Sample records for amorphous mixed oxides

  1. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis.

    PubMed

    Smith, Rodney D L; Prévot, Mathieu S; Fagan, Randal D; Zhang, Zhipan; Sedach, Pavel A; Siu, Man Kit Jack; Trudel, Simon; Berlinguette, Curtis P

    2013-04-05

    Large-scale electrolysis of water for hydrogen generation requires better catalysts to lower the kinetic barriers associated with the oxygen evolution reaction (OER). Although most OER catalysts are based on crystalline mixed-metal oxides, high activities can also be achieved with amorphous phases. Methods for producing amorphous materials, however, are not typically amenable to mixed-metal compositions. We demonstrate that a low-temperature process, photochemical metal-organic deposition, can produce amorphous (mixed) metal oxide films for OER catalysis. The films contain a homogeneous distribution of metals with compositions that can be accurately controlled. The catalytic properties of amorphous iron oxide prepared with this technique are superior to those of hematite, whereas the catalytic properties of a-Fe(100-y-z)Co(y)Ni(z)O(x) are comparable to those of noble metal oxide catalysts currently used in commercial electrolyzers.

  2. Ambient temperature NO oxidation over Cr-based amorphous mixed oxide catalysts: effects from the second oxide components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Aiyong; Lin, Bo; Zhang, Hanlei

    2017-01-01

    Three series of Cr-based mixed oxides (Cr-Co, Cr-Fe, and Cr-Ni oxides) with high specific surface areas and amorphous textures were synthesized using a novel sol-gel method. These mixed oxides, in comparison to their pure metal oxide (CrOx, Co3O4, FeOx and NiO) counterparts, display enhanced performance for catalytic oxidation of low-concentration NO at room temperature. The best performing catalysts achieve 100% NO conversion for ~30 h of operation at a high space velocity of 45,000 ml g-1 h-1. The amorphous structure was found to be critical for these catalysts to maintain high activity and durability. Control of Cr/M (M=Co, Fe andmore » Ni) molar ratio, nitrate precursor decomposition temperature and catalyst calcination temperature was key to the synthesis of these highly active catalysts.« less

  3. Amorphous Mixed-Valence Vanadium Oxide/Exfoliated Carbon Cloth Structure Shows a Record High Cycling Stability.

    PubMed

    Song, Yu; Liu, Tian-Yu; Yao, Bin; Kou, Tian-Yi; Feng, Dong-Yang; Liu, Xiao-Xia; Li, Yat

    2017-04-01

    Previous studies show that vanadium oxides suffer from severe capacity loss during cycling in the liquid electrolyte, which has hindered their applications in electrochemical energy storage. The electrochemical instability is mainly due to chemical dissolution and structural pulverization of vanadium oxides during charge/discharge cyclings. In this study the authors demonstrate that amorphous mixed-valence vanadium oxide deposited on exfoliated carbon cloth (CC) can address these two limitations simultaneously. The results suggest that tuning the V 4+ /V 5+ ratio of vanadium oxide can efficiently suppress the dissolution of the active materials. The oxygen-functionalized carbon shell on exfoliated CC can bind strongly with VO x via the formation of COV bonding, which retains the electrode integrity and suppresses the structural degradation of the oxide during charging/discharging. The uptake of structural water during charging and discharging processes also plays an important role in activating the electrode material. The amorphous mixed-valence vanadium oxide without any protective coating exhibits record-high cycling stability in the aqueous electrolyte with no capacitive decay in 100 000 cycles. This work provides new insights on stabilizing vanadium oxide, which is critical for the development of vanadium oxide based energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Oxide formation and anodic polarization behavior of thin films of amorphous and crystalline FeCrP alloys prepared by ion beam mixing

    NASA Astrophysics Data System (ADS)

    Demaree, J. D.; Was, G. S.; Sorensen, N. R.

    1991-07-01

    An experimental program has been conducted to determine the effect of phosphorus on the corrosion and passivation behavior of FeCrP alloys. Chemically homogeneous 60 nm films of Fe10Cr xP ( x from 0 to 35 at.%) were prepared by multilayer evaporation followed by ion beam mixing with Kr + ions. Films with a phosphorus content of at least 25 at.% were found to be entirely amorphous, while films with 15 at.% P consisted of both amorphous and bcc phases. Recrystallization of the amorphous phase was accomplished by heating the samples to 450°C in a purified argon flow furnace. Electrochemical polarization tests in an acid solution have shown the Fe10Cr xP films to be more corrosion resistant than Fe10Cr, with the corrosion resistance increasing with the amount of P present. The corrosion resistance is not significantly affected when the amorphous films are recrystallized, indicating that the behavior is chemically controlled and not a result of the amorphous structure. When examined by XPS, the phosphorus appears to enhance passivation by encouraging Cr enrichment in the oxide and by incorporating in the oxide as phosphate.

  5. The effect of B 2O 3 addition on the crystallization of amorphous TiO 2-ZrO 2 mixed oxide

    NASA Astrophysics Data System (ADS)

    Mao, Dongsen; Lu, Guanzhong

    2007-02-01

    The effect of B 2O 3 addition on the crystallization of amorphous TiO 2-ZrO 2 mixed oxide was investigated by X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG/DTA). TiO 2-ZrO 2 mixed oxide was prepared by co-precipitation method with aqueous ammonia as the precipitation reagent. Boric acid was used as a source of boria, and boria contents varied from 2 to 20 wt%. The results indicate that the addition of small amount of boria (<8 wt%) hinders the crystallization of amorphous TiO 2-ZrO 2 into a crystalline ZrTiO 4 compound, while a larger amount of boria (⩾8 wt%) promotes the crystallization process. FT-IR spectroscopy and 11B MAS NMR results show that tetrahedral borate species predominate at low boria loading, and trigonal borate species increase with increasing boria loading. Thus it is concluded that highly dispersed tetrahedral BO 4 units delay, while a build-up of trigonal BO 3 promote, the crystallization of amorphous TiO 2-ZrO 2 to form ZrTiO 4 crystals.

  6. Band gap tuning of amorphous Al oxides by Zr alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J.; Jones, N. C.

    2016-08-29

    The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al{sub 2}O{sub 3} to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearlymore » as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction band minimum of anodized Al{sub 2}O{sub 3}.« less

  7. Compositionally Dependent Nonlinear Optical Bandgap Behavior of Mixed Anodic Oxides in Niobium-Titanium System.

    PubMed

    Bleckenwegner, Petra; Mardare, Cezarina Cela; Cobet, Christoph; Kollender, Jan Philipp; Hassel, Achim Walter; Mardare, Andrei Ionut

    2017-02-13

    Optical bandgap mapping of Nb-Ti mixed oxides anodically grown on a thin film parent metallic combinatorial library was performed via variable angle spectroscopic ellipsometry (VASE). A wide Nb-Ti compositional spread ranging from Nb-90 at.% Ti to Nb-15 at.% Ti deposited by cosputtering was used for this purpose. The Nb-Ti library was stepwise anodized at potentials up to 10 V SHE, and the anodic oxides optical properties were mapped along the Nb-Ti library with 2 at.% resolution. The surface dissimilarities along the Nb-Ti compositional gradient were minimized by tuning the deposition parameters, thus allowing a description of the mixed Nb-Ti oxides based on a single Tauc-Lorentz oscillator for data fitting. Mapping of the Nb-Ti oxides optical bandgap along the entire compositional spread showed a clear deviation from the linear model based on mixing individual Nb and Ti electronegativities proportional to their atomic fractions. This is attributed to the strong amorphization and an in-depth compositional gradient of the mixed oxides. A systematic optical bandgap decrease toward values as low as 2.0 eV was identified at approximately 50 at.% Nb. Mixing of Nb 2 O 5 and TiO 2 with both amorphous and crystalline phases is concluded, whereas the possibility of complex Nb a Ti b O y oxide formation during anodization is unlikely.

  8. Ambient-temperature NO oxidation over amorphous CrOx-ZrO 2 mixed oxide catalysts: Significant promoting effect of ZrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Aiyong; Guo, Yanglong; Gao, Feng

    2017-03-01

    Three series of Cr-based mixed oxides (Cr-Co, Cr-Fe, and Cr-Ni oxides) with high specific surface areas and amorphous textures are synthesized using a novel sol-gel method. These mixed oxides, in comparison to their pure metal oxide (CrOx, Co3O4, FeOx and NiO) counterparts, display enhanced performance for catalytic oxidation of low-concentration NO at room temperature. Over best performing catalysts, 100% NO conversion can be maintained up to 30 h of operation at a high space velocity of 45,000 ml g-1 h-1. The amorphous structure is found to be critical for these catalysts to maintain high activity and durability. Cr/M (M=Co, Femore » and Ni) molar ratio, nitrate precursor decomposition temperature and catalyst calcination temperature are important criteria for the synthesis of the highly active catalysts. This work was supported by National Basic Research Program of China (2013CB933200), National Natural Science Foundation of China (21577035, 21577034), Commission of Science and Technology of Shanghai Municipality (15DZ1205305) and 111 Project (B08021). Aiyong Wang gratefully acknowledges the China Scholarship Council for the Joint-Training Scholarship Program with the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. Department of Energy (DOE) by Battelle. FG and CHFP are supported by the U.S. DOE/Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office.« less

  9. Method for making fine and ultrafine spherical particles of zirconium titanate and other mixed metal oxide systems

    DOEpatents

    Hu, Michael Z.

    2006-05-23

    Disclosed is a method for making amorphous spherical particles of zirconium titanate and crystalline spherical particles of zirconium titanate comprising the steps of mixing an aqueous solution of zirconium salt and an aqueous solution of titanium salt into a mixed solution having equal moles of zirconium and titanium and having a total salt concentration in the range from 0.01 M to about 0.5 M. A stearic dispersant and an organic solvent is added to the mixed salt solution, subjecting the zirconium salt and the titanium salt in the mixed solution to a coprecipitation reaction forming a solution containing amorphous spherical particles of zirconium titanate wherein the volume ratio of the organic solvent to aqueous part is in the range from 1 to 5. The solution of amorphous spherical particles is incubated in an oven at a temperature .ltoreq.100.degree. C. for a period of time .ltoreq.24 hours converting the amorphous particles to fine or ultrafine crystalline spherical particles of zirconium titanate.

  10. Electrically conducting ternary amorphous fully oxidized materials and their application

    NASA Technical Reports Server (NTRS)

    Giauque, Pierre (Inventor); Nicolet, Marc (Inventor); Gasser, Stefan M. (Inventor); Kolawa, Elzbieta A. (Inventor); Cherry, Hillary (Inventor)

    2004-01-01

    Electrically active devices are formed using a special conducting material of the form Tm--Ox mixed with SiO2 where the materials are immiscible. The immiscible materials are forced together by using high energy process to form an amorphous phase of the two materials. The amorphous combination of the two materials is electrically conducting but forms an effective barrier.

  11. Oxidative Dissolution of Arsenopyrite by Mesophilic and Moderately Thermophilic Acidophiles †

    PubMed Central

    Tuovinen, Olli H.; Bhatti, Tariq M.; Bigham, Jerry M.; Hallberg, Kevin B.; Garcia, Oswaldo; Lindström, E. Börje

    1994-01-01

    The purpose of this work was to determine solution- and solid-phase changes associated with the oxidative leaching of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans and a moderately thermoacidophilic mixed culture. Jarosite [KFe3(SO4)2(OH)6], elemental sulfur (S0), and amorphous ferric arsenate were detected by X-ray diffraction as solid-phase products. The oxidation was not a strongly acid-producing reaction and was accompanied by a relatively low redox level. The X-ray diffraction lines of jarosite increased considerably when ferrous sulfate was used as an additional substrate for T. ferroxidans. A moderately thermoacidophilic mixed culture oxidized arsenopyrite faster at 45°C than did T. ferroxidans at 22°C, and the oxidation was accompanied by a nearly stoichiometric release of Fe and As. The redox potential was initially low but subsequently increased during arsenopyrite oxidation by the thermoacidophiles. Jarosite, S0, and amorphous ferric arsenate were also formed under these conditions. PMID:16349379

  12. Natural realgar and amorphous AsS oxidation kinetics

    NASA Astrophysics Data System (ADS)

    Lengke, Maggy F.; Tempel, Regina N.

    2003-03-01

    The oxidation rates of natural realgar and amorphous synthetic AsS by dissolved oxygen were evaluated using mixed flow reactors at pH 7.2 to 8.8 and dissolved oxygen contents of 5.9 to 16.5 ppm over a temperature range of 25 to 40°C. The ratios of As/S are stoichiometric for all amorphous AsS oxidation experiments except for two experiments conducted at pH ˜8.8. In these experiments, stoichiometric ratios of As/S were only observed in the early stages of AsS (am) oxidation whereas lower As/S ratios were observed during steady state. For realgar oxidation experiments, the As/S ratio is less than the stoichiometric ratio of realgar, ranging between 0.61 and 0.71. This nonstoichiometric release of As and S to solution indicates that realgar oxidation is more selective for S after the rates of oxidation become constant. All measured oxidation rates at 25°C can be described within experimental uncertainties as follows: Table 1

  13. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs between low temperature and low stress (less than -70 MPa compressive) and device performance. Devices with a dark current of less than 1.0 pA/mm2 and a quantum efficiency of 68% have been demonstrated. Alternative processing techniques, such as pixelating the PIN diode and using organic photodiodes have also been explored for applications where extreme flexibility is desired.

  14. Mechanism of selenite removal by a mixed adsorbent based on Fe-Mn hydrous oxides studied using X-ray absorption spectroscopy.

    PubMed

    Chubar, Natalia; Gerda, Vasyl; Szlachta, Małgorzata

    2014-11-18

    Selenium cycling in the environment is greatly controlled by various minerals, including Mn and Fe hydrous oxides. At the same time, such hydrous oxides are the main inorganic ion exchangers suitable (on the basis of their chemical nature) to sorb (toxic) anions, separating them from water solutions. The mechanism of selenite adsorption by the new mixed adsorbent composed of a few (amorphous and crystalline) phases [maghemite, MnCO3, and X-ray amorphous Fe(III) and Mn(III) hydrous oxides] was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy [supported by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data]. The complexity of the porous adsorbent, especially the presence of the amorphous phases of Fe(III) and Mn(III) hydrous oxides, is the main reason for its high selenite removal performance demonstrated by batch and column adsorption studies shown in the previous work. Selenite was bound to the material via inner-sphere complexation (via oxygen) to the adsorption sites of the amorphous Fe(III) and Mn(III) oxides. This anion was attracted via bidentate binuclear corner-sharing coordination between SeO3(2-) trigonal pyramids and both FeO6 and MnO6 octahedra; however, the adsorption sites of Fe(III) hydrous oxides played a leading role in selenite removal. The contribution of the adsorption sites of Mn(III) oxide increased as the pH decreased from 8 to 6. Because most minerals have a complex structure (they are seldom based on individual substances) of various crystallinity, this work is equally relevant to environmental science and environmental technology because it shows how various solid phases control cycling of chemical elements in the environment.

  15. Poly(methyl methacrylate) coating of soft magnetic amorphous and crystalline Fe,Co-B nanoparticles by chemical reduction.

    PubMed

    Fernández Barquín, L; Yedra Martínez, A; Rodríguez Fernández, L; Rojas, D P; Murphy, F J; Alba Venero, D; Ruiz González, L; González-Calbet, J; Fdez-Gubieda, M L; Pankhurst, Q A

    2012-03-01

    The structural and magnetic properties of a collection of nanoparticles coated by Poly(methyl methacrylate) through a wet chemical synthesis have been investigated. The particles display either an amorphous (M = Fe, Co) M-B arrangement or a mixed structure bcc-Fe and fcc-Co + amorphous M-B. Both show the presence of a metal oxi-hydroxide formed in aqueous reduction. The organic coating facilitates technological handling. The cost-effective synthesis involves a reduction in a Poly(methyl methacrylate) aqueous solution of iron(II) or cobalt(II) sulphates (< 0.5 M) by sodium borohydride (< 0.5 M). The particles present an oxidized component, as deduced from X-ray diffraction, Mössbauer and Fe- and Co K-edge X-ray absorption spectroscopy and electron microscopy. For the ferrous alloys, this Fe-oxide is alpha-goethite, favoured by the aqueous solution. The Poly(methyl methacrylate) coating is confirmed by Fourier transform infrared spectroscopy. In pure amorphous core alloys there is a drastic change of the coercivity from bulk to around 30 Oe in the nanoparticles. The mixed structured alloys also lie in the soft magnetic regime. Magnetisation values at room temperature range around 100 emu/g. The coercivity stems from multidomain particles and their agglomeration, triggering the dipolar interactions.

  16. Amorphous Mixed-Metal Oxide Thin Films from Aqueous Solution Precursors with Near-Atomic Smoothness.

    PubMed

    Kast, Matthew G; Cochran, Elizabeth A; Enman, Lisa J; Mitchson, Gavin; Ditto, Jeffrey; Siefe, Chris; Plassmeyer, Paul N; Greenaway, Ann L; Johnson, David C; Page, Catherine J; Boettcher, Shannon W

    2016-12-28

    Thin films with tunable and homogeneous composition are required for many applications. We report the synthesis and characterization of a new class of compositionally homogeneous thin films that are amorphous solid solutions of Al 2 O 3 and transition metal oxides (TMO x ) including VO x , CrO x , MnO x , Fe 2 O 3 , CoO x , NiO, CuO x , and ZnO. The synthesis is enabled by the rapid decomposition of molecular transition-metal nitrates TM(NO 3 ) x at low temperature along with precondensed oligomeric Al(OH) x (NO 3 ) 3-x cluster species, both of which can be processed from aq solution. The films are dense, ultrasmooth (R rms < 1 nm, near 0.1 nm in many cases), and atomically mixed amorphous metal-oxide alloys over a large composition range. We assess the chemical principles that favor the formation of amorphous homogeneous films over rougher phase-segregated nanocrystalline films. The synthesis is easily extended to other compositions of transition and main-group metal oxides. To demonstrate versatility, we synthesized amorphous V 0.1 Cr 0.1 Mn 0.1 Fe 0.1 Zn 0.1 Al 0.5 O x and V 0.2 Cr 0.2 Fe 0.2 Al 0.4 O x with R rms ≈ 0.1 nm and uniform composition. The combination of ideal physical properties (dense, smooth, uniform) and broad composition tunability provides a platform for film synthesis that can be used to study fundamental phenomena when the effects of transition metal cation identity, solid-state concentration of d-electrons or d-states, and/or crystallinity need to be controlled. The new platform has broad potential use in controlling interfacial phenomena such as electron transfer in solar-cell contacts or surface reactivity in heterogeneous catalysis.

  17. Pre-treatment of multi-walled carbon nanotubes for polyetherimide mixed matrix hollow fiber membranes.

    PubMed

    Goh, P S; Ng, B C; Ismail, A F; Aziz, M; Hayashi, Y

    2012-11-15

    Mixed matrix hollow fibers composed of multi-walled carbon nanotubes (MWCNTs) and polyetherimide (PEI) were fabricated. Pre-treatment of MWCNTs was carried out prior to the incorporation into the polymer matrix using a simple and feasible two stages approach that involved dry air oxidation and surfactant dispersion. The characterizations of the surface treated MWCNTs using TEM and Raman spectroscopy have evidenced the effectiveness of dry air oxidation in eliminating undesired amorphous carbon and metal catalyst while surfactant dispersion using Triton X100 has suppressed the agglomeration of MWCNTs. The resultant mixed matrix hollow fibers were applied for O(2)/N(2) pure gas separation. Interestingly, it was found that removal of disordered amorphous carbons and metal particles has allowed the hollow structures to be more accessible for the fast and smooth transport of gas molecules, hence resulted in noticeable improvement in the gas separation properties. The composite hollow fibers embedded with the surface modified MWCNTs showed increase in permeability as much as 60% while maintaining the selectivity of the O(2)/N(2) gas pair. This study highlights the necessity to establish an appropriate pre-treatment approach for MWCNTs in order to fully utilize the beneficial transport properties of this material in mixed matrix polymer nanocomposite for gas separation. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium.

    PubMed

    Matykina, E; Arrabal, R; Skeldon, P; Thompson, G E

    2009-05-01

    Transmission electron microscopy and supporting film analyses are used to investigate the changes in composition, morphology and structure of coatings formed on titanium during DC plasma electrolytic oxidation in a calcium- and phosphorus-containing electrolyte. The coatings are of potential interest as bioactive surfaces. The initial barrier film, of mixed amorphous and nanocrystalline structure, formed below the sparking voltage of 180 V, incorporates small amounts of phosphorus and calcium species, with phosphorus confined to the outer approximately 63% of the coating thickness. On commencement of sparking, calcium- and phosphorus-rich amorphous material forms at the coating surface, with local heating promoting crystallization in underlying and adjacent anodic titania. The amorphous material thickens with increased treatment time, comprising almost the whole of the approximately 5.7-microm-thick coating formed at 340 V. At this stage, the coating is approximately 4.4 times thicker than the oxidized titanium, with a near-surface composition of about 12 at.% Ti, 58 at.% O, 19 at.% P and 11 at.% Ca. Further, the amount of titanium consumed in forming the coating is similar to that calculated from the anodizing charge, although there may be non-Faradaic contributions to the coating growth.

  19. Method for continuous synthesis of metal oxide powders

    DOEpatents

    Berry, David A.; Haynes, Daniel J.; Shekhawat, Dushyant; Smith, Mark W.

    2015-09-08

    A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 .mu.m diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300.degree. C., the second zone operates at 300-700.degree. C., and the third operates at 700-1000.degree. C., and fourth zone operates at at least 700.degree. C. The resulting crystalline mixed-metal oxides display a high degree of crystallinity and sphericity with typical diameters on the order of 50 .mu.m or less.

  20. Photochemical metal organic deposition of metal oxides

    NASA Astrophysics Data System (ADS)

    Law, Wai Lung (Simon)

    This thesis pertains to the study of the deposition of metal oxide thin films via the process of Photochemical Metal Organic Deposition (PMOD). In this process, an amorphous metal organic precursor thin film is subjected to irradiation under ambient conditions. Fragmentation of the metal precursor results from the photoreaction, leading to the formation of metal oxide thin films in the presence of oxygen. The advantage of PMOD lies in its ability to perform lithography of metal oxide thin film without the application of photoresist. The metal organic precursor can be imaged directly by photolysis through a lithography mask under ambient conditions. Thus the PMOD process provides an attractive alternative to the conventional VLSI fabrication process. Metal carboxylates and metal acetylacetonates complexes were used as the precursors for PMOD process in this thesis. Transition metal carboxylate and metal acetylacetonate complexes have shown previously that when deposited as amorphous thin films, they will undergo fragmentation upon photolysis, leading to the formation of metal oxide thin films under ambient conditions. In this thesis, the formation of main group metal oxides of aluminum, indium and tin, as well as the formation of rare-earth metal oxides of cerium and europium by PMOD from its corresponding metal organic precursor will be presented. The nature of the photoreactions as well as the properties of the thin films deposited by PMOD will be investigated. Doped metal oxide thin films can also be prepared using the PMOD process. By mixing the metal precursors prior to deposition in the desired ratio, precursor films containing more than one metal precursor can be obtained. Mixed metal oxide thin films corresponding to the original metal ratio, in the precursor mixture, can be obtained upon photolysis under ambient conditions. In this thesis, the properties of doped metal oxide thin films of europium doped aluminum oxide as well as tin doped indium oxide thin films will also be presented.

  1. E-beam and UV induced fabrication of CeO2, Eu2O3 and their mixed oxides with UO2

    NASA Astrophysics Data System (ADS)

    Pavelková, Tereza; Vaněček, Vojtěch; Jakubec, Ivo; Čuba, Václav

    2016-07-01

    CeO2, Eu2O3 and mixed oxides of CeO2-UO2, Eu2O3-UO2 were fabricated. The preparative method was based on the irradiation of aqueous solutions containing cerium/europium (and uranyl) nitrates and ammonium formate. In the course of irradiation, the solid phase (precursor) was precipitated. The composition of irradiated solutions significantly affected the properties of precursor formed in the course of the irradiation. However, subsequent heat treatment of (amorphous) precursors at temperatures ≤650 °C invariably resulted in the formation of powder oxides with well-developed nanocrystals with linear crystallite size 13-27 nm and specific surface area 10-46 m2 g-1. The applicability of both ionizing (e-beam) and non-ionizing (UV) radiation was studied.

  2. Structure and Properties of Amorphous Transparent Conducting Oxides

    NASA Astrophysics Data System (ADS)

    Medvedeva, Julia

    Driven by technological appeal, the research area of amorphous oxide semiconductors has grown tremendously since the first demonstration of the unique properties of amorphous indium oxide more than a decade ago. Today, amorphous oxides, such as a-ITO, a-IZO, a-IGZO, or a-ZITO, exhibit the optical, electrical, thermal, and mechanical properties that are comparable or even superior to those possessed by their crystalline counterparts, pushing the latter out of the market. Large-area uniformity, low-cost low-temperature deposition, high carrier mobility, optical transparency, and mechanical flexibility make these materials appealing for next-generation thin-film electronics. Yet, the structural variations associated with crystalline-to-amorphous transition as well as their role in carrier generation and transport properties of these oxides are far from being understood. Although amorphous oxides lack grain boundaries, factors like (i) size and distribution of nanocrystalline inclusions; (ii) spatial distribution and clustering of incorporated cations in multicomponent oxides; (iii) formation of trap defects; and (iv) piezoelectric effects associated with internal strains, will contribute to electron scattering. In this work, ab-initio molecular dynamics (MD) and accurate density-functional approaches are employed to understand how the properties of amorphous ternary and quaternary oxides depend on quench rates, cation compositions, and oxygen stoichiometries. The MD results, combined with thorough experimental characterization, reveal that interplay between the local and long-range structural preferences of the constituent oxides gives rise to a complex composition-dependent structural behavior in the amorphous oxides. The proposed network models of metal-oxygen polyhedra help explain the observed intriguing electrical and optical properties in In-based oxides and suggest ways to broaden the phase space of amorphous oxide semiconductors with tunable properties. The work is supported by NSF-MRSEC program.

  3. Origin of the Mariano Lake uranium deposit, McKinley County, New Mexico

    USGS Publications Warehouse

    Fishman, Neil S.; Reynolds, Richard L.

    1982-01-01

    The Mariano Lake uranium deposit, hosted by the Brushy Basin Member of the Jurassic Morrison Formation, occurs in the trough of an east-west trending syncline at the western end of the Smith Lake-Mariano Lake group of uranium deposits near Crownpoint, New Mexico. The orebody, which contains abundant amorphous organic material, is situated on the reduced side of a regional reduction-oxidation (redox) interface. The presence of amorphous organic material suggests the orebody may represent a tabular (primary) deposit, whereas the close proximity of the orebody to the redox interface is suggestive that uranium was secondarily redistributed by oxidative processes from pre-existing tabular orebodies. Uranium contents correlate positively with both organic carbon and vanadium contents. Petrographic evidence and scanning electron microscope-energy dispersive analyses point to uranium residence in the epigentically introduced amorphous organic material, which coats detrital grains and fills voids. Uranium mineralization was preceded by the following diagenetic alterations: precipitation of pyrite (d34S values ranging from-11.0 to-38.2 per mil); precipitation of mixed-layer smectite-illite clays; partial dissolution of some of the detrital feldspar population; and precipitation of quartz and adularia overgrowths. Alterations associated with uranium mineralization include emplacement of amorphous organic material (possibly uranium bearing); destruction of detrital iron-titanium oxide grains; coprecipitation of chlorite and microcrystalline quartz, and precipitation of pyrite and marcasite (d34S values for these sulfides ranging from -29.4 to -41.6 per mil). After mineralization, calcite, dolomite, barite, and kaolinite precipitated, and authigenic iron disulfides were replaced by ferric oxides and hydroxides. Geochemical data (primarily the positive correlation of uranium content to both organic carbon and vanadium contents) and petrographic observations (epigentically introduced amorphous organic matter and uranium residence in this organic matter) indicate that the Mariano Lake orebody is a tabular-type uranium deposit. Oxidative processes have not noticeably redistributed and reconcentrated primary uranium in the immediate vicinity of the deposit nor have they greatly modified geochemical characteristics in the ore. Preservation of the Mariano Lake deposit may not only be related to its position along the synclinal trough, where oxidative destruction of the orebody has been inhibited by stagnation of oxidizing ground waters by the structure, but also due to the deflection of ground waters (resulting from low orebody porosity) around the orebody.

  4. Properties of anodic oxides grown on a hafnium–tantalum–titanium thin film library

    PubMed Central

    Mardare, Andrei Ionut; Ludwig, Alfred; Savan, Alan; Hassel, Achim Walter

    2014-01-01

    A ternary thin film combinatorial materials library of the valve metal system Hf–Ta–Ti obtained by co-sputtering was studied. The microstructural and crystallographic analysis of the obtained compositions revealed a crystalline and textured surface, with the exception of compositions with Ta concentration above 48 at.% which are amorphous and show a flat surface. Electrochemical anodization of the composition spread thin films was used for analysing the growth of the mixed surface oxides. Oxide formation factors, obtained from the potentiodynamic anodization curves, as well as the dielectric constants and electrical resistances, obtained from electrochemical impedance spectroscopy, were mapped along two dimensions of the library using a scanning droplet cell microscope. The semiconducting properties of the anodic oxides were mapped using Mott–Schottky analysis. The degree of oxide mixing was analysed qualitatively using x-ray photoelectron spectroscopy depth profiling. A quantitative analysis of the surface oxides was performed and correlated to the as-deposited metal thin film compositions. In the concurrent transport of the three metal cations during oxide growth a clear speed order of Ti > Hf > Ta was proven. PMID:27877648

  5. Properties of Amorphous Carbon Microspheres Synthesised by Palm Oil-CVD Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zobir, S. A. M.; Nano-SciTech Centre,; Zainal, Z.

    2011-03-30

    Amorphous carbon microspheres were synthesized using a dual-furnace chemical vapour deposition method at 800-1000 deg. C. Palm oil-based cooking oil (PO) and zinc nitrate solution was used as a carbon source and catalyst precursor, respectively with PO to zinc nitrate ratio of 30:20 (v/v) and a silicon wafer as the sample target. Regular microsphere shape of the amorphous carbons was obtained and a uniform microsphere structure improved as the carbonization temperature increased from 800 to 1000 deg. C. At 800 deg. C, no regular microspheres were formed but more uniform structure is observed at 900 deg. C. Generally the microspheresmore » size is uniform when the heating temperature was increased to 1000 deg. C, but the presence of mixed sizes can still be observed. X-ray diffraction patterns show the presence of oxide of carbon, ZnO phase together with Zn oxalate phase. Raman spectra show two broad peaks characteristic to amorphous carbon at 1344 and 1582 cm{sup -1} for the D and G bands, respectively. These bands become more prominent as the preparation temperature increased from 800 to 1000 deg. C. This is in agreement with the formation of amorphous carbon microspheres as shown by the FESEM study and other Zn-based phases as a result of the oxidation process of the palm oil as the carbon source and the zinc nitrate as the catalyst precursor, respectively.« less

  6. Large Scale Synthesis and Light Emitting Fibers of Tailor-Made Graphene Quantum Dots

    PubMed Central

    Park, Hun; Hyun Noh, Sung; Hye Lee, Ji; Jun Lee, Won; Yun Jaung, Jae; Geol Lee, Seung; Hee Han, Tae

    2015-01-01

    Graphene oxide (GO), which is an oxidized form of graphene, has a mixed structure consisting of graphitic crystallites of sp2 hybridized carbon and amorphous regions. In this work, we present a straightforward route for preparing graphene-based quantum dots (GQDs) by extraction of the crystallites from the amorphous matrix of the GO sheets. GQDs with controlled functionality are readily prepared by varying the reaction temperature, which results in precise tunability of their optical properties. Here, it was concluded that the tunable optical properties of GQDs are a result of the different fraction of chemical functionalities present. The synthesis approach presented in this paper provides an efficient strategy for achieving large-scale production and long-time optical stability of the GQDs, and the hybrid assembly of GQD and polymer has potential applications as photoluminescent fibers or films. PMID:26383257

  7. Solution-Processed Gallium–Tin-Based Oxide Semiconductors for Thin-Film Transistors

    PubMed Central

    Zhang, Xue; Lee, Hyeonju; Kim, Jungwon; Kim, Eui-Jik; Park, Jaehoon

    2017-01-01

    We investigated the effects of gallium (Ga) and tin (Sn) compositions on the structural and chemical properties of Ga–Sn-mixed (Ga:Sn) oxide films and the electrical properties of Ga:Sn oxide thin-film transistors (TFTs). The thermogravimetric analysis results indicate that solution-processed oxide films can be produced via thermal annealing at 500 °C. The oxygen deficiency ratio in the Ga:Sn oxide film increased from 0.18 (Ga oxide) and 0.30 (Sn oxide) to 0.36, while the X-ray diffraction peaks corresponding to Sn oxide significantly reduced. The Ga:Sn oxide film exhibited smaller grains compared to the nanocrystalline Sn oxide film, while the Ga oxide film exhibited an amorphous morphology. We found that the electrical properties of TFTs significantly improve by mixing Ga and Sn. Here, the optimum weight ratio of the constituents in the mixture of Ga and Sn precursor sols was determined to be 1.0:0.9 (Ga precursor sol:Sn precursor sol) for application in the solution-processed Ga:Sn oxide TFTs. In addition, when the Ga(1.0):Sn(0.9) oxide film was thermally annealed at 900 °C, the field-effect mobility of the TFT was notably enhanced from 0.02 to 1.03 cm2/Vs. Therefore, the mixing concentration ratio and annealing temperature are crucial for the chemical and morphological properties of solution-processed Ga:Sn oxide films and for the TFT performance. PMID:29283408

  8. Intrinsic charge trapping in amorphous oxide films: status and challenges

    NASA Astrophysics Data System (ADS)

    Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.

    2018-06-01

    We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection conditions.

  9. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    USGS Publications Warehouse

    Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H.

    2008-01-01

    Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 ?? and 7 ?? manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean-8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of Mn mineralization. Factor analyses indicate various mixtures of two dominant components: hydrothermal Mn oxide for the stratabound Mn and detrital aluminosilicate for the Mn-cemented sandstone; and two minor components, hydrothermal Fe oxyhydroxide and biocarbonate/biosilica. Our conceptual model shows that Mn mineralization was produced by hydrothermal convection cells within arc volcanoes and sedimentary prisms that occur along, the flanks and within calderas. The main source of hydrothermal fluid was seawater that penetrated through fractures, faults, and permeable volcanic edifices. The fluids were heated by magma, enriched in metals by leaching of basement rocks and sediments, and mixed with magmatic fluids and gases. Dikes and sills may have been another source of heat that drove small-scale circulation within sedimentary prisms. Copyright 2008 by the American Geophysical Union.

  10. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Schulz, Marjorie S.; Dunham, Rachel E.; Stern, Robert J.; Bloomer, Sherman H.

    2008-08-01

    Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 Å and 7 Å manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean 8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of Mn mineralization. Factor analyses indicate various mixtures of two dominant components: hydrothermal Mn oxide for the stratabound Mn and detrital aluminosilicate for the Mn-cemented sandstone; and two minor components, hydrothermal Fe oxyhydroxide and biocarbonate/biosilica. Our conceptual model shows that Mn mineralization was produced by hydrothermal convection cells within arc volcanoes and sedimentary prisms that occur along the flanks and within calderas. The main source of hydrothermal fluid was seawater that penetrated through fractures, faults, and permeable volcanic edifices. The fluids were heated by magma, enriched in metals by leaching of basement rocks and sediments, and mixed with magmatic fluids and gases. Dikes and sills may have been another source of heat that drove small-scale circulation within sedimentary prisms.

  11. Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution.

    PubMed

    Pal, Umapada; Sandoval, Alberto; Madrid, Sergio Isaac Uribe; Corro, Grisel; Sharma, Vivek; Mohanty, Paritosh

    2016-11-01

    Mixed oxide nanoparticles containing Ti, Si, and Al of 8-15 nm size range were synthesized using a combined sol-gel - hydrothermal method. Effects of composition on the structure, morphology, and optical properties of the nanoparticles were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microRaman spectroscopy, and diffuse reflectance spectroscopy (DRS). Dye removal abilities of the nanoparticles from aqueous solutions were tested for different cationic dyes. While all the mixed oxide nanoparticles revealed high and fast adsorption of cationic dyes, the particles containing Ti and Si turned out to be the best. The adsorption kinetics and equilibrium adsorption behavior of the adsorbate - adsorbent systems could be well described by pseudo-second-order kinetics and Langmuir isotherm model, respectively. Estimated thermodynamic parameters revealed the adsorption process is spontaneous, driven mainly by the electrostatic force between the cationic dye molecules and negative charge at nanoparticle surface. Highest dye adsorption capacity (162.96 mg MB/g) of the mixed oxide nanostructures containing Ti and Si is associated to their high specific surface area, and the presence of surface Si-O(δ-) groups, in addition to the hydroxyl groups of amorphous titania. Mixed oxide nanoparticles containing 75% Ti and 25% Si seen to be the most efficient adsorbents for removing cationic dye molecules from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Magnesium-Aluminum-Zirconium Oxide Amorphous Ternary Composite: A Dense and Stable Optical Coating

    NASA Technical Reports Server (NTRS)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    In the present work, the process parameter dependent optical and structural properties of MgO-Al(2)O(3)-ZrO(2) ternary mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases and process dependent material composition of films have been investigated through the use of Atomic Force Microscopy (AFM), X-ray diffraction analysis and Energy Dispersive X- ray (EDX) analysis. EDX analysis made evident the correlation between the optical constants and the process dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  13. Electron tunnelling into amorphous germanium and silicon.

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  14. Comparative study of structural, optical and impedance measurements on V{sub 2}O{sub 5} and V-Ce mixed oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malini, D. Rachel; Sanjeeviraja, C., E-mail: sanjeeviraja@rediffmail.com

    Vanadium pentoxide (V{sub 2}O{sub 5}) and Vanadium-Cerium mixed oxide thin films at different molar ratios of V{sub 2}O{sub 5} and CeO{sub 2} have been deposited at 200 W rf power by rf planar magnetron sputtering in pure argon atmosphere. The structural and optical properties were studied by taking X-ray diffraction and transmittance and absorption spectra respectively. The amorphous thin films show an increase in transmittance and optical bandgap with increase in CeO{sub 2} content in as-prepared thin films. The impedance measurements for as-deposited thin films show an increase in electrical conductivity with increase in CeO{sub 2} material.

  15. Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater

    NASA Astrophysics Data System (ADS)

    Morris, Richard V.; Vaniman, David T.; Blake, David F.; Gellert, Ralf; Chipera, Steve J.; Rampe, Elizabeth B.; Ming, Douglas W.; Morrison, Shaunna M.; Downs, Robert T.; Treiman, Allan H.; Yen, Albert S.; Grotzinger, John P.; Achilles, Cherie N.; Bristow, Thomas F.; Crisp, Joy A.; Des Marais, David J.; Farmer, Jack D.; Fendrich, Kim V.; Frydenvang, Jens; Graff, Trevor G.; Morookian, John-Michael; Stolper, Edward M.; Schwenzer, Susanne P.

    2016-06-01

    Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has ˜40 wt.% crystalline and ˜60 wt.% X-ray amorphous material and a bulk composition with ˜74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (˜17 wt.% of bulk sample), tridymite (˜14 wt.%), sanidine (˜3 wt.%), cation-deficient magnetite (˜3 wt.%), cristobalite (˜2 wt.%), and anhydrite (˜1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (˜39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides-perchlorates-chlorates), and has minor TiO2 and Fe2O3T oxides (˜5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a “Lake Gale” catchment environment can account for Buckskin's tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill.

  16. Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater

    PubMed Central

    Morris, Richard V.; Vaniman, David T.; Blake, David F.; Gellert, Ralf; Chipera, Steve J.; Rampe, Elizabeth B.; Ming, Douglas W.; Morrison, Shaunna M.; Downs, Robert T.; Treiman, Allan H.; Yen, Albert S.; Grotzinger, John P.; Achilles, Cherie N.; Bristow, Thomas F.; Crisp, Joy A.; Des Marais, David J.; Farmer, Jack D.; Fendrich, Kim V.; Graff, Trevor G.; Morookian, John-Michael; Stolper, Edward M.; Schwenzer, Susanne P.

    2016-01-01

    Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has ∼40 wt.% crystalline and ∼60 wt.% X-ray amorphous material and a bulk composition with ∼74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (∼17 wt.% of bulk sample), tridymite (∼14 wt.%), sanidine (∼3 wt.%), cation-deficient magnetite (∼3 wt.%), cristobalite (∼2 wt.%), and anhydrite (∼1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (∼39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides−perchlorates−chlorates), and has minor TiO2 and Fe2O3T oxides (∼5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a “Lake Gale” catchment environment can account for Buckskin’s tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill. PMID:27298370

  17. In situ observation of stishovite formation in shock-compressed fused silica

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June; Turneaure, Stefan; Duffy, Thomas

    2017-06-01

    Silica, SiO2, has widespread applications ranging from optical components to refractory materials and is of geological importance as one of the major oxide components of the Earth's crust and mantle. The response of silica phases to dynamic loading has long been of interest for understanding the structural evolution of this fundamental oxide. Under shock compression both crystalline quartz and fused silica are characterized by the occurrence of a broad `mixed-phase region' (15-40 GPa) and a dense, high-pressure phase with much lower compressibility. Despite decades of study, the nature of this transformation and the identity of the high-pressure phase(s) remain poorly understood. In situ x-ray diffraction experiments on shock-compressed fused silica were conducted at the Dynamic Compression Sector of the Advanced Photon Source. The lattice-level structure was investigated through time-resolved x-ray diffraction measurements on samples reaching peak stress ranging from 12 to 47 GPa. Our results demonstrate that SiO2 adopts a dense amorphous structure in the `mixed-phase region' and abruptly transforms to stishovite above 34 GPa. These results provide clear evidence that high-pressure crystalline silicate phases can form from amorphous starting materials on the time-scale of laboratory shock experiments.

  18. Mechanical properties of graphene oxides.

    PubMed

    Liu, Lizhao; Zhang, Junfeng; Zhao, Jijun; Liu, Feng

    2012-09-28

    The mechanical properties, including the Young's modulus and intrinsic strength, of graphene oxides are investigated by first-principles computations. Structural models of both ordered and amorphous graphene oxides are considered and compared. For the ordered graphene oxides, the Young's modulus is found to vary from 380 to 470 GPa as the coverage of oxygen groups changes, respectively. The corresponding variations in the Young's modulus of the amorphous graphene oxides with comparable coverage are smaller at 290-430 GPa. Similarly, the ordered graphene oxides also possess higher intrinsic strength compared with the amorphous ones. As coverage increases, both the Young's modulus and intrinsic strength decrease monotonically due to the breaking of the sp(2) carbon network and lowering of the energetic stability for the ordered and amorphous graphene oxides. In addition, the band gap of the graphene oxide becomes narrower under uniaxial tensile strain, providing an efficient way to tune the electronic properties of graphene oxide-based materials.

  19. Silicon/Carbon Anodes with One-Dimensional Pore Structure for Lithium-Ion Batteries

    DTIC Science & Technology

    2013-08-31

    Connected by Single-Wall Carbon Nanotubes for Sodium Ion Battery Cathodes, Nano Letters 12, 5664, 2012. ( § equal contribution)  Chao Luo,§ Yunhua...is superior to that of those conductive additive-incorporated iron oxide anodes, such as amorphous carbon , graphene as well as carbon nanotubes ...electrochemical performance. The C/S composite cathodes were prepared by mixing C/S powders with carbon black and sodium carboxymethyl cellulose (CMC

  20. Heterogeneous water oxidation: surface activity versus amorphization activation in cobalt phosphate catalysts.

    PubMed

    González-Flores, Diego; Sánchez, Irene; Zaharieva, Ivelina; Klingan, Katharina; Heidkamp, Jonathan; Chernev, Petko; Menezes, Prashanth W; Driess, Matthias; Dau, Holger; Montero, Mavis L

    2015-02-16

    Is water oxidation catalyzed at the surface or within the bulk volume of solid oxide materials? This question is addressed for cobalt phosphate catalysts deposited on inert electrodes, namely crystallites of pakhomovskyite (Co3(PO4)2⋅8 H2O, Pak) and phosphate-containing Co oxide (CoCat). X-ray spectroscopy reveals that oxidizing potentials transform the crystalline Pak slowly (5-8 h) but completely into the amorphous CoCat. Electrochemical analysis supports high-TOF surface activity in Pak, whereas its amorphization results in dominating volume activity of the thereby formed CoCat material. In the directly electrodeposited CoCat, volume catalysis prevails, but not at very low levels of the amorphous material, implying high-TOF catalysis at surface sites. A complete picture of heterogeneous water oxidation requires insight in catalysis at the electrolyte-exposed "outer surface", within a hydrated, amorphous volume phase, and modes and kinetics of restructuring upon operation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    PubMed

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-11-01

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g -1 and attractive rate performance (220 mAh g -1 ) under the current density of up to 2 A g -1 . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Role of Al in Zn bath on the formation of the inhibition layer during hot-dip galvanizing for a 1.2Si-1.5Mn transformation-induced plasticity steel

    NASA Astrophysics Data System (ADS)

    Wang, Kuang-Kuo; Hsu, Chiung-Wen; Chang, Liuwen; Gan, Dershin; Yang, Kuo-Cheng

    2013-11-01

    This study investigated the interaction between the Al in the Zn bath and the surface oxides formed by selective oxidation on a 1.2Si-1.5Mn TRIP steel during hot-dip galvanizing. XPS and TEM were employed for characterization. The results indicated that the amorphous xMnO·SiO2 oxide could react with Al to form a Si-Mn-Al-containing oxide. The crystalline MnSiO3 and Mn2SiO4 oxides could be largely reduced by Al to form holes in the oxide film. Consequently, the steel covered by a layer of mixed xMnO·SiO2 and MnSiO3 could form a continuous Fe2Al5 inhibition layer and showed the highest galvanizability among the three samples examined.

  3. The formation of unsaturated zones within cemented paste backfill mixtures-effects on the release of copper, nickel, and zinc.

    PubMed

    Hamberg, Roger; Maurice, Christian; Alakangas, Lena

    2018-05-13

    Flooding of cemented paste backfill (CPB) filled mine workings is, commonly, a slow process and could lead to the formation of unsaturated zones within the CPB fillings. This facilitates the oxidation of sulfide minerals and thereby increases the risk of trace metal leaching. Pyrrhotitic tailings from a gold mine (cyanidation tailing (CT)), containing elevated concentrations of nickel (Ni), copper (Cu), and zinc (Zn), were mixed with cement and/or fly ash (1-3 wt%) to form CT-CPB mixtures. Pyrrhotite oxidation progressed more extensively during unsaturated conditions, where acidity resulted in dissolution of the Ni, Cu, and Zn associated with amorphous Fe precipitates and/or cementitious phases. The establishment of acidic, unsaturated conditions in CT-CBP:s with low fractions (1 wt%) of binders increased the Cu release (to be higher than that from CT), owing to the dissolution of Cu-associated amorphous Fe precipitates. In CT-CPB:s with relatively high proportions of binder, acidity from pyrrhotite oxidation was buffered to a greater extent. At this stage, Zn leaching increased due the occurrence of fly ash-specific Zn species soluble in alkaline conditions. Irrespective of binder proportion and water saturation level, the Ni and Zn release were lower, compared to that in CT. Fractions of Ni, Zn, and Cu associated with acid-soluble phases or amorphous Fe precipitates, susceptible to remobilization under acidic conditions, increased in tandem with binder fractions. Pyrrhotite oxidation occurred irrespective of the water saturation level in the CPB mixtures. That, in turn, poses an environmental risk, whereas a substantial proportion of Ni, Cu, and Zn was associated with acid-soluble phases.

  4. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass

    PubMed Central

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-01-01

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant. PMID:26658671

  5. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass.

    PubMed

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-12-14

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant.

  6. Solvothermal growth of a ruthenium metal-organic framework featuring HKUST-1 structure type as thin films on oxide surfaces.

    PubMed

    Kozachuk, Olesia; Yusenko, Kirill; Noei, Heshmat; Wang, Yuemin; Walleck, Stephan; Glaser, Thorsten; Fischer, Roland A

    2011-08-14

    Phase-pure crystalline thin films of a mixed-valence Ru(2)(II,III) metal-organic framework with 1,3,5-benzenetricarboxylate (btc) as a linker were solvothermally grown on amorphous alumina and silica surfaces. Based on the Rietveld refinement, the structure of Ru-MOF was assigned to be analogous to [Cu(3)(btc)(2)] (HKUST-1). This journal is © The Royal Society of Chemistry 2011

  7. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection

    DOE PAGES

    Sutter, E.; Tong, X.; Medina-Plaza, C.; ...

    2015-10-09

    The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated withmore » the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. As a result the LODs were in the range of 10 –5 – 10 –6 M and were lower than those obtained using bulk Au.« less

  8. Synthesis and characterization of porous metal oxides and desulfurization studies of sulfur containing compounds

    NASA Astrophysics Data System (ADS)

    Garces Trujillo, Hector Fabian

    This thesis contains two parts: 1) synthesis and characterization of porous metal oxides that include zinc oxide and a porous mixed-valent manganese oxide with an amorphous structure (AMO) 2) the desulfurization studies for the removal of sulfur compounds. Zinc oxide with different nano-scale morphologies may result in various porosities with different adsorption capabilities. A tunable shape microwave synthesis of ZnO nano-spheres in a co-solvent mixture is presented. The ZnO nano-sphere material is investigated as a desulfurizing sorbent in a fixed bed reactor in the temperature range 200 to 400 °C and compared with ZnO nanorods and platelet-like morphologies. Fresh and sulfided materials were characterized by X-ray diffraction (XRD), BET specific surface area, pore volume, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (SEM/EDX), Raman spectroscopy, and thermogravimetric analysis (TGA). The tunable shape microwave synthesis of ZnO presents a high sulfur sorption capacity at temperatures as low as 200 °C which accounts for a three and four fold enhancement over the other preparations presented in this work, and reached 76 % of the theoretical sulfur capacity (TSC) at 300 °C. Another ZnO material with a bimodal micro- and mesopore size distribution investigated as a desulfurizing sorbent presents a sorption capacity that reaches 87% of the theoretical value for desulfurization at 400 °C at breakthrough time. A deactivation model that considers the activity of the solid reactant was used to fit the experimental data. Good agreement between the experimental breakthrough curves and the model predictions are obtained. Manganese oxides are a type of metal oxide materials commonly used in catalytic applications. Little is known about the adsorption capabilities for the removal of sulfur compounds. One of these manganese oxides; amorphous manganese oxide (AMO) is highly promising material for low temperature sorption processes. Amorphous manganese oxide (AMO) has been used in catalytic processes such as for the catalytic oxidation of benzyl alcohol, the preferential oxidation of CO, and for the capture of formate species. This chapter explores the possibility of using AMO in sorption processes for the removal of two contaminants; H 2S and COS in the temperature range 200 - 400 °C.

  9. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation

    PubMed Central

    Kang, Jian; Wang, Rongfang; Wang, Hui; Liao, Shijun; Key, Julian; Linkov, Vladimir; Ji, Shan

    2013-01-01

    Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C), were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and methanol oxidation activity compared using CV and chronoamperometry (CA). While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous)/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells. PMID:28811402

  10. Composition-dependent structural and transport properties of amorphous transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Khanal, Rabi; Buchholz, D. Bruce; Chang, Robert P. H.; Medvedeva, Julia E.

    2015-05-01

    Structural properties of amorphous In-based oxides, In -X -O with X =Zn , Ga, Sn, or Ge, are investigated using ab initio molecular dynamics liquid-quench simulations. The results reveal that indium retains its average coordination of 5.0 upon 20% X fractional substitution for In, whereas X cations satisfy their natural coordination with oxygen atoms. This finding suggests that the carrier generation is primarily governed by In atoms, in accord with the observed carrier concentration in amorphous In-O and In -X -O . At the same time, the presence of X affects the number of six-coordinated In atoms as well as the oxygen sharing between the InO6 polyhedra. Based on the obtained interconnectivity and spatial distribution of the InO6 and XO x polyhedra in amorphous In -X -O , composition-dependent structural models of the amorphous oxides are derived. The results help explain our Hall mobility measurements in In -X -O thin films grown by pulsed-laser deposition and highlight the importance of long-range structural correlations in the formation of amorphous oxides and their transport properties.

  11. Intense photoluminescence from amorphous tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Zhu, Minmin; Zhang, Zhengjun; Miao, Wei

    2006-07-01

    Tantalum oxide films were deposited on silicon substrates at a temperature of ˜450°C by heating a pure tantalum foil in a rough vacuum. The films were amorphous in structure and consisted of fully oxidized Ta2O5 and (TaOx, x <2.5) suboxides. This feature resulted in strong visible light emission from the films further oxidized in the air at temperatures of 200-300°C. The mechanism for this photoluminescence behavior of the amorphous tantalum oxide films was also investigated and discussed. This study suggests that wide-band-gap materials could act as effective visible light emitters and provides a simple route to synthesize such materials.

  12. Hole conduction pathways in transparent amorphous tin oxides

    NASA Astrophysics Data System (ADS)

    Wahila, Matthew; Lebens-Higgins, Zachary; Quackenbush, Nicholas; Piper, Louis; Butler, Keith; Hendon, Christopher; Walsh, Aron; Watson, Graeme

    P-type transparent amorphous oxide semiconductors (TAOS) have yet to be sufficiently demonstrated or commercialized, severely limiting the possible device architecture of transparent and flexible oxide electronics. The lack of p-type amorphous oxide candidates mainly originates from the directional oxygen 2 p character of their topmost valence states. Previous attempts to create p-type oxides have involved hybridization of the O 2 p with metal orbitals, such as with CuAlO2 and its Cu 3 d - O 2 p hybridization. However, the highly directional nature of the utilized orbitals means that structural disorder inhibits hybridization and severely disrupts hole-conduction pathways. Crystalline stannous oxide (SnO) and other lone-pair active post-transition metal oxides can have reduced localization at the valence band edge due to complex hybridization between the O 2 p, metal p, and spherical metal s-orbitals. I will discuss our investigation of structural disorder in SnO. Using a combination of synchrotron spectroscopy, and atomistic calculations, our investigation elucidates the important interplay between atomistic and electronic structure in establishing continuous hole conduction pathways at the valence band edge of transparent amorphous oxides.

  13. Amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  14. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  15. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flötotto, D., E-mail: d.floetotto@is.mpg.de; Wang, Z. M.; Jeurgens, L. P. H.

    2014-03-03

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al{sub 2}O{sub 3} films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively.

  16. Modeling selenate adsorption behavior on oxides, clay minerals, and soils using the triple layer model

    USDA-ARS?s Scientific Manuscript database

    Selenate adsorption behavior was investigated on amorphous aluminum oxide, amorphous iron oxide, goethite, clay minerals: kaolinites, montmorillonites, illite, and 18 soil samples from Hawaii, and the Southwestern and the Midwestern regions of the US as a function of solution pH. Selenate adsorpti...

  17. Electrical and structural characterization of IZO (indium oxide-zinc oxide) thin films for device applications

    NASA Astrophysics Data System (ADS)

    Yaglioglu, Burag

    Materials for oxide-based transparent electronics have been recently reported in the literature. These materials include various amorphous and crystalline compounds based on multi-component oxides and many of them offer useful combinations of transparency, controllable carrier concentrations, and reasonable n-carrier mobility. In this thesis, the properties of amorphous and crystalline In2O3-10wt%ZnO, IZO, thin films were investigated for their potential use in oxide electronics. The room temperature deposition of this material using DC magnetron sputtering results in the formation of amorphous films. Annealing amorphous IZO films at 500°C in air produces a previously unknown crystalline compound. Using electron diffraction experiments, it is reported that the crystal structure of this compound is based on the high-pressure rhombohedral phase of In2O3. Electrical properties of different phases of IZO were explored and it was concluded that amorphous films offer most promising characteristics for device applications. Therefore, thin film transistors (TFT) were fabricated based on amorphous IZO films where both the channel and metallization layers were deposited from the same target. The carrier densities in the channel and source-drain layers were adjusted by changing the oxygen content in the sputter chamber during deposition. The resulting transistors operate as depletion mode n-channel field effect devices with high saturation mobilities.

  18. Bacterial nanometric amorphous Fe-based oxide: a potential lithium-ion battery anode material.

    PubMed

    Hashimoto, Hideki; Kobayashi, Genki; Sakuma, Ryo; Fujii, Tatsuo; Hayashi, Naoaki; Suzuki, Tomoko; Kanno, Ryoji; Takano, Mikio; Takada, Jun

    2014-04-23

    Amorphous Fe(3+)-based oxide nanoparticles produced by Leptothrix ochracea, aquatic bacteria living worldwide, show a potential as an Fe(3+)/Fe(0) conversion anode material for lithium-ion batteries. The presence of minor components, Si and P, in the original nanoparticles leads to a specific electrode architecture with Fe-based electrochemical centers embedded in a Si, P-based amorphous matrix.

  19. Model for determination of mid-gap states in amorphous metal oxides from thin film transistors

    NASA Astrophysics Data System (ADS)

    Bubel, S.; Chabinyc, M. L.

    2013-06-01

    The electronic density of states in metal oxide semiconductors like amorphous zinc oxide (a-ZnO) and its ternary and quaternary oxide alloys with indium, gallium, tin, or aluminum are different from amorphous silicon, or disordered materials such as pentacene, or P3HT. Many ZnO based semiconductors exhibit a steep decaying density of acceptor tail states (trap DOS) and a Fermi level (EF) close to the conduction band energy (EC). Considering thin film transistor (TFT) operation in accumulation mode, the quasi Fermi level for electrons (Eq) moves even closer to EC. Classic analytic TFT simulations use the simplification EC-EF> `several'kT and cannot reproduce exponential tail states with a characteristic energy smaller than 1/2 kT. We demonstrate an analytic model for tail and deep acceptor states, valid for all amorphous metal oxides and include the effect of trap assisted hopping instead of simpler percolation or mobility edge models, to account for the observed field dependent mobility.

