depletion of OER-performance, indicating that the outstanding electrocatalytic properties of the MW-produced Ir(III/IV)-oxohydroxide are prominently linked to the nature of the produced Ir-phase. This finding is in contrast with the often reported stable but poor OER-performance of crystalline IrO2-based compounds produced via more classical calcination routes. Our investigation demonstrates the immense potential of Ir-oxohydroxide-based OER electrocatalysts for stable high-current water electrolysis under acidic conditions.

  5. Micromachined high-performance RF passives in CMOS substrate

    NASA Astrophysics Data System (ADS)

    Li, Xinxin; Ni, Zao; Gu, Lei; Wu, Zhengzheng; Yang, Chen

    2016-11-01

    This review systematically addresses the micromachining technologies used for the fabrication of high-performance radio-frequency (RF) passives that can be integrated into low-cost complementary metal-oxide semiconductor (CMOS)-grade (i.e. low-resistivity) silicon wafers. With the development of various kinds of post-CMOS-compatible microelectromechanical systems (MEMS) processes, 3D structural inductors/transformers, variable capacitors, tunable resonators and band-pass/low-pass filters can be compatibly integrated into active integrated circuits to form monolithic RF system-on-chips. By using MEMS processes, including substrate modifying/suspending and LIGA-like metal electroplating, both the highly lossy substrate effect and the resistive loss can be largely eliminated and depressed, thereby meeting the high-performance requirements of telecommunication applications.

  6. High Performance Work Practices and Firm Performance.

    ERIC Educational Resources Information Center

    Department of Labor, Washington, DC. Office of the American Workplace.

    A literature survey established that a substantial amount of research has been conducted on the relationship between productivity and the following specific high performance work practices: employee involvement in decision making, compensation linked to firm or worker performance, and training. According to these studies, high performance work…

  7. High Performance Work Systems and Firm Performance.

    ERIC Educational Resources Information Center

    Kling, Jeffrey

    1995-01-01

    A review of 17 studies of high-performance work systems concludes that benefits of employee involvement, skill training, and other high-performance work practices tend to be greater when new methods are adopted as part of a consistent whole. (Author)

  8. Sustaining High Performance in Bad Times.

    ERIC Educational Resources Information Center

    Bassi, Laurie J.; Van Buren, Mark A.

    1997-01-01

    Summarizes the results of the American Society for Training and Development Human Resource and Performance Management Survey of 1996 that examined the performance outcomes of downsizing and high performance work systems, explored the relationship between high performance work systems and downsizing, and asked whether some downsizing practices were…

  9. Common Factors of High Performance Teams

    ERIC Educational Resources Information Center

    Jackson, Bruce; Madsen, Susan R.

    2005-01-01

    Utilization of work teams is now wide spread in all types of organizations throughout the world. However, an understanding of the important factors common to high performance teams is rare. The purpose of this content analysis is to explore the literature and propose findings related to high performance teams. These include definition and types,…

  10. Cu2ZnSnS4 Nanoparticle Sensitized Metal-Organic Framework Derived Mesoporous TiO2 as Photoanodes for High-Performance Dye-Sensitized Solar Cells.

    PubMed

    Tang, Rui; Xie, Zhirun; Zhou, Shujie; Zhang, Yanan; Yuan, Zhimin; Zhang, Luyuan; Yin, Longwei

    2016-08-31

    We present a facile hot injection and hydrothermal method to synthesize Cu2ZnSnS4 (CZTS) nanoparticles sensitized metal-organic frameworks (MOFs)-derived mesoporous TiO2. The MOFs-derived TiO2 inherits the large specific surface area and abundantly porous structures of the MOFs structure, which is of great benefit to effectively enhance the dye loading capacity, prolong the incident light traveling length by enhancing the multiple interparticle light-scattering process, and therefore improve the light absorption capacity. The sensitization of CZTS nanoparticles effectively enlarges the photoresponse range of TiO2 to the visible light region and facilitates photoinduced carrier transport. The formed heterostructure between CZTS nanoparticles and MOFs-derived TiO2 with matched band gap structure effectively suppresses the recombination rates of photogenerated electron/hole pairs and prolongs the lifespan of the carriers. Photoanodes based upon CZTS/MOFs-derived TiO2 photoanodes can achieve the maximal photocurrent of 17.27 mA cm(-2) and photoelectric conversion performance of 8.10%, nearly 1.93 and 2.21 times higher than those of TiO2-based photoanode. The related mechanism and model are investigated. The strikingly improved photoelectric properties are ascribed to a synergistic action between the MOFs-derived TiO2 and the sensitization of CZTS nanoparticles.

  11. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate.

    PubMed

    Bagheri, Hasan; Hajian, Ali; Rezaei, Mosayeb; Shirzadmehr, Ali

    2017-02-15

    In the present research, we aimed to fabricate a novel electrochemical sensor based on Cu metal nanoparticles on the multiwall carbon nanotubes-reduced graphene oxide nanosheets (Cu/MWCNT/RGO) for individual and simultaneous determination of nitrite and nitrate ions. The morphology of the prepared nanocomposite on the surface of glassy carbon electrode (GCE) was characterized using various methods including scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. Under optimal experimental conditions, the modified GCE showed excellent catalytic activity toward the electro-reduction of nitrite and nitrate ions (pH=3.0) with a significant increase in cathodic peak currents in comparison with the unmodified GCE. By square wave voltammetry (SWV) the fabricated sensor demonstrated wide dynamic concentration ranges from 0.1 to 75μM with detection limits (3Sb/m) of 30nM and 20nM method for nitrite and nitrate ions, respectively. Furthermore, the applicability of the proposed modified electrode was demonstrated by measuring the concentration of nitrite and nitrate ions in the tap and mineral waters, sausages, salami, and cheese samples.

  12. Corrosion Resistances of Iron-Based Amorphous Metals with Yttrium and Tungsten Additions in Hot Calcium Chloride Brine & Natural Seawater: Fe48Mo14Cr15Y2C15B6 and W-Containing Variants

    SciTech Connect

    Farmer, J C; Haslam, J; Day, S; Lian, T; Saw, C; Hailey, P; Choi, J; Yang, N; Blue, C; Peter, W; Payer, J; Branagan, D J

    2006-10-20

    Yttrium-containing SAM1651 (Fe{sub 48.0}Cr{sub 15.0}Mo{sub 14.0}B{sub 6.0}C{sub 15.0}Y{sub 2.0}), has a critical cooling rate (CCR) of approximately 80 Kelvin per second, while SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) with no yttrium has a higher critical cooling rate of approximately 600 Kelvin per second. SAM1651's low CCR enables it to be rendered as a completely amorphous material in practical materials processes. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The passive film stability of these Fe-based amorphous metal formulations have been found to be superior to that of conventional stainless steels, and comparable to that of Ni-based alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates.

