Science.gov

Sample records for amorphous molecular materials

  1. Mesoscale molecular network formation in amorphous organic materials

    PubMed Central

    Savoie, Brett M.; Kohlstedt, Kevin L.; Jackson, Nicholas E.; Chen, Lin X.; Olvera de la Cruz, Monica; Schatz, George C.; Marks, Tobin J.; Ratner, Mark A.

    2014-01-01

    High-performance solution-processed organic semiconductors maintain macroscopic functionality even in the presence of microscopic disorder. Here we show that the functional robustness of certain organic materials arises from the ability of molecules to create connected mesoscopic electrical networks, even in the absence of periodic order. The hierarchical network structures of two families of important organic photovoltaic acceptors, functionalized fullerenes and perylene diimides, are analyzed using a newly developed graph methodology. The results establish a connection between network robustness and molecular topology, and also demonstrate that solubilizing moieties play a large role in disrupting the molecular networks responsible for charge transport. A clear link is established between the success of mono and bis functionalized fullerene acceptors in organic photovoltaics and their ability to construct mesoscopically connected electrical networks over length scales of 10 nm. PMID:24982179

  2. Characterisation of amorphous and nanocrystalline molecular materials by total scattering

    SciTech Connect

    Billinge, Simon J.L.; Dykhne, Timur; Juhás, Pavol; Boin, Emil; Taylor, Ryan; Florence, Alastair J.; Shankland, Kenneth

    2010-09-17

    The use of high-energy X-ray total scattering coupled with pair distribution function analysis produces unique structural fingerprints from amorphous and nanostructured phases of the pharmaceuticals carbamazepine and indomethacin. The advantages of such facility-based experiments over laboratory-based ones are discussed and the technique is illustrated with the characterisation of a melt-quenched sample of carbamazepine as a nanocrystalline (4.5 nm domain diameter) version of form III.

  3. Surprising increase in photostability of organic amorphous materials by efficient molecular packing

    NASA Astrophysics Data System (ADS)

    Qiu, Yue; Antony, Lucas; de Pablo, Juan; Ediger, Mark

    Photochemically robust materials are desired for organic electronics. Previous work has demonstrated that crystal packing can strongly influence photochemical reactivity. In amorphous materials, however, similar efforts to tune photostability have not been successful. In this work, we show that organic glasses prepared by physical vapor deposition can be highly stable against photo-isomerization. Disperse orange 37 (DO37), an azobenzene derivative, is studied as a model molecule. The thickness and molecular orientation of DO37 thin films can be altered by the photo-isomerization reaction. We use spectroscopic ellipsometry to measure sample thickness and molecular orientation during light irradiation. By changing the substrate temperature during the deposition, photostability can increase 2 to 3 orders of magnitude relative to the liquid-cooled glass. We find that photostability correlates with density of packing, with density increases of up to 1.3%. Simulations also show that glasses with higher density can be significantly more photo-stable. These results show for the first time that photostability of glasses can be significantly modulated by molecular packing. And they may provide insight in designing organic photovoltaics and light emission devices with longer lifetimes.

  4. Formation of amorphous materials

    DOEpatents

    Johnson, William L.; Schwarz, Ricardo B.

    1986-01-01

    Metastable amorphous or fine crystalline materials are formed by solid state reactions by diffusion of a metallic component into a solid compound or by diffusion of a gas into an intermetallic compound. The invention can be practiced on layers of metals deposited on an amorphous substrate or by intermixing powders with nucleating seed granules. All that is required is that the diffusion of the first component into the second component be much faster than the self-diffusion of the first component. The method is practiced at a temperature below the temperature at which the amorphous phase transforms into one or more crystalline phases and near or below the temperature at which the ratio of the rate of diffusion of the first component to the rate of self-diffusion is at least 10.sup.4. This anomalous diffusion criteria is found in many binary, tertiary and higher ordered systems of alloys and appears to be found in all alloy systems that form amorphous materials by rapid quenching. The method of the invention can totally convert much larger dimensional materials to amorphous materials in practical periods of several hours or less.

  5. Defect-induced solid state amorphization of molecular crystals

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Carvajal, Teresa; Koslowski, Marisol

    2012-04-01

    We investigate the process of mechanically induced amorphization in small molecule organic crystals under extensive deformation. In this work, we develop a model that describes the amorphization of molecular crystals, in which the plastic response is calculated with a phase field dislocation dynamics theory in four materials: acetaminophen, sucrose, γ-indomethacin, and aspirin. The model is able to predict the fraction of amorphous material generated in single crystals for a given applied stress. Our results show that γ-indomethacin and sucrose demonstrate large volume fractions of amorphous material after sufficient plastic deformation, while smaller amorphous volume fractions are predicted in acetaminophen and aspirin, in agreement with experimental observation.

  6. Bulk amorphous materials

    SciTech Connect

    Schwarz, R.B.; Archuleta, J.I.; Sickafus, K.E.

    1998-12-01

    This is the final report for a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this work was to develop the competency for the synthesis of novel bulk amorphous alloys. The authors researched their synthesis methods and alloy properties, including thermal stability, mechanical, and transport properties. The project also addressed the development of vanadium-spinel alloys for structural applications in hostile environments, the measurement of elastic constants and thermal expansion in single-crystal TiAl from 300 to 750 K, the measurement of elastic constants in gallium nitride, and a study of the shock-induced martensitic transformations in NiTi alloys.

  7. Amorphous materials and recrystallization

    SciTech Connect

    Lucovsky, G.; Narayan, J.

    1984-05-01

    This paper has dealt with two materials science topics relevant to the utilization of semiconductors in energy systems. The first part of the paper has focused on the local chemical bonding of alloy atoms in a-Si and the second on the rapid recrystallization of ion-implanted and damaged semiconductor layers. Rapid crystallization methods based upon pulsed laser irradiation provide more efficient removal of ion implantation damage than conventional thermal annealing techniques. A complete electrical activation dopants and superior p-n junction properties are obtained by pulsed beam processing. The dopant concentrations far exceeding the equilibrium solubility limits can be obtained, which may lead to novel advanced semiconductor devices. An example of application of pulsed beam processing in the fabrication of low-cost, high-efficiency solar cells is illustrated. The information provided in this paper will be useful and helpful to scientists and engineers who are primarily concerned with the fabrication, evaluation, and optimization of devices.

  8. Concurrent multiscale modeling of amorphous materials

    NASA Astrophysics Data System (ADS)

    Tan, Vincent

    2013-03-01

    An approach to multiscale modeling of amorphous materials is presented whereby atomistic scale domains coexist with continuum-like domains. The atomistic domains faithfully predict severe deformation while the continuum domains allow the computation to scale up the size of the model without incurring excessive computational costs associated with fully atomistic models and without the introduction of spurious forces across the boundary of atomistic and continuum-like domains. The material domain is firstly constructed as a tessellation of Amorphous Cells (AC). For regions of small deformation, the number of degrees of freedom is then reduced by computing the displacements of only the vertices of the ACs instead of the atoms within. This is achieved by determining, a priori, the atomistic displacements within such Pseudo Amorphous Cells associated with orthogonal deformation modes of the cell. Simulations of nanoscale polymer tribology using full molecular mechanics computation and our multiscale approach give almost identical prediction of indentation force and the strain contours of the polymer. We further demonstrate the capability of performing adaptive simulations during which domains that were discretized into cells revert to full atomistic domains when their strain attain a predetermined threshold. The authors would like to acknowledge the financial support given to this study by the Agency of Science, Technology and Research (ASTAR), Singapore (SERC Grant No. 092 137 0013).

  9. Physical stabilization of low-molecular-weight amorphous drugs in the solid state: a material science approach.

    PubMed

    Qi, Sheng; McAuley, William J; Yang, Ziyi; Tipduangta, Pratchaya

    2014-07-01

    Use of the amorphous state is considered to be one of the most effective approaches for improving the dissolution and subsequent oral bioavailability of poorly water-soluble drugs. However as the amorphous state has much higher physical instability in comparison with its crystalline counterpart, stabilization of amorphous drugs in a solid-dosage form presents a major challenge to formulators. The currently used approaches for stabilizing amorphous drug are discussed in this article with respect to their preparation, mechanism of stabilization and limitations. In order to realize the potential of amorphous formulations, significant efforts are required to enable the prediction of formulation performance. This will facilitate the development of computational tools that can inform a rapid and rational formulation development process for amorphous drugs.

  10. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, Raoul B.

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  11. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  12. Thermal transport in amorphous materials: a review

    NASA Astrophysics Data System (ADS)

    Wingert, Matthew C.; Zheng, Jianlin; Kwon, Soonshin; Chen, Renkun

    2016-11-01

    Thermal transport plays a crucial role in performance and reliability of semiconductor electronic devices, where heat is mainly carried by phonons. Phonon transport in crystalline semiconductor materials, such as Si, Ge, GaAs, GaN, etc, has been extensively studied over the past two decades. In fact, study of phonon physics in crystalline semiconductor materials in both bulk and nanostructure forms has been the cornerstone of the emerging field of ‘nanoscale heat transfer’. On the contrary, thermal properties of amorphous materials have been relatively less explored. Recently, however, a growing number of studies have re-examined the thermal properties of amorphous semiconductors, such as amorphous Si. These studies, which included both computational and experimental work, have revealed that phonon transport in amorphous materials is perhaps more complicated than previously thought. For instance, depending on the type of amorphous materials, thermal transport occurs via three types of vibrations: propagons, diffusons, and locons, corresponding to the propagating, diffusion, and localized modes, respectively. The relative contribution of each of these modes dictates the thermal conductivity of the material, including its magnitude and its dependence on sample size and temperature. In this article, we will review the fundamental principles and recent development regarding thermal transport in amorphous semiconductors.

  13. Molecular relaxations in amorphous phenylbutazone

    NASA Astrophysics Data System (ADS)

    Sahra, M.; Thayyil, M. Shahin; Capaccioli, S.

    2016-05-01

    Molecular dynamics of phenylbutazone in the supercooled liquid and glassy state is studied using broadband dielectric spectroscopy for test frequencies 1 kHz, 10 kHz and 100 kHz over a wide temperature range. Above the glass transition temperature Tg, the presence of the structural α-relaxation peak was observed which shifts towards lower frequencies as the temperature decreases and kinetically freezes at Tg. Besides the structural α-relaxation peak, a β-process which arises due to the localized molecular fluctuations is observed at lower temperature.

  14. Understanding Thermal Conductivity in Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Kommandur, Sampath; Yee, Shannon

    2014-03-01

    Current energy technologies such as thermoelectrics, photovoltaics, and LEDs make extensive use of amorphous materials and are limited by heat transfer. Device improvements necessitate a better understanding of the thermal conductivity in amorphous materials. While there are basic theories that capture the trends in thermal conductivity of a select set of amorphous materials, a general framework is needed to explain the fundamental transport of heat in all amorphous materials. One empirical theory that has been successful at describing the thermal conductivity in some materials is the k-min model, however, assumptions in that model limit its generalizability. Another theory defines the existence of propagons, diffusons, and locons, which constitute vibrational modes that carry heat. Our work first presents a summary of literature on the thermal conductivity in amorphous materials and then compares those theories to a breadth of experimental data. Based upon those results, a generic model is proposed that is widely applicable with the ultimate goal of this work being to describe the temperature dependent thermal conductivity of polymers. -/abstract- Sampath Kommandur and Shannon K. Yee 21.1.1: Thermoelectric Phenomena, Materials, Devices, and Applications (GER

  15. New bulk amorphous magnetic materials

    NASA Astrophysics Data System (ADS)

    Chiriac, H.; Lupu, N.

    2001-06-01

    The relationship between structure and magnetic properties of the melt-spun ribbons with thicknesses up to 200 μm and rods having up to 3 mm diameter prepared by mould casting and suction casting techniques, of nominal compositions Fe 56Co 7Ni 7Zr 6M 1.5Nb 2.5B 20 (M=Zr, Ti, Ta or Mo) and Nd 50Fe 40Si 10- xAl x was investigated. Saturation magnetisations up to 1.1 T, coercive fields of about 5 A/m, magnetic permeabilities of 25 000-30 000 in the as-cast state were measured for the Fe-based amorphous alloys. The large values over 200 kA/m of the intrinsic coercive field at room temperature and over 600 kA/m at 200 K measured in low magnetic fields for the Nd-Fe-based “X-ray amorphous” alloys, and its dependence on temperature and cooling rate are ascribed to the existence of very small ferromagnetic clusters embedded in an Nd-rich matrix. The thermal treatments applied to the amorphous samples below the crystallisation temperature cause an improvement in the magnetic properties as a consequence of structural relaxation.

  16. Theoretical studies of amorphous silicon and hydrogenated amorphous silicon with molecular dynamics simulations

    SciTech Connect

    Kwon, I.

    1991-12-20

    Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) have been studied with molecular dynamics simulations. The structural, vibrational, and electronic properties of these materials have been studied with computer-generated structural models and compare well with experimental observations. The stability of a-si and a-Si:H have been studied with the aim of understanding microscopic mechanisms underlying light-induced degradation in a-Si:H (the Staebler-Wronski effect). With a view to understanding thin film growth processes, a-Si films have been generated with molecular dynamics simulations by simulating the deposition of Si-clusters on a Si(111) substrate. A new two- and three-body interatomic potential for Si-H interactions has been developed. The structural properties of a-Si:H networks are in good agreement with experimental measurements. The presence of H atoms reduces strain and disorder relative to networks without H.

  17. Superior radiation tolerant materials: Amorphous silicon oxycarbide

    NASA Astrophysics Data System (ADS)

    Nastasi, Michael; Su, Qing; Price, Lloyd; Colón Santana, Juan A.; Chen, Tianyi; Balerio, Robert; Shao, Lin

    2015-06-01

    We studied the radiation tolerance of amorphous silicon oxycarbide (SiOC) alloys by combining ion irradiation, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The amorphous SiOC alloys thin films were grown via co-sputtering from SiO2 and SiC (amorphous phase) targets either on a surface oxidized Si (100) substrate or on a sodium chloride substrate. By controlling the sputtering rate of each target, SiOC alloys with different compositions (1:2, 1:1, 2:1 ratios) were obtained. These alloys were irradiated by 100 keV He+ ions at both room temperature and 600 °C with damage levels ranging from 1 to 20 displacements per atom (dpa). TEM characterization shows no sign of crystallization, void formation or segregation in all irradiated samples. Our findings suggest that SiOC alloys are a class of promising radiation-tolerant materials.

  18. Characterizing Amorphous Silicates in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  19. Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy

    NASA Astrophysics Data System (ADS)

    Zhu, Peng-Zhe; Qiu, Chen; Fang, Feng-Zhou; Yuan, Dan-Dan; Shen, Xue-Cen

    2014-10-01

    Molecular dynamics simulations are employed to study the nanometric cutting process of Cu50Zr50 amorphous alloy. The effects of cutting depth, cutting speed and tool edge radius on the cutting force, workpiece pile-up and temperature of the cutting region are studied to investigate the mechanisms of the material removal and surface formation in the nanometric cutting process. It is found that the material removal of amorphous alloy workpiece is mainly based on extrusion at the nanoscale instead of shearing at the macroscale. The plastic deformation of amorphous alloy is mainly due to the formation of shear transformation zones during the nanometric cutting process. The results also suggest that bigger cutting depth and cutting speed will lead to larger tangential force and normal force. However, the tool edge radius has a negligible effect on the tangential force although the normal force increases with the increase of tool edge radius. The workpiece pile-up increases with an increase of the cutting depth, but decreases with an increase of the edge radius of the tool. The workpiece pile-up is not significantly affected by the cutting speed. It is also found that larger cutting depth and cutting speed will result in higher temperature in the cutting region of workpiece and the average Newtonian layer temperature of the tool. Tool edge radius has no significant effect on the temperature distribution of the workpiece and the average Newtonian layer temperature of the tool.

  20. Electrically conducting ternary amorphous fully oxidized materials and their application

    NASA Technical Reports Server (NTRS)

    Giauque, Pierre (Inventor); Nicolet, Marc (Inventor); Gasser, Stefan M. (Inventor); Kolawa, Elzbieta A. (Inventor); Cherry, Hillary (Inventor)

    2004-01-01

    Electrically active devices are formed using a special conducting material of the form Tm--Ox mixed with SiO2 where the materials are immiscible. The immiscible materials are forced together by using high energy process to form an amorphous phase of the two materials. The amorphous combination of the two materials is electrically conducting but forms an effective barrier.

  1. Inversion of diffraction data for amorphous materials

    PubMed Central

    Pandey, Anup; Biswas, Parthapratim; Drabold, D. A.

    2016-01-01

    The general and practical inversion of diffraction data–producing a computer model correctly representing the material explored–is an important unsolved problem for disordered materials. Such modeling should proceed by using our full knowledge base, both from experiment and theory. In this paper, we describe a robust method to jointly exploit the power of ab initio atomistic simulation along with the information carried by diffraction data. The method is applied to two very different systems: amorphous silicon and two compositions of a solid electrolyte memory material silver-doped GeSe3. The technique is easy to implement, is faster and yields results much improved over conventional simulation methods for the materials explored. By direct calculation, we show that the method works for both poor and excellent glass forming materials. It offers a means to add a priori information in first-principles modeling of materials, and represents a significant step toward the computational design of non-crystalline materials using accurate interatomic interactions and experimental information. PMID:27652893

  2. Inversion of diffraction data for amorphous materials

    NASA Astrophysics Data System (ADS)

    Pandey, Anup; Biswas, Parthapratim; Drabold, D. A.

    2016-09-01

    The general and practical inversion of diffraction data–producing a computer model correctly representing the material explored–is an important unsolved problem for disordered materials. Such modeling should proceed by using our full knowledge base, both from experiment and theory. In this paper, we describe a robust method to jointly exploit the power of ab initio atomistic simulation along with the information carried by diffraction data. The method is applied to two very different systems: amorphous silicon and two compositions of a solid electrolyte memory material silver-doped GeSe3. The technique is easy to implement, is faster and yields results much improved over conventional simulation methods for the materials explored. By direct calculation, we show that the method works for both poor and excellent glass forming materials. It offers a means to add a priori information in first-principles modeling of materials, and represents a significant step toward the computational design of non-crystalline materials using accurate interatomic interactions and experimental information.

  3. Amorphous materials molded IR lens progress report

    NASA Astrophysics Data System (ADS)

    Hilton, A. R., Sr.; McCord, James; Timm, Ronald; Le Blanc, R. A.

    2008-04-01

    Amorphous Materials began in 2000 a joint program with Lockheed Martin in Orlando to develop molding technology required to produce infrared lenses from chalcogenide glasses. Preliminary results were reported at this SPIE meeting by Amy Graham1 in 2003. The program ended in 2004. Since that time, AMI has concentrated on improving results from two low softening glasses, Amtir 4&5. Both glasses have been fully characterized and antireflection coatings have been developed for each. Lenses have been molded from both glasses, from Amtir 6 and from C1 Core glass. A Zygo unit is used to evaluate the results of each molded lens as a guide to improving the molding process. Expansion into a larger building has provided room for five production molding units. Molded lens sizes have ranged from 8 mm to 136 mm in diameter. Recent results will be presented

  4. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    ERIC Educational Resources Information Center

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  5. Electron beam recrystallization of amorphous semiconductor materials

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.

    1968-01-01

    Nucleation and growth of crystalline films of silicon, germanium, and cadmium sulfide on substrates of plastic and glass were investigated. Amorphous films of germanium, silicon, and cadmium sulfide on amorphous substrates of glass and plastic were converted to the crystalline condition by electron bombardment.

  6. Graphitic carbon growth on crystalline and amorphous oxide substrates using molecular beam epitaxy

    PubMed Central

    2011-01-01

    We report graphitic carbon growth on crystalline and amorphous oxide substrates by using carbon molecular beam epitaxy. The films are characterized by Raman spectroscopy and X-ray photoelectron spectroscopy. The formations of nanocrystalline graphite are observed on silicon dioxide and glass, while mainly sp2 amorphous carbons are formed on strontium titanate and yttria-stabilized zirconia. Interestingly, flat carbon layers with high degree of graphitization are formed even on amorphous oxides. Our results provide a progress toward direct graphene growth on oxide materials. PACS: 81.05.uf; 81.15.Hi; 78.30.Ly. PMID:22029707

  7. Mesoscale modeling of strain induced solid state amorphization in crystalline materials

    NASA Astrophysics Data System (ADS)

    Lei, Lei

    Solid state amorphization, and in particular crystalline to amorphous transformation, can be observed in metallic alloys, semiconductors, intermetallics, minerals, and also molecular crystals when they undergo irradiation, hydrogen gas dissolution, thermal interdiffusion, mechanical alloying, or mechanical milling. Although the amorphization mechanisms may be different, the transformation occurs due to the high level of disorder introduced into the material. Milling induced solid state amorphization is proposed to be the result of accumulation of crystal defects, specifically dislocations, as the material is subjected to large deformations during the high energy process. Thus, understanding the deformation mechanisms of crystalline materials will be the first step in studying solid state amorphization in crystalline materials, which not only has scientific contributions, but also technical consequences. A phase field dislocation dynamics (PFDD) approach is employed in this work to simulate plastic deformation of molecular crystals. This PFDD model has the advantage of tracking all of the dislocations in a material simultaneously. The model takes into account the elastic interaction between dislocations, the lattice resistance to dislocation motion, and the elastic interaction of dislocations with an external stress field. The PFDD model is employed to describe the deformation of molecular crystals with pharmaceutical applications, namely, single crystal sucrose, acetaminophen, gamma-indomethacin, and aspirin. Stress-strain curves are produced that result in expected anisotropic material response due to the activation of different slip systems and yield stresses that agree well with those from experiments. The PFDD model is coupled to a phase transformation model to study the relation between plastic deformation and the solid state amorphization of crystals that undergo milling. This model predicts the amorphous volume fraction in excellent agreement with

  8. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    NASA Technical Reports Server (NTRS)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on

  9. Molecular mobility in amorphous state: Implications on physical stability

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Sunny Piyush

    Amorphous pharmaceuticals are desirable in drug development due to their advantageous biopharmaceutical properties of higher apparent aqueous solubility and dissolution rate. The main obstacle in their widespread use, however, is their higher physicochemical instability than their crystalline counterparts. The goal of the present research project was to investigate correlations between the molecular mobility and physical stability in model amorphous compounds. The objective was to identify the specific mobility which is responsible for the physical instability in each case. This will potentially enable the development of effective strategies for the stabilization of amorphous pharmaceuticals. Moreover, these correlations can be used to develop predictive models for the stability at the pharmaceutically relevant storage conditions. Subtraction of dc conductivity enabled the comprehensive characterization of molecular mobility in amorphous trehalose. This was followed by investigation of correlation between crystallization behavior and different relaxations. Global mobility was found to be strongly coupled to both crystallization onset time and rate. Different preparation methods imparted different mobility states to amorphous trehalose which was postulated to be the reason for the significant physical stability differences. Predictive models were developed and a good agreement was found between the predicted and the experimental crystallization onset times at temperatures around and below the glass transition temperature (Tg). Effect of annealing was investigated on water sorption, enthalpic recovery and dielectric relaxation times in amorphous trehalose. Global mobility was found to be linearly correlated to the water sorption potential which enabled the development of predictive models. Global mobility was also found to be strongly correlated to physical instability in amorphous itraconazole. Effect of polymer (PVP and HPMCAS) on itraconazole mobility and

  10. Molecular dynamics modeling of ultrathin amorphous carbon films

    SciTech Connect

    Glosli, J.N.; Belak, J.; Philpott, M.R.

    1995-05-01

    Amorphous carbon films about 20 mn thick are used by the computer industry as protective coatings on magnetic disks. The structure and function of this family of materials at the atomic level is poorly understood. The growth and properties of a:C and a:CH films 1 to 5 nm thick has been simulated using classical molecular dynamics and a bond-order potential with torsional terms. Studies of quenched melts that verify the ability of this potential to reproduce known features of extended structures of carbon in two and three dimensions are briefly described. In molecular dynamics calculations the incident species were neutral atoms C, or C and H with energies up to 100 eV. The stoichiometry, chemical bonding and distribution functions within the films were analyzed using IBM`s Power Visualization System for different incident gas energies. Microscopic features such as multiple ring structures, including planar graphitic structures, were easily identified. Some preliminary studies of the nanotribology of the a:C films are described, including nano-indentation and sliding in contact with a rigid probe.

  11. Prediction of vibration modes and thermal conductivity for amorphous ZnO-based materials

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Ting; Roy, Anindya; Falk, Michael L.

    2015-03-01

    Amorphous materials, due to their distinct physical and chemical properties, have been widely used in photovoltaics, thermoelectrics and integrated circuits. Because the thermal conductivity is critical to the performance of such devices, the thermal transport in amorphous materials has received considerable attention in the last decade. So far, a number of experimental studies and theoretical models have reported the vibration modes and thermal conductivities for amorphous Si and SiO2. However, the applicability of these vibration mode analyses and thermal conductivity models for other amorphous materials has not been studied. In this work, we employ the molecular dynamics (MD) simulations and Allen-Feldman (AF) theory to investigate the vibration modes and thermal conductivity of amorphous ZnO-based materials. ZnO is basis of a promising class of n-type semiconductors for thermoelectric application. Additionally, from this work, the contribution of individual vibrational modes to the thermal conductivity can be characterized. These results are expected to guide the interpretation of thermal transport in amorphous ZnO-based materials and the optimization for their performance with different applications.

  12. Amorphous Silicates in Primitive Meteoritic Materials: Acfer 094 and IDPs

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Nakamura-Messenger, K.; Messenger, S.; Walker, Robert M.

    2009-01-01

    The abundance of presolar grains is one measure of the primitive nature of meteoritic materials. Presolar silicates are abundant in meteorites whose matrices are dominated by amorphous silicates such as the unique carbonaceous chondrite Acfer 094. Presolar silicates are even more abundant in chondritic-porous interplanetary dust particles (CP-IDPs). Amorphous silicates in the form of GEMS (glass with embedded metal and sulfides) grains are a major component of CP IDPs. We are studying amorphous silicates in Acfer 094 matrix in order to determine whether they are related to the GEMS grains in CPIDPs

  13. How does an amorphous surface influence molecular binding?--ovocleidin-17 and amorphous calcium carbonate.

    PubMed

    Freeman, Colin L; Harding, John H; Quigley, David; Rodger, P Mark

    2015-07-14

    Atomistic molecular dynamics simulations of dehydrated amorphous calcium carbonate interacting with the protein ovocleidin-17 are presented. These simulations demonstrate that the amorphisation of the calcium carbonate surface removes water structure from the surface. This reduction of structure allows the protein to bind with many residues, unlike on crystalline surfaces where binding is strongest when only a few residues are attached to the surface. Basic residues are observed to dominate the binding interactions. The implications for protein control over crystallisation are discussed.

  14. Physical stability of the amorphous anticholesterol agent (ezetimibe): the role of molecular mobility.

    PubMed

    Knapik, J; Wojnarowska, Z; Grzybowska, K; Hawelek, L; Sawicki, W; Wlodarski, K; Markowski, J; Paluch, M

    2014-11-01

    The purpose of this paper is to examine the role of molecular mobility in the recrystallization process from the amorphous state of the anticholesterol drug ezetimibe. Both the molecular dynamics and crystallization kinetics have been studied using various experimental techniques, such as broadband dielectric spectroscopy (BDS), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Our investigations have shown that ezetimibe easily recrystallizes from the disordered state, both below and above its glass transition temperature (Tg = 336 K). Moreover, we found that an only slightly elevated pressure (5 MPa) significantly accelerates the recrystallization process at T > Tg. We predict that the structural relaxation time of amorphous ezetimibe at 293 K (storage temperature) and ambient pressure is only 22 days. This result corresponds to the characteristic time, determined from XRD measurements, for amorphous ezetimibe to recrystallize during storage at Troom = 298 K. It leads to the conclusion that the molecular mobility reflected in structural relaxation of ezetimibe is mainly responsible for devitrification of this drug. Finally, we determined a relatively easy way to improve the physical stability of the drug by preparing a binary amorphous ezetimibe-Soluplus mixture. Ezetimibe in an amorphous mixture with 20 wt % Soluplus has a much better (over six times) solubility than the pure crystalline material. PMID:25310722

  15. Molecular Reorientation Dynamics Govern the Glass Transitions of the Amorphous Ices.

    PubMed

    Shephard, J J; Salzmann, C G

    2016-06-16

    The glass transitions of low-density amorphous ice (LDA) and high-density amorphous ice (HDA) are the topic of controversial discussions. Understanding their exact nature may be the key to explaining the anomalies of liquid water but has also got implications in the general context of polyamorphism, the occurrence of multiple amorphous forms of the same material. We first show that the glass transition of hydrogen-disordered ice VI is associated with the kinetic unfreezing of molecular reorientation dynamics by measuring the calorimetric responses of the corresponding H2O, H2(18)O, and D2O materials in combination with X-ray diffraction. Well-relaxed LDA and HDA show identical isotopic-response patterns in calorimetry as ice VI, and we conclude that the glass transitions of the amorphous ices are also governed by molecular reorientation processes. This "reorientation scenario" seems to resolve the previously conflicting viewpoints and is consistent with the fragile-to-strong transition from water to the amorphous ices.

  16. Obstacles using amorphous materials for volume applications

    NASA Astrophysics Data System (ADS)

    Kiessling, Albert; Reininger, Thomas

    2012-10-01

    This contribution is especially focussed on the attempt to use amorphous or nanocrystalline metals in position sensor applications and to describe the difficulties and obstacles encountered in coherence with the development of appropriate industrial high volume series products in conjunction with the related quality requirements. The main motivation to do these investigations was to beat the generally known sensors especially silicon based Hall-sensors as well as AMR- and GMR-sensors - well known from mobile phones and electronic storage devices like hard discs and others - in terms of cost-effectiveness and functionality.

  17. Molecular structure of vapor-deposited amorphous selenium

    NASA Astrophysics Data System (ADS)

    Goldan, A. H.; Li, C.; Pennycook, S. J.; Schneider, J.; Blom, A.; Zhao, W.

    2016-10-01

    The structure of amorphous selenium is clouded with much uncertainty and contradictory results regarding the dominance of polymeric chains versus monomer rings. The analysis of the diffraction radial distribution functions are inconclusive because of the similarities between the crystalline allotropes of selenium in terms of the coordination number, bond length, bond angle, and dihedral angle. Here, we took a much different approach and probed the molecular symmetry of the thermodynamically unstable amorphous state via analysis of structural phase transformations. We verified the structure of the converted metastable and stable crystalline structures using scanning transmission electron microscopy. In addition, given that no experimental technique can tell us the exact three-dimensional atomic arrangements in glassy semiconductors, we performed molecular-dynamic simulations using a well-established empirical three-body interatomic potential. We developed a true vapor-deposited process for the deposition of selenium molecules onto a substrate using empirical molecular vapor compositions and densities. We prepared both vapor-deposited and melt-quenched samples and showed that the simulated radial distribution functions match very well to experiment. The combination of our experimental and molecular-dynamic analyses shows that the structures of vapor- and melt-quenched glassy/amorphous selenium are quite different, based primarily on rings and chains, respectively, reflecting the predominant structure of the parent phase in its thermodynamic equilibrium.

  18. Amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  19. Direct measurement of molecular mobility and crystallisation of amorphous pharmaceuticals using terahertz spectroscopy.

    PubMed

    Sibik, Juraj; Zeitler, J Axel

    2016-05-01

    Despite much effort in the area, no comprehensive understanding of the formation and behaviour of amorphous solids has yet been achieved. This severely limits the industrial application of such materials, including drug delivery where, in principle, amorphous solids have demonstrated their great usefulness in increasing the bioavailability of poorly aqueous soluble active pharmaceutical ingredients. Terahertz time-domain spectroscopy is a relatively novel analytical technique that can be used to measure the fast molecular dynamics of molecules with high accuracy in a non-contact and non-destructive fashion. Over the past decade a number of applications for the characterisation of amorphous drug molecules and formulations have been developed and it has been demonstrated how this technique can be used to determine the onset and strength in molecular mobility that underpins the crystallisation of amorphous drugs. In this review we provide an overview of the history, fundamentals and future perspective of pharmaceutical applications related to the terahertz dynamics of amorphous systems. PMID:26772139

  20. Variable-amplitude oscillatory shear response of amorphous materials

    NASA Astrophysics Data System (ADS)

    Perchikov, Nathan; Bouchbinder, Eran

    2014-06-01

    Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.

  1. How does an amorphous surface influence molecular binding?--ovocleidin-17 and amorphous calcium carbonate.

    PubMed

    Freeman, Colin L; Harding, John H; Quigley, David; Rodger, P Mark

    2015-07-14

    Atomistic molecular dynamics simulations of dehydrated amorphous calcium carbonate interacting with the protein ovocleidin-17 are presented. These simulations demonstrate that the amorphisation of the calcium carbonate surface removes water structure from the surface. This reduction of structure allows the protein to bind with many residues, unlike on crystalline surfaces where binding is strongest when only a few residues are attached to the surface. Basic residues are observed to dominate the binding interactions. The implications for protein control over crystallisation are discussed. PMID:26009013

  2. Amorphous and Nanocomposite Materials for Energy-Efficient Electric Motors

    NASA Astrophysics Data System (ADS)

    Silveyra, Josefina M.; Xu, Patricia; Keylin, Vladimir; DeGeorge, Vincent; Leary, Alex; McHenry, Michael E.

    2016-01-01

    We explore amorphous soft-magnetic alloys as candidates for electric motor applications. The Co-rich system combines the benefits of low hysteretic and eddy-current losses while exhibiting negligible magnetostriction and robust mechanical properties. The amorphous precursors can be devitrified to form nanocomposite magnets. The superior characteristics of these materials offer the advantages of ease of handling in the manufacturing processing and low iron losses during motor operation. Co-rich amorphous ribbons were laser-cut to build a stator for a small demonstrator permanent-magnet machine. The motor was tested up to ~30,000 rpm. Finite-element analyses proved that the iron losses of the Co-rich amorphous stator were ~80% smaller than for a Si steel stator in the same motor, at 18,000 rpm (equivalent to an electric frequency of 2.1 kHz). These low-loss soft magnets have great potential for application in highly efficient high-speed electric machines, leading to size reduction as well as reduction or replacement of rare earths in permanent-magnet motors. More studies evaluating further processing techniques for amorphous and nanocomposite materials are needed.

  3. Method of depositing wide bandgap amorphous semiconductor materials

    DOEpatents

    Ellis, Jr., Frank B.; Delahoy, Alan E.

    1987-09-29

    A method of depositing wide bandgap p type amorphous semiconductor materials on a substrate without photosensitization by the decomposition of one or more higher order gaseous silanes in the presence of a p-type catalytic dopant at a temperature of about 200.degree. C. and a pressure in the range from about 1-50 Torr.

  4. Materials modeling by design: applications to amorphous solids.

    PubMed

    Biswas, Parthapratim; Tafen, D N; Inam, F; Cai, Bin; Drabold, D A

    2009-02-25

    In this paper, we review a host of methods used to model amorphous materials. We particularly describe methods which impose constraints on the models to ensure that the final model meets a priori requirements (on structure, topology, chemical order, etc). In particular, we review work based on quench from the melt simulations, the 'decorate and relax' method, which is shown to be a reliable scheme for forming models of certain binary glasses. A 'building block' approach is also suggested and yields a pleading model for GeSe(1.5). We also report on the nature of vulcanization in an Se network cross-linked by As, and indicate how introducing H into an a-Si network develops into a-Si:H. We also discuss explicitly constrained methods including reverse Monte Carlo (RMC) and a novel method called 'Experimentally Constrained Molecular Relaxation'. The latter merges the power of ab initio simulation with the ability to impose external information associated with RMC. PMID:21817359

  5. Materials modeling by design: applications to amorphous solids

    NASA Astrophysics Data System (ADS)

    Biswas, Parthapratim; Tafen, D. N.; Inam, F.; Cai, Bin; Drabold, D. A.

    2009-02-01

    In this paper, we review a host of methods used to model amorphous materials. We particularly describe methods which impose constraints on the models to ensure that the final model meets a priori requirements (on structure, topology, chemical order, etc). In particular, we review work based on quench from the melt simulations, the 'decorate and relax' method, which is shown to be a reliable scheme for forming models of certain binary glasses. A 'building block' approach is also suggested and yields a pleading model for GeSe1.5. We also report on the nature of vulcanization in an Se network cross-linked by As, and indicate how introducing H into an a-Si network develops into a-Si:H. We also discuss explicitly constrained methods including reverse Monte Carlo (RMC) and a novel method called 'Experimentally Constrained Molecular Relaxation'. The latter merges the power of ab initio simulation with the ability to impose external information associated with RMC.

  6. Containerless synthesis of amorphous and nanophase organic materials

    DOEpatents

    Benmore, Chris J.; Weber, Johann R.

    2016-05-03

    The invention provides a method for producing a mixture of amorphous compounds, the method comprising supplying a solution containing the compounds; and allowing at least a portion of the solvent of the solution to evaporate while preventing the solute of the solution from contacting a nucleation point. Also provided is a method for transforming solids to amorphous material, the method comprising heating the solids in an environment to form a melt, wherein the environment contains no nucleation points; and cooling the melt in the environment.

  7. Amorphization of hard crystalline materials by electrosprayed nanodroplet impact

    SciTech Connect

    Gamero-Castaño, Manuel Torrents, Anna; Borrajo-Pelaez, Rafael; Zheng, Jian-Guo

    2014-11-07

    A beam of electrosprayed nanodroplets impacting on single-crystal silicon amorphizes a thin surface layer of a thickness comparable to the diameter of the drops. The phase transition occurs at projectile velocities exceeding a threshold, and is caused by the quenching of material melted by the impacts. This article demonstrates that the amorphization of silicon is a general phenomenon, as nanodroplets impacting at sufficient velocity also amorphize other covalently bonded crystals. In particular, we bombard single-crystal wafers of Si, Ge, GaAs, GaP, InAs, and SiC in a range of projectile velocities, and characterize the samples via electron backscatter diffraction and transmission electron microscopy to determine the aggregation state under the surface. InAs requires the lowest projectile velocity to develop an amorphous layer, followed by Ge, Si, GaAs, and GaP. SiC is the only semiconductor that remains fully crystalline, likely due to the relatively low velocities of the beamlets used in this study. The resiliency of each crystal to amorphization correlates well with the specific energy needed to melt it except for Ge, which requires projectile velocities higher than expected.

  8. Spectroscopic Investigations of Amorphous Complex Dielectric Materials.

    NASA Astrophysics Data System (ADS)

    Anwar, Muhammad

    1989-03-01

    Available from UMI in association with The British Library. A discussion of general properties of three systems of dielectric films i.e. MoO_3 and the mixed oxide systems MoO_3/In _2O_3 and MoO_3/SiO is presented. Composition, film thickness, substrate deposition temperature and annealing, all have a substantial effect on the structure and various properties of the films. General properties of these three systems of dielectric films include analysis by X-ray photoelectron spectroscopy, U.V/VIS and infra-red spectroscopy including the Fourier transform technique, electrical properties both D.C and A.C at both low and high fields, and electron paramagnetic resonance. A comprehensive comparison of all the results is carried out in a correlated manner and some new ideas are presented on an established semiconducting/dielectric material. (Abstract shortened by UMI.).

  9. Fluctuation Electron Microscopy of Amorphous and Polycrystalline Materials

    NASA Astrophysics Data System (ADS)

    Rezikyan, Aram

    Fluctuation Electron Microscopy (FEM) has become an effective materials' structure characterization technique, capable of probing medium-range order (MRO) that may be present in amorphous materials. Although its sensitivity to MRO has been exercised in numerous studies, FEM is not yet a quantitative technique. The holdup has been the discrepancy between the computed kinematical variance and the experimental variance, which previously was attributed to source incoherence. Although high-brightness, high coherence, electron guns are now routinely available in modern electron microscopes, they have not eliminated this discrepancy between theory and experiment. The main objective of this thesis was to explore, and to reveal, the reasons behind this conundrum. The study was started with an analysis of the speckle statistics of tilted dark-field TEM images obtained from an amorphous carbon sample, which confirmed that the structural ordering is sensitively detected by FEM. This analysis also revealed the inconsistency between predictions of the source incoherence model and the experimentally observed variance. FEM of amorphous carbon, amorphous silicon and ultra nanocrystalline diamond samples was carried out in an attempt to explore the conundrum. Electron probe and sample parameters were varied to observe the scattering intensity variance behavior. Results were compared to models of probe incoherence, diffuse scattering, atom displacement damage, energy loss events and multiple scattering. Models of displacement decoherence matched the experimental results best. Decoherence was also explored by an interferometric diffraction method using bilayer amorphous samples, and results are consistent with strong displacement decoherence in addition to temporal decoherence arising from the electron source energy spread and energy loss events in thick samples. It is clear that decoherence plays an important role in the long-standing discrepancy between experimental FEM and its

  10. Neutron scattering from amorphous, disordered and nanocrystalline materials

    SciTech Connect

    Price, D.L.

    1994-10-01

    The author has described the power of neutron diffraction and inelastic scattering techniques for determining the structure and dynamics of disordered systems, using the archetypal glass SiO{sub 2} as a detailed example. Of course the field of amorphous and disordered systems contains a much greater variety of types of materials exhibiting a wide range of possible types of disorder. The author gives a brief review of the varieties of order and disorder exhibited by condensed matter.

  11. FORMATION OF MOLECULAR OXYGEN AND OZONE ON AMORPHOUS SILICATES

    SciTech Connect

    Jing Dapeng; He Jiao; Vidali, Gianfranco; Brucato, John Robert; Tozzetti, Lorenzo; De Sio, Antonio

    2012-09-01

    Oxygen in the interstellar medium is seen in the gas phase, in ices (incorporated in H{sub 2}O, CO, and CO{sub 2}), and in grains such as (Mg{sub x} Fe{sub 1-x} )SiO{sub 3} or (Mg{sub x} Fe{sub 1-x} ){sub 2}SiO{sub 4}, 0 < x < 1. In this investigation, we study the diffusion of oxygen atoms and the formation of oxygen molecules and ozone on the surface of an amorphous silicate film. We find that ozone is formed at low temperature (<30 K), and molecular oxygen forms when the diffusion of oxygen atoms becomes significant, at around 60 K. This experiment, besides being the first determination of the diffusion energy barrier (1785 {+-} 35 K) for oxygen atoms on a silicate surface, suggests bare silicates as a possible storage place for oxygen atoms in low-A{sub v} environments.

  12. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review.

    PubMed

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-01-01

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a "simple" and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc. PMID:26569244

  13. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review

    PubMed Central

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-01-01

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc. PMID:26569244

  14. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review.

    PubMed

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-11-11

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a "simple" and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.

  15. Model for charge/discharge-rate-dependent plastic flow in amorphous battery materials

    NASA Astrophysics Data System (ADS)

    Khosrownejad, S. M.; Curtin, W. A.

    2016-09-01

    Plastic flow is an important mechanism for relaxing stresses that develop due to swelling/shrinkage during charging/discharging of battery materials. Amorphous high-storage-capacity Li-Si has lower flow stresses than crystalline materials but there is evidence that the plastic flow stress depends on the conditions of charging and discharging, indicating important non-equilibrium aspects to the flow behavior. Here, a mechanistically-based constitutive model for rate-dependent plastic flow in amorphous materials, such as LixSi alloys, during charging and discharging is developed based on two physical concepts: (i) excess energy is stored in the material during electrochemical charging and discharging due to the inability of the amorphous material to fully relax during the charging/discharging process and (ii) this excess energy reduces the barriers for plastic flow processes and thus reduces the applied stresses necessary to cause plastic flow. The plastic flow stress is thus a competition between the time scales of charging/discharging and the time scales of glassy relaxation. The two concepts, as well as other aspects of the model, are validated using molecular simulations on a model Li-Si system. The model is applied to examine the plastic flow behavior of typical specimen geometries due to combined charging/discharging and stress history, and the results generally rationalize experimental observations.

  16. Tunable Molecular Orientation of Organic Semiconductors in Vapor-Deposited Amorphous Solids

    NASA Astrophysics Data System (ADS)

    Walters, Diane; Dalal, Shakeel; Ediger, Mark

    2014-03-01

    Amorphous solids made by physical vapor deposition (PVD) of organic molecules have found increasing use in organic LEDs and photovoltaics. PVD is favored because it allows precise control of layer thickness and high material purity, however the impact of deposition conditions on the structure of amorphous solids has been largely uninvestigated. We have previously shown that solid films prepared by PVD can have drastically higher densities, moduli and thermal stability than are obtainable by cooling the liquid. Using a high-throughput characterization technique, we show that PVD is also able to impart significant molecular orientation into amorphous solids. We present work on several common molecules used in organic semiconducting devices including AlQ3, NPB, TPD, CBP, DSA-Ph, and BSB-Cz. The molecular orientation depends systematically on the substrate temperature during deposition. At low temperatures there is a strong tendency to lie parallel to the substrate, while at higher temperatures there is a tendency to stand vertically on end. It is anticipated, and in some limited cases has been previously shown, that this orientation can significantly affect charge mobility and light out-coupling efficiency in devices.

  17. Charge transport and injection in amorphous organic electronic materials

    NASA Astrophysics Data System (ADS)

    Tse, Shing Chi

    This thesis presents how we use various measuring techniques to study the charge transport and injection in organic electronic materials. Understanding charge transport and injection properties in organic solids is of vital importance for improving performance characteristics of organic electronic devices, including organic-light-emitting diodes (OLEDs), photovoltaic cells (OPVs), and field effect transistors (OFETs). The charge transport properties of amorphous organic materials, commonly used in organic electronic devices, are investigated by the means of carrier mobility measurements. Transient electroluminescence (EL) technique was used to evaluate the electron mobility of an electron transporting material--- tris(8-hydroxyquinoline) aluminum (Alq3). The results are in excellent agreement with independent time-of-flight (TOF) measurements. Then, the effect of dopants on electron transport was also examined. TOF technique was also used to examine the effects of tertiary-butyl (t-Bu) substitutions on anthracene derivatives (ADN). All ADN compounds were found to be ambipolar. As the degree of t-Bu substitution increases, the carrier mobilities decrease progressively. The reduction of carrier mobilities with increasing t-butylation can be attributed to a decrease in the charge-transfer integral or the wavefunction overlap. In addition, from TOF measurements, two naphthylamine-based hole transporters, namely, N,N'-diphenyl-N,N'-bis(1-naphthyl)(1,1'-biphenyl)-4,4'diamine (NPB) and 4,4',4"-tris(n-(2-naphthyl)-n-phenyl-amino)-triphenylamine (2TNATA) were found to possess electron-transporting (ET) abilities. An organic light-emitting diode that employed NPB as the ET material was demonstrated. The electron conducting mechanism of NPB and 2TNATA in relation to the hopping model will be discussed. Furthermore, the ET property of NPB applied in OLEDs will also be examined. Besides transient EL and TOF techniques, we also use dark-injection space-charge-limited current

  18. Amorphous and microcrystalline silicon technology--1997. Materials Research Society symposium proceedings, Volume 467

    SciTech Connect

    Wagner, S.; Hack, M.; Schiff, E.A.; Schropp, R.; Shimizu, I.

    1997-07-01

    This book was divided into the following parts: Staebler-Wronski and Fundamental Defect Studies in Amorphous Silicon; The Story of Hydrogen in Amorphous Silicon; Photoelectric Properties of Amorphous Silicon; Deposition and Properties of Microcrystalline Silicon; Deposition Studies for Amorphous Silicon and Related Materials; Solar Cells; Thin-Film Transistors; and Sensors and Novel Device Concepts. Separate abstracts were prepared for most of the papers in the volume.

  19. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

    SciTech Connect

    Sopori, Bhushan; Rangappan, Anikara

    2014-11-25

    Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

  20. A Molecular-Level View of the Physical Stability of Amorphous Solid Dispersions

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoda

    Many pharmaceutical compounds being developed in recent years are poorly soluble in water. This has led to insufficient oral bioavailability of many compounds in vitro. The amorphous formulation is one of the promising techniques to increase the oral bioavailability of these poorly water-soluble compounds. However, an amorphous drug substance is inherently unstable because it is a high energy form. In order to increase the physical stability, the amorphous drug is often formulated with a suitable polymer to form an amorphous solid dispersion. Previous research has suggested that the formation of an intimately mixed drug-polymer mixture contributes to the stabilization of the amorphous drug compound. The goal of this research is to better understand the role of miscibility, molecular interactions and mobility on the physical stability of amorphous solid dispersions. Methods were developed to detect different degrees of miscibility on nanometer scale and to quantify the extent of hydrogen-bonding interactions between the drug and the polymer. Miscibility, hydrogen-bonding interactions and molecular mobility were correlated with physical stability during a six-month period using three model systems. Overall, this research provides molecular-level insights into many factors that govern the physical stability of amorphous solid dispersions which can lead to a more effective design of stable amorphous formulations.

  1. Amorphous silicene—a view from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Van Hoang, Vo; Long, N. T.

    2016-05-01

    Models of amorphous silicene (a-silicene) containing 104 atoms are obtained by cooling from the melt via molecular dynamics (MD) simulation. The evolution of various kinds of structural and thermodynamic behavior in models upon cooling from the melt is found, including total energy, radial distribution function (RDF), interatomic distance, coordination number, and ring and bond-angle distributions. We also show the buckling distribution and a 2D visualization of the atomic configurations. The diffraction pattern shows that a glass state is indeed formed in the system. The glass transition temperature of 2D silicon ({{T}\\text{g}}=1350 K) has a reasonable value compared to that of its 3D counterpart. Calculations show that although most atoms in a-silicene obtained at 300 K have a three-fold coordination and mainly evolve into six-fold rings, a-silicene also contains various structural defects including those not found in crystalline silicene (c-silicene) such as adatoms, clusters of small-membered rings, large-membered rings and local linear defects. The concentration of defects in a-silicene is much higher than that of the crystalline version. We find that buckling is not unique for all the atoms in the model. The strong distorted structure of a-silicene compared to that of the crystalline version may lead to physico-chemical properties, including the possibility of opening the band gap in the former compared to the zero band gap of the latter. Note that due to the fixed length being equal to buckling of 0.44 Å in the z direction with the elastic reflection behavior boundary, our models are relevant for a-silicene formed in confinement between two planar simple hard walls.

  2. Amorphous silicene-a view from molecular dynamics simulation.

    PubMed

    Van Hoang, Vo; Long, N T

    2016-05-18

    Models of amorphous silicene (a-silicene) containing 10(4) atoms are obtained by cooling from the melt via molecular dynamics (MD) simulation. The evolution of various kinds of structural and thermodynamic behavior in models upon cooling from the melt is found, including total energy, radial distribution function (RDF), interatomic distance, coordination number, and ring and bond-angle distributions. We also show the buckling distribution and a 2D visualization of the atomic configurations. The diffraction pattern shows that a glass state is indeed formed in the system. The glass transition temperature of 2D silicon ([Formula: see text] K) has a reasonable value compared to that of its 3D counterpart. Calculations show that although most atoms in a-silicene obtained at 300 K have a three-fold coordination and mainly evolve into six-fold rings, a-silicene also contains various structural defects including those not found in crystalline silicene (c-silicene) such as adatoms, clusters of small-membered rings, large-membered rings and local linear defects. The concentration of defects in a-silicene is much higher than that of the crystalline version. We find that buckling is not unique for all the atoms in the model. The strong distorted structure of a-silicene compared to that of the crystalline version may lead to physico-chemical properties, including the possibility of opening the band gap in the former compared to the zero band gap of the latter. Note that due to the fixed length being equal to buckling of 0.44 Å in the [Formula: see text] direction with the elastic reflection behavior boundary, our models are relevant for a-silicene formed in confinement between two planar simple hard walls. PMID:27071353

  3. Molecular dynamics simulation of nanocolloidal amorphous silica particles: Part III

    NASA Astrophysics Data System (ADS)

    Jenkins, S.; Kirk, S. R.; Persson, M.; Carlen, J.; Abbas, Z.

    2009-04-01

    Explicit-solvent molecular dynamics simulations were applied to four pairs of amorphous silica nanoparticles, two pairs having a diameter of 2.0 nm and two pairs with diameter 3.2 nm. The silica nanoparticles were immersed in a background electrolyte consisting of Ca2+ and Cl- ions and water and mean forces acting between the pair of silica nanoparticles were extracted at four different background electrolyte concentrations. The pH was indirectly accounted for via the ratio of silicon to sodium used in the simulations. Dependence of the interparticle potential of mean force on the center-of-mass separation and the silicon to sodium ratio (5:1 and 20:1) is demonstrated. A Si:Na+ ratio of 5:1 gave more repulsive interparticle potentials and lower numbers of internanoparticle or "bridging" hydrogen bonds. Conversely a Si:Na+ ratio of 20:1 yielded more attractive potentials and higher numbers of bridging hydrogen bonds. The nature of the interaction of the counterions with charged silica surface sites (deprotonated silanols) was also investigated. The effect of the sodium double layer on water ordering was observed. The number of water molecules trapped inside the nanoparticles was investigated, and at the highest background ionic concentrations were found to consistently behave in accordance with there being an osmotic pressure. This study highlights the effect of divalent (Ca2+) background ions on the interparticle potentials compared with previous work using monovalent (Na+) background ions. Mechanisms of coagulation and the stability of silica nanocolloids found from this work appear to be in agreement with findings from experiments described in the literature.

  4. Amorphous silicene-a view from molecular dynamics simulation.

    PubMed

    Van Hoang, Vo; Long, N T

    2016-05-18

    Models of amorphous silicene (a-silicene) containing 10(4) atoms are obtained by cooling from the melt via molecular dynamics (MD) simulation. The evolution of various kinds of structural and thermodynamic behavior in models upon cooling from the melt is found, including total energy, radial distribution function (RDF), interatomic distance, coordination number, and ring and bond-angle distributions. We also show the buckling distribution and a 2D visualization of the atomic configurations. The diffraction pattern shows that a glass state is indeed formed in the system. The glass transition temperature of 2D silicon ([Formula: see text] K) has a reasonable value compared to that of its 3D counterpart. Calculations show that although most atoms in a-silicene obtained at 300 K have a three-fold coordination and mainly evolve into six-fold rings, a-silicene also contains various structural defects including those not found in crystalline silicene (c-silicene) such as adatoms, clusters of small-membered rings, large-membered rings and local linear defects. The concentration of defects in a-silicene is much higher than that of the crystalline version. We find that buckling is not unique for all the atoms in the model. The strong distorted structure of a-silicene compared to that of the crystalline version may lead to physico-chemical properties, including the possibility of opening the band gap in the former compared to the zero band gap of the latter. Note that due to the fixed length being equal to buckling of 0.44 Å in the [Formula: see text] direction with the elastic reflection behavior boundary, our models are relevant for a-silicene formed in confinement between two planar simple hard walls.

  5. Ab initio charge-carrier mobility model for amorphous molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Massé, Andrea; Friederich, Pascal; Symalla, Franz; Liu, Feilong; Nitsche, Robert; Coehoorn, Reinder; Wenzel, Wolfgang; Bobbert, Peter A.

    2016-05-01

    Accurate charge-carrier mobility models of amorphous organic molecular semiconductors are essential to describe the electrical properties of devices based on these materials. The disordered nature of these semiconductors leads to percolative charge transport with a large characteristic length scale, posing a challenge to the development of such models from ab initio simulations. Here, we develop an ab initio mobility model using a four-step procedure. First, the amorphous morphology together with its energy disorder and intermolecular charge-transfer integrals are obtained from ab initio simulations in a small box. Next, the ab initio information is used to set up a stochastic model for the morphology and transfer integrals. This stochastic model is then employed to generate a large simulation box with modeled morphology and transfer integrals, which can fully capture the percolative charge transport. Finally, the charge-carrier mobility in this simulation box is calculated by solving a master equation, yielding a mobility function depending on temperature, carrier concentration, and electric field. We demonstrate the procedure for hole transport in two important molecular semiconductors, α -NPD and TCTA. In contrast to a previous study, we conclude that spatial correlations in the energy disorder are unimportant for α -NPD. We apply our mobility model to two types of hole-only α -NPD devices and find that the experimental temperature-dependent current density-voltage characteristics of all devices can be well described by only slightly decreasing the simulated energy disorder strength.

  6. Atomic scale insight into the amorphous structure of Cu doped GeTe phase-change material

    SciTech Connect

    Zhang, Linchuan; Sa, Baisheng; Zhou, Jian; Sun, Zhimei; Song, Zhitang

    2014-10-21

    GeTe shows promising application as a recording material for phase-change nonvolatile memory due to its fast crystallization speed and extraordinary amorphous stability. To further improve the performance of GeTe, various transition metals, such as copper, have been doped in GeTe in recent works. However, the effect of the doped transition metals on the stability of amorphous GeTe is not known. Here, we shed light on this problem for the system of Cu doped GeTe by means of ab initio molecular dynamics calculations. Our results show that the doped Cu atoms tend to agglomerate in amorphous GeTe. Further, base on analyzing the pair correlation functions, coordination numbers and bond angle distributions, remarkable changes in the local structure of amorphous GeTe induced by Cu are obviously seen. The present work may provide some clues for understanding the effect of early transition metals on the local structure of amorphous phase-change compounds, and hence should be helpful for optimizing the structure and performance of phase-change materials by doping transition metals.

  7. Enhancement of amorphous celecoxib stability by mixing it with octaacetylmaltose: the molecular dynamics study.

    PubMed

    Grzybowska, K; Paluch, M; Wlodarczyk, P; Grzybowski, A; Kaminski, K; Hawelek, L; Zakowiecki, D; Kasprzycka, A; Jankowska-Sumara, I

    2012-04-01

    In this paper, we present a novel way of stabilization of amorphous celecoxib (CEL) against recrystallization by preparing binary amorphous celecoxib-octaacetylmaltose (CEL-acMAL) systems by quench-cooling of the molten phase. As far as we know this is the first application of carbohydrate derivatives with acetate groups to enhance the stability of an amorphous drug. We found that CEL in the amorphous mixture with acMAL is characterized by a much better solubility than pure CEL. We report very promising results of the long-term measurements of stability of the CEL-acMAL binary amorphous system with small amount of stabilizer during its storage at room temperature. Moreover, we examined the effect of adding acMAL on molecular dynamics of CEL in the wide temperature range in both the supercooled liquid and glassy states. We found that the molecular mobility of the mixture of CEL with 10 wt % acMAL in the glassy state is much more limited than that in the case of pure CEL, which correlates with the better stability of the amorphous binary system. By dielectric measurements and theoretical calculations within the framework of density functional theory (DFT), we studied the role of acMAL in enhancing the stability of amorphous CEL in mixtures and postulated which interactions between CEL and acMAL molecules can be responsible for preventing devitrification. PMID:22384922

  8. Polymorphic form of piroxicam influences the performance of amorphous material prepared by ball-milling.

    PubMed

    Naelapää, Kaisa; Boetker, Johan Peter; Veski, Peep; Rantanen, Jukka; Rades, Thomas; Kogermann, Karin

    2012-06-15

    The objective of this study was to investigate the influence of the starting solid state form of piroxicam (anhydrate form I: PRXAH I vs form II: PRXAH II) on the properties of the resulting amorphous material. The second objective was to obtain further insight into the impact of critical factors like thermal stress, dissolution medium and storage conditions on the thermal behavior, solid state transformations and physical stability of amorphous materials. For analysis differential scanning calorimetry (DSC), Raman spectroscopy and X-ray powder diffractometry (XRPD) were used. Pair-wise distribution function (PDF) analysis of the XRPD data was performed. PDF analysis indicated that the recrystallization behavior of amorphous samples was influenced by the amount of residual order in the samples. The recrystallization behavior of amorphous samples prepared from PRXAH I showed similarity to the starting material, whereas the recrystallization behavior of amorphous samples prepared from PRXAH II resembled to that of the PRX form III (PRXAH III). Multivariate data analysis (MVDA) helped to identify that the influence of storage time and temperature was more pronounced in the case of amorphous PRX prepared from PRXAH I. Furthermore, the wet slurry experiments with amorphous materials revealed the recrystallization of amorphous material as PRXMH in the biorelevant medium. PMID:22433471

  9. Imaging of Crystalline and Amorphous Surface Regions Using Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS): Application to Pharmaceutical Materials.