  20. Energy release properties of amorphous boron and boron-based propellant primary combustion products

    NASA Astrophysics Data System (ADS)

    Liang, Daolun; Liu, Jianzhong; Xiao, Jinwu; Xi, Jianfei; Wang, Yang; Zhang, Yanwei; Zhou, Junhu

    2015-07-01

    The microstructure of amorphous boron and the primary combustion products of boron-based fuel-rich propellant (hereafter referred to as primary combustion products) was analyzed by scanning electron microscope. Composition analysis of the primary combustion products was carried out by X-ray diffraction and X-ray photoelectron spectroscopy. The energy release properties of amorphous boron and the primary combustion products were comparatively studied by laser ignition experimental system and thermogravimetry-differential scanning calorimetry. The primary combustion products contain B, C, Mg, Al, B4C, B13C2, BN, B2O3, NH4Cl, H2O, and so on. The energy release properties of primary combustion products are different from amorphous boron, significantly. The full-time spectral intensity of primary combustion products at a wavelength of 580 nm is ~2% lower than that of amorphous boron. The maximum spectral intensity of the former at full wave is ~5% higher than that of the latter. The ignition delay time of primary combustion products is ~150 ms shorter than that of amorphous boron, and the self-sustaining combustion time of the former is ~200 ms longer than that of the latter. The thermal oxidation process of amorphous boron involves water evaporation (weight loss) and boron oxidation (weight gain). The thermal oxidation process of primary combustion products involves two additional steps: NH4Cl decomposition (weight loss) and carbon oxidation (weight loss). CL-20 shows better combustion-supporting effect than KClO4 in both the laser ignition experiments and the thermal oxidation experiments.

  1. OP-AMPS on Flexible Substrates with Printable Materials

    DTIC Science & Technology

    2011-08-10

    Zinc Tin Oxide Thin - Film - Transistor Enhancement...II196, 2010. [3] D. Geng, D. H. Kang, and J. Jang, "High-Performance Amorphous Indium-Gallium- Zinc - Oxide Thin - Film Transistor With a Self-Aligned...B., Dodabalapur, A., “Band transport and mobility edge in amorphous solution-processed zinc tin oxide thin - film transistors ”, Applied

  2. Long-term oxidization and phase transition of InN nanotextures

    PubMed Central

    2011-01-01

    The long-term (6 months) oxidization of hcp-InN (wurtzite, InN-w) nanostructures (crystalline/amorphous) synthesized on Si [100] substrates is analyzed. The densely packed layers of InN-w nanostructures (5-40 nm) are shown to be oxidized by atmospheric oxygen via the formation of an intermediate amorphous In-Ox-Ny (indium oxynitride) phase to a final bi-phase hcp-InN/bcc-In2O3 nanotexture. High-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy and selected area electron diffraction are used to identify amorphous In-Ox-Ny oxynitride phase. When the oxidized area exceeds the critical size of 5 nm, the amorphous In-Ox-Ny phase eventually undergoes phase transition via a slow chemical reaction of atomic oxygen with the indium atoms, forming a single bcc In2O3 phase. PMID:21711908

  3. Sol-gel synthesis and adsorption properties of mesoporous manganese oxide

    NASA Astrophysics Data System (ADS)

    Ivanets, A. I.; Kuznetsova, T. F.; Prozorovich, V. G.

    2015-03-01

    Sol-gel synthesis of mesoporous xerogels of manganese oxide with different phase compositions has been performed. The manganese oxide sols were obtained by redox reactions of potassium permanganate with hydrogen peroxide or manganese(II) chloride in aqueous solutions. The isotherms of the low-temperature adsorption-desorption of nitrogen with manganese oxide xerogels treated at 80, 200, 400, and 600°C were measured. The samples were studied by electron microscopy and thermal and XRD analysis. The phase transformation and the changes in the adsorption and capillary-condensation properties of manganese oxide were shown to depend on the sol synthesis conditions and the temperature of the thermal treatment of the gel. The X-ray amorphous samples heated at 80°C were shown to have low values of the specific surface; at higher temperatures, the xerogel crystallized into mixed phases with various compositions and its surface area increased at 200-400°C and decreased at 600°C.

  4. Synthesis of Coral-Like Tantalum Oxide Films via Anodization in Mixed Organic-Inorganic Electrolytes

    PubMed Central

    Yu, Hongbin; Zhu, Suiyi; Yang, Xia; Wang, Xinhong; Sun, Hongwei; Huo, Mingxin

    2013-01-01

    We report a simple method to fabricate nano-porous tantalum oxide films via anodization with Ta foils as the anode at room temperature. A mixture of ethylene glycol, phosphoric acid, NH4F and H2O was used as the electrolyte where the nano-porous tantalum oxide could be synthesized by anodizing a tantalum foil for 1 h at 20 V in a two–electrode configuration. The as-prepared porous film exhibited a continuous, uniform and coral-like morphology. The diameters of pores ranged from 30 nm to 50 nm. The pores interlaced each other and the depth was about 150 nm. After calcination, the as-synthesized amorphous tantalum oxide could be crystallized to the orthorhombic crystal system. As observed in photocatalytic experiments, the coral-like tantalum oxide exhibited a higher photocatalytic activity for the degradation of phenol than that with a compact surface morphology, and the elimination rate of phenol increased by 66.7%. PMID:23799106

  5. Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte

    NASA Astrophysics Data System (ADS)

    Yang, S.; Aoki, Y.; Habazaki, H.

    2011-07-01

    Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2HPO 4 and 0.2 mol dm -3 K 3PO 4 in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.

  6. Cu3(BTC)2: CO oxidation over MOF based catalysts.

    PubMed

    Ye, Jing-yun; Liu, Chang-jun

    2011-02-21

    Crystalline and amorphized MOFs (Cu(3)(BTC)(2)) have been demonstrated to be excellent catalysts for CO oxidation. The catalytic activity can be further improved by loading PdO(2) nanoparticles onto the amorphized Cu(3)(BTC)(2).

  7. Amorphous tin-cadmium oxide films and the production thereof

    DOEpatents

    Li, Xiaonan; Gessert, Timothy A

    2013-10-29

    A tin-cadmium oxide film having an amorphous structure and a ratio of tin atoms to cadmium atoms of between 1:1 and 3:1. The tin-cadmium oxide film may have an optical band gap of between 2.7 eV and 3.35 eV. The film may also have a charge carrier concentration of between 1.times.10.sup.20 cm.sup.-3 and 2.times.10.sup.20 cm.sup.-3. The tin cadmium oxide film may also exhibit a Hall mobility of between 40 cm.sup.2V.sup.-1 s.sup.-1 and 60 cm.sup.2V.sup.-1 s.sup.-1. Also disclosed is a method of producing an amorphous tin-cadmium oxide film as described and devices using same.

  8. Combining reactive sputtering and rapid thermal processing for synthesis and discovery of metal oxynitrides

    DOE PAGES

    Zhou, Lan; Suram, Santosh K.; Becerra-Stasiewicz, Natalie; ...

    2015-05-27

    Recent efforts have demonstrated enhanced tailoring of material functionality with mixed-anion materials, yet exploratory research with mixed-anion chemistries is limited by the sensitivity of these materials to synthesis conditions. In order to synthesize a particular metal oxynitride compound by traditional reactive annealing we require specific, limited ranges of both oxygen and nitrogen chemical potentials in order to establish equilibrium between the solid-state material and a reactive atmosphere. While using Ta-O-N as an example system, we describe a combination of reactive sputter deposition and rapid thermal processing for synthesis of mixed-anion inorganic materials. Heuristic optimization of reactive gas pressures to attainmore » a desired anion stoichiometry is discussed, and the ability of rapid thermal processing to enable amorphous to crystalline transitions without preferential anion loss is demonstrated through the controlled synthesis of nitride, oxide and oxynitride phases.« less

  9. Amorphous ZnO Quantum Dot/Mesoporous Carbon Bubble Composites for a High-Performance Lithium-Ion Battery Anode.

    PubMed

    Tu, Zhiming; Yang, Gongzheng; Song, Huawei; Wang, Chengxin

    2017-01-11

    Due to its high theoretical capacity (978 mA h g -1 ), natural abundance, environmental friendliness, and low cost, zinc oxide is regarded as one of the most promising anode materials for lithium-ion batteries (LIBs). A lot of research has been done in the past few years on this topic. However, hardly any research on amorphous ZnO for LIB anodes has been reported despite the fact that the amorphous type could have superior electrochemical performance due to its isotropic nature, abundant active sites, better buffer effect, and different electrochemical reaction details. In this work, we develop a simple route to prepare an amorphous ZnO quantum dot (QDs)/mesoporous carbon bubble composite. The composite consists of two parts: mesoporous carbon bubbles as a flexible skeleton and monodisperse amorphous zinc oxide QDs (smaller than 3 nm) encapsulated in an amorphous carbon matrix as a continuous coating tightly anchored on the surface of mesoporous carbon bubbles. With the benefits of abundant active sites, amorphous nature, high specific surface area, buffer effect, hierarchical pores, stable interconnected conductive network, and multidimensional electron transport pathways, the amorphous ZnO QD/mesoporous carbon bubble composite delivers a high reversible capacity of nearly 930 mA h g -1 (at current density of 100 mA g -1 ) with almost 90% retention for 85 cycles and possesses a good rate performance. This work opens the possibility to fabricate high-performance electrode materials for LIBs, especially for amorphous metal oxide-based materials.

  10. Method of making amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1982-01-01

    The process comprises placing an amorphous metal in particulate form and a low molecular weight (e.g., 1000-5000) thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  11. Evaluation of different amendments to stabilize antimony in mining polluted soils.

    PubMed

    Álvarez-Ayuso, E; Otones, V; Murciego, A; García-Sánchez, A

    2013-02-01

    Soil pollution with antimony is of increasing environmental concern worldwide. Measures for its control and to attenuate the risks posed to the ecosystem are required. In this study the application of several iron and aluminium oxides and oxyhydroxides as soil amendments was evaluated in order to assess their feasibility to stabilize Sb in mining polluted soils. Mine soils with different pollution levels were amended with either goethite, ferrihydrite or amorphous Al oxide at various ratios (0-10%). The effectiveness of such treatments was assessed by both batch and column leaching tests. The use of ferrihydrite or amorphous Al oxide proved to be highly effective to stabilize Sb. Immobilization levels of 100% were found when doses of 5% ferrihydrite or 10% amorphous Al oxide were applied, regardless of the soil Sb load. Column leaching studies also showed a high Sb leaching reduction (>75%) when soils were amended with 1% ferrihydrite or 5% amorphous Al oxide. Moreover, such treatments proved to simultaneously immobilize As and Pb in a great extent when soils were also polluted with such toxic elements. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Amorphous transparent conducting oxides in context: Work function survey, trends, and facile modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, T. C.; Zhu, Q.; Buchholz, D. B.

    2015-03-01

    The work functions of various amorphous and crystalline transparent conducting oxides (TCO5) were measured using Kelvin probe. The films, made by pulsed laser deposition, exhibited varying work functions dependent on the composition and deposition parameters. Tin oxide showed the largest work functions of the oxides measured, while zinc oxide showed the lowest. Binary and ternary combinations of the basis TCOs showed intermediate work functions dependent on the endpoint components. Amorphous TCO5, important in OPV and other technological applications, exhibited similar work functions to their crystalline counterparts. UV/ozone treatment of TCOs temporarily increased the work function, consistent with proposed defect mechanismsmore » associated with near-surface changes in carrier content and Fermi level. Finally, a method for facile adjustment of the work function of commercial TCOs by atomic layer deposition (ALD) capping layers was presented, illustrated by the growth of zinc oxide layers on commercial crystalline ITO films.« less

  13. Amorphous transparent conducting oxides in context: Work function survey, trends, and facile modification

    NASA Astrophysics Data System (ADS)

    Yeh, T. C.; Zhu, Q.; Buchholz, D. B.; Martinson, A. B.; Chang, R. P. H.; Mason, T. O.

    2015-03-01

    The work functions of various amorphous and crystalline transparent conducting oxides (TCOs) were measured using Kelvin probe. The films, made by pulsed laser deposition, exhibited varying work functions dependent on the composition and deposition parameters. Tin oxide showed the largest work functions of the oxides measured, while zinc oxide showed the lowest. Binary and ternary combinations of the basis TCOs showed intermediate work functions dependent on the endpoint components. Amorphous TCOs, important in OPV and other technological applications, exhibited similar work functions to their crystalline counterparts. UV/ozone treatment of TCOs temporarily increased the work function, consistent with proposed defect mechanisms associated with near-surface changes in carrier content and Fermi level. Finally, a method for facile adjustment of the work function of commercial TCOs by atomic layer deposition (ALD) capping layers was presented, illustrated by the growth of zinc oxide layers on commercial crystalline ITO films.

  14. Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries.

    PubMed

    Mattelaer, Felix; Geryl, Kobe; Rampelberg, Geert; Dendooven, Jolien; Detavernier, Christophe

    2017-04-19

    Flexible wearable electronics and on-chip energy storage for wireless sensors drive rechargeable batteries toward thin-film lithium ion batteries. To enable more charge storage on a given surface, higher energy density materials are required, while faster energy storage and release can be obtained by going to thinner films. Vanadium oxides have been examined as cathodes in classical and thin-film lithium ion batteries for decades, but amorphous vanadium oxide thin films have been mostly discarded. Here, we investigate the use of atomic layer deposition, which enables electrode deposition on complex three-dimensional (3D) battery architectures, to obtain both amorphous and crystalline VO 2 and V 2 O 5 , and we evaluate their thin-film cathode performance. Very high volumetric capacities are found, alongside excellent kinetics and good cycling stability. Better kinetics and higher volumetric capacities were observed for the amorphous vanadium oxides compared to their crystalline counterparts. The conformal deposition of these vanadium oxides on silicon micropillar structures is demonstrated. This study shows the promising potential of these atomic layer deposited vanadium oxides as cathodes for 3D all-solid-state thin-film lithium ion batteries.

  15. Formation of budesonide/α-lactose glass solutions by ball-milling

    NASA Astrophysics Data System (ADS)

    Dudognon, E.; Willart, J. F.; Caron, V.; Capet, F.; Larsson, T.; Descamps, M.

    2006-04-01

    The possibility to obtain amorphous budesonide stabilised by blending with an excipient characterised by a higher glass transition temperature, namely α-lactose, has been studied. We carried out the mixing of the two compounds at room temperature by ball-milling. The four obtained blends (containing, respectively, 10, 30, 50 and 70% w of budesonide) are X-ray amorphous and exhibit a single glass transition located between the ones of pure milled crystalline compounds. This revealed that the two amorphous phases are miscible whatever the composition and sufficiently mixed to relax as a whole. Ball-milling thus appears as a powerful tool to form amorphous molecular alloys with enhanced stability properties.

  16. InP/ZnS nanocrystals: coupling NMR and XPS for fine surface and interface description.

    PubMed

    Virieux, Héloïse; Le Troedec, Marianne; Cros-Gagneux, Arnaud; Ojo, Wilfried-Solo; Delpech, Fabien; Nayral, Céline; Martinez, Hervé; Chaudret, Bruno

    2012-12-05

    Advanced (1)H, (13)C, and (31)P solution- and solid-state NMR studies combined with XPS were used to probe, at the molecular scale, the composition (of the core, the shell, and the interface) and the surface chemistry of InP/ZnS core/shell quantum dots prepared via a non-coordinating solvent strategy. The interface between the mismatched InP and ZnS phases is composed of an amorphous mixed oxide phase incorporating InPO(x) (with x = 3 and predominantly 4), In(2)O(3), and InO(y)(OH)(3-2y) (y = 0, 1). Thanks to the analysis of the underlying reaction mechanisms, we demonstrate that the oxidation of the upper part of the InP core is the consequence of oxidative conditions brought by decarboxylative coupling reactions (ketonization). These reactions occur during both the core preparation and the coating process, but according to different mechanisms.

  17. Electron-irradiation-induced crystallization at metallic amorphous/silicon oxide interfaces caused by electronic excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagase, Takeshi, E-mail: t-nagase@uhvem.osaka-u.ac.jp; Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871; Yamashita, Ryo

    2016-04-28

    Irradiation-induced crystallization of an amorphous phase was stimulated at a Pd-Si amorphous/silicon oxide (a(Pd-Si)/SiO{sub x}) interface at 298 K by electron irradiation at acceleration voltages ranging between 25 kV and 200 kV. Under irradiation, a Pd-Si amorphous phase was initially formed at the crystalline face-centered cubic palladium/silicon oxide (Pd/SiO{sub x}) interface, followed by the formation of a Pd{sub 2}Si intermetallic compound through irradiation-induced crystallization. The irradiation-induced crystallization can be considered to be stimulated not by defect introduction through the electron knock-on effects and electron-beam heating, but by the electronic excitation mechanism. The observed irradiation-induced structural change at the a(Pd-Si)/SiO{sub x} and Pd/SiO{sub x}more » interfaces indicates multiple structural modifications at the metal/silicon oxide interfaces through electronic excitation induced by the electron-beam processes.« less

  18. Direct /TEM/ observation of the catalytic oxidation of amorphous carbon by Pd particles

    NASA Technical Reports Server (NTRS)

    Moorhead, R. D.; Poppa, H.; Heinemann, K.

    1980-01-01

    The catalytic oxidation of amorphous carbon substrates by Pd particles is observed by in situ transmission electron microscopy. Various modes of selective attack of the carbon substrate in the immediate neighborhood of Pd particles are observed, which can be correlated with different degrees of particle mobility. Using amorphous substrates we have been able to demonstrate that the particle-substrate interaction is influenced by the structure of the particle. This has not previously been noted.

  19. Structural difference rule for amorphous alloy formation by ion mixing

    NASA Technical Reports Server (NTRS)

    Liu, B.-X.; Johnson, W. L.; Nicolet, M.A.; Lau, S. S.

    1983-01-01

    A rule is formulated which establishes a sufficient condition that an amorphous binary alloy will be formed by ion mixing of multilayered samples when the two constituent metals are of different crystalline structure, regardless of their atomic sizes and electronegativities. The rule is supported by the experimental results obtained on six selected binary metal systems, as well as by the previous data reported in the literature. The amorphization mechanism is discussed in terms of the competition between two different structures resulting in frustration of the crystallization process.

  20. The plasma electrolytic oxidation micro-discharge channel model and its microstructure characteristic based on Ti tracer

    NASA Astrophysics Data System (ADS)

    Gao, Fangyuan; Hao, Li; Li, Guang; Xia, Yuan

    2018-02-01

    This study focuses on the individual discharge channel of ceramic coating prepared by plasma electrolytic oxidation (PEO), and attempts to reveal the mechanism of breakdown discharge at low voltage. Titanium (Ti) was employed as a substrate with the layer of aluminum deposited on it (aluminized Ti). The shape and microstructure of the discharge channels in PEO coatings were investigated using transmission electron microscope (TEM) and scanning electron microscopy (SEM). A schematic model of the individual discharge channel was proposed based on Ti tracer method. The shape of the discharge channel was mainly cylinder-shaped in the compact coating, with a groove-like oxidation region existed at the coating/substrate interface. In the groove-like oxidation region, the phase composition mainly composed of amorphous and mixed polycrystalline (aluminum titanate and mullite). β-Al2O3 was found in the ceramic coating. TEM morphology showed that nanometer sized micro channels existed in the ceramic coatings.

  1. Amorphous alumina coatings: processing, structure and remarkable barrier properties.

    PubMed

    Samélor, Diane; Lazar, Ana-Maria; Aufray, Maëlenn; Tendero, Claire; Lacroix, Loïc; Béguin, Jean-Denis; Caussat, Brigitte; Vergnes, Hugues; Alexis, Joël; Poquillon, Dominique; Pébère, Nadine; Gleizes, Alain; Vahlas, Constantin

    2011-09-01

    Amorphous aluminium oxide coatings were processed by metalorganic chemical vapour deposition (MOCVD); their structural characteristics were determined as a function of the processing conditions, the process was modelled considering appropriate chemical kinetic schemes, and the properties of the obtained material were investigated and were correlated with the nanostructure of the coatings. With increasing processing temperature in the range 350 degrees C-700 degrees C, subatmospheric MOCVD of alumina from aluminium tri-isopropoxide (ATI) sequentially yields partially hydroxylated amorphous aluminium oxides, amorphous Al2O3 (415 degrees C-650 degrees C) and nanostructured gamma-Al2O3 films. A numerical model for the process allowed reproducing the non uniformity of deposition rate along the substrate zone due to the depletion of ATI. The hardness of the coatings prepared at 350 degrees C, 480 degrees C and 700 degrees C is 6 GPa, 11 GPa and 1 GPa, respectively. Scratch tests on films grown on TA6V titanium alloy reveal adhesive and cohesive failures for the amorphous and nanocrystalline ones, respectively. Alumina coating processed at 480 degrees C on TA6V yielded zero weight gain after oxidation at 600 degrees C in lab air. The surface of such low temperature processed amorphous films is hydrophobic (water contact angle 106 degrees), while the high temperature processed nanocrystalline films are hydrophilic (48 degrees at a deposition temperature of 700 degrees C). It is concluded that amorphous Al2O3 coatings can be used as oxidation and corrosion barriers at ambient or moderate temperature. Nanostructured with Pt or Ag nanoparticles, they can also provide anti-fouling or catalytic surfaces.

  2. A Silica-Supported Iron Oxide Catalyst Capable of Activating Hydrogen Peroxide at Neutral pH Values

    PubMed Central

    Pham, Anh Le-Tuan; Lee, Changha; Doyle, Fiona M.; Sedlak, David L.

    2009-01-01

    Iron oxides catalyze the conversion of hydrogen peroxide (H2O2) into oxidants capable of transforming recalcitrant contaminants. Unfortunately, the process is relatively inefficient at circumneutral pH values due to competing reactions that decompose H2O2 without producing oxidants. Silica- and alumina-containing iron oxides prepared by sol-gel processing of aqueous solutions containing Fe(ClO4)3, AlCl3 and tetraethyl orthosilicate efficiently catalyzed the decomposition of H2O2 into oxidants capable of transforming phenol at circumneutral pH values. Relative to hematite, goethite and amorphous FeOOH, the silica-iron oxide catalyst exhibited a stoichiometric efficiency, defined as the number of moles of phenol transformed per mole of H2O2 consumed, that was 10 to 40 times higher than that of the iron oxides. The silica-alumina-iron oxide catalyst had a stoichiometric efficiency that was 50 to 80 times higher than that of the iron oxides. The significant enhancement in oxidant production is attributable to the interaction of Fe with Al and Si in the mixed oxides, which alters the surface redox processes, favoring the production of strong oxidants during H2O2 decomposition. PMID:19943668

  3. Low temperature production of large-grain polycrystalline semiconductors

    DOEpatents

    Naseem, Hameed A [Fayetteville, AR; Albarghouti, Marwan [Loudonville, NY

    2007-04-10

    An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.

  4. Processing Bi-Pb-Sr-Ca-Cu-O superconductors from amorphous state

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Wong-Ng, W.; Cook, L. P.; Freiman, S. W.; Hwang, N. M.; Vaudin, M.; Hill, M. D.; Shull, R. D.; Shapiro, A. J.; Swartzendruber, L. J.

    1991-01-01

    The bismuth based high T sub c superconductors can be processed via an amorphous Bi-Pb-Sr-Ca-Cu oxide. The amorphous oxides were prepared by melting the constituent powders in an alumina crucible at 1200 C in air followed by pouring the liquid onto an aluminum plate, and rapidly pressing with a second plate. In the amorphous state, no crystalline phase was identified in the powder x ray diffraction pattern of the quenched materials. After heat treatment at high temperature the amorphous materials crystallized into a glass ceramic containing a large fraction of the Bi2Sr2Ca2Cu3O(x) phase T sub c = 110 K. The processing method, crystallization, and results of dc electrical resistivity and ac magnetic susceptibility measurements are discussed.

  5. Atomic mixing induced by swift heavy ion irradiation of Fe/Zr multilayers

    NASA Astrophysics Data System (ADS)

    Jaouen, C.; Michel, A.; Pacaud, J.; Dufour, C.; Bauer, Ph.; Gervais, B.

    1999-01-01

    The mechanism of ion induced mixing and phase change was studied for Fe/Zr multilayers, and specifically for the case of swift heavy ions giving rise to a very large electronic excitation of the target. The multilayers had a modulation of 7.6 nm and an overall composition Fe 69Zr 31. The Zr layers were amorphous whereas the Fe ones were crystalline (bcc) with a very strong (1 1 0) texture in the growth direction. The phase transformation and the composition changes were analysed using the structural and magnetic properties of the Fe component by means of a detailed analysis of the X-ray diffraction profiles and with the aid of backscattering Mössbauer spectroscopy. A complete mixing was observed at a fluence of 10 13 U/cm 2. Both phenomena, the dose dependence of the ion beam mixed amorphous non-magnetic phase and the quantitative evolution of the crystalline iron layer thickness, suggest that mixing occurs in a two-stage process. At an initial stage, an anisotropic diffusion of iron atoms in the amorphous zirconium layers takes place along the interface, while subsequent ion bombardment leads to a generalised transformation through the whole of the Fe layer. Finally, the implications of these observations are discussed in comparison to the plastic deformation phenomena reported for amorphous alloys.

  6. The magnetic properties of a magnetic detector using oxidized amorphous Co 95- xFe 5(BSi) x alloys

    NASA Astrophysics Data System (ADS)

    Ahn, S. J.; Kim, C. K.; Kim, S. J.; Choi, D. K.; O'Handley, R. C.

    2000-07-01

    A comparative oxidation study of several amorphous Co 75- xFe 5(BSi) 20+ x alloys was carried out. Reentrant magnetization behavior and field-induced anisotropy which are of a critical importance for a magnetic detector were obtained after oxidation of the amorphous Co-rich ribbons. During this oxidation, the ribbons develop surface oxides which are primarily nonmagnetic borosilicate or a combination of borosilicate and magnetic oxides such CoO or FeO. Beneath this lies a 100-1000 Å thick Co-rich magnetic alloy which may be either HCP or FCC in its crystal structure. The thickness of the Co-crystallized layer is determined by the type of the surface oxides. The oxidation products such as appear to affect the reentrant magnetization behavior of Co-rich amorphous alloys significantly. We have determined the amount of metalloids (a critical concentration of B and Si) which is necessary to form a continuous layer of the most thermodynamically stable oxide, in our case borosilicate, on the surface. We also observed that there is a good correlation between reentrant magnetization and the thickness of Co layer. The best reentrant M- H loop for the magnetic detector was obtained in ribbons with a surface borate-rich borosilicate since it ensures conditions such as (1) metalloid depletion in the substrate and (2) formation of oxygen impurity faults in Co grains that are required for strong reentrant magnetization behavior.

  7. Analysis of amorphous indium-gallium-zinc-oxide thin-film transistor contact metal using Pilling-Bedworth theory and a variable capacitance diode model

    NASA Astrophysics Data System (ADS)

    Kiani, Ahmed; Hasko, David G.; Milne, William I.; Flewitt, Andrew J.

    2013-04-01

    It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation.

  8. Ammonia formation caused by the presence of water in the wet grinding of silicon nitride powder

    NASA Technical Reports Server (NTRS)

    Kanno, Y.; Suzuki, K.; Kuwahara, Y.

    1984-01-01

    Si3 N4 powder (amorphous, alpha-, and beta-Si3 N4) was mixed with MeOH containing 8.87 mol. % H2O and ground. The NH3 generation rapidly increased after a grinding time of 100 hours. Silicon nitride sintered material was chosen as one of the high temperature, high strength structural materials and studies of the control of the raw material powder, preparation of the sintered body (finding the right assistant, hot press, high pressure sintering, fracture toughness and oxidation at high temperature were performed.

  9. Unified interatomic potential and energy barrier distributions for amorphous oxides.

    PubMed

    Trinastic, J P; Hamdan, R; Wu, Y; Zhang, L; Cheng, Hai-Ping

    2013-10-21

    Amorphous tantala, titania, and hafnia are important oxides for biomedical implants, optics, and gate insulators. Understanding the effects of oxide doping is crucial to optimize performance in these applications. However, no molecular dynamics potentials have been created to date that combine these and other oxides that would allow computational analyses of doping-dependent structural and mechanical properties. We report a novel set of computationally efficient, two-body potentials modeling van der Waals and covalent interactions that reproduce the structural and elastic properties of both pure and doped amorphous oxides. In addition, we demonstrate that the potential accurately produces energy barrier distributions for pure and doped samples. The distributions can be directly compared to experiment and used to calculate physical quantities such as internal friction to understand how doping affects material properties. Future analyses using these potentials will be of great value to determine optimal doping concentrations and material combinations for myriad material science applications.

  10. Temperature-Dependent Helium Ion-Beam Mixing in an Amorphous SiOC/Crystalline Fe Composite

    DOE PAGES

    Su, Qing; Price, Lloyd; Shao, Lin; ...

    2016-10-31

    Temperature dependent He-irradiation-induced ion-beam mixing between amorphous silicon oxycarbide (SiOC) and crystalline Fe was examined with a transmission electron microscope (TEM) and via Rutherford backscattering spectrometry (RBS). The Fe marker layer (7.2 ± 0.8 nm) was placed in between two amorphous SiOC layers (200 nm). The amount of ion-beam mixing after 298, 473, 673, 873, and 1073 K irradiation was investigated. Both TEM and RBS results showed no ion-beam mixing between Fe and SiOC after 473 and 673 K irradiation and a very trivial amount of ion-beam mixing (~2 nm) after 298 K irradiation. At irradiation temperatures higher than 873more » K, the Fe marker layer broke down and RBS could no longer be used to quantitatively examine the amount of ion mixing. The results indicate that the Fe/SiOC nanocomposite is thermally stable and tends to demix in the temperature range from 473 to 673 K. For application of this composite structure at temperatures of 873 K or higher, layer stability is a key consideration.« less

  11. On the effect of Ti on the stability of amorphous indium zinc oxide used in thin film transistor applications

    NASA Astrophysics Data System (ADS)

    Lee, Sunghwan; Paine, David C.

    2011-06-01

    In2O3-based amorphous oxide channel materials are of increasing interest for thin film transisitor applications due, in part, to the remarkable stability of this class of materials amorphous structure and electronic properties. We report that this stability is degraded in the presence of Ti, which is widely used as a contact and/or adhesion layer. A cross-sectional transmission electron microscopy analysis, supported by glancing incident angle x-ray and selected area diffraction examination, shows that amorphous indium zinc oxide in contact with Ti undergoes crystallization to the bixbyite phase and reacts to form the rutile phase of TiO2 at a temperature of 200 °C. A basic thermodynamic analysis is presented and forms the basis of a model that describes both the crystallization and the resistivity decrease.

  12. CO2-Assisted Conversion of Crystal Two-Dimensional Molybdenum Oxide to Amorphism with Plasmon Resonances.

    PubMed

    Liu, Wei; Xu, Qun

    2018-04-20

    Localized surface plasmon resonances (LSPRs) of ultra-thin two-dimensional (2D) nanomaterials opened a new regime in plasmonics in the last several years. 2D plasmonic materials are yet concentrated on the crystal structure, amorphous materials are hardly reported because of their limited preparation methods rather than undesired plasmonic properties. Taking molybdenum oxides as an example, herein, we elaborate the 2D amorphous plasmons prepared with the assistance of supercritical CO2. In brief, we examine the reported characteristic plasmonic properties of molybdenum oxides, and applications of supercritical CO2 in formations of 2D layer materials as well as introduced phase and disorder engineering based on our researchs. Furthermore, we propose our perspective on the development of 2D plasmons, especially for amorphous layer materials in the future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Detecting Nanophase Weathering Products with CheMin: Reference Intensity Ratios of Allophane, Aluminosilicate Gel, and Ferrihydrite

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Bish, D. L.; Chipera, S. J.; Morris, R. V.; Achilles, C. N.; Ming, D W.; Blake, D. F.; Anderson, R. C.; Bristow, T. F.; Crisp, A.; hide

    2013-01-01

    X-ray diffraction (XRD) data collected of the Rocknest samples by the CheMin instrument on Mars Science Laboratory suggest the presence of poorly crystalline or amorphous materials [1], such as nanophase weathering products or volcanic and impact glasses. The identification of the type(s) of X-ray amorphous material at Rocknest is important because it can elucidate past aqueous weathering processes. The presence of volcanic and impact glasses would indicate that little chemical weathering has occurred because glass is highly susceptible to aqueous alteration. The presence of nanophase weathering products, such as allophane, nanophase iron-oxides, and/or palagonite, would indicate incipient chemical weathering. Furthermore, the types of weathering products present could help constrain pH conditions and identify which primary phases altered to form the weathering products. Quantitative analysis of phases from CheMin data is achieved through Reference Intensity Ratios (RIRs) and Rietveld refinement. The RIR of a mineral (or mineraloid) that relates the scattering power of that mineral (typically the most intense diffraction line) to the scattering power of a separate mineral standard such as corundum [2]. RIRs can be calculated from XRD patterns measured in the laboratory by mixing a mineral with a standard in known abundances and comparing diffraction line intensities of the mineral to the standard. X-ray amorphous phases (e.g., nanophase weathering products) have broad scattering signatures rather than sharp diffraction lines. Thus, RIRs of X-ray amorphous materials are calculated by comparing the area under one of these broad scattering signals with the area under a diffraction line in the standard. Here, we measured XRD patterns of nanophase weathering products (allophane, aluminosilicate gel, and ferrihydrite) mixed with a mineral standard (beryl) in the CheMinIV laboratory instrument and calculated their RIRs to help constrain the abundances of these phases in the Rocknest samples.

  14. Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB.

    PubMed

    Pervez, Syed Atif; Kim, Doohun; Farooq, Umer; Yaqub, Adnan; Choi, Jung-Hee; Lee, You-Jin; Doh, Chil-Hoon

    2014-07-23

    This work is a comparative study of the electrochemical performance of crystalline and amorphous anodic iron oxide nanotube layers. These nanotube layers were grown directly on top of an iron current collector with a vertical orientation via a simple one-step synthesis. The crystalline structures were obtained by heat treating the as-prepared (amorphous) iron oxide nanotube layers in ambient air environment. A detailed morphological and compositional characterization of the resultant materials was performed via transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectroscopy. The XRD patterns were further analyzed using Rietveld refinements to gain in-depth information on their quantitative phase and crystal structures after heat treatment. The results demonstrated that the crystalline iron oxide nanotube layers exhibit better electrochemical properties than the amorphous iron oxide nanotube layers when evaluated in terms of the areal capacity, rate capability, and cycling performance. Such an improved electrochemical response was attributed to the morphology and three-dimensional framework of the crystalline nanotube layers offering short, multidirectional transport lengths, which favor rapid Li(+) ions diffusivity and electron transport.

  15. Characterizing Amorphous Silicates in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the correlation between peak area ratio, A(500+700)/A1000, and NBO/T. In the 2nd step, we are synthesizing Mg-saponite using a sol-gel method. The crystallinity of sol-gel starting materials will be increased by a controlled hydrothermal treatment. The products will be characterized using XRD/TEM/Raman/NIR. The results will be reported at the conference.

  16. Atomistic Texture of Amorphous Manganese Oxides for Electrochemical Water Splitting Revealed by Ab Initio Calculations Combined with X-ray Spectroscopy.

    PubMed

    Mattioli, Giuseppe; Zaharieva, Ivelina; Dau, Holger; Guidoni, Leonardo

    2015-08-19

    Amorphous transition-metal (hydr)oxides are considered as the most promising catalysts that promote the oxidation of water to molecular oxygen, protons, and "energized" electrons, and, in turn, as fundamental parts of "artificial leaves" that can be exploited for large scale generation of chemical fuels (e.g., hydrogen) directly from sunlight. We present here a joint theoretical-experimental investigation of electrodeposited amorphous manganese oxides with different catalytic activities toward water oxidation (MnCats). Combining the information content of X-ray absorption fine structure (XAFS) measurements with the predictive power of ab initio calculations based on density functional theory, we have been able to identify the essential structural and electronic properties of MnCats. We have elucidated (i) the localization and structural connection of Mn(II), Mn(III), and Mn(IV) ions in such amorphous oxides and (ii) the distribution of protons at the MnCat/water interface. Our calculations result in realistic 3D models of the MnCat atomistic texture, formed by the interconnection of small planar Mn-oxo sheets cross-linked through different kinds of defective Mn atoms, isolated or arranged in closed cubane-like units. Essential for the catalytic activity is the presence of undercoordinated Mn(III)O5 units located at the boundary of the amorphous network, where they are ready to act as hole traps that trigger the oxidation of neighboring water molecules when the catalyst is exposed to an external positive potential. The present validation of a sound 3D model of MnCat improves the accuracy of XAFS fits and opens the way for the development of mechanistic schemes of its functioning beyond a speculative level.

  17. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less

  18. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

    DOE PAGES

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; ...

    2015-12-01

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less

  19. Gas-assisted electron-beam-induced nanopatterning of high-quality titanium oxide.

    PubMed

    Riazanova, A V; Costanzi, B N; Aristov, A I; Rikers, Y G M; Mulders, J J L; Kabashin, A V; Dahlberg, E Dan; Belova, L M

    2016-03-18

    Electron-beam-induced deposition of titanium oxide nanopatterns is described. The precursor is titanium tetra-isopropoxide, delivered to the deposition point through a needle and mixed with oxygen at the same point via a flow through a separate needle. The depositions are free of residual carbon and have an EDX determined stoichiometry of TiO2.2. High resolution transmission electron microscopy and Raman spectroscopy studies reveal an amorphous structure of the fabricated titanium oxide. Ellipsometric characterization of the deposited material reveals a refractive index of 2.2-2.4 RIU in the spectral range of 500-1700 nm and a very low extinction coefficient (lower than 10(-6) in the range of 400-1700 nm), which is consistent with high quality titanium oxide. The electrical resistivity of the titanium oxide patterned with this new process is in the range of 10-40 GΩ cm and the measured breakdown field is in the range of 10-70 V μm(-1). The fabricated nanopatterns are important for a variety of applications, including field-effect transistors, memory devices, MEMS, waveguide structures, bio- and chemical sensors.

  20. Gas-assisted electron-beam-induced nanopatterning of high-quality titanium oxide

    NASA Astrophysics Data System (ADS)

    Riazanova, A. V.; Costanzi, B. N.; Aristov, A. I.; Rikers, Y. G. M.; Mulders, J. J. L.; Kabashin, A. V.; Dahlberg, E. Dan; Belova, L. M.

    2016-03-01

    Electron-beam-induced deposition of titanium oxide nanopatterns is described. The precursor is titanium tetra-isopropoxide, delivered to the deposition point through a needle and mixed with oxygen at the same point via a flow through a separate needle. The depositions are free of residual carbon and have an EDX determined stoichiometry of TiO2.2. High resolution transmission electron microscopy and Raman spectroscopy studies reveal an amorphous structure of the fabricated titanium oxide. Ellipsometric characterization of the deposited material reveals a refractive index of 2.2-2.4 RIU in the spectral range of 500-1700 nm and a very low extinction coefficient (lower than 10-6 in the range of 400-1700 nm), which is consistent with high quality titanium oxide. The electrical resistivity of the titanium oxide patterned with this new process is in the range of 10-40 GΩ cm and the measured breakdown field is in the range of 10-70 V μm-1. The fabricated nanopatterns are important for a variety of applications, including field-effect transistors, memory devices, MEMS, waveguide structures, bio- and chemical sensors.

  1. Oxygen partial pressure influence on the character of InGaZnO thin films grown by PLD

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Wang, Li

    2012-11-01

    The amorphous oxide semiconductors (AOSs) are promising for emerging large-area optoelectronic applications because of capability of large-area, uniform deposition at low temperatures such as room temperature (RT). Indium-gallium-zinc oxide (InGaZnO) thin film is a promising amorphous semiconductors material in thin film transistors (TFT) for its excellent electrical properties. In our work, the InGaZnO thin films are fabricated on the SiO2 glass using pulsed laser deposition (PLD) in the oxygen partial pressure altered from 1 to 10 Pa at RT. The targets were prepared by mixing Ga2O3, In2O3, and ZnO powder at a mol ratio of 1: 7: 2 before the solid-state reactions in a tube furnace at the atmospheric pressure. The targets were irradiated by an Nd:YAG laser(355nm). Finally, we have three films of 270nm, 230nm, 190nm thick for 1Pa, 5Pa, 10Pa oxygen partial pressure. The product thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), Hall-effect investigation. The comparative study demonstrated the character changes of the structure and electronic transport properties, which is probably occurred as a fact of the different oxygen partial pressure used in the PLD.

  2. Photo-oxidation of polymer-like amorphous hydrogenated carbon under visible light illumination

    DOE PAGES

    Baxamusa, Salmaan; Laurence, Ted; Worthington, Matthew; ...

    2015-11-10

    Amorphous hydrogenated carbon (a-C:H), a polymer-like network typically synthesized by plasma chemical vapor deposition, has long been understood to exhibit optical absorption of visible light (λ > 400 nm). In this report we explain that this absorption is accompanied by rapid photo-oxidation (within minutes) that behaves in most respects like classic polymer photo-oxidation with the exception that it occurs under visible light illumination rather than ultraviolet illumination.

  3. Amorphous vanadium oxide coating on graphene by atomic layer deposition for stable high energy lithium ion anodes.

    PubMed

    Sun, Xiang; Zhou, Changgong; Xie, Ming; Hu, Tao; Sun, Hongtao; Xin, Guoqing; Wang, Gongkai; George, Steven M; Lian, Jie

    2014-09-21

    Uniform amorphous vanadium oxide films were coated on graphene via atomic layer deposition and the nano-composite displays an exceptional capacity of ~900 mA h g(-1) at 200 mAg(-1) with an excellent capacity retention at 1 A g(-1) after 200 cycles. The capacity contribution (1161 mA h g(-1)) from vanadium oxide only almost reaches its theoretical value.

  4. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOEpatents

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  5. Tuning the physical properties of amorphous In–Zn–Sn–O thin films using combinatorial sputtering

    DOE PAGES

    Ndione, Paul F.; Zakutayev, A.; Kumar, M.; ...

    2016-12-05

    Transparent conductive oxides and amorphous oxide semiconductors are important materials for many modern technologies. Here, we explore the ternary indium zinc tin oxide (IZTO) using combinatorial synthesis and spatially resolved characterization. The electrical conductivity, work function, absorption onset, mechanical hardness, and elastic modulus of the optically transparent (>85%) amorphous IZTO thin films were found to be in the range of 10–2415 S/cm, 4.6–5.3 eV, 3.20–3.34 eV, 9.0–10.8 GPa, and 111–132 GPa, respectively, depending on the cation composition and the deposition conditions. Furthermore, this study enables control of IZTO performance over a broad range of cation compositions.

  6. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou-Yang, Wei, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizingmore » controllable high-performance stable transistors.« less

  7. Molecular dynamics simulations of Li transport between cathode crystals

    NASA Astrophysics Data System (ADS)

    Garofalini, S. H.

    The molecular dynamics (MD) computer simulation technique has been used to study the effect of an amorphous intergranular film (IGF) present in a polycrystalline cathode on Li transport. The solid electrolyte is a model lithium silicate glass while the cathode is a nanocrystalline vanadia with an amorphous V 2O 5 IGF separating the crystals. Thin (˜1 to a few nanometer thick) IGFs are known to be present in most polycrystalline oxide materials. However, the role of such a film on Li transport in oxide cathodes has not been addressed. Current scanning probe microscopy (SPM) studies have shown that the orientation of the layered nanocrystalline vanadia crystals near the cathode/solid electrolyte interface is not optimized for Li ion transport. While the precise structure of the material between the crystals has not been identified, initially it can be initially considered as likely to be a thin non-crystalline (amorphous) film. This is based on the ubiquitous presence of such a structure in other polycrystalline oxides. Also, and with more relevance to the materials used in thin film batteries, an amorphous film can be expected to form between nanocrystals that crystallized from an amorphous matrix, as would be the case in a deposited thin film cathode. Consistent with simulations of Li transport in amorphous vanadia, the current simulations show that Li ions diffuse more rapidly into the amorphous intergranular thin film than into the layered vanadia with the (0 0 1) planes parallel to the cathode/electrolyte interface.

  8. Influence of deposition temperature and amorphous carbon on microstructure and oxidation resistance of magnetron sputtered nanocomposite Crsbnd C films

    NASA Astrophysics Data System (ADS)

    Nygren, Kristian; Andersson, Matilda; Högström, Jonas; Fredriksson, Wendy; Edström, Kristina; Nyholm, Leif; Jansson, Ulf

    2014-06-01

    It is known that mechanical and tribological properties of transition metal carbide films can be tailored by adding an amorphous carbon (a-C) phase, thus making them nanocomposites. This paper addresses deposition, microstructure, and for the first time oxidation resistance of magnetron sputtered nanocomposite Crsbnd C/a-C films with emphasis on studies of both phases. By varying the deposition temperature between 20 and 700 °C and alternating the film composition, it was possible to deposit amorphous, nanocomposite, and crystalline Crsbnd C films containing about 70% C and 30% Cr, or 40% C and 60% Cr. The films deposited at temperatures below 300 °C were X-ray amorphous and 500 °C was required to grow crystalline phases. Chronoamperometric polarization at +0.6 V vs. Ag/AgCl (sat. KCl) in hot 1 mM H2SO4 resulted in oxidation of Crsbnd C, yielding Cr2O3 and C, as well as oxidation of C. The oxidation resistance is shown to depend on the deposition temperature and the presence of the a-C phase. Physical characterization of film surfaces show that very thin C/Cr2O3/Crsbnd C layers develop on the present material, which can be used to improve the oxidation resistance of, e.g. stainless steel electrodes.

  9. Amorphous titanium-oxide supercapacitors.

    PubMed

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-21

    The electric capacitance of an amorphous TiO 2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm 2 , accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO 2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  10. Amorphous titanium-oxide supercapacitors

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  11. Amorphous Silk Fibroin Membranes for Separation of CO2

    NASA Technical Reports Server (NTRS)

    Aberg, Christopher M.; Patel, Anand K.; Gil, Eun Seok; Spontak, Richard J.; Hagg, May-Britt

    2009-01-01

    Amorphous silk fibroin has shown promise as a polymeric material derivable from natural sources for making membranes for use in removing CO2 from mixed-gas streams. For most applications of silk fibroin, for purposes other than gas separation, this material is used in its highly crystalline, nearly natural form because this form has uncommonly high tensile strength. However, the crystalline phase of silk fibroin is impermeable, making it necessary to convert the material to amorphous form to obtain the high permeability needed for gas separation. Accordingly, one aspect of the present development is a process for generating amorphous silk fibroin by treating native silk fibroin in an aqueous methanol/salt solution. The resulting material remains self-standing and can be prepared as thin film suitable for permeation testing. The permeability of this material by pure CO2 has been found to be highly improved, and its mixed-gas permeability has been found to exceed the mixed-gas permeabilities of several ultrahigh-CO2-permeable synthetic polymers. Only one of the synthetic polymers poly(trimethylsilylpropyne) [PTMSP] may be more highly permeable by CO2. PTMSP becomes unstable with time, whereas amorphous silk should not, although at the time of this reporting this has not been conclusively proven.

  12. Magnetic Properties of Amorphous Fe-Si-B Powder Cores Mixed with Pure Iron Powder

    NASA Astrophysics Data System (ADS)

    Kim, Hyeon-Jun; Nam, Seul Ki; Kim, Kyu-Sung; Yoon, Sung Chun; Sohn, Keun-Yong; Kim, Mi-Rae; Sul Song, Yong; Park, Won-Wook

    2012-10-01

    Amorphous Fe-Si-B alloy was prepared by melt-spinning, and then the ribbons were pulverized and ball-milled to make the amorphous powder of ˜25 µm in size. Subsequently those were mixed with pure iron powders with an average particle size of 3 µm, and 1.5 wt % water glass diluted by distilled water at the ratio of 1:2. The powder mixtures were cold compacted at 650 MPa in toroid die, and heat treated at 430-440 °C under a nitrogen atmosphere for 1 h and 30 min, respectively. The soft magnetic properties of powder core were investigated using a B-H analyzer and a flux meter at the frequency range of ˜100 kHz. The microstructure was observed using scanning electron microscope (SEM), and the density of the core was measured using the principle of Archimedes. Based on the experimental results, the amorphous powder mixed with pure iron powder showed the improved powder compactability, which resulted in the increased permeability and the reduced core loss.

  13. Mechanical contact induced transformation from the amorphous to the crystalline state in metallic glass

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Friction and wear tests were conducted with 3.2- and 6.4-millimeter-diameter aluminum oxide spheres sliding, in reciprocating motion, on a Fe67Co18B14Si1 metallic foil. Crystallites with a size range of 10 to 150 nanometers were produced on the wear surface of the amorphous alloy. A strong interaction between transition metals and metalloids such as silicon and boron results in strong segregation during repeated sliding, provides preferential transition metal-metalloid clustering in the amorphous alloy, and subsequently produces the diffused honeycomb structure formed by dark grey bands and primary crystals, that is, alpha-Fe in the matrix. Large plastic flow occurs on an amorphous alloy surface with sliding and the flow film of the alloy transfers to the aluminum oxide pin surface. Multiple slip bands due to shear deformation are observed on the side of the wear track. Two distinct types of wear debris were observed as a result of sliding: an alloy wear debris, and/or powdery-whiskery oxide debris.

  14. Microstructure and surface chemistry of amorphous alloys important to their friction and wear behavior

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    An investigation was conducted to examine the microstructure and surface chemistry of amorphous alloys, and their effects on tribological behavior. The results indicate that the surface oxide layers present on amorphous alloys are effective in providing low friction and a protective film against wear in air. Clustering and crystallization in amorphous alloys can be enhanced as a result of plastic flow during the sliding process at a low sliding velocity, at room temperature. Clusters or crystallines with sizes to 150 nm and a diffused honeycomb-shaped structure are produced on the wear surface. Temperature effects lead to drastic changes in surface chemistry and friction behavior of the alloys at temperatures to 750 C. Contaminants can come from the bulk of the alloys to the surface upon heating and impart to the surface oxides at 350 C and boron nitride above 500 C. The oxides increase friction while the boron nitride reduces friction drastically in vacuum.

  15. More Evidence of the Importance of Amorphous Silicates in CM Carbonaceous Chondrites: New Observations from a Fine-Grained Rim in the CM2 Chondrite, TIL 91722

    NASA Astrophysics Data System (ADS)

    Brearley, A. J.; Le Guillou, C.

    2015-07-01

    A fine-grained rim in TIL 91722 contains abundant amorphous silicate material containing nanophase sulfides. Phyllosilicates are rare. The amorphous material has a high ferric iron content indicative of oxidation coupled with hydration.

  16. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  17. A unified physical model of Seebeck coefficient in amorphous oxide semiconductor thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lu, Nianduan; Li, Ling; Sun, Pengxiao; Banerjee, Writam; Liu, Ming

    2014-09-01

    A unified physical model for Seebeck coefficient was presented based on the multiple-trapping and release theory for amorphous oxide semiconductor thin-film transistors. According to the proposed model, the Seebeck coefficient is attributed to the Fermi-Dirac statistics combined with the energy dependent trap density of states and the gate-voltage dependence of the quasi-Fermi level. The simulation results show that the gate voltage, energy disorder, and temperature dependent Seebeck coefficient can be well described. The calculation also shows a good agreement with the experimental data in amorphous In-Ga-Zn-O thin-film transistor.

  18. Effect of Transport and Aging Processes on Metal Speciation in Iron Oxyhydroxide Aggregates, Tar Creek Superfund Site, Oklahoma

    NASA Astrophysics Data System (ADS)

    Estes, E. R.; Schaider, L. A.; Shine, J. P.; Brabander, D. J.

    2010-12-01

    Following the cessation of mining activity in the late 20th century, Tar Creek Superfund Site was left highly contaminated by Pb, Zn, and Cd. Tar Creek, which flows through the site and into the Neosho River, has been studied extensively because of its potential to transport metals from the mining site to downstream communities. Previous research identified aggregated iron oxyhydroxide material, which forms when mine seepage mixes with Tar Creek surface water, as a major transport vector of metals. Frequent flooding in Tar Creek deposits aggregates on downstream floodplains, where wetting and drying processes alter the speciation of iron and other metals. This study seeks to better quantify those changes and to determine how transport and aging affects the human and ecological health risk. Sequential extractions of aggregate samples collected from the creek demonstrate that Fe is present in both amorphous (10-35% of Fe extracted) and more crystalline (8-23% of Fe extracted) phases. Substantial portions of heavy metals sorb to amorphous iron oxyhydroxide phases (accounting for 10-30% of Pb and Zn extracted) but are not associated with more crystalline iron oxide phases (representing only 1% or less of the Pb and Zn extracted). Samples have a high organic matter content (18-25% mass loss on ignition), but only Fe was significantly extracted by the oxidizing step targeting organic matter (1-2% of Pb and Zn extracted, but 10-26% of Fe extracted). The majority of metals were extracted by the soluble or residual steps. If metals and organic matter inhibit transformation of amorphous iron oxyhydroxide material to nano and crystalline iron oxides, then a steady-state volume of amorphous iron oxyhydroxide material with a high total sorption capacity may exist within Tar Creek, enhancing the metal flux accommodated by this transport mechanism. Once transported downstream and deposited on floodplains, however, it is hypothesized that repeated changes in soil matrix composition and thermodynamic conditions could facilitate a transformation to more crystalline iron phases and increase metal bioavailability. While preliminary data from in-creek aggregates show no clear trend in mineralogical composition with downstream transport, only the furthest downstream samples have 2-line ferrihydrite in amounts detectable by XRD.

  19. Anti-biofouling function of amorphous nano-Ta2O5 coating for VO2-based intelligent windows.

    PubMed

    Li, Jinhua; Guo, Geyong; Wang, Jiaxing; Zhou, Huaijuan; Shen, Hao; Yeung, Kelvin W K

    2017-04-28

    From environmental and health perspectives, the acquisition of a surface anti-biofouling property holds important significance for the usability of VO 2 intelligent windows. Herein, we firstly deposited amorphous Ta 2 O 5 nanoparticles on VO 2 film by the magnetron sputtering method. It was found that the amorphous nano-Ta 2 O 5 coating possessed a favorable anti-biofouling capability against Pseudomonas aeruginosa as an environmental microorganism model, behind which lay the mechanism that the amorphous nano-Ta 2 O 5 could interrupt the microbial membrane electron transport chain and significantly elevate the intracellular reactive oxygen species (ROS) level. A plausible relationship was established between the anti-biofouling activity and physicochemical nature of amorphous Ta 2 O 5 nanoparticles from the perspective of defect chemistry. ROS-induced oxidative damage gave rise to microbial viability loss. In addition, the amorphous nano-Ta 2 O 5 coating can endow VO 2 with favorable cytocompatibility with human skin fibroblasts. This study may provide new insights into understanding the anti-biofouling and antimicrobial actions of amorphous transition metal oxide nanoparticles, which is conducive to expanding their potential applications in environmental fields.

  20. Anti-biofouling function of amorphous nano-Ta2O5 coating for VO2-based intelligent windows

    NASA Astrophysics Data System (ADS)

    Li, Jinhua; Guo, Geyong; Wang, Jiaxing; Zhou, Huaijuan; Shen, Hao; Yeung, Kelvin W. K.

    2017-04-01

    From environmental and health perspectives, the acquisition of a surface anti-biofouling property holds important significance for the usability of VO2 intelligent windows. Herein, we firstly deposited amorphous Ta2O5 nanoparticles on VO2 film by the magnetron sputtering method. It was found that the amorphous nano-Ta2O5 coating possessed a favorable anti-biofouling capability against Pseudomonas aeruginosa as an environmental microorganism model, behind which lay the mechanism that the amorphous nano-Ta2O5 could interrupt the microbial membrane electron transport chain and significantly elevate the intracellular reactive oxygen species (ROS) level. A plausible relationship was established between the anti-biofouling activity and physicochemical nature of amorphous Ta2O5 nanoparticles from the perspective of defect chemistry. ROS-induced oxidative damage gave rise to microbial viability loss. In addition, the amorphous nano-Ta2O5 coating can endow VO2 with favorable cytocompatibility with human skin fibroblasts. This study may provide new insights into understanding the anti-biofouling and antimicrobial actions of amorphous transition metal oxide nanoparticles, which is conducive to expanding their potential applications in environmental fields.

  1. Amorphous Mn oxide-ordered mesoporous carbon hybrids as a high performance electrode material for supercapacitors.

    PubMed

    Nam, Inho; Kim, Nam Dong; Kim, Gil-Pyo; Park, Junsu; Yi, Jongheop

    2012-07-01

    A supercapacitor has the advantages of both the conventional capacitors and the rechargeable batteries. Mn oxide is generally recognized one of the potential materials that can be used for a supercapacitor, but its low conductivity is a limiting factor for electrode materials. In this study, a hybrid of amorphous Mn oxide (AMO) and ordered mesoporous carbon (OMC) was prepared and characterized using X-ray diffraction, transmission electron microscopy, N2/77 K sorption techniques, and electrochemical analyses. The findings indicate that the electrochemical activities of Mn oxide were facilitated when it was in the hybrid state because OMC acted as a pathway for both the electrolyte ions and the electrons due to the characteristics of the ordered mesoporous structure. The ordered mesoporous structure of OMC was well maintained even after hybridization with amorphous Mn oxide. The electrochemical-activity tests revealed that the AMO/OMC hybrid had a higher specific capacitance and conductivity than pure Mn oxide. In the case where the Mn/C weight ratio was 0.75, the composite showed a high capacitance of 153 F/g, which was much higher than that for pure Mn oxide, due to the structural effects of OMC.

  2. Determine the permeability of an amorphous mixture of polydimethylsiloxane and dealuminated zeolite ZSM-5 to various ethanol-water solutions using molecular simulations.

    EPA Science Inventory

    An amorphous mixture of PDMS and multi-cellular fragments of ZSM-5 is brought together to approximate the properties of a mixed matrix membrane of PDMS with ZSM-5. The permeability coefficient of the amorphous mixture for pure water is the product of the diffusion coefficient of...

  3. Facile Synthesis of Highly Efficient Amorphous Mn-MIL-100 Catalysts: Formation Mechanism and Structure Changes during Application in CO Oxidation.