  13. Hydrogenated amorphous silicon photonics

    NASA Astrophysics Data System (ADS)

    Narayanan, Karthik

    2011-12-01

    Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it is not clear how silicon photonics will be integrated into CMOS chips, particularly microprocessors. The issue of integrating photonic circuits into electronic IC fabrication processes to achieve maximum flexibility and minimum complexity and cost is an important one. In order to minimize usage of chip real estate, it will be advantageous to integrate in three-dimensions. Hydrogenated amorphous silicon (a-Si:H) is emerging as a promising material for the 3-D integration of silicon photonics for on-chip optical interconnects. In addition, a-Si:H film can be deposited using CMOS compatible low temperature plasma-enhanced chemical vapor deposition (PECVD) process at any point in the fabrication process allowing maximum flexibility and minimal complexity. In this thesis, we demonstrate a-Si:H as a high performance alternate platform to crystalline silicon, enabling backend integration of optical interconnects in a hybrid photonic-electronic network-on-chip architecture. High quality passive devices are fabricated on a low-loss a-Si:H platform enabling wavelength division multiplexing schemes. We demonstrate a broadband all-optical modulation scheme based on free-carrier absorption effect, which can enable compact electro-optic modulators in a-Si:H. Furthermore, we comprehensively characterize the optical nonlinearities in a-Si:H and observe that a-Si:H exhibits enhanced nonlinearities as compared to crystalline silicon. Based on the enhanced nonlinearities, we demonstrate low-power four-wave mixing in a-Si:H waveguides enabling high speed all-optical devices in an a-Si:H platform. Finally, we demonstrate a novel data encoding scheme using thermal and all-optical tuning of silicon waveguides, increasing the spectral efficiency in an interconnect link.

  14. High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistors by in-situ atomic-layer-deposited HfO2

    NASA Astrophysics Data System (ADS)

    Lin, T. D.; Chang, W. H.; Chu, R. L.; Chang, Y. C.; Chang, Y. H.; Lee, M. Y.; Hong, P. F.; Chen, Min-Cheng; Kwo, J.; Hong, M.

    2013-12-01

    Self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistors (MOSFETs) have been fabricated using the gate dielectrics of in-situ directly atomic-layer-deposited (ALD) HfO2 followed by ALD-Al2O3. There were no surface pretreatments and no interfacial passivation/barrier layers prior to the ALD. TiN/Al2O3 (4 nm)/HfO2 (1 nm)/In0.53Ga0.47As/InP MOS capacitors exhibited well-behaved capacitance-voltage characteristics with true inversion behavior, low leakage current densities of ˜10-8 A/cm2 at ±1 MV/cm, and thermodynamic stability at high temperatures. Al2O3 (3 nm)/HfO2 (1 nm)/In0.53Ga0.47As MOSFETs of 1 μm gate length, with 700 °C-800 °C rapid thermal annealing in source/drain activation, have exhibited high extrinsic drain current (ID) of 1.5 mA/μm, transconductance (Gm) of 0.84 mS/μm, ION/IOFF of ˜104, low sub-threshold swing of 103 mV/decade, and field-effect electron mobility of 1100 cm2/V . s. The devices have also achieved very high intrinsic ID and Gm of 2 mA/μm and 1.2 mS/μm, respectively.

  15. Corrosion Resistances of Iron-Based Amorphous Metals with Yttrium and Tungsten Additions in Hot Calcium Chloride Brine & Natural Seawater: Fe48Mo14CR15Y2C15B6 and Variants

    SciTech Connect

    Farmer, J; Haslam, J; Day, S; Lian, T; Saw, C; Hailey, P; Choi, J; Yang, N; Blue, C; Peter, W; Payer, J; Perepezko, J; Hildal, K; Branagan, D J; Beardsley, M B; Aprigliano, L

    2006-10-12

    The passive film stability of several Fe-based amorphous metal formulations have been found to be comparable to that of stainless steels and Ni-based Alloy C-22 (UNS No. N06022), based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. Electrochemical studies of the passive film stability of SAM1651 are reported here. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). Yttrium-containing SAM1651, also known as SAM7 (Fe{sub 48.0}Cr{sub 15.0}Mo{sub 14.0}B{sub 6.0}C{sub 15.0}Y{sub 2.0}), has a critical cooling rate (CCR) of approximately 80 Kelvin per second, while yttrium-free SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) has a higher critical cooling rate of approximately 600 Kelvin per second. SAM1651's low CCR enables it to be rendered as a completely amorphous material in practical materials processes. While the yttrium enables a low CCR to be achieved, it makes the material relatively difficult to atomize, due to increases in melt viscosity. Consequently, the powders have irregular shape, which makes pneumatic conveyance during thermal spray deposition difficult. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer or inhibitor. SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying, due to the formation of deleterious intermetallic phases which depletes the matrix of key alloy elements, whereas SAM1651 can be applied as coatings with the same corrosion resistance as a fully-dense completely amorphous melt-spun ribbon, provided that its amorphous

  16. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  17. Rapidly Reconfigurable High Performance Computing Cluster

    DTIC Science & Technology

    2005-07-01

    1 SECTION 2 BACKGROUN D AN D OBJECTIVES ......................................................................... 2 2.1 H...igh Perform ance Com puting Trends ................................................................................ 2 2.2 Georgia Tech Activity in H PEC

  18. Structural modeling of amorphous conducting carbon film

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Somnath; Pati, Swapan K.; Subramanyam, S. V.

    1998-04-01

    Amorphous conducting carbon films are prepared using plasma assisted polymerization process. SEM and TEM shows random aggregate of globular clusters of micron size inside the samples. Electrical measurements indicate a near metallic nature. A tendency of saturation of resistivity at low temperature is observed. From spectroscopic analysis we find some unusual features. Based on these observations a structural model of this carbon is proposed.

  19. LANL High-Performance Data System (HPDS)

    NASA Technical Reports Server (NTRS)

    Collins, M. William; Cook, Danny; Jones, Lynn; Kluegel, Lynn; Ramsey, Cheryl

    1993-01-01

    The Los Alamos High-Performance Data System (HPDS) is being developed to meet the very large data storage and data handling requirements of a high-performance computing environment. The HPDS will consist of fast, large-capacity storage devices that are directly connected to a high-speed network and managed by software distributed in workstations. The HPDS model, the HPDS implementation approach, and experiences with a prototype disk array storage system are presented.