    PubMed

    Iuraş, Andreea; Scurr, David J; Boissier, Catherine; Nicholas, Mark L; Roberts, Clive J; Alexander, Morgan R

    2016-04-01

    The structure of a material, in particular the extremes of crystalline and amorphous forms, significantly impacts material performance in numerous sectors such as semiconductors, energy storage, and pharmaceutical products, which are investigated in this paper. To characterize the spatial distribution for crystalline-amorphous forms at the uppermost molecular surface layer, we performed time-of-flight secondary-ion mass spectroscopy (ToF-SIMS) measurements for quench-cooled amorphous and recrystallized samples of the drugs indomethacin, felodipine, and acetaminophen. Polarized light microscopy was used to localize crystallinity induced in the samples under controlled conditions. Principal component analysis was used to identify the subtle changes in the ToF-SIMS spectra indicative of the amorphous and crystalline forms for each drug. The indicators of amorphous and crystalline surfaces were common in type across the three drugs, and could be explained in general terms of crystal packing and intermolecular bonding, leading to intramolecular bond scission in the formation of secondary ions. Less intramolecular scission occurred in the amorphous form, resulting in a greater intensity of molecular and dimer secondary ions. To test the generality of amorphous-crystalline differentiation using ToF-SIMS, a different recrystallization method was investigated where acetaminophen single crystals were recrystallized from supersaturated solutions. The findings indicated that the ability to assign the crystalline/amorphous state of the sample using ToF-SIMS was insensitive to the recrystallization method. This demonstrates that ToF-SIMS is capable of detecting and mapping ordered crystalline and disordered amorphous molecular materials forms at micron spatial resolution in the uppermost surface of a material.

  10. Bacterial nanometric amorphous Fe-based oxide: a potential lithium-ion battery anode material.

    PubMed

    Hashimoto, Hideki; Kobayashi, Genki; Sakuma, Ryo; Fujii, Tatsuo; Hayashi, Naoaki; Suzuki, Tomoko; Kanno, Ryoji; Takano, Mikio; Takada, Jun

    2014-04-23

    Amorphous Fe(3+)-based oxide nanoparticles produced by Leptothrix ochracea, aquatic bacteria living worldwide, show a potential as an Fe(3+)/Fe(0) conversion anode material for lithium-ion batteries. The presence of minor components, Si and P, in the original nanoparticles leads to a specific electrode architecture with Fe-based electrochemical centers embedded in a Si, P-based amorphous matrix.

  11. X-ray Diffraction Techniques for Structural Determination of Amorphous Materials

    SciTech Connect

    Saw, C K; Lian, T; Day, S D; Farmer, J C

    2006-10-16

    Prevention of corrosion is a vital goal for the Department of Defense when billions of dollars are spent every year. Corrosion resistant materials have applications in all sort of military vehicles, and more importantly in naval vessels and submarines which come in contact with the seawater. An important application of the corrosion resistant material is in the radioactive waste disposable field where the vessels or containers are expected to hold the radioactive toxic materials for thousands of years to surpass the half life of the radiation. It has been known that corrosion resistance can be improved by the used of structurally designed materials in the amorphous state where the atoms are arranged in a non-periodic conditions, even though, some local chemical short range ordering may occur in the amorphous arrangement. On the other hand, the final material can also be elementally tailored to specific application. This work documents in details the characterization effort for the amorphous materials using x-ray diffraction technique as part of the High Performance Corrosion-Resistant Material--Structural Amorphous Metal (HPCRM-SAM) program here at LLNL. The samples are in the form of powders, ribbons and coatings deposited onto parts. Some brief theoretical background is given in order to interpret the results, instrumentation will also be described. The results suggest that the formation of amorphous phase in the metal alloys powders greatly depends on the processing conditions. In most of the powders, especially lot No.06, the result indicates that the materials are amorphous with a very small amount of iron boron alloy. In the ribbon samples, all the samples and of different compositions as well are observed to be amorphous. In most cases, starting from an amorphous powder sample, the coatings are also observed to be amorphous with a small amount of iron oxide, probably due to exposure to air during the thermal spraying process.

  12. Crystallized and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates.

    PubMed

    Liu, Chao-Fei; Fan, Heng; Gou, Shih-Chuan; Liu, Wu-Ming

    2014-02-27

    Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction.

  13. Crystallized and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates

    PubMed Central

    Liu, Chao-Fei; Fan, Heng; Gou, Shih-Chuan; Liu, Wu-Ming

    2014-01-01

    Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction. PMID:24573303

  14. Molecular dynamics simulation of yttria-stabilized zirconia (YSZ) crystalline and amorphous solids.

    PubMed

    Lau, Kah Chun; Dunlap, Brett I

    2011-01-26

    An empirically fitted atomic potential allows a classical molecular dynamics study of the static and dynamic properties of both crystalline and amorphous yttria-stabilized zirconia (YSZ) with typical dilute Y(2)O(3) concentrations (i.e. 3.0-12.0 mol% Y(2)O(3)) in the temperature range 300-1400 K. Based on the rigid ion model approximation, we find, regardless of the distinctly different geometries, that the oxygen ionic conductivity shows a maximum at ∼ 8.0 mol% Y(2)O(3), close to the experimental maximum. A lower absolute ionic conductivity is found for the high density YSZ amorphous solid, relative to crystalline YSZ, consistent with the trends observed in crystalline and stabilized amorphous thin films of YSZ reported in experiments. Different from YSZ crystals, intriguing features of mutual diffusion among the heavy cations and mobile anions are found in the amorphous phase.

  15. Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study

    DOE PAGES

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.; Li, Sean

    2015-02-09

    In this study, the response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser,more » electron and ion irradiations.« less

  16. First-principles study of crystalline and amorphous AlMgB14-based materials

    NASA Astrophysics Data System (ADS)

    Ivashchenko, V. I.; Turchi, P. E. A.; Veprek, S.; Shevchenko, V. I.; Leszczynski, Jerzy; Gorb, Leonid; Hill, Frances

    2016-05-01

    We report first-principles investigations of crystalline and amorphous boron and M1xM2yXzB14-z (M1, M2 = Al, Mg, Li, Na, Y; X = Ti, C, Si) phases (so-called "BAM" materials). Phase stability is analyzed in terms of formation energy and dynamical stability. The atomic configurations as well as the electronic and phonon density states of these phases are compared. Amorphous boron consists of distorted icosahedra, icosahedron fragments, and dioctahedra, connected by an amorphous network. The presence of metal atoms in amorphous BAM materials precludes the formation of icosahedra. For all the amorphous structures considered here, the Fermi level is located in the mobility gap independent of the number of valence electrons. The intra-icosahedral vibrations are localized in the range of 800 cm-1, whereas the inter-icosahedral vibrations appear at higher wavenumbers. The amorphization leads to an enhancement of the vibrations in the range of 1100-1250 cm-1. The mechanical properties of BAM materials are investigated at equilibrium and under shear and tensile strain. The anisotropy of the ideal shear and tensile strengths is explained in terms of a layered structure of the B12 units. The strength of amorphous BAM materials is lower than that of the crystalline counterparts because of the partial fragmentation of the boron icosahedra in amorphous structures. The strength enhancement found experimentally for amorphous boron-based films is very likely related to an increase in film density, and the presence of oxygen impurities. For crystalline BAM materials, the icosahedra are preserved during elongation upon tension as well as upon shear in the (010)[100] slip system.

  17. Microcrystals and Amorphous Material in Comets and Primitive Meteorites: Keys to Understanding Processes in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Brearley, A. J.; Scott, E. R. D.

    2004-01-01

    Comets, fine-grained matrices of chondrites, and chondritic interplanetary dust particles (IDPs) are each composed of both crystalline and amorphous silicates. The primitive solar nebula, in which comets and asteroids accreted, was formed from the collapsed core of a Giant Molecular Cloud, that, in turn, condensed from materials present in the interstellar medium (ISM). Despite observations that reveal the presence of crystalline magnesium silicate minerals in the shells of very high mass-loss-rate stars [1,2], typical silicate grains in the ISM are most likely to be amorphous, given their relatively long residence time in such a high radiation environment. An upper limit of 3% crystalline grains can be derived from their non-detection in spectra of ISM solids [3]. If the vast majority of grains that enter the primitive solar nebula are amorphous, then the observation of crystalline dust in comets and primitive chondrite matrices indicates the action of specific processes required to transform the amorphous starting materials into the crystals that are observed.

  18. XRD Technique: A way to disseminate structural changes in iron-based amorphous materials

    SciTech Connect

    Saw, C K; Lian, T; Day, D; Farmer, J

    2007-05-24

    Prevention of corrosion is a vital goal for the Department of Defense when billions of dollars are spent every year. Corrosion resistant materials have applications in all sort of military vehicles, and more importantly in naval vessels and submarines which come in contact with the seawater. It is known that corrosion resistance property can be improved by the used of structurally designed materials in the amorphous state where the atoms are arranged in a non-periodic fashion and specific atoms, tailored to the required properties can be interjected into the matrix for specific application. The XRD techniques reported here is to demonstrate the optimal conditions for characterization of these materials. The samples, which normally contain different compositions of Fe, Cr, B, Mo, Y, Mn, Si and W, are in the form of powders, ribbons and coatings. These results will be compared for the different forms of the sample which appears to correlate to the cooling rate during sample processing. In most cases, the materials are amorphous or amorphous with very small amount of crystallinity. In the ribbon samples for different compositions we observed that the materials are essentially amorphous. In most cases, starting from an amorphous powder sample, the coatings are also observed to be amorphous with a small amount of iron oxide on the surface, probably due to exposure to air.

  19. Freeze-dried amorphous dispersions for solubility enhancement of thermosensitive API having low molecular lipophilicity.

    PubMed

    Kulthe, V V; Chaudhari, P D; Aboul-Enein, H Y

    2014-09-01

    The present study focuses on the development of an alternative 'thermally gentle' strategy such as freeze-drying to obtain not only solubility enhanced but also physically stabilised amorphous solid dispersions of acetazolamide, which melt with decomposition (M.P.~260°C). The solid dispersions were prepared by freeze-drying an aqueous dispersion of acetazolamide containing a lyoprotectant as sugar alcohol (mannitol) in 1:0.5, 1:1 and 1:2 proportions by weight. All the proportions of solid dispersions reported a marked increase in solubility characteristics compared to those of pure drug; with outstanding performance by 1:1 ratio of about 6 folds rise in saturation solubility and 90% drug release in about initial 30 minutes. This could be attributed to the formation amorphous molecular dispersions, cosolvent effect of mannitol on dispersed acetazolamide as well as its local solubilisation effect at the diffusion layer. During stability study also, 1:1 ratio of solid dispersions reported an insignificant change in solubility characteristics subjected to an unchanged amorphous nature. Such physical stability could be attributed to decreased molecular mobility of the drug molecules in amorphous carrier because of weaker drug-carrier interactions. Thus, it was demonstrated that freeze-drying is an effective method of forming dissolution-enhanced, amorphous solid dispersions of thermally degradable APIs.

  20. Investigations into crazing in glassy amorphous polymers through molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Venkatesan, Sudarkodi; Basu, Sumit

    2015-04-01

    In many glassy amorphous polymers, localisation of deformation during loading leads to crazes. Crazes are crack like features whose faces are bridged either by fibrils or a cellular network of voids and fibrils. While formation of crazes is aided by the presence of surface imperfections and embedded dust particles, in this work, we focus on intrinsic crazes that form spontaneously in the volume of the material. We perform carefully designed molecular dynamics simulations on well equilibrated samples of a model polymer with a view to gaining insights into certain incompletely understood aspects of the crazing process. These include genesis of the early nanovoids leading to craze nucleation, mechanisms of stabilising the cellular or fibrillar structure and the competition between chain scission and chain disentanglement in causing the final breakdown of the craze. Additionally, we identify and enumerate clusters of entanglement points with high functionality as effective topological constraints on macromolecular chains. We show that regions with low density of entanglement clusters serve as sites for nanovoid nucleation under high mean stress. Growth occurs by the repeated triggering of cavitation instabilities above a growing void. The growth of the void is aided by disentanglement in and flow of entanglements away from the cavitating region. Finally, for the chain lengths chosen, scission serves to supply short chains to the growing craze but breakdown occurs by complete disentanglement of the chains. In fact, most of the energy supplied to the material seems to be used in causing disentanglements and very little energy is required to create a stable fibril.

  1. Molecular dynamics simulation of amorphous indomethacin-poly(vinylpyrrolidone) glasses: solubility and hydrogen bonding interactions.

    PubMed

    Xiang, Tian-Xiang; Anderson, Bradley D

    2013-03-01

    Amorphous drug dispersions are frequently employed to enhance solubility and dissolution of poorly water-soluble drugs and thereby increase their oral bioavailability. Because these systems are metastable, phase separation of the amorphous components and subsequent drug crystallization may occur during storage. Computational methods to determine the likelihood of these events would be very valuable, if their reliability could be validated. This study investigates amorphous systems of indomethacin (IMC) in poly(vinylpyrrolidone) (PVP) and their molecular interactions by means of molecular dynamics (MD) simulations. IMC and PVP molecules were constructed using X-ray diffraction data, and force-field parameters were assigned by analogy with similar groups in Amber-ff03. Five assemblies varying in PVP and IMC composition were equilibrated in their molten states then cooled at a rate of 0.03 K/ps to generate amorphous glasses. Prolonged aging dynamic runs (100 ns) at 298 K and 1 bar were then carried out, from which solubility parameters, the Flory-Huggins interaction parameter, and associated hydrogen bonding properties were obtained. Calculated glass transition temperature (T(g)) values were higher than experimental results because of the faster cooling rates in MD simulations. Molecular mobility as characterized by atomic fluctuations was substantially reduced below the T(g) with IMC-PVP systems exhibiting lower mobilities than that found in amorphous IMC, consistent with the antiplasticizing effect of PVP. The number of IMC-IMC hydrogen bonds (HBs) formed per IMC molecule was substantially lower in IMC-PVP mixtures, particularly the fractions of IMC molecules involved in two or three HBs with other IMC molecules that may be potential precursors for crystal growth. The loss of HBs between IMC molecules in the presence of PVP was largely compensated for by the formation of IMC-PVP HBs. The difference (6.5 MPa(1/2)) between the solubility parameters in amorphous IMC

  2. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials.

    PubMed

    Li, H B; Yu, M H; Wang, F X; Liu, P; Liang, Y; Xiao, J; Wang, C X; Tong, Y X; Yang, G W

    2013-01-01

    Among numerous active electrode materials, nickel hydroxide is a promising electrode in electrochemical capacitors. Nickel hydroxide research has thus far focused on the crystalline rather than the amorphous phase, despite the impressive electrochemical properties of the latter, which includes an improved electrochemical efficiency due to disorder. Here we demonstrate high-performance electrochemical supercapacitors prepared from amorphous nickel hydroxide nanospheres synthesized via simple, green electrochemistry. The amorphous nickel hydroxide electrode exhibits high capacitance (2,188 F g(-1)), and the asymmetric pseudocapacitors of the amorphous nickel hydroxide exhibit high capacitance (153 F g(-1)), high energy density (35.7 W h kg(-1) at a power density of 490 W kg(-1)) and super-long cycle life (97% and 81% charge retentions after 5,000 and 10,000 cycles, respectively). The integrated electrochemical performance of the amorphous nickel hydroxide is commensurate with crystalline materials in supercapacitors. These findings promote the application of amorphous nanostructures as advanced electrochemical pseudocapacitor materials.

  3. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials

    PubMed Central

    Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W.

    2013-01-01

    Among numerous active electrode materials, nickel hydroxide is a promising electrode in electrochemical capacitors. Nickel hydroxide research has thus far focused on the crystalline rather than the amorphous phase, despite the impressive electrochemical properties of the latter, which includes an improved electrochemical efficiency due to disorder. Here we demonstrate high-performance electrochemical supercapacitors prepared from amorphous nickel hydroxide nanospheres synthesized via simple, green electrochemistry. The amorphous nickel hydroxide electrode exhibits high capacitance (2,188 F g−1), and the asymmetric pseudocapacitors of the amorphous nickel hydroxide exhibit high capacitance (153 F g−1), high energy density (35.7 W h kg−1 at a power density of 490 W kg−1) and super-long cycle life (97% and 81% charge retentions after 5,000 and 10,000 cycles, respectively). The integrated electrochemical performance of the amorphous nickel hydroxide is commensurate with crystalline materials in supercapacitors. These findings promote the application of amorphous nanostructures as advanced electrochemical pseudocapacitor materials. PMID:23695688

  4. Process induced disorder in crystalline materials: differentiating defective crystals from the amorphous form of griseofulvin.

    PubMed

    Feng, Tao; Pinal, Rodolfo; Carvajal, M Teresa

    2008-08-01

    This research investigates milling induced disorder in crystalline griseofulvin. Griseofulvin was subjected to cryogenic milling for various lengths of time. For comparison, the amorphous form of griseofulvin was also prepared by the quench melt method. Different analytical techniques were used to study the differences between the cryomilled, amorphous and crystalline forms of the drug. Cryogenic milling of griseofulvin progressively reduces the crystallinity of the drug by inducing crystal defects, rather than amorphous materials. Raman analysis provides evidence of structural differences between the two. The differences between the defective crystals produced by milling and the amorphous form are significant enough as to be measurable in their bulk thermal properties. Defective crystals show significant decrease in the heat of fusion as a function of milling time but do not exhibit a glass transition nor recrystallization from the amorphous form. Crystal defects undergo recrystallization upon heating at temperatures well below the glass transition temperature (T(g)) in a process that is separate and completely independent from the crystallization of the amorphous griseofulvin, observed above T(g). Physical mixtures of defective crystals and amorphous drug demonstrate that the thermal events associated with each form persist in the mixtures, unaffected by the presence of the other form.

  5. Molecular-dynamics study of amorphous SiO{sub 2} relaxation

    SciTech Connect

    Fadhilah, Irfan Muhammad; Rosandi, Yudi

    2015-09-30

    Using Molecular-Dynamics simulation we observed the generation of amorphous SiO{sub 2} target from a randomly distributed Si and O atoms. We applied a sequence of annealing of the target with various temperature and quenching to room temperature. The relaxation time required by the system to form SiO{sub 4} tetrahedral mesh after a relatively long simulation time, is studied. The final amorphous target was analyzed using the radial distribution function method, which can be compared with the available theoretical and experimental data. We found that up to 70% of the target atoms form the tetrahedral SiO{sub 4} molecules. The number of formed tetrahedral increases following the growth function and the rate of SiO{sub 4} formation follows Arrhenius law, depends on the annealing temperature. The local structure of amorphous SiO{sub 2} after this treatment agrees well with those reported in some literatures.

  6. Molecular dynamics study of the mechanical loss in amorphous pure and doped silica

    SciTech Connect

    Hamdan, Rashid; Trinastic, Jonathan P.; Cheng, H. P.

    2014-08-07

    Gravitational wave detectors and other precision measurement devices are limited by the thermal noise in the oxide coatings on the mirrors of such devices. We have investigated the mechanical loss in amorphous oxides by calculating the internal friction using classical, atomistic molecular dynamics simulations. We have implemented the trajectory bisection method and the non-local ridge method in the DL-POLY molecular dynamics simulation software to carry out those calculations. These methods have been used to locate the local potential energy minima that a system visits during a molecular dynamics trajectory and the transition state between any two consecutive minima. Using the numerically calculated barrier height distributions, barrier asymmetry distributions, relaxation times, and deformation potentials, we have calculated the internal friction of pure amorphous silica and silica mixed with other oxides. The results for silica compare well with experiment. Finally, we use the numerical calculations to comment on the validity of previously used theoretical assumptions.

  7. Amorphization induced by focused ion beam milling in metallic and electronic materials.

    PubMed

    Huh, Yoon; Hong, Ki Jung; Shin, Kwang Soo

    2013-08-01

    Focused ion beam (FIB) milling using high-energy gallium ions is widely used in the preparation of specimens for transmission electron microscopy (TEM). However, the energetic ion beam induces amorphization on the edge of specimens during milling, resulting in a mischievous influence on the clearness of high-quality transmission electron micrographs. In this work, the amorphization induced by the FIB milling was investigated by TEM for three kinds of materials, metallic materials in bulk shape, and semiconductive and electronic ceramic materials as a substrate for the deposition of thin films.

  8. Electrostatic interactions in molecular materials

    NASA Astrophysics Data System (ADS)

    Painelli, Anna; Terenziani, Francesca

    2004-03-01

    Non-additive collective behavior appears in molecular materials as a result of intermolecular interactions. We present a model for interacting polar and polarizable molecules that applies to different supramolecular architectures of donor-π-acceptor molecules. We follow a bottom-up modeling strategy: the detailed analysis of spectroscopic data of solvated molecules leads to the definition of a simple two-state model for the molecular units. Classical electrostatic interactions are then introduced to model molecular clusters. The molecular properties are strickingly affected by supramolecular interactions, as demonstrated by spectroscopic studies. Brand new phenomena, like phase transitions and multielectron transfer, with no counterpart at the molecular level are observed as direct consequences of electrostatic intermolecular interactions.

  9. Tribological properties of amorphous alloys and the role of surfaces in abrasive wear of materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The research approach undertaken by the authors relative to the subject, and examples of results from the authors are reviewed. The studies include programs in adhesion, friction, and various wear mechanisms (adhesive and abrasive wear). The materials which have been studied include such ceramic and metallic materials as silicon carbide, ferrites, diamond, and amorphous alloys.

  10. Physical stability of amorphous pharmaceuticals: Importance of configurational thermodynamic quantities and molecular mobility.

    PubMed

    Zhou, Deliang; Zhang, Geoff G Z; Law, Devalina; Grant, David J W; Schmitt, Eric A

    2002-08-01

    This work relates the thermodynamic quantities (Gc, Hc, and Sc) and the molecular mobility values (1/tau) of five structurally diverse amorphous compounds to their crystallization behavior. The model compounds included: ritonavir, ABT-229, fenofibrate, sucrose, and acetaminophen. Modulated temperature DSC was used to measure the heat capacities as a function of temperature for the amorphous and crystalline phases of each compound. Knowledge of the heat capacities and fusion data allowed calculation of the configurational thermodynamic quantities and the Kauzmann temperatures (T(K)) using established relationships. The molecular relaxation time constants (tau) were then calculated from the Vogel-Tammann-Fulcher representation of the Adam-Gibbs model. Amorphous samples were heated at 1 K/min and a reduced crystallization temperature, defined as (Tc - Tg)/(Tm-Tg), was used to compare crystallization tendencies. Crystallization was observed for all compounds except ritonavir. The configurational free energy values (Gc) show that thermodynamic driving forces for crystallization follow the order: ritonavir > acetaminophen approximately fenofibrate > sucrose > ABT-229. The entropic barrier to crystallization, which is inversely related to the probability that the molecules are in the proper orientation, followed the order: ritonavir > fenofibrate > ABT-229 > acetaminophen approximately sucrose. Molecular mobility values, which are proportional to molecular collision rates, followed the order: acetaminophen > fenofibrate > sucrose > ABT-229 approximately ritonavir. Crystallization studies under nonisothermal conditions revealed that compounds with the highest entropic barriers and lowest mobilities were most difficult to crystallize, regardless of the thermodynamic driving forces. This investigation demonstrates the importance of both configurational entropy and molecular mobility to understanding the physical stability of amorphous pharmaceuticals.

  11. Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures.

    PubMed

    Mughal, A; El Demellawi, J K; Chaieb, Sahraoui

    2014-12-14

    Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material's luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon.

  12. The Slow Molecular Mobility in Amorphous Ketoprofen and Ibuprofen.

    PubMed

    Mora, Elsa; Diogo, Hermínio P; Moura Ramos, Joaquim J

    2015-11-01

    The slow molecular dynamics in two active pharmaceutical drugs, ketoprofen and ibuprofen, have been studied by differential scanning calorimetry (DSC) and thermally stimulated depolarization currents (TSDC). This study allowed finding the main kinetic features of the fast secondary (γ) relaxation, of the Johari-Goldstein relaxation, and of the main (glass transition) relaxation, in particular their distribution of relaxation times. The fragility index of the two glass formers was determined based on data from DSC and from TSDC. The obtained results were compared with those obtained by other experimental techniques, namely, dielectric relaxation spectroscopy.

  13. Radiation Resistance Studies of Amorphous Silicon Alloy Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys was investigated. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below lE14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  14. Anodic Behavior of SAM2X5 Material Applied as Amorphous Coatings

    SciTech Connect

    Hailey, P D; Farmer, J C; Day, S D; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys are desirable industrial materials since they are highly resistant to corrosion and possess enhanced hardness for wear resistance. The amorphous materials can be produced from the melt as powder and later spray deposited as coatings on large engineering structures. As a laboratory experiment, SAM2X5 powder was coated on electrochemical specimens of 304SS for testing. Results show that the coated specimens did not perform satisfactorily during the laboratory testing. This is because of partial devitrification during the deposition of the powder on the small specimen substrates.

  15. Crystallization kinetics and molecular mobility of an amorphous active pharmaceutical ingredient: A case study with Biclotymol.

    PubMed

    Schammé, Benjamin; Couvrat, Nicolas; Malpeli, Pascal; Delbreilh, Laurent; Dupray, Valérie; Dargent, Éric; Coquerel, Gérard

    2015-07-25

    The present case study focuses on the crystallization kinetics and molecular mobility of an amorphous mouth and throat drug namely Biclotymol, through differential scanning calorimetry (DSC), temperature resolved X-ray powder diffraction (TR-XRPD) and hot stage microscopy (HSM). Kinetics of crystallization above the glass transition through isothermal and non-isothermal cold crystallization were considered. Avrami model was used for isothermal crystallization process. Non-isothermal cold crystallization was investigated through Augis and Bennett model. Differences between crystallization processes have been ascribed to a site-saturated nucleation mechanism of the metastable form, confirmed by optical microscopy images. Regarding molecular mobility, a feature of molecular dynamics in glass-forming liquids as thermodynamic fragility index m was determined through calorimetric measurements. It turned out to be around m=100, describing Biclotymol as a fragile glass-former for Angell's classification. Relatively long-term stability of amorphous Biclotymol above Tg was analyzed indirectly by calorimetric monitoring to evaluate thermodynamic parameters and crystallization behavior of glassy Biclotymol. Within eight months of storage above Tg (T=Tg+2°C), amorphous Biclotymol does not show a strong inclination to crystallize and forms a relatively stable glass. This case study, involving a multidisciplinary approach, points out the importance of continuing looking for stability predictors.

  16. Erythrosin B Phosphorescence Monitors Molecular Mobility and Dynamic Site Heterogeneity in Amorphous Sucrose

    PubMed Central

    Pravinata, Linda C.; You, Yumin; Ludescher, Richard D.

    2005-01-01

    Molecular mobility modulates the chemical and physical stability of amorphous biomaterials. This study used steady-state and time-resolved phosphorescence of erythrosin B to monitor mobility in thin films of amorphous solid sucrose as a function of temperature. The phosphorescence intensity (lifetime), emission energy, and red-edge excitation effect were all sensitive to localized molecular mobility on the microsecond timescale in the glass and to more global modes of mobility activated at the glass transition. Blue shifts in the emission spectrum with time after excitation and systematic variations in the phosphorescence lifetime with wavelength indicated that emission originates from multiple sites ranging from short lifetime species with red-shifted emission spectrum to long lifetime species with blue-shifted emission spectrum; the activation energy for nonradiative decay of the triplet state was considerably larger for the blue-emitting species in both the glass and the melt. This study illustrates that phosphorescence from erythrosin B is sensitive both to local dipolar relaxations in the glass as well as more global relaxations in the sucrose melt and provides evidence of the value of phosphorescence as a probe of dynamic site heterogeneity as well as overall molecular mobility in amorphous biomaterials. PMID:15695637

  17. Influence of density and environmental factors on decomposition kinetics of amorphous polylactide - Reactive molecular dynamics studies.

    PubMed

    Mlyniec, A; Ekiert, M; Morawska-Chochol, A; Uhl, T

    2016-06-01

    In this work, we investigate the influence of the surrounding environment and the initial density on the decomposition kinetics of polylactide (PLA). The decomposition of the amorphous PLA was investigated by means of reactive molecular dynamics simulations. A computational model simulates the decomposition of PLA polymer inside the bulk, due to the assumed lack of removal of reaction products from the polymer matrix. We tracked the temperature dependency of the water and carbon monoxide production to extract the activation energy of thermal decomposition of PLA. We found that an increased density results in decreased activation energy of decomposition by about 50%. Moreover, initiation of decomposition of the amorphous PLA is followed by a rapid decline in activation energy caused by reaction products which accelerates the hydrolysis of esters. The addition of water molecules decreases initial energy of activation as well as accelerates the decomposition process. Additionally, we have investigated the dependency of density on external loading. Comparison of pressures needed to obtain assumed densities shows that this relationship is bilinear and the slope changes around a density equal to 1.3g/cm(3). The conducted analyses provide an insight into the thermal decomposition process of the amorphous phase of PLA, which is particularly susceptible to decomposition in amorphous and semi-crystalline PLA polymers.

  18. Large scale molecular dynamics modeling of materials fabrication processes

    SciTech Connect

    Belak, J.; Glosli, J.N.; Boercker, D.B.; Stowers, I.F.

    1994-02-01

    An atomistic molecular dynamics model of materials fabrication processes is presented. Several material removal processes are shown to be within the domain of this simulation method. Results are presented for orthogonal cutting of copper and silicon and for crack propagation in silica glass. Both copper and silicon show ductile behavior, but the atomistic mechanisms that allow this behavior are significantly different in the two cases. The copper chip remains crystalline while the silicon chip transforms into an amorphous state. The critical stress for crack propagation in silica glass was found to be in reasonable agreement with experiment and a novel stick-slip phenomenon was observed.

  19. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs--Part 2: molecular interactions.

    PubMed

    Löbmann, Korbinian; Laitinen, Riikka; Strachan, Clare; Rades, Thomas; Grohganz, Holger

    2013-11-01

    The formation of co-amorphous drug-drug mixtures has proved to be a powerful approach to stabilize the amorphous form and at the same time increase the dissolution of poorly water-soluble drugs. Molecular interactions in these co-amorphous formulations can play a crucial role in stabilization and dissolution enhancement. In this regard, Fourier-transform infrared spectroscopy (FTIR) is a valuable tool to analyze the molecular near range order of the compounds in the co-amorphous mixtures. In this study, several co-amorphous drugs--low molecular weight excipient blends--have been analyzed with FTIR spectroscopy. Molecular interactions of the drugs carbamazepine and indomethacin with the amino acids arginine, phenylalanine, and tryptophan were investigated. The amino acids were chosen from the biological target site of both drugs and prepared as co-amorphous formulations together with the drugs by vibrational ball milling. A detailed analysis of the FTIR spectra of these formulations revealed specific peak shifts in the vibrational modes of functional groups of drug and amino acid, as long as one amino acid from the biological target site was present in the blends. These peak shifts indicate that the drugs formed specific molecular interactions (hydrogen bonding and π-π interactions) with the amino acids. In the drug-amino acid mixtures that contained amino acids which were not present at the biological target site, no such interactions were identified. This study shows the potential of amino acids as small molecular weight excipients in co-amorphous formulations to stabilize the amorphous form of a poorly water-soluble drug through strong and specific molecular interactions with the drug.

  20. Structural Models of Amorphous Carbon and its Surfaces by Tight-Binding Molecular Dynamics

    SciTech Connect

    Haerle, R.; Baldereschi, A.; Galli, G.

    1999-10-26

    We use liner-scaling tight-binding molecular dynamics to generate three structural models of bulk amorphous carbon with different atomic density. Amorphous carbon surfaces are then obtained by imposing tensile strain on these computer generated networks until fracture occurs. Our results show that for a given density, the formation energy of surfaces obtained with different tensile strains differ by only a few 10{sup -1} eV/atom and their structural properties are qualitatively similar. The presence of sp sites at the surface is observed at all densities, but with different values of the concentration. The surface thicknesses obtained in our simulations agree with experimental data. Furthermore we find that surface roughness increases with the amount of graphitic component in the bulk sample. The same trends of the macroscopic properties are obtained when using a two-center tight-binding Hamiltonian, an environmental dependent one, and first principles calculations.

  1. Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel.

    PubMed

    Gordon, Lyle M; Cohen, Michael J; MacRenaris, Keith W; Pasteris, Jill D; Seda, Takele; Joester, Derk

    2015-02-13

    Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg(2+), F(-), and CO3(2-). However, determining the distribution of these minor ions is challenging. We show—using atom probe tomography, x-ray absorption spectroscopy, and correlative techniques—that in unpigmented rodent enamel, Mg(2+) is predominantly present at grain boundaries as an intergranular phase of Mg-substituted amorphous calcium phosphate (Mg-ACP). In the pigmented enamel, a mixture of ferrihydrite and amorphous iron-calcium phosphate replaces the more soluble Mg-ACP, rendering it both harder and more resistant to acid attack. These results demonstrate the presence of enduring amorphous phases with a dramatic influence on the physical and chemical properties of the mature mineralized tissue.

  2. Interaction of two level systems in amorphous materials with arbitrary phonon fields.

    SciTech Connect

    Anghel, D. V.; Kuhn, T.; Galperin, Y. M.; Manninen, M.; Materials Science Division; National Inst. for Physics and Nuclear Engineering; Univ. Jyvaskyla; Univ. Oslo; Russian Academy of Sciences

    2007-01-01

    To describe the interaction of the two-level systems (TLSs) of an amorphous solid with arbitrary strain fields, we introduce a generalization of the standard interaction Hamiltonian. In this model, the interaction strength depends on the orientation of the TLS with respect to the strain field through a 6 x 6 symmetric tensor of deformation potential parameters [R]. Taking into account the isotropy of the amorphous solid, we deduce that [R] has only two independent parameters. We show how these two parameters can be calculated from experimental data, and we prove that for any amorphous bulk material, the average coupling of TLSs with longitudinal phonons is always stronger than the average coupling with transversal phonons (in standard notations, {gamma}{sub l} > {gamma}{sub t}).

  3. On failure in polycrystalline and amorphous brittle materials

    NASA Astrophysics Data System (ADS)

    Bourne, Neil

    2009-06-01

    The response of brittle materials to uniaxial compressive shock loading is still not well understood. Describing the physical mechanisms resulting from the more complex triaxial states that result from impact and penetration is thus empirical. The physical interpretation of the yield point of brittle materials in one-dimensional strain (the Hugoniot elastic limit (HEL)), the rate dependence of this threshold, the form of stress histories and the effect of polycrystalline microstructure still remain to be comprehensively explained. However, evidence of failure occurring in glasses and ceramics behind a travelling front that follows a shock front has been accumulated and verified in several laboratories. Such a boundary has been called a failure front. The variations in properties across this front include complete loss of tensile strength, partial loss of shear strength, reduction in acoustic impedance, lowered sound speed and opacity to light. It is the object of this work to collect observations of these phenomena and their relation to failure and the HEL in brittle materials. Further, to relate these uniaxial strain measurements of their failed states to the depth of penetration (DoP) in the widely conducted test. British Crown Copyright MoD/2009.

  4. Symposium Report. Battery materials : amorphous carbons and polymer electrolytes.

    SciTech Connect

    Gerald, R. E., II; Chemical Engineering

    2000-01-01

    The motivation for research in battery materials lies in the expanding consumer demand for compact, high-energy density power sources for portable electronic devices, and environmental issues such as global warming and air pollution that have provided the impetus for mass transportation by electric vehicles. The Battery Materials Symposium, chaired by Jacqueline Johnson (ANL), focused on three topics: the structure and electrochemical properties of new and existing electrolytes, devices for fabricating and investigating thin films, and large-scale computer simulations. The symposium opened with a presentation by the author on a recently invented device for in situ investigations of batteries using nuclear magnetic resonance. Joop Schoonman (Delft University) described several methods for preparing and analyzing thin films made of solid electrolytes. These methods included chemical vapor deposition, electrostatic spray deposition and the Solufill process. Aiichiro Nakano discussed large-scale (10 million to 2 billion atoms) computer simulations of polymer and ceramic systems. An overview was given of a DOE Cooperative Research 2000 program, in the initial stages, that was set up to pursue these atomistic simulations. Doug MacFarlane (Monash University) described conductive plastic crystals based on pyrrolidinium imides. Joseph Pluth (U of Chicago) presented his recent crystallographic studies of Pb compounds found in the ubiquitous lead-acid battery. He showed the structures of tribasic lead sulfate and tetrabasic lead sulfate. Austen Angell (Arizona State Univ.) discussed the general problem of electrolyte polarization in Li-ion battery systems with cation transference numbers less than unity. Steven Greenbaum (Hunter College) provided an introduction of NMR interactions that are useful for investigations of lithium-ion battery materials. Analysis by NMR is nuclear specific, probes local environments and dynamics, and is non-destructive. He discussed {sup 7}Li NMR

  5. Molecular dynamics study of oil detachment from an amorphous silica surface in water medium

    NASA Astrophysics Data System (ADS)

    Chen, Jiaxuan; Si, Hao; Chen, Wenyang

    2015-10-01

    In this paper, the mechanism of oil detachment from optical glass in water medium is studied by using molecular dynamics simulation. At the beginning, some undecane molecules are adsorbed on the amorphous silica surface to get contaminated glass. Upon addition of 6000 water molecules, most of the undecane molecules on the substrate surface can be detached from an amorphous silica surface through three stages. The formation of different directions of water channels is vital for oil detachment. The electrostatic interaction of water substrate contributes to disturbing the aggregates of undecane molecules and the H-bonding interaction between the water molecules is helpful for the oil puddle away from the substrate. However, there is still some oil molecules residue on the substrate surface after water cleaning. The simulation results showed that the specific ring potential well of amorphous silica surface will hinder the detachment of oil molecules. We also find that the formation of the specific ring potential well is related to the number of atoms and the average radius in silica atomic rings. Increasing the upward lift force, which acts on the hydrocarbon tail of oil molecules, will be benefit to clear the oil pollution residues from the glass surface.

  6. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine.

    PubMed

    Konno, Hajime; Taylor, Lynne S

    2006-12-01

    The ability of various polymers to inhibit the crystallization of amorphous felodipine was studied in amorphous molecular dispersions. Spin-coated films of felodipine with poly(vinylpyrrolidone) (PVP), hydroxypropylmethylcellulose acetate succinate (HPMCAS), and hydroxypropylmethylcellulose (HPMC) were prepared and used for measurement of the nucleation rate and to probe drug-polymer intermolecular interactions. Bulk solid dispersions were prepared by a solvent evaporation method and characterized using thermal analysis. It was found that each polymer was able to significantly decrease the nucleation rate of amorphous felodipine even at low concentrations (3-25% w/w). Each polymer was found to affect the nucleation rate to a similar extent at an equivalent weight fraction. For HPMC and HPMCAS, thermal analysis indicated that the glass transition temperature (T(g)) of the solid dispersions were not significantly different from that of felodipine alone, whereas an increase in T(g) was observed for the PVP containing solid dispersions. Infrared spectroscopic studies indicated that hydrogen bonding interactions were formed between felodipine and each of the polymers. These interactions were stronger between felodipine and PVP than for the other polymers. It was speculated that, at the concentrations employed, the polymers reduce the nucleation rate through increasing the kinetic barrier to nucleation.

  7. Steady-state flow properties of amorphous materials

    NASA Astrophysics Data System (ADS)

    Jadhao, Vikram; O'Connor, Thomas; Robbins, Mark

    2015-03-01

    Molecular dynamics (MD) simulations are used to investigate the steady-state shear flow curves of a standard glass model: the bidisperse Lennard-Jones system. For a wide range of temperatures in the neighborhood of the glass transition temperature Tg predicted by the mode coupling theory, we compute the steady-state shear stress and viscosity as a function of the shear rate γ ˙. At temperatures near and above Tg, the stress crosses over from linear Newtonian behavior at low rates to power law shear-thinning at high rates. As T decreases below Tg, the stress shows a plateau, becoming nearly rate-independent at low γ ˙. There is a weak increase in stress that is consistent with Eyring theory for activated flow of a solid. We find that when the strain rate is reduced to extremely low values, Newtonian behavior appears once more. Insights gained from these simulations are applied to the computation of flow curves of a well-established boundary lubricant: squalane. In the elastohydrodynamic regime, squalane responds like a glassy solid with an Eyring-like response, but at low rates it has a relatively small Newtonian viscosity. Supported by the Army Research Laboratory under Grant W911NF-12-2-0022.

  8. Amorphization in the vicinity of a grain boundary: A molecular-dynamics approach

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Gonzalo; Kiwi, Miguel; Ramírez, Ricardo

    1996-10-01

    The dynamics of the melting process of a binary system (such as the one formed by Co and Zr) that contains a grain boundary is investigated by means of molecular dynamics using Lennard-Jones-type interatomic potentials. The evolution of the disordering sequence, as the temperature is increased, is quantitatively studied and graphically illustrated. It is found that the presence of the defect acts like a seed for the disordering, with the genesis of an intermediate amorphous phase. The latter is properly identified and characterized and constitutes an intermediate stage before the proper melting process sets in.

  9. Classical molecular dynamics simulations of hypervelocity nanoparticle impacts on amorphous silica

    SciTech Connect

    Samela, Juha; Nordlund, Kai

    2010-02-01

    We have investigated the transition from the atomistic to the macroscopic impact mechanism by simulating large Argon cluster impacts on amorphous silica. The transition occurs at cluster sizes less than 50 000 atoms at hypervelocity regime (22 km/s). After that, the crater volume increases linearly with the cluster size opposite to the nonlinear scaling typical of small cluster impacts. The simulations demonstrate that the molecular dynamics method can be used to explore atomistic mechanisms that lead to damage formation in small particle impacts, for example, in impacts of micrometeorites on spacecraft.

  10. Molecular-dynamics simulation of shock-stress-induced amorphization of α-quartz

    NASA Astrophysics Data System (ADS)

    Chaplot, S. L.; Sikka, S. K.

    2000-05-01

    The molecular-dynamics technique is used to investigate the shock propagation in α-quartz using a very long periodic macrocell, and semiempirical long-range Coulomb and short-range interatomic potentials. The equation of state and the phase transformation pressure are in good agreement with published experimental data. The transformed phase is identified to be amorphous, and not as stishovite, and is retained on release of the shock pressure. The Raman A1 phonon frequency is also simulated successfully which is known to show a significantly different variation with static and shock pressures.

  11. Enhanced stability and local structure in biologically relevant amorphous materials containing pyrophosphate

    SciTech Connect

    Slater, Colin; Laurencin, Danielle; Burnell, Victoria; Smith, Mark E.; Grover, Liam M.; Hriljac, Joseph A.; Wright, Adrian J.

    2012-10-25

    There is increasing evidence that amorphous inorganic materials play a key role in biomineralisation in many organisms, however the inherent instability of synthetic analogues in the absence of the complex in vivo matrix limits their study and clinical exploitation. To address this, we report here an approach that enhances long-term stability to >1 year of biologically relevant amorphous metal phosphates, in the absence of any complex stabilizers, by utilizing pyrophosphates (P{sub 2}O{sub 7}{sup 4-}); species themselves ubiquitous in vivo. Ambient temperature precipitation reactions were employed to synthesise amorphous Ca{sub 2}P{sub 2}O{sub 7}.nH{sub 2}O and Sr{sub 2}P{sub 2}O{sub 7}.nH{sub 2}O (3.8 < n < 4.2) and their stability and structure were investigated. Pair distribution functions (PDF) derived from synchrotron X-ray data indicated a lack of structural order beyond 8 {angstrom} in both phases, with this local order found to resemble crystalline analogues. Further studies, including {sup 1}H and {sup 31}P solid state NMR, suggest the unusually high stability of these purely inorganic amorphous phases is partly due to disorder in the P-O-P bond angles within the P{sub 2}O{sub 7} units, which impede crystallization, and to water molecules, which are involved in H-bonds of various strengths within the structures and hamper the formation of an ordered network. In situ high temperature powder X-ray diffraction data indicated that the amorphous nature of both phases surprisingly persisted to 450 C. Further NMR and TGA studies found that above ambient temperature some water molecules reacted with P{sub 2}O{sub 7} anions, leading to the hydrolysis of some P-O-P linkages and the formation of HPO{sub 4}{sup 2-} anions within the amorphous matrix. The latter anions then recombined into P{sub 2}O{sub 7} ions at higher temperatures prior to crystallization. Together, these findings provide important new materials with unexplored potential for enzyme

  12. Fault-related amorphous materials and their influence on the rheological behavior of fault zones (Invited)

    NASA Astrophysics Data System (ADS)

    Pec, M.; Stunitz, H.; Heilbronner, R.; Drury, M. R.

    2013-12-01

    Identification of fault-related amorphous materials in both nature as well as experiment has significantly increased over the last years. Amorphous materials provide new possibilities for our understanding of the rheological behavior of fault zones and the seismic cycle. We performed a series of experiments on granitoid fault rocks under a range of temperatures (T ≈ 300 to 600°C), confining pressures (Pc ≈ 300 to 1500 MPa) and slow displacement rates of (10-8 ms-1 < ddot < 10-6 ms-1). Granitoid powder (d ≤ 200 μm), with 0.2 wt% water added was sheared in a solid medium deformation apparatus to a range of finite shear strains (γ = 0 - 5). Samples reach peak shear strengths of (0.56 GPa < τ < 1.6 GPa) then weaken slightly (10 MPa < τ < 190 MPa) and continue to deform at approximately constant stress. A clear temperature and a weak rate dependence of steady-state stress is observed. Only at the fastest displacement rates (10-6 ms-1), and lowest temperatures (300°C) the samples fail abruptly and audibly shortly after reaching peak strength. Microstructural observations show the development of an S-C-C' fabric with C' slip zones being the dominant feature. At peak strength (γ ≈ 2 - 2.5), deformation partitions in several C' - C slip zones which cover 5-10 vol% of the sample. TEM observations show small, highly strained nanocrystalline fragments with an average grain size of ~ 35 nm surrounded by up to ~90% of TEM-amorphous material (partly amorphous material - PAM). During higher strain deformation (γ > 2.5) some C' - C slip zones continue to accommodate strain and further change their microstructure. Up to 25 vol% of the sample consists of PAM as well as fully TEM-amorphous material (AM). This material shows injection veins, flow structures and contains quartz clasts surrounded by a thin layer of different z-contrast material. At highest stresses (> 1.1 GPa) and lowest temperatures (300°C) stretched bubbles, and bubble trains following the local flow

  13. Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development

    NASA Astrophysics Data System (ADS)

    Farmer, Joseph; Choi, Jor-Shan; Saw, Cheng; Haslam, Jeffrey; Day, Dan; Hailey, Phillip; Lian, Tiangan; Rebak, Raul; Perepezko, John; Payer, Joe; Branagan, Daniel; Beardsley, Brad; D'Amato, Andy; Aprigliano, Lou

    2009-06-01

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was cosponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the U.S. Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition, materials synthesis, thermal stability, corrosion resistance, environmental cracking, mechanical properties, damage tolerance, radiation effects, and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as meltspun ribbons (MSRs), dropcast ingots, and thermal-spray coatings. Chromium (Cr), molybdenum (Mo), and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of MSRs and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently, thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests; good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while the open-circuit corrosion potentials (OCPs) were simultaneously monitored; reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber and suitable for criticality-control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and Ni-based materials, and are proving to have excellent wear

  14. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development

    SciTech Connect

    Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

    2008-01-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  15. Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program

    SciTech Connect

    Farmer, J

    2007-07-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  16. Stick-slip instabilities and shear strain localization in amorphous materials.

    PubMed

    Daub, Eric G; Carlson, Jean M

    2009-12-01

    We study the impact of strain localization on the stability of frictional slipping in dense amorphous materials. We model the material using shear transformation zone (STZ) theory, a continuum approximation for plastic deformation in amorphous solids. In the STZ model, the internal state is quantified by an effective disorder temperature, and the effective temperature dynamics capture the spontaneous localization of strain. We study the effect of strain localization on stick-slip instabilities by coupling the STZ model to a noninertial spring slider system. We perform a linear stability analysis to generate a phase diagram that connects the small scale physics of strain localization to the macroscopic stability of sliding. Our calculations determine the values of spring stiffness and driving velocity where steady sliding becomes unstable and we confirm our results through numerical integration. We investigate both homogeneous deformation, where no shear band forms, and localized deformation, where a narrow shear band spontaneously forms and accommodates all of the deformation. Our results show that at a given velocity, strain localization leads to unstable frictional sliding at a much larger spring stiffness compared to homogeneous deformation, and that localized deformation cannot be approximated by a homogeneous model with a narrower material. We also find that strain localization provides a physical mechanism for irregular stick-slip cycles in certain parameter ranges. Our results quantitatively connect the internal physics of deformation in amorphous materials to the larger scale frictional dynamics of stick-slip.

  17. Structure of amorphous oxide ceramics by nuclear magnetic resonance spectroscopy and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Diefenbacher, Jason Ross

    Molecular dynamics (MD) simulations have been used to study the structure and dynamics of sodium tetrasilicate (Na2Si4O9 ) liquid as a function of pressure, ranging from I atmosphere to 100 GPa, at a temperature of 6000 K. The calculated self-diffusivity of the ions increases with increasing pressure, up to a maximum of approximately 10--15 GPa. Above this pressure, the O2- diffusivity decreases slightly with increasing pressure. The results of the simulations allow the distinction of two different mechanisms for the pressure-induced coordination change of silicon. The first, occurring at lower pressures, involves the formation of V-coordinated silicon, via reaction with non-bridging oxygens. The high pressure mechanism involves a reaction of bridging oxygens, which results in the formation of III-coordinated oxygen. MD simulations were carried out in order to investigate the structure and transport properties of boron oxide melt, as a function of pressure. The simulations show a rapid initial increase in the diffusion coefficients of boron and oxygen ions to ˜5--7 GPa, followed by a slower increase from 7--14 GPa. The increase in ion diffusivities is correlated with an increase in the proportion of BO4 to BO3 units. These results can be used to help rationalize an increase in growth rate of boron suboxide (B6O) crystals, observed from B2O3-B 6O melts in the 0--4 GPa pressure range. Structural characterization has also been carried out on a decomposed alumina ceramic precursor material, which is synthesized via thermal decomposition of an aluminum nitrate, nanohydrate [Al(NO3)3·9H 2O] salt to yield an x-ray amorphous, water-soluble precursor. Characterization of the solid precursor is presented, along with an in-depth study on the aluminum speciation in solution. Although the solid precursor contains entirely VI-coordinated aluminum, the solution phase contains IV-, V-, and VI-coordinated aluminum, whose relative abundance does not change with increasing thermal

  18. Amorphous material of the skin in amyotrophic lateral sclerosis: a morphologic and biochemical study

    NASA Technical Reports Server (NTRS)

    Ono, S.; Nagao, K.; Yamauchi, M.

    1994-01-01

    We performed morphologic studies on skin from seven patients with ALS and seven control subjects. By light microscopy, the wide spaces that separated collagen bundles reacted strongly with colloidal iron and alcian blue in ALS patients. Electron microscopy revealed markedly increased amorphous material that was positive for ruthenium red in the ground substance. These findings were not present in controls. Quantitative amino acid analysis showed that the amount of total amino acids (nmoles per mg dry weight) was significantly decreased (p < 0.01) in ALS patients compared with that of controls, and there was a significant negative correlation between skin amino acid content and duration of illness in ALS patients (r = -0.83, p < 0.001). These morphologic findings and biochemical data indicate that the amorphous material, which is markedly increased in ALS skin, includes glycosaminoglycans.

  19. Geometry and mechanics of two-dimensional defects in amorphous materials

    PubMed Central

    Moshe, Michael; Levin, Ido; Aharoni, Hillel; Kupferman, Raz; Sharon, Eran

    2015-01-01

    We study the geometry of defects in amorphous materials and their elastic interactions. Defects are defined and characterized by deviations of the material’s intrinsic metric from a Euclidian metric. This characterization makes possible the identification of localized defects in amorphous materials, the formulation of a corresponding elastic problem, and its solution in various cases of physical interest. We present a multipole expansion that covers a large family of localized 2D defects. The dipole term, which represents a dislocation, is studied analytically and experimentally. Quadrupoles and higher multipoles correspond to fundamental strain-carrying entities. The interactions between those entities, as well as their interaction with external stress fields, are fundamental to the inelastic behavior of solids. We develop analytical tools to study those interactions. The model, methods, and results presented in this work are all relevant to the study of systems that involve a distribution of localized sources of strain. Examples are plasticity in amorphous materials and mechanical interactions between cells on a flexible substrate. PMID:26261331

  20. Molecular modeling and simulation of atactic polystyrene/amorphous silica nanocomposites

    NASA Astrophysics Data System (ADS)

    Mathioudakis, I.; Vogiatzis, G. G.; Tzoumanekas, C.; Theodorou, D. N.

    2016-08-01

    The local structure, segmental dynamics, topological analysis of entanglement networks and mechanical properties of atactic polystyrene - amorphous silica nanocomposites are studied via molecular simulations using two interconnected levels of representation: (a) A coarse - grained level. Equilibration at all length scales at this level is achieved via connectivity - altering Monte Carlo simulations. (b) An atomistic level. Initial configurations for atomistic Molecular Dynamics (MD) simulations are obtained by reverse mapping well- equilibrated coarse-grained configurations. By analyzing atomistic MD trajectories, the polymer density profile is found to exhibit layering in the vicinity of the nanoparticle surface. The dynamics of polystyrene (in neat and filled melt systems) is characterized in terms of bond orientation. Well-equilibrated coarse-grained long-chain configurations are reduced to entanglement networks via topological analysis with the CReTA algorithm. Atomistic simulation results for the mechanical properties are compared to the experimental measurements and other computational works.

  1. Quantitative assessment of molecular dynamics-grown amorphous silicon and germanium films on silicon (111)

    NASA Astrophysics Data System (ADS)

    Käshammer, Peter; Borgardt, Nikolai I.; Seibt, Michael; Sinno, Talid

    2016-09-01

    Molecular dynamics based on the empirical Tersoff potential was used to simulate the deposition of amorphous silicon and germanium on silicon(111) at various deposition rates and temperatures. The resulting films were analyzed quantitatively by comparing one-dimensional atomic density profiles to experimental measurements. It is found that the simulations are able to capture well the structural features of the deposited films, which exhibit a gradual loss of crystalline order over several monolayers. A simple mechanistic model is used to demonstrate that the simulation temperature may be used to effectively accelerate the surface relaxation processes during deposition, leading to films that are consistent with experimental samples grown at deposition rates many orders-of-magnitude slower than possible in a molecular dynamics simulation.

  2. A novel composite material based on antimony(III) oxide and amorphous silica

    SciTech Connect

    Zemnukhova, Ludmila A.; Panasenko, Alexander E.

    2013-05-01

    The composite material nSb₂O₃·mSiO₂·xH₂O was prepared by hydrolysis of SbCl₃ and Na₂SiO₃ in an aqueous medium. It has been shown that the composition of the material is influenced by the ratio of the initial components and the acidity of the reaction medium. The morphology of the material particles and its specific surface area have been determined. The thermal and optic properties were also investigated. - Graphical abstract: Novel composite material containing amorphous silica and crystal antimony(III) oxide has been synthesized by hydrolysis of SbCl₃ and Na₂SiO₃ in an aqueous medium. Highlights: • The composite material nSb₂O₃·mSiO₂·xH₂O was prepared in an aqueous medium. • The composition of the material is controllable by a synthesis conditions. • The morphology of the material and its optic properties have been determined.

  3. Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study

    SciTech Connect

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.; Li, Sean

    2015-02-09

    In this study, the response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations.

  4. Method of making amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1982-01-01

    The process comprises placing an amorphous metal in particulate form and a low molecular weight (e.g., 1000-5000) thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  5. Characterization and Hydrodesulfurization Properties of Catalysts Derived from Amorphous Metal-boron Materials

    SciTech Connect

    Parks, Greg; Pease, Melissa; Layman, Kathryn A.; Burns, Autumn W.; Bussell, Mark E.; Wang, Xianqin; Hanson, Jonathan; Rodriguez, Jose A.

    2007-01-22

    Unsupported and silica-supported amorphous metal-boron materials (Ni-B, Mo-O-B, and Ni-Mo-O-B) were prepared by NaBH4 reduction of aqueous or impregnated metal salts. The resulting materials were characterized by a range of techniques, including conventional and time-resolved X-ray diffraction. The latter technique was used to determine the onset of crystallization of the amorphous materials during annealing in He flow and to identify the phases formed. Annealing of unsupported Ni-B resulted in the crystallization of predominantly Ni3B, followed by Ni metal, whereas Ni-B/SiO2 formed Ni and then NiO. There was no evidence for crystallization of B-containing phases for Mo-O-B or Mo-O-B/SiO2 on annealing; instead, the predominant phase formed was MoO2. In general, the phases formed for Ni-Mo-O-B and Ni-Mo-O-B/SiO2 were consistent with those formed in the monometallic materials, but at higher annealing temperatures. Catalysts prepared by sulfiding Ni-B/SiO2 and Ni-Mo-O-B/SiO2 materials had significantly higher thiophene HDS activities than conventionally prepared sulfided Ni/SiO2 and Ni-Mo/SiO2 catalysts, whereas a sulfided Mo-O-B/SiO2 catalyst had a dramatically lower HDS activity than a sulfided Mo/SiO2 catalyst.

  6. Improved Stability Of Amorphous Zinc Tin Oxide Thin Film Transistors Using Molecular Passivation

    SciTech Connect

    Rajachidambaram, Meena Suhanya; Pandey, Archana; Vilayur Ganapathy, Subramanian; Nachimuthu, Ponnusamy; Thevuthasan, Suntharampillai; Herman, Gregory S.

    2013-10-21

    The role of back channel surface chemistry on amorphous zinc tin oxide (ZTO) bottom gate thin film transistors (TFT) have been characterized by positive bias-stress measurements and x-ray photoelectron spectroscopy. Positive bias-stress turn-on voltage shifts for ZTO-TFTs were significantly reduced by passivation of back channel surfaces with self-assembled monolayers of n-hexylphosphonic acid (n-HPA) when compared to ZTO-TFTs with no passivation. These results indicate that adsorption of molecular species on exposed back channel of ZTO-TFTs strongly influence observed turn-on voltage shifts, as opposed to charge injection into the dielectric or trapping due to oxygen vacancies.

  7. Relation between bandgap and resistance drift in amorphous phase change materials

    PubMed Central

    Rütten, Martin; Kaes, Matthias; Albert, Andreas; Wuttig, Matthias; Salinga, Martin

    2015-01-01

    Memory based on phase change materials is currently the most promising candidate for bridging the gap in access time between memory and storage in traditional memory hierarchy. However, multilevel storage is still hindered by the so-called resistance drift commonly related to structural relaxation of the amorphous phase. Here, we present the temporal evolution of infrared spectra measured on amorphous thin films of the three phase change materials Ag4In3Sb67Te26, GeTe and the most popular Ge2Sb2Te5. A widening of the bandgap upon annealing accompanied by a decrease of the optical dielectric constant ε∞ is observed for all three materials. Quantitative comparison with experimental data for the apparent activation energy of conduction reveals that the temporal evolution of bandgap and activation energy can be decoupled. The case of Ag4In3Sb67Te26, where the increase of activation energy is significantly smaller than the bandgap widening, demonstrates the possibility to identify new phase change materials with reduced resistance drift. PMID:26621533

  8. Impact of water on molecular dynamics of amorphous α-, β-, and γ-cyclodextrins studied by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Kaminski, K.; Adrjanowicz, K.; Kaminska, E.; Grzybowska, K.; Hawelek, L.; Paluch, M.; Tarnacka, M.; Gruszka, I.; Kasprzycka, A.