    PubMed

    Zhang, Xiaodong; Li, Hongxin; Lv, Xutian; Xu, Jingcheng; Wang, Yuxin; He, Chi; Liu, Ning; Yang, Yiqiong; Wang, Yin

    2018-06-21

    A comprehensive study was carried out on amorphous metal-organic frameworks Mn-MIL-100 as efficient catalysts for CO oxidation. This study focused on explaining the crystalline-amorphous-crystalline transformations during thermolysis of Mn-MIL-100 and studying the structure changes during the CO oxidation reaction. A possible formation mechanism of amorphous Mn-MIL-100 was proposed. Amorphous Mn-MIL-100 obtained by calcination at 250 °C (a-Mn-250) showed a smaller specific surface area (4 m 2  g -1 ) but high catalytic activity. Furthermore, the structure of amorphous Mn-MIL-100 was labile during the reaction. When a-Mn-250 was treated with reaction atmosphere at high temperature (giving used-a-Mn-250-S), the amorphous catalysts transformed into Mn 2 O 3 . Meanwhile, the BET surface area (164 m 2  g -1 ) and catalytic performance both sharply increased. In addition, used-a-Mn-250-S catalyst transformed from Mn 2 O 3 into Mn 3 O 4 , and this resulted in a slight decrease of catalytic activity in the presence of 1 vol % water vapor in the feed stream. A schematic mechanism of the structure changes during the reaction process was proposed. The success of the synthesis relies on the increase in BET surface area by using CO as retreatment atmosphere, and the enhanced catalytic activity was attributed to the unique structure, a large quantity of surface active oxygen species, oxygen vacancies, and good low-temperature reduction behavior. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide

    USGS Publications Warehouse

    Balistrieri, L.S.; Chao, T.T.

    1990-01-01

    This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites is reflected in decreasing equilibrium constants for selenite with increasing adsorption density and both experimental observations and modeling results suggest that manganese dioxide has fewer sites of higher energy for selenite adsorption than amorphous iron oxyhydroxide. Modeling and interpreting the adsorption of phosphate, molybdate, and silicate on the oxides are made difficult by the lack of constraint in choosing surface species and the fact that equally good fits can be obtained with different surface species. Finally, predictions of anion competition using the model results from single adsorbate systems are not very successful because the model does not account for surface site heterogeneity. Selenite adsorption data from a multi-adsorbate system could be fit if the equilibrium constant for selenite is decreased with increasing anion adsorption density. ?? 1990.

  5. Investigation of Phase Mixing in Amorphous Solid Dispersions of AMG 517 in HPMC-AS Using DSC, Solid-State NMR, and Solution Calorimetry.

    PubMed

    Calahan, Julie L; Azali, Stephanie C; Munson, Eric J; Nagapudi, Karthik

    2015-11-02

    Intimate phase mixing between the drug and the polymer is considered a prerequisite to achieve good physical stability for amorphous solid dispersions. In this article, spray dried amorphous dispersions (ASDs) of AMG 517 and HPMC-as were studied by differential scanning calorimetry (DSC), solid-state NMR (SSNMR), and solution calorimetry. DSC analysis showed a weakly asymmetric (ΔTg ≈ 13.5) system with a single glass transition for blends of different compositions indicating phase mixing. The Tg-composition data was modeled using the BKCV equation to accommodate the observed negative deviation from ideality. Proton spin-lattice relaxation times in the laboratory and rotating frames ((1)H T1 and T1ρ), as measured by SSNMR, were consistent with the observation that the components of the dispersion were in intimate contact over a 10-20 nm length scale. Based on the heat of mixing calculated from solution calorimetry and the entropy of mixing calculated from the Flory-Huggins theory, the free energy of mixing was calculated. The free energy of mixing was found to be positive for all ASDs, indicating that the drug and polymer are thermodynamically predisposed to phase separation at 25 °C. This suggests that miscibility measured by DSC and SSNMR is achieved kinetically as the result of intimate mixing between drug and polymer during the spray drying process. This kinetic phase mixing is responsible for the physical stability of the ASD.

  6. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films.

    PubMed

    Sun, Ke; Saadi, Fadl H; Lichterman, Michael F; Hale, William G; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T; Omelchenko, Stefan T; He, Jr-Hau; Papadantonakis, Kimberly M; Brunschwig, Bruce S; Lewis, Nathan S

    2015-03-24

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g).

  7. Method of forming buried oxide layers in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  8. Selective Oxidation of Amorphous Carbon Layers without Damaging Embedded Single Wall Carbon Nanotube Bundles

    NASA Astrophysics Data System (ADS)

    Choi, Young Chul; Lim, Seong Chu

    2013-11-01

    Single wall carbon nanotubes (SWCNTs) were synthesized by arc discharge, and then purified by selective oxidation of amorphous carbon layers that were found to encase SWCNT bundles and catalyst metal particles. In order to remove selectively the amorphous carbon layers with SWCNTs being intact, we have systematically investigated the thermal treatment conditions; firstly, setting the temperature by measuring the activation energies of SWCNTs and amorphous carbon layers, and then, secondly, finding the optimal process time. As a consequence, the optimal temperature and time for the thermal treatment was found to be 460 °C and 20 min, respectively. The complete elimination of surrounding amorphous carbon layers makes it possible to efficiently disperse the SWCNT bundles, resulting in high absorbance of SWCNT-ink. The SWCNTs which were thermal-treated at optimized temperature (460 °C) and duration (20 min) showed much better crystallinity, dispersibility, and transparent conducting properties, compared with as-synthesized and the nanotubes thermal-treated at different experimental conditions.

  9. Solvothermal preparation of phthalocyanine nanorod/rGO composites and their application to visible-light-responsive photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Lu, Yongting; Zhang, Fan; Qu, Jie; Lin, Bencai; Yuan, Ningyi; Fang, Bijun; Ding, Jian-Ning

    2016-09-01

    Phthalocyanine (Pc) nanorod/reduced graphene oxide (rGO) composites were prepared by a simple solvothermal method, in which Pc nanosheet and graphene oxide (GO) suspensions were mixed in methanol. As characterized by scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction, Pc nanorods with an amorphous structure and an average diameter of 250nm are partially covered by rGO sheets. In the photodegradation experiments, all the composites with different rGO content show enhanced photocatalytic activity for Rhodamine B decomposition under visible-light compared to pure Pc nanorods or rGO sheets. The enhanced photocatalytic activity shall be ascribed to the large surface area offered by rGO and the charge-transfer from Pc to rGO as indicated by the photoluminescence measurement, in which fluorescence intensity of the composites is much weaker than that of Pc nanorods.

  10. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    NASA Astrophysics Data System (ADS)

    Ha, Tae-Jun

    2014-10-01

    We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (Vth). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (≈3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger Vth shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  11. Synergy in Lignin Upgrading by a Combination of Cu-Based Mixed Oxide and Ni-Phosphide Catalysts in Supercritical Ethanol

    PubMed Central

    2017-01-01

    The depolymerization of lignin to bioaromatics usually requires a hydrodeoxygenation (HDO) step to lower the oxygen content. A mixed Cu–Mg–Al oxide (CuMgAlOx) is an effective catalyst for the depolymerization of lignin in supercritical ethanol. We explored the use of Ni-based cocatalysts, i.e. Ni/SiO2, Ni2P/SiO2, and Ni/ASA (ASA = amorphous silica alumina), with the aim of combining lignin depolymerization and HDO in a single reaction step. While the silica-supported catalysts were themselves hardly active in lignin upgrading, Ni/ASA displayed comparable lignin monomer yield as CuMgAlOx. A drawback of using an acidic support is extensive dehydration of the ethanol solvent. Instead, combining CuMgAlOx with Ni/SiO2 and especially Ni2P/SiO2 proved to be effective in increasing the lignin monomer yield, while at the same time reducing the oxygen content of the products. With Ni2P/SiO2, the lignin monomer yield was 53 wt %, leading to nearly complete deoxygenation of the aromatic products. PMID:28405528

  12. Synergy in Lignin Upgrading by a Combination of Cu-Based Mixed Oxide and Ni-Phosphide Catalysts in Supercritical Ethanol.

    PubMed

    Korányi, Tamás I; Huang, Xiaoming; Coumans, Alessandro E; Hensen, Emiel J M

    2017-04-03

    The depolymerization of lignin to bioaromatics usually requires a hydrodeoxygenation (HDO) step to lower the oxygen content. A mixed Cu-Mg-Al oxide (CuMgAlO x ) is an effective catalyst for the depolymerization of lignin in supercritical ethanol. We explored the use of Ni-based cocatalysts, i.e. Ni/SiO 2 , Ni 2 P/SiO 2 , and Ni/ASA (ASA = amorphous silica alumina), with the aim of combining lignin depolymerization and HDO in a single reaction step. While the silica-supported catalysts were themselves hardly active in lignin upgrading, Ni/ASA displayed comparable lignin monomer yield as CuMgAlO x . A drawback of using an acidic support is extensive dehydration of the ethanol solvent. Instead, combining CuMgAlO x with Ni/SiO 2 and especially Ni 2 P/SiO 2 proved to be effective in increasing the lignin monomer yield, while at the same time reducing the oxygen content of the products. With Ni 2 P/SiO 2 , the lignin monomer yield was 53 wt %, leading to nearly complete deoxygenation of the aromatic products.

  13. Composition-Dependent Morphology of Bi- and Trimetallic Phosphides: Construction of Amorphous Pd-Cu-Ni-P Nanoparticles as a Selective and Versatile Catalyst.

    PubMed

    Zhao, Ming; Ji, Yuan; Wang, Mengyue; Zhong, Ning; Kang, Zinan; Asao, Naoki; Jiang, Wen-Jie; Chen, Qiang

    2017-10-11

    Amorphous materials have been widely researched in heterogeneous catalysis and for next-generation batteries. However, the well-defined production of high-quality (e.g., monodisperse and high surface area) amorphous alloy nanomaterials has rarely been reported. In this work, we investigated the correlations among the composition, morphology, and catalysis of various Pd-M-P nanoparticles (NPs) (M = Cu or Ni), which indicated that less Cu (≤20 atom %) was necessary for the formation of an amorphous morphology. The amorphous Pd-Cu-Ni-P NPs were fabricated with a controllable size and characterized carefully, which show excellent selective catalysis in the semihydrogenation of alkynes, hydrogenation of quinoline, and oxidation of primary alcohols. The uniqueness of the catalytic performance was confirmed by control experiments with monometallic Pd, amorphous Pd-Ni-P NPs, crystalline Pd-Cu-P NPs, and a crystalline counterpart of Pd-Cu-Ni-P catalyst. The catalytic selectivity likely arose from improved Pd-M (M = Cu or Ni) synergistic effects in the amorphous phase and the electron deficiency of Pd. The model reactions proceeded under H 2 or O 2 gas without any additives, bases, or metal oxide supports, and the catalyst could be reused several times. This report is expected to shed light on the design of amorphous alloy nanomaterials as green and inexpensive catalysts for atom-economic and selective reactions.

  14. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geissbühler, Jonas, E-mail: jonas.geissbuehler@epfl.ch; Werner, Jérémie; Martin de Nicolas, Silvia

    2015-08-24

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

  15. Oxidation Protection of Porous Reaction-Bonded Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Fox, D. S.

    1994-01-01

    Oxidation kinetics of both as-fabricated and coated reaction-bonded silicon nitride (RBSN) were studied at 900 and 1000 C with thermogravimetry. Uncoated RBSN exhibited internal oxidation and parabolic kinetics. An amorphous Si-C-O coating provided the greatest degree of protection to oxygen, with a small linear weight loss observed. Linear weight gains were measured on samples with an amorphous Si-N-C coating. Chemically vapor deposited (CVD) Si3N4 coated RBSN exhibited parabolic kinetics, and the coating cracked severely. A continuous-SiC-fiber-reinforced RBSN composite was also coated with the Si-C-O material, but no substantial oxidation protection was observed.

  16. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    DOE PAGES

    Geissbühler, Jonas; Werner, Jérémie; Nicolas, Silvia Martin de; ...

    2015-08-24

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. Furthermore, we circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

  17. Amorphous Phases on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.

    2014-01-01

    Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made up of mixed phases (e.g., palagonite) and synthetic single phases to determine their short-range order structures and calculate their XRD patterns to use in models of CheMin data. Finally, to address the timing of the alteration, we need to study rocks on the martian surface of different ages that may contain glass (volcanic or impact) with MSL and future rovers to better understand how glass alters on the martian surface, if that alteration mechanism is universal, and if alteration spans across long periods of time or if there is a time past which unaltered glass remains.

  18. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars.

    PubMed

    Sklute, Elizabeth C; Rogers, A Deanne; Gregerson, Jason C; Jensen, Heidi B; Reeder, Richard J; Dyar, M Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multi-component (Fe 2 (SO 4 ) 3 ± Ca, Na, Mg, Fe, Cl, HCO 3 ) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials.

  19. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    NASA Astrophysics Data System (ADS)

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multicomponent (Fe2(SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21 °C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials.

  20. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    PubMed Central

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-01-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca–, Na–, Mg– and Fe–chloride brines and multi-component (Fe2 (SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe–chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials. PMID:29670302

  1. Reductive reactivity of iron(III) oxides in the east china sea sediments: characterization by selective extraction and kinetic dissolution.

    PubMed

    Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li

    2013-01-01

    Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k' (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k' and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases.

  2. Reductive Reactivity of Iron(III) Oxides in the East China Sea Sediments: Characterization by Selective Extraction and Kinetic Dissolution

    PubMed Central

    Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li

    2013-01-01

    Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k′ (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k′ and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases. PMID:24260377

  3. Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors.

    PubMed

    Cho, Kyung-Sang; Heo, Keun; Baik, Chan-Wook; Choi, Jun Young; Jeong, Heejeong; Hwang, Sungwoo; Lee, Sang Yeol

    2017-10-10

    We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 10 13 Jones) is obtained, along with three major findings: fast charge separation in monolayered quantum dots; efficient charge transport through high-mobility oxide layers (20 cm 2  V -1  s -1 ); and gate-tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns -1 measured with time-resolved photoluminescence is attributed to the intermediate quantum dots buried in oxide layers. These results facilitate the realization of efficient color-selective detection exhibiting a photoconductive gain of 10 7 , obtained using a room-temperature deposition of oxide layers and a solution process of quantum dots. This work offers promising opportunities in emerging applications for color detection with sensitivity, transparency, and flexibility.The development of highly sensitive photodetectors is important for image sensing and optical communication applications. Cho et al., report ultra-sensitive photodetectors based on monolayered quantum dots buried in between amorphous-oxide semiconductors and demonstrate color-detecting logic gates.

  4. Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor.

    PubMed

    Shi, Peipei; Li, Li; Hua, Li; Qian, Qianqian; Wang, Pengfei; Zhou, Jinyuan; Sun, Gengzhi; Huang, Wei

    2017-01-24

    Solid-state fiber-based supercapacitors have been considered promising energy storage devices for wearable electronics due to their lightweight and amenability to be woven into textiles. Efforts have been made to fabricate a high performance fiber electrode by depositing pseudocapacitive materials on the outer surface of carbonaceous fiber, for example, crystalline manganese oxide/multiwalled carbon nanotubes (MnO 2 /MWCNTs). However, a key challenge remaining is to achieve high specific capacitance and energy density without compromising the high rate capability and cycling stability. In addition, amorphous MnO 2 is actually preferred due to its disordered structure and has been proven to exhibit superior electrochemical performance over the crystalline one. Herein, by incorporating amorphous MnO 2 onto a well-aligned MWCNT sheet followed by twisting, we design an amorphous MnO 2 @MWCNT fiber, in which amorphous MnO 2 nanoparticles are distributed in MWCNT fiber uniformly. The proposed structure gives the amorphous MnO 2 @MWCNT fiber good mechanical reliability, high electrical conductivity, and fast ion-diffusion. Solid-state supercapacitor based on amorphous MnO 2 @MWCNT fibers exhibits improved energy density, superior rate capability, exceptional cycling stability, and excellent flexibility. This study provides a strategy to design a high performance fiber electrode with microstructure control for wearable energy storage devices.

  5. Insights into Silicate and Oxide Melt Structure from Amorphous, Non-Glass-Forming Materials

    NASA Astrophysics Data System (ADS)

    Stebbins, J. F.

    2015-12-01

    Many silicate and oxide liquids of interest in the Earth sciences and in technology cannot readily be quenched to glasses, either because of low silica contents (and hence low viscosity at the melting point and accompanying liquid 'fragility') or because of liquid-liquid unmixing at high temperature. Although in-situ, high temperature structural tools have been in use for decades and are rapidly developing, many methods are still most informative for glass samples quenched to ambient pressure and temperature, e.g. high-resolution solid-state NMR. Amorphous oxides, including alumina and silicate compositions, have widespread technological applications. These are generally deposited by a variety of high-energy sputtering methods, as films of thicknesses of 10's to 100's of nm. Using Al-27, Si-29, and O-17 NMR, we have recently shown that for such films, very similar short-range structure is seen in materials made by very different kinetic pathways, such as sol-gel synthesis vs. ion-beam sputtering. This path-independent structure suggests that these materials pass through transient equilibrium states during their formation, probably that of deeply supercooled liquids just above glass transition temperatures. In the HfO2-SiO2 and ZrO2-SiO2 systems, for example, samples have well-resolved O-17 NMR spectra, allowing quantitation of O sites with only Hf(Zr) neighbors (so-called "free" oxide ions), with mixed Hf(Zr) and Si neighbors, and Si only. The observed oxygen speciation agrees well with a simple thermodynamic model of one of the most fundamental equilibria in silicate systems, namely the reaction of bridging (Si-O-Si) and "free" (e.g. OHf3 and OHf4) oxide ions to produce "non-bridging" oxygens (e.g. Si-OHf2). This new approach to sampling such structural equilibria in compositions far outside the range of normal glass-forming liquids may provide new insights into more geological compositions as well, as well as in more general models of silicate melt chemistry.

  6. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  7. Thermochemistry of amorphous and crystalline zirconium and hafnium silicates.

    NASA Astrophysics Data System (ADS)

    Ushakov, S.; Brown, C. E.; Navrotsky, Alexandra; Boatner, L. A.; Demkov, A. A.; Wang, C.; Nguyen, B.-Y.

    2003-03-01

    Calorimetric investigation of amorphous and crystalline zirconium and hafnium silicates was performed as part of a research program on thermochemistry of alternative gate dielectrics. Amorphous hafnium and zirconium silicates with varying SiO2 content were synthesized by a sol-gel process. Crystalline zirconium and hafnium silicates (zircon and hafnon) were synthesized by solid state reaction at 1450 °C from amorphous gels and grown as single crystals from flux. High temperature oxide melt solution calorimetry in lead borate (2PbO.B2O3) solvent at 800 oC was used to measure drop solution enthalpies for amorphous and crystalline zirconium and hafnium silicates and corresponding oxides. Applying appropriate thermochemical cycles, formation enthalpy of crystalline ZrSiO4 (zircon) from binary oxides (baddeleite and quartz) at 298 K was calculated as -23 +/-2 kJ/mol and enthalpy difference between amorphous and crystalline zirconium silicate (vitrification enthalpy) was found to be 61 +/-3 kJ/mol. Crystallization onset temperatures of amorphous zirconium and hafnium silicates, as measured by differential scanning calorimetry (DSC), increased with silica content. The resulting crystalline phases, as characterized by X-ray diffraction (XRD), were tetragonal HfO2 and ZrO2. Critical crystallite size for tetragonal to monoclinic transformation of HfO2 in the gel was estimated as 6 +/-2 nm from XRD data Crystallization enthalpies per mole of hafnia and zirconia in gels decrease slightly together with crystallite size with increasing silica content, for example from -22 to -15 +/-1 kJ per mol of HfO2 crystallized at 740 and 1006 °C from silicates with 10 and 70 mol Applications of thermal analyses and solution calorimetry techniques together with first-principles density functional calculations to estimate interface and surface energies are discussed.

  8. Altering properties of cerium oxide thin films by Rh doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ševčíková, Klára, E-mail: klarak.sevcikova@seznam.cz; NIMS Beamline Station at SPring-8, National Institute for Materials Science, Sayo, Hyogo 679-5148; Nehasil, Václav, E-mail: nehasil@mbox.troja.mff.cuni.cz

    2015-07-15

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffractionmore » techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.« less

  9. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications.

    PubMed

    Ribeiro, A R; Oliveira, F; Boldrini, L C; Leite, P E; Falagan-Lotsch, P; Linhares, A B R; Zambuzzi, W F; Fragneaud, B; Campos, A P C; Gouvêa, C P; Archanjo, B S; Achete, C A; Marcantonio, E; Rocha, L A; Granjeiro, J M

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Synthesis, characterization and optical properties of non-traditional tellurite-selenite glasses

    NASA Astrophysics Data System (ADS)

    Bachvarova-Nedelcheva, A.; Iordanova, R.; Kostov, K. L.; Ganev, V.; Yordanov, St.

    2014-06-01

    This study continues our investigations on non-traditional tellurite-selenite amorphous materials. Two glasses containing TeO2, SeO2, MoO3 and V2O5 were obtained at high oxygen pressure (P = 36 MPa) using pure oxides as precursors. The real bulk chemical composition of both glasses was verified by LA-ICP-MS method. The glasses were characterized by X-ray diffraction, Scanning Electron Microscopy (SEM), Differential Thermal Analysis (DTA), UV-Vis, XPS, IR and EPR spectroscopy. According to DTA the glass transition temperature (Tg) is below 300 °C. Both glasses were subjected to heat treatment (300 °C - 12 h) and as a result no crystallization was observed. The main building units (TeO3, TeO4, Mo2O8, and SеО3) were determined by IR and X-ray photoelectron spectroscopy and the existence of mixed bridging bonds only, which build up the amorphous network. It was established by UV-Vis that the obtained glasses are transparent above 550 nm and they were red colored.

  11. Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites

    PubMed Central

    Patzke, Greta R.; Kontic, Roman; Shiolashvili, Zeinab; Makhatadze, Nino; Jishiashvili, David

    2012-01-01

    Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H2O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP–Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics. PMID:28809296

  12. Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites.

    PubMed

    Patzke, Greta R; Kontic, Roman; Shiolashvili, Zeinab; Makhatadze, Nino; Jishiashvili, David

    2012-12-27

    Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H₂O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP-Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics.

  13. Significantly enhanced high-frequency permeability for composites with amorphous-membrane-fillers prepared using an infiltration method

    NASA Astrophysics Data System (ADS)

    Li, Z. W.; Yang, Z. H.

    2016-03-01

    Amorphous-membrane-filler composites have been fabricated using an infiltration method. The composites are able to significantly increase the permeability by 200%, as compared to general amorphous flake composites. SEM and magnetic measurement show that the amorphous flakes in membrane are in-plane arrangement. A model, which considers the effect of flake arrangement on demagnetizing factor Nd and permeability, is proposed. The effect of the arrangement of flakes is equivalent to an effective Nd, which is equal to 1/3 and zero for random and complete in-plane arrangements, respectively. Due to in-plane arrangement of amorphous flakes, the decreased Nd leads to significantly enhanced permeability for the amorphous-membrane-filler composites, based on the Maxwell-Garret mixing law.

  14. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    DOE PAGES

    Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; ...

    2015-03-11

    Reactively sputtered nickel oxide (NiO x) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O 2(g). These NiO x coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Finally, under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiO x films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of watermore » to O 2(g).« less

  15. Spectroellipsometric detection of silicon substrate damage caused by radiofrequency sputtering of niobium oxide

    NASA Astrophysics Data System (ADS)

    Lohner, Tivadar; Serényi, Miklós; Szilágyi, Edit; Zolnai, Zsolt; Czigány, Zsolt; Khánh, Nguyen Quoc; Petrik, Péter; Fried, Miklós

    2017-11-01

    Substrate surface damage induced by deposition of metal atoms by radiofrequency (rf) sputtering or ion beam sputtering onto single-crystalline silicon (c-Si) surface has been characterized earlier by electrical measurements. The question arises whether it is possible to characterize surface damage using spectroscopic ellipsometry (SE). In our experiments niobium oxide layers were deposited by rf sputtering on c-Si substrates in gas mixture of oxygen and argon. Multiple angle of incidence spectroscopic ellipsometry measurements were performed, a four-layer optical model (surface roughness layer, niobium oxide layer, native silicon oxide layer and ion implantation-amorphized silicon [i-a-Si] layer on a c-Si substrate) was created in order to evaluate the spectra. The evaluations yielded thicknesses of several nm for the i-a-Si layer. Better agreement could be achieved between the measured and the generated spectra by inserting a mixed layer (with components of c-Si and i-a-Si applying the effective medium approximation) between the silicon oxide layer and the c-Si substrate. High depth resolution Rutherford backscattering (RBS) measurements were performed to investigate the interface disorder between the deposited niobium oxide layer and the c-Si substrate. Atomic resolution cross-sectional transmission electron microscopy investigation was applied to visualize the details of the damaged subsurface region of the substrate.

  16. High Temperature Superconducting Thick Films

    DOEpatents

    Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Holesinger, Terry G.; Jia, Quanxi

    2005-08-23

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.

  17. Surface characterization of adsorbents in ultrasound-assisted oxidative desulfurization process of fossil fuels.

    PubMed

    Etemadi, Omid; Yen, Teh Fu

    2007-09-01

    Surface properties of two different phases of alumina were studied through SEM images. Characterization of amorphous acidic alumina and crystalline boehmite by XRD explains the differences in adsorption capacities of each sample. Data from small angle neutron scattering (SANS) provide further results regarding the ordering in amorphous and crystalline samples of alumina. Quantitative measurements from SANS are used for pore size calculations. Higher disorder provides more topological traps, irregularities, and hidden grooves for higher adsorption capacity. An isotherm model was derived for adsorption of dibenzothiophene sulfone (DBTO) by amorphous acidic alumina to predict and calculate the adsorption of sulfur compounds. The Langmuir-Freundlich model covers a wide range of sulfur concentrations. Experiments prove that amorphous acidic alumina is the adsorbent of choice for selective adsorption in the ultrasound-assisted oxidative desulfurization (UAOD) process to produce ultra-low-sulfur fuel (ULSF).

  18. Solar cells with gallium phosphide/silicon heterojunction

    NASA Astrophysics Data System (ADS)

    Darnon, Maxime; Varache, Renaud; Descazeaux, Médéric; Quinci, Thomas; Martin, Mickaël; Baron, Thierry; Muñoz, Delfina

    2015-09-01

    One of the limitations of current amorphous silicon/crystalline silicon heterojunction solar cells is electrical and optical losses in the front transparent conductive oxide and amorphous silicon layers that limit the short circuit current. We propose to grow a thin (5 to 20 nm) crystalline Gallium Phosphide (GaP) by epitaxy on silicon to form a more transparent and more conducting emitter in place of the front amorphous silicon layers. We show that a transparent conducting oxide (TCO) is still necessary to laterally collect the current with thin GaP emitter. Larger contact resistance of GaP/TCO increases the series resistance compared to amorphous silicon. With the current process, losses in the IR region associated with silicon degradation during the surface preparation preceding GaP deposition counterbalance the gain from the UV region. A first cell efficiency of 9% has been obtained on ˜5×5 cm2 polished samples.

  19. MC3T3-E1 cell response of amorphous phase/TiO2 nanocrystal composite coating prepared by microarc oxidation on titanium.

    PubMed

    Zhou, Rui; Wei, Daqing; Yang, Haoyue; Feng, Wei; Cheng, Su; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2014-06-01

    Bioactive amorphous phase/TiO2 nanocrystal (APTN) composite coatings were fabricated by microarc oxidation (MAO) on Ti. The APTN coatings are composed of much amorphous phase with Si, Na, Ca, Ti and O elements and a few TiO2 nanocrystals. With increasing applied voltage, the micropore density of the APTN coating decreases and the micropore size of the APTN coating increases. The results indicate that less MC3T3-E1 cells attach on the APTN coatings as compared to Ti. However, the APTN coatings greatly enhance the cell proliferation ability and the activity of alkaline phosphatase. The amorphous phase and the concentrations of the released Ca and Si from the APTN coatings during cell culture have significant effects on the cell response. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides.

    PubMed

    Sickafus, Kurt E; Grimes, Robin W; Valdez, James A; Cleave, Antony; Tang, Ming; Ishimaru, Manabu; Corish, Siobhan M; Stanek, Christopher R; Uberuaga, Blas P

    2007-03-01

    Ceramics destined for use in hostile environments such as nuclear reactors or waste immobilization must be highly durable and especially resistant to radiation damage effects. In particular, they must not be prone to amorphization or swelling. Few ceramics meet these criteria and much work has been devoted in recent years to identifying radiation-tolerant ceramics and the characteristics that promote radiation tolerance. Here, we examine trends in radiation damage behaviour for families of compounds related by crystal structure. Specifically, we consider oxides with structures related to the fluorite crystal structure. We demonstrate that improved amorphization resistance characteristics are to be found in compounds that have a natural tendency to accommodate lattice disorder.

  1. Elucidation and visualization of solid-state transformation and mixing in a pharmaceutical mini hot melt extrusion process using in-line Raman spectroscopy.

    PubMed

    Van Renterghem, Jeroen; Kumar, Ashish; Vervaet, Chris; Remon, Jean Paul; Nopens, Ingmar; Vander Heyden, Yvan; De Beer, Thomas

    2017-01-30

    Mixing of raw materials (drug+polymer) in the investigated mini pharma melt extruder is achieved by using co-rotating conical twin screws and an internal recirculation channel. In-line Raman spectroscopy was implemented in the barrels, allowing monitoring of the melt during processing. The aim of this study was twofold: to investigate (I) the influence of key process parameters (screw speed - barrel temperature) upon the product solid-state transformation during processing of a sustained release formulation in recirculation mode; (II) the influence of process parameters (screw speed - barrel temperature - recirculation time) upon mixing of a crystalline drug (tracer) in an amorphous polymer carrier by means of residence time distribution (RTD) measurements. The results indicated a faster mixing endpoint with increasing screw speed. Processing a high drug load formulation above the drug melting temperature resulted in the production of amorphous drug whereas processing below the drug melting point produced solid dispersions with partially amorphous/crystalline drug. Furthermore, increasing the screw speed resulted in lower drug crystallinity of the solid dispersion. RTD measurements elucidated the improved mixing capacity when using the recirculation channel. In-line Raman spectroscopy has shown to be an adequate PAT-tool for product solid-state monitoring and elucidation of the mixing behavior during processing in a mini extruder. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Toughening Fe-based Amorphous Coatings by Reinforcement of Amorphous Carbon.

    PubMed

    Wang, Wei; Zhang, Cheng; Zhang, Zhi-Wei; Li, Yi-Cheng; Yasir, Muhammad; Wang, Hai-Tao; Liu, Lin

    2017-06-22

    Toughening of Fe-based amorphous coatings meanwhile maintaining a good corrosion resistance remains challenging. This work reports a novel approach to improve the toughness of a FeCrMoCBY amorphous coating through in-situ formation of amorphous carbon reinforcement without reducing the corrosion resistance. The Fe-based composite coating was prepared by high velocity oxy-fuel (HVOF) thermal spraying using a pre-mixed Fe-based amorphous/nylon-11 polymer feedstock powders. The nylon-11 powders were in-situ carbonized to amorphous carbon phase during thermal spraying process, which homogeneously distributed in the amorphous matrix leading to significant enhancement of toughness of the coating. The mechanical properties, including hardness, impact resistance, bending and fatigue strength, were extensively studied by using a series of mechanical testing techniques. The results revealed that the composite coating reinforced by amorphous carbon phase exhibited enhanced impact resistance and nearly twice-higher fatigue strength than that of the monolithic amorphous coating. The enhancement of impact toughness and fatigue properties is owed to the dumping effect of the soft amorphous carbon phase, which alleviated stress concentration and decreased crack propagation driving force.

  3. Evidence for the bias-driven migration of oxygen vacancies in amorphous non-stoichiometric gallium oxide

    NASA Astrophysics Data System (ADS)

    Guo, D. Y.; Qian, Y. P.; Su, Y. L.; Shi, H. Z.; Li, P. G.; Wu, J. T.; Wang, S. L.; Cui, C.; Tang, W. H.

    2017-06-01

    The conductivity of gallium oxide thin films is strongly dependent on the growth temperature when they deposited by pulsed laser deposition under vacuum environment, exhibiting an insulative-to-metallic transition with the decrease of the temperature. The high conductive gallium oxide films deposited at low temperature are amorphous, non-stoichiometric, and rich in oxygen vacancy. Large changes in electrical resistance are observed in these non-stoichiometric thin films. The wide variety of hysteretic shapes in the I-V curves depend on the voltage-sweep rate, evidencing that the time-dependent redistribution of oxygen vacancy driven by bias is the controlling parameter for the resistance of gallium oxide.

  4. Structure-Property Relationships in Amorphous Transparent Conducting Oxides

    NASA Astrophysics Data System (ADS)

    Moffitt, Stephanie Lucille

    Over the last 20 years a new field of amorphous transparent conducting oxides (a-TCOs) has developed. The amorphous nature of these films makes them well suited for large area applications. In addition, a-TCOs can be made at low temperatures and through solution processing methods. These assets provide promising opportunities to improve applications such as solar cells and back-lit displays where traditional crystalline TCOs are used. In addition, it opens the door for new technological applications including the possibility for transparent, flexible electronics. Despite the recent growth in this field, fundamental understanding of the true nature of conductivity and the amorphous structure in this materials system is still progressing. To develop a greater understanding of a-TCOs, structure-property relationships were developed in the a-IGO and a-IZO systems. From the combination of element-specific local structure studies and liquid quench molecular dynamics simulations it is clear that a degree of structure remains in a-TCOs. By understanding this structure, the effect of gallium on thermal stability, carrier concentration and carrier mobility is understood. The source of charge carriers in a-IZO is identified as oxygen vacancies through the application of in situ Brouwer analysis. The continued development of the Brouwer analysis technique for use in amorphous oxides adds to the available methods for studying defects in amorphous systems. Finally, the foundational knowledge gained from the in-depth study of a-IGO was extended to understand the role of combustion processing and pulsed laser deposition as growth methods for transistors based on a-IGO.

  5. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution

    PubMed Central

    Bergmann, Arno; Martinez-Moreno, Elias; Teschner, Detre; Chernev, Petko; Gliech, Manuel; de Araújo, Jorge Ferreira; Reier, Tobias; Dau, Holger; Strasser, Peter

    2015-01-01

    Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co3+/4+ ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions. PMID:26456525

  6. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution.

    PubMed

    Bergmann, Arno; Martinez-Moreno, Elias; Teschner, Detre; Chernev, Petko; Gliech, Manuel; de Araújo, Jorge Ferreira; Reier, Tobias; Dau, Holger; Strasser, Peter

    2015-10-12

    Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co(3+/4+) ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions.

  7. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminum oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  8. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  9. Estimation of Frost Resistance of the Tile Adhesive on a Cement Based with Application of Amorphous Aluminosilicates as a Modifying Additive

    NASA Astrophysics Data System (ADS)

    Ivanovna Loganina, Valentina; Vladimirovna Zhegera, Christina

    2017-10-01

    In the article given information on the possibility of using amorphous aluminosilicates as a modifying additive in the offered tile cement adhesive. In the article, the data on the preparation of an additive based on amorphous aluminosilicates, on its microstructure and chemical composition. Presented information on the change in the porosity of cement stone when introduced of amorphous aluminosilicates in the his composition. The formulation of a dry building mix on a cement base is proposed with use of an additive based on amorphous aluminosilicates as a modifying additive. Recipe of dry adhesive mixes include Portland cement M400, mineral aggregate in proportion fraction 0.63-0.315:0.315-0.14 respectively 80:20 (%) and filling density of 1538.2 kg/m3, a plasticizer Kratasol, redispersible powder Neolith P4400 and amorphous alumnosilicates. The developed formulation can be used as a tile adhesive for finishing walls of buildings and structure with tiles. Presented results of the evaluation of frost resistance of adhesives based on cement with using of amorphous aluminosilicates as a modifying additive. Installed the mark on the frost resistance of tile glue and frost resistance of the contact zone of adhesive. Established, that the adhesive layer based on developed formulation dry mixture is crack-resistant and frost-resistant for conditions city Penza and dry humidity zone - zone 3 and climatic subarea IIB (accordance with Building codes and regulations 23-01-99Ȋ) cities Russia’s.

  10. A molecular approach to self-supported cobalt-substituted ZnO materials as remarkably stable electrocatalysts for water oxidation.

    PubMed

    Pfrommer, Johannes; Lublow, Michael; Azarpira, Anahita; Göbel, Caren; Lücke, Marcel; Steigert, Alexander; Pogrzeba, Martin; Menezes, Prashanth W; Fischer, Anna; Schedel-Niedrig, Thomas; Driess, Matthias

    2014-05-12

    In regard to earth-abundant cobalt water oxidation catalysts, very recent findings show the reorganization of the materials to amorphous active phases under catalytic conditions. To further understand this concept, a unique cobalt-substituted crystalline zinc oxide (Co:ZnO) precatalyst has been synthesized by low-temperature solvolysis of molecular heterobimetallic Co(4-x)Zn(x) O4 (x = 1-3) precursors in benzylamine. Its electrophoretic deposition onto fluorinated tin oxide electrodes leads after oxidative conditioning to an amorphous self-supported water-oxidation electrocatalyst, which was observed by HR-TEM on FIB lamellas of the EPD layers. The Co-rich hydroxide-oxidic electrocatalyst performs at very low overpotentials (512 mV at pH 7; 330 mV at pH 12), while chronoamperometry shows a stable catalytic current over several hours. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.

    PubMed

    Ma, Zichuan; Zhao, Dongyuan; Chang, Yongfang; Xing, Shengtao; Wu, Yinsu; Gao, Yuanzhe

    2013-10-21

    Magnetic nanomaterials that can be easily separated and recycled due to their magnetic properties have received considerable attention in the field of water treatment. However, these nanomaterials usually tend to aggregate and alter their properties. Herein, we report an economical and environmentally friendly method for the synthesis of magnetic nanoparticles with core-shell structure. MnFe2O4 nanoparticles have been successfully coated with amorphous Mn-Co oxide shells. The synthesized MnFe2O4@Mn-Co oxide nanoparticles have highly negatively charged surface in aqueous solution over a wide pH range, thus preventing their aggregation and enhancing their performance for heavy metal cation removal. The adsorption isotherms are well fitted to a Langmuir adsorption model, and the maximal adsorption capacities of Pb(II), Cu(II) and Cd(II) on MnFe2O4@Mn-Co oxide are 481.2, 386.2 and 345.5 mg g(-1), respectively. All the metal ions can be completely removed from the mixed metal ion solutions in a short time. Desorption studies confirm that the adsorbent can be effectively regenerated and reused.

  12. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    DOE PAGES

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less

  13. Amorphous alumina thin films deposited on titanium: Interfacial chemistry and thermal oxidation barrier properties

    DOE PAGES

    Baggetto, Loic; Charvillat, Cedric; Thebault, Yannick; ...

    2015-12-02

    Ti/Al 2O 3 bilayer stacks are used as model systems to investigate the role of atomic layer deposition (ALD) and chemical vapor deposition (CVD) to prepare 30-180 nm thick amorphous alumina films as protective barriers for the medium temperature oxidation (500-600⁰C) of titanium, which is employed in aeronautic applications. X-ray diffraction (XRD), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), and X-ray photoelectron spectroscopy (XPS) results show that the films produced from the direct liquid injection (DLI) CVD of aluminum tri-isopropoxide (ATI) are poor oxygen barriers. The films processed using the ALD of trimethylaluminum (TMA) show good barriermore » properties but an extensive intermixing with Ti which subsequently oxidizes. In contrast, the films prepared from dimethyl aluminum isopropoxide (DMAI) by CVD are excellent oxygen barriers and show little intermixing with Ti. Overall, these measurements correlate the effect of the alumina coating thickness, morphology, and stoichiometry resulting from the preparation method to the oxidation barrier properties, and show that compact and stoichiometric amorphous alumina films offer superior barrier properties.« less

  14. Neutron irradiation and high temperature effects on amorphous Fe-based nano-coatings on steel - A macroscopic assessment

    NASA Astrophysics Data System (ADS)

    Simos, N.; Zhong, Z.; Dooryhee, E.; Ghose, S.; Gill, S.; Camino, F.; Şavklıyıldız, İ.; Akdoğan, E. K.

    2017-06-01

    The study revealed that loss of ductility in an amorphous Fe-alloy coating on a steel substrate composite structure was essentially prevented from occurring, following radiation with modest neutron doses of ∼2 × 1018 n/cm2. At the higher neutron dose of ∼2 × 1019, macroscopic stress-strain analysis showed that the amorphous Fe-alloy nanostructured coating, while still amorphous, experienced radiation-induced embrittlement, no longer offering protection against ductility loss in the coating-substrate composite structure. Neutron irradiation in a corrosive environment revealed exemplary oxidation/corrosion resistance of the amorphous Fe-alloy coating, which is attributed to the formation of the Fe2B phase in the coating. To establish the impact of elevated temperatures on the amorphous-to-crystalline transition in the amorphous Fe-alloy, electron microscopy was carried out which confirmed the radiation-induced suppression of crystallization in the amorphous Fe-alloy nanostructured coating.

  15. Multifunctional Hybrid Multilayer Gate Dielectrics with Tunable Surface Energy for Ultralow-Power Organic and Amorphous Oxide Thin-Film Transistors.

    PubMed

    Byun, Hye-Ran; You, Eun-Ah; Ha, Young-Geun

    2017-03-01

    For large-area, printable, and flexible electronic applications using advanced semiconductors, novel dielectric materials with excellent capacitance, insulating property, thermal stability, and mechanical flexibility need to be developed to achieve high-performance, ultralow-voltage operation of thin-film transistors (TFTs). In this work, we first report on the facile fabrication of multifunctional hybrid multilayer gate dielectrics with tunable surface energy via a low-temperature solution-process to produce ultralow-voltage organic and amorphous oxide TFTs. The hybrid multilayer dielectric materials are constructed by iteratively stacking bifunctional phosphonic acid-based self-assembled monolayers combined with ultrathin high-k oxide layers. The nanoscopic thickness-controllable hybrid dielectrics exhibit the superior capacitance (up to 970 nF/cm 2 ), insulating property (leakage current densities <10 -7 A/cm 2 ), and thermal stability (up to 300 °C) as well as smooth surfaces (root-mean-square roughness <0.35 nm). In addition, the surface energy of the hybrid multilayer dielectrics are easily changed by switching between mono- and bifunctional phosphonic acid-based self-assembled monolayers for compatible fabrication with both organic and amorphous oxide semiconductors. Consequently, the hybrid multilayer dielectrics integrated into TFTs reveal their excellent dielectric functions to achieve high-performance, ultralow-voltage operation (< ± 2 V) for both organic and amorphous oxide TFTs. Because of the easily tunable surface energy, the multifunctional hybrid multilayer dielectrics can also be adapted for various organic and inorganic semiconductors, and metal gates in other device configurations, thus allowing diverse advanced electronic applications including ultralow-power and large-area electronic devices.

  16. Morphology and structure of TixOy nanoparticles generated by femtosecond laser ablation in water

    NASA Astrophysics Data System (ADS)

    Donėlienė, Jolanta; Rudzikas, Matas; Rades, Steffi; Dörfel, Ilona; Peplinski, Burkhard; Sahre, Mario; Pellegrino, Francesco; Maurino, Valter; Ulbikas, Juras; Galdikas, Algirdas; Hodoroaba, Vasile-Dan

    2018-04-01

    In this work femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD (two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation.

  17. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].

    PubMed

    Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong

    2013-06-01

    Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.

  18. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1

  19. Effect of Al2O3 insulator thickness on the structural integrity of amorphous indium-gallium-zinc-oxide based thin film transistors.

    PubMed

    Kim, Hak-Jun; Hwang, In-Ju; Kim, Youn-Jea

    2014-12-01

    The current transparent oxide semiconductors (TOSs) technology provides flexibility and high performance. In this study, multi-stack nano-layers of TOSs were designed for three-dimensional analysis of amorphous indium-gallium-zinc-oxide (a-IGZO) based thin film transistors (TFTs). In particular, the effects of torsional and compressive stresses on the nano-sized active layers such as the a-IGZO layer were investigated. Numerical simulations were carried out to investigate the structural integrity of a-IGZO based TFTs with three different thicknesses of the aluminum oxide (Al2O3) insulator (δ = 10, 20, and 30 nm), respectively, using a commercial code, COMSOL Multiphysics. The results are graphically depicted for operating conditions.

  20. A graphene oxide-carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials.

    PubMed

    Zhang, Lina; Zhang, Haoxu; Zhou, Ruifeng; Chen, Zhuo; Li, Qunqing; Fan, Shoushan; Ge, Guanglu; Liu, Renxiao; Jiang, Kaili

    2011-09-23

    A novel grid for use in transmission electron microscopy is developed. The supporting film of the grid is composed of thin graphene oxide films overlying a super-aligned carbon nanotube network. The composite film combines the advantages of graphene oxide and carbon nanotube networks and has the following properties: it is ultra-thin, it has a large flat and smooth effective supporting area with a homogeneous amorphous appearance, high stability, and good conductivity. The graphene oxide-carbon nanotube grid has a distinct advantage when characterizing the fine structure of a mass of nanomaterials over conventional amorphous carbon grids. Clear high-resolution transmission electron microscopy images of various nanomaterials are obtained easily using the new grids.

  1. Codoping of zinc and tungsten for practical high-performance amorphous indium-based oxide thin film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kizu, Takio, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Tsukagoshi, Kazuhito, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp

    2015-09-28

    Using practical high-density sputtering targets, we investigated the effect of Zn and W codoping on the thermal stability of the amorphous film and the electrical characteristics in thin film transistors. zinc oxide is a potentially conductive component while W oxide is an oxygen vacancy suppressor in oxide films. The oxygen vacancy from In-O and Zn-O was suppressed by the W additive because of the high oxygen bond dissociation energy. With controlled codoping of W and Zn, we demonstrated a high mobility with a maximum mobility of 40 cm{sup 2}/V s with good stability under a negative bias stress in InWZnO thinmore » film transistors.« less

  2. Dopant selection for control of charge carrier density and mobility in amorphous indium oxide thin-film transistors: Comparison between Si- and W-dopants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitoma, Nobuhiko, E-mail: MITOMA.Nobuhiko@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Kizu, Takio; Lin, Meng-Fang

    The dependence of oxygen vacancy suppression on dopant species in amorphous indium oxide (a-InO{sub x}) thin film transistors (TFTs) is reported. In a-InO{sub x} TFTs incorporating equivalent atom densities of Si- and W-dopants, absorption of oxygen in the host a-InO{sub x} matrix was found to depend on difference of Gibbs free energy of the dopants for oxidation. For fully oxidized films, the extracted channel conductivity was higher in the a-InO{sub x} TFTs containing dopants of small ionic radius. This can be explained by a reduction in the ionic scattering cross sectional area caused by charge screening effects.

  3. Synthesis and properties of nickel cobalt boron nanoparticles

    NASA Astrophysics Data System (ADS)

    Patel, J.; Pankhurst, Q. A.; Parkin, I. P.

    2005-01-01

    Amorphous cobalt nickel boride nanoparticles were synthesised by chemical reduction synthesis in aqueous solution. Careful control of synthesis conditions and post reaction oxidation enabled the nanoparticles to be converted into a core-shell structure comprising of an amorphous Co-Ni-B core and an outer metal oxide sheet. These particles had interesting magnetic properties including saturation magnetisations and coercivities of the order of 80 emu/g and 170 Oe respectively, making them suitable for a potential use as an exchange-pinned magnetic material.

  4. Ultrathin and Atomically Flat Transition-Metal Oxide: Promising Building Blocks for Metal-Insulator Electronics.

    PubMed

    Cui, Qingsong; Sakhdari, Maryam; Chamlagain, Bhim; Chuang, Hsun-Jen; Liu, Yi; Cheng, Mark Ming-Cheng; Zhou, Zhixian; Chen, Pai-Yen

    2016-12-21

    We present a new and viable template-assisted thermal synthesis method for preparing amorphous ultrathin transition-metal oxides (TMOs) such as TiO 2 and Ta 2 O 5 , which are converted from crystalline two-dimensional (2D) transition-metal dichalcogenides (TMDs) down to a few atomic layers. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning transmission electron microscopy (STEM) were used to characterize the chemical composition and bonding, surface morphology, and atomic structure of these ultrathin amorphous materials to validate the effectiveness of our synthesis approach. Furthermore, we have fabricated metal-insulator-metal (MIM) diodes using the TiO 2 and Ta 2 O 5 as ultrathin insulating layers with low potential barrier heights. Our MIM diodes show a clear transition from direct tunneling to Fowler-Nordheim tunneling, which was not observed in previously reported MIM diodes with TiO 2 or Ta 2 O 5 as the insulating layer. We attribute the improved performance of our MIM diodes to the excellent flatness and low pinhole/defect densities in our TMO insulting layers converted from 2D TMDs, which enable the low-threshold and controllable electron tunneling transport. We envision that it is possible to use the ultrathin TMOs converted from 2D TMDs as the insulating layer of a wide variety of metal-insulator and field-effect electronic devices for various applications ranging from microwave mixing, parametric conversion, infrared photodetection, emissive energy harvesting, to ultrafast electronic switching.

  5. Analysis of high quality superconducting resonators: consequences for TLS properties in amorphous oxides

    NASA Astrophysics Data System (ADS)

    Burnett, J.; Faoro, L.; Lindström, T.

    2016-04-01

    1/f noise caused by microscopic two-level systems (TLS) is known to be very detrimental to the performance of superconducting quantum devices but the nature of these TLS is still poorly understood. Recent experiments with superconducting resonators indicates that interaction between TLS in the oxide at the film-substrate interface is not negligible. Here we present data on the loss and 1/f frequency noise from two different Nb resonators with and without Pt capping and discuss what conclusions can be drawn regarding the properties of TLS in amorphous oxides. We also estimate the concentration and dipole moment of the TLS.

  6. Evaluation of the effect of sulfate, alkalinity and disinfector on iron release of iron pipe and iron corrosion scale characteristics under water quality changing condition using response surface methodology

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Shi, Baoyou; Zhang, Weiyu; Guo, Jianbo; Wu, Nana; Liu, Xinyuan

    2018-02-01

    The response surface methodology (RSM), particularly Box-Behnken design model, was used in this study to evaluate the sulfate, alkalinity and free chlorine on iron release of pipe with groundwater supply history and its iron corrosion scale characteristics under water quality changing experiment. The RSM results together with response surface contour plots indicated that the iron release of pipe section reactors was positively related with Larson Ratio and free chlorine. The thin Corrosion scales with groundwater supply history upon collection site contained Fe3O4 (18%), α-FeOOH (64%), FeCO3 (9%), β-FeOOH (8%) and γ-FeOOH (5%), besides their averaged amorphous iron oxide content was 13.6%. After the RSM water quality changing experiment, Fe3O4, amorphous iron oxide and intermediate iron products (FeCO3, Green Rust (GR)) content on scale of Cl2Rs increased, while their α-FeOOH contents decreased and β-FeOOH disappeared. The high iron released Cl2Rs receiving higher LR water (1.40-2.04) contained highest FeCO3 (20%) and amorphous iron oxide (42%), while the low iron release Cl2Rs receiving lower LR water (0.52-0.73) had higher GR(6.5%) and the amorphous iron oxide (23.7%). In high LR water (>0.73), the thin and non-protective corrosion scale containing higher amorphous iron oxide, Fe(II) derived from new produced Fe3O4 or FeCO3 or GR was easy for oxidants and sulfate ions penetration, and had higher iron release. However the same unstable corrosion scale didn’t have much iron release in low LR water (≤0.73). RSM experiment indicated that iron release of these unstable corrosion scales had close relationship with water quality (Larson Ratio and disinfectant). Optimizing the water quality of new source water and using reasonable water purification measures can help to eliminate the red water case.

  7. Buffer layers on metal alloy substrates for superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-06-29

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.

  8. Method to quantify the delocalization of electronic states in amorphous semiconductors and its application to assessing charge carrier mobility of p -type amorphous oxide semiconductors

    NASA Astrophysics Data System (ADS)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-01-01

    Amorphous semiconductors are usually characterized by a low charge carrier mobility, essentially related to their lack of long-range order. The development of such material with higher charge carrier mobility is hence challenging. Part of the issue comes from the difficulty encountered by first-principles simulations to evaluate concepts such as the electron effective mass for disordered systems since the absence of periodicity induced by the disorder precludes the use of common concepts derived from condensed matter physics. In this paper, we propose a methodology based on first-principles simulations that partially solves this problem, by quantifying the degree of delocalization of a wave function and of the connectivity between the atomic sites within this electronic state. We validate the robustness of the proposed formalism on crystalline and molecular systems and extend the insights gained to disordered/amorphous InGaZnO4 and Si. We also explore the properties of p -type oxide semiconductor candidates recently reported to have a low effective mass in their crystalline phases [G. Hautier et al., Nat. Commun. 4, 2292 (2013), 10.1038/ncomms3292]. Although in their amorphous phase none of the candidates present a valence band with delocalization properties matching those found in the conduction band of amorphous InGaZnO4, three of the seven analyzed materials show some potential. The most promising candidate, K2Sn2O3 , is expected to possess in its amorphous phase a slightly higher hole mobility than the electron mobility in amorphous silicon.

  9. Tungsten Incorporation into Gallium Oxide: Crystal Structure, Surface and Interface Chemistry, Thermal Stability and Interdiffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio, E. J.; Mates, T. E.; Manandhar, S.

    Tungsten (W) incorporated gallium oxide (Ga2O3) (GWO) thin films were deposited by radio-frequency magnetron co-sputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying sputtering power applied to the W-target in order to achieve variable W-content (0-12 at%) into Ga2O3 while substrate temperature was kept constant at 500 °C. Chemical composition, chemical valence states, microstructure and crystal structure of as-deposited and annealed GWO films were evaluated as a function of W-content. The structural and chemical analyses indicate that the samples deposited without any W-incorporation are stoichiometric, nanocrystalline Ga2O3 films, which crystallize in β-phase monoclinic structure. While GWO films alsomore » crystallize in monoclinic β-Ga2O3 phase, W-incorporation induces surface amorphization as revealed by structural studies. The chemical valence state of Ga ions probed by X-ray photoelectron spectroscopic (XPS) analyses is characterized by the highest oxidation state i.e., Ga3+. No changes in Ga chemical state are noted for variable W-incorporation in the range of 0-12 at%. Rutherford backscattering spectrometry (RBS) analyses indicate the uniform distribution of W-content in the GWO films. However, XPS analyses indicate the formation of mixed valence states for W ions, which may be responsible for surface amorphization in GWO films. GWO films were stable up to 900 oC, at which point thermally induced secondary phase (W-oxide) formation was observed. A transition to mesoporous structure coupled with W interdiffusion occurs due to thermal annealing as derived from the chemical analyses at the GWO films’ surface as well as depth-profiling towards the GWO-Si interface. A model has been formulated to account for the mechanism of W-incorporation, thermal stability and interdiffusion via pore formation in GWO films.« less

  10. Influence of temperature on oxidation mechanisms of fiber-textured AlTiTaN coatings.

    PubMed

    Khetan, Vishal; Valle, Nathalie; Duday, David; Michotte, Claude; Delplancke-Ogletree, Marie-Paule; Choquet, Patrick

    2014-03-26

    The oxidation kinetics of AlTiTaN hard coatings deposited at 265 °C by DC magnetron sputtering were investigated between 700 and 950 °C for various durations. By combining dynamic secondary ion mass spectrometry (D-SIMS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) investigations of the different oxidized coatings, we were able to highlight the oxidation mechanisms involved. The TEM cross-section observations combined with XRD analysis show that a single amorphous oxide layer comprising Ti, Al, and Ta formed at 700 °C. Above 750 °C, the oxide scale transforms into a bilayer oxide comprising an Al-rich upper oxide layer and a Ti/Ta-rich oxide layer at the interface with the coated nitride layer. From the D-SIMS analysis, it could be proposed that the oxidation mechanism was governed primarily by inward diffusion of O for temperatures of ≤700 °C, while at ≥750 °C, it is controlled by outward diffusion of Al and inward diffusion of O. Via a combination of structural and chemical analysis, it is possible to propose that crystallization of rutile lattice favors the outward diffusion of Al within the AlTiTa mixed oxide layer with an increase in the temperature of oxidation. The difference in the mechanisms of oxidation at 700 and 900 °C also influences the oxidation kinetics with respect to oxidation time. Formation of a protective alumina layer decreases the rate of oxidation at 900 °C for long durations of oxidation compared to 700 °C. Along with the oxidation behavior, the enhanced thermal stability of AlTiTaN compared to that of the TiAlN coating is illustrated.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varela, Maria; Scigaj, Mateusz; Gazquez, Jaume

    Interfaces between (110) and (111)SrTiO 3 (STO) single crystalline substrates and amorphous oxide layers, LaAlO 3 (a-LAO), Y:ZrO 2 (a-YSZ), and SrTiO 3 (a-STO) become conducting above a critical thickness t c. Here we show that t c for a-LAO does not depend on the substrate orientation, i.e. t c (a-LAO/(110)STO) ≈ t c(a-LAO/(111)STO) interfaces, whereas it strongly depends on the composition of the amorphous oxide: t c(a-LAO/(110)STO) < t c(a-YSZ/(110)STO) < t c(a-STO/(110)STO). It is concluded that the formation of oxygen vacancies in amorphous-type interfaces is mainly determined by the oxygen affinity of the deposited metal ions, rather thanmore » orientation-dependent enthalpy vacancy formation and diffusion. Furthermore, scanning transmission microscopy characterization of amorphous and crystalline LAO/STO(110) interfaces shows much higher amount of oxygen vacancies in the former, providing experimental evidence of the distinct mechanism of conduction in these interfaces.« less

  12. Gas-particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology.

    PubMed

    Shiraiwa, Manabu; Zuend, Andreas; Bertram, Allan K; Seinfeld, John H

    2013-07-21

    Atmospheric aerosols, comprising organic compounds and inorganic salts, play a key role in air quality and climate. Mounting evidence exists that these particles frequently exhibit phase separation into predominantly organic and aqueous electrolyte-rich phases. As well, the presence of amorphous semi-solid or glassy particle phases has been established. Using the canonical system of ammonium sulfate mixed with organics from the ozone oxidation of α-pinene, we illustrate theoretically the interplay of physical state, non-ideality, and particle morphology affecting aerosol mass concentration and the characteristic timescale of gas-particle mass transfer. Phase separation can significantly affect overall particle mass and chemical composition. Semi-solid or glassy phases can kinetically inhibit the partitioning of semivolatile components and hygroscopic growth, in contrast to the traditional assumption that organic compounds exist in quasi-instantaneous gas-particle equilibrium. These effects have significant implications for the interpretation of laboratory data and the development of improved atmospheric air quality and climate models.