  20. Architecture Analysis of High Performance Capacitors (POSTPRINT)

    DTIC Science & Technology

    2009-07-01

    includes the measurement of heat dissipated from a recently developed fluorenyl polyester (FPE) capacitor under an AC excitation. II. Capacitor ...AFRL-RZ-WP-TP-2010-2100 ARCHITECTURE ANALYSIS OF HIGH PERFORMANCE CAPACITORS (POSTPRINT) Hiroyuki Kosai and Tyler Bixel UES, Inc...2009 4. TITLE AND SUBTITLE ARCHITECTURE ANALYSIS OF HIGH PERFORMANCE CAPACITORS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c

  1. Atomic simulation of mechanical behavior of Mg in a super-lattice of nanocrystalline Mg and amorphous Mg-Al alloy

    SciTech Connect

    Song, H. Y.; An, M. R.; Li, Y. L. Deng, Q.

    2014-12-07

    The mechanical properties of a super-lattice architecture composed of nanocrystalline Mg and Mg-Al amorphous alloy are investigated using molecular dynamics simulation. The results indicate that deformation mechanism of nanocrystalline Mg is obviously affected by the amorphous boundary spacing and temperature. The strength of the material increases with the decrease of amorphous boundary spacing, presenting a Hall-Petch effect at both 10 K and 300 K. A stress platform and following stiffness softening, as well as a linear strengthening in the plastic stage, are observed when the amorphous boundary spacing below 8.792 nm at 10 K. The implying reason may be that the amorphous boundary acts as the dislocations emission and absorption source. However, the second stress peak is not observed for the models at 300 K. Instead, the flow stress in plastic stage is a nearly constant value. The simulation demonstrates the emergence of the new grain, accompanied by the deformation twins and stacking faults associated with the plastic behaviors at 300 K. The general conclusions derived from this work may provide a guideline for the design of high-performance hexagonal close-packed metals.

  2. Wear Resistant Amorphous and Nanocomposite Steel Coatings

    SciTech Connect

    Branagan, Daniel James; Swank, William David; Haggard, Delon C; Fincke, James Russell; Sordelet, D.

    2001-10-01

    In this article, amorphous and nanocomposite thermally deposited steel coatings have been formed by using both plasma and high-velocity oxy-fuel (HVOF) spraying techniques. This was accomplished by developing a specialized iron-based composition with a low critical cooling rate (?104 K/s) for metallic glass formation, processing the alloy by inert gas atomization to form micron-sized amorphous spherical powders, and then spraying the classified powder to form coatings. A primarily amorphous structure was formed in the as-sprayed coatings, independent of coating thickness. After a heat treatment above the crystallization temperature (568°C), the structure of the coatings self-assembled (i.e., devitrified) into a multiphase nanocomposite microstructure with 75 to 125 nm grains containing a distribution of 20 nm second-phase grain-boundary precipitates. Vickers microhardness testing revealed that the amorphous coatings were very hard (10.2 to 10.7 GPa), with further increases in hardness after devitrification (11.4 to 12.8 GPa). The wear characteristics of the amorphous and nanocomposite coatings were determined using both two-body pin-on-disk and three-body rubber wheel wet-slurry sand tests. The results indicate that the amorphous and nanocomposite steel coatings are candidates for a wide variety of wear-resistant applications.

  3. Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph.

    PubMed

    Liu, Hengwu; Wan, Dongyun; Ishaq, Ahmad; Chen, Lanli; Guo, Beibei; Shi, Siqi; Luo, Hongjie; Gao, Yanfeng

    2016-03-01

    For specific application to an uncooled infrared detector, VO2 thin films should have a series of characteristics including purposefully chosen polymorphs, accurate stoichiometry, phase stabilization, a high temperature-coefficient of resistance (TCR), and suitable square-resistance. This work reports controllable preparation of high-performance VO2 films via post annealing of a sandwich-structured V2O5/metal (V, W)/V2O5 multilayer precursor, which was deposited by RF magnetron sputtering. This sandwich structure can dynamically regulate oxygen contents and doping element levels in the films, enabling us to achieve accurate regulation of stoichiometry and polymorphs. The precursor films undergo a B to M phase transition depending on the quantity of the metal layers. At the thickness of the metal layer below a limitation, the resulting film after heat treatment was VO2 (B), and above the limitation, the product was VO2 (M). The optical modulation of the VO2 (M) in the near-infrared region can be tuned from 1.2 to 39.8% (ΔT2000 nm). TCR values can range from -1.89 to -4.29%/K and the square-resistances at room temperature (R0) from 69.68 to 12.63 kΩ. The simplicity in phase regulation of the present method and the superior optical and electrical properties of the films may allow its wide applications in thermo-opto-electro sensing devices.

  4. Fabrication and Characterization of Amorphous/Nanocrystalline Thin Film Composite

    NASA Astrophysics Data System (ADS)

    Newton, Benjamin S.

    Combining the absorption abilities of amorphous silicon and the electron transport capabilities of crystalline silicon would be a great advantage to not only solar cells but other semiconductor devices. In this work composite films were created using molecular beam epitaxy and electron beam deposition interchangeably as a method to create metallic precursors. Aluminum induced crystallization techniques were used to convert an amorphous silicon film with a capping layer of aluminum nanodots into a film composed of a mixture of amorphous silicon and nanocrystalline silicon. This layer was grown into the amorphous layer by cannibalizing a portion of the amorphous silicon material during the aluminum induced crystallization. Characterization was performed on films and metallic precursors utilizing SEM, TEM, ellipsometry and spectrophotometer.

  5. Trehalose amorphization and recrystallization.

    PubMed

    Sussich, Fabiana; Cesàro, Attilio

    2008-10-13

    The stability of the amorphous trehalose prepared by using several procedures is presented and discussed. Amorphization is shown to occur by melting (T(m)=215 degrees C) or milling (room temperature) the crystalline anhydrous form TRE-beta. Fast dehydration of the di-hydrate crystalline polymorph, TRE-h, also produces an amorphous phase. Other dehydration procedures of TRE-h, such as microwave treatment, supercritical extraction or gentle heating at low scan rates, give variable fractions of the polymorph TRE-alpha, that undergo amorphization upon melting (at lower temperature, T(m)=130 degrees C). Additional procedures for amorphization, such as freeze-drying, spray-drying or evaporation of trehalose solutions, are discussed. All these procedures are classified depending on the capability of the undercooled liquid phase to undergo cold crystallization upon heating the glassy state at temperatures above the glass transition temperature (T(g)=120 degrees C). The recrystallizable amorphous phase is invariably obtained by the melt of the polymorph TRE-alpha, while other procedures always give an amorphous phase that is unable to crystallize above T(g). The existence of two different categories is analyzed in terms of the transformation paths and the hypothesis that the systems may exhibit different molecular mobilities.

  6. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  7. Dinosaurs can fly -- High performance refining

    SciTech Connect

    Treat, J.E.

    1995-09-01

    High performance refining requires that one develop a winning strategy based on a clear understanding of one`s position in one`s company`s value chain; one`s competitive position in the products markets one serves; and the most likely drivers and direction of future market forces. The author discussed all three points, then described measuring performance of the company. To become a true high performance refiner often involves redesigning the organization as well as the business processes. The author discusses such redesigning. The paper summarizes ten rules to follow to achieve high performance: listen to the market; optimize; organize around asset or area teams; trust the operators; stay flexible; source strategically; all maintenance is not equal; energy is not free; build project discipline; and measure and reward performance. The paper then discusses the constraints to the implementation of change.