    2012-09-01

    Dielectric, calorimetric, and x-ray diffraction measurements were carried out on α-, β-, and γ-cyclodextrins, which are cyclic saccharides built by, respectively, six, seven, and eight glucose units connected via glycosidic linkage. Differential scanning calorimetry measurements indicated that each carbohydrate has a melting temperature located much above the temperature at which thermal decomposition begins. Moreover, calorimetric data revealed that it is possible to completely dehydrate each cyclodextrin by annealing them above 413 K. Unfortunately, it is impossible to obtain amorphous forms of cyclodextrin by simple cooling of the melt. Thus, a solid state amorphization method has been applied. X-ray diffraction studies demonstrated that by ball milling at room temperature we are able to obtain completely amorphous cyclodextrins. Finally, dielectric measurements were carried out to probe molecular dynamics in the amorphous state of cyclodextrins. It was found that there is only one relaxation process in amorphous hydrated cyclodextrins, while in dried samples two secondary relaxations are present. Moreover, we have shown that water has an enormous effect on the dynamics of both relaxation modes, i.e., with increasing content of water, the activation energy of the slow mode decreases, while that evaluated for the fast mode increases. We were not able to follow the dynamics of the structural relaxation process, because glass transition temperatures of amorphous cyclodextrins were found to lie above thermal degradation points.

  9. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    PubMed

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics". PMID:27444970

  10. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    PubMed

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics".

  11. A Comprehensive Study of Hydrogen Adsorbing to Amorphous Water ice: Defining Adsorption in Classical Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Dupuy, John L.; Lewis, Steven P.; Stancil, P. C.

    2016-11-01

    Gas–grain and gas–phase reactions dominate the formation of molecules in the interstellar medium (ISM). Gas–grain reactions require a substrate (e.g., a dust or ice grain) on which the reaction is able to occur. The formation of molecular hydrogen (H2) in the ISM is the prototypical example of a gas–grain reaction. In these reactions, an atom of hydrogen will strike a surface, stick to it, and diffuse across it. When it encounters another adsorbed hydrogen atom, the two can react to form molecular hydrogen and then be ejected from the surface by the energy released in the reaction. We perform in-depth classical molecular dynamics simulations of hydrogen atoms interacting with an amorphous water-ice surface. This study focuses on the first step in the formation process; the sticking of the hydrogen atom to the substrate. We find that careful attention must be paid in dealing with the ambiguities in defining a sticking event. The technical definition of a sticking event will affect the computed sticking probabilities and coefficients. Here, using our new definition of a sticking event, we report sticking probabilities and sticking coefficients for nine different incident kinetic energies of hydrogen atoms [5–400 K] across seven different temperatures of dust grains [10–70 K]. We find that probabilities and coefficients vary both as a function of grain temperature and incident kinetic energy over the range of 0.99–0.22.

  12. Mapping amorphous material on a partially crystalline surface: nanothermal analysis for simultaneous characterisation and imaging of lactose compacts.

    PubMed

    Dai, Xuan; Reading, Mike; Craig, Duncan Q M

    2009-04-01

    The use of nanothermal analysis for mapping amorphous and crystalline lactose at a nanoscale is explored. Compressed tablets of amorphous and crystalline lactose (alone and mixed) were prepared and localised thermomechanical analysis (L-TMA) performed using micro- and nanothermal analysis in a addition to single point variable temperature pull-off force measurements. L-TMA was shown to be able to identify the different materials at a nanoscale via measurement of the thermal events associated with the amorphous and crystalline regions, while pull off force measurements showed that the adhesion of the amorphous material increased on approaching the T(g). Imaging was performed isothermally using topographic and pulsed force mode (PFM) measurements; both approaches were capable of discriminating two regions which L-TMA conformed to correspond to the two materials. In addition, force volume imaging (FVI) is suggested as a further approach to mapping the surfaces. We demonstrate that performing heated tip PFM measurements at a temperature close to the T(g) allows greater discrimination between the two regions. We therefore suggest that the nanothermal approach allows both characterisation and imaging of partially amorphous surfaces, and also demonstrate that heated tip imaging allows greater discrimination between crystalline and amorphous materials than is possible using ambient studies. PMID:18752293

  13. High pressure polymorphs and amorphization of upconversion host material NaY(WO4)2

    NASA Astrophysics Data System (ADS)

    Hong, Fang; Yue, Binbin; Cheng, Zhenxiang; Kunz, Martin; Chen, Bin; Mao, Ho-Kwang

    2016-07-01

    The pressure effect on the structural change of upconversion host material NaY(WO4)2 was studied by using in-situ synchrotron X-ray diffraction. A transition from the initial scheelite phase to the M-fergusonite phase occurs near 10 GPa, and another phase transition is found near 27.5 GPa, which could be an isostructural transition without symmetry change. The sample becomes amorphous when the pressure is fully released from high pressure. This work demonstrates the possibility of synthesizing various polymorph structures for non-linear optical applications with a high pressure, chemical doping, or strained thin-film nanostructure process.

  14. Computationally Designed Molecularly Imprinted Materials

    NASA Astrophysics Data System (ADS)

    Pavel, Dumitru; Lagowski, Jolanta; Faid, Karim

    2004-03-01

    Molecular dynamics simulations were carried out for different molecular systems in order to predict the binding affinities, binding energies, binding distances and the active site groups between the simulated molecular systems and different bio-ligands (theophylline and its derivatives), which have been designed and minimized using molecular simulation techniques. The first simulated molecular systems consisted of a ligand and functional monomer, such as methacrylic acid and its derivatives. For each pair of molecular systems, (10 monomers with a ligand and 10 monomers without a ligand) a total energy difference was calculated in order to estimate the binding energy between a ligand and the corresponding monomers. The analysis of the simulated functional monomers with ligands indicates that the functional group of monomers interacting with ligands tends to be either COOH or CH2=CH. The distances between the ligand and monomer, in the most stable cases as indicated above, are between 2.0-4.5 Å. The second simulated molecular systems consisted of a ligand and a polymer. The polymers were obtained from monomers that were simulated above. And similar to monomer study, for each pair of molecular systems, (polymer with a ligand and polymer without a ligand) a total energy difference was calculated in order to estimate the binding energy between ligand and the corresponding polymer. The binding distance between the active site of a polymer and a ligand will also be discussed.

  15. Molecular Relaxations in Supercooled Liquid and Glassy States of Amorphous Quinidine: Dielectric Spectroscopy and Density Functional Theory Approaches.

    PubMed

    Schammé, Benjamin; Mignot, Mélanie; Couvrat, Nicolas; Tognetti, Vincent; Joubert, Laurent; Dupray, Valérie; Delbreilh, Laurent; Dargent, Eric; Coquerel, Gérard

    2016-08-01

    In this article, we conduct a comprehensive molecular relaxation study of amorphous Quinidine above and below the glass-transition temperature (Tg) through broadband dielectric relaxation spectroscopy (BDS) experiments and theoretical density functional theory (DFT) calculations, as one major issue with the amorphous state of pharmaceuticals is life expectancy. These techniques enabled us to determine what kind of molecular motions are responsible, or not, for the devitrification of Quinidine. Parameters describing the complex molecular dynamics of amorphous Quinidine, such as Tg, the width of the α relaxation (βKWW), the temperature dependence of α-relaxation times (τα), the fragility index (m), and the apparent activation energy of secondary γ relaxation (Ea-γ), were characterized. Above Tg (> 60 °C), a medium degree of nonexponentiality (βKWW = 0.5) was evidenced. An intermediate value of the fragility index (m = 86) enabled us to consider Quinidine as a glass former of medium fragility. Below Tg (< 60 °C), one well-defined secondary γ relaxation, with an apparent activation energy of Ea-γ = 53.8 kJ/mol, was reported. From theoretical DFT calculations, we identified the most reactive part of Quinidine moieties through exploration of the potential energy surface. We evidenced that the clearly visible γ process has an intramolecular origin coming from the rotation of the CH(OH)C9H14N end group. An excess wing observed in amorphous Quinidine was found to be an unresolved Johari-Goldstein relaxation. These studies were supplemented by sub-Tg experimental evaluations of the life expectancy of amorphous Quinidine by X-ray powder diffraction and differential scanning calorimetry. We show that the difference between Tg and the onset temperature for crystallization, Tc, which is 30 K, is sufficiently large to avoid recrystallization of amorphous Quinidine during 16 months of storage under ambient conditions. PMID:27391029

  16. Laser annealing of amorphous/poly: Silicon solar cell material flight experiment

    NASA Technical Reports Server (NTRS)

    Cole, Eric E.

    1990-01-01

    The preliminary design proposed for the microelectronics materials processing equipment is presented. An overall mission profile, description of all processing steps, analysis methods and measurement techniques, data acquisition and storage, and a preview of the experimental hardware are included. The goal of the project is to investigate the viability of material processing of semiconductor microelectronics materials in a micro-gravity environment. The two key processes are examined: (1) Rapid Thermal Annealing (RTA) of semiconductor thin films and damaged solar cells, and (2) thin film deposition using a filament evaporator. The RTA process will be used to obtain higher quality crystalline properties from amorphous/poly-silicon films. RTA methods can also be used to repair radiation-damaged solar cells. On earth this technique is commonly used to anneal semiconductor films after ion-implantation. The damage to the crystal lattice is similar to the defects found in solar cells which have been exposed to high-energy particle bombardment.

  17. MSL SAM-Like Evolved Gas Analyses of Si-rich Amorphous Materials

    NASA Technical Reports Server (NTRS)

    McAdam, Amy; Knudson, Christine; Sutter, Brad; Andrejkovicova, Slavka; Archer, P. Douglas; Franz, Heather; Eigenbrode, Jennifer; Morris, Richard; Ming, Douglas; Sun, Vivian; Wilhelm, Mary Beth; Mahaffy, Paul

    2016-01-01

    Chemical and mineralogical analyses of several samples from Murray Formation mudstones and Stimson Formation sandstones by the Mars Science Laboratory (MSL) revealed the presence of Si-rich amorphous or poorly ordered materials. It is possible to identify the presence of high-SiO2 vs. lower SiO2 amorphous materials (e.g., basaltic glasses), based on the position of the resulting wide diffraction features in XRD patterns from the Chemistry and Mineralogy (CheMin) instrument, but it is not possible to distinguish between several candidate high-SiO2 amorphous materials such as opal-A or rhyolitic glass. In the Buckskin (BS) sample from the upper Murray Formation, and the Big Sky (BY) and Greenhorn (GH) samples from the Stimson Formation, analyses by the Sample Analysis at Mars (SAM) instrument showed very broad H2O evolutions during sample heating at temperatures >450-500degC which had not been observed from previous samples. BS also had a significant broad evolution <450-500degC. We have undertaken a laboratory study targeted at understanding if the data from SAM can be used to place constraints on the nature of the amorphous phases. SAM-like evolved gas analyses have been performed on several opal and rhyolitic glass samples. Opal-A samples exhibited wide <500degC H2O evolutions, with lesser H2O evolved above 500degC. H2O evolution traces from rhyolitic glasses varied, having either two broad H2O peaks, <300degC and >500degC, or a broad peak centered around 400degC. For samples that produced two evolutions, the lower temperature peak is more intense than the higher temperature peak, a trend also exhibited by opal-A. This trend is consistent with data from BS, but does not seem consistent with data from BY and GH which evolved most of their H2O >500degC. It may be that dehydration of opal-A and/or rhyolitic glass can result in some preferential loss of lower temperature H2O, to produce traces that more closely resemble BY and GH. This is currently under investigation

  18. Boson peak and Ioffe-Regel criterion in amorphous siliconlike materials: The effect of bond directionality

    NASA Astrophysics Data System (ADS)

    Beltukov, Y. M.; Fusco, C.; Parshin, D. A.; Tanguy, A.

    2016-02-01

    The vibrational properties of model amorphous materials are studied by combining complete analysis of the vibration modes, dynamical structure factor, and energy diffusivity with exact diagonalization of the dynamical matrix and the kernel polynomial method, which allows a study of very large system sizes. Different materials are studied that differ only by the bending rigidity of the interactions in a Stillinger-Weber modelization used to describe amorphous silicon. The local bending rigidity can thus be used as a control parameter, to tune the sound velocity together with local bonds directionality. It is shown that for all the systems studied, the upper limit of the Boson peak corresponds to the Ioffe-Regel criterion for transverse waves, as well as to a minimum of the diffusivity. The Boson peak is followed by a diffusivity's increase supported by longitudinal phonons. The Ioffe-Regel criterion for transverse waves corresponds to a common characteristic mean-free path of 5-7 Å (which is slightly bigger for longitudinal phonons), while the fine structure of the vibrational density of states is shown to be sensitive to the local bending rigidity.

  19. Boson peak and Ioffe-Regel criterion in amorphous siliconlike materials: The effect of bond directionality.

    PubMed

    Beltukov, Y M; Fusco, C; Parshin, D A; Tanguy, A

    2016-02-01

    The vibrational properties of model amorphous materials are studied by combining complete analysis of the vibration modes, dynamical structure factor, and energy diffusivity with exact diagonalization of the dynamical matrix and the kernel polynomial method, which allows a study of very large system sizes. Different materials are studied that differ only by the bending rigidity of the interactions in a Stillinger-Weber modelization used to describe amorphous silicon. The local bending rigidity can thus be used as a control parameter, to tune the sound velocity together with local bonds directionality. It is shown that for all the systems studied, the upper limit of the Boson peak corresponds to the Ioffe-Regel criterion for transverse waves, as well as to a minimum of the diffusivity. The Boson peak is followed by a diffusivity's increase supported by longitudinal phonons. The Ioffe-Regel criterion for transverse waves corresponds to a common characteristic mean-free path of 5-7 Å (which is slightly bigger for longitudinal phonons), while the fine structure of the vibrational density of states is shown to be sensitive to the local bending rigidity. PMID:26986404

  20. Characterization of amorphous In{sub 2}O{sub 3}: An ab initio molecular dynamics study

    SciTech Connect

    Aliano, Antonio; Catellani, Alessandra; Cicero, Giancarlo

    2011-11-21

    In this work, we report on the structural and electronic properties of amorphous In{sub 2}O{sub 3} obtained with ab initio molecular dynamics. Our results show crystal-like short range InO{sub 6} polyhedra having average In-O distance consistent with x-ray spectroscopy data. Structural disorder yields band tailing and localized states, which are responsible of a strong reduction of the electronic gap. Most importantly, the appearance of a peculiar O-O bond imparts n-type character to the amorphous compound and provides contribution for interpreting spectroscopic measurements on indium based oxidized systems. Our findings portray characteristic features to attribute transparent semiconductive properties to amorphous In{sub 2}O{sub 3}.

  1. Characterization and Hydrodesulfurization Properties of Catalysts Derived from Amorphous Metal-Boron Materials

    SciTech Connect

    Parks,G.; Pease, M.; Burns, A.; Layman, K.; Bussell, M.; Wang, X.; Hanson, J.; Rodriquez, J.

    2007-01-01

    Unsupported and silica-supported amorphous metal-boron materials (Ni-B, Mo-O-B, and Ni-Mo-O-B) were prepared by NaBH{sub 4} reduction of aqueous or impregnated metal salts. The resulting materials were characterized by a range of techniques, including conventional and time-resolved X-ray diffraction. The latter technique was used to determine the onset of crystallization of the amorphous materials during annealing in He flow and to identify the phases formed. Annealing of unsupported Ni-B resulted in the crystallization of predominantly Ni{sub 3}B, followed by Ni metal, whereas Ni-B/SiO{sub 2} formed Ni and then NiO. There was no evidence for crystallization of B-containing phases for Mo-O-B or Mo-O-B/SiO{sub 2} on annealing; instead, the predominant phase formed was MoO{sub 2}. In general, the phases formed for Ni-Mo-O-B and Ni-Mo-O-B/SiO2 were consistent with those formed in the monometallic materials, but at higher annealing temperatures. Catalysts prepared by sulfiding Ni-B/SiO{sub 2} and Ni-Mo-O-B/SiO{sub 2} materials had significantly higher thiophene HDS activities than conventionally prepared sulfided Ni/SiO2 and Ni-Mo/SiO{sub 2} catalysts, whereas a sulfided Mo-O-B/SiO{sub 2} catalyst had a dramatically lower HDS activity than a sulfided Mo/SiO{sub 2} catalyst.

  2. Formation, Structure and Properties of Amorphous Carbon Char from Polymer Materials in Extreme Atmospheric Reentry Environments

    NASA Technical Reports Server (NTRS)

    Lawson, John W.

    2010-01-01

    Amorphous carbonaceous char produced from the pyrolysis of polymer solids has many desirable properties for ablative heat shields for space vehicles. Molecular dynamics simulations are presented to study the transformation of the local atomic structure from virgin polymer to a dense, disordered char [1]. Release of polymer hydrogen is found to be critical to allow the system to collapse into a highly coordinated char structure. Mechanisms of the char formation process and the morphology of the resulting structures are elucidated. Thermal conductivity and mechanical response of the resulting char are evaluated [2]. During reenty, the optical response and oxidative reactivity of char are also important properties. Results of ab initio computations of char optical functions [3] and char reactivity [4] are also presented.

  3. The effect of Ta interface on the crystallization of amorphous phase change material thin films

    SciTech Connect

    Ghezzi, G. E.; Noé, P. Marra, M.; Sabbione, C.; Fillot, F.; Bernier, N.; Ferrand, J.; Maîtrejean, S.; Hippert, F.

    2014-06-02

    The crystallization of amorphous GeTe and Ge{sub 2}Sb{sub 2}Te{sub 5} phase change material films, with thickness between 10 and 100 nm, sandwiched between either Ta or SiO{sub 2} layers, was investigated by optical reflectivity. Ta cladding layers were found to increase the crystallization temperature, even for films as thick as 100 nm. X-Ray diffraction investigations of crystallized GeTe films showed a very weak texture in Ta cladded films, in contrast with the strong texture observed for SiO{sub 2} cladding layers. This study shows that crystallization mechanism of phase change materials can be highly impacted by interface effects, even for relatively thick films.

  4. Synthesis of amorphous supermicroporous zirconium phosphate materials by nonionic surfactant templating

    SciTech Connect

    Zhao, G.L.; Yuan, Z.Y. . E-mail: zyyuan@mail.nankai.edu.cn; Chen, T.H.

    2005-11-03

    Supermicroporous zirconium phosphate materials possessing wormhole-like pores in the size range 1.3-1.8 nm were synthesized by using nonionic poly(ethylene oxide) surfactant (e.g., C{sub 16}H{sub 33}(EO){sub 10}, C{sub 18}H{sub 35}(EO){sub 10}) as a structure directing agent. The textural and structural properties were characterized by powder X-ray diffraction, N{sub 2} adsorption analysis, differential thermal analysis, scanning and transmission electron microscopy, {sup 31}P MAS NMR and infrared spectroscopy. The synthesized materials are amorphous, exhibiting high surface areas, narrow pore size distributions, excellent thermal stabilities (over 800 deg. C) and acidic properties. The supermicropore size of the synthesized zirconium phosphate may be tunable by the variation of alkyl chain length of the surfactant.

  5. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach.

    PubMed

    Rodrigues, A C; Viciosa, M T; Danède, F; Affouard, F; Correia, N T

    2014-01-01

    Amorphous S-flurbiprofen was obtained by the melt quench/cooling method. Dielectric measurements performed in the isochronal mode, conventional and temperature modulated differential scanning calorimetry (TMDSC) studies showed a glass transition, recrystallization, and melting. The different parameters characterizing the complex molecular dynamics of amorphous S-flurbiprofen that can have influence on crystallization and stability were comprehensively characterized by dielectric relaxation spectroscopy experiments (isothermal mode) covering a wide temperature (183 to 408 K) and frequency range (10(-1) to 10(6) Hz): width of the α-relaxation (βKWW), temperature dependence of α-relaxation times (τα), fragility index (m), relation of the α-relaxation with the β-secondary relaxation, and the breakdown of the Debye-Stokes-Einstein (DSE) relationship between the structural relaxation time and dc-conductivity (σdc) at deep undercooling close to Tg. The β-relaxation, observed in the glassy as well as in the supercooled state was identified as the genuine Johari-Goldstein process, attributed to localized motions and regarded as the precursor of the α-relaxation as suggested in the coupling model. A separation of about 6 decades between the α- and β-relaxation was observed at Tg; this decoupling decreased on increasing temperature, and both processes merged at Tαβ = 295 K. The temperature dependence of the α-relaxation time, τα, was described by two Vogel-Fulcher-Tammann-Hesse equations, which intercept at a crossover temperature, TB = 290 K, close to the splitting temperature between the α- and β-relaxation. From the low temperature VFTH equation, a Tg(DRS) = 265.2 was estimated (at τα =100 s) in good agreement with the calorimetric value (Tg,onset,TMDSC = 265.6 K), and a fragility or steepness index m = 113 was calculated allowing to classify S-flurbiprofen as a fragile glass former. The α-relaxation spectra were found to be characterized by a

  6. PREFACE: Fourh Workshop on Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Andreozzi, Laura; Giordano, Marco; Leporini, Dino; Tosi, Mario

    2007-04-01

    This special issue of Journal of Physics: Condensed Matter presents the Proceedings of the Fourh Workshop on Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, held in Pisa from 17-22 September 2006. This was the fourth of a series of workshops on this theme started in 1995 as a joint initiative of the Università di Pisa and the Scuola Normale Superiore. The 2006 edition was attended by about 200 participants from Europe, Asia and the Americas. As for the earlier workshops, the main objective was to bring together scientists from different areas of science, technology and engineering, to comparatively discuss experimental facts and theoretical predictions on the dynamical processes that occur in supercooled fluids and other disordered materials in non-equilibrium states. The underlying conceptual unity of the field provides a common background for the scientific community working in its various areas. In this edition the number of sessions was increased to cover a wider range of topics of general and current interest, in a larger number of stimulating lectures. The core of the workshop was a set of general lectures followed by more specific presentations on current issues in the main areas of the field. The sessions were in sequence devoted to: non-equilibrium dynamics, aging and secondary relaxations, biomaterials, polyamorphism and water, polymer dynamics I, complex systems, pressure-temperature scaling, thin films, nanometre length-scale studies, folded states of proteins and polymer crystals, theoretical aspects and energy landscape approaches, relaxation and heterogeneous dynamics, rheology in fluids and entangled polymers, biopolymers, and polymer dynamics II. We thank the session chairmen and all speakers for the high quality of their contributions. The structure of this issue of the proceedings follows the sequence of the oral presentations in the workshop, complemented by some papers selected from the poster sessions. Two

  7. Lithium Storage in Microstructures of Amorphous Mixed-Valence Vanadium Oxide as Anode Materials.

    PubMed

    Zhao, Di; Zheng, Lirong; Xiao, Ying; Wang, Xia; Cao, Minhua

    2015-07-01

    Constructing three-dimensional (3 D) nanostructures with excellent structural stability is an important approach for realizing high-rate capability and a high capacity of the electrode materials in lithium-ion batteries (LIBs). Herein, we report the synthesis of hydrangea-like amorphous mixed-valence VOx microspheres (a-VOx MSs) through a facile solvothermal method followed by controlled calcination. The resultant hydrangea-like a-VOx MSs are composed of intercrossed nanosheets and, thus, construct a 3 D network structure. Upon evaluation as an anode material for LIBs, the a-VOx MSs show excellent lithium-storage performance in terms of high capacity, good rate capability, and long-term stability upon extended cycling. Specifically, they exhibit very stable cycling behavior with a highly reversible capacity of 1050 mA h g(-1) at a rate of 0.1 A g(-1) after 140 cycles. They also show excellent rate capability, with a capacity of 390 mA h g(-1) at a rate as high as 10 A g(-1) . Detailed investigations on the morphological and structural changes of the a-VOx MSs upon cycling demonstrated that the a-VOx MSs went through modification of the local VO coordinations accompanied with the formation of a higher oxidation state of V, but still with an amorphous state throughout the whole discharge/charge process. Moreover, the a-VOx MSs can buffer huge volumetric changes during the insertion/extraction process, and at the same time they remain intact even after 200 cycles of the charge/discharge process. Thus, these microspheres may be a promising anode material for LIBs.

  8. Progress in molecular precursors for electronic materials

    SciTech Connect

    Buhro, W.E.

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  9. Elastic properties of amorphous boron suboxide based solids studied using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Music, Denis; Schneider, Jochen M.

    2008-05-01

    We have studied the correlation between chemical composition, structure, chemical bonding and elastic properties of amorphous B6O based solids using ab initio molecular dynamics. These solids are of different chemical compositions, but the elasticity data appear to be a function of density. This is in agreement with previous experimental observations. As the density increases from 1.64 to 2.38 g cm-3, the elastic modulus increases from 74 to 253 GPa. This may be understood by analyzing the cohesive energy and the chemical bonding of these compounds. The cohesive energy decreases from -7.051 to -7.584 eV/atom in the elastic modulus range studied. On the basis of the electron density distributions, Mulliken analysis and radial distribution functions, icosahedral bonding is the dominating bonding type. C and N promote cross-linking of icosahedra and thus increase the density, while H hinders the cross-linking by forming OH groups. The presence of icosahedral bonding is independent of the density.

  10. Electron-Stimulated Production of Molecular Oxygen in Amorphous Solid Water

    SciTech Connect

    Petrik, Nikolay G.; Kavetski, Alexandre G.; Kimmel, Greg A.

    2006-02-16

    The low-energy, electron-stimulated production of molecular oxygen from pure amorphous solid water (ASW) films and ASW films co-dosed with H2O2 is investigated. Layered films of H216O and H218O are used to determine the spatial profile of the reactions in the films leading to O2. The O2 yield is dose-dependent, indicating that precursors are involved in the O2 production. For temperatures below {approx}80 K, the O2 yield at steady state is relatively low and nearly independent of temperature. At higher temperatures, the yield increases rapidly. The O2 yield is enhanced from H2O2-dosed water films, but the experiments show that H2O2 is not the final precursor in the reactions leading to O2. Instead, a stable precursor for O2 is produced through a multi-step reaction sequence probably involving the reactions of OH radicals to produce H2O2 and then HO2. The O2 is produced in a non-thermal reaction from the HO2. For relatively thick films, the reactions leading to O2 occur at or near the ASW/vacuum interface. However, the electronic excitations which initiate the reactions occur over a larger range in the film. A kinetic model which qualitatively accounts for all of the observations is presented.

  11. Molecular interaction studies of amorphous solid dispersions of the antimelanoma agent betulinic acid.

    PubMed

    Yu, Meiki; Ocando, Joseph E; Trombetta, Louis; Chatterjee, Parnali

    2015-04-01

    Betulinic acid (BA), a novel natural product with antimelanoma activity, has poor aqueous solubility (<0.1 μg/mL) and therefore exhibits poor bioavailability. The purpose of this study was to explore the feasibility of preparing BA solid dispersions (BA-SDs) with hydrophilic polymers to enhance the aqueous solubility of BA. Melt-quenched solid dispersions (MQ-SDs) of BA were prepared at various ratios with the hydrophilic polymers including Soluplus, HPMCAS-HF, Kollidon VA64, Kollidon K90, and Eudragit RLPO. BA was found to be miscible in all polymers at a 1:4 (w/w) ratio by modulated differential scanning calorimetry (MDSC). BA/Soluplus MQ-SD exhibited the highest solubility in simulated body fluids followed by BA/Kollidon VA64 MQ-SD. The MQ-SDs of BA/Soluplus, BA/HPMCAS-HF, and BA/Kollidon VA64 were found to be amorphous as indicated by X-ray powder diffraction (XRPD) studies. Fourier transform infra-red (FT-IR) studies indicated molecular interactions between BA and Soluplus. Our preliminary screening of polymers indicates that Soluplus and Kollidon VA64 exhibit the greatest potential to form BA-SDs. PMID:25331193

  12. Molecular interaction studies of amorphous solid dispersions of the antimelanoma agent betulinic acid.

    PubMed

    Yu, Meiki; Ocando, Joseph E; Trombetta, Louis; Chatterjee, Parnali

    2015-04-01

    Betulinic acid (BA), a novel natural product with antimelanoma activity, has poor aqueous solubility (<0.1 μg/mL) and therefore exhibits poor bioavailability. The purpose of this study was to explore the feasibility of preparing BA solid dispersions (BA-SDs) with hydrophilic polymers to enhance the aqueous solubility of BA. Melt-quenched solid dispersions (MQ-SDs) of BA were prepared at various ratios with the hydrophilic polymers including Soluplus, HPMCAS-HF, Kollidon VA64, Kollidon K90, and Eudragit RLPO. BA was found to be miscible in all polymers at a 1:4 (w/w) ratio by modulated differential scanning calorimetry (MDSC). BA/Soluplus MQ-SD exhibited the highest solubility in simulated body fluids followed by BA/Kollidon VA64 MQ-SD. The MQ-SDs of BA/Soluplus, BA/HPMCAS-HF, and BA/Kollidon VA64 were found to be amorphous as indicated by X-ray powder diffraction (XRPD) studies. Fourier transform infra-red (FT-IR) studies indicated molecular interactions between BA and Soluplus. Our preliminary screening of polymers indicates that Soluplus and Kollidon VA64 exhibit the greatest potential to form BA-SDs.

  13. Comparison of amorphous silicon absorber materials: Light-induced degradation and solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Stuckelberger, M.; Despeisse, M.; Bugnon, G.; Schüttauf, J.-W.; Haug, F.-J.; Ballif, C.

    2013-10-01

    Several amorphous silicon (a-Si:H) deposition conditions have been reported to produce films that degrade least under light soaking when incorporated into a-Si:H solar cells. However, a systematic comparison of these a-Si:H materials has never been presented. In the present study, different plasma-enhanced chemical vapor deposition conditions, yielding standard low-pressure VHF a-Si:H, protocrystalline, polymorphous, and high-pressure RF a-Si:H materials, are compared with respect to their optical properties and their behavior when incorporated into single-junction solar cells. A wide deposition parameter space has been explored in the same deposition system varying hydrogen dilution, deposition pressure, temperature, frequency, and power. From the physics of layer growth, to layer properties, to solar cell performance and light-induced degradation, a consistent picture of a-Si:H materials that are currently used for a-Si:H solar cells emerges. The applications of these materials in single-junction, tandem, and triple-junction solar cells are discussed, as well as their deposition compatibility with rough substrates, taking into account aspects of voltage, current, and charge collection. In sum, this contributes to answering the question, "Which material is best for which type of solar cell?"

  14. Addressing the Amorphous Content Issue in Quantitative Phase Analysis: The Certification of NIST Standard Reference Material 676a

    SciTech Connect

    J Cline; R Von Dreele; R Winburn; P Stephens; J Filliben

    2011-12-31

    A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum ({alpha}-Al{sub 2}O{sub 3}) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Under the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% {+-} 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.

  15. Three-terminal nanoelectromechanical switch based on tungsten nitride—an amorphous metallic material

    NASA Astrophysics Data System (ADS)

    Mayet, Abdulilah M.; Hussain, Aftab M.; Hussain, Muhammad M.

    2016-01-01

    Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WN x ). As-deposited WN x thin films have high Young’s modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WN x switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm.

  16. Three-terminal nanoelectromechanical switch based on tungsten nitride--an amorphous metallic material.

    PubMed

    Mayet, Abdulilah M; Hussain, Aftab M; Hussain, Muhammad M

    2016-01-22

    Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WNx). As-deposited WN x thin films have high Young's modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WN x switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm. PMID:26636189

  17. Shear-transformation-zone theory of yielding in athermal amorphous materials

    SciTech Connect

    Langer, J. S.

    2015-07-22

    Yielding transitions in athermal amorphous materials undergoing steady-state shear flow resemble critical phenomena. Historically, they have been described by the Herschel-Bulkley rheological formula, which implies singular behaviors at yield points. In this paper, I examine this class of phenomena using an elementary version of the thermodynamic shear-transformation-zone (STZ) theory, focusing on the role of the effective disorder temperature, and paying special attention to scaling and dimensional arguments. I find a wide variety of Herschel-Bulkley-like rheologies but, for fundamental reasons not specific to the STZ theory, conclude that the yielding transition is not truly critical. Specifically, for realistic many-body models with short-range interactions, there is a correlation length that grows rapidly but ultimately saturates near the yield point.

  18. Shear-transformation-zone theory of yielding in athermal amorphous materials

    DOE PAGES

    Langer, J. S.

    2015-07-22

    Yielding transitions in athermal amorphous materials undergoing steady-state shear flow resemble critical phenomena. Historically, they have been described by the Herschel-Bulkley rheological formula, which implies singular behaviors at yield points. In this paper, I examine this class of phenomena using an elementary version of the thermodynamic shear-transformation-zone (STZ) theory, focusing on the role of the effective disorder temperature, and paying special attention to scaling and dimensional arguments. I find a wide variety of Herschel-Bulkley-like rheologies but, for fundamental reasons not specific to the STZ theory, conclude that the yielding transition is not truly critical. Specifically, for realistic many-body models withmore » short-range interactions, there is a correlation length that grows rapidly but ultimately saturates near the yield point.« less

  19. Influence of polymer molecular weight on in vitro dissolution behavior and in vivo performance of celecoxib:PVP amorphous solid dispersions.

    PubMed

    Knopp, Matthias Manne; Nguyen, Julia Hoang; Becker, Christian; Francke, Nadine Monika; Jørgensen, Erling B; Holm, Per; Holm, René; Mu, Huiling; Rades, Thomas; Langguth, Peter

    2016-04-01

    In this study, the influence of the molecular weight of polyvinylpyrrolidone (PVP) on the non-sink in vitro dissolution and in vivo performance of celecoxib (CCX):PVP amorphous solid dispersions were investigated. The dissolution rate of CCX from the amorphous solid dispersions increased with decreasing PVP molecular weight and crystallization inhibition was increased with increasing molecular weight of PVP, but reached a maximum for PVP K30. This suggested that the crystallization inhibition was not proportional with molecular weight of the polymer, but rather there was an optimal molecular weight where the crystallization inhibition was strongest. Consistent with the findings from the non-sink in vitro dissolution tests, the amorphous solid dispersions with the highest molecular weight PVPs (K30 and K60) resulted in significantly higher in vivo bioavailability (AUC0-24h) compared with pure amorphous and crystalline CCX. A linear relationship between the in vitro and in vivo parameter AUC0-24h indicated that the simple non-sink in vitro dissolution method used in this study could be used to predict the in vivo performance of amorphous solid dispersion with good precision, which enabled a ranking between the different formulations. In conclusion, the findings of this study demonstrated that the in vitro and in vivo performance of CCX:PVP amorphous solid dispersions were significantly controlled by the molecular weight of the polymer.

  20. Molecular understanding and design of zwitterionic materials.

    PubMed

    Shao, Qing; Jiang, Shaoyi

    2015-01-01

    Zwitterionic materials have moieties possessing cationic and anionic groups. This molecular structure leads to unique properties that can be the solutions of various application problems. A typical example is that zwitterionic carboxybetaine (CB) and sulfobetaine (SB) materials resist nonspecific protein adsorption in complex media. Considering the vast number of cationic and anionic groups in the current chemical inventory, there are many possible structural variations of zwitterionic materials. The diversified structures provide the possibility to achieve many desired properties and urge a better understanding of zwitterionic materials to provide design principles. Molecular simulations and modeling are a versatile tool to understand the structure-property relationships of materials at the molecular level. This progress report summarizes recent simulation and modeling studies addressing two fundamental questions regarding zwitterionic materials and their applications as biomaterials. First, what are the differences between zwitterionic and nonionic materials? Second, what are the differences among zwitterionic materials? This report also demonstrates a molecular design of new protein-resistant zwitterionic moieties beyond conventional CB and SB based on design principles developed from these simulation studies.

  1. High mobility amorphous zinc oxynitride semiconductor material for thin film transistors

    SciTech Connect

    Ye Yan; Lim, Rodney; White, John M.

    2009-10-01

    Zinc oxynitride semiconductor material is produced through a reactive sputtering process in which competition between reactions responsible for the growth of hexagonal zinc oxide (ZnO) and for the growth of cubic zinc nitride (Zn{sub 3}N{sub 2}) is promoted. In contrast to processes in which the reaction for either the oxide or the nitride is dominant, the multireaction process yields a substantially amorphous or a highly disordered nanocrystalline film with higher Hall mobility, 47 cm{sup 2} V{sup -1} s{sup -1} for the as-deposited film produced at 50 deg. C and 110 cm{sup 2} V{sup -1} s{sup -1} after annealing at 400 deg. C. In addition, it has been observed that the Hall mobility of the material increases as the carrier concentration decreases in a carrier concentration range where a multicomponent metal oxide semiconductor, indium-gallium-zinc oxide, follows the opposite trend. This indicates that the carrier transports in the single-metal compound and the multimetal compound are probably dominated by different mechanisms. Film stability and thin film transistor performance of the material have also been tested, and results are presented herein.

  2. Pulsed-Laser Deposited Amorphous Diamond and Related Materials: Synthesis, Characterization, and Field Emission Properties

    SciTech Connect

    Baylor, L.R.; Geohegan, D.B.; Jellison, G.E., Jr.; Lowndes, D.H.; Merkulov, V.I.; Puretzky, A.A.

    1999-01-23

    Amorphous carbon films with variable sp{sup 3} content were produced by ArF (193nm) pulsed laser deposition. An in-situ ion probe was used to measure kinetic energy of C{sup +} ions. In contrast to measurements made as a function of laser fluence, ion probe measurements of kinetic energy are a convenient as well as more accurate and fundamental method for monitoring deposition conditions, with the advantage of being readily transferable for inter-laboratory comparisons. Electron energy loss spectroscopy (EELS) and spectroscopic ellipsometry measurements reveal that tetrahedral amorphous carbon (ta-C) films with the most diamond-like properties are obtained at the C ion kinetic energy of {approximately}90 eV. Film properties are uniform within a 12-15{degree} angle from the plume centerline. Tapping-mode atomic force microscope measurements show that films deposited at near-optimum kinetic energy are extremely smooth, with rms roughness of only {approximately} 1 {angstrom} over distances of several hundred nm. Field emission (FE) measurements show that ta-C does not appear to be a good electron emitter. After conditioning of ta-C films deposited on n-type Si a rather high turn-on voltage of {approximately}50 V/{micro}m was required to draw current of {approximately}1 nA to the probe. The emission was unstable and typically ceased after a few minutes of operation. The FE tests of ta-C and other materials strongly suggest that surface morphology plays a dominant role in the FE process, in agreement with conventional Fowler-Nordheim theory.

  3. Pulsed-laser-deposited amorphous diamond and related materials: synthesis, characterization, and field emission properties

    NASA Astrophysics Data System (ADS)

    Merkulov, Vladimir I.; Lowndes, Douglas H.; Baylor, Larry R.; Jellison, Gerald E., Jr.; Puretzky, Alexander A.; Geohegan, David B.

    1999-07-01

    Amorphous carbon films with variable sp3 content were produced by ArF pulsed laser deposition. An in-situ ion probe was used to measure kinetic energy of C+ ions. In contrast to measurements made as a function of laser fluence, ion probe measurements of kinetic energy are a convenient as well as more accurate and fundamental method for monitoring deposition conditions, with the advantage of being readily transferable for inter-laboratory comparisons. Electron energy loss spectroscopy and spectroscopic ellipsometry measurement reveal that tetrahedral amorphous carbon films with the most diamond-like properties are obtained at the C ion kinetic energy of approximately 90 eV. Film properties are uniform within a 12-15 degrees angle from the plume centerline. Tapping-mode atomic force microscope measurements show that films deposited at near- optimum kinetic energy are extremely smooth, with rms roughness of only approximately 1 angstrom over distances of several hundred nm. Field emission (FE) measurements show that ta-C does not appear to be a good electron emitter. After conditioning of ta-C films deposited on n-type Si a rather high turn-on voltage of approximately 50 V/micrometers was required to draw current of approximately 1 nA to the probe. The emission was unstable and typically ceased after a few minutes of operation. The FE tests of ta-C and other materials strongly suggest that surface morphology plays a dominant role in the FE process, in agreement with conventional Fowler-Nordheim theory.

  4. Molecular-dynamics simulations of thin polyisoprene films confined between amorphous silica substrates

    SciTech Connect

    Guseva, D. V.; Komarov, P. V.; Lyulin, Alexey V.

    2014-03-21

    Constant temperature–constant pressure (NpT) molecular-dynamics computer simulations have been carried out for the united-atom model of a non-crosslinked (1,4) cis-polyisoprene (PI) melt confined between two amorphous, fully coordinated silica surfaces. The Lennard-Jones 12-6 potential was implemented to describe the polymer–silica interactions. The thickness H of the produced PI–silica film has been varied in a wide range, 1 < H/R{sub g} < 8, where R{sub g} is the individual PI chain radius of gyration measured under the imposed confinement. After a thorough equilibration, the PI film stratified structure and polymer segmental dynamics have been studied. The chain structure in the middle of the films resembles that in a corresponding bulk, but the polymer-density profile shows a pronounced ordering of the polymer segments in the vicinity of silica surfaces; this ordering disappears toward the film middles. Tremendous slowing down of the polymer segmental dynamics has been observed in the film surface layers, with the segmental relaxation more than 150 times slower as compared to that in a PI bulk. This effect increases with decreasing the polymer-film thickness. The segmental relaxation in the PI film middles shows additional relaxation process which is absent in a PI bulk. Even though there are fast relaxation processes in the film middle, its overall relaxation is slower as compared to that in a bulk sample. The interpretation of the results in terms of polymer glassy bridges has been discussed.

  5. Role of Inelastic Electron–Phonon Scattering in Electron Transport through Ultra-Scaled Amorphous Phase Change Material Nanostructures

    SciTech Connect

    Liu, Jie; Xu, Xu; Anantram, M.P.

    2014-09-01

    The electron transport through ultra-scaled amorphous phase change material (PCM) GeTe is investigated by using ab initio molecular dynamics, density functional theory, and non-equilibrium Green’s function, and the inelastic electron–phonon scattering is accounted for by using the Born approximation. It is shown that, in ultra-scaled PCM device with 6 nm channel length, < 4 % of the energy carried by the incident electrons from the source is transferred to the atomic lattice before reaching the drain, indicating that the electron transport is largely elastic. Our simulation results show that the inelastic electron–phonon scattering, which plays an important role to excite trapped electrons in bulk PCM devices, exerts very limited influence on the current density value and the shape of current–voltage curve of ultra-scaled PCM devices. The analysis reveals that the Poole–Frenkel law and the Ohm’s law, which are the governing physical mechanisms of the bulk PCM devices, cease to be valid in the ultra-scaled PCM devices.

  6. Crystalline/amorphous Raman markers of hole-transport material NPD in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Sugiyama, Takuro; Furukawa, Yukio; Fujimura, Hidetoshi

    2005-04-01

    Raman marker bands characteristic of solid-state structure have been found for N, N'-di-1-naphthaleyl- N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD), which is used as a hole-transport material in organic light-emitting diodes. The widths of the marker bands observed for an amorphous state at 1607, 1290, and 1192 cm -1 are broader than those for the crystalline state observed at 1609, 1288, and 1198 cm -1. These Raman bands are found to be useful for detecting the crystallization, which may cause degradation of organic light emitting diodes, of amorphous NPD films.

  7. Magnetic and Electrical Characteristics of Cobalt-Based Amorphous Materials and Comparison to a Permalloy Type Polycrystalline Material

    NASA Technical Reports Server (NTRS)

    Wieserman, William R.; Schwarze, Gene E.; Niedra, Janis M.

    2005-01-01

    Magnetic component designers are always looking for improved soft magnetic core materials to increase the efficiency, temperature rating and power density of transformers, motors, generators and alternators, and energy density of inductors. In this paper, we report on the experimental investigation of commercially available cobalt-based amorphous alloys which, in their processing, were subjected to two different types of magnetic field anneals: A longitudinal magnetic field anneal or a transverse magnetic field anneal. The longitudinal field annealed material investigated was Metglas 2714A. The electrical and magnetic characteristics of this material were investigated over the frequency range of 1 to 200 kHz and temperature range of 23 to 150 C for both sine and square wave voltage excitation. The specific core loss was lower for the square than the sine wave voltage excitation for the same maximum flux density, frequency and temperature. The transverse magnetic field annealed core materials include Metglas 2714AF and Vacuumschmelze 6025F. These two materials were experimentally characterized over the frequency range of 10 to 200 kHz for sine wave voltage excitation and 23 C only. A comparison of the 2174A to 2714AF found that 2714AF always had lower specific core loss than 2714A for any given magnetic flux density and frequency and the ratio of specific core loss of 2714A to 2714AF was dependent on both magnetic flux density and frequency. A comparison was also made of the 2714A, 2714AF, and 6025F materials to two different tape thicknesses of the polycrystalline Supermalloy material and the results show that 2714AF and 6025F have the lowest specific core loss at 100 kHz over the magnetic flux density range of 0.1 to 0.4 Tesla.

  8. Effects of the Terminal Structure, Purity, and Molecular Weight of an Amorphous Conjugated Polymer on Its Photovoltaic Characteristics.

    PubMed

    Kuwabara, Junpei; Yasuda, Takeshi; Takase, Naoto; Kanbara, Takaki

    2016-01-27

    The photovoltaic characteristics of an amorphous polymer containing EDOT and fluorene units were investigated. In particular, the effects of the terminal structure, residual amount of Pd, and molecular weight were systematically investigated. Direct arylation polycondensation of EDOT followed by an established purification method readily afforded polymers with different terminal structures, Pd contents, and molecular weights. Of these factors, the terminal structure of the polymer was a crucial factor affecting the photovoltaic characteristics. For example, the polymer with a Br terminal had a PCE of 2.9% in bulk-heterojunction organic photovoltaics (BHJ OPVs) with a fullerene derivative, whereas the polymer without a Br terminal had a PCE of 4.6% in the same cell configuration. The decreased Pd residues and high molecular weights of the polymers increased the long-term stability of the devices. Moreover, BHJ OPVs containing the high-molecular-weight polymer could be fabricated with an environmentally friendly nonhalogenated solvent.

  9. Neutron scattering study of the magnetism in a nanocrystalline/amorphous material

    SciTech Connect

    Rosov, N.; Lynn, J.W. |; Fish, G.E.

    1995-12-31

    Recently developed nanocrystalline magnetic systems are of considerable interest fundamentally as well as technologically. One such material is Fe{sub 73.5}B{sub 9}Si{sub 13.5}Cu{sub 1}Nb{sub 3}, which can be produced by heat treating the amorphous precursor. This forms a noncrystalline phase with typical dimension of 350 {angstrom} as determined by neutron diffraction. Small angle neutron scattering (SANS) has been employed to investigate the properties of the nanocrystallized material over the temperature range from 10 K to 725 K, a regime where no significant structural changes are expected to occur. In zero field and low temperature (10 K) the authors obtained an isotropic scattering pattern. The application of a relatively modest field to sweep out the domains changed the scattering to a butterfly wings pattern typical of patterns dominated by magnetic elastic intensity. Up to 450 K this pattern changed only modestly, while for substantially higher temperatures the ratio of inelastic to elastic scattering increased rapidly as the magnetic phase transition of the intergranular component ({approx_equal} 575 K) was approached. Triple axis inelastic measurements showed that the majority of the magnetic inelastic scattering was from the nanocrystalline phase.

  10. Yttrium Iron Garnet Thin Films with Very Low Damping Obtained by Recrystallization of Amorphous Material

    PubMed Central

    Hauser, Christoph; Richter, Tim; Homonnay, Nico; Eisenschmidt, Christian; Qaid, Mohammad; Deniz, Hakan; Hesse, Dietrich; Sawicki, Maciej; Ebbinghaus, Stefan G.; Schmidt, Georg

    2016-01-01

    We have investigated recrystallization of amorphous Yttrium Iron Garnet (YIG) by annealing in oxygen atmosphere. Our findings show that well below the melting temperature the material transforms into a fully epitaxial layer with exceptional quality, both structural and magnetic. In ferromagnetic resonance (FMR) ultra low damping and extremely narrow linewidth can be observed. For a 56 nm thick layer a damping constant of α = (6.15 ± 1.50) · 10−5 is found and the linewidth at 9.6 GHz is as small as 1.30 ± 0.05 Oe which are the lowest values for PLD grown thin films reported so far. Even for a 20 nm thick layer a damping constant of α = (7.35 ± 1.40) · 10−5 is found which is the lowest value for ultrathin films published so far. The FMR linewidth in this case is 3.49 ± 0.10 Oe at 9.6 GHz. Our results not only present a method of depositing thin film YIG of unprecedented quality but also open up new options for the fabrication of thin film complex oxides or even other crystalline materials. PMID:26860816

  11. Advanced amorphous materials for photovoltaic conversion. Semiannual report, October 1, 1979-March 31, 1980

    SciTech Connect

    Griffith, R.W.; Delahoy, A.E.; Hirsch, M.D.; Kampas, F.J.; Vanier, P.E.

    1980-01-01

    The primary objectives of this project are twofold: (i) to investigate new amorphous semiconductor (a-Sc) materials, in which recombination centers are passivated, using plasma deposition techniques; and (ii) to characterize the optoelectronic properties pertaining to both majority-carrier and minority-carrier transport in as-deposited films and in devices. The specific goals in FY 1980 are: (i) to continue investigations of the effects of atmospheric impurities, i.e., nitrogen and oxygen, on the optoelectronic properties of a-Si:H alloys; and (ii) to initiate a study of the effects of these impurities upon the photovoltaic conversion efficiencies of diagnostic devices that are fabricated using such alloys. The following activities were emphasized in the program: (i) an expansion of plasma studies using optical emission spectroscopy in order to identify emitting reactive species due to impurities; and (ii) electrical and optical measurements on alloys with calibrated impurity levels by measurments of photoconductivity, photoluminescence, vibrational spectroscopy, etc.; and (iii) completing the apparatus for device measurements of spectral response, dark I-V characteristics, illuminated I-V characteristics, etc. Associated with the last activity, the fabrication of solar cells was begun using low-impurity a-Si:H materials and various a-Si:(H,O,N) alloys. Progress is reported. (WHK)

  12. Yttrium Iron Garnet Thin Films with Very Low Damping Obtained by Recrystallization of Amorphous Material.

    PubMed

    Hauser, Christoph; Richter, Tim; Homonnay, Nico; Eisenschmidt, Christian; Qaid, Mohammad; Deniz, Hakan; Hesse, Dietrich; Sawicki, Maciej; Ebbinghaus, Stefan G; Schmidt, Georg

    2016-01-01

    We have investigated recrystallization of amorphous Yttrium Iron Garnet (YIG) by annealing in oxygen atmosphere. Our findings show that well below the melting temperature the material transforms into a fully epitaxial layer with exceptional quality, both structural and magnetic. In ferromagnetic resonance (FMR) ultra low damping and extremely narrow linewidth can be observed. For a 56 nm thick layer a damping constant of α = (6.15 ± 1.50) · 10(-5) is found and the linewidth at 9.6 GHz is as small as 1.30 ± 0.05 Oe which are the lowest values for PLD grown thin films reported so far. Even for a 20 nm thick layer a damping constant of α = (7.35 ± 1.40) · 10(-5) is found which is the lowest value for ultrathin films published so far. The FMR linewidth in this case is 3.49 ± 0.10 Oe at 9.6 GHz. Our results not only present a method of depositing thin film YIG of unprecedented quality but also open up new options for the fabrication of thin film complex oxides or even other crystalline materials.

  13. Studies of molecular properties of polymeric materials

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Long, Sheila Ann T.; Long, Edward R., Jr.

    1990-01-01

    Aerospace environment effects (high energy electrons, thermal cycling, atomic oxygen, and aircraft fluids) on polymeric and composite materials considered for structural use in spacecraft and advanced aircraft are examined. These materials include Mylar, Ultem, and Kapton. In addition to providing information on the behavior of the materials, attempts are made to relate the measurements to the molecular processes occurring in the material. A summary and overview of the technical aspects are given along with a list of the papers that resulted from the studies. The actual papers are included in the appendices and a glossary of technical terms and definitions is included in the front matter.

  14. The relevance of molecular weight in the design of amorphous biodegradable polymers with optimized shape memory effect.

    PubMed

    Petisco-Ferrero, S; Fernández, J; Fernández San Martín, M M; Santamaría Ibarburu, P A; Sarasua Oiz, J R

    2016-08-01

    The shape memory effect (SME) has long been the focus of interest of many research groups that have studied many facets of it, yet to the authors' knowledge some molecular parameters, such as the molecular weight, have been skipped. Thus, the aim of this work is to offer further insight into the shape memory effect, by disclosing the importance of the molecular weight as the relevant parameter dictating the extension of the rubbery plateau, which is the scenario where the entropic network of entanglements manifests. For this, a set of biodegradable amorphous poly(rac-d,l)lactides have been synthesised by ring opening copolymerization of a racemic mixture of L-and D-lactide. The analysis performed on the synthesised enantiomeric copolylactides includes the determination of molecular weights by means of Gel Permeation Chromatography (GPC), thermal properties by Differential Scanning Calorimetry (DSC), dynamic mechanical analysis (DMA) and rheological tests using small amplitude oscillatory flow analysis. Shape memory properties have been determined by means of specific cyclic thermo-mechanic test protocol. It has been shown that the recovery capacity of amorphous PDLLA is linked to the disentanglement time through an exponential law.

  15. Molecular Rotors Built in Porous Materials.

    PubMed

    Comotti, Angiolina; Bracco, Silvia; Sozzani, Piero

    2016-09-20

    Molecules and materials can show dynamic structures in which the dominant mechanism is rotary motion. The single mobile elements are defined as "molecular rotors" and exhibit special properties (compared with their static counterparts), being able in perspective to greatly modulate the dielectric response and form the basis for molecular motors that are designed with the idea of making molecules perform a useful mechanical function. The construction of ordered rotary elements into a solid is a necessary feature for such design, because it enables the alignment of rotors and the fine-tuning of their steric and dipolar interactions. Crystal surfaces or bulk crystals are the most suitable to adapt rotors in 2D or 3D arrangements and engineer juxtaposition of the rotors in an ordered way. Nevertheless, it is only in recent times that materials showing porosity and remarkably low density have undergone tremendous development. The characteristics of large free volume combine well with the virtually unhindered motion of the molecular rotors built into their structure. Indeed, the molecular rotors are used as struts in porous covalent and supramolecular architectures, spanning both hybrid and fully organic materials. The modularity of the approach renders possible a variety of rotor geometrical arrangements in both robust frameworks stable up to 850 K and self-assembled molecular materials. A nanosecond (fast dynamics) motional regime can be achieved at temperatures lower than 240 K, enabling rotor arrays operating in the solid state even at low temperatures. Furthermore, in nanoporous materials, molecular rotors can interact with the diffusing chemical species, be they liquids, vapors, or gases. Through this chemical intervention, rotor speed can be modulated at will, enabling a new generation of rotor-containing materials sensitive to guests. In principle, an applied electric field can be the stimulus for chemical release from porous materials. The effort needed to

  16. Molecular Rotors Built in Porous Materials.

    PubMed

    Comotti, Angiolina; Bracco, Silvia; Sozzani, Piero

    2016-09-20

    Molecules and materials can show dynamic structures in which the dominant mechanism is rotary motion. The single mobile elements are defined as "molecular rotors" and exhibit special properties (compared with their static counterparts), being able in perspective to greatly modulate the dielectric response and form the basis for molecular motors that are designed with the idea of making molecules perform a useful mechanical function. The construction of ordered rotary elements into a solid is a necessary feature for such design, because it enables the alignment of rotors and the fine-tuning of their steric and dipolar interactions. Crystal surfaces or bulk crystals are the most suitable to adapt rotors in 2D or 3D arrangements and engineer juxtaposition of the rotors in an ordered way. Nevertheless, it is only in recent times that materials showing porosity and remarkably low density have undergone tremendous development. The characteristics of large free volume combine well with the virtually unhindered motion of the molecular rotors built into their structure. Indeed, the molecular rotors are used as struts in porous covalent and supramolecular architectures, spanning both hybrid and fully organic materials. The modularity of the approach renders possible a variety of rotor geometrical arrangements in both robust frameworks stable up to 850 K and self-assembled molecular materials. A nanosecond (fast dynamics) motional regime can be achieved at temperatures lower than 240 K, enabling rotor arrays operating in the solid state even at low temperatures. Furthermore, in nanoporous materials, molecular rotors can interact with the diffusing chemical species, be they liquids, vapors, or gases. Through this chemical intervention, rotor speed can be modulated at will, enabling a new generation of rotor-containing materials sensitive to guests. In principle, an applied electric field can be the stimulus for chemical release from porous materials. The effort needed to

  17. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase.

    PubMed

    Jeyasingh, Rakesh; Fong, Scott W; Lee, Jaeho; Li, Zijian; Chang, Kuo-Wei; Mantegazza, Davide; Asheghi, Mehdi; Goodson, Kenneth E; Wong, H-S Philip

    2014-06-11

    Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) < U < 10(-1) m/s) spanning a wide temperature range (415 < T < 580 K). We also observed direct evidence of non-Arrhenius crystallization behavior in programmed PCM devices at very high heating rates (>10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices. PMID:24798660

  18. Effect of horizontal molecular orientation on triplet-exciton diffusion in amorphous organic films

    NASA Astrophysics Data System (ADS)

    Sawabe, T.; Takasu, I.; Yonehara, T.; Ono, T.; Yoshida, J.; Enomoto, S.; Amemiya, I.; Adachi, C.

    2012-09-01

    Triplet harvesting is a candidate technology for highly efficient and long-life white OLEDs, where green or red phosphorescent emitters are activated by the triplet-excitons diffused from blue fluorescent emitters. We examined two oxadiazole-based electron transport materials with different horizontal molecular orientation as a triplet-exciton diffusion layer (TDL) in triplet-harvesting OLEDs. The device characteristics and the transient electroluminescent analyses of the red phosphorescent emitter showed that the triplet-exciton diffusion was more effective in the highly oriented TDL. The results are ascribed to the strong orbital overlap between the oriented molecules, which provides rapid electron exchange (Dexter energy transfer) in the TDL.

  19. Computational Nanotechnology Molecular Electronics, Materials and Machines

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This presentation covers research being performed on computational nanotechnology, carbon nanotubes and fullerenes at the NASA Ames Research Center. Topics cover include: nanomechanics of nanomaterials, nanotubes and composite materials, molecular electronics with nanotube junctions, kinky chemistry, and nanotechnology for solid-state quantum computers using fullerenes.

  20. Seebeck and thermal conductivity analysis in amorphous/crystalline {beta}-K{<_2}Bi{<_8}Se{<_13} nanocomposite materials.

    SciTech Connect

    Kyratsi, Th.; Hatzikraniotis, E.; Ioannou, M.; Chung, D. Y.; Tsiaoussis, I.

    2011-01-01

    In this work, ball milling is applied on {beta}-K{sub 2}Bi{sub 8}Se{sub 13} compounds in order to explore the potential of the process for the fabrication of nano-based material. Polycrystalline {beta}-K{sub 2}Bi{sub 8}Se{sub 13}, synthesized from melt, was ball milled under inert atmosphere. Powder x-ray diffraction showed a significantly increased disorder with ball milling time. TEM studies confirmed the presence of nanocrystalline material in an amorphous matrix, suggesting the development of crystalline/amorphous {beta}-K{sub 2}Bi{sub 8}Se{sub 13} nanocomposite material via ball milling process. Seebeck coefficient and thermal conductivity were analyzed based on the effective medium theory and show a significant contribution of a nanocrystalline phase.

  1. Nanostructured carbonaceous materials from molecular precursors.

    PubMed

    Hoheisel, Tobias N; Schrettl, Stephen; Szilluweit, Ruth; Frauenrath, Holger

    2010-09-01

    Nanostructured carbonaceous materials, that is, carbon materials with a feature size on the nanometer scale and, in some cases, functionalized surfaces, already play an important role in a wide range of emerging fields, such as the search for novel energy sources, efficient energy storage, sustainable chemical technology, as well as organic electronic materials. Furthermore, such materials might offer solutions to the challenges associated with the on-going depletion of nonrenewable energy resources or climate change, and they may promote further breakthroughs in the field of microelectronics. However, novel methods for their preparation will be required that afford functional carbon materials with controlled surface chemistry, mesoscopic morphology, and microstructure. A highly promising approach for the synthesis of such materials is based on the use of well-defined molecular precursors. PMID:20661971

  2. Adjustable degradation properties and biocompatibility of amorphous and functional poly(ester-acrylate)-based materials.