  13. Influences of ultra-thin Ti seed layers on the dewetting phenomenon of Au films deposited on Si oxide substrates

    NASA Astrophysics Data System (ADS)

    Kamiko, Masao; Kim, So-Mang; Jeong, Young-Seok; Ha, Jae-Ho; Koo, Sang-Mo; Ha, Jae-Geun

    2018-05-01

    The influences of a Ti seed layer (1 nm) on the dewetting phenomenon of Au films (5 nm) grown onto amorphous SiO2 substrates have been studied and compared. Atomic force microscopy results indicated that the introduction of Ti between the substrate and Au promoted the dewetting phenomenon. X-ray diffraction measurements suggested that the initial deposition of Ti promoted crystallinity of Au. A series of Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that Ti transformed to a Ti oxide layer by reduction of the amorphous SiO2 substrate surface, and that the Ti seed layer remained on the substrate, without going through the dewetting process during annealing. We concluded that the enhancement of Au dewetting and the improvement in crystallinity of Au by the insertion of Ti could be attributed to the fact that Au location was changed from the surface of the amorphous SiO2 substrate to that of the Ti oxide layer.

  14. Co3 O4 Nanowire Arrays toward Superior Water Oxidation Electrocatalysis in Alkaline Media by Surface Amorphization.

    PubMed

    Zhou, Dan; He, Liangbo; Zhang, Rong; Hao, Shuai; Hou, Xiandeng; Liu, Zhiang; Du, Gu; Asiri, Abdullah M; Zheng, Chengbin; Sun, Xuping

    2017-11-07

    It is highly desirable to develop a simple, fast and straightforward method to boost the alkaline water oxidation of metal oxide catalysts. In this communication, we report our recent finding that the generation of amorphous Co-borate layer on Co 3 O 4 nanowire arrays supported on Ti mesh (Co 3 O 4 @Co-Bi NA/TM) leads to significantly boosted OER activity. The as-prepared Co 3 O 4 @Co-Bi NA/TM demands overpotential of 304 mV to drive a geometrical current density of 20 mA cm -2 in 1.0 M KOH, which is 109 mV less than that for Co 3 O 4 NA/TM, with its catalytic activity being preserved for at least 20 h. It suggests that the existence of amorphous Co-Bi layer promotes more CoO x (OH) y generation on Co 3 O 4 surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Amorphous nickel incorporated tin oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yang, Jianwen; Ren, Jinhua; Lin, Dong; Han, Yanbing; Qu, Mingyue; Pi, Shubin; Fu, Ruofan; Zhang, Qun

    2017-09-01

    Nickel as a dopant has been proposed to suppress excess carrier concentration in n-type tin oxide based thin film transistors (TFTs). The influences of Ni content on nickel doped tin oxide (TNO) thin films and their corresponding TFTs were investigated with experimental results showing that the TNO thin films are amorphous. Through the comparison of the transfer characteristic curves of the TNO TFTs with different Ni contents, it was observed that Ni doping is useful to improve the performance of SnO2-based TFTs by suppressing the off-state current and shifting the threshold voltage to 0 V. The amorphous TNO TFT with 3.3 at.% Ni content shows optimum performance, with field effect mobility of 8.4 cm2 V-1 s-1, saturation mobility of 6.8 cm2 V-1 s-1, subthreshold swing value of 0.8 V/decade, and an on-off current ratio of 2.1  ×  107. Nevertheless, the bias stress stability of SnO2-based TFTs deteriorate.

  16. Enhancement of the physical stability of amorphous indomethacin by mixing it with octaacetylmaltose. inter and intra molecular studies.

    PubMed

    Kaminska, E; Adrjanowicz, K; Zakowiecki, D; Milanowski, B; Tarnacka, M; Hawelek, L; Dulski, M; Pilch, J; Smolka, W; Kaczmarczyk-Sedlak, I; Kaminski, K

    2014-10-01

    To demonstrate a very effective and easy way of stabilization of amorphous indomethacin (IMC) by preparing binary mixtures with octaacetylmaltose (acMAL). In order to understand the origin of increased stability of amorphous system inter- and intramolecular interactions between IMC and acMAL were studied. The amorphous IMC, acMAL and binary mixtures (IMC-acMAL) with different weight ratios were analyzed by using Dielectric Spectroscopy (DS), Differential Scanning Calorimetry (DSC), Raman Spectroscopy, X-ray Diffraction (XRD), Infrared Spectroscopy (FTIR) and Quantitative Structure-Activity Relationship (QSAR). Our studies have revealed that indomethacin mixed with acetylated saccharide forms homogeneous mixture. Interestingly, even a small amount of modified maltose prevents from recrystallization of amorphous indomethacin. FTIR measurements and QSAR calculations have shown that octaacetylmaltose significantly affects the concentration of indomethacin dimers. Moreover, with increasing the amount of acMAL in the amorphous solid dispersion molecular interactions between matrix and API become more dominant than IMC-IMC ones. Structural investigations with the use of X-ray diffraction technique have demonstrated that binary mixture of indomethacin with acMAL does not recrystallize upon storage at room temperature for more than 1.5 year. Finally, it was shown that acMAL can be used to improve solubility of IMC. Acetylated derivative of maltose might be very effective agent to improve physical stability of amorphous indomethacin as well as to enhance its solubility. Intermolecular interactions between modified carbohydrate and IMC are likely to be responsible for increased stability effect in the glassy state.

  17. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaopu, E-mail: xl6ba@virginia.edu; Ma, Chung T.; Poon, S. Joseph, E-mail: sjp9x@virginia.edu

    2016-01-04

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switchingmore » using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.« less

  18. Characterization and morphology of prepared titanium dioxide nanofibers by electrospinning.

    PubMed

    Park, Ju-Young; Lee, In-Hwa

    2010-05-01

    Dispersed titanium dioxide in polymer nanofibers were prepared by sol-gel processing and electrospinning techniques using titanium isopropoxide (TiP)/polyvinylpyrrolidone (PVP) solution. The prepared titanium dioxide nanofibers were characterized by FE-SEM, TEM, XRD, and FT-IR. Pure titanium dioxide nanofibers were obtained from calcination of inorganic-organic composite fiber. The diameter of titanium oxide nanofibers were in the range of 70 nm to 150 nm. Prepared titanium dioxide nanofibers show rough surface and rather small diameter compare with TiP/PVP composite nanofibers. After calcined at 500 degrees C, TiO2 nanofibers convert into anatase and rutile mixed phased from amorphous structure. Calcination of these composite fibers above 600 degrees C resulted in pure rutile TiO2 nanofibers.

  19. The soils of Mars

    NASA Technical Reports Server (NTRS)

    Banin, A.

    1988-01-01

    A mineralogical model for the Mars fine soil that includes as major components smectite clays absorbed and coated with amorphous iron oxyhydroxides and perhaps mixed with small amounts of better-crystalized iron oxides as separate phases is proposed. Also present as accessory minerals are sulfate minerals such as kieserite (MgSO4.H2O) and/or anhydrite (CaSO4), rutile (TiO2), and maghemite (Fe2O3) or magnetite (Fe3O4), the last two as magnetic components. Carbonates may be present at low concentrations only (less than 1 to 2 pct). However, a prime question to be addressed by a Mars Sample Return Mission shall be related to the mineralogical composition of the soil, and its spatial variability.

  20. Toward Adequate Operation of Amorphous Oxide Thin-Film Transistors for Low-Concentration Gas Detection.

    PubMed

    Kim, Kyung Su; Ahn, Cheol Hyoun; Jung, Sung Hyeon; Cho, Sung Woon; Cho, Hyung Koun

    2018-03-28

    We suggest the use of a thin-film transistor (TFT) composed of amorphous InGaZnO (a-IGZO) as a channel and a sensing layer for low-concentration NO 2 gas detection. Although amorphous oxide layers have a restricted surface area when reacting with NO 2 gas, such TFT sensors have incomparable advantages in the aspects of electrical stability, large-scale uniformity, and the possibility of miniaturization. The a-IGZO thin films do not possess typical reactive sites and grain boundaries, so that the variation in drain current of the TFTs strictly originates from oxidation reaction between channel surface and NO 2 gas. Especially, the sensing data obtained from the variation rate of drain current makes it possible to monitor efficiently and quickly the variation of the NO 2 concentration. Interestingly, we found that enhancement-mode TFT (EM-TFT) allows discrimination of the drain current variation rate at NO 2 concentrations ≤10 ppm, whereas a depletion-mode TFT is adequate for discriminating NO 2 concentrations ≥10 ppm. This discrepancy is attributed to the ratio of charge carriers contributing to gas capture with respect to total carriers. This capacity for the excellent detection of low-concentration NO 2 gas can be realized through (i) three-terminal TFT gas sensors using amorphous oxide, (ii) measurement of the drain current variation rate for high selectivity, and (iii) an EM mode driven by tuning the electrical conductivity of channel layers.

  1. Synthesis and characterization of lithium intercalation electrodes based on iron oxide thin films

    NASA Astrophysics Data System (ADS)

    Sarradin, J.; Guessous, A.; Ribes, M.

    Sputter-deposited iron oxide thin films are investigated as a possible negative electrode for rocking-chair microbatteries. Experimental conditions related to the manufacturing of amorphous thin films suitable to a large number of available intercalation sites are described. Structural and physical properties of the thin layer films are presented. The conductivities of the amorphous thin films were found to be very high compared with those of the respective crystalline forms. Regarding the electrochemical behaviour, Fe 2O 3-based thin films electrodes are able to store and reversibly exchange lithium ions. At a C/2 charge/discharge rate with 100% depth-of-discharge (DOD), the specific capacity of these amorphous thin film electrodes remains almost constant and close to 330 Ah/kg after more than 120 charge/discharge cycles.

  2. Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water.

    PubMed

    Huang, Chang-Ning; Bow, Jong-Shing; Zheng, Yuyuan; Chen, Shuei-Yuan; Ho, Newjin; Shen, Pouyan

    2010-04-13

    Titanium oxide compounds TiO,Ti2O3, and TiO2 with a considerable extent of nonstoichiometry were fabricated by pulsed laser ablation in water and characterized by X-ray/electron diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. The titanium oxides were found to occur as nanoparticle aggregates with a predominant 3+ charge and amorphous microtubes when fabricated under an average power density of ca. 1 × 108W/cm2 and 1011W/cm2, respectively followed by dwelling in water. The crystalline colloidal particles have a relatively high content of Ti2+ and hence a lower minimum band gap of 3.4 eV in comparison with 5.2 eV for the amorphous state. The protonation on both crystalline and amorphous phase caused defects, mainly titanium rather than oxygen vacancies and charge and/or volume-compensating defects. The hydrophilic nature and presumably varied extent of undercoordination at the free surface of the amorphous lamellae accounts for their rolling as tubes at water/air and water/glass interfaces. The nonstoichiometric titania thus fabricated have potential optoelectronic and catalytic applications in UV-visible range and shed light on the Ti charge and phase behavior of titania-water binary in natural shock occurrence.

  3. Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water

    PubMed Central

    2010-01-01

    Titanium oxide compounds TiO,Ti2O3, and TiO2 with a considerable extent of nonstoichiometry were fabricated by pulsed laser ablation in water and characterized by X-ray/electron diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. The titanium oxides were found to occur as nanoparticle aggregates with a predominant 3+ charge and amorphous microtubes when fabricated under an average power density of ca. 1 × 108W/cm2 and 1011W/cm2, respectively followed by dwelling in water. The crystalline colloidal particles have a relatively high content of Ti2+ and hence a lower minimum band gap of 3.4 eV in comparison with 5.2 eV for the amorphous state. The protonation on both crystalline and amorphous phase caused defects, mainly titanium rather than oxygen vacancies and charge and/or volume-compensating defects. The hydrophilic nature and presumably varied extent of undercoordination at the free surface of the amorphous lamellae accounts for their rolling as tubes at water/air and water/glass interfaces. The nonstoichiometric titania thus fabricated have potential optoelectronic and catalytic applications in UV–visible range and shed light on the Ti charge and phase behavior of titania-water binary in natural shock occurrence. PMID:20672115

  4. To improve the performance of sediment microbial fuel cell through amending colloidal iron oxyhydroxide into freshwater sediments.

    PubMed

    Zhou, Yan-Li; Yang, Ying; Chen, Mo; Zhao, Zhi-Wei; Jiang, He-Long

    2014-05-01

    Effects of iron oxide amendment into freshwater sediments on performance of sediment microbial fuel cell (SMFC) were investigated. It was found that amending amorphous bulk ferric oxyhydroxide, and crystalline goethite and magnetite did not affect SMFC operation. However, amendment of the mixed solution including soluble ferric citrate and colloidal iron oxyhydroxide, stably improved SMFC performance with voltage outputs up to threefolds higher than those without amendment. The enhanced voltage production corresponded to lower anode potential, but was not related to organic matter removal in sediments. Further experiments demonstrated that colloidal iron oxyhydroxide instead of soluble ferric iron played an important role in voltage production through maintaining high-concentration ferrous iron in pore water of sediments as electron shuttle and for chemical oxidation on the anode. Thus, colloidal iron oxyhydroxide amendment was a promising strategy to improve power production from SMFC employed in sediments especially with low content of organic matters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Silica metal-oxide vesicles catalyze comprehensive prebiotic chemistry.

    PubMed

    Bizzarri, Bruno Mattia; Botta, Lorenzo; Pérez-Valverde, Maritza Iveth; Saladino, Raffaele; Di Mauro, Ernesto; Garcia Ruiz, Juan Manuel

    2018-03-30

    It has recently been demonstrated that mineral self-assembled structures catalyzing prebiotic chemical reactions may form in natural waters derived from serpentinization, a geological process widespread in the early stages of Earth-like planets. We have synthesized self-assembled membranes by mixing microdrops of metal solutions with alkaline silicate solutions in the presence of formamide (NH2CHO), a single carbon molecule, at 80ºC. We found that these bilayer membranes, made of amorphous silica and metal oxide-hydroxide nanocrystals, catalyze the condensation of formamide, yielding the four nucleobases of RNA, three aminoacids and several carboxylic acids in a single pot experiment. Besides manganese, iron and magnesium, two abundant elements in the earliest Earth crust that are key in serpentinization reactions, are enough to produce all these biochemical compounds. These results suggest that the transition from inorganic geochemistry to prebiotic organic chemistry is common on a universal scale and, most probably, earlier than ever thought for our planet. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Arsenic Sorption on TiO2 Nanoparticles: Size And Crystallinity Effects

    EPA Science Inventory

    Single solute As (III) and As (V) sorption on nano-sized amorphous and crystalline TiO2 was investigated to determine: size and crystallinity effects on arsenic sorption capacities, possible As (III) oxidation, and the nature of surface complexes. Amorphous and cryst...

  7. Study on preparation of ultrafine amorphous particles by chemical reduction

    NASA Astrophysics Data System (ADS)

    Song, Xu; Yusheng, Xu; Huali, Jiang; Qing, Xue

    1993-04-01

    Ultrafine amorphous FeNiB powder was prepared by potassium borohydride reduction by mixing the aqueous solutions in a bath of supersonic oscillator. Different mixing ratios of potassium borohydride to metal salt were applied. Analysis of the composition of the sample and the Fe 2+ and Ni 2+ remaining in the filtrate after preparation shows that a quantity of KBH 4 about 1.5 times the stoichiometrical quantity is enough. Mössbauer measurements were performed at room temperature and it was found that excess KBH 4 makes no distinct difference in the spectra of the samples.

  8. Neutron irradiation and high temperature effects on amorphous Fe-based nano-coatings on steel – A macroscopic assessment

    DOE PAGES

    Simos, N.; Zhong, Z.; Dooryhee, E.; ...

    2017-03-23

    Here, this study revealed that loss of ductility in an amorphous Fe-alloy coating on a steel substrate composite structure was essentially prevented from occurring, following radiation with modest neutron doses of ~2 x 10 18 n/cm 2. At the higher neutron dose of ~2 x 10 19, macroscopic stress-strain analysis showed that the amorphous Fe-alloy nanostructured coating, while still amorphous, experienced radiation-induced embrittlement, no longer offering protection against ductility loss in the coating-substrate composite structure. Neutron irradiation in a corrosive environment revealed exemplary oxidation/corrosion resistance of the amorphous Fe-alloy coating, which is attributed to the formation of the Fe 2Bmore » phase in the coating. To establish the impact of elevated temperatures on the amorphous-to-crystalline transition in the amorphous Fe-alloy, electron microscopy was carried out which confirmed the radiation-induced suppression of crystallization in the amorphous Fe-alloy nanostructured coating.« less

  9. Transport properties of Sb doped Si nanowires

    NASA Astrophysics Data System (ADS)

    Nukala, Prathyusha; Sapkota, Gopal; Gali, Pradeep; Usha, Philipose

    2011-10-01

    n-type Si nanowires were synthesized at ambient pressure using SiCl4 as Si source and Sb source as the dopant. Sb doping of 3-4 wt % was achieved through a post growth diffusion technique. The nanowires were found to have an amorphous oxide shell that developed post-growth; the thickness of the shell is estimated to be about 3-4 nm. The composition of the amorphous shell covering the crystalline Si core was determined by Raman spectroscopy, with evidence that the shell was an amorphous oxide layer. Optical characterization of the as-grown nanowires showed green emission, attributed to the presence of the oxide shell covering the Si nanowire core. Etching of the oxide shell was found to decrease the intensity of this green emission. A single undoped Si nanowire contacted in an FET type configuration was found to be p-type with channel mobility of 20 cm^2V-1S-1. Sb doped Si nanowires exhibited n-type behavior, compensating for the holes in the undoped nanowire. The doped nanowires had carrier mobility and concentration of 160 cm^2V-1S-1 and 9.6 x 10^18cm-3 respectively.

  10. Flexible and High-Performance Amorphous Indium Zinc Oxide Thin-Film Transistor Using Low-Temperature Atomic Layer Deposition.

    PubMed

    Sheng, Jiazhen; Lee, Hwan-Jae; Oh, Saeroonter; Park, Jin-Seong

    2016-12-14

    Amorphous indium zinc oxide (IZO) thin films were deposited at different temperatures, by atomic layer deposition (ALD) using [1,1,1-trimethyl-N-(trimethylsilyl)silanaminato]indium (INCA-1) as the indium precursor, diethlzinc (DEZ) as the zinc precursor, and hydrogen peroxide (H 2 O 2 ) as the reactant. The ALD process of IZO deposition was carried by repeated supercycles, including one cycle of indium oxide (In 2 O 3 ) and one cycle of zinc oxide (ZnO). The IZO growth rate deviates from the sum of the respective In 2 O 3 and ZnO growth rates at ALD growth temperatures of 150, 175, and 200 °C. We propose growth temperature-dependent surface reactions during the In 2 O 3 cycle that correspond with the growth-rate results. Thin-film transistors (TFTs) were fabricated with the ALD-grown IZO thin films as the active layer. The amorphous IZO TFTs exhibited high mobility of 42.1 cm 2 V -1 s -1 and good positive bias temperature stress stability. Finally, flexible IZO TFT was successfully fabricated on a polyimide substrate without performance degradation, showing the great potential of ALD-grown TFTs for flexible display applications.

  11. Acceleration of Crystal Growth of Amorphous Griseofulvin by Low-Concentration Poly(ethylene oxide): Aspects of Crystallization Kinetics and Molecular Mobility.

    PubMed

    Shi, Qin; Zhang, Chen; Su, Yuan; Zhang, Jie; Zhou, Dongshan; Cai, Ting

    2017-07-03

    This study aims to investigate the crystallization behavior and molecular dynamics of amorphous griseofulvin (GSF) in the presence of low-concentration poly(ethylene oxide) (PEO). We observe that the addition of 3% w/w PEO remarkably increases the crystal growth rate of GSF by two orders of magnitude in both the supercooled liquid and glassy states. The liquid dynamics of amorphous GSF in the presence and absence of PEO are characterized by dielectric spectroscopy. With an increase of the PEO content, the α-relaxation times of the systems decrease, indicating the increase of global molecular mobility. The couplings between molecular mobility and crystallization kinetics of GSF systems show strong time-dependences below T g . The overlapping of α-relaxation times of GSF in presence and absence of PEO as a function of T g /T suggest the "plasticization" effect of PEO additives. However, the crystallization kinetics of amorphous GSF containing low-concentration PEO do not overlap with those of pure GSF on a T g /T scale. The remarkable accelerating effect of crystal growth of amorphous GSF by low-concentration PEO can be partially attributed to the increase of global mobility. The high segmental mobility of PEO is expected to strongly affect the crystal growth rates of GSF. These findings are relevant for understanding and predicting the physical stability of amorphous pharmaceutical solid dispersions.

  12. Magnetomechanical coupling in thermal amorphous solids

    NASA Astrophysics Data System (ADS)

    Hentschel, H. George E.; Ilyin, Valery; Mondal, Chandana; Procaccia, Itamar

    2018-05-01

    Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film "width" and its change due to the magnetostriction effect.

  13. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    NASA Astrophysics Data System (ADS)

    Gelinck, G. H.; van Breemen, A. J. J. M.; Cobb, B.

    2015-03-01

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  14. Laboratory Experiments to Study Spherical, Iron Oxide Concretion Growth Without Solid Nuclei: Implications for Understanding Meridiani "Blueberries"

    NASA Astrophysics Data System (ADS)

    Ormö, J.; Souza-Egipsy, V.; Chan, M. A.; Park, A. J.; Stich, M.; Komatsu, G.

    2006-03-01

    Spherical hematite concretions can form without a nucleus. Self-organized zones of super-saturated solution cause spherical precipitates of amorphous iron-hydroxide. Diffusion of Fe ions towards the outer perimeter of the amorphous sphere forms a rind, which then grows inwards.

  15. First principles prediction of amorphous phases using evolutionary algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nahas, Suhas, E-mail: shsnhs@iitk.ac.in; Gaur, Anshu, E-mail: agaur@iitk.ac.in; Bhowmick, Somnath, E-mail: bsomnath@iitk.ac.in

    2016-07-07

    We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide. We find that characteristic structural parameters like average bond length and bondmore » angle are within ∼2% of those reported by ab initio MD calculations and experimental studies.« less

  16. Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.

    PubMed

    Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V

    2015-09-21

    A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.

  17. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    PubMed

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  18. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems

    USGS Publications Warehouse

    Wang, Hongmei; Gong, Linfeng; Cravotta,, Charles A.; Yang, Xiaofen; Tuovinen, Olli H.; Dong, Hailiang; Fu, Xiang

    2013-01-01

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO3)2 was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0–24.2 mM Pb(II) added as Pb(NO3)2. Anglesite (PbSO4) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe3(SO4)2(OH)6) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9–17.6 μM regardless of the concentrations of Pb(NO3)2 added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO3)2 addition even when anglesite was removed before inoculation. Experiments with 0–48 mM KNO3 demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO3)2 addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.

  19. The composition of secondary amorphous phases under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Smith, R.; Rampe, E. B.; Horgan, B. H. N.; Dehouck, E.; Morris, R. V.

    2017-12-01

    X-ray diffraction (XRD) patterns measured by the CheMin instrument on the Mars Science Laboratory Curiosity rover demonstrate that amorphous phases are major components ( 15-60 wt%) of all rock and soil samples in Gale Crater. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., silica, ferrihydrite) phases. Secondary amorphous phases are frequently found as weathering products in soils on Earth, but these materials remain poorly characterized. Here we study a diverse suite of terrestrial samples including: sediments from recently de-glaciated volcanoes (Oregon), modern volcanic soils (Hawaii), and volcanic paleosols (Oregon) in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of amorphous phases. We combine bulk XRD mineralogy with bulk chemical compositions (XRF) to calculate the abundance and bulk composition of the amorphous materials in our samples. We then utilize scanning transmission electron microscopy (STEM) and energy dispersive x-ray spectroscopy (EDS) to study the composition of individual amorphous phases at the micrometer scale. XRD analyses of 8 samples thus far indicate that the abundance of amorphous phases are: modern soils (20-80 %) > paleosols (15-40 %) > glacial samples (15-30 %). Initial calculations suggest that the amorphous components consist primarily of SiO2, Al2O3, TiO2, FeO and Fe2O3, with minor amounts of other oxides (e.g., MgO, CaO, Na2O). Compared to their respective crystalline counterparts, calculations indicate bulk amorphous components enriched in SiO2 for the glacial sample, and depleted in SiO2 for the modern soil and paleosol samples. STEM analyses reveal that the amorphous components consist of a number of different phases. Of the two samples analyzed using STEM thus far, the secondary amorphous phases have compositions with varying ratios of SiO2, Al2O3, TiO2, and Fe-oxides, consistent with mass balance calculation results, but inconsistent with well-known amorphous phase compositions (e.g., allophane, ferrihydrite). These results show that a number of secondary amorphous phases can form within a single soil environment. Continued analysis can help determine whether compositional trends can be linked to environmental factors.

  20. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  1. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  2. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    DOE PAGES

    Malasi, A.; Taz, H.; Farah, A.; ...

    2015-12-16

    We report that ternary metal oxides of type (Me) 2O 3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 10 4 S/m) and Hall mobility (>30 cm 2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV.more » This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. In conclusion, since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.« less

  3. Microstructural modifications induced by accelerated aging and lipid absorption in remelted and annealed UHMWPEs for total hip arthroplasty

    PubMed Central

    Puppulin, Leonardo; Zhu, Wenliang; Sugano, Nobuhiko

    2014-01-01

    Three types of commercially available ultra-high molecular weight polyethylene (UHMWPE) acetabular cups currently used in total hip arthroplasty have been studied by means of Raman micro-spectroscopy to unfold the microstructural modification induced by the oxidative degradation after accelerated aging with and without lipid absorption. The three investigated materials were produced by three different manufacturing procedures, as follows: irradiation followed by remelting, one-step irradiation followed by annealing, 3-step irradiation and annealing. Clear microstructural differences were observed in terms of phase contents (i.e. amorphous, crystalline and intermediate phase fraction). The three-step annealed material showed the highest crystallinity fraction in the bulk, while the remelted polyethylene is clearly characterized by the lowest content of crystalline phase and the highest content of amorphous phase. After accelerated aging either with or without lipids, the amount of amorphous phase decreased in all the samples as a consequence of the oxidation-induced recrystallization. The most remarkable variations of phase contents were detected in the remelted and in the single-step annealed materials. The presence of lipids triggered oxidative degradation especially in the remelted polyethylene. Such experimental evidence might be explained by the highest amount of amorphous phase in which lipids can be absorbed prior to accelerated aging. The results of these spectroscopic characterizations help to rationalize the complex effect of different irradiation and post-irradiation treatments on the UHMWPE microstructure and gives useful information on how significantly any single step of the manufacturing procedures might affect the oxidative degradation of the polymer. PMID:25179830

  4. Same Precursor, Two Different Products: Comparing the Structural Evolution of In–Ga–O “Gel-Derived” Powders and Solution-Cast Films Using Pair Distribution Function Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Suzannah R.; Woods, Keenan N.; Plassmeyer, Paul N.

    Amorphous metal oxides are central to a variety of technological applications. In particular, indium gallium oxide has garnered attention as a thin-film transistor channel layer material. In this work we examine the structural evolution of indium gallium oxide gel-derived powders and thin films using infrared vibrational spectroscopy, X-ray diffraction, and pair distribution function (PDF) analysis of X-ray total scattering from standard and normal incidence thin-film geometries (tfPDF). We find that the gel-derived powders and films from the same aqueous precursor evolve differently with temperature, forming mixtures of Ga-substituted In2O3 and In-substituted β-Ga2O3 with different degrees of substitution. X-ray total scatteringmore » and PDF analysis indicate that the majority phase for both the powders and films is an amorphous/nanocrystalline β-Ga2O3 phase, with a minor constituent of In2O3 with significantly larger coherence lengths. This amorphous β-Ga2O3 phase could not be identified using the conventional Bragg diffraction techniques traditionally used to study crystalline metal oxide thin films. The combination of Bragg diffraction and tfPDF provides a much more complete description of film composition and structure, which can be used to detail the effect of processing conditions and structure–property relationships. This study also demonstrates how structural features of amorphous materials, traditionally difficult to characterize by standard diffraction, can be elucidated using tfPDF.« less

  5. High-performance all-printed amorphous oxide FETs and logics with electronically compatible electrode/ channel interface.

    PubMed

    Sharma, Bhupendra Kumar; Stoesser, Anna; Mondal, Sandeep Kumar; Garlapati, Suresh K; Fawey, Mohammed H; Chakravadhanula, Venkata Sai Kiran; Kruk, Robert; Hahn, Horst; Dasgupta, Subho

    2018-06-12

    Oxide semiconductors typically show superior device performance compared to amorphous silicon or organic counterparts, especially, when they are physical vapor deposited. However, it is not easy to reproduce identical device characteristics when the oxide field-effect transistors (FETs) are solution-processed/ printed; the level of complexity further intensifies with the need to print the passive elements as well. Here, we developed a protocol for designing the most electronically compatible electrode/ channel interface based on the judicious material selection. Exploiting this newly developed fabrication schemes, we are now able to demonstrate high-performance all-printed FETs and logic circuits using amorphous indium-gallium-zinc oxide (a-IGZO) semiconductor, indium tin oxide (ITO) as electrodes and composite solid polymer electrolyte as the gate insulator. Interestingly, all-printed FETs demonstrate an optimal electrical performance in terms of threshold voltages and device mobility and may very well be compared with devices fabricated using sputtered ITO electrodes. This observation originates from the selection of electrode/ channel materials from the same transparent semiconductor oxide family, resulting in the formation of In-Sn-Zn-O (ITZO) based diffused a-IGZO/ ITO interface that controls doping density while ensuring high electrical performance. Compressive spectroscopic studies reveal that Sn doping mediated excellent band alignment of IGZO with ITO electrodes is responsible for the excellent device performance observed. All-printed n-MOS based logic circuits have also been demonstrated towards new-generation portable electronics.

  6. Interactions of hydrogen with amorphous hafnium oxide

    NASA Astrophysics Data System (ADS)

    Kaviani, Moloud; Afanas'ev, Valeri V.; Shluger, Alexander L.

    2017-02-01

    We used density functional theory (DFT) calculations to study the interaction of hydrogen with amorphous hafnia (a -HfO2 ) using a hybrid exchange-correlation functional. Injection of atomic hydrogen, its diffusion towards electrodes, and ionization can be seen as key processes underlying charge instability of high-permittivity amorphous hafnia layers in many applications. Hydrogen in many wide band gap crystalline oxides exhibits negative-U behavior (+1 and -1 charged states are thermodynamically more stable than the neutral state) . Our results show that in a -HfO2 hydrogen is also negative-U, with charged states being the most thermodynamically stable at all Fermi level positions. However, metastable atomic hydrogen can share an electron with intrinsic electron trapping precursor sites [Phys. Rev. B 94, 020103 (2016)., 10.1103/PhysRevB.94.020103] forming a [etr -+O -H ] center, which is lower in energy on average by about 0.2 eV. These electron trapping sites can affect both the dynamics and thermodynamics of the interaction of hydrogen with a -HfO2 and the electrical behavior of amorphous hafnia films in CMOS devices.

  7. Defects in Amorphous Semiconductors: The Case of Amorphous Indium Gallium Zinc Oxide

    NASA Astrophysics Data System (ADS)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-05-01

    Based on a rational classification of defects in amorphous materials, we propose a simplified model to describe intrinsic defects and hydrogen impurities in amorphous indium gallium zinc oxide (a -IGZO). The proposed approach consists of organizing defects into two categories: point defects, generating structural anomalies such as metal—metal or oxygen—oxygen bonds, and defects emerging from changes in the material stoichiometry, such as vacancies and interstitial atoms. Based on first-principles simulations, it is argued that the defects originating from the second group always act as perfect donors or perfect acceptors. This classification simplifies and rationalizes the nature of defects in amorphous phases. In a -IGZO, the most important point defects are metal—metal bonds (or small metal clusters) and peroxides (O - O single bonds). Electrons are captured by metal—metal bonds and released by the formation of peroxides. The presence of hydrogen can lead to two additional types of defects: metal-hydrogen defects, acting as acceptors, and oxygen-hydrogen defects, acting as donors. The impact of these defects is linked to different instabilities observed in a -IGZO. Specifically, the diffusion of hydrogen and oxygen is connected to positive- and negative-bias stresses, while negative-bias illumination stress originates from the formation of peroxides.

  8. Ultrasensitive Surface-Enhanced Raman Spectroscopy Detection Based on Amorphous Molybdenum Oxide Quantum Dots.

    PubMed

    Li, Hao; Xu, Qun; Wang, Xuzhe; Liu, Wei

    2018-06-07

    Surface-enhanced Raman spectroscopy (SERS) based on plasmonic semiconductive material has been proved to be an efficient tool to detect trace of substances, while the relatively weak plasmon resonance compared with noble metal materials restricts its practical application. Herein, for the first time a facile method to fabricate amorphous H x MoO 3 quantum dots with tunable plasmon resonance is developed by a controlled oxidization route. The as-prepared amorphous H x MoO 3 quantum dots show tunable plasmon resonance in the region of visible and near-infrared light. Moreover, the tunability induced by SC CO 2 is analyzed by a molecule kinetic theory combined with a molecular thermodynamic model. More importantly, the ultrahigh enhancement factor of amorphous H x MoO 3 quantum dots detecting on methyl blue can be up to 9.5 × 10 5 with expending the limit of detection to 10 -9 m. Such a remarkable porperty can also be found in this H x MoO 3 -based sensor with Rh6G and RhB as probe molecules, suggesting that the amorphous H x MoO 3 quantum dot is an efficient candidate for SERS on molecule detection in high precision. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of nitrogen addition on the structural, electrical, and optical properties of In-Sn-Zn oxide thin films

    NASA Astrophysics Data System (ADS)

    Jia, Junjun; Torigoshi, Yoshifumi; Suko, Ayaka; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Shigesato, Yuzo

    2017-02-01

    Indium-tin-zinc oxide (ITZO) films were deposited at various nitrogen flow ratios using magnetron sputtering. At a nitrogen flow ratio of 40%, the structure of ITZO film changed from amorphous, with a short-range-ordered In2O3 phase, to a c-axis oriented InN polycrystalline phase, where InN starts to nucleate from an amorphous In2O3 matrix. Whereas, nitrogen addition had no obvious effect on the structure of indium-gallium-zinc oxide (IGZO) films even at a nitrogen flow ratio of 100%. Nitrogen addition also suppressed the formation of oxygen-related vacancies in ITZO films when the nitrogen flow ratio was less than 20%, and higher nitrogen addition led to an increase in carrier density. Moreover, a red-shift in the optical band edge was observed as the nitrogen flow ratio increased, which could be attributed to the generation of InN crystallites. We anticipate that the present findings demonstrating nitrogen-addition induced structural changes can help to understand the environment-dependent instability in amorphous IGZO or ITZO based thin-film transistors (TFTs).

  10. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.

    PubMed

    Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon

    2016-08-10

    We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics.

  11. Framboidal iron oxide: Chondrite-like material from the black mat, Murray Springs, Arizona

    NASA Astrophysics Data System (ADS)

    Fayek, Mostafa; Anovitz, Lawrence M.; Allard, Lawrence F.; Hull, Sharon

    2012-02-01

    At the end of the Pleistocene a Younger Dryas "black mat" was deposited on top of the Pleistocene sediments in many parts of North America. A study of the magnetic fraction (~ 10,900 ± 50 B.P.) from the basal section of the black mat at Murray Springs, AZ revealed the presence of amorphous iron oxide framboids in a glassy iron-silica matrix. These framboids are very similar in appearance and chemistry to those reported from several types of carbonaceous chondrites. The glass contains iron, silicon, oxygen, vanadium and minor titanium, while the framboidal particles contain calcium as well. The major element chemistry of both the spherules and the glass matrix are consistent with the chemistry of material associated with meteorite impact sites and meteorites. Electron microscopy confirms that the glassy material is indeed amorphous, and also shows that what appear to be individual oxide particles are amorphous as well. The latter appears consistent with their overall morphology that, while euhedral, typically shows significant fracture. Based on these data, we argue that these particles are the product of a hypervelocity impact.

  12. Organic matter diagenesis as the key to a unifying theory for the genesis of tabular uranium-vanadium deposits in the Morrison Formation, Colorado Plateau

    USGS Publications Warehouse

    Hansley, P.L.; Spirakis, C.S.

    1992-01-01

    Interstitial, epigenetic amorphous organic matter is intimately associated with uranium in the Grants uranium region and is considered essential to genetic models for these deposits. In contrast, uranium minerals are intimately associated with authigenic vanadium chlorite and vanadium oxides in amorphous organic matter-poor ores of the Slick Rock and Henry Mountains mining districts and therefore, in some genetic models amorphous organic matter is not considered crucial to the formation of these deposits. Differences in organic matter content can be explained by recognizing that amorphous organic matter-poor deposits have been subjected to more advanced stages of diagenesis than amorphous organic matter-rich deposits. Evidence that amorphous organic matter was involved in the genesis of organic matter-poor, as well as organic matter-rich, deposits is described. -from Authors

  13. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F.

    2014-09-01

    Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitivemore » substrates.« less

  14. Influence of amorphous structure on polymorphism in vanadia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Kevin H.; Schelhas, Laura T.; Garten, Lauren M.

    Normally we think of the glassy state as a single phase and therefore crystallization from chemically identical amorphous precursors should be identical. Here we show that the local structure of an amorphous precursor is distinct depending on the initial deposition conditions, resulting in significant differences in the final state material. Using grazing incidence total x-ray scattering, we have determined the local structure in amorphous thin films of vanadium oxide grown under different conditions using pulsed laser deposition (PLD). Here we show that the subsequent crystallization of films deposited using different initial PLD conditions result in the formation of different polymorphsmore » of VO 2. Ultimately this suggests the possibility of controlling the formation of metastable polymorphs by tuning the initial amorphous structure to different formation pathways.« less

  15. Influence of amorphous structure on polymorphism in vanadia

    DOE PAGES

    Stone, Kevin H.; Schelhas, Laura T.; Garten, Lauren M.; ...

    2016-07-13

    Normally we think of the glassy state as a single phase and therefore crystallization from chemically identical amorphous precursors should be identical. Here we show that the local structure of an amorphous precursor is distinct depending on the initial deposition conditions, resulting in significant differences in the final state material. Using grazing incidence total x-ray scattering, we have determined the local structure in amorphous thin films of vanadium oxide grown under different conditions using pulsed laser deposition (PLD). Here we show that the subsequent crystallization of films deposited using different initial PLD conditions result in the formation of different polymorphsmore » of VO 2. Ultimately this suggests the possibility of controlling the formation of metastable polymorphs by tuning the initial amorphous structure to different formation pathways.« less

  16. Spinodal decomposition in amorphous metal-silicate thin films: Phase diagram analysis and interface effects on kinetics

    NASA Astrophysics Data System (ADS)

    Kim, H.; McIntyre, P. C.

    2002-11-01

    Among several metal silicate candidates for high permittivity gate dielectric applications, the mixing thermodynamics of the ZrO2-SiO2 system were analyzed, based on previously published experimental phase diagrams. The driving force for spinodal decomposition was investigated in an amorphous silicate that was treated as a supercooled liquid solution. A subregular model was used for the excess free energy of mixing of the liquid, and measured invariant points were adopted for the calculations. The resulting simulated ZrO2-SiO2 phase diagram matched the experimental results reasonably well and indicated that a driving force exists for amorphous Zr-silicate compositions between approx40 mol % and approx90 mol % SiO2 to decompose into a ZrO2-rich phase (approx20 mol % SiO2) and SiO2-rich phase (>98 mol % SiO2) through diffusional phase separation at a temperature of 900 degC. These predictions are consistent with recent experimental reports of phase separation in amorphous Zr-silicate thin films. Other metal-silicate systems were also investigated and composition ranges for phase separation in amorphous Hf, La, and Y silicates were identified from the published bulk phase diagrams. The kinetics of one-dimensional spinodal decomposition normal to the plane of the film were simulated for an initially homogeneous Zr-silicate dielectric layer. We examined the effects that local stresses and the capillary driving force for component segregation to the interface have on the rate of spinodal decomposition in amorphous metal-silicate thin films.

  17. Beating Homogeneous Nucleation and Tuning Atomic Ordering in Glass-Forming Metals by Nanocalorimetry.

    PubMed

    Zhao, Bingge; Yang, Bin; Abyzov, Alexander S; Schmelzer, Jürn W P; Rodríguez-Viejo, Javier; Zhai, Qijie; Schick, Christoph; Gao, Yulai

    2017-12-13

    In this paper, the amorphous Ce 68 Al 10 Cu 20 Co 2 (atom %) alloy was in situ prepared by nanocalorimetry. The high cooling and heating rates accessible with this technique facilitate the suppression of crystallization on cooling and the identification of homogeneous nucleation. Different from the generally accepted notion that metallic glasses form just by avoiding crystallization, the role of nucleation and growth in the crystallization behavior of amorphous alloys is specified, allowing an access to the ideal metallic glass free of nuclei. Local atomic configurations are fundamentally significant to unravel the glass forming ability (GFA) and phase transitions in metallic glasses. For this reason, isothermal annealing near T g from 0.001 s to 25,000 s following quenching becomes the strategy to tune local atomic configurations and facilitate an amorphous alloy, a mixed glassy-nanocrystalline state, and a crystalline sample successively. On the basis of the evolution of crystallization enthalpy and overall latent heat on reheating, we quantify the underlying mechanism for the isothermal nucleation and crystallization of amorphous alloys. With Johnson-Mehl-Avrami method, it is demonstrated that the coexistence of homogeneous and heterogeneous nucleation contributes to the isothermal crystallization of glass. Heterogeneous rather than homogeneous nucleation dominates the isothermal crystallization of the undercooled liquid. For the mixed glassy-nanocrystalline structure, an extraordinary kinetic stability of the residual glass is validated, which is ascribed to the denser packed interface between amorphous phase and ordered nanocrystals. Tailoring the amorphous structure by nanocalorimetry permits new insights into unraveling GFA and the mechanism that correlates local atomic configurations and phase transitions in metallic glasses.

  18. Thickness dependence of optical properties of amorphous indium oxide thin films deposited by reactive evaporation

    NASA Astrophysics Data System (ADS)

    Uluta, K.; Deer, D.; Skarlatos, Y.

    2006-08-01

    The electrical conductivity and absorption coefficient of amorphous indium oxide thin films, thermally evaporated on glass substrates at room temperature, were evaluated. For direct transitions the variation of the optical band gap with thickness was determined and this variation was supposed to appear due to the variation of localized gap states, whereas the variation of conductivity with thickness was supposed to be due to the variation of carrier concentration. We attribute the variation of absorption coefficient with thickness to the variation of optical band gap energy rather than optical interference.

  19. Humic Acid Reduction by Propionibacterium freudenreichii and Other Fermenting Bacteria

    PubMed Central

    Benz, Marcus; Schink, Bernhard; Brune, Andreas

    1998-01-01

    Iron-reducing bacteria have been reported to reduce humic acids and low-molecular-weight quinones with electrons from acetate or hydrogen oxidation. Due to the rapid chemical reaction of amorphous ferric iron with the reduced reaction products, humic acids and low-molecular-weight redox mediators may play an important role in biological iron reduction. Since many anaerobic bacteria that are not able to reduce amorphous ferric iron directly are known to transfer electrons to other external acceptors, such as ferricyanide, 2,6-anthraquinone disulfonate (AQDS), or molecular oxygen, we tested several physiologically different species of fermenting bacteria to determine their abilities to reduce humic acids. Propionibacterium freudenreichii, Lactococcus lactis, and Enterococcus cecorum all shifted their fermentation patterns towards more oxidized products when humic acids were present; P. freudenreichii even oxidized propionate to acetate under these conditions. When amorphous ferric iron was added to reoxidize the electron acceptor, humic acids were found to be equally effective when they were added in substoichiometric amounts. These findings indicate that in addition to iron-reducing bacteria, fermenting bacteria are also capable of channeling electrons from anaerobic oxidations via humic acids towards iron reduction. This information needs to be considered in future studies of electron flow in soils and sediments. PMID:9797315

  20. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc oxide is a white or yellow-white amorphous...

  1. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc oxide is a white or yellow-white amorphous...

  2. 21 CFR 73.1991 - Zinc oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc oxide is a white or yellow-white amorphous...

  3. Quantitative determination of amorphous cyclosporine in crystalline cyclosporine samples by Fourier transform infrared spectroscopy.

    PubMed

    Bertacche, Vittorio; Pini, Elena; Stradi, Riccardo; Stratta, Fabio

    2006-01-01

    The purpose of this study is the development of a quantification method to detect the amount of amorphous cyclosporine using Fourier transform infrared (FTIR) spectroscopy. The mixing of different percentages of crystalline cyclosporine with amorphous cyclosporine was used to obtain a set of standards, composed of cyclosporine samples characterized by different percentages of amorphous cyclosporine. Using a wavelength range of 450-4,000 cm(-1), FTIR spectra were obtained from samples in potassium bromide pellets and then a partial least squares (PLS) model was exploited to correlate the features of the FTIR spectra with the percentage of amorphous cyclosporine in the samples. This model gave a standard error of estimate (SEE) of 0.3562, with an r value of 0.9971 and a standard error of prediction (SEP) of 0.4168, which derives from the cross validation function used to check the precision of the model. Statistical values reveal the applicability of the method to the quantitative determination of amorphous cyclosporine in crystalline cyclosporine samples.

  4. Processing-dependent thermal stability of a prototypical amorphous metal oxide

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Moghadam, Mahyar M.; Buchholz, D. Bruce; Li, Ran; Keane, Denis T.; Dravid, Vinayak P.; Chang, Robert P. H.; Voorhees, Peter W.; Marks, Tobin J.; Bedzyk, Michael J.

    2018-05-01

    Amorphous metal oxides (AMOs) are important candidate materials for fabricating next-generation thin-film transistors. While much attention has been directed toward the synthesis and electrical properties of AMOs, less is known about growth conditions that allow AMOs to retain their desirable amorphous state when subjected to high operating temperatures. Using in situ x-ray scattering and level-set simulations, we explore the time evolution of the crystallization process for a set of amorphous I n2O3 thin films synthesized by pulsed-laser deposition at deposition temperatures (Td) of -50, -25, and 0 °C. The films were annealed isothermally and the degree of crystallinity was determined by a quantitative analysis of the time-evolved x-ray scattering patterns. As expected, for films grown at the same Td, an increase in the annealing temperature TA led to a shorter delay prior to the onset of crystallization, and a faster crystallization rate. Moreover, when lowering the deposition temperature by 25 °C, a 40 °C increase in annealing temperature is needed to achieve the same time interval for the crystals to grow from 10 to 90% volume fraction of the sample. Films grown at Td=0 ∘C exhibited strong cubic texture after crystallization. A level-set method was employed to quantitatively model the texture that develops in the microstructures and to determine key parameters, such as the interface growth velocity, the nucleation density, and the activation energy. The differences observed in the crystallization processes are attributed to the changes in the atomic structure of the oxide and possible nanocrystalline inclusions that formed during the deposition of the amorphous phase.

  5. Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions

    DOE PAGES

    Mangolini, Filippo; Krick, Brandon A.; Jacobs, Tevis D. B.; ...

    2017-12-27

    Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has beenmore » inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. In conclusion, these findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.« less

  6. Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Mertzman, A.

    2006-01-01

    Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.

  7. Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangolini, Filippo; Krick, Brandon A.; Jacobs, Tevis D. B.

    Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has beenmore » inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. In conclusion, these findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.« less

  8. Amorphous Silica Micro Powder Additive Influence on Tensile Strength of One-Ply Particle Board

    NASA Astrophysics Data System (ADS)

    Pitukhin, A. V.; Kolesnikov, G. N.; Panov, N. G.; Vasilyev, S. B.

    2018-03-01

    The methods and results of experimental investigation on the additive influence of amorphous silica micro powder when mixed in the glue for one-ply particle board are presented in the article. Wooden particles of coniferous and hardwood species as well as glue solution based on carbamide-formaldehyde resin were used for boards manufacturing. The amorphous silica micro powder contained particles on the average 8 μm by the size and specific surface 120…400 m2/g was used in experiment. The samples were tested to determine their physical-mechanical properties. It was found that 1 % amorphous silica micro powder additive increases the breaking point of one-ply particle board under tensile stress by 143 %.

  9. Difference in charge transport properties of Ni-Nb thin films with native and artificial oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trifonov, A. S., E-mail: trifonov.artem@phys.msu.ru; Physics Faculty, Lomonosov Moscow State University, Moscow 119991; Lubenchenko, A. V.

    2015-03-28

    Here, we report on the properties of native and artificial oxide amorphous thin film on a surface of an amorphous Ni-Nb sample. Careful measurements of local current-voltage characteristics of the system Ni-Nb / NiNb oxide/Pt, were carried out in contact mode of an atomic force microscope. Native oxide showed n-type conductivity, while in the artificial one exhibited p-type one. The shape of current-voltage characteristic curves is unique in both cases and no analogical behavior is found in the literature. X-ray photoelectron spectroscopy (XPS) measurements were used to detect chemical composition of the oxide films and the oxidation state of themore » alloy components. Detailed analysis of the XPS data revealed that the structure of natural Ni-Nb oxide film consists of Ni-NbO{sub x} top layer and nickel enriched bottom layer which provides n-type conductivity. In contrast, in the artificial oxide film Nb is oxidized completely to Nb{sub 2}O{sub 5}, Ni atoms migrate into bulk Ni-Nb matrix. Electron depletion layer is formed at the Ni-Nb/Nb{sub 2}O{sub 5} interface providing p-type conductivity.« less

  10. Surface nanoporosity has a greater influence on osteogenic and bacterial cell adhesion than crystallinity and wettability

    NASA Astrophysics Data System (ADS)

    Rodriguez-Contreras, Alejandra; Guadarrama Bello, Dainelys; Nanci, Antonio

    2018-07-01

    There has been much emphasis on the influence of crystallinity and wettability for modulating cell activity, particularly for bone biomaterials. In this context, we have generated titanium oxide layers with similar mesoporous topography and surface roughness but with amorphous or crystalline oxide layers and differential wettability. We then investigated their influence on the behavior of MC3T3 osteoblastic and bacterial cells. There was no difference in cell adhesion, spreading and growth on amorphous and crystalline surfaces. The number of focal adhesions was similar, however, cells on the amorphous surface exhibited a higher frequency of mature adhesions. The crystallinity of the surface layers also had no bearing on bacterial adhesion. While it cannot be excluded that surface crystallinity, roughness and wettability contribute to some degree to determining cell behavior, our data suggest that physical characteristics of surfaces represent the major determinant.

  11. Phase formation polycrystalline vanadium oxide via thermal annealing process under controlled nitrogen pressure

    NASA Astrophysics Data System (ADS)

    Jessadaluk, S.; Khemasiri, N.; Rahong, S.; Rangkasikorn, A.; Kayunkid, N.; Wirunchit, S.; Horprathum, M.; Chananonnawathron, C.; Klamchuen, A.; Nukeaw, J.

    2017-09-01

    This article provides an approach to improve and control crystal phases of the sputtering vanadium oxide (VxOy) thin films by post-thermal annealing process. Usually, as-deposited VxOy thin films at room temperature are amorphous phase: post-thermal annealing processes (400 °C, 2 hrs) under the various nitrogen (N2) pressures are applied to improve and control the crystal phase of VxOy thin films. The crystallinity of VxOy thin films changes from amorphous to α-V2O5 phase or V9O17 polycrystalline, which depend on the pressure of N2 carrier during annealing process. Moreover, the electrical resistivity of the VxOy thin films decrease from 105 Ω cm (amorphous) to 6×10-1 Ω cm (V9O17). Base on the results, our study show a simply method to improve and control phase formation of VxOy thin films.

  12. Electric charging/discharging characteristics of super capacitor, using de-alloying and anodic oxidized Ti-Ni-Si amorphous alloy ribbons.

    PubMed

    Fukuhara, Mikio; Sugawara, Kazuyuki

    2014-01-01

    Charging/discharging behaviors of de-alloyed and anodic oxidized Ti-Ni-Si amorphous alloy ribbons were measured as a function of current between 10 pA and 100 mA, using galvanostatic charge/discharging method. In sharp contrast to conventional electric double layer capacitor (EDLC), discharging behaviors for voltage under constant currents of 1, 10 and 100 mA after 1.8 ks charging at 100 mA show parabolic decrease, demonstrating direct electric storage without solvents. The supercapacitors, devices that store electric charge on their amorphous TiO2-x surfaces that contain many 70-nm sized cavities, show the Ragone plot which locates at lower energy density region near the 2nd cells, and RC constant of 800 s (at 1 mHz), which is 157,000 times larger than that (5 ms) in EDLC.

  13. Electric charging/discharging characteristics of super capacitor, using de-alloying and anodic oxidized Ti-Ni-Si amorphous alloy ribbons

    PubMed Central

    2014-01-01

    Charging/discharging behaviors of de-alloyed and anodic oxidized Ti-Ni-Si amorphous alloy ribbons were measured as a function of current between 10 pA and 100 mA, using galvanostatic charge/discharging method. In sharp contrast to conventional electric double layer capacitor (EDLC), discharging behaviors for voltage under constant currents of 1, 10 and 100 mA after 1.8 ks charging at 100 mA show parabolic decrease, demonstrating direct electric storage without solvents. The supercapacitors, devices that store electric charge on their amorphous TiO2-x surfaces that contain many 70-nm sized cavities, show the Ragone plot which locates at lower energy density region near the 2nd cells, and RC constant of 800 s (at 1 mHz), which is 157,000 times larger than that (5 ms) in EDLC. PMID:24959106

  14. Correlation between optical properties and chemical composition of sputter-deposited germanium oxide (GeOx) films

    NASA Astrophysics Data System (ADS)

    Murphy, N. R.; Grant, J. T.; Sun, L.; Jones, J. G.; Jakubiak, R.; Shutthanandan, V.; Ramana, C. V.

    2014-05-01

    Germanium oxide (GeOx) films were grown on (1 0 0) Si substrates by reactive Direct-Current (DC) magnetron sputter-deposition using an elemental Ge target. The effects of oxygen gas fraction, Г = O2/(Ar + O2), on the deposition rate, structure, chemical composition and optical properties of GeOx films have been investigated. The chemistry of the films exhibits an evolution from pure Ge to mixed Ge + GeO + GeO2 and then finally to GeO2 upon increasing Г from 0.00 to 1.00. Grazing incidence X-ray analysis indicates that the GeOx films grown were amorphous. The optical properties probed by spectroscopic ellipsometry indicate that the effect of Г is significant on the optical constants of the GeOx films. The measured index of refraction (n) at a wavelength (λ) of 550 nm is 4.67 for films grown without any oxygen, indicating behavior characteristic of semiconducting Ge. The transition from germanium to mixed Ge + GeO + GeO2 composition is associated with a characteristic decrease in n (λ = 550 nm) to 2.62 and occurs at Г = 0.25. Finally n drops to 1.60 for Г = 0.50-1.00, where the films become GeO2. A detailed correlation between Г, n, k and stoichiometry in DC sputtered GeOx films is presented and discussed.

  15. Diamond Composite Films for Protective Coatings on Metals and Method of Formation

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    Composite films consisting of diamond crystallites and hard amorphous films such as diamond-like carbon, titanium nitride, and titanium oxide are provided as protective coatings for metal substrates against extremely harsh environments. A composite layer having diamond crystallites and a hard amorphous film is affixed to a metal substrate via an interlayer including a bottom metal silicide film and a top silicon carbide film. The interlayer is formed either by depositing metal silicide and silicon carbide directly onto the metal substrate, or by first depositing an amorphous silicon film, then allowing top and bottom portions of the amorphous silicon to react during deposition of the diamond crystallites, to yield the desired interlayer structure.

  16. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  17. Solid state microwave synthesis of highly crystalline ordered mesoporous hausmannite Mn 3 O 4 films

    DOE PAGES

    Xia, Yanfeng; Qiang, Zhe; Lee, Byeongdu; ...

    2017-06-23

    Microwave calcination of ordered micelle templated manganese carbonate films leads to highly crystalline, ordered mesoporous manganese oxide, while similar temperatures in a furnace lead to disordered, amorphous manganese oxide.

  18. The Effect of PtRuIr Nanoparticle Crystallinity in Electrocatalytic Methanol Oxidation

    PubMed Central

    Ma, Yanjiao; Wang, Rongfang; Wang, Hui; Liao, Shijun; Key, Julian; Linkov, Vladimir; Ji, Shan

    2013-01-01

    Two structural forms of a ternary alloy PtRuIr/C catalyst, one amorphous and one highly crystalline, were synthesized and compared to determine the effect of their respective structures on their activity and stability as anodic catalysts in methanol oxidation. Characterization techniques included TEM, XRD, and EDX. Electrochemical analysis using a glassy carbon disk electrode for cyclic voltammogram and chronoamperometry were tested in a solution of 0.5 mol L−1 CH3OH and 0.5 mol L−1 H2SO4. Amorphous PtRuIr/C catalyst was found to have a larger electrochemical surface area, while the crystalline PtRuIr/C catalyst had both a higher activity in methanol oxidation and increased CO poisoning rate. Crystallinity of the active alloy nanoparticles has a big impact on both methanol oxidation activity and in the CO poisoning rate. PMID:28809233

  19. A Molecular-Level View of the Physical Stability of Amorphous Solid Dispersions

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoda

    Many pharmaceutical compounds being developed in recent years are poorly soluble in water. This has led to insufficient oral bioavailability of many compounds in vitro. The amorphous formulation is one of the promising techniques to increase the oral bioavailability of these poorly water-soluble compounds. However, an amorphous drug substance is inherently unstable because it is a high energy form. In order to increase the physical stability, the amorphous drug is often formulated with a suitable polymer to form an amorphous solid dispersion. Previous research has suggested that the formation of an intimately mixed drug-polymer mixture contributes to the stabilization of the amorphous drug compound. The goal of this research is to better understand the role of miscibility, molecular interactions and mobility on the physical stability of amorphous solid dispersions. Methods were developed to detect different degrees of miscibility on nanometer scale and to quantify the extent of hydrogen-bonding interactions between the drug and the polymer. Miscibility, hydrogen-bonding interactions and molecular mobility were correlated with physical stability during a six-month period using three model systems. Overall, this research provides molecular-level insights into many factors that govern the physical stability of amorphous solid dispersions which can lead to a more effective design of stable amorphous formulations.