  8. High-performance computing and communications

    SciTech Connect

    Stevens, R.

    1993-11-01

    This presentation has two parts. The first part discusses the US High-Performance Computing and Communications program -- its goals, funding, process, revisions, and research in high-performance computing systems, advanced software technology, and basic research and human resources. The second part of the presentation covers specific work conducted under this program at Argonne National Laboratory. Argonne`s efforts focus on computational science research, software tool development, and evaluation of experimental computer architectures. In addition, the author describes collaborative activities at Argonne in high-performance computing, including an Argonne/IBM project to evaluate and test IBM`s newest parallel computers and the Scalable I/O Initiative being spearheaded by the Concurrent Supercomputing Consortium.

  9. Strategy Guideline. Partnering for High Performance Homes

    SciTech Connect

    Prahl, Duncan

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  10. Advanced high-performance computer system architectures

    NASA Astrophysics Data System (ADS)

    Vinogradov, V. I.

    2007-02-01

    Convergence of computer systems and communication technologies are moving to switched high-performance modular system architectures on the basis of high-speed switched interconnections. Multi-core processors become more perspective way to high-performance system, and traditional parallel bus system architectures (VME/VXI, cPCI/PXI) are moving to new higher speed serial switched interconnections. Fundamentals in system architecture development are compact modular component strategy, low-power processor, new serial high-speed interface chips on the board, and high-speed switched fabric for SAN architectures. Overview of advanced modular concepts and new international standards for development high-performance embedded and compact modular systems for real-time applications are described.

  11. Remarkable changes in interface O vacancy and metal-oxide bonds in amorphous indium-gallium-zinc-oxide thin-film transistors by long time annealing at 250 °C

    SciTech Connect

    Chowdhury, Md Delwar Hossain; Um, Jae Gwang; Jang, Jin

    2014-12-08

    We have studied the effect of long time post-fabrication annealing on negative bias illumination stress (NBIS) of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Annealing for 100 h at 250 °C increased the field effect mobility from 14.7 cm{sup 2}/V s to 17.9 cm{sup 2}/V s and reduced the NBIS instability remarkably. Using X-ray photoelectron spectroscopy, the oxygen vacancy and OH were found to exist at the interfaces of a-IGZO with top and bottom SiO{sub 2}. Long time annealing helps to decrease the vacancy concentration and increase the metal-oxygen bonds at the interfaces; this leads to increase in the free carrier concentrations in a-IGZO and field-effect mobility. X-ray reflectivity measurement indicated the increment of a-IGZO film density of 5.63 g cm{sup −3} to 5.83 g cm{sup −3} (3.4% increase) by 100 h annealing at 250 °C. The increase in film density reveals the decrease of O vacancy concentration and reduction of weak metal-oxygen bonds in a-IGZO, which substantially helps to improve the NBIS stability.

  12. Density measurements and structural properties of liquid and amorphous metals under high pressure studied by in situ X-ray scattering (Invited)

    NASA Astrophysics Data System (ADS)

    Morard, G.; Garbarino, G.; Andrault, D.; Antonangeli, D.; Guignot, N.; Siebert, J.; Roberge, M.; Boulard, E.; Lincot, A.; Denoeud, A.; Petitgirard, S.

    2013-12-01

    Density determination for crystalline materials under high pressure and high temperature is straightforward using X-ray diffraction. For liquid and amorphous materials, it is more complicated due to the absence of long-range order. Different high pressure techniques have been developed: in-situ X-ray absorption 1-4 or ex-situ sink/float method 5-8. However, these techniques suffer several limitations, such as the limited pressure range or the long exposure time required. We have implemented an in situ X-ray diffraction analysis method suitable for the determination of Pressure-Volume-Temperature equations of state (P-V-T EoS) in the critical case of liquid and amorphous materials over an extended thermodynamic range (T>2000 K and P> 40 GPa). This method is versatile, it can be applied to data obtained using various angle-dispersive X-ray diffraction high-pressure apparatus and, contrary to in situ X-ray absorption techniques, is independent from the sample geometry. Further advantage is the fast data acquisition (between 10 to 300 seconds integration time). Information on macroscopic bulk properties (density) and local atomic arrangement (pair distribution function g(r)) can be gathered in parallel. To illustrate the method, we present studies on liquid Fe-S alloys in Paris Edinburgh press and in laser-heated diamond anvil cell, and measurements on Ce glass in diamond anvil cell at room temperature. References 1 G. Shen, N. Sata, M. Newville et al., App. Phys. Lett. 81 (8), 1411 (2002). 2 C. Sanloup, F. Guyot, P. Gillet et al., Geophys. Res. Lett. 27 (6), 811 (2000). 3 Y. Katayama, K. Tsuji, O. Shimomura et al., J. Synch. Rad. 5, 1023 (1998). 4 T. Sato and N. Funamori, Phys. Rev. Lett. 101, 255502 (2008). 5 R. Knoche and R. W. Luth, Chem. Geol. 128, 229 (1996). 6 P.S. Balog, R.A. Secco, D.C. Rubie et al., J. Geophys. Res. 108 (B2), 2124 (2003). 7 C. B. Agee and D. Walker, J. Geophys. Res. 93 (B4), 3437 (1988). 8 E. Ohtani, A. Suzuki, and T. Kato, Proc. Jpn. Acad

  13. High performance computing at Sandia National Labs

    SciTech Connect

    Cahoon, R.M.; Noe, J.P.; Vandevender, W.H.

    1995-10-01

    Sandia`s High Performance Computing Environment requires a hierarchy of resources ranging from desktop, to department, to centralized, and finally to very high-end corporate resources capable of teraflop performance linked via high-capacity Asynchronous Transfer Mode (ATM) networks. The mission of the Scientific Computing Systems Department is to provide the support infrastructure for an integrated corporate scientific computing environment that will meet Sandia`s needs in high-performance and midrange computing, network storage, operational support tools, and systems management. This paper describes current efforts at SNL/NM to expand and modernize centralized computing resources in support of this mission.