    PubMed

    Undin, Jenny; Finne-Wistrand, Anna; Albertsson, Ann-Christine

    2014-07-14

    Tuning the properties of materials toward a special application is crucial in the area of tissue engineering. The design of materials with predetermined degradation rates and controlled release of degradation products is therefore vital. Providing a material with various functional groups is one of the best ways to address this issue because alterations and modifications of the polymer backbone can be performed easily. Two different 2-methylene-1,3-dioxepane/glycidyl methacrylate-based (MDO/GMA) copolymers were synthesized with different feed ratios and immersed into a phosphate buffer solution at pH 7.4 and in deionized water at 37 °C for up to 133 days. After different time intervals, the molecular weight changes, mass loss, pH, and degradation products were determined. By increasing the amount of GMA functional groups in the material, the degradation rate and the amount of acidic degradation products released from the material were decreased. As a result, the composition of the copolymers greatly affected the degradation rate. A rapid release of acidic degradation products during the degradation process could be an important issue for biomedical applications because it might affect the biocompatibility of the material. The cytotoxicity of the materials was evaluated using a MTT assay. These tests indicated that none of the materials demonstrated any obvious cytotoxicity, and the materials could therefore be considered biocompatible.

  3. Lithium potential variations for metastable materials: case study of nanocrystalline and amorphous LiFePO4.

    PubMed

    Zhu, Changbao; Mu, Xiaoke; Popovic, Jelena; Weichert, Katja; van Aken, Peter A; Yu, Yan; Maier, Joachim

    2014-09-10

    Much attention has been paid to metastable materials in the lithium battery field, especially to nanocrystalline and amorphous materials. Nonetheless, fundamental issues such as lithium potential variations have not been pertinently addressed. Using LiFePO4 as a model system, we inspect such lithium potential variations for various lithium storage modes and evaluate them thermodynamically. The conclusions of this work are essential for an adequate understanding of the behavior of electrode materials and even helpful in the search for new energy materials.

  4. Solid-state diffusion in amorphous zirconolite

    SciTech Connect

    Yang, C.; Dove, M. T.; Trachenko, K.; Zarkadoula, E.; Todorov, I. T.; Geisler, T.; Brazhkin, V. V.

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  5. Solid-state diffusion in amorphous zirconolite

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zarkadoula, E.; Dove, M. T.; Todorov, I. T.; Geisler, T.; Brazhkin, V. V.; Trachenko, K.

    2014-11-01

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  6. Harnessing Quantum Interference in Molecular Dielectric Materials.

    PubMed

    Bergfield, Justin P; Heitzer, Henry M; Van Dyck, Colin; Marks, Tobin J; Ratner, Mark A

    2015-06-23

    We investigate the relationship between dielectric response and charge transport in molecule-based materials operating in the quantum coherent regime. We find that quantum interference affects these observables differently, for instance, allowing current passing through certain materials to be reduced by orders of magnitude without affecting dielectric behavior (or band gap). As an example, we utilize ab initio electronic structure theory to calculate conductance and dielectric constants of cross-conjugated anthraquinone (AQ)-based and linearly conjugated anthracene (AC)-based materials. In spite of having nearly equal fundamental gaps, electrode bonding configurations, and molecular dimensions, we find a ∼1.7 order of magnitude (∼50-fold) reduction in the conductance of the AQ-based material relative to the AC-based material, a value in close agreement with recent measurements, while the calculated dielectric constants of both materials are nearly identical. From these findings, we propose two molecular materials in which quantum interference is used to reduce leakage currents across a ∼25 Å monolayer gap with dielectric constants larger than 4.5.

  7. Characterizing the Phyllosilicates and Amorphous Phases Found by MSL Using Laboratory XRD and EGA Measurements of Natural and Synthetic Materials

    NASA Technical Reports Server (NTRS)

    Rampe, Elizabeth B.; Morris, Richard V.; Chipera, Steve; Bish, David L.; Bristow, Thomas; Archer, Paul Douglas; Blake, David; Achilles, Cherie; Ming, Douglas W.; Vaniman, David; Crisp, Joy A.; DesMarais, David J.; Downs, Robert; Farmer, Jack D.; Morookian, John Michael; Morrison, Shaunna; Sarrazin, Philippe; Spanovich, Nicole; Treiman, Allan H.; Yen, Albert S.

    2013-01-01

    The Curiosity Rover landed on the Peace Vallis alluvial fan in Gale crater on August 5, 2012. A primary mission science objective is to search for past habitable environments, and, in particular, to assess the role of past water. Identifying the minerals and mineraloids that result from aqueous alteration at Gale crater is essential for understanding past aqueous processes at the MSL landing site and hence for interpreting the site's potential habitability. X-ray diffraction (XRD) data from the CheMin instrument and evolved gas analyses (EGA) from the SAM instrument have helped the MSL science team identify phases that resulted from aqueous processes: phyllosilicates and amorphous phases were measure in two drill samples (John Klein and Cumberland) obtained from the Sheepbed Member, Yellowknife Bay Fm., which is believed to represent a fluvial-lacustrine environment. A third set of analyses was obtained from scoop samples from the Rocknest sand shadow. Chemical data from the APXS instrument have helped constrain the chemical compositions of these secondary phases and suggest that the phyllosilicate component is Mg-enriched and the amorphous component is Fe-enriched, relatively Si-poor, and S- and H-bearing. To refine the phyllosilicate and amorphous components in the samples measured by MSL, we measured XRD and EGA data for a variety of relevant natural terrestrial phyllosilicates and synthetic mineraloids in laboratory testbeds of the CheMin and SAM instruments. Specifically, Mg-saturated smectites and vermiculites were measured with XRD at low relative humidity to understand the behavior of the 001 reflections under Mars-like conditions. Our laboratory XRD measurements suggest that interlayer cation composition affects the hydration state of swelling clays at low RH and, thus, the 001 peak positions. XRD patterns of synthetic amorphous materials, including allophane, ferrihydrite, and hisingerite were used in full-pattern fitting (FULLPAT) models to help

  8. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report

    SciTech Connect

    Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

    2009-03-16

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  9. Bremsstrahlung from relativistic bare heavy ions: Nuclear and electronic contributions in amorphous and crystalline materials

    NASA Astrophysics Data System (ADS)

    Jensen, Tue V.; Sørensen, Allan H.

    2013-02-01

    A charged particle emits bremsstrahlung while traversing matter. We calculate the radiation cross section for bare heavy ions penetrating amorphous materials and single crystals at highly relativistic energies. The main component originates in scattering of the virtual photons of screened target nuclei on the projectile. It appears at, approximately, 2γ times the energy of the giant dipole resonance of the projectile, approximately 25γ MeV for a lead nucleus (γ≡E/Mc2, where E and M denote the projectile energy and mass). The emission pertains to relatively close impacts, with impact parameters ranging to, at maximum, the screening radius of the target atoms. As a result, the main bremsstrahlung component shows channeling dips, that is, dips in yield upon variation of the incidence angle to major crystallographic directions of a single crystal. The minimum yield increases with γ but saturates at a very low value. Incoherent interaction with single target electrons gives rise to two additional bremsstrahlung components, a modest component due to scattering of virtual photons of the electrons on the projectile and a strong low-energy component due to scattering of the virtual photons of the projectile on the electrons. The difference in radiation levels can be traced to the mass of the scatterer. Since target electrons are more widely distributed than nuclei in a crystal channel the variation of the electron component of the bremsstrahlung with incidence angle to a major crystallographic direction is less abrupt than the variation of the nuclear component. In consequence, the shape of the total bremsstrahlung spectrum changes when the crystal is tilted and the individual components may be singled out. Pair creation is also sensitive to the orientation of a crystalline material, resulting in a pronounced directional dependence of the energy loss of bare heavy ions at extreme relativistic energies.

  10. Solubility of crystalline organic compounds in high and low molecular weight amorphous matrices above and below the glass transition by zero enthalpy extrapolation.

    PubMed

    Amharar, Youness; Curtin, Vincent; Gallagher, Kieran H; Healy, Anne Marie

    2014-09-10

    Pharmaceutical applications which require knowledge of the solubility of a crystalline compound in an amorphous matrix are abundant in the literature. Several methods that allow the determination of such data have been reported, but so far have only been applicable to amorphous polymers above the glass transition of the resulting composites. The current work presents, for the first time, a reliable method for the determination of the solubility of crystalline pharmaceutical compounds in high and low molecular weight amorphous matrices at the glass transition and at room temperature (i.e. below the glass transition temperature), respectively. The solubilities of mannitol and indomethacin in polyvinyl pyrrolidone (PVP) K15 and PVP K25, respectively were measured at different temperatures. Mixtures of undissolved crystalline solute and saturated amorphous phase were obtained by annealing at a given temperature. The solubility at this temperature was then obtained by measuring the melting enthalpy of the crystalline phase, plotting it as a function of composition and extrapolating to zero enthalpy. This new method yielded results in accordance with the predictions reported in the literature. The method was also adapted for the measurement of the solubility of crystalline low molecular weight excipients in amorphous active pharmaceutical ingredients (APIs). The solubility of mannitol, glutaric acid and adipic acid in both indomethacin and sulfadimidine was experimentally determined and successfully compared with the difference between their respective calculated Hildebrand solubility parameters. As expected from the calculations, the dicarboxylic acids exhibited a high solubility in both amorphous indomethacin and sulfadimidine, whereas mannitol was almost insoluble in the same amorphous phases at room temperature. This work constitutes the first report of the methodology for determining an experimentally measured solubility for a low molecular weight crystalline solute

  11. First-principles computation of mantle materials in crystalline and amorphous phases

    NASA Astrophysics Data System (ADS)

    Karki, Bijaya B.

    2015-03-01

    First-principles methods based on density functional theory are used extensively in the investigation of the behavior and properties of mantle materials over broad ranges of pressure, temperature, and composition that are relevant. A review of computational results reported during the last couple of decades shows that essentially all properties including structure, phase transition, equation of state, thermodynamics, elasticity, alloying, conductivity, defects, interfaces, diffusivity, viscosity, and melting have been calculated from first principles. Using MgO, the second most abundant oxide of Earth's mantle, as a primary example and considering many other mantle materials in their crystalline and amorphous phases, we have found that most properties are strongly pressure dependent, sometimes varying non-monotonically and anomalously, with the effects of temperature being systematically suppressed with compression. The overall agreement with the available experimental data is excellent; it is remarkable that the early-calculated results such as shear wave velocities of two key phases, MgO and MgSiO3 perovskite, were subsequently reproduced by experimentation covering almost the entire mantle pressure regime. As covered in some detail, the defect formation and migration enthalpies of key mantle materials increase with pressure. The predicted trend is that partial MgO Schottky defects are energetically most favorable in Mg-silicates but their formation enthalpies are high. So, the diffusion in the mantle is likely to be in the extrinsic regime. Preliminary results on MgO and forsterite hint that the grain boundaries can accommodate point defects (including impurities) and enhance diffusion rates at all pressures. The structures are highly distorted in the close vicinity of the defects and at the interface with excess space. Recent simulations of MgO-SiO2 binary and other silicate melts have found that the melt self-diffusion and viscosity vary by several orders of

  12. Mid-infrared spectroscopy of UV irradiated hydrogenated amorphous carbon materials

    NASA Astrophysics Data System (ADS)

    Gadallah, K. A. K.; Mutschke, H.; Jäger, C.

    2012-08-01

    Context. Mid-infrared (MIR) bands are characteristic for the short-range and medium-range structure of hydrogenated amorphous carbon (HAC) materials that exist in the interstellar medium (ISM) and are sensitive to processing in the harsh interstellar radiation field. Aims: We study the variability of the MIR features from the spectrum of non-processed to that of UV-processed HAC materials and compare them to spectra of interstellar carbonaceous materials. Methods: Nano-sized HAC materials produced by laser ablation were irradiated by vacuum-UV photons with doses comparable to those relevant for interstellar processing. They were subsequently analyzed by IR spectroscopy. Results: In the MIR range, the spectra of HAC materials show many absorption bands such as the sp3 aliphatic ≡ C-H stretching vibration at 3.03 μm, the sp3 aliphatic -C-H stretching vibration at 3.4 μm and also the sp3 aliphatic C-H bending vibration at both 6.85 μm and 7.25 μm. All these are recognizable bands of HAC materials. Other absorption bands such as the sp2 aromatic =C-H stretching vibration at about 3.3 μm and the sp2 -C=C stretching vibration close to 6.25 μm are observed. The HAC materials also possess bands which represent the aromatic out-of-plane bending at 11.65, 12.46 and 12.9 μm in addition to the aromatic -C-C-C in-plane bending at 15.87 μm. With UV irradiation, the mass absorption coefficient of the 3.03 μm band completely disappears and that of the aliphatic C-H bands (3.4, 6.85 and 7.25 μm) decreases. This reduction shows that the UV radiation destroys most of the aliphatic C-H bonds inside the HAC structure. On the other hand, the strength of the aromatic 6.2 μm band increases, which is evidence of the partial graphitization within UV-irradiated HAC materials. Because UV irradiation is not uniform, this band agrees well with the C-class PAH toward HD 100764. The C-H out-of-plane vibration bands are strongly affected by UV irradiation. Bands at 11.35, 12.14 and 12

  13. Optical materials based on molecular nanoparticles.

    PubMed

    Patra, A; Chandaluri, Ch G; Radhakrishnan, T P

    2012-01-21

    A major part of contemporary nanomaterials research is focused on metal and semiconductor nanoparticles, constituted of extended lattices of atoms or ions. Molecular nanoparticles assembled from small molecules through non-covalent interactions are relatively less explored but equally fascinating materials. Their unique and versatile characteristics have attracted considerable attention in recent years, establishing their identity and status as a novel class of nanomaterials. Optical characteristics of molecular nanoparticles capture the essence of their nanoscale features and form the basis of a variety of applications. This review describes the advances made in the field of fabrication of molecular nanoparticles, the wide spectrum of their optical and nonlinear optical characteristics and explorations of the potential applications that exploit their unique optical attributes.

  14. SOLAR COSMIC-RAY INTERACTION WITH PROTOPLANETARY DISKS: PRODUCTION OF SHORT-LIVED RADIONUCLIDES AND AMORPHIZATION OF CRYSTALLINE MATERIAL

    SciTech Connect

    Trappitsch, R.; Ciesla, F. J.

    2015-05-20

    Solar cosmic-ray (SCR) interactions with a protoplanetary disk have been invoked to explain several observations of primitive planetary materials. In our own Solar System, the presence of short-lived radionuclides (SLRs) in the oldest materials has been attributed to spallation reactions induced in phases that were irradiated by energetic particles in the solar nebula. Furthermore, observations of other protoplanetary disks show a mixture of crystalline and amorphous grains, though no correlation between grain crystallinity and disk or stellar properties have been identified. As most models for the origin of crystalline grains would predict such correlations, it was suggested that amorphization by stellar cosmic-rays may be masking or erasing such correlations. Here we quantitatively investigate these possibilities by modeling the interaction of energetic particles emitted by a young star with the surrounding protoplanetary disk. We do this by tracing the energy evolution of SCRs emitted from the young star through the disk and model the amount of time that dust grains would spend in regions where they would be exposed to these particles. We find that this irradiation scenario cannot explain the total SLR content of the solar nebula; however, this scenario could play a role in the amorphization of crystalline material at different locations or epochs of the disk over the course of its evolution.

  15. Solar Cosmic-ray Interaction with Protoplanetary Disks: Production of Short-lived Radionuclides and Amorphization of Crystalline Material

    NASA Astrophysics Data System (ADS)

    Trappitsch, R.; Ciesla, F. J.

    2015-05-01

    Solar cosmic-ray (SCR) interactions with a protoplanetary disk have been invoked to explain several observations of primitive planetary materials. In our own Solar System, the presence of short-lived radionuclides (SLRs) in the oldest materials has been attributed to spallation reactions induced in phases that were irradiated by energetic particles in the solar nebula. Furthermore, observations of other protoplanetary disks show a mixture of crystalline and amorphous grains, though no correlation between grain crystallinity and disk or stellar properties have been identified. As most models for the origin of crystalline grains would predict such correlations, it was suggested that amorphization by stellar cosmic-rays may be masking or erasing such correlations. Here we quantitatively investigate these possibilities by modeling the interaction of energetic particles emitted by a young star with the surrounding protoplanetary disk. We do this by tracing the energy evolution of SCRs emitted from the young star through the disk and model the amount of time that dust grains would spend in regions where they would be exposed to these particles. We find that this irradiation scenario cannot explain the total SLR content of the solar nebula; however, this scenario could play a role in the amorphization of crystalline material at different locations or epochs of the disk over the course of its evolution.

  16. Materials issues in molecular beam epitaxy

    SciTech Connect

    Tsao, J.Y.

    1993-12-31

    The technology of crystal growth has advanced enormously during the past two decades; among those advances, the development and refinement of molecular beam epitaxy (MBE) has been among the most important. Crystals grown by MBE are more precisely controlled than those grown by any other method, and today form the basis for many of the most advanced device structures in solid-state physics, electronics and optoelectronics. In addition to its numerous device applications, MBE is also an enormously rich and interesting area of materials science in and of itself. This paper, discusses a few examples of some of these materials issues, organized according to whether they involve bulk, thin films, or surfaces.

  17. Molecular dynamics simulation of benzene in graphite and amorphous carbon slit pores.

    PubMed

    Fomin, Yu D

    2013-11-15

    It is well known that confining a liquid into a pore strongly alters the liquid behavior. Investigations of the effect of confinement are of great importance for many scientific and technological applications. Here, we present a study of the behavior of benzene confined in carbon slit pores. Two types of pores are considered-graphite and amorphous carbon ones. We show that the effect of different pore structure is of crucial importance for the benzene behavior.

  18. Molecular relaxation behavior and isothermal crystallization above glass transition temperature of amorphous hesperetin.

    PubMed

    Shete, Ganesh; Khomane, Kailas S; Bansal, Arvind Kumar

    2014-01-01

    The purpose of this paper was to investigate the relaxation behavior of amorphous hesperetin (HRN), using dielectric spectroscopy, and assessment of its crystallization kinetics above glass transition temperature (Tg ). Amorphous HRN exhibited both local (β-) and global (α-) relaxations. β-Relaxation was observed below Tg , whereas α-relaxation prominently emerged above Tg . β-Relaxation was found to be of Johari-Goldstein type and was correlated with α-process by coupling model. Secondly, isothermal crystallization experiments were performed at 363 K (Tg + 16.5 K), 373 K (Tg + 26.5 K), and 383 K (Tg + 36.5 K). The kinetics of crystallization, obtained from the normalized dielectric strength, was modeled using the Avrami model. Havriliak-Negami (HN) shape parameters, αHN and αHN .βHN , were analyzed during the course of crystallization to understand the dynamics of amorphous phase during the emergence of crystallites. HN shape parameters indicated that long range (α-like) were motions affected to a greater extent than short range (β-like) motions during isothermal crystallization studies at all temperature conditions. The variable behavior of α-like motions at different isothermal crystallization temperatures was attributed to evolving crystallites with time and increase in electrical conductivity with temperature.

  19. Insights into Silicate and Oxide Melt Structure from Amorphous, Non-Glass-Forming Materials

    NASA Astrophysics Data System (ADS)

    Stebbins, J. F.

    2015-12-01

    Many silicate and oxide liquids of interest in the Earth sciences and in technology cannot readily be quenched to glasses, either because of low silica contents (and hence low viscosity at the melting point and accompanying liquid 'fragility') or because of liquid-liquid unmixing at high temperature. Although in-situ, high temperature structural tools have been in use for decades and are rapidly developing, many methods are still most informative for glass samples quenched to ambient pressure and temperature, e.g. high-resolution solid-state NMR. Amorphous oxides, including alumina and silicate compositions, have widespread technological applications. These are generally deposited by a variety of high-energy sputtering methods, as films of thicknesses of 10's to 100's of nm. Using Al-27, Si-29, and O-17 NMR, we have recently shown that for such films, very similar short-range structure is seen in materials made by very different kinetic pathways, such as sol-gel synthesis vs. ion-beam sputtering. This path-independent structure suggests that these materials pass through transient equilibrium states during their formation, probably that of deeply supercooled liquids just above glass transition temperatures. In the HfO2-SiO2 and ZrO2-SiO2 systems, for example, samples have well-resolved O-17 NMR spectra, allowing quantitation of O sites with only Hf(Zr) neighbors (so-called "free" oxide ions), with mixed Hf(Zr) and Si neighbors, and Si only. The observed oxygen speciation agrees well with a simple thermodynamic model of one of the most fundamental equilibria in silicate systems, namely the reaction of bridging (Si-O-Si) and "free" (e.g. OHf3 and OHf4) oxide ions to produce "non-bridging" oxygens (e.g. Si-OHf2). This new approach to sampling such structural equilibria in compositions far outside the range of normal glass-forming liquids may provide new insights into more geological compositions as well, as well as in more general models of silicate melt chemistry.

  20. Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice and snow, and other materials: The USGS tricorder algorithm

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg A.

    1995-01-01

    One of the challenges of Imaging Spectroscopy is the identification, mapping and abundance determination of materials, whether mineral, vegetable, or liquid, given enough spectral range, spectral resolution, signal to noise, and spatial resolution. Many materials show diagnostic absorption features in the visual and near infrared region (0.4 to 2.5 micrometers) of the spectrum. This region is covered by the modern imaging spectrometers such as AVIRIS. The challenge is to identify the materials from absorption bands in their spectra, and determine what specific analyses must be done to derive particular parameters of interest, ranging from simply identifying its presence to deriving its abundance, or determining specific chemistry of the material. Recently, a new analysis algorithm was developed that uses a digital spectral library of known materials and a fast, modified-least-squares method of determining if a single spectral feature for a given material is present. Clark et al. made another advance in the mapping algorithm: simultaneously mapping multiple minerals using multiple spectral features. This was done by a modified-least-squares fit of spectral features, from data in a digital spectral library, to corresponding spectral features in the image data. This version has now been superseded by a more comprehensive spectral analysis system called Tricorder.

  1. In situ molecular elucidation of drug supersaturation achieved by nano-sizing and amorphization of poorly water-soluble drug.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2015-09-18

    Quantitative evaluation of drug supersaturation and nanoparticle formation was conducted using in situ evaluation techniques, including nuclear magnetic resonance (NMR) spectroscopy. We prepared a ternary complex of carbamazepine (CBZ) with hydroxypropyl methylcellulose (HPMC) and sodium dodecyl sulfate (SDS) to improve the drug concentration. Different preparation methods, including grinding and spray drying, were performed to prepare the ternary component products, ground mixture (GM) and spray-dried sample (SD), respectively. Although CBZ was completely amorphized in the ternary SD, CBZ was partially amorphized with the remaining CBZ crystals in the ternary GM. Aqueous dispersion of the ternary GM formed nanoparticles of around 150 nm, originating from the CBZ crystals in the ternary GM. In contrast, the ternary SD formed transparent solutions without a precipitate. The molecular-level evaluation using NMR measurements revealed that approximately half a dose of CBZ in the ternary GM dispersion was present as nanoparticles; however, CBZ in the ternary SD was completely dissolved in the aqueous solution. The characteristic difference between the solid states, followed by different preparation methods, induced different solution characteristics in the ternary GM and SD. The permeation study, using a dialysis membrane, showed that the CBZ concentration dissolved in the bulk water phase rapidly reduced in the ternary SD dispersion compared to the ternary GM dispersion; this demonstrated the advantage of ternary GM dispersion in the maintenance of CBZ supersaturation. Long-term maintenance of a supersaturated state of CBZ observed in the ternary GM dispersion rather than in the ternary SD dispersion was achieved by the inhibition of CBZ crystallization owing to the existence of CBZ nanoparticles in the ternary GM dispersion. Nanoparticle formation, combined with drug amorphization, could be a promising approach to improve drug concentrations. The detailed elucidation

  2. Hydrogenated amorphous silicon radiation detectors: Material parameters, radiation hardness, charge collection

    SciTech Connect

    Qureshi, S.

    1991-01-01

    For nearly two decades now hydrogenated amorphous silicon has generated considerable interest for its potential use in various device applications namely, solar cells, electrolithography, large-area electronics etc. The development of efficient and economic solar cells has been on the forefront of this research. This interest in hydrogenated amorphous silicon has been motivated by the fact that amorphous silicon can be deposited over a large area at relatively low cost compared to crystalline silicon. Hydrogenated amorphous silicon, frequently abbreviated as a-Si:H, used in solar-cell applications is a micron or less thick. The basic device structure is a p-i-n diode where the i layer is the active layer for radiation to interact. This is so because intrinsic a-Si:H has superior electrical properties in comparison to doped a-Si:H which serves the purpose of forming a potential barrier on either end of the i layer. The research presented in this dissertation was undertaken to study the properties of a-Si:H for radiation detection applications in physics and medicine.

  3. Ultrafast optical response of the amorphous and crystalline states of the phase change material Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Miller, T. A.; Rudé, M.; Pruneri, V.; Wall, S.

    2016-07-01

    We examine the ultrafast optical response of the crystalline and amorphous phases of the phase change material Ge2Sb2Te5 (GST) below the phase transformation threshold. Simultaneous measurement of the transmissivity and reflectivity of thin film samples yields the time-dependent evolution of the dielectric function for both phases. We then identify how lattice motion and electronic excitation manifest in the dielectric response. The dielectric response of both phases is large but markedly different. At 800 nm, the changes in amorphous GST are well described by the Drude response of the generated photocarriers, whereas the crystalline phase is better described by the depopulation of resonant bonds. We find that the generated coherent phonons have a greater influence in the amorphous phase than the crystalline phase. Furthermore, coherent phonons do not influence resonant bonding. For fluences up to 50% of the transformation threshold, the structure does not exhibit bond softening in either phase, enabling large changes of the optical properties without structural modification.

  4. Amorphous and nanocrystalline titanium nitride and carbonitride materials obtained by solution phase ammonolysis of Ti(NMe 2) 4

    NASA Astrophysics Data System (ADS)

    Jackson, Andrew W.; Shebanova, Olga; Hector, Andrew L.; McMillan, Paul F.

    2006-05-01

    Solution phase reactions between tetrakisdimethylamidotitanium (Ti(NMe 2) 4) and ammonia yield precipitates with composition TiC 0.5N 1.1H 2.3. Thermogravimetric analysis (TGA) indicates that decomposition of these precursor materials proceeds in two steps to yield rocksalt-structured TiN or Ti(C,N), depending upon the gas atmosphere. Heating to above 700 °C in NH 3 yields nearly stoichiometric TiN. However, heating in N 2 atmosphere leads to isostructural carbonitrides, approximately TiC 0.2N 0.8 in composition. The particle sizes of these materials range between 4-12 nm. Heating to a temperature that corresponds to the intermediate plateau in the TGA curve (450 °C) results in a black powder that is X-ray amorphous and is electrically conducting. The bulk chemical composition of this material is found to be TiC 0.22N 1.01H 0.07, or Ti 3(C 0.17N 0.78H 0.05) 3.96, close to Ti 3(C,N) 4. Previous workers have suggested that the intermediate compound was an amorphous form of Ti 3N 4. TEM investigation of the material indicates the presence of nanocrystalline regions <5 nm in dimension embedded in an amorphous matrix. Raman and IR reflectance data indicate some structural similarity with the rocksalt-structured TiN and Ti(C,N) phases, but with disorder and substantial vacancies or other defects. XAS indicates that the local structure of the amorphous solid is based on the rocksalt structure, but with a large proportion of vacancies on both the cation (Ti) and anion (C,N) sites. The first shell Ti coordination is approximately 4.5 and the second-shell coordination ˜5.5 compared with expected values of 6 and 12, respectively, for the ideal rocksalt structure. The material is thus approximately 50% less dense than known Ti x(C,N) y crystalline phases.

  5. The Molecular Volcano Revisited: Determination of Crack Propagation and Distribution During the Crystallization of Nanoscale Amorphous Solid Water Films.

    PubMed

    May, R Alan; Smith, R Scott; Kay, Bruce D

    2012-02-01

    Temperature programmed desorption (TPD) is utilized to determine the length distribution of cracks formed through amorphous solid water (ASW) during crystallization. This distribution is determined by monitoring how the thickness of an ASW overlayer alters desorption of an underlayer of O2. As deposited, ASW prevents desorption of O2. During crystallization, cracks form through the ASW and open a path to vacuum, which allows O2 to escape in a rapid episodic release known as the "molecular volcano". Sufficiently thick ASW overlayers further trap O2 resulting in a second, higher temperature, O2 desorption peak. The evolution of this trapping peak with overlayer thickness is the basis for determining the length distribution of crystallization-induced cracks spanning the ASW. Reflection absorption infrared spectroscopy (RAIRS) and TPD of multicomponent parfait structures of ASW, O2, and Kr indicate that a preponderance of these cracks propagate down from the outer surface of the ASW. PMID:26285846

  6. Molecular forensic science of nuclear materials

    SciTech Connect

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  7. Magnetic sensors using amorphous metal materials: detection of premature ventricular magnetic waves

    PubMed Central

    Uchiyama, Tsuyoshi; Nakayama, Shinsuke

    2013-01-01

    The detection of magnetic activity enables noncontact and noninvasive evaluation of electrical activity in humans. We review the detection of biomagnetic fields using amorphous metal wire-based magnetic sensors with the sensitivity of a pico-Tesla (pT) level. We measured magnetic fields close to the thoracic wall in a healthy subject sitting on a chair. The magnetic sensor head was mounted perpendicularly against the thoracic wall. Simultaneous measurements with ECG showed that changes in the magnetic field were synchronized with the cardiac electric activity, and that the magnetic wave pattern changed reflecting electrical activity of the atrium and ventricle, despite a large variation. Furthermore, magnetic waves reflecting ventricular arrhythmia were recorded in the same healthy subject. These results suggest that this magnetic sensor technology is applicable to human physiology and pathophysiology research. We also discuss future applications of amorphous wire-based magnetic sensors as well as possible improvements. PMID:24303116

  8. Molecular Dynamics and Physical Stability of Amorphous Nimesulide Drug and Its Binary Drug-Polymer Systems.

    PubMed

    Knapik, J; Wojnarowska, Z; Grzybowska, K; Tajber, L; Mesallati, H; Paluch, K J; Paluch, M

    2016-06-01

    In this article we study the effectiveness of three well-known polymers: inulin, Soluplus, and PVP in stabilizing the amorphous form of nimesulide (NMS) drug. The recrystallization tendency of pure drug as well as measured drug-polymer systems were examined at isothermal conditions by broadband dielectric spectroscopy (BDS) and at nonisothermal conditions by differential scanning calorimetry (DSC). Our investigation has shown that the crystallization half-life time of pure NMS at 328 K is equal to 33 min. We found that this time can be prolonged to 40 years after adding 20% w/w PVP to NMS. This polymer proved to be the best NMS stabilizer, while the worst stabilization effect was exhibited by inulin. Additionally, our DSC, BDS, and FTIR studies indicate that for suppression of NMS recrystallization in the NMS-PVP system, the two mechanisms are responsible: the polymeric steric hindrances and the antiplastization effect exerted by the excipient. PMID:27149568

  9. Structure and mechanical properties of Ni-Cu-Ti-Zr composite materials with amorphous phase

    NASA Astrophysics Data System (ADS)

    Churyumov, A. Yu.; Bazlov, A. I.; Solonin, A. N.; Zadorozhnyi, V. Yu.; Xie, G. Q.; Li, S.; Louzguine-Luzgin, D. V.

    2013-09-01

    The structure of specimens of Ni-Cu-Ti-Zr alloys with an amorphous phase has been examined by X-ray diffraction, as well as by transmission and scanning electron microscopy. Mechanical characteristics of the alloys have been determined using universal testing machines. Transformation-induced plasticity has been found to exist. The specimens demonstrate a good combination of strength and plasticity owing to both the composite effect of a heterophase structure and the dynamic martensitic transformation that develops during deformation.

  10. Investigation of the impact of annealing on global molecular mobility in glasses: optimization for stabilization of amorphous pharmaceuticals.

    PubMed

    Luthra, Suman A; Hodge, Ian M; Pikal, Michael J

    2008-09-01

    The purpose of this research was to investigate the effect of annealing on the molecular mobility in lyophilized glasses using differential scanning calorimetry (DSC) and isothermal microcalorimetry (IMC) techniques. A second objective that emerged was a systematic study of the unusual pre-T(g) thermal events that were observed during DSC warming scans after annealing. Aspartame lyophilized with three different excipients; sucrose, trehalose and poly vinyl pyrrolidone (PVP) was studied. The aim of this work was to quantify the decrease in mobility in amorphous lyophilized aspartame formulations upon systematic postlyophilization annealing. DSC scans of aspartame:sucrose formulation (T(g) = 73 degrees C) showed the presence of a pre-T(g) endotherm which disappeared upon annealing. Aspartame:trehalose (T(g) = 112 degrees C) and aspartame:PVP (T(g) = 100 degrees C) showed a broad exotherm before T(g) and annealing caused appearance of endothermic peaks before T(g). This work also employed IMC to measure the global molecular mobility represented by structural relaxation time (tau(beta)) in both un-annealed and annealed formulations. The effect of annealing on the enthalpy relaxation of lyophilized glasses, as measured by DSC and IMC, was consistent with the behavior predicted using the Tool-Narayanaswamy-Moynihan (TNM) phenomenology (Luthra et al., 2007, in press). The results show that the systems annealed at T(g) -15 degrees C to T(g) -20 degrees C have the lowest molecular mobility.

  11. Excellent cycling stability and superior rate capability of a graphene-amorphous FePO4 porous nanowire hybrid as a cathode material for sodium ion batteries.

    PubMed

    Yang, Gaoliang; Ding, Bing; Wang, Jie; Nie, Ping; Dou, Hui; Zhang, Xiaogang

    2016-04-28

    A porous nanowire material consisting of graphene-amorphous FePO4 was investigated as an advanced cathode material for sodium ion batteries for large-scale applications. This hybrid cathode material showed excellent cycling performance and superior rate capability, which were attributed to the porous nanowire structure and the existence of graphene. PMID:27064740

  12. Excellent cycling stability and superior rate capability of a graphene-amorphous FePO4 porous nanowire hybrid as a cathode material for sodium ion batteries.

    PubMed

    Yang, Gaoliang; Ding, Bing; Wang, Jie; Nie, Ping; Dou, Hui; Zhang, Xiaogang

    2016-04-28

    A porous nanowire material consisting of graphene-amorphous FePO4 was investigated as an advanced cathode material for sodium ion batteries for large-scale applications. This hybrid cathode material showed excellent cycling performance and superior rate capability, which were attributed to the porous nanowire structure and the existence of graphene.

  13. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  14. Preface: Thin films of molecular organic materials

    NASA Astrophysics Data System (ADS)

    Fraxedas, J.

    2008-03-01

    This special issue is devoted to thin films of molecular organic materials and its aim is to assemble numerous different aspects of this topic in order to reach a wide scientific audience. Under the term 'thin films', structures with thicknesses spanning from one monolayer or less up to several micrometers are included. In order to narrow down this relaxed definition (how thin is thin?) I suggest joining the stream that makes a distinction according to the length scale involved, separating nanometer-thick films from micrometer-thick films. While the physical properties of micrometer-thick films tend to mimic those of bulk materials, in the low nanometer regime new structures (e.g., crystallographic and substrate-induced phases) and properties are found. However, one has to bear in mind that some properties of micrometer-thick films are really confined to the film/substrate interface (e.g. charge injection), and are thus of nanometer nature. Supported in this dimensionality framework, this issue covers the most ideal and model 0D case, a single molecule on a surface, through to the more application-oriented 3D case, placing special emphasis on the fascinating 2D domain that is monolayer assembly. Thus, many aspects will be reviewed, such as single molecules, self-organization, monolayer regime, chirality, growth, physical properties and applications. This issue has been intentionally restricted to small molecules, thus leaving out polymers and biomolecules, because for small molecules it is easier to establish structure--property relationships. Traditionally, the preparation of thin films of molecular organic materials has been considered as a secondary, lower-ranked part of the more general field of this class of materials. The coating of diverse surfaces such as silicon, inorganic and organic single crystals, chemically modified substrates, polymers, etc., with interesting molecules was driven by the potential applications of such molecular materials

  15. SORPTION BEHAVIOR OF MONOSODIUM TITANATE AND AMORPHOUS PEROXOTITANATE MATERIALS UNDER WEAKLY ACIDIC CONDITIONS

    SciTech Connect

    Hobbs, D.; Elvington, M.; Click, D.

    2009-11-11

    Inorganic, titanate-based sorbents are tested with respect to adsorption of a variety of sorbates under weakly acidic conditions (pH 3). Specifically, monosodium titanate (MST) and amorphous peroxotitanate (APT) sorption characteristics are initially probed through a screening process consisting of a pair of mixed metal solutions containing a total of 29 sorbates including alkali metals, alkaline earth metals, transition metals, metalloids and nonmetals. MST and APT sorption characteristics are further analyzed individually with chromium(III) and cadmium(II) using a batch method at ambient laboratory temperature, varying concentrations of the sorbents and sorbates and contact times. Maximum sorbate loadings are obtained from the respective adsorption isotherms.

  16. Hot-Wire CVD Amorphous Si Materials for Solar Cell Application

    SciTech Connect

    Wang, Q.

    2009-01-01

    Hydrogenated amorphous silicon (a-Si:H) thin films and their application to solar cells fabricated using the hot-wire chemical vapor deposition (HWCVD) or (CAT)-CVD will be reviewed. This review will focus on the comparison to the standard plasma enhance (PE) CVD in the terms of deposition technique, film properties, and solar cell performance. The advantages of using HWCVD for a-Si:H solar cell research as well as the criteria for industry's adaptation of this technique for mass production will be addressed.

  17. New Methods of Simulation of Mn(II) EPR Spectra: Single Crystals, Polycrystalline and Amorphous (Biological) Materials

    NASA Astrophysics Data System (ADS)

    Misra, Sushil K.

    Biological systems exhibit properties of amorphous materials. The Mn(II) ion in amorphous materials is characterized by distributions of spin-Hamiltonian parameters around mean values. It has a certain advantage over other ions, being one of the most abundant elements on the earth. The extent to which living organisms utilize manganese varies from one organism to the other. There is a fairly high concentration of the Mn(II) ion in green plants, which use it in the O2 evolution reaction of photosynthesis (Sauer, 1980). Structure-reactivity relationships in Mn(II)-O2 complexes are given in a review article by Coleman and Taylor (1980). Manganese is a trace requirement in animal nutrition; highly elevated levels of manganese in the diet can be toxic, probably because of an interference with iron homeostasis (Underwood, 1971). On the other hand, animals raised with a dietary deficiency of manganese exhibit severe abnormalities in connective tissue; these problems have been attributed to the obligatory role of Mn(II) in mucopolysaccharide metabolism (Leach, 1971). Mn(II) has been detected unequivocally in living organisms.

  18. Interaction of atomic and molecular deuterium with a nonporous amorphous water ice surface between 8 and 30 K.

    PubMed

    Amiaud, L; Dulieu, F; Fillion, J-H; Momeni, A; Lemaire, J L

    2007-10-14

    Molecular and atomic interactions of hydrogen on dust grains covered with ice at low temperatures are key mechanisms for star formation and chemistry in dark interstellar clouds. We have experimentally studied the interaction of atomic and molecular deuterium on nonporous amorphous water ice surfaces between 8 and 30 K, in conditions compatible with an extrapolation to an astrophysical context. The adsorption energy of D(2) presents a wide distribution, as already observed on porous water ice surfaces. At low coverage, the sticking coefficient of D(2) increases linearly with the number of deuterium molecules already adsorbed on the surface. Recombination of atomic D occurs via a prompt reaction that releases molecules into the gas phase. Part of the newly formed molecules are in vibrationally excited states (v=1-7). The atomic recombination efficiency increases with the presence of D(2) molecules already adsorbed on the water ice, probably because these increase the sticking coefficient of the atoms, as in the case of incident D(2). We have measured the atomic recombination efficiency in the presence of already absorbed D(2), as it is expected to occur in the interstellar medium. The recombination efficiency decreases rapidly with increasing temperature and is zero at 13 K. This allows us to estimate an upper limit to the value of the atom adsorption energy E(a) approximately 29 meV, in agreement with previous calculations.

  19. Tellurium n-type doping of highly mismatched amorphous GaN1-xAsx alloys in plasma-assisted molecular beam epitaxy

    DOE PAGES

    Novikov, S. V.; Ting, M.; Yu, K. M.; Sarney, W. L.; Martin, R. W.; Svensson, S. P.; Walukiewicz, W.; Foxon, C. T.

    2014-10-01

    In this paper we report our study on n-type Te doping of amorphous GaN1-xAsx layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN1-xAsx layers has been successfully achieved with a maximum Te concentration of 9×10²⁰ cm⁻³. Tellurium incorporation resulted in n-doping of GaN1-xAsx layers with Hall carrier concentrations up to 3×10¹⁹ cm⁻³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN1-xAsx layers has been determined.

  20. Divergence of Voronoi Cell Anisotropy Vector: A Threshold-Free Characterization of Local Structure in Amorphous Materials.

    PubMed

    Rieser, Jennifer M; Goodrich, Carl P; Liu, Andrea J; Durian, Douglas J

    2016-02-26

    Characterizing structural inhomogeneity is an essential step in understanding the mechanical response of amorphous materials. We introduce a threshold-free measure based on the field of vectors pointing from the center of each particle to the centroid of the Voronoi cell in which the particle resides. These vectors tend to point in toward regions of high free volume and away from regions of low free volume, reminiscent of sinks and sources in a vector field. We compute the local divergence of these vectors, where positive values correspond to overpacked regions and negative values identify underpacked regions within the material. Distributions of this divergence are nearly Gaussian with zero mean, allowing for structural characterization using only the moments of the distribution. We explore how the standard deviation and skewness vary with the packing fraction for simulations of bidisperse systems and find a kink in these moments that coincides with the jamming transition. PMID:26967443

  1. Predicting Crystallization of Amorphous Drugs with Terahertz Spectroscopy.

    PubMed

    Sibik, Juraj; Löbmann, Korbinian; Rades, Thomas; Zeitler, J Axel

    2015-08-01

    There is a controversy about the extent to which the primary and secondary dielectric relaxations influence the crystallization of amorphous organic compounds below the glass transition temperature. Recent studies also point to the importance of fast molecular dynamics on picosecond-to-nanosecond time scales with respect to the glass stability. In the present study we provide terahertz spectroscopy evidence on the crystallization of amorphous naproxen well below its glass transition temperature and confirm the direct role of Johari-Goldstein (JG) secondary relaxation as a facilitator of the crystallization. We determine the onset temperature Tβ above which the JG relaxation contributes to the fast molecular dynamics and analytically quantify the level of this contribution. We then show there is a strong correlation between the increase in the fast molecular dynamics and onset of crystallization in several chosen amorphous drugs. We believe that this technique has immediate applications to quantify the stability of amorphous drug materials.

  2. Structure and Transformation of Amorphous Calcium Carbonate: A Solid-State 43Ca NMR and Computational Molecular Dynamics Investigation

    SciTech Connect

    Singer, Jared W.; Yazaydin, A. O.; Kirkpatrick, Robert J.; Bowers, Geoffrey M.

    2012-05-22

    Amorphous calcium carbonate (ACC) is a metastable precursor to crystalline CaCO{sub 3} phases that precipitates by aggregation of ion pairs and prenucleation clusters. We use {sup 43}Ca solid-state NMR spectroscopy to probe the local structure and transformation of ACC synthesized from seawater-like solutions with and without Mg{sup 2+} and computational molecular dynamics (MD) simulations to provide more detailed molecular-scale understanding of the ACC structure. The {sup 43}Ca NMR spectra of ACC collected immediately after synthesis consist of broad, featureless resonances with Gaussian line shapes (FWHH = 27.6 {+-} 1 ppm) that do not depend on Mg{sup 2+} or H{sub 2}O content. A correlation between {sup 43}Ca isotropic chemical shifts and mean Ca-O bond distances for crystalline hydrous and anhydrous calcium carbonate phases indicates indistinguishable maximum mean Ca-O bond lengths of {approx}2.45 {angstrom} for all our samples. This value is near the upper end of the published Ca-O bond distance range for biogenic and synthetic ACCs obtained by Ca-X-ray absorption spectroscopy. It is slightly smaller than the values from the structural model of Mgfree ACC by Goodwin et al. obtained from reverse Monte Carlo (RMC) modeling of X-ray scattering data and our own computational molecular dynamics (MD) simulation based on this model. An MD simulation starting with the atomic positions of the Goodwin et al. RMC model using the force field of Raiteri and Gale shows significant structural reorganization during the simulation and that the interconnected carbonate/water-rich channels in the Goodwin et al. model shrink in size over the 2 ns simulation time. The distribution of polyhedrally averaged Ca-O bond distances from the MD simulation is in good agreement with the {sup 43}Ca NMR peak shape, suggesting that local structural disorder dominates the experimental line width of ACC.

  3. Characterization of Amorphous Silicon Advanced Materials and PV Devices: Final Technical Report, 15 December 2001--31 January 2005

    SciTech Connect

    Taylor, P. C.

    2005-11-01

    The major objectives of this subcontract have been: (1) understand the microscopic properties of the defects that contribute to the Staebler-Wronski effect to eliminate this effect, (2) perform correlated studies on films and devices made by novel techniques, especially those with promise to improve stability or deposition rates, (3) understand the structural, electronic, and optical properties of films of hydrogenated amorphous silicon (a-Si:H) made on the boundary between the amorphous and microcrystalline phases, (4) search for more stable intrinsic layers of a-Si:H, (5) characterize the important defects, impurities, and metastabilities in the bulk and at surfaces and interfaces in a-Si:H films and devices and in important alloy systems, and (6) make state-of-the-art plasma-enhanced chemical vapor deposition (PECVD) devices out of new, advanced materials, when appropriate. All of these goals are highly relevant to improving photovoltaic devices based on a-Si:H and related alloys. With regard to the first objective, we have identified a paired hydrogen site that may be the defect that stabilizes the silicon dangling bonds formed in the Staebler-Wronski effect.

  4. Molecular forensic science analysis of nuclear materials

    NASA Astrophysics Data System (ADS)

    Reilly, Dallas David

    Concerns over the proliferation and instances of nuclear material in the environment have increased interest in the expansion of nuclear forensics analysis and attribution programs. A new related field, molecular forensic science (MFS) has helped meet this expansion by applying common scientific analyses to nuclear forensics scenarios. In this work, MFS was applied to three scenarios related to nuclear forensics analysis. In the first, uranium dioxide was synthesized and aged at four sets of static environmental conditions and studied for changes in chemical speciation. The second highlighted the importance of bulk versus particle characterizations by analyzing a heterogeneous industrially prepared sample with similar techniques. In the third, mixed uranium/plutonium hot particles were collected from the McGuire Air Force Base BOMARC Site and analyzed for chemical speciation and elemental surface composition. This work has identified new signatures and has indicated unexpected chemical behavior under various conditions. These findings have lead to an expansion of basic actinide understanding, proof of MFS as a tool for nuclear forensic science, and new areas for expansion in these fields.

  5. Exploring local atomic arrangements in amorphous and metastable phase change materials with x-ray and neutron total scattering

    SciTech Connect

    Page, Katharine; Daemen, Luc; Proffen, Thomas

    2010-01-01

    Very little experimental work has conclusively explored the structural transformation between the amorphous and metastable crystalline phases of phase change chalcogenides. A recent flurry of theoretical work has supported likely mechanisms for the phase transition process in Ge-Sb-Te (GST) compositions and invigorated efforts at probing local atomic arrangements experimentally. The pair distribution function (PDF) formalism of total scattering data provides directly both local structure correlations at low real-space dimensions, and intermediate range order at higher length scales, a distinct advantage for following the relevant phase transition in phase change materials (PCM). A challenge facing the field is the difficulty in distinguishing separate peak contributions to pair correlation functions in amorphous and highly disordered samples. For example, various types of local order have been reported for Ge{sub x}Te{sub 1-x} phases, including both random mixtures and discrete structural units, and both 4-fold and 6-fold coordination around Ge. We describe our efforts in advancing capabilities for extracting and refining differential or partial pair distribution function data sets by combining neutron and x-ray total scattering, with extensions to isotopic substitution and anomalous x-ray scattering. Our results combining neutron and x-ray scattering for the Ge{sub x}Te{sub 1-x} series, for example, clearly distinguish Ge-Te and Te-Te contributions in nearest neighbor correlations. Presenting an additional challenge, phase change materials with fast switching speeds (those arguably of greatest technological interest) have stable bulk crystalline phases and do not readily form glasses until reduced to small dimensions. Thin film samples are inherently difficult to probe with conventional crystallographic methods. We demonstrate successful synchrotron x-ray total scattering experiments for PCM thin films with thicknesses between 100 nm and 1 um and describe how

  6. Amorphous polymeric anode materials from poly(acrylic acid) and tin(II) oxide for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroyuki; Nakanishi, Shinji; Iba, Hideki; Itoh, Takahito

    2015-02-01

    The reaction of poly(acrylic acid) (PAA) and tin oxide (II) (SnO) provides an amorphous product (PSnA), which was found to be a promising precursor of an anode material for lithium ion batteries. The anode electrode composed of PSnA as the active material and polyimide as the binder showed a better cycling performance than the anode electrode using SnO as the active material. It is considered that the organic polymer chain present in PSnA might act as a buffer to the volume change in the active material during the charge-discharge cycles. The X-ray diffraction (XRD) results of the electrode after delithiation revealed that nano-sized cubic tin (α-Sn) and tetragonal tin (β-Sn) particles are formed in the active material. Therefore, it is concluded that these nano-sized tin particles in the polymer matrix were effective for the storage and release of Li ions.

  7. Electrons and phonons in amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Prasai, Kiran; Biswas, Parthapratim; Drabold, D. A.

    2016-07-01

    The coupling between lattice vibrations and electrons is one of the central concepts of condensed matter physics. The subject has been deeply studied for crystalline materials, but far less so for amorphous and glassy materials, which are among the most important for applications. In this paper, we explore the electron-lattice coupling using current tools of a first-principles computer simulation. We choose three materials to illustrate the phenomena: amorphous silicon (a-Si), amorphous selenium (a-Se) and amorphous gallium nitride (a-GaN). In each case, we show that there is a strong correlation between the localization of electron states and the magnitude of thermally induced fluctuations in energy eigenvalues obtained from the density-functional theory (i.e. Kohn–Sham eigenvalues). We provide a heuristic theory to explain these observations. The case of a-GaN, a topologically disordered partly ionic insulator, is distinctive compared to the covalent amorphous examples. Next, we explore the consequences of changing the charge state of a system as a proxy for tracking photo-induced structural changes in the materials. Where transport is concerned, we lend insight into the Meyer–Neldel compensation rule and discuss a thermally averaged Kubo–Greenwood formula as a means to estimate electrical conductivity and especially its temperature dependence. We close by showing how the optical gap of an amorphous semiconductor can be computationally engineered with the judicious use of Hellmann–Feynman forces (associated with a few defect states) using molecular dynamics simulations. These forces can be used to close or open an optical gap, and identify a structure with a prescribed gap. We use the approach with plane-wave density functional methods to identify a low-energy amorphous phase of silicon including several coordination defects, yet with a gap close to that of good quality a-Si models.

  8. Electrons and phonons in amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Prasai, Kiran; Biswas, Parthapratim; Drabold, D. A.

    2016-07-01

    The coupling between lattice vibrations and electrons is one of the central concepts of condensed matter physics. The subject has been deeply studied for crystalline materials, but far less so for amorphous and glassy materials, which are among the most important for applications. In this paper, we explore the electron-lattice coupling using current tools of a first-principles computer simulation. We choose three materials to illustrate the phenomena: amorphous silicon (a-Si), amorphous selenium (a-Se) and amorphous gallium nitride (a-GaN). In each case, we show that there is a strong correlation between the localization of electron states and the magnitude of thermally induced fluctuations in energy eigenvalues obtained from the density-functional theory (i.e. Kohn-Sham eigenvalues). We provide a heuristic theory to explain these observations. The case of a-GaN, a topologically disordered partly ionic insulator, is distinctive compared to the covalent amorphous examples. Next, we explore the consequences of changing the charge state of a system as a proxy for tracking photo-induced structural changes in the materials. Where transport is concerned, we lend insight into the Meyer-Neldel compensation rule and discuss a thermally averaged Kubo-Greenwood formula as a means to estimate electrical conductivity and especially its temperature dependence. We close by showing how the optical gap of an amorphous semiconductor can be computationally engineered with the judicious use of Hellmann-Feynman forces (associated with a few defect states) using molecular dynamics simulations. These forces can be used to close or open an optical gap, and identify a structure with a prescribed gap. We use the approach with plane-wave density functional methods to identify a low-energy amorphous phase of silicon including several coordination defects, yet with a gap close to that of good quality a-Si models.

  9. The Molecular Volcano Revisited: Determination of Crack Propagation and Distribution During the Crystallization of Nanoscale Amorphous Solid Water Films.

    SciTech Connect

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    2012-02-02

    Temperature programmed desorption (TPD) is utilized to determine the length distribution of cracks formed through amorphous solid water (ASW) during crystallization. This distribution is determined by monitoring how the thickness of an ASW overlayer alters desorption of an underlayer of O2. As deposited the ASW overlayer prevents desorption of O2. During crystallization, cracks form through the ASW overlayer and open a path to vacuum which allows O2 to escape in a rapid episodic release known as the 'molecular volcano'. Sufficiently thick ASW overlayers further trap O2 resulting in a second O2 desorption peak commensurate with desorption of the last of the ASW overlayer. The evolution of this trapping peak with overlayer thickness is the basis for determining the distribution of crystallization induced cracks through the ASW. Reflection adsorption infrared spectroscopy (RAIRS) and TPD of multicomponent parfait structures of ASW, O2 and Kr indicate that a preponderance of these cracks propagate down from the outer surface of the ASW.

  10. Quantitative Fermi level tuning in amorphous organic semiconductor by molecular doping: Toward full understanding of the doping mechanism

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Peng; Wang, Wen-Qing; Bussolotti, Fabio; Cheng, Li-Wen; Li, Yan-Qing; Kera, Satoshi; Tang, Jian-Xin; Zeng, Xiang-Hua; Ueno, Nobuo

    2016-08-01

    The doping mechanism in organic-semiconductor films has been quantitatively studied via ultrahigh-sensitivity ultraviolet photoelectron spectroscopy of N,N-bis(1-naphthyl)-N,N-diphenyl-1,1-biphenyl-4,4-diamine (α-NPD) films doped with hexaazatriphenylene-hexacarbonitrile [HAT(CN)6]. We observed that HOMO of α-NPD shifts to the Fermi level (EF) in two different rates with the doping concentration of HAT(CN)6, but HOMO distributions of both pristine and doped amorphous α-NPD films are excellently approximated with a same Gaussian distribution without exponential tail states over ˜5 × 1018 cm-3 eV-1. From the theoretical simulation of the HAT(CN)6-concentration dependence of the HOMO in doped films, we show that the passivation of Gaussian-distributed hole traps, which peak at 1.1 eV above the HOMO onset, occurs at ultralow doping [HAT(CN)6 molecular ratio (MR) < 0.01], leading to a strong HOMO shift of ˜0.40 eV towards EF, and MR dependence of HOMO changes abruptly at MR ˜ 0.01 to a weaker dependence for MR > 0.01 due to future of the dopant acceptor level.

  11. Molecular dynamics simulations on the local order of liquid and amorphous ZnTe

    NASA Astrophysics Data System (ADS)

    Rino, José Pedro; Borges, Denilson; Mota, Rita C.; Silva, Maurício A. P.

    2008-05-01

    Molecular dynamics studies of structural and dynamical correlations of molten and vitreous states under several conditions of density and temperature were performed. We use an effective recently proposed interatomic potential, consisting of two- and three-body covalent interactions which has successfully described the structural, dynamical, and structural phase transformation induced by pressure in ZnTe [D. S. Borges and J. P. Rino, Phys. Rev. B 72, 014107 (2005)]. The two-body term of the interaction potential consists of Coulomb interaction resulting from charge transfer, steric repulsion due to atomic sizes, charge-dipole interaction to include the effect of electronic polarizability of anions, and dipole-dipole (van der Waals) interactions. The three-body covalent term is a modification of the Stillinger-Weber potential. Molecular dynamics simulations in isobaric-isenthalpic ensemble have been performed for systems amounting to 4096 and 64 000 particles. Starting from a crystalline zinc-blende (ZB) structure, the system is initially heated until a very homogeneous liquid is obtained. The vitreous zinc telluride phase is attained by cooling the liquid at sufficiently fast cooling rates, while slower cooling rates lead to a disordered ZB crystalline structure. Two- and three-body correlations for the liquid and vitreous phases are analyzed through pair distribution functions, static structure factors, and bond angle distributions. In particular, the neutron static structure factor for the liquid phase is in very good agreement with both the reported experimental data and first-principles simulations.

  12. Fabrication and Characterization of Amorphous/Nanocrystalline Thin Film Composite

    NASA Astrophysics Data System (ADS)

    Newton, Benjamin S.

    Combining the absorption abilities of amorphous silicon and the electron transport capabilities of crystalline silicon would be a great advantage to not only solar cells but other semiconductor devices. In this work composite films were created using molecular beam epitaxy and electron beam deposition interchangeably as a method to create metallic precursors. Aluminum induced crystallization techniques were used to convert an amorphous silicon film with a capping layer of aluminum nanodots into a film composed of a mixture of amorphous silicon and nanocrystalline silicon. This layer was grown into the amorphous layer by cannibalizing a portion of the amorphous silicon material during the aluminum induced crystallization. Characterization was performed on films and metallic precursors utilizing SEM, TEM, ellipsometry and spectrophotometer.

  13. On diamond, graphitic and amorphous carbons in primitive extraterrestrial solar system materials

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1990-01-01

    Carbon is among the most abundant elements in the universe and carbon chemistry in meteorites and comets is an important key to understanding many Solar System and interstellar processes. Yet, the mineralogical properties and interrelations between various structural forms of elemental carbon remain ambiguous. Crystalline elemental carbons include rhombohedral graphite, hexagonal graphite, cubic diamond, hexagonal diamond (i.e., lonsdaleite or carbon-2H) and chaoite. Elemental carbon also occurs as amorphous carbon and poorly graphitized (or turbostratic) carbon but of all the forms of elemental carbon only graphite is stable under physical conditions that prevail in small Solar System bodies and in the interstellar medium. The recent discovery of cubic diamond in carbonaceous chondrites and hexagonal diamond in chondritic interplanetary dust particles (IDPs) have created a renewed interest in the crystalline elemental carbons that were not formed by shock processes on a parent body. Another technique, Raman spectroscopy, confirms a widespread occurrence of disordered graphite in the Allende carbonaceous chondrite and in chondritic IDPs. Elemental carbons have also been identified by their characteristic K-edge features in electron energy loss spectra (EELS). However, the spectroscopic data do not necessarily coincide with those obtained by selected area electron diffraction (SAED). In order to interpret these data in terms of rational crystalline structures, it may be useful to consider the principles underlying electron diffraction and spectroscopic analyses. Electron diffraction depends on electron scattering, on the type of atom and the distance between atoms in a crystal lattice. Spectroscopic data are a function of the type of atom and the energy of bonds between atoms. Also, SAED is a bulk sampling technique when compared to techniques such as Raman spectroscopy or EELS. Thus, it appears that combined analyses provide contradictory results and that amorphous

  14. Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements

    SciTech Connect

    Snellings, R.; Salze, A.; Scrivener, K.L.

    2014-10-15

    The content of individual amorphous supplementary cementitious materials (SCMs) in anhydrous and hydrated blended cements was quantified by the PONKCS [1] X-ray diffraction (XRD) method. The analytical precision and accuracy of the method were assessed through comparison to a series of mixes of known phase composition and of increasing complexity. A 2σ precision smaller than 2–3 wt.% and an accuracy better than 2 wt.% were achieved for SCMs in mixes with quartz, anhydrous Portland cement, and hydrated Portland cement. The extent of reaction of SCMs in hydrating binders measured by XRD was 1) internally consistent as confirmed through the standard addition method and 2) showed a linear correlation to the cumulative heat release as measured independently by isothermal conduction calorimetry. The advantages, limitations and applicability of the method are discussed with reference to existing methods that measure the degree of reaction of SCMs in blended cements.