  20. Development of Pinhole-Free Amorphous Aluminum Oxide Protective Layers for Biomedical Device Applications

    PubMed Central

    Litvinov, Julia; Wang, Yi-Ju; George, Jinnie; Chinwangso, Pawilai; Brankovic, Stanko; Willson, Richard C.; Litvinov, Dmitri

    2013-01-01

    This paper describes synthesis of ultrathin pinhole-free insulating aluminum oxide layers for electronic device protection in corrosive liquid environments, such as phosphate buffered saline (PBS) or clinical fluids, to enable emerging biomedical applications such as biomolecular sensors. A pinhole-free 25-nm thick amorphous aluminum oxide layer has been achieved using ultra-high vacuum DC magnetron reactive sputtering of aluminum in oxygen/argon plasma followed by oxygen plasma post-processing. Deposition parameters were optimized to achieve the best corrosion protection of lithographically defined device structures. Electrochemical deposition of copper through the aluminum oxide layers was used to detect the presence (or absence) of pinholes. FTIR, XPS, and spectroscopic ellipsometry were used to characterize the material properties of the protective layers. Electrical resistance of the copper device structures protected by the aluminum oxide layers and exposed to a PBS solution was used as a metric to evaluate the long-term stability of these device structures. PMID:23682201

  1. Laboratory studies of refractory metal oxide smokes

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Nelson, R. N.; Donn, Bertram

    1989-01-01

    Studies of the properties of refractory metal oxide smokes condensed from a gas containing various combinations of SiH4, Fe(CO)5, Al(CH3)3, TiCl4, O2 and N2O in a hydrogen carrier stream at 500 K greater than T greater than 1500 K were performed. Ultraviolet, visible and infrared spectra of pure, amorphous SiO(x), FeO(x), AlO(x) and TiO(x) smokes are discussed, as well as the spectra of various co-condensed amorphous oxides, such as FE(x)SiO(y) or Fe(x)AlO(y). Preliminary studies of the changes induced in the infrared spectra of iron-containing oxide smokes by vacuum thermal annealing suggest that such materials become increasingly opaque in the near infrared with increased processing: hydration may have the opposite effect. More work on the processing of these materials is required to confirm such a trend: this work is currently in progress. Preliminary studies of the ultraviolet spectra of amorphous Si2O3 and MgSiO(x) smokes revealed no interesting features in the region from 200 to 300 nm. Studies of the ultraviolet spectra of both amorphous, hydrated and annealed SiO(x), TiO(x), AlO(x) and FeO(x) smokes are currently in progress. Finally, data on the oxygen isotopic composition of the smokes produced in the experiments are presented, which indicate that the oxygen becomes isotopically fractionated during grain condensation. Oxygen in the grains is as much as 3 percent per amu lighter than the oxygen in the original gas stream. The authors are currently conducting experiments to understand the mechanism by which fractionation occurs.

  2. Amorphous manganese-calcium oxides as a possible evolutionary origin for the CaMn₄ cluster in photosystem II.

    PubMed

    Najafpour, Mohammad Mahdi

    2011-06-01

    In this paper a few calcium-manganese oxides and calcium-manganese minerals are studied as catalysts for water oxidation. The natural mineral marokite is also studied as a catalyst for water oxidation for the first time. Marokite is made up of edge-sharing Mn(3+) in a distorted octahedral environment and eight-coordinate Ca(2+) centered polyhedral layers. The structure is similar to recent models of the oxygen evolving complex in photosystem II. Thus, the oxygen evolving complex in photosystem II does not have an unusual structure and could be synthesized hydrothermally. Also in this paper, oxygen evolution is studied with marokite (CaMn₂O₄), pyrolusite (MnO₂) and compared with hollandite (Ba(0.2)Ca(0.15)K(0.3)Mn(6.9)Al(0.2)Si(0.3)O(16)), hausmannite (Mn₃O₄), Mn₂O₃.H₂O, Ca Mn₃O₆.H₂O, CaMn₄O₈.H₂O, CaMn₂O₄.H₂O and synthetic marokite (CaMn₂O₄). I propose that the origin of the oxygen evolving complex in photosystem II resulted from absorption of calcium and manganese ions that were precipitated together in the archean oceans by protocyanobacteria because of changing pH from ~5 to ~8-10. As reported in this paper, amorphous calcium-manganese oxides with different ratios of manganese and calcium are effective catalysts for water oxidation. The bond types and lengths of the calcium and manganese ions in the calcium-manganese oxides are directly comparable to those in the OEC. This primitive structure of these amorphous calcium-manganese compounds could be changed and modified by environmental groups (amino acids) to form the oxygen evolving complex in photosystem II.

  3. Investigation of the aluminium-aluminium oxide reversible transformation as observed by hot stage electron microscopy.

    NASA Technical Reports Server (NTRS)

    Grove, C. A.; Judd, G.; Ansell, G. S.

    1972-01-01

    Thin foils of high purity aluminium and an Al-Al2O3 SAP type of alloy were oxidised in a specially designed hot stage specimen chamber in an electron microscope. Below 450 C, amorphous aluminium oxide formed on the foil surface and was first detectable at foil edges, holes, and pits. Islands of aluminium then nucleated in this amorphous oxide. The aluminium islands displayed either a lateral growth with eventual coalescence with other islands, or a reoxidation process which caused the islands to disappear. The aluminium island formation was determined to be related to the presence of the electron beam. A mechanism based upon electron charging due to the electron beam was proposed to explain the nucleation, growth, coalescence, disappearance, and geometry of the aluminium islands.

  4. Development of RF sputtered chromium oxide coating for wear application

    NASA Technical Reports Server (NTRS)

    Bhushan, B.

    1979-01-01

    The radio frequency sputtering technique was used to deposite a hard refractory, chromium oxide coating on an Inconel X-750 foil 0.1 mm thick. Optimized sputtering parameters for a smooth and adherent coating were found to be as follows: target-to-substrate spacing, 41.3 mm; argon pressure, 5-10 mTorr; total power to the sputtering module, 400 W (voltage at the target, 1600 V), and a water-cooled substrate. The coating on the annealed foil was more adherent than that on the heat-treated foil. Substrate biasing during the sputter deposition of Cr2O3 adversely affected adherence by removing naturally occurring interfacial oxide layers. The deposited coatings were amorphous and oxygen deficient. Since amorphous materials are extremely hard, the structure was considered to be desirable.

  5. Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3−δ nanofilms with tunable oxidation state

    PubMed Central

    Chen, Gao; Zhou, Wei; Guan, Daqin; Sunarso, Jaka; Zhu, Yanping; Hu, Xuefeng; Zhang, Wei; Shao, Zongping

    2017-01-01

    Perovskite oxides exhibit potential for use as electrocatalysts in the oxygen evolution reaction (OER). However, their low specific surface area is the main obstacle to realizing a high mass-specific activity that is required to be competitive against the state-of-the-art precious metal–based catalysts. We report the enhanced performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) for the OER with intrinsic activity that is significantly higher than that of the benchmark IrO2, and this result was achieved via fabrication of an amorphous BSCF nanofilm on a surface-oxidized nickel substrate by magnetron sputtering. The surface nickel oxide layer of the Ni substrate and the thickness of the BSCF film were further used to tune the intrinsic OER activity and stability of the BSCF catalyst by optimizing the electronic configuration of the transition metal cations in BSCF via the interaction between the nanofilm and the surface nickel oxide, which enables up to 315-fold enhanced mass-specific activity compared to the crystalline BSCF bulk phase. Moreover, the amorphous BSCF–Ni foam anode coupled with the Pt–Ni foam cathode demonstrated an attractive small overpotential of 0.34 V at 10 mA cm−2 for water electrolysis, with a BSCF loading as low as 154.8 μg cm−2. PMID:28691090

  6. Structure and Internal Stress of Tin-Doped Indium Oxide and Indium-Zinc Oxide Films Deposited by DC Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Nishimura, Eriko; Sasabayashi, Tomoko; Ito, Norihiro; Sato, Yasushi; Utsumi, Kentaro; Yano, Koki; Kaijo, Akira; Inoue, Kazuyoshi; Shigesato, Yuzo

    2007-12-01

    Representative transparent conductive oxide films, such as tin-doped indium oxide (ITO) and indium-zinc oxide (IZO) films, were deposited by dc magnetron sputtering using corresponding oxide targets under various total gas pressures (Ptot) ranging from 0.3 to 3.0 Pa. The ITO films deposited at a Ptot lower than 0.7 Pa were polycrystalline and were found to have a large compressive stress of about 1.5 × 109 Pa, whereas the ITO films deposited at 1.5-3.0 Pa were amorphous and had a low tensile stress. In contrast, all the IZO films deposited at a Ptot range of 0.3-3.0 Pa showed an entirely amorphous structure, where the compressive stress in the IZO films deposited at a Ptot lower than 1.5 Pa was lower than that in the ITO films. Such compressive stress was considered to be generated by the atomic peening effect of high-energy neutrals (Ar0) recoiled from the target or high-energy negative ions (O-) accelerated in the cathode sheath toward the film surface.

  7. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems.

    PubMed

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A; Yang, Xiaofen; Tuovinen, Olli H; Dong, Hailiang; Fu, Xiang

    2013-01-15

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO(3))(2) was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0-24.2 mM Pb(II) added as Pb(NO(3))(2). Anglesite (PbSO(4)) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe(3)(SO(4))(2)(OH)(6)) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9-17.6 μM regardless of the concentrations of Pb(NO(3))(2) added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO(3))(2) addition even when anglesite was removed before inoculation. Experiments with 0-48 mM KNO(3) demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO(3))(2) addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Investigation of the influence of pretreatment parameters on the surface characteristics of amorphous metal for use in power industry

    NASA Astrophysics Data System (ADS)

    Nieroda, Jolanta; Rybak, Andrzej; Kmita, Grzegorz; Sitarz, Maciej

    2018-05-01

    Metallic glasses are metallic materials, which exhibit an amorphous structure. These are mostly three or more component alloys, and some of them are magnetic metals. Materials of this kind are characterized by high electrical resistivity and at the same time exhibit very good magnetic properties (e.g. low-magnetization loss). The above mentioned properties are very useful in electrical engineering industry and this material is more and more popular as a substance for high-efficiency electrical devices production. This industry area is still evolving, and thus even higher efficiency of apparatus based on amorphous material is expected. A raw material must be carefully investigated and characterized before the main production process is started. Presented work contains results of complementary examination of amorphous metal Metglas 2605. Studies involve two ways to obtain clean and oxidized surface with high reactivity, namely degreasing followed by annealing process and plasma treatment. The amorphous metal parameters were examined by means of several techniques: surface free energy (SFE) measurements by sessile drop method, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and both ex situ and in situ Raman spectroscopy. Additionally, influence of plasma parameters on wetting properties were optimized in systematic way with Design of Experiments (DOE) method. A wide range of used methods allow to fully investigate the amorphous metal material during preliminary preparation of surface. Obtained results provide information about appropriate parameters that should be applied in order to obtain highly reactive surface with functional oxide layer on it.

  9. Semiconductor composition containing iron, dysprosium, and terbium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooser, Raphael C.; Lawrie, Benjamin J.; Baddorf, Arthur P.

    An amorphous semiconductor composition includes 1 to 70 atomic percent iron, 15 to 65 atomic percent dysprosium, 15 to 35 atomic percent terbium, balance X, wherein X is at least one of an oxidizing element and a reducing element. The composition has an essentially amorphous microstructure, an optical transmittance of at least 50% in at least the visible spectrum and semiconductor electrical properties.

  10. Amorphous lead oxide (a-PbO): suppression of signal lag via engineering of the layer structure.

    PubMed

    Semeniuk, O; Grynko, O; Juska, G; Reznik, A

    2017-10-16

    Presence of a signal lag is a bottle neck of performance for many non-crystalline materials, considered for dynamic radiation sensing. Due to inadequate lag-related temporal performance, polycrystalline layers of CdZnTe, PbI 2 , HgI 2 and PbO are not practically utilized, despite their superior X-ray sensitivity and low production cost (even for large area detectors). In the current manuscript, we show that a technological step to replace nonhomogeneous disorder in polycrystalline PbO with homogeneous amorphous PbO structure suppresses signal lag and improves time response to X-ray irradiation. In addition, the newly developed amorphous lead oxide (a-PbO) possesses superior X-ray sensitivity in terms of electron-hole pair creation energy [Formula: see text] in comparison with amorphous selenium - currently the only photoconductor used as an X-ray-to-charge transducer in the state-of-the-art direct conversion X-ray medical imaging systems. The proposed advances of the deposition process are low cost, easy to implement and with certain customization might potentially be applied to other materials, thus paving the way to their wide-range commercial use.

  11. MoOx thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors

    PubMed Central

    Liu, Can; Li, Zhengcao; Zhang, Zhengjun

    2013-01-01

    In order to examine the potential application of non-stoichiometric molybdenum oxide as anode materials for aqueous micro-supercapacitors, conductive MoOx films (2 ⩽ x ⩽ 2.3) deposited via RF magnetron sputtering at different temperatures were systematically studied for composition, structure and electrochemical properties in an aqueous solution of Li2SO4. The MoOx (x ≈ 2.3) film deposited at 150 °C exhibited a higher areal capacitance (31 mF cm−2 measured at 5 mV s−1), best rate capability and excellent stability at potentials below −0.1 V versus saturated calomel electrode, compared to the films deposited at room temperature and at higher temperatures. These superior properties were attributed to the multi-valence composition and mixed-phase microstructure, i.e., the coexistence of MoO2 nanocrystals and amorphous MoOx (2.3 < x ⩽ 3). A mechanism combining Mo(IV) oxidation/reduction on the hydrated MoO2 grain surfaces and cation intercalation/extrusion is proposed to illustrate the pseudo-capacitive process. PMID:27877625

  12. MoO x thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors.

    PubMed

    Liu, Can; Li, Zhengcao; Zhang, Zhengjun

    2013-12-01

    In order to examine the potential application of non-stoichiometric molybdenum oxide as anode materials for aqueous micro-supercapacitors, conductive MoO x films (2 ⩽ x ⩽ 2.3) deposited via RF magnetron sputtering at different temperatures were systematically studied for composition, structure and electrochemical properties in an aqueous solution of Li 2 SO 4 . The MoO x ( x ≈ 2.3) film deposited at 150 °C exhibited a higher areal capacitance (31 mF cm -2 measured at 5 mV s -1 ), best rate capability and excellent stability at potentials below -0.1 V versus saturated calomel electrode, compared to the films deposited at room temperature and at higher temperatures. These superior properties were attributed to the multi-valence composition and mixed-phase microstructure, i.e., the coexistence of MoO 2 nanocrystals and amorphous MoO x (2.3 < x ⩽ 3). A mechanism combining Mo(IV) oxidation/reduction on the hydrated MoO 2 grain surfaces and cation intercalation/extrusion is proposed to illustrate the pseudo-capacitive process.

  13. MoOx thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Can; Li, Zhengcao; Zhang, Zhengjun

    2013-12-01

    In order to examine the potential application of non-stoichiometric molybdenum oxide as anode materials for aqueous micro-supercapacitors, conductive MoOx films (2 ⩽ x ⩽ 2.3) deposited via RF magnetron sputtering at different temperatures were systematically studied for composition, structure and electrochemical properties in an aqueous solution of Li2SO4. The MoOx (x ≈ 2.3) film deposited at 150 °C exhibited a higher areal capacitance (31 mF cm-2 measured at 5 mV s-1), best rate capability and excellent stability at potentials below -0.1 V versus saturated calomel electrode, compared to the films deposited at room temperature and at higher temperatures. These superior properties were attributed to the multi-valence composition and mixed-phase microstructure, i.e., the coexistence of MoO2 nanocrystals and amorphous MoOx (2.3 < x ⩽ 3). A mechanism combining Mo(IV) oxidation/reduction on the hydrated MoO2 grain surfaces and cation intercalation/extrusion is proposed to illustrate the pseudo-capacitive process.

  14. Magnetoresistance of oxygen concentration-modulated Co-Ti-O films

    NASA Astrophysics Data System (ADS)

    Nakano, Masatoshi; Wan, Fuxing; Wang, Jian; Sannomiya, Takumi; Muraishi, Shinji; Harumoto, Takashi; Nakamura, Yoshio; Shi, Ji

    2018-06-01

    Co-Ti-O films have been prepared by a sputtering method in an Ar- and O2-mixed atmosphere. The O2 flow rate was modulated during the deposition to optimize the oxygen concentration and the microstructure of the films. For the as-deposited film, negligible magnetization and magnetoresistance (MR) were observed. The structure of the layers with lower O2 flow rate is basically amorphous alloy with Ti-O and Co-Ti bonds. On the other hand, in the layers with high O2 flow rate, both Ti and Co are oxidized. Upon thermal annealing in a vacuum, significant enhancements in both magnetization and MR in Co-Ti-O films were observed. It is found that granular structure of Co particles embedded in insulating TiO2 matrix is formed due to the oxygen diffusion and further oxidization of Ti as a result of the heat treatment. The significantly enhanced magnetization and MR ratio have been ascribed to the formation of nano-sized Co particles and the tunneling conduction between these Co particles across the TiO2 interlayers, respectively.

  15. Reaction Kinetics and Combustion Dynamics of I4O9 and Aluminum Mixtures

    PubMed Central

    Smith, Dylan K.; Pantoya, Michelle L.; Parkey, Jeffrey S.; Kesmez, Mehmet

    2016-01-01

    Tetraiodine nonoxide (I4O9) has been synthesized using a dry approach that combines elemental oxygen and iodine without the introduction of hydrated species. The synthesis approach inhibits the topochemical effect promoting rapid hydration when exposed to the relative humidity of ambient air. This stable, amorphous, nano-particle material was analyzed using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) and showed an exothermic energy release at low temperature (i.e., 180 °C) for the transformation of I4O9 into I2O5. This additional exothermic energy release contributes to an increase in overall reactivity of I4O9 when dry mixed with nano-aluminum (Al) powder, resulting in a minimum of 150% increase in flame speed compared to Al + I2O5. This study shows that as an oxidizer, I4O9 has more reactive potential than other forms of iodine(V) oxide when combined with Al, especially if I4O9 can be passivated to inhibit absorption of water from its surrounding environment. PMID:27842354

  16. Physisorption and desorption of H2, HD and D2 on amorphous solid water ice. Effect on mixing isotopologue on statistical population of adsorption sites.

    PubMed

    Amiaud, Lionel; Fillion, Jean-Hugues; Dulieu, François; Momeni, Anouchah; Lemaire, Jean-Louis

    2015-11-28

    We study the adsorption and desorption of three isotopologues of molecular hydrogen mixed on 10 ML of porous amorphous water ice (ASW) deposited at 10 K. Thermally programmed desorption (TPD) of H2, D2 and HD adsorbed at 10 K have been performed with different mixings. Various coverages of H2, HD and D2 have been explored and a model taking into account all species adsorbed on the surface is presented in detail. The model we propose allows to extract the parameters required to fully reproduce the desorption of H2, HD and D2 for various coverages and mixtures in the sub-monolayer regime. The model is based on a statistical description of the process in a grand-canonical ensemble where adsorbed molecules are described following a Fermi-Dirac distribution.

  17. Dose dependence of radiation damage in nano-structured amorphous SiOC/crystalline Fe composite

    DOE PAGES

    Su, Qing; Price, Lloyd; Shao, Lin; ...

    2015-10-29

    Here, through examination of radiation tolerance properties of amorphous silicon oxycarbide (SiOC) and crystalline Fe composite to averaged damage levels, from approximately 8 to 30 displacements per atom (dpa), we demonstrated that the Fe/SiOC interface and the Fe/amorphous Fe xSi yO z interface act as efficient defect sinks and promote the recombination of vacancies and interstitials. For thick Fe/SiOC multilayers, a clear Fe/SiOC interface remained and no irradiation-induced mixing was observed even after 32 dpa. For thin Fe/SiOC multilayers, an amorphous Fe xSi yO z intermixed layer was observed to form at 8 dpa, but no further layer growth wasmore » observed for higher dpa levels.« less

  18. Amorphous Phase Characterization Through X-Ray Diffraction Profile Modeling: Implications for Amorphous Phases in Gale Crater Rocks and Soils

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Downs, G. W.; Downs, R. T.; Morris, R. V.; Rampe, E. B.; Ming, D. W.; Chipera, S. J.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; hide

    2018-01-01

    The CheMin X-ray diffraction instrument on the Mars Science Laboratory rover has analyzed 18 rock and soil samples in Gale crater. Diffraction data allow for the identification of major crystalline phases based on the positions and intensities of well-defined peaks and also provides information regarding amorphous and poorly-ordered materials based on the shape and positions of broad scattering humps. The combination of diffraction data, elemental chemistry from APXS (Alpha Particle X-ray Spectrometer) and evolved gas analyses (EGA) from SAM (Sample Analysis at Mars) help constrain possible amorphous materials present in each sample (e.g., glass, opal, iron oxides, sulfates) but are model dependent. We present a novel method to characterize amorphous material in diffraction data and, through this approach, aim to characterize the phases collectively producing the amorphous profiles in CheMin diffraction data. This method may be applied to any diffraction data from samples containing X-ray amorphous materials, not just CheMin datasets, but we re-strict our discussion to Martian-relevant amorphous phases and diffraction data measured by CheMin or CheMin-like instruments.

  19. Negative Magnetoresistance in Amorphous Indium Oxide Wires

    PubMed Central

    Mitra, Sreemanta; Tewari, Girish C; Mahalu, Diana; Shahar, Dan

    2016-01-01

    We study magneto-transport properties of several amorphous Indium oxide nanowires of different widths. The wires show superconducting transition at zero magnetic field, but, there exist a finite resistance at the lowest temperature. The R(T) broadening was explained by available phase slip models. At low field, and far below the superconducting critical temperature, the wires with diameter equal to or less than 100 nm, show negative magnetoresistance (nMR). The magnitude of nMR and the crossover field are found to be dependent on both temperature and the cross-sectional area. We find that this intriguing behavior originates from the interplay between two field dependent contributions. PMID:27876859

  20. Cyclical Annealing Technique To Enhance Reliability of Amorphous Metal Oxide Thin Film Transistors.

    PubMed

    Chen, Hong-Chih; Chang, Ting-Chang; Lai, Wei-Chih; Chen, Guan-Fu; Chen, Bo-Wei; Hung, Yu-Ju; Chang, Kuo-Jui; Cheng, Kai-Chung; Huang, Chen-Shuo; Chen, Kuo-Kuang; Lu, Hsueh-Hsing; Lin, Yu-Hsin

    2018-02-26

    This study introduces a cyclical annealing technique that enhances the reliability of amorphous indium-gallium-zinc-oxide (a-IGZO) via-type structure thin film transistors (TFTs). By utilizing this treatment, negative gate-bias illumination stress (NBIS)-induced instabilities can be effectively alleviated. The cyclical annealing provides several cooling steps, which are exothermic processes that can form stronger ionic bonds. An additional advantage is that the total annealing time is much shorter than when using conventional long-term annealing. With the use of cyclical annealing, the reliability of the a-IGZO can be effectively optimized, and the shorter process time can increase fabrication efficiency.

  1. Dispersion and interaction of graphene oxide in amorphous and semi-crystalline nano-composites: a PALS study

    NASA Astrophysics Data System (ADS)

    Maurer, Frans H. J.; Arza, Carlos R.

    2015-06-01

    The influence of dispersion and interaction of Graphene Oxide (GO) in semicrystalline Polyhydroxy butyrate (PHB) and glassy amorphous Poly(tBP-oda) is explored by Positron Annihilation Lifetime Spectroscopy (PALS). The ortho-Positronium lifetimes which represent the main free volume hole size of both polymers are mainly affected by the large differences in internal stresses built up by the shrinkage of the polymers during their preparation, restricted by the platelet structure of GO. The ortho-Positronium intensities, which represent the ortho-Positronium formation probabilities, suggest a strong dependency of on the dispersion of the nano-particles and their aspect ratio.

  2. Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films

    PubMed Central

    Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère

    2016-01-01

    Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency. PMID:27194181

  3. Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films

    NASA Astrophysics Data System (ADS)

    Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère

    2016-05-01

    Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency.

  4. Amorphous indium-tin-zinc oxide films deposited by magnetron sputtering with various reactive gases: Spatial distribution of thin film transistor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo, E-mail: yuzo@chem.aoyama.ac.jp

    This work presents the spatial distribution of electrical characteristics of amorphous indium-tin-zinc oxide film (a-ITZO), and how they depend on the magnetron sputtering conditions using O{sub 2}, H{sub 2}O, and N{sub 2}O as the reactive gases. Experimental results show that the electrical properties of the N{sub 2}O incorporated a-ITZO film has a weak dependence on the deposition location, which cannot be explained by the bombardment effect of high energy particles, and may be attributed to the difference in the spatial distribution of both the amount and the activity of the reactive gas reaching the substrate surface. The measurement for themore » performance of a-ITZO thin film transistor (TFT) also suggests that the electrical performance and device uniformity of a-ITZO TFTs can be improved significantly by the N{sub 2}O introduction into the deposition process, where the field mobility reach to 30.8 cm{sup 2} V{sup –1} s{sup –1}, which is approximately two times higher than that of the amorphous indium-gallium-zinc oxide TFT.« less

  5. Deposition and Characterization of Hermetic, Biocompatible Thin Film Coatings for Implantable, Electrically Active Devices

    NASA Astrophysics Data System (ADS)

    Sweitzer, Robyn K.

    Retinal prostheses may be used to support patients suffering from Age-related macular degeneration or retinitis pigmentosa. A hermetic encapsulation of the poly(imide )-based prosthesis is important in order to prevent the leakage of water and ions into the electric circuitry embedded in the poly(imide) matrix. The deposition of amorphous aluminum oxide (by sputtering) and diamond like carbon (by pulsed laser ablation and vacuum arc vapor deposition) were studied for the application in retinal prostheses. The resulting thin films were characterized for composition, thickness, adhesion and smoothness by scanning electron microscopy-energy dispersive spectroscopy, atomic force microscopy, profilometry and light microscopy. Electrical stability was evaluated and found to be good. The as-deposited films prevented incursion of salinated fluids into the implant over two (2) three month trials soaking in normal saline at body temperature, Biocompatibility was tested in vivo by implanting coated specimen subretinally in the eye of Yucatan pigs. While amorphous aluminum oxide is more readily deposited with sufficient adhesion quality, biocompatibility studies showed a superior behavior of diamond-like carbon. Amorphous aluminum oxide had more adverse effects and caused more severe damage to the retinal tissue.

  6. In Situ Chemical Modification of Schottky Barrier in Solution-Processed Zinc Tin Oxide Diode.

    PubMed

    Son, Youngbae; Li, Jiabo; Peterson, Rebecca L

    2016-09-14

    Here we present a novel in situ chemical modification process to form vertical Schottky diodes using palladium (Pd) rectifying bottom contacts, amorphous zinc tin oxide (Zn-Sn-O) semiconductor made via acetate-based solution process, and molybdenum top ohmic contacts. Using X-ray photoelectron spectroscopy depth profiling, we show that oxygen plasma treatment of Pd creates a PdOx interface layer, which is then reduced back to metallic Pd by in situ reactions during Zn-Sn-O film annealing. The plasma treatment ensures an oxygen-rich environment in the semiconductor near the Schottky barrier, reducing the level of oxygen-deficiency-related defects and improving the rectifying contact. Using this process, we achieve diodes with high forward current density exceeding 10(3)A cm(-2) at 1 V, rectification ratios of >10(2), and ideality factors of around 1.9. The measured diode current-voltage characteristics are compared to numerical simulations of thermionic field emission with sub-bandgap states in the semiconductor, which we attribute to spatial variations in metal stoichiometry of amorphous Zn-Sn-O. To the best of our knowledge, this is the first demonstration of vertical Schottky diodes using solution-processed amorphous metal oxide semiconductor. Furthermore, the in situ chemical modification method developed here can be adapted to tune interface properties in many other oxide devices.

  7. Development of new metal-oxide thin film gas sensors by conductivity and workfunction correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, T.; Mutschall, D.; Winter, R.

    1996-12-31

    Commercially available semiconducting gas sensors usually are based on tin dioxide, although there is a wide variety of metal oxides with capabilities for gas sensing. This derives from restrictions to predict the gas sensitivity under real conditions from clean surface measurements or sensitivity deviations due to different preparation techniques. Hence tedious sample variation and testing is required. It is known that beside pure conductivity studies, combined methods provide a better distinction between preparation-dependent and general chemical effects. For samples with a polycrystalline grain size smaller than the Debye length of the material the correlation of workfunction responses A{Delta}{Phi} to conductivitymore » measurements with the relation {Delta}{Phi} {approximately} log G is one powerful combination. In the present paper, this comparison is shown for nickel oxide layers prepared in two different ways: Reactive sputtering, which leads to partly polycrystalline layers of grain sizes of about 5 to 15 nm according to, and amorphous nickel oxide prepared by ozone enhanced molecular beam epitaxy. The work function and conductivity responses to H{sub 2}, NH{sub 3}, NO{sub 2}, SO{sub 2}, CO and Cl{sub 2} in synthetic air show a very similar sensitivity for the amorphous and the polycrystalline nickeloxides which indicates that the above mentioned correlation range includes amorphous states, too.« less

  8. Creation of high-refractive-index amorphous titanium oxide thin films from low-fractal-dimension polymeric precursors synthesized by a sol-gel technique with a hydrazine monohydrochloride catalyst.

    PubMed

    Shimizu, Wataru; Nakamura, Satoshi; Sato, Takaaki; Murakami, Yasushi

    2012-08-21

    Amorphous titanium dioxide (TiO(2)) thin films exhibiting high refractive indices (n ≈ 2.1) and high transparency were fabricated by spin-coating titanium oxide liquid precursors having a weakly branched polymeric structure. The precursor solution was prepared from titanium tetra-n-butoxide (TTBO) via the catalytic sol-gel process with hydrazine monohydrochloride used as a salt catalyst, which serves as a conjugate acid-base pair catalyst. Our unique catalytic sol-gel technique accelerated the overall polycondensation reaction of partially hydrolyzed alkoxides, which facilitated the formation of liner polymer-like titanium oxide aggregates having a low fractal dimension of ca. (5)/(3), known as a characteristic of the so-called "expanded polymer chain". Such linear polymeric features are essential to the production of highly dense amorphous TiO(2) thin films; mutual interpenetration of the linear polymeric aggregates avoided the creation of void space that is often generated by the densification of high-fractal-dimension (particle-like) aggregates produced in a conventional sol-gel process. The mesh size of the titanium oxide polymers can be tuned either by water concentration or the reaction time, and the smaller mesh size in the liquid precursor led to a higher n value of the solid thin film, thanks to its higher local electron density. The reaction that required no addition of organic ligand to stabilize titanium alkoxides was advantageous to overcoming issues from organic residues such as coloration. The dense amorphous film structure suppressed light scattering loss owing to its extremely smooth surface and the absence of inhomogeneous grains or particles. Furthermore, the fabrication can be accomplished at a low heating temperature of <80 °C. Indeed, we successfully obtained a transparent film with a high refractive index of n = 2.064 (at λ = 633 nm) on a low-heat-resistance plastic, poly(methyl methacrylate), at 60 °C. The result offers an efficient route to high-refractive-index amorphous TiO(2) films as well as base materials for a wider range of applications.

  9. Structural investigation and optical properties of xMnO2-25Li2O-5Na2O-15Bi2O3-(55-x)B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shilpa; Jali, V. M.

    2018-02-01

    This paper deals with the new mixed system of glass compositions Lithium sodium bismuth borate glasses doped with transition metal oxide. The technique used to prepare a sample is by melt quenching. The XRD profile pattern confirmed the amorphous phase of the present glass system. The network structure is based on BO3, BO4 units and BiO6 octahedral units. No boroxyl rings observed in the glass structure. The addition of MnO2 in small amount does not account for major structural changes. Optical band gap lies in the range 1.89 to 0.96 eV. Density, molar volume, oxygen packing density, Tg, direct optical band gap and refractive index show anomalous behavior.

  10. High Performance, Low Temperature Solution-Processed Barium and Strontium Doped Oxide Thin Film Transistors.

    PubMed

    Banger, Kulbinder K; Peterson, Rebecca L; Mori, Kiyotaka; Yamashita, Yoshihisa; Leedham, Timothy; Sirringhaus, Henning

    2014-01-28

    Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm 2 V -1 s -1 . We show that it is possible to solution-process these materials at low process temperature (225-200 °C yielding mobilities up to 4.4 cm 2 V -1 s -1 ) and demonstrate a facile "ink-on-demand" process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium.

  11. High Performance, Low Temperature Solution-Processed Barium and Strontium Doped Oxide Thin Film Transistors

    PubMed Central

    2013-01-01

    Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm2 V–1 s–1. We show that it is possible to solution-process these materials at low process temperature (225–200 °C yielding mobilities up to 4.4 cm2 V–1 s–1) and demonstrate a facile “ink-on-demand” process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium. PMID:24511184

  12. Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation.

    PubMed

    Lian, J; Helean, K B; Kennedy, B J; Wang, L M; Navrotsky, A; Ewing, R C

    2006-02-09

    The lanthanide stannates, Ln2Sn2O7, Ln=La-Lu and Y, have the isometric pyrochlore structure, A2B2O7, and their structural properties have been refined by Rietveld analysis of powder neutron and synchrotron X-ray diffraction data. In this study, the enthalpies of formation of selected stannate pyrochlores, Ln=La, Nd, Sm, Eu, Dy, and Yb, were measured by high-temperature oxide melt solution calorimetry. Their radiation response was determined by 1 MeV Kr2+ ion irradiation combined with in situ TEM observation over the temperature range of 25 to 1000 K. The enthalpy of formation from binary oxides of stannate pyrochlores became more endothermic (from -145 to -40 kJ/mol) as the size of the lanthanide in the A-site decreases. A more exothermic trend of the enthalpy of formation was observed in stannate pyrochlores with larger lanthanide ions, particularly La, possibly as a result of increased covalency in the Sn-O bond. In contrast to lanthanide titanate pyrochlores, Ln2Ti2O7, that are generally susceptible to radiation-induced amorphization and zirconate pyrochlores, Ln2Zr2O7, that are generally resistant to radiation-induced amorphization, the lanthanide stannate pyrochlores show a much greater variation in their response to ion irradiation. La, Nd, and Gd stannates experience the radiation-induced transformation to the aperiodic state, and the critical amorphization temperatures are approximately 960, 700, and 350 K, respectively. Y and Er stannate pyrochlores cannot be amorphized by ion beam irradiation, even at 25 K, and instead disorder to a defect fluorite structure. Comparison of the calorimetric and ion irradiation data for titanate, zirconate, and stannate pyrochlores reveals a strong correlation among subtle changes in crystal structure with changing composition, the energetics of the disordering process, and the temperature above which the material can no longer be amorphized. In summary, as the structure approaches the ideal, ordered pyrochlore structure, radiation-induced amorphization is more easily attained. This is consistent with an increasingly exothermic trend in the enthalpies of formation of pyrochlores from the oxides, that is, the greater the thermochemical stability of the pyrochlore structure, the more likely it will be amorphized upon radiation damage rather than recover to a disordered fluorite structure.

  13. Recent Progress in Some Amorphous Materials for Supercapacitors.

    PubMed

    Li, Qing; Xu, Yuxia; Zheng, Shasha; Guo, Xiaotian; Xue, Huaiguo; Pang, Huan

    2018-05-14

    A breakthrough in technologies having "green" and sustainable energy storage conversion is urgent, and supercapacitors play a crucial role in this area of research. Owing to their unique porous structure, amorphous materials are considered one of the best active materials for high-performance supercapacitors due to their high specific capacity, excellent cycling stability, and fast charging rate. This Review summarizes the synthesis of amorphous materials (transition metal oxides, carbon-based materials, transition metal sulfides, phosphates, hydroxides, and their complexes) to highlight their electrochemical performance in supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A study on the morphology of polystyrene-grafted poly(ethylene-alt-tetrafluoroethylene) (ETFE) films prepared using a simultaneous radiation grafting method

    NASA Astrophysics Data System (ADS)

    Song, Ju-Myung; Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young Chang; Shin, Junhwa

    2014-04-01

    The morphology of polystyrene-grafted poly(ethylene-alt-tetrafluoroethylene) (ETFE) films prepared using a simultaneous radiation grafting method was investigated using DMA, DSC, XRD, and SAXS instruments. The DMA study indicates that the ETFE amorphous phase and PS amorphous phase are mixed well in the PS-grafted ETFE films while the ETFE crystalline phase and the PS amorphous phase are separated, suggesting that the PS chains are grafted mainly on the ETFE amorphous regions. The DSC and XRD data showed that the natural crystalline structures of ETFE in the grafted ETFE films are not affected by the degree of grafting. The SAXS profiles displayed that the inter-crystalline distance of the ETFE films increases with an increasing degree of grafting, which further implies that the PS graft chains formed by the simultaneous irradiation has a significant impact on the amorphous morphology of the resulting grafted ETFE film. Thus, these results indicate that the styrene monomers are mainly grafted on the ETFE amorphous regions during the simultaneous radiation grafting process.

  15. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide

    PubMed Central

    Noviyana, Imas; Lestari, Annisa Dwi; Putri, Maryane; Won, Mi-Sook; Bae, Jong-Seong; Heo, Young-Woo; Lee, Hee Young

    2017-01-01

    Top-contact bottom-gate thin film transistors (TFTs) with zinc-rich indium zinc tin oxide (IZTO) active layer were prepared at room temperature by radio frequency magnetron sputtering. Sintered ceramic target was prepared and used for deposition from oxide powder mixture having the molar ratio of In2O3:ZnO:SnO2 = 2:5:1. Annealing treatment was carried out for as-deposited films at various temperatures to investigate its effect on TFT performances. It was found that annealing treatment at 350 °C for 30 min in air atmosphere yielded the best result, with the high field effect mobility value of 34 cm2/Vs and the minimum subthreshold swing value of 0.12 V/dec. All IZTO thin films were amorphous, even after annealing treatment of up to 350 °C. PMID:28773058

  16. The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study.

    PubMed

    Johari, Priya; Qi, Yue; Shenoy, Vivek B

    2011-12-14

    In order to realize Si as a negative electrode material in commercial Li-ion batteries, it is important to understand the mixing mechanism of Li and Si, and stress evolution during lithiation in Si negative electrode of Li-ion batteries. Available experiments mainly provide the diffusivity of Li in Si as an averaged property, neglecting information regarding diffusivity of Si. However, if Si can diffuse as fast as Li, the stress generated during Li diffusion can be reduced. We, therefore, studied the diffusivity of Li as well as Si atoms in the Si-anode of Li-ion battery using an ab initio molecular dynamics-based methodology. The electrochemical insertion of Li into crystalline Si prompts a crystalline-to-amorphous phase transition. We considered this situation and thus examined the diffusion kinetics of Li and Si atoms in both crystalline and amorphous Si. We find that Li diffuses faster in amorphous Si as compared to crystalline Si, while Si remains relatively immobile in both cases and generates stresses during lithiation. To further understand the mixing mechanism and to relate the structure with electrochemical mixing, we analyzed the evolution of the structure during lithiation and studied the mechanism of breaking of Si-Si network by Li. We find that Li atoms break the Si rings and chains and create ephemeral structures such as stars and boomerangs, which eventually transform to Si-Si dumbbells and isolated Si atoms in the LiSi phase. Our results are found to be in agreement with the available experimental data and provide insights into the mixing mechanism of Li and Si in Si negative electrode of Li-ion batteries.

  17. Nanopillar arrays of amorphous carbon nitride

    NASA Astrophysics Data System (ADS)

    Sai Krishna, Katla; Pavan Kumar, B. V. V. S.; Eswaramoorthy, Muthusamy

    2011-07-01

    Nanopillar arrays of amorphous carbon nitride have been prepared using anodic aluminum oxide (AAO) membrane as a template. The amine groups present on the surface of these nanopillars were exploited for functionalization with oleic acid in order to stabilize the nanostructure at the aqueous-organic interface and also for the immobilization of metal nanoparticles and protein. These immobilised nanoparticles were found to have good catalytic activity.

  18. R&D issues in scale-up and manufacturing of amorphous silicon tandem modules

    NASA Astrophysics Data System (ADS)

    Arya, R. R.; Carlson, D. E.; Chen, L. F.; Ganguly, G.; He, M.; Lin, G.; Middya, R.; Wood, G.; Newton, J.; Bennett, M.; Jackson, F.; Willing, F.

    1999-03-01

    R & D on amorphous silicon based tandem junction devices has improved the throughtput, the material utilization, and the performance of devices on commercial tin oxide coated glass. The tandem junction technology has been scaled-up to produce 8.6 Ft2 monolithically integrated modules in manufacturing at the TF1 plant. Optimization of performance and stability of these modules is ongoing.

  19. Isolation of Phyllosilicate–Iron Redox Cycling Microorganisms from an Illite–Smectite Rich Hydromorphic Soil

    PubMed Central

    Shelobolina, Evgenya; Konishi, Hiromi; Xu, Huifang; Benzine, Jason; Xiong, Mai Yia; Wu, Tao; Blöthe, Marco; Roden, Eric

    2012-01-01

    The biogeochemistry of phyllosilicate–Fe redox cycling was studied in a Phalaris arundinacea (reed canary grass) dominated redoximorphic soil from Shovelers Sink, a small glacial depression near Madison, WI. The clay size fraction of Shovelers Sink soil accounts for 16% of the dry weight of the soil, yet contributes 74% of total Fe. The dominant mineral in the clay size fraction is mixed layer illite–smectite, and in contrast to many other soils and sediments, Fe(III) oxides are present in low abundance. We examined the Fe biogeochemistry of Shovelers Sink soils, estimated the abundance of Fe redox cycling microorganisms, and isolated in pure culture representative phyllosilicate–Fe oxidizing and reducing organisms. The abundance of phyllosilicate–Fe reducing and oxidizing organisms was low compared to culturable aerobic heterotrophs. Both direct isolation and dilution-to-extinction approaches using structural Fe(II) in Bancroft biotite as a Fe(II) source, and O2 as the electron acceptor, resulted in recovery of common rhizosphere organisms including Bradyrhizobium spp. and strains of Cupriavidus necator and Ralstonia solanacearum. In addition to oxidizing biotite and soluble Fe(II) with O2, each of these isolates was able to oxidize Fe(II) in reduced NAu-2 smectite with NO3- as the electron acceptor. Oxidized NAu-2 smectite or amorphous Fe(III) oxide served as electron acceptors for enrichment and isolation of Fe(III)-reducing microorganisms, resulting in recovery of a strain related to Geobacter toluenoxydans. The ability of the recovered microorganisms to cycle phyllosilicate–Fe was verified in an experiment with native Shovelers Sink clay. This study confirms that Fe in the native Shovelers Sink clay is readily available for microbial redox transformation and can be cycled by the Fe(III)-reducing and Fe(II)-oxidizing microorganisms recovered from the soil. PMID:22493596

  20. Isolation of phyllosilicate-iron redox cycling microorganisms from an illite-smectite rich hydromorphic soil.

    PubMed

    Shelobolina, Evgenya; Konishi, Hiromi; Xu, Huifang; Benzine, Jason; Xiong, Mai Yia; Wu, Tao; Blöthe, Marco; Roden, Eric

    2012-01-01

    The biogeochemistry of phyllosilicate-Fe redox cycling was studied in a Phalaris arundinacea (reed canary grass) dominated redoximorphic soil from Shovelers Sink, a small glacial depression near Madison, WI. The clay size fraction of Shovelers Sink soil accounts for 16% of the dry weight of the soil, yet contributes 74% of total Fe. The dominant mineral in the clay size fraction is mixed layer illite-smectite, and in contrast to many other soils and sediments, Fe(III) oxides are present in low abundance. We examined the Fe biogeochemistry of Shovelers Sink soils, estimated the abundance of Fe redox cycling microorganisms, and isolated in pure culture representative phyllosilicate-Fe oxidizing and reducing organisms. The abundance of phyllosilicate-Fe reducing and oxidizing organisms was low compared to culturable aerobic heterotrophs. Both direct isolation and dilution-to-extinction approaches using structural Fe(II) in Bancroft biotite as a Fe(II) source, and O(2) as the electron acceptor, resulted in recovery of common rhizosphere organisms including Bradyrhizobium spp. and strains of Cupriavidus necator and Ralstonia solanacearum. In addition to oxidizing biotite and soluble Fe(II) with O(2), each of these isolates was able to oxidize Fe(II) in reduced NAu-2 smectite with [Formula: see text] as the electron acceptor. Oxidized NAu-2 smectite or amorphous Fe(III) oxide served as electron acceptors for enrichment and isolation of Fe(III)-reducing microorganisms, resulting in recovery of a strain related to Geobacter toluenoxydans. The ability of the recovered microorganisms to cycle phyllosilicate-Fe was verified in an experiment with native Shovelers Sink clay. This study confirms that Fe in the native Shovelers Sink clay is readily available for microbial redox transformation and can be cycled by the Fe(III)-reducing and Fe(II)-oxidizing microorganisms recovered from the soil.

  1. Energetics of zirconia stabilized by cation and nitrogen substitution

    NASA Astrophysics Data System (ADS)

    Molodetsky, Irina

    Tetragonal and cubic zirconia are used in advanced structural ceramics, fuel cells, oxygen sensors, nuclear waste ceramics and many other applications. These zirconia phases are stabilized at room temperature (relative to monoclinic phase for pure zirconia) by cation and nitrogen substitution. This work is aimed at a better understanding of the mechanisms of stabilization of the high-temperature zirconia. phases. Experimental data are produced on the energetics of zirconia stabilized by yttria and calcia, energetics of nitrogen-oxygen substitution in zirconia and cation doped zirconia, and energetics of x-ray amorphous zirconia. obtained by low-temperature synthesis. High-temperature oxide melt solution enables direct measurement of enthalpies of formation of these refractory oxides. The enthalpy of the monoclinic to cubic phase transition of zirconia is DeltaHm-c = 12.2 +/- 1.2 kJ/mol. For cubic phases of YSZ at low yttria contents, a straight line DeltaH f,YSZ = -(52.4 +/- 3.6)x + (12.2 +/- 1.2) approximates the enthalpy of formation as a function of the yttria content, x (0. 1 < x < 0.3). Use of the quadratic fit DeltaHf,YSZ = 126.36 x 2 - 81.29 x + 12.37 (0.1 ≲ x ≲ 0.53) indicates that yttria stabilizes the cubic phase in enthalpy at low dopant content and destabilizes the cubic phase as yttria content increases. Positive entropy of mixing in YSZ and small enthalpy of long range ordering in 0.47ZrO2-0.53YO1.5, DeltaHord = -2.4 +/- 3.0 kJ/mol, indicate presence of short range ordering in YSZ. The enthalpy of formation of calcia stabilized zirconia as a function of calcia content x, is approximated as DeltaHf,c = (-91.4 +/- 3.8) x + (13.5 +/- 1.7) kJ/mol. The enthalpy of oxygen-nitrogen substitution, DeltaHO-N, in zirconium oxynitrides is a linear function of nitrogen content. DeltaH O-N ˜ -500 kJ/mol N is for Ca (Y)-Zr-N-O and Zr-N-O oxynitrides and DeltaHO-N ˜ -950 kJ/mol N is for Mg-Zr-N-O oxynitrides. X-ray amorphous zirconia is 58.6 +/- 3.3 kJ/mol less stable in enthalpy than monoclinic zirconia. The difference between the surface energies of amorphous and tetragonal zirconia phases is ˜1.19 +/- 0.05 J/m2, with a lower surface energy for the amorphous material.

  2. Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM).

    PubMed

    Liu, Airong; Zhang, Wei-xian

    2014-09-21

    An angstrom-resolution physical model of nanoscale zero-valent iron (nZVI) is generated with a combination of spherical aberration corrected scanning transmission electron microscopy (Cs-STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS) on the Fe L-edge. Bright-field (BF), high-angle annular dark-field (HAADF) and secondary electron (SE) imaging of nZVI acquired by a Hitachi HD-2700 STEM show near atomic resolution images and detailed morphological and structural information of nZVI. The STEM-EDS technique confirms that the fresh nZVI comprises of a metallic iron core encapsulated with a thin layer of iron oxides or oxyhydroxides. SAED patterns of the Fe core suggest the polycrystalline structure in the metallic core and amorphous nature of the oxide layer. Furthermore, Fe L-edge of EELS shows varied structural features from the innermost Fe core to the outer oxide shell. A qualitative analysis of the Fe L(2,3) edge fine structures reveals that the shell of nZVI consists of a mixed Fe(II)/Fe(III) phase close to the Fe (0) interface and a predominantly Fe(III) at the outer surface of nZVI.

  3. Electrothermal Annealing (ETA) Method to Enhance the Electrical Performance of Amorphous-Oxide-Semiconductor (AOS) Thin-Film Transistors (TFTs).

    PubMed

    Kim, Choong-Ki; Kim, Eungtaek; Lee, Myung Keun; Park, Jun-Young; Seol, Myeong-Lok; Bae, Hagyoul; Bang, Tewook; Jeon, Seung-Bae; Jun, Sungwoo; Park, Sang-Hee K; Choi, Kyung Cheol; Choi, Yang-Kyu

    2016-09-14

    An electro-thermal annealing (ETA) method, which uses an electrical pulse of less than 100 ns, was developed to improve the electrical performance of array-level amorphous-oxide-semiconductor (AOS) thin-film transistors (TFTs). The practicality of the ETA method was experimentally demonstrated with transparent amorphous In-Ga-Zn-O (a-IGZO) TFTs. The overall electrical performance metrics were boosted by the proposed method: up to 205% for the trans-conductance (gm), 158% for the linear current (Ilinear), and 206% for the subthreshold swing (SS). The performance enhancement were interpreted by X-ray photoelectron microscopy (XPS), showing a reduction of oxygen vacancies in a-IGZO after the ETA. Furthermore, by virtue of the extremely short operation time (80 ns) of ETA, which neither provokes a delay of the mandatory TFTs operation such as addressing operation for the display refresh nor demands extra physical treatment, the semipermanent use of displays can be realized.

  4. A hierarchical nanostructure consisting of amorphous MnO 2, Mn 3O 4 nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Chi-Chang; Hung, Ching-Yun; Chang, Kuo-Hsin; Yang, Yi-Lin

    In this communication, a porous hierarchical nanostructure consisting of amorphous MnO 2 (a-MnO 2), Mn 3O 4 nanocrystals, and single-crystalline MnOOH nanowires is designed for the supercapacitor application, which is prepared by a simple two-step electrochemical deposition process. Because of the gradual co-transformation of Mn 3O 4 nanocrystals and a-MnO 2 nanorods into an amorphous manganese oxide, the cycle stability of a-MnO 2 is obviously enhanced by adding Mn 3O 4. This unique ternary oxide nanocomposite with 100-cycle CV activation exhibits excellent capacitive performances, i.e., excellent reversibility, high specific capacitances (470 F g -1 in CaCl 2), high power property, and outstanding cycle stability. The highly porous microstructures of this composite before and after the 10,000-cycle CV test are examined by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  5. Crystallization behavior of amorphous indium-gallium-zinc-oxide films and its effects on thin-film transistor performance

    NASA Astrophysics Data System (ADS)

    Suko, Ayaka; Jia, JunJun; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki; Shigesato, Yuzo

    2016-03-01

    Amorphous indium-gallium-zinc oxide (a-IGZO) films were deposited by DC magnetron sputtering and post-annealed in air at 300-1000 °C for 1 h to investigate the crystallization behavior in detail. X-ray diffraction, electron beam diffraction, and high-resolution electron microscopy revealed that the IGZO films showed an amorphous structure after post-annealing at 300 °C. At 600 °C, the films started to crystallize from the surface with c-axis preferred orientation. At 700-1000 °C, the films totally crystallized into polycrystalline structures, wherein the grains showed c-axis preferred orientation close to the surface and random orientation inside the films. The current-gate voltage (Id-Vg) characteristics of the IGZO thin-film transistor (TFT) showed that the threshold voltage (Vth) and subthreshold swing decreased markedly after the post-annealing at 300 °C. The TFT using the totally crystallized films also showed the decrease in Vth, whereas the field-effect mobility decreased considerably.

  6. Electron irradiation induced amorphous SiO2 formation at metal oxide/Si interface at room temperature; electron beam writing on interfaces.

    PubMed

    Gurbán, S; Petrik, P; Serényi, M; Sulyok, A; Menyhárd, M; Baradács, E; Parditka, B; Cserháti, C; Langer, G A; Erdélyi, Z

    2018-02-01

    Al 2 O 3 (5 nm)/Si (bulk) sample was subjected to irradiation of 5 keV electrons at room temperature, in a vacuum chamber (pressure 1 × 10 -9 mbar) and formation of amorphous SiO 2 around the interface was observed. The oxygen for the silicon dioxide growth was provided by the electron bombardment induced bond breaking in Al 2 O 3 and the subsequent production of neutral and/or charged oxygen. The amorphous SiO 2 rich layer has grown into the Al 2 O 3 layer showing that oxygen as well as silicon transport occurred during irradiation at room temperature. We propose that both transports are mediated by local electric field and charged and/or uncharged defects created by the electron irradiation. The direct modification of metal oxide/silicon interface by electron-beam irradiation is a promising method of accomplishing direct write electron-beam lithography at buried interfaces.

  7. Channel scaling and field-effect mobility extraction in amorphous InZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Sunghwan; Song, Yang; Park, Hongsik; Zaslavsky, A.; Paine, D. C.

    2017-09-01

    Amorphous oxide semiconductors (AOSs) based on indium oxides are of great interest for next generation ultra-high definition displays that require much smaller pixel driving elements. We describe the scaling behavior in amorphous InZnO thin film transistors (TFTs) with a significant decrease in the extracted field-effect mobility μFE with channel length L (from 39.3 to 9.9 cm2/V·s as L is reduced from 50 to 5 μm). Transmission line model measurements reveal that channel scaling leads to a significant μFE underestimation due to contact resistance (RC) at the metallization/channel interface. Therefore, we suggest a method of extracting correct μFE when the TFT performance is significantly affected by RC. The corrected μFE values are higher (45.4 cm2/V·s) and nearly independent of L. The results show the critical effect of contact resistance on μFE measurements and suggest strategies to determine accurate μFE when a TFT channel is scaled.

  8. Conducting interface in oxide homojunction: Understanding of superior properties in black TiO 2

    DOE PAGES

    Lu, Xujie; Chen, Aiping; Luo, Yongkang; ...

    2016-09-14

    Black TiO 2 nanoparticles with a crystalline core and amorphous-shell structure exhibit superior optoelectronic properties in comparison with pristine TiO 2. The fundamental mechanisms underlying these enhancements, however, remain unclear, largely due to the inherent complexities and limitations of powder materials. Here, we fabricate TiO 2 homojunction films consisting of an oxygen-deficient amorphous layer on top of a highly crystalline layer, to simulate the structural/functional configuration of black TiO 2 nanoparticles. Metallic conduction is achieved at the crystalline–amorphous homointerface via electronic interface reconstruction, which we show to be the main reason for the enhanced electron transport of black TiO 2.more » As a result, this work not only achieves an unprecedented understanding of black TiO 2 but also provides a new perspective for investigating carrier generation and transport behavior at oxide interfaces, which are of tremendous fundamental and technological interest.« less

  9. Sputtered boron indium oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Stewart, Kevin A.; Gouliouk, Vasily; Keszler, Douglas A.; Wager, John F.

    2017-11-01

    Boron indium oxide (BIO) is studied for thin-film transistor (TFT) channel layer applications. Sputtered BIO thin films exhibit an amorphous phase over a wide range of B2O3/In2O3 ratios and remain amorphous up to 500 °C. The band gap decreases linearly with decreasing boron content, whereas device performance generally improves with decreasing boron content. The best amorphous BIO TFT exhibits a field-effect mobility of 10 cm2 V-1 s-1, turn-on voltage of 2.5 V, and sub-threshold swing of 0.72 V/dec. Decreasing the boron content to 12.5% leads to a polycrystalline phase, but further increases the mobility up to 20-40 cm2 V-1 s-1. TCAD simulation results suggest that the reason for higher performance after increasing the anneal temperature from 200 to 400 °C is due to a lower defect density in the sub-bandgap region of the BIO channel layer.

  10. De-vitrification of nanoscale phase-separated amorphous thin films in the immiscible copper-niobium system

    NASA Astrophysics Data System (ADS)

    Puthucode, A.; Devaraj, A.; Nag, S.; Bose, S.; Ayyub, P.; Kaufman, M. J.; Banerjee, R.

    2014-05-01

    Copper and niobium are mutually immiscible in the solid state and exhibit a large positive enthalpy of mixing in the liquid state. Using vapour quenching via magnetron co-sputter deposition, far-from equilibrium amorphous Cu-Nb films have been deposited which exhibit a nanoscale phase separation. Annealing these amorphous films at low temperatures (~200 °C) initiates crystallization via the nucleation and growth of primary nanocrystals of a face-centred cubic Cu-rich phase separated by the amorphous matrix. Interestingly, subsequent annealing at a higher temperature (>300 °C) leads to the polymorphic nucleation and growth of large spherulitic grains of a body-centred cubic Nb-rich phase within the retained amorphous matrix of the partially crystallized film. This sequential two-stage crystallization process has been investigated in detail by combining transmission electron microscopy [TEM] (including high-resolution TEM) and atom probe tomography studies. These results provide new insights into the crystallization behaviour of such unusual far-from equilibrium phase-separated metallic glasses in immiscible systems.

  11. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  12. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2000-01-01

    A process for producing polycrystalline silicon carbide includes heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  13. Atomic transport during solid-phase epitaxial recrystallization of amorphous germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radek, M.; Bracht, H., E-mail: bracht@uni-muenster.de; Johnson, B. C.