  14. Thermal interface pastes nanostructured for high performance

    NASA Astrophysics Data System (ADS)

    Lin, Chuangang

    thermal paste that is particularly effective for smooth surfaces was obtained by using nanoclay platelets (obtained by organic modification and subsequent chemical exfoliation) as the solid component. The superiority of the nanoclay paste for smooth surfaces is attributed to the submicrometer bond line thickness. Electrically nonconductive high-performance thermal paste was obtained by using either fumed alumina or fumed zinc oxide. The nonconductivity serves to avoid short circuiting in the electronic application environment. The fumed oxides are as effective as carbon black, but are advantageous in their electrical nonconductivity. Without fuming, the oxides are less effective. The silane coating on fumed metal oxides helps. Electrically nonconductive thermal pastes have also been attained using carbon as the thermally conductive solid component. Either fumed alumina or nanoclay is used to break the electrical connectivity of the carbon in the paste to obtain electrical nonconductivity. Among the nanostrucutred pastes developed in this dissertation research, the nanoclay (0.6 vol.%) paste is recommended for smooth surfaces. With the overall performance for smooth and rough surfaces considered, the carbon black (Tokai, 15 vol.%) paste is recommended. Carbon black (Tokai) is more effective than carbon black (Cabot), due to its small aggregate size. All the pastes developed are much more effective than carbon nanotube arrays investigated by others. The rheological behavior of the thermal pastes was studied under strain sweep, frequency sweep, steady state flow and temperature ramping. In the absence of a solid component, the vehicle is Newtonian and fluid-like. In the presence of a solid component, the paste is a Bingham plastic that exhibits shear thinning and mainly solid-like behavior. The addition of antioxidants enhances the solid-like character, increases the yield stress, the plastic viscosity and the bond line thickness, and decreases the thermal contact

  15. STRUCTURAL INTERACTIONS OF HYDROGEN WITH BULK AMORPHOUS MICROSTRUCTURES IN METALLIC SYSTEMS UNDERSTANDING THE ROLE OF PARTIAL CRYSTALLINITY ON PERMEATION AND EMBRITTLEMENT

    SciTech Connect

    Brinkman, Kyle; Fox, Elise; Korinko, Paul; Adams, Thad

    2010-05-10

    The development of metallic glasses in bulk form has led to a resurgence of interest into the utilization of these materials for a variety of applications. A potentially exciting application for these bulk metallic glass (BMG) materials is their use as composite membranes to replace high cost Pd/Pd-alloy membranes for enhanced gas separation processes. One of the major drawbacks to the industrial use of Pd/Pd-alloy membranes is that during cycling above and below a critical temperature an irreversible change takes place in the palladium lattice structure which can result in significant damage to the membrane. Furthermore, the cost associated with Pd-based membranes is a potential detractor for their continued use and BMG alloys offer a potentially attractive alternative. Several BMG alloys have been shown to possess high permeation rates, comparable to those measured for pure Pd metal. In addition, high strength and toughness when either in-situ or ex-situ second phase dispersoids are present. Both of these properties, high permeation and high strength/toughness, potentially make these materials attractive for gas separation membranes that could resist hydrogen 'embrittlement'. However, a fundamental understanding of the relationship between partially crystalline 'structure'/devitrification and permeation/embrittlement in these BMG materials is required in order to determine the operating window for separation membranes and provide additional input to the material synthesis community for improved alloy design. This project aims to fill the knowledge gap regarding the impact of crystallization on the permeation properties of metallic glass materials. The objectives of this study are to (i) determine the crystallization behavior in different gas environments of Fe and Zr based commercially available bulk metallic glass and (ii) quantify the effects of partial crystallinity on the hydrogen permeation properties of these metallic glass membranes.

  16. High performance flexible electronics for biomedical devices.

    PubMed

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.

  17. High Performance Work Systems for Online Education

    ERIC Educational Resources Information Center

    Contacos-Sawyer, Jonna; Revels, Mark; Ciampa, Mark

    2010-01-01

    The purpose of this paper is to identify the key elements of a High Performance Work System (HPWS) and explore the possibility of implementation in an online institution of higher learning. With the projected rapid growth of the demand for online education and its importance in post-secondary education, providing high quality curriculum, excellent…

  18. Performance, Performance System, and High Performance System

    ERIC Educational Resources Information Center

    Jang, Hwan Young

    2009-01-01

    This article proposes needed transitions in the field of human performance technology. The following three transitions are discussed: transitioning from training to performance, transitioning from performance to performance system, and transitioning from learning organization to high performance system. A proposed framework that comprises…

  19. Overview of high performance aircraft propulsion research

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.

    1992-01-01

    The overall scope of the NASA Lewis High Performance Aircraft Propulsion Research Program is presented. High performance fighter aircraft of interest include supersonic flights with such capabilities as short take off and vertical landing (STOVL) and/or high maneuverability. The NASA Lewis effort involving STOVL propulsion systems is focused primarily on component-level experimental and analytical research. The high-maneuverability portion of this effort, called the High Alpha Technology Program (HATP), is part of a cooperative program among NASA's Lewis, Langley, Ames, and Dryden facilities. The overall objective of the NASA Inlet Experiments portion of the HATP, which NASA Lewis leads, is to develop and enhance inlet technology that will ensure high performance and stability of the propulsion system during aircraft maneuvers at high angles of attack. To accomplish this objective, both wind-tunnel and flight experiments are used to obtain steady-state and dynamic data, and computational fluid dynamics (CFD) codes are used for analyses. This overview of the High Performance Aircraft Propulsion Research Program includes a sampling of the results obtained thus far and plans for the future.

  20. Teacher Accountability at High Performing Charter Schools

    ERIC Educational Resources Information Center

    Aguirre, Moises G.

    2016-01-01

    This study will examine the teacher accountability and evaluation policies and practices at three high performing charter schools located in San Diego County, California. Charter schools are exempted from many laws, rules, and regulations that apply to traditional school systems. By examining the teacher accountability systems at high performing…

  1. Commercial Buildings High Performance Rooftop Unit Challenge

    SciTech Connect

    2011-12-16

    The U.S. Department of Energy (DOE) and the Commercial Building Energy Alliances (CBEAs) are releasing a new design specification for high performance rooftop air conditioning units (RTUs). Manufacturers who develop RTUs based on this new specification will find strong interest from the commercial sector due to the energy and financial savings.

  2. Project materials [Commercial High Performance Buildings Project

    SciTech Connect

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  3. High Performance Networks for High Impact Science

    SciTech Connect

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  4. High Performance Computing and Communications Panel Report.

    ERIC Educational Resources Information Center

    President's Council of Advisors on Science and Technology, Washington, DC.

    This report offers advice on the strengths and weaknesses of the High Performance Computing and Communications (HPCC) initiative, one of five presidential initiatives launched in 1992 and coordinated by the Federal Coordinating Council for Science, Engineering, and Technology. The HPCC program has the following objectives: (1) to extend U.S.…

  5. Massive Contingency Analysis with High Performance Computing

    SciTech Connect

    Huang, Zhenyu; Chen, Yousu; Nieplocha, Jaroslaw

    2009-07-26

    Contingency analysis is a key function in the Energy Management System (EMS) to assess the impact of various combinations of power system component failures based on state estimates. Contingency analysis is also extensively used in power market operation for feasibility test of market solutions. Faster analysis of more cases is required to safely and reliably operate today’s power grids with less marginal and more intermittent renewable energy sources. Enabled by the latest development in the computer industry, high performance computing holds the promise of meet the need in the power industry. This paper investigates the potential of high performance computing for massive contingency analysis. The framework of "N-x" contingency analysis is established and computational load balancing schemes are studied and implemented with high performance computers. Case studies of massive 300,000-contingency-case analysis using the Western Electricity Coordinating Council power grid model are presented to illustrate the application of high performance computing and demonstrate the performance of the framework and computational load balancing schemes.