  15. Infrared spectral study of molecular vibrations in amorphous, nanocrystalline and AlO(OH) · αH 2O bulk crystals

    NASA Astrophysics Data System (ADS)

    Ram, S.

    2001-12-01

    Amorphous, nanocrystalline, and bulk AlO(OH) · xH 2O crystals have six fundamental modes (FM) of vibration in a nonlinear AlO(OH) molecular structure. Most of them appear in groups of four IR and Raman bands. Their positions and relative intensities differ significantly in three specimens. The nanocrystals (monoclinic structure with z=8 molecules per unit cell) have four OH stretching bands at values enhanced by up to 360 cm -1 at 3120, 3450, 3560 cm -1 in comparison to those in bulk crystals or amorphous specimens. The first two bands are broad, bandwidth Δν1/2˜200 to 350 cm -1, while the other two are sharp, Δν1/2⩽90 cm -1. The sharp bands shift to 3525 and 3595 cm -1 after heating the sample at 100°C. They no longer appear after heating at 300 or 500°C for 2 h (the specimen decomposes to Al 2O 3), leaving behind only two bands at 3100 and 3400 cm -1. A Δν1/2 value of 500 cm -1 appears in the 3400 cm -1 in a delocalized distribution of H atoms. Two bands also occur at 3098 and 3300 cm -1 in bulk crystals (orthorhombic structure with z=4) or at 2990 and 3515 cm -1 in an amorphous sample. More than one bands appear in a FM vibration in occurrence of sample in more than one conformers. The amorphous sample has approximately the same conformer structure as the bulk crystals. An amorphous surface structure exists in nanocrystals with a group of three bands at ˜1420, 1510 and 1635 cm -1 in an interconnected network structure. It encapsulates the nanocrystals in an amorphous shell. Its volume fraction, 33% estimated from the integrated intensity in three bands, determines 2.2 nm thickness in the shell in spherical shape of nanocrystals in 35 nm diameter.

  16. Structure and dynamics in concentrated, amorphous carbohydrate--water systems by molecular dynamics simulation

    SciTech Connect

    Roberts, C.J.; Debenedetti, P.G.

    1999-08-26

    The authors report results from molecular simulations of binary aqueous solutions of the carbohydrate stereoisomers, {beta}-D-glucose, {beta}-D-mannose, and D-fructose over a concentration range from zero to 80 wt % carbohydrate at 300 and 270 K. It is found that increasing carbohydrate concentration has a number of striking effects on the microscopic structure and dynamics of these solutions, including (1) a percolation threshold for connected water clusters at ca. 60 wt % carbohydrate, (2) a maximum in the hydrogen bond network strength and degree of ordering, as a function of carbohydrate concentration, at ca. 29 wt %, and (3) activated or hopping dynamics in the translational diffusion of water due to the influence of (1) and (2). There are appreciable differences in the magnitudes of these effects as a function of sugar type for the three stereoisomers studied. The relevance of these results is discussed in the context of the efficacy of sugars in biopreservation and lyophilization applications.

  17. Pressure-induced transformations in amorphous silicon: A computational study

    SciTech Connect

    Garcez, K. M. S.; Antonelli, A.

    2014-02-14

    We study the transformations between amorphous phases of Si through molecular simulations using the environment dependent interatomic potential (EDIP) for Si. Our results show that upon pressure, the material undergoes a transformation from the low density amorphous (LDA) Si to the high density amorphous (HDA) Si. This transformation can be reversed by decompressing the material. This process, however, exhibits clear hysteresis, suggesting that the transformation LDA ↔ HDA is first-order like. The HDA phase is predominantly five-fold coordinated, whereas the LDA phase is the normal tetrahedrally bonded amorphous Si. The HDA phase at 400 K and 20 GPa was submitted to an isobaric annealing up to 800 K, resulting in a denser amorphous phase, which is structurally distinct from the HDA phase. Our results also show that the atomic volume and structure of this new amorphous phase are identical to those of the glass obtained by an isobaric quenching of the liquid in equilibrium at 2000 K and 20 GPa down to 400 K. The similarities between our results and those for amorphous ices suggest that this new phase is the very high density amorphous Si.

  18. Excellent cycling stability and superior rate capability of a graphene-amorphous FePO4 porous nanowire hybrid as a cathode material for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Gaoliang; Ding, Bing; Wang, Jie; Nie, Ping; Dou, Hui; Zhang, Xiaogang

    2016-04-01

    A porous nanowire material consisting of graphene-amorphous FePO4 was investigated as an advanced cathode material for sodium ion batteries for large-scale applications. This hybrid cathode material showed excellent cycling performance and superior rate capability, which were attributed to the porous nanowire structure and the existence of graphene.A porous nanowire material consisting of graphene-amorphous FePO4 was investigated as an advanced cathode material for sodium ion batteries for large-scale applications. This hybrid cathode material showed excellent cycling performance and superior rate capability, which were attributed to the porous nanowire structure and the existence of graphene. Electronic supplementary information (ESI) available: Experimental section; SEM images, BET, XPS spectrum, TG curve and EIS spectra of the samples; the comparison of electrochemical performance with the reported results. See DOI: 10.1039/c6nr00409a

  19. Mechanical behavior of linear amorphous polymers: Comparison between molecular dynamics and finite-element simulations

    NASA Astrophysics Data System (ADS)

    Solar, Mathieu; Meyer, Hendrik; Gauthier, Christian; Fond, Christophe; Benzerara, Olivier; Schirrer, Robert; Baschnagel, Jörg

    2012-02-01

    This paper studies the rheology of weakly entangled polymer melts and films in the glassy domain and near the rubbery domain using two different methods: molecular dynamics (MD) and finite element (FE) simulations. In a first step, the uniaxial mechanical behavior of a bulk polymer sample is studied by means of particle-based MD simulations. The results are in good agreement with experimental data, and mechanical properties may be computed from the simulations. This uniaxial mechanical behavior is then implemented in FE simulations using an elasto-viscoelasto-viscoplastic constitutive law in a continuum mechanics (CM) approach. In a second step, the mechanical response of a polymer film during an indentation test is modeled with the MD method and with the FE simulations using the same constitutive law. Good agreement is found between the MD and CM results. This work provides evidence in favor of using MD simulations to investigate the local physics of contact mechanics, since the volume elements studied are representative and thus contain enough information about the microstructure of the polymer model, while surface phenomena (adhesion and surface tension) are naturally included in the MD approach.

  20. Mechanical behavior of linear amorphous polymers: comparison between molecular dynamics and finite-element simulations.

    PubMed

    Solar, Mathieu; Meyer, Hendrik; Gauthier, Christian; Fond, Christophe; Benzerara, Olivier; Schirrer, Robert; Baschnagel, Jörg

    2012-02-01

    This paper studies the rheology of weakly entangled polymer melts and films in the glassy domain and near the rubbery domain using two different methods: molecular dynamics (MD) and finite element (FE) simulations. In a first step, the uniaxial mechanical behavior of a bulk polymer sample is studied by means of particle-based MD simulations. The results are in good agreement with experimental data, and mechanical properties may be computed from the simulations. This uniaxial mechanical behavior is then implemented in FE simulations using an elasto-viscoelasto-viscoplastic constitutive law in a continuum mechanics (CM) approach. In a second step, the mechanical response of a polymer film during an indentation test is modeled with the MD method and with the FE simulations using the same constitutive law. Good agreement is found between the MD and CM results. This work provides evidence in favor of using MD simulations to investigate the local physics of contact mechanics, since the volume elements studied are representative and thus contain enough information about the microstructure of the polymer model, while surface phenomena (adhesion and surface tension) are naturally included in the MD approach. PMID:22463237

  1. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials

    PubMed Central

    Kwon, Min Sang; Yu, Youngchang; Coburn, Caleb; Phillips, Andrew W.; Chung, Kyeongwoon; Shanker, Apoorv; Jung, Jaehun; Kim, Gunho; Pipe, Kevin; Forrest, Stephen R.; Youk, Ji Ho; Gierschner, Johannes; Kim, Jinsang

    2015-01-01

    Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin–orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels–Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage. PMID:26626796

  2. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials.

    PubMed

    Kwon, Min Sang; Yu, Youngchang; Coburn, Caleb; Phillips, Andrew W; Chung, Kyeongwoon; Shanker, Apoorv; Jung, Jaehun; Kim, Gunho; Pipe, Kevin; Forrest, Stephen R; Youk, Ji Ho; Gierschner, Johannes; Kim, Jinsang

    2015-01-01

    Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin-orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels-Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage. PMID:26626796

  3. Hole-Burning Spectroscopy as a Probe of Guest - Interactions in Amorphous Materials.

    NASA Astrophysics Data System (ADS)

    Cavus, Abdullah

    The absorption bands of organic molecules in rigid solvents are, even at low temperatures, quite broad. Typical bandwidths are of the order of several hundreds of wavenumbers. So, condensed phase spectroscopy is limited in its spectral resolution by the inhomogeneous broadening. Irradiation into these inhomogeneously broadened bands with a narrow bandwidth laser can induce resonant molecules to undergo a photochemical or photophysical transformation creating a hole in the absorption spectrum. The systems of concern to us here are those in which photochemically active molecules are present in low concentration as guests in a solid host matrix at low temperatures. When molecules are embedded in amorphous hosts, it is found that the width of spectral lines are highly sensitive to the nature of the guest-host interaction. The advantage of hole-burning spectroscopy is that it provides the ability to obtain high resolution optical spectra in inherently low resolution situations. Measuring the dipole moment change of a guest molecule in various host matrices may shed some light on guest-host interactions involved with the homogeneous linewidth of the guest, temperature and properties of the host. The dipole moment difference, Delta mu_{rm eff}, between guest molecule in the ground state and the excited state was estimated by using the spectral hole splitting or broadening that results from an applied electric field. The fluorescence excitation spectroscopy technique was used to study the photochemical hole-burning and investigate the dipole moment change of quinazirine (1,4-dihydroxyanthraquinone) and cresylviolet perchlorate in various glass and polymer hosts such as formamide, ethanol:methanol (EM), polyvinyl alcohol (PVA), poly(2-hydroxyethyl) methacrylate (PHEMA), polyvinylbutyral (PVB), and polymethyl methacrylate (PMMA). The strong correlation between effective dipole moment change of the guest molecule and the dielectric constant of the host matrices illustrated

  4. Amorphous silica-like carbon dioxide.

    PubMed

    Santoro, Mario; Gorelli, Federico A; Bini, Roberto; Ruocco, Giancarlo; Scandolo, Sandro; Crichton, Wilson A

    2006-06-15

    Among the group IV elements, only carbon forms stable double bonds with oxygen at ambient conditions. At variance with silica and germania, the non-molecular single-bonded crystalline form of carbon dioxide, phase V, only exists at high pressure. The amorphous forms of silica (a-SiO2) and germania (a-GeO2) are well known at ambient conditions; however, the amorphous, non-molecular form of CO2 has so far been described only as a result of first-principles simulations. Here we report the synthesis of an amorphous, silica-like form of carbon dioxide, a-CO2, which we call 'a-carbonia'. The compression of the molecular phase III of CO2 between 40 and 48 GPa at room temperature initiated the transformation to the non-molecular amorphous phase. Infrared spectra measured at temperatures up to 680 K show the progressive formation of C-O single bonds and the simultaneous disappearance of all molecular signatures. Furthermore, state-of-the-art Raman and synchrotron X-ray diffraction measurements on temperature-quenched samples confirm the amorphous character of the material. Comparison with vibrational and diffraction data for a-SiO2 and a-GeO2, as well as with the structure factor calculated for the a-CO2 sample obtained by first-principles molecular dynamics, shows that a-CO2 is structurally homologous to the other group IV dioxide glasses. We therefore conclude that the class of archetypal network-forming disordered systems, including a-SiO2, a-GeO2 and water, must be extended to include a-CO2. PMID:16778885

  5. Materials and characterization using acoustic nonlinearity parameters and harmonic generation - Effects of crystalline and amorphous structures

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    1990-01-01

    The effects of material structure on the nonlinearity parameters are reviewed. Problems discussed include definition of nonlinearity parameters, square-law nonlinearity and collinear beam-mixing, structure dependence of the nonlinearity parameters, negative nonlinearity parameters, and implications for materials characterization.

  6. Solution processable 2-(trityloxy)ethyl and tert-butyl group containing amorphous molecular glasses of pyranylidene derivatives with light-emitting and amplified spontaneous emission properties

    NASA Astrophysics Data System (ADS)

    Zarins, Elmars; Vembris, Aivars; Misina, Elina; Narels, Martins; Grzibovskis, Raitis; Kokars, Valdis

    2015-11-01

    Small organic molecules with incorporated 4H-pyran-4-ylidene (pyranylidene) fragment as the π-conjugation system which bonds the electron acceptor fragment (A) with electron donor part (D) in the molecule - also well known as derivatives of 4-(dicyano-methylene)-2-methyl-6-[p-(dimethylamino)styryl]-4H-pyran (DCM) laser dye-have attracted considerable attention of scientists as potential new generation materials for organic photonics and molecular electronics due to their low-cost fabrication possibility, flexibility and low-weight. Six glassy derivatives of 4H-pyran-4-ylidene (pyranylidene) with attached bulky 2-(trityloxy)ethyl and tert-butyl groups are described in this report. Almost all of the synthesized compounds form good optical quality transparent amorphous films from volatile organic solvents and could be obtained in good yields up to 75%. Their light emission in solution and thin solid films is in the range of 600-700 nm, they are thermally stable and show glass transition in the range of 108-158 °C. The amplified spontaneous emission threshold values of the neat films of the glassy pyranylidene derivatives vary from 155 to 450 μJ/cm2 and their HOMO and LUMO energy levels are between of those of tris(8-hydroxy quinolinato) aluminum (Alq3). The photoluminescence quantum yields of the glassy compounds are in the range from 1% to about 7.7% and their electroluminescence properties have been investigated. Therefore, glassy pyranylidene derivatives could be a very potential low-cost solution processable materials for Alq3 hosted light-amplification and light-emitting application studies.

  7. High-strength and high-ductility nanostructured and amorphous metallic materials.

    PubMed

    Kou, Hongning; Lu, Jian; Li, Ying

    2014-08-20

    The development of materials with dual properties of high strength and high ductility has been a constant challenge since the foundation of the materials science discipline. The rapid progress of nanotechnology in recent decades has further brought this challenge to a new era. This Research News highlights a few newly developed strategies to optimize advanced nanomaterials and metallic glasses with exceptional dual mechanical properties of high strength and high ductility. A general concept of strain non-localization is presented to describe the role of multiscale (i.e., macroscale, microscale, nanoscale, and atomic scale) heterogeneities in the ductility enhancement of materials reputed to be intrinsically brittle, such as nanostructured metallic materials and bulk metallic glasses. These nanomaterials clearly form a new group of materials that display an extraordinary relationship between yield strength and the uniform elongation with the same chemical composition. Several other examples of nanomaterials such as those reinforced by nanoprecipitates will also be described.

  8. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  9. Molecular dynamics at ambient and elevated pressure of the amorphous pharmaceutical: Nonivamide (pelargonic acid vanillylamide)

    NASA Astrophysics Data System (ADS)

    Wojnarowska, Z.; Hawelek, L.; Paluch, M.; Sawicki, W.; Ngai, K. L.

    2011-01-01

    Broadband dielectric spectroscopy was employed to investigate the relaxation dynamics of supercooled and glassy nonivamide—the synthetic form of capsaicin being the most spicy-hot substance known to man. The material is of great importance in the pharmaceutical industry because it has wide usage in the medical field for relief of pain, and more recently it has been shown to be effective in fighting cancers. Dielectric measurements carried out at various isobaric and isothermal conditions (pressure up to 400 MPa) revealed very narrow α-loss peak and unresolved secondary relaxations appearing in the form of an excess wing on the high frequency flank. Moreover, our studies have shown the shape of dielectric loss spectrum at any fixed loss peak frequency is invariant to different combinations of temperature and pressure, i.e., validity of the time-temperature-pressure superpositioning. We also found the fragility index is nearly constant on varying pressure. This property is likely due to the unusual structure of nonivamide, which has a part characteristic of van der Waals glass-former and another part characteristic of hydrogen-bonded glass-former.

  10. Megavoltage image contrast with low-atomic number target materials and amorphous silicon electronic portal imagers

    NASA Astrophysics Data System (ADS)

    Orton, E. J.; Robar, J. L.

    2009-03-01

    Low-atomic number (Z) targets have been shown to improve contrast in megavoltage (MV) images when using film-screen detection systems. This research aims to quantify the effect of low-Z targets on MV image contrast using an amorphous silicon electronic portal image detector (a-Si EPID) through both experimental measurement and Monte Carlo (MC) simulation. Experimental beams were produced with the linac running in the 6 MeV electron mode and with a 1.0 cm aluminum (Al, Z = 13) target replacing flattening filtration in the carousel, (6 MeV/Al). A 2100EX Varian linac equipped with an aS500 EPID was used with the QC3 MV phantom for the majority of contrast measurements. The BEAMnrc/EGSnrc MC package was used to build a model of the full imaging system including beam generation (linac head), the a-Si detector and the contrast phantom. The model accurately reproduces contrast measurements to within 2.5% for both the standard 6 MV therapy beam and the 6 MeV/Al beam. The contrast advantage of 6 MeV/Al over 6 MV, as quantified with the QC3 phantom, ranged from a factor increase of 1.6 ± 0.1 to 2.8 ± 0.2. Only a modest improvement in contrast was seen when the incident electron energy was reduced to 4 MeV (up to factor of 1.2 ± 0.1 over 6 MeV/Al) or with removal of the copper build-up layer in the detector, (up to factor of 1.2 ± 0.1 over 6 MeV/Al). Further decreasing the target Z, to beryllium (Be, Z = 4), at 4 MeV showed no significant improvement over 4 MeV/Al. Experimentally, the contrast advantage of 6 MeV/Al over 6 MV was found to decrease with increasing patient thickness, as can be expected due to selective attenuation of low-energy photons. At head and neck-like thicknesses, the low-Z advantage is a factor increase of 1.7 ± 0.1.

  11. Molecular dynamics simulations of the tribological behaviour of a water-lubricated amorphous carbon-fluorine PECVD coating

    NASA Astrophysics Data System (ADS)

    Rullich, Markus; Weiss, Volker C.; Frauenheim, Thomas

    2013-07-01

    Hybrid bearings comprising ceramic balls and steel rings exhibit increased wear-resistance and a reduced coefficient of friction (COF) compared with standard steel bearings. Using plasma-enhanced chemical vapour deposition (PECVD) coatings to modify the surface properties, the performance of these bearings can be further improved. Fluorine-containing amorphous hydrogenated carbon (a-C : F : H) films are well suited to this purpose. To study the influence of such coatings on the friction characteristics of key parts of hybrid bearings, a model of an a-C : F : H film was constructed and employed in molecular dynamics simulations of two slabs sliding past each other, lubricated by water. With one slab being pulled by a virtual spring, the perpendicular force (load) was kept constant using a barostat. For comparison, a system of two silicon dioxide (cristobalite) slabs and a mixed system consisting of a cristobalite slab and an a-C : F : H slab were investigated. Our results indicate a linear dependence of the friction force on the perpendicular force. With an increasing amount of water between the slabs, the COFs decrease. A decrease in temperature leads to an increased COF, while a decrease in the relative velocity of the slabs does not influence the COF between two a-C : F : H slabs, but reduces the COF for the other two systems. Our results for the COF and its dependence on temperature and relative sliding velocity generally agree well both with experiments and with simulations for similar systems reported in the literature.

  12. Solid state amorphization of nanocrystalline nickel by cryogenic laser shock peening

    SciTech Connect

    Ye, Chang Ren, Zhencheng; Zhao, Jingyi; Hou, Xiaoning; Dong, Yalin; Liu, Yang; Sang, Xiahan

    2015-10-07

    In this study, complete solid state amorphization in nanocrystalline nickel has been achieved through cryogenic laser shock peening (CLSP). High resolution transmission electron microscopy has revealed the complete amorphous structure of the sample after CLSP processing. A molecular dynamic model has been used to investigate material behavior during the shock loading and the effects of nanoscale grain boundaries on the amorphization process. It has been found that the initial nanoscale grain boundaries increase the initial Gibbs free energy before plastic deformation and also serve as dislocation emission sources during plastic deformation to contribute to defect density increase, leading to the amorphization of pure nanocrystalline nickel.

  13. Crystallization of amorphous lactose at high humidity studied by terahertz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    McIntosh, Alexander I.; Yang, Bin; Goldup, Stephen M.; Watkinson, Michael; Donnan, Robert S.

    2013-02-01

    We report the first use of terahertz time-domain spectroscopy (THz-TDS) to study the hydration and crystallization of an amorphous molecular solid at high humidity. Lactose in its amorphous and monohydrate forms exhibits different terahertz spectra due to the lack of long range order in the amorphous material. This difference allowed the transformation of amorphous lactose to its monohydrate form at high humidity to be studied in real time. Spectral fitting of frequency-domain data allowed kinetic data to be obtained and the crystallization was found to obey Avrami kinetics. Bulk changes during the crystallization could also be observed in the time-domain.

  14. Elastic and thermal expansion asymmetry in dense molecular materials

    NASA Astrophysics Data System (ADS)

    Burg, Joseph A.; Dauskardt, Reinhold H.

    2016-09-01

    The elastic modulus and coefficient of thermal expansion are fundamental properties of elastically stiff molecular materials and are assumed to be the same (symmetric) under both tension and compression loading. We show that molecular materials can have a marked asymmetric elastic modulus and coefficient of thermal expansion that are inherently related to terminal chemical groups that limit molecular network connectivity. In compression, terminal groups sterically interact to stiffen the network, whereas in tension they interact less and disconnect the network. The existence of asymmetric elastic and thermal expansion behaviour has fundamental implications for computational approaches to molecular materials modelling and practical implications on the thermomechanical strains and associated elastic stresses. We develop a design space to control the degree of elastic asymmetry in molecular materials, a vital step towards understanding their integration into device technologies.

  15. The photoexcitation of crystalline ice and amorphous solid water: A molecular dynamics study of outcomes at 11 K and 125 K

    SciTech Connect

    Crouse, J.; Loock, H.-P. Cann, N. M.

    2015-07-21

    Photoexcitation of crystalline ice Ih and amorphous solid water at 7-9 eV is examined using molecular dynamics simulations and a fully flexible water model. The probabilities of photofragment desorption, trapping, and recombination are examined for crystalline ice at 11 K and at 125 K and for amorphous solid water at 11 K. For 11 K crystalline ice, a fully rigid water model is also employed for comparison. The kinetic energy of desorbed H atoms and the distance travelled by trapped fragments are correlated to the location and the local environment of the photoexcited water molecule. In all cases, H atom desorption is found to be the most likely outcome in the top bilayer while trapping of all photofragments is most probable deeper in the solid where the likelihood for recombination of the fragments into H{sub 2}O molecules also rises. Trajectory analysis indicates that the local hydrogen bonding network in amorphous solid water is more easily distorted by a photodissociation event compared to crystalline ice. Also, simulations indicate that desorption of OH radicals and H{sub 2}O molecules are more probable in amorphous solid water. The kinetic energy distributions for desorbed H atoms show a peak at high energy in crystalline ice, arising from photoexcited water molecules in the top monolayer. This peak is less pronounced in amorphous solid water. H atoms that are trapped may be displaced by up to ∼10 water cages, but migrate on average 3 water cages. Trapped OH fragments tend to stay near the original solvent cage.

  16. Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries

    SciTech Connect

    Wang Zhong; Tian Wenhuai; Liu Xiaohe; Yang Rong; Li Xingguo

    2007-12-15

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles.

  17. Adsorption, Desorption, and Diffusion of Nitrogen in a Model Nanoporous Material: I. Surface Limited Desorption Kinetics in Amorphous Solid Water

    SciTech Connect

    Zubkov, Tykhon; Smith, R. Scott; Engstrom, Todd R.; Kay, Bruce D.

    2007-11-14

    The adsorption and desorption kinetics of N2 on porous amorphous solid water (ASW) films were studied using molecular beam techniques, temperature programmed desorption (TPD), and reflection-absorption infrared spectroscopy (RAIRS). The ASW films were grown on Pt(111) at 23 K by ballistic deposition from a collimated H2O beam at various incident angles to control the film porosity. The experimental results show that the N2 condensation coefficient is essentially unity until near saturation, independent of the ASW film thickness. This means that N2 transport within the porous films is rapid. The TPD results show that the desorption of a fixed dose of N2 shifts to higher temperature with ASW film thickness. Kinetic analysis of the TPD spectra shows that a film thickness rescaling of the coverage dependent activation energy curve results in a single master curve. Simulation of the TPD spectra using this master curve results in a quantitative fit to the experiments over a wide range of ASW thicknesses (up to 1000 layers, ~0.5 mm). The success of the rescaling model indicates that N2 transport within the porous film is rapid enough to maintain a uniform distribution throughout the film on a time scale faster than desorption.

  18. An Amorphous Carbon Nitride Composite Derived from ZIF-8 as Anode Material for Sodium-Ion Batteries.

    PubMed

    Fan, Jing-Min; Chen, Jia-Jia; Zhang, Qian; Chen, Bin-Bin; Zang, Jun; Zheng, Ming-Sen; Dong, Quan-Feng

    2015-06-01

    An composite comprising amorphous carbon nitride (ACN) and zinc oxide is derived from ZIF-8 by pyrolysis. The composite is a promising anode material for sodium-ion batteries. The nitrogen content of the ACN composite is as high as 20.4 %, and the bonding state of nitrogen is mostly pyridinic, as determined by X-ray photoelectron spectroscopy (XPS). The composite exhibits an excellent Na(+) storage performance with a reversible capacity of 430 mA h g(-1) and 146 mA h g(-1) at current densities of 83 mA g(-1) and 8.33 A g(-1) , respectively. A specific capacity of 175 mA h g(-1) was maintained after 2000 cycles at 1.67 A g(-1) , with only 0.016 % capacity degradation per cycle. Moreover, an accelerating rate calorimetry (ARC) test demonstrates the excellent thermal stability of the composite, with a low self heating rate and high onset temperature (210 °C). These results shows its promise as a candidate material for high-capacity, high-rate anodes for sodium-ion batteries.

  19. Configuration diffusion in glassy, amorphous polymers: Effects of polymer structure and dynamics on permeation via molecular simulation

    NASA Astrophysics Data System (ADS)

    Boshoff, Jan H. D.

    The goals of this dissertation are to provide a basis for understanding the fundamental mechanisms of, and the effects of nano-confinement on, diffusion in glassy, amorphous polymers. These polymers are extensively used as membranes in numerous separation applications such as drug delivery devices, air separation and water desalination. Molecular simulation is used to elucidate the effects of the structure and dynamics of glassy polymers on small molecule permeation. Particularly, the effects of thermal fluctuations on the diffusion mechanism and anomalous diffusion regime is shown for small gas diffusion in atactic polypropylene. Furthermore, polymer backbone conformational statistics of three different polypropylene models show that the united atom approximation favors gauche conformations in the polymer backbone, leading to artificially high values for Cinfinity for stereo-regular polypropylene. Diffusion results of He and CH4 in the refined model is presented using a force-decomposed/replicated data parallel molecular dynamics algorithm on a pseudo-explicit atom model proposed in literature. Excellent agreement with experimental values of the diffusivity is obtained. These results constitute the most accurate a priori prediction of small molecule diffusion in atactic polypropylene to date. Finally, the effects of nano-confinement on the polymer structure and dynamics, and consequently the permeation and selectivity was probed by He and CH4 permeation in aPP "adsorbed" in idealized pores of size smaller than the radius of gyration of the polymer. The extent of polymer structural changes is found to be closely correlated with the local correlation length xi of the polymer. Within xi from the pore surface, the polymer has a lower density, aligns with the pore direction and is found to pack in layers, while the polymer structure is identical to the bulk further than xi from the pore surface. These changes in polymer structure lead to substantial increases (up to

  20. Trehalose amorphization and recrystallization.

    PubMed

    Sussich, Fabiana; Cesàro, Attilio

    2008-10-13

    The stability of the amorphous trehalose prepared by using several procedures is presented and discussed. Amorphization is shown to occur by melting (T(m)=215 degrees C) or milling (room temperature) the crystalline anhydrous form TRE-beta. Fast dehydration of the di-hydrate crystalline polymorph, TRE-h, also produces an amorphous phase. Other dehydration procedures of TRE-h, such as microwave treatment, supercritical extraction or gentle heating at low scan rates, give variable fractions of the polymorph TRE-alpha, that undergo amorphization upon melting (at lower temperature, T(m)=130 degrees C). Additional procedures for amorphization, such as freeze-drying, spray-drying or evaporation of trehalose solutions, are discussed. All these procedures are classified depending on the capability of the undercooled liquid phase to undergo cold crystallization upon heating the glassy state at temperatures above the glass transition temperature (T(g)=120 degrees C). The recrystallizable amorphous phase is invariably obtained by the melt of the polymorph TRE-alpha, while other procedures always give an amorphous phase that is unable to crystallize above T(g). The existence of two different categories is analyzed in terms of the transformation paths and the hypothesis that the systems may exhibit different molecular mobilities.

  1. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Molecular Dynamics Study of Stability of Solid Solutions and Amorphous Phase in the Cu-Al System

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Lai, Wen-Sheng

    2009-06-01

    The relative stability of fcc and bcc solid solutions and amorphous phase with different compositions in the Cu-Al system is studied by molecular dynamics simulations with n-body potentials. For Cu1-xAlx alloys, the calculations show that the fcc solid solution has the lowest energies in the composition region with x < 0.32 or x > 0.72, while the bee solid solution has the lowest energies in the central composition range, in agreement with the ball-milling experiments that a single bcc solid solution with 0.30 < x < 0.70 is obtained. The evolution of structures in solid solutions and amorphous phase is studied by the coordination number (CN) and bond-length analysis so as to unveil the underlying physics. It is found that the energy sequence among three phases is determined by the competition in energy change originating from the bond length and CNs (or the number of bonds).

  2. Cluster adsorption on amorphous and crystalline surfaces - A molecular dynamics study of model Pt on Cu and model Pd on Pt

    NASA Technical Reports Server (NTRS)

    Garofalini, S. H.; Halicioglu, T.; Pound, G. M.

    1981-01-01

    Molecular dynamics was used to study the structure, dispersion and short-time behavior of ten-atom clusters adsorbed onto amorphous and crystalline substrates, in which the cluster atoms differed from the substrate atoms. Two adatom-substrate model systems were chosen; one, in which the interaction energy between adatom pairs was greater than that between substrate pairs, and the other, in which the reverse was true. At relatively low temperature ranges, increased dispersion of cluster atoms occurred: (a) on the amorphous substrate as compared to the FCC(100) surface, (b) with increasing reduced temperature, and (c) with adatom-substrate interaction energy stronger than adatom-adatom interaction. Two-dimensional clusters (rafts) on the FCC(100) surface displayed migration of edge atoms only, indicating a mechanism for the cluster rotation and shape changes found in experimental studies.

  3. Observation of directly interacting coherent two-level systems in an amorphous material

    PubMed Central

    Lisenfeld, Jürgen; Grabovskij, Grigorij J.; Müller, Clemens; Cole, Jared H.; Weiss, Georg; Ustinov, Alexey V.

    2015-01-01

    Parasitic two-level tunnelling systems originating from structural material defects affect the functionality of various microfabricated devices by acting as a source of noise. In particular, superconducting quantum bits may be sensitive to even single defects when these reside in the tunnel barrier of the qubit’s Josephson junctions, and this can be exploited to observe and manipulate the quantum states of individual tunnelling systems. Here, we detect and fully characterize a system of two strongly interacting defects using a novel technique for high-resolution spectroscopy. Mutual defect coupling has been conjectured to explain various anomalies of glasses, and was recently suggested as the origin of low-frequency noise in superconducting devices. Our study provides conclusive evidence of defect interactions with full access to the individual constituents, demonstrating the potential of superconducting qubits for studying material defects. All our observations are consistent with the assumption that defects are generated by atomic tunnelling. PMID:25652611

  4. Sensitive measurement of optical nonlinearity in amorphous chalcogenide materials in nanosecond regime.

    PubMed

    Rani, Sunita; Mohan, Devendra; Kishore, Nawal; Purnima

    2012-07-01

    The present work focuses on the nonlinear optical behavior of chalcogenide As(2)S(3) film as well as on bulk material. The thin film of As(2)S(3) grown by thermal evaporation and bulk glass developed by melt-quenched technique has been characterized using nanosecond pulses of Nd:YAG (532 nm) and Nd:YVO(4) (1,064 nm) laser. Using Z-scan technique, the laser induced nonlinear optical parameters viz. nonlinear refractive index (n(2)), nonlinear absorption coefficient (β) and third order nonlinear susceptibility (χ(3)) have been estimated. At 1,064 nm excitation, the materials exhibit stronger nonlinearity as compared to that of 532 nm laser. In case of As(2)S(3) thin film, observed nonlinearity attributes to two-photon absorption. The optical limiting response of chalcogenide film as well as bulk sample has also been reported. The study predicts that the As(2)S(3) thin film is a better optical limiting material than bulk glass due to relatively higher nonlinearity and lower limiting threshold.

  5. [Molecular methods for authentication of Chinese medicinal materials].

    PubMed

    Wang, Chuanyi; Guo, Baolin; Xiao, Peigen

    2011-02-01

    The resource authentication is required for quality assurance and control of Chinese medicine. This review provides an informative introduction to molecular methods used for authentication of Chinese medicinal materials. The technical features of the methods based on sequencing, polymerase chain reaction (PCR) and hybridization are described, merits and demerits and development of the molecular methods in identification of Chinese medicinal materials are discussed. PMID:21585017

  6. NEXAFS Sensitivity to Bond Lengths in Complex Molecular Materials: A Study of Crystalline Saccharides.

    PubMed

    Gainar, Adrian; Stevens, Joanna S; Jaye, Cherno; Fischer, Daniel A; Schroeder, Sven L M

    2015-11-12

    Detailed analysis of the C K near-edge X-ray absorption fine structure (NEXAFS) spectra of a series of saccharides (fructose, xylose, glucose, galactose, maltose monohydrate, α-lactose monohydrate, anhydrous β-lactose, cellulose) indicates that the precise determination of IPs and σ* shape resonance energies is sensitive enough to distinguish different crystalline saccharides through the variations in their average C-OH bond lengths. Experimental data as well as FEFF8 calculations confirm that bond length variations in the organic solid state of 10(-2) Å can be experimentally detected, opening up the possibility to use NEXAFS for obtaining incisive structural information for molecular materials, including noncrystalline systems without long-range order such as dissolved species in solutions, colloids, melts, and similar amorphous phases. The observed bond length sensitivity is as good as that originally reported for gas-phase and adsorbed molecular species. NEXAFS-derived molecular structure data for the condensed phase may therefore be used to guide molecular modeling as well as to validate computationally derived structure models for such systems. Some results indicate further analytical value in that the σ* shape resonance analysis may distinguish hemiketals from hemiacetals (i.e., derived from ketoses and aldoses) as well as α from β forms of otherwise identical saccharides. PMID:26459024

  7. Amorphous and crystalline optical materials used as instruments for high gamma radiation doses estimations

    NASA Astrophysics Data System (ADS)

    Ioan, M.-R.

    2016-06-01

    Nuclear radiation induce some changes to the structure of exposed materials. The main effect of ionizing radiation when interacting with optical materials is the occurrence of color centers, which are quantitatively proportional to the up-taken doses. In this paper, a relation between browning effect magnitude and dose values was found. Using this relation, the estimation of a gamma radiation dose can be done. By using two types of laser wavelengths (532 nm and 633 nm), the optical powers transmitted thru glass samples irradiated to different doses between 0 and 59.1 kGy, were measured and the associated optical browning densities were determined. The use of laser light gives the opportunity of using its particularities: monochromaticity, directionality and coherence. Polarized light was also used for enhancing measurements quality. These preliminary results bring the opportunity of using glasses as detectors for the estimation of the dose in a certain point in space and for certain energy, especially in particles accelerators experiments, where the occurred nuclear reactions are involving the presence of high gamma rays fields.

  8. Case Study: Somatic Sprouts and Halo-Like Amorphous Materials of the Purkinje Cells in Huntington's Disease.

    PubMed

    Sakai, Kenji; Ishida, Chiho; Morinaga, Akiyoshi; Takahashi, Kazuya; Yamada, Masahito

    2015-12-01

    We described a 63-year-old Japanese female with genetically confirmed Huntington's disease who showed unusual pathological findings in the cerebellum. This case exhibited typical neuropathological features as Huntington's disease, including severe degeneration of the neostriatum and widespread occurrence of ubiquitin and expanded polyglutamine-positive neuronal intranuclear and intracytoplasmic inclusions. The cerebellum was macroscopically unremarkable; however, somatic sprouts and halo-like amorphous materials of Purkinje cell with a large amount of torpedoes were noteworthy. Furthermore, the Purkinje cells were found to have granular cytoplasmic inclusions. Somatic sprouting is a form of degenerated Purkinje cell exhibited in several specific conditions. Although this finding usually appeared in developmental brains, several neurodegenerative disorders, including Menkes kinky hair disease, familial spinocerebellar ataxia, acute encephalopathy linked to familial hemiplegic migraine, and several other conditions, have been reported showing sprouting from the soma of Purkinje cell. We propose that Huntington's disease is another degenerative condition associated with these distinct neuropathological findings of Purkinje cell. Abnormally accumulated huntingtin protein in the cytoplasm could be related to the development of these structures. PMID:25962893

  9. Three Dimensional Molecular Imaging for Lignocellulosic Materials

    SciTech Connect

    Bohn, Paul W.; Sweedler, Jonathan V.

    2011-06-09

    The development of high efficiency, inexpensive processing protocols to render biomass components into fermentable substrates for the sequential processing of cell wall components into fuels and important feedstocks for the biorefinery of the future is a key goal of the national roadmap for renewable energy. Furthermore, the development of such protocols depends critically on detailed knowledge of the spatial and temporal infiltration of reagents designed to remove and separate the phenylpropenoid heteropolymer (lignin) from the processable sugar components sequestered in the rigid cell walls of plants. A detailed chemical and structural understanding of this pre-enzymatic processing in space and time was the focus of this program. We worked to develop new imaging strategies that produce real-time molecular speciation information in situ; extract sub-surface information about the effects of processing; and follow the spatial and temporal characteristics of the molecular species in the matrix and correlate this complex profile with saccharification. Spatially correlated SIMS and Raman imaging were used to provide high quality, high resolution subcellular images of Miscanthus cross sections. Furthermore, the combination of information from the mass spectrometry and Raman scattering allows specific chemical assignments of observed structures, difficult to assign from either imaging approach alone and lays the foundation for subsequent heterocorrelated imaging experiments targeted at more challenging biological systems, such as the interacting plant-microbe systems relevant to the rhizosphere.

  10. Pressure-driven transformation of the ordering in amorphous network-forming materials

    NASA Astrophysics Data System (ADS)

    Zeidler, Anita; Salmon, Philip S.

    2016-06-01

    The pressure-induced changes to the structure of disordered oxide and chalcogenide network-forming materials are investigated on the length scales associated with the first three peaks in measured diffraction patterns. The density dependence of a given peak position does not yield the network dimensionality, in contrast to metallic glasses where the results indicate a fractal geometry with a local dimensionality of ≃5 /2 . For oxides, a common relation is found between the intermediate-range ordering, as described by the position of the first sharp diffraction peak, and the oxygen-packing fraction, a parameter that plays a key role in driving changes to the coordination number of local motifs. The first sharp diffraction peak can therefore be used to gauge when topological changes are likely to occur, events that transform network structures and their related physical properties.

  11. Analytical and Experimental Studies of the Degradation in Hydrogenated Amorphous Silicon Solar Cells and Materials.

    NASA Astrophysics Data System (ADS)

    Yeung, Ping Fai

    1995-01-01

    An improved understanding of a-Si:H pin solar cells stability was obtained by studying light induced degradation in a-Si:H films and in devices. The current -voltage characteristics and the quantum efficiencies of a-Si:H pin solar cells were measured as a function of intrinsic layer thickness, bias light intensity and degradation condition. Photoconductivity measurements on device quality intrinsic a-Si:H thin film materials showed that the majority carrier (electron) mutau product degraded from 3times 10^{-7}rm cm ^2/V to 2times 10^{ -7}rm cm^2/V after 6 minutes of 50-Suns light illumination. Using a dual beam technique with steady white light and modulated monochromatic light, a degradation profile was detected in the degraded materials. These results suggest that inhomogeneous degradation may be important to understanding the stability of a-Si:H pin solar cells. An analytical model was developed for degradation in a-Si:H pin solar cells based on inhomogeneous degradation, which was used to explain the 'blue-dip' effect observed in the quantum efficiencies of degraded cells. A new method was developed to investigate the minority carrier (hole) diffusion length in device quality a-Si:H films as a function of degradation. This method uses the Schottky barrier structure to establish a depletion region, which can be controlled by the applied voltage and the bias light intensity. Modulated blue light is used to generate electron hole pairs near the ohmic contacts, and the holes diffuse across the neutral region to be collected. The modulated current is related to the diffusion length of the holes due to this current limiting hole transport. Comparing the results of this new technique to that of the Photocarrier Grating method, the electron drift mobility was found to degrade from rm 2.5cm^2/Vs to rm 0.15cm^2/Vs after 6 minutes of 50-Suns degradation.

  12. Characterizing the Phyllosilicates and Amorphous Phases Found by MSL Using Laboratory XRD and EGA Measurements of Natural and Synthetic Materials (Invited)

    NASA Astrophysics Data System (ADS)

    Rampe, E. B.; Morris, R. V.; Chipera, S.; Bish, D. L.; Bristow, T.; Archer, P. D.; Blake, D.; Achilles, C.; Ming, D. W.; Vaniman, D.; Crisp, J. A.; Des Marais, D. J.; Downs, R.; Farmer, J. D.; Morookian, J.; Morrison, S.; Sarrazin, P.; Spanovich, N.; Treiman, A. H.; Yen, A. S.; Team, M.

    2013-12-01

    The Curiosity Rover landed on the Peace Vallis alluvial fan in Gale crater on August 5, 2012. A primary mission science objective is to search for past habitable environments, and, in particular, to assess the role of past water. Identifying the minerals and mineraloids that result from aqueous alteration at Gale crater is essential for understanding past aqueous processes at the MSL landing site and hence for interpreting the site's potential habitability. X-ray diffraction (XRD) data from the CheMin instrument and evolved gas analyses (EGA) from the SAM instrument have helped the MSL science team identify phases that resulted from aqueous processes: phyllosilicates and amorphous phases were measure in two drill samples (John Klein and Cumberland) obtained from the Sheepbed Member, Yellowknife Bay Fm., which is believed to represent a fluvial-lacustrine environment. A third set of analyses was obtained from scoop samples from the Rocknest sand shadow. Chemical data from the APXS instrument have helped constrain the chemical compositions of these secondary phases and suggest that the phyllosilicate component is Mg-enriched and the amorphous component is Fe-enriched, relatively Si-poor, and S- and H-bearing. To refine the phyllosilicate and amorphous components in the samples measured by MSL, we measured XRD and EGA data for a variety of relevant natural terrestrial phyllosilicates and synthetic mineraloids in laboratory testbeds of the CheMin and SAM instruments. Specifically, Mg-saturated smectites and vermiculites were measured with XRD at low relative humidity to understand the behavior of the 001 reflections under Mars-like conditions. Our laboratory XRD measurements suggest that interlayer cation composition affects the hydration state of swelling clays at low RH and, thus, the 001 peak positions. XRD patterns of synthetic amorphous materials, including allophane, ferrihydrite, and hisingerite were used in full-pattern fitting (FULLPAT) models to help

  13. Optical and structural properties of microcrystalline GaN on an amorphous substrate prepared by a combination of molecular beam epitaxy and metal–organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu; Park, Kwangwook; Kim, Ci-Hyun; Lee, Dong-Seon; Jho, Young-Dahl; Bae, Si-Young; Lee, Yong-Tak

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal–organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the other hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.

  14. Optical and structural properties of microcrystalline GaN on an amorphous substrate prepared by a combination of molecular beam epitaxy and metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu; Park, Kwangwook; Kim, Ci-Hyun; Lee, Dong-Seon; Jho, Young-Dahl; Bae, Si-Young; Lee, Yong-Tak

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the other hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.

  15. A new application of molecularly imprinted materials.

    PubMed

    Ye, L; Ramström, O; Månsson, M O; Mosbach, K

    1998-01-01

    We have studied the possibility of shifting a thermodynamically unfavourable enzymatic equilibrium towards product formation via the addition of a highly specific adsorbent. The commercially interesting enzymatic condensation of Z-L-aspartic acid with L-phenylalanine methyl ester to the sweetener aspartame was chosen as the model system. Extremely stable and specific adsorbents for the product Z-L-Asp-L-Phe-OMe (Z-aspartame) were prepared using the emerging technique of molecular imprinting. A considerable increase (40%) in the yield of product was obtained when such adsorbents were present during the enzymatic reaction. The message of this investigation is that the use of such specific, sterilizable adsorbents should be considered for enzymatic processes to increase the yield. Finally, the direct isolation of a product formed by the retrieval of the adsorbents carrying the product can be envisaged, especially if the adsorbents are magnetic.

  16. Molecular materials for organic photovoltaics: small is beautiful.

    PubMed

    Roncali, Jean; Leriche, Philippe; Blanchard, Philippe

    2014-06-18

    An overview of some recent developments of the chemistry of molecular donor materials for organic photovoltaics (OPV) is presented. Although molecular materials have been used for the fabrication of OPV cells from the very beginning of the field, the design of molecular donors specifically designed for OPV is a relatively recent research area. In the past few years, molecular donors have been used in both vacuum-deposited and solution-processed OPV cells and both fields have witnessed impressive progress with power conversion efficiencies crossing the symbolic limit of 10 %. However, this progress has been achieved at the price of an increasing complexity of the chemistry of active materials and of the technology of device fabrication. This evolution probably inherent to the progress of research is difficult to reconcile with the necessity for OPV to demonstrate a decisive economic advantage over existing silicon technology. In this short review various classes of molecular donors are discussed with the aim of defining possible basic molecular structures that can combine structural simplicity, low molecular weight, synthetic accessibility, scalability and that can represent possible starting points for the development of simple and cost-effective OPV materials.

  17. A Simple Index for Characterizing Charge Transport in Molecular Materials.

    PubMed

    Jackson, Nicholas E; Savoie, Brett M; Chen, Lin X; Ratner, Mark A

    2015-03-19

    While advances in quantum chemistry have rendered the accurate prediction of band alignment relatively straightforward, the ability to forecast a noncrystalline, multimolecule system's conductivity possesses no simple computational form. Adapting the theory of classical resistor networks, we develop an index for quantifying charge transport in bulk molecular materials, without the requirement of crystallinity. The basic behavior of this index is illustrated through its application to simple lattices and clusters of common organic photovoltaic molecules, where it is shown to reproduce experimentally known performances for these materials. This development provides a quantitative computational means for determining a priori the bulk charge transport properties of molecular materials. PMID:26262862

  18. First principles prediction of amorphous phases using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Nahas, Suhas; Gaur, Anshu; Bhowmick, Somnath

    2016-07-01

    We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide. We find that characteristic structural parameters like average bond length and bond angle are within ˜2% of those reported by ab initio MD calculations and experimental studies.

  19. First principles prediction of amorphous phases using evolutionary algorithms.

    PubMed

    Nahas, Suhas; Gaur, Anshu; Bhowmick, Somnath

    2016-07-01

    We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide. We find that characteristic structural parameters like average bond length and bond angle are within ∼2% of those reported by ab initio MD calculations and experimental studies. PMID:27394098

  20. Etch Properties of Amorphous Carbon Material Using RF Pulsing in the O2/N2/CHF3 Plasma.

    PubMed

    Jeon, Min Hwan; Park, Jin Woo; Yun, Deok Hyun; Kim, Kyong Nam; Yeom, Geun Young

    2015-11-01

    The amorphous carbon layer (ACL), used as the hardmask for the etching of nanoscale semi-conductor materials, was etched using O2/CHF3 in addition to O2/N2 using pulsed dual-frequency capacitively coupled plasmas, and the effects of source power pulsing for different gas combinations on the characteristics of the plasmas and ACL etching were investigated. As the etch mask for ACL, a patterned SiON layer was used. The etch rates of ACL were decreased with the decrease of pulse duty percentage for both O2/N2 and O2/CHF3 due to decrease of the reactive radicals, such as F and O, with decreasing pulse duty percentage. In addition, at the same pulse duty percentage, the etch selectivity of ACL/SiON with O2/CHF3 was also significantly lower than that with O2/N2. However, the etch profiles of ACL with O2/CHF3 was more anisotropic and the etch profiles were further improved with decreasing the pulse duty percentage than those of ACL with O2/N2. The improved anisotropic etch profiles of ACL with decreasing pulse duty percentage for O2/CHF3 were believed to be related to the formation of a more effective passivation layer, such as a thick fluorocarbon layer, on the sidewall of the ACL during the etching with O2/CHF3, compared to the weak C-N passivation layer formed on the sidewall of ACL when using O2/N2. PMID:26726555

  1. Amorphous carbon nitride as an alternative electrode material in electroanalysis: simultaneous determination of dopamine and ascorbic acid.

    PubMed

    Medeiros, Roberta A; Matos, Roberto; Benchikh, Abdelkader; Saidani, Boualem; Debiemme-Chouvy, Catherine; Deslouis, Claude; Rocha-Filho, Romeu C; Fatibello-Filho, Orlando

    2013-10-01

    Boron-doped diamond (BDD) films are excellent electrode materials, whose electrochemical activity for some analytes can be tuned by controlling their surface termination, most commonly either to predominantly hydrogen or oxygen. This tuning can be accomplished by e.g. suitable cathodic or anodic electrochemical pretreatments. Recently, it has been shown that amorphous carbon nitride (a-CNx) films may present electrochemical characteristics similar to those of BDD, including the influence of surface termination on their electrochemical activity toward some analytes. In this work, we report for the first time a complete electroanalytical method using an a-CNx electrode. Thus, an a-CNx film deposited on a stainless steel foil by DC magnetron sputtering is proposed as an alternative electrode for the simultaneous determination of dopamine (DA) and ascorbic acid (AA) in synthetic biological samples by square-wave voltammetry. The obtained results are compared with those attained using a BDD electrode. For both electrodes, a same anodic pretreatment in 0.1 mol L(-1) KOH was necessary to attain an adequate and equivalent separation of the DA and AA oxidation potential peaks of about 330 mV. The detection limits obtained for the simultaneous determination of these analytes using the a-CNx electrode were 0.0656 μmol L(-1) for DA and 1.05 μmol L(-1) for AA, whereas with the BDD electrode these values were 0.283 μmol L(-1) and 0.968 μmol L(-1), respectively. Furthermore, the results obtained in the analysis of the analytes in synthetic biological samples were satisfactory, attesting the potential application of the a-CNx electrode in electroanalysis.

  2. Differentiating amorphous mixtures of cefuroxime axetil and copovidone by X-ray diffraction and differential scanning calorimetry.

    PubMed

    Nicolaï, B; Perrin, M-A; Céolin, R; Rietveld, I B

    2014-03-01

    The amorphous, molecular solid dispersion of cefuroxime axetil and copovidone with the mass ratio 71/29 is compared to its pure components in the amorphous state and to an amorphous mechanical mixture with the same mass ratio. Calorimetric studies demonstrate that all these materials are vitreous. By using X-ray diffraction profiles, a clear difference can be observed between the local order of the solid dispersion and that of the mechanical mixture. More generally, it is shown how the presence or absence of additivity in the diffraction data can be used to distinguish between different amorphous mixtures.

  3. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality.

    PubMed

    Yan, Dongpeng

    2015-03-23

    Molecule-based micro-/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro-sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro-/nanomaterials. Unlike single-component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro-/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional multicomponent micro-/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro-/nanomaterials.

  4. Computation of Free Molecular Flow in Nuclear Materials

    SciTech Connect

    Casella, Andrew M.; Loyalka, Sudarsham K.; Hanson, Brady D.

    2009-11-11

    Generally the transport of gases and vapors in nuclear materials is adequately described by the diffusion equation with an effective diffusion coefficient. There are instances however, such as transport through porous or cracked media (nuclear fuels, cladding and coating materials, fuel-cladding gap, graphite, rocks, soil) where the diffusion description has limitations. In general, molecular transport is governed by intermolecular forces and collisions (interactions between multiple gas/vapor molecules) and by molecule-surface interactions. However, if nano-scale pathways exist within these materials, as has been suggested, then molecular transport can be characterized as being in the free-molecular flow regime where intermolecular interactions can be ignored and flow is determined entirely by molecule-surface collisions. Our purpose in this investigation is to focus on free molecular transport in fine capillaries of a range of shapes and to explore the effect of geometry on this transport. We have employed Monte Carlo techniques in our calculations, and for simple geometries we have benchmarked our results against some analytical and previously available results. We have used Mathematica® which has exceptional built-in symbolic and graphical capabilities, permitting easy handling of the complicated geometries and good visualization of the results. Our computations provide insights into the role of geometry in molecular transport in nuclear materials with narrow pathways for flows, and also will be useful in guiding computations that include intermolecular collisions and more realistic gas-surface collision operators.

  5. Association of Presolar Grains with Molecular Cloud Material in IDPs

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.

    2005-01-01

    Anhydrous interplanetary dust particles (IDPs) collected in the stratosphere appear chemically, mineralogically, and texturally primitive in comparison to meteorites. Particles that escape significant atmospheric entry heating have highly unequilibrated mineralogy, are volatile element rich, and, overall, appear to have escaped significant parent body hydrothermal alteration. These IDPs are comprised of the building blocks of the solar system. The strongest evidence that anhydrous IDPs are primitive is that they contain abundant stardust and molecular cloud material. In particular, presolar silicates were first identified in IDPs and are present in abundances (450-5,500 ppm) that are well above that observed in primitive meteorites (less than 170 ppm). The most fragile (cluster) IDPs also commonly exhibit large H and N isotopic anomalies that likely originated by isotopic fractionation during extremely low temperature chemical reactions in a presolar cold molecular cloud. The D/H ratios exceed that of most primitive meteorites, and in rare cases reach values directly observed from simple gas phase molecules in cold molecular clouds. The most extreme D- and N-15-enrichments are usually observed at the finest spatial scales (0.5-2 microns) that can be measured. These observations suggest that D and N-15 hotspots are in fact preserved nuggets of molecular cloud material, and that the materials within them also have presolar origins. The advanced capabilities of the NanoSIMS ion microprobe now enable us to test this hypothesis. Here, we report two recent examples of presolar silicates found to be directly associated with molecular cloud material.

  6. Relationship between the crystallization rates of amorphous nifedipine, phenobarbital, and flopropione, and their molecular mobility as measured by their enthalpy relaxation and (1)H NMR relaxation times.

    PubMed

    Aso, Y; Yoshioka, S; Kojima, S

    2000-03-01

    Isothermal crystallization of amorphous nifedipine, phenobarbital, and flopropione was studied at temperatures above and below their glass transition temperatures (T(g)). A sharp decrease in the crystallization rate with decreasing temperature was observed for phenobarbital and flopropione, such that no crystallization was observed at temperatures 20-30 degrees C lower than their T(g) within ordinary experimental time periods. In contrast, the crystallization rate of nifedipine decreased moderately with decreasing temperature, and considerable crystallization was observed at 40 degrees C below its T(g) within 4 months. The molecular mobility of these amorphous drugs was assessed by enthalpy relaxation and (1)H-NMR relaxation measurements. The enthalpy relaxation time of nifedipine was smaller than that of phenobarbital or flopropinone at the same T - T(g) values, suggesting higher molecular mobility of nifedipine. The spin-lattice relaxation time in the rotating frame (T(1rho)) decreased markedly at temperature above T(g). The slope of the Arrhenius type plot of the T(1rho) for nifedipine protons changed at about 10 degrees C below the T(g), whereas the slope for phenobarbital protons became discontinuous at about 10 degrees C above the T(g). Even at temperatures below its T(g), the spin-spin relaxation process of nifedipine could be described by the sum of its Gaussian relaxation, which is characteristic of solid protons, and its Lorentzian relaxation, which is characteristic of protons with higher mobility. In contrast, no Lorentzian relaxation was observed for phenobarbital or flopropione at temperatures below their T(g). These results also suggest that nifedipine has higher molecular mobility than phenobarbital and flopropione at temperatures below T(g). The faster crystallization of nifedipine than that of phenobarbital or flopropione observed at temperatures below its T(g) may be partly ascribed to its higher molecular mobility at these temperatures.

  7. Reversibility and criticality in amorphous solids

    PubMed Central

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A.; Lookman, Turab

    2015-01-01

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a ‘front depinning' transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaotic behaviour and why chaotic motion is not possible in pinned systems. These findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched. PMID:26564783

  8. Reversibility and criticality in amorphous solids

    DOE PAGES

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A.; Lookman, Turab

    2015-11-13

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a ‘front depinning’ transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaoticmore » behaviour and why chaotic motion is not possible in pinned systems. As a result, these findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched.« less

  9. Reversibility and criticality in amorphous solids

    SciTech Connect

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A.; Lookman, Turab

    2015-11-13

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a ‘front depinning’ transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaotic behaviour and why chaotic motion is not possible in pinned systems. As a result, these findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched.

  10. Reversibility and criticality in amorphous solids.

    PubMed

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A; Lookman, Turab

    2015-01-01

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a 'front depinning' transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaotic behaviour and why chaotic motion is not possible in pinned systems. These findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched. PMID:26564783

  11. Amorphous silicon-carbon nanospheres synthesized by chemical vapor deposition using cheap methyltrichlorosilane as improved anode materials for Li-ion batteries.

    PubMed

    Zhang, Zailei; Zhang, Meiju; Wang, Yanhong; Tan, Qiangqiang; Lv, Xiao; Zhong, Ziyi; Li, Hong; Su, Fabing

    2013-06-21

    We report the preparation and characterization of amorphous silicon-carbon (Si-C) nanospheres as anode materials in Li-ion batteries. These nanospheres were synthesized by a chemical vapor deposition at 900 °C using methyltrichlorosilane (CH3SiCl3) as both the Si and C precursor, which is a cheap byproduct in the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption, thermal gravimetric analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was found that the synthesized Si-C nanospheres composed of amorphous C (about 60 wt%) and Si (about 40 wt%) had a diameter of 400-600 nm and a surface area of 43.8 m(2) g(-1). Their charge capacities were 483.6, 331.7, 298.6, 180.6, and 344.2 mA h g(-1) at 50, 200, 500, 1000, and 50 mA g(-1) after 50 cycles, higher than that of the commercial graphite anode. The Si-C amorphous structure could absorb a large volume change of Si during Li insertion and extraction reactions and hinder the cracking or crumbling of the electrode, thus resulting in the improved reversible capacity and cycling stability. The work opens a new way to fabricate low cost Si-C anode materials for Li-ion batteries.

  12. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  13. Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yuan, Demao; Cheng, Jianli; Qu, Guoxing; Li, Xiaodong; Ni, Wei; Wang, Bin; Liu, Heng

    2016-01-01

    Amorphous red phosphorus/carbon nanotubes (ARPC) composites are prepared by planetary ball-milling technique with the pre-milling red phosphorus processes, consisting of uniformly distributing amorphous red phosphorus embedding in a three-dimensional conductive scaffold of interconnected carbon nanotubes (CNTs). Combining the three-dimensional conductive network with the amorphous red phosphorus can not only alleviate the volumetric change in the charging/discharging processes, but also provide conductive network for electron transport and dramatically improve the specific capacity, cycling stability and rate capability of the composite electrode. The ARPC composites deliver a high initial charge capacity of 2133.4 mAh g-1 at a current density of 0.05 C and maintain a reversible capacity of 998.5 mAh g-1 with a high Coulombic efficiency of approximately 99% after 50 cycles. Meanwhile, the composite can maintain high specific capacities of 1993.8 mAh g-1, 1896.9 mAh g-1, 1546.8 mAh g-1 and 816.6 mAh g-1 at 0.01 C, 0.05 C, 0.1 C and 0.5 C, respectively. Compared with that of the ball-milled amorphous red phosphorus with or without CNTs, the pre-milled ARPC composites show much better electrochemical performances.