    2015-08-24

    The atomic mixing of matrix atoms during solid-phase epitaxy (SPE) is studied by means of isotopically enriched germanium (Ge) multilayer structures that were amorphized by Ge ion implantation up to a depth of 1.5 μm. Recrystallization of the amorphous structure is performed at temperatures between 350 °C and 450 °C. Secondary-ion-mass-spectrometry is used to determine the concentration-depth profiles of the Ge isotope before and after SPE. An upper limit of 0.5 nm is deduced for the displacement length of the Ge matrix atoms by the SPE process. This small displacement length is consistent with theoretical models and atomistic simulations of SPE, indicating that themore » SPE mechanism consists of bond-switching with nearest-neighbours across the amorphous-crystalline (a/c) interface.« less

  14. Structural determination of Bi-doped magnetite multifunctional nanoparticles for contrast imaging.

    PubMed

    Laguna-Marco, M A; Piquer, C; Roca, A G; Boada, R; Andrés-Vergés, M; Veintemillas-Verdaguer, S; Serna, C J; Iadecola, A; Chaboy, J

    2014-09-14

    To determine with precision how Bi atoms are distributed in Bi-doped iron oxide nanoparticles their structural characterization has been carried out by X-ray absorption spectroscopy (XAS) recorded at the K edge of Fe and at the L3 edge of Bi. The inorganic nanoparticles are nominally hybrid structures integrating an iron oxide core and a bismuth oxide shell. Fe K-edge XAS indicates the formation of a structurally ordered, non-stoichiometric magnetite (Fe3-δO4) phase for all the nanoparticles. The XAS spectra show that, in the samples synthesized by precipitation in aqueous media and laser pyrolysis, the Bi atoms neither enter into the iron oxide spinel lattice nor form any other mixed Bi-Fe oxides. No modification of the local structure around the Fe atoms induced by the Bi atoms is observed at the Fe K edge. In addition, contrary to expectations, our results indicate that the Bi atoms do not form a well-defined Bi oxide structure. The XAS study at the Bi L3 edge indicates that the environment around Bi atoms is highly disordered and only a first oxygen coordination shell is observed. Indefinite [BiO6-x(OH)x] units (isolated or aggregated forming tiny amorphous clusters) bonded through hydroxyl bridges to the nanoparticle, rather than a well defined Bi2O3 shell, surround the nanoparticle. On the other hand, the XAS study indicates that, in the samples synthesized by thermal decomposition, the Bi atoms are embedded in a longer range ordered structure showing the first and second neighbors.

  15. Oxygen absorption in free-standing porous silicon: a structural, optical and kinetic analysis.

    PubMed

    Cisneros, Rodolfo; Pfeiffer, Heriberto; Wang, Chumin

    2010-01-16

    Porous silicon (PSi) is a nanostructured material possessing a huge surface area per unit volume. In consequence, the adsorption and diffusion of oxygen in PSi are particularly important phenomena and frequently cause significant changes in its properties. In this paper, we study the thermal oxidation of p+-type free-standing PSi fabricated by anodic electrochemical etching. These free-standing samples were characterized by nitrogen adsorption, thermogravimetry, atomic force microscopy and powder X-ray diffraction. The results show a structural phase transition from crystalline silicon to a combination of cristobalite and quartz, passing through amorphous silicon and amorphous silicon-oxide structures, when the thermal oxidation temperature increases from 400 to 900 °C. Moreover, we observe some evidence of a sinterization at 400 °C and an optimal oxygen-absorption temperature about 700 °C. Finally, the UV/Visible spectrophotometry reveals a red and a blue shift of the optical transmittance spectra for samples with oxidation temperatures lower and higher than 700 °C, respectively.

  16. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing

    NASA Astrophysics Data System (ADS)

    Llordés, Anna; Wang, Yang; Fernandez-Martinez, Alejandro; Xiao, Penghao; Lee, Tom; Poulain, Agnieszka; Zandi, Omid; Saez Cabezas, Camila A.; Henkelman, Graeme; Milliron, Delia J.

    2016-12-01

    Amorphous transition metal oxides are recognized as leading candidates for electrochromic window coatings that can dynamically modulate solar irradiation and improve building energy efficiency. However, their thin films are normally prepared by energy-intensive sputtering techniques or high-temperature solution methods, which increase manufacturing cost and complexity. Here, we report on a room-temperature solution process to fabricate electrochromic films of niobium oxide glass (NbOx) and `nanocrystal-in-glass’ composites (that is, tin-doped indium oxide (ITO) nanocrystals embedded in NbOx glass) via acid-catalysed condensation of polyniobate clusters. A combination of X-ray scattering and spectroscopic characterization with complementary simulations reveals that this strategy leads to a unique one-dimensional chain-like NbOx structure, which significantly enhances the electrochromic performance, compared to a typical three-dimensional NbOx network obtained from conventional high-temperature thermal processing. In addition, we show how self-assembled ITO-in-NbOx composite films can be successfully integrated into high-performance flexible electrochromic devices.

  17. Determination of intrinsic mobility of a bilayer oxide thin-film transistor by pulsed I-V method

    NASA Astrophysics Data System (ADS)

    Woo, Hyunsuk; Kim, Taeho; Hur, Jihyun; Jeon, Sanghun

    2017-04-01

    Amorphous oxide semiconductor thin-film transistors (TFT) have been considered as outstanding switch devices owing to their high mobility. However, because of their amorphous channel material with a certain level of density of states, a fast transient charging effect in an oxide TFT occurs, leading to an underestimation of the mobility value. In this paper, the effects of the fast charging of high-performance bilayer oxide semiconductor TFTs on mobility are examined in order to determine an accurate mobility extraction method. In addition, an approach based on a pulse I D -V G measurement method is proposed to determine the intrinsic mobility value. Even with the short pulse I D -V G measurement, a certain level of fast transient charge trapping cannot be avoided as long as the charge-trap start time is shorter than the pulse rising time. Using a pulse-amplitude-dependent threshold voltage characterization method, we estimated a correction factor for the apparent mobility, thus allowing us to determine the intrinsic mobility.

  18. Comprehensive review on the development of high mobility in oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Choi, Jun Young; Lee, Sang Yeol

    2017-11-01

    Oxide materials are one of the most advanced key technology in the thin film transistors (TFTs) for the high-end of device applications. Amorphous oxide semiconductors (AOSs) have leading technique for flat panel display (FPD), active matrix organic light emitting display (AMOLED) and active matrix liquid crystal display (AMLCD) due to their excellent electrical characteristics, such as field effect mobility ( μ FE ), subthreshold swing (S.S) and threshold voltage ( V th ). Covalent semiconductor like amorphous silicon (a-Si) is attributed to the anti-bonding and bonding states of Si hybridized orbitals. However, AOSs have not grain boundary and excellent performances originated from the unique characteristics of AOS which is the direct orbital overlap between s orbitals of neighboring metal cations. High mobility oxide TFTs have gained attractive attention during the last few years and today in display industries. It is progressively developed to increase the mobility either by exploring various oxide semiconductors or by adopting new TFT structures. Mobility of oxide thin film transistor has been rapidly increased from single digit to higher than 100 cm2/V·s in a decade. In this review, we discuss on the comprehensive review on the mobility of oxide TFTs in a decade and propose bandgap engineering and novel structure to enhance the electrical characteristics of oxide TFTs.

  19. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irshad, Muneeb; Siraj, Khurram, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com; Javed, Fayyaz

    Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na{sub 2}CO{sub 3} (SDCC) and GDC amorphous Na{sub 2}CO{sub 3} (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in bothmore » single and dual phase electrolyte materials; also confirming the presence of amorphous Na{sub 2}CO{sub 3} in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na{sub 2}CO{sub 3} and SDC/ amorphous Na{sub 2}CO{sub 3} nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.« less

  20. In situ evolution of highly dispersed amorphous CoO x clusters for oxygen evolution reaction

    DOE PAGES

    Chen, Dawei; Dong, Chung-Li; Zou, Yuqin; ...

    2017-07-24

    Electrocatalytic water splitting is a key technique to produce hydrogen fuels, which can be considered as an efficient strategy to store renewable energy. Oxygen evolution reaction (OER) that occurs at the anode side requires a four-electron transfer under highly oxidizing conditions. OER has a large overpotential and therefore determines the overall efficiency. Certain electrocatalysts can efficiently help to improve the reaction kinetics. Owing to the high cost of precious metals such as Pt, Ru, and Ir, non-precious metal oxide catalysts have been vigorously investigated under alkaline conditions. Herein, we synthesized novel highly dispersed amorphous CoO x for the first timemore » in the form of a cluster favorable to enhance the OER activity using a facile method via the air dielectric barrier discharge (DBD) plasma. Compared with the pristine biopolymer–cobalt complex, the amorphous CoO x cluster exhibits a much higher current density and a lower overpotential for OER, e.g., the overpotential of 290 mV at 10 mA cm -2 and the overpotential of only 350 mV at 300 mA cm -1. The excellent electrocatalytic OER activity was attributed to the unsaturated catalytic sites on the amorphous CoO x cluster. In addition, we studied the reaction mechanism, and it was observed that pure O 2 DBD plasma could lead to the evolution of crystalline CoO x; however, the presence of N 2 and O 2 in DBD plasma could ensure the facile evolution of amorphous CoO x clusters. This study provides a new strategy, therefore, to design amorphous materials for electrocatalysis and beyond.« less

  1. In situ evolution of highly dispersed amorphous CoO x clusters for oxygen evolution reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dawei; Dong, Chung-Li; Zou, Yuqin

    Electrocatalytic water splitting is a key technique to produce hydrogen fuels, which can be considered as an efficient strategy to store renewable energy. Oxygen evolution reaction (OER) that occurs at the anode side requires a four-electron transfer under highly oxidizing conditions. OER has a large overpotential and therefore determines the overall efficiency. Certain electrocatalysts can efficiently help to improve the reaction kinetics. Owing to the high cost of precious metals such as Pt, Ru, and Ir, non-precious metal oxide catalysts have been vigorously investigated under alkaline conditions. Herein, we synthesized novel highly dispersed amorphous CoO x for the first timemore » in the form of a cluster favorable to enhance the OER activity using a facile method via the air dielectric barrier discharge (DBD) plasma. Compared with the pristine biopolymer–cobalt complex, the amorphous CoO x cluster exhibits a much higher current density and a lower overpotential for OER, e.g., the overpotential of 290 mV at 10 mA cm -2 and the overpotential of only 350 mV at 300 mA cm -1. The excellent electrocatalytic OER activity was attributed to the unsaturated catalytic sites on the amorphous CoO x cluster. In addition, we studied the reaction mechanism, and it was observed that pure O 2 DBD plasma could lead to the evolution of crystalline CoO x; however, the presence of N 2 and O 2 in DBD plasma could ensure the facile evolution of amorphous CoO x clusters. This study provides a new strategy, therefore, to design amorphous materials for electrocatalysis and beyond.« less

  2. Integration of perovskite oxide dielectrics into complementary metal-oxide-semiconductor capacitor structures using amorphous TaSiN as oxygen diffusion barrier

    NASA Astrophysics Data System (ADS)

    Mešić, Biljana; Schroeder, Herbert

    2011-09-01

    The high permittivity perovskite oxides have been intensively investigated for their possible application as dielectric materials for stacked capacitors in dynamic random access memory circuits. For the integration of such oxide materials into the CMOS world, a conductive diffusion barrier is indispensable. An optimized stack p++-Si/Pt/Ta21Si57N21/Ir was developed and used as the bottom electrode for the oxide dielectric. The amorphous TaSiN film as oxygen diffusion barrier showed excellent conductive properties and a good thermal stability up to 700 °C in oxygen ambient. The additional protective iridium layer improved the surface roughness after annealing. A 100-nm-thick (Ba,Sr)TiO3 film was deposited using pulsed laser deposition at 550 °C, showing very promising properties for application; the maximum relative dielectric constant at zero field is κ ≈ 470, and the leakage current density is below 10-6 A/cm2 for fields lower then ± 200 kV/cm, corresponding to an applied voltage of ± 2 V.

  3. Alumina-supported sub-nanometer Pt 10 clusters: Amorphization and role of the support material in a highly active CO oxidation catalyst

    DOE PAGES

    Yin, Chunrong; Negreiros, Fabio R.; Barcaro, Giovanni; ...

    2017-02-03

    Catalytic CO oxidation is unveiled on size-selected Pt 10 clusters deposited on two very different ultrathin (≈0.5–0.7 nm thick) alumina films: (i) a highly ordered alumina obtained under ultra-high vacuum (UHV) by oxidation of the NiAl(110) surface and (ii) amorphous alumina obtained by atomic layer deposition (ALD) on a silicon chip that is a close model of real-world supports. Notably, when exposed to realistic reaction conditions, the Pt 10/UHV-alumina system undergoes a morphological transition in both the clusters and the substrate, and becomes closely akin to Pt 10/ALD-alumina, thus reconciling UHV-type surface-science and real-world experiments. The Pt 10 clusters, thoroughlymore » characterized via combined experimental techniques and theoretical analysis, exhibit among the highest CO oxidation activity per Pt atom reported for CO oxidation catalysts, due to the interplay of ultra-small size and support effects. Lastly, a coherent interdisciplinary picture then emerges for this catalytic system.« less

  4. Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Legnani, C.; Ribeiro Pinto, P. M.; Cremona, M.; de Araújo, P. J. G.; Achete, C. A.

    2003-06-01

    White-blue electroluminescent emission with a voltage bias less than 10 V was achieved in rf sputter-deposited amorphous carbon nitride (a-CN) and amorphous silicon carbon nitride (a-SiCN) thin-film-based devices. The heterojunction structures of these devices consist of: Indium tin oxide (ITO), used as a transparent anode; amorphous carbon film as an emission layer, and aluminum as a cathode. The thickness of the carbon films was about 250 Å. In all of the produced diodes, a stable visible emission peaked around 475 nm is observed at room temperature and the emission intensity increases with the current density. For an applied voltage of 14 V, the luminance was about 3 mCd/m2. The electroluminescent properties of the two devices are discussed and compared.

  5. Oxidation of ultrathin GaSe

    DOE PAGES

    Thomas Edwin Beechem; McDonald, Anthony E.; Ohta, Taisuke; ...

    2015-10-26

    Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga 2Se 3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

  6. Oxidation resistance of biochars as a function of feedstock and pyrolysis condition.

    PubMed

    Han, Lanfang; Ro, Kyoung S; Wang, Yu; Sun, Ke; Sun, Haoran; Libra, Judy A; Xing, Baoshan

    2018-03-01

    Assessing biochar's ability to resist oxidation is fundamental to understanding its potential to sequester carbon. Chemical oxidation exhibits good performance in estimating the oxidation resistance of biochar. Herein, oxidation resistance of 14 types of biochars produced from four feedstocks at different pyrolysis conditions (hydrothermal versus thermal carbonization) was investigated via hydrogen peroxide oxidation with varying concentrations. The oxidation resistance of organic carbon (C) of hydrochars was relatively higher than that of 250°C pyrochars (P250) but was comparable to that of 450°C pyrochars (P450). Both hydrochars and P450 from ash-rich feedstocks contained at least three different C pools (5.9-18.3% labile, 43.2-56.5% semi-labile and 26.9-45.9% stable C). Part (<33%) of aromatic C within 600°C pyrochars (P600) was easily oxidizable, which consisted of amorphous C. The influence of pyrolysis temperature upon oxidation resistance of biochars depended on the feedstock. For ash-rich feedstock (rice straw, swine manure and poultry litter), the oxidation resistance of biochars was determined by both aromaticity and mineral components, and mineral protection was regulated by pyrolysis conditions. The amorphous silicon within hydrochars and P450 could interact with C, preventing C from being oxidized, to some extent. Nevertheless, this type of protection did not occur for P250 and P600. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Electrical transport properties in indium tin oxide films prepared by electron-beam evaporation

    NASA Astrophysics Data System (ADS)

    Liu, X. D.; Jiang, E. Y.; Zhang, D. X.

    2008-10-01

    Amorphous and polycrystalline indium tin oxide films have been prepared by electron-beam evaporation method. The amorphous films exhibit semiconductor behavior, while metallic conductivity is observed in the polycrystalline samples. The magnetoconductivities of the polycrystalline films are positive at low temperatures and can be well described by the theory of three-dimensional weak-localization effect. In addition, the electron phase-breaking rate is proportional to T3/2. Comparing the experimental results with theory, we find that the electron-electron scattering is the dominant destroyer of the constructive interference in the films. In addition, the Coulomb interaction is the main contribution to the nontrivial corrections for the electrical conductivity at low temperatures.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikawa, Shinya, E-mail: aikawa@cc.kogakuin.ac.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Research Institute for Science and Technology, Kogakuin University, Hachioji, Tokyo 192-0015; Mitoma, Nobuhiko

    We discuss the environmental instability of amorphous indium oxide (InO{sub x})-based thin-film transistors (TFTs) in terms of the excess oxygen in the semiconductor films. A comparison between amorphous InO{sub x} doped with low and high concentrations of oxygen binder (SiO{sub 2}) showed that out-diffusion of oxygen molecules causes drastic changes in the film conductivity and TFT turn-on voltages. Incorporation of sufficient SiO{sub 2} could suppress fluctuations in excess oxygen because of the high oxygen bond-dissociation energy and low Gibbs free energy. Consequently, the TFT operation became rather stable. The results would be useful for the design of reliable oxide TFTsmore » with stable electrical properties.« less

  9. Metal-induced crystallization of amorphous zinc tin oxide semiconductors for high mobility thin-film transistors

    NASA Astrophysics Data System (ADS)

    Hwang, Ah Young; Kim, Sang Tae; Ji, Hyuk; Shin, Yeonwoo; Jeong, Jae Kyeong

    2016-04-01

    Transition tantalum induced crystallization of amorphous zinc tin oxide (a-ZTO) was observed at low temperature annealing of 300 °C. Thin-film transistors (TFTs) with an a-ZTO channel layer exhibited a reasonable field-effect mobility of 12.4 cm2/V s, subthreshold swing (SS) of 0.39 V/decade, threshold voltage (VTH) of 1.5 V, and ION/OFF ratio of ˜107. A significant improvement in the field-effect mobility (up to ˜33.5 cm2/V s) was achieved for crystallized ZTO TFTs: this improvement was accomplished without compromising the SS, VTH, or ION/OFF ratio due to the presence of a highly ordered microstructure.

  10. Using machine learning to identify factors that govern amorphization of irradiated pyrochlores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilania, Ghanshyam; Whittle, Karl R.; Jiang, Chao

    Structure–property relationships are a key materials science concept that enables the design of new materials. In the case of materials for application in radiation environments, correlating radiation tolerance with fundamental structural features of a material enables materials discovery. Here, we use a machine learning model to examine the factors that govern amorphization resistance in the complex oxide pyrochlore (A 2B 2O 7) in a regime in which amorphization occurs as a consequence of defect accumulation. We examine the fidelity of predictions based on cation radii and electronegativities, the oxygen positional parameter, and the energetics of disordering and amorphizing the material.more » No one factor alone adequately predicts amorphization resistance. We find that when multiple families of pyrochlores (with different B cations) are considered, radii and electronegativities provide the best prediction, but when the machine learning model is restricted to only the B = Ti pyrochlores, the energetics of disordering and amorphization are critical factors. We discuss how these static quantities provide insight into an inherently kinetic property such as amorphization resistance at finite temperature. Lastly, this work provides new insight into the factors that govern the amorphization susceptibility and highlights the ability of machine learning approaches to generate that insight.« less

  11. Using machine learning to identify factors that govern amorphization of irradiated pyrochlores

    DOE PAGES

    Pilania, Ghanshyam; Whittle, Karl R.; Jiang, Chao; ...

    2017-02-10

    Structure–property relationships are a key materials science concept that enables the design of new materials. In the case of materials for application in radiation environments, correlating radiation tolerance with fundamental structural features of a material enables materials discovery. Here, we use a machine learning model to examine the factors that govern amorphization resistance in the complex oxide pyrochlore (A 2B 2O 7) in a regime in which amorphization occurs as a consequence of defect accumulation. We examine the fidelity of predictions based on cation radii and electronegativities, the oxygen positional parameter, and the energetics of disordering and amorphizing the material.more » No one factor alone adequately predicts amorphization resistance. We find that when multiple families of pyrochlores (with different B cations) are considered, radii and electronegativities provide the best prediction, but when the machine learning model is restricted to only the B = Ti pyrochlores, the energetics of disordering and amorphization are critical factors. We discuss how these static quantities provide insight into an inherently kinetic property such as amorphization resistance at finite temperature. Lastly, this work provides new insight into the factors that govern the amorphization susceptibility and highlights the ability of machine learning approaches to generate that insight.« less

  12. Thermal Transport in Graphene Oxide – From Ballistic Extreme to Amorphous Limit

    PubMed Central

    Mu, Xin; Wu, Xufei; Zhang, Teng; Go, David B.; Luo, Tengfei

    2014-01-01

    Graphene oxide is being used in energy, optical, electronic and sensor devices due to its unique properties. However, unlike its counterpart – graphene – the thermal transport properties of graphene oxide remain unknown. In this work, we use large-scale molecular dynamics simulations with reactive potentials to systematically study the role of oxygen adatoms on the thermal transport in graphene oxide. For pristine graphene, highly ballistic thermal transport is observed. As the oxygen coverage increases, the thermal conductivity is significantly reduced. An oxygen coverage of 5% can reduce the graphene thermal conductivity by ~90% and a coverage of 20% lower it to ~8.8 W/mK. This value is even lower than the calculated amorphous limit (~11.6 W/mK for graphene), which is usually regarded as the minimal possible thermal conductivity of a solid. Analyses show that the large reduction in thermal conductivity is due to the significantly enhanced phonon scattering induced by the oxygen defects which introduce dramatic structural deformations. These results provide important insight to the thermal transport physics in graphene oxide and offer valuable information for the design of graphene oxide-based materials and devices. PMID:24468660

  13. Amorphous GeOx-Coated Reduced Graphene Oxide Balls with Sandwich Structure for Long-Life Lithium-Ion Batteries.

    PubMed

    Choi, Seung Ho; Jung, Kyeong Youl; Kang, Yun Chan

    2015-07-01

    Amorphous GeOx-coated reduced graphene oxide (rGO) balls with sandwich structure are prepared via a spray-pyrolysis process using polystyrene (PS) nanobeads as sacrificial templates. This sandwich structure is formed by uniformly coating the exterior and interior of few-layer rGO with amorphous GeOx layers. X-ray photoelectron spectroscopy analysis reveals a Ge:O stoichiometry ratio of 1:1.7. The amorphous GeOx-coated rGO balls with sandwich structure have low charge-transfer resistance and fast Li(+)-ion diffusion rate. For example, at a current density of 2 A g(-1), the GeOx-coated rGO balls with sandwich and filled structures and the commercial GeO2 powders exhibit initial charge capacities of 795, 651, and 634 mA h g(-1), respectively; the corresponding 700th-cycle charge capacities are 758, 579, and 361 mA h g(-1). In addition, at a current density of 5 A g(-1), the rGO balls with sandwich structure have a 1600th-cycle reversible charge capacity of 629 mA h g(-1) and a corresponding capacity retention of 90.7%, as measured from the maximum reversible capacity at the 100th cycle.

  14. Microstructure and Electrochemical Behavior of Fe-Based Amorphous Metallic Coatings Fabricated by Atmospheric Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Wang, L.; He, D. Y.; Wang, F. C.; Liu, Y. B.

    2011-01-01

    A Fe48Cr15Mo14C15B6Y2 alloy with high glass forming ability (GFA) was selected to prepare amorphous metallic coatings by atmospheric plasma spraying (APS). The as-deposited coatings present a dense layered structure and low porosity. Microstructural studies show that some nanocrystals and a fraction of yttrium oxides formed during spraying, which induced the amorphous fraction of the coatings decreasing to 69% compared with amorphous alloy ribbons of the same component. High thermal stability enables the amorphous coatings to work below 910 K without crystallization. The results of electrochemical measurement show that the coatings exhibit extremely wide passive region and relatively low passive current density in 3.5% NaCl and 1 mol/L HCl solutions, which illustrate their superior ability to resist localized corrosion. Moreover, the corrosion behavior of the amorphous coatings in 1 mol/L H2SO4 solution is similar to their performance under conditions containing chloride ions, which manifests their flexible and extensive ability to withstand aggressive environments.

  15. Microstructures evolution and physical properties of laser induced NbC modified nanocrystalline composites

    NASA Astrophysics Data System (ADS)

    Li, Jianing; Liu, Kegao; Yuan, Xingdong; Shan, Feihu; Zhang, Bolun; Wang, Zhe; Xu, Wenzhuo; Zhang, Zheng; An, Xiangchen

    2017-10-01

    The nanoscale quasicrystals (NQs), amorphous and ultrafine nanocrystals (UNs) modified hard composites are produced by laser cladding (LC) of the Ni60A-TiC-NbC-Sb mixed powders on the additive manufacturing (AM) TA1 titanium alloy. The LC technique is favorable to formations of icosahedral quasicrystals (I-phase) with five-fold symmetry due to its rapid cooling and solidification characteristics. The formation mechanism of this I-phase is explained here. Under the actions of NQs, amorphous and UNs, such LC composites exhibited an extremely high micro-hardness. UNs may also intertwin with amorphous, forming yarn-shape materials. This research provides essential theoretical basis to improve the quality of laser-treated composites.

  16. Effect of hot water and heat treatment on the apatite-forming ability of titania films formed on titanium metal via anodic oxidation in acetic acid solutions.

    PubMed

    Cui, Xinyu; Kim, Hyun-Min; Kawashita, Masakazu; Wang, Longbao; Xiong, Tianying; Kokubo, Tadashi; Nakamura, Takashi

    2008-04-01

    Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile. The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  17. Induced nano-scale self-formed metal-oxide interlayer in amorphous silicon tin oxide thin film transistors.

    PubMed

    Liu, Xianzhe; Xu, Hua; Ning, Honglong; Lu, Kuankuan; Zhang, Hongke; Zhang, Xiaochen; Yao, Rihui; Fang, Zhiqiang; Lu, Xubing; Peng, Junbiao

    2018-03-07

    Amorphous Silicon-Tin-Oxide thin film transistors (a-STO TFTs) with Mo source/drain electrodes were fabricated. The introduction of a ~8 nm MoO x interlayer between Mo electrodes and a-STO improved the electron injection in a-STO TFT. Mo adjacent to the a-STO semiconductor mainly gets oxygen atoms from the oxygen-rich surface of a-STO film to form MoO x interlayer. The self-formed MoO x interlayer acting as an efficient interface modification layer could conduce to the stepwise internal transport barrier formation while blocking Mo atoms diffuse into a-STO layer, which would contribute to the formation of ohmic contact between Mo and a-STO film. It can effectively improve device performance, reduce cost and save energy for the realization of large-area display with high resolution in future.

  18. Preparation of iron oxide-impregnated spherical granular activated carbon-carbon composite and its photocatalytic removal of methylene blue in the presence of oxalic acid.

    PubMed

    Kadirova, Zukhra C; Hojamberdiev, Mirabbos; Katsumata, Ken-Ichi; Isobe, Toshihiro; Matsushita, Nobuhiro; Nakajima, Akira; Sharipov, Khasan; Okada, Kiyoshi

    2014-01-01

    The spherical granular activated carbon-carbon composites (GAC-Fe) with different iron oxide contents (Fe mass% = 0.6-10) were prepared by a pore volume impregnation method. The X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2-adsorption results confirm the presence of amorphous iron oxide, pyrolytic carbon, and graphitized globular carbon nanoparticles covered with amorphous carbon in the CAG-Fe. The rate of photodegradation of methylene blue (MB) in aqueous solution under UV light in the presence of oxalic acid correlates with porosity of the prepared materials. The total MB removal includes the combination of adsorption and photodegradation without the addition of H2O2. The results of total organic carbon (TOC) analysis reveal that the decolorization of MB in aqueous solution containing oxalic acid corresponds to the decomposition of organic compounds to CO2 and H2O.

  19. Synthesis, thermal stability and the effects of ion irradiation in amorphous Si-O-C alloys

    NASA Astrophysics Data System (ADS)

    Colón Santana, Juan A.; Mora, Elena Echeverría; Price, Lloyd; Balerio, Robert; Shao, Lin; Nastasi, Michael

    2015-05-01

    Amorphous films of Si-O-C alloys were synthesized via sputtering deposition at room temperature. These alloys were characterized using grazing incidence diffraction, both as a function of temperature and irradiation dose. It was found that the material retained its amorphous structure, both at high temperatures (up to 1200 °C) and ion irradiation doses up to 1.0 dpa. The depth profile from photoemission spectroscopy provided evidence of the oxidation state of these alloys and their atomic composition. The studies suggest that Si-O-C alloys might belong to a group of radiation tolerant materials suitable for applications in reactor-like harsh environments.

  20. Composition-controlled active-passive transition and corrosion behavior of Fe-Cr(Mo)-Zr-B bulk amorphous steels

    NASA Astrophysics Data System (ADS)

    Si, Jiajia; Wu, Yidong; Wang, Tan; Liu, Yanhui; Hui, Xidong

    2018-07-01

    Various corrosive environments in daily life and industry have put forward high requirement on corrosion resistance of metals, especially steels. Unlike the strict demand in Cr content of crystalline stainless steels, amorphous steels (ASs) with lower Cr content can be endowed with outstanding corrosion resistance, while the intrinsic mechanism is not fully understood. Herein, we present a novel Fe92-x-y-zCrxMoyZr8Bz (6 ≤ x ≤ 40, 0 ≤ y ≤ 22, and 12 ≤ z ≤ 18) bulk amorphous steel (BAS) forming system and reveal the synergistic effect of Cr and Mo in determining the chemical stability of oxide films. It has been found the Fe92-x-zCrxZr8Bz BASs with 1 mm in diameter display a Cr-controlling active-passive transition at the Cr threshold of ∼25% in 1 M hydrochloric acid. When adding minor Mo into the BASs, the Cr threshold can be remarkably reduced by forming favorable hexavalent Mo oxides. The generation of Mo6+ is facilitated by atomic selective dissolution at the interface and can promote the passivation. In contrast, when the Cr content of the Mo-doped glasses exceeds 25%, few Mo6+ oxides would produce as the prior formation of protective passive films inhibits the further oxidation of Mo. Therefore, manipulating the active-passive transition properly is crucial to designing ASs with high stainlessness.

  1. Synergistic effect of sunlight induced photothermal conversion and H2O2 release based on hybridized tungsten oxide gel for cancer inhibition

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Gao, Yibo; Gao, Xinghua; Wang, Hua; Tian, Jingxuan; Wang, Li; Zhou, Bingpu; Ye, Ziran; Wan, Jun; Wen, Weijia

    2016-10-01

    A highly efficient photochromic hydrogel was successfully fabricated via casting precursor, which is based on amorphous tungsten oxide and poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide). Under simulated solar illumination, the hydrogel has a rapid and controlled temperature increasing ratio as its coloration degree. Localized electrons in the amorphous tungsten oxide play a vital role in absorption over a broad range of wavelengths from 400 nm to 1100 nm, encompassing the entire visible light and infrared regions in the solar spectrum. More importantly, the material exhibits sustainable released H2O2 induced by localized electrons, which has a synergistic effect with the rapid surface temperature increase. The amount of H2O2 released by each film can be tuned by the light irradiation, and the film coloration can indicate the degree of oxidative stress. The ability of the H2O2-releasing gels in vitro study was investigated to induce apoptosis in melanoma tumor cells and NIH 3T3 fibroblasts. The in vivo experimental results indicate that these gels have a greater healing effect than the control in the early stages of tumor formation.

  2. Synergistic effect of sunlight induced photothermal conversion and H2O2 release based on hybridized tungsten oxide gel for cancer inhibition

    PubMed Central

    Wang, Cong; Gao, Yibo; Gao, Xinghua; Wang, Hua; Tian, Jingxuan; Wang, Li; Zhou, Bingpu; Ye, Ziran; Wan, Jun; Wen, Weijia

    2016-01-01

    A highly efficient photochromic hydrogel was successfully fabricated via casting precursor, which is based on amorphous tungsten oxide and poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide). Under simulated solar illumination, the hydrogel has a rapid and controlled temperature increasing ratio as its coloration degree. Localized electrons in the amorphous tungsten oxide play a vital role in absorption over a broad range of wavelengths from 400 nm to 1100 nm, encompassing the entire visible light and infrared regions in the solar spectrum. More importantly, the material exhibits sustainable released H2O2 induced by localized electrons, which has a synergistic effect with the rapid surface temperature increase. The amount of H2O2 released by each film can be tuned by the light irradiation, and the film coloration can indicate the degree of oxidative stress. The ability of the H2O2-releasing gels in vitro study was investigated to induce apoptosis in melanoma tumor cells and NIH 3T3 fibroblasts. The in vivo experimental results indicate that these gels have a greater healing effect than the control in the early stages of tumor formation. PMID:27775086

  3. Synthesis of crystalline and amorphous, particle-agglomerated 3-D nanostructures of Al and Si oxides by femtosecond laser and the prediction of these particle sizes

    NASA Astrophysics Data System (ADS)

    Sivayoganathan, Mugunthan; Tan, Bo; Venkatakrishnan, Krishnan

    2012-11-01

    We report a single step technique of synthesizing particle-agglomerated, amorphous 3-D nanostructures of Al and Si oxides on powder-fused aluminosilicate ceramic plates and a simple novel method of wafer-foil ablation to fabricate crystalline nanostructures of Al and Si oxides at ambient conditions. We also propose a particle size prediction mechanism to regulate the size of vapor-condensed agglomerated nanoparticles in these structures. Size characterization studies performed on the agglomerated nanoparticles of fabricated 3-D structures showed that the size distributions vary with the fluence-to-threshold ratio. The variation in laser parameters leads to varying plume temperature, pressure, amount of supersaturation, nucleation rate, and the growth rate of particles in the plume. The novel wafer-foil ablation technique could promote the possibilities of fabricating oxide nanostructures with varying Al/Si ratio, and the crystallinity of these structures enhances possible applications. The fabricated nanostructures of Al and Si oxides could have great potentials to be used in the fabrication of low power-consuming complementary metal-oxide-semiconductor circuits and in Mn catalysts to enhance the efficiency of oxidation on ethylbenzene to acetophenone in the super-critical carbon dioxide.

  4. Synthesis of crystalline and amorphous, particle-agglomerated 3-D nanostructures of Al and Si oxides by femtosecond laser and the prediction of these particle sizes.

    PubMed

    Sivayoganathan, Mugunthan; Tan, Bo; Venkatakrishnan, Krishnan

    2012-11-09

    We report a single step technique of synthesizing particle-agglomerated, amorphous 3-D nanostructures of Al and Si oxides on powder-fused aluminosilicate ceramic plates and a simple novel method of wafer-foil ablation to fabricate crystalline nanostructures of Al and Si oxides at ambient conditions. We also propose a particle size prediction mechanism to regulate the size of vapor-condensed agglomerated nanoparticles in these structures. Size characterization studies performed on the agglomerated nanoparticles of fabricated 3-D structures showed that the size distributions vary with the fluence-to-threshold ratio. The variation in laser parameters leads to varying plume temperature, pressure, amount of supersaturation, nucleation rate, and the growth rate of particles in the plume. The novel wafer-foil ablation technique could promote the possibilities of fabricating oxide nanostructures with varying Al/Si ratio, and the crystallinity of these structures enhances possible applications. The fabricated nanostructures of Al and Si oxides could have great potentials to be used in the fabrication of low power-consuming complementary metal-oxide-semiconductor circuits and in Mn catalysts to enhance the efficiency of oxidation on ethylbenzene to acetophenone in the super-critical carbon dioxide.

  5. Synthesis of crystalline and amorphous, particle-agglomerated 3-D nanostructures of Al and Si oxides by femtosecond laser and the prediction of these particle sizes

    PubMed Central

    2012-01-01

    We report a single step technique of synthesizing particle-agglomerated, amorphous 3-D nanostructures of Al and Si oxides on powder-fused aluminosilicate ceramic plates and a simple novel method of wafer-foil ablation to fabricate crystalline nanostructures of Al and Si oxides at ambient conditions. We also propose a particle size prediction mechanism to regulate the size of vapor-condensed agglomerated nanoparticles in these structures. Size characterization studies performed on the agglomerated nanoparticles of fabricated 3-D structures showed that the size distributions vary with the fluence-to-threshold ratio. The variation in laser parameters leads to varying plume temperature, pressure, amount of supersaturation, nucleation rate, and the growth rate of particles in the plume. The novel wafer-foil ablation technique could promote the possibilities of fabricating oxide nanostructures with varying Al/Si ratio, and the crystallinity of these structures enhances possible applications. The fabricated nanostructures of Al and Si oxides could have great potentials to be used in the fabrication of low power-consuming complementary metal-oxide-semiconductor circuits and in Mn catalysts to enhance the efficiency of oxidation on ethylbenzene to acetophenone in the super-critical carbon dioxide. PMID:23140103

  6. Transformation of Graphitic and Amorphous Carbon Dust to Complex Organic Molecules in a Massive Carbon Cycle in Protostellar Nebulae

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    More than 95% of silicate minerals and other oxides found in meteorites were melted, or vaporized and recondensed in the Solar Nebula prior to their incorporation into meteorite parent bodies. Gravitational accretion energy and heating via radioactive decay further transformed oxide minerals accreted into planetesimals. In such an oxygen-rich environment the carbonaceous dust that fell into the nebula as an intimate mixture with oxide grains should have been almost completely converted to CO. While some pre-collapse, molecular-cloud carbonaceous dust does survive, much in the same manner as do pre-solar oxide grains, such materials constitute only a few percent of meteoritic carbon and are clearly distinguished by elevated D/H, N-15/N-16, C-13/C-12 ratios or noble gas patterns. Carbonaceous Dust in Meteorites: We argue that nearly all of the carbon in meteorites was synthesized in the Solar Nebula from CO and that this CO was generated by the reaction of carbonaceous dust with solid oxides, water or OH. It is probable that some fraction of carbonaceous dust that is newly synthesized in the Solar Nebula is also converted back into CO by additional thermal processing. CO processing might occur on grains in the outer nebula through irradiation of CO-containing ice coatings or in the inner nebula via Fischer-Tropsch type (FTT) reactions on grain surfaces. Large-scale transport of both gaseous reaction products and dust from the inner nebula out to regions where comets formed would spread newly formed carbonaceous materials throughout the solar nebula. Formation of Organic Carbon: Carbon dust in the ISM might easily be described as inorganic graphite or amorphous carbon, with relatively low structural abundances of H, N, O and S . Products of FTT reactions or organics produced via irradiation of icy grains contain abundant aromatic and aliphatic hydrocarbons. aldehydes, keytones, acids, amines and amides.. The net result of the massive nebular carbon cycle is to convert relatively inert carbonaceous dust from the ISM into the vital organic precursors to life such as amino acids and sugars intimately mixed with dust and ice in primitive planetesimals. Since the number of carbon atoms entering the Solar Nebula as dust exceeds the number of atoms entering the nebula as oxide grains. the formation of large quantities of complex organic molecules may represent the largest single chemical cycle in the nebula.

  7. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas

    USGS Publications Warehouse

    Sharif, M.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Hays, P.D.; Kresse, T.M.; Fazio, J.A.

    2008-01-01

    Twenty one of 118 irrigation water wells in the shallow (25-30??m thick) Mississippi River Valley alluvial aquifer in the Bayou Bartholomew watershed, southeastern Arkansas had arsenic (As) concentrations (< 0.5 to 77????g/L) exceeding 10????g/L. Sediment and groundwater samples were collected and analyzed from the sites of the highest, median, and lowest concentrations of As in groundwater in the alluvial aquifers located at Jefferson County, Arkansas. A traditional five-step sequential extraction was performed to differentiate the exchangeable, carbonate, amorphous Fe and Mn oxide, organic, and hot HNO3-leachable fraction of As and other compounds in sediments. The Chao reagent (0.25??M hydroxylamine hydrochloride in 0.25??M HCl) removes amorphous Fe and Mn oxides and oxyhydroxides (present as coatings on grains and amorphous minerals) by reductive dissolution and is a measure of reducible Fe and Mn in sediments. The hot HNO3 extraction removes mostly crystalline metal oxides and all other labile forms of As. Significant total As (20%) is complexed with amorphous Fe and Mn oxides in sediments. Arsenic abundance is not significant in carbonates or organic matter. Significant (40-70????g/kg) exchangeable As is only present at shallow depth (0-1??m below ground surface). Arsenic is positively correlated to Fe extracted by Chao reagent (r = 0.83) and hot HNO3 (r = 0.85). Arsenic extracted by Chao reagent decreases significantly with depth as compared to As extracted by hot HNO3. Fe (II)/Fe (the ratio of Fe concentration in the extracts of Chao reagent and hot HNO3) is positively correlated (r = 0.76) to As extracted from Chao reagent. Although Fe (II)/Fe increases with depth, the relative abundance of reducible Fe decreases noticeably with depth. The amount of reducible Fe, as well as As complexed to amorphous Fe and Mn oxides and oxyhydroxides decreases with depth. Possible explanations for the decrease in reducible Fe and its complexed As with depth include historic flushing of As and Fe from hydrous ferric oxides (HFO) by microbially-mediated reductive dissolution and aging of HFO to crystalline phases. Hydrogeochemical data suggests that the groundwater in the area falls in the mildly reducing (suboxic) to relatively highly reducing (anoxic) zone, and points to reductive dissolution of HFO as the dominant As release mechanism. Spatial variability of gypsum solubility and simultaneous SO42- reduction with co-precipitation of As and sulfide is an important limiting process controlling the concentration of As in groundwater in the area. ?? 2008 Elsevier B.V. All rights reserved.

  8. Transparent Oxide Thin-Film Transistors: Production, Characterization and Integration

    NASA Astrophysics Data System (ADS)

    Barquinha, Pedro Miguel Candido

    This dissertation is devoted to the study of the emerging area of transparent electronics, summarizing research work regarding the development of n-type thin-film transistors (TFTs) based on sputtered oxide semiconductors. All the materials are produced without intentional substrate heating, with annealing temperatures of only 150-200 °C being used to optimize transistor performance. The work is based on the study and optimization of active semiconductors from the gallium-indium-zinc oxide system, including both the binary compounds Ga2O3, In2O3 and ZnO, as well as ternary and quaternary oxides based on mixtures of those, such as IZO and GIZO with different atomic ratios. Several topics are explored, including the study and optimization of the oxide semiconductor thin films, their application as channel layers on TFTs and finally the implementation of the optimized processes to fabricate active matrix backplanes to be integrated in liquid crystal display (LCD) prototypes. Sputtered amorphous dielectrics with high dielectric constant (high-kappa) based on mixtures of tantalum-silicon or tantalum-aluminum oxides are also studied and used as the dielectric layers on fully transparent TFTs. These devices also include transparent and highly conducting IZO thin films as source, drain and gate electrodes. Given the flexibility of the sputtering technique, oxide semiconductors are analyzed regarding several deposition parameters, such as oxygen partial pressure and deposition pressure, as well as target composition. One of the most interesting features of multicomponent oxides such as IZO and GIZO is that, due to their unique electronic configuration and carrier transport mechanism, they allow to obtain amorphous structures with remarkable electrical properties, such as high hall-effect mobility that exceeds 60 cm2 V -1 s-1 for IZO. These properties can be easily tuned by changing the processing conditions and the atomic ratios of the multicomponent oxides, allowing to have amorphous oxides suitable to be used either as transparent semiconductors or as highly conducting electrodes. The amorphous structure, which is maintained even if the thin films are annealed at 500 °C, brings great advantages concerning interface quality and uniformity in large areas. A complete study comprising different deposition conditions of the semiconductor layer is also made regarding TFT electrical performance. Optimized devices present outstanding electrical performance, such as field-effect mobility (muFE) exceeding 20 cm2 V -1 s-1, turn-on voltage (Von) between -1 and 1 V, subthreshold slope (S) lower than 0.25 V dec-1 and On-Off ratio above 107 . Devices employing amorphous multicomponent oxides present largely improved properties when compared with the ones based on polycrystalline ZnO, mostly in terms of muFE. Within the compositional range where IZO and GIZO films are amorphous, TFT performance can be largely adjusted: for instance, high indium contents favor large mu FE but also highly negative Von, which can be compensated by proper amounts of zinc and gallium. Large oxygen concentrations during oxide semiconductor sputtering are found to be deleterious, decreasing muFE, shifting Von towards high values and turning the devices electrically unstable. It is also shown that semiconductor thickness (ds) has a very important role: for instance, by reducing ds to 10 nm it is possible to produce TFTs with Von≈0 V even using deposition conditions and/or target compositions that normally yield highly conducting films. Given the low ds of the films, this behavior is mostly related with surface states existent at the oxide semiconductor air-exposed back-surface, where depletion layers that can extend towards the dielectric/semiconductor interface are created due to the interaction with atmospheric oxygen. Different passivation layers on top of this air-exposed surface are studied, with SU-8 revealing to be to most effective one. Other important topics are source-drain contact resistance assessment and the effect of different annealing temperatures ( TA), being the properties of the TFTs dominated by TA rather than by the deposition conditions as TA increases. Fully transparent TFTs employing sputtered amorphous multicomponent dielectrics produced without intentional substrate heating present excellent electrical properties, that approach those exhibited by devices using PECVD SiO2 produced at 400 °C. Gate leakage current can be greatly reduced by using tantalum-silicon or tantalum-aluminum oxides rather than Ta2O5. A section of this dissertation is also devoted to the analysis of current stress stability and aging effects of the TFTs, being found that optimal devices exhibit recoverable threshold voltage shifts lower than 0.50 V after 24 h stress with constant drain current of 10 muA, as well as negligible aging effects during 18 months. The research work of this dissertation culminates in the fabrication of a backplane employing transparent TFTs and subsequent integration with a LCD frontplane by Hewlett-Packard. The successful operation of this initial 2.8h prototype with 128x128 pixels provides a solid demonstration that oxide semiconductor-based TFTs have the potential to largely contribute to a novel electronics era, where semiconductor materials away from conventional silicon are used to create fascinating applications, such as transparent electronic products.

  9. Arsenate Adsorption On Ruthenium Oxides: A Spectroscopic And Kinetic Investigation

    EPA Science Inventory

    Arsenate adsorption on amorphous (RuO2•1.1H2O) and crystalline (RuO2) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was ...

  10. Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple layer model

    USDA-ARS?s Scientific Manuscript database

    Selenite adsorption behavior was investigated on amorphous aluminum and iron oxides, clay minerals: kaolinite, montmorillonite, and illite, and 45 surface and subsurface soil samples from the Southwestern and Midwestern regions of the USA as a function of solution pH. Selenite adsorption decreased ...

  11. Molecular Dynamics, Recrystallization Behavior, and Water Solubility of the Amorphous Anticancer Agent Bicalutamide and Its Polyvinylpyrrolidone Mixtures.

    PubMed

    Szczurek, Justyna; Rams-Baron, Marzena; Knapik-Kowalczuk, Justyna; Antosik, Agata; Szafraniec, Joanna; Jamróz, Witold; Dulski, Mateusz; Jachowicz, Renata; Paluch, Marian

    2017-04-03

    In this paper, we investigated the molecular mobility and physical stability of amorphous bicalutamide, a poorly water-soluble drug widely used in prostate cancer treatment. Our broadband dielectric spectroscopy measurements and differential scanning calorimetry studies revealed that amorphous BIC is a moderately fragile material with a strong tendency to recrystallize from the amorphous state. However, mixing the drug with polymer polyvinylpyrrolidone results in a substantial improvement of physical stability attributed to the antiplasticizing effect governed by the polymer additive. Furthermore, IR study demonstrated the existence of specific interactions between the drug and excipient. We found out that preparation of bicalutamide-polyvinylpyrrolidone mixture in a 2-1 weight ratio completely hinder material recrystallization. Moreover, we determined the time-scale of structural relaxation in the glassy state for investigated materials. Because molecular mobility is considered an important factor governing crystallization behavior, such information was used to approximate the long-term physical stability of an amorphous drug and drug-polymer systems upon their storage at room temperature. Moreover, we found that such systems have distinctly higher water solubility and dissolution rate in comparison to the pure amorphous form, indicating the genuine formulation potential of the proposed approach.

  12. Solid-state synthesis of uniform Li2MnSiO4/C/graphene composites and their performance in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gong, Huaxu; Zhu, Yongchun; Wang, Linlin; Wei, Denghu; Liang, Jianwen; Qian, Yitai

    2014-01-01

    Uniform nanospherical Li2MnSiO4/C/graphene composites have been obtained by polyethylene glycol-600 (PEG-600) assisted solid-state reaction using spherical SiO2 as precursor, and heat treatment with the mixed carbon sources (glucose, cellulose acetate and graphene oxide). The transmission electron microscope (TEM) images show that Li2MnSiO4 nanospheres with size of 50 nm are embedded in the three-dimensional (3D) nest-like carbon network. Electrochemical measurements reveal that the composites exhibit first discharge capacity of 215.3 mAh g-1 under 0.05 C, together with a stable discharge capacity of 175 mAh g-1 after 40 cycles. The 3D carbon network and the carbon layer (amorphous carbon and graphene) are favorable for improving the electrochemical performance.

  13. Molybdenum Carbamate Nanosheets as a New Class of Potential Phase Change Materials.

    PubMed

    Zhukovskyi, Maksym; Plashnitsa, Vladimir; Petchsang, Nattasamon; Ruth, Anthony; Bajpai, Anshumaan; Vietmeyer, Felix; Wang, Yuanxing; Brennan, Michael; Pang, Yunsong; Werellapatha, Kalpani; Bunker, Bruce; Chattopadhyay, Soma; Luo, Tengfei; Janko, Boldizsar; Fay, Patrick; Kuno, Masaru

    2017-06-14

    We report for the first time the synthesis of large, free-standing, Mo 2 O 2 (μ-S) 2 (Et 2 dtc) 2 (MoDTC) nanosheets (NSs), which exhibit an electron-beam induced crystalline-to-amorphous phase transition. Both electron beam ionization and femtosecond (fs) optical excitation induce the phase transition, which is size-, morphology-, and composition-preserving. Resulting NSs are the largest, free-standing regularly shaped two-dimensional amorphous nanostructures made to date. More importantly, amorphization is accompanied by dramatic changes to the NS electrical and optical response wherein resulting amorphous species exhibit room-temperature conductivities 5 orders of magnitude larger than those of their crystalline counterparts. This enhancement likely stems from the amorphization-induced formation of sulfur vacancy-related defects and is supported by temperature-dependent transport measurements, which reveal efficient variable range hopping. MoDTC NSs represent one instance of a broader class of transition metal carbamates likely having applications because of their intriguing electrical properties as well as demonstrated ability to toggle metal oxidation states.

  14. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    DOE PAGES

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; ...

    2014-11-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing,more » between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.« less

  15. R&D issues in scale-up and manufacturing of amorphous silicon tandem modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arya, R.R.; Carlson, D.E.; Chen, L.F.

    1999-03-01

    R & D on amorphous silicon based tandem junction devices has improved the throughtput, the material utilization, and the performance of devices on commercial tin oxide coated glass. The tandem junction technology has been scaled-up to produce 8.6&hthinsp;Ft{sup 2} monolithically integrated modules in manufacturing at the TF1 plant. Optimization of performance and stability of these modules is ongoing. {copyright} {ital 1999 American Institute of Physics.}

  16. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.

    PubMed

    Guan, Dongsheng; Cai, Chuan; Wang, Ying

    2011-04-01

    We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.

  17. Effect of O 2 gas partial pressure on structures and dielectric characteristics of rf sputtered ZrO 2 thin films

    NASA Astrophysics Data System (ADS)

    Ma, C. Y.; Lapostolle, F.; Briois, P.; Zhang, Q. Y.

    2007-08-01

    Amorphous and polycrystalline zirconium oxide thin films have been deposited by reactive rf magnetron sputtering in a mixed argon/oxygen or pure oxygen atmosphere with no intentional heating of the substrate. The films were characterized by high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and capacitance versus voltage ( C- V) measurements to investigate the variation of structure, surface morphology, thickness of SiO 2-like interfacial layer as well as dielectric characteristics with different oxygen partial pressures. The films deposited at low oxygen partial pressures (less than 15%) are amorphous and dense with a smooth surface. In contrast, the films prepared at an oxygen partial pressure higher than 73% are crystallized with the microstructure changing from the mixture of monoclinic and tetragonal phases to a single monoclinic structure. The film structural transition is believed to be consequences of decrease in the oxygen vacancy concentration in the film and of increase of the energetically neutral particles in the plasma due to an increased oxygen partial pressure. SE measurements showed that significant interfacial SiO 2 growth has taken place above approximately 51%. The best C- V results in terms of relative dielectric constant values are obtained for thin films prepared at an oxygen partial pressure of 15%.

  18. Engineering of air-stable Fe/C/Pd composite nanoparticles for environmental remediation applications

    NASA Astrophysics Data System (ADS)

    Haham, Hai; Grinblat, Judith; Sougrati, Moulay-Tahar; Stievano, Lorenzo; Margel, Shlomo

    2015-09-01

    The present manuscript presents a convenient method for the synthesis of iron/carbon (Fe/C) nanoparticles (NPs) coated with much smaller Pd NPs for the removal of halogenated organic pollutants. For this purpose, iron oxide/polyvinylpyrrolidone (IO/PVP) NPs were first prepared by the thermal decomposition of ferrocene mixed with PVP at 350 °C under an inert atmosphere. IO,Fe/C and Fe/C NPs coated with graphitic and amorphous carbon layers were then produced by annealing the IO/PVP NPs at 500 and 600 °C, respectively, under an inert atmosphere. The effect of the annealing temperature on the chemical composition, shape, crystallinity, surface area and magnetic properties of the IO/PVP, IO,Fe/C and Fe/C NPs has been elucidated. Air-stable Fe/C/Pd NPs were produced by mixing the precursor palladium acetate with the air-stable Fe/C NPs in ethanol. The obtained Fe/C/Pd NPs demonstrated significantly higher environmental activity than the Fe/C NPs on eosin Y, a model halogenated organic pollutant. The environmental activity of the Fe/C/Pd NPs also increased with their increasing Pd content.

  19. Charge injection from gate electrode by simultaneous stress of optical and electrical biases in HfInZnO amorphous oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Woong; Kim, Jang Hyun; Chang, Ji Soo; Kim, Sang Wan; Sun, Min-Chul; Kim, Garam; Kim, Hyun Woo; Park, Jae Chul; Song, Ihun; Kim, Chang Jung; Jung, U. In; Park, Byung-Gook

    2010-11-01

    A comprehensive study is done regarding stabilities under simultaneous stress of light and dc-bias in amorphous hafnium-indium-zinc-oxide thin film transistors. The positive threshold voltage (Vth) shift is observed after negative gate bias and light stress, and it is completely different from widely accepted phenomenon which explains that negative-bias stress results in Vth shift in the left direction by bias-induced hole-trapping. Gate current measurement is performed to explain the unusual positive Vth shift under simultaneous application of light and negative gate bias. As a result, it is clearly found that the positive Vth shift is derived from electron injection from gate electrode to gate insulator.

  20. Silicon heterojunction solar cell with passivated hole selective MoOx contact

    NASA Astrophysics Data System (ADS)

    Battaglia, Corsin; de Nicolás, Silvia Martín; De Wolf, Stefaan; Yin, Xingtian; Zheng, Maxwell; Ballif, Christophe; Javey, Ali

    2014-03-01

    We explore substoichiometric molybdenum trioxide (MoOx, x < 3) as a dopant-free, hole-selective contact for silicon solar cells. Using an intrinsic hydrogenated amorphous silicon passivation layer between the oxide and the silicon absorber, we demonstrate a high open-circuit voltage of 711 mV and power conversion efficiency of 18.8%. Due to the wide band gap of MoOx, we observe a substantial gain in photocurrent of 1.9 mA/cm2 in the ultraviolet and visible part of the solar spectrum, when compared to a p-type amorphous silicon emitter of a traditional silicon heterojunction cell. Our results emphasize the strong potential for oxides as carrier selective heterojunction partners to inorganic semiconductors.

  1. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovley, D.R.; Phillips, E.J.P.

    1986-10-01

    The distribution of Fe(III), its availability for microbial reduction, and factors controlling Fe(III) availability were investigated in sediments from a freshwater site in the Potomac River Estuary. Fe(III) reduction in sediments incubated under anaerobic conditions and depth profiles of oxalate-extractable Fe(III) indicated that Fe(III) reduction was limited to depths of 4 cm or less, with the most intense Fe(III) reduction in the top 1 cm. In incubations of the upper 4 cm of the sediments, Fe(III) reduction was as important as methane production as a pathway for anaerobic electron flow because of the high rates of Fe(III) reduction in themore » 0- 0.5-cm interval. Most of the oxalate-extractable Fe(III) in the sediments was not reduced and persisted to a depth of at least 20 cm. The incomplete reduction was not the result of a lack of suitable electron donors. The oxalate-extractable Fe(III) that was preserved in the sediments was considered to be in a form other than amorphous Fe(III) oxyhydroxide, since synthetic amorphous Fe(III) oxyhydroxide, amorphous Fe(III) oxyhydroxide adsorbed onto clay, and amorphous Fe(III) oxyhydroxide saturated with adsorbed phosphate or fulvic acids were all readily reduced. Fe/sub 3/O/sub 4/ and the mixed Fe(III)-Fe(II) compound(s) that were produced during the reduction of amorphous Fe(III) oxyhydroxide in an enrichment culture were oxalate extractable but were not reduced, suggesting that mixed Fe(III)-Fe(II) compounds might account for the persistence of oxalate-extractable Fe(III) in the sediments.« less

  2. Effect of negative bias on the composition and structure of the tungsten oxide thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Meihan; Lei, Hao; Wen, Jiaxing; Long, Haibo; Sawada, Yutaka; Hoshi, Yoichi; Uchida, Takayuki; Hou, Zhaoxia

    2015-12-01

    Tungsten oxide thin films were deposited at room temperature under different negative bias voltages (Vb, 0 to -500 V) by DC reactive magnetron sputtering, and then the as-deposited films were annealed at 500 °C in air atmosphere. The crystal structure, surface morphology, chemical composition and transmittance of the tungsten oxide thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis spectrophotometer. The XRD analysis reveals that the tungsten oxide films deposited at different negative bias voltages present a partly crystallized amorphous structure. All the films transfer from amorphous to crystalline (monoclinic + hexagonal) after annealing 3 h at 500 °C. Furthermore, the crystallized tungsten oxide films show different preferred orientation. The morphology of the tungsten oxide films deposited at different negative bias voltages is consisted of fine nanoscale grains. The grains grow up and conjunct with each other after annealing. The tungsten oxide films deposited at higher negative bias voltages after annealing show non-uniform special morphology. Substoichiometric tungsten oxide films were formed as evidenced by XPS spectra of W4f and O1s. As a result, semi-transparent films were obtained in the visible range for all films deposited at different negative bias voltages.

  3. Xenon-ion-induced and thermal mixing of Co/Si bilayers and their interplay

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Zhang, K.; Popović, M.; Bibić, N.; Hofsäss, H.; Lieb, K. P.