  6. Debugging a high performance computing program

    DOEpatents

    Gooding, Thomas M.

    2013-08-20

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  7. Debugging a high performance computing program

    DOEpatents

    Gooding, Thomas M.

    2014-08-19

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  8. Amorphous diamond films

    DOEpatents

    Falabella, S.

    1998-06-09

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  9. Amorphous pharmaceutical solids.

    PubMed

    Vranić, Edina

    2004-07-01

    Amorphous forms are, by definition, non-crystalline materials which possess no long-range order. Their structure can be thought of as being similar to that of a frozen liquid with the thermal fluctuations present in a liquid frozen out, leaving only "static" structural disorder. The amorphous solids have always been an essential part of pharmaceutical research, but the current interest has been raised by two developments: a growing attention to pharmaceutical solids in general, especially polymorphs and solvates and a revived interest in the science of glasses and the glass transition. Amorphous substances may be formed both intentionally and unintentionally during normal pharmaceutical manufacturing operations. The properties of amorphous materials can be exploited to improve the performance of pharmaceutical dosage forms, but these properties can also give rise to unwanted effects that need to be understood and managed in order for the systems to perform as required.

  10. High Performance Heat Storage and Dissipation Technology

    DTIC Science & Technology

    2005-11-11

    Heat storage, metal hydride , phase change material, solid state laser, cooling, heat pipe, directed energy weapon ABSTRACT High power solid state...high power solid state laser systems. The greater volumetric heat storage capacity of metal hydrides than the conventional PCMs can be translated...into very compact systems with shorter heat transfer paths and therefore less thermal resistance. Other exclusive properties of the metal hydride

  11. Development of a High Performance Acousto-ultrasonic Scan System

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Martin, R. E.; Harmon, L. M.; Gyekenyesi, A. L.; Kautz, H. E.

    2002-01-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition/distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods such as ultrasonic c-scan, x-ray radiography, and thermographic inspection that tend to be used primarily for discrete flaw detection. Through its history, AU has been used to inspect polymer matrix composite, metal matrix composite, ceramic matrix composite, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. In this paper, a review of essential AU technology is given. Additionally, the basic hardware and software configuration, and preliminary results with the system, are described.

  12. Development of a High Performance Acousto-Ultrasonic Scan System

    NASA Astrophysics Data System (ADS)

    Roth, D. J.; Martin, R. E.; Harmon, L. M.; Gyekenyesi, A. L.; Kautz, H. E.

    2003-03-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition/distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods such as ultrasonic c-scan, x-ray radiography, and themographic inspection that tend to be used primarily for discrete flaw detection. Through its history, AU has been used to inspect polymer matrix composite, metal matrix composite, ceramic matrix composite, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. In this paper, a review of essential AU technology is given. Additionally, the basic hardware and software configuration, and preliminary results with the system, are described.

  13. Development of a High Performance Acousto-Ultrasonic Scan System

    NASA Astrophysics Data System (ADS)

    Roth, D. J.; Martin, R. E.; Harmon, L. M.; Gyekenyesi, A. L.; Kautz, H. E.

    2002-10-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition/distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods such as ultrasonic c-scan, x-ray radiography, and thermographic inspection that tend to be used primarily for discrete flaw detection. Through its history, AU has been used to inspect polymer matrix composite, metal matrix composite, ceramic matrix composite, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. In this paper, a review of essential AU technology is given. Additionally, the basic hardware and software configuration, and preliminary results with the system, are described.

  14. Evaluation of high-performance computing software

    SciTech Connect

    Browne, S.; Dongarra, J.; Rowan, T.

    1996-12-31

    The absence of unbiased and up to date comparative evaluations of high-performance computing software complicates a user`s search for the appropriate software package. The National HPCC Software Exchange (NHSE) is attacking this problem using an approach that includes independent evaluations of software, incorporation of author and user feedback into the evaluations, and Web access to the evaluations. We are applying this approach to the Parallel Tools Library (PTLIB), a new software repository for parallel systems software and tools, and HPC-Netlib, a high performance branch of the Netlib mathematical software repository. Updating the evaluations with feed-back and making it available via the Web helps ensure accuracy and timeliness, and using independent reviewers produces unbiased comparative evaluations difficult to find elsewhere.

  15. Monitoring SLAC High Performance UNIX Computing Systems

    SciTech Connect

    Lettsome, Annette K.; /Bethune-Cookman Coll. /SLAC

    2005-12-15

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia. Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface.

  16. High performance flight simulation at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II; Sudik, Steven J.; Grove, Randall D.

    1992-01-01

    The use of real-time simulation at the NASA facility is reviewed specifically with regard to hardware, software, and the use of a fiberoptic-based digital simulation network. The network hardware includes supercomputers that support 32- and 64-bit scalar, vector, and parallel processing technologies. The software include drivers, real-time supervisors, and routines for site-configuration management and scheduling. Performance specifications include: (1) benchmark solution at 165 sec for a single CPU; (2) a transfer rate of 24 million bits/s; and (3) time-critical system responsiveness of less than 35 msec. Simulation applications include the Differential Maneuvering Simulator, Transport Systems Research Vehicle simulations, and the Visual Motion Simulator. NASA is shown to be in the final stages of developing a high-performance computing system for the real-time simulation of complex high-performance aircraft.

  17. Low temperature internal friction of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Metcalf, Thomas; Jernigan, Glenn; Jugdersuren, Battogtokh; Kearney, Brian; Culberston, James

    The ubiquitous low-energy excitations, known as two-level tunnelling systems (TLS), are one of the universal phenomena of amorphous solids. These excitations dominate the acoustic, dielectric, and thermal properties of structurally disordered solids. Using the double-paddle oscillator internal friction measurement technique, we have shown that TLS can be made to almost completely disappear in e-beam deposited amorphous silicon (a-Si) as the growth temperature increased to 400°C. However, there is a mysterious broad maximum in internal friction at 2-3K, which we suspect to come from metallic contamination of our oscillators and is not related to a-Si. Our new result of a-Si, deposited in a different UHV system and on oscillators with a different type of metallic electrodes, confirms our suspicion. This lowers the upper bound of possible TLS content in a-Si, in terms of tunnelling strength, to below 10-6. Our results offer an encouraging opportunity to use growth temperature to improve the structure order of amorphous thin films and to develop high quality amorphous dielectrics for applications, such as in modern quantum devices. Work supported by the Office of Naval Research.