  14. Molecular-matched materials for anticancer drug delivery and imaging

    PubMed Central

    Wang, Dun; Fu, Qiang; Tang, Jingling; Hackett, Michael; Wang, Yongjun; Liu, Feng

    2015-01-01

    Aim: In this study, we aim to construct nanoformulation with high-cargo loading and controlled serum kinetics. Materials & methods: Molecular-matched materials (MMMs) are established through the conjugation of the functional moiety to a molecule representative of the nanoparticle's core. Molecular-matched nanoemulsions and liposomes were prepared using MMMs. Results: This technique based on MMMs even allows us to efficiently load either hydrophobic or hydrophilic moieties into a hydrophobic core of the nanoparticles. MMMs-based nanoparticles showed marked improvement in serum pharmacokinetics and anticancer effect. Conclusion: The desired performance can be achieved when the hydrophobic anchor of the PEG derivatives and the moiety conjugated to the therapeutic (or imaging) agents are molecularly identical to the core. PMID:26420013

  15. Recent advances on polyoxometalate-based molecular and composite materials.

    PubMed

    Song, Yu-Fei; Tsunashima, Ryo

    2012-11-21

    Polyoxometalates (POMs) are a subset of metal oxides with unique physical and chemical properties, which can be reliably modified through various techniques and methods to develop sophisticated materials and devices. In parallel with the large number of new crystal structures reported in the literature, the application of these POMs towards multifunctional materials has attracted considerable attention. This critical review summarizes recent progress on POM-based molecular and composite materials, and particularly highlights the emerging areas that are closely related to surface, electronic, energy, environment, life science, etc. (171 references). PMID:22850732

  16. Molecular tools for the construction of peptide-based materials.

    PubMed

    Ramakers, B E I; van Hest, J C M; Löwik, D W P M

    2014-04-21

    Proteins and peptides are fundamental components of living systems where they play crucial roles at both functional and structural level. The versatile biological properties of these molecules make them interesting building blocks for the construction of bio-active and biocompatible materials. A variety of molecular tools can be used to fashion the peptides necessary for the assembly of these materials. In this tutorial review we shall describe five of the main techniques, namely solid phase peptide synthesis, native chemical ligation, Staudinger ligation, NCA polymerisation, and genetic engineering, that have been used to great effect for the construction of a host of peptide-based materials.

  17. Temperature-dependent orientation study of the initial growth of pentacene on amorphous SiO2 by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zeng, Yuanqi; Tao, Bo; Chen, Jiankui; Yin, Zhouping

    2015-11-01

    Temperature-dependent molecular orientations in the initial growth processes of pentacene on amorphous SiO2 surface with different substrate temperatures have been investigated using molecular dynamics simulations. As the substrate temperature ranges from 270 K to 600 K, there exists a transition behavior for pentacene cluster from the normal-oriented, ordered configuration to the lateral-oriented, disordered one as measured by the decreased average orientation angle and order parameter, showing the significant effect of the substrate temperature on the molecular orientation. The transition behavior is related to the strength relationship between molecule-molecule interactions and molecule-substrate interactions. During the optimal temperature range between 300 K and 350 K, the pentacene molecules tend to form the normal-oriented, well-ordered cluster driven by the dominant molecule-molecule interactions, which is affected by the substrate temperature in a greater degree than the molecule-substrate interactions. When the temperature is lower than 300 K, the ordering of pentacene cluster becomes a little worse. A higher substrate temperature results in the lateral orientation with the weakening of the molecule-molecule interactions. Then the further intensification of molecular thermal motion gradually makes the molecules separate from the cluster or the substrate surface, resulting in the appearance of the undesirable separated configuration.

  18. Molecular deformation mechanisms of the wood cell wall material.

    PubMed

    Jin, Kai; Qin, Zhao; Buehler, Markus J

    2015-02-01

    Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood.

  19. Embrittlement of Metal by Solute Segregation-Induced Amorphization

    SciTech Connect

    Chen, H.-P.; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya; Yuan, Zaoshi; Kaxiras, Efthimios; Lu, Gang; Duin, Adri C. T. van

    2010-04-16

    Impurities segregated to grain boundaries of a material essentially alter its fracture behavior. A prime example is sulfur segregation-induced embrittlement of nickel, where an observed relation between sulfur-induced amorphization of grain boundaries and embrittlement remains unexplained. Here, 48x10{sup 6}-atom reactive-force-field molecular dynamics simulations provide the missing link. Namely, an order-of-magnitude reduction of grain-boundary shear strength due to amorphization, combined with tensile-strength reduction, allows the crack tip to always find an easy propagation path.

  20. Metal-mediated molecular materials at the nano- and mesoscale

    NASA Astrophysics Data System (ADS)

    Arroyo, Itzia Zoraida

    The synthesis of materials via self-assembly is a powerful bottom-up approach for assembling matter from subnanometer up to micrometer scales. This methodology involves the spontaneous and reversible organization of small molecules to create larger structures driven by non-covalent interactions such as hydrogen bonding, hydrophobic forces and metal-ligand coordination interactions. In this dissertation we developed the synthetic methods to generate materials at the nano- and meso-scale using coordination-directed strategies for molecular self-assembly in solid-state and in water. In addition, we produced materials with a modular increased complexity with potential applications in advanced technologies and medicine. Molecular materials in the solid-state were engineered using the coordination directed approach by synthesizing organic ligands with well-defined geometries and symmetries that self-assembly with transition metals in aprotic media into supra-molecular arrays. These structures were crystallized and characterized by techniques such as X-ray Crystallography, Multi-Nuclear Magnetic Resonance (NMR), Mass Spectrometry (MS), Infrared (IR) and Ultraviolet-Visible (UV-vis) Spectroscopies. Potential application as hydrogen storage systems was evaluated using 2H NMR spectroscopy. Coordination-directed molecular materials that self-assembly in water were achieved by combining coordination capable amphiphilic molecules and designing their chemistry so that they can rearrange in water to produce different lyotropic phases. We characterized these materials using Extended X-ray Absorbance Fine Structure Spectroscopy (EXAFS), Dynamic Light Scattering, Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Optical Microscopy and X-ray Photoelectron Spectroscopy (XPS). The new class of metallo-liposomes was used as a DNA delivery system and demonstrated to be effective for the transfection of pEGFP-N1 plasmid into HEK 293-T cells. Modular molecular

  1. Self assembled molecular monolayers on high surface area materials as molecular getters

    DOEpatents

    King, D.E.; Herdt, G.C.; Czanderna, A.W.

    1997-01-07

    The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium. 9 figs.

  2. Self assembled molecular monolayers on high surface area materials as molecular getters

    DOEpatents

    King, David E.; Herdt, Gregory C.; Czanderna, Alvin W.

    1997-01-01

    The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium.

  3. Insights into the fracture mechanisms and strength of amorphous and nanocomposite carbon.

    PubMed

    Fyta, M G; Remediakis, I N; Kelires, P C; Papaconstantopoulos, D A

    2006-05-12

    Tight-binding molecular dynamics simulations shed light into the fracture mechanisms and the ideal strength of tetrahedral amorphous carbon and of nanocomposite carbon containing diamond crystallites, two of the hardest materials. It is found that fracture in the nanocomposites, under tensile or shear load, occurs intergrain and so their ideal strength is similar to the pure amorphous phase. The onset of fracture takes place at weakly bonded sites in the amorphous matrix. On the other hand, the nanodiamond inclusions significantly enhance the elastic moduli, which approach those of diamond. PMID:16712372

  4. EXPERIMENTAL INVESTIGATION OF THE ORTHO/PARA RATIO OF NEWLY FORMED MOLECULAR HYDROGEN ON AMORPHOUS SOLID WATER

    SciTech Connect

    Gavilan, L.; Lemaire, J. L.; Dulieu, F.; Congiu, E.; Chaabouni, H.; Vidali, G.; Chehrouri, M.; Fillion, J.-H.

    2012-11-20

    Several astronomical observations have shown that the ortho/para ratio (OPR) of H{sub 2} can differ from the expected statistical value of 3 or the local thermodynamic equilibrium (LTE) value at the gas or dust temperature. It is thus important to know the OPR of H{sub 2} newly formed on dust grain surfaces, in order to clarify the dependence of the observed OPR in space on the formation process. Using an experimental setup designed to mimic interstellar medium environments, we measured the OPR of H{sub 2} and D{sub 2} formed on the surface of porous amorphous water ice held at 10 K. We report for the first time the OPR value for newly formed D{sub 2}, consistent with the expected LTE value at the high-temperature limit found by previous theoretical and experimental works on the determination of the OPR upon H{sub 2} formation on surfaces at low temperature.

  5. Molecular receptors in metal oxide sol-gel materials prepared via molecular imprinting

    DOEpatents

    Sasaki, Darryl Y.; Brinker, C. Jeffrey; Ashley, Carol S.; Daitch, Charles E.; Shea, Kenneth J.; Rush, Daniel J.

    2000-01-01

    A method is provided for molecularly imprinting the surface of a sol-gel material, by forming a solution comprised of a sol-gel material, a solvent, an imprinting molecule, and a functionalizing siloxane monomer of the form Si(OR).sub.3-n X.sub.n, wherein n is an integer between zero and three and X is a functional group capable of reacting with the imprinting molecule, evaporating the solvent, and removing the imprinting molecule to form the molecularly imprinted metal oxide sol-gel material. The use of metal oxide sol-gels allows the material porosity, pore size, density, surface area, hardness, electrostatic charge, polarity, optical density, and surface hydrophobicity to be tailored and be employed as sensors and in catalytic and separations operations.

  6. Multiferroic materials based on organic transition-metal molecular nanowires.

    PubMed

    Wu, Menghao; Burton, J D; Tsymbal, Evgeny Y; Zeng, Xiao Cheng; Jena, Puru

    2012-09-01

    We report on the density functional theory aided design of a variety of organic ferroelectric and multiferroic materials by functionalizing crystallized transition-metal molecular sandwich nanowires with chemical groups such as -F, -Cl, -CN, -NO(2), ═O, and -OH. Such functionalized polar wires exhibit molecular reorientation in response to an electric field. Ferroelectric polarizations as large as 23.0 μC/cm(2) are predicted in crystals based on fully hydroxylized sandwich nanowires. Furthermore, we find that organic nanowires formed by sandwiching transition-metal atoms in croconic and rhodizonic acids, dihydroxybenzoquinone, dichloro-dihydroxy-p-benzoquinone, or benzene decorated by -COOH groups exhibit ordered magnetic moments, leading to a multiferroic organometallic crystal. When crystallized through hydrogen bonds, the microscopic molecular reorientation translates into a switchable polarization through proton transfer. A giant interface magnetoelectric response that is orders of magnitude greater than previously reported for conventional oxide heterostructure interfaces is predicted. PMID:22881120

  7. Amorphous Computing

    NASA Astrophysics Data System (ADS)

    Sussman, Gerald

    2002-03-01

    Digital computers have always been constructed to behave as precise arrangements of reliable parts, and our techniques for organizing computations depend upon this precision and reliability. Two emerging technologies, however, are begnning to undercut these assumptions about constructing and programming computers. These technologies -- microfabrication and bioengineering -- will make it possible to assemble systems composed of myriad information- processing units at almost no cost, provided: 1) that not all the units need to work correctly; and 2) that there is no need to manufacture precise geometrical arrangements or interconnection patterns among them. Microelectronic mechanical components are becoming so inexpensive to manufacture that we can anticipate combining logic circuits, microsensors, actuators, and communications devices integrated on the same chip to produce particles that could be mixed with bulk materials, such as paints, gels, and concrete. Imagine coating bridges or buildings with smart paint that can sense and report on traffic and wind loads and monitor structural integrity of the bridge. A smart paint coating on a wall could sense vibrations, monitor the premises for intruders, or cancel noise. Even more striking, there has been such astounding progress in understanding the biochemical mechanisms in individual cells, that it appears we'll be able to harness these mechanisms to construct digital- logic circuits. Imagine a discipline of cellular engineering that could tailor-make biological cells that function as sensors and actuators, as programmable delivery vehicles for pharmaceuticals, as chemical factories for the assembly of nanoscale structures. Fabricating such systems seem to be within our reach, even if it is not yet within our grasp Fabrication, however, is only part of the story. We can envision producing vast quantities of individual computing elements, whether microfabricated particles, engineered cells, or macromolecular computing

  8. Segmented molecular design of self-healing proteinaceous materials

    PubMed Central

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.

    2015-01-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure–property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials. PMID:26323335

  9. Segmented molecular design of self-healing proteinaceous materials

    NASA Astrophysics Data System (ADS)

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.

    2015-09-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.

  10. Segmented molecular design of self-healing proteinaceous materials.

    PubMed

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C

    2015-09-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.

  11. Primordial Molecular Cloud Material in Metal-Rich Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2016-03-01

    The menagerie of objects that make up our Solar System reflects the composition of the huge molecular cloud in which the Sun formed, a late addition of short-lived isotopes from an exploding supernova or stellar winds from a neighboring massive star, heating and/or alteration by water in growing planetesimals that modified and segregated the primordial components, and mixing throughout the Solar System. Outer Solar System objects, such as comets, have always been cold, hence minimizing the changes experienced by more processed objects. They are thought to preserve information about the molecular cloud. Elishevah Van Kooten (Natural History Museum of Denmark and the University of Copenhagen) and co-authors in Denmark and at the University of Hawai'i, measured the isotopic compositions of magnesium and chromium in metal-rich carbonaceous chondrites. They found that the meteorites preserve an isotopic signature of primordial molecular cloud materials, providing a potentially detailed record of the molecular cloud's composition and of materials that formed in the outer Solar System.

  12. Effect of polar surfaces on decomposition of molecular materials.

    PubMed

    Kuklja, Maija M; Tsyshevsky, Roman V; Sharia, Onise

    2014-09-24

    We report polar instability in molecular materials. Polarization-induced explosive decomposition in molecular crystals is explored with an illustrative example of two crystalline polymorphs of HMX, an important energetic material. We establish that the presence of a polar surface in δ-HMX has fundamental implications for material stability and overall chemical behavior. A comparative quantum-chemical analysis of major decomposition mechanisms in polar δ-HMX and nonpolar β-HMX discovered a dramatic difference in dominating dissociation reactions, activation barriers, and reaction rates. The presence of charge on the polar δ-HMX surface alters chemical mechanisms and effectively triggers decomposition simultaneously through several channels with significantly reduced activation barriers. This results in much faster decomposition chemistry and in higher chemical reactivity of δ-HMX phase relatively to β-HMX phase. We predict decomposition mechanisms and their activation barriers in condensed δ-HMX phase, sensitivity of which happens to be comparable to primary explosives. We suggest that the observed trend among polymorphs is a manifestation of polar instability phenomena, and hence similar processes are likely to take place in all polar molecular crystals.

  13. Effect of polar surfaces on decomposition of molecular materials.

    PubMed

    Kuklja, Maija M; Tsyshevsky, Roman V; Sharia, Onise

    2014-09-24

    We report polar instability in molecular materials. Polarization-induced explosive decomposition in molecular crystals is explored with an illustrative example of two crystalline polymorphs of HMX, an important energetic material. We establish that the presence of a polar surface in δ-HMX has fundamental implications for material stability and overall chemical behavior. A comparative quantum-chemical analysis of major decomposition mechanisms in polar δ-HMX and nonpolar β-HMX discovered a dramatic difference in dominating dissociation reactions, activation barriers, and reaction rates. The presence of charge on the polar δ-HMX surface alters chemical mechanisms and effectively triggers decomposition simultaneously through several channels with significantly reduced activation barriers. This results in much faster decomposition chemistry and in higher chemical reactivity of δ-HMX phase relatively to β-HMX phase. We predict decomposition mechanisms and their activation barriers in condensed δ-HMX phase, sensitivity of which happens to be comparable to primary explosives. We suggest that the observed trend among polymorphs is a manifestation of polar instability phenomena, and hence similar processes are likely to take place in all polar molecular crystals. PMID:25170566

  14. Structure and Properties of Amorphous Transparent Conducting Oxides

    NASA Astrophysics Data System (ADS)

    Medvedeva, Julia

    Driven by technological appeal, the research area of amorphous oxide semiconductors has grown tremendously since the first demonstration of the unique properties of amorphous indium oxide more than a decade ago. Today, amorphous oxides, such as a-ITO, a-IZO, a-IGZO, or a-ZITO, exhibit the optical, electrical, thermal, and mechanical properties that are comparable or even superior to those possessed by their crystalline counterparts, pushing the latter out of the market. Large-area uniformity, low-cost low-temperature deposition, high carrier mobility, optical transparency, and mechanical flexibility make these materials appealing for next-generation thin-film electronics. Yet, the structural variations associated with crystalline-to-amorphous transition as well as their role in carrier generation and transport properties of these oxides are far from being understood. Although amorphous oxides lack grain boundaries, factors like (i) size and distribution of nanocrystalline inclusions; (ii) spatial distribution and clustering of incorporated cations in multicomponent oxides; (iii) formation of trap defects; and (iv) piezoelectric effects associated with internal strains, will contribute to electron scattering. In this work, ab-initio molecular dynamics (MD) and accurate density-functional approaches are employed to understand how the properties of amorphous ternary and quaternary oxides depend on quench rates, cation compositions, and oxygen stoichiometries. The MD results, combined with thorough experimental characterization, reveal that interplay between the local and long-range structural preferences of the constituent oxides gives rise to a complex composition-dependent structural behavior in the amorphous oxides. The proposed network models of metal-oxygen polyhedra help explain the observed intriguing electrical and optical properties in In-based oxides and suggest ways to broaden the phase space of amorphous oxide semiconductors with tunable properties. The

  15. Calculation of absorption and secondary scattering of X-rays by spherical amorphous materials in an asymmetric transmission geometry.

    PubMed

    Bendert, J C; Blodgett, M E; Kelton, K F

    2013-03-01

    Expressions for absorption and the secondary scattering intensity ratio are presented for a small beam impinging off-center of a spherical amorphous sample. Large gradients in the absorption correction are observed from small offsets from the central axis. Additionally, the secondary scattering intensity ratio causes an intensity asymmetry in the detector image. The secondary scattering intensity ratio is presented in integral form and must be computed numerically. An analytic, small-angle, asymptotic series solution for the integral form of the absorption correction is also presented. PMID:23403964

  16. Molecular simulation of RMM: ordered mesoporous SBA-15 type material having microporous ZSM-5 walls.

    PubMed

    Sonwane, C G; Li, Q

    2005-09-29

    SBA-15 is a novel porous material with uniform size mesopores arranged in a regular pattern. The adjacent mesopores are connected to each other by microporous walls. The major disadvantages of these materials are that the walls are amorphous and have low thermal, hydrothermal, and mechanical stability. Recently, there have been a few attempts to either coat the walls of SBA-15 by microporous crystalline zeolites or to fabricate SBA-15 using CMK-3 in such a way that the walls are made up of ZSM-5. The present work provides a first-ever study of RMM (replicated mesoporous materials, which are SBA-15 like ordered mesoporous materials with walls made up of ZSM-5) using molecular modeling. A random orientation of the unit cells and the distribution of sizes of the supercells located at nucleation sites would be ideal to model the RMM. However, such a study would introduce more uncertainties with regard to voids between the individual supercells, noncrystalline silica, and the location of active sites where the nucleation occurs. In a simpler model studied in the present work, the walls of SBA-15 were made up of regularly arranged ZSM-5 having the same orientation. The structure was characterized by estimating the nitrogen accessible area/volume by Connolly surfaces, small-angle and wide-angle X-ray diffraction patterns, methane adsorption, and ice as a probe to study the pore structure. It was found that RMMs have significantly higher methane adsorption capacity compared to SBA-15 and the majority of methane is adsorbed in the microporous walls of RMM. Further research in the field of RMM is needed to obtain the details of zeolitic wall structure. PMID:16853309

  17. Data supporting the role of electric field and electrode material on the improvement of the ageing effects in hydrogenated amorphous silicon solar cells

    PubMed Central

    Scuto, Andrea; Valenti, Luca; Pierro, Silvio; Foti, Marina; Gerardi, Cosimo; Battaglia, Anna; Lombardo, Salvatore

    2015-01-01

    Hydrogenated amorphous Si (a­Si:H) solar cells are strongly affected by the well known Staebler–Wronski effect. This is a worsening of solar cell performances under light soaking which results in a substantial loss of cell power conversion efficiency compared to time zero performance. It is believed not to be an extrinsic effect, but rather a basic phenomenon related to the nature of a­Si:H and to the stability and motion of H­related species in the a­Si:H lattice. This work has been designed in support of the research article entitled “Role of electric field and electrode material on the improvement of the ageing effects in hydrogenated amorphous silicon solar cells” in Solar Energy Materials & Solar Cells (Scuto et al. [1]), which discusses an electrical method based on reverse bias stress to improve the solar cell parameters, and in particular the effect of temperature, electric field intensity and illumination level as a function of the stress time. Here we provide a further set of the obtained experimental data results. PMID:26966715

  18. Data supporting the role of electric field and electrode material on the improvement of the ageing effects in hydrogenated amorphous silicon solar cells.

    PubMed

    Scuto, Andrea; Valenti, Luca; Pierro, Silvio; Foti, Marina; Gerardi, Cosimo; Battaglia, Anna; Lombardo, Salvatore

    2015-09-01

    Hydrogenated amorphous Si (a-Si:H) solar cells are strongly affected by the well known Staebler-Wronski effect. This is a worsening of solar cell performances under light soaking which results in a substantial loss of cell power conversion efficiency compared to time zero performance. It is believed not to be an extrinsic effect, but rather a basic phenomenon related to the nature of a-Si:H and to the stability and motion of H-related species in the a-Si:H lattice. This work has been designed in support of the research article entitled "Role of electric field and electrode material on the improvement of the ageing effects in hydrogenated amorphous silicon solar cells" in Solar Energy Materials & Solar Cells (Scuto et al. [1]), which discusses an electrical method based on reverse bias stress to improve the solar cell parameters, and in particular the effect of temperature, electric field intensity and illumination level as a function of the stress time. Here we provide a further set of the obtained experimental data results.

  19. Exploring the conformational energy landscape of glassy disaccharides by cross polarization magic angle spinning 13C nuclear magnetic resonance and numerical simulations. II. Enhanced molecular flexibility in amorphous trehalose.

    PubMed

    Lefort, Ronan; Bordat, Patrice; Cesaro, Attilio; Descamps, Marc

    2007-01-01

    This paper uses chemical shift surfaces to simulate experimental (13)C cross polarization magic angle spinning spectra for amorphous solid state disaccharides, paying particular attention to the glycosidic linkage atoms in trehalose, sucrose, and lactose. The combination of molecular mechanics with density functional theory/gauge invariant atomic orbital ab initio methods provides reliable structural information on the conformational distribution in the glass. The results are interpreted in terms of an enhanced flexibility that trehalose possesses in the amorphous solid state, at least on the time scale of (13)C nuclear magnetic resonance measurements. Implications of these findings for the fragility of trehalose glass and bioprotectant action are discussed. PMID:17212504

  20. Exploring the conformational energy landscape of glassy disaccharides by cross polarization magic angle spinning 13C nuclear magnetic resonance and numerical simulations. II. Enhanced molecular flexibility in amorphous trehalose

    NASA Astrophysics Data System (ADS)

    Lefort, Ronan; Bordat, Patrice; Cesaro, Attilio; Descamps, Marc

    2007-01-01

    This paper uses chemical shift surfaces to simulate experimental C13 cross polarization magic angle spinning spectra for amorphous solid state disaccharides, paying particular attention to the glycosidic linkage atoms in trehalose, sucrose, and lactose. The combination of molecular mechanics with density functional theory/gauge invariant atomic orbital ab initio methods provides reliable structural information on the conformational distribution in the glass. The results are interpreted in terms of an enhanced flexibility that trehalose possesses in the amorphous solid state, at least on the time scale of C13 nuclear magnetic resonance measurements. Implications of these findings for the fragility of trehalose glass and bioprotectant action are discussed.

  1. From molecular design and materials construction to organic nanophotonic devices.

    PubMed

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more

  2. From molecular design and materials construction to organic nanophotonic devices.

    PubMed

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more

  3. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  4. The Release of Trapped Gases from Amorphous Solid Water Films: I. “Top-Down” Crystallization-Induced Crack Propagation Probed using the Molecular Volcano

    SciTech Connect

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    2013-03-14

    In this (Paper I) and the companion paper (Paper II) we investigate the mechanisms for the release of trapped gases from underneath of amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization ASW, a phenomenon that we termed the "molecular volcano". The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper we utilize the "molecular volcano" desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length and distribution are independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2 or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ/mol. This value is consistent with the crystallization growth rate reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization/crack front into the film is in good agreement with the temperature programmed desorption results.

  5. The release of trapped gases from amorphous solid water films. I. "Top-down" crystallization-induced crack propagation probed using the molecular volcano.

    PubMed

    May, R Alan; Smith, R Scott; Kay, Bruce D

    2013-03-14

    In this (Paper I) and the companion paper (Paper II; R. May, R. Smith, and B. Kay, J. Chem. Phys. 138, 104502 (2013)), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization of ASW, a phenomenon that we termed the "molecular volcano." The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper, we utilize the "molecular volcano" desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length distribution is independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2, or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ∕mol. This value is consistent with the crystallization growth rates reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization∕crack front into the film is in good agreement with the temperature programmed desorption results.

  6. Rational Design of Molecular Ferroelectric Materials and Nanostructures

    SciTech Connect

    Ducharme, Stephen

    2012-09-25

    The purpose of this project was to gain insight into the properties of molecular ferroelectrics through the detailed study of oligomer analogs of polyvinylidene fluoride (PVDF). By focusing on interactions at both the molecular level and the nanoscale level, we expect to gain improved understanding about the fundamental mechanism of ferroelectricity and its key properties. The research consisted of three complementary components: 1) Rational synthesis of VDF oligomers by Prof. Takacs' group; 2) Detailed structural and electrical studies of thin by Prof. Ducharme's Group; and 3) First-principles computational studies by DOE Lab Partner Dr. Serge Nakhman-son at Argonne National Laboratory. The main results of the work was a detailed understanding of the relationships between the molecular interactions and macroscopic phenomenology of fer-roelectricity VDF oligomers. This is valuable information supporting the development of im-proved electromechanical materials for, e.g., sonar, ultrasonic imaging, artificial muscles, and compliant actuators. Other potential applications include nonvolatile ferroelectric memories, heat-sensing imaging arrays, photovoltaic devices, and functional biomimetic materials. The pro-ject contributed to the training and professional development of undergraduate students and graduate students, post-doctoral assistants, and a high-school teacher. Project personnel took part in several outreach and education activities each year.

  7. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  8. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    SciTech Connect

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation

  9. Processing of amorphous PEEK and amorphous PEEK based composites

    SciTech Connect

    Kenny, J.; D'amore, A.; Nicolais, L.; Iannone, M.; Scatteia, B.; Aeritalia, S.p.A., Naples )

    1989-08-01

    An analysis of the crystallization behavior of amorphous PEEK, its carbon fiber composite, and its relationships with dynamic-mechanical properties of the system measured during and after processing is presented. The effect of the processing conditions, time and temperature, on the quality and on the amount of the crystallinity developed during cold crystallization has been investigated in order to evaluate the processability window of amorphous PEEK and amorphous PEEK based composite above the glass transition temperature and below the melting point. Also, the anomalous behavior of the amorphous matrix, crystallized at low temperatures, has been studied. Multiple melting peaks and changes of the glass transition during crystallization are explained in terms of crystalline morphology and molecular mobility. 20 refs.

  10. Design Molecular Recognition Materials for Chiral Sensors, Separtations and Catalytic Materials

    SciTech Connect

    Jia, S.; Nenoff, T.M.; Provencio, P.; Qiu, Y.; Shelnutt, J.A.; Thoma, S.G.; Zhang, J.

    1998-11-01

    The goal is the development of materials that are highly sensitive and selective for chid chemicals and biochemical (such as insecticides, herbicides, proteins, and nerve agents) to be used as sensors, catalysts and separations membranes. Molecular modeling methods are being used to tailor chiral molecular recognition sites with high affinity and selectivity for specified agents. The work focuses on both silicate and non-silicate materials modified with chirally-pure fictional groups for the catalysis or separations of enantiomerically-pure molecules. Surfactant and quaternary amine templating is being used to synthesize porous frameworks, containing mesopores of 30 to 100 angstroms. Computer molecukw modeling methods are being used in the design of these materials, especially in the chid surface- modi~ing agents. Molecular modeling is also being used to predict the catalytic and separations selectivities of the modified mesoporous materials. The ability to design and synthesize tailored asymmetric molecular recognition sites for sensor coatings allows a broader range of chemicals to be sensed with the desired high sensitivity and selectivity. Initial experiments target the selective sensing of small molecule gases and non-toxic model neural compounds. Further efforts will address designing sensors that greatly extend the variety of resolvable chemical species and forming a predictive, model-based method for developing advanced sensors.

  11. Unveiling the complex electronic structure of amorphous metal oxides

    PubMed Central

    Århammar, C.; Pietzsch, Annette; Bock, Nicolas; Holmström, Erik; Araujo, C. Moyses; Gråsjö, Johan; Zhao, Shuxi; Green, Sara; Peery, T.; Hennies, Franz; Amerioun, Shahrad; Föhlisch, Alexander; Schlappa, Justine; Schmitt, Thorsten; Strocov, Vladimir N.; Niklasson, Gunnar A.; Wallace, Duane C.; Rubensson, Jan-Erik; Johansson, Börje; Ahuja, Rajeev

    2011-01-01

    Amorphous materials represent a large and important emerging area of material’s science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al2O3-Si3N4-SiO2-Silicon) flash memories. These technologies are required for the high packing density of today’s integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5–10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.

  12. High Pressure Materials Research: Novel Extended Phases of Molecular Triatomics

    SciTech Connect

    Yoo, C

    2004-05-26

    Application of high pressure significantly alters the interatomic distance and thus the nature of intermolecular interaction, chemical bonding, molecular configuration, crystal structure, and stability of solid [1]. With modern advances in high-pressure technologies [2], it is feasible to achieve a large (often up to a several-fold) compression of lattice, at which condition material can be easily forced into a new physical and chemical configuration [3]. The high-pressure thus offers enhanced opportunities to discover new phases, both stable and metastable ones, and to tune exotic properties in a wide-range of atomistic length scale, substantially greater than (often being several orders of) those achieved by other thermal (varying temperatures) and chemical (varying composition or making alloys) means. Simple molecular solids like H{sub 2}, C, CO{sub 2}, N{sub 2}, O{sub 2}, H{sub 2}O, CO, NH{sub 3}, and CH{sub 4} are bounded by strong covalent intramolecular bonds, yet relatively weak intermolecular bonds of van der Waals and/or hydrogen bonds. The weak intermolecular bonds make these solids highly compressible (i.e., low bulk moduli typically less than 10 GPa), while the strong covalent bonds make them chemically inert at least initially at low pressures. Carbon-carbon single bonds, carbon-oxygen double bonds and nitrogen-nitrogen triple bonds, for example, are among the strongest. These molecular forms are, thus, often considered to remain stable in an extended region of high pressures and high temperatures. High stabilities of these covalent molecules are also the basis of which their mixtures are often presumed to be the major detonation products of energetic materials as well as the major constituents of giant planets. However, their physical/chemical stabilities are not truly understood at those extreme pressure-temperature conditions. In fact, an increasing amount of experimental evidences contradict the assumed stability of these materials at high

  13. High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization

    NASA Astrophysics Data System (ADS)

    Wang, Dingsheng; Gao, Mingxia; Pan, Hongge; Wang, Junhua; Liu, Yongfeng

    2014-06-01

    Amorphous-Si@SiOx/C composites with amorphous Si particles as core and coated with a double layer of SiOx and carbon are prepared by ball-milling crystal micron-sized silicon powders and carbonization of the citric acid intruded in the ball-milled Si. Different ratios of Si to citric acid are used in order to optimize the electrochemical performance. It is found that SiOx exists naturally at the surfaces of raw Si particles and its content increases to ca. 24 wt.% after ball-milling. With an optimized Si to citric acid weight ratio of 1/2.5, corresponding to 8.4 wt.% C in the composite, a thin carbon layer is coated on the surfaces of a-Si@SiOx particles, moreover, floc-like carbon also forms and connects the carbon coated a-Si@SiOx particles. The composite provides a capacity of 1450 mA h g-1 after 100 cycles at a current density of 100 mA g1, and a capacity of 1230 mA h g-1 after 100 cycles at 500 mA g1 as anode material for lithium-ion batteries. Effects of ball-milling and the addition of citric acid on the microstructure and electrochemical properties of the composites are revealed and the mechanism of the improvement in electrochemical properties is discussed.

  14. Molecularly uniform poly(ethylene glycol) certified reference material

    NASA Astrophysics Data System (ADS)

    Takahashi, Kayori; Matsuyama, Shigetomo; Kinugasa, Shinichi; Ehara, Kensei; Sakurai, Hiromu; Horikawa, Yoshiteru; Kitazawa, Hideaki; Bounoshita, Masao

    2015-02-01

    A certified reference material (CRM) for poly(ethylene glycol) with no distribution in the degree of polymerization was developed. The degree of polymerization of the CRM was accurately determined to be 23. Supercritical fluid chromatography (SFC) was used to separate the molecularly uniform polymer from a standard commercial sample with wide polydispersity in its degree of polymerization. Through the use of a specific fractionation system coupled with SFC, we are able to obtain samples of poly(ethylene glycol) oligomer with exact degrees of polymerization, as required for a CRM produced by the National Metrology Institute of Japan.

  15. Amorphous silicon solar cell allowing infrared transmission

    DOEpatents

    Carlson, David E.

    1979-01-01

    An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

  16. UV irradiated hydrogenated amorphous carbon (HAC) materials as a carrier candidate of the interstellar UV bump at 217.5 nm

    NASA Astrophysics Data System (ADS)

    Gadallah, K. A. K.; Mutschke, H.; Jäger, C.

    2011-04-01

    Context. Hydrogenated amorphous carbon (HAC) materials have been considered as a laboratory analog of cosmic carbonaceous nanoparticles in the interstellar medium (ISM). In the diffuse ISM, UV radiation can modify the electronic and atomic structure of HAC materials. Aims: Studying structural and optical properties of HAC materials in correlation with UV processing is very important to understand more clearly the effect of the UV radiation on carbonaceous dust grains in the diffuse ISM. This scenario can explain some astronomical spectral features such as the interstellar UV bump at 4.6 μm-1. Methods: Laser ablation has been used to produce nano-sized HAC materials which are subsequently irradiated by strong UV doses in a high vacuum. Transmission electron microscope images and spectroscopic analyses show the evolution of the internal structure of the material with the UV irradiation. Results: It is found that hydrogen content and the sp3/sp2 hybridization ratio decrease with the UV irradiation. The graphene layers become longer in processed materials. Also, graphitic fibers are observed in modified materials. The variation in the internal structure leads to dramatic changes in the spectral properties in the FUV-VIS range. The UV irradiation of HAC materials, coresponding to 21-33% of the average dose of the UV radiation in diffuse ISM, has produced a new band centered at 4.6 μm-1 (217.5 nm). Conclusions: Consequently, these results confirm for the first time the suggestion by Mennella et al. (1996) that irradiated HAC materials might be considered the carrier of the interstellar UV bump at 4.6 μm-1. However, so far the amount of carbon needed to produce the interstellar 4.6 μm-1 band is higher than that available for interstellar carbon dust grains. So the ideal structure of irradiated HAC materials that would produce a band of sufficient strength is not yet clear for the interstellar dust.

  17. Molecular simulation of adsorption and transport in hierarchical porous materials.

    PubMed

    Coasne, Benoit; Galarneau, Anne; Gerardin, Corine; Fajula, François; Villemot, François

    2013-06-25

    Adsorption and transport in hierarchical porous solids with micro- (~1 nm) and mesoporosities (>2 nm) are investigated by molecular simulation. Two models of hierarchical solids are considered: microporous materials in which mesopores are carved out (model A) and mesoporous materials in which microporous nanoparticles are inserted (model B). Adsorption isotherms for model A can be described as a linear combination of the adsorption isotherms for pure mesoporous and microporous solids. In contrast, adsorption in model B departs from adsorption in pure microporous and mesoporous solids; the inserted microporous particles act as defects, which help nucleate the liquid phase within the mesopore and shift capillary condensation toward lower pressures. As far as transport under a pressure gradient is concerned, the flux in hierarchical materials consisting of microporous solids in which mesopores are carved out obeys the Navier-Stokes equation so that Darcy's law is verified within the mesopore. Moreover, the flow in such materials is larger than in a single mesopore, due to the transfer between micropores and mesopores. This nonzero velocity at the mesopore surface implies that transport in such hierarchical materials involves slippage at the mesopore surface, although the adsorbate has a strong affinity for the surface. In contrast to model A, flux in model B is smaller than in a single mesopore, as the nanoparticles act as constrictions that hinder transport. By a subtle effect arising from fast transport in the mesopores, the presence of mesopores increases the number of molecules in the microporosity in hierarchical materials and, hence, decreases the flow in the micropores (due to mass conservation). As a result, we do not observe faster diffusion in the micropores of hierarchical materials upon flow but slower diffusion, which increases the contact time between the adsorbate and the surface of the microporosity.

  18. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  19. Laser surface treatment of amorphous metals

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  20. Amorphization and thermal stability of aluminum-based nanoparticles prepared from the rapid cooling of nanodroplets: effect of iron addition.

    PubMed

    Xiao, Shifang; Li, Xiaofan; Deng, Huiqiu; Deng, Lei; Hu, Wangyu

    2015-03-01

    Despite an intensive investigation on bimetallic nanoparticles, little attention has been paid to their amorphization in the past few decades. The study of amorphization on a nanoscale is of considerable significance for the preparation of amorphous nanoparticles and bulk metallic glass. Herein, we pursue the amorphization process of Al-based nanoparticles with classic molecular dynamics simulations and local structural analysis techniques. By a comparative study of the amorphization of pure Al and Fe-doped Al-based nanodroplets in the course of rapid cooling, we find that Fe addition plays a very important role in the vitrification of Al-based nanodroplets. Owing to the subsurface segregated Fe atoms with their nearest neighbors tending to form relatively stable icosahedral (ICO) clusters, the Fe-centred cluster network near the surface effectively suppresses the crystallization of droplets from surface nucleation and growth as the concentration of Fe attains a certain value. The glass formation ability of nanodroplets is suggested to be enhanced by the high intrinsic inner pressure as a result of small size and surface tension, combined with the dopant-inhibited surface nucleation. In addition, the effect of the size and the added concentration of nanoparticles on amorphization and the thermal stability of the amorphous nanoparticles are discussed. Our findings reveal the amorphization mechanism in Fe-doped Al-based nanoparticles and provide a theoretical guidance for the design of amorphous materials.

  1. Functionalization-induced changes in the structural and physical properties of amorphous polyaniline: a first-principles and molecular dynamics study

    PubMed Central

    Chen, X. P.; Liang, Q. H.; Jiang, J. K.; Wong, Cell K. Y.; Leung, Stanley Y. Y.; Ye, H. Y.; Yang, D. G.; Ren, T. L.

    2016-01-01

    In this paper, we present a first-principles and molecular dynamics study to delineate the functionalization-induced changes in the local structure and the physical properties of amorphous polyaniline. The results of radial distribution function (RDF) demonstrate that introducing -SO3−Na+ groups at phenyl rings leads to the structural changes in both the intrachain and interchain ordering of polyaniline at shorter distances (≤5 Å). An unique RDF feature in 1.8–2.1 Å regions is usually observed in both the interchain and intrachain RDF profiles of the -SO3−Na+ substituted polymer (i.e. Na-SPANI). Comparative studies of the atom-atom pairs, bond structures, torsion angles and three-dimensional structures show that EB-PANI has much better intrachain ordering than that of Na-SPANI. In addition, investigation of the band gap, density of states (DOS), and absorption spectra indicates that the derivatization at ring do not substantially alter the inherent electronic properties but greatly change the optical properties of polyaniline. Furthermore, the computed diffusion coefficient of water in Na-SPANI is smaller than that of EB-PANI. On the other hand, the Na-SPANI shows a larger density than that of EB-PANI. The computed RDF profiles, band gaps, absorption spectra, and diffusion coefficients are in quantitative agreement with the experimental data. PMID:26857962

  2. Determine the permeability of an amorphous mixture of polydimethylsiloxane and dealuminated zeolite ZSM-5 to various ethanol-water solutions using molecular simulations.

    EPA Science Inventory

    An amorphous mixture of PDMS and multi-cellular fragments of ZSM-5 is brought together to approximate the properties of a mixed matrix membrane of PDMS with ZSM-5. The permeability coefficient of the amorphous mixture for pure water is the product of the diffusion coefficient of...

  3. Impact Ignition and Combustion Behavior of Amorphous Metal-Based Reactive Composites

    NASA Astrophysics Data System (ADS)

    Mason, Benjamin; Groven, Lori; Son, Steven

    2013-06-01

    Recently published molecular dynamic simulations have shown that metal-based reactive powder composites consisting of at least one amorphous component could lead to improved reaction performance due to amorphous materials having a zero heat of fusion, in addition to having high energy densities and potential uses such as structural energetic materials and enhanced blast materials. In order to investigate the feasibility of these systems, thermochemical equilibrium calculations were performed on various amorphous metal/metalloid based reactive systems with an emphasis on commercially available or easily manufactured amorphous metals, such as Zr and Ti based amorphous alloys in combination with carbon, boron, and aluminum. Based on the calculations and material availability material combinations were chosen. Initial materials were either mixed via a Resodyn mixer or mechanically activated using high energy ball milling where the microstructure of the milled material was characterized using x-ray diffraction, optical microscopy and scanning electron microscopy. The mechanical impact response and combustion behavior of select reactive systems was characterized using the Asay shear impact experiment where impact ignition thresholds, ignition delays, combustion velocities, and temperatures were quantified, and reported. Funding from the Defense Threat Reduction Agency (DTRA), Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged.

  4. Beating the amorphous limit in thermal conductivity by superlattices design

    PubMed Central

    Mizuno, Hideyuki; Mossa, Stefano; Barrat, Jean-Louis

    2015-01-01

    The value measured in the amorphous structure with the same chemical composition is often considered as a lower bound for the thermal conductivity of any material: the heat carriers are strongly scattered by disorder, and their lifetimes reach the minimum time scale of thermal vibrations. An appropriate design at the nano-scale, however, may allow one to reduce the thermal conductivity even below the amorphous limit. In the present contribution, using molecular-dynamics simulation and the Green-Kubo formulation, we study systematically the thermal conductivity of layered phononic materials (superlattices), by tuning different parameters that can characterize such structures. We have discovered that the key to reach a lower-than-amorphous thermal conductivity is to block almost completely the propagation of the heat carriers, the superlattice phonons. We demonstrate that a large mass difference in the two intercalated layers, or weakened interactions across the interface between layers result in materials with very low thermal conductivity, below the values of the corresponding amorphous counterparts. PMID:26374147

  5. Beating the amorphous limit in thermal conductivity by superlattices design.

    PubMed

    Mizuno, Hideyuki; Mossa, Stefano; Barrat, Jean-Louis

    2015-09-16

    The value measured in the amorphous structure with the same chemical composition is often considered as a lower bound for the thermal conductivity of any material: the heat carriers are strongly scattered by disorder, and their lifetimes reach the minimum time scale of thermal vibrations. An appropriate design at the nano-scale, however, may allow one to reduce the thermal conductivity even below the amorphous limit. In the present contribution, using molecular-dynamics simulation and the Green-Kubo formulation, we study systematically the thermal conductivity of layered phononic materials (superlattices), by tuning different parameters that can characterize such structures. We have discovered that the key to reach a lower-than-amorphous thermal conductivity is to block almost completely the propagation of the heat carriers, the superlattice phonons. We demonstrate that a large mass difference in the two intercalated layers, or weakened interactions across the interface between layers result in materials with very low thermal conductivity, below the values of the corresponding amorphous counterparts.

  6. The release of trapped gases from amorphous solid water films. I. ``Top-down'' crystallization-induced crack propagation probed using the molecular volcano

    NASA Astrophysics Data System (ADS)

    May, R. Alan; Smith, R. Scott; Kay, Bruce D.

    2013-03-01

    In this (Paper I) and the companion paper (Paper II; R. May, R. Smith, and B. Kay, J. Chem. Phys. 138, 104502 (2013), 10.1063/1.4793312), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization of ASW, a phenomenon that we termed the "molecular volcano." The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper, we utilize the "molecular volcano" desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length distribution is independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2, or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ/mol. This value is consistent with the crystallization growth rates reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization/crack front into the film is in good agreement with the temperature programmed desorption results.

  7. The release of trapped gases from amorphous solid water films. I. "Top-down" crystallization-induced crack propagation probed using the molecular volcano.

    PubMed

    May, R Alan; Smith, R Scott; Kay, Bruce D

    2013-03-14

    In this (Paper I) and the companion paper (Paper II; R. May, R. Smith, and B. Kay, J. Chem. Phys. 138, 104502 (2013)), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization of ASW, a phenomenon that we termed the "molecular volcano." The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper, we utilize the "molecular volcano" desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length distribution is independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2, or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ∕mol. This value is consistent with the crystallization growth rates reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization∕crack front into the film is in good agreement with the temperature programmed desorption results. PMID:23514503

  8. Molecular dynamics simulation studies of liquid crystalline materials

    NASA Astrophysics Data System (ADS)

    Tian, Pu

    Molecular dynamics (MD) simulation studies of the phase behavior, the response to an applied field of nematic liquid crystalline (LC) materials and interactions of nanoparticles in isotropic mesogenic materials are presented in this work. Molecular models used include the rigid bead-necklace model and soft spherocylinders. Free energy calculations applying thermodynamic integration and the Gibbs-Duhem integration method were used to establish the (T, P) phase diagram of the repulsive bead-necklace model, subsequently the Gibbs-Duhem integration method was further utilized to investigate the influence of attractive interactions on the phase behavior of the bead-necklace model. Analysis of order and thermodynamics of LC phase transitions (Isotropic-Nematic transition and Nematic-Smectic A transition) demonstrate that this simple model can capture the basic physics of liquid crystalline phases, and good agreement with experimental results is obtained. Further addition of chemical details to this multiple interaction sites model is much easier than to the idealized models (Gay-Berne, Spherocylinders) while the computation cost increase with respect to these idealized models is minimal. With a mean field representation of field-molecules interaction, MD simulation studies of the switching behavior of nematic LC, which is the basis of many LC devices, were performed. The switching mechanisms were explained in terms of the compromise between the elastic energy and field-molecules interactions. Qualitative agreement with experiments confirmed the validity of the mean field approximation. Finally, using the standard umbrella sampling technique and MD simulations, the potential of mean force between two nanoparticles in solvent of spherocylinders is calculated. It is found that while dispersed nanoparticles will delay the Isotropic-Nematics transition to higher density (lower temperature), they can induce local ordering fluctuations (within a few molecular lengths of the

  9. Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate.

    PubMed

    Ibsen, Casper J S; Chernyshov, Dmitry; Birkedal, Henrik

    2016-08-22

    Crystallization from amorphous phases is an emerging pathway for making advanced materials. Biology has made use of amorphous precursor phases for eons and used them to produce structures with remarkable properties. Herein, we show how the design of the amorphous phase greatly influences the nanocrystals formed therefrom. We investigate the transformation of mixed amorphous calcium phosphate/amorphous calcium carbonate phases into bone-like nanocrystalline apatite using in situ synchrotron X-ray diffraction and IR spectroscopy. The speciation of phosphate was controlled by pH to favor HPO4 (2-) . In a carbonate free system, the reaction produces anisotropic apatite crystallites with large aspect ratios. The first formed crystallites are highly calcium deficient and hydrogen phosphate rich, consistent with thin octacalcium phosphate (OCP)-like needles. During growth, the crystallites become increasingly stoichiometric, which indicates that the crystallites grow through addition of near-stoichiometric apatite to the OCP-like initial crystals through a process that involves either crystallite fusion/aggregation or Ostwald ripening. The mixed amorphous phases were found to be more stable against phase transformations, hence, the crystallization was inhibited. The resulting crystallites were smaller and less anisotropic. This is rationalized by the idea that a local phosphate-depletion zone formed around the growing crystal until it was surrounded by amorphous calcium carbonate, which stopped the crystallization. PMID:27460160

  10. Multiscale modeling for materials design: Molecular square catalysts

    NASA Astrophysics Data System (ADS)

    Majumder, Debarshi

    In a wide variety of materials, including a number of heterogeneous catalysts, the properties manifested at the process scale are a consequence of phenomena that occur at different time and length scales. Recent experimental developments allow materials to be designed precisely at the nanometer scale. However, the optimum design of such materials requires capabilities to predict the properties at the process scale based on the phenomena occurring at the relevant scales. The thesis research reported here addresses this need to develop multiscale modeling strategies for the design of new materials. As a model system, a new system of materials called molecular squares was studied in this research. Both serial and parallel multiscale strategies and their components were developed as parts of this work. As a serial component, a parameter estimation tool was developed that uses a hierarchical protocol and consists of two different search elements: a global search method implemented using a genetic algorithm that is capable of exploring large parametric space, and a local search method using gradient search techniques that accurately finds the optimum in a localized space. As an essential component of parallel multiscale modeling, different standard as well as specialized computational fluid dynamics (CFD) techniques were explored and developed in order to identify a technique that is best suited to solve a membrane reactor model employing layered films of molecular squares as the heterogeneous catalyst. The coupled set of non-linear partial differential equations (PDEs) representing the continuum model was solved numerically using three different classes of methods: a split-step method using finite difference (FD); domain decomposition in two different forms, one involving three overlapping subdomains and the other involving a gap-tooth scheme; and the multiple-timestep method that was developed in this research. The parallel multiscale approach coupled continuum

  11. Molecular Dynamics of Shock Wave Interaction with Nanoscale Structured Materials

    NASA Astrophysics Data System (ADS)

    Al-Qananwah, Ahmad K.

    Typical theoretical treatments of shock wave interactions are based on a continuum approach, which cannot resolve the spatial variations in solids with nano-scale porous structure. Nano-structured materials have the potential to attenuate the strength of traveling shock waves because of their high surface-to-volume ratio. To investigate such interactions we have developed a molecular dynamics simulation model, based on Short Range Attractive interactions. A piston, modeled as a uni-directional repulsive force field translating at a prescribed velocity, impinges on a region of gas which is compressed to form a shock, which in turn is driven against an atomistic solid wall. Periodic boundary conditions are used in the directions orthogonal to the piston motion, and we have considered solids based on either embedded atom potentials (target structure) or tethered potential (rigid piston, holding wall). Velocity, temperature and stress fields are computed locally in both gas and solid regions, and displacements within the solid are interpreted in terms of its elastic constants. In this work we present results of the elastic behavior of solid structures subjected to shock wave impact and analysis of energy transport and absorption in porous materials. The results indicated that the presence of nano-porous material layers in front of a target wall reduced the stress magnitude detected inside and the energy deposited there by about 30 percent while, at the same time, its loading rate was decreased substantially.

  12. Molecular Designs for Enhancement of Polarity in Ferroelectric Soft Materials

    NASA Astrophysics Data System (ADS)

    Ohtani, Ryo; Nakaya, Manabu; Ohmagari, Hitomi; Nakamura, Masaaki; Ohta, Kazuchika; Lindoy, Leonard F.; Hayami, Shinya

    2015-11-01

    The racemic oxovanadium(IV) salmmen complexes, [VO((rac)-(4-X-salmmen))] (X = C12C10C5 (1), C16 (2), and C18 (3); salmmen = N,N‧-monomethylenebis-salicylideneimine) with “banana shaped” molecular structures were synthesized, and their ferroelectric properties were investigated. These complexes exhibit well-defined hysteresis loops in their viscous phases, moreover, 1 also displays liquid crystal behaviour. We observed a synergetic effect influenced by three structural aspects; the methyl substituents on the ethylene backbone, the banana shaped structure and the square pyramidal metal cores all play an important role in generating the observed ferroelectricity, pointing the way to a useful strategy for the creation of advanced ferroelectric soft materials.

  13. Molecular Designs for Enhancement of Polarity in Ferroelectric Soft Materials

    PubMed Central

    Ohtani, Ryo; Nakaya, Manabu; Ohmagari, Hitomi; Nakamura, Masaaki; Ohta, Kazuchika; Lindoy, Leonard F.; Hayami, Shinya

    2015-01-01

    The racemic oxovanadium(IV) salmmen complexes, [VO((rac)-(4-X-salmmen))] (X = C12C10C5 (1), C16 (2), and C18 (3); salmmen = N,N′-monomethylenebis-salicylideneimine) with “banana shaped” molecular structures were synthesized, and their ferroelectric properties were investigated. These complexes exhibit well-defined hysteresis loops in their viscous phases, moreover, 1 also displays liquid crystal behaviour. We observed a synergetic effect influenced by three structural aspects; the methyl substituents on the ethylene backbone, the banana shaped structure and the square pyramidal metal cores all play an important role in generating the observed ferroelectricity, pointing the way to a useful strategy for the creation of advanced ferroelectric soft materials. PMID:26568045

  14. From Molecular Meccano to Nano-Functional Materials for Molecular Electronics Applications

    NASA Astrophysics Data System (ADS)

    Sue, Chi-Hau

    resulting MOF-1001 and MOF-1002, which adopt the primitive cubic structure, are capable of docking paraquat cation guests within the crown ethers inside in a stereoelectronically controlled fashion, a behavior similar to enzymes binding incoming substrates. And MOF-1030, which is synthesized from an exceptionally long [2]catenane organic strut, is a three-dimensional MOF structure with vast openness, allowing MIMs-based prototypical molecular switches to be anchored at precise locations and with uniform relative orientations throughout the framework as a whole. These studies not only represent efficient approaches to the preparation of MOFs with complex functionalities, but also set the stage for the development of next-generation nano-functional materials for molecular electronics applications.

  15. Method of making molecularly doped composite polymer material

    DOEpatents

    Affinito, John D [Tucson, AZ; Martin, Peter M [Kennewick, WA; Graff, Gordon L [West Richland, WA; Burrows, Paul E [Kennewick, WA; Gross, Mark E. , Sapochak, Linda S.

    2005-06-21

    A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.

  16. Molecular Packing and Electronic Processes in Amorphous-like Polymer Bulk Heterojunction Solar Cells with Fullerene Intercalation

    NASA Astrophysics Data System (ADS)

    Xiao, Ting; Xu, Haihua; Grancini, Giulia; Mai, Jiangquan; Petrozza, Annamaria; Jeng, U.-Ser; Wang, Yan; Xin, Xin; Lu, Yong; Choon, Ng Siu; Xiao, Hu; Ong, Beng S.; Lu, Xinhui; Zhao, Ni

    2014-06-01

    The interpenetrating morphology formed by the electron donor and acceptor materials is critical for the performance of polymer:fullerene bulk heterojunction (BHJ) photovoltaic (PV) cells. In this work we carried out a systematic investigation on a high PV efficiency (>6%) BHJ system consisting of a newly developed 5,6-difluorobenzo[c] thiadiazole-based copolymer, PFBT-T20TT, and a fullerene derivative. Grazing incidence X-ray scattering measurements reveal the lower-ordered nature of the BHJ system as well as an intermixing morphology with intercalation of fullerene molecules between the PFBT-T20TT lamella. Steady-state and transient photo-induced absorption spectroscopy reveal ultrafast charge transfer (CT) at the PFBT-T20TT/fullerene interface, indicating that the CT process is no longer limited by exciton diffusion. Furthermore, we extracted the hole mobility based on the space limited current (SCLC) model and found that more efficient hole transport is achieved in the PFBT-T20TT:fullerene BHJ as compared to pure PFBT-T20TT, showing a different trend as compared to the previously reported highly crystalline polymer:fullerene blend with a similar intercalation manner. Our study correlates the fullerene intercalated polymer lamella morphology with device performance and provides a coherent model to interpret the high photovoltaic performance of some of the recently developed weakly-ordered BHJ systems based on conjugated polymers with branched side-chain.

  17. The investigation of molecular mixing and segregation in opv materials and devices

    NASA Astrophysics Data System (ADS)

    Rochester, Christopher W.

    With the growing energy demand and the threat of global warming caused by our excessive use of fossil fuels, it is imperative that we search for and develop alternative ways to generate energy. Using photovoltaic technologies to produce energy is a good way to supplement our current energy supplies. The problem with conventional PV technology is that it is too expensive to compete with cheap fossil fuels. Polymer solar cells have the potential to be a much cheaper alternative to conventional PV technology, as they can easily be manufactured using simple roll-to-roll printing methods, are light-weight, and are flexible. Polymer solar cells consist of layered organic materials that are deposited using solution deposition methods. The organic layers often consist of mixtures of organic molecules, that may be composed of polymer and small molecules. The behavior of these organic materials are not always predictable as they have been found to often diffuse, causing material segregation and mixing within layers and at interfaces. These processes are measured and observed using a combination of experimental techniques. P3HT/PCBM bilayer samples were fabricated by spin coating PCBM dissolved in CH2Cl 2 onto P3HT films. We show using steady-state spectroscopy, neutron reflectometry, and current-voltage measurements that substantial mixing occurs between the P3HT and PCBM during the PCBM deposition. We conclude that the PCBM mixes with amorphous P3HT and does not disrupt the existing crystalline domains. A PCBM loading of 25-30 wt% into the P3HT layer was determined, which explains why reported photovoltaic performances of these solution processed bilayer structures are comparable to that of bulk-heterojunctions. The use of F4-TCNQ as a molecular dopant for the polymeric hole transport layer, S-P3MEET, for use in organic photovoltaic devices was investigated. It is shown that F4-TCNQ effectively oxidized the S-P3MEET polymer, and that even for low doping concentrations

  18. Electron-Stimulated Production of Molecular Oxygen in Amorphous Solid Water on Pt(111): Precursor Transport Through the Hydrogen Bonding Network

    SciTech Connect

    Petrik, Nikolay G.; Kavetski, Alexandre G.; Kimmel, Greg A.

    2006-09-28

    The low-energy, electron-stimulated production of molecular oxygen from thin amorphous solid water (ASW) films adsorbed on Pt(111) is investigated. For ASW coverages less than {approx}60 monolayers (ML), the O2 ESD yield depends on coverage in a manner that is very similar to the H2 ESD yield. In particular, both the O2 and H2 ESD yields have a pronounced maximum at {approx}20 ML due to reactions at the Pt/water interface. The O2 yield is dose-dependent and several precursors (OH, H2O2 and HO2) are involved in the O2 production. Layered films of H216O and H218O are used to profile the spatial distribution of the electron-stimulated reactions leading to oxygen within the water films. Independent of the ASW film thickness, the final reactions leading to O2 occur at or near the ASW/vacuum interface. However for ASW coverages less than {approx}40 ML, the results indicate that dissociation of water molecules at the ASW/Pt interface contributes to the O2 production at the ASW/vacuum interface presumably via the generation of OH radicals near the Pt substrate. The OH (or possibly OH-) segregates to the vacuum interface where it contributes to the reactions at that interface. The electron-stimulated migration of precursors to the vacuum interface occurs via transport through the hydrogen bond network of the ASW without motion of the oxygen atoms. A simple kinetic model of the non-thermal reactions leading to O2, which was previously used to account for reactions in thick ASW films, is modified to account for the electron-stimulated migration of precursors.