    2011-05-01

    Studies on ion-irradiated transition-metal/silicon bilayers demonstrate that interface mixing and silicide phase formation depend sensitively on the ion and film parameters, including the structure of the metal/Si interface. Thin Co layers e-gun evaporated to a thickness of 50 nm on Si(1 0 0) wafers were bombarded at room temperature with 400-keV Xe + ions at fluences of up to 3 × 10 16 cm -2. We used either crystalline or pre-amorphized Si wafers the latter ones prepared by 1.0-keV Ar-ion implantation. The as-deposited or Xe-ion-irradiated samples were then isochronally annealed at temperatures up to 700 °C. Changes of the bilayer structures induced by ion irradiation and/or annealing were investigated with RBS, XRD and HRTEM. The mixing rate for the Co/c-Si couples, Δ σ2/ Φ = 3.0(4) nm 4, is higher than the value expected for ballistic mixing and about half the value typical for spike mixing. Mixing of pre-amorphized Si is much weaker relative to crystalline Si wafers, contrary to previous results obtained for Fe/Si bilayers. Annealing of irradiated samples produces very similar interdiffusion and phase formation patterns above 400 °C as in the non-irradiated Co/Si bilayers: the phase evolution follows the sequence Co 2Si → CoSi → CoSi 2.

  4. Amorphous Ni(OH)2/CQDs microspheres for highly sensitive non-enzymatic glucose detection prepared via CQDs induced aggregation process

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajie; Yin, Haoyong; Cui, Zhenzhen; Qin, Dongyu; Gong, Jianying; Nie, Qiulin

    2017-10-01

    Non-enzymatic electrochemical sensors for the detection of glucose were designed based on amorphous Ni(OH)2/CQDs microspheres. The amorphous Ni(OH)2/CQDs microspheres were prepared by a CQDs assistant crystallization inhibition process. The morphologies and composition of the microspheres were characterized by SEM, TEM, XRD, EDS, and TG/DSC. The results showed that the microspheres had uniform heterogeneous phases with amorphous Ni(OH)2 and CQDs. The sensor based on amorphous Ni(OH)2/CQDs microspheres showed remarkable electrocatalytic activity towards glucose oxidation comparing to the conventional crystalline Ni(OH)2, which included two linear range (20 μM-350 μM and 0.45mM-2.5 mM) with high selectivity of 2760.05 and 1853.64 μA mM-1cm-2. Moreover, the interference from the commonly interfering species such as urea, ascorbic acid, NaCl, L-proline and L-Valine, can be effectively avoided. The high sensitivity, wide glucose detection range and good selectivity of the electrode may be due to their synergistic effect of amorphous phase and CQDs incorporation. These findings may promote the application of amorphous Ni(OH)2 as advanced electrochemical glucose sensing materials.

  5. Processing and characterization of Zr-based metallic glass by laser direct deposition

    NASA Astrophysics Data System (ADS)

    Bae, Heehun

    Bulk Metallic Glass has become famous for its exceptional mechanical and corrosion properties. Especially, Zirconium has been the prominent constituent in Bulk Metallic Glass due to its superior glass forming ability, the ability to form amorphous phase with low cooling rate, thereby giving advantages in structural applications. In this study, Zirconium powder was alloyed with Aluminum, Nickel and Copper powder at an atomic ratio of 65:10:10:15, respectively. Using the ball milling process to mix the powders, Zr65Al10Ni 10Cu15 amorphous structure was manufactured by laser direct deposition. Laser power and laser scanning speed were optimized to increase the fraction of amorphous phase. X-ray Diffraction confirmed the existence of both amorphous and crystalline phase by having a wide halo peak and sharp intense peak in the spectrum. Differential Scanning Calorimetry proved the presence of amorphous phase and glass transition was observed to be around 655 K. Scanning electron microscopy showed the microstructure of the deposited sample to have repetitive amorphous and crystalline phase as XRD examined. Crystalline phase resulted from the laser reheating and remelting process due to subsequent laser scan. Laser direct deposited amorphous/crystalline composite showed Vickers Hardness of 670 Hv and exhibited improved corrosion resistance in comparison to fully-crystallized sample. The compression test showed that, due to the existence of crystalline phase, fracture strain of Zr65Al10Ni10Cu 15 amorphous composites was enhanced from less than 2% to as high as 5.7%, compared with fully amorphous metallic glass.

  6. Top-down Fabrication and Enhanced Active Area Electronic Characteristics of Amorphous Oxide Nanoribbons for Flexible Electronics.

    PubMed

    Jang, Hyun-June; Joong Lee, Ki; Jo, Kwang-Won; Katz, Howard E; Cho, Won-Ju; Shin, Yong-Beom

    2017-07-18

    Inorganic amorphous oxide semiconductor (AOS) materials such as amorphous InGaZnO (a-IGZO) possess mechanical flexibility and outstanding electrical properties, and have generated great interest for use in flexible and transparent electronic devices. In the past, however, AOS devices required higher activation energies, and hence higher processing temperatures, than organic ones to neutralize defects. It is well known that one-dimensional nanowires tend to have better carrier mobility and mechanical strength along with fewer defects than the corresponding two-dimensional films, but until now it has been difficult, costly, and impractical to fabricate such nanowires in proper alignments by either "bottom-up" growth techniques or by "top-down" e-beam lithography. Here we show a top-down, cost-effective, and scalable approach for the fabrication of parallel, laterally oriented AOS nanoribbons based on lift-off and nano-imprinting. High mobility (132 cm 2 /Vs), electrical stability, and transparency are obtained in a-IGZO nanoribbons, compared to the planar films of the same a-IGZO semiconductor.

  7. Facile formation of metallic bismuth/bismuth oxide heterojunction on porous carbon with enhanced photocatalytic activity.

    PubMed

    Zhang, Liping; Ghimire, Pramila; Phuriragpitikhon, Jenjira; Jiang, Baojiang; Gonçalves, Alexandre A S; Jaroniec, Mietek

    2018-03-01

    Bismuth/bismuth oxide heterojunction on porous carbon (Bi 0 /Bi 2 O 3 @C) was successfully prepared by a surfactant-assisted sol-gel method. This composite photocatalyst was fabricated by depositing Bi 2 O 3 and metallic bismuth nanoparticles (NPs) on porous carbon sheets. Bi NPs were created by in-situ reduction of Bi 2 O 3 with amorphous carbon. During the synthesis, bismuth and carbon precursors were mixed in different ratios, resulting in distinct amounts of metallic bismuth in the composites. The composites showed large specific surface area and pore volume as well as strong light absorption ability due to the existing carbon. In addition, the plasmonic bismuth NPs were found to behave as a noble metal, which is able to generate hot charge carriers under visible light irradiation. Photocatalytic performance of the Bi 0 /Bi 2 O 3 @C composites was investigated by degradation of methylene blue. It turned out that the composites showed much higher efficiency as compared to bare Bi 2 O 3 , which may be attributed to the synergistic effects of porous structures, improved optical absorption, and surface plasmon resonance. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Chemical and Physical Interactions of Martian Surface Material

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.

    1999-09-01

    A model of alteration and maturation of the Martian surface material is described involving both chemical and physical interactions. Physical processes involve distribution and mixing of the fine-grained soil particles across the surface and into the atmosphere. Chemical processes include reaction of sulfate, salt and oxidizing components of the soil particles; these agents in the soils deposited on rocks will chew through the rock minerals forming coatings and will bind surface soils together to form duricrust deposits. Formation of crystalline iron oxide/oxyhydroxide minerals through hydrothermal processes and of poorly crystalline and amorphous phases through palagonitic processes both contribute to formation of the soil particles. Chemical and physical alteration of these soil minerals and phases contribute to producing the chemical, magnetic and spectroscopic character of the Martian soil as observed by Mars Pathfinder and Mars Global Surveyor. Minerals such as maghemite/magnetite and jarosite/alunite have been observed in terrestrial volcanic soils near steam vents and may be important components of the Martian surface material. The spectroscopic properties of several terrestrial volcanic soils containing these minerals have been analyzed and evaluated in terms of the spectroscopic character of the surface material on Mars.

  9. Control of Silver Diffusion in Low-Temperature Co-Fired Diopside Glass-Ceramic Microwave Dielectrics

    PubMed Central

    Chou, Chen-Chia; Chang, Chun-Yao; Chen, Guang-Yu; Feng, Kuei-Chih; Tsao, Chung-Ya

    2017-01-01

    Electrode material for low-temperature co-fired diopside glass-ceramic used for microwave dielectrics was investigated in the present work. Diffusion of silver from the electrode to diopside glass-ceramics degrades the performance of the microwave dielectrics. Two approaches were adopted to resolve the problem of silver diffusion. Firstly, silicon-oxide (SiO2) powder was employed and secondly crystalline phases were chosen to modify the sintering behavior and inhibit silver ions diffusion. Nanoscale amorphous SiO2 powder turns to the quartz phase uniformly in dielectric material during the sintering process, and prevents the silver from diffusion. The chosen crystalline phase mixing into the glass-ceramics enhances crystallinity of the material and inhibits silver diffusion as well. The result provides a method to decrease the diffusivity of silver ions by adding the appropriate amount of SiO2 and appropriate crystalline ceramics in diopside glass-ceramic dielectric materials. Finally, we used IEEE 802.11a 5.8 GHz as target specification to manufacture LTCC antenna and the results show that a good broadband antenna was made using CaMgSi2O6 with 4 wt % silicon oxide. PMID:29286330

  10. Influence of KMnO4 Concentrationon Infrared Emissivity of Coatings Formed on TC4 Alloys by Micro-Arc Oxidation

    PubMed Central

    Li, Ying; Li, Chaozhong; Hu, Dan; Li, Zhengxian; Xi, Zhengping

    2017-01-01

    Ceramic coatings with high emissivity were fabricated on TC4 alloys by micro-arc oxidation technique (MAO) in mixed silicate and phosphate electrolytes with varying KMnO4 addition. The microstructure, phase and chemical composition were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), and the infrared emissivity of the MAO coatings was measured in a waveband of 5–20 μm. The results show that the thickness of the coatings increased with the addition of KMnO4, but the roughness of the coatings first decreased and then increased slightly due to the inhibitory effect of KMnO4 on Na2SiO3 deposition. The main phase composition of the coatings was anatase and rutile TiO2, amorphous form of SiO2 and MnO2. The infrared emissivity value of the coatings strongly depended on KMnO4 concentration, the coating formed at the concentration of 0.8 g/L KMnO4 reached the highest and an average of up to 0.87 was observed. PMID:29137192

  11. Stabilizing Nanocrystalline Oxide Nanofibers at Elevated Temperatures by Coating Nanoscale Surface Amorphous Films.

    PubMed

    Yao, Lei; Pan, Wei; Luo, Jian; Zhao, Xiaohui; Cheng, Jing; Nishijima, Hiroki

    2018-01-10

    Nanocrystalline materials often exhibit extraordinary mechanical and physical properties but their applications at elevated temperatures are impaired by the rapid grain growth. Moreover, the grain growth in nanocrystalline oxide nanofibers at high temperatures can occur at hundreds of degrees lower than that would occur in corresponding bulk nanocrystalline materials, which would eventually break the fibers. Herein, by characterizing a model system of scandia-stabilized zirconia using hot-stage in situ scanning transmission electron microscopy, we discover that the enhanced grain growth in nanofibers is initiated at the surface. Subsequently, we demonstrate that coating the fibers with nanometer-thick amorphous alumina layer can enhance their temperature stability by nearly 400 °C via suppressing the surface-initiated grain growth. Such a strategy can be effectively applied to other oxide nanofibers, such as samarium-doped ceria, yttrium-stabilized zirconia, and lanthanum molybdate. The nanocoatings also increase the flexibility of the oxide nanofibers and stabilize the high-temperature phases that have 10 times higher ionic conductivity. This study provides new insights into the surface-initiated grain growth in nanocrystalline oxide nanofibers and develops a facile yet innovative strategy to improve the high-temperature stability of nanofibers for a broad range of applications.

  12. Tailoring the Two Dimensional Electron Gas at Polar ABO3/SrTiO3 Interfaces for Oxide Electronics.

    PubMed

    Li, Changjian; Liu, Zhiqi; Lü, Weiming; Wang, Xiao Renshaw; Annadi, Anil; Huang, Zhen; Zeng, Shengwei; Ariando; Venkatesan, T

    2015-08-26

    The 2D electron gas at the polar/non-polar oxide interface has become an important platform for several novel oxide electronic devices. In this paper, the transport properties of a wide range of polar perovskite oxide ABO3/SrTiO3 (STO) interfaces, where ABO3 includes LaAlO3, PrAlO3, NdAlO3, NdGaO3 and LaGaO3 in both crystalline and amorphous forms, were investigated. A robust 4 unit cell (uc) critical thickness for metal insulator transition was observed for crystalline polar layer/STO interface while the critical thickness for amorphous ones was strongly dependent on the B site atom and its oxygen affinity. For the crystalline interfaces, a sharp transition to the metallic state (i.e. polarization catastrophe induced 2D electron gas only) occurs at a growth temperature of 515 °C which corresponds to a critical relative crystallinity of ~70 ± 10% of the LaAlO3 overlayer. This temperature is generally lower than the metal silicide formation temperature and thus offers a route to integrate oxide heterojunction based devices on silicon.

  13. Metastable tantalum oxide formation during the devitrification of amorphous tantalum thin films

    DOE PAGES

    Donaldson, Olivia K.; Hattar, Khalid; Trelewicz, Jason R.

    2016-07-04

    Microstructural evolution during the devitrification of amorphous tantalum thin films synthesized via pulsed laser deposition was investigated using in situ transmission electron microscopy (TEM) combined with ex situ isothermal annealing, bright-field imaging, and electron-diffraction analysis. The phases formed during crystallization and their stability were characterized as a function of the chamber pressure during deposition, devitrification temperature, and annealing time. A range of metastable nanocrystalline tantalum oxides were identified following devitrification including multiple orthorhombic oxide phases, which often were present with, or evolved to, the tetragonal TaO 2 phase. While the appearance of these phases indicated the films were evolving tomore » the stable form of tantalum oxide—monoclinic tantalum pentoxide—it was likely not achieved for the conditions considered due to an insufficient amount of oxygen present in the films following deposition. Nevertheless, the collective in situ and ex situ TEM analysis applied to thin film samples enabled the isolation of a number of metastable tantalum oxides. As a result, new insights were gained into the transformation sequence and stability of these nanocrystalline phases, which presents opportunities for the development of advanced tantalum oxide-based dielectric materials for novel memristor designs.« less

  14. W-containing oxide layers obtained on aluminum and titanium by PEO as catalysts in thiophene oxidation

    NASA Astrophysics Data System (ADS)

    Rudnev, V. S.; Lukiyanchuk, I. V.; Vasilyeva, M. S.; Morozova, V. P.; Zelikman, V. M.; Tarkhanova, I. G.

    2017-11-01

    W-containing oxide layers fabricated on titanium and aluminum alloys by Plasma electrolytic oxidation (PEO) have been tested in the reaction of the peroxide oxidation of thiophene. Samples with two types of coatings have been investigated. Coatings I contained tungsten oxide in the matrix and on the surface of amorphous silica-titania or silica-alumina layers, while coatings II comprised crystalline WO3 and/or Al2(WO4)3. Aluminum-supported catalyst containing a smallest amount of transition metals in the form of tungsten oxides and manganese oxides in low oxidation levels showed high activity and stability.

  15. High performance n-channel thin-film transistors with an amorphous phase C60 film on plastic substrate

    NASA Astrophysics Data System (ADS)

    Na, Jong H.; Kitamura, M.; Arakawa, Y.

    2007-11-01

    We fabricated high mobility, low voltage n-channel transistors on plastic substrates by combining an amorphous phase C60 film and a high dielectric constant gate insulator titanium silicon oxide (TiSiO2). The transistors exhibited high performance with a threshold voltage of 1.13V, an inverse subthreshold swing of 252mV/decade, and a field-effect mobility up to 1cm2/Vs at an operating voltage as low as 5V. The amorphous phase C60 films can be formed at room temperature, implying that this transistor is suitable for corresponding n-channel transistors in flexible organic logic devices.

  16. Fabrication and characterization of copper oxide (CuO)–gold (Au)–titania (TiO{sub 2}) and copper oxide (CuO)–gold (Au)–indium tin oxide (ITO) nanowire heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, Nitin, E-mail: nchopra@eng.ua.edu; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487; Shi, Wenwu

    2014-10-15

    Nanoscale heterostructures composed of standing copper oxide nanowires decorated with Au nanoparticles and shells of titania and indium tin oxide were fabricated. The fabrication process involved surfactant-free and wet-chemical nucleation of gold nanoparticles on copper oxide nanowires followed by a line-of-sight sputtering of titania or indium tin oxide. The heterostructures were characterized using high resolution electron microscopy, diffraction, and energy dispersive spectroscopy. The interfaces, morphologies, crystallinity, phases, and chemical compositions were analyzed. The process of direct nucleation of gold nanoparticles on copper oxide nanoparticles resulted in low energy interface with aligned lattice for both the components. Coatings of polycrystalline titaniamore » or amorphous indium tin oxide were deposited on standing copper oxide nanowire–gold nanoparticle heterostructures. Self-shadowing effect due to standing nanowire heterostructures was observed for line-of-sight sputter deposition of titania or indium tin oxide coatings. Finally, the heterostructures were studied using Raman spectroscopy and ultraviolet–visible spectroscopy, including band gap energy analysis. Tailing in the band gap energy at longer wavelengths (or lower energies) was observed for the nanowire heterostructures. - Highlights: • Heterostructures comprised of CuO nanowires coated with Au nanoparticles. • Au nanoparticles exhibited nearly flat and low energy interface with nanowire. • Heterostructures were further sputter-coated with oxide shell of TiO{sub 2} or ITO. • The process resulted in coating of polycrystalline TiO{sub 2} and amorphous ITO shell.« less

  17. Free suspension processing of oxides to form amorphous oxide materials, appendix B

    NASA Technical Reports Server (NTRS)

    Wouch, G.

    1973-01-01

    The processing of yttria, zirconia, and alumina under weightless conditions is discussed. The process consists of levitation or position control, heating and melting, superheating, and supercooling. The use of arc imaging furnaces, lasers, induction heating, microwave, and electron beam methods are analyzed to show the advantages and disadvantages of each.

  18. Wide Bandgap Semiconductor Nanowires for Electronic, Photonic and Sensing Devices

    DTIC Science & Technology

    2012-01-05

    oxide -based thin film transistors ( TFTs ) have attracted much attention for applications like flexible electronic devices. The...crystals, and ~ 1.5 cm2.V-1.s-1 for pentacene thin films ). A number of groups have demonstrated TFTs based on α- oxide semiconductors such as zinc oxide ...show excellent long-term stability at room temperature. Results: High-performance amorphous (α-) InGaZnO-based thin film transistors ( TFTs )

  19. Fabrication of TiO2 Crystalline Coatings by Combining Ti-6Al-4V Anodic Oxidation and Heat Treatments

    PubMed Central

    Schvezov, Carlos Enrique; Ares, Alicia Esther

    2015-01-01

    The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2 layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2 anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment. PMID:25784939

  20. The role of hydrogenated amorphous silicon oxide buffer layer on improving the performance of hydrogenated amorphous silicon germanium single-junction solar cells

    NASA Astrophysics Data System (ADS)

    Sritharathikhun, Jaran; Inthisang, Sorapong; Krajangsang, Taweewat; Krudtad, Patipan; Jaroensathainchok, Suttinan; Hongsingtong, Aswin; Limmanee, Amornrat; Sriprapha, Kobsak

    2016-12-01

    Hydrogenated amorphous silicon oxide (a-Si1-xOx:H) film was used as a buffer layer at the p-layer (μc-Si1-xOx:H)/i-layer (a-Si1-xGex:H) interface for a narrow band gap hydrogenated amorphous silicon germanium (a-Si1-xGex:H) single-junction solar cell. The a-Si1-xOx:H film was deposited by plasma enhanced chemical vapor deposition (PECVD) at 40 MHz in a same processing chamber as depositing the p-type layer. An optimization of the thickness of the a-Si1-xOx:H buffer layer and the CO2/SiH4 ratio was performed in the fabrication of the a-Si1-xGex:H single junction solar cells. By using the wide band gap a-Si1-xOx:H buffer layer with optimum thickness and CO2/SiH4 ratio, the solar cells showed an improvement in the open-circuit voltage (Voc), fill factor (FF), and short circuit current density (Jsc), compared with the solar cells fabricated using the conventional a-Si:H buffer layer. The experimental results indicated the excellent potential of the wide-gap a-Si1-xOx:H buffer layers for narrow band gap a-Si1-xGex:H single junction solar cells.

  1. Protecting hydrogenation-generated oxygen vacancies in BiVO4 photoanode for enhanced water oxidation with conformal ultrathin amorphous TiO2 layer

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Zhang, Xintong; Wang, Dan; Wan, Fangxu; Liu, Yichun

    2017-05-01

    Introducing appropriate amount of oxygen vacancies by hydrogenation treatment is a simple and efficient way to improve the photoelectrochemical performance of nanostructured oxide photoanodes. However, the hydrogenation effect is often not durable due to the gradual healing of oxygen vacancies at or close to surface of photoanodes. Herein, we tackled the problem by conformal coating the hydrogenated nanoporous BiVO4 (H-BiVO4) photoanode with an ultrathin layer of amorphous TiO2. Photoelectrochemical measurements showed that a 4 nm-thick TiO2 layer could significantly improve the stability of H-BiVO4 photoanode for repeated working test, with negligible influence on the initial photocurrent compared to the uncoated one. Mott-Schottky and linear sweep voltammetry measurements showed that donor density and photocurrent density of the H-BiVO4 electrode almost decayed to the values of pristine BiVO4 electrode after 3 h test, while the amorphous TiO2-coated electrode only degraded by 6% and 5% of the initial values respectively in the same period. The investigation thus suggested that the amorphous TiO2 layer did protect the oxygen vacancies in H-BiVO4 photoanode by isolating these oxygen vacancies from environmental oxygen, while at the same time not impeding the interfacial charge transfer to water molecules due to its leaky nature.

  2. Gas uptake and chemical aging of semisolid organic aerosol particles

    PubMed Central

    Shiraiwa, Manabu; Ammann, Markus; Koop, Thomas; Pöschl, Ulrich

    2011-01-01

    Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate. PMID:21690350

  3. Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO 3, U 2O 7, and UO 4

    DOE PAGES

    Guo, Xiaofeng; Wu, Di; Xu, Hongwu; ...

    2016-09-01

    The thermal decomposition of studtite (UO 2)O 2(H 2O) 2·2H 2O results in a series of intermediate X-ray amorphous materials with general composition UO 3+x (x = 0, 0.5, 1). As an extension of a structural study on U 2O 7, this work provides detailed calorimetric data on these amorphous oxygen-rich materials since their energetics and thermal stability are unknown. These were characterized in situ by thermogravimetry, and mass spectrometry. Ex situ X-ray diffraction and infrared spectroscopy characterized their chemical bonding and local structures. This detailed characterization formed the basis for obtaining formation enthalpies by high temperature oxide melt solutionmore » calorimetry. The thermodynamic data demonstrate the metastability of the amorphous UO 3+x materials, and explain their irreversible and spontaneous reactions to generate oxygen and form metaschoepite. Thus, formation of studtite in the nuclear fuel cycle, followed by heat treatment, can produce metastable amorphous UO 3+x materials that pose the risk of significant O 2 gas. Quantitative knowledge of the energy landscape of amorphous UO 3+x was provided for stability analysis and assessment of conditions for decomposition.« less

  4. Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores

    PubMed Central

    Uberuaga, Blas Pedro; Tang, Ming; Jiang, Chao; Valdez, James A.; Smith, Roger; Wang, Yongqiang; Sickafus, Kurt E.

    2015-01-01

    Understanding and predicting radiation damage evolution in complex materials is crucial for developing next-generation nuclear energy sources. Here, using a combination of ion beam irradiation, transmission electron microscopy and X-ray diffraction, we show that, contrary to the behaviour observed in pyrochlores, the amorphization resistance of spinel compounds correlates directly with the energy to disorder the structure. Using a combination of atomistic simulation techniques, we ascribe this behaviour to structural defects on the cation sublattice that are present in spinel but not in pyrochlore. Specifically, because of these structural defects, there are kinetic pathways for the relaxation of disorder in spinel that are absent in pyrochlore. This leads to a direct correlation between amorphization resistance and disordering energetics in spinel, the opposite of that observed in pyrochlores. These results provide new insight into the origins of amorphization resistance in complex oxides beyond fluorite derivatives. PMID:26510750

  5. Near-infrared–driven decomposition of metal precursors yields amorphous electrocatalytic films

    PubMed Central

    Salvatore, Danielle A.; Dettelbach, Kevan E.; Hudkins, Jesse R.; Berlinguette, Curtis P.

    2015-01-01

    Amorphous metal-based films lacking long-range atomic order have found utility in applications ranging from electronics applications to heterogeneous catalysis. Notwithstanding, there is a limited set of fabrication methods available for making amorphous films, particularly in the absence of a conducting substrate. We introduce herein a scalable preparative method for accessing oxidized and reduced phases of amorphous films that involves the efficient decomposition of molecular precursors, including simple metal salts, by exposure to near-infrared (NIR) radiation. The NIR-driven decomposition process provides sufficient localized heating to trigger the liberation of the ligand from solution-deposited precursors on substrates, but insufficient thermal energy to form crystalline phases. This method provides access to state-of-the-art electrocatalyst films, as demonstrated herein for the electrolysis of water, and extends the scope of usable substrates to include nonconducting and temperature-sensitive platforms. PMID:26601148

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ann N.; Keller, Lindsay P.; Messenger, Scott, E-mail: lan-anh.n.nguyen@nasa.gov

    We report the chemical and structural analysis of nine presolar silicate grains and one presolar oxide grain from the ungrouped chondrite Acfer 094 and the CR chondrite Queen Alexandra Range 99177. Oxygen isotopic analyses indicate that five of these grains condensed in the outflows of asymptotic giant branch (AGB) stars, four have supernova (SN) origins, and one grain likely has a nova origin. Transmission electron microscopy studies show that most of the grains are amorphous with widely varying non-stoichiometric chemical compositions. Three crystalline AGB grains were identified: a clinoenstatite-containing grain assemblage, a Fe-rich olivine grain, and a nanocrystalline enstatite grainmore » encased in an amorphous silicate shell. An amorphous stoichiometric enstatite (MgSiO{sub 3}) SN grain likely condensed as a crystal and was later rendered amorphous. We do not observe a systematic difference in the chemistries and mineralogies of presolar silicates from different stellar sources, suggesting that the grains formed under a similar range of conditions.« less

  7. Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores

    DOE PAGES

    Uberuaga, Blas Pedro; Tang, Ming; Jiang, Chao; ...

    2015-10-29

    Understanding and predicting radiation damage evolution in complex materials is crucial for developing next-generation nuclear energy sources. Here, using a combination of ion beam irradiation, transmission electron microscopy and X-ray diffraction, we show that, contrary to the behaviour observed in pyrochlores, the amorphization resistance of spinel compounds correlates directly with the energy to disorder the structure. Using a combination of atomistic simulation techniques, we ascribe this behaviour to structural defects on the cation sublattice that are present in spinel but not in pyrochlore. Specifically, because of these structural defects, there are kinetic pathways for the relaxation of disorder in spinelmore » that are absent in pyrochlore. This leads to a direct correlation between amorphization resistance and disordering energetics in spinel, the opposite of that observed in pyrochlores. Furthermore, these results provide new insight into the origins of amorphization resistance in complex oxides beyond fluorite derivatives.« less

  8. Electrooptical properties and structural features of amorphous ITO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amosova, L. P., E-mail: l-amosova@mail.ru

    2015-03-15

    Thin indium-tin oxide (ITO) films are deposited onto cold substrates by magnetron-assisted sputtering. The dependences of the structural, electrical, and optical properties of the films on the oxygen content in the atmosphere of sputtering and the growth rate are studied. It is shown that, if the substrate temperature is no higher than the ITO crystallization temperature and the conditions of growth deviate from the optimal relationship between the oxygen pressure and the growth rate, the resistance of the layers can be six or seven orders of magnitude higher than the resistance of conducting amorphous layers and reach hundreds of megaohms.more » At the same time, the optical properties of insulating layers in the visible spectral region are completely identical to the properties of the conducing amorphous modification. A conceptual model of defects responsible for the insulating properties of amorphous ITO is proposed.« less

  9. Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores.

    PubMed

    Uberuaga, Blas Pedro; Tang, Ming; Jiang, Chao; Valdez, James A; Smith, Roger; Wang, Yongqiang; Sickafus, Kurt E

    2015-10-29

    Understanding and predicting radiation damage evolution in complex materials is crucial for developing next-generation nuclear energy sources. Here, using a combination of ion beam irradiation, transmission electron microscopy and X-ray diffraction, we show that, contrary to the behaviour observed in pyrochlores, the amorphization resistance of spinel compounds correlates directly with the energy to disorder the structure. Using a combination of atomistic simulation techniques, we ascribe this behaviour to structural defects on the cation sublattice that are present in spinel but not in pyrochlore. Specifically, because of these structural defects, there are kinetic pathways for the relaxation of disorder in spinel that are absent in pyrochlore. This leads to a direct correlation between amorphization resistance and disordering energetics in spinel, the opposite of that observed in pyrochlores. These results provide new insight into the origins of amorphization resistance in complex oxides beyond fluorite derivatives.

  10. Preparation and Characterization of ZnO Nanoparticles Supported on Amorphous SiO2

    PubMed Central

    Chen, Ying; Ding, Hao; Sun, Sijia

    2017-01-01

    In order to reduce the primary particle size of zinc oxide (ZnO) and eliminate the agglomeration phenomenon to form a monodisperse state, Zn2+ was loaded on the surface of amorphous silica (SiO2) by the hydrogen bond association between hydroxyl groups in the hydrothermal process. After calcining the precursors, dehydration condensation among hydroxyl groups occurred and ZnO nanoparticles supported on amorphous SiO2 (ZnO–SiO2) were prepared. Furthermore, the SEM and TEM observations showed that ZnO nanoparticles with a particle size of 3–8 nm were uniformly and dispersedly loaded on the surface of amorphous SiO2. Compared with pure ZnO, ZnO–SiO2 showed a much better antibacterial performance in the minimum inhibitory concentration (MIC) test and the antibacterial properties of the paint adding ZnO–SiO2 composite. PMID:28796157

  11. Efficient oxidation and sorption of arsenite using a novel titanium(IV)-manganese(IV) binary oxide sorbent.

    PubMed

    Zhang, Wei; Liu, Caihong; Zheng, Tong; Ma, Jun; Zhang, Gaosheng; Ren, Guohui; Wang, Lu; Liu, Yulei

    2018-04-19

    Owing to the high toxicity and mobility, the removal of arsenite (As(III)) is significantly more difficult than arsenate (As(V)), thus representing a major challenge in arsenite-contaminated water treatment. For efficient elimination of As(III), we successfully fabricated a novel Ti-Mn binary oxide via a simultaneous oxidation and coprecipitation process. The amorphous oxide was aggregated from nanosized particles with a high specific surface area of 349.5 m 2 /g. It could effectively oxidize As(III) to As(V) and had a high As(III) sorption capacity of 107.0 mg/g. As(III) sorption occurred rapidly and equilibrium was achieved within 24 h. The kinetic data was well fitted by the pseudo-second-order equation, indicating a chemical sorption process. The material was almost independent upon the presence of competitive ions. The As(III) removal by the sorbent is a combined process coupled oxidation with sorption, where the MnO 2 content is mainly responsible for oxidizing As(III) to As(V) and the formed As(V) is then adsorbed onto the surface of amorphous TiO 2 content, through replacing the surface hydroxyl group or the adsorbed As(III) and forming inner-sphere surface complexes. Furthermore, the arsenic-containing oxide could be effectively regenerated and reused. The bi-functional sorbent could be used as a potentially attractive sorbent for As(III) removal in drinking water treatment and environmental remediation. Copyright © 2018. Published by Elsevier B.V.

  12. Glass Forming Ability in the Equilibrium Immiscible Ag-Ta System Studied by Molecular Dynamics Simulation and Ion Beam Mixing

    NASA Astrophysics Data System (ADS)

    Zhao, Man; Dai, Xiaodong; Shen, Yixiong; Liu, Baixin

    2008-07-01

    For the equilibrium immiscible Ag-Ta system characterized by a positive heat of formation of +23 kJ/mol, a proved realistic extended Finnis-Sinclair potential is applied to study the crystal-to-amorphous transition through molecular dynamics simulations and a glass-forming range (GFR) of the Ag-Ta system is determined to be from 10 to 80 at. % of Ta, within which a disordered state is energetically favored than its crystalline counterpart of solid solution. In experiment, the uniform amorphous phases are indeed obtained, by ion beam mixing of far-from-equilibrium, in the Ag38Ta62, Ag30Ta70 and Ag20Ta80 Ag-Ta multilayered films, which fall within the GFR and thus confirm the relevance of the calculated GFR of the system.

  13. Multimillion atom simulations of dynamics of oxidation of an aluminum nanoparticle and nanoindentation on ceramics.

    PubMed

    Vashishta, Priya; Kalia, Rajiv K; Nakano, Aiichiro

    2006-03-02

    We have developed a first-principles-based hierarchical simulation framework, which seamlessly integrates (1) a quantum mechanical description based on the density functional theory (DFT), (2) multilevel molecular dynamics (MD) simulations based on a reactive force field (ReaxFF) that describes chemical reactions and polarization, a nonreactive force field that employs dynamic atomic charges, and an effective force field (EFF), and (3) an atomistically informed continuum model to reach macroscopic length scales. For scalable hierarchical simulations, we have developed parallel linear-scaling algorithms for (1) DFT calculation based on a divide-and-conquer algorithm on adaptive multigrids, (2) chemically reactive MD based on a fast ReaxFF (F-ReaxFF) algorithm, and (3) EFF-MD based on a space-time multiresolution MD (MRMD) algorithm. On 1920 Intel Itanium2 processors, we have demonstrated 1.4 million atom (0.12 trillion grid points) DFT, 0.56 billion atom F-ReaxFF, and 18.9 billion atom MRMD calculations, with parallel efficiency as high as 0.953. Through the use of these algorithms, multimillion atom MD simulations have been performed to study the oxidation of an aluminum nanoparticle. Structural and dynamic correlations in the oxide region are calculated as well as the evolution of charges, surface oxide thickness, diffusivities of atoms, and local stresses. In the microcanonical ensemble, the oxidizing reaction becomes explosive in both molecular and atomic oxygen environments, due to the enormous energy release associated with Al-O bonding. In the canonical ensemble, an amorphous oxide layer of a thickness of approximately 40 angstroms is formed after 466 ps, in good agreement with experiments. Simulations have been performed to study nanoindentation on crystalline, amorphous, and nanocrystalline silicon nitride and silicon carbide. Simulation on nanocrystalline silicon carbide reveals unusual deformation mechanisms in brittle nanophase materials, due to coexistence of brittle grains and soft amorphous-like grain boundary phases. Simulations predict a crossover from intergranular continuous deformation to intragrain discrete deformation at a critical indentation depth.

  14. Amorphous iron–chromium oxide nanoparticles with long-term stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacob, Mihail; Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova; Cazacu, Maria, E-mail: mcazacu@icmpp.ro

    2015-05-15

    Highlights: • Fe–Cr oxide nanoparticles with pre-established metals ratio were obtained. • The amorphous state and its long-term stability were highlighted by X-ray diffraction. • The average diameter of dried nanoparticles was 3.5 nm, as was estimated by TEM, AFM. • In hexane dispersion, nanoparticles with diameter in the range 2.33–4.85 nm were found. • Superparamagnetic state of NPs co-exists with diamagnetism of the organic layer. - Abstract: Iron–chromium nanoparticles (NPs) were obtained through the thermal decomposition of μ{sub 3}-oxo heterotrinuclear (FeCr{sub 2}O) acetate in the presence of sunflower oil and dodecylamine (DA) as surfactants. The average diameter of themore » NPs was 3.5 nm, as estimated on the basis of transmission electron microscopy and atomic force microscopy images. Both techniques revealed the formation of roughly approximated spheres with some irregularities and agglomerations in larger spherical assemblies of 50–100 nm. In hexane, NPs with diameters in the 2.33–4.85 nm range are individually dispersed, as emphasized by dynamic light scattering measurements. The amorphous nature of the product was emphasized by X-ray powder diffraction. The study of the magnetic properties shows the presence of superparamagnetic state of iron–chromium oxide NPs and the diamagnetic contribution from DA layer forming a shell of NPs.« less

  15. Amorphous oxides as electron transport layers in Cu(In,Ga)Se 2 superstrate devices: Amorphous oxides in Cu(In,Ga)Se 2 superstrate devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, M. D.; van Hest, M. F. A. M.; Contreras, M.

    Cu(In,Ga)Se2 (CIGS) solar cells in superstrate configuration promise improved light management and higher stability compared to substrate devices, but they have yet to deliver comparable power conversion efficiencies (PCEs). Chemical reactions between the CIGS layer and the front contact were shown in the past to deteriorate the p-n junction in superstrate devices, which led to lower efficiencies compared to the substrate-type devices. This work aims to solve this problem by identifying a buffer layer between the CIGS layer and the front contact, acting as the electron transport layer, with an optimized electron affinity, doping density and chemical stability. Using combinatorialmore » material exploration we identified amorphous gallium oxide (a-GaOx) as a potentially suitable buffer layer material. The best results were obtained for a-GaOx with an electron affinity that was found to be comparable to that of CIGS. Based on the results of device simulations, it is assumed that detrimental interfacial acceptor states are present at the interface between CIGS and a-GaOx. However, these initial experiments indicate the potential of a-GaOx in this application, and how to reach performance parity with substrate devices, by further increase of its n-type doping density.« less

  16. Fast and Universal Approach to Encapsulating Transition Bimetal Oxide Nanoparticles in Amorphous Carbon Nanotubes under an Atmospheric Environment Based on the Marangoni Effect.

    PubMed

    Li, Shuoyu; Liu, Yuyi; Guo, Peisheng; Wang, Chengxin

    2017-09-13

    Transition metal oxide nanoparticles capsuled in amorphous carbon nanotubes (ACNTs) are attractive anode materials of lithium-ion batteries (LIBs). Here, we first designed a fast and universal method with a hydromechanics conception which is called Marangoni flow to fabricate transition bimetal oxides (TBOs) in the ACNT composite with a better electrochemistry performance. Marangoni flows can produce a liquid column with several centimeters of height in a tube with one side immersed in the liquid. The key point to induce a Marangoni flow is to make a gradient of the surface tension between the surface and the inside of the solution. With our research, we control the gradient of the surface tension by controlling the viscosity of a solution. To show how our method could be generally used, we synthesize two anode materials such as (a) CoFe 2 O 4 @ACNTs, and (b) NiFe 2 O 4 @ACNTs. All of these have a similar morphology which is ∼20 μm length with a diameter of 80-100 nm for the ACNTs, and the particles (inside the ACNTs) are smaller than 5 nm. In particular, there are amorphous carbons between the nanoparticles. All of the composite materials showed an outstanding electrochemistry performance which includes a high capacity and cycling stability so that after 600 cycles the capacity changed by less than 3%.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Häusler, I., E-mail: ines.haeusler@bam.de; Dörfel, I., E-mail: Ilona.doerfel@bam.de; Peplinski, B., E-mail: Burkhard.peplinski@bam.de

    A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ballmore » milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS{sub 2} and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. - Highlights: • Ball milling of iron oxides, MoS{sub 2}, and graphite to simulate a tribofilm • Increasing coefficient of friction after ball milling of the model blend • Drastically change of the diffraction pattern of the powder mixture • TEM & XPS showed the components of the milled mixture and the process during milling. • MoS{sub 2} and graphite suffered a loss in translation symmetry or became amorphous.« less

  18. An aerosol chamber investigation of the heterogeneous ice nucleating potential of refractory nanoparticles

    NASA Astrophysics Data System (ADS)

    Saunders, R. W.; Möhler, O.; Schnaiter, M.; Benz, S.; Wagner, R.; Saathoff, H.; Connolly, P. J.; Burgess, R.; Gallagher, M.; Wills, R.; Murray, B. J.; Plane, J. M. C.

    2009-11-01

    Nanoparticles of iron oxide (crystalline and amorphous), silicon oxide and magnesium oxide were investigated for their propensity to nucleate ice over the temperature range 180-250 K, using the AIDA chamber in Karlsruhe, Germany. All samples were observed to initiate ice formation via the deposition mode at threshold ice super-saturations (RHi thresh) ranging from 105% to 140% for temperatures below 220 K. Approximately 10% of amorphous Fe2O3 particles (modal diameter = 30 nm) generated in situ from a photochemical aerosol reactor, led to ice nucleation at RHi thresh = 140% at an initial chamber temperature of 182 K. Quantitative analysis using a singular hypothesis treatment provided a fitted function [ns (190 K) = 10(3.33×sice)+8.16] for the variation in ice-active surface site density (ns: m-2) with ice saturation (sice) for Fe2O3 nanoparticles. This was implemented in an aerosol-cloud model to determine a predicted deposition (mass accommodation) coefficient for water vapour on ice of 0.1 at temperatures appropriate for the upper atmosphere. Classical nucleation theory was used to determine representative contact angles (θ) for the different particle compositions. For the in situ generated Fe2O3 particles, a slight inverse temperature dependence was observed with θ = 10.5° at 182 K, decreasing to 9.0° at 200 K (compared with 10.2° and 11.4°, respectively for the SiO2 and MgO particle samples at the higher temperature). These observations indicate that such refractory nanoparticles are relatively efficient materials for the nucleation of ice under the conditions studied in the chamber which correspond to cirrus cloud formation in the upper troposphere. The results also show that Fe2O3 particles do not act as ice nuclei under conditions pertinent for tropospheric mixed phase clouds, which necessarily form above ~233 K. At the lower temperatures (<150 K) where noctilucent clouds form during summer months in the high latitude mesosphere, higher contact angles would be expected, which may reduce the effectiveness of these particles as ice nuclei in this part of the atmosphere.

  19. An aerosol chamber investigation of the heterogeneous ice nucleating potential of refractory nanoparticles

    NASA Astrophysics Data System (ADS)

    Saunders, R. W.; Möhler, O.; Schnaiter, M.; Benz, S.; Wagner, R.; Saathoff, H.; Connolly, P. J.; Burgess, R.; Murray, B. J.; Gallagher, M.; Wills, R.; Plane, J. M. C.

    2010-02-01

    Nanoparticles of iron oxide (crystalline and amorphous), silicon oxide and magnesium oxide were investigated for their propensity to nucleate ice over the temperature range 180-250 K, using the AIDA chamber in Karlsruhe, Germany. All samples were observed to initiate ice formation via the deposition mode at threshold ice super-saturations (RHithresh) ranging from 105% to 140% for temperatures below 220 K. Approximately 10% of amorphous Fe2O3 particles (modal diameter = 30 nm) generated in situ from a photochemical aerosol reactor, led to ice nucleation at RHithresh = 140% at an initial chamber temperature of 182 K. Quantitative analysis using a singular hypothesis treatment provided a fitted function [ns(190 K)=10(3.33×sice)+8.16] for the variation in ice-active surface site density (ns:m-2) with ice saturation (sice) for Fe2O3 nanoparticles. This was implemented in an aerosol-cloud model to determine a predicted deposition (mass accommodation) coefficient for water vapour on ice of 0.1 at temperatures appropriate for the upper atmosphere. Classical nucleation theory was used to determine representative contact angles (θ) for the different particle compositions. For the in situ generated Fe2O3 particles, a slight inverse temperature dependence was observed with θ = 10.5° at 182 K, decreasing to 9.0° at 200 K (compared with 10.2° and 11.4° respectively for the SiO2 and MgO particle samples at the higher temperature). These observations indicate that such refractory nanoparticles are relatively efficient materials for the nucleation of ice under the conditions studied in the chamber which correspond to cirrus cloud formation in the upper troposphere. The results also show that Fe2O3 particles do not act as ice nuclei under conditions pertinent for tropospheric mixed phase clouds, which necessarily form above ~233 K. At the lower temperatures (<150 K) where noctilucent clouds form during summer months in the high latitude mesosphere, higher contact angles would be expected, which may reduce the effectiveness of these particles as ice nuclei in this part of the atmosphere.

  20. Mechanical mixtures of metal oxides and phosphorus pentoxide as novel precursors for the synthesis of transition-metal phosphides.

    PubMed

    Guo, Lijuan; Zhao, Yu; Yao, Zhiwei

    2016-01-21

    This study presents a new type of precursor, mechanical mixtures of metal oxides (MOs) and phosphorus pentoxide (P2O5) are used to synthesize Ni2P, Co2P and MoP phosphides by the H2 reduction method. In addition, this is first report of common solid-state P2O5 being used as a P source for the synthesis of metal phosphides. The traditional precursors are usually prepared via a complicated preparation procedure involving dissolution, drying and calcination steps. However, these novel MOs/P2O5 precursors can be obtained only by simple mechanical mixing of the starting materials. Furthermore, unlike the direct transformation from amorphous phases to phosphides, various specific intermediates were involved in the transformation from MOs/P2O5 to phosphides. It is worthy to note that the dispersions of Ni2P, Co2P and MoP obtained from MOs/P2O5 precursors were superior to those of the corresponding phosphides prepared from the abovementioned traditional precursors. It is suggested that the morphology of the as-prepared metal phosphides might be inherited from the corresponding MOs. Based on the results of XRD, XPS, SEM and TEM, the formation pathway of phosphides can be defined as MOs/P2O5 precursors → complex intermediates (metals, metal phosphates and metal oxide-phosphates) → metal phosphides.

  1. Mineralogy of Sediments on a Cold and Icy Early Mars

    NASA Astrophysics Data System (ADS)

    Rampe, E. B.; Horgan, B. H. N.; Smith, R.; Scudder, N.; Rutledge, A. M.; Bamber, E.; Morris, R. V.

    2017-12-01

    The water-related minerals discovered in ancient martian terrains suggest liquid water was abundant on the surface and/or near subsurface during Mars' early history. The debate remains, however, whether these minerals are indicative of a warm and wet or cold and icy climate. To characterize mineral assemblages of cold and icy mafic terrains, we analyzed pro- and supraglacial rocks and sediments from the Collier and Diller glacial valleys in Three Sisters, Oregon. We identified primary and secondary phases using X-ray diffraction (XRD), scanning and transmission electron microscopies with energy dispersive spectroscopy (SEM, TEM, EDS), and visible/short-wave-infrared (VSWIR) and thermal-infrared (TIR) spectroscopies. Samples from both glacial valleys are dominated by primary igneous minerals (i.e., plagioclase and pyroxene). Sediments in the Collier glacial valley contain minor to trace amounts of phyllosilicates and zeolites, but these phases are likely detrital and sourced from hydrothermally altered units on North Sister. We find that the authigenic phases in cold and icy mafic terrains are poorly crystalline and/or amorphous. TEM-EDS analyses of the <2 um size fraction of glacial flour shows the presence of many different nanophase materials, including iron oxides, devitrified volcanic glass, and Fe-Si-Al (e.g., proto-clay) phases. A variety of primary and secondary amorphous materials (e.g., volcanic glass, leached glass, allophane) have been suggested from orbital IR data from Mars, and the CheMin XRD on the Curiosity rover has identified X-ray amorphous materials in all rocks and soils measured to date. The compositions of the Gale Crater amorphous components cannot be explained by primary volcanic glass alone and likely include secondary silicates, iron oxides, and sulfates. We suggest that the prevalence of amorphous materials on the martian surface and the variety of amorphous components may be a signature of a cold and icy climate on Early Mars.

  2. Impact Ignition and Combustion Behavior of Amorphous Metal-Based Reactive Composites

    NASA Astrophysics Data System (ADS)

    Mason, Benjamin; Groven, Lori; Son, Steven

    2013-06-01

    Recently published molecular dynamic simulations have shown that metal-based reactive powder composites consisting of at least one amorphous component could lead to improved reaction performance due to amorphous materials having a zero heat of fusion, in addition to having high energy densities and potential uses such as structural energetic materials and enhanced blast materials. In order to investigate the feasibility of these systems, thermochemical equilibrium calculations were performed on various amorphous metal/metalloid based reactive systems with an emphasis on commercially available or easily manufactured amorphous metals, such as Zr and Ti based amorphous alloys in combination with carbon, boron, and aluminum. Based on the calculations and material availability material combinations were chosen. Initial materials were either mixed via a Resodyn mixer or mechanically activated using high energy ball milling where the microstructure of the milled material was characterized using x-ray diffraction, optical microscopy and scanning electron microscopy. The mechanical impact response and combustion behavior of select reactive systems was characterized using the Asay shear impact experiment where impact ignition thresholds, ignition delays, combustion velocities, and temperatures were quantified, and reported. Funding from the Defense Threat Reduction Agency (DTRA), Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged.

  3. Role of order and disorder on the electronic performances of oxide semiconductor thin film transistors

    NASA Astrophysics Data System (ADS)

    Martins, R.; Barquinha, P.; Ferreira, I.; Pereira, L.; Gonçalves, G.; Fortunato, E.

    2007-02-01

    The role of order and disorder on the electronic performances of n-type ionic oxides such as zinc oxide, gallium zinc oxide, and indium zinc oxide used as active (channel) or passive (drain/source) layers in thin film transistors (TFTs) processed at room temperature are discussed, taking as reference the known behavior observed in conventional covalent semiconductors such as silicon. The work performed shows that while in the oxide semiconductors the Fermi level can be pinned up within the conduction band, independent of the state of order, the same does not happen with silicon. Besides, in the oxide semiconductors the carrier mobility is not bandtail limited and so disorder does not affect so strongly the mobility as it happens in covalent semiconductors. The electrical properties of the oxide films (resistivity, carrier concentration, and mobility) are highly dependent on the oxygen vacancies (source of free carriers), which can be controlled by changing the oxygen partial pressure during the deposition process and/or by adding other metal ions to the matrix. In this case, we make the oxide matrix less sensitive to the presence of oxygen, widening the range of oxygen partial pressures that can be used and thus improving the process control of the film resistivity. The results obtained in fully transparent TFT using polycrystalline ZnO or amorphous indium zinc oxide (IZO) as channel layers and highly conductive poly/nanocrystalline ZGO films or amorphous IZO as drain/source layers show that both devices work in the enhancement mode, but the TFT with the highest electronic saturation mobility and on/off ratio 49.9cm2/Vs and 4.3×108, respectively, are the ones in which the active and passive layers are amorphous. The ZnO TFT whose channel is based on polycrystalline ZnO, the mobility and on/off ratio are, respectively, 26cm2/Vs and 3×106. This behavior is attributed to the fact that the electronic transport is governed by the s-like metal cation conduction bands, not significantly affected by any type of angular disorder promoted by the 2p O states related to the valence band, or small amounts of incorporated metal impurities that lead to a better control of vacancies and of the TFT off current.

  4. Thin film transistor performance of amorphous indium–zinc oxide semiconductor thin film prepared by ultraviolet photoassisted sol–gel processing

    NASA Astrophysics Data System (ADS)

    Kodzasa, Takehito; Nobeshima, Taiki; Kuribara, Kazunori; Yoshida, Manabu

    2018-05-01

    We have fabricated an amorphous indium–zinc oxide (IZO, In/Zn = 3/1) semiconductor thin-film transistor (AOS-TFT) by the sol–gel technique using ultraviolet (UV) photoirradiation and post-treatment in high-pressure O2 at 200 °C. The obtained TFT showed a hole carrier mobility of 0.02 cm2 V‑1 s‑1 and an on/off current ratio of 106. UV photoirradiation leads to the decomposition of the organic agents and hydroxide group in the IZO gel film. Furthermore, the post-treatment annealing at a high O2 pressure of more than 0.6 MPa leads to the filling of the oxygen vacancies in a poor metal–oxygen network in the IZO film.

  5. Hexagonal Ag nanoarrays induced enhancement of blue light emission from amorphous oxidized silicon nitride via localized surface plasmon coupling.

    PubMed

    Ma, Zhongyuan; Ni, Xiaodong; Zhang, Wenping; Jiang, Xiaofan; Yang, Huafeng; Yu, Jie; Wang, Wen; Xu, Ling; Xu, Jun; Chen, Kunji; Feng, Duan

    2014-11-17

    A significant enhancement of blue light emission from amorphous oxidized silicon nitride (a-SiNx:O) films is achieved by introduction of ordered and size-controllable arrays of Ag nanoparticles between the silicon substrate and a-SiNx:O films. Using hexagonal arrays of Ag nanoparticles fabricated by nanosphere lithography, the localized surface plasmons (LSPs) resonance can effectively increase the internal quantum efficiency from 3.9% to 13.3%. Theoretical calculation confirms that the electromagnetic field-intensity enhancement is through the dipole surface plasma coupling with the excitons of a-SiNx:O films, which demonstrates a-SiNx:O films with enhanced blue emission are promising for silicon-based light-emitting applications by patterned Ag arrays.

  6. Silicon heterojunction solar cell with passivated hole selective MoO{sub x} contact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaglia, Corsin; Yin, Xingtian; Zheng, Maxwell

    2014-03-17

    We explore substoichiometric molybdenum trioxide (MoO{sub x}, x < 3) as a dopant-free, hole-selective contact for silicon solar cells. Using an intrinsic hydrogenated amorphous silicon passivation layer between the oxide and the silicon absorber, we demonstrate a high open-circuit voltage of 711 mV and power conversion efficiency of 18.8%. Due to the wide band gap of MoO{sub x}, we observe a substantial gain in photocurrent of 1.9 mA/cm{sup 2} in the ultraviolet and visible part of the solar spectrum, when compared to a p-type amorphous silicon emitter of a traditional silicon heterojunction cell. Our results emphasize the strong potential for oxides as carrier selectivemore » heterojunction partners to inorganic semiconductors.« less

  7. Friction, wear, and transfer of carbon and graphite to copper, chromium, and aluminum metal surfaces in vacuum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Sliding friction experiments were conducted with amorphous and fully graphitized carbons sliding on copper and on films of chromium and aluminum on copper. Auger emission spectroscopy analysis was used to monitor carbon transfer to the metal surfaces. Friction and wear were also measured. Metal surfaces were examined both in the clean state and with normal oxides present. Results indicate that different metals have an important effect on friction, wear, and transfer characteristics. With amorphous carbon, the least chemically active metal gave the highest wear and amount of carbon transfer. Both forms of carbon gave lower friction and wear and lower transfer rates when in contact with clean, as opposed to oxide-covered, chromium surfaces. With copper, the reverse was true; cleaning was detrimental.

  8. Metal-induced crystallization of amorphous zinc tin oxide semiconductors for high mobility thin-film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Ah Young; Ji, Hyuk; Kim, Sang Tae

    2016-04-11

    Transition tantalum induced crystallization of amorphous zinc tin oxide (a-ZTO) was observed at low temperature annealing of 300 °C. Thin-film transistors (TFTs) with an a-ZTO channel layer exhibited a reasonable field-effect mobility of 12.4 cm{sup 2}/V s, subthreshold swing (SS) of 0.39 V/decade, threshold voltage (V{sub TH}) of 1.5 V, and I{sub ON/OFF} ratio of ∼10{sup 7}. A significant improvement in the field-effect mobility (up to ∼33.5 cm{sup 2}/V s) was achieved for crystallized ZTO TFTs: this improvement was accomplished without compromising the SS, V{sub TH}, or I{sub ON/OFF} ratio due to the presence of a highly ordered microstructure.

  9. Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors.

    PubMed

    Wang, Binghao; Zeng, Li; Huang, Wei; Melkonyan, Ferdinand S; Sheets, William C; Chi, Lifeng; Bedzyk, Michael J; Marks, Tobin J; Facchetti, Antonio

    2016-06-08

    Owing to high carrier mobilities, good environmental/thermal stability, excellent optical transparency, and compatibility with solution processing, thin-film transistors (TFTs) based on amorphous metal oxide semiconductors (AOSs) are promising alternatives to those based on amorphous silicon (a-Si:H) and low-temperature (<600 °C) poly-silicon (LTPS). However, solution-processed display-relevant indium-gallium-tin-oxide (IGZO) TFTs suffer from low carrier mobilities and/or inferior bias-stress stability versus their sputtered counterparts. Here we report that three types of environmentally benign carbohydrates (sorbitol, sucrose, and glucose) serve as especially efficient fuels for IGZO film combustion synthesis to yield high-performance TFTs. The results indicate that these carbohydrates assist the combustion process by lowering the ignition threshold temperature and, for optimal stoichiometries, enhancing the reaction enthalpy. IGZO TFT mobilities are increased to >8 cm(2) V(-1) s(-1) on SiO2/Si gate dielectrics with significantly improved bias-stress stability. The first correlations between precursor combustion enthalpy and a-MO densification/charge transport are established.

  10. Highly stable field emission from ZnO nanowire field emitters controlled by an amorphous indium–gallium–zinc-oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Li, Xiaojie; Wang, Ying; Zhang, Zhipeng; Ou, Hai; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-04-01

    Lowering the driving voltage and improving the stability of nanowire field emitters are essential for them to be applied in devices. In this study the characteristics of zinc oxide (ZnO) nanowire field emitter arrays (FEAs) controlled by an amorphous indium–gallium–zinc-oxide thin film transistor (a-IGZO TFT) were studied. A low driving voltage along with stabilization of the field emission current were achieved. Modulation of field emission currents up to three orders of magnitude was achieved at a gate voltage of 0–32 V for a constant anode voltage. Additionally, a-IGZO TFT control can dramatically reduce the emission current fluctuation (i.e., from 46.11 to 1.79% at an emission current of ∼3.7 µA). Both the a-IGZO TFT and ZnO nanowire FEAs were prepared on glass substrates in our research, demonstrating the feasibility of realizing large area a-IGZO TFT-controlled ZnO nanowire FEAs.

  11. Ion Sensitive Transparent-Gate Transistor for Visible Cell Sensing.

    PubMed

    Sakata, Toshiya; Nishimura, Kotaro; Miyazawa, Yuuya; Saito, Akiko; Abe, Hiroyuki; Kajisa, Taira

    2017-04-04

    In this study, we developed an ion-sensitive transparent-gate transistor (IS-TGT) for visible cell sensing. The gate sensing surface of the IS-TGT is transparent in a solution because a transparent amorphous oxide semiconductor composed of amorphous In-Ga-Zn-oxide (a-IGZO) with a thin SiO 2 film gate that includes an indium tin oxide (ITO) film as the source and drain electrodes is utilized. The pH response of the IS-TGT was found to be about 56 mV/pH, indicating approximately Nernstian response. Moreover, the potential signals of the IS-TGT for sodium and potassium ions, which are usually included in biological environments, were evaluated. The optical and electrical properties of the IS-TGT enable cell functions to be monitored simultaneously with microscopic observation and electrical measurement. A platform based on the IS-TGT can be used as a simple and cost-effective plate-cell-sensing system based on thin-film fabrication technology in the research field of life science.