  18. AHPCRC - Army High Performance Computing Research Center

    DTIC Science & Technology

    2010-01-01

    treatments and reconstructive surgeries . High performance computer simu- lation allows designers to try out numerous mechanical and material...investigating the effect of techniques for simplifying the calculations (sending the projectile through a pre-existing hole, for example) on the accuracy of...semiconductor particles are size-dependent. These properties, including yield strength and resistance to fatigue, are not well predicted by macroscopic

  19. AHPCRC - Army High Performance Computing Research Center

    DTIC Science & Technology

    2008-01-01

    materials “from the atoms up” or to model biological systems at the molecular level. The speed and capacity of massively parallel computers are key...Streamlined, massively parallel high performance computing structural codes allow researchers to examine many relevant physical factors simultaneously...expenditure of energy, so that the drones can carry their load of sensors, communications devices, and fuel. AHPCRC researchers are using massively

  20. High-performance reactionless scan mechanism

    NASA Technical Reports Server (NTRS)

    Williams, Ellen I.; Summers, Richard T.; Ostaszewski, Miroslaw A.

    1995-01-01

    A high-performance reactionless scan mirror mechanism was developed for space applications to provide thermal images of the Earth. The design incorporates a unique mechanical means of providing reactionless operation that also minimizes weight, mechanical resonance operation to minimize power, combined use of a single optical encoder to sense coarse and fine angular position, and a new kinematic mount of the mirror. A flex pivot hardware failure and current project status are discussed.

  1. High Performance Multiwall Carbon Nanotube Bolometers

    DTIC Science & Technology

    2010-10-21

    REPORT High performance multiwall carbon nanotube bolometers 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: High infrared bolometric photoresponse has...been observed in multiwall carbon nanotube MWCNT films at room temperature. The observed detectivity D in exceeding 3.3 106 cm Hz1/2 /W on MWCNT film...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS carbon nanotube, infrared detector, bolometer

  2. High Performance Split-Stirling Cooler Program

    DTIC Science & Technology

    1982-09-01

    7 SPLIT- STIRLING CYCLE CRYOCOOLER . ...... . . . . . 13 8 TEMPERATURE-SHOCK COMPARISON PERFORMANCE DATA, S/N 002 . . 23 9 TEMPERATURE-SHOCK...PERFORMANCE SPLIT- STIRLING "COOLER PROGRAM FINAL TECHNICAL REPORT "September 1982 Prepared for NIGHT VISION AND ELECTRO-OPTICS LABORATORI ES "Contract DAAK70...REPORT & P.Vt2OO COVERED HIGH PERFORMANCE SPLIT- STIRLING COOLER PROGRAM Final Technical Sept. 1979. - Sept. 1982 S. PERPORMING ORO. REPORT KUMMER

  3. Task parallelism and high-performance languages

    SciTech Connect

    Foster, I.

    1996-03-01

    The definition of High Performance Fortran (HPF) is a significant event in the maturation of parallel computing: it represents the first parallel language that has gained widespread support from vendors and users. The subject of this paper is to incorporate support for task parallelism. The term task parallelism refers to the explicit creation of multiple threads of control, or tasks, which synchronize and communicate under programmer control. Task and data parallelism are complementary rather than competing programming models. While task parallelism is more general and can be used to implement algorithms that are not amenable to data-parallel solutions, many problems can benefit from a mixed approach, with for example a task-parallel coordination layer integrating multiple data-parallel computations. Other problems admit to both data- and task-parallel solutions, with the better solution depending on machine characteristics, compiler performance, or personal taste. For these reasons, we believe that a general-purpose high-performance language should integrate both task- and data-parallel constructs. The challenge is to do so in a way that provides the expressivity needed for applications, while preserving the flexibility and portability of a high-level language. In this paper, we examine and illustrate the considerations that motivate the use of task parallelism. We also describe one particular approach to task parallelism in Fortran, namely the Fortran M extensions. Finally, we contrast Fortran M with other proposed approaches and discuss the implications of this work for task parallelism and high-performance languages.

  4. Computational Biology and High Performance Computing 2000

    SciTech Connect

    Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

    2000-10-19

    The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

  5. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    SciTech Connect

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-04-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

  6. Construction and characterization of amorphous-silicon test structures

    SciTech Connect

    Koppel, L.N.; Milgram, A.A.

    1987-08-01

    Semiconductor device fabrication and characterization work indicates that construction of amorphous-Si photoconductive radiation detectors is feasible. Amorphous Si films are mechanically stable and adhere well to candidate electrode materials; form Schottky-type rectifying junctions with several electrode metals. Materials exist for forming ohmic contacts on amorphous-Si films. Fabrication facilities accessible to ARACOR produce material of nominal band-gap energy, dangling bond density, and dielectric constant. Modification of amorphous-Si conductivity is feasible and supports the construction of PIN devices. Significant photoconductive response is observed for both Schottky-type and PIN devices, with the latter providing superior performance. It is recommended that construction and experimental evaluation of prototype amorphous-Si radiation detectors be persued in Phase II.

  7. International Conference on Liquid and Amorphous Metals (5th) Held at Los Angeles, California on August 15-19, 1983. Abstract.

    DTIC Science & Technology

    1983-08-19

    elucidated. Within the temperature Whereas t-e temperature dependence of the al- range of 2 K < x < 300 K, the temperature coefficient of loys ...structure functioor: L Metals, Tohoku University, Sendai-980, Japan find that for s-electrons in the reglon of k1 e p /2 ( k 1.6 X-1 , Nagel- Tauc ...compositions. The Fe-based alloys are super- under the Nagle- Tauc condition. conducting for x 68-t2. At higher Fe concentrations the Generally, our

  8. Fabrication of metallic glass structures

    DOEpatents

    Cline, C.F.

    1983-10-20

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  9. Fabrication of metallic glass structures

    DOEpatents

    Cline, Carl F.

    1986-01-01

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature range.

  10. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  11. Microcavity effects in the photoluminescence of hydrogenated amorphous silicon nitride

    NASA Astrophysics Data System (ADS)

    Serpenguzel, Ali; Aydinli, Atilla; Bek, Alpan

    1998-07-01

    Fabry-Perot microcavities are used for the alteration of photoluminescence in hydrogenated amorphous silicon nitride grown with and without ammonia. The photoluminescence is red-near-infrared for the samples grown without ammonia, and blue-green for the samples grown with ammonia. In the Fabry- Perot microcavities, the amplitude of the photoluminescence is enhanced, while its linewidth is reduced with respect to the bulk hydrogenated amorphous silicon nitride. The microcavity was realized by a metallic back mirror and a hydrogenated amorphous silicon nitride--air or a metallic front mirror. The transmittance, reflectance, and absorbance spectra were also measured and calculated. The calculated spectra agree well with the experimental spectra. The hydrogenated amorphous silicon nitride microcavity has potential for becoming a versatile silicon based optoelectronic device such as a color flat panel display, a resonant cavity enhanced light emitting diode, or a laser.