  19. Modeling of amorphous polyaniline emeraldine base.

    PubMed

    Canales, Manel; Curcó, David; Alemán, Carlos

    2010-08-01

    Amorphous polyaniline emeraldine base has been investigated using atomistic classical molecular dynamics simulations. Initially, different sets of force-field parameters, which differ in the atomic charges and/or the van der Waals parameters, were tested. The experimental density of polyaniline was satisfactorily reproduced using the following combination: (i) equilibrium bond lengths, equilibrium bond angles, and electrostatic charges derived from quantum mechanical calculations and (ii) van der Waals parameters extrapolated from GROMOS for all atoms with the exception of the CH pseudoparticles of the phenyl ring, which were taken from an anisotropic united atom potential. Next, this force field was used to investigate the structure of the polymer in the amorphous state, the trajectories performed for this purpose allowing accumulation of 750 ns. Analyses of the energies evidence that the interactions between one repeating unit containing an amine nitrogen atom and another unit with an imine nitrogen are favored with respect to those between two identical repeating units. This conclusion is also supported by quantum mechanical and quantum mechanical/molecular mechanics calculations. On the other hand, the partial radial distribution functions indicate that this material only exhibits short-range intramolecular correlation, which is in excellent agreement with experimental evidence.

  20. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    SciTech Connect

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  1. Atomic packing and diffusion in Fe{sub 85}Si{sub 2}B{sub 9}P{sub 4} amorphous alloy analyzed by ab initio molecular dynamics simulation

    SciTech Connect

    Wang, Yaocen; Takeuchi, Akira; Makino, Akihiro; Liang, Yunye; Kawazoe, Yoshiyuki

    2015-05-07

    In the work reported in this paper, ab initio molecular dynamics simulation was performed on Fe{sub 85}Si{sub 2}B{sub 9}P{sub 4} amorphous alloy. Preferred atomic environment of the elements was analyzed with Voronoi polyhedrons. It showed that B and P atoms prefer less neighbors compared with Fe and Si, making them structurally incompatible with Fe rich structure and repulsive to the formation of α-Fe. However, due to the low bonding energy of B and P caused by low coordination number, the diffusion rates of them were considerably large, resulting in the requirement of fast annealing for achieving optimum nano-crystallization for its soft magnetic property. The simulation work also indicates that diffusion rate in amorphous alloy is largely determined by bonding energy rather than atomic size.

  2. Molecular-dynamics investigation of the desensitization of detonable material

    NASA Astrophysics Data System (ADS)

    Rice, Betsy M.; Mattson, William; Trevino, Samuel F.

    1998-05-01

    A molecular-dynamics investigation of the effects of a diluent on the detonation of a model crystalline explosive is presented. The diluent, a heavy material that cannot exothermally react with any species of the system, is inserted into the crystalline explosive in two ways. The first series of simulations investigates the attenuation of the energy of a detonation wave in a pure explosive after it encounters a small layer of crystalline diluent that has been inserted into the lattice of the pure explosive. After the shock wave has traversed the diluent layer, it reenters the pure explosive. Unsupported detonation is not reestablished unless the energy of the detonation wave exceeds a threshold value. The second series of simulations investigates detonation of solid solutions of different concentrations of the explosive and diluent. For both types of simulations, the key to reestablishing or reaching unsupported detonation is the attainment of a critical number density behind the shock front. Once this critical density is reached, the explosive molecules make a transition to an atomic phase. This is the first step in the reaction mechanism that leads to the heat release that sustains the detonation. The reactive fragments formed from the atomization of the heteronuclear reactants subsequently combine with new partners, with homonuclear product formation exothermally favored. The results of detonation of the explosive-diluent crystals are consistent with those presented in an earlier study on detonation of pure explosive [B. M. Rice, W. Mattson, J. Grosh, and S. F. Trevino, Phys. Rev. E 53, 611 (1996)].

  3. Synthesis and characterization of low-dimensional molecular magnetic materials

    NASA Astrophysics Data System (ADS)

    Liu, Chen

    This dissertation presents experimental results from the synthesis and structural, magnetic characterization of representative low-dimensional molecule-based magnetic materials. Most of the materials reported in this dissertation, both coordination polymers and cuprate, are obtained as the result of synthesizing and characterizing spin ladder systems; except the material studied in Chapter 2, ferricenyl(III)trisferrocenyl(II)borate, which is not related to the spin ladder project. The interest in spin ladder systems is due to the discovery of high-temperature superconductivity in doped cuprates possessing ladder-like structures, and it is hoped that investigation of the magnetic behavior of ladder-like structures will help us understand the mechanism of high-temperature superconductivity. Chapter 1 reviews fundamental knowledge of molecular magnetism, general synthetic strategies for low-dimensional coordination polymers, and a brief introduction to the current status of research on spin ladder systems. Chapter 2 presents a modified synthetic procedure of a previously known monomeric complex, ferricenyl(III)trisferrocenyl(II)borate, 1. Its magnetic properties were characterized and previous results have been disproved. Chapter 3 investigates the magnetism of [CuCl2(CH3CN)] 2, 2, a cuprate whose structure consists of isolated noninterpenetrating ladders formed by the stacking of Cu(II) dimers. This material presents an unexpected ferromagnetic interaction both within the dimeric units and between the dimers, and this behavior has been rationalized based on the effect of its terminal nonbridging ligands. In Chapter 4, the synthesis and magnetism of two ladder-like coordination polymers, [Co(NO3)2(4,4'-bipyridine) 1.5(MeCN)]n, 3, and Ni2(2,6-pyridinedicarboxylic acid)2(H2O)4(pyrazine), 4, are reported. Compound 3 possesses a covalent one-dimensional ladder structure in which Co(II) ions are bridged through bipyridine molecules. Compared to the materials discussed in

  4. Stabilization of the Amorphous Ezetimibe Drug by Confining Its Dimension.

    PubMed

    Knapik, J; Wojnarowska, Z; Grzybowska, K; Jurkiewicz, K; Stankiewicz, A; Paluch, M

    2016-04-01

    The purpose of this paper is to investigate the influence of nanoconfinement on the molecular mobility, as well as on the physical stability, of amorphous ezetimibe drug. Two guest/host systems, ezetimibe-Aeroperl 300 and ezetimibe-Neusilin US2, were prepared and studied using various experimental techniques, such as X-ray diffraction (XRD), differential scanning calorimetry (DSC), and broadband dielectric spectroscopy (BDS). Our investigation has shown that the molecular mobility of the examined anticholesterol agent incorporated into nanopore matrices strongly depends on the pore size of the host system. Moreover, it was found that the amorphous ezetimibe confined in 30 nm pores of Aeroperl 300 has a tendency to recrystallize, while the drug incorporated into the smaller--5 nm--pores of Neusilin US2 is not able to crystallize. It has been shown that this significant stabilization of ezetimibe drug can be achieved by an interplay of three factors: changes in molecular dynamics of the confined amorphous drug, the immobilization effect of pore walls on a part of ezetimibe molecules, and the use of host materials with pores that are smaller than the critical size of the drug crystal nuclei. PMID:26981876

  5. Structural origin of resistance drift in amorphous GeTe

    NASA Astrophysics Data System (ADS)

    Zipoli, Federico; Krebs, Daniel; Curioni, Alessandro

    2016-03-01

    We used atomistic simulations to study the origin of the change of resistance over time in the amorphous phase of GeTe, a prototypical phase-change material (PCM). Understanding the cause of resistance drift is one of the biggest challenges to improve multilevel storage technology. For this purpose, we generated amorphous structures via classical molecular-dynamics simulations under conditions as close as possible to the experimental operating ones of such memory devices. Moreover, we used the replica-exchange technique to generate structures comparable with those obtained in the experiment after long annealing that show an increase of resistance. This framework allowed us to overcome the main limitation of previous simulations, based on density-functional theory, that suffered from being computationally too expensive therefore limited to the nanosecond time scale. We found that resistance drift is caused by consumption of Ge atom clusters in which the coordination of at least one Ge atom differs from that of the crystalline phase and by removal of stretched bonds in the amorphous network, leading to a shift of the Fermi level towards the middle of the band gap. These results show that one route to design better memory devices based on current chalcogenide alloys is to reduce the resistance drift by increasing the rigidity of the amorphous network.

  6. Study of the effects of metalloid elements (P, C, B) on Fe-based amorphous alloys by ab initio molecular dynamics simulations

    SciTech Connect

    Zhang, Wenbiao; Li, Qiang E-mail: dhm@xju.edu.cn; Duan, Haiming E-mail: dhm@xju.edu.cn

    2015-03-14

    In order to understand the effects of the metalloid elements M (M: P, C, B) on the atomic structure, glass formation ability (GFA) and magnetic properties of Fe-based amorphous alloys, Fe{sub 80}P{sub 13}C{sub 7}, Fe{sub 80}P{sub 14}B{sub 6} and Fe{sub 80}B{sub 14}C{sub 6} amorphous alloys are chosen to study through first-principle simulations in the present work. The atomic structure characteristic of the three amorphous alloys is investigated through the pair distribution functions (PDFs) and Voronoi Polyhedra (VPs) analyses. The PDFs and VPs analyses suggest that the GFA of the three alloys dropped in the order of Fe{sub 80}P{sub 13}C{sub 7}, Fe{sub 80}P{sub 14}B{sub 6}, and Fe{sub 80}B{sub 14}C{sub 6}, which is well consistent with the experimental results. The density of state (DOS) of the three amorphous alloys is calculated to investigate their magnetic properties. Based on the DOS analysis, the average magnetic moment of Fe atom in Fe{sub 80}P{sub 13}C{sub 7} and Fe{sub 80}P{sub 14}B{sub 6} amorphous alloys can be estimated to be 1.71 μ{sub B} and 1.70 μ{sub B}, respectively, which are in acceptable agreement with the experimental results. However, the calculated average magnetic moment of Fe atom in Fe{sub 80}B{sub 14}C{sub 6} amorphous alloy is about 1.62 μ{sub B}, which is far less than the experimental result.

  7. Neutron irradiation induced amorphization of silicon carbide

    SciTech Connect

    Snead, L.L.; Hay, J.C.

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  8. Amorphization and nanocrystallization of silcon under shock compression

    SciTech Connect

    Remington, B. A.; Wehrenberg, C. E.; Zhao, S.; Hahn, E. N.; Kad, B.; Bringa, E. M.; Meyers, M. A.

    2015-11-06

    High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. As a result, the nucleation of amorphization is analyzed qualitatively by classical nucleation theory.

  9. Raman intensity: An important tool to study the structure and phase transitions of amorphous/crystalline materials

    NASA Astrophysics Data System (ADS)

    Colomban, Philippe; Slodczyk, Aneta

    2009-10-01

    The measurements of the Raman intensity are used mainly to determine quantitatively the amount, distribution and degree of crystallisation of different phases in a material, i.e. the Raman mapping. Our studies reveal that the analysis of relative and absolute Raman intensity is a very powerful tool, which allows to investigate and characterize the modifications of the structure in covalent bonded compounds, e.g. due to: (i) changes of BO 6 octahedra by the substitution of the B site by lanthanides or rare earth elements and the incorporation of protons in the case of high temperature protonic conductors, (ii) changes of the long range order correlations as the function of the nanoregion organization: continuous evolution of the local symmetry towards the long range cubic one in the case of PbMg 1/3Nb 2/3O 3- xPbTiO 3 (PMN-PT) relaxor ferroelectrics, (iii) changes of the Si-O network caused by the depolymerisation resulting from the substitution of the Si 4+ ions (covalent bonds) by the M + cations (ionic bonds) or by the incorporation of the metallic nanoprecipitates and (iv) changes caused by the lixiviation/protonation of the surface layers of the Cultural Heritage stained glasses as a function of their corrosion degree and age.

  10. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  11. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  12. Digital Learning Material for Model Building in Molecular Biology

    ERIC Educational Resources Information Center

    Aegerter-Wilmsen, Tinri; Janssen, Fred; Hartog, Rob; Bisseling, Ton

    2005-01-01

    Building models to describe processes forms an essential part of molecular biology research. However, in molecular biology curricula little attention is generally being paid to the development of this skill. In order to provide students the opportunity to improve their model building skills, we decided to develop a number of digital cases about…

  13. Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites

    NASA Astrophysics Data System (ADS)

    Hai-Yang, Song; Yu-Long, Li

    2016-02-01

    The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the ‘double hump’ behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

  14. Inhibition of surface crystallisation of amorphous indomethacin particles in physical drug-polymer mixtures.

    PubMed

    Priemel, Petra A; Laitinen, Riikka; Barthold, Sarah; Grohganz, Holger; Lehto, Vesa-Pekka; Rades, Thomas; Strachan, Clare J

    2013-11-18

    Surface coverage may affect the crystallisation behaviour of amorphous materials. This study investigates crystallisation inhibition in powder mixtures of amorphous drug and pharmaceutical excipients. Pure amorphous indomethacin (IMC) powder and physical mixtures thereof with Eudragit(®) E or Soluplus(®) in 3:1, 1:1 and 1:3 (w/w) ratios were stored at 30 °C and 23 or 42% RH. Samples were analysed during storage by X-ray powder diffraction, thermogravimetric analysis, differential scanning calorimetry, and scanning electron microscopy (SEM). IMC Eudragit(®) mixtures showed higher physical stability than pure IMC whereas IMC Soluplus(®) mixtures did not. Water uptake was higher for mixtures containing Soluplus(®) than for amorphous IMC or IMC Eudragit(®) mixtures. However, the Tg of amorphous IMC was unaffected by the presence (and nature) of polymer. SEM revealed that Eudragit(®) particles aggregated on the surface of IMC particles, whereas Soluplus(®) particles did not. The drug particles developed multiple crystallites at their surface with subsequent crystal growth. The intimate contact between the surface agglomerated Eudragit(®) particles and drug is believed to inhibit crystallisation through reduced IMC surface molecular mobility. Polymer particles may also mechanically hinder crystal growth outwards from the surface. This work highlights the importance of microparticulate surface coverage of amorphous drug particles on their stability.

  15. Controlled Rejuvenation of Amorphous Metals with Thermal Processing

    PubMed Central

    Wakeda, Masato; Saida, Junji; Li, Ju; Ogata, Shigenobu

    2015-01-01

    Rejuvenation is the configurational excitation of amorphous materials and is one of the more promising approaches for improving the deformability of amorphous metals that usually exhibit macroscopic brittle fracture modes. Here, we propose a method to control the level of rejuvenation through systematic thermal processing and clarify the crucial feasibility conditions by means of molecular dynamics simulations of annealing and quenching. We also experimentally demonstrate rejuvenation level control in Zr55Al10Ni5Cu30 bulk metallic glass. Our local heat-treatment recipe (rising temperature above 1.1Tg, followed by a temperature quench rate exceeding the previous) opens avenue to modifying the glass properties after it has been cast and processed into near component shape, where a higher local cooling rate may be afforded by for example transient laser heating, adding spatial control and great flexibility to the processing. PMID:26010470

  16. Controlled Rejuvenation of Amorphous Metals with Thermal Processing

    NASA Astrophysics Data System (ADS)

    Wakeda, Masato; Saida, Junji; Li, Ju; Ogata, Shigenobu

    2015-05-01

    Rejuvenation is the configurational excitation of amorphous materials and is one of the more promising approaches for improving the deformability of amorphous metals that usually exhibit macroscopic brittle fracture modes. Here, we propose a method to control the level of rejuvenation through systematic thermal processing and clarify the crucial feasibility conditions by means of molecular dynamics simulations of annealing and quenching. We also experimentally demonstrate rejuvenation level control in Zr55Al10Ni5Cu30 bulk metallic glass. Our local heat-treatment recipe (rising temperature above 1.1Tg, followed by a temperature quench rate exceeding the previous) opens avenue to modifying the glass properties after it has been cast and processed into near component shape, where a higher local cooling rate may be afforded by for example transient laser heating, adding spatial control and great flexibility to the processing.

  17. Controlled rejuvenation of amorphous metals with thermal processing.

    PubMed

    Wakeda, Masato; Saida, Junji; Li, Ju; Ogata, Shigenobu

    2015-05-26

    Rejuvenation is the configurational excitation of amorphous materials and is one of the more promising approaches for improving the deformability of amorphous metals that usually exhibit macroscopic brittle fracture modes. Here, we propose a method to control the level of rejuvenation through systematic thermal processing and clarify the crucial feasibility conditions by means of molecular dynamics simulations of annealing and quenching. We also experimentally demonstrate rejuvenation level control in Zr(55)Al(10)Ni(5)Cu(30) bulk metallic glass. Our local heat-treatment recipe (rising temperature above 1.1T(g), followed by a temperature quench rate exceeding the previous) opens avenue to modifying the glass properties after it has been cast and processed into near component shape, where a higher local cooling rate may be afforded by for example transient laser heating, adding spatial control and great flexibility to the processing.

  18. Amorphous Semiconductor Thin Films, an Introduction

    SciTech Connect

    Martin, Peter M.

    2003-12-01

    The field of amorphous semiconductors is so large that I cannot do it justice, but I hope this short column gives you some insight into the properties and materials available, and the issues involved.

  19. Fundamental limits of material toughening in molecularly confined polymers.

    PubMed

    Isaacson, Scott G; Lionti, Krystelle; Volksen, Willi; Magbitang, Teddie P; Matsuda, Yusuke; Dauskardt, Reinhold H; Dubois, Geraud

    2016-03-01

    The exceptional mechanical properties of polymer nanocomposites are achieved through intimate mixing of the polymer and inorganic phases, which leads to spatial confinement of the polymer phase. In this study we probe the mechanical and fracture properties of polymers in the extreme limits of molecular confinement, where a stiff inorganic phase confines the polymer chains to dimensions far smaller than their bulk radius of gyration. We show that polymers confined at molecular length scales dissipate energy through a confinement-induced molecular bridging mechanism that is distinct from existing entanglement-based theories of polymer deformation and fracture. We demonstrate that the toughening is controlled by the molecular size and the degree of confinement, but is ultimately limited by the strength of individual molecules.

  20. Materials and Molecular Research Division annual report 1983

    SciTech Connect

    Searcy, A.W.; Muller, R.H.; Peterson, C.V.

    1984-07-01

    Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

  1. Quantification of surface amorphous content using dispersive surface energy: the concept of effective amorphous surface area.

    PubMed

    Brum, Jeffrey; Burnett, Daniel

    2011-09-01

    We investigate the use of dispersive surface energy in quantifying surface amorphous content, and the concept of effective amorphous surface area is introduced. An equation is introduced employing the linear combination of surface area normalized square root dispersive surface energy terms. This equation is effective in generating calibration curves when crystalline and amorphous references are used. Inverse gas chromatography is used to generate dispersive surface energy values. Two systems are investigated, and in both cases surface energy data collected for physical mixture samples comprised of amorphous and crystalline references fits the predicted response with good accuracy. Surface amorphous content of processed lactose samples is quantified using the calibration curve, and interpreted within the context of effective amorphous surface area. Data for bulk amorphous content is also utilized to generate a thorough picture of how disorder is distributed throughout the particle. An approach to quantifying surface amorphous content using dispersive surface energy is presented. Quantification is achieved by equating results to an effective amorphous surface area based on reference crystalline, and amorphous materials. PMID:21725707

  2. Artificial Molecular Machine Immobilized Surfaces: A New Platform To Construct Functional Materials.

    PubMed

    Zhang, Qi; Qu, Da-Hui

    2016-06-17

    Artificial molecular machines have received significant attention from chemists because of their unique ability to mimic the behaviors of biological systems. Artificial molecular machines can be easily modified with functional groups to construct new types of functional molecular switches. However, practical applications of artificial molecular machines are still challenging, because the working platform of artificial molecular machines is mostly in solution. Artificial molecular machine immobilized surfaces (AMMISs) are considered a promising platform to construct functional materials. Herein, we provide a minireview of some recent advances of functional AMMISs. The functions of AMMISs are highlighted and strategies for their construction are also discussed. Furthermore, a brief perspective of the development of artificial molecular machines towards functional materials is given.

  3. Sugar-based molecular computing by material implication.

    PubMed

    Elstner, Martin; Axthelm, Jörg; Schiller, Alexander

    2014-07-01

    A method to integrate an (in principle) unlimited number of molecular logic gates to construct complex circuits is presented. Logic circuits, such as half- or full-adders, can be reinterpreted by using the functional completeness of the implication function (IMP) and the trivial FALSE operation. The molecular gate IMP is represented by a fluorescent boronic acid sugar probe. An external wiring algorithm translates the fluorescent output from one gate into a chemical input for the next gate on microtiter plates. This process is demonstrated on a four-bit full adder. PMID:24924187

  4. Computational Nanotechnology of Molecular Materials, Electronics and Machines

    NASA Technical Reports Server (NTRS)

    Srivastava, D.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This viewgraph presentation covers carbon nanotubes, their characteristics, and their potential future applications. The presentation include predictions on the development of nanostructures and their applications, the thermal characteristics of carbon nanotubes, mechano-chemical effects upon carbon nanotubes, molecular electronics, and models for possible future nanostructure devices. The presentation also proposes a neural model for signal processing.

  5. Materials and Molecular Research Division annual report 1980

    SciTech Connect

    Not Available

    1981-06-01

    Progress made in the following research areas is reported: materials sciences (metallurgy and ceramics, solid state physics, materials chemistry); chemical sciences (fundamental interactions, processes and techniques); nuclear sciences; fossil energy; advanced isotope separation technology; energy storage; magnetic fusion energy; and nuclear waste management.

  6. Atomic-scale disproportionation in amorphous silicon monoxide

    NASA Astrophysics Data System (ADS)

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-05-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material.

  7. Atomic-scale disproportionation in amorphous silicon monoxide.

    PubMed

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-05-13

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material.

  8. Atomic-scale disproportionation in amorphous silicon monoxide

    PubMed Central

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material. PMID:27172815

  9. Synthesis, structure and properties of hierarchical nanostructured porous materials studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Chae, Kisung

    For applications of porous materials in many fields of technological importance, such as catalysis, filtration, separation, energy storage and conversion, the efficiency is often limited by chemical kinetics, and/or diffusion of reactants and products to and from the active sites. Hierarchical nanostructured porous materials (HNPMs) that possess both mesopores (2 nm < pore size < 50 nm) and micropores (pore size < 2 nm) have shown great potential for these applications as their bimodal porous structure can provide highly efficient mass transport through mesopores and high electrochemically accessible surface area from micropores. Despite extensive experimental studies, it remains a great challenge to quantify the synthesis-structure-properties relations in HNPMs due to the limitations of existing characterization tools and the difficulty in separating the sum of many effects in experiments. In this thesis work, we carried out a detailed study on the synthesis-structure-property relations in hierarchical nanostructured porous carbons (HNPCs) by using classical molecular dynamics (MD) simulations. We first developed a unique computational nanocasting approach in MD to mimic the synthesis of HNPCs with both mesopores from the templating and micropores from the direct quench of carbon source in MD. Mesoporous structure such as the pore size and the pore wall roughness as well as the microporous structure such as the density and the graphitic pore walls can be independently controlled by synthesis parameters, such as the size of the template, the interaction strength between the template and carbon source, the initial carbon density and the quench rate, respectively. These atomic models allowed us to quantify the structure-mechanical properties relation in aligned carbon nanotubes/amorphous porous carbon nanocomposites. Our study shows that there is an optimum balance between the crystallinity of CNTs and the number bridging bonds between CNTs and the microporous matrix

  10. Kinetic modelling of molecular hydrogen transport in microporous carbon materials.

    SciTech Connect

    Hankel, M.; Zhang, H.; Nguyen, T. X.; Bhatia, S. K.; Gray, S. K.; Smith, S. C.

    2011-01-01

    The proposal of kinetic molecular sieving of hydrogen isotopes is explored by employing statistical rate theory methods to describe the kinetics of molecular hydrogen transport in model microporous carbon structures. A Lennard-Jones atom-atom interaction potential is utilized for the description of the interactions between H{sub 2}/D{sub 2} and the carbon framework, while the requisite partition functions describing the thermal flux of molecules through the transition state are calculated quantum mechanically in view of the low temperatures involved in the proposed kinetic molecular sieving application. Predicted kinetic isotope effects for initial passage from the gas phase into the first pore mouth are consistent with expectations from previous modeling studies, namely, that at sufficiently low temperatures and for sufficiently narrow pore mouths D{sub 2} transport is dramatically favored over H{sub 2}. However, in contrast to expectations from previous modeling, the absence of any potential barrier along the minimum energy pathway from the gas phase into the first pore mouth yields a negative temperature dependence in the predicted absolute rate coefficients - implying a negative activation energy. In pursuit of the effective activation barrier, we find that the minimum potential in the cavity is significantly higher than in the pore mouth for nanotube-shaped models, throwing into question the common assumption that passage through the pore mouths should be the rate-determining step. Our results suggest a new mechanism that, depending on the size and shape of the cavity, the thermal activation barrier may lie in the cavity rather than at the pore mouth. As a consequence, design strategies for achieving quantum-mediated kinetic molecular sieving of H{sub 2}/D{sub 2} in a microporous membrane will need, at the very least, to take careful account of cavity shape and size in addition to pore-mouth size in order to ensure that the selective step, namely passage

  11. Biomimetic self-assembly of apatite hybrid materials: from a single molecular template to bi-/multi-molecular templates.

    PubMed

    Ma, Jun; Wang, Jianglin; Ai, Xin; Zhang, Shengmin

    2014-01-01

    The self-assembly of apatite and proteins is a critical process to induce the formation of the bones and teeth in vertebrates. Although hierarchical structures and biomineralization mechanisms of the mineralized tissues have been intensively studied, most researches focus on the self-assembly biomimetic route using one single-molecular template, while the natural bone is an outcome of a multi-molecular template co-assembly process. Inspired by such a mechanism in nature, a novel strategy based on multi-molecular template co-assembly for fabricating bone-like hybrid materials was firstly proposed by the authors. In this review article we have summarized the new trends from single-molecular template to bi-/multi-molecular template systems in biomimetic fabrication of apatite hybrid materials. So far, many novel apatite hybrid materials with controlled morphologies and hierarchical structures have been successfully achieved using bi-/multi-molecular template strategy, and are found to have multiple common features in comparison with natural mineralized tissues. The carboxyl, carbonyl and amino groups of the template molecules are identified to initiate the nucleation of calcium phosphate during the assembling process. For bi-/multi-molecular templates, the incorporation of multiple promotion sites for calcium and phosphate ions precisely enables to regulate the apatite nucleation from the early stage. The roles of acidic molecules and the synergetic effects of protein templates have been significantly recognized in recent studies. In addition, a specific attention is paid to self-assembling of apatite nanoparticles into ordered structures on tissue regenerative scaffolds due to their promising clinical applications ranging from implant grafts, coatings to drug and gene delivery.

  12. Selective laser sintering of amorphous metal powder

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Blatter, A.; Romano, V.; Weber, H. P.

    2005-02-01

    For the first time, selective sintering of amorphous PtCuNiP powder with a pulsed Nd:YAG laser has been studied. Upon pulsed interaction, the grains melt only superficially to build necks between the grains. Depending on the laser parameters, the sintered material can be crystallized or retained amorphous. By contrast with crystalline powder, laser sintering of amorphous powder is achieved at substantially lower pulse energies due to its low melting point. The obtained results are compared with previous results from selective laser sintering of titanium powder.

  13. Unraveling the aggregation effect on amorphous phase AIE luminogens: a computational study.

    PubMed

    Zheng, Xiaoyan; Peng, Qian; Zhu, Lizhe; Xie, Yujun; Huang, Xuhui; Shuai, Zhigang

    2016-08-18

    To achieve the efficient and precise regulation of aggregation-induced emission (AIE), unraveling the aggregation effects on amorphous AIE luminogens is of vital importance. Using a theoretical protocol combining molecular dynamics simulations and quantum mechanics/molecular mechanics calculations, we explored the relationship between molecular packing, optical spectra and fluorescence quantum efficiency of amorphous AIE luminogens hexaphenylsilole (HPS). We confirmed that the redshifted emission of amorphous aggregates as compared to crystalline HPS is caused by the lower packing density of amorphous HPS aggregates and the reduced restrictions on their intramolecular low-frequency vibrational motions. Strikingly, our calculations revealed the size independent fluorescence quantum efficiency of nanosized HPS aggregates and predicted the linear relationship between the fluorescence intensity and aggregate size. This is because the nanosized aggregates are dominated by embedded HPS molecules which exhibit similar fluorescence quantum efficiency at different aggregate sizes. In addition, our results provided a direct explanation for the crystallization-enhanced emission phenomenon of propeller-shaped AIE luminogens in experiments. Our theoretical protocol is general and applicable to other AIE luminogens, thus laying solid foundation for the rational design of advanced AIE materials. PMID:27417250

  14. Computational Nanotechnology of Molecular Materials, Electronics, and Actuators with Carbon Nanotubes and Fullerenes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The role of computational nanotechnology in developing next generation of multifunctional materials, molecular scale electronic and computing devices, sensors, actuators, and machines is described through a brief review of enabling computational techniques and few recent examples derived from computer simulations of carbon nanotube based molecular nanotechnology.

  15. Modeling thermal decomposition mechanisms in gaseous and crystalline molecular materials: application to β-HMX.

    PubMed

    Sharia, Onise; Kuklja, Maija M

    2011-11-10

    Exploration of initiation of chemistry in materials is especially challenging when several coexisting chemical mechanisms are possible and many reactions' products are produced. It is even more difficult for complex materials, such as molecular, supramolecular, and hierarchical materials and systems. A strategy to draw a complete picture of the earliest stages of rapid decomposition reactions in molecular materials is presented in this study. The strategy is based on theoretical and computational modeling of chemical decomposition reactions in the gaseous and crystalline molecular material that has been performed by means of combined density functional theory and transition state theory. This study reveals how a crystalline field affects materials chemical degradation. We also demonstrate how incomplete results, which are often used due to difficulties in obtaining comprehensive data, can lead to erroneous conclusions and predictions. We discuss our approach in the context of the obtained reaction energies, activation barriers, structures of transition states, and reaction rates with the example of a representative molecular material, β-HMX, which tends to decompose violently with large energy release upon an external perturbation. The performed analysis helps to provide a consistent interpretation of available experimental data. The article illustrates that the complete picture of decomposition reactions of complex molecular materials, while theoretically challenging and computationally demanding, is possible and even practical at this point in time. PMID:21942331

  16. Amorphization of silicon carbide by carbon displacement

    NASA Astrophysics Data System (ADS)

    Devanathan, R.; Gao, F.; Weber, W. J.

    2004-05-01

    We have used molecular dynamics simulations to examine the possibility of amorphizing silicon carbide (SiC) by exclusively displacing C atoms. At a defect generation corresponding to 0.2 displacements per atom, the enthalpy surpasses the level of melt-quenched SiC, the density decreases by about 15%, and the radial distribution function shows a lack of long-range order. Prior to amorphization, the surviving defects are mainly C Frenkel pairs (67%), but Si Frenkel pairs (18%) and antisite defects (15%) are also present. The results indicate that SiC can be amorphized by C sublattice displacements. Chemical short-range disorder, arising mainly from Frenkel pair production, plays a significant role in the amorphization.

  17. The role of graphene in enhancing the stiffness of polymeric material: A molecular modeling approach

    NASA Astrophysics Data System (ADS)

    Rahman, R.

    2013-06-01

    Amorphous epoxy is considered for investigating the role of graphene in enhancing elastic stiffness of polymers. Graphene is incorporated in the amorphous epoxy in order to develop graphene-epoxy systems. The mechanical properties of crosslinked graphene-epoxy (G-Ep) nanocomposites have been investigated using molecular mechanics (MM) and molecular dynamics (MD) simulations. The influences of graphene nanoplatelet weight concentrations, aspect ratios, and dispersion on elastic constants were studied. Both randomly oriented and stacked graphene-epoxy nanocomposites were considered. A polymer consistent force field (pcff) was used in the analysis. The G-Ep nanocomposites system underwent MD equilibration followed by uniform deformation. The stress-strain responses were evaluated in order to determine Young's modulus. MM simulation was also used to calculate the Young's modulus and shear modulus at 0 K. The results from MD and MM simulation showed reasonable improvement in Young's modulus and shear modulus for G-Ep system in comparison to neat epoxy resin. The graphene concentrations in the range of 1%-3% and graphene with high aspect ratio are seen to improve the Young's modulus by 82% approximately. The results from the simulations were compared with the results from micromechanics based analysis and nanoindentation tests. It was observed from both the atomistic scale simulation and nanoindentation tests that incorporation of graphene in neat epoxy at low weight concentration improves the elastic properties. Using similar MD scheme, it was also seen that the dispersed graphene-epoxy system possesses enhanced in-plane elastic modulus compared to the agglomerated graphene-epoxy system.

  18. Possible Existence of Two Amorphous Phases of D-Mannitol Related by a First-Order Transition

    NASA Astrophysics Data System (ADS)

    Zhu, Men; Wang, Jun-Qiang; Perepezko, John; Yu, Lian

    We report that the common polyalcohol D-mannitol may have two amorphous phases related by a first-order transition. Slightly above Tg (284 K), the supercooled liquid (SCL) of D-mannitol transforms to a low-energy, apparently amorphous phase (Phase X). The enthalpy of Phase X is roughly halfway between those of the known amorphous and crystalline phases. The amorphous nature of Phase X is suggested by its absence of birefringence, transparency, broad X-ray diffraction, and broad Raman and NIR spectra. Phase X has greater molecular spacing, higher molecular order, fewer intra- and more inter-molecular hydrogen bonds than the normal liquid. On fast heating, Phase X transforms back to SCL near 330 K. Upon temperature cycling, it shows a glass-transition-like change of heat capacity. The presence of D-sorbitol enables a first-order liquid-liquid transition (LLT) from SCL to Phase X. This is the first report of polyamorphism at 1 atm for a pharmaceutical relevant substance. As amorphous solids are explored for many applications, polyamorphism could offer a tool to engineer the properties of materials. (Ref: M. Zhu et al., J. Chem. Phys. 2015, 142, 244504)

  19. Preparation of amorphous sulfide sieves

    DOEpatents

    Siadati, Mohammad H.; Alonso, Gabriel; Chianelli, Russell R.

    2006-11-07

    The present invention involves methods and compositions for synthesizing catalysts/porous materials. In some embodiments, the resulting materials are amorphous sulfide sieves that can be mass-produced for a variety of uses. In some embodiments, methods of the invention concern any suitable precursor (such as thiomolybdate salt) that is exposed to a high pressure pre-compaction, if need be. For instance, in some cases the final bulk shape (but highly porous) may be same as the original bulk shape. The compacted/uncompacted precursor is then subjected to an open-flow hot isostatic pressing, which causes the precursor to decompose and convert to a highly porous material/catalyst.

  20. Applications of molecular modeling to the design and characterization of materials

    SciTech Connect

    Carlson, G.A.; Faulon, J.L.; Pohl, P.I.; Shelnutt, J.A.

    1994-06-01

    A variety of new molecular modeling tools are now available for studying molecular structures and molecular interactions, for building molecular structures from simple components using analytical data, and for studying the relationship of molecular structure to the energy of bonding and non-bonding interactions. These are proving quite valuable in characterizing molecular structures and intermolecular interactions and in designing new molecules. This paper describes the application of molecular modeling techniques to a variety of materials problems, including the probable modecular structures of coals, lignins, and hybrid inorganic-organic-organic systems (silsesquioxanes), the intercalation of small gas molecules in fullerene crystals, the diffusion of gas molecules through membranes, and the design, structure and function of biomimetic and nanocluster catalysts.

  1. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.

    PubMed

    Yao, Huifeng; Ye, Long; Zhang, Hao; Li, Sunsun; Zhang, Shaoqing; Hou, Jianhui

    2016-06-22

    Advances in the design and application of highly efficient conjugated polymers and small molecules over the past years have enabled the rapid progress in the development of organic photovoltaic (OPV) technology as a promising alternative to conventional solar cells. Among the numerous OPV materials, benzodithiophene (BDT)-based polymers and small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking 10% efficiency barrier in the single junction OPV devices. Remarkably, the OPV device featured by BDT-based polymer has recently demonstrated an impressive PCE of 11.21%, indicating the great potential of this class of materials in commercial photovoltaic applications. In this review, we offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship. We believe more exciting BDT-based photovoltaic materials and devices will be developed in the near future. PMID:27251307

  2. Materials and Molecular Research Division. Annual report 1981

    SciTech Connect

    Not Available

    1982-08-01

    Progress is reported in the areas of materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced (laser) isotope separation technology, energy storage, superconducting magnets, and nuclear waste management. Work for others included phase equilibria for coal gasification products and ..beta..-alumina electrolytes for storage batteries. (DLC)

  3. Materials and Molecular Research Division annual report 1982

    SciTech Connect

    Not Available

    1983-05-01

    This report is divided into: materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced isotope separation technology (AISI), energy storage, magnetic fusion energy (MFE), nuclear waste management, and work for others (WFO). Separate abstracts have been prepared for all except AIST, MFE, and WFO. (DLC)

  4. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.

    PubMed

    Yao, Huifeng; Ye, Long; Zhang, Hao; Li, Sunsun; Zhang, Shaoqing; Hou, Jianhui

    2016-06-22

    Advances in the design and application of highly efficient conjugated polymers and small molecules over the past years have enabled the rapid progress in the development of organic photovoltaic (OPV) technology as a promising alternative to conventional solar cells. Among the numerous OPV materials, benzodithiophene (BDT)-based polymers and small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking 10% efficiency barrier in the single junction OPV devices. Remarkably, the OPV device featured by BDT-based polymer has recently demonstrated an impressive PCE of 11.21%, indicating the great potential of this class of materials in commercial photovoltaic applications. In this review, we offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship. We believe more exciting BDT-based photovoltaic materials and devices will be developed in the near future.

  5. Molecular Engineering of Functional Materials for Energy and Opto-Electronic Applications.

    PubMed

    Gao, Peng; Domanski, Konrad; Konrad, Domanski; Aghazada, Sadig; Rakstys, Kasparas; Paek, Sanghyun; Nazeeruddin, Mohammad Khaja

    2015-01-01

    This review presents an overview of the dedicated research directions of the Group for Molecular Engineering of Functional Materials (GMF). This includes molecular engineering aspects of sensitizers constructed from ruthenium complexes, organic molecules, porphyrins and phthalocyanines. Manipulation of organometal trihalide perovskites, and charge transporting materials for high performance perovskite solar cells and photo-detectors are also described. Controlling phosphorescence color, and quantum yields in iridium complexes by tailoring ligands for organic light emitting diodes are demonstrated. Efficient reduction of CO(2) to CO using molecular catalyst on a protected Cu(2)O photocathode, and cost-effective water-splitting cell using a high efficiency perovskite solar cell are presented.

  6. Structure of amorphous GeSe9 by neutron diffraction and first-principles molecular dynamics: Impact of trajectory sampling and size effects

    NASA Astrophysics Data System (ADS)

    Le Roux, Sébastien; Bouzid, Assil; Kim, Kye Yeop; Han, Seungwu; Zeidler, Anita; Salmon, Philip S.; Massobrio, Carlo

    2016-08-01

    The structure of glassy GeSe9 was investigated by combining neutron diffraction with density-functional-theory-based first-principles molecular dynamics. In the simulations, three different models of N = 260 atoms were prepared by sampling three independent temporal trajectories, and the glass structures were found to be substantially different from those obtained for models in which smaller numbers of atoms or more rapid quench rates were employed. In particular, the overall network structure is based on Sen chains that are cross-linked by Ge(Se4)1/2 tetrahedra, where the latter are predominantly corner as opposed to edge sharing. The occurrence of a substantial proportion of Ge-Se-Se connections does not support a model in which the material is phase separated into Se-rich and GeSe2-rich domains. The appearance of a first-sharp diffraction peak in the Bhatia-Thornton concentration-concentration partial structure factor does, however, indicate a non-uniform distribution of the Ge-centered structural motifs on an intermediate length scale.

  7. Structure of amorphous GeSe9 by neutron diffraction and first-principles molecular dynamics: Impact of trajectory sampling and size effects.

    PubMed

    Le Roux, Sébastien; Bouzid, Assil; Kim, Kye Yeop; Han, Seungwu; Zeidler, Anita; Salmon, Philip S; Massobrio, Carlo

    2016-08-28

    The structure of glassy GeSe9 was investigated by combining neutron diffraction with density-functional-theory-based first-principles molecular dynamics. In the simulations, three different models of N = 260 atoms were prepared by sampling three independent temporal trajectories, and the glass structures were found to be substantially different from those obtained for models in which smaller numbers of atoms or more rapid quench rates were employed. In particular, the overall network structure is based on Sen chains that are cross-linked by Ge(Se4)1/2 tetrahedra, where the latter are predominantly corner as opposed to edge sharing. The occurrence of a substantial proportion of Ge-Se-Se connections does not support a model in which the material is phase separated into Se-rich and GeSe2-rich domains. The appearance of a first-sharp diffraction peak in the Bhatia-Thornton concentration-concentration partial structure factor does, however, indicate a non-uniform distribution of the Ge-centered structural motifs on an intermediate length scale. PMID:27586930

  8. Molecular Dynamic Simulations of Nanostructured Ceramic Materials on Parallel Computers

    SciTech Connect

    Vashishta, Priya; Kalia, Rajiv

    2005-02-24

    Large-scale molecular-dynamics (MD) simulations have been performed to gain insight into: (1) sintering, structure, and mechanical behavior of nanophase SiC and SiO2; (2) effects of dynamic charge transfers on the sintering of nanophase TiO2; (3) high-pressure structural transformation in bulk SiC and GaAs nanocrystals; (4) nanoindentation in Si3N4; and (5) lattice mismatched InAs/GaAs nanomesas. In addition, we have designed a multiscale simulation approach that seamlessly embeds MD and quantum-mechanical (QM) simulations in a continuum simulation. The above research activities have involved strong interactions with researchers at various universities, government laboratories, and industries. 33 papers have been published and 22 talks have been given based on the work described in this report.

  9. [Study on material base of Ligusticum wallichii for treating brain ischemia and its molecular mechanism based on molecular docking].

    PubMed

    Song, Xiang-gang; Zhou, Wei; Chen, Chao; Wang, Shu-mei; Liang, Sheng-wang

    2015-06-01

    To explore the effective ingredients and mechanism of Ligusticum wallichii in treating brain ischemia. Four brain ischemia-related target proteins were selected in the joint screening for the 45 component in L. wallichii reported in literatures based on molecular docking by reference to the corresponding drugs in the market. According to the docking results, multiple components in L. wallichii, such as phthalides, were superior to the corresponding drugs in the market, suggesting that they may be the major effective components in L. wallichii for treating brain ischemia. The method can be used to study the material base and molecular mechanism of traditional Chinese medicines.

  10. Molecular basis of processing wheat gluten toward biobased materials.

    PubMed

    Lagrain, Bert; Goderis, Bart; Brijs, Kristof; Delcour, Jan A

    2010-03-01

    The unique properties of the wheat grain reside primarily in the gluten-forming storage proteins of its endosperm. Wheat gluten's structural and functional properties have led to an expanding diversity of applications in food products. However, its viscoelastic properties and low water solubility also are very interesting features for nonfood applications. Moreover, gluten is annually renewable and perfectly biodegradable. In the processing and setting of gluten containing products, temperature plays a very important role. In this review, the structure and reactivity of gluten are discussed and the importance of sulfhydryl (SH) and disulfide (SS) groups is demonstrated. Wheat gluten aggregation upon thermosetting proceeds through direct covalent cross-linking in and between its protein groups, glutenin and gliadin. Predominant reactions include SH oxidation and SH/SS interchange reactions leading to the formation of SS cross-links. Additionally, thermal treatment of gluten can result in the formation of other than SS covalent bonds. We here review two main technological approaches to make gluten-based materials: wet processes resulting in thin films and dry processes, such as extrusion or compression molding, exploiting the thermoplastic properties of proteins under low moisture conditions and potentially resulting in very useful materials. Gluten bioplastics can also be reinforced with natural fibers, resulting in biocomposites. Although a lot of progress has been made the past decade, the current gluten materials are still outperformed by their synthetic polymer counterparts. PMID:20141101

  11. Characterization of Poly-Amorphous Indomethacin by Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Otsuka, Makoto; Nishizawa, Jun-ichi; Fukura, Naomi; Sasaki, Tetsuo

    2012-09-01

    Since the stability of amorphous solids of pharmaceuticals differs depending on the method of preparation, there are several solid-state chemical structures in amorphous solids, which like poly-amorphous solids might have different characteristics the same as in crystalline solids. However, it is not easy to identify the differences in solid-state characteristics between amorphous solids using conventional analytical methods, such as powder X-ray diffraction analysis, since all of the poly-amorphous solids had similar halo X-ray diffraction patterns. However, terahertz spectroscopy can distinguish the amorphous solids of indomethacin with different physicochemical properties, and is expected to provide a rapid and non-destructive qualitative analysis for the solid materials, it would be useful for the qualitative evaluation of amorphous solids in the pharmaceutical industry.

  12. Characterization of Poly-Amorphous Indomethacin by Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Otsuka, Makoto; Nishizawa, Jun-ichi; Fukura, Naomi; Sasaki, Tetsuo

    2012-05-01

    Since the stability of amorphous solids of pharmaceuticals differs depending on the method of preparation, there are several solid-state chemical structures in amorphous solids, which like poly-amorphous solids might have different characteristics the same as in crystalline solids. However, it is not easy to identify the differences in solid-state characteristics between amorphous solids using conventional analytical methods, such as powder X-ray diffraction analysis, since all of the poly-amorphous solids had similar halo X-ray diffraction patterns. However, terahertz spectroscopy can distinguish the amorphous solids of indomethacin with different physicochemical properties, and is expected to provide a rapid and non-destructive qualitative analysis for the solid materials, it would be useful for the qualitative evaluation of amorphous solids in the pharmaceutical industry.

  13. Long-range structural correlations in amorphous ternary In-based oxides

    NASA Astrophysics Data System (ADS)

    Khanal, Rabi; Medvedeva, Julia

    2015-03-01

    In recent years, there is an increasing shift towards the use of oxide semiconductor materials in their amorphous form owing to several technological advantages and the fact that amorphous oxides exhibit similar or even superior properties than their crystalline counterparts. In this work we have systemically investigated the effect of chemical composition and oxygen stoichiometry on the local and long-range structure of ternary amorphous oxides, namely In-X-O with X =Sn, Zn, Ga, Cd, Ge, Sc, Y, or La, by means of ab-initio molecular dynamics. The results reveal that the local MO structure remains nearly intact upon amorphization and exhibit weak dependence on the composition. In marked contrast, the structural characteristics of the metal-metal shell, namely, the M-M distances and M-O-M angles that determine how MO polyhedra are connected into a network, are affected by the presence of X. Complex interplay between several factors such as the cation ionic size, metal-oxygen bond strength, as well as the natural preference for edge, corner, or face-sharing between the MO polyhedra, leads to a correlated behavior in the long-range structure. These findings highlight the mechanisms of the amorphous structure formation as well as the species of the carrier transport in these oxides.

  14. Synthesis and photocatlytic performance of nano-sized TiO{sub 2} materials prepared by dealloying Ti–Cu–Pd amorphous alloys

    SciTech Connect

    Jiang, Jing; Zhu, Shengli; Xu, Wence; Cui, Zhenduo; Yang, Xianjin

    2015-05-15

    Highlights: • TiO{sub 2} nanospindles were synthesized by dealloying Ti–Cu–Pd amorphous alloy. • Pd significantly enhanced the exposure of high-energy (0 0 1) facet of TiO{sub 2}. • TiO{sub 2} with high-energy (0 0 1) facet showed good photocatalytic activity. - Abstract: TiO{sub 2} nanospindles with exposed (0 0 1) facet were synthesized through a simple dealloying reaction. The rutile photocatalysts were characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope, inductively coupled plasma optical emission spectrometry and ultraviolet–visible spectrophotometer. A Rhodamine B dye (RhB) was used to detect the photocatalytic activity of TiO{sub 2} under full light irradiation. The presence of Pd in the original amorphous alloy reduced the surface free energy of TiO{sub 2}, stabilized the (0 0 1) facet. The Pd8-TiO{sub 2} sample exhibited the largest crystal size along the direction which is perpendicular to the (0 0 1) facet. The photocatalytic degradation rate of RhB was improved due to the Pd addition in the original amorphous alloy. This indicated that the exposure of (0 0 1) facets could enhance the activity of TiO{sub 2} photocatalyst. In addition, the presence of isolated Pd atoms on the surface of TiO{sub 2} would be another probable reason for the improvement of photocatalytic activity.

  15. ISIS muons for materials and molecular science studies

    NASA Astrophysics Data System (ADS)

    King, Philip J. C.; de Renzi, Roberto; Cottrell, Stephen P.; Hillier, Adrian D.; Cox, Stephen F. J.

    2013-12-01

    This paper marks the first 25 years of muon production at ISIS and the creation in that time of a facility dedicated to the use of these elementary particles as unique microscopic probes in condensed matter and molecular science. It introduces the basic techniques of muon spin rotation, relaxation and resonance, collectively known as μSR, that were already in use by specialist groups at other accelerator labs by the mid-1980s. It describes how these techniques have been implemented and made available at ISIS, beginning in 1987, and how they have evolved and improved since then. Ever widening applications embrace magnetism, superconductivity, interstitial diffusion and charge transport, semiconductors and dielectrics, chemical physics and radical chemistry. Over these first 25 years, a fully supported user facility has been established, open to all academic and industrial users. It presently comprises four scheduled instruments, optimized for different types of measurement, together with auxiliary equipment for radiofrequency or microwave spin manipulation and future plans for pump-probe laser excitation.

  16. Fabrication of precision high quality facets on molecular beam epitaxy material

    DOEpatents

    Petersen, Holly E.; Goward, William D.; Dijaili, Sol P.

    2001-01-01

    Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.

  17. Micro- and Nanostructured Materials for Active Devices and Molecular Electronics

    SciTech Connect

    Martin, Peter M.; Graff, Gordon L.; Gross, Mark E.; Burrows, Paul E.; Bennett, Wendy D.; Mast, Eric S.; Hall, Michael G.; Bonham, Charles C.; Zumhoff, Mac R.; Williford, Rick E.

    2003-10-01

    Traditional single layer barrier coatings are not adequate in preventing degradation of the performance of organic molecular electronic and other active devices. Most advanced devices used in display technology now consist of micro and nanostructured small molecule, polymer and inorganic coatings with thin high reactive group 1A metals. This includes organic electronics such as organic light emitting devices (OLED). The lifetimes of these devices rapidly degrades when they are exposed to atmospheric oxygen and water vapor. Thin film photovoltaics and batteries are also susceptible to degradation by moisture and oxygen. Using in-line coating techniques we apply a composite nanostructured inorganic/polymer thin film barrier that restricts moisture and oxygen permeation to undetectable levels using conventional permeation test equipment. We describe permeation mechanisms for this encapsulation coating and flat panel display and other device applications. Permeation through the multilayer barrier coating is defect and pore limited and can be described by Knudsen diffusion involving a long and tortuous path. Device lifetime is also enhanced by the long lag times required to reach the steady state flux regime. Permeation rates in the range of 10-6 cc,g/m2/d have been achieved and OLED device lifetimes. The structure is robust, yet flexible. The resulting device performance and lifetimes will also be described. The barrier film can be capped with a thin film of transparent conductive oxide yielding an engineered nanostructured device for next generation, rugged, lightweight or flexible displays. This enables, for the first time, thin film encapsulation of emissive organic displays.

  18. Ordered growth of topological insulator Bi2Se3 thin films on dielectric amorphous SiO2 by MBE.

    PubMed

    Jerng, Sahng-Kyoon; Joo, Kisu; Kim, Youngwook; Yoon, Sang-Moon; Lee, Jae Hong; Kim, Miyoung; Kim, Jun Sung; Yoon, Euijoon; Chun, Seung-Hyun; Kim, Yong Seung

    2013-11-01

    Topological insulators (TIs) are exotic materials which have topologically protected states on the surface due to strong spin-orbit coupling. However, a lack of ordered growth of TI thin films on amorphous dielectrics and/or insulators presents a challenge for applications of TI-junctions. We report the growth of topological insulator Bi2Se3 thin films on amorphous SiO2 by molecular beam epitaxy (MBE). To achieve the ordered growth of Bi2Se3 on an amorphous surface, the formation of other phases at the interface is suppressed by Se passivation. Structural characterizations reveal that Bi2Se3 films are grown along the [001] direction with a good periodicity by the van der Waals epitaxy mechanism. A weak anti-localization effect of Bi2Se3 films grown on amorphous SiO2 shows a modulated electrical property by the gating response. Our approach for ordered growth of Bi2Se3 on an amorphous dielectric surface presents considerable advantages for TI-junctions with amorphous insulator or dielectric thin films.

  19. Amorphous boron nitride at high pressure

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2016-06-01

    The pressure-induced phase transformation in hexagonal boron nitrite and amorphous boron nitrite is studied using ab initio molecular dynamics simulations. The hexagonal-to-wurtzite phase transformation is successfully reproduced in the simulation with a transformation mechanism similar to one suggested in experiment. Amorphous boron nitrite, on the other hand, gradually transforms to a high-density amorphous phase with the application of pressure. This phase transformation is irreversible because a densified amorphous state having both sp3 and sp2 bonds is recovered upon pressure release. The high-density amorphous state mainly consists of sp3 bonds and its local structure is quite similar to recently proposed intermediate boron nitrite phases, in particular tetragonal structure (P42/mnm), rather than the known the wurtzite or cubic boron nitrite due to the existence of four membered rings and edge sharing connectivity. On the basis of this finding we propose that amorphous boron nitrite might be best candidate as a starting structure to synthesize the intermediate phase(s) at high pressure and temperature (probably below 800 °C) conditions.

  20. Reversible plastic events during oscillatory deformation of amorphous solids.

    PubMed

    Priezjev, Nikolai V

    2016-01-01

    The effect of oscillatory shear strain on nonaffine rearrangements of individual particles in a three-dimensional binary glass is investigated using molecular dynamics simulations. The amorphous material is represented by the Kob-Andersen mixture at the temperature well below the glass transition. We find that during periodic shear deformation of the material, some particles undergo reversible nonaffine displacements with amplitudes that are approximately power-law distributed. Our simulations show that particles with large amplitudes of nonaffine displacement exhibit a collective behavior; namely, they tend to aggregate into relatively compact clusters that become comparable with the system size near the yield strain. Along with reversible displacements there exist a number of irreversible ones. With increasing strain amplitude, the probability of irreversible displacements during one cycle increases, which leads to permanent structural relaxation of the material.

  1. Reversible plastic events during oscillatory deformation of amorphous solids.

    PubMed

    Priezjev, Nikolai V

    2016-01-01

    The effect of oscillatory shear strain on nonaffine rearrangements of individual particles in a three-dimensional binary glass is investigated using molecular dynamics simulations. The amorphous material is represented by the Kob-Andersen mixture at the temperature well below the glass transition. We find that during periodic shear deformation of the material, some particles undergo reversible nonaffine displacements with amplitudes that are approximately power-law distributed. Our simulations show that particles with large amplitudes of nonaffine displacement exhibit a collective behavior; namely, they tend to aggregate into relatively compact clusters that become comparable with the system size near the yield strain. Along with reversible displacements there exist a number of irreversible ones. With increasing strain amplitude, the probability of irreversible displacements during one cycle increases, which leads to permanent structural relaxation of the material. PMID:26871146

  2. Metal electrode for amorphous silicon solar cells

    DOEpatents

    Williams, Richard

    1983-01-01

    An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

  3. Nanosecond x-Ray diffraction from polycrystalline and amorphous materials in a pinhole camera geometry suitable for laser shock compression experiments

    SciTech Connect

    Hawreliak, J.; Lorenzana, H. E.; Remington, B. A.; Lukezic, S.; Wark, J. S.

    2007-08-15

    Nanosecond pulses of quasimonochromatic x-rays emitted from the K shell of ions within a laser-produced plasma are of sufficient spectral brightness to allow single-shot recording of powder diffraction patterns from thin foils of order millimeter diameter. Strong diffraction signals have been observed in a cylindrical pinhole camera arrangement from both polycrystalline and amorphous foils, and the experimental arrangement and foil dimensions are such that they allow for laser shocking or quasi-isentropic loading of the foil during the diffraction process.

  4. Nanosecond x-ray diffraction from polycrystalline and amorphous materials in a pinhole camera geometry suitable for laser shock compression experiments.

    PubMed

    Hawreliak, J; Lorenzana, H E; Remington, B A; Lukezic, S; Wark, J S

    2007-08-01

    Nanosecond pulses of quasimonochromatic x-rays emitted from the K shell of ions within a laser-produced plasma are of sufficient spectral brightness to allow single-shot recording of powder diffraction patterns from thin foils of order millimeter diameter. Strong diffraction signals have been observed in a cylindrical pinhole camera arrangement from both polycrystalline and amorphous foils, and the experimental arrangement and foil dimensions are such that they allow for laser shocking or quasi-isentropic loading of the foil during the diffraction process.

  5. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites

    PubMed Central

    Van Kooten, Elishevah M. M. E.; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Olsen, Mia B.; Nordlund, Åke; Krot, Alexander N.; Bizzarro, Martin

    2016-01-01

    The short-lived 26Al radionuclide is thought to have been admixed into the initially 26Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent 54Cr and 26Mg*, the decay product of 26Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling 26Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived 26Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a 26Mg*-depleted and 54Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived 26Al. The 26Mg* and 54Cr compositions of bulk metal-rich chondrites require significant amounts (25–50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants. PMID:26858438

  6. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites.

    PubMed

    Van Kooten, Elishevah M M E; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Larsen, Kirsten K; Olsen, Mia B; Nordlund, Åke; Krot, Alexander N; Bizzarro, Martin

    2016-02-23

    The short-lived (26)Al radionuclide is thought to have been admixed into the initially (26)Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent (54)Cr and (26)Mg*, the decay product of (26)Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling (26)Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived (26)Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a (26)Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25-50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants.

  7. Microscopic Observation of Kinetic Molecular Sieving of Hydrogen Isotopes in a Nanoporous Material

    SciTech Connect

    Nguyen, T. X.; Bhatia, S. K.; Jobic, H.

    2010-08-20

    We report quasielastic neutron scattering studies of H{sub 2}-D{sub 2} diffusion in a carbon molecular sieve, demonstrating remarkable quantum effects, with the heavier isotope diffusing faster below 100 K, confirming our recent predictions. Our transition state theory and molecular dynamics calculations show that while it is critical for this effect to have narrow windows of size comparable to the de Broglie wavelength, high flux requires that the energy barrier be reduced through small cages. Such materials will enable novel processes for kinetic molecular sieving of hydrogen isotopes.

  8. Influence of carbon curvature on molecular adsorptions in carbon-based materials: a force field approach.

    PubMed

    Kostov, M K; Cheng, H; Cooper, A C; Pez, G P

    2002-09-30

    A general force field methodology is developed for description of molecular interactions in carbon-based materials. The method makes use of existing parameters of potential functions developed for sp(2) and sp(3) carbons and allows accurate representation of molecular forces in curved carbon environment. The potential parameters are explicitly curvature and site dependent. The proposed force field approach was used in molecular dynamics (MD) simulations for hydrogen adsorption in single-walled carbon nanotubes (SWNTs). The results reveal significant nanotube deformations and the calculated energies of adsorption are comparable to the reported experimental heat of adsorption for H2 in SWNTs. PMID:12366059

  9. Molecular diagnostics: harmonization through reference materials, documentary standards and proficiency testing.

    PubMed

    Holden, Marcia J; Madej, Roberta M; Minor, Philip; Kalman, Lisa V

    2011-09-01

    There is a great need for harmonization in nucleic acid testing for infectious disease and clinical genetics. The proliferation of assay methods, the number of targets for molecular diagnostics and the absence of standard reference materials contribute to variability in test results among laboratories. This article provides a comprehensive overview of reference materials, related documentary standards and proficiency testing programs. The article explores the relationships among these resources and provides necessary information for people practicing in this area that is not taught in formal courses and frequently is obtained on an ad hoc basis. The aim of this article is to provide helpful tools for molecular diagnostic laboratories.