  12. Optoelectronic properties of valence-state-controlled amorphous niobium oxide

    NASA Astrophysics Data System (ADS)

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-01

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.

  13. Low-temperature fabrication of an HfO2 passivation layer for amorphous indium-gallium-zinc oxide thin film transistors using a solution process.

    PubMed

    Hong, Seonghwan; Park, Sung Pyo; Kim, Yeong-Gyu; Kang, Byung Ha; Na, Jae Won; Kim, Hyun Jae

    2017-11-24

    We report low-temperature solution processing of hafnium oxide (HfO 2 ) passivation layers for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). At 150 °C, the hafnium chloride (HfCl 4 ) precursor readily hydrolyzed in deionized (DI) water and transformed into an HfO 2 film. The fabricated HfO 2 passivation layer prevented any interaction between the back surface of an a-IGZO TFT and ambient gas. Moreover, diffused Hf 4+ in the back-channel layer of the a-IGZO TFT reduced the oxygen vacancy, which is the origin of the electrical instability in a-IGZO TFTs. Consequently, the a-IGZO TFT with the HfO 2 passivation layer exhibited improved stability, showing a decrease in the threshold voltage shift from 4.83 to 1.68 V under a positive bias stress test conducted over 10,000 s.

  14. Hydrothermal-reduction synthesis of manganese oxide nanomaterials for electrochemical supercapacitors.

    PubMed

    Zhang, Xiong; Chen, Yao; Yu, Peng; Ma, Yanwei

    2010-11-01

    In the present work, amorphous manganese oxide nanomaterials have been synthesized by a common hydrothermal method based on the redox reaction between MnO4(-) and Fe(2+) under an acidic condition. The synthesized MnO2 samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electrochemical studies. XRD results showed that amorphous manganese oxide phase was obtained. XPS quantitative analysis revealed that the atomic ratio of Mn to Fe was 3.5 in the MnO2 samples. TEM images showed the porous structure of the samples. Electrochemical properties of the MnO2 electrodes were studied using cyclic voltammetry and galvanostatic charge-discharge cycling in 1 M Na2SO4 aqueous electrolyte, which showed excellent pseudocapacitance properties. A specific capacitance of 192 Fg(-1) at a current density of 0.5 Ag(-1) was obtained at the potential window from -0.1 to 0.9 V (vs. SCE).

  15. AMOchar: Amorphous manganese oxide coating of biochar improves its efficiency at removing metal(loid)s from aqueous solutions.

    PubMed

    Trakal, Lukáš; Michálková, Zuzana; Beesley, Luke; Vítková, Martina; Ouředníček, Petr; Barceló, Andreu Piqueras; Ettler, Vojtěch; Číhalová, Sylva; Komárek, Michael

    2018-06-01

    A novel sorbent made from biochar modified with an amorphous Mn oxide (AMOchar) was compared with pure biochar, pure AMO, AMO+biochar mixtures and biochar+birnessite composite for the removal of various metal(loid)s from aqueous solutions using adsorption and solid-state analyses. In comparison with the pristine biochar, both Mn oxide-biochar composites were able to remove significantly greater quantities of various metal(loid)s from the aqueous solutions, especially at a ratio 2:1 (AMO:biochar). The AMOchar proved most efficient, removing almost 99, 91 and 51% of Pb, As and Cd, respectively. Additionally, AMOchar and AMO+biochar mixture exhibited reduced Mn leaching, compared to pure AMO. Therefore, it is concluded that the synthesis of AMO and biochar is able to produce a double acting sorbent ('dorbent') of enhanced efficiency, compared with the individual deployment of their component materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Homogeneous double-layer amorphous Si-doped indium oxide thin-film transistors for control of turn-on voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kizu, Takio, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Tsukagoshi, Kazuhito, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya

    We fabricated homogeneous double-layer amorphous Si-doped indium oxide (ISO) thin-film transistors (TFTs) with an insulating ISO cap layer on top of a semiconducting ISO bottom channel layer. The homogeneously stacked ISO TFT exhibited high mobility (19.6 cm{sup 2}/V s) and normally-off characteristics after annealing in air. It exhibited normally-off characteristics because the ISO insulator suppressed oxygen desorption, which suppressed the formation of oxygen vacancies (V{sub O}) in the semiconducting ISO. Furthermore, we investigated the recovery of the double-layer ISO TFT, after a large negative shift in turn-on voltage caused by hydrogen annealing, by treating it with annealing in ozone. The recoverymore » in turn-on voltage indicates that the dense V{sub O} in the semiconducting ISO can be partially filled through the insulator ISO. Controlling molecule penetration in the homogeneous double layer is useful for adjusting the properties of TFTs in advanced oxide electronics.« less

  17. Amorphous cobalt potassium phosphate microclusters as efficient photoelectrochemical water oxidation catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Zhao, Chunsong; Dai, Xuezeng; Lin, Hong; Cui, Bai; Li, Jianbao

    2013-12-01

    A novel amorphous cobalt potassium phosphate hydrate compound (KCoPO4·H2O) is identified to be active photocatalyst for oxygen evolution reaction (OER) to facilitate hydrogen generation from water photolysis. It has been synthesized through a facile and cost-effective solution-based precipitation method using earth-abundant materials. Its highly porous structure and large surface areas are found to be responsible for the excellent electrochemical performance featuring a low OER onset at ∼550 mVSCE and high current density in alkaline condition. Unlike traditional cobalt-based spinel oxides (Co3O4, NiCo2O4) and phosphate (Co-Pi, Co(PO3)2) electrocatalysts, with proper energy band alignment for light-assisted water oxidation, cobalt potassium phosphate hydrate also exhibits robust visible-light response, generating a photocurrent density of ∼200 μA cm-2 at 0.7 VSCE. This catalyst could thus be considered as a promising candidate to perform photoelectrochemical water splitting.

  18. A Comparison of Photo-Induced Hysteresis Between Hydrogenated Amorphous Silicon and Amorphous IGZO Thin-Film Transistors.

    PubMed

    Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo

    2015-09-01

    We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition.

  19. Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures.

    PubMed

    Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei

    2012-01-02

    The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.

  20. The effect of amorphous TiO2 in P25 on dye-sensitized solar cell performance.

    PubMed

    Al-Attafi, Kadhim; Nattestad, Andrew; Wu, Qijie; Ide, Yusuke; Yamauchi, Yusuke; Dou, Shi Xue; Kim, Jung Ho

    2018-01-04

    P25 is one of the most widely used forms of titanium(iv) oxide (TiO 2 ), routinely utilised in dye-sensitised solar cells (DSCs), where it is often employed as a control, in spite of its poorly defined nature and the typically low device efficiency (or possibly because of this). Work by Park in 2000 and later by Lin et al. suggests that the rutile component might not be to blame for this, as has often been claimed. Recently it has been observed that P25 has quite a sizable amorphous content. A method to selectively remove this non-crystalline material has been developed, allowing for scrutiny of the role this amorphous material plays. Here we compare hydrothermally treated P25 (H-P25) with the as-received material, realizing solar-to-electric conversion efficiencies of 5.3% and 3.2% respectively. More importantly, this reveals important information about the detrimental effect of amorphous TiO 2 on DSC performance, with broader implications, as most researchers do not actively examine their synthesized materials for the presence of an amorphous component.

  1. Continuous method of producing silicon carbide fibers

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Nguyen, Kimmai Thi (Inventor); Rabe, James Alan (Inventor)

    1999-01-01

    This invention pertains to a method for production of polycrystalline ceramic fibers from silicon oxycarbide (SiCO) ceramic fibers wherein the method comprises heating an amorphous ceramic fiber containing silicon and carbon in an inert environment comprising a boron oxide and carbon monoxide at a temperature sufficient to convert the amorphous ceramic fiber to a polycrystalline ceramic fiber. By having carbon monoxide present during the heating of the ceramic fiber, it is possible to achieve higher production rates on a continuous process.

  2. Optical multilayers with an amorphous fluoropolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, R.; Loomis, G.E.; Lindsey, E.F.

    1994-07-01

    Multilayered coatings were made by physical vapor deposition (PVD) of a perfluorinated amorphous polymer, Teflon AF2400, together with other optical materials. A high reflector at 1064 run was made with ZnS and AF2400. An all-organic 1064-nm reflector was made from AF2400 and polyethylene. Oxide (HfO{sub 2}, SiO{sub 2}) compatibility was also tested. Each multilayer system adhered to itself. The multilayers were influenced by coating stress and unintentional temperature rises during PVD deposition.

  3. Template confined synthesis of amorphous carbon nanotubes and its confocal Raman microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maity, Supratim; Roychowdhury, Tuhin; Chattopadhyay, Kalyan Kumar, E-mail: kalyan-chattopadhyay@yahoo.com

    2014-04-24

    Amorphous carbon nanotubes (aCNTs) were synthesized by AAO (anodic aluminum oxide) template at a temperature 500 °C in nitrogen atmosphere using the citric acid as a carbon source without the help of any catalyst particles. Morphological analysis of the as prepared samples was carried out by field emission scanning electron microscopy (FESEM). Confocal Raman imaging has been studied and an attempt has been made to find out the graphitic (sp{sup 2}) and disordered phase of the CNTs.

  4. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator

    NASA Astrophysics Data System (ADS)

    Chen, Ya-Yi; Liu, Yuan; Wu, Zhao-Hui; Wang, Li; Li, Bin; En, Yun-Fei; Chen, Yi-Qiang

    2018-04-01

    Not Available Supported by the National Natural Science Foundation of China under Grant No 61574048, the Science and Technology Research Project of Guangdong Province under Grant Nos 2015B090912002 and 2015B090901048, and the Pearl River S&T Nova Program of Guangzhou under Grant No 201710010172.

  5. Multifunctional cerium-based nanomaterials and methods for producing the same

    DOEpatents

    O'Keefe, Matthew J.; Castano Londono, Carlos E.; Fahrenholtz, William G.

    2018-01-09

    Embodiments relate to a cerium-containing nano-coating composition, the composition including an amorphous matrix including one or more of cerium oxide, cerium hydroxide, and cerium phosphate; and crystalline regions including one or more of crystalline cerium oxide, crystalline cerium hydroxide, and crystalline cerium phosphate. The diameter of each crystalline region is less than about 50 nanometers.

  6. Preparation of TiO(2) layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization.

    PubMed

    Velten, D; Biehl, V; Aubertin, F; Valeske, B; Possart, W; Breme, J

    2002-01-01

    The excellent biocompatibility of titanium and its alloys used, for example, for medical devices, is associated with the properties of their surface oxide. For a better understanding of the tissue reaction in contact with the oxide layer, knowledge of the chemical and physical properties of this layer is of increasing interest. In this study, titania films were produced on cp-Ti and Ti6Al4V substrates by thermal oxidation, anodic oxidation, and by the sol-gel process. The thickness and structure of the films produced under different conditions were determined by ellipsometry, infrared spectroscopy, and X-ray diffraction measurements. The corrosion properties of these layers were investigated by current density-potential curves under physiological conditions. The oxide layers produced on cp-Ti and Ti6Al4V by thermal oxidation consist of TiO(2) in the rutile structure. For the anodized samples the structure of TiO(2) is a mixture of amorphous phase and anatase. The structure of the coatings produced by the sol-gel process for a constant annealing time depends on the annealing temperature, and with increasing temperature successively amorphous, anatase, and rutile structure is observed. Compared to the uncoated, polished substrate with a natural oxide layer, the corrosion resistance of cp-Ti and Ti6Al4V is increased for the samples with an oxide layer thickness of about 100 nm, independent of the oxidation procedure. Copyright 2001 John Wiley & Sons, Inc.

  7. Solution-grown silicon nanowires for lithium-ion battery anodes.

    PubMed

    Chan, Candace K; Patel, Reken N; O'Connell, Michael J; Korgel, Brian A; Cui, Yi

    2010-03-23

    Composite electrodes composed of silicon nanowires synthesized using the supercritical fluid-liquid-solid (SFLS) method mixed with amorphous carbon or carbon nanotubes were evaluated as Li-ion battery anodes. Carbon coating of the silicon nanowires using the pyrolysis of sugar was found to be crucial for making good electronic contact to the material. Using multiwalled carbon nanotubes as the conducting additive was found to be more effective for obtaining good cycling behavior than using amorphous carbon. Reversible capacities of 1500 mAh/g were observed for 30 cycles.

  8. UNIDENTIFIED INFRARED EMISSION BANDS: PAHs or MAONs?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Kwok; Yong Zhang, E-mail: sunkwok@hku.hk

    2013-07-01

    We suggest that the carrier of the unidentified infrared emission (UIE) bands is an amorphous carbonaceous solid with mixed aromatic/aliphatic structures, rather than free-flying polycyclic aromatic hydrocarbon molecules. Through spectral fittings of the astronomical spectra of the UIE bands, we show that a significant amount of the energy is emitted by the aliphatic component, implying that aliphatic groups are an essential part of the chemical structure. Arguments in favor of an amorphous, solid-state structure rather than a gas-phase molecule as a carrier of the UIE are also presented.

  9. Midinfrared wavelength conversion in hydrogenated amorphous silicon waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Wang, Zhaolu; Huang, Nan; Han, Jing; Li, Yongfang; Liu, Hongjun

    2017-10-01

    Midinfrared (MIR) wavelength conversion based on degenerate four-wave mixing is theoretically investigated in hydrogenated amorphous silicon (a-Si:H) waveguides. The broadband phase mismatch is achieved in the normal group-velocity dispersion regime. The conversion bandwidth is extended to 900 nm, and conversion efficiency of up to -14 dB with a pump power of 70 mW in a 2-mm long a-Si:H rib waveguides is obtained. This low-power on-chip wavelength converter will have potential for application in a wide range of MIR nonlinear optic devices.

  10. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor.

    PubMed

    von Rohr, Fabian; Winiarski, Michał J; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-11-15

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.

  11. Charged Nanowire-Directed Growth of Amorphous Calcium Carbonate Nanosheets in a Mixed Solvent for Biomimetic Composite Films.

    PubMed

    Liu, Yang-Yi; Liu, Lei; Chen, Si-Ming; Chang, Fu-Jia; Mao, Li-Bo; Gao, Huai-Ling; Ma, Tao; Yu, Shu-Hong

    2018-05-22

    Bio-inspired mineralization is an effective way for fabricating complex inorganic materials, which inspires us to develop new methods to synthesize materials with fascinating properties. In this article, we report that the charged tellurium nanowires (TeNWs) can be used as biomacromolecule analogues to direct the formation of amorphous calcium carbonate (ACC) nanosheets (ACCNs) in a mixed solvent. The effects of surface charges and the concentration of the TeNWs on the formation of ACCNs have been investigated. Particularly, the produced ACCNs can be functionalized by Fe 3 O 4 nanoparticles to produce magnetic ACC/Fe 3 O 4 hybrid nanosheets that can be used to construct ACC/Fe 3 O 4 composite films through a self-evaporation process. Moreover, sodium alginate-ACC nanocomposite films with remarkable toughness and good transmittance can also be fabricated by using such ACCNs as nanoscale building blocks. This mineralization approach in a mixed solvent using charged TeNWs as biomacromolecule analogues provides a new way for the synthesis of ACCNs, which can be used as nanoscale building blocks for the fabrication of biomimetic composite films.

  12. CO Diffusion into Amorphous H2O Ices

    NASA Astrophysics Data System (ADS)

    Lauck, Trish; Karssemeijer, Leendertjan; Shulenberger, Katherine; Rajappan, Mahesh; Öberg, Karin I.; Cuppen, Herma M.

    2015-03-01

    The mobility of atoms, molecules, and radicals in icy grain mantles regulates ice restructuring, desorption, and chemistry in astrophysical environments. Interstellar ices are dominated by H2O, and diffusion on external and internal (pore) surfaces of H2O-rich ices is therefore a key process to constrain. This study aims to quantify the diffusion kinetics and barrier of the abundant ice constituent CO into H2O-dominated ices at low temperatures (15-23 K), by measuring the mixing rate of initially layered H2O(:CO2)/CO ices. The mixed fraction of CO as a function of time is determined by monitoring the shape of the infrared CO stretching band. Mixing is observed at all investigated temperatures on minute timescales and can be ascribed to CO diffusion in H2O ice pores. The diffusion coefficient and final mixed fraction depend on ice temperature, porosity, thickness, and composition. The experiments are analyzed by applying Fick’s diffusion equation under the assumption that mixing is due to CO diffusion into an immobile H2O ice. The extracted energy barrier for CO diffusion into amorphous H2O ice is ˜160 K. This is effectively a surface diffusion barrier. The derived barrier is low compared to current surface diffusion barriers in use in astrochemical models. Its adoption may significantly change the expected timescales for different ice processes in interstellar environments.

  13. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN P-98-0002...

  14. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN P-99-511...

  15. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN P-98-0002...

  16. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant new...

  17. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN P-99-511...

  18. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN P-98-0002...

  19. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN P-98-0002...

  20. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN P-99-511...

  1. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN P-98-0002...

  2. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN P-99-511...

  3. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant new...

  4. Catalytic crystallization of ices by small silicate smokes at temperatures less than 20K

    NASA Technical Reports Server (NTRS)

    Moore, M.; Ferrante, R.; Hudson, R.; Tanabe, T.; Nuth, J.

    1993-01-01

    Samples of methanol and water ices condensed from the vapor onto aluminum substrates at low temperatures (below approximately 80 K) form amorphous ices; annealing at temperatures in excess of 140-155 K is usually required to convert such amorphous samples to crystalline ices. However, we have found that when either methanol or water vapor is deposited on to aluminum substrates that have been coated with a thin (0.1-0.5 mm) layer of amorphous silicate smoke, the ices condense in crystalline form. We believe that crystalline ice forms as the result of energy liberated at the ice/silicate interface perhaps due to weak bonding of the ice at defect sites on the grains and the very high surface to volume ratio and defect density of these smokes. Annealing of amorphous water ice mixed with more volatile components such as methane, carbon monoxide, etc., has been suggested as an efficient way to produce clatherates in the outer solar nebula and thus explain the volatile content of comets and icy satellites of the outer planets. This hypothesis may need to be re-examined if amorphous ice does not form on cold silicate grains.

  5. Effect of characteristics of compounds on maintenance of an amorphous state in solid dispersion with crospovidone.

    PubMed

    Shibata, Yusuke; Fujii, Makiko; Kokudai, Makiko; Noda, Shinobu; Okada, Hideko; Kondoh, Masuo; Watanabe, Yoshiteru

    2007-06-01

    Solid dispersion (SD) of indomethacin with crospovidone (CrosPVP) shows useful characteristics for preparation of dosage forms. This study aimed to determine the types of drugs that could adopt a stable amorphous form in SD. Twenty compounds with various melting points (70-218 degrees C), molecular weights (135-504) and functional groups (amide, amino, carbonyl, hydroxyl, ketone etc.) were prepared in SD with CrosPVP. The CrosPVP SDs were prepared using a mechanical mixing and heating method. Melting point and molecular weight were found to have no influence on the ability of a compound to maintain an amorphous state in SD. All compounds containing hydrogen-bond-donor functional groups existed in an amorphous state in SD for at least 6 months. Infrared spectra suggested an interaction between the functional groups of these compounds and amide carbonyl group of CrosPVP. Compounds without hydrogen-bond-donor groups could not maintain an amorphous state and underwent recrystallization within 1 month. It was suggested that the presence of a hydrogen-bond-donor functional group in a compound is an important factor affecting the stable formation of SD with CrosPVP, which contains a hydrogen-bond acceptor.

  6. First X-ray View of Martian Soil

    NASA Image and Video Library

    2012-10-30

    This graphic shows results of the first analysis of Martian soil by the CheMin experiment on NASA Curiosity rover. The image reveals the presence of crystalline feldspar, pyroxenes and olivine mixed with some amorphous non-crystalline material.

  7. Monte Carlo simulation of magnetic properties of mixed spin (3/2, 1) ferromagnetic and ferrimagnetic disordered binary alloys with amorphous structure

    NASA Astrophysics Data System (ADS)

    Motlagh, H. Nakhaei; Rezaei, G.

    2018-01-01

    Monte Carlo simulation is used to study the magnetic properties of mixed spin (3/2, 1) disordered binary alloys on simple cubic, hexagonal and amorphous magnetic ultra-thin films with 18 × 18 × 2 atoms. To this end, at the first approximation, the exchange coupling interaction between the spins is considered as a constant value and at the second one, the Ruderman-Kittel-Kasuya-Yosida (RKKY) model is used. Effects of concentration, structure, exchange interaction, single ion-anisotropy and the film size on the magnetic properties of disordered ferromagnetic and ferrimagnetic binary alloys are investigated. Our results indicate that the spontaneous magnetization and critical temperatures of rare earth-3d transition binary alloys are affected by these parameters. It is also found that in the ferrimagnetic state, the compensation temperature (Tcom) and the magnetic rearrangement temperature (TR) appear for some concentrations.

  8. Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions

    NASA Astrophysics Data System (ADS)

    Newby, Pascal J.; Canut, Bruno; Bluet, Jean-Marie; Gomès, Séverine; Isaiev, Mykola; Burbelo, Roman; Termentzidis, Konstantinos; Chantrenne, Patrice; Fréchette, Luc G.; Lysenko, Vladimir

    2013-07-01

    In this article, we demonstrate that the thermal conductivity of nanostructured porous silicon is reduced by amorphization and also that this amorphous phase in porous silicon can be created by swift (high-energy) heavy ion irradiation. Porous silicon samples with 41%-75% porosity are irradiated with 110 MeV uranium ions at six different fluences. Structural characterisation by micro-Raman spectroscopy and SEM imaging show that swift heavy ion irradiation causes the creation of an amorphous phase in porous Si but without suppressing its porous structure. We demonstrate that the amorphization of porous silicon is caused by electronic-regime interactions, which is the first time such an effect is obtained in crystalline silicon with single-ion species. Furthermore, the impact on the thermal conductivity of porous silicon is studied by micro-Raman spectroscopy and scanning thermal microscopy. The creation of an amorphous phase in porous silicon leads to a reduction of its thermal conductivity, up to a factor of 3 compared to the non-irradiated sample. Therefore, this technique could be used to enhance the thermal insulation properties of porous Si. Finally, we show that this treatment can be combined with pre-oxidation at 300 °C, which is known to lower the thermal conductivity of porous Si, in order to obtain an even greater reduction.

  9. Amorphization of cobalt monoxide nanocrystals and related explosive gas sensing applications.

    PubMed

    Li, L H; Xiao, J; Yang, G W

    2015-10-16

    Amorphous nanomaterials have attracted attention due to their excellent performances, highly comparable to their crystalline counterparts. Sensor materials with amorphous phases are usually evaluated to be unsuitable for sensors because of poor performance. As a matter of fact, amorphous nanomaterials have rather unique sensor behaviors. Here, we report the amorphousization of cobalt monoxide (CoO) nanocrystals driven by a unique process involved in laser ablation in liquid (LAL). We also established that a fast and nonequilibrium process created by LAL results in the amorphousization of nanocrystals. The as-prepared amorphous CoO (a-CoO) nanoflakes possess a high aspect ratio, which showed good sensing of explosive gases. The fabricated gas sensor can detect CO and H2 at levels as low as 5 and 10 ppm, respectively, at 100 °C. The performance characteristics of this sensor, including high sensitivity, low working temperature, and low detection limit, are superior to those of sensors made with crystalline phase oxides. Meanwhile, a temperature-dependent p-n transition was observed in the sensor's response to CO, suggesting that the sensing properties can be tailored by changing the carrier type, thus tuning the selectivity of sensors to different gases. These findings demonstrate the potential applications of amorphous nanomaterials as gas sensor components.

  10. Evolution of Defect Structures and Deep Subgap States during Annealing of Amorphous In-Ga-Zn Oxide for Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Jia, Junjun; Suko, Ayaka; Shigesato, Yuzo; Okajima, Toshihiro; Inoue, Keiko; Hosomi, Hiroyuki

    2018-01-01

    We investigate the evolution behavior of defect structures and the subgap states in In-Ga-Zn oxide (IGZO) films with increasing postannealing temperature by means of extended x-ray absorption fine-structure (EXAFS) measurements, positron annihilation lifetime spectroscopy (PALS), and cathodoluminescence (CL) spectroscopy, aiming to understand the relationship between defect structures and subgap states. EXAFS measurements reveal the varied oxygen coordination numbers around cations during postannealing and confirm two types of point defects, namely, excess oxygen around Ga atoms and oxygen deficiency around In and/or Zn atoms. PALS suggests the existence of cation-vacancy (VM )-related clusters with neutral or negative charge in both amorphous and polycrystalline IGZO films. CL spectra show a main emission band at approximately 1.85 eV for IGZO films, and a distinct shoulder located at about 2.15 eV for IGZO films postannealed above 600 °C . These two emission bands are assigned to a recombination between the electrons in the conduction band and/or in the shallow donor levels near the conduction band and the acceptors trapped above the valence-band maximum. The shallow donors are attributed to the oxygen deficiency, and the acceptors are thought to possibly arise from the excess oxygen or the VM-related clusters. These results open up an alternative route for understanding the device instability of amorphous IGZO-based thin-film transistors, especially the presence of the neutral or negatively charged VM-related clusters in amorphous IGZO films.

  11. Sculpting Nanoscale Functional Channels in Complex Oxides Using Energetic Ions and Electrons

    DOE PAGES

    Sachan, Ritesh; Zarkadoula, Eva; Ou, Xin; ...

    2018-04-26

    The formation of metastable phases has attracted significant attention because of their unique properties and potential functionalities. In the present study, we demonstrate the phase conversion of energetic-ion-induced amorphous nanochannels/tracks into a metastable defect fluorite in A 2B 2O 7 structured complex oxides by electron irradiation. Through in situ electron irradiation experiments in a scanning transmission electron microscope, we observe electron-induced epitaxial crystallization of the amorphous nanochannels in Yb 2Ti 2O 7 into the defect fluorite. This energetic-electron-induced phase transformation is attributed to the coupled effect of ionization-induced electronic excitations and local heating, along with subthreshold elastic energy transfers. Wemore » also show the role of ionic radii of A-site cations (A = Yb, Gd, and Sm) and B-site cations (Ti and Zr) in facilitating the electron-beam-induced crystallization of the amorphous phase to the defect-fluorite structure. The formation of the defect-fluorite structure is eased by the decrease in the difference between ionic radii of A- and B-site cations in the lattice. Molecular dynamics simulations of thermal annealing of the amorphous phase nanochannels in A 2B 2O 7 draw parallels to the electron-irradiation-induced crystallization and confirm the role of ionic radii in lowering the barrier for crystallization. Furthermore, these results suggest that employing guided electron irradiation with atomic precision is a useful technique for selected area phase formation in nanoscale printed devices.« less

  12. Sculpting Nanoscale Functional Channels in Complex Oxides Using Energetic Ions and Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachan, Ritesh; Zarkadoula, Eva; Ou, Xin

    The formation of metastable phases has attracted significant attention because of their unique properties and potential functionalities. In the present study, we demonstrate the phase conversion of energetic-ion-induced amorphous nanochannels/tracks into a metastable defect fluorite in A 2B 2O 7 structured complex oxides by electron irradiation. Through in situ electron irradiation experiments in a scanning transmission electron microscope, we observe electron-induced epitaxial crystallization of the amorphous nanochannels in Yb 2Ti 2O 7 into the defect fluorite. This energetic-electron-induced phase transformation is attributed to the coupled effect of ionization-induced electronic excitations and local heating, along with subthreshold elastic energy transfers. Wemore » also show the role of ionic radii of A-site cations (A = Yb, Gd, and Sm) and B-site cations (Ti and Zr) in facilitating the electron-beam-induced crystallization of the amorphous phase to the defect-fluorite structure. The formation of the defect-fluorite structure is eased by the decrease in the difference between ionic radii of A- and B-site cations in the lattice. Molecular dynamics simulations of thermal annealing of the amorphous phase nanochannels in A 2B 2O 7 draw parallels to the electron-irradiation-induced crystallization and confirm the role of ionic radii in lowering the barrier for crystallization. Furthermore, these results suggest that employing guided electron irradiation with atomic precision is a useful technique for selected area phase formation in nanoscale printed devices.« less

  13. Nanoconstricted structure for current-confined path in current-perpendicular-to-plane spin valves with high magnetoresistance

    NASA Astrophysics Data System (ADS)

    Fukuzawa, H.; Yuasa, H.; Koi, K.; Iwasaki, H.; Tanaka, Y.; Takahashi, Y. K.; Hono, K.

    2005-05-01

    We have successfully observed a nanoconstricted structure for current-confined-path (CCP) effect in current-perpendicular-to-plane-giant-magnetoresistance (CPP-GMR) spin valves. By inserting an AlCu nano-oxide layer (NOL) formed by ion-assisted oxidation (IAO) between a pinned layer and a free layer, the MR ratio was increased while maintaining a small area resistance product (RA). The cross-sectional high-resolution transmission electron microscopy image of the sample with RA =380mΩμm2, ΔRA =16mΩμm2, and MR ratio=4.3% showed that an amorphous oxide layer is a main part of the NOL that blocks the electron conduction perpendicular to plane. Some parts of the NOL are punched through crystalline, metallic channels having a diameter of a few nanometers, which are thought to work as nanoconstricted electron conduction paths between the pinned layer and the free layer. Nano-energy-dispersive-x-ray-spectrum analysis also showed that Cu is enriched in the metallic channels, whereas Al is enriched in the amorphous oxide region, indicating that the metallic channel is made of Cu and the oxide is made of Al2O3. The nanoconstricted structure with good segregation between the metallic channel and the oxide layer enables us to realize a large MR ratio in CCP-CPP spin valves.

  14. Validation of an updated fractionation and indirect speciation procedure for inorganic arsenic in oxic and suboxic soils and sediments.

    PubMed

    Lock, Alan; Wallschläger, Dirk; McMurdo, Colin; Tyler, Laura; Belzile, Nelson; Spiers, Graeme

    2016-12-01

    A sequential extraction procedure (SEP) for the speciation analysis of As(III) and As(V) in oxic and suboxic soils and sediments was validated using a natural lake sediment and three certified reference materials, as well as spike recoveries of As(III) and As(V). Many of the extraction steps have been previously validated making the procedure useful for comparisons to similar previous SEP studies. The novel aspect of this research is the validation for the SEP to maintain As(III) and As(V) species. The proposed five step extraction procedure includes the extraction agents (NH 4 ) 2 SO 4 , NH 4 H 2 PO 4 , H 3 PO 4  + NH 2 OH·HCl, oxalate + ascorbic acid (heated), and HNO 3  + HCl + HF, targeting operationally defined easily exchangeable, strongly sorbed, amorphous Fe oxide bound, crystalline Fe oxide bound, and residual As fractions, respectively. The third extraction step, H 3 PO 4  + NH 2 OH·HCl, has not been previously validated for fraction selectivity. We present evidence for this extraction step to target As complexed with amorphous Fe oxides when used in the SEP proposed here. All solutions were analyzed on ICP-MS. The greatest concentrations of As were extracted from the amorphous Fe oxide fraction and the dominant species was As(V). Lake sediment materials were found to have higher As(III) concentrations than the soil materials. Because different soils/sediments have different chemical characteristics, maintenance of As species during extractions must be validated for specific soil/sediment types using spiking experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Modeling Gas-Particle Partitioning of SOA: Effects of Aerosol Physical State and RH

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Seinfeld, J.

    2011-12-01

    Aged tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. In liquid aerosol particles non-ideal mixing of all species determines whether the condensed phase undergoes liquid-liquid phase separation or whether it is stable in a single mixed phase, and whether it contains solid salts in equilibrium with their saturated solution. The extended thermodynamic model AIOMFAC is able to predict such phase states by representing the variety of organic components using functional groups within a group-contribution concept. The number and composition of different condensed phases impacts the diversity of reaction media for multiphase chemistry and the gas-particle partitioning of semivolatile species. Recent studies show that under certain conditions biogenic and other organic-rich particles can be present in a highly viscous, semisolid or amorphous solid physical state, with consequences regarding reaction kinetics and mass transfer limitations. We present results of new gas-particle partitioning computations for aerosol chamber data using a model based on AIOMFAC activity coefficients and state-of-the-art vapor pressure estimation methods. Different environmental conditions in terms of temperature, relative humidity (RH), salt content, amount of precursor VOCs, and physical state of the particles are considered. We show how modifications of absorptive and adsorptive gas-particle mass transfer affects the total aerosol mass in the calculations and how the results of these modeling approaches compare to data of aerosol chamber experiments, such as alpha-pinene oxidation SOA. For a condensed phase in a mixed liquid state containing ammonium sulfate, the model predicts liquid-liquid phase separation up to high RH in case of, on average, moderately hydrophilic organic compounds, such as first generation oxidation products of alpha-pinene. The computations also reveal that treating liquid phases as ideal mixtures substantially overestimates the SOA mass, especially at high relative humidity.

  16. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  17. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, J.A.

    1997-12-02

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  18. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, James A.

    1997-01-01

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  19. Dynamics of Oxidation of Aluminum Nanoclusters using Variable Charge Molecular-Dynamics Simulations on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Campbell, Timothy; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Ogata, Shuji; Rodgers, Stephen

    1999-06-01

    Oxidation of aluminum nanoclusters is investigated with a parallel molecular-dynamics approach based on dynamic charge transfer among atoms. Structural and dynamic correlations reveal that significant charge transfer gives rise to large negative pressure in the oxide which dominates the positive pressure due to steric forces. As a result, aluminum moves outward and oxygen moves towards the interior of the cluster with the aluminum diffusivity 60% higher than that of oxygen. A stable 40 Å thick amorphous oxide is formed; this is in excellent agreement with experiments.

  20. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956) is...

  1. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956) is...

  2. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...

  3. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for the...

  4. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for the...

  5. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...

  6. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...

  7. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...

  8. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for the...

  9. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for the...

  10. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956) is...

  11. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956) is...

  12. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for the...

  13. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956) is...

  14. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for the...

  15. Electromagnetic mixed waste processing system for asbestos decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasevich, R.S.; Vaux, W.; Ulerich, N.

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less

  16. The Amorphous Composition of Three Mudstone Samples from Gale Crater: Implications for Weathering and Diagenetic Processes on Mars

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Downs, R. T.; Rampe, E. B.; Morris, R. V.; Bristow, T. F.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; Morrison, S. M.; Sutter, B.; hide

    2017-01-01

    The Mars Science Laboratory rover, Curiosity, is exploring the lowermost formation of Gale crater's central mound. Within this formation, three samples named Marimba, Quela, and Sebina have been analyzed by the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS) to determine mineralogy and bulk elemental chemistry, respectively. Marimba and Quela were also analyzed by the SAM (Sample Analysis at Mars) instrument to characterize the type and abundance of volatile phases detected in evolved gas analyses (EGA). CheMin data show similar proportions of plagioclase, hematite, and Ca-sulfates along with a mixture of di- and trioctahedral smectites at abundances of approximately 28, approximately 16, and approximately 18 wt% for Marimba, Quela, and Sebina. Approximately 50 wt% of each mudstone is comprised of X-ray amorphous and trace crystalline phases present below the CheMin detection limit (approximately 1 wt%). APXS measurements reveal a distinct bulk elemental chemistry that cannot be attributed to the clay mineral variation alone indicating a variable amorphous phase assemblage exists among the three mudstones. To explore the amorphous component, the calculated amorphous composition and SAM EGA results are used to identify amorphous phases unique to each mudstone. For example, the amorphous fraction of Marimba has twice the FeO wt% compared to Quela and Sebina yet, SAM EGA data show no evidence for Fe-sulfates. These data imply that Fe must reside in alternate Fe-bearing amorphous phases (e.g., nanophase iron oxides, ferrihydrite, etc.). Constraining the composition, abundances, and proposed identity of the amorphous fraction provides an opportunity to speculate on the past physical, chemical, and/or diagenetic processes which produced such phases in addition to sediment sources, lake chemistry, and the broader geologic history of Gale crater.

  17. Bacterially mediated diagenetic origin for chert-hosted manganese deposits in the Franciscan Complex, California Coast Ranges

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Koski, Randolph A.

    1987-08-01

    Numerous manganese deposits in the Franciscan Complex, California, occur as conformable lenses within bedded radiolarian chert-argillite sequences that are, in turn, intercalated within thicker sections of sandstone and shale. The field relations, composition, and petro-graphic and isotopic characteristics indicate that the manganese was concentrated by diagenetic reconstitution of siliceous and hemipelagic sediment during burial. The ore lenses are Mn-rich and Fe-poor assemblages consisting largely of rhodochrosite, manganese silicates, opal-CT (disordered cristobalite-tridymite), and quartz. Highly negative δ13C values for the carbonate carbon in rhodochrosite indicate that CO2 likely originated from oxidation of methane; less negative values result from mixing of methanogenic carbon and CO2 derived from bacterial degradation of organic matter. The δ18O values for the carbonate of rhodochrosite indicate temperatures of formation between 12 and 100 °C. The oxidation of methane prior to carbonate precipitation may have used the minor (0.4% 0.5%) Mn and Fe oxyhydroxides and oxides deposited with the sediment. The mobilization of manganese from biogenic and terrigenous sources in the sediment column into discrete horizons and the fractioriation of manganese from iron reflect the presence of oxidation-reduction boundaries and gradients in the sediment column. Fluids derived from compaction and silica-dehydration reactions in the transformation of opal-A (X-ray amorphous biogenic silica) to quartz were involved in transportation of principal components. Sedimentary and geochemical attributes suggest that the deposits formed in a deep-water environment in a zone of oceanic upwelling near a continental margin.

  18. Highly efficient one-step synthesis of carbon encapsulated nanocrystals by the oxidation of metal π-complexes

    NASA Astrophysics Data System (ADS)

    Liu, Boyang; Shao, Yingfeng; Xiang, Xin; Zhang, Fuhua; Yan, Shengchang; Li, Wenge

    2017-08-01

    Various carbon encapsulated nanocrystals, including MnS and MnO, Cr2O3, MoO2, Fe7S8 and Fe3O4, and ZrO2, are prepared in one step and in situ by a simple and highly efficient synthesis approach. The nanocrystals have an equiaxed morphology and a median size smaller than 30 nm. Tens and hundreds of these nanocrystals are entirely encapsulated by a wormlike amorphous carbon shell. The formation of a core-shell structure depends on the strongly exothermic reaction of metal π-complexes with ammonium persulfate in an autoclave at below 200 °C. During the oxidation process, the generated significant amounts of heat will destroy the molecular structure of the metal π-complex and cleave the ligands into small carbon fragments, which further transform into an amorphous carbon shell. The central metal atoms are oxidized to metal oxide/sulfide nanocrystals. The formation of a core-shell structure is independent of the numbers of ligands and carbon atoms as well as the metal types, implying that any metal π-complex can serve as a precursor and that various carbon encapsulated nanocrystals can be synthesized by this method.

  19. Improvement of bias-stability in amorphous-indium-gallium-zinc-oxide thin-film transistors by using solution-processed Y{sub 2}O{sub 3} passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Sungjin; Mativenga, Mallory; Kim, Youngoo

    2014-08-04

    We demonstrate back channel improvement of back-channel-etch amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors by using solution-processed yttrium oxide (Y{sub 2}O{sub 3}) passivation. Two different solvents, which are acetonitrile (35%) + ethylene glycol (65%), solvent A and deionized water, solvent B are investigated for the spin-on process of the Y{sub 2}O{sub 3} passivation—performed after patterning source/drain (S/D) Mo electrodes by a conventional HNO{sub 3}-based wet-etch process. Both solvents yield devices with good performance but those passivated by using solvent B exhibit better light and bias stability. Presence of yttrium at the a-IGZO back interface, where it occupies metal vacancy sites, is confirmed by X-ray photoelectronmore » spectroscopy. The passivation effect of yttrium is more significant when solvent A is used because of the existence of more metal vacancies, given that the alcohol (65% ethylene glycol) in solvent A may dissolve the metal oxide (a-IGZO) through the formation of alkoxides and water.« less

  20. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration.

    PubMed

    Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol

    2016-11-04

    We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses.

  1. Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun

    2016-05-01

    Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.

  2. Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states.

    PubMed

    Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun

    2016-05-27

    Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.

  3. Core-shell CoFe2O4@Co-Fe-Bi nanoarray: a surface-amorphization water oxidation catalyst operating at near-neutral pH.

    PubMed

    Ji, Xuqiang; Hao, Shuai; Qu, Fengli; Liu, Jingquan; Du, Gu; Asiri, Abdullah M; Chen, Liang; Sun, Xuping

    2017-06-14

    The exploration of high-performance and earth-abundant water oxidation catalysts operating under mild conditions is highly attractive and challenging. In this communication, core-shell CoFe 2 O 4 @Co-Fe-Bi nanoarray on carbon cloth (CoFe 2 O 4 @Co-Fe-Bi/CC) was successfully fabricated by in situ surface amorphization of CoFe 2 O 4 nanoarray on CC (CoFe 2 O 4 /CC). As a 3D water oxidation electrode, CoFe 2 O 4 @Co-Fe-Bi/CC shows outstanding activity with an overpotential of 460 mV to drive a geometrical catalytic current density of 10 mA cm -2 in 0.1 M potassium borate (pH 9.2). Notably, it also demonstrates superior long-term durability for at least 20 h with 96% Faradic efficiency. Density functional theory calculations indicate that the conversion from OOH* to O 2 is the rate-limiting step and the high water oxidation activity of CoFe 2 O 4 @Co-Fe-Bi/CC is associated with the lower free energy of 1.84 eV on a Co-Fe-Bi shell.

  4. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration

    PubMed Central

    Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol

    2016-01-01

    We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses. PMID:27812035

  5. GeO2 Thin Film Deposition on Graphene Oxide by the Hydrogen Peroxide Route: Evaluation for Lithium-Ion Battery Anode.

    PubMed

    Medvedev, Alexander G; Mikhaylov, Alexey A; Grishanov, Dmitry A; Yu, Denis Y W; Gun, Jenny; Sladkevich, Sergey; Lev, Ovadia; Prikhodchenko, Petr V

    2017-03-15

    A peroxogermanate thin film was deposited in high yield at room temperature on graphene oxide (GO) from peroxogermanate sols. The deposition of the peroxo-precursor onto GO and the transformations to amorphous GeO 2 , crystalline tetragonal GeO 2 , and then to cubic elemental germanium were followed by electron microscopy, XRD, and XPS. All of these transformations are influenced by the GO support. The initial deposition is explained in view of the sol composition and the presence of GO, and the different thermal transformations are explained by reactions with the graphene support acting as a reducing agent. As a test case, the evaluation of the different materials as lithium ion battery anodes was carried out revealing that the best performance is obtained by amorphous germanium oxide@GO with >1000 mAh g -1 at 250 mA g -1 (between 0 and 2.5 V vs Li/Li + cathode), despite the fact that the material contained only 51 wt % germanium. This is the first demonstration of the peroxide route to produce peroxogermanate thin films and thereby supported germanium and germanium oxide coatings. The advantages of the process over alternative methodologies are discussed.

  6. Effect of organic buffer layer in the electrical properties of amorphous-indium gallium zinc oxide thin film transistor.

    PubMed

    Wang, Jian-Xun; Hyung, Gun Woo; Li, Zhao-Hui; Son, Sung-Yong; Kwon, Sang Jik; Kim, Young Kwan; Cho, Eou Sik

    2012-07-01

    In this research, we reported on the fabrication of top-contact amorphous-indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with an organic buffer layer between inorganic gate dielectric and active layer in order to improve the electrical properties of devices. By inserting an organic buffer layer, it was possible to make an affirmation of the improvements in the electrical characteristics of a-IGZO TFTs such as subthreshold slope (SS), on/off current ratio (I(ON/OFF)), off-state current, and saturation field-effect mobility (muFE). The a-IGZO TFTs with the cross-linked polyvinyl alcohol (c-PVA) buffer layer exhibited the pronounced improvements of the muFE (17.4 cm2/Vs), SS (0.9 V/decade), and I(ON/OFF) (8.9 x 10(6)).

  7. Two-stage unified stretched-exponential model for time-dependence of threshold voltage shift under positive-bias-stresses in amorphous indium-gallium-zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Jeong, Chan-Yong; Kim, Hee-Joong; Hong, Sae-Young; Song, Sang-Hun; Kwon, Hyuck-In

    2017-08-01

    In this study, we show that the two-stage unified stretched-exponential model can more exactly describe the time-dependence of threshold voltage shift (ΔV TH) under long-term positive-bias-stresses compared to the traditional stretched-exponential model in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). ΔV TH is mainly dominated by electron trapping at short stress times, and the contribution of trap state generation becomes significant with an increase in the stress time. The two-stage unified stretched-exponential model can provide useful information not only for evaluating the long-term electrical stability and lifetime of the a-IGZO TFT but also for understanding the stress-induced degradation mechanism in a-IGZO TFTs.

  8. Improved characteristics of amorphous indium-gallium-zinc-oxide-based resistive random access memory using hydrogen post-annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Dae Yun; Lee, Tae-Ho; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr

    The authors report an improvement in resistive switching (RS) characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO)-based resistive random access memory devices using hydrogen post-annealing. Because this a-IGZO thin film has oxygen off-stoichiometry in the form of deficient and excessive oxygen sites, the film properties can be improved by introducing hydrogen atoms through the annealing process. After hydrogen post-annealing, the device exhibited a stable bipolar RS, low-voltage set and reset operation, long retention (>10{sup 5 }s), good endurance (>10{sup 6} cycles), and a narrow distribution in each current state. The effect of hydrogen post-annealing is also investigated by analyzing the sample surface using X-raymore » photon spectroscopy and atomic force microscopy.« less

  9. Efficient production of ultrapure manganese oxides via electrodeposition.

    PubMed

    Cheney, Marcos A; Joo, Sang Woo; Banerjee, Arghya; Min, Bong-Ki

    2012-08-01

    A new process for the production of electrolytic amorphous nanomanganese oxides (EAMD) with uniform size and morphology is described. EAMD are produced for the first time by cathodic deposition from a basic aqueous solution of potassium permanganate at a constant temperature of 16°C. The synthesized materials are characterized by XRD, SEM, TEM, and HRTEM. The materials produced at 5.0 V at constant temperature are amorphous with homogeneous size and morphology with an average particle size around 20 nm, which appears to be much lesser than the previously reported anodic EAMD. A potentiostatic electrodeposition with much lesser deposition rate (with respect to previously reported anodic depositions) is considered to be the reason behind the very low and homogenous particle size distribution due to the lesser agglomeration of our as-synthesized nanoparticles. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Sigdel, A. K.; Gennett, T.; Berry, J. J.; Perkins, J. D.; Ginley, D. S.; Packard, C. E.

    2013-10-01

    With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter-material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity-growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.

  11. Role of Coulomb blockade and spin-flip scattering in tunneling magnetoresistance of FeCo-Si-O nanogranular films

    NASA Astrophysics Data System (ADS)

    Kumar, Hardeep; Ghosh, Santanu; Bürger, Danilo; Li, Lin; Zhou, Shengqiang; Kabiraj, Debdulal; Avasthi, Devesh Kumar; Grötzschel, Rainer; Schmidt, Heidemarie

    2011-04-01

    In this work, we report the effect of FeCo atomic fraction (0.33 < x < 0.54) and temperature on the electrical, magnetic, and tunneling magnetoresistance (TMR) properties of FeCo-Si-O granular films prepared by atom beam sputtering technique. Glancing angle x-ray diffraction and TEM studies reveal that films are amorphous in nature. The dipole-dipole interactions (particle-matrix mixing) is evident from zero-field cooled and field-cooled magnetic susceptibility measurements and the presence of oxides (mainly Fe-related) is observed by x-ray photoelectron spectroscopy analysis. The presence of Fe-oxides is responsible for the observed reduction of saturation magnetization and rapid increase in coercivity below 50 K. TMR has been observed in a wide temperature range, and a maximum TMR of -4.25% at 300 K is observed for x = 0.39 at a maximum applied field of 60 kOe. The fast decay of maximum TMR at high temperatures and lower TMR values at 300 K when compared to PFeCo2/(1+PFeCo2), where PFeCo is the spin polarization of FeCo are in accordance with a theoretical model that includes spin-flip scattering processes. The temperature dependent study of TMR effect reveals a remarkably enhanced TMR at low temperatures. The TMR value varies from -2.1% at 300 K to -14.5% at 5 K for x = 0.54 and a large MR value of -18.5% at 5 K for x = 0.39 is explained on the basis of theoretical models involving Coulomb blockade effects. Qualitatively particle-matrix mixing and the presence of Fe-oxides seems to be the source of spin-flip scattering, responsible for fast decay of TMR at high temperatures. A combination of higher order tunneling (in Coulomb blockade regime) and spin-flip scattering (high temperature regime) explains the temperature dependent TMR of these films.

  12. Effect of amorphous phases during the hydraulic conversion of α-TCP into calcium-deficient hydroxyapatite.

    PubMed

    Hurle, Katrin; Neubauer, Juergen; Bohner, Marc; Doebelin, Nicola; Goetz-Neunhoeffer, Friedlinde

    2014-09-01

    Powders of α-tricalcium phosphate (α-TCP), which readily react with water to form calcium-deficient hydroxyapatite (CDHA), are frequently used in bone cements. As, for clinical applications, it is important to adjust the setting reaction of the cements to a reasonable reaction time, exact knowledge of the hydration mechanism is essential. It is known that prolonged milling results in partial amorphization of α-TCP powders and that dissolution of the amorphous phase significantly accelerates the hydration, but it is not clear yet when the amorphous phase reacts in comparison to the crystalline α-TCP. Therefore the aim of this study was to investigate the development of quantitative phase content of α-TCP samples during hydration. For this purpose, three α-TCP powders, containing 0, 16 and 71wt.% of amorphous phase (ATCP), were mixed with either deionized water or a 0.1M Na2HPO4 aqueous solution. The crystalline evolution of the paste was assessed quantitatively during the first 48h of hydration at 23°C by G-factor quantification. The present investigations demonstrate that ATCP reacted earlier than crystalline α-TCP. The results also suggest the formation of an X-ray amorphous phase during the hydraulic conversion formation of α-TCP into CDHA. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage.

    PubMed

    Yang, Jianping; Wang, Yunxiao; Li, Wei; Wang, Lianjun; Fan, Yuchi; Jiang, Wan; Luo, Wei; Wang, Yang; Kong, Biao; Selomulya, Cordelia; Liu, Hua Kun; Dou, Shi Xue; Zhao, Dongyuan

    2017-12-01

    Smart surface coatings of silicon (Si) nanoparticles are shown to be good examples for dramatically improving the cyclability of lithium-ion batteries. Most coating materials, however, face significant challenges, including a low initial Coulombic efficiency, tedious processing, and safety assessment. In this study, a facile sol-gel strategy is demonstrated to synthesize commercial Si nanoparticles encapsulated by amorphous titanium oxide (TiO 2 ), with core-shell structures, which show greatly superior electrochemical performance and high-safety lithium storage. The amorphous TiO 2 shell (≈3 nm) shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. Interestingly, it is found that the amorphous TiO 2 shells offer superior buffering properties compared to crystalline TiO 2 layers for unprecedented cycling stability. Moreover, accelerating rate calorimetry testing reveals that the TiO 2 -encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal potomac river.

    PubMed

    Lovley, D R; Phillips, E J

    1986-10-01

    The distribution of Fe(III), its availability for microbial reduction, and factors controlling Fe(III) availability were investigated in sediments from a freshwater site in the Potomac River Estuary. Fe(III) reduction in sediments incubated under anaerobic conditions and depth profiles of oxalate-extractable Fe(III) indicated that Fe(III) reduction was limited to depths of 4 cm or less, with the most intense Fe(III) reduction in the top 1 cm. In incubations of the upper 4 cm of the sediments, Fe(III) reduction was as important as methane production as a pathway for anaerobic electron flow because of the high rates of Fe(III) reduction in the 0- to 0.5-cm interval. Most of the oxalate-extractable Fe(III) in the sediments was not reduced and persisted to a depth of at least 20 cm. The incomplete reduction was not the result of a lack of suitable electron donors. The oxalate-extractable Fe(III) that was preserved in the sediments was considered to be in a form other than amorphous Fe(III) oxyhydroxide, since synthetic amorphous Fe(III) oxyhydroxide, amorphous Fe(III) oxyhydroxide adsorbed onto clay, and amorphous Fe(III) oxyhydroxide saturated with adsorbed phosphate or fulvic acids were all readily reduced. Fe(3)O(4) and the mixed Fe(III)-Fe(II) compound(s) that were produced during the reduction of amorphous Fe(III) oxyhydroxide in an enrichment culture were oxalate extractable but were not reduced, suggesting that mixed Fe(III)-Fe(II) compounds might account for the persistence of oxalate-extractable Fe(III) in the sediments. The availability of microbially reducible Fe(III) in surficial sediments demonstrates that microbial Fe(III) reduction can be important to organic matter decomposition and iron geochemistry. However, the overall extent of microbial Fe(III) reduction is governed by the inability of microorganisms to reduce most of the Fe(III) in the sediment.

  15. Why is it so difficult to classify Renazzo-type (CR) carbonaceous chondrites? - Implications from TEM observations of matrices for the sequences of aqueous alteration

    NASA Astrophysics Data System (ADS)

    Abreu, Neyda M.

    2016-12-01

    A number of different classifications have been proposed for the CR chondrites; this study aims at reconciling these different schemes. Mineralogy-based classification has proved particularly challenging for weakly to moderately altered CRs because incipient mineral replacement and elemental mobilization arising from aqueous alteration only affected the most susceptible primary phases, which are generally located in the matrix. Secondary matrix phases are extremely fine-grained (generally sub-micron) and heterogeneously mixed with primary nebular materials. Compositional and isotopic classification parameters are fraught with confounding factors, such as terrestrial weathering, impact processes, and variable abundance of clasts from different regions of the CR parent body or from altogether different planetary bodies. Here, detailed TEM observations from eighteen FIB sections retrieved from the matrices of nine Antarctic CR chondrites (EET 96259, GRA 95229, GRO 95577, GRO 03116, LAP 02342, LAP 04516, LAP 04720, MIL 07525, and MIL 090001) are presented, representing a range of petrologic types. Amorphous Fe-Mg silicates are found to be the dominant phase in all but the most altered CR chondrite matrices, which still retain significant amounts of these amorphous materials. Amorphous Fe-Mg silicates are mixed with phyllosilicates at the nanometer scale. The ratio of amorphous Fe-Mg silicates to phyllosilicates decreases as: (1) the size of phyllosilicates, (2) abundance of magnetite, and (3) replacement of Fe-Ni sulfides increase. Carbonates are only abundant in the most altered CR chondrite, GRO 95577. Nanophase Fe-Ni metal and tochilinite are present small abundances in most CR matrices. Based on the presence, abundance and size of phyllosilicates with respect to amorphous Fe-Mg silicates, the sub-micron features of CR chondrites have been linked to existing classification sequences, and possible reasons for inconsistencies among classification schemes are discussed.

  16. Intensified Weathering Control of Carbon Cycle along an Earthworm Invasion Chronosequence: Preliminary Data

    NASA Astrophysics Data System (ADS)

    Fernandez, C.; Yoo, K.; Aufdenkampe, A. K.; Hale, C.

    2009-12-01

    Though earthworms may appear ubiquitous and native where they are found, this is not true in the Glaciated areas of North America. After the glacial retreat, earthworms were not able to catch up with the northward expansion of forests. Subsequently, these forests in the glaciated areas have developed without native earthworm species over the past six to ten thousand years. With the arrival of agriculture, fishing villages, and expansion of unpaved roads, exotic earthworm species began to invade the adjacent forests. We focus on a well studied earthworm invasion chronosequence in the Chippewa National Forest in Minnesota. The chronosequence is ~100 meter long, which represents several decades of invasion history. In general, O horizon dwelling species form the pioneering population and remove the litter layer. Subsequently, shallow soil mixers are followed by deep burrowing species. As the invasion front advances, O horizons disappear, A horizons become thicker, underlying sandy aeolian blankets are incorporated into the A horizons, and there is an increasingly frequent signs of earthworm burrows in the clay rich Bt horizons. Our preliminary data was from two end members of the chronosequence. Earthworm-driven soil mixing created more vertically homogeneous profiles of elemental compositions. Probably reflecting the upward incorporation of clay and iron-oxide rich Bt horizon materials by earthworms. A horizons in the invaded site were more enriched not only in total Fe and Al but also in crystalline and amorphous forms of iron and aluminum oxides than in the non-invaded soil. Particularly, sodium pyrophosphate extracted pools of Fe and Al, which represent the organically complexed Fe and Al oxides, were significantly greater in the invaded A horizon. This suggests that the iron and aluminum oxides translocated upward by earthworms may help complexing and thus stabilizing organic carbon. Therefore underground invasion of earthworms may significantly intensify the coupling of chemical weathering and soil carbon cycle. Our ultimate goal is to understand the holistic response of mineral weathering and carbon cycle to accelerated soil mixing by earthworm invasion.

  17. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellentmore » intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.« less

  18. Effect of Sb on physical properties and microstructures of laser nano/amorphous-composite film

    NASA Astrophysics Data System (ADS)

    Li, Jia-Ning; Gong, Shui-Li; Sun, Mei; Shan, Fei-Hu; Wang, Xi-Chang; Jiang, Shuai

    2013-11-01

    A nano/amorphous-composite film was fabricated by laser cladding (LC) of the Co-Ti-B4C-Sb mixed powders on a TA15 alloy. Such film mainly consisted of Ti-Al, Co-Ti, Co-Sb intermetallics, TiC, TiB2, TiB, and the amorphous phases. Experimental results indicated that the crystal systems of TiB2 (hexagonal)/TiC (cubic) and Sb (rhombohedral) played important role on the formation of such film. Due to the mismatch of these crystals systems and mutual immiscibility of the metallic components, Sb was not incorporated in TiB2/TiC, but formed separate nuclei during the film growth. Thus, the growth of TiB2/TiC was stopped by the Sb nucleus in such LC molten pool, so as to form the nanoscale particles.

  19. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    PubMed Central

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-01-01

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials. PMID:27803330

  20. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    DOE PAGES

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing; ...

    2016-11-01

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellentmore » intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.« less

Top