  12. Failure analysis of high performance ballistic fibers

    NASA Astrophysics Data System (ADS)

    Spatola, Jennifer S.

    High performance fibers have a high tensile strength and modulus, good wear resistance, and a low density, making them ideal for applications in ballistic impact resistance, such as body armor. However, the observed ballistic performance of these fibers is much lower than the predicted values. Since the predictions assume only tensile stress failure, it is safe to assume that the stress state is affecting fiber performance. The purpose of this research was to determine if there are failure mode changes in the fiber fracture when transversely loaded by indenters of different shapes. An experimental design mimicking transverse impact was used to determine any such effects. Three different indenters were used: round, FSP, and razor blade. The indenter height was changed to change the angle of failure tested. Five high performance fibers were examined: KevlarRTM KM2, SpectraRTM 130d, DyneemaRTM SK-62 and SK-76, and ZylonRTM 555. Failed fibers were analyzed using an SEM to determine failure mechanisms. The results show that the round and razor blade indenters produced a constant failure strain, as well as failure mechanisms independent of testing angle. The FSP indenter produced a decrease in failure strain as the angle increased. Fibrillation was the dominant failure mechanism at all angles for the round indenter, while through thickness shearing was the failure mechanism for the razor blade. The FSP indenter showed a transition from fibrillation at low angles to through thickness shearing at high angles, indicating that the round and razor blade indenters are extreme cases of the FSP indenter. The failure mechanisms observed with the FSP indenter at various angles correlated with the experimental strain data obtained during fiber testing. This indicates that geometry of the indenter tip in compression is a contributing factor in lowering the failure strain of the high performance fibers. TEM analysis of the fiber failure mechanisms was also attempted, though without

  13. Toward a theory of high performance.

    PubMed

    Kirby, Julia

    2005-01-01

    What does it mean to be a high-performance company? The process of measuring relative performance across industries and eras, declaring top performers, and finding the common drivers of their success is such a difficult one that it might seem a fool's errand to attempt. In fact, no one did for the first thousand or so years of business history. The question didn't even occur to many scholars until Tom Peters and Bob Waterman released In Search of Excellence in 1982. Twenty-three years later, we've witnessed several more attempts--and, just maybe, we're getting closer to answers. In this reported piece, HBR senior editor Julia Kirby explores why it's so difficult to study high performance and how various research efforts--including those from John Kotter and Jim Heskett; Jim Collins and Jerry Porras; Bill Joyce, Nitin Nohria, and Bruce Roberson; and several others outlined in a summary chart-have attacked the problem. The challenge starts with deciding which companies to study closely. Are the stars the ones with the highest market caps, the ones with the greatest sales growth, or simply the ones that remain standing at the end of the game? (And when's the end of the game?) Each major study differs in how it defines success, which companies it therefore declares to be worthy of emulation, and the patterns of activity and attitude it finds in common among them. Yet, Kirby concludes, as each study's method incrementally solves problems others have faced, we are progressing toward a consensus theory of high performance.

  14. High-Performance Water-Iodinating Cartridge

    NASA Technical Reports Server (NTRS)

    Sauer, Richard; Gibbons, Randall E.; Flanagan, David T.

    1993-01-01

    High-performance cartridge contains bed of crystalline iodine iodinates water to near saturation in single pass. Cartridge includes stainless-steel housing equipped with inlet and outlet for water. Bed of iodine crystals divided into layers by polytetrafluoroethylene baffles. Holes made in baffles and positioned to maximize length of flow path through layers of iodine crystals. Resulting concentration of iodine biocidal; suppresses growth of microbes in stored water or disinfects contaminated equipment. Cartridge resists corrosion and can be stored wet. Reused several times before necessary to refill with fresh iodine crystals.

  15. An Introduction to High Performance Computing

    NASA Astrophysics Data System (ADS)

    Almeida, Sérgio

    2013-09-01

    High Performance Computing (HPC) has become an essential tool in every researcher's arsenal. Most research problems nowadays can be simulated, clarified or experimentally tested by using computational simulations. Researchers struggle with computational problems when they should be focusing on their research problems. Since most researchers have little-to-no knowledge in low-level computer science, they tend to look at computer programs as extensions of their minds and bodies instead of completely autonomous systems. Since computers do not work the same way as humans, the result is usually Low Performance Computing where HPC would be expected.

  16. High-performance neural networks. [Neural computers

    SciTech Connect

    Dress, W.B.

    1987-06-01

    The new Forth hardware architectures offer an intermediate solution to high-performance neural networks while the theory and programming details of neural networks for synthetic intelligence are developed. This approach has been used successfully to determine the parameters and run the resulting network for a synthetic insect consisting of a 200-node ''brain'' with 1760 interconnections. Both the insect's environment and its sensor input have thus far been simulated. However, the frequency-coded nature of the Browning network allows easy replacement of the simulated sensors by real-world counterparts.

  17. Strategy Guideline. High Performance Residential Lighting

    SciTech Connect

    Holton, J.

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  18. High performance forward swept wing aircraft

    NASA Technical Reports Server (NTRS)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)

    1988-01-01

    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  19. High performance thyratron driver with low jitter.

    PubMed

    Verma, Rishi; Lee, P; Springham, S V; Tan, T L; Rawat, R S

    2007-08-01

    We report the design and development of insulated gate bipolar junction transistor based high performance driver for operating thyratrons in grounded grid mode. With careful design, the driver meets the specification of trigger output pulse rise time less than 30 ns, jitter less than +/-1 ns, and time delay less than 160 ns. It produces a -600 V pulse of 500 ns duration (full width at half maximum) at repetition rate ranging from 1 Hz to 1.14 kHz. The developed module also facilitates heating and biasing units along with protection circuitry in one complete package.

  20. Amorphous Silicates in Primitive Meteoritic Materials: Acfer 094 and IDPs

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Nakamura-Messenger, K.; Messenger, S.; Walker, Robert M.

    2009-01-01

    The abundance of presolar grains is one measure of the primitive nature of meteoritic materials. Presolar silicates are abundant in meteorites whose matrices are dominated by amorphous silicates such as the unique carbonaceous chondrite Acfer 094. Presolar silicates are even more abundant in chondritic-porous interplanetary dust particles (CP-IDPs). Amorphous silicates in the form of GEMS (glass with embedded metal and sulfides) grains are a major component of CP IDPs. We are studying amorphous silicates in Acfer 094 matrix in order to determine whether they are related to the GEMS grains in CPIDPs