  10. Production of High Molecular Weight Organic Compounds on the Surfaces of Amorphous Iron Silicate Catalysts: Implications for Organic Synthesis in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Gilmour, I.; Hill, H. G. M.; Pearson, V. K.; Sephton, M. A.; Nuth, J. A., III

    2002-01-01

    The high molecular weight organic products of Fischer-Tropsch/Haber-Bosch syntheses on the surfaces of Fe-silicate catalysts have been studied by GCMS. Additional information is contained in the original extended abstract.

  11. Structure-property relations in amorphous carbon for photovoltaics

    SciTech Connect

    Risplendi, Francesca; Cicero, Giancarlo; Bernardi, Marco; Grossman, Jeffrey C.

    2014-07-28

    Carbon is emerging as a material with great potential for photovoltaics (PV). However, the amorphous form (a-C) has not been studied in detail as a PV material, even though it holds similarities with amorphous Silicon (a-Si) that is widely employed in efficient solar cells. In this work, we correlate the structure, bonding, stoichiometry, and hydrogen content of a-C with properties linked to PV performance such as the electronic structure and optical absorption. We employ first-principles molecular dynamics and density functional theory calculations to generate and analyze a set of a-C structures with a range of densities and hydrogen concentrations. We demonstrate that optical and electronic properties of interest in PV can be widely tuned by varying the density and hydrogen content. For example, sunlight absorption in a-C films can significantly exceed that of a same thickness of a-Si for a range of densities and H contents in a-C. Our results highlight promising features of a-C as the active layer material of thin-film solar cells.

  12. Uranium incorporation into amorphous silica.

    PubMed

    Massey, Michael S; Lezama-Pacheco, Juan S; Nelson, Joey M; Fendorf, Scott; Maher, Kate

    2014-01-01

    High concentrations of uranium are commonly observed in naturally occurring amorphous silica (including opal) deposits, suggesting that incorporation of U into amorphous silica may represent a natural attenuation mechanism and promising strategy for U remediation. However, the stability of uranium in opaline silicates, determined in part by the binding mechanism for U, is an important factor in its long-term fate. U may bind directly to the opaline silicate matrix, or to materials such as iron (hydr)oxides that are subsequently occluded within the opal. Here, we examine the coordination environment of U within opaline silica to elucidate incorporation mechanisms. Precipitates (with and without ferrihydrite inclusions) were synthesized from U-bearing sodium metasilicate solutions, buffered at pH ∼ 5.6. Natural and synthetic solids were analyzed with X-ray absorption spectroscopy and a suite of other techniques. In synthetic amorphous silica, U was coordinated by silicate in a double corner-sharing coordination geometry (Si at ∼ 3.8-3.9 Å) and a small amount of uranyl and silicate in a bidentate, mononuclear (edge-sharing) coordination (Si at ∼ 3.1-3.2 Å, U at ∼ 3.8-3.9 Å). In iron-bearing synthetic solids, U was adsorbed to iron (hydr)oxide, but the coordination environment also contained silicate in both edge-sharing and corner-sharing coordination. Uranium local coordination in synthetic solids is similar to that of natural U-bearing opals that retain U for millions of years. The stability and extent of U incorporation into opaline and amorphous silica represents a long-term repository for U that may provide an alternative strategy for remediation of U contamination. PMID:24984107

  13. Amorphous diamond films

    DOEpatents

    Falabella, S.

    1998-06-09

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  14. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  15. Amorphous Phases on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.

    2014-01-01

    Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made

  16. High thermal conductivity of chain-oriented amorphous polythiophene.

    PubMed

    Singh, Virendra; Bougher, Thomas L; Weathers, Annie; Cai, Ye; Bi, Kedong; Pettes, Michael T; McMenamin, Sally A; Lv, Wei; Resler, Daniel P; Gattuso, Todd R; Altman, David H; Sandhage, Kenneth H; Shi, Li; Henry, Asegun; Cola, Baratunde A

    2014-05-01

    Polymers are usually considered thermal insulators, because the amorphous arrangement of the molecular chains reduces the mean free path of heat-conducting phonons. The most common method to increase thermal conductivity is to draw polymeric fibres, which increases chain alignment and crystallinity, but creates a material that currently has limited thermal applications. Here we show that pure polythiophene nanofibres can have a thermal conductivity up to ∼ 4.4 W m(-1) K(-1) (more than 20 times higher than the bulk polymer value) while remaining amorphous. This enhancement results from significant molecular chain orientation along the fibre axis that is obtained during electropolymerization using nanoscale templates. Thermal conductivity data suggest that, unlike in drawn crystalline fibres, in our fibres the dominant phonon-scattering process at room temperature is still related to structural disorder. Using vertically aligned arrays of nanofibres, we demonstrate effective heat transfer at critical contacts in electronic devices operating under high-power conditions at 200 °C over numerous cycles. PMID:24681778

  17. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO3@C composites as anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng

    2014-08-01

    A series of core-shell carbon coated amorphous CoSnO3 (CoSnO3@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO3@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g-1 after 100 cycles.

  18. Molecular Engineering of Host Materials for Blue Phosphorescent OLEDs: Past, Present and Future

    SciTech Connect

    Cosimbescu, Lelia; Koech, Phillip K.; Polikarpov, Evgueni; Swensen, James S.; Von Ruden, Amber L.; Rainbolt, James E.; Padmaperuma, Asanga B.

    2010-04-15

    We report molecular design considerations for blue phosphorescent host materials, as well as propose design rules necessary to build ambipolar hosts and thus reach charge balance in a device. Our beginning developments are presented followed by the evolution of the original design to our state-of-the-art, with the help of computational modeling.

  19. New molecular precursors for low-temperature routes to new oxide materials. Final progress report

    SciTech Connect

    Tilley, T.D.

    1997-10-01

    In this grant period, the authors have explored the single-source precursor route to silicate materials containing various main group and transition metals. They have also explored the development of polymeric precursors to zinc silicate materials. In addition, they have begun to examine precursors for phosphate materials, based on the di(tert-butyl)phosphate ligand, {minus}O{sub 2}P(O{sup t}Bu){sub 2}. A primary focus of these studies is the development of molecular precursors to homogeneous, ultrapure metal silicates and phosphates. More recently, the authors have attempted to develop template-assisted network-forming reactions that could lead to micro- or mesoporous materials. Findings are summarized below for Zr and HF systems, Al systems, Cr systems, Cu systems, metal phosphate precursors, zinc silicate luminescent materials, and syntheses of inorganic materials using dendrimeric polymers as templates.

  20. Using Amorphous Phases in the Design of Structural Alloys

    NASA Astrophysics Data System (ADS)

    Schwarz, R. B.; Nash, P.

    1989-01-01

    The recent discovery that amorphous alloy powders can be prepared by mechanically alloying a mixture of pure crystalline intermetallics is opening new windows to the synthesis of engineering materials. Amorphous powders synthesized by mechanical alloying may find application in the design of structural alloys, high thermal conductivity alloys, and metal-matrix composites.

  1. Multiscale Modeling using Molecular Dynamics and Dual Domain Material Point Method

    NASA Astrophysics Data System (ADS)

    Dhakal, Tilak; Zhang, Duan

    For problems with very large material deformation rate, the time scale of material deformation can be shorter than the time that the material takes to reach a thermodynamic equilibrium. In these situations constitutive relation for the material becomes difficult to obtain. Furthermore, for these non-equilibrium problems, the history dependency of the material becomes important. A numerical method capable of tracking material deformation history is needed in a numerical simulation effort. In this work we use the dual domain material point (DDMP) method, which uses Lagrangian material points to track the history of the material where as Eulerian grids are used to calculate the gradients in continuum level. Molecular dynamics (MD) calculations are performed in the material points to calculate the closure quantities such as stress bypassing the need for a constitutive relation. Since the material points do not need to directly communicate among each other, the MD calculations can be done in parallel. In this work, GPUs are used to accelerate MD calculations. Examples of shock wave propagation in monoatomic gas and in Cerium metal are presented. Work supported by ASC project of LANL.

  2. Solid-State Thermal Reaction of a Molecular Material and Solventless Synthesis of Iron Oxide

    NASA Astrophysics Data System (ADS)

    Roy, Debasis; Roy, Madhusudan; Zubko, Maciej; Kusz, Joachim; Bhattacharjee, Ashis

    2016-09-01

    Solid-state thermal decomposition reaction of a molecular material {As}({C}6{H}5)4[{Fe}^{II}{Fe}^{III} ({C}2{O}4)3]}n has been studied using non-isothermal thermogravimetry (TG) in an inert atmosphere. By analyzing the TG data collected at multiple heating rates in 300 K-1300 K range, the kinetic parameters (activation energy, most probable reaction mechanism function and frequency factor) are determined using different multi-heating rate analysis programs. Activation energy and the frequency factor are found to be strongly dependent on the extent of decomposition. The decomposed material has been characterized to be hematite using physical techniques (FT-IR and powder XRD). Particle morphology has been checked by TEM. A solid-state reaction pathway leading the molecular precursor to hematite has been proposed illustrating an example of solventless synthesis of iron oxides utilizing thermal decomposition as a technique using innocuous materials.

  3. Shock wave interactions with nano-structured materials: a molecular dynamics approach

    NASA Astrophysics Data System (ADS)

    Al-Qananwah, A. K.; Koplik, J.; Andreopoulos, Y.

    2013-02-01

    Porous materials have long been known to be effective in blast mitigation strategies. Nano-structured materials appear to have an even greater potential for blast mitigation because of their high surface-to-volume ratio, a geometric factor which substantially attenuates shock wave propagation. A molecular dynamics approach was used to explore the effects of this remarkable property on the behavior of traveling shocks impacting on solid materials. The computational setup included a moving piston, a gas region, and a target solid wall with and without a porous structure. The materials involved were represented by realistic interaction potentials. The results indicate that the presence of a nano-porous material layer in front of the target wall reduced the stress magnitude and the energy deposited inside the solid by about 30 %, while at the same time substantially decreasing the loading rate.

  4. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  5. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  6. Structural studies and polymorphism in amorphous solids and liquids at high pressure.

    PubMed

    Wilding, Martin C; Wilson, Mark; McMillan, Paul F

    2006-10-01

    When amorphous materials are compressed their structures are expected to change in response to densification. In some cases, the changes in amorphous structure can be discontinuous and they can even have the character of first-order phase transitions. This is a phenomenon referred to as polyamorphism. Most evidence for polyamorphic transitions between low and high density liquids or analogous transformations between amorphous forms of the same substance to date has been indirect and based on the changes in thermodynamic and other structure-related properties with pressure. Recent studies using advanced X-ray and neutron scattering methods combined with molecular dynamics simulations are now revealing the details of structural changes in polyamorphic systems as a function of pressure. Various "two state" or "two species" models are used to understand the anomalous densification behaviour of liquids with melting curve maxima or regions of negative melting slope. Thermodynamic analysis of the two state model leads to the possibility of low- to high-density liquid transitions caused by differences in bulk thermodynamic properties between different amorphous forms and on the degree of cooperativity between low- and high-density structural configurations. The potential occurrence of first-order transitions between supercooled liquids is identified as a critical-like phenomenon. In this tutorial review we discuss the background to polyamorphism, incorporating the experimental observations, simulation studies and the two-state models. We also describe work carried on several systems that are considered to be polyamorphic. PMID:17003901

  7. Physical processes of quartz amorphization due to friction

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Muto, J.; Nagahama, H.; Miura, T.; Arakawa, I.; Shimizu, I.

    2011-12-01

    Solid state amorphization of minerals occurs in indentations, in shock experiments, and in high pressure metamorphic quartz rock. A production of amorphous material is also reported in experimentally created silicate gouges (Yund et al., 1990), and in San Andreas Fault core samples (Janssen et al., 2010). Rotary-shear friction experiments of quartz rocks imply dynamic weakening at seismic rates (Di Toro et al., 2004). These experiments have suggested that weakening is caused by formation and thixotropic behavior of a silica gel layer which comprises of very fine particles of hydrated amorphous silica on fault gouges (Goldsby & Tullis, 2002; Hayashi & Tsutsumi, 2010). Therefore, physical processes of amorphization are important to better understand weakening of quartz bearing rocks. In this study, we conducted a pin-on-disk friction experiment to investigate details of quartz amorphization (Muto et al, 2007). Disks were made of single crystals of synthetic and Brazilian quartz. The normal load F and sliding velocity V were ranged from 0.01 N to 1 N and from 0.01 m/s to 2.6 m/s, respectively. The friction was conducted using quartz and diamond pins (curvature radii of 0.2 ~ 3 mm) to large displacements (> 1000 m) under controlled atmosphere. We analyzed experiment samples by Raman spectroscopy and FT-IR. Raman spectroscopy (excitation wavelength 532.1 nm) provides lattice vibration modes, and was used to investigate the degree of amorphization of samples. Raman spectra of friction tracks on the disk show clear bands at wavenumbers of 126, 204, 356, 394, and 464 cm-1, characteristic of intact α-quartz. Remarkably, in experiments using diamond pins (F = 0.8 N, normal stress σr calculated by contact area = 293 ~ 440 MPa, V = 0.12 ~ 0.23 m/s), the bands at 204 and 464 cm-1 gradually broaden to reveal shoulders on the higher-wavenumber sides of these peaks. Especially, two distinguished peaks at 490 and 515 cm-1 and a weak broad peak at 606 cm-1 appear sporadically on

  8. Parametrized dielectric functions of amorphous GeSn alloys

    NASA Astrophysics Data System (ADS)

    D'Costa, Vijay Richard; Wang, Wei; Schmidt, Daniel; Yeo, Yee-Chia

    2015-09-01

    We obtained the complex dielectric function of amorphous Ge1-xSnx (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge0.75Sn0.25 and Ge0.50Sn0.50 alloys from literature. The compositional dependence of band gap energy Eg and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  9. Moringa coagulant as a stabilizer for amorphous solids: Part I.

    PubMed

    Bhende, Santosh; Jadhav, Namdeo

    2012-06-01

    Stabilization of amorphous state is a focal area for formulators to reap benefits related with solubility and consequently bioavailability of poorly soluble drugs. In the present work, an attempt has been made to explore the potential of moringa coagulant as an amorphous state stabilizer by investigating its role in stabilization of spray-dried (amorphous) ibuprofen, meloxicam and felodipine. Thermal studies like glass forming ability, glass transition temperature, hot stage microscopy and DSC were carried out for understanding thermodynamic stabilization of drugs. PXRD and dissolution studies were performed to support contribution of moringa coagulant. Studies showed that hydrogen bonding and electrostatic interactions between drug and moringa coagulant are responsible for amorphous state stabilization as explored by ATR-FTIR and molecular docking. Especially, H-bonding was found to be predominant mechanism for drug stabilization. Therein, arginine (basic amino acid in coagulant) exhibited various interactions and played important role in stabilization of aforesaid amorphous drugs. PMID:22359158

  10. Direct-patterned optical waveguides on amorphous silicon films

    DOEpatents

    Vernon, Steve; Bond, Tiziana C.; Bond, Steven W.; Pocha, Michael D.; Hau-Riege, Stefan

    2005-08-02

    An optical waveguide structure is formed by embedding a core material within a medium of lower refractive index, i.e. the cladding. The optical index of refraction of amorphous silicon (a-Si) and polycrystalline silicon (p-Si), in the wavelength range between about 1.2 and about 1.6 micrometers, differ by up to about 20%, with the amorphous phase having the larger index. Spatially selective laser crystallization of amorphous silicon provides a mechanism for controlling the spatial variation of the refractive index and for surrounding the amorphous regions with crystalline material. In cases where an amorphous silicon film is interposed between layers of low refractive index, for example, a structure comprised of a SiO.sub.2 substrate, a Si film and an SiO.sub.2 film, the formation of guided wave structures is particularly simple.

  11. Phase transformations in amorphous fullerite C60 under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Borisova, P. A.; Blanter, M. S.; Brazhkin, V. V.; Somenkov, V. A.; Filonenko, V. P.

    2015-08-01

    First phase transformations of amorphous fullerite C60 at high temperatures (up to 1800 K) and high pressures (up to 8 GPa) have been investigated and compared with the previous studies on the crystalline fullerite. The study was conducted using neutron diffraction and Raman spectroscopy. The amorphous fullerite was obtained by ball-milling. We have shown that under thermobaric treatment no crystallization of amorphous fullerite into С60 molecular modification is observed, and it transforms into amorphous-like or crystalline graphite. A kinetic diagram of phase transformation of amorphous fullerite in temperature-pressure coordinates was constructed for the first time. Unlike in crystalline fullerite, no crystalline polymerized phases were formed under thermobaric treatment on amorphous fullerite. We found that amorphous fullerite turned out to be less resistant to thermobaric treatment, and amorphous-like or crystalline graphite were formed at lower temperatures than in crystalline fullerite.

  12. Amorphous Insulator Films With Controllable Properties

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Warner, Joseph D.; Liu, David C.; Pouch, John J.

    1987-01-01

    In experiments described in report, amorphous hydrogenated carbon films grown at room temperature by low-frequency plasma deposition, using methane or butane gas. Films have unique array of useful properties; (a) adhere to wide variety of materials; (b) contain only carbon and hydrogen; (c) smooth and free of pinholes; (d) resistant to attack by moisture and chemicals; and (e) have high electric-breakdown strength and electrical resistivity. Two of optical properties and hardness of this film controlled by deposition conditions. Amorphous a-C:H and BN films used for hermetic sealing and protection of optical, electronic, magnetic, or delicate mechanical systems, and for semiconductor field dielectrics.

  13. Urchin-Like Amorphous Ni2B Alloys: Efficient Antibacterial Materials and Catalysts for Hydrous Hydrazine Decomposition to Produce H2.

    PubMed

    Deng, Miao; Fu, Shi Yan; Yang, Fan; Wu, Ping; Tong, Dong Ge

    2016-03-01

    Urchin-like amorphous Ni2B alloys were successfully prepared for the first time from a mixture of Ni(NH3)6(2+) and polyvinyl alcohol (PVA) via a solution plasma process (SPP). The as-synthesized samples were characterized by X-ray powder diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), selected-area electron diffraction patterns (SAED) and nitrogen adsorption-desorption isotherms. In the performance test, the obtained Ni-B urchins showed great antibacterial activities, comparable with those of amikacin and kanamycin, especially towards Pseudomonas aeruginosa (P. aeruginosa). Meanwhile, the magnetic properties of Ni-B urchins are enhanced in comparison with those of conventional Ni-B. During hydrous hydrazine (N2H4) decomposition, the dehydrogenation performance of Ni-B urchins is superior to those of Raney Ni and conventional Ni-B. The enhanced catalytic performance of Ni-B urchins is attributed to their high surface area of active species nickel and the enhanced intrinsic activity resulting from their unique structure.

  14. Urchin-Like Amorphous Ni2B Alloys: Efficient Antibacterial Materials and Catalysts for Hydrous Hydrazine Decomposition to Produce H2.

    PubMed

    Deng, Miao; Fu, Shi Yan; Yang, Fan; Wu, Ping; Tong, Dong Ge

    2016-03-01

    Urchin-like amorphous Ni2B alloys were successfully prepared for the first time from a mixture of Ni(NH3)6(2+) and polyvinyl alcohol (PVA) via a solution plasma process (SPP). The as-synthesized samples were characterized by X-ray powder diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), selected-area electron diffraction patterns (SAED) and nitrogen adsorption-desorption isotherms. In the performance test, the obtained Ni-B urchins showed great antibacterial activities, comparable with those of amikacin and kanamycin, especially towards Pseudomonas aeruginosa (P. aeruginosa). Meanwhile, the magnetic properties of Ni-B urchins are enhanced in comparison with those of conventional Ni-B. During hydrous hydrazine (N2H4) decomposition, the dehydrogenation performance of Ni-B urchins is superior to those of Raney Ni and conventional Ni-B. The enhanced catalytic performance of Ni-B urchins is attributed to their high surface area of active species nickel and the enhanced intrinsic activity resulting from their unique structure. PMID:27455647

  15. Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst

    NASA Astrophysics Data System (ADS)

    Gu, Jing; Yan, Yong; Young, James L.; Steirer, K. Xerxes; Neale, Nathan R.; Turner, John A.

    2016-04-01

    Producing hydrogen through solar water splitting requires the coverage of large land areas. Abundant metal-based molecular catalysts offer scalability, but only if they match noble metal activities. We report on a highly active p-GaInP2 photocathode protected through a 35-nm TiO2 layer functionalized by a cobaloxime molecular catalyst (GaInP2-TiO2-cobaloxime). This photoelectrode mediates H2 production with a current density of ~9 mA cm-2 at a potential of 0 V versus RHE under 1-sun illumination at pH 13. The calculated turnover number for the catalyst during a 20-h period is 139,000, with an average turnover frequency of 1.9 s-1. Bare GaInP2 shows a rapid current decay, whereas the GaInP2-TiO2-cobaloxime electrode shows <=5% loss over 20 min, comparable to a GaInP2-TiO2-Pt catalyst particle-modified interface. The activity and corrosion resistance of the GaInP2-TiO2-cobaloxime photocathode in basic solution is made possible by an atomic layer-deposited TiO2 and an attached cobaloxime catalyst.

  16. Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst.

    PubMed

    Gu, Jing; Yan, Yong; Young, James L; Steirer, K Xerxes; Neale, Nathan R; Turner, John A

    2016-04-01

    Producing hydrogen through solar water splitting requires the coverage of large land areas. Abundant metal-based molecular catalysts offer scalability, but only if they match noble metal activities. We report on a highly active p-GaInP2 photocathode protected through a 35-nm TiO2 layer functionalized by a cobaloxime molecular catalyst (GaInP2-TiO2-cobaloxime). This photoelectrode mediates H2 production with a current density of ∼9 mA cm(-2) at a potential of 0 V versus RHE under 1-sun illumination at pH 13. The calculated turnover number for the catalyst during a 20-h period is 139,000, with an average turnover frequency of 1.9 s(-1). Bare GaInP2 shows a rapid current decay, whereas the GaInP2-TiO2-cobaloxime electrode shows ≤5% loss over 20 min, comparable to a GaInP2-TiO2-Pt catalyst particle-modified interface. The activity and corrosion resistance of the GaInP2-TiO2-cobaloxime photocathode in basic solution is made possible by an atomic layer-deposited TiO2 and an attached cobaloxime catalyst. PMID:26689139

  17. Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst

    SciTech Connect

    Gu, Jing; Yan, Yong; Young, James L.; Steirer, K. Xerxes; Neale, Nathan R.; Turner, John A.

    2015-12-21

    Producing hydrogen through solar water splitting requires the coverage of large land areas. Abundant metal-based molecular catalysts offer scalability, but only if they match noble metal activities. We report on a highly active p-GaInP2 photocathode protected through a 35-nm TiO2 layer functionalized by a cobaloxime molecular catalyst (GaInP2-TiO2-cobaloxime). This photoelectrode mediates H2 production with a current density of ~9"0mA"0cm-2 at a potential of 0"0V versus RHE under 1-sun illumination at pH"013. The calculated turnover number for the catalyst during a 20-h period is 139,000, with an average turnover frequency of 1.9"0s-1. Bare GaInP2 shows a rapid current decay, whereas the GaInP2-TiO2-cobaloxime electrode shows

  18. Modelling of molecular phase transitions in pharmaceutical inhalation compounds: an in silico approach.

    PubMed

    Abdel-Halim, Heba; Traini, Daniela; Hibbs, David; Gaisford, Simon; Young, Paul

    2011-05-01

    Molecular dynamic simulations have been successfully utilised with molecular modelling to estimate the glass transition temperature (T(g)) of polymers. In this paper, we use a similar approach to predict the T(g) of a small pharmaceutical molecule, beclomethasone dipropionate (BDP). Amorphous beclomethasone dipropionate was prepared by spray-drying. The amorphous nature of the spray-dried material was confirmed with scanning electron microscopy, differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD). Molecular models for amorphous BDP were constructed using the amorphous cell module in Discovery studio™. These models were used in a series of molecular dynamic simulations to predict the glass transition temperature. The T(g) of BDP was determined by isothermal-isobaric molecular dynamic simulations, and different thermodynamic parameters were obtained in the temperature range of -150 to 400°C. The discontinuity at a specific temperature in the plot of temperature versus amorphous cell volume (V) and density (ρ) was considered to be the simulated T(g.) The predicted T(g) from four different simulation runs was 63.8°C ± 2.7°C. The thermal properties of amorphous BDP were experimentally determined by DSC and the experimental T(g) was found to be ∼ 65°C, in good agreement with computational simulations.

  19. In-situ preparation of functionalized molecular sieve material and a methodology to remove template

    NASA Astrophysics Data System (ADS)

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-03-01

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

  20. In-situ preparation of functionalized molecular sieve material and a methodology to remove template

    PubMed Central

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-01-01

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol. PMID:26960707

  1. Update on N2O4 Molecular Sieving with 3A Material at NASA/KSC

    NASA Technical Reports Server (NTRS)

    Davis, Chuck; Dorn, Claudia

    2000-01-01

    During its operational life, the Shuttle Program has experienced numerous failures in the Nitrogen Tetroxide (N2O4) portion of Reaction Control System (RCS), many of which were attributed to iron-nitrate contamination. Since the mid-1980's, N2O4 has been processed through a molecular sieve at the N2O4 manufacturer's facility which results in an iron content typically less than 0.5 parts-per-million-by-weight (ppmw). In February 1995, a Tiger Team was formed to attempt to resolve the iron nitrate problem. Eighteen specific actions were recommended as possibly reducing system failures. Those recommended actions include additional N2O4 molecular sieving at the Shuttle launch site. Testing at NASA White Sands Test Facility (WSTF) determined an alternative molecular sieve material could also reduce the water-equivalent content (free water and HNO3) and thereby further reduce the natural production of iron nitrate in N2O4 while stored in iron-alloy storage tanks. Since April '96, NASA Kennedy Space Center (KSC) has been processing N2O4 through the alternative molecular sieve material prior to delivery to Shuttle launch pad N2O4 storage tanks. A new, much larger capacity molecular sieve unit has also been used. This paper will evaluate the effectiveness of N2O4 molecular sieving on a large-scale basis and attempt to determine if the resultant lower-iron and lower-water content N2O4 maintains this new purity level in pad storage tanks and shuttle flight systems.

  2. Metal-organic Frameworks as A Tunable Platform for Designing Functional Molecular Materials

    PubMed Central

    Wang, Cheng; Liu, Demin

    2013-01-01

    Metal-organic frameworks (MOFs), also known as coordination polymers, represent an interesting class of crystalline molecular materials that are synthesized by combining metal-connecting points and bridging ligands. The modular nature of and mild conditions for MOF synthesis have permitted the rational structural design of numerous MOFs and the incorporation of various functionalities via constituent building blocks. The resulting designer MOFs have shown promise for applications in a number of areas, including gas storage/separation, nonlinear optics/ferroelectricity, catalysis, energy conversion/storage, chemical sensing, biomedical imaging, and drug delivery. The structure-property relationships of MOFs can also be readily established by taking advantage of the knowledge of their detailed atomic structures, which enables fine-tuning of their functionalities for desired applications. Through the combination of molecular synthesis and crystal engineering MOFs thus present an unprecedented opportunity for the rational and precise design of functional materials. PMID:23944646

  3. Cyclo-biphenalenyl biradicaloid molecular materials: conformation, rearrangement, magnetism, and thermochromism

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Tian, Yong-Hui; Kertesz, Prof. Miklos

    2010-01-01

    Cyclo-biphenalenyl biradicaloid molecular materials with chair- and boat-conformations are studied by restricted and broken-symmetry DFT using the M06 family of meta-GGA functionals. The global minima of these molecular materials are magnetically silent due to the sigma-bond connecting the two phenalenyls, while the sigma-bond may undergo low-barrier sigmatropic rearrangements via pi-pi bonded paramagnetic intermediates. The validation of theory is performed for the chair-conformation by comparing the sigma-bonded structures and the rearrangement barriers with experimental data. The boat-conformation is then studied using the validated functional. The electronic spectra of both chair- and boat-conformations are calculated and their applications in thermochromism are discussed.

  4. Complex materials for molecular spintronics applications: cobalt bis(dioxolene) valence tautomers, from molecules to polymers.

    PubMed

    Calzolari, Arrigo; Chen, Yifeng; Lewis, Geoffrey F; Dougherty, Daniel B; Shultz, David; Nardelli, Marco Buongiorno

    2012-11-01

    Using first principles calculations, we predict a complex multifunctional behavior in cobalt bis(dioxolene) valence tautomeric compounds. Molecular spin-state switching is shown to dramatically alter electronic properties and corresponding transport properties. This spin state dependence has been demonstrated for technologically relevant coordination polymers of valence tautomers as well as for novel conjugated polymers with valence tautomeric functionalization. As a result, these materials are proposed as promising candidates for spintronic devices that can couple magnetic bistability with novel electrical and spin conduction properties. Our findings pave the way to the fundamental understanding and future design of active multifunctional organic materials for spintronics applications.

  5. X-ray Birefringence Imaging of Materials with Anisotropic Molecular Dynamics.

    PubMed

    Palmer, Benjamin A; Edwards-Gau, Gregory R; Kariuki, Benson M; Harris, Kenneth D M; Dolbnya, Igor P; Collins, Stephen P; Sutter, John P

    2015-02-01

    The X-ray birefringence imaging (XBI) technique, reported very recently, is a sensitive tool for spatially resolved mapping of the local orientational properties of anisotropic materials. In this paper, we report the first XBI measurements on materials that undergo anisotropic molecular dynamics. Using incident linearly polarized X-rays with energy close to the Br K-edge, the X-ray birefringence is dictated by the orientational properties of the C-Br bonds in the material. We focus on two materials (urea inclusion compounds containing 1,8-dibromooctane and 1,10-dibromodecane guest molecules) for which the reorientational dynamics of the brominated guest molecules (and hence the reorientational dynamics of the C-Br bonds) are already well characterized by other experimental techniques. The XBI results demonstrate clearly that, for the anisotropic molecular dynamics in these materials, the effective X-ray optic axis for the X-ray birefringence phenomenon is the time-averaged resultant of the orientational distribution of the C-Br bonds. PMID:26261979

  6. Molecular Substrate Alteration by Solar Wind Radiation Documented on Flown Genesis Mission Array Materials

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, Eileen K.

    2006-01-01

    The Genesis spacecraft sampling arrays were exposed to various regimes of solar wind during flight that included: 313.01 days of high-speed wind from coronal holes, 335.19 days of low-speed inter-stream wind, 191.79 days of coronal mass ejections, and 852.83 days of bulk solar wind at Lagrange 1 orbit. Ellipsometry measurements taken at NASA s Johnson Space Center show that all nine flown array materials from the four Genesis regimes have been altered by solar wind exposure during flight. These measurements show significant changes in the optical constant for all nine ultra-pure materials that flew on Genesis when compared with their non-flight material standard. This change in the optical constant (n and k) of the material suggests that the molecular structure of the all nine ultra-pure materials have been altered by solar radiation. In addition, 50 samples of float-zone and czochralski silicon bulk array ellipsometry results were modeled with an effective medium approximation layer (EMA substrate layer) revealing a solar radiation molecular damage zone depth below the SiO2 native oxide layer ranging from 392 to 613 . This bulk solar wind radiation penetration depth is comparable to the depth of solar wind implantation depth of Mg measured by SIMS and SARISA.

  7. Amorphization and nanocrystallization of silcon under shock compression

    DOE PAGES

    Remington, B. A.; Wehrenberg, C. E.; Zhao, S.; Hahn, E. N.; Kad, B.; Bringa, E. M.; Meyers, M. A.

    2015-11-06

    High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energymore » changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. As a result, the nucleation of amorphization is analyzed qualitatively by classical nucleation theory.« less

  8. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  9. Amorphous silicon photovoltaic devices

    DOEpatents

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  10. Multiscale modeling of excitation dynamics in molecular materials with GW-BSE/MM

    NASA Astrophysics Data System (ADS)

    Baumeier, Bjoern

    Processes involving electronic excitations govern the functionality of molecular materials in which the dynamics of excitons and charges is determined by an interplay of molecular electronic structure and morphological order. To understand, e.g., charge separation and recombination at donor-acceptor heterojunctions in organic solar cells, knowledge about the microscopic details influencing these dynamics in the bulk and across the interface is required. For heterojunctions of small-molecule donor materials with C60, we employ a hybrid QM/MM approach [JCTC 7, 3335 (2011)] linking density-functional and many-body Green's functions theory [JCTC 8, 2790 (2012)] (DFT/GW-BSE) to polarizable force-fields [JCTC 10, 3140 (2014)] and analyze the charged and neutral electronic excitations therein. We develop models for both static and dynamic properties of the excitations, including (a) the diffusion of Frenkel excitons and (b) the relative energies of Frenkel and charge-transfer excitations at the donor-acceptor interface and the resulting charge separation dynamics. Our simulations allow linking the molecular architecture of the donor material, its orientation on the fullerene substrate as well as mesoscale order [Nat. Mater. 14, 434 (2015)] to the solar cell performance.

  11. Surface Mobility of Amorphous o-Terphenyl: A Strong Inhibitory Effect of Low-Concentration Polystyrene.

    PubMed

    Zhang, Wei; Teerakapibal, Rattavut; Yu, Lian

    2016-07-14

    Previous work has shown that a surface wave on amorphous o-terphenyl (OTP) decays by viscous flow at high temperatures and by surface diffusion at low temperatures. We report that the surface mass transport can be efficiently suppressed by low-concentration polymers. Surface-grating decay has been measured for OTP containing 1 wt % polystyrene (PS, Mw = 1-8 kg/mol), which is miscible with OTP. The additive has no significant effect on the decay kinetics in the viscous-flow regime, but a significant effect in the surface-diffusion regime. In the latter case, surface evolution slows down and becomes nonexponential (decelerating over time). The effect increases with falling temperature and the molecular weight of PS. These results are attributed to the very different mobility of PS (slow) and OTP (fast) and their segregation during surface evolution, and relevant for understanding the surface mobility of multicomponent amorphous materials.

  12. Assembly of amorphous clusters under floating monolayers: a comparison of in situ and ex situ techniques.

    PubMed

    Uysal, Ahmet; Stripe, Benjamin; Lin, Binhua; Meron, Mati; Dutta, Pulak

    2013-11-26

    We report synchrotron X-ray scattering studies of biomimetic crystallization of hydroxyapatite (the primary constituent of bone), using monolayers of fatty acid molecules floating on simulated body fluid (SBF) as well as aqueous solutions of calcium phosphate. A ∼10 Å thick film of amorphous material is observed to form immediately at the molecular monolayer, consistent with the proposed formation of "Posner clusters". This layer becomes denser but not significantly thicker as the subphase concentration and the temperature approach physiological conditions. The amorphous films do not crystallize within 24 h, in contrast to prior reports of more rapid crystallization using electron microscopy on ex situ samples. However, crystallization occurs almost immediately after our films are transferred onto solid substrates. These results illustrate the importance of in situ measurements for model biomineralization experiments. PMID:24164244

  13. Infrared emission from hydrogenated amorphous carbon and amorphous carbon grains in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Duley, W. W.; Jones, A. P.; Taylor, S. D.; Williams, D. A.

    1993-01-01

    The correlations deduced by Boulanger et al. (1990) from IRAS maps of the Chamaeleon, Taurus and Ursa Major molecular cloud complexes are interpreted in terms of the evolutionary hydrogenated amorphous carbon model of interstellar dust. In particular, regions of relatively strong 12-micron emission may be regions where recently accreted carbon is being converted by ambient UV to small PAHs in situ. Regions of weak 12-micron emission are probably quiescent regions where carbon has been annealed to amorphous carbon. Observational consequences of these inferences are briefly described.

  14. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOEpatents

    Farmer, Joseph C.

    2011-12-13

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  15. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOEpatents

    Farmer, Joseph C.

    2014-07-15

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  16. Depressurization amorphization of single-crystal boron carbide.

    PubMed

    Yan, X Q; Tang, Z; Zhang, L; Guo, J J; Jin, C Q; Zhang, Y; Goto, T; McCauley, J W; Chen, M W

    2009-02-20

    We report depressurization amorphization of single-crystal boron carbide (B4C) investigated by in situ high-pressure Raman spectroscopy. It was found that localized amorphization of B4C takes place during unloading from high pressures, and nonhydrostatic stresses play a critical role in the high-pressure phase transition. First-principles molecular dynamics simulations reveal that the depressurization amorphization results from pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices.

  17. Innovative solid oxide fuel cells based on BaIn0.3Ti0.7O2.85 electrolyte and La2Mo2O9 amorphous reduced phase as anode material

    NASA Astrophysics Data System (ADS)

    Buvat, Gaëtan; Quarez, Eric; Joubert, Olivier

    2016-01-01

    This article presents elaboration of electrolyte-supported solid oxide fuel cells based on the oxide ion conductor BaIn0.3Ti0.7O2.85 (BIT07) as electrolyte, the amorphous reduced phase of La2Mo2O9 (La2Mo2O7-y) as anode which presents a mixed ionic and electronic conduction in low pO2 and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) as cathode. Electrode materials have been deposited by screen-printing on BIT07 substrate. In order to avoid chemical reactivity between BIT07 and La2Mo2O9, a thin layer of Ce0.9Gd0.1O1.95 (CGO) has been used. Electrochemical performance of the single cell has been characterized by I-V measurements and impedance spectroscopy. Encouraging performance of 40 mW cm-2 at 700 °C is obtained with a thick electrolyte layer. Finally, ageing test of the cell at 700 °C during 800 h has been done with a low rate of performance loss of 4.4 × 10-3% h-1. No degradation of the electrolyte material is reported and stability of the anode material after operating the fuel cell is discussed.

  18. Modeling Shear Banding in Amorphous Solids, from Atomistic to Continuum

    NASA Astrophysics Data System (ADS)

    Alix-Williams, Darius; Falk, Michael

    Molecular dynamics simulations of strain localization are carried out using different materials systems and interatomic potentials including CuZr modeled via the embedded-atom method (EAM), amorphous Si modeled using Stillinger-Weber (SW) and a binary Lennard-Jones (LJ) system. Quench schedules and strain rates are varied. Different systems exhibit marked similarities in plastic behavior. Systematic differences between systems are analyzed in the context of Shear Transformation Zone (STZ) theory in the effort to develop a generalized constitutive framework for plasticity in glasses. Effective temperature inferred from the potential energy is explored as a local coarse-grained measure of the degree of disorder. This research is supported by National Science Foundation Award 1408685.

  19. Amorphous alumina in the extended atmosphere of α Orionis

    NASA Astrophysics Data System (ADS)

    Verhoelst, T.; Decin, L.; van Malderen, R.; Hony, S.; Cami, J.; Eriksson, K.; Perrin, G.; Deroo, P.; Vandenbussche, B.; Waters, L. B. F. M.

    2006-02-01

    In this paper we study the extended atmosphere of the late-type supergiant α Orionis. Infrared spectroscopy of red supergiants reveals strong molecular bands, some of which do not originate in the photosphere but in a cooler layer of molecular material above it. Lately, these layers have been spatially resolved by near and mid-IR interferometry. In this paper, we try to reconcile the IR interferometric and ISO-SWS spectroscopic results on α Orionis with a thorough modelling of the photosphere, molecular layer(s) and dust shell. From the ISO and near-IR interferometric observations, we find that α Orionis has only a very low density water layer close above the photosphere. However, mid-IR interferometric observations and a narrow-slit N-band spectrum suggest much larger extra-photospheric opacity close to the photosphere at those wavelengths, even when taking into account the detached dust shell. We argue that this cannot be due to the water layer, and that another source of mid-IR opacity must be present. We show that this opacity source is probably neither molecular nor chromospheric. Rather, we present amorphous alumina (Al2O3) as the best candidate and discuss this hypothesis in the framework of dust-condensation scenarios.

  20. Raman spectroscopy explores molecular structural signatures of hidden materials in depth: Universal Multiple Angle Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sil, Sanchita; Umapathy, Siva

    2014-06-01

    Non-invasive 3D imaging in materials and medical research involves methodologies such as X-ray imaging, MRI, fluorescence and optical coherence tomography, NIR absorption imaging, etc., providing global morphological/density/absorption changes of the hidden components. However, molecular information of such buried materials has been elusive. In this article we demonstrate observation of molecular structural information of materials hidden/buried in depth using Raman scattering. Typically, Raman spectroscopic observations are made at fixed collection angles, such as, 90°, 135°, and 180°, except in spatially offset Raman scattering (SORS) (only back scattering based collection of photons) and transmission techniques. Such specific collection angles restrict the observations of Raman signals either from or near the surface of the materials. Universal Multiple Angle Raman Spectroscopy (UMARS) presented here employs the principle of (a) penetration depth of photons and then diffuse propagation through non-absorbing media by multiple scattering and (b) detection of signals from all the observable angles.

  1. Nuclear magnetic resonance studies of hydrogen in amorphous silicon

    SciTech Connect

    Norberg, R.E.; Fedders, P.A.; Leopold, D.J.

    1996-12-31

    Proton and deuteron NMR in hydrogenated amorphous silicon yield quantitative measures of species-specific structural configurations and their dynamics. Populations of silicon-bonded and molecular hydrogens correlate with photovoltaic quality, doping, illumination/dark anneal sequences, and with infrared and other characterizations. High quality films contain substantial populations of nanovoid-trapped molecular hydrogen.

  2. Design and synthesis of single-source molecular precursors to homogeneous multi-component oxide materials

    NASA Astrophysics Data System (ADS)

    Fujdala, Kyle Lee

    This dissertation describes the syntheses of single-source molecular precursors to multi-component oxide materials. These molecules possess a core metal or element with various combinations of -OSi(O tBu)3, -O2P(OtBu) 2, and -OB[OSi(OtBu)3] 2 ligands. Such molecules decompose under mild thermolytic conditions (<200°C) to provide homogeneous carbon-free materials via the elimination of isobutylene and water. A gel is formed when thermolyses are performed in non-polar solvents, and subsequent drying of the gel in a conventional manner yields high surface area xerogels. This thermolytic molecular precursor (TMP) approach has been utilized to provide a variety of oxide materials with tailored properties. In addition, the oxygen rich environment of the molecular precursors coupled with the presence of M-O-E heterolinkages permits use of them as models for oxide-supported metal species and multi-component oxides. Significantly, the first complexes to contain three or more heteroelements suitable for use in the TMP method have been synthesized. Compounds for use as single-source molecular precursors have been synthesized containing Al, B, Cr, Hf, Mo, V, W, and Zr, and their thermal transformations have been examined. Heterogeneous catalytic reactions have been examined for selected materials. Also, cothermolyses of molecular precursors and additional molecules (i.e., metal alkoxides) have been utilized to provide materials with several components for potential use as catalysts or catalyst supports. Reactions of one and two equivs of HOSi(OtBu) 3 with Cr(OtBu)4 afforded the first Cr(IV) alkoxysiloxy complexes (tBuO) 3CrOSi(OtBu)3 and ( tBuO)2Cr[OSi(OtBu) 3]2, respectively. The high-yielding, convenient synthesis of (tBuO)3CrOSi(O tBu)3 make this complex a useful single-source molecular precursor, via the TMP method, to Cr/Si/O materials. The thermal transformations of (tBuO)3CrOSi(O tBu)3 and (tBuO) 2Cr[OSi(OtBu)3]2 to chromia-silica materials occurr at low temperatures

  3. MATEO: a software package for the molecular design of energetic materials.

    PubMed

    Mathieu, Didier

    2010-04-15

    To satisfy the need of energetic materials chemists for reliable and efficient predictive tools in order to select the most promising candidates for synthesis, a custom software package is developed. Making extensive use of publicly available software, it integrates a wide range of models and can be used for a variety of tasks, from the calculation of molecular properties to the prediction of the performance of heterogeneous materials, such as propellant compositions based on ammonium perchlorate/aluminium mixtures. The package is very easy to use through a graphical desktop environment. According to the material provided as input, suitable models and parameters are automatically selected. Therefore, chemists can apply advanced predictive models without having to learn how to use complex computer codes. To make the package more versatile, a command-line interface is also provided. It facilitates the assessment of various procedures by model developers.

  4. Thermally modulated nano-trampoline material as smart skin for gas molecular mass detection

    NASA Astrophysics Data System (ADS)

    Xia, Hua

    2012-06-01

    Conventional multi-component gas analysis is based either on laser spectroscopy, laser and photoacoustic absorption at specific wavelengths, or on gas chromatography by separating the components of a gas mixture primarily due to boiling point (or vapor pressure) differences. This paper will present a new gas molecular mass detection method based on thermally modulated nano-trampoline material as smart skin for gas molecular mass detection by fiber Bragg grating-based gas sensors. Such a nanomaterial and fiber Bragg grating integrated sensing device has been designed to be operated either at high-energy level (highly thermal strained status) or at low-energy level (low thermal strained status). Thermal energy absorption of gas molecular trigs the sensing device transition from high-thermal-energy status to low-thermal- energy status. Experiment has shown that thermal energy variation due to gas molecular thermal energy absorption is dependent upon the gas molecular mass, and can be detected by fiber Bragg resonant wavelength shift with a linear function from 17 kg/kmol to 32 kg/kmol and a sensitivity of 0.025 kg/kmol for a 5 micron-thick nano-trampoline structure and fiber Bragg grating integrated gas sensing device. The laboratory and field validation data have further demonstrated its fast response characteristics and reliability to be online gas analysis instrument for measuring effective gas molecular mass from single-component gas, binary-component gas mixture, and multi-gas mixture. The potential industrial applications include fouling and surge control for gas charge centrifugal compressor ethylene production, gas purity for hydrogen-cooled generator, gasification for syngas production, gasoline/diesel and natural gas fuel quality monitoring for consumer market.

  5. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.

    PubMed

    Zhao, Wen-Hui; Wang, Lu; Bai, Jaeil; Yuan, Lan-Feng; Yang, Jinlong; Zeng, Xiao Cheng

    2014-08-19

    the nanoscale confinement not only can disrupt the hydrogen bonding network in bulk water but also can allow satisfaction of the ice rule for low-density and high-density Q2D crystalline structures. Highly confined water can serve as a generic model system for understanding a variety of Q2D materials science phenomena, for example, liquid-solid, solid-solid, solid-amorphous, and amorphous-amorphous transitions in real time, as well as the Ostwald staging during these transitions. Our simulations also bring new molecular insights into the formation of gas hydrate from a gas and water mixture at low temperature.

  6. Wear Resistant Amorphous and Nanocomposite Coatings

    SciTech Connect

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  7. Molecular design and control of fullerene-based bi-thermoelectric materials.

    PubMed

    Rincón-García, Laura; Ismael, Ali K; Evangeli, Charalambos; Grace, Iain; Rubio-Bollinger, Gabino; Porfyrakis, Kyriakos; Agraït, Nicolás; Lambert, Colin J

    2016-03-01

    Molecular junctions are a versatile test bed for investigating nanoscale thermoelectricity and contribute to the design of new cost-effective environmentally friendly organic thermoelectric materials. It was suggested that transport resonances associated with discrete molecular levels could play a key role in thermoelectric performance, but no direct experimental evidence has been reported. Here we study single-molecule junctions of the endohedral fullerene Sc3N@C80 connected to gold electrodes using a scanning tunnelling microscope. We find that the magnitude and sign of the thermopower depend strongly on the orientation of the molecule and on applied pressure. Our calculations show that Sc3N inside the fullerene cage creates a sharp resonance near the Fermi level, whose energetic location, and hence the thermopower, can be tuned by applying pressure. These results reveal that Sc3N@C80 is a bi-thermoelectric material, exhibiting both positive and negative thermopower, and provide an unambiguous demonstration of the importance of transport resonances in molecular junctions. PMID:26641017

  8. Molecular design and control of fullerene-based bi-thermoelectric materials.

    PubMed

    Rincón-García, Laura; Ismael, Ali K; Evangeli, Charalambos; Grace, Iain; Rubio-Bollinger, Gabino; Porfyrakis, Kyriakos; Agraït, Nicolás; Lambert, Colin J

    2016-03-01

    Molecular junctions are a versatile test bed for investigating nanoscale thermoelectricity and contribute to the design of new cost-effective environmentally friendly organic thermoelectric materials. It was suggested that transport resonances associated with discrete molecular levels could play a key role in thermoelectric performance, but no direct experimental evidence has been reported. Here we study single-molecule junctions of the endohedral fullerene Sc3N@C80 connected to gold electrodes using a scanning tunnelling microscope. We find that the magnitude and sign of the thermopower depend strongly on the orientation of the molecule and on applied pressure. Our calculations show that Sc3N inside the fullerene cage creates a sharp resonance near the Fermi level, whose energetic location, and hence the thermopower, can be tuned by applying pressure. These results reveal that Sc3N@C80 is a bi-thermoelectric material, exhibiting both positive and negative thermopower, and provide an unambiguous demonstration of the importance of transport resonances in molecular junctions.

  9. Polymorphism and Elastic Response of Molecular Materials from First Principles: How Hard Can it Be?

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony; Tkatchenko, Alexandre

    2014-03-01

    Molecular materials are of great fundamental and applied importance in science and industry, with numerous applications in pharmaceuticals, electronics, sensing, and catalysis. A key challenge for theory has been the prediction of their stability, polymorphism and response to perturbations. While pairwise models of van der Waals (vdW) interactions have improved the ability of density functional theory (DFT) to model these systems, substantial quantitative and even qualitative failures remain. In this contribution we show how a many-body description of vdW interactions can dramatically improve the accuracy of DFT for molecular materials, yielding quantitative description of stabilities and polymorphism for these challenging systems. Moreover, the role of many-body vdW interactions goes beyond stabilities to response properties. In particular, we have studied the elastic properties of a series of molecular crystals, finding that many-body vdW interactions can account for up to 30% of the elastic response, leading to quantitative and qualitative changes in elastic behavior. We will illustrate these crucial effects with the challenging case of the polymorphs of aspirin, leading to a better understanding of the conflicting experimental and theoretical studies of this system.

  10. The Development of Molecular-Based Materials for Electrical and Electronic Applications

    NASA Astrophysics Data System (ADS)

    Babalola, P. O.; Inegbenebor, A. O.; Bolu, C. A.; Inegbenebor, A. I.

    2015-04-01

    Aluminum silicon carbide (AlSiC) metal matrix composite materials have a unique set of material properties that are ideally suited for electronics, hence the development of molecular-based materials (MBM) for the electrical and electronic industries. The low material density of AlSiC (3 g/cm3) makes it ideal for weight-sensitive applications such as portable devices over traditional thermal management materials like copper molybdenum (10 g/cm3) and copper tungsten (16 g/cm3). The aim of this work is to develop MBM for electrical and electronic industries. Aluminum (99.66% C.P.) and silicon carbide (SiC) particulates of 240 grit (45 µm), 320 grit (29 µm), 600 grit (9 µm) and 1200 grit (3 µm) at 2.5% weight fraction were used to achieve the objective. The aluminum was melted at 750°C for 25 min in a graphite crucible tilting furnace designed for this work using oil as a firing medium. After melting, a two-step mixing method of stir casting technique was adopted. The cast samples were further analyzed for mechanical and electrical properties. The electrical properties were carried out by using a 4-point probe machine. The result showed that hardness increases at lower grit level, while the electrical properties marginally increased at higher grit. It is therefore recommended that, to make AlSiC composite materials for electrical industries, the higher grit of SiC should be preferred.

  11. Molecular dynamics studies of material property effects on thermal boundary conductance.

    PubMed

    Zhou, X W; Jones, R E; Duda, J C; Hopkins, P E

    2013-07-14

    Thermal boundary resistance (inverse of conductance) between different material layers can dominate the overall thermal resistance in nanostructures and therefore impact the performance of the thermal property limiting nano devices. Because relationships between material properties and thermal boundary conductance have not been fully understood, optimum devices cannot be developed through a rational selection of materials. Here we develop generic interatomic potentials to enable material properties to be continuously varied in extremely large molecular dynamics simulations to explore the dependence of thermal boundary conductance on the characteristic properties of materials such as atomic mass, stiffness, and interfacial crystallography. To ensure that our study is not biased to a particular model, we employ different types of interatomic potentials. In particular, both a Stillinger-Weber potential and a hybrid embedded-atom-method + Stillinger-Weber potential are used to study metal-on-semiconductor compound interfaces, and the results are analyzed considering previous work based upon a Lennard-Jones (LJ) potential. These studies, therefore, reliably provide new understanding of interfacial transport phenomena particularly in terms of effects of material properties on thermal boundary conductance. Our most important finding is that thermal boundary conductance increases with the overlap of the vibrational spectra between metal modes and the acoustic modes of the semiconductor compound, and increasing the metal stiffness causes a continuous shift of the metal modes. As a result, the maximum thermal boundary conductance occurs at an intermediate metal stiffness (best matched to the semiconductor stiffness) that maximizes the overlap of the vibrational modes.

  12. The structure and dynamics of amorphous and crystalline phases of ice

    SciTech Connect

    Klug, D. D.; Tse, J. S.; Tulk, C. A.; Svensson, E. C.; Swainson, I.; Loong, C.-K.

    2000-07-14

    The structures of the high and low-density amorphous phases of ice are studied using several techniques. The diffraction patterns of high and low density amorphous ice are analyzed using reverse Monte Carlo methods and compared with molecular dynamics simulations of these phases. The spectra of crystalline and amorphous phases of ice obtained by Raman and incoherent inelastic neutron scattering are analyzed to yield structural features for comparison with the results of molecular dynamics and Reverse Monte Carlo analysis. The structural details obtained indicate that there are significant differences between the structure of liquid water and the amorphous phases of ice.

  13. Theoretical analysis on phase behaviour of a liquid crystalline material - effect of molecular motions

    NASA Astrophysics Data System (ADS)

    Lakshmi Praveen, P.; Ojha, Durga P.

    2012-01-01

    Molecular structure, and phase behaviour of 2-Cyano-N-[4-(4-n-pentyloxybenzoyloxy)-benzylidene] aniline (CPBBA) has been reported with respect to translational and orientational motions. The atomic net charge and dipole moment components at each atomic centre have been evaluated using the complete neglect differential overlap (CNDO/2) method. The modified Rayleigh-Schrodinger perturbation theory along with multicentered-multipole expansion method has been employed to evaluate the long-range intermolecular interactions, while a ‘6-exp’ potential function has been assumed for short-range interactions. The interaction energy values obtained through these computations have been used as input to calculate the configurational probability at room temperature (300 K), and nematic-isotropic transition temperature (396.5 K). On the basis of stacking, in-plane, and terminal interaction energy calculations, all possible geometrical arrangements between the molecular pairs have been considered. Molecular arrangements inside a bulk of materials have been discussed in terms of their relative order. Further, translational rigidity parameter has been estimated as a function of temperature to understand the phase behaviour of the compound. The present model is helpful to understand the effect of molecular motions on ordering, and phase behaviour of the mesogenic compounds.

  14. Bioinspired molecular electrets: bottom-up approach to energy materials and applications

    NASA Astrophysics Data System (ADS)

    Larsen, Jillian M.; Espinoza, Eli M.; Vullev, Valentine I.

    2015-01-01

    The diversity of life on Earth is made possible through an immense variety of proteins that stems from less than a couple of dozen native amino acids. Is it possible to achieve similar engineering freedom and precision to design electronic materials? What if a handful of non-native residues with a wide range of characteristics could be rationally placed in sequences to form organic macromolecules with specifically targeted properties and functionalities? Referred to as molecular electrets, dipolar oligomers and polymers composed of non-native aromatic beta-amino acids, anthranilamides (Aa) provide venues for pursuing such possibilities. The electret molecular dipoles play a crucial role in rectifying charge transfer, e.g., enhancing charge separation and suppressing undesired charge recombination, which is essential for photovoltaics, photocatalysis, and other solar-energy applications. A set of a few Aa residues can serve as building blocks for molecular electrets with widely diverse electronic properties, presenting venues for bottom-up designs. We demonstrate how three substituents and structural permutations within an Aa residue widely alter its reduction potential. Paradigms of diversity in electronic properties, originating from a few changes within a basic molecular structure, illustrate the promising potentials of biological inspiration for energy science and engineering.

  15. Characteristics of amorphous kerogens fractionated from terrigenous sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Suzuki, Noriyuki

    1984-02-01

    A preliminary attempt to fractionate amorphous kerogens from terrigenous bulk kerogen by a benzene-water two phase partition method under acidic condition was made. Microscopic observation revealed that amorphous kerogens and structured kerogens were fractionated effectively by this method. Characteristics of the amorphous and structured kerogens fractionated by this method were examined by some chemical analyses and compared with those of the bulk kerogen and humic acid isolated from the same rock sample (Haizume Formation, Pleistocene, Japan). The elemental and infrared (IR) analyses showed that the amorphous kerogen fraction had the highest atomic H/C ratio and the lowest atomic N/C ratio and was the richest in aliphatic structures and carbonyl and carboxyl functional groups. Quantities of fatty acids from the saponification products of each geopolymer were in agreement with the results of elemental and IR analyses. Distribution of the fatty acids was suggestive that more animal lipids participate in the formation of amorphous kerogens because of the abundance of relatively lower molecular weight fatty acids (such as C 16 and C 18 acids) in saponification products of amorphous kerogens. On the other hand, although the amorphous kerogen fraction tends to be rich in aliphatic structures compared with bulk kerogen of the same rock samples, van Krevelen plots of elemental compositions of kerogens from the core samples (Nishiyama Oil Field, Tertiary, Japan) reveal that the amorphous kerogen fraction is not necessarily characterized by markedly high atomic H/C ratio. This was attributed to the oxic environment of deposition and the abundance of biodegraded terrestrial amorphous organic matter in the amorphous kerogen fraction used in this work.

  16. High-Density Amorphous Ice, the Frost on Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Blake, D. F.; Wilson, M. A.; Pohorille, A.

    1995-01-01

    Most water ice in the universe is in a form which does not occur naturally on Earth and of which only minimal amounts have been made in the laboratory. We have encountered this 'high-density amorphous ice' in electron diffraction experiments of low-temperature (T less than 30 K) vapor-deposited water and have subsequently modeled its structure using molecular dynamics simulations. The characteristic feature of high-density amorphous ice is the presence of 'interstitial' oxygen pair distances between 3 and 4 A. However, we find that the structure is best described as a collapsed lattice of the more familiar low-density amorphous form. These distortions are frozen in at temperatures below 38 K because, we propose, it requires the breaking of one hydrogen bond, on average, per molecule to relieve the strain and to restructure the lattice to that of low-density amorphous ice. Several features of astrophysical ice analogs studied in laboratory experiments are readily explained by the structural transition from high-density amorphous ice into low-density amorphous ice. Changes in the shape of the 3.07 gm water band, trapping efficiency of CO, CO loss, changes in the CO band structure, and the recombination of radicals induced by low-temperature UV photolysis all covary with structural changes that occur in the ice during this amorphous to amorphous transition. While the 3.07 micrometers ice band in various astronomical environments can be modeled with spectra of simple mixtures of amorphous and crystalline forms, the contribution of the high-density amorphous form nearly always dominates.

  17. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  18. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  19. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    PubMed

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  20. Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments

    PubMed Central

    Pizzarello, Sandra; Davidowski, Stephen K.; Holland, Gregory P.; Williams, Lynda B.

    2013-01-01

    The composition of the Sutter’s Mill meteorite insoluble organic material was studied both in toto by solid-state NMR spectroscopy of the powders and by gas chromatography–mass spectrometry analyses of compounds released upon their hydrothermal treatment. Results were compared with those obtained for other meteorites of diverse classifications (Murray, GRA 95229, Murchison, Orgueil, and Tagish Lake) and found to be so far unique in regard to the molecular species released. These include, in addition to O-containing aromatic compounds, complex polyether- and ester-containing alkyl molecules of prebiotic appeal and never detected in meteorites before. The Sutter’s Mill fragments we analyzed had likely been altered by heat, and the hydrothermal conditions of the experiments realistically mimic early Earth settings, such as near volcanic activity or impact craters. On this basis, the data suggest a far larger availability of meteoritic organic materials for planetary environments than previously assumed and that molecular evolution on the early Earth could have benefited from accretion of carbonaceous meteorites both directly with soluble compounds and, for a more protracted time, through alteration, processing, and release from their insoluble organic materials. PMID:24